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Current manufacturing facilities lack proper performance indicators that can accurately
pinpoint areas of energy inefficiency on the manufacturing line. In studying the production
dynamics, it is realized that not every disruption event causes permanent production loss
for the manufacturing line. Each downtime event is categorized as non-effective (not causing
permanent production loss) and effective (causing permanent production loss). This directly
leads to the concept of the opportunity window, which is the largest amount of time a ma-
chine can be turned off without causing the slowest machine to become blocked or starved.
The recovery time is also analyzed, which is the amount of time it takes the system to recover
back to the original state after a downtime event. The opportunity window and recovery
time are proven to be constant for a given line configuration in a deterministic scenario.

Building upon the study of the production dynamics, this dissertation establishes new in-
dices that utilize readily available, real sensor information from the production line, such
as buffer levels, machine throughput, etc., to find the machine that is the least energy effi-
cient. This is the machine that causes the line to waste the most energy without producing
parts. The energy structure of the production line is analyzed to better understand the
complex system dynamics and to find the root cause of the energy inefficiencies. A baseline
energy consumption is established, which is the least amount of energy that is needed to
produce a certain number of parts on the line. Using this knowledge, the new sustainable
manufacturing performance indicators are defined to properly monitor the performance of
the line. These indices utilize the energy structure to illustrate the static (energy used when
there are no downtime events) and dynamic (energy lost due to downtime) portions of the
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energy consumption. The static portion of the energy structure is broken down further to
find the optimal minimum energy consumption per part. This is a virtual scenario where
each machine runs as a standalone machine and has no energy wasted due to unnecessary
machine interactions. This provides plant managers with a quantitative self-benchmark for
measuring system performance. The concepts of the downtime energy bottleneck and the
rated power bottleneck are introduced and proven analytically. The downtime energy bot-
tleneck is the machine that leads to the biggest energy waste reduction when prioritized for
reactive maintenance. The rated power bottleneck is the machine, which when replaced,
leads to the largest reduction in energy waste. These methods are verified using simulation
studies in Simulink/MATLAB.

Furthering the study of the energy indices, the production line dynamics are analyzed from
an energy economics point of view. A return on investment strategy is introduced, which
allows for the largest return on investment when replacing a machine or part with a more
energy efficient version. The energy profit bottleneck is defined as the machine that leads to
the largest increase in profit when prioritized for reactive maintenance. These concepts are
used with an opportunity window control scheme to maximize overall profit in the manufac-
turing facility.

The production line dynamics are integrated with the heating, ventilation, and air con-
ditioning system to further reduce overall energy demand of the manufacturing plant. By
merging the two largest energy consumers within the facility, we shift electrical demand to
minimize the energy costs. The cooling load is analyzed to reduce the overall effect of the
production system on the HVAC system. The opportunity window control methodology is
utilized to further reduce electricity costs with minimal throughput impact on the production.

In the future, an optimal control methodology will be developed that utilizes Markov decision
process to maximize profits, while minimizing energy demand. The issue of data uncertainty
will be addressed by introducing a Kalman Filter into the system.
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Chapter 1

Introduction

1.1 Motivation

Reducing energy waste in manufacturing facilities is a primary goal of manufacturing com-

panies as sustainability and green processes are becoming more prevalent. Over the past 60

years, the energy consumption in the industrial sector has more than doubled to approxi-

mately 30 quadrillion BTU in the United States, which was 31% of all energy used in 2011

[1]. This is illustrated in Fig. 1.1 & 1.2. This accounts for more than $100 Billion spent

Figure 1.1: Energy Consumption Trends by End-Use Sector

in energy usage alone. Energy consumption in the industrial sector of the United States is

projected to grow at an annual rate of 0.8% per year, which is the largest projected increase

among any sector within the country. In 2013, the energy consumption within industry was

31.15 quadrillion BTU; by 2020 it is projected to reach 35.76 quadrillion BTU [2, 3]. From
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Figure 1.2: Energy Consumption End Use Comparision

2006 - 2010, the average energy price for electricity usage within the manufacturing sector

has increased 3% [4]. The largest energy consumer in the manufacturing facility is the pro-

duction line, which consumes approximately 75% of the energy used by the plant [5]. This

is shown in Fig. 1.3.

An effective approach to achieve sustainability in a manufacturing facility is demand

Figure 1.3: Manufacturing Energy Consumption
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side management. Demand side management focuses on reducing the electrical demand

within the manufacturing environment. There are two approaches to demand side manage-

ment: electricity demand response and energy efficiency improvement [6]. Energy demand

response focuses on shifting patterns of electricity usage due to the variable cost of energy.

This dissertation focuses on energy efficiency improvement, where the energy consumption

is reduced without sacrificing production system output. This is achieved by exploring the

energy dynamics of the production system in relation to output produced.

Manufacturing companies lack the proper performance indicators to illustrate the energy

performance of the production line. Most manufacturing facilities track machine perfor-

mance by monitoring energy consumption per part, which, when utilized alone, does not

properly reflect the energy efficiency of that machine [7]. This is due to the nonlinearity of

the production system, which makes it difficult to quantify individual downtime incidents on

the line. Another problem with this method is that it operates under the assumption that

each machine’s energy usage is monitored. This is not always the case in the manufactur-

ing industry as it is nearly impossible to monitor individual energy usage within a complex

system [8]. This dissertation focuses on exploring the dynamic energy structure to dissect

the energy consumption per part to better illustrate energy inefficiencies by creating new

sustainable manufacturing performance indicators (SMPI).

Previous research efforts have revealed that 85% of energy in a manufacturing environ-

ment is utilized for functions not related to the production of parts [9]. We need to better

understand the energy structure in a manufacturing facility: knowing not only how much

energy is consumed, but how the energy is consumed. The energy structure can be broken

down into two parts: energy used for value adding processes, i.e. when parts are being

produced by the production line, and energy waste that is not related to the production of

parts. Understanding the energy structure is the first step in locating energy waste in the

manufacturing facility.
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1.2 Problems Addressed and Solutions

In this work energy analytics are developed for the manufacturing environment using readily

available sensor data to reduce energy waste.

The production dynamics are analyzed to categorize disruption events into events that

cause permanent production loss (effective downtime events) and events that have no impact

on production throughput (non-effective downtime events). An effective downtime event is

any disruption event that causes the slowest machine to break down or become blocked or

starved, which disrupts the overall production of the line and causes permanent production

loss. This directly leads to the concept of the opportunity window, which is the longest

amount of time a machine can be down without causing permanent production loss. The

opportunity window is shown to be constant for a given line configuration in a deterministic

scenario. Furthermore, the recovery time is introduced, which is the amount of time it takes

for the buffers to recover back to their original state after a downtime event. The upper

bound of recovery time is also shown to be constant for a deterministic scenario with a given

line configuration.

The production dynamic analysis is expanded to study the dynamic energy structure of

the production line. The dynamic energy structure is broken down into two portions: the

static portion (the energy consumed in the production of parts) and the dynamic portion (the

energy wasted when the line is not producing parts). The static portion is further analyzed

to show the energy waste due to unsynchonizations on the line and to show the minimum en-

ergy consumption that is achievable. This is a virtual scenario when each machine is running

standalone, meaning there are no interactions from other machines. This analysis directly

leads to the creation of the sustainable manufacturing performance indicators, which provide

a quantitative self-benchmark for manufacturers to measure system performance. To further

diagnose energy inefficiencies on the machine level the downtime energy bottleneck and the

rated power bottleneck are created. These bottlenecks provide the plant manager with the

tools to identify which machines produce the most energy waste.
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An energy economic analysis is introduced that focuses on maximizing profit in the man-

ufacturing environment. The energy profit bottleneck is introduced, which identifies the

machine that, when prioritized for reactive maintenance, leads to the largest increase in

profits. A return on investment strategy is developed that allows a plant manager to re-

place a machine or part with a more energy efficient version to achieve the largest return on

investment based on energy cost savings. These concepts are used in conjunction with an

opportunity window control methodology to maximize profits without sacrificing production

throughput.

To further improve energy efficiency and increase overall profit, a new model is intro-

duced that merges the two largest consumers in the manufacturing facility: the production

line and the heating, ventilation, and air conditioning system (HVAC). By merging these

two systems and using energy opportunity windows, certain machines can be shut down at

strategic times to lower overall heat loads. This not only reduces the overall energy con-

sumption by the production line, but also reduces the energy consumption of the HVAC

system. The production impact on the HVAC cooling load is analyzed and reduced using

an opportunity window control methodology.

In the future, an optimal control strategy will be developed using Markov decision pro-

cess to minimize energy costs, while increasing overall profits for the manufacturing facility.

The topic of data uncertainty will also be addressed through the use of a Kalman Filter.

The rest of this dissertation is structured as follows: a thorough literature review is

presented in Chapter 2. Chapter 3 discusses the production dynamics and quantifies the

systematic impact of disruption events. The energy dynamic structure is analyzed and the

energy analytics are defined in Chapter 4. An energy economic analysis is presented in Chap-

ter 5. Chapter 6 provides a control methodology that merges opportunity window control

with bottleneck mitigation to increase overall profit of the line. In Chapter 7, the integrated

HVAC and production system is discussed. Lastly, Chapter 8 discusses the conclusions and

future work.
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1.3 System Description, Notations, and Assumptions

A serial production line consists of a series of machines in sequence with inline buffers.

A sequence of operations is performed on unfinished products in a predetermined order. A

serial manufacturing system is represented in Fig. 1.4, consisting of M machines (represented

by the rectangles) and M-1 buffers (represented by the circles). Continuous flow models are

Figure 1.4: A Serial Production Line with M Machines and M-1 Buffers

adopted in this dissertation. The continuous flow model treats the quantity of jobs in the

buffer as varying continuously from zero to the capacity of the buffer as opposed to integer

steps. This model was adopted for the ease of math expressions and analysis, since the

system dynamics can be conveniently expressed as integral or differential equations. The

actual system dynamics are not affected by this assumption regardless of whether the system

is continuous or discrete [10]-[13]. The following notations are adopted in this dissertation:

• bm(t),m = 2,3,...,M, denotes the buffer level of buffer Bm at time t.

• ~ej,i =(j, ti, di), i = 1,2...,ηj, j = 1,2,...,M , represents the ith downtime event for machine

j, which occurs at time ti for a duration of di time units.

• ~ej = {~ej,1,~ej,2,...,~ej,ηj} j = 1,2,...,M , denotes a sequence of downtime events for machine

j where ηj is the number of downtime events at machine j.

• ~E = {~e1,~e2,...,~eM} denotes a sequence of downtime events for the line.

• 1
τj

, j = 1, 2, ...,M is the rated speed of machine j.

• sj(t), j = 1, 2, ...,M is the actual processing speed of machine j at time t.
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•
∫ t
0 sj(t

′)dt′, j = 1, 2, ...M is the production volume of machine j from [0,t) without any

downtime events.

•
∫ t
0 sj(t

′, ~E)dt′, j = 1, 2, ...M is the production volume of machine j from [0,t) subject

to a set of downtime events, ~E.

• M∗ denotes the slowest machine on the line.

• Wj(t), j = 1,2,...,M, represents the opportunity window of machine j at time t.

• d∗i is the largest possible downtime duration that does not lead to permanent production

loss for the ith failure event.

• ~Dn represents a set including ηnj number of non-effective downtime events.

• ~De represents a set including ηej number of effective downtime events.

• Tr(j, ~ej,i) is the recovery time of machine j after the downtime event ~ej,i.

• Tf (j) is the amount of time it takes the system to recover back to the full opportunity

window state when the maximum energy savings opportunity is taken at machine j.

• Ppp,j, j = 1,2,...,M, denotes the rated power consumption of machine j while the ma-

chine produces parts.

• Tpp,j, j = 1,2,...,M, represents the time machine j produces parts.

• Pid,j, j = 1,2,...,M, denotes the rated power consumption of machine j while the ma-

chine is idle due to being blocked/starved.

• αj, j = 1,2,...,M, is the percentage of power consumed during idling as compared to

the power consumption during the production of parts for machine j.

• Tid,j, j = 1,2,...,M, represents the time machine j is idle.

• TDid,j, j = 1,2,...,M, is the time machine j is idle due to downtime.
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• TUid,j, j = 1,2,...,M, represents the time machine j is idle due to unsynchronization.

• Pw,j, j = 1,2,...,M, denotes the power during warm up for machine j.

• Tw,j, j = 1,2,...,M, represents the time machine j is warming up.

• βj, j = 1,2,...,M, is the percentage of power consumed during warm up as compared to

the power consumption during the production of parts for machine j.

• Toff,j, j = 1,2,...,M, is the time machine j is off.

• E, denotes the energy consumption of the line at time T .

• EC(t), denotes the actual instantaneous energy consumption of the line at time t.

• ECj(t), j = 1,2,...,M, denotes the actual instantaneous energy consumption of machine

j at time t.

• PC denotes the production count of the line at time T .

• tp,j, j = 1, ...,M , is the minimum amount of time machine j would produce the number

of parts processed by the slowest machine in [0,T) if machine j was running as a

standalone machine.

• EPP is the energy consumption per part of the line in the time period [0,T).

• EPPh is the energy consumption per part of the line in the time period [0,T) without

downtime events.

• EPPh,sa is the energy consumption per part of the line in the time period [0,T) if each

machine was standalone.

• EPPh,int is the energy consumption per part of the line in the time period [0,T) due

to interactions between machines.
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• EPPj(t), j = 1,2,...,M, is the actual instantaneous energy consumption per part pro-

duced at machine j in the time period [0,t).

• SMPIDT is the sustainable manufacturing performance indicator that measures the

line’s performance with reference to the case with no downtime events.

• SMPISA is the sustainable manufacturing performance indicator that measures the

line’s performance with reference to the optimal minimum scenario.

• ej, j = 1,2,...,M, is the efficiency of machine j.

• CTRk
j is the cost to replace a part k within machine j. The scenario where the entire

machine j is replaced is represented by k = 0.

• cp is the cost per part produced in $/part.

• CE, represents the total cost of energy for the production line.

• cle, l = 1,2,...,c, denotes the cost of energy per kWh for the time period [tl−1, tl).

• cd is the demand cost if the production count does not meet demand.

• cb is the back log cost if the production count is below demand.

• ci is the inventory cost if the production count is above demand.

• ckrep,j is cost to replace part k at machine j.

• Nk
m,j represents the number of maintenance workers required to replace part k in ma-

chine j.

• tkR,j is the repair time required to replace part k in machine j.

• cMain,j is the cost per hour of a maintenance worker at machine j.

• CReg,j is the cost per hour of a maintenance worker at machine j if the maintenance is

performed during a regular shift.
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• COT,j is the cost per hour of a maintenance worker at machine j if the maintenance is

performed during an overtime shift.

• ROIkj denotes the expected return on investment for replacing part k within machine

j in [0,T).

• BEk
j represents the expected number of days for an investment to replace part k at

machine j to break even.

• ηOW,j is the number of inserted downtime events at machine j.

• tOW,j is the length of one inserted downtime event at machine j.

• Epr is the energy consumption of the production line.

• Q(t) is the cooling load provided by the heating, ventilation, and air condition system

at time t.

• Qr(t) is the radiative cooling load provided by the heating, ventilation, and air condi-

tion system at time t.

• Qc(t) is the convective cooling load provided by the heating, ventilation, and air con-

dition system at time t.

• QM(t) is the cooling load caused by the machines on the production line at time t.

• CM is the percentage of the machine heat load that is convective.

• RM is the percentage of the machine heat load that is radiative.

• TC is the thermal comfort of the building occupants. It is based on the Fanger PMV

model.

The following assumptions are adopted in this dissertation:
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1. Each machine j has a rated speed, 1
τj

, j = 1, 2, ...,M , where τj is the cycle time of the

machine. An operational machine can process jobs at a speed that is no greater than

its rated speed. The machine can be viewed as operating at a duty cycle less than one

when its speed is constrained by other machines, i.e. a machine is blocked/starved by

another machine. We denote sj(t), j = 1, 2, ..,M , as the actual processing speed of

machine j at time t. The production volume of machine j from [0,t) is represented by∫ t
0 sj(t

′, ~E)dt′, j = 1, 2, ...M .

2. A machine is starved if it is operational and its upstream buffer is empty.

3. A machine is blocked if it is operational and its downstream buffer is full.

4. A machine cannot breakdown if it is blocked or starved.

5. The first machine, j = 1, is never starved and the last machine, j = M , is never

blocked.

6. Each buffer B2, B3, ..., BM has a finite capacity. B2, B3, ..., BM also denotes the maxi-

mum capacity of the buffer.

7. M∗ = argminj=1,...M
1
τj

represents the slowest machine in the line and it is unique.

8. Each machine will run at its power rating, Ppp,j, when up and producing parts and will

consume no power when turned off.

9. A machine will run at its power rating, Pid,j, when starved/blocked and not producing

parts. Pid,j is a percentage (αj) of Ppp,j, where Pid,j = αjPpp,j, 0 ≤ αj ≤ 1.

10. Machine j has a warmup time of tiw,j for the ith downtime event, where tiw,j ∼ exp(ωj)

and ωj is the mean time machine j warms up. During the warm up period, machine

j consumes energy at a rate of Pw,j. Pw,j is a percentage (βj) of Ppp,j, where Pw,j =

βjPpp,j, βj ≥ 0.
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Chapter 2

Literature Review

In this chapter a thorough literature review is provided for the dissertation. Section 2.1

provides literature review on the dynamics of the production system and Section 2.2 dis-

cusses literature related to energy and economic indicators in the manufacturing industry.

In Section 2.3 various control methodologies for the production line are discussed. Section

2.4 provides works that are related to HVAC control, which will be addressed in Chapter 7.

In Section 2.5 we summarize the conclusions from the literature review.

2.1 Production Dynamics

Previous research dealing with the impact of disruption events is severely limited. Many of

the existing literatures focus on utilizing stochastic modeling or simulation methods [14]-[17].

Recently, there have been data driven methods to quantify the effect of disruption events

on overall production throughput for serial production lines [14, 18, 19]. A network based

modeling methodology is created in [17] to investigate the impact of disruption events on

the operation of a supply chain. The authors create a disruption analysis network, which

models how disruptions or changes dissipate throughout the system and they quantify the

impact of these events.

Langer et al. discuss disruption management within the manufacturing industry [20].

They propose a methodology to reduce disruption events on a system level. This method

uses a cooperative distributed problem solving approach that is supported by a multi-agent

system framework. In [15], the authors consider the propagation of disruption events and

the capability of the system to recover from these events. The throughput settling time and
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the overtime to recover are defined, which are two measures of resilience for the production

system. The authors use an approximation method with system decomposition to expand

these measures to general multi-stage systems.

This dissertation uses event based analysis to quantify the impacts of downtime events

using online measured data, such as machine downtime, buffer levels, etc. Chang et al. dis-

cuss the effect of a single isolated downtime event on system throughput [14]. It has been

proven that the downtime event will only affect system productivity if the event causes the

slowest machine to break down or become blocked or starved. This is expanded in [19] to a

general scenario where multiple disruption events can occur throughout the production line.

It indicates that there is permanent production loss if the disruption event duration is larger

than a certain threshold. This causes the system to lose production throughput can never

be recovered. The analysis in this dissertation expands upon this research to include each

machine’s warm up period after a machine breakdown.

2.2 Energy & Economic Indicators

Researchers have only recently started to focus on energy management in the manufacturing

environment. Most previous research efforts have studied quality control and maintaining

throughput without explicitly considering energy consumption of the production line [21, 22].

These studies treat energy consumption as a byproduct of production instead of using it as

the main driver in the decision process. They only treat energy consumption as another

cost term in an optimization problem instead of assessing what is usable energy and what is

energy waste. However, in [23] it is discovered that there is a positive effect of environmental

and energy improvement investment on production growth. To achieve sustainability within

the manufacturing sector, it is necessary not only to focus on throughput targets, but also

to focus on reducing the overall energy demand of the facility.
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There have been recent studies on the creation of sustainable indicators for the man-

ufacturing facility, but these vary greatly from industry to industry. Haapala et al. review

various sustainability indicators and manufacturing processes, but provide no methodology

on how to reduce energy consumption within the facility [24]. A fuzzy-based sustainable

manufacturing assessment model is developed for sustainability of small and medium enter-

prises in [25], however this only applies to a select number of sustainability indicators and

cannot be expanded to more generalized systems. Despeisse et al. investigate the strategic

direction and practices of manufacturing facilities to extract the mechanisms behind these

practices to formulate sustainable manufacturing tactics [26]. This method relies on simu-

lation modeling to guide the plant manager in decision making, but it does not explicitly

consider economic impacts.

General Electric developed an energy treasure hunt method to find “non-operation waste”

in their factory by scheduling weekend and daily shutdown plans [27]. The problem with

this method is that it was based on a “trial and error” manual procedure that required the

expert knowledge of the inspector to find ways to cut down on energy waste in the plant.

Many companies within the manufacturing industry have focused on creating a unified en-

ergy dashboard to illustrate energy usage in a manufacturing plant. Companies like Siemens

and Rockwell have created energy dashboards that provide information to plant managers

using their own key performance indicators (KPI), which do not properly address problem

areas on the floor [28, 29]. They utilize final production count and total energy consumption,

but do not take into account any random downtime events that affect production processes.

This makes it impossible to determine the root cause of energy inefficiency in the system.

While these KPIs do not properly assess energy inefficiencies, there have been many

studies considering the evaluation of energy consumption and energy saving opportunities

over the last decade [30]. In [31], Joung et al. categorize various sustainability indicators
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within the manufacturing industry. They categorize indicators by the following criteria:

measurable, relevant, understandable, reliable/usable, and data accessible. The indicators

provided in this work fit all of the given criteria.

The overall efficiency has been defined in [32] as the benefit over the total effort. This has

been further expanded for specific industries, such as the method presented by Dietmair and

Veri [33]. They have created an index that is capable of calculating efficiency for a cutting

operation by analyzing the energy needed versus the actual energy of the machine. However,

this idea is limited and cannot be applied to processes that cannot be accurately modeled.

The overall equipment efficiency indicator was created using techniques from lean man-

ufacturing. However, this is a heuristic measure and it is unable to capture the variability

in the system [34]. This was expanded to find the energy efficiency of a casting production

system, but it is difficult to model for other processes within manufacturing [35]. A de-

composition method was proposed in [36] for a continuous flow model described by general

Markovian fluid models. This method studies the effect of partial and complete blocking

and starvation phenomena throughout the system. The challenge with this strategy is the

decomposition method is time consuming as well as computationally intense, preventing it

from being implemented in real time.

A different method for analyzing energy usage is trend decomposition [37]. Trend decom-

position is a very practical method for determining decreases in energy efficiency, but there

is no standard generally agreed upon for which method is the best. There are four different

methods that are generally used depending on different conditions [38]. It is necessary to

know which constraints to employ for the analysis, otherwise the method will not be accu-

rate. Hammond and Norman attempt to reduce carbon emissions in the United Kingdom

by using decomposition analysis [39]. However, this method cannot be used in real time to
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diagnose problems.

Another research area uses engineering models to analyze energy usage in a manufac-

turing facility. A “bottom-up” method is utilized to determine if emerging technologies will

reduce the energy consumption in the facility [40]. This method can react to changes in

demand and fuel prices. However, it is difficult to apply in many manufacturing facilities

since creating an accurate model is difficult and time consuming. The gap between energy

efficiency performance measurement in scientific literature and industry is investigated in

[41]. Bunse et al. interviewed over 100 industry experts who stated that the measurement of

energy efficiency needed to be converted to monetary values to communicate directly where

money could be saved. Another hurdle for implementing energy efficiency improvement is

the difficulty of measuring energy indicators [42]. The method developed in this dissertation

provides the plant manager with the quantitative tools that utilize readily available sensor

data to directly provide energy and economic indicators. A control methodology that uses

real sensor data is also introduced to reduce the overall energy cost with minimal impact to

production.

2.3 Production Control Methodologies

The control and improvement of production systems is important in the analysis of the en-

ergy dynamics of the production system. In the last few decades there have been multiple

literatures devoted to this topic. Caifen and Shao-kun present an optimization algorithm to

maximize machine utilization and reduce work in progress [43]. However, this method is for

planning purposes and cannot be utilized in real-time control. In [44], a real-time production

planning and control algorithm is introduced for job shop systems, but this work does not

incorporate energy consumption into their model. Chen et al. create an energy efficient,

greedy-algorithm scheduling procedure that optimizes start up and shut down times of ma-

chines for a paint shop [45]. However, the control capability and benefit is very limited by
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only controlling the shut down sequence of machines. In practice, real-time feedback control

based scheduling is more desirable than offline optimization because the optimized solutions

are normally sensitive to system parameters, which often leads to errors.

Production scheduling and control research has become more prevalent in the last decade

[46]-[50]. In [51], an optimal policy is found by making decisions on pricing, the level of mod-

ularity, and customer returns under a mean-variance formulation for a mass customization

system. Hu et al. discuss the real-time optimal control of a serial production line, however

the disruption events must be known in advance [52]. Game-theoretic models are devel-

oped to determine the optimal price decisions and competitive capacity for build-to-order

manufacturers that are facing time-dependent demands in [53]. Shen et al. reviewed lit-

erature on manufacturing scheduling and process planning and concluded that agent-based

approaches have advantages such as scalability, robustness, and modularity [54]. However,

these methods are usually developed for simple systems. Optimal scheduling and control

cannot be solved analytically for complex production systems, since neither computational

nor analytical solutions are achievable [55].

The work presented in this manuscript introduces a method that can be used for any

serial production line, regardless of the production process. This method uses readily avail-

able sensor data in the analysis of the energy dynamics of a line to identify and mitigate the

energy waste in the facility. A control algorithm is created to reduce this energy waste, while

minimizing throughput impact to the production line. Together with bottleneck mitigation,

the control methodology can be used to maximize profit for the manufacturing facility.

2.4 HVAC Control

The operation and control of HVAC systems has significant impacts on the energy and cost

efficiency of buildings. In [56], a cost effective strategy is introduced to improve energy
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consumption by determining set points of local loop controllers used in a multi-zone HVAC

system. An optimization process is used in [57] to automatically change the settings of the

HVAC system in accordance with changes in outside temperature and building operation. A

robust model predictive control scheme is developed in [58] to deal with various constraints

on the HVAC system, such as the rate limit of actuators. In [59], facility improvement and

life cycle costs related to the HVAC system alone in automotive manufacturing are stud-

ied. At the system level, comprehensive building automation systems and building energy

management control systems (EMCS) are utilized to allow the possibility of enhancing and

optimizing the operation and control of HVAC systems [60]. In a manufacturing facility, the

EMCS usually does not communicate with the production system. One method of satisfying

the energy reduction goal in a manufacturing environment had production work groups de-

velop specific actions in their area, such as tracking and shutting off unused lights, fans and

other equipment when production turns off, and develop weekend and daily shutdown plans

and manage the leak tag program [61]. However, this method is a heuristic based process

and cannot be used for continuous improvement.

Previous methods that coordinate the production line with the HVAC system focus on

modeling and designing the HVAC around the production system [62, 63]. To the best of our

knowledge, there are very few studies that have addressed the integrated modeling and con-

trol of the production operations in coordination with the HVAC system to improve overall

manufacturing system energy efficiency. This dissertation presents a method for controlling

the HVAC set points in combination with the energy savings opportunities (ESO) for the

production line.

2.5 Conclusion

Despite these efforts, the study of the dynamic energy structure of the production line

is severely limited. Most researchers analyze energy or production separately, however, the
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uncertainties on the production line impact energy consumption as well as throughput. Thus,

total energy consumption is only a measure of total energy, which does not carry any explicit

information about throughput. In this paper, we link the throughput dynamic and energy

dynamic. We treat energy consumption per part as a dynamic system, which is a complex

function of each machine’s up time, down time, buffer levels, machine rated power, machine

idle time power consumption, etc. Then for a realized production trajectory, we analyze

the physical meaning of its homogeneous solution. From this, we develop the sustainable

manufacturing performance indicators, which is the energy efficiency index. This index

describes the energy structure, i.e., how much energy is wasted without producing parts.

Building on this analysis, we present an energy economic analysis to provide analytical tools

for the plant manager to make decisions on overall profit of the facility. This differs from

previous research because the methods presented in this manuscript use readily available,

online sensor data to provide a quantitative self-benchmark to monitor system performance.

By using this methodology, a control algorithm is created that will maximize overall profit,

while minimizing throughput impact. The production system is then coupled with the HVAC

system to create a control methodology to reduce overall energy costs by merging the two

dynamic systems.
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Chapter 3

Analysis of Production Dynamics

3.1 Introduction

To analyze the energy dynamics of a production line, it is necessary to understand the effect of

random downtime events on the system. In this section, we focus on the impact of disruption

events on a serial production line. We begin by analyzing and categorizing which downtime

events cause disruptions to overall production, thus resulting in permanent production loss

(PPL). We then extend our analysis to analytically prove the expected opportunity window

(OW) and recovery time in a deterministic system.

3.2 Impact of Downtime Events on Overall System Throughput

In this section, we analyze the impacts of disruption events on the production line. When

there are random downtime events in the system, not every one of them will contribute to

permanent production loss. This leads to the concept of the opportunity window, Wj(Td),

which is defined as the longest amount of time machine j can be down at time Td without

resulting in PPL [14, 19, 64]. This is seen below in (3.1):

Wj(Td) = sup{d ≥ 0 : s.t.∃T ∗(d),
∫ T

0
sM(t′) dt′ =

∫ T

0
sM(t′, ~ej,i) dt′,∀T ≥ T ∗(d)}, (3.1)

where
∫ T
0 sM(t′) dt′ and

∫ T
0 sM(t′, ~e) dt′ are the production counts of the end of line machine,

M , at time T with and without the inserted downtime event, ~ej,i =(j, ti, di), respectively.

T ∗(d) signifies the potential dependency of T ∗ on d. Thus, the largest possible downtime

duration that does not lead to permanent production loss, d∗i , for the ith failure event, ~ej,i,
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can be found in (3.2) [64]:

d∗i = inf{d ≥ 0 : s.t.τM∗

∫ ti+d

ti
sM∗(t′; ~E)dt′ = Wj(ti)}, (3.2)

where Wj(ti) is the opportunity window of machine j as defined in (3.1), M∗ is the slowest

machine on the line, and d∗i is the time it takes the buffers between machine j and M∗ to

become full if j > M∗ or empty if j < M∗. The production volume of the slowest machine

between ti and ti + d is
∫ ti+d
ti

sM∗(t′; ~E)dt′ and ~E = {~e1,~e2,...,~eM} is a sequence of downtime

events for the line.

In [64] it was shown that if the downtime event is greater than the value in (3.2), then it

is an effective downtime event contributing to a permanent production time loss of di − d∗i .

If the downtime duration is less than the above value (di ≤ d∗i ), it is referred to as a non-

effective downtime event since there is no PPL. However, this is under the assumption that

the warm up time (tiw,j) of machine j is equal to zero for the ith downtime event. Since

a machine is consuming energy without producing parts during this warm up time period,

it must be taken into account when analyzing the production system energy consumption.

The period that machine j does not produce parts is di + tiw,j. Let ~De represent a set of ηej

number of effective downtime events and ~Dn represent a set of ηnj number of non-effective

downtime events, then ∀di:

di ∈


~Dn, di ≤ (d∗i − tiw,j), i = 1...ηj

~De, di > (d∗i − tiw,j), i = 1...ηj,

where:

ηj = ηej + ηnj .

Thus, an effective downtime event leads to permanent production time loss of di− d∗i + tiw,j.
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3.3 Expected Energy Opportunity Window

From the analysis of the opportunity window, it is noticed that the maximum opportunity

window for any machine is closely related to the location of the machine. Since inserted

opportunity windows have no permanent production impact to the system, the system with

inserted opportunity windows should recover to its original state after a certain period of

time. We will show that the expected opportunity window and recovery time for an arbi-

trary machine are constant for a given line configuration when there are no random downtime

events.

Proposition 1: If all machines operate without any random downtime, the energy opportu-

nity window can be described as the following:

d∗i (t) =



τM∗

M∗∑
k=j+1

bk(t), j < M∗

0, j = M∗

τM∗

j∑
k=M∗+1

(Bk − bk(t)), j > M∗

Proof:

For a serial production line with all machines working without random downtime events, the

end-of-line production volume is equal to the production volume of the slowest machine. The

case for when j = M∗ is proved by contradiction. Suppose the opportunity window of the

slowest machine M∗ at time Td is not zero, i.e., WM∗(Td) > 0. Then for any downtime event

(M∗, Td, di) with 0 < di ≤ WM∗(Td), the difference between the undisturbed and disturbed

production volume of the end-of-line machine M is nonzero, which contradicts the definition

of the opportunity window. Actually, it is obvious that for a serial production line with all

machines operating without downtime, any inserted downtime event at the slowest machine

will cause a production loss at the end-of-line machine M .

For the case when j < M∗, an equivalent condition requires that the duration of the

stoppage event at the slowest machine M∗ be equal to zero to allow for no production loss at
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machine M . Considering the line segment between machine m and machine M∗, as shown

in Fig. 1.4, we insert a downtime event, ~ej,i = (j, Td, di) at machine j with duration di at

time Td. Immediately after machine j is down, there is no flow into this line segment until

time Td + di. Applying the principle of conservation of flow during time interval (Td, Td + di]

yields:

∫ Td+di

Td

sj(t, ~ej,i)dt−
∫ Td+di

Td

sM∗(t, ~ej,i)dt =
M∗∑

k=j+1

bk(Td + di;~ej,i)−
M∗∑

k=j+1

bk(Td;~ej,i),

where sj(t, ~ej,i) = 0, t ∈ (Td, Td + di]. In the case when j < M∗, the slowest machine will

operate at a constant rate sM∗ = 1/τ ∗M until
∑M∗

k=j+1 bk(Td;~ej,i) becomes zero. Note that

the slowest machine M∗ will never be blocked because all of the machines downstream have

higher processing rates and there is no other downtime events except ~ej,i = (j, Td, di) as

we have assumed. The buffer content between machine j and M∗ will gradually drain at a

constant rate of 1/τM∗ . Therefore, the time it takes for all the buffers between machine j

and the slowest machine M∗ to become empty is:

d∗i = τM∗

M∗∑
k=j+1

bk(Td),

since bk(Td) = bk(Td;~ej,i),∀k = 2, ...,M∗. If the downtime duration di is greater than d∗i−tiw,j

then the slowest machine will be starved. This will eventually lead to a production loss equal

to (di − d∗i + tiw,j)/τ
∗
M . Therefore, in the case when j < M∗, the opportunity window of ma-

chine j is Wj(Td) = d∗i . Analogously, one can also prove the case when j > M∗.

This indicates when all machines are running without random downtime the energy

savings opportunity window will be constant if always taken at the same buffer content level

(bk). The maximum energy savings opportunity is realized when the buffers upstream of the

slowest machine go from full to empty and the downstream buffers go from empty to full.

The next section will introduce the concept of recovery time, which is the amount of time it
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takes the buffers to recover back to their original state after a downtime event.

3.4 Maximum Upper Bound of Recovery Time

In this section, we prove the maximum upper bound of recovery time in a system with

deterministic downtime. This is the scenario when the buffers upstream of the slowest

machine go from empty to full and the downstream buffers go from full back to empty. The

recovery time after a downtime event is introduced:

Tr(j, ~ej,i) = inf{∆T ≥ 0 s.t.
∫ T

0
sj(t)dt =

∫ T

0
sj(t, ~ej,i)dt,∀T ≥ ∆T + Td + di},

where
∫ T
0 sj(t)dt and

∫ T
0 sj(t, ~ej,i)dt are the production count of machine j at time T , with

and without downtime event ~ej,i = (j, Td, di). All downtime will be realized in the form of

taking the maximum opportunity window at machine j.

Proposition 2 If all machines operate without any random downtime, the upper bound

of recovery time is a fixed length for machine j, depending on its location and buffer ca-

pacities. After machine j takes its maximum d∗i , the upper bound of recovery time can be

described as follows:

Tr(j, d
∗
i ) =



∑M∗

k=j+1
(Bk)

min{ 1
τ1
,..., 1

τM∗−1
}− 1

τM∗
, j < M∗

∞, j = M∗∑j

k=M∗+1
(Bk)

min{ 1
τM∗+1

,..., 1
τM
}− 1

τM∗
, j > M∗

Proof:

As discussed previously, if the downtime event is an effective downtime event then the re-

covery time is infinite. Similar to the energy opportunity window, the recovery time of each

machine depends on the location of said machine in relation to the slowest machine in the
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line. If we start with the downstream machines, j > M∗, by conservation of flow we have:

∫ T

0
sj(t)dt =

∫ T

0
sM∗(t)dt−

j∑
k=M∗+1

(bk(T )− bk(0))

∫ T

0
sj(t;~ej,i)dt =

∫ T

0
sM∗(t;~ej,i)dt −

j∑
k=M∗+1

(bk(T ;~ej,i)− bk(0;~ej,i)).

Because the slowest machine is unique per our assumption, we know that:

1

τM∗
< min{ 1

τM∗+1

, ...
1

τM
}.

When there are no inserted downtime events, the total buffer level between the slowest

machine M∗ and the machine j decreases at a rate at least as fast as min{ 1
τM∗+1

, ..., 1
τM
}− 1

τM∗

and if we choose T ∗1 =
∑j

k=M∗+1
(bk(0))

min{ 1
τM∗+1

,..., 1
τM
}− 1

τM∗
, then we have:

∫ T

0
sj(t)dt =

∫ T

0
sM∗(t)dt +

j∑
k=M∗+1

(bk(0)),∀T > T ∗1 .

When there is an inserted downtime event ~ej,i, if we choose T ∗2 = Td+di+
∑j

k=M∗+1
(bk(Td+di;~ej,i))

min{ 1
τM∗+1

,..., 1
τM
}− 1

τM∗
,

we obtain:

∫ T

0
sj(t;~ej,i)dt =

∫ T

0
sM∗(t;~ej,i)dt −

j∑
k=M∗+1

(bk(0;~ej,i)),∀T > T ∗2 .

As long as the system starts with the same exact initial conditions, i.e., bk(0) = bk(0;~ej,i),∀k =

M∗ + 1, ...,M , we have ∀T > T ∗ = max{T ∗1 , T ∗2 }. Thus:

∫ T

0
sj(t)dt−

∫ T

0
sj(t;~ej,i)dt =

∫ Td+di

0
(sM∗(t)−sM∗(t;~ej,i))dt+

∫ T

Td+di
(sM∗(t)−sM∗(t;~ej,i))dt =

di
τM∗

,

since sM∗(t;~ej,i) = 1/τM∗ , t /∈ (Td, Td+di] and sM∗(t;~ej,i) = 0, t ∈ (Td, Td+di]. Because we are

looking for the upper bound of recovery time immediately after the maximum opportunity

window is taken, we know the buffer contents will be full downstream of the slowest machine.
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This leads to the upper bound of recovery time of machine j after machine j is down for the

maximum length of the opportunity window, d∗i :

Tr(j, d
∗
i ) =

∑j
k=M∗+1(Bk)

min{ 1
τM∗+1

, ..., 1
τM
} − 1

τM∗

. (3.3)

Similarly, if we take the line segment when j < M∗, if we choose T ∗ = max{T ∗1 , T ∗2 }, with

T ∗1 =

∑M∗

k=j+1
(Bk−bk(0))

min{ 1
τ1
,..., 1

τM∗−1
}− 1

τM∗
and T ∗2 =

∑M∗

k=j+1
(Bk−bk(Td+d;~ej,i))

min{ 1
τ1
,..., 1

τM∗−1
}− 1

τM∗
, we obtain:

∫ T

0
sj(t)dt =

∫ T

0
sM∗(t)dt +

M∗∑
k=j+1

(Bk − bk(0))

∫ T

0
sj(t;~ej,i)dt =

∫ T

0
sM∗(t;~ej,i)dt +

M∗∑
k=j+1

(Bk − bk(0;~ej,i)).

Taking the difference of the two above equations yields:

∫ T

0
sj(t)dt−

∫ T

0
sj(t;~ej,i)dt =

di
τM∗

.

Since we are looking to find the upper bound of recovery time after the maximum opportunity

is taken, we know that the buffer contents will be empty at said time. This leads to the

recovery time for j < M∗ in (3.4):

Tr(j, d
∗
i ) =

∑M∗

k=j+1(Bk)

min{ 1
τ1
, ..., 1

τM∗−1
} − 1

τM∗

. (3.4)

This ends the proof of the maximum upper bound of recovery time.

This proves to be an important result because it is leads to the calculation of the minimum

amount of time to allow between subsequent energy opportunity windows:

Tf (j) = d∗i + Tr(j, d
∗
i ), (3.5)
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where Tf is the amount of time it takes the system to recover back to the next full opportunity

window state when taking the maximum energy opportunity window.

3.5 Conclusions

In this chapter, we analyzed the production dynamics of the manufacturing system. The

expected opportunity window and the maximum upper bound of recovery time are both

proven analytically. The random disruption events on the production system are categorized

into events that cause permanent production loss (effective downtime events), and events

that do not cause PPL (non-effective downtime events). This will be studied further in the

next chapter when we analyze the energy analytics of the manufacturing line.
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Chapter 4

Energy Analytics of the Manufacturing Line

4.1 Introduction

After analyzing the effect of disruption events on the system, it is important to understand

how downtime impacts energy consumption and the energy structure of the production line.

Studying the energy structure determines the portion of energy consumed while producing

parts and the portion of energy wasted due to random downtime events that cause permanent

production loss. The energy structure is analyzed using measurable and readily available

information from the production line such as buffer contents, production count, power, etc.

This information is utilized in the development of the Sustainable Manufacturing Perfor-

mance Indicators (SMPI). These indicators provide a quantitative self-benchmark method

to correctly monitor the performance of the production line. To identify energy inefficien-

cies on the machine level, two bottlenecks are introduced: the Downtime Energy Bottleneck

(DE-BN) and the Rated Power Bottleneck (RP-BN).

4.2 Dynamic Energy Structure of the Production Line

In analyzing the energy structure, it is necessary to address how each machine operates in a

time period [0,T):

T = Tpp,j + Tid,j + Toff,j + Tw,j, (4.1)

where Tpp,j is the amount of time machine j is on and producing parts and Tid,j is the time

that machine j is on, but is idle due to being blocked/starved. Toff,j is the time that machine

j is not operational, and Tw,j is the time the machine is warming up. While the machine is

on and producing parts, machine j consumes power at a rate of Ppp,j. During its warm up
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time it consumes Pw,j and it consumes zero power during the period of time the machine

is off. We can assume that the power consumed during idling is a percentage of the power

consumed during the production of parts:

Pid,j = αjPpp,j, 0 ≤ αj ≤ 1.

The same assumption can be made for the power consumed during warm up, however the

warm up power is not always less than the power consumed during the production of parts:

Pw,j = βjPw,j, βj ≥ 0.

The idling time of machine j is broken into two parts:

Tid,j = TDid,j + TUid,j,

where TDid,j is the idling time only due to downtime events and TUid,j is the amount of time

machine j idles due only to machine rated speed unsynchronizations.

The total energy consumption and the production throughput need to be linked to an-

alyze the energy efficiency. Therefore energy consumption per part (EPP ) is used. EPP

for a production line is a complicated function of production line parameters such as each

machine’s speed, rated power, buffer capacity, downtime distribution, etc. Therefore, EPP

is treated as a dynamic system. In analyzing the energy structure, the interactions among

the different production processes are treated as “internal forces,” while the random dis-

ruption events are considered “external forces.” The state space equation for this system is

represented by (4.2):

d [EPP ]

dt
= f(t, EPP (t), U(t)), (4.2)
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where U(t) = ~E = [~e1, ..., ~eM ] denotes a sequence of random disruption events during period

[0,T). To solve the state space equation (4.2), we consider the following homogeneous and

non-homogeneous functions:

d [EPP ]

dt
= f(t, EPP (t)) (4.3)

d [EPP ]

dt
= f(t, EPP (t), U(t)), (4.4)

Equation (4.3) describes a virtual scenario when there are no random downtime events in

the system. When there are no disruption events each machine will be on for the entirety of

the time period. We can assume that the analysis begins when all of the machines are turned

on. The production count of the line is constrained by the base cycle time of the slowest

machine [65], therefore, the homogeneous solution for the time period [0,T) is denoted in

(4.5):

EPPh =

M∑
j=1

Ppp,j

[
T − (1− αj)TUid,j

]
1

τM∗
T

(4.5)

The idle time due only to rated speed unsynchronizations cannot be calculated explicitly. An

iterative procedure is used to calculate TUid,j. Analyzing the virtual scenario when there are no

downtime events, the slowest machine, M∗, never idles due to machine unsynchronizations,

therefore TUid,M∗ = 0. To solve for TUid,j for all other machines, we begin by studying the

machines upstream of the slowest machine (j < M∗):

1. Set initial values: k = 1, tuid(1) = 0, PP u
j (1) = 1, IDu

j (1) = 0, sj = 1
τj

, t0 = 0.

2. Start with machine j and calculate when it is blocked from machines downstream

(j < i):

∫ t0+ti,j

t0
sj(t)dt−

∫ t0+ti,j

t0
si(t)dt =

i∑
z=j+1

Bz − bz(t0)
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Next, check when machine j becomes starved from machines upstream (j > i):

∫ t0+ti,j

t0
si(t)dt−

∫ t0+ti,j

t0
sj(t)dt =

j∑
z=i+1

bz(t0)

Solve for ti,j, which is the time machine j becomes blocked or starved by machine i:

ti,j =



i∑
z=j+1

Bz − bz(t0)

sj−si , C1

∞, C2

j∑
z=i+1

bz(t0)

si−sj , C3,

where C1 = (j < i & si < sj), C2 = (i = j) | (i < j & sj ≥ si) | (i > j & si ≥ sj), and

C3 = (j > i & sj < si).

3. Find the smallest ti,j, by calculating the minimum of the set, T u = {ti,j}M
∗−1

i,j=1

tuim,jm = min(T u),

Thus, machine(s) jm becomes blocked or starved by machine(s) im at tuim,jm . It is

possible that multiple machines become blocked/starved at the same time.

4. Set the next element in the vector, ~tuid:

tuid(k + 1) = tuim,jm + tuid(k).
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5. Calculate the buffer level of Bm, m = 2, ...,M∗ at time tuid(k + 1):

bm(tuid(k + 1)) = (sm−1 − sm)tuim,jm + bm(tuid(k)).

6. Reset actual processing speed of idle machines:

sj =


sim , j = jm, j = 1...M∗ − 1

sj, j 6= jm, j = 1...M∗ − 1,

and calculate the percentage of time machine j is producing parts or is idle:

PP u
j (k + 1) =

sj
1
τj

,

IDu
j (k + 1) =

1
τj
− sj
1
τj

.

7. Calculate the time machine j is idle from rated speed unsynchonizations:

TUid,j = (IDu
j )T, j = 1...M∗ − 1.

8. Set t0 = tuid(k + 1), ∀ i = 1, ...,M∗ − 1, j = 1, ...,M∗ − 1

9. If sj 6= rsM∗ , ∀ j = 1, ...,M∗ − 1 then k = k + 1 and return to step 2.

If sj = rsM∗ , ∀ j = 1, ...,M∗ − 1 then end algorithm.

Similarly, one can solve for the unsynchronized idle time of machines downstream of the

slowest machine using a similar procedure. To solve for (4.4), the scenario when there is a

sequence of random downtime events ( ~E) on the production line, it is necessary to find the
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overall energy consumption:

E =
M∑
j=1

(Ppp,jTpp,j + Pid,jTid,j + Pw,jTw,j), (4.6)

where Tpp,j is the time that machine j produces parts:

Tpp,j = τj

∫ T

0
sj(t

′; ~E)dt′.

and where Tid,j = T − Toff,j − Tw,j − Tpp,j. Toff,j is:

Toff,j =
ηj∑
k=1

dk,

and the warm up time is represented below:

Tw,j =
ηj∑
k=1

tkw,j,

where ηj is the number of downtime events at machine j and tkw,j is the length of time

machine j warms up after the kth breakdown. The production count of the line is:

PC =
1

τM∗

(
T −

⋃
i∈ns

[ti + di∗ , ti + di + tiw,j)
)
, (4.7)

where ns = {i = 1, ..., ηj s.t. di ∈ ~De}. To understand the derivation of the production

count, we look at the ith downtime event at machine j: ~ej,i =(j, ti, di). If di ∈ ~De, then the

permanent production time loss is equivalent to di − d∗i + tiw,j. We thus attribute the idling

of machine M∗ during the time interval [ti + d∗i , ti + di + tiw,j) to ~ej,i =(j, ti, di). Under a

sequence of downtime events, ~E = {~e1, ~e2, ..., ~eM}, the slowest machine stops during [0,T)

for ∪i∈ns [ti + di∗ , ti + di + tiw,j), where j = 1, ...,M . It is possible for two different downtime

events to result in overlapping stoppage intervals. Therefore, this term cannot simply be

written as the summation of the duration of the reconstructed stoppage intervals without
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imposing some conditions. However, this information can be measured using sensor data

since this term is the time the slowest machine, M∗, is not producing parts. Therefore, the

general solution of EPP is:

EPP =

M∑
j=1

Ppp,j

[
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

]
PC

. (4.8)

This analysis of the energy dynamics of the production system can be utilized to properly

illustrate the performance of the production system.

4.2.1 Energy Consumption due to Machine Interactions

While the homogeneous portion is the scenario in which the line runs without any downtime

events, it is still not the absolute minimum energy consumption per part that can be achieved.

By analyzing the homogeneous solution there are two portions: the portion if each machine

is standalone (EPPh,sa) and the energy consumed due to machine interactions (EPPh,int):

EPPh = EPPh,sa + EPPh,int. (4.9)

There are situations when certain machines will be producing parts, while the production

count of the overall line is not increasing. If each machine was standalone then this leads

to the optimal minimum energy consumption per part: the situation in which each machine

produces the same number of parts as the slowest machine and then immediately turns off

without producing extra work in progress (WIP).

Consider a virtual scenario where each machine has no interactions with each other and

treating this as a dynamic system where the interactions between machines are considered

“external forces,” the dynamics can be represented as:

d [EPPh]

dt
= f(t, EPPh(t), I(t)), (4.10)
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where EPPh is the energy consumption per part produced without downtime events and

I(t) is the interactions between machines. To solve the state space equation in (4.10) we

present the following homogeneous and non-homogeneous functions:

d [EPPh]

dt
= f(t, EPPh(t)) (4.11)

d [EPPh]

dt
= f(t, EPPh(t), I(t)), (4.12)

Equation (4.11) represents a virtual scenario when each machine is running standalone,

producing the same number of parts as the slowest machine. However, each machine’s

production time will be different: once the machine produces the same amount of parts as

the slowest machine, it turns off. This is the theoretical minimum energy consumption per

part that can be achieved in the system. To solve for the standalone case in (4.11), we

introduce the variable tp,j, which is the minimum amount of time machine j would produce

the number of parts processed by the slowest machine in [0,T) if machine j was running as

a standalone machine:

tp,j = τj

∫ T

0
sM∗(t′)dt′. (4.13)

This directly leads to the standalone case:

EPPh,sa =

M∑
j=1

Ppp,jtp,j

1
τM∗

T
. (4.14)

Using (4.5), (4.9), and (4.14) leads to the portion wasted due to machine variations and

interactions:

EPPh,int =

M∑
j=1

Ppp,j

[
(T − TUid,j − tp,j) + αjT

U
id,j

]
1

τM∗
T

. (4.15)

In the scenario without any downtime events, the EPPh,int provides the energy consump-

tion per part caused by machine interactions and unsychronous operation due to capacity
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variation. The first term in the numerator of (4.15) is the energy consumed due to WIP and

the second term is the energy consumed because of unsynchronized idling. The standalone

solution represents the energy consumption per part for a virtual scenario as if each machine

was running standalone without capacity variation constraints from other machines.

4.3 Sustainable Manufacturing Performance Indicators

Using the analysis of the dynamic energy structure leads to the creation of the SMPI. Two

SMPIs are created: one that illustrates the line’s performance in reference to the case with

no downtime events, the other compares the current performance to the optimal minimum

energy consumption per part. The first SMPI is the ratio of the energy consumption per

part without downtime events (EPPh) to the overall energy consumption per part (EPP )

for the entire production line (SMPIDT ):

SMPIDT =
(EPPh)

(EPP )

=

Tpp,M∗

M∑
j=1

Ppp,j
[
T − (1− αj)TUid,j

]

T
M∑
j=1

Ppp,j

[
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

] . (4.16)

The SMPIDT accurately shows how the line is performing in comparison to the static portion

of the energy consumption per part where there are no downtime events. This shows how

much energy is being wasted due to disruption events. There are three scenarios to discuss

with this SMPI:

Case 1: SMPIDT < 1

This is when the production line is consuming more energy per part produced than in the

scenario when there are no downtime events. This is due to the permanent production loss

from effective downtime events causing the slowest machine to be blocked or starved.
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Case 2: SMPIDT = 1

This shows the situation when the production line is producing parts with an energy con-

sumption equal to the amount if the machines were running at one hundred percent efficiency.

However, there can be more energy savings since it is possible to turn off certain machines

without affecting the throughput of the line. This is shown in case 3.

Case 3: SMPIDT > 1

This illustrates that the line is producing parts with less energy consumption than the

homogeneous case with no downtime events. The best case scenario is when the line has an

energy consumption per part equal to that of the standalone, homogenous portion of the

energy consumption per part. This is the minimum energy consumption per part produced

that can be achieved.

To show how the production line is performing compared to the minimum amount of energy

consumption per part that can be achieved (the ratio of the EPPh,sa to EPP ), the SMPISA

is introduced:

SMPISA =
(EPPh,sa)

(EPP )

=

Tpp,M∗

M∑
j=1

Ppp,jtp,j

T
M∑
j=1

Ppp,j

[
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

] . (4.17)

This indicator has the limits of [0,1], where 0 indicates the case when each individual ma-

chine’s downtime events cause the slowest machine to be blocked or starved. The best case

scenario (SMPISA = 1) will be achieved when the production line is consuming energy per

part at the same rate as the standalone case of the homogeneous solution. While these two

indicators are useful as a self bench-mark of a production line for energy efficiency perfor-

mance, there still needs to be a method to dissect the energy inefficiencies at the machine
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level. The next section addresses this issue with the introduction of the downtime energy

bottleneck and the rated power bottleneck.

4.4 Downtime Energy Bottleneck

The DE-BN allows a plant manager to allocate maintenance workers to the machine which

will lead to the largest decrease in energy waste for the production line. It uses real sensor

data that is readily available from the manufacturing facility to calculate the machine with

the most energy waste.

4.4.1 Analytical Proof

Definition 1: Consider the serial production line as presented in Fig. 5.4.1, machine j,

j = 1, ...,M , is the DE-BN if:

∂(EPP )

∂dj
>
∂(EPP )

∂dz
, ∀z 6= j. (4.18)

This implies that machine j is the DE-BN if an infinitesimal improvement in its mean down-

time (∂d) (a small change in Mean Time to Repair, MTTR) leads to the largest decrease

in energy consumption per part for the entire production line, as compared with a similar

improvement of any other machine in the system.

Proposition 1: Machine j is the DE-BN if j is the machine with the largest percent energy

waste and the highest percent permanent production loss. This is illustrated by the following:

Aj +Bj > Az +Bz, ∀z 6= j, (4.19)
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where:

Al =
−ηlPpp,l

M∑
j=1

Ppp,j

[
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

]

Bl =
ηel

T − ⋃i∈ns [ti + di∗ , ti + di + tiw,j)
, l = 1, 2, ...,M.

Proof:

For the serial production line considered with all machines operating with random downtime

events, the general form of the energy consumption per part for the production line as seen

in (4.8) must be used. To find the partial derivative of the energy consumption per part

with respect to mean downtime, the DE-BN as a function of downtime (d) defined in (4.18)

is used in conjunction with the quotient rule for partial differential equations:

∂(EPP )

∂dj
=
∂( E

PC
)

∂dj
=

(PC)( ∂E
∂dj

)− (E)(∂PC
∂dj

)

(PC)2
, (4.20)

where E is energy consumption of the line, PC is the production count of the line, ∂E
∂dj

is

the partial derivative of energy consumption with respect to mean downtime duration, and

∂PC
∂dj

is the partial derivative of production count with respect to mean downtime duration.

The energy consumption as well as the production count were defined in (4.6) and (4.7)

respectively. Manipulating (4.6) gives:

E =
M∑
j=1

Ppp,j

[
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

]
(4.21)

To find the partial derivatives of energy consumption with respect to downtime we use the

definition of a derivative:

∂E

∂dj
= lim

∂dj→0

E(dj + ∂dj)− E(dj)

∂dj
, (4.22)
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where E(dj) is found above in (4.21), and E(dj + ∂dj) for machine j is:

E(dj + ∂dj) =
M∑
j=1

Ppp,j

[
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

]
− (∂dj) (ηjPpp,j) . (4.23)

It is important to note here that for a small change, ∂dj, in each downtime event there is no

change in Tid,j due to the fact that the machine can never break down when idle. Plugging

(4.23) and (4.21) into (4.22) gives the partial derivative of energy consumption with respect

to mean downtime duration:

∂E

∂dj
= −ηjPpp,j. (4.24)

To find the partial derivative for production count of the line with respect to the mean

downtime, we first manipulate (4.7) and take the derivative:

∂PC

∂dj
= − ∂

∂dj

{
1

τM∗

⋃
i∈ns

[ti + di∗ , ti + di + tiw,j)
}
. (4.25)

In order to solve (4.25), it is necessary to study the effect of downtime at machine j on the

production count of machine M∗. This is the permanent production loss (PPL) caused by

machine j:

∂PC

∂dj
= −∂PPL

∂dj
= − lim

∂dj→0

PPL(dj + ∂dj)− PPL(dj)

∂dj
. (4.26)

By changing the MTTR of machine j by a small infinitesimal amount, we can assume that

this small change will not cause any non-effective downtime event to become an effective

downtime event. To find the permanent production loss caused by machine j, it is necessary

to look at the effect of downtime events at machine j. The permanent production time loss of

the downtime event ~ej,i =(j, ti, di), ∀ di ∈ ~De, is di−d∗i +tiw,j. The permanent production loss

for the event ~ej,i is (di− d∗i + tiw,j)/τM∗ , which is the number of parts lost by the production

line due to this downtime event. Therefore, the permanent production loss for machine j

when subject to a sequence of downtime events ~ej = {~ej,1, ~ej,2, ..., ~ej,ηj} is equivalent to the
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summation of the stoppage intervals caused by machine j:

PPL(dj) =

ηej∑
i=1

di − d∗i + tiw,j

τM∗
. (4.27)

The PPL caused by machine j is simply the summation of stoppage intervals caused by

machine j since there cannot be overlapping downtime events at a single machine. This is

because a machine cannot break down when already non-operational. By changing the mean

downtime of machine j by a small amount, ∂dj, leads to (4.28):

PPL(dj + ∂dj) =

ηej∑
i=1

di + ∂dj − d∗i + tiw,j

τM∗
. (4.28)

Thus, by substituting (4.27) and (4.28) into (4.26):

∂PC

∂dj
= −

ηej∑
i=1

1

τM∗
= −

ηej
τM∗

. (4.29)

Comparing machine j to all other machines using the DE-BN definition in (4.20) and pro-

viding some manipulation gives:

( ∂E
∂dj

)

E
−

(∂PC
∂dj

)

PC
>

( ∂E
∂dz

)

E
−

(∂PC
∂dz

)

PC
, ∀z 6= j. (4.30)

And thus machine j is the DE-BN if it satisfies the following:

Aj +Bj > Az +Bz ∀z 6= j.

This completes the proof.

These results give the plant manager a quantitative tool in selecting which machine to

prioritize with reactive maintenance. The DE-BN can be identified by using readily available
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sensor data. Improving the DE-BN leads to the largest improvement in the EPP and largest

decrease in energy waste as compared to the same improvement to any other machine on

the line.

4.4.2 Numerical Validation

The simulation studies are performed using a model built in Simulink/MATLAB. The model

is a continuous flow model, which means that the buffers vary continuously, as opposed to

integer steps. As stated earlier, this does not affect the dynamics of the system. For these

scenarios, the model is initially run for one 8 hour period of warmup, which is the time

needed for system to reach a steady state. The model is then run for the time horizon [0,T)

of T = 8 hours for each shift with a time step of 0.005 min. Once the simulation is completed

all necessary data is recorded and saved. The simulation studies utilize 1000 different line

combinations to test the effectiveness of the DE-BN method against other industry standards.

The simulation model is a 15 Machine, 14 Buffer line. To create the 1000 line combinations,

the rated speed, 1
τj

(parts/min), the efficiency, ej, the buffer capacity, Bm (parts), and the

power consumption, Ppp,j (kW), are selected randomly and with equal probability from the

following sets:

1

τj
∈ {1.0, 1.5, 2.0, 2.5, 3.0} j = 1, ...,M

ej ∈ {0.80, 0.85, 0.90, 0.95, 0.99} j = 1, ...,M

Ppp,j ∈ {80, 100, 120} j = 1, ...,M

Bm ∈ {10, 30, 50} m = 2, ...,M.

These combinations include various scenarios as seen in industry, including, but not limited

to, machines arranged in increasing efficiency or decreasing efficiency, systems with buffer

capacity arranged with increasing or decreasing order, systems with machine efficiency or

buffer capacity arranged based on a bowl or inverted bowl pattern, etc. The MTTR and the
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Mean Cycles Between Failure (MCBF) are assumed to be exponentially distributed. The

mean time to warm up, ωj, is 1 minute. The MTTR for each machine is assumed to be 10

minutes and the MCBF is changed based on the efficiency of the machine. Each scenario was

run for one 8 hour time period and the method from (4.19) is used to determine the DE-BN

machine. Other production data is recorded, such as energy consumption, individual machine

energy per part produced, etc. The line is then run for another 8 hour time period with

one machine having a decrease in the MTTR (in this case a 10% decrease). This machine is

selected based on the DE-BN measurement and various common industry measurements. For

the remainder of the dissertation, we call these measurements “indicators”. The SMPIDT

is recorded to show how the 10% change in MTTR reduces the energy waste of the facility.

This data is used to test the effectiveness of utilizing the DE-BN to decide which machine

should have maintenance priority versus other indicators such as selecting the machine with

the highest energy consumption per part or the machine with the highest overall energy

consumption, etc. The results can be seen in Table 4.1, which summarizes the 1000 scenarios.

The first column in Table 4.1 shows the different indicators. The “DE-BN” is the downtime

Table 4.1: Downtime Energy Bottleneck Indicators

Indicator Total EC (kWh) Total PC Avg EC (kWh) Avg PC % ∆ SMPIDT
Baseline 10,963,911 602,883 10,953 602 -
DE-BN 11,002,349 625,233 11,002 626 3.01%

Max EPPj 10,981,621 613,164 10,982 613 1.39%
Min ej 10,968,520 605,722 10,968 605 0.39%

Max Ppp,j 10,962,917 603,228 10,962 603 0.05%
Max ECj 10,974,375 610,996 10,974 610 1.04%

energy bottleneck method discussed in the previous section. The “Max EPPj” is the machine

with the maximum energy consumption per part produced at machine j. The “Max ECj”

is the machine with the maximum energy consumption. “Min ej” is the machine with the
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lowest efficiency, where the efficiency is calculated by:

ej =

MCBF
τj

MCBF
τj

+MTTR
. (4.31)

The “Max Ppp,j” is the machine with the maximum rated power consumption. Column two

shows the total energy for the 1000 scenarios, while column three shows the total production

count. The average energy consumption for the 1000 scenarios is shown in column four,

and the average production count is displayed in column five. Column six shows the change

in SMPIDT for the entire production line when the given indicator is used to select which

machine to repair as compared to the baseline. The DE-BN is ranked number 1, having an

increase in production of 22,350 parts, which is more than double the amount of the number

2 ranked indicator, i.e., the EPPj. With a small energy consumption increase dedicated

to the production of parts, the DE-BN method leads to an energy waste decrease of 3.24%

which is also more than double the energy waste decrease of the rank 2 indicator. To show

the effectiveness of the proposed approach across various cases we randomly pull out the

results for 10 different line combinations. These scenarios can be found in Appendix A.

4.5 Rated Power Bottleneck

The RP-BN provides the plant manager with the information necessary to change an indi-

vidual machine on the production line with one that is more energy efficient to achieve the

largest decrease in energy waste. This provides a method for utilizing the readily available

sensor data to calculate the RP-BN.

4.5.1 Analytical Proof

Definition 2: Consider the serial production line in Fig. 5.4.1, machine j, j = 1, ...,M , is

the RP-BN if:

∂(EPP )

∂Pj
>
∂(EPP )

∂Pz
, ∀z 6= j. (4.32)
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This implies that machine j is the RP-BN if an infinitesimal improvement in its rated power

while producing parts (∂Pj) leads to the largest decrease in energy consumption per part for

the entire production line, as compared with a similar improvement of any other machine in

the system.

Proposition 2: Machine j is the RP-BN if machine j satisfies the following:

T −
ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j >

T −
ηz∑
k=1

[dk − (1 + βz)t
k
w,z]− (1− αz)Tid,z, ∀z 6= j. (4.33)

Proof:

Once again consider a serial production line with all machines operating with random down-

time events. To find the partial derivative of the energy consumption per part with respect

to rated power we use the quotient rule for machine j:

∂(EPP )

∂Pj
=
∂( E

PC
)

∂Pj
=

(PC)( ∂E
∂Pj

)− (E)(∂PC
∂Pj

)

(PC)2
.

Since production count is not a function of rated power, the partial derivative of production

count with respect to rated power is zero, which leads to:

∂( E
PC

)

∂Pj
=

( ∂E
∂Pj

)

(PC)
. (4.34)
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The equation for production count can be found in (4.7) and the equation for energy con-

sumption is above in (4.21). E(Pj + ∂Pj) for machine j is:

E(Pj + ∂Pj) =

M∑
i=1

Ppp,i

(
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

)

+ (∂Pj)

(
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

)
. (4.35)

Plugging this into (4.34) along with (4.6) gives:

∂E

∂Pj
= T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j. (4.36)

Comparing machine j to the other machines on the line using the RP-BN definition in (4.32)

gives:

(
∂E

∂Pj
) > (

∂E

∂Pz
), ∀z 6= j. (4.37)

Plugging in (4.36):

(
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

)
>(

T −
ηz∑
k=1

[dk − (1 + βz)t
k
w,z]− (1− αz)Tid,z

)
, ∀z 6= j.

This completes the proof.

4.5.2 Numerical Validation

The same one thousand scenarios as with the DE-BN in Sec 4.4.2 are run to test the effec-

tiveness of the RP-BN. Once again to create the 1000 line combinations, the rated speed, 1
τj

(parts/min), the efficiency, ej, the buffer capacity, Bm (parts), and the power consumption,
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Ppp,j (kW), are selected randomly and with equal probability from the following sets:

1

τj
∈ {1.0, 1.5, 2.0, 2.5, 3.0} j = 1, ...,M

ej ∈ {0.80, 0.85, 0.90, 0.95, 0.99} j = 1, ...,M

Ppp,j ∈ {80, 100, 120} j = 1, ...,M

Bm ∈ {10, 30, 50} m = 2, ...,M.

However, rather than making a change to the MTTR, there is a change to the power con-

sumption, Ppp,j, of an individual machine. The power consumption is reduced by 30 kW .

The mean time to warmup, ωj, is 1 min. The RP-BN is tested against the same indicators

as seen in Table 4.1. This study assumes one 8 hour shift per day for a one year period since

the machine is being replaced and machines cannot be replaced on a daily basis, therefore

it is a long-term decision. The average yearly results can be seen in Table 4.2 for the 1000

scenarios. Note that the production count is not included since the RP-BN only leads to

an energy savings. The RP-BN is ranked number one, which leads to a savings of 85,252

Table 4.2: Rated Power Bottleneck Indicators

Indicator Average Yearly EC (kWh) % Change SMPIDT
Baseline 3,717,779 -
RP-BN 3,632,526 2.29%

Max EPPj 3,640,076 2.09%
Min ej 3,647,165 1.90%

Max Ppp,j 3,646,277 1.92%
Max ECj 3,638,593 2.16%

kWh. It saves over 6,000 kWh more than the the second ranked indicator, i.e. “Max ECj”.

Although these indicators result in similar energy waste reduction, the RP-BN method is

always ranked number one for all 1000 scenarios. To further show the effectiveness of the

proposed approach across various cases we randomly pull out the results for 10 different

line combinations, which can be found in Appendix A. By using readily available sensor
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Table 4.3: Production Line Parameters: DE-BN & RP-BN Case Study

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 5.3 5.8 4.1 6.6 4.4 4.8 4.8 5.5 3.1 5.2 6.3 5.4 6.2 5.5 7.8
MTTR 13 11 13 14 18 11 13 11 9 12 18 11 13 11 13
MCBF 200 210 205 255 200 205 215 200 290 200 255 200 205 275 200
ej 74 77 79 73 71 79 77 77 91 76 69 77 71 82 66
Ppp 120 125 120 110 130 120 107 105 120 110 130 125 130 105 132
Pid 96 100 96 88 104 96 85.6 84 96 88 104 100 104 84 105
Pw 108 113 108 99 117 108 97 95 108 99 117 113 117 95 119

- - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

Bm - 20 30 15 20 25 20 25 35 30 25 30 25 20 15

information, the RP-BN method can be implemented quickly and easily as compared to the

industry measurements. Therefore, the RP-BN is a better quantitative indicator to decide

where to invest money into more energy efficient machines on the production line.

4.6 Case Study

A real battery assembly line composed of 15 machines and 14 buffers is adopted for the

case study to further demonstrate the method in this research. The system parameters are

recorded from the real production line and the data is mocked up for confidential reasons.

The mocked data is shown in Table 4.3. The mean time to warmup, ωj, is 1 min. The

MTTR and the MCBF are assumed to be exponentially distributed based on the real data.

The rated speed, 1
τj

, is in parts/min, the efficiency, ej, is in percent (%), the buffer capacity,

Bm, is in parts, the MTTR is in mins, the MCBF is in cycles, and the power consumption

is in kW . To test the effectiveness of the DE-BN versus the other industry measures, the

line is run for a one month period with one 8 hour shift per day. Each day, one machine

is prioritized, for a 10% decrease in MTTR, based on the various indicators as presented in

Table 4.1. The results for the entire month for each indicator are presented in Table 4.4. The

baseline case is where no machine is given maintenance priority. It is important to note that
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Table 4.4: Case Study: DE-BN Results

Indicator EC (kWh) PC SMPIDT
Baseline 385,758 27,517 0.685
DE-BN 388,091 29,470 0.730

Max EPPj 386,472 28,273 0.703
Max ECj 386,414 28,148 0.700
Max Ppp,j 385,828 27,697 0.690

Min ej 385,828 27,697 0.690

for the case study, machine j = 15 is “Max Ppp,j” and “Min ej”, therefore the results for those

indicators are equivalent. The DE-BN leads to an increase in production by approximately

2,000 parts, which is more than 1,000 parts over the next closest indicator (in this case

EPPj). For this additional 1000 parts, only minimal additional energy is consumed, which

is dedicated to the production of parts. According to the SMPIDT , a decrease of 4.5% on

energy waste is achieved based on the DE-BN, while the rank 2 indicator results in a 1.5%

energy waste reduction. While the decrease in energy waste is important, it is also necessary

to explore how this will save money for the manufacturing facility by decreasing energy costs

and increasing productivity. Considering only throughput gain and energy cost, the profit

realized in the period [0,T) is seen below:

Profit = Total Revenue− Total Cost

= Throughput Gain− Energy Cost (4.38)

where total revenue is the throughput gain and the total cost is the energy cost. We will

assume that the expenses to produce the part in terms of material and labor are included

when the profit per part is calculated. It is assumed that there is a $100 profit per part

produced, based on mocked up data for the value of a battery pack, and that the energy

cost is $0.14 per kWh based on data from the Energy Information Administration for the

49



Northeast, United States [67]. Plugging these values into (4.38) gives:

Profit = ($100)
∫ T

0
sM∗(t′; ~E)dt′ − ($0.14)EC(T ), (4.39)

where EC(T ) is the energy consumption of the entire line in the period [0,T). By prioritizing

the DE-BN machine the plant will realize the largest total monthly profit. The results for

the total monthly profit for each indicator as compared with the baseline case are seen in

Table 4.5. As one can see, the DE-BN leads to a cost savings of more than $119,000 over

Table 4.5: Case Study: DE-BN Cost Savings

Indicator Monthly Cost Savings ($)
DE-BN $194,935.53

Max EPPj $75,493.11
Max ECj $62,978.36
Max Ppp,j $17,991.67

Min ej $17,991.67

the EPPj. For the study of the RP-BN the same battery production line in Table 4.3 is

utilized. Since the RP-BN is used to replace a machine, the simulation is run for a one year

period assuming one 8 hour shift per day. The line is then simulated for another year with

one machine having a reduced energy consumption (30 kW decrease) based on the indicators

presented in Table 4.2. This simulates a machine being replaced with a more energy efficient

machine. The results for the entire year are shown in Table 4.6. The baseline case is where

no machine is replaced. At first glance it appears that the indicators are all similar in

reducing the SMPIDT . However, the savings from utilizing the RP-BN leads to a 84,900

kWh yearly savings for the production facility. This is more than 24,800 kWh over the next

closest indicator (in this case the machine with the maximum Ppp,j and minimum ej). The

production count for each scenario remains the same since we assume the replaced machine

will only have a reduced energy consumption. The RP-BN provides a better solution than

any other indicators while still utilizing available sensor data. Investigating the monetary
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Table 4.6: Case Study: RP-BN Results

Indicator EC (kWh) SMPIDT
Baseline 4,688,487 0.6851
RP-BN 4,603,597 0.6980
Max Ppp,j 4,628,482 0.6936

Min ej 4,628,482 0.6936
Max EPPj 4,631,246 0.6940
Max ECj 4,631,440 0.6940

savings will provide even more insight into the reason why the RP-BN is a more cost effective

solution than the other indicators. The yearly cost savings for each indicator versus the

baseline scenario is presented in Table 4.7. This research assumes that each machine has the

Table 4.7: Case Study: RP-BN Cost Savings

Indicator Yearly Cost Savings ($)
RP-BN $11,884.54
Max Ppp,j $8,368.34

Min ej $8,368.34
Max EPPj $7,999.68
Max ECj $7,916.71

same cost to replace and therefore does not explicitly take into account return on investment.

This will be addressed in the next chapter. These results compare the energy cost savings

of the RP-BN versus other common indicators used in industry. The RP-BN leads to an

increase of profit of approximately $11,880, which is $2,500 more than the case if the machine

with the maximum power consumption is replaced. The RP-BN provides the machine which,

when replaced, will lead to the most energy and cost savings on the production line.

4.7 Conclusions

This chapter investigates the dynamic energy structure of a serial production line to further

mitigate the energy waste for the manufacturing facility. We formulate the framework of the
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dynamic system to analyze the energy consumption per part, understanding how and where

energy is wasted on the production line. The energy consumption per part has two portions:

the static component, i.e., the energy consumed when there are no random downtime events

(a virtual scenario) and the dynamic component, i.e., the energy consumed due to random

downtime events. The energy structure is further analyzed to find the optimal minimum

energy consumption per part for the production line.

This dynamic energy structure is then used to create the SMPI for the overall production

line. This provides a quantitative self-benchmark method to correctly monitor the perfor-

mance of the production line. The definition of the DE-BN and the RP-BN are introduced

and the DE-BN and RP-BN are proven analytically. The DE-BN provides the plant man-

ager with information on where to direct maintenance workers to lead to the most energy

efficiency improvement, while the RP-BN will allow the plant manager to identify which

machine can be replaced with a more energy efficient version.
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Chapter 5

Energy Economic Analysis

5.1 Introduction

This chapter uses energy economic analysis to increase the overall profit of the manufactur-

ing facility by reducing energy consumption with minimal throughput impact. This allows

for the utilization of energy savings opportunities, where certain machines are powered off

with minimal production impact. The energy profit bottleneck is identified, which is the

machine that causes the biggest loss in profit on the line. A return on investment strategy is

developed to give plant managers the quantitative tools to select the machine or part which,

when replaced, will lead to the largest return on investment. Over the long term, this will

lead to the largest decrease in energy costs. To increase profits on a daily basis, a control

methodology is developed that uses energy opportunity windows to insert downtime events

that have minimal production impact, but reduce the overall energy consumption. A simu-

lation case study is performed to test the control methodology and the return on investment

strategy to show the effect of both on the profit of the manufacturing facility.

5.2 Energy Profit Bottleneck

The Energy Profit Bottleneck (EP-BN) allows a plant manager to allocate maintenance

workers to the machine that when repaired will lead to the largest increase in profit margin

for the plant. The profit of the plant is considered in (5.16):

Profit =Total Revenue− Total Cost

=(PC)(cp)− CE, (5.1)
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where PC is the production count, CE is the total cost of energy used by the production

line and cp is the income per part. We will assume that the expenses to produce the part in

terms of material and labor are already considered in the profit per part calculation. In this

chapter, inventory cost is ignored, since the trade off between throughput and energy savings

is the main concern. The cost of energy is calculated based on a time of use schedule. If we

assume that the energy price per kWh from the electrical company is broken up into c time

periods then the energy price per kWh can be represented by:

cle(t) =



c1e, t0 ≤ t < t1,

c2e, t1 ≤ t < t2,

...
...

cle, tl−1 ≤ t < tl,

...
...

cce, tc−1 ≤ t ≤ tc.

After manipulating the energy equation in (4.21), the total cost of energy, CE, is displayed

below:

CE =
M∑
j=1

c∑
l=1

[
Ppp,j

(
tl − tl−1 −

ηj,l∑
k=1

[dlk − (1 + βj)t
i
w,j]− (1− αj)T lid,j

)]
cle, (5.2)

where ηj,lis the number of downtime events at machine j and dlk is the amount of each

downtime in the time period of [tl−1, tl). We note that this accounts for all downtime that

starts in the time period [tl−1, tl) and we will attribute all downtime to this time period

even if there is any overlap into the next time period, [tl, tl+1). In our experience, the cost

difference is inconsequential if we attribute this downtime to one time period. The idle time

in each time period is represented by T lid,j. The production count, PC, is represented in

(4.7):

PC =
1

τM∗

(
T −

⋃
i∈ns

[ti + di∗ , ti + di + tiw,j)
)
,
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5.2.1 Analytical Proof

Definition 1: If we consider the serial production line in Fig. 1, machine j, j = 1, ...,M ,

is the energy profit bottleneck (EP-BN) if:

∣∣∣∣∂(Profit)

∂dj

∣∣∣∣ > ∣∣∣∣∂(Profit)

∂dz

∣∣∣∣, ∀z 6= j. (5.3)

This implies that machine j is the energy profit bottleneck if its infinitesimal improvement

in its mean downtime (∂dj) (a small change in Mean Time to Repair, MTTR) leads to the

largest increase in profit for the production line, as compared with the same perturbation

to any other machine in the system. Equation (5.3) utilizes absolute value in the formula-

tion since for any decrease in MTTR the profit will increase. However, this definition cannot

be easily used to identify the energy profit bottleneck. Therefore, we introduce Proposition 1.

Proposition 1: Machine j is the energy profit bottleneck if ∀z 6= j, j satisfies the

following:

∣∣∣∣ c∑
l=1

ηj,lPpp,jc
l
e −

ηej
τM∗

cp

∣∣∣∣ > ∣∣∣∣ c∑
l=1

ηz,lPpp,zc
l
e −

ηez
τM∗

cp

∣∣∣∣ (5.4)

Proof:

If we consider the serial production line in Fig. 1 with all machines operating with random

downtime, it is necessary to find the partial derivative of the profit with respect to mean

downtime. The change in profit with respect to mean downtime is seen in (5.5):

∂Profit

∂dj
=

(
∂PC

∂dj

)
(cp)−

(
∂CE

∂dj

)
. (5.5)

To find the partial derivative of energy cost with respect to mean downtime, we use the
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definition of a derivative in (5.6):

∂CE

∂dj
= lim

∂dj→0

CE(dj + ∂dj)− CE(dj)

∂dj
, (5.6)

where CE(dj + ∂dj) is considered in (5.7):

CE(dj + ∂dj) =
M∑
j=1

c∑
l=1

[
Ppp,j

(
tl − tl−1 −

ηj,l∑
k=1

[dlk − (1 + βj)t
i
w,j]− (1− αj)T lid,j

)]

−
c∑
l=1

ηj,lPpp,j∂djc
l
e (5.7)

Thus, plugging in (5.7) and (5.2) into (5.6) gives the following:

∂CE

∂dj
= −

c∑
l=1

ηj,lPpp,jc
l
e (5.8)

Next, to find the partial derivative of production count, it is necessary to manipulate (4.7)

and take the derivative with respect to mean downtime at machine j to obtain:

∂PC

∂dj
= − ∂

∂dj

{
1

τM∗

⋃
i∈ns

[ti + di∗ , ti + di + tiw,j)
}
. (5.9)

Since ∪i∈ns [ti + di∗ , ti + di + tiw,j) is the time machine M∗ is not producing parts, to find

this derivative at machine j, it is necessary to find the permanent production loss caused by

machine j, which leads to:

∂PC

∂dj
= −∂PPL

∂dj
= lim

∂dj→0

PPL(dj)− PPL(dj + ∂dj)

∂dj
. (5.10)

To solve for (5.10), it is necessary to look at the effect of downtime events at machine j.

By improving the mean downtime of machine j, which decreases the MTTR by a small

infinitesimal amount, we can assume that this small change will not cause any non-effective

downtime events to become effective downtime events. As stated earlier the permanent
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production time loss of the downtime event ~ej,i =(j, ti, di), ∀ di ∈ ~De, is di − d∗i + tiw,j.

The permanent production loss for this event is (di − d∗i + tiw,j)/τM∗ . This is the number

of parts lost by the production line due to this downtime event. Since there cannot be

overlapping events at a single machine because a machine cannot break down when already

non-operational, the permanent production loss for machine j when subject to a sequence

of downtime events, ~ej = {~ej,1, ~ej,2, ..., ~ej,ηj}, is equivalent to the summation of the stoppage

intervals caused by machine j:

PPL(dj) =

ηej∑
i=1

di − d∗i + tiw,j

τM∗
. (5.11)

By changing the mean downtime of machine j by a small amount, ∂dj, leads to (5.12):

PPL(dj + ∂dj) =

ηej∑
i=1

di + ∂dj − d∗i + tiw,j

τM∗
. (5.12)

Thus, by substituting (5.11) and (5.12) into (5.10):

∂PC

∂dj
= −

ηej∑
1

1

τM∗
= −

ηej
τM∗

, (5.13)

Plugging (5.8) and (5.13) into (5.5) gives:

∂Profit

∂dj
= −

ηej
τM∗

(cp) +
c∑
l=1

ηj,lPpp,jc
l
e. (5.14)

Using (5.14) in the bottleneck definition, (5.3), yields ∀z 6= j:

∣∣∣∣ c∑
l=1

ηj,lPpp,jc
l
e −

ηej
τM∗

cp

∣∣∣∣ > ∣∣∣∣ c∑
l=1

ηz,lPpp,zc
l
e −

ηez
τM∗

cp

∣∣∣∣
This completes the proof.
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The EP-BN allows a plant manager to reduce downtime of the machine that leads to the

largest increase in profit margin for the plant. The energy profit bottleneck can change

dynamically, therefore it is necessary to find the proper amount of time to select the correct

machine to repair. It is found in [20] that the optimal time to repair bottlenecks is on a daily

basis, which is what is utilized in the control methodology with the EP-BN. It is important

to note that the above energy profit indicator can be easily calculated based on sensor data

from the plant information system, thus providing the plant manager with the information

on which machine to reduce the overall downtime.

Remark 1: Note that the EP-BN is a more general case of the traditional throughput

bottleneck (TH-BN). It is shown in [66], that machine j is a TH-BN if:

ηej > ηez, ∀j 6= z. (5.15)

The EP-BN will reduce to the TH-BN if
ηej
τM∗

cp >>
∑c
l=1 ηj,lPpp,jc

l
e, which is the case when

the income from production is much larger than the energy cost. Thus, the TH-BN is a

special case of the EP-BN when energy cost is negligible, which is usually not the case. This

EP-BN indicator explicitly considers the cost of energy and releases the assumption in the

traditional throughput analysis that energy is “free” or not significant.

5.2.2 Numerical Validation

Extensive numerical simulations are performed to validate the EP-BN. The system analyzed

for the case studies is composed of 15 Machines and 14 Buffers, which is based on a portion

of a engine block line. The system parameters are recorded from the real production line

and the mocked data is shown for confidential consideration and is shown in Table 5.1. The
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time step for this simulation is ts = 0.005 min. The MTTR and the MCBF are assumed

to be exponentially distributed based on the observed production data. The profit of each

part, is assumed to be cp is $100 per part based on the real value after it is mocked up for

confidential reasons and the cost of energy, cle, is assumed to be [67]:

cle(t) =



$0.08, 00 : 00 ≤ t < 06 : 00,

$0.14, 06 : 00 ≤ t < 11 : 00,

$0.24, 11 : 00 ≤ t < 19 : 00,

$0.14, 19 : 00 ≤ t ≤ 23 : 59.

The warm up time of each machine, tw,j, is 1 minute. One hundred scenarios are simulated

Table 5.1: Production Line Parameters: EP-BN Case Study

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 2.5 1.3 1.7 1.2 1.8 1.5 2.1 0.9 0.5 1.2 2.3 1.6 1.9 2.4 1.7
MTTR 13 11 13 14 18 11 13 11 9 12 18 11 13 11 13
MCBF 250 270 300 350 325 205 245 250 200 265 350 200 280 275 400
ej 89 95 93 95 91 93 90 96 97 94 89 91 91 91 94
Ppp 25 30 21 25 40 10 43 40 17 45 28 25 15 21 30
Pid 17.5 21 14.7 17.5 28 7 30.1 28 11.9 31.5 19.6 17.5 10.5 14.7 21
Pw 30 36 25.2 30 48 12 51.6 48 20.4 54 33.6 30 18 25.2 36

- - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 20 30 15 20 25 20 25 35 30 25 30 25 20 15

to test the effectiveness of the EP-BN against other commonly used industry metrics, such

as diverting maintenance workers to the machine with the highest energy consumption. The

energy profit bottleneck is found using (5.4), while other production data, such as buffer

content, block/starve, etc is used to calculate the other indicators. The line is then run for

another 8 hours with one machine having the downtime reduced based on the indicators as

seen in Table 5.2, thus reducing the machine’s MTTR by 10%. The profit is recorded for

each case and compared to the baseline scenario when there is no decrease in any machine’s
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Table 5.2: Energy Profit Bottleneck Identifiers

Indicator Avg. EC (kWh) Avg. PC % Reduction SMPIDT Avg. Profit Increase ($)
Baseline 10,174 589 - -
EP-BN 10,175 618 3.88% $2,784.60
Min ej 10,211 593 0.34% $414.53

Max EPPj 10,183 590 0.09% $109.93
Max Ppp,j 10,200 590 -0.12% $75.33
Max ECj 10,181 590 0.03% $52.71

MTTR, which gives the average cost savings. The results are seen in Table 5.2 for the profit

increase. As one can see, reducing the downtime of the EP-BN leads to the biggest aver-

age cost savings at $2,784.60 daily, which is approximately $2,300 more daily than any of

the other indicators. These findings show how the EP-BN provides plant managers with a

quantitative method that uses readily available sensor data to prioritize the maintenance of

the machine that will lead to the most profit for the manufacturing facility.

5.3 Return on Investment Analysis

To improve energy efficiency in the long term, it is sometimes necessary to upgrade certain

machines or parts to more energy efficient versions. Plant managers lack the proper quan-

titative tools to select which machine or part to replace with a machine or part that has a

reduced energy consumption. When selecting a part or machine to replace it is imperative

that the investment leads to the most energy cost savings. We utilize energy economic anal-

ysis to determine the machine or part which, when replaced, leads to the largest return on

investment. We remove the assumptions of no backlog or inventory cost and reanalyze the
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profit in the time period [0,T):

Profit = TotalRevenue − TotalCost

= PC(cp)− E(ce)− |PC −D|(cd)− CTRk
j , (5.16)

where PC is the production count, which is measured by sensor data. The energy consump-

tion of the production line is represented by E. The production demand of the plant in

the time period [0,T) is D and ce and cp are cost of energy per kWh and the profit per

part respectively. We assume that the cost of energy is static throughout the day for ease

of math representation. We also assume that the expenses to produce the part in terms

of material and labor are already considered in the profit per part. The cost to replace,

CTRk
j , is included if machine j is replaced with a more energy efficient machine or a part k

is replaced within machine j to reduce energy consumption. We will denote the case k = 0

as the scenario when the entire machine is being replaced. The third term represents the

cost incurred if production is less than demand (PC < D), leading to a back log cost or if

production is greater than demand (PC > D), leading to an inventory cost. The demand

cost, cd, is calculated by:

cd =


cb, PC < D,

0, PC = D,

ci, PC > D,

where ci is the cost of inventory per part and cb is the back log cost per part. To study the

effect of replacing a part or machine, we use Return on Investment (ROI) analysis. Return

on investment is used in financial analysis to compare the efficiency of different investments.

The ROI is the benefit of an investment (return) divided by the cost of the investment [68].

The formula for ROI is displayed in Eq. 5.17:

ROI =
(Gain from investment− Cost of investment)

Cost of investment
. (5.17)
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When replacing a part or machine, the cost of investment is the cost to replace the machine

j or a part k within machine j (CTRk
j ). The cost to replace is represented by:

CTRk
j = Part Cost+Maintenance Cost+ PPL Cost, (5.18)

where the Part Cost is the cost of the part or machine that is being replaced: Part Cost =

ckrep,j. The Maintenance Cost is represented by:

Maintenance Cost = Nk
m,jt

k
R,jcMain,j, (5.19)

where Nk
m,j is the number of maintenance workers required at machine j to replace part k,

tkR,j is the time it takes to replace part k at machine j in hours, and cMain,j is the cost per

hour for each maintenance person. The maintenance cost per person per hour depends if the

maintenance is performed during a regular shift (CReg,j) or within an overtime shift (COT,j):

cMain,j =


CReg,j, during regular shift,

COT,j, during overtime shift,

The last term in Eq. (5.18) is the permanent production loss cost. If the maintenance repair

time (tkR,j) is longer than the opportunity window when the repair is being performed then

there is production loss. If the maintenance is performed within the opportunity window

duration then there is no cost due to permanent production loss. Therefore, the permanent

production loss cost is represented by:

PPL Cost =


cp(t

k
R,j − d∗i ) 1

τM∗
, tkR,j > d∗i ,

0, tkR,j ≤ d∗i ,

The gain from the investment is the energy cost savings from replacing a part or the en-

tire machine, which reduces the power consumption of machine j by an amount ∆Ppp,j.

62



Therefore, the energy savings, ∆Ek
j , in the time period [0,T) is:

∆Ek
j = ∆Ppp,j

T − ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

. (5.20)

Thus, the gain from investment is calculated in Eq. 5.21:

Gain from investment = ce∆E
k
j , (5.21)

and the return on investment in the time period [0,T) for replacing machine j or part k

within machine j is:

ROIkj =
(ce∆E

k
j − CTRk

j )

CTRk
j

. (5.22)

Therefore, replacing a part within machine j or replacing the entire machine with a more

energy efficient version (reducing Ppp,j by an amount ∆Ppp,j) will lead to the largest return

on investment in [0,T) if:

ROIkj > ROIkz , ∀z 6= j. (5.23)

This analysis can be applied to any time period [0,T). By utilizing the ROI, the manager

can select the machine or part with the largest return on investment for any time period.

Another important identifier in economic analysis is the break-even point, which is the point

at which the cost and the revenue are equal. This term uses return on investment to study

how quickly the investment leads to a net gain in profit. In this scenario, this is the point

when the energy cost saved is equivalent to the cost to replace the part or machine. Therefore,

the expected number of days it takes for the investment to break even (BE) is:

BEk
j =

CTRk
j

ce∆E
k
j

, (5.24)

where BEk
j is the expected number of days it takes for the cost to replace part k within

machine j to equal the energy cost savings at machine j. The average energy savings per
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day is ∆E
k
j . It is important to note that the machine with the maximum ROIkj will always

have the smallest BEk
j for the time period [0,T). The BEk

j gives an alternative indicator

to illustrate the investment of replacing a machine or a part within the machine. These

indicators provide the plant manager with the quantitative tools to select the machine or

part which, when replaced, leads to the largest return on investment based on energy cost

savings. While this method is useful in the long term, there still needs to be a control

methodology to reduce overall energy consumption on a daily basis. This is addressed in the

next section.

5.4 Case Study

To improve the energy efficiency on a daily basis, we introduce a control methodology to

insert downtime events which lower energy consumption with minimal throughput impact.

This leads to the largest increase in profit for the plant. We utilize the concept of the

energy opportunity window to insert ηOW,j number of downtime events each for a length

of tOW,j at machine j, j = 1, 2, ...,M . This allows for various machines to be strategically

turned off without affecting the overall throughput of the line and thus reducing energy

consumption. The energy consumption of the production line with the inserted downtime

events is represented by:

E =
M∑
j=1

Ppp,j

T − ηj∑
k=1

dk −
ηj+ηOW,j∑

k=1

(1 + βj)t
k
w,j − ηOW,jtOW,j − (1− αj)Tid,j

. (5.25)

To maximize the profit of the production facility in the period [0,T), it is necessary to

select the length of the inserted opportunity windows (tOW,j) and the number of opportunity

windows (ηOW,j) at each machine:

max
ηOW,j
tOW,j

j=1,2,...,M

Profit. (5.26)
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The profit equation is displayed in Eq. 5.16, where E is calculated from Eq. 5.25 and

PC is found using production data. The demand is calculated by either external customer

demand or by an internal standard if a certain level of inventory must be maintained. If

the inserted energy opportunity window at machine j is too large, i.e. tOW,j > d∗i , it will

lead to the slowest machine idling from being starved/blocked, thus leading to permanent

production loss. Therefore, the inserted opportunity window must be less than d∗i . If the

energy opportunity window is too small, more energy will be consumed while the machine

warms up than energy saved from turning off machine j. This results in a greater energy

cost, which leads to the lower bound of tOW,j:

tOW,jPid,j > E[tiw,j]Pw,j

tOW,j >
ωjβj
αj

. (5.27)

Thus, the length of the inserted opportunity window is bounded by:

ωjβj
αj

< tOW,j < d∗i , j = 1, 2, ...,M, i = 1, ..., ηOW,j. (5.28)

This provides the bounds for tOW,j, where the energy saved from the opportunity window

must be larger than the expected energy consumed during the machine warm up period and

must be less than the calculated opportunity window at that time.

The control methodology allows the buffer levels to reach a certain threshold (B0,j) be-

fore taking the opportunity window and then turning the machine back on after tOW,j. The

pseudo code for the control algorithm is displayed below:

1. Begin shift

2. Collect pertinent data from buffer levels and machine states

3. If bj = B0,j, ∀j < M∗ turn off machine j − 1 for tOW,j−1.
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(a) After tOW,j−1 turn on machine j − 1

4. If bj 6= B0,j, ∀j < M∗, go to step 5

5. If bj = B0,j, ∀j > M∗ turn off machine j for tOW,j.

(a) After tOW,j turn on machine j

6. If bj 6= B0,j, ∀j > M∗ return to step 2.

The control methodology is illustrated in Fig. 5.1. The buffer threshold, B0,j, depends on

a specific scenario for each production line. Based on our simulation studies and experi-

ence, we normally determine the threshold to be approximately 95% of the buffer capacity.

In this specific example as shown in Fig. 5.1, the threshold B0,j is determined to be 50

parts, which is 95% of the buffer capacity. Once the buffer level reaches the threshold the

machine is switched off for a period of 25 minutes and then it is switched back on. From

our previous research, we found that tOW,j is approximately 95% of the upper bound. This

pattern is repeated until the end of the shift. This example also displays a random dis-

ruption event approximately 350 minutes into the shift. When the machine is switched on

after the inserted opportunity window, it experiences a random failure, thus causing the

buffer level to take longer to reach the 50 part threshold. By following this control scheme,

the risk of production loss is lowered for the manufacturing line. To solve for the length

and number of inserted downtime events for each machine, an exhaustive search algorithm

is utilized to maximize profit for the line. The results are shown in the simulation case study.

A real automotive production line composed of 15 machines and 14 buffers is adopted for the

case study to further demonstrate the return on investment analysis. The system parameters

are recorded from the real production data and are mocked up for confidential reasons. The

mean time to repair (MTTR) and the mean cycles between failure (MCBF) are assumed to

be exponentially distributed based on this real data. The production parameters are shown
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Figure 5.1: Control Methodology Buffer Thresholds

Table 5.3: Production Line Parameters: ROI Case Study
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ (p/m) 2.5 1.3 1.7 1.2 1.8 1.5 2.1 0.9 0.5 1.2 2.3 1.6 1.9 2.4 1.7
MTTR (min) 13 11 13 14 18 11 13 11 9 12 18 11 13 11 13
MCBF (cyc) 250 270 300 350 325 205 245 250 100 265 350 200 280 275 400

Efficiency (%) 89 95 93 95 91 93 90 96 95 94 89 92 92 91 94
Ppp (kW) 25 30 21 25 40 10 43 40 17 45 28 25 15 21 30

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

Capacity - 20 30 15 20 25 20 25 35 30 25 30 25 20 15

in Table 5.3. The idle power is assumed to be 70% (αj = 0.7) of the power consumed during

the production of parts and the warm up power is assumed to be 90% (βj = 0.9) of the power

consumed during the production of parts for each machine. The mean time to warm up time

after the ith downtime event is 1 minute (ωj = 1 min). The cost of energy is $0.14/kWh

and the profit per part is $50 per part. To test the return on investment strategy, three
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Table 5.4: Economic Analysis
Option 1 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

∆Ppp (kW) 1 2 2 2 2 1 4 2 2 3 2 2 1 2 2
CTR ($) 1.2k 2.2k 2.1k 3.6k 2.1k 1.1k 4.1k 2.9k 4.6k 4.9k 2.4k 2.2k 1.1k 2.2k 2.3k

Option 2 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

∆Ppp (kW) 1 2 2 2 2 1 4 2 2 3 2 2 1 2 2
CTR ($) 1.5k 2.5k 2.4k 2.7k 2.2k 1.4k 4.2k 2.2k 2.2k 3.3k 2.3k 2.4k 1.2k 2.5k 2.6k

Option 3 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

∆Ppp (kW) 7 10 5 7 10 2 12 9 5 11 5 7 4 3 8
CTR ($) 23k 35k 21k 37k 23k 37k 49k 34k 20k 60k 23k 36k 25k 28k 35k

options are presented: option 1 is the scenario where a machine part is replaced with a more

energy efficient version during a regular production shift, option 2 is the case where the

same part is replaced, but during an overtime shift when there is no production, and option

3 is the situation when the entire machine is replaced with a more energy efficient version.

We assume that CReg,j is $70 per hour and COT,j is $140 per hour for each machine. We

also manage the replacement of the part during a regular shift when the machine has its

maximum opportunity window therefore limiting production loss. The parameters for each

option are shown in Table 5.4. The CTR is in thousands of dollar, i.e. 5k = $5,000. We

utilize Eq. 5.24 to calculate the expected number of days the investment will break even and

then compare that with the simulation break even point for the investment. The results are

shown in Fig. 5.2-5.4. The diamonds represent the theoretical break even point calculated

with Eq. 5.24. The squares are the break even points from the simulation for each option.

The results illustrate that the simulation break even point is within 10% error (as shown

with the error bars) for each option and each machine. The best option is replacing a part

during an overtime shift (option 2) for machine 9, which leads to an expected break even

point of 997 days, while the simulation study is 951 days. The next section will use this

return on investment analysis in conjunction with the opportunity window control scheme

to maximize profits for the production line.
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Figure 5.2: Break Even Results - Option 1

5.4.1 Opportunity Window Control Numerical Study

This study uses the same production line as seen in Table 5.3. The return on investment

strategy is utilized in conjunction with the control methodology. The cost of energy is still

$0.14/kWh and the profit per part is still $50 per part. The back log cost, cb, is $15 per

part and the inventory cost, ci, is $5 per part. The production line is run for a 5 year time

period, assuming one 8 hour shift per day, with no opportunity window control methodology

and no machines or parts replaced with upgraded versions. The profit for this 5 year period

is calculated and recorded as the baseline scenario. One part in machine 9 is then replaced

based on the break even and return on investment analysis as shown in Table 5.4. The

opportunity window control methodology is then used and the line is simulated for another

5 year period with a part from machine 9 having been replaced with a more energy efficient

version (2 kW reduced power consumption). The results are recorded and compared with

the baseline scenario. Figure 5.5 displays the production count of the baseline scenario versus

the control scenario. The demand is 230 parts per day, which is 83,950 parts per year, which

is met by both the control and baseline situations. The baseline scenario produces 18,250
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Figure 5.3: Break Even Results - Option 2

parts over the demand of the facility, while the control scenario produces 16,263 parts more

than the demand. By reducing the number of parts produced past the demand threshold in

the control scenario and replacing a part within machine 9, the overall energy consumption

decreases by 1,519,404 kWh. Thus, running the opportunity window control scheme while

replacing a part within machine 9 leads to a decreased energy consumption with no impact

to the production demand. This leads to an overall profit increase of $121,107.364 over five

years as displayed in Fig. 5.6.

5.5 Conclusions

This chapter investigates the energy economics of a manufacturing facility. The profit of

the production plant is explored to include both production and energy costs. The energy

dynamics of the production system are studied and incorporated into an energy economic

analysis. Building on this analysis, the Energy Profit Bottleneck (EP-BN) is introduced and

proven both analytically and numerically. This provides a method to correctly identify the

machine that is causing the biggest loss in profit due to a lower production count and a high
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Figure 5.5: 5 Year Production Count

energy consumption. This directly leads to the return on investment analysis and break-

even point for investing money into replacing a part or machine with a more energy efficient

version. The analysis provides the plant manager with the quantitative tools to increase
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Figure 5.6: 5 Year Profit

profit in the long term by replacing the machine or part which will lead to the largest return

on investment. To increase profit on a daily basis, a control methodology is introduced that

utilizes inserted opportunity windows to reduce overall energy consumption with minimal

throughput impact. A case study is performed to validate the energy economic method in

conjunction with the opportunity window control scheme.
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Chapter 6

Control Methodology

6.1 Introduction

The control methodology from the previous chapter is expanded to increase profit in a given

time horizon [0,T). Previous studies have utilized supervisory control methods that mitigate

throughput bottlenecks [18]. This control scheme combines bottleneck mitigation for the EP-

BN as well as an opportunity window control methodology to decrease energy consumption

while minimizing throughput loss. The feedback control diagram can be seen in Fig. 6.1.

To maximize the profit of the production line, we must select the length of each opportunity

Figure 6.1: Control Diagram to Maximize Profit

window (tOW ), the length of the recovery time between each energy opportunity window

(tr), and the machine to reduce downtime (δd) such that we maintain a certain production

threshold (PC0):

max
tOW
tr
δd

Profit, s.t. PC ≥ PC0 (6.1)
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To achieve this goal, the overall control methodology is presented as follows:

1. Collect pertinent production data and determine which machine is the EP-BN for the

day.

2. Reduce downtime (δd) of the EP-BN by prioritizing maintenance staff on the EP-BN.

3. Initialize tOW and tr based on the numerical study.

4. Run opportunity window control algorithm presented in Fig. 6.2 for period of [0,T).

5. If Production Count or Profit are below thresholds, recalculate tOW and tr based on

the steps below:

(a) If Production Count and Profit are below thresholds, reduce tOW and tr, & return

to Step 4.

(b) If Production Count is above the threshold, but the Profit is below the threshold,

increase tOW and reduce tr, & return to Step 4.

(c) If Production Count is below the threshold, but the Profit is above the threshold,

reduce tOW and increase tr, & return to Step 4.

6. If Production Count and Profit are above desired values, reuse same values for tOW

and tr & return to Step 4.

Numerical studies are performed to provide guidance for the initial selection of tr and tOW .

The recovery time, tr, is the amount of time between subsequent opportunity windows while

the system recovers. The variable tOW is the amount of time the machine is turned off

during the opportunity window. The variable tOW is a certain percentage of the maximum

opportunity window, d∗i . The method presented in Section IV is used to identify the EP-

BN for the day. Once the EP-BN is identified, the downtime at that machine is reduced.

This bottleneck mitigation is combined with an opportunity window control scheme, which
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Figure 6.2: Opportunity Window Control Flow Chart for Machine j

is presented for machine j in Fig. 6.2. Every machine on the line will run the same algo-

rithm, however the parameters will vary for each machine. It is important to find a rule

for selecting the control parameters tOW and tr in a stochastic scenario. Since this is very

difficult, if not impossible, to study analytically, numerical studies are necessary. Studies are

performed to find the optimal percentage of tr based on the analysis of the recovery time

in a deterministic scenario, Tr, when taking successive opportunity windows. A numerical

study is also performed to find the duration and frequency of the opportunity window in a

stochastic scenario.

6.2 Numerical Studies for Control Parameters

The numerical studies for the control parameters utilize 1000 different line combinations to

find guidance in selecting the parameters tr and tOW . The simulation utilizes a 6 Machine,

5 Buffer line. To create the 1000 simulations, the rated speed, 1
τj

, the efficiency, ej, and the
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buffer capacity, Bm, are selected randomly and with equal probability from the following

sets:

1

τj
∈ {3, 4, 5, 6} j = 1, ...,M

ej ∈ {0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00} j = 1, ...,M

Bm ∈ {50, 70, 100} m = 2, ...,M.

6.2.1 Recovery Time

In order to have an effective feedback control scheme for the production line, it is neces-

sary to find the appropriate recovery time for each machine so that successive opportunity

windows can be taken with minimal throughput impact. It is important to find the small-

est possible value of recovery time to allow for the maximum number of opportunity windows.

Numerical Fact 6.1: To reduce the permanent production loss of the production line,

the range of recovery time, tr, is in practice between 150% and 200% of the value based on

the upper bound of the deterministic scenario, Tr.

Justification: From the 1000 simulations, 25 different line combinations ranging from Line

1A - Line 5E are shown in this dissertation. In Lines 1-5 the efficiency of the machines are

changed, while in Lines A-E the rated speed of the machines are varied. For example, Line

1A will have the efficiencies presented in Line 1 and the machine speeds from Line A. The

different lines can be seen in Table 6.1. For these 25 scenarios, each buffer has a capacity

of 100 parts and the simulation is run for one 8 hour shift per day. The recovery time is

calculated using the method presented in Eqn (3.3) and (3.4) for the deterministic case.

The upper bound of the recovery time for a deterministic scenario, Tr is a fixed length for

machine j after machine j takes its maximum opportunity window d∗i . The deterministic
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Table 6.1: Recovery Time Simulations

Line 1 m1 m2 m3 m4 m5 m6

Efficiency(%) 95.00 95.00 95.00 95.00 95.00 95.00

Line 2 m1 m2 m3 m4 m5 m6

Efficiency(%) 85.00 85.00 90.00 95.00 90.00 85.00

Line 3 m1 m2 m3 m4 m5 m6

Efficiency(%) 95.00 95.00 90.00 85.00 90.00 95.00

Line 4 m1 m2 m3 m4 m5 m6

Efficiency(%) 70.00 75.00 80.00 85.00 90.00 95.00

Line 5 m1 m2 m3 m4 m5 m6

Efficiency(%) 100.00 95.00 95.00 90.00 90.00 85.00

Line A m1 m2 m3 m4 m5 m6

sj (parts/mins) 4.00 5.00 6.00 3.00 6.00 5.00

Line B m1 m2 m3 m4 m5 m6

sj (parts/mins) 4.00 5.00 4.00 3.00 4.00 5.00

Line C m1 m2 m3 m4 m5 m6

sj (parts/mins) 5.00 4.00 5.00 3.00 5.00 4.00

Line D m1 m2 m3 m4 m5 m6

sj (parts/mins) 6.00 5.00 4.00 3.00 4.00 5.00

Line E m1 m2 m3 m4 m5 m6

sj (parts/mins) 4.00 4.00 4.00 3.00 4.00 4.00

upper bound for the recovery time, Tr can be evaluated as follows:

Tr(j, d
∗
i ) =



∑M∗

k=j+1
(Bk)

min{ 1
τ1
,..., 1

τM∗−1
}− 1

τM∗
, j < M∗

0, j = M∗∑j

k=M∗+1
(Bk)

min{ 1
τM∗+1

,..., 1
τM
}− 1

τM∗
, j > M∗.

This value is based on a deterministic scenario and will be examined in the stochastic situ-

ation by multiplying by a percentage ranging from 25% to 600% to see how much recovery

time needs to be allotted such that the permanent production loss is minimized when suc-

cessive opportunity windows are taken. In each simulation, the full opportunity window is

exercised followed by a certain percentage of Tr. The results for all 1000 lines can be seen

77



below in Table 6.2. The results for Lines 1A-1E can be seen in Fig. 6.3. The remaining line

Table 6.2: Recovery Time Results

% tr 25 50 75 100 125 150
PPL 45.95% 34.62% 19.90% 15.66% 11.12% 4.95%

% tr 175 200 225 250 275 300
PPL 4.05% 3.81% 3.84% 2.97% 3.36% 2.96%

% tr 325 350 375 400 425 450
PPL 2.66% 2.09% 1.55% 1.23% 1.30% 1.09%

% tr 475 500 525 550 575 600
PPL 0.85% 0.97% 1.27% 1.42% 1.08% 1.04%
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Figure 6.3: Recovery Time Lines 1A-1E

combinations can be found in Appendix B in Fig. B.1-B.4. The numerical study shows that

the optimal amount of recovery time to allow between opportunity windows is between 150%

and 200% of the deterministic upper bound of recovery time, Tr. Obviously, there is still

some permanent production loss shown in this study, since inserting opportunity windows

can be treated as inserting disturbances into the system. We are interested in finding a
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scenario that allows for less than a 5% production loss. This is analogous to the settling

time of a dynamic system. The settling time is defined as the time required for the response

curve to reach and stay within a range of a certain percentage of the final value [69]. After

taking an opportunity window, it is necessary to find the smallest recovery time that allows

the production system to recover within 5% of the throughput when no opportunity window

is utilized. This numerical study found that this recovery time is between 150% and 200%

of Tr.

6.2.2 Length of the Opportunity Window

To find guidance for the variable tOW , the same 1000 lines are run for one 8 hour shift per

day for a one month period. The parameters tOW and tr are chosen randomly and with equal

probability from the following sets:

tr,j ∈ {1.50, 1.60, 1.70, 1.80, 2.0} × Tr j = 1, ...,M

tOW,j ∈ {0.30, 0.50, 0.70, 0.90, 0.95, 1.0} × d∗i j = 1, ...,M,

where d∗i is the largest opportunity window of machine j. To find the baseline case, the

control methodology is not utilized: there is no opportunity window control and the EP-BN

is not mitigated. Next, the opportunity window control scheme is used for each machine in

the production line, however the EP-BN is still not mitigated so that the focus is on tOW .

Ten scenarios are shown in this dissertation to illustrate the numerical findings. The recovery

time is 150% of Tr for Scenarios 1-5 and 200% of Tr for Scenarios 6-10 which follows the

numerical findings in the previous section. These scenarios can be seen in Table 6.3. The

production throughput is recorded and compared with the baseline case and the results are

presented in Fig. 6.4.

Fig. 6.4 shows that the lowest throughput loss is realized in Scenario 6 where tOW is

approximately 95% of d∗i . From the analysis of all 1000 lines, it is found that taking the
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Table 6.3: Opportunity Window Parameters

Scenario 1 m1 m2 m3 m4 m5 m6

tOW (mins) 51.15 34.65 21.45 0 23.10 41.25
tr(mins) 206.67 140.00 86.67 0 93.33 166.67

Scenario 2 m1 m2 m3 m4 m5 m6

tOW (mins) 46.04 31.19 19.31 0 20.79 37.13
tr(mins) 206.67 140.00 86.67 0 93.33 166.67

Scenario 3 m1 m2 m3 m4 m5 m6

tOW (mins) 46.04 27.72 15.02 0 16.17 33.00
tr(mins) 206.67 140.00 86.67 0 93.33 166.67

Scenario 4 m1 m2 m3 m4 m5 m6

tOW (mins) 35.81 27.72 19.31 0 20.79 33.00
tr(mins) 206.67 140.00 86.67 0 93.33 166.67

Scenario 5 m1 m2 m3 m4 m5 m6

tOW (mins) 18.08 19.60 17.55 0 18.90 23.33
tr(mins) 206.67 140.00 86.67 0 93.33 166.67

Scenario 6 m1 m2 m3 m4 m5 m6

tOW (mins) 46.04 31.19 19.31 0 20.79 37.13
tr(mins) 155.00 105.00 65.00 0 70.00 125.00

Scenario 7 m1 m2 m3 m4 m5 m6

tOW (mins) 48.59 32.92 20.38 0 21.95 39.19
tr(mins) 155.00 105.00 65.00 0 70.00 125.00

Scenario 8 m1 m2 m3 m4 m5 m6

tOW (mins) 38.36 29.45 20.38 0 21.95 35.06
tr(mins) 155.00 105.00 65.00 0 70.00 125.00

Scenario 9 m1 m2 m3 m4 m5 m6

tOW (mins) 43.48 31.19 20.38 0 21.95 37.13
tr(mins) 155.00 105.00 65.00 0 70.00 125.00

Scenario 10 m1 m2 m3 m4 m5 m6

tOW (mins) 46.50 33.25 21.45 0 23.1 39.58
tr(mins) 155.00 105.00 65.00 0 70.00 125.00

opportunity window less frequently for a longer duration and then waiting enough time for

the system to recover results in a smaller throughput loss as opposed to taking it more fre-

quently for a shorter duration.
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Figure 6.4: Frequency and Length of Opportunity Window Scenarios

6.3 Case Study

The system analyzed for the case study is composed of 15 Machines and 14 Buffers, which

is based on a portion of an engine block line. The system parameters are recorded from

the real production line and the mocked data is shown for confidential consideration and is

shown in Table 6.4. The time step for this simulation is ts = 0.005 min. The MTTR and

the MCBF are assumed to be exponentially distributed based on the observed production

data. The profit of each part, is assumed to be cp is $100 per part based on the real value

after it is mocked up for confidential reasons and the cost of energy, ce is assumed to be [67]:

cle(t) =



$0.08, 00 : 00 ≤ t < 06 : 00,

$0.14, 06 : 00 ≤ t < 11 : 00,

$0.24, 11 : 00 ≤ t < 19 : 00,

$0.14, 19 : 00 ≤ t ≤ 23 : 59.

The mean warm up time of each machine, ωj, is 1 minute. The production line is run for

one 8 hour shift per day for a one month period without utilizing the control methodology

presented. This is established as the baseline case. For the EP-BN mitigation, the pertinent
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Table 6.4: Production Line Parameters: Control Case Study

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 2.5 1.3 1.7 1.2 1.8 1.5 2.1 0.9 0.5 1.2 2.3 1.6 1.9 2.4 1.7
MTTR 13 11 13 14 18 11 13 11 9 12 18 11 13 11 13
MCBF 250 270 300 350 325 205 245 250 200 265 350 200 280 275 400
ej 89 95 93 95 91 93 90 96 97 94 89 91 91 91 94
Ppp 25 30 21 25 40 10 43 40 17 45 28 25 15 21 30
Pid 17.5 21 14.7 17.5 28 7 30.1 28 11.9 31.5 19.6 17.5 10.5 14.7 21
Pw 30 36 25.2 30 48 12 51.6 48 20.4 54 33.6 30 18 25.2 36

- - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 20 30 15 20 25 20 25 35 30 25 30 25 20 15

data is recorded and the EP-BN machine is identified for the day. The production line is

then run by reducing the previous day’s EP-BN’s MTTR by 10% and utilizing the presented

control scheme. If there is a decrease in profit from the baseline case with no control or there

is more than a 5% loss in production count, the control variables are varied by changing

tOW or tr by 5%. The results can be seen below in Table 6.5 with 95% confidence interval

included. By using the control methodology and mitigating the EP-BN daily there is an

increase of profit of $9,431.12. The average production count for the baseline case is 234

parts per day, while for the monthly bottleneck and opportunity window control case it is

236 parts per day. This is equivalent to a 1.0% production count increase daily. By using

the control methodology with daily EP-BN mitigation there is a savings of 716.74 kWh

per day. Another important result of utilizing the control methodology is the decrease of

energy waste for the production line. The SMPIDT is recorded daily for the baseline case

and is compared to the control scenario with the EP-BN mitigation in Fig. 6.5. The daily

EP-BN mitigation saves an average of 45% of energy waste daily. As one can see the daily

EP-BN mitigation in conjunction with the opportunity window control algorithm leads to

less energy waste as well as a higher net profit while also increasing production. This is

due to the energy savings from the opportunity window control as well as the production

increase from the daily bottleneck mitigation.
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Table 6.5: EP-BN Case Study Results

No Control EP-BN & OW Control
Avg Daily 2,700.52 1,983.78
EC (kWh)

95% CI [2696.12, 2704.91] [1973.68, 1993.89]
EC (kWh)

Total Monthly 81,015.57 59,413.5
EC (kWh)
Avg Daily 234 236
PC (Parts)

95% CI [232.31, 235.68] [234.62, 236.91]
PC (Parts)

Total Monthly 6,990 7,080
PC (Parts)
Avg Daily $22,913.86 $23,228.23
Profit ($)

95% CI [$22,745.98, $23,081.73] [$23,115.17, $23,341.29]
Profit ($)

Total Monthly $687,415.70 $696,846.82
Profit ($)

6.4 Conclusions

In this chapter a control methodology is introduced to reduce energy consumption while

minimizing throughput impact. This leads to an increase in profit for the manufacturing

facility. Numerical studies are performed to illustrate the advantages of turning machines

off by utilizing their opportunity windows to reduce both costs and energy. A case study is

performed to illustrate the effectiveness of the EP-BN and the control methodology.
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Figure 6.5: SMPIDT
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Chapter 7

Integrated Heating, Ventilation, and Air Conditioning

and Production System Analysis

This chapter explores the energy savings opportunities for a manufacturing facility by com-

bining the two largest energy consumers in a manufacturing plant: the production line and

the heating, ventilation, and air conditioning system. The concept of the energy opportunity

window (OW) is utilized, which allows each machine to be turned off at set periods of time

without any throughput loss. The production system impact on the cooling load is explored

and reduced using the opportunity window control methodology. The opportunity window

for the production line is then synced with the peak periods of energy demand for the HVAC

system to create a heuristic rule to optimize the energy cost savings. This heuristic rule is

further developed with a control methodology to reduce overall costs for the manufacturing

facility by reducing the energy consumption of both the HVAC system and the production

system. An expanded HVAC and production model is built to test an opportunity win-

dow control scheme combined with EP-BN mitigation and ROI improvement strategies with

variable HVAC set points. By using this methodology, the thermal comfort of the building

occupants is studied along with the overall profit of the manufacturing facility.

7.1 Reducing Manufacturing Cooling Load

To study the impact of the manufacturing production line on the HVAC cooling load, we

re-introduce the energy consumption equation for the production line (Epr):

Epr =
M∑
j=1

Ppp,j

[
T −

ηj∑
k=1

[dk − (1 + βj)t
k
w,j]− (1− αj)Tid,j

]
. (7.1)

85



It is important to note that each term in Eq. 7.1 can be calculated using readily available

sensor data. To investigate the production impact on the cooling load provided by the HVAC

system, it is necessary to first analyze the heat gains within the manufacturing facility. The

heat gain is the rate at which heat is generated or transferred within the space [70]. The

heat gain of the overall system at time t is:

q̇(t) = q̇env(t) + q̇inf (t) + q̇ihg(t), (7.2)

where q̇(t) is the heat gain of the overall system and q̇env(t) is the heat gain due to the

environment, which includes heat gain due to solar radiation, heat gain through the walls

and roof, etc. The heat gain from infiltration is q̇inf (t) and q̇ihg(t) is the heat gain from

internal sources. The internal heat gain can be further broken down as shown in (7.3):

q̇ihg(t) = q̇L(t) + q̇P (t) + q̇eqp(t) + q̇M(t), (7.3)

where q̇L(t) is the internal heat gain from lighting and q̇P (t) is the internal heat gain from

people within the facility. The q̇eqp(t) represents the internal heat gain from any equipment

that is not the machines on the production line and q̇M(t) is the heat gain due to the machines

on the production line. Since we are only concerned with the impact of the production system

on the overall cooling load, we will focus on q̇M(t). The rate at which a machine generates

heat within a space is:

q̇M(t) = K(Ppp/Em)FlFu, (7.4)
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where:

K = constant = 1.0 W/W

Ppp = machine power rating while producing parts

Em = motor efficiency, as decimal fraction < 1.0

Fl = motor load factor

Fu = motor use factor.

The motor use factor is considered to be 1.0 for conventional applications and the motor load

factor is dependent on the machine state. If the machine is producing parts then Fl = 1.0

and if the machine is off then Fl = 0.0. If machine j is idle then Fl = αj for machine j and

if it is warming up then Fl = βj. The heat gain from machines must also be broken down

into two parts: the convective and the radiative. These can be calculated using percentages

provided by the American Society of Heating, Refrigeration and Air Conditioning Engineers

(ASHRAE). The percentage of the heat load that is convective is CM , while the percent of

the heat load that is radiative is RM , where CM +RM = 1.

After finding the heat gain within the space, it is possible to calculate the HVAC cooling

load. The cooling load is the rate at which energy must be removed from the space to

maintain the temperature and humidity at design values [70]. The cooling load of the overall

facility (Q) is broken down into two portions: the convective (Qc) and radiative portions

(Qr). The convective portion is the instantaneous cooling load from convection, while the

radiative cooling load is the time delayed cooling load from long wave radiation. This is

illustrated in (7.5):

Q(t) = Qr(t) +Qc(t). (7.5)

In general, the convective heat load is calculated using the heat balance method, however

since we are only concerned with the effect of production on the HVAC system, we can

utilize the tables provided by ASHRAE to determine the percentage of the heat load that
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is convective. The radiative portion of the cooling load can be calculated using a variety of

techniques, however for the purposes of this dissertation the Radiant Time Series Method

(RTSM) is applied. This method estimates the cooling load due to the radiative portion of

each heat gain by applying a radiant time series, which calculates the cooling load based on

the current and past values of radiative heat gains. The RTSM method is shown in (7.6):

Qr(t) = roq̇
r(t) + r1q̇

r(t− δ) + ...+ r23q̇
r(t− 23δ), (7.6)

where q̇r(t − nδ) is the radiative heat gain n hours ago and rn is the radiant time factor.

The radiant time factors are calculated for a specific zone using a heat balance model as

described in [70]. Using this method it is possible to find the radiative component of the

cooling load due to the production line:

Qr
M(t) = roq̇

r
M(t) + r1q̇

r
M(t− δ) + ...+ r23q̇

r
M(t− 23δ), (7.7)

where q̇rM(t − nδ) is the radiative heat gain due to the production machines n hours ago.

This is calculated in (7.8):

q̇rM(t) = RM q̇M(t). (7.8)

The convective cooling load of an equipment heat load is calculated by taking the percentage

of the heat gain that is convective (C) based on the charts supplied by ASHRAE, where:

Qc
M(t) = CM q̇M(t). (7.9)

Thus, the cooling load due to the production processes is:

QM(t) = Qr
M(t) +Qc

M(t). (7.10)
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7.1.1 Case Study: Cooling Load

A portion of a real automotive assembly line is simulated to validate the methodology pre-

sented in this research. The simulation model is a 15 machine and 14 buffer serial line. The

production characteristics are taken from the real assembly line and mocked up for confi-

dential reasons. The mocked production parameters can be seen in Table 7.1. The Mean

Time to Repair (MTTR), Mean Cycle Between Failure (MCBF), and mean time to warmup

(ωj) are assumed to follow an exponential distribution based on the real data. The radiative

Table 7.1: Production Line Parameters: Cooling Load Case Study

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 2.5 2 3 2.5 2 2.5 1.5 2.5 1 3 2.5 2 2.5 3 2
MTTR 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7
MCBF 450 227 340 200 3960 950 120 4950 1980 540 950 227 450 5940 227
ω 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ej 96 94 94 92 99 98 92 99 99 96 98 94 96 99 94
Ppp 80 100 100 120 80 120 100 120 80 120 100 80 100 100 120
Pid 64 80 80 96 64 96 80 96 64 96 80 64 80 80 96
Pw 96 120 120 144 96 144 120 144 96 144 120 96 120 120 144

- - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 55 35 35 45 40 50 40 50 40 45 55 30 35 30

portion of the machine heat load is assumed to be RM = 0.5 and the convective portion is

CM = 0.5 based on the procedure outlined in [70]. The radiant time factors are based on a

heavy weight construction building as described in [70] and they can be seen in Fig. 7.1. To

reduce the overall cooling load caused by the production system we employ an opportunity

window control scheme that reduces overall energy consumption and cooling load without

impacting production. This control methodology is used at each machine j where we allow

the buffers between machine j and the slowest machine to reach a certain threshold and then

turn off machine j for a set period of time. The buffer level threshold and the amount of

time each machine is turned off are found using a greedy search algorithm. The production

facility runs two eight hour shifts from 06:00 - 22:00 where the production line either runs

with no control methodology, which is our baseline, or with the opportunity window control
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Figure 7.1: Radiant Time Factors

scheme. We compare the two methods to illustrate the energy savings and the cooling load

reduction. Since we are only concerned with the impact of production on the cooling load,

we will assume all other heat sources will remain unchanged between the control and baseline

scenario. The cooling load due to the production system for the baseline and the OW control

cases can be seen in Fig. 7.2, while the cooling load savings is displayed in Fig. 7.3 by taking

the difference between the baseline and control cases. These figures illustrate the reduction

in the cooling load by utilizing a control methodology to reduce the impact of production

on the HVAC system. The OW control scenario leads to a maximum of 500 kW cooling

load savings, which can reduce overall energy impact of the HVAC system. By using this

control methodology, the overall energy consumption of the production system is reduced

without any impact on production. This is illustrated in Fig. 7.4. The baseline scenario

consumes over 400 kWh more daily than in the OW control scenario, without any difference

in production. This shows how the OW control scheme can reduce both the cooling load
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Figure 7.2: Cooling Load: OW Control vs. Baseline

and energy consumption in the manufacturing facility without any impact to production.

7.2 Integrated HVAC and Production Modeling

7.2.1 Initial EnergyPlus Model

The thermal model for this project was built using EnergyPlus, a software developed by the

Department of Energy. EnergyPlus evolved from previous DOE programs Building Loads

Analysis and System Thermodynamics (BLAST) and DOE-2 as an energy analysis thermal

load simulation software [71]. This software utilizes Conduction Transfer Functions (CTF)

for the Heat Balance Algorithm for the building. The hot water for the building is supplied

through a natural gas boiler. There is a chilled water system, supplied by a chiller connected

to a cooling tower on the roof. All heating and cooling is done utilizing an air handler unit

with variable air volume boxes with reheat and cooling coils. The system is sized utilizing the
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Figure 7.3: Cooling Load Reduction

EnergyPlus design day sizing feature. This feature allows the user to plug in extreme weather

conditions in the winter or the summer and the program will auto-calculate the heating and

cooling loads necessary for the building. For this research the summer design day is utilized

to properly size the HVAC equipment to properly meet the cooling load requirements. Once

the equipment is sized, EnergyPlus is capable of responding to any changes in the environ-

ment including changes in outside air temperature, internal heat loads, and solar radiation.

The program turns on the necessary HVAC equipment to meet the thermostat set points in

the facility. The building model that is utilized can be seen in Fig. 7.5.

The production line is modeled as a continuous flow model utilizing Simulink/MATLAB.

A serial production line with six machines and five buffers is tested, while taking the oppor-

tunity window at various times for different machines. The service time of each machine is

modeled using its natural processing time. However, each machine has random downtime
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Figure 7.4: Daily Production Line Energy Usage

and uptime leading to a random effective processing time. For a multi-stage production sys-

tem, a random downtime impact at one stage will propagate to upstream and downstream

machines, based on where the event occurs.

The machine up/down times are saved and outputted to EnergyPlus. Within Energy-

Plus the production line is simulated as a thermal heat load inside of the building based on

the production schedule. The machines are considered to be completely off with no power

consumption if the up/downtime status is equal to 0. If the machine status is equal to 1

then the machine will run at its full power consumption, Ppp.

The cost due to the power consumption of the integrated facility is calculated based on

a time of use basis. This charge is dictated by the energy demand of the grid at the current

time. The monetary savings are realized by taking the cost without the inserted opportunity

window, and calculating the difference when the energy savings opportunities are realized.

The design day for this project was a summer design day in Chicago. This day was uti-
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Figure 7.5: Building Model Used For Simulation

lized to size the HVAC equipment to properly deal with ambient temperature as well as the

heat load due to the internal equipment and people. The design day outside air temperatures

are graphed below in Fig. 7.6.

7.2.2 Case Study: One Opportunity Window

The following is an example of a serial production line with six machines and five 100-capacity

buffers with the parameters shown below in Table 7.2. The simulation has a running time of

24 hours with 8 hours of warmup time for each machine. The one story building that is used

in the simulation has a floor area of 463.6 m2 with 3 m ceilings. It has five different zones,

however only one zone is analyzed. The machine line is placed in the core of the building,

which has a floor area of 184.4 m2 with 2.43 m ceilings. For the purposes of this project, the

other zones are unoccupied and only the core of the building is studied. The internal heat
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Figure 7.6: Outside Air Temperature

Table 7.2: Production Line Parameters: Initial OW & HVAC Control

Parameter m1 m2 m3 m4 m5 m6

PR (parts/min) 5 5 5 3 5 5
MTTR (mins) 17.65 17.65 17.65 17.65 17.65 17.65
MCBF (cycles) 500 500 500 300 500 500
Efficiency (%) 85% 85% 85% 85% 85% 85%

loads are in Table 7.3:

The schedules for the people and the lighting are constantly on to simulate having multiple

shifts throughout the day assuming that this will be a 24 hr shift. The schedule for the

machines is dependent on when the opportunity window is taken. The different opportunity

windows for each machine are calculated and run at the odd hours of the day from 01:00 to

15:00.

The first study utilizes only one inserted opportunity window, which is taken based on

the above schedule. There was less than a five percent production count loss in each case.

The algorithm calculates the optimal time to take the opportunity window for the production
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Table 7.3: Internal Heat Loads

Heat Source Amount Power Consumption (W ) % Radiant
People 10 20 30%

Lighting 1 2,964 59%
Machines 6 150,000 30%

line based on the time of use charge. The energy saving opportunities are calculated utilizing

the various production data and taken during times of high energy demand. The HVAC set

points are changed with each scenario to allow for further energy savings.

The energy cost for the factory is calculated using a time of use charge where the energy

usage is priced differently depending on the time of day. The energy cost per kilowatt-hour

is displayed in Fig. 7.7.

Figure 7.7: Time of Use Charge

The time of use charge is highest during the hottest points during the day, which cor-

responds to the most energy usage on the grid. While the algorithm does not explicitly

consider the environment, it does take it into account through this charge. The opportunity

window will be taken when the time of use charge is highest (i.e. when the temperature is
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hottest during the day). Obviously, this is not always as the case since the environment is

random by nature and the hottest temperature might not correspond to the largest time of

use charge. However, probabilities suggest that this is normally the situation. Also, changes

to the environment take place over a much longer period of time compared to the randomness

of the production line, which allows for the ability to plan in the short term around predicted

weather patterns, such as the outside air temperature for the day. This suggests that set

points and opportunity windows can be adjusted based on the predicted temperatures for

the day, while still taking into account the time of use charge.

Utilizing the differential pricing the set points for the HVAC system can be changed to

allow for the maximum energy cost savings for the system. These different scenarios are seen

in Table 7.4.

Table 7.4: HVAC Schedule

Scenario Time Set Point (◦C)
Until 06:00 25.5
Until 11:00 24.4

1 Until 18:00 23.3
Until 22:00 24.4
Until 24:00 25.5

2 Non OW Periods 24.4
OW Periods 23.3

3 Non OW Periods 23.3
OW Periods 24.4

4 All Times 24.4
5 All Times 23.3

These scenarios are run through EnergyPlus and MATLAB utilizing the different oppor-

tunity windows for each machine. The energy cost savings is then calculated by comparing

each scenario with various energy opportunity windows to the scenarios with no opportunity

window and the results are then plotted in Fig. 7.8.

It is evident that scenario 3 at the 15th hour is the largest cost savings, which corresponds

to the highest time of use charge as seen in Fig. 7.7.
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Figure 7.8: Daily Savings: One OW ($)

7.2.3 Case Study: Two Opportunity Windows

The second simulation study utilizes the same parameters as above, except it utilizes multiple

inserted opportunity windows. As in the case with one opportunity window, the production

count loss was less than five percent for each simulation. Two opportunity windows are

taken for each machine: one at the 15th hour since this was the optimal time from the first

simulation study and the second is paired at the other odd hours of the day. They are

taken after the minimum recovery time for the maximum cost savings. The various energy

saving opportunities can be seen with the average savings from each opportunity window

combination in Table 7.5. There is no simulation with the opportunity window at the 13th

98



hour since there is not enough recovery time to allow for no production loss. It is evident

that taking the opportunity windows in the middle of the day leads to the most cost savings

as seen by the 11th and 15th hours in Table 7.5.

Table 7.5: Average Energy Cost Daily Savings

Opportunity Window Average Savings ($)
1 & 15 $337.95
3 & 15 $331.20
5 & 15 $362.85
7 & 15 $422.55
9 & 15 $439.65
11 & 15 $513.15

The different scenarios in Table 7.4 are simulated and plotted in Fig. 7.9. The OW hours

are all taken with the 15th hour as indicated above.

The best option is scenario 3 with opportunity windows taken at the 11th and the 15th

hours, which shows a strong correlation between changing set points with the various oppor-

tunity windows for maximum cost savings. The average daily savings per HVAC scenario

can be seen in Table 7.6 below.

Table 7.6: Average Daily Savings per HVAC Scenario

Scenario Savings: One OW ($) Savings: Two OWs ($)
1 $172.97 $396.56
2 $157.14 $362.33
3 $163.05 $408.35
4 $162.91 $391.86
5 $161.81 $388.69

This illustrates that for multiple opportunity windows, scenario 3 is the optimal strategy,

while with one opportunity window, scenario 1 resulted in the highest cost savings. However,

when there is only one opportunity window there is only an insignificant difference between

scenario 1 and scenario 3. This suggests that as there are more opportunity windows the
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Figure 7.9: Daily Savings: Two OWs ($)

most cost savings will be realized when the HVAC set points are coupled with the production

system. The highest cost savings for the multiple opportunity window simulation is the

15th hour paired with the 11th hr during the 3rd scenario. This demonstrates that proper

coordination through taking the opportunity window and changing the set points based on

the maximum time of use charge, which is in the middle of the afternoon, leads to the optimal

cost saving strategy.

7.2.4 Expanded HVAC and Production Model

This section builds upon the work in Section 7.2.1 by expanding the HVAC and production

model in EnergyPlus. The building used for this integrated thermal and production model

is shown in Fig. 7.10. The building has a total floor area of 24,695 square feet, with
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Figure 7.10: Building Model Used For Expanded HVAC Model

dimensions of 178 ft x 139 ft x 20 ft. The outer walls are concrete block wall consisting

of 8 in concrete masonry units, wall insulation and 0.5 in gypsum board. The roof is a

built up roof consisting of a roof membrane, roof insulation, and metal decking. There are

five thermal zones for HVAC purposes, which are shown in Fig. 7.11. Cooling within the

Back_Space 

Manufacturing Floor 

Front_Entry 
Offices Offices 

Figure 7.11: Building Zones

building is provided by a packaged air conditioning unit that is sized based on the EnergyPlus

autosizing feature. Heating in the space is provided by a gas furnace inside the packaged air

conditioning unit. The air distribution is constant air volume with one roof top unit per zone,

with the exception of the front entry. The lighting in each zone has a 70% radiant portion

and 20% visible light. The back space has 7.56 W/m2 of lighting, the front offices each have
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15.5 W/m2 of lighting, the front entry has 9.69 W/m2 of lighting and the manufacturing

floor has 17.11 W/m2 of lighting. The manufacturing production line is located in the zone

“Manufacturing Floor,” while all other zones have no manufacturing equipment within them.

The manufacturing equipment will follow a set production schedule. In the previous section,

we set the machines to either “On” or “Off” depending on the average up time during a

one minute period. In this expanded model, the average machine energy consumption over

each one minute period is calculated and set as the heat load for the machine during that

period. The front offices have miscellaneous equipment (such as computers) that consume

487 W and 3,245 W of electricity respectively. The manufacturing floor has miscellaneous

equipment, which excludes the manufacturing line, that consumes 5,169 W of electricity.

This miscellaneous equipment is on throughout the production shifts and off when there

is no production. Each piece of miscellaneous equipment and each machine has a radiant

fraction of 0.5. For each hour there is approximately 400 people within the facility, with

each person having a radiant fraction of 0.3.

7.2.5 Case Study: Control Methodology

In this section, we provide a control methodology that merges opportunity window control,

the EP-BN mitigation, and ROI analysis. The control methodology that is utilized is mod-

ified from Chapter 5 to include thermal comfort (TC) since we are evaluating the merged

production and HVAC system.

max
tOW
ηOW

Profit, s.t. PC ≥ PC0 & − 1.0 < TC < 1.0 (7.11)

To check overall profit, the profit equation is expanded to include the HVAC energy con-

sumption. We are interested in looking at the tradeoff of production throughput versus the

energy consumption of the production and HVAC systems. The thermal comfort is measured

using the Fanger Comfort Analysis [72], where thermal comfort is measured on a scale from
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-3.0 to 3.0. This is measured based on outdoor temperature, indoor temperature, relative

humidity, etc. and then equated by Predicted Mean Vote (PMV) to the proper scale. The

meaning of PMV is shown in Fig. 7.12. The control methodology ensures that the people

Figure 7.12: Predicted Mean Vote

within the facility only feel slightly warm or slightly cool. Figure 7.13 illustrates how PMV

relates to the number of people that are dissatisfied with their current thermal comfort level

through the Predicted Percentage Dissatisfied (PPD). By controlling the thermal comfort

level between -1.0 and 1.0, we ensure that approximately only 20% of people are dissatisfied

with their current thermal comfort state. To achieve this goal, we will study seven different

scenarios for the production line as well as five different set point schedules for the HVAC

system. The seven options for the production line are: 1) no control methodology (baseline

scenario), 2) an opportunity window control scheme, 3) EP-BN mitigation, 4) Replacing a
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Figure 7.13: Predicted Percentage Dissatisfied

part/machine based on ROI analysis, 5) Combination of OW control and EP-BN mitigation,

6) Combination of OW control and ROI replacement, and 7) Combination of OW control,

EP-BN mitigation, and ROI replacement. The opportunity window control methodology for

the production line is presented as follows from the return on investment case study:

1. Begin shift

2. Collect pertinent data from buffer levels and machine states

3. If bj = B0,j, ∀j < M∗ turn off machine j − 1 for tOW,j−1.

(a) After tOW,j−1 turn on machine j − 1

4. If bj 6= B0,j, ∀j < M∗, go to step 5
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5. If bj = B0,j, ∀j > M∗ turn off machine j for tOW,j.

(a) After tOW,j turn on machine j

6. If bj 6= B0,j, ∀j > M∗ return to step 2.

The EP-BN is selected based on the methodology presented in Chapter 5 by reducing the

MTTR of the EP-BN machine by 10%. The ROI machine is selected based on the analysis

from Chapter 5. For this case study we utilize a real automotive production line. The

production line parameters are taken from real data and mocked up for confidential reasons

in Table 7.7. The profit of each part, is assumed to be cp is $100 per part based on the real

Table 7.7: Production Line Parameters: HVAC Expanded Model Case Study

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 2.5 1.3 1.7 1.2 1.8 1.5 2.1 0.9 0.5 1.2 2.3 1.6 1.9 2.4 1.7
MTTR 13 11 13 14 18 11 13 11 12 12 18 11 13 11 13
MCBF 250 270 300 350 325 205 245 250 200 265 350 200 280 275 400
ωj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ej 89 95 93 95 91 93 90 96 97 95 89 92 92 91 95
Ppp 80 100 100 120 80 120 100 120 80 120 100 80 100 100 120
Pid 64 80 80 96 64 96 80 96 64 96 80 64 80 80 96
Pw 72 90 90 108 72 108 90 108 72 108 90 72 90 90 108

- - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 40 60 30 40 50 40 50 35 30 25 60 50 40 30

value after it is mocked up for confidential reasons and the cost of energy, cle is assumed to

be [67]:

cle(t) =



$0.08, 00 : 00 ≤ t < 06 : 00,

$0.14, 06 : 00 ≤ t < 11 : 00,

$0.24, 11 : 00 ≤ t < 19 : 00,

$0.14, 19 : 00 ≤ t ≤ 23 : 59.

The return on investment analysis for the production line is shown in Table 7.8, where:

option 1 involves replacing a part of the machine during a regular shift, option 2 is replacing

that part during an overtime period, and option 3 is replacing the entire machine. The CTR
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Table 7.8: Economic Analysis
Option 1 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

∆Ppp (kW) 5 2 3 4 5 4 2 3 3 4 5 6 4 5 5
CTR ($) 5.2k 4.2k 3.1k 4.4k 5.1k 3.2k 4.1k 3.1k 8.6k 4.4k 5.1k 3.2k 3.2k 4.2k 5.3k

Option 2 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

∆Ppp (kW) 5 2 3 4 5 4 2 3 3 4 5 6 4 5 5
CTR ($) 5.5k 4.5k 3.3k 4.7k 5.2k 3.4k 4.2k 3.2k 6.2k 4.3k 5.3k 3.3k 3.2k 4.5k 5.6k

Option 3 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

∆Ppp (kW) 20 15 10 9 10 17 20 15 17 16 15 21 20 15 17
CTR ($) 23k 35k 21k 37k 23k 37k 49k 34k 20k 60k 23k 36k 25k 28k 35k

is in thousands of dollar, i.e. 5k = $5,000. We assume that CReg,j is $70 per hour and COT,j

is $140 per hour for each machine. We also manage the replacement of the part during

a regular shift when the machine has its maximum opportunity window therefore limiting

production loss. The ROI analysis illustrates that machine 12 should be replaced during a

regular shift, which leads to a break even point of 583 days.

The HVAC schedule for the Manufacturing Floor consists of five different schedules: 1) set

schedule (not based on production energy consumption or time of day), 2) lower production

energy consumption = lower set point, 3) lower production energy consumption = higher

set point, 4) higher time of use cost = lower set point, 5) higher time of use cost = higher

set point. The second and third schedule are based on the maximum energy consumption of

the line, which is the scenario when each machine is producing parts:

Emax
pr (t) =

M∑
j=1

Ppp,j × t

The HVAC schedules are shown below:
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Schedule 1:

Set Point(t) =



29.44◦C, 00 : 00 ≤ t < 05 : 00,

27.80◦C, 05 : 00 ≤ t < 06 : 00,

25.60◦C, 06 : 00 ≤ t < 07 : 00,

23.89◦C, 07 : 00 ≤ t < 21 : 00,

29.44◦C, 21 : 00 ≤ t ≤ 23 : 59.

Schedule 2:

Set Point(Epr, t) =



24.44◦C, Epr(t) = Emax
pr ,

23.89◦C, 0.9Emax
pr ≤ Epr(t) < Emax

pr ,

23.33◦C, 0.8Emax
pr ≤ Epr(t) < 0.9Emax

pr ,

22.77◦C, 0.7Emax
pr ≤ Epr(t) < 0.8Emax

pr ,

22.22◦C, 0.6Emax
pr ≤ Epr(t) < 0.7Emax

pr ,

21.67◦C, 0.5Emax
pr ≤ Epr(t) < 0.6Emax

pr ,

21.22◦C, Epr(t) < 0.5Emax
pr .

Schedule 3:

Set Point(Epr, t) =



21.22◦C, Epr(t) = Emax
pr ,

21.67◦C, 0.9Emax
pr ≤ Epr(t) < Emax

pr ,

22.22◦C, 0.8Emax
pr ≤ Epr(t) < 0.9Emax

pr ,

22.77◦C, 0.7Emax
pr ≤ Epr(t) < 0.8Emax

pr ,

23.33◦C, 0.6Emax
pr ≤ Epr(t) < 0.7Emax

pr ,

23.89◦C, 0.5Emax
pr ≤ Epr(t) < 0.6Emax

pr ,

24.44◦C, Epr(t) < 0.5Emax
pr .
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Schedule 4:

Set Point(t) =



24.44◦C, 00 : 00 ≤ t < 06 : 00,

23.33◦C, 06 : 00 ≤ t < 11 : 00,

22.22◦C, 11 : 00 ≤ t < 18 : 00,

21.12◦C, 18 : 00 ≤ t ≤ 23 : 59.

Schedule 5:

Set Point(t) =



21.12◦C, 00 : 00 ≤ t < 06 : 00,

22.22◦C, 06 : 00 ≤ t < 11 : 00,

23.33◦C, 11 : 00 ≤ t < 18 : 00,

24.44◦C, 18 : 00 ≤ t ≤ 23 : 59.

The production line runs from 06:00-22:00 (two 8 hour shifts) each week day for a five year

period, while the HVAC system follows Schedules 1-5. Since the production system does

not depend on the HVAC schedule, we present one set of data that is utilized for each

schedule. The average daily parameters are shown in Table 7.9. The results show that the

Table 7.9: Average Daily Production Line Results

- No OW OW EPBN ROI OW + EPBN OW + ROI OW + EPBN + ROI
TH 463 452 470 463 465 459 465

E (kWh) 19,660 13,108 19,698 19,584 13,352 13,192 13,315
EPP 42.4 29.0 41.9 42.2 28.7 28.8 28.6

SMPISA 0.429 0.627 0.434 0.431 0.633 0.632 0.634
SMPIDT 1.19 1.75 1.21 1.20 1.76 1.76 1.78

EP-BN scenario leads to the largest throughput and energy consumption per day. However,

this is not necessarily the optimal case since the scenario with the combined OW control

methodology, the EP-BN mitigation, and the ROI improvement leads to the least amount

of waste as shown with the SMPIDT and SMPISA. To study the profit, we need to show

the overall energy cost for each schedule as presented above. The average daily HVAC cost

is shown in Fig. 7.14, the monthly HVAC cost is shown in Fig. 7.15, the yearly HVAC cost
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is shown in 7.16, and lastly, the five year HVAC cost is shown in Fig. 7.17. We select these

time horizons to show the difference in the short term versus the long term for each case.

The results show that the largest cost for the HVAC is Schedule 3 with the EP-BN
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Figure 7.14: Average Daily HVAC Cost ($)
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Figure 7.15: Monthly HVAC Cost ($)

mitigation. This leads to a daily HVAC energy cost of $1,573.01. The EP-BN mitigation
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leads to more energy consumption because of the reduced MTTR, meaning that the EP-

BN machine will be down less often. However, this leads to an increased throughput as

seen in Table 7.9. Schedule 3 is the scenario when the HVAC set point is turned to a

lower temperature during periods of higher production energy consumption, which means

an increased HVAC energy consumption during these time periods. The smallest HVAC cost
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is during Schedule 1 with the OW control, EP-BN mitigation, and ROI improvement, which

has a cost of $750.58 per day. Using the HVAC energy cost, the production energy cost, and

the production throughput leads to the overall profit as shown in Fig. 7.18 for the average

daily profit, Fig. 7.19 for the monthly profit, Fig. 7.20 for the yearly profit, Fig. 7.21 for

the five year profit, and Fig. 7.22 for the 5 year profit difference between each scenario and

the baseline production case.

The profit results illustrate that the best daily scenario is the OW control and EP-BN
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mitigation with Schedule 1: a profit of $43,705.99 per day. However, this is a larger profit

than the OW control, EP-BN mitigation, and ROI strategy because of the initial cost of the

return on investment improvement at machine 12. At the five year mark for Schedule 1, the

OW control, EP-BN mitigation, and ROI improvement leads to a profit of $27,102,647.71

versus $26,841,925.77 for the OW control and EP-BN mitigation. Next, we check each

schedule for the occupant comfort level using the PMV model in Fig. 7.23. If the PMV

is greater than 1.0 or less than -1.0 then the HVAC schedule cannot be utilized. Figure

7.23 illustrates that Schedule 1 and Schedule 5 cannot be utilized since the average comfort

level is well above 1.0 for each production scenario. While Schedule 1 leads to the highest
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profit, this HVAC schedule will lead to over 50% of people in the facility feeling discomfort

with the overall thermal comfort level. This leaves Schedule 2, Schedule 3, or Schedule 4

as the best scenario for thermal comfort. By studying the five year profits, Schedule 2 with

the OW control, EP-BN mitigation and the ROI improvement is the best case for the long

term: leading to a profit of $26,747,346.12 over the five year period. The average comfort

level with this scenario is 0.831, which is below the 1.0 threshold. For the short term time
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horizon, the OW control and EP-BN mitigation with Schedule 2 is the best solution. The

average daily profit is $43,449.05 with an average comfort level of 0.835. These results show

that by scheduling the HVAC set points with overall production energy consumption leads to

the optimal thermal comfort according to the PMV scale. By merging the production with

the HVAC, it is possible to minimize overall energy consumption of both systems without

113



-‐3	   -‐2	   -‐1	   0	   1	   2	   3	  

No	  OW	  

OW	  	  

EPBN	  

ROI	  

OW	  +	  EPBN	  

OW	  +	  ROI	  

OW	  +	  EPBN	  +	  ROI	  

Fanger	  PMV	  Thermal	  Comfort	  

Schedule	  5	  

Schedule	  4	  

Schedule	  3	  

Schedule	  2	  

Schedule	  1	  

Figure 7.23: Average Comfort Level

any throughput loss through a combination of an opportunity window control methodology,

energy profit bottleneck mitigation, and return on investment improvement strategies.

7.3 Conclusions

This chapter investigates the effect of the energy consumption of the production line on the

facility HVAC system. The HVAC cooling load impact due the production line is analyzed

using a Radiant Time Series Method and reduced using an opportunity window control

methodology. A simple integrated thermal model that merges the production and HVAC

systems is built using EnergyPlus to study the effect of changing set points with multiple

opportunity windows. This model is expanded to include a larger production and HVAC

system to test the effects of an opportunity window control scheme, EP-BN mitigation,

and ROI improvement strategies on the overall profit and the thermal comfort of occupants

within the building. The results indicate that changing the set points of the HVAC system

in conjunction with an opportunity window control scheme, EP-BN mitigation, and ROI
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improvement lead to an increase in profit without sacrificing throughput or the thermal

comfort of the building occupants.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation focuses on energy analytics with the intent of increasing profits by de-

creasing energy waste within the manufacturing industry. The major contributions of this

dissertation can be summarized as follows:

1. The impact of disruption events on system productivity is addressed to provide a

quantifiable method to measure energy waste. It is discovered that not every disruption

event leads to permanent production loss. If a disruption event causes the slowest

machine on the line to become blocked, starved, or broken down this will lead to

permanent production loss, which is considered an effective downtime event. This

directly leads to the concept of the opportunity window, which is the longest amount

of time a machine can be down without leading to permanent production loss. If a

disruption event is less than the opportunity window than this is referred to as a non-

effective downtime event. The opportunity window is proven to be constant if there are

no random downtime events on the production line. The recovery time is introduced,

which is the amount of time it takes the buffers to recover back to their original state

after a downtime event. These concepts are then used in the control methodology

to increase profits by inserting non-effective downtime events into the system, which

lowers overall energy consumption with minimal loss in productivity.

2. Building on the study of disruption events leads to the analysis of the dynamic energy

structure of the production line. The energy consumption is categorized into two

portions: the static component, which is the energy utilized in the production of parts
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and the dynamic component, which is the energy wasted due to disruption events on

the line. The static component is further analyzed to diagnose energy inefficiencies

due to the unsynchronous nature of the production line. This leads to the optimal

minimum energy consumption per part that can be achieved if each machine were to

run standalone. The dynamic energy structure is used to create accurate sustainable

manufacturing performance indicators that properly identify system performance for

the production line. Two bottlenecks are created to further diagnose inefficiencies at

the machine level. The downtime energy bottleneck allows the production manager to

allocate maintenance workers to the machine which will lead to the largest decrease in

energy waste. The rated power bottleneck provides the machine, which when replaced,

leads to the biggest decrease in energy waste.

3. Energy economic analytics are developed to improve profits for the manufacturing

line. The energy profit bottleneck is created using readily available sensor information

to provide the plant manager with a method to identify the machine, which when

prioritized for reactive maintenance, provides the largest increase in profit. A return

on investment analysis is introduced that allows the plant manager to replace a machine

with a more energy efficient version leading to the largest return on investment. This

strategy is combined with an opportunity window control methodology to improve the

overall profit of the production facility.

4. A control methodology is developed to combine opportunity window control with EP-

BN bottleneck mitigation. This leads to increased profits for the production line by

reducing energy consumption with minimal throughput impact. A numerical study

is performed to find a general rule for selecting the length and frequency of inserted

opportunity windows as well as for determining the correct amount of recovery time

to reduce production loss.
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5. An integrated production and facility model is developed using EnergyPlus and MAT-

LAB/Simulink. This model merges the production dynamics with the HVAC energy

dynamics to reduce the overall energy consumption of the facility, while maintaining

production throughput. An analytical method is developed to measure the production

impact on the HVAC cooling load. An energy opportunity window control method-

ology is created to reduce the energy consumption of the production line and the

HVAC system. This control methodology is used in conjunction with the EP-BN and

the return on investment strategy to increase the overall profits of the facility while

maintaining the thermal comfort of the building occupants.

8.2 Future Work

8.2.1 Optimal Control Algorithm

An optimal control algorithm will be developed that will further improve upon the control

methodologies presented in this dissertation. Using the combined HVAC and production sys-

tem a Markov Decision Process (MDP) control methodology will be developed. This control

scheme will maximize profits without sacrificing production targets and while maintaining

a desired comfort level on the manufacturing floor. The HVAC and production system will

be integrated to reduce loads during peak hours of demand. By utilizing the opportunity

window control methodology the controlled shut downs of certain machines will not impact

overall production. This will further reduce the overall heat load, which will in turn reduce

the amount of power consumed by the HVAC system and increases profits for the overall

manufacturing facility by reducing energy costs.

8.2.2 Data Uncertainty

The issue of data uncertainty from sensors within the facility will be addressed in future

work. Both operational data from the facilities and sophisticated mathematical algorithms
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will be utilized to estimate parameters in the integrated models. For example, the prediction

error method or the Viterbi algorithm and Baum-Welch approach can be applied to find an

optimal parameter based on measurements taken from the facility during normal operation.

The Extended Kalman Filter will be investigated for performing real-time estimation of

unmeasured variables and energy performance metrics in the manufacturing processes and

HVAC systems.
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Appendix A

DE-BN and RP-BN Industry Scenarios

To further show the effectiveness of the DE-BN and RP-BN versus other common industry

standards, we randomly pull out the results for 10 combinations. These combinations are

seen in Tables A.1 - A.10. Each line combination has an αj = 0.8, which means that the idle

power is 80% of the power for producing parts. The mean time to warm up, ωj is assumed to

be 1 min and βj is assumed to be 0.9. The MTTR for each machine is 10 minutes. The rated

speed, 1 / τ , is in parts/min, the MCBF is in minutes. These line combinations represent

line configurations commonly found in industry [73].

Line 1 represents a scenario when the efficiency and the buffer capacities are the same.

Line 2 is the scenario where the efficiency increases down the line. Lines 3 and 4 are where

the efficiency is allocated based on a bowl and inverted bowl pattern respectively. Line 5 is

the case where the efficiency decreases across the line. Lines 6 and 7 represents the cases

where the buffer capacities are arranged in a bowl and inverted bowl pattern respectively.

Lines 8 and 9 are the cases where the buffer capacities are arranged in an increasing and

decreasing pattern respectively. Line 10 represents a random case where the machine effi-

ciencies and buffer capacities are arranged randomly. To compare these scenarios, we look at

the decrease in SMPIDT for each common industry indicator as compared with the baseline

case. This represents the percent decrease in energy waste on the production line. These

results are seen in Table A.11 for the DE-BN and Table A.12 for the RP-BN.

The results show that in all scenarios the DE-BN and RP-BN always provide the best

results. The other indicators may result in similar performance as with the DE-BN and
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RP-BN, but only in certain conditions and they never provide better results. As for these

10 lines shown, only line 3 and line 6 result in a close energy waste reduction percentage

as the DE-BN with “Min ej” and “Max ECj”. However, they still result in less reduction

of energy waste. For the RP-BN, line 1 results in a close energy waste reduction with the

“Max ECj”, however it does not result in more energy waste reduction. The RP-BN leads

to the most energy waste reduction for all 1000 scenarios.

Table A.1: Line 1: Same Efficiency & Buffer Parameters

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
MCBF 120 120 120 120 120 120 120 120 80 120 120 120 120 120 120
ej 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
Ppp 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 30 30 30 30 30 30 30 30 30 30 30 30 30 30

Table A.2: Line 2: Increasing Efficiency

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 3 3 2 2.5 2.5 3 2.5 2 1.5 2 3 2.5 3 2.5 3
MCBF 120 120 80 142 142 170 225 180 135 380 570 475 2970 2475 2970
ej 80 80 80 85 85 85 90 90 90 95 95 95 99 99 99
Ppp 100 120 80 80 100 120 100 80 80 100 120 80 100 80 100

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 30 30 30 30 30 30 30 30 30 30 30 30 30 30
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Table A.3: Line 3: Efficiency Inverted Bowl

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 2.5 2 2.5 2 3 3 2.5 3 1.5 3 2.5 2 2.5 3 2
MCBF 2475 1980 475 380 270 270 142 170 60 170 142 180 475 570 1980
ej 99 99 95 95 90 90 85 85 80 85 85 90 95 95 99
Ppp 80 100 80 120 80 120 100 120 80 120 100 120 100 120 80

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 10 30 50 50 10 30 50 10 10 30 50 30 10 50

Table A.4: Line 4: Efficiency Bowl

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 2.5 2 2.5 2 3 3 2.5 3 1.5 3 2.5 2 2.5 3 2
MCBF 2475 1980 475 380 270 270 142 170 60 170 142 180 475 570 1980
ej 80 80 85 85 90 90 95 95 90 90 85 85 80 80 80
Ppp 80 100 80 120 80 120 100 120 80 120 100 120 100 120 80

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 10 30 50 50 10 30 50 10 10 30 50 30 10 50

Table A.5: Line 5: Efficiency Decreasing

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 3 2 3 2 2 2.5 3 2.5 1.5 2 2.5 3 2 3 2.5
MCBF 2970 1980 2970 380 380 475 270 225 135 113 142 170 80 120 100
ej 99 99 99 95 95 95 90 90 90 85 85 85 80 80 80
Ppp 80 100 120 100 120 120 100 100 80 100 80 80 120 80 100

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 30 50 10 10 50 30 10 50 30 10 50 30 50 10
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Table A.6: Line 6: Buffer Bowl

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 3 3 2 2.5 2.5 3 2.5 3 1.5 3 3 2.5 3 2.5 3
MCBF 2970 120 80 142 225 170 100 120 1485 120 570 100 2970 2475 2970
ej 99 80 80 85 90 85 80 80 99 80 95 80 99 99 99
Ppp 100 120 80 80 100 120 100 120 80 120 100 80 100 80 100

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 10 10 10 30 30 30 50 50 50 30 30 10 10 10

Table A.7: Line 7: Buffer Inverted Bowl

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 3 3 2 2.5 2.5 3 2.5 3 1.5 3 3 2.5 3 2.5 3
MCBF 2970 120 80 142 225 170 100 120 1485 120 570 100 2970 2475 2970
ej 99 80 80 85 90 85 80 80 99 80 95 80 99 99 99
Ppp 100 120 80 80 100 120 100 120 80 120 100 80 100 80 100

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 50 50 50 30 30 30 10 10 10 30 30 50 50 50

Table A.8: Line 8: Buffer Increasing

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 3 2 2.5 2.5 3 2.5 3 3 1 1.5 3 1.5 2.5 3 2.5
MCBF 5940 760 4950 950 540 200 340 5940 180 170 240 2970 950 5940 200
ej 99 95 99 95 90 80 85 99 90 85 80 99 95 99 80
Ppp 120 80 100 100 120 80 80 120 80 120 80 100 80 100 80

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 10 10 10 10 30 30 30 30 30 30 50 50 50 50
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Table A.9: Line 9: Buffer Decreasing

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 3 2 3 2.5 2.5 2 2 2.5 1.5 3 2.5 2 3 2.5 3
MCBF 2970 80 120 142 225 113 80 100 1485 120 475 80 2970 2475 2970
ej 99 80 80 85 90 85 80 80 99 80 95 80 99 99 99
Ppp 120 80 100 100 120 80 80 120 80 120 80 100 80 100 80

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 50 50 50 50 30 30 30 30 10 10 10 10 10 10

Table A.10: Line 10: Random Parameters

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15

1/τ 2 3 2 3 2.5 2 2 2.5 1 2.5 1.5 2 3 2 2.5
MCBF 113 120 180 2970 100 113 80 2475 90 475 85 180 2970 113 100
ej 85 80 90 99 80 85 80 99 90 95 85 90 99 85 80
Ppp 100 120 120 80 100 80 80 120 100 120 100 100 120 80 80

Buffer - B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Bm - 50 50 50 50 30 30 30 30 10 10 10 10 10 10

Table A.11: Downtime Energy Bottleneck Lines 1-10: Percent Decrease in Energy Waste

Lines 1 2 3 4 5 6 7 8 9 10
DE-BN 7.2 % 3.4 % 5.1 % 3.3 % 4.2 % 4.8 % 4.3 % 4.6 % 5.7 % 5.9 %

Max EPPj 1.3 % -0.1 % 1.9% .03 % -.02 % -.90 % 1.8 % .04% 1.5 % 1.8 %
Min ej .06 % .05 % 5.10% -0.2 % .01 % -.89 % .03 % 3.0 % .02 % .01 %

Max Ppp,j .05 % .08 % -.05% .03 % .03 % -.9 % .04 % 0.0 % 0.0 % .00 %
Max ECj 1.3 % .07 % -.03 .04 % .04 % 4.7 % .03 % .05 % 1.50 % 1.8 %

Table A.12: Rated Power Bottleneck Lines 1-10: Percent Decrease in Energy Waste

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10
RP-BN 2.0 % 2.4 % 1.8 % 2.3 % 2.2 % 2.5 % 1.9 % 2.3 % 2.4 % 2.4 %

Max EPPj 1.9 % 2.3 % 1.6 % 2.2 % 2.0 % 2.2 % 1.8 % 2.2 % 2.2 % 2.1 %
Min ej 1.8 % 2.1 % 1.3 % 1.9 % 1.9 % 1.9 % 1.7 % 1.8 % 2.0 % 2.0 %

Max Ppp,j 1.8 % 2.1 % 1.6 % 2.1 % 1.8 % 1.9 % 1.7 % 1.8 % 2.1 % 2.0 %
Max ECj 1.9 % 2.3 % 1.6 % 2.2 % 2.0 % 2.2 % 1.8 % 2.2 % 2.2 % 2.2 %
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Appendix B

Scenarios for Recovery Time Numerical Studies

The numerical studies are used to provide guidance for the control methodology presented

in Chapter 6. The amount of time each machine is turned off is tOW and the recovery time

is tr. The recovery time simulation results can be seen for Lines 2A-2E in Fig. B.1, Lines

3A-3E in Fig. B.2, Lines 4A-4E in Fig. B.3, and Lines 5A-5E in Fig. B.4.
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Figure B.1: Recovery Time Lines 2A-2E
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Figure B.2: Recovery Time Lines 3A-3E
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Figure B.3: Recovery Time Lines 4A-4E
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Figure B.4: Recovery Time Lines 5A-5E
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