

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

IMPROVED USABILITY FOR A CONTROL SYSTEM USING HUMAN BODY IMAGING AS THE CONTROL

METHOD FOR ARM BASED ROBOTICS IN ASSISTIVE TECHNOLOGIES

A THESIS PRESENTED
by

TAUREAN LINDSAY DYER
to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Mechanical Engineering

Stony Brook University

August 2013

ii

Stony Brook University

The Graduate School

Taurean Lindsay Dyer

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Professor Yu Zhou

Associate Professor in Dept. of Mechanical Engineering

Professor Qing Chang

Associate Professor in Dept. of Mechanical Engineering

Professor Chad Korach

Associate Professor in Dept. of Mechanical Engineering

This thesis is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

iii

ABSTRACT OF THESIS

IMPROVED USABILITY FOR A CONTROL SYSTEM USING HUMAN BODY IMAGING AS THE CONTROL

METHOD FOR ARM BASED ROBOTICS IN ASSISTIVE TECHNOLOGIES MOBILE ROBOTIC ARM
BY

TAUREAN DYER
MASTER OF SCIENCE

IN
MECHANICAL ENGINEERING
STONY BROOK UNIVERSITY

2013

The overall goal of this project is to move the assistive control system and test bed from “proof of

concept” to “functional prototype” based upon the novel approach presented by Dyer, et al for the

Stony Brook 2012 Group 14’s Senior Design, “Human Position Imaging as a Control Method for Robotics

and Assistive Technologies”. The novel approach was a proof of concept that of a cross compiling,

computer assisted method that relied on cheap, off the shelf parts to produce easy, natural , powerful,

yet affordable control over a mobile 5 degree of freedom robotic arm. This project further improves on

that initial proof of concept system and applies focus on address system usability issues. After

parametrically analyzing existing joint tracking input software, it adds a smoother motion profile output,

visual feedback for the operator, and elements were introduced to make operating the control system

easier and more informative. It also finished off areas of implementation not fully fleshed out by the

original proof of concept. The addressed areas of research and design in this research were successful in

improving the overall operator experience of the control system, while holding dear to the intended

design philosophy.

iv

Table of Contents

ABSTRACT OF THESIS ... iii

Table of Figures .. ix

List of Tables ...xiii

Acknowledgements ... xiv

Chapter 1 Introduction and Background .. 1

1.1 Motivation ... 1

1.2 Background on Tele-operated Mobile Robotics ... 2

1.3 Background on Hardware and Software Control Systems for Robotic Arms 2

1.3.1 Hardware ... 2

1.3.2 Software ... 3

1.4 Back ground of Proof of Concept Control System .. 4

1.5 Thesis Structure .. 5

Chapter 2 Proof-of-Concept Control System Design .. 6

2.1 Introduction .. 6

2.2 Control System Design Concept .. 7

2.2.1 Overview .. 7

2.2.2 Communication .. 8

2.2.3 Input ... 10

2.2.4 Processing .. 13

v

2.2.5 Output .. 17

Chapter 3 This Project ... 19

3.1 Introduction .. 19

3.1.1 Overview .. 19

3.1.2 Intended Improvements of the Control System .. 19

3.2 System Specifications .. 20

3.2.1 Hardware Specifications .. 20

3.2.2 Software Specifications .. 20

3.3 Comparing the OpenNI SDK versus the Microsoft’s Official Kinect SDK ... 21

3.3.1 Overview .. 21

3.3.2 Microsoft Kinect SDK .. 23

3.3.3 OpenNI SDK+NiTE 2.2 SDK ... 33

3.3.4 Final choice in SDK ... 41

3.4 Mitigating Servo Jerkiness .. 43

3.4.1 Overview .. 43

3.4.2 Proof of Concept System ... 43

3.4.3 Input- Mitigating Kinect Noise ... 46

3.4.4 Output- Servo Jerkiness and System feedback .. 55

3.5 Visual feedback implementation .. 66

3.5.1 Introduction ... 66

vi

3.5.2 Remote Viewing Implementation .. 67

3.5.3 GUI Implementation .. 69

3.5.4 Kinect View Implementation ... 71

3.5.5 Results .. 71

3.5.6 Discussion ... 72

3.6 Configuration Files .. 73

3.6.1 Overview .. 73

3.6.2 Implementation ... 74

3.6.3 Test 1 .. 79

3.7 Summary of Research and Design Work ... 84

Chapter 4 Progressed System ... 86

4.1 Overview ... 86

4.2 Code .. 87

4.2.1 Python .. 87

4.2.2 Arduino Mega .. 94

4.2.3 Arduino Uno ... 98

4.3 Schematics .. 99

4.3.1 Communication .. 99

Chapter 5 Full System Testing ... 100

5.1 Overview ... 100

vii

5.2 Test 1- Control ... 100

5.2.1 Overview .. 100

5.2.2 Metrics ... 100

5.2.3 Procedure ... 100

5.2.4 Initial Results .. 101

5.2.5 Discussion and Problem Solving... 101

5.2.6 Retest ... 102

5.2.7 Discussion ... 103

5.3 Test 2- Stability and Dexterity ... 104

5.3.1 Overview .. 104

5.3.2 Parameters and Metrics ... 104

5.3.3 Procedure ... 105

5.3.4 Results .. 106

5.3.5 Discussion ... 116

5.4 Test 3- Usability ... 117

5.4.1 Overview .. 117

5.4.2 Procedure ... 117

5.4.3 Results .. 118

5.4.4 Discussion ... 118

5.5 Overall Discussion ... 118

viii

Chapter 6 Further Work .. 120

6.1 Conclusion ... 120

6.2 Known Issues ... 122

6.2.1 Auto-Start Camera ... 122

6.2.2 Compiling OSCeleton ... 122

6.2.3 OpenNI2 ... 122

6.3 Two Arms .. 123

6.4 Different Drive Systems .. 123

6.5 Hand device ... 124

6.6 Other Sensors .. 124

6.6.1 Asus Xtion series .. 124

6.6.2 Kinect 2 .. 124

6.7 Embedded system ... 125

6.8 GUI .. 125

6.9 Recording .. 125

6.10 Computer Vision ... 126

6.11 Better Predictive Algorithms ... 126

Works Cited ... 127

Appendix A- Copyright Permission .. I

ix

Table of Figures

Figure 2-1: Process Flow Diagram for the Assistive Mobile Robot Arm Control System 8

Figure 2-2: Test Platform Communications Schematic ... 9

Figure 2-3 Flowchart of Code for the Wii Nunchuck Interpreter (Arduino Uno) .. 12

Figure 2-4: Flowchart of Control System Program ... 16

Figure 2-5: Flowchart for Arduino Mega Firmware (Robot Output) ... 18

Figure 3-1: Near Mode versus Default Mode ... 24

Figure 3-2: Seated Mode (Good Capture) ... 28

Figure 3-3: Good (Accurate Enough) Capture of Arm ... 30

Figure 3-4: Close but Inaccurate Capture of Arm ... 31

Figure 3-5: Loss of Accurate Capture during Left – Right Test .. 31

Figure 3-6: Completely Erroneous Capture of Arm Positions ... 31

3-7: Open NI at 1 Meter .. 37

3-8: OpenNi at 2 Meters ... 37

3-9: Open NI at 3 Meters .. 38

3-10: OpenNI with Nyko Lens at 1 Meter ... 38

3-11: OpenNI with Nyko Lens at 2 Meters .. 39

Figure 3-12: Input to Output Process Map ... 44

Figure 3-13: End Effector Sway of Proof of Concept [12] ... 44

Figure 3-14: Measured Elbow Angle of Proof of Concept (used with permission) [12] 45

Figure 3-15: Possible Future Implementation .. 49

Figure 3-16: Visual Parameter Tuning Algorithm for Kinect Data Stream .. 49

Figure 3-17: Conceptualized Enhanced Jitter, Sensitivity, and Smoothing Flowchart................................ 50

x

Figure 3-18: Smoothing function placement in moveArm() ... 51

Figure 3-19: Comparison of Average Based Smoothing Performance on Elbow DOF 52

Figure 3-20: Comparison of Weighted Average Period Performance On Elbow DOF 53

Figure 3-21: Arduino Mega With Servo Feedback .. 56

Figure 3-22: New Data Flow Map ... 58

Figure 3-23: Simple 2-Stage Cascading PID Algorithm Flowchart ... 59

Figure 3-24: Easing Motion Profiles .. 60

Figure 3-25: Easing Algorithm Data Flow Map ... 61

Figure 3-26: Easing Decision Tree Algorithm .. 63

Figure 3-27: Robot Arm in Simulator .. 64

Figure 3-28: Motion Error Small but Apparent in Raw Versus Smoothed with Easing 65

Figure 3-29: Simulation Error analysis of Raw Smoothed Values versus Easing Smoothed Values 66

Figure 3-30: getKinect Function Flowchart ... 66

Figure 3-31: Flowchart of Conceptual Camera-to-Computer Communication Schemes 67

Figure 3-32: Flowchart of Conceptual Design of Video GUI ... 69

Figure 3-33: Flowchart of conceptual GUI implementation ... 70

Figure 3-34: 1st Screenshot of Visual Feedback System ... 72

Figure 3-35: 2nd Screen Short of Visual Feedback System ... 72

Figure 3-36: Robot.cfg Flowchart .. 77

Figure 3-37: Computer.cfg Flowchart ... 78

Figure 3-38: Task 1- Config File Creation Test Results .. 80

Figure 3-39: Task 2- Config File Startup Test- First Run Results.. 81

Figure 3-40: Config File Configuration Selection Speed test .. 82

Figure 4-1: Flowchart for Main Kinect Processing .. 89

xi

Figure 4-2: Flowchart for scan() .. 90

Figure 4-3: Flowchart for smoothArd() ... 91

Figure 4-4: Flowchart for drawPlayer() ... 92

Figure 4-5: Flowchart for drawLine() .. 92

Figure 4-6: Flowchart for showVid() ... 93

Figure 4-7: Flowchart for waitKeyPressed() .. 93

Figure 4-8: Flowchart for addText() .. 94

Figure 4-9: Flowchart for Arduino Mega Main Code ... 95

Figure 4-10: Flowchart for moveArm() for Arduino Mega .. 97

Figure 4-11: Flowchart for quadIO() ... 97

Figure 4-12: Flowchart for quadO ... 97

Figure 4-13: Progressed Wii Nunchuck Code .. 98

Figure 5-1: Recorded Kinect Output from Test Capture ... 103

Figure 5-2: Original System Configuration (Raw Kinect and Servo PID) ... 106

Figure 5-3: Raw Kinect and Servo Easing Algorithm Results ... 106

Figure 5-4: Smoothed Kinect Output and Servo PID Results .. 107

Figure 5-5: Smoothed Kinect Output and Servo Easing .. 107

Figure 5-6: Raw Kinect Output and Servo PID X Axis .. 108

Figure 5-7: Raw Kinect Output and Servo Easing X Axis ... 108

Figure 5-8: Smoothed Kinect Output and Servo PID X Axis .. 109

Figure 5-9: Smoothed Kinect Output and Servo Easing X Axis ... 109

Figure 5-10: X Axis Comparison .. 110

Figure 5-11: Comparison between the Original and the Progressed System Smoothing Algorithm for the

X Axis ... 110

xii

Figure 5-12:Raw Kinect Output and Servo PID Y Axis ... 111

Figure 5-13: Raw Kinect Output and Servo Easing Y Axis ... 111

Figure 5-14: Smoothed Kinect Output and Servo PID Y Axis .. 112

Figure 5-15: Smoothed Kinect Output and Servo Easing Y Axis.. 112

Figure 5-16: Y Axis Comparison .. 113

Figure 5-17: Comparison between the Original and the Progressed System Smoothing Algorithm for the

Y Axis ... 113

Figure 5-18: Raw Kinect Output and Servo PID Z Axis .. 114

Figure 5-19: Raw Kinect Output and Servo Easing Z Axis ... 114

Figure 5-20: Smoothed Kinect Output and Servo PID Z Axis .. 115

Figure 5-21: Smoothed Kinect Output and Servo Easing Z Axis .. 115

Figure 5-22: Z Axis Comparison ... 116

Figure 5-23: Comparison between the Original and the Progressed System Smoothing Algorithm for the

Z Axis ... 116

xiii

List of Tables

Table 3-1: Seated Mode Skeletal Tracking Test Results.. 27

Table 3-2: Near Mode + Seated Mode Skeletal Tracking Test Results ... 30

Table 3-3: Parametric Analysis of SDK Attributes ... 42

Table 3-4: Measured Voltages .. 57

Table 3-5: Servo Voltage and ADC Values ... 58

Table 3-6: Joint Array .. 62

Table 3-7: Joint Variable sub-array ... 62

Table 3-8: Test 1 Results ... 83

Table 5-1: Initial Synergy Testing Results .. 101

Table 5-2: Final Synergy Testing Results ... 103

Table 5-3: Visual GUI Effectiveness Test Results .. 118

xiv

Acknowledgements

Thanks to

Richard Anger, Anthony Hannigan, and David Umlas of my Senior Design Team, who all assisted me

greatly with design ideas, construction, testing, and tedious report writing of the proof of concept

control system.

Paul St. Denis of the TLT Media Labs, who introduced me to the Kinect, hacking it, Python, and computer

systems programming during my time at the Labs. He was also a wealth of knowledge and an ever

giving resource and helped debug my code or guide me through rough programming spots.

Will Thompson, who worked with me over the summer of 2012 cleaning up my code, helping build

troubleshooting tools, improving the smoothness of the arm, working with PID, and helped implement

and test the control system with DC and stepper motors for future work.

Mark Krieger, who encouraged and taught practical electronics and microcontroller philosophy and

implementation to a crazy kid from New York whom he had never met.

Professors Wang, Kincaid, Testa, and Sesay for their teachings, encouragement, assistance. A special

mention to Mayra Santiago for all the good times during my Master’s degree.

A Special Thanks to

My mom, dad, both grandmothers, my fiancé Afiya Walters, and my extended family, like Dr. Denise

Thompson, Dr. Edghill Messiah and Donna Dove, who actively taught, encouraged, helped, cheerlead,

distracted when necessary, elevated me when they could, and just pushed me through life’s milestones,

ideas and progress on life, school, and thesis.

A Very Special Thanks to

xv

Professor Yu Zhuo for his kindness, guidance, and foresight. He was my advisor for Senior Design, was

the one who encouraged me to pursue my Masters and beyond, and guided me throughout the entirety

of these 2.25 years. He brought out my best, gave me the chance I needed, and has my eternal respect

and gratitude. Truly, all of this was because of him

1

Chapter 1

Introduction and Background

1.1 Motivation

There is an increasing demand of using robots and computer systems to assist the consumer human

population in almost every facet of life. People today walk around with a new generation of hybrid

personal digital assistants and mobile communication devices that have the processing power of 10 year

old desktop computers, drive in cars with 30+ ECUs that can monitor and control almost every internal

component in the car, and have automatic, self-powered vacuum cleaners and lawn movers.

Unmanned aerial vehicles (UAVs) are now being in used in fields from home security to fighting fires, to

monitoring and dusting crops. For the disabled population, there bionic body parts are being surgically

implanted into human bodies to assist those who have been injured or were born disabled. Electronic

wheel chairs have been developed to give those who cannot walk under their own power mobility.

However, for this demographic, if not in the chair or not a candidate for surgery, and unable to easily

move under their own power, there is little in existence that will allow you the ability to be self-reliant

to perform simple tasks. The reason for that is not due to the mechanical constraints of technology, but

the deficiency in human interface between person and machine. Current technologies are difficult to

use, hard to learn or master, are cumbersome, or are expensive. In this project, I will build upon my

previous work in the concept of using human body mapping sensors to provide a natural and intuitive

control system for a robotic arm and increase the feasibility of utilizing this concept by making the

system more stable, user friendly in operation, and easier to set up and run. The ease of use of this

system, the extremely low learning curve due to the natural control scheme, can potentially open the

door to a new breed of powerful assistive robots that operators of all ages can used to better their life.

2

With America’s aging, yet increasingly tech savvy population, this control system maybe the final piece

in the puzzle to increase mass production and bring robots once only intended for research or industry

cheaply into the home.

The overall goal of this project is to move the assistive control system and test bed from “proof of

concept” to “functional prototype”.

1.2 Background on Tele-operated Mobile Robotics

Nikola Tesla was experimenting with possible applications for his new radio communications system

when he theorized and implemented a way of sending operator commands to a remote device using

this radio technology. This “radio control” scheme, patented in 1898 (Tesla), became the foundation of

almost all our current radio, or remote, controlled devices. Its uses in tele-operated machinery became

a growing field it and started to merge with the growing field of computer science

Developed initially by Nikola Tesla during his work in radio communications, this system of using

electromagnetic signals to send a user’s intended motion commands to a controller or processing plant

has grown to myriad applications. Since its inception, tele-operated mobile robotics has been an ever

growing field with research, industrial, military, and some civilian applications. In the research field,

these robots are being pushed into sensor integration and greater processing power to assist in greater

autonomy. On the industrial side and military, building upon research work In military systems, In the

civilian market, hobbies such as remote controlled vehicles,

1.3 Background on Hardware and Software Control Systems for Robotic Arms

1.3.1 Hardware

Robotic arms require control across each degree of freedom (DOF). Initially, the human machine

interface for this control came in the form of displacement mapping methods, using input devices such

3

as control sticks or sliders, or increase-decrease methods using levers or buttons. These forward

kinematic methods were satisfactory for a 1DOF, 2 DOF, or even 3 DOF arm for a single operator, yet as

the arms complexity increase, so did the number of axis inputs, and the system usability suffered, often

requiring multiple operators working together. As embedded systems and computer science

progressed, new, more single user friendly methods were also devised. The added processing power

allowed the user to input something simple which causes the robot to calculate the more complex joint

solution of how to get there through a mathematical process called inverse kinematics.

1.3.2 Software

Inverse kinematics (IK) takes the starting point of the robot’s joints and the end effector point of the

position you want the tip of the robot’s joints to be located, and uses that date in conjunction with the

lengths and angle range of each joint in order to solve the necessary angle for each joint will have to be

at to enable the end effector to achieve its desired position in space. The IK solutions are either solved

on the controlling computer and the individual joint angles are sent to the robot or the end effector

position is sent to the robot directly for processing. There are several general methods of solving an IK

equation, depending on complexity, such as a trigonometric solution for 2D analysis, the Cyclic

Coordinate Descent (CCD), or the Jacobian method. The trigonometric method is a light IK solution

requires a low complexity (2-3 DOF) arm with all link translations constrained along a 2D plane. CCD is

an iterative process that optimizes the kinematic chain parameters in order to always get you a solution,

if one exists, at the cost of inorganic seeming movements. The Jacobian method is a highly versatile and

regarded method that accommodates for any number of DOF or motion ranges, but it may not always

yield a solution, even if one exists or might give you multiple solutions, and then the software must pick

the best one.

4

Using IK and computers to quickly work through the computational burden, new control methods have

been devices that allow for greater single operator control that function with greater precision while

achieving faster, smoother response times. These control systems work on tactile feedback from a

human operator, joint or skeletal mapping, or highly complex relative or absolute positioning devices.

1.4 Back ground of Proof of Concept Control System

The proposed system of this thesis uses a hybrid input control system comprised of skeletal mapping,

absolute positioning, and joystick control to map the 5DOF it is to control as well as mobile locomotion.

Employing various off the shelf input sensors, signal conditioning and algorithms microcontrollers, it

allows any person with control of their upper body easy control of a mobile 5 degree of freedom (DOF)

robotic arm. Emphasis was placed on ease of use, cost, and portability. The input system does not

depart from a person’s natural movement and is programed to respond almost puppet-like to the

orientation of the operators arm. The implementation of this human machine control system opens the

door for the average person controlling these complex types of arms due to its low relative cost. The

system is universal and modular in both hardware and software architecture due to its underlying

foundation being in the open source community, and caters for a multi- operating system, multi-motor,

and multi communication type environment. Based on its applicability, this system can be integrated

quickly and cheaply into applicable preexisting or purpose built industrial, military or civilian robotics. It

will reduce training times in all markets, reduce costs and complexity in all markets, and increase

usability and user satisfaction, especially in the civilian market, without sacrificing too much control or

precision.

5

1.5 Thesis Structure

Chapter 2 will discuss the control system design. It will conceptually detail the design of the robot arm

system as implemented in the Senior Design, including the components, how they work together, costs,

communication, and process flowcharts.

Chapter 3 presents the research done into mitigating the control system output instability, the visual

feedback, and other methods of making the users’ life easier while using the system. It will include

comparison of the two main software development kits (SDKs) for a Primesense enabled

microcontroller, the methods used to smooth the output of the servos, the implementation of the visual

feedback, and steps taken to have a more informative and portable system.

Chapter 4 gives a detail of the changes made the revised system’s process map and communications

based on the findings of Chapter 3. It will focus on places where improvements and additions were

made.

Chapter 5 demonstrates the effectiveness of the proposed changes made in Chapter 4 to the control

system as a whole. Tests will seek to find improvements in the areas of usability, control, capability, and

stability.

Chapter 6 concludes the work and imagines areas of potential further study. These areas include the

fields of computer vision, voice control, multiple arms, and haptic feedback. Software schemes

developed to implement and test this control system make it applicable to work in a wide area of

devices and fields, and further research could be done to enable this to happen.

6

Chapter 2

Proof-of-Concept Control System Design

2.1 Introduction

The proof of concept system, which will be the test bed, was designed using the following core design

philosophies:

Easy to use

The main philosophy behind the process by which the operator controls the arm by must be as initiative

and natural as possible. This system is supposed to be an assistive system, and should minimize the

burden of learning and get right to its function of assisting as soon as possible. Also, based on market

analysis, the learning curve must be extremely low as the intended operator’s ages, mental capacity, or

desire to learn a more complex system may preclude them from enjoying the use and assistive benefits

of a more complex system. A more complex system could potentially frustrate the operator, or the

operator may not be able to physically or mentally perform the more complex tasks required to properly

control the system and allow it to perform its assistive functions.

Predictable, effective control

This control system is intended to augment the need for hired help and boost self-reliance. It is to help

them perform some useful, normal daily tasks that a more able-bodied could. Therefore, the arm must

move and perform as the operator intends it to on a consistent basis. If the system is unable to

perform, is too frustrating to use, or is not very consistent, it starts becoming less of an assistance and

more of a burden, thus failing its goal.

7

Unobtrusive control

This control system must use as few “on operator” devices as possible as well as have as little “set up”

and “take down” time as possible. The intended operator already requires assistance and this device is

supposed to enable them to be self-reliant. Complex set up, or set up that an operator is unable to

perform themselves, should be avoided as it defeats that goal of self-reliance. The system must be

versatile to work in the chaotic environment of a home environment and should be mobile enough to be

redeployed at a moment’s notice. The system should be easy to use and easy to work with.

Inexpensive

The system must be affordable to the average person. Those who fit the target demographic of this

system usually are receiving assistance of some kind, be it financial or personal. They have to purchase

specialty items, possibly have large medical bills due to numerous doctor visits, and the local

government most likely has a salary tiered limitation on disability assistance that they may receive, if

they receive any at all. This means that their budgets are a little tighter than those of a fully abled

person. Thus, this system has to be cheap. To accomplish this, instead of using special purpose devices,

common, off the shelf components comprise the system. The end result was a sub $300 control system

with exception versatility in terms of growth, cross platform usage, and multiple motor types.

2.2 Control System Design Concept

2.2.1 Overview

There are several outputs that need to be controlled when the program begins: the 5 DOF arm

kinematic output, the gripper output, and the locomotion output. The design revolved around

assessing the optimum input sensor to get the best possible measurement and system “ease of use”

that produces the intended output. For this stage, the systems are considered open loop.

8

Figure 2-1: Process Flow Diagram for the Assistive Mobile Robot Arm Control System

As illustrated in Figure 2-1, there are two main input devices that incorporate a variety of sensors. The

first is the Microsoft Kinect, which attaché directly to the computer via USB. Its depth data is then

processed and joint data is returned to the main program for use. The second is the Nintendo Wii

Nunchuck. It is attached to an Arduino Uno, who gathers the necessary data and constructs a control

string to be sent to the computer also via USB. The post processed Kinect data and the Nunchuck

control string are processed by the main program using an inverse kinematics algorithm and the angle

results conditions and then sent to the main robot’s Arduino Mega as servo angles. The Arduino Mega

then controls the Roomba 530 mobile base and the servos.

2.2.2 Communication

The system uses a mostly serial based interconnect for communication between controllers. As shown

in Figure 2-2, which is the map of the communication implementation of the test bed, the Kinect uses

USB 2.0 to connect to the computer. For the Wii Nunchuck to the Arduino Uno, an I2C protocol is used.

115.2kbps UART is used both the Arduino Uno and Mega to computer due to the speed. This bitrate is

used as it is the fasted bitrate for a 16Mhz Arduino that has a <1% error [1]. In order to match, the

Get depth
map from

Kinect

Use OpenNI and
OSCeleton to

locate skeleton
and broadcast
joint positions

Get joint
positions for
operator’s

right arm and
torso.

Send gyro,
joystick, button,
and tilt sensor
data from Wii

Nunchuck

Get wrist and
rotation as well
as joystick and
button presses

Run signal
conditioning
and inverse
kinematics
algorithms

Generate end send
servo and

locomotion values
to the Arduino

Mega on the robot
to move arm.

Arduino Mega on
the robot uses

values to control
arm and instruct

Roomba on
desired motion.

9

communication between the Roomba and Arduino Mega is also at 115.2 kbps, using the iRobot’s

proprietary SCI protocol. The Arduino Mega commands the servos over PWM to manipulate arm

position. Though not implemented a conceptualized video system transmits video from the camera to

the video Tx via RCA in the NTSC format, then it is sent to the Video receiver via 900MHz FM, then from

the receiver to the video grabber via RCA, and finally from the grabber to the computer over USB.

Figure 2-2: Test Platform Communications Schematic

Arduino Mega

Servos Kinect

Computer

Wii Nunchuck Arduino Uno Roomba

115.2kbps

UART

115.2kbps

UART
PWM

I2C

USB

SCI

(115.2 kbps

UART)

10

2.2.3 Input

2.2.3.1 Kinect Input

The Microsoft Kinect is a 15-30 frame per second, 640x480, USB 2.0, Primesense enabled depth sensor.

Originally created for the Xbox 360, using the Primesense chip and some interpreting software, this

sensor can extrapolate the body shape and the joint positions of a person in its depth field. The found

joints can be arranged to create a skeleton of the user. By using OSCeleton and OpenNI, PrimeSense’s

open source SDK, the control system can get the XYZ positional data of the right shoulder, right elbow,

right hand, and torso joints, disseminate the kinematic chain of the human arm, and find the start point

and end effector.

The Kinect uses the method of structured light to get the depth of an object. This makes it a very noisy

sensor and increases the instances and propagation of errors in its skeleton tracking. Optimum

positioning is important when using this device. Even so, it is not reliable enough to accurately track the

hands and sometimes loses accurate tracking of some joints. Therefore, additional sensors are required

to complete the missing DOF. Together with the Wii Nunchuck’s array of sensors to get some more

precision values, the inverse kinematics can be solved, mapped into robot arm space, and implemented

in forward kinematics. It cost $90 for the refurbished Kinect.

2.2.3.2 Wii Nunchuck

2.2.3.2.1 Overview

The Wii Nunchuck is vital to the success of the control system, as the Kinect cannot track hands or wrist

angles or rotations well at all. The collection of these necessary parameters had to be off loaded. The

Wii Nunchuck is a sensor array of buttons, joysticks, gyroscopes, and accelerometers. Using the

gyroscopes, we can get the wrist angle and rotation which are the 4th and 5th DOF of the robotic arm.

11

Using the joysticks, we can control the 2D motion of the robotic base. Using the buttons, we can control

gripper open/close and the robot arm safety and control feature of enabling or disabling Kinect capture

and the inverse kinematics engine on the main program side. It cost $15 for the unit and $3.95 for the

Adafruit Wii Nunchuck breakout board.

2.2.3.2.2 Arduino Uno

The Wii Nunchuck moves communicates over the I2C bus. Using the open source Adafruit Wii Nunchuck

Library, the Arduino acts as the I2C master and requests the raw data from the microcontroller in the

Wii Nunchuck. As shown in Figure 2-3, using the supplied Wii library, the data stream that is sent from

the Nunchuck’s microcontroller is parsed and the raw values of the joystick, button states, and the

gyroscope are collected then retransmitted to the computer at 115200 bps. Also, the button states are

stored in a software enabled “press and lock” state, so that the operator does not have to hold down

the button to continuously issue their intended command. It cost $30 for this Arduino Uno.

12

Figure 2-3 Flowchart of Code for the Wii Nunchuck Interpreter (Arduino Uno)

Include Wii library

Set up serial and I2C
communication

Request datastream from Nunchuck
and delay for 0.5 seconds to calibrate

joystick

Define joystick axis, gyroscope
axis, and button variables.

Send joystick and gyroscope
axis over serial to computer

Send control variables to
computer over serial.

Wait 20ms then request
data stream from

Nunchuck

Set Kinect
capture to

enabled

Set Kinect
capture to
disabled

Enabled

Closed

Disable

d

Open

Set state to open
gripper

Set state to close
gripper

Start Program Loop

Start Program Setup

If Z pressed check state
of gripper

If C pressed, check Kinect
capture state

13

2.2.4 Processing

2.2.4.1 Overview

The signal processing and output of the system was written in Python. The following section will briefly

go over the necessary components of how the post processing of the input signals into the servo value

output is performed. All software used was free and open source

2.2.4.2 Necessary Programs

1. OpenNI SDK- This software development kit is the open source kit made by Primesense, the makers

of the chip that enables the Kinect depth mapping capabilities to work. Standing for “Open Natural

Interface”, this powerful SDK lets developers build gesture reactive programs that work with

Primesense enabled depth sensors, like the Kinect.

2. NiTE Middleware- This middleware program interprets the Kinect depth data from OpenNI and

returns any users and their joint data that it finds.

3. OSCeleton- This server binds to OpenNI’s NiTE middleware, gets the user data from found players,

and broadcasts it as a local server in the popular Open Sound Control (OSC) messages.

2.2.4.3 Libraries

The libraries are program modules built to enhance the functionality of a main code. There are several

libraries implemented:

1. OSCeleton (pyOSCeleton)- this library enables the receiving of the Kinect player data OSC

messages from the OSCeleton server. This player data contains a user id and all the player’s joint

XYZ values. It is this data that is parsed to work the inverse kinematics engine.

2. sys- this library enables access to system functions. It is used to cleanly exit python when the

operator chooses to end the program.

3. time- this library is used to keep timing.

14

4. numpy- this mathematical library enables python to work on high level mathematical problems.

In this program, it is used sporadically to assist with necessary elements such as such as arrays,

absolute value, square roots, radian and degree conversions, and other mathematical

requirements not usually available in Python.

5. serial- this library enables serial communication between the computer and the Arduino Mega

and Uno.

6. re- the regular expressions library is used to parse the incoming Wii values string from its

attached Arduino Uno.

2.2.4.4 Process

The main processing program is illustrated in Figure 2-4. With OSCeleton running, the program import

the libraries listed in Section 2.2.4.3, initialized the global variables for the servos, which are the servo

values, link lengths, frame counters and other important system values, initialized the serial

communications, and started the OSCeleton server. Once this is done, the main while loop begins,

which calls getJoints(). getjoints() waits for a message from the OSC server, which would contain player

data. If no player data is received, it exits the function, but the while loop calls it again on the next

iteration to check for messages. If player data is found, the player data, which includes the joint data, is

added to the player class and moveArm() is called. moveArm() reads the waiting serial string from the

Arduino Uno (detailed in Section 2.2.3.2) and parses and conditions the data using getWii() and its

helper functions. The pared Wii command string includes the controlling variable for whether to

actively process the inverse kinematics. If the condition is false, it simple returns the last values of all

the servos, motor controls, and gripper states. If the condition is true, the program uses getKinect() to

parse the player data for the necessary joint data and then start conditioning it for the inverse

kinematics by getting the rotate angle, getting the humerus and ulna link lengths using trigonometry,

getting the length and magnitude of the arm, position of the start and end effector, and then maps end

15

result values from Kinect space to robot arm space. The new mapped values are sent to IK(), where

inverse kinematics finds the servo values and returns them. After a few checks, the values are sent to

the Arduino Mega in the moveArd() function. The new servo values are saved to the global values using

angles() and the program ends the loop and returns to the main while loop.

16

Figure 2-4: Flowchart of Control System Program

Initialize global variables, arrays, link
lengths and serial communication ports

Import libraries

Start OSCeleton server

Begin Main loop

Run getJoints()

Set Kinect text color to green Player
found?

Run moveArm()

Send wii
nunchuck

request code

Get and parse
wii stream with

getWii()

Run getKinect(), condition
result, then run IK() and

condition result.

Capture
player?

Run
angles()

Send values to robot
with moveArd()

Ye

s

Yes

No

No

17

2.2.5 Output

2.2.5.1 Overview

The output of the control system is based around the Arduino Mega prototyping board. This

microcontroller was selected due to its larger array of PWM and AnalogIn ports, multiple hardware

UART serial ports, and larger memory size. The control system utilizes 2 serial ports (Roomba and

computer communications), 6 servo ports for the 5DOF and gripper, a digital pin for the Roomba, and up

to 6 AnalogIn ports for the future implementation of feedback. It was 3 high resolution times to drive all

of these functions. It cost $65.

2.2.5.2 Hardware

2.2.5.3 Firmware

The firmware (Figure 2-5) for the Arduino Mega imports 2 libraries, the modified Roomba500.h, which

enables communication with the Roomba robots over the SCI protocol, and Servo.h, which is a container

for sending appropriate PWM signals for a given angle to the servo motor. There servo global variables,

serial global variables, and the input array are initialized. The firmware enters setup(), where there

servos are attached, pins are declared as inputs and outputs, serial communication parameters are set,

and communication between the Roomba and the Arduino and the Arduino Mega and the computer are

established. Once the setup is complete, the program enters the main loop, void loop(). The loop starts

waiting for serial input. If no input is found, it simple instructs each servo and the Roomba motors to

move to the last value of their respective globals. If there is Serial input, the program finds the start

byte, which equals 255, and then parses the serial string and organizes the values. After conditioning

the motors to be value appropriate for the Roomba, it sets the gripper servo based on the gripper state

18

and then sends all 6 servo values each servo. After a delay of 15ms, the Arduino checks the serial input

again.

Figure 2-5: Flowchart for Arduino Mega Firmware (Robot Output)

.

Include servo.h,
roomba500.h.

Initialize and set sR,
sA, e, wR, wA, kC, gR,

mL, mR, fB, mT to
initial values

Declare pin
values for

motor control,
serial, and

feedback pins,
and variables.

Declare servo
timing, variables
for interacting

with serial
comm serial

buffer array, and
helper variables St

ar
t

vo
id

 s
e

tu
p

()
 Delay 2 seconds,

start serial
communication

for computer
and Roomba at

115.2 kbps

Pulse Roomba
wake pin, wait 2
seconds. Attach
all 6 motors, set
Roomba to full
mode, and run

start

St
ar

t
vo

id
 lo

o
p

()

Serial
input

Available?

Find startbyte and
parse serial string

for motion
commands. Set sR,
sA, e, wR, wA, kC,

gR, mL, mR

Condition mL
and mR,

gR = 1?

Close gripper Open gripper

Write servo values
to each servo

Send motor
instructions to

roomba

Wait 15 ms

Yes

Yes No

No

19

Chapter 3

This Project

3.1 Introduction

3.1.1 Overview

The proof of concept system achieved the goal of showing the viability of such as system design, but was

also successful in showing us the limitations of the hardware, software, and aspects of our

implementation. There are several problems with the Using the proof of concept test system itself.

 The robot arm was incredibly jerky and the momentum of the arm caused disturbances.

This quality was also exhibited in another servo-based robot arm using direct servo control,

This problem is the primary focus of this research.

 The control concept, while demonstrating the ability to control a robot arm, was not tested

for those sitting or in bed

 No remote viewing of robot arm, despite being a product specification

 No way of giving feedback to the operator or important system parameters.

 Was completely code based with no user interface.

3.1.2 Intended Improvements of the Control System

Using the selected elements of the final concept design, the control system created. The research will

envelope the key areas that was not addressed in the proof of concept design. The research will

include:

1. Comparing the OpenNI SDK versus the Microsoft’s Official SDK

a. Various compatibility and Performance checks

b. Assessing Usefulness of Microsoft Kinect SDk’s “Seated Mode” and “Near Mode”.

20

2. Addressing bed’s servo jerkiness issues

a. Mitigating noise in for better control of the robot arm

b. Changing motion profile of drive systems

3. A visual feedback implementation and possible GUI design for system ease of use

4. A more robust and coding free way of configuring the control system to the user

3.2 System Specifications

The design and test computer system to be used with the test bed platform is a Lenovo Thinkpad x200t.

3.2.1 Hardware Specifications

Lenovo Thinkpad x200t

 SL9400(1.86GHz)

 8GB RAM

 120GB OCZ Vertex 2 SSD/240GB PNY XLR8/750GB WD Black HDD

 12.1in 1280x800 LCD

 Intel X4500HD

 Intel 802.11agn wireless

 Bluetooth 3.0

 Logitech C310 Webcam

3.2.2 Software Specifications

OS: Windows 8 (On OCZ and PNY SSDs)
SDK

 Microsoft Kinect SDK Modules
o Visual Studio 2012 Ultimate

o Kinect SDK 1.6/1.7

21

 OpenNI SDK +
o OpenNI 2.1
o Nite2.2
o Delicode NI Mate (for OSC)

Other Software

 Arduino IDE 0023

 Arduino IDE 1.0

OS: Windows XP (On 750GB WD)
SDK

 OpenNI 1.5.1

 NiTE1.5

 OSCeleton (for OSC)

Other Software

 Arduino IDE 0023

 Arduino IDE 1.0

 VLC

Python Modules used with OpenNI x.x for each OS

 Python 2.7.3

 Numpy

 Pyserial2.6

 pyOSC

 OpenCV 2.2

 pyVLC

3.3 Comparing the OpenNI SDK versus the Microsoft’s Official Kinect SDK

3.3.1 Overview

The Kinect is a notoriously noisy sensor and is by no means a precision instrument without some

interpolation. Skeletal tracking values, depending on the tracking mode, are in millimeters or an

arbitrary joint space value that is uniform about the domain. Experimental data has shown a random

error range of a few millimeters to 4 cm at varying ranges for the depth data [2]. This causes joint

positions to float round an approximation of where there joint actually is, so it rarely stays steady. It

22

also changes the length of the tracked arm by up to 10-cm, leading us to use the relative length of the

arm for tracking instead of a standard length1.

Due to this fact, it became imperative to compare the previously unused Official Microsoft Kinect SDK

with the SDK currently being used. Each SDK has a different method of finding and tracking skeletons. If

the method of the current system is inferior to the Official SDK’s, then the main system should be ported

that to that there. Otherwise, if the current system is superior, then no changes should be made.

Another important reason to explore using the official SDK is that it has the ability to perform no-

calibration tracking of a seated person and has a specialized mode called “near mode”. This would

benefit the target demographic as they would normally be seated when using the control system and a

better tracking system catered to that pose would be only positive. The near mode would enhance

portability of the system, potentially allowing it to be attached to a wheel chair and be a mobile control

system that the operator can take with them.

Finally, usability and versatility of the systems to cater to target goals and needs of the project will be

evaluated, such as potential system integration, visual feedback, dynamic variable changing, and

implementing a GUI.

Once the final system is decided upon, all further research will be based on using that system.

The Microsoft Kinect SDK will be analyzed first, followed by the OpenNI SDK

1
 In later experiments testing if it was more possible to use an average length, the arm was much more noisy due

to unexpected shifts when the arm was outstretched facing directly the Kinect sensor.

23

3.3.2 Microsoft Kinect SDK

3.3.2.1 System Requirements

Kinect for Windows has the following system requirements:

 Windows 7, Windows 8, Windows Embedded Standard 7, or Windows Embedded POSReady

7.

 32 bit (x86) or 64 bit (x64) processor

 Dual-core 2.66-GHz or faster processor

 Dedicated USB 2.0 bus

 2 GB RAM

[3]

 It is important to note that the processor requirement exceeds the specification of the test computer’s

processor. Despite this flaw, the test system kept up with the rigor of the tests due to it greatly

exceeding the required RAM.

In order to program for the Kinect SDK, Visual Studio 2010 or higher is required. To use Seated Mode, a

Kinect for Windows device must be purchased [4] and the Kinect SDK must be version 1.0 and higher.

Similarly, to use Near Mode, a Kinect for Windows must be purchased, but to enable Skeletal Tracking,

Kinect SDK version 1.5 and higher must be used [5].

3.3.2.2 Overview of Microsoft Kinect SDK Methodology

The Microsoft Kinect SDK methodology is one of gesture based computing. It uses a predictive body

mapping algorithm based on stored images in a decision tree to find skeletons. It takes your skeleton

and compares it to one of about 500,000 images of orientations, and assumes that this is the position

and gesture that you are making [6]. The general method of mitigating the noise in NUI skeletal tracking

24

is having a confidence rating for each joint, jitter tuning, and sensitivity adjustments. The jitter

parameter basically averages the samples of each joint’s positions over time and keeps the joint position

steady until the joint moves outside of the given jitter radius. The sensitivity parameter attenuates the

Kinect’s response to small changes in the skeletal positioning. A low sensitivity will require greater

movements to occur before they are registered by the software. The computation requirements are

higher than that of the OpenNI method.

The Kinect, using this predictive method, has the ability to take advantage of the recently released

“Seated Mode” (Figure 3-2) and “Near mode” (Figure 3-1),

Figure 3-1: Near Mode versus Default Mode

as specialized mode with the Kinect can find your upper body even if you are in a chair, couch, or a

wheelchair. This caters directly to the assistive living scope of the project and was the primary reason

for testing out this SDK, as they operators, being unable to stand and properly move around, would

likely be seated or sitting up, and reducing the distance

25

3.3.2.3 Seated Mode Tests

3.3.2.3.1 Overview

As most intended operators would be sitting, this Seated Mode feature was the reason of attraction to

use the Microsoft Kinect SDK. Seated Mode option that was touted by Microsoft Labs allows those in

wheel chairs to harness the power of the Kinect. If the claims are true, and this mode can be used well

with the control system, it may be a viable option for starting to use the Kinect SDK for future

developments, as OpenNI requires a standing calibration pose and has no “Seated Mode”.

3.3.2.3.2 Testing Procedure

A small program was used to verify the usefulness of Microsoft’s Current seated mode with the control

system. For this test, Seated Mode was enabled programmatically and the capture mode was set to

Default. The skeleton, superimposed on an image of the body, would visually show us any tracking

errors or inaccuracy that may occur. Then, if the tests passed reasonably, the system would be tested

using the robot arm.

The Seated Mode test parameters were as follows:

 Assess Ability to continuously track skeleton from 2 meters from tip of outstretched arm

while in a chair

 View errors in capture

3.3.2.3.3 Parameters and Grading

The test motions were:

 Slow full arm motion from left to right

 Slow full arm motion from right to left

 Fast full arm motion from left to right

26

 Fast full arm motion from right to left

 Slow full arm motion from down to up

 Slow full arm motion from up to down

 Fast full arm motion from down to up

 Fast full arm motion from up to down

 Slow, medium, and fast speed “reach out and touch target”

The test’s grading parameters are as follows

• Good- the Kinect and the software must retain an accurate skeleton tracking of the arm

throughout the motion, with allowances for one or two separate instances of accurate inferred

points.

• Poor- the skeleton must retain reasonable accuracy throughout the test or have a couple frames

where inferred points were used. This is considered poor as such a loss would adversely affect

operation of the control system, but passible control could be attained.

• Fail- the skeleton must be inaccurate and/or an extended period of time of inferred points. This

is considered a failure as the system cannot and should not be operated with such results.

3.3.2.3.4 Seated Mode Results

Motion Type Good/Poor/Fail Comments

Slow full arm motion from left to right Poor There was a loss of tracking

when the arm was straight on,

and across the body on,

Slow full arm motion from right to left Poor Did better than the previous test

Fast full arm motion from left to right Good

27

Fast full arm motion from right to left Good

Slow full arm motion from down to up Fail Loss of initial tracking from

above the lap, but regained

tracking once that are was raised

above chest height.

Slow full arm motion from up to down Poor When the arm is outstretched, if

the joints overlap, or are over

the lap, the skeleton loses

tracking for a few frames, them

gets reestablished in better

orientation

Fast full arm motion from down to up Poor Loss of initial tracking, but as

regained after moving up to

chest height.

Fast full arm motion from up to down Good

Slow speed “reach out and touch target” Good While a frame was erroneous,

the tracking held well

Medium speed “reach out and touch target” Poor Loss of accurate tracking if joints

overlapped

Fast speed “reach out and touch target” Fail Complete loss of tracking during

action.

Table 3-1: Seated Mode Skeletal Tracking Test Results

28

Figure 3-2: Seated Mode (Good Capture)

3.3.2.4 Near Mode +Seated Mode Tests

3.3.2.4.1 Overview

Wheel chair bound operators may not have a flat, raised surface to place the Kinect on when they

intend to use it. An option is to mount the Kinect to the wheel chair and control it from there.

However, this requires extremely close proximity to the Kinect. The usability of this control system

would be increased by allowing operators to have this option.

3.3.2.4.2 Testing Procedure

Using the same program as in Section 3.3.2.3.2, Near Mode was enabled programmatically along with

Seated Mode. Since Near Mode would be used only in Seated Mode for the target demographic, this

was the only skeletal capture mode tested.

The Near Mode tests were done to determine the following:

29

 Assess ability to continuously track skeleton from about0.5 meters away from tip of

outstretched arm, while in a chair

 View errors in capture

The test parameters were the same as in Section 3.3.2.3.3 .

3.3.2.4.3 Near Mode + Seated Mode Results

Motion Type Good/Poor/Fail Comments

Slow full arm motion from left to right Fail Failure to track across most of testing

span

Slow full arm motion from right to left Fail Failure to track across most of testing

span

Fast full arm motion from left to right Poor Only test that had better consistent

tracking

Fast full arm motion from right to left Fail Failure to track across most of testing

span

Slow full arm motion from down to up Poor Loss of tracking at a point below the

chest

Slow full arm motion from up to down Poor Loss of tracking at a point below the

chest

Fast full arm motion from down to up Fail Loss of tracking and inaccurate tracking

throughout testing. Moe bad frames

than good.

Fast full arm motion from up to down Poor Loss of tracking at a point below the

30

Table 3-2: Near Mode + Seated Mode Skeletal Tracking Test Results

Figure 3-3: Good (Accurate Enough) Capture of Arm

chest

Slow speed “reach out and touch target” Poor It would fail to track at times during the

motion, especially if reaching out

Medium speed “reach out and touch

target”

Poor Depending on starting orientation, it

would fail to track at times during the

motion, especially when reaching out

Fast speed “reach out and touch target” Fail Failure to track this fast motion

31

Figure 3-4: Close but Inaccurate Capture of Arm

Figure 3-5: Loss of Accurate Capture during Left – Right Test

Figure 3-6: Completely Erroneous Capture of Arm Positions

3.3.2.5 Discussion of Overall Results

The Seated Mode tests performed decently well, as shown in Table 3-1, but better performance was

expected. Perhaps the Kinect was too close or in less than ideal orientation, as there are blog reports of

the Kinect tracking a wheelchair bound player quite accurately, such as. LeviHackWith.com’s article,

“Using the Kinect in a Wheel Chair”, back in 2011. In truth, the operator was tracked quite well most

times, like in Figure 3-2, and the only issues it had was if the arm was outstretched and directly facing

the Kinect. However, this algorithmic problem exists even when standing, so it can be assumed that it

was not a “mode” issue.

32

Near Mode + Seated Mode testing was pretty abysmal. It did not do well on any test, as shown in Table

3-2. The thought that is was simply operator orientation was removed when the depth map clearly

shows that it

• Ascertained the depth values of the arm, but did not track it (Figure 3-6)

• Did not correctly ascertain the depth values of the arm (Figure 3-5) even though it was within a

valid depth range, as showed in a subsequent tracking frame (Figure 3-4)

• Did not accurately track skeleton despite having ascertained the depth values of the arm (Figure

3-4)

Once again, orientation may have played a large part in the error, but even when using the tilt motor to

adjust, the gain and loss of tracking was too random to ascertain where the “sweet spot” was. Also, if it

has that narrow of a “sweet spot”, then maybe it will not be right for an operator who would have to

possibly get up and adjust it.

The use of the predictive algorithm allows for the operator to be in a more complex space and still retain

a higher degree of positive readings in a complex environment. This is a wonderful positive for the

Kinect SDK’s methodology. However, it presently does not work well enough to be considered for a

consistent control system. Using the Microsoft SDK, the arm joints were drawn overlaid on the RGB

image from the Kinect, revealing that every so often, the skeleton became contorted momentarily.

Apparently, for some low certainty joints, especially the elbow, the predictive algorithm shot out an

erroneous assumed placement of the elbow joint. This usually happened when the arm is outstretched

and facing directly to the Kinect sensor. While it is usually a momentary error, there are times that it

can last until the subject moves into a more readable position. This is a potentially disastrous problem,

as our code relies on the position of the shoulder, elbow, hand, and torso joints to be correctly

extrapolated within a reasonable margin of error. Also, to use Seated Mode and the new Kinect SDK, a

33

specialized, more expensive device, the Kinect for Windows, is recommended to be purchased and the

software can only be run in Windows 7 and 8. Reports that an Xbox 360 Kinect can be used are verified,

but the operator cannot run it in a deployed, built executable. It can only run in the development stage

with the source code in Kinect SDK. Also, Near Mode is not an available feature for an Xbox 360 Kinect.

[7]

3.3.3 OpenNI SDK+NiTE 2.2 SDK

3.3.3.1 System Requirements

While official minimum system requirements have been posted, the NiTE middleware which works on

top of OpenNI, touts the ability to work on x86 and ARM processors. Users have successfully had

OpenNI+NiTE run on the Raspberry Pi, a 700Mhz ARM Cortex CPU embedded board. The official system

requirements are as follows:

Supported Computer Hardware

 X86 based computers: Pentium 4, 1.4 GHz and above or AMD Athlon 64/FX 1 GHz and above

Supported Operating Systems

 Windows XP (32/64) with SP2 and above, Windows 7 (32/64)

 Ubuntu 12.04 (32/64) and above

Supported Development Environments

 Microsoft Visual Studio 2008 and 2010. The compiler can be an MSVC compiler or an Intel

Compiler 11 and above

 GCC 4.x

[8]

34

NiTE 2.2 Middleware

 Multiplatform – Windows, Linux, Mac OS and Android

 Minimal CPU load, optimized for x86 and ARM architecture

[9]

3.3.3.2 Overview of OpenNI+NiTE SDK(with python bindings)Methodology

The OpenNI+NiTE SDK does not have built in routines for predictive body mapping or for jitter

mitigation. Built upon the Point Cloud Library, it relies on the operator assuming a standardized

calibration pose. Once calibrated, NiTE then just tracks the joint location in the depth space. This

method has lower computational requirements. It also has an inferred joint position algorithm, based

upon measurements taken in your calibration pose and the current orientation of your body.

This method is not very effective in a cluttered environment. If an appendage gets too close to an

object, the software assumes that the object is part of your body, and will track it as such until you move

away.

OSCeleton and the Kinect SDK don’t really give much in the way of mitigating either of those tracking

errors other than doing jitter, averaging, and sensitivity adjustments. It turns out, usually, when they

occur, the game developers just reject those frames and assumes the gesture you intended rather than

take based on the rest of your movements. In our case, we are attempting direct puppeteering control,

so another method had to be devised.

3.3.3.3 Ease of Changing Variables

Algorithms are not an end all solution to proper tuning of this implementation. Operators of varying

challenges may need to adjust and tune the parameters of the program to suit their particular abilities.

Thus, this program requires a degree of adaptability in order cater to each assisted needs operator.

35

The Microsoft Kinect SDK using Visual Studio, with its tie in to the Visual C# WPF forms, allows for a very

easy point-and-click design of the GUI and allows variables to be quickly assigned. There are

placeholders and indicators for buttons, sliders, textboxes, labels, and methods for a more graphical way

of displaying feedback and validation for the information input. These values can change dynamically.

Changing the variables programmatically seems to be the best and easiest way to work with OpenNI.

Later on, there was exploration and implementation of a text based configuration file, which also

worked for allowing the user to make changes at the start of the program, yet was difficult to implement

for dynamic changes while the control system was running. Such a dynamic configuration system will be

for left further work. The OpenNI SDK is open to any GUI that you want, however the Python GUI was

found to be quite difficult to get working on the test machine. First, libraries for the GUI had to be

installed along with a GUI designer to make things easier. wxPython and GUI2Py were chosen due to

recommendations, but they were unable to be set up and configured properly with even moderate

effort. A work around using OpenCV (discussed later) eventually was used.

3.3.3.4 Skeletal Tracking

3.3.3.4.1 Overview

Skeletal tracking with OpenNI requires the user to hold a calibration pose. After this, the skeleton

tracking is really quite good. The data from the calibration pose can be saved and used later, thus

requiring no further calibration poses (this function was not implemented in this research). Due to an

absence of a marketed “Near Mode”, OpenNI was tested range tested with both a Nyko wide angle lens

for the Microsoft Kinect and the regular Kinect lens to see which will allow an operator to get closest

while still performing a high level of tracking quality. The Nyko Wide Angle lens is a 3rd party non-

permanent attachment to the Kinect which is purported to widen the field of view of the Kinect to allow

for playing in confined spaced.

36

3.3.3.4.1.1 Metrics

There are three metrics used to test each distance.

 Is there a skeleton. Without a skeleton, the control system will not work at all. This field is one

of the most important in determining if a distance should be even considered. At 1m, it is the

equivalent of “Near Mode” in the Microsoft Kinect SDK.

 Are the arms visible? If you cannot track the arms reliably, this control system will be rendered

inoperable.

 Were there any errors or jitter in capture? These factors can adversely affect the control

systems effectiveness, so placement and user distance must be such that it is mitigated or

avoided.

3.3.3.4.2 Procedure

The subject was first calibrated at 2, then moved into position and outstretched their arms. If a skeleton

is produced, the Kinect output is observed for about 10 seconds for any aberrations, such as jitter,

inferred joints, or loss of joint data. These are documented and then the operator moves to the next

test point.

37

3.3.3.4.3 Results:

3-7: Open NI at 1 Meter

3-8: OpenNi at 2 Meters

38

3-9: Open NI at 3 Meters

3-10: OpenNI with Nyko Lens at 1 Meter

39

3-11: OpenNI with Nyko Lens at 2 Meters

Distance Skeleton Arms? Errors

Normal Kinect

1 Meter Yes Partial Yes, missing limbs

2 Meter Yes Yes No

3 Meter Yes Yes No

Kinect with Nyko Lens

1 Meter Yes Yes Yes, Misshapen arms

2 Meter Yes Yes More jittery than the

Normal Kinect

3.3.3.4.4 Discussion

2 meters with the Normal Kinect seems to be the ideal distance and Kinect configuration to use with this

control system.

40

At 1 meter, the equivalent distance of “Near Mode”, the calibration pose was difficult to capture.

Moving back initially until the OpenNI tracked a good skeleton from the depth data was key to getting

the calibration poser down. After the pose was captured, upon moving back up, some of the joints were

out of the field of view. This low certainty joints were either inferred or discarded, such as the subject’s

right forearm and waist. There were some errors, but for the most part it caught “okay”. It was

surprising that it kept track of a skeleton that close to the device. For the Nyko Lens equipped Kinect,

There was a marginally more solid capture of the body, but it produced joints which floated about the

arm. The inability to confidently capture the arms as well as the floating nature of the joints with the

Nyko Lens equipped Kinect makes this distance unacceptable for use with the control system.

At 2 meters, the capture of the outstretched arms was perfect. The FOV was wide enough to get the

necessary joints for using this control system. The only issues came from improper positioning of the

Kinect, which would yield bad results anyways. Once that problem was fixed, it was much better and

consistent than the Microsoft SDK. With the Nyko Lens equipped Kinect, while it captured the skeleton,

the floating joints were a problem again.

At 3 meters, capture was the same at 2M, but subtle motions were not captured due to the resolution

of the depth sensor and the distance from the sensor. In this image the missing foot was due to an

object in the way, not a capture error. The Nyko Lens was not used as its advertized benefits were that

it kept your skeleton tracked while increasing the field of vow of the Kinect and decreasing your

minimum range of usability the Kinect’s gesture based programs.

The OpenNI SDK has proven that it can track skeletons at a very close range as well. However the field

of view of the Kinect has severely limited the useful close range to 2 meters from to sensor in order to

get a full view. The Nyko Lens should not be used as part of this control system due to the joint tracking

errors and the marginal improvements over the normal Kinect.

41

3.3.4 Final choice in SDK

3.3.4.1 Metrics

The following parameters will be used to compare the SDKs in this parametric matrix.

 Seated Mode

 Near Mode with skeleton

 Works with Robot

 Changing Variables

 GUI

 Control Parameters of Kinect Stream

 Native Speech control

 Skeletal Tracking

 Works in Windows XP

 Works in Windows Vista

 Works in Windows 7

 Works in Windows 8/8.1

 Works in OSX

 Works in Linux (Debian)

The elements of the parametric matrix will be graded as per the following:

 1 Point - Yes, Good, or Easy

 ½ Point- No (with conditions), Okay, Moderate

 0 Points- No, Poor, Hard

42

3.3.4.2 Parametric Matrix

Parameter Kinect SDK OpenNI

Seated Mode Yes Not very good, but upper body
works

Near Mode with skeleton Yes No, but can be theoretically be
programmed with some success

Works with Robot Yes Yes

Changing Variables Easy Hard, unless using openCV

GUI Yes No, but can be made

Control Parameters of Kinect
Stream

Yes Yes, but was not able to

Native Speech control Yes No, but can be implemented

Skeletal Tracking Okay Good

Works in Windows XP No Yes

Works in Windows Vista No Yes

Works in Windows 7 Yes Yes

Works in Windows 8/8.1 Yes Yes

Works in OSX No Yes

Works in Linux (Debian) No Yes

Totals 9.5 10.5
Table 3-3: Parametric Analysis of SDK Attributes

3.3.4.3 Discussion

At this point, it has become clear that the OpenNI SDK+python is superior for the needs of the system

(Table 3-3). Despite the enhanced features such as seated mode, which works quite well in default

mode, and the disappointing “Near mode”, for the criterion of consistent and accurate skeleton capture

as the universally installable control system, the OpenNI skeleton implementation is much better for this

continuously puppeteered robot. The Microsoft implementation is better for a gesture based controller,

as was its main intention. The Speech recognition and tilt motor control capabilities make it a strong

contender for a more closed commercial system or more consumer end product. With the Kinect 2 on

the horizon [10] and the Asus Xtion Plus now including the Primesense Skeleton mapping capability and

better depth resolution [11], different options and better capabilities for this implementation may be on

the horizon such as much improved skeletal tracking and predictions. It is important to note that the

OpenNI SDK code will work interchangeably with the Asus Xtion while the Microsoft Kinect SDK will only

43

work with that device and only with the Kinect for Windows. It has also been a repeated experience

with Microsoft that there will be some required software upgrade to use the new hardware in order to

use the Kinect 2.0, such as a required upgrade to Windows 8.1. The Kinect for Xbox or Windows only

works with Windows 7 and up for the Microsoft Kinect SDK.

3.4 Mitigating Servo Jerkiness

3.4.1 Overview

The input side and the output side of the control system are the only places to see how to best reduce

the noise and disturbances that affect the arm’s operability. On the input side, smoothing schemes

were devised, applied, and tested on the SDK code. On the output side, solutions were conceived,

explored, and tested, a few with the help of William Thompson, a research assistant who worked in the

lab for the Simons Fellowship and displayed some of our findings for his research requirements.

Eventually it was settled upon a joint hardware/software solution that involved a new motion scheme

for the firmware and altering the servo motors to generate feedback to the microcontroller.

3.4.2 Proof of Concept System

The proof of concept system was a bare bones approach to show that the concept was feasible. As

shown in Figure 3-12, the concept used the real time values from the Kinect joint data and the

gyroscopic and button data from the Wii Nunchuck, calculated by the inverse kinematics, and send the

servo values to the Arduino Mega microcontroller, which sent those values to the servo motors directly.

There was no feedback outside of the internal servos.

44

Figure 3-12: Input to Output Process Map

The resulting system’s loosely controlled degrees of freedoms lead to the observed end effector sway

and output error in Figure 3-13, which was measured by holding a ruler up to the gripper and viewing

the displacement, yield an approximately 1.27 cm (0.5”) of a 25.4 cm(10”) arm, or 5%. The most

offending joint was quickly discovered to be the elbow. .

Figure 3-13: End Effector Sway of Proof of Concept [12]

Kinect

Wii Nunchuck

Python input

processing

Inverse Kinematics

Servo values

Arduino

Mega

Servos

Arduino Uno

45

Despite having a support spring, this joint had the greatest demands on it in terms of orientation

changes, average dynamic moment, and average static moments. The resulting motion output was

measured by attaching and calibrating a potentiometer to the arm and displaying the remapped values

from 10bit analog in to degrees. These values were calculated and graphed as shown in Figure 3-14.

The 180°/0 values in the beginning were capture errors and should be ignored.

Figure 3-14: Measured Elbow Angle of Proof of Concept (used with permission) [12]

As it turns out, the servo is fighting the moment of the arm with its holding torque and PID

implementation. The initial noise is from the PID settling while the remaining time is the holding torque

fighting the moment. When the holding torque loses, there is a sharp correction by the PID. The angle

is a bit exaggerated in the graph, but that is due to loose components in the arm and errors in the

measurement process.

46

3.4.3 Input- Mitigating Kinect Noise

Since our control system relies on the absolute position of the joint and we do want it to have a near

real-time, a solution is necessary that allows for the system to remain smooth while also responding

with the lowest latency possible.

3.4.3.1 Explored Solutions

3.4.3.1.1 Overview

Four solutions were looked at.

1. Parameter (Jitter, Sensitivity, and Smoothing) tuning of Kinect Data

2. A value rejection based averaging or weighted average program of Servo calculations

3. Averaging of servos calculations

4. Weighted Averaging of servo calculations

Due to the differing methods of finding your skeleton, each solution must address either the strengths

or failings of one or both SDKs. Jitter and Sensitivity plays on the strengths of internal parameters of the

Microsoft SDK, though similar, but not as robust tuning is available on the OpenNI SDK. The Rejection

Algorithm takes a step back and works on the servo data, rejecting sharp spike erroneous values and

smoothing out the motion profile. The averaging of the servo data was initially tested as just a base

calculation for reference and was done from periods 3 to a 7, while the weighted averaging was

experimental, and was also done form periods 3 to 7. Of the tests, only 2, 3, and 4 were able to be done

due to previous configuration issues, incomplete SDK bindings, and researcher capability boundaries.

The best algorithm was found to be the 3 period weighted average and was used for the remainder the

research.

47

3.4.3.1.2 Problems

Problems arose with proposed Test 1. First, the Microsoft SDK, which had the ability to work easily and

directly with the Kinect data, was not universal and was tossed out. Second, OpenNI2’s Python bindings

were not completely implemented and the time of the thesis. OpenNI 1’s python bindings were mostly

complete, and even though the test was moved back to the original XP machine used for creating the

Proof of Concept machine, they would not bind of the C. This was a configuration issue; however, in

fear of the “solution” doing more harm than good. An averaging routine for the raw Kinect data that

would work like smoothing was researched and explored, but varying the millimeters of change would

not do as much as smoothing the final output signal, especially after the floats were converted into

whole number integers. Therefore, it was theorized that maybe we could leave the raw Kinect XYZ data

alone and work with the output servo values to prevent the random jumps. Test 1 was shelved.

3.4.3.1.3 Metric

As all the tests were done on the servo positions, the parameters will be uniform. The following are the

three parameters used for determining the best test:

1. Response time- What is the lag from raw input action to the conditioned input reaction

2. Precision control- Ability to show small yet purposeful changes

3. Error- what is the max error and average overall error

3.4.3.1.4 Parameter tuning of Raw Kinect Data (For reference)

3.4.3.1.4.1 Introduction

The Microsoft Kinect SDK has a jitter parameter, where an algorithm basically averages the samples of

the joint positions and keeps it steady until the joint moves outside of the given jitter radius. There is

also another parameter in the Kinect NUI steam capture called Sensitivity, where the Kinect’s response

to small changes in the skeletal positioning can be attenuated. A low sensitivity will require greater

48

movements to occur before they are registered by the software. As stated before, the OpenNI’s similar

parameters, Smoothing and Sensitivity, were not able to be accessed programmatically using Python,

the main code used for the system’s SDK, and thus was not tested.

3.4.3.1.4.2 Implementation

This test uses the Microsoft Kinect SDK and allows for the capability to record a single motion capture

and replay it. This presents the opportunity to do a truly scientific experiment, as the operator’s

motions and timings, and thus the raw data, are no longer variable.

A recording of an operator pretending to reach out, grab an object, and then move the arm from side to

side will be made and saved as an .XED file in Kinect Studio2. Once the recording is done, the

parameters of the Jitter, sensitivity, and smoothing control will be adjusted and the compensation will

visible using the method in Figure 3-16. The default values, with all parameters set to 0, of the XYZ joint

data of the shoulder, wrist, elbow, and torso will be recorded. Ellipses will be superimposed on the

respective coordinates of position of the shoulder and hand joints to the RGB stream data to be used as

a visual reference. Then, the values of the jitter, compensation, and sensitivity will be adjusted and the

new XYZ data and recorded. After testing out the variables in a static form, towards the purposes of an

easy to access GUI, slider bars to be put in place to allow the operator to dynamically readjust the jitter

and sensitivity using the Visual C# WPF form. The output of this scheme would be as shown in Figure

3-15. Further algorithms were theorized, but not implemented.

2
 OpenNI SDK does apparently have this recording and playback feature, using NISample, but it was realized far too

late in the research.

49

Figure 3-15: Possible Future Implementation

Figure 3-16: Visual Parameter Tuning Algorithm for Kinect Data Stream

3.4.3.1.4.3 Findings

In practice, a combination of the two systems will be useful, depending on the parameters given to the

software by the user. The motion capture was much smoother and more fluid, and there was not play

 Declare Image box as ViewK

 Declare ellipses for shoulder and hand as Shoulder and Hand

 General jitter, jit, sensitivity, sens, variables set.

Draw RGB frame in ViewK

Run Kinect Skeleton
Capture using jit and
sens compesnations

Get Right Shoulder and Right
Hand joint XYZ positions

Place ellipses on based upon X and Y found
shoulder and hand joints in ViewK

Set RGB frame resolution = Skeletal frame resolution = ViewK frame size

50

in the registered position. However, as the jitter radius and sensitivity were increased, the latency

between motion and output also increased. There was also the problem that small and gentle motions

were not able to be perceived in these modes. Further algorithms, Figure 3-17, were conceived where

the sensitivity and jitter radius were decreased if the operator hovered in an area for too long or upon a

button press. However, as the Kinect SDK did not fit into the concept of a universally installable system,

they remained simple conceived.

Figure 3-17: Conceptualized Enhanced Jitter, Sensitivity, and Smoothing Flowchart

General jitter, jit, sensitivity,
sens, and compensation,
comp, variables set

Set comp= 1

Set comp = percent value

User makes small
movements?

Run algorithm to find
appropriate percent
reduction

Yes No

Jit = jit*comp
sens= sens*comp

Introduce new parameters into the
Skeleton algorithm and find joints

51

3.4.3.1.5 Servo Value Smoothing Program Implementation

Each servo solution will be under a function called smoothArd. This will run in the moveArm() function

and will execute right after the inverse kinematics algorithm and the sign checking subroutines. The

current and last 6 previous servo output values, for a total of 7, will be stored in an array for each servo.

Figure 3-18: Smoothing function placement in moveArm()

The program will run the recorded out and play it out as if it was streaming live kinect data. The values

of both the raw and the conditioned servo values will be stored in a CSV file for later graphing and

analysis in Microsoft Excel.

3.4.3.1.6 Moving Average

3.4.3.1.6.1 Introduction

The standard way of smoothing a set of data is taking a moving average. In a previous depth-based

research project with the Kinect at the TLT Media Labs, taking an average of the depth matrix values of

Get shoulder rotate angle
(sR)

Run checkSign on sR, sA, and e

Run IK algorithm to get sA and e

Run smoothArd on sR, sA, e, wR,

wA.

Return conditioned sR, sA,

e, wR, wA from

smoothArd

Send sR, sA, e, wR, wA to

moveArd and output new servo

positions

52

each point over a defined number of frames assisted in solving some of the noise problem. Thus, it is

hoped that a simple averaging algorithm taking the mean of the last few historical angle values of each

servo would give a smoother output for the Arduino Mega.

∑

Equation 1:Average

3.4.3.1.6.2 Data

Figure 3-19: Comparison of Average Based Smoothing Performance on Elbow DOF

3.4.3.1.7 Moving Weighted Average

3.4.3.1.7.1 Introduction

While the simple average smoothed out the servo output signal, the response time started off at 3

frames and only got worse. The next algorithm to try was the weighted average, which was made more

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 1113151719212325272931333537394143

A
n

gl
e

 (
D

e
gr

e
e

s)

Frame

Comparison of Average Based Smoothing
Performance on Elbow DOF

Raw IK Servo Angles for Elbow
DOF

3 Period Ave

5 Period Ave

7 Period Ave

53

flexible for programming with the solved Equation 2, which allows any size array of values to be

evaluated. The weighted averaging scheme puts a stronger emphasis on the newest values, giving it a

better response time. Imagining that there is an variable sj in the numerator, instead of putting the

same value into to sj, as with simple averaging, the value of sj increases the more recent the value is in

the array. The denominator is the sum of the index numbers in the array.

∑

∑

Equation 2: Weighted Average for any Number of Periods

3.4.3.1.7.2 Data

Figure 3-20: Comparison of Weighted Average Period Performance On Elbow DOF

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

A
n

gl
e

 (
D

e
gr

e
e

s)

Frame

Comparison of Weighted Average Period
Performance On Elbow DOF

Raw IK Servo Angles for Elbow
DOF

3 Period Weighted Ave

5 Period Weighted Ave

7 Period Weighted Ave

54

3.4.3.1.8 Findings

It is important to note that the initial “bump” for each plot of an average on each graph is where the

averaging actually starts. Previous to that point, it is simply copying the values form the raw data until

the array of values is filled enough to complete the averaging period. When it starts averaging, the

value will rise to the first true average, and then keep going from there.

The best scheme by far was the 3 period weighted average smoothing method. It had a response time

of 1 frame in most cases and followed the trend of the servo data rather than the noise. It is precise

enough to computer some nuances in the control, like the bobble between frames 10 and 20. In terms

of error, the performance only misses the peaks of the raw servo motions and there is the 1 frame

discrepancy. While the 4 (not pictured) and 5 period weighted average performed well, and had a

smoother curve to it, the 2-3 frame delay that it sometimes had at too much of a cost in latency.

The regular averaging performed as expected. However for each incremented period, there is an

increased delay in response time and was very imprecise. Thus, the error was also quite large. This

smoothing method is not suitable at all.

In terms of response time, precision, and error, the weighted average is still, by far, the best performer,

even on the smoothing. In future implementations, in a more mature release candidate, the weighted

average scheme should be used. Compared to the 5- period average, the same period the rejection

algorithm uses, it fares a bit better. There is a slightly better response time on gradual changes.

However, it does not handle peaks very well, intended or noise based, and there is noticeable stepping.

For a view into a future averaging technique it is interesting, but it is not ready to be an employed

smoothing method.

55

3.4.3.1.9 Method of Choice

The chosen smoothing algorithm is the 3 period weighted average. It will be implemented in the Kinect

SDK Code after the IK servo values are calculated.

3.4.4 Output- Servo Jerkiness and System feedback

3.4.4.1 Overview of the Issue and Solution

The mixed use of analog and digital servo motors presented an unusual issue where each servo had its

own PID controller. These independent PID controllers create the following problems:

1. There is a high injection of disturbances into the test platform arm as the servos are

programmed to move to the specified positions as fast as possible

2. There is a large visual inconsistency due to the disturbances between the natural motion of the

person and the actual motion of the arm, which can throw an operator off.

A joint hardware and software solution was devised to solve this problem for both the PID and easing

solutions. First, the servos each had to be modified in order to gain access, then the microcontroller to

be wired to appropriated accept the inputs, then finally the method how the microcontroller’s firmware

processes the servo commands had to be completely revamped. This solution will be applicable for

both DC and stepper motors.

3.4.4.2 Getting Hardware Feedback

The theory of operation of the servo is that the servo is a geared down DC motor that uses a

potentiometer as a feedback sensor, measuring its current angle, for the PID loop the internal controller

goes through. The hardware fix was to tap into the potentiometer to get the voltage of the

potentiometer, and get the current angle from that using one of the Arduino Mega’s Analog Input Ports,

as shown in Figure 3-21.

56

Figure 3-21: Arduino Mega With Servo Feedback

57

Servo Min V Max V

Shoulder Rotate .31 1.88

Shoulder angle .57 2.73

Elbow .45 1.71

Table 3-4: Measured Voltages

The voltages of each servo’s potentiometers were measured and are shown in Table 3-4. The Arduino

Mega, with 16x 10 bit analog inputs (1024 divisions) would see a working span of 321-442 divisions for

the range of 0V-5V. This gives a better than 180 point resolution that is being employed by the TX/RX

command protocol, though it can be made better. This required the use of the analog reference voltage

(AREF) pin in order to lower the reference voltage for the 1028 ADC. By using 3.3V and calculating the

voltage drop across the internal 32 kΩ pullup resistor using the equation, a 5.6 kΩ

Equation 3: Voltage Divider Equation

Equation 4: AREF Voltage Calculations

This new reference voltage increases the number of divisions in the working range to 572-787.

Servo Min V Max V Min ADC Value Max ADC Value Span

Shoulder Rotate 0.31 1.88 113.028307 685.462 572.4337

Shoulder angle 0.57 2.73 207.826242 995.3783 787.5521

58

Elbow 0.45 1.71 164.073349 623.4787 459.4054

Table 3-5: Servo Voltage and ADC Values

With the implementation of the hardware feedback, the input/output flow map changes to include

Figure 3-22: New Data Flow Map

3.4.4.3 Cascading PID

3.4.4.3.1 Overview

Proportional-Integral-Derivative algorithms work by using a closed loop system. They are regarded for

their response time, ability to handle disturbances and noise, and. Early in the research, a cascading PID

method, where the system post processes the servo values with a PID algorithm and then sends the

processed servo values to the servos to be handled by its internal PID, as shown in Figure 3-23, was

implemented for the servo and DC motors while working with William Thompson.

Kinect

Wii Nunchuck

Computer (python input

processing)

Inverse Kinematics

Servo values

Arduino

Mega

Servos

Arduino Uno

59

Figure 3-23: Simple 2-Stage Cascading PID Algorithm Flowchart

While it did mitigate some noise, in testing, it shed light to the root of the problem. It was found that

the motion of the servos themselves introduced the most noise into the hardware system. This was due

to the sudden initial jerk that the PID does and then settles easily into the setpoint. The PID algorithm

was then deemed to be the inappropriate choice for a smooth and stable motion. The servo’s PID were

the root o some of the robot arm’s instability. A step back was taken and looked at how an organic being

moves versus how a robot moves. After further research into the concept of servo “easing”, it seemed

the viable way to go.

3.4.4.4 Easing

3.4.4.4.1 Overview

Research came to the conclusion that an “in-out easing” algorithm would be suitable to solve the

problem, as it gently accelerates the motion, gets up to speed, and then gradually decelerates the

Kinect

Wii Nunchuck

Python input

processing

Inverse Kinematics

Servo values

Arduino

Mega

Servos (2
nd

 PID algorithm)

Arduino Uno

1
st
 PID Smoothing

Algorithm

60

motion, based on delta between current position and end point. These equations are based on the open

source Easing library for Ardiuno created by Tobias Toft of tobiastoft.dk, which are based on Robert

Penner’s animation easing algorithms for Adobe Flash motions. The basic equations were then changed

from the static, serial, single servo code into a dynamic, parallel, multiple servo code. Simulators had to

be designed to properly test, troubleshoot, and tune the easing algorithm’s effectiveness before finally

implementing it on the robotic arm test platform.

3.4.4.4.2 Implementation

3.4.4.4.2.1 Motion Profile and Setup

The effectiveness of four of the easing methods was tested: cubic, quadratic, quintic, and quartic.

Figure 3-24: Easing Motion Profiles

Real world testing showed that quadratic easing gave the best motion profile for low disturbances, due

to its shallower departure and return to stop. Quadratic In and Out (quadIO) Easing’s C function is as

follows,

float quadIO (float t, float b, float c, float d)

0

20

40

60

80

100

120

140

160

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

A
n

gl
e

 (
D

e
gr

e
e

s)

Iterations

Easing Motion Profiles

Cubic

Quadratic

Quintic

Quartic

61

{
 if ((t/=d/2) < 1) return c/2*t*t + b;
 return -c/2 * ((--t)*(t-2) - 1) + b;
}

Quadratic’s Out (quadO) Easing’s C function is as follows

float quadO (float t, float b, float c, float d) {
 return -c *(t/=d)*(t-2) + b;
}

The new data flow map in Figure 3-25 shows the easing code right before the servo’s internal PID

implementation as the easing code will already have accommodations for it.

Figure 3-25: Easing Algorithm Data Flow Map

3.4.4.4.2.2 Microcontroller Code

First, the code enabling AREF was added in set up. It was enabled in a way that would allow for the user

to choose whether or not to use the AREF without having to make any software changes. In order to

Kinect

Wii Nunchuck

Python input

processing

Inverse Kinematics

Servo values

Arduino

Mega

Servos (PID)

Arduino Uno

Easing Smoothing

Algorithm

62

make a dynamic, multi-servo implementation, the iterative for loop had to be wildly revamped to be

parallelized and work off a decision tree.

A 3 by 7 element array that contained each servo, Table 3-6, and the necessary variables, Table 3-7, was

created for computing the easing schema.

Array Element Joint

0 Shoulder Rotate

1 Shoulder Angle

2 Elbow
Table 3-6: Joint Array

Sub Array
Element

Variable Variable Name

0 Setpoint goal

1 start position start

2 difference between start position and setpoint Δ

3 duration dur

4 Calculated current position (last output) cur ∢

5 Elapsed position (last output or feedback) epos or cur ∢

6 Elapsed duration pos

7 Moving Flag State

8 New Angle Holder new ∢
Table 3-7: Joint Variable sub-array

A decision tree algorithm, Figure 3-26, was devised after testing that handled the cases of moving and

direction changes, moving and setpoint delta increases, moving and setpoint delta decreases, and not

moving and new setpoint received. Once the decision tree is solved, the results are quadIO, quadO, and

“do nothing”, which all output the latest calculated servo value, cur ∢. Variable pos is updated by

incrementing by 1 at the end of each active motion loop and resets to 0.

63

Figure 3-26: Easing Decision Tree Algorithm

For each servo, set
pos = 0, dur = 20, cur

∢= start, moving
state= 1, delta,

For each servo
check moving

state

new ∢=
cur ∢?

Pos = dur

new
∢ ≠cur ∢?

Δ to
move
< 1°?

Set state
= 1, reset
pos and

dur

Update pos and
cur ∢, run quadIO

Update
pos, run
quadIO

Pos >
dur

Yes

Add to dur
and run
quadIO

No State 1
(Stopped)

Yes

State 2
(Direction
Change)

State 0 (Moving)

No

Change in
direction?

New ∢ - cur ∢<
delta or goal is

< delta or is
delta loops

away?

Start
Easing

Function

Get new ∢ and cur ∢
for each servo from

serial and
feedback/calculations

No

Yes

new ∢<
cur ∢?

No

Yes

No

Add 5° from
goal, set state
= 2, set dur =
5, run quadO

Subtract 5° from
goal, set state =
2, set dur = 5,

run quadO

Consider
conditions met,
set all variables,

run quadIO

Do
nothing

Reset easing
variables, set
goal = new ∢,
set state = 0,
run quadIO

Start
Servo

Function
loop

Reset easing
variables, set
goal = new ∢,
set state = 0,
run quadIO

State 3
(Transition)

Update pos,
run quadO

Update cur ∢, set start
= cur ∢, goal = new

∢,state = 0, reset pos
and dur, run quadIO

No

No

No

Yes

Yes

Yes

64

3.4.4.4.3 Findings

After refining the decision tree, the final code in Figure 3-26, when simulated, created a more attractive,

smoother motion profile than the no smoothing (servo PID) or Cascading PID solutions while still being

close to the servo PID profile.

Figure 3-27: Robot Arm in Simulator

Testing between the raw and 3 value weighted moving average, it performed best when used in

conjunction with a smoothed Kinect servo output. When used together, though, the error between the

in the user input and the motion output does grow, as the latency builds, but only by a few frames due

to the delay caused by the smoothing (Figure 3-28). While the average error of the motion was 1.22%,

the maximum error spiked at 17% (Figure 3-29). This was due to a rapid motion in all 3 axis, each which

had about 6% error at the time, and was only momentary.

65

Figure 3-28: Motion Error Small but Apparent in Raw Versus Smoothed with Easing

0

2

4

6

8

10

12

14

16

18

1
7

7
1

5
3

2
2

9
3

0
5

3
8

1
4

5
7

5
3

3
6

0
9

6
8

5
7

6
1

8
3

7
9

1
3

9
8

9
1

0
6

5
1

1
4

1
1

2
1

7
1

2
9

3
1

3
6

9
1

4
4

5
1

5
2

1
1

5
9

7
1

6
7

3
1

7
4

9
1

8
2

5
1

9
0

1

%
 E

rr
o

r

Iteration

Motion Error Analysis

% Error X Axis

% Error Y Axis

% Error Mag

66

Figure 3-29: Simulation Error analysis of Raw Smoothed Values versus Easing Smoothed Values

This implementation will work for stepper and DC motors but requires feedback and may require a more

dynamically tuned PID algorithm for better control.

Figure 3-30: getKinect Function Flowchart

3.5 Visual feedback implementation

3.5.1 Introduction

For any mobile system that will perform its actions possibly outside of line of sight (LOS), some sort

visual feedback is a necessity. As per the communication scheme of Figure 3-31, the robot is to use a

900Mhz TX/RX video transmission system to get a first person view (FPV) from the robot perspective.

Get joint data for shoulder, elbow,
hand, and torso

Send joint data to
smoothArd function

Get new joint values from
smoothArd

Calculate

 shoulder-hand distance

 shoulder rotate angle

 find and normalize coordinates on the
new workspace plane for the robot arm

Calculate deltas between shoulder and
hand joint values

Get deltas between shoulder and
elbow and elbow and hand joints

values

Calculate total length of arm
using deltas

Get the minimum workspace value using
torso joint y value

Return shoulder rotate angle, shoulder-hand y,
calculate shoulder-hand z, shoulder-hand distance,

length of arm, and minimum workspace value

67

However, in the concept design, there was no video output as there was no GUI. The visual feedback in

important for two reasons:

 Safe locomotion of the robot from desired positions

 Verifying that the arm is manipulated as intended towards its target end position

In practice, without the visual feedback, even if the operator is in full view of the robot arm and the

target object the operator wishes to retrieve, it is still incredibly difficult to quickly and efficiently

manipulate the object due to the disconnect in hand-eye coordination.

Figure 3-31: Flowchart of Conceptual Camera-to-Computer Communication Schemes

A capable yet simple GUI can be made by directly manipulating the pixel matrix, text overlays, and other

various means. Instead of doing a console print, these tools can be used to show the system’s working

states, such as Kinect Capture on or off, whether the Kinect sees the operator’s body, button states, or if

the gripper is closed or open.

3.5.2 Remote Viewing Implementation

3.5.2.1 Addition packages to install

OpenCV 2.1 was installed to display the video stream from the video grabber and overlay text and

graphics. It has python bindings that allow for easy integration into the code. It also has the ability to

Camera Video Tx

Computer

900Mhz FM

NTSC

Video Rx Video Grabber

USB

RCA

Camera

Computer

OR USB

68

capture and use the OpenNI Kinect stream, however, there were difficulties setting that up due to the

OpenNI2 software defaulting it’s installation into a folder named OpenNI2 instead of just OpenNI [13]

Other packages considered were pyVLC, which are python bindings for the popular VideoLan Codec and

would also allow for video and streaming, as well as wxPython, which is a GUI design based on the wx

framework. pyVLC was abandoned due to not getting it to install correctly on the test system, while

wxPyton was considered beyond the scope of the project for simply capturing video without pyVLC.

3.5.2.2 Programming

The implementation of the remote viewing window requires it to be integrated in the main, getJoints(),

and moveArm() functions throughout the code, as shown in Figure 3-32. OpenCV A rudimentary

window showing the view from the robot camera was initialized in main using openCV’s imshow. Since

the video window will be open upon program start, many states of important conditions can be shown.

The Skeletal tracking state, or when player is found and added to users in getJoints() will be shown as a

circle, where red means no skeleton found and green means a skeleton is found and is being tracked.

The “Kinect capture” status, or kC’s state, is declared as a text overlay.

69

Figure 3-32: Flowchart of Conceptual Design of Video GUI

3.5.3 GUI Implementation

With the implementation of the remote viewing window, a canvas as been created to display other

mission critical data in the operator’s field of view. Previously, the system had no way of showing a live

data feed that was not printed in a console window. The data that is required to be displayed are:

 The Kinect tracking state

 The servo angles

 The gripper state

 The active control state

This data is crucial for safety, as well as. While a proper GUI for this system should allow for changes to

system variables dynamically, a graphical user interface should be simple and effective, but intelligent in

Declare variables for rsync, image, and
video functions

Initialize video display
in main function

Use keystrokes to control
functions

Overlay text based upon current
system status and parameters

using separate function

Get player status in
getJoints()

Get all calculated system
command and control values

and parameters in moveArm()

Show video

70

doing so as to not overwhelm the operator. Changing colors were used to show capture states and

glyphs were used when possible (Figure 3-34). The concept of placing and displaying the information

was straight forward, as shown in Figure 3-33. OpenCV manipulates the stored image array with the

text that was gathered throughout the running iteration of the program. Text, shapes, and colors are

added directly to the RGB data of the image matrix and then, when the image is being called to be

shown, is displayed.

Figure 3-33: Flowchart of conceptual GUI implementation

Get image matrix

from remote camera

Get servo values after IK is

completed and add to image

matrix

Get player detection

status and add to image

matrix

Get Kinect capture. Change text

colors depending on Kinect capture

state

Get gripper state. Switch glyphs between

open and closed depending on gripper

states.

Display image

matrix using cv2

71

3.5.4 Kinect View Implementation

3.5.4.1 Motivation

It is quite necessary in enabling the skeletal feedback for one primary reason about all others: if

something is wrong with the Kinect capture, the operator can adjust their pose or the Kinect in order to

fix the tracking error and correct the problem. Most of the observed aberrant behavior from the Kinect

had to do with inappropriate positioning of the Kinect. Most of the mysterious aberrant behavior of the

robot arm output was traced back to an erroneous joint position given by the Kinect. This aberrant

behavior is a safety issue as the arm can move wildly out of control, breaking things, injuring animals or

people, spilling liquids, or damaging the robot itself. By giving the operator the skeletal view, they can

see if the Kinect is performing or there are some conditions surrounding the Kinect that needs to be

addressed, and quickly stop Kinect capture or reposition their bodies back to the last good captured

state.

3.5.4.2 Background on How it was Accomplished

The sample code for displaying the skeleton from the python program existed, however the libraries for

doing so, namely pygame, were not included in the implementation of the control system. Will

Thompson was tasked with porting the code from python to OpenCV. He successfully accomplished this

task. However, the implementation for displaying video was later changed to openCV’s highgui

wrapper, cv2. His work had to be ported again to work with cv2, which was my task. This was not a

difficult task, but features had changed and had to be researched.

3.5.5 Results

72

Figure 3-34: 1st Screenshot of Visual Feedback System

Figure 3-35: 2nd Screen Short of Visual Feedback System

3.5.6 Discussion

While the obvious practical benefits of visual feedback are that operators can see what they are picking

up remotely, get better hand-eye coordination with the robot arm, and do obstacle avoidance,

intangible benefits of operator security and confidence are even more important. The inclusion of the

73

visual feedback on the Kinect input, important system parameters, and robot arm output allow the

control system to be operated inside and outside of LOS with greater safety. The operator now has a

powerful troubleshooting technique with seeing the Kinect skeletal view (Figure 3-35). They can easily

tell if the Kinect is seeing their bodies or not, as shown in Figure 3-35, and visually verify if the control

system is actively capturing them, allowing them to freely move their arms to perform a more local task.

These simple considerations are steps in the right direction for bringing safety to the potentially

dangerous machine of household robotics.

3.6 Configuration Files

3.6.1 Overview

The system is touted to work with multiple robots, however, there is no user friendly way to quickly

implement a new robot configuration, choose input/output COM ports, or switch back to an old

configuration. Also, despite being well commented and the placement of all user variables be close to

each other, even a seasoned user would have to search the program and know where the intended lines

to change are, as well as how and which to change them. The solution to this was to implement a

configuration file that allowed the user to navigate through the options using the SDK’s text based

console in lieu of a more mature and comprehensive GUI. A further benefit, using the said configuration

file, a more computer savvy operator would be able to change erroneous elements of a specific machine

profile, without having to recreate a whole new profile.

74

3.6.2 Implementation

3.6.2.1 Considerations for Config File Schema

3.6.2.1.1 Machine Identifier

The operator should be able to name each machine as they wish. They should be able choose between

a list of names at the start and then have the program use the configuration variables to allow the

specified robot to be properly manipulated.

3.6.2.1.2 Inverse Kinematics

The inverse kinematics system is dimensionless. The only requirement is that the units remain the

same. For example, the units used to determine the link lengths of the test bed LEGO robot used with

the Simon’s Fellowship student were the number of studs. Studs are the knobby connecting part on the

top of most LEGO bricks and are the standard unit when dealing with LEGO bricks in terms of length and

depth. This allows the configuration data to also be dimensionless and assists with the user friendliness

of the system.

The inverse kinematics links are named analogous to the bones of the human body. The links are:

 Humerus- the bone or link that connects the shoulder to the elbow

 Ulna- the bone of link that connects the elbow to the wrist

 Hand- the link where the gripper is attached

Other information needed for IK is the base height. This is the height above the ground to where the

shoulder is attached.

3.6.2.1.3 Communications port

Although the Arduino prototype boards, from Reversion 3, have a USB VID, between different machines,

operating systems, or Arduino boards, the serial communications port, or com ports, can change. Due

75

to this, the respective input/output comports should also not be hard coded but be user defined. Since

the com ports are not static, the program should be able to see and display all of the comports and then

let the user decide which to use for what.

3.6.2.1.4 Motor and Feedback Types

A robot can be manipulated using steppers, servos, or DC motors. Each robotic system can have

feedback or no feedback. To comply with the universal nature of the system, a motor type and

feedback identifier needs to be introduced. These variables should be passed from the SDK program to

the robot controller, as that processing is handled there.

3.6.2.2 Programming

The programming of the config file had to be done outside of the main loop as all the variables changed

were global variables and had to be initialized before the main loop. Two config files are created by the

program, if it does not exist, and/or parsed: robot.cfg and computer.config. Two config files were

necessary as their parameters are independent of each other.

Robot.cfg, the config file used in the algorithm in Figure 3-36, contains the machine profiles for the

robot, such as link lengths, motor type, and feedback. The program allows the operator to enter a new

profile automatically if none exists or manually make the choice to create a new one or make changes if

they desire. After, the program allows the used to select an existing profile to use, using the friendly

names that the operator entered, which are identified by a dynamically enumerated numbered list. The

computer then parses the entry for the link lengths, motor and feedback information.

Computer.cfg, the config file used in the algorithm in Figure 3-37, contains the com ports necessary as

those were machine and Arduino dependent. Like robot.cfg, the program allows the operator to enter a

new profile automatically if none exists or manually make the choice to create a new one or make

76

changes if they desire and then pick the one that they want to use. Computer.cfg will assist the

operator in selecting the com ports by scanning for available com ports in the computer.

77

Figure 3-36: Robot.cfg Flowchart

Instantiate configparser

Read robot.cfg

Enumerate entries in robot.cfg

Start profile entry while loop

Add new profile
entry?

Pick entry to use

Are there entries?

Entry valid?

Save new entry

User enters profile name, base height,
link lengths, motor type and if there is

feedback

Enumerate and list profile names and
numbers of entries

User selects desired entry

Valid
selection?

Use selection subsections to populate links,
motors and feedback

Close robot.cfg

Yes

Yes

Yes

Yes

No

No

No

No

Continue to start configuring computer.cfg

78

Figure 3-37: Computer.cfg Flowchart

Read config file

Enumerate entries in config file

Start profile entry while loop

Add new profile
entry?

Pick entry to use

Are there entries?

Entry valid?

Save new entry

User enters input and output serial com
ports

Enumerate and list profile names and
numbers of entries

User selects desired entry

Valid
selection?

Use selection subsections to populate serial
inputs and outputs

Close config file

Yes

Yes

Yes

Yes

No

No

No

No

Close config parser

79

3.6.3 Test 1

3.6.3.1 Overview

This test addresses the user friendliness of creating a new profile and accessing an old one. As

previously stated, the operator would have to parse the 1000 line code and manually enter in the

necessary values correctly. If the operators simply changed machines, microcontrollers, or robots, they

would have to undergo this process again. The test will be a timed test, in comparison to redoing the

same information using the old method. Each subject will also be given a Scoville test concerning the

usability and ease of each method.

3.6.3.2 Task 1

The User will have to create a completely new robot profile given the parameters3 that

 Profile Name = <User Choice>

 Base Height = 3.25

 Humerus = 5.75

 Ulna= 7.375

 Hand = 3.875

 Motor type = Servo

 Feedback = None

as well as a new computer profile with the parameters that

 Profile Name = <User Choice>

 Input = COM5

3
 These link length and motor parameters are from the robot arm measurements and motor type given on

Lynxmotion AL5D Robot Specifications sheet found at http://www.lynxmotion.com/driver.aspx?Topic=specs04

http://www.lynxmotion.com/driver.aspx?Topic=specs04

80

 Output = COM8

This test will examine the time it will take to institute and use a brand new profile. Considering old

method required an experienced programmer, the test is only to validate the effectiveness of the

configuration file system as “easier”.

3.6.3.3 Task 2

The operator has to select their already built profile without adding any new profiles. They will repeat

the process soon after to demonstrate if the selection process will speed up upon a repeat attempt

3.6.3.4 Results

Figure 3-38: Task 1- Config File Creation Test Results

81

Figure 3-39: Task 2- Config File Startup Test- First Run Results

.

82

Figure 3-40: Config File Configuration Selection Speed test

 New System Old System

Test Operator

1

Operator

1

Mistakes

Operator

2

Operator

2

Mistakes

Operator

1

Operator

1

Mistakes

Operator

2

Operator

2

Mistakes

Create

Profile

First Run

(sec)

60 0 92 1 236

seconds

1 413 1

Create

Profile

Second

52 0 57 0 97

seconds

0 148 2

83

Run (sec)

Select

Profile-

First Run

(sec)

10 0 16 1 0

Select

Profile-

Second

Run (sec)

5 0 11 0 0

Ease of

Use

Grade (1-

10)

9 10 2 3

Usability

Grade (1-

10)

9 3

Table 3-8: Test 1 Results

3.6.3.5 Discussion

3.6.3.5.1 Profile Creation Test

This test was successfully completed in 60 seconds (Figure 3-38). To do this manually, the operator

would have to go to 3 different sections of the code, identify the correct variables (the code is well

commented as this was the previous method), make the correct changes in the correct format, and then

hope that the system did not error out due to a mistake. This would have to occur upon each device

change or operating system. When Mr. Thompson first had to configure the arm for his machine and

84

the LEGO test robot, the time to do this was about 4 minutes with verbal help from me. This took 25%

of the time as well as is user friendly enough for anyone to do, as long as they have their machine

specifications on hand, which should be provided by the machine manufacturer.

3.6.3.5.2 Profile Selection Test

The first run (in Figure 3-39) shows that with reading all the options, an operator can select an existing

profile in 10 seconds. Once an operator knows their profile options, they can speed through the

configuration file selection process in 5 seconds, as shown in the second run screenshot in Figure 3-40.

However, as shown in Table 3-8, this test does worse than the old system, which just uses the hard

coded files and doesn’t ask you to interact at all. This time can be cut down by implementing a default

profile, or the last used profile, making it 1 key stroke to enter instead of 4, but it still will be longer than

no time at all.

3.6.3.5.3 Verdict

The program successfully improves the system by allowing the average, literate operator easy access to

manipulate key parameters of the control system.

3.7 Summary of Research and Design Work

At this point, the revised system is ready for full system testing. Each of the proposed area for changes

has been addressed. The SDKs were compared and parametrically analyzed, leaving us with the

determination that the OpenNI SDK was the better SDK to move forward with due to the Kinect SDK

poor operating system support and potentially problematic method of tracking skeletons (Section

3.3.4.3). The servo value output from the main processing was found to be extremely noisy and a

variety of smoothing algorithms were used. The decidedly best smoothing method was the 3-period,

moving, and weighted average (Section 3.4.3.1.9). It had a single frame of delay compared to the raw

values, yet gracefully followed estimated the trend of where the raw values wanted to go, but was too

85

noisy to accurately reach. On the output side, a new servo output scheme on the Arduino mega was

explored. After exploring a cascading PID algorithm, it was discovered that the initial burst of speed

from the large initial error contributed to the system instability by disturbing the other servos. An

easing algorithm was then pursed, simulated, and successfully employed in the code. This algorithm will

be used in the Arduino Mega code (Section 3.4.4.4.3). Visual feedback was finally implemented using

OpenCV (Section 3.5). The visual feedback scheme included remote viewing from the robot, getting

text, glyph, and color based feedback of important system parameters, and viewing the skeletal

representation using the joint data. This will improve user confidence, troubleshooting control system

misbehavior, and safety. Finally, the addition of the configuration files allows the system to be more

portable when changing robot arms, machines, or microcontrollers (Section 3.6). This replaces the old

method of hard coding in values, which became increasingly difficult for the uninitiated or non-

programmer to do due to the increasing complexity of the code. Other capabilities, such as recording

and playback of the raw servo values, the simulator, and controlling two arms, and an a smoothing

algorithm that would address the needs of those suffering from spastic muscle control maladies were

implemented, partially tested, but detailed as part of this thesis. Next time.

86

Chapter 4

Progressed System

4.1 Overview

This section will detail the new, altered, or additional functions and methods in each program due to the

findings in this research. The final implementations were

1. Control side smoothing of servo values using the 3-period moving weighted average method, as

decided upon in Section 3.4.3.1.9 and showed in Section 3.4.3.1.7, pages 55 and 52 respectively.

It is implemented in the Arduino Mega code as moveServos(), quadIO() and quadIO() under

Section 4.2.2.2 on page 96.

2. Robot side smoothing of servo motors using the easing method of Section 3.4.4.4 on page 59. It

will be implemented in the Python code as smoothard() and illustrated in Section 4.2.1.2.2 on

page 90

3. The Visual feedback and GUI created in Section 3.5 using OpenCV. It will also be implemented in

the python code and had to be distributed throughout several main functions, such as the main

function, main while loop, getJoints(), and moveArm(). It will be used in the main process and

the sub functions, as detailed in Section 4.2.1.1 on page 87 and the functions will be illustrated

under Section 4.2.1.3 on page 91.

4. The configuration file and built methods of quickly switching the system variables which allows

for the operator to quickly move between differing computers, robots, and Arduino devices.

This was discussed in Section 0. It will be implemented in the main process of the python code

and is detailed in Section 4.2.1.1 on page 87. The helper function to scan the serial ports and

return the list is found in Section 4.2.1.2.1 on page 89.

87

5. The final communication scheme, now with the visual feedback, is documented in Section 4.3.1,

on page 99.

This will be implemented and tested on the test bed robot platform for verification of system

improvements. All new functions and process flows will be illustrated using flowcharts.

4.2 Code

4.2.1 Python

4.2.1.1 Main Process Loop

As illustrated in Figure 4-1, With OSCeleton running, import the program libraries listed in Section

2.2.4.3 s well as configParser, random, OpencV, and csv. Initializ the global variables for the servo

arrays, link lengths, frame counters and other important system values, initialized the serial

communications, and started the OSCeleton server. Open the configparser and allow the operator to

choose the robot profile they want to use or to add a new one. Once they go to the next step, they are

asked what computer communications port is to be used for this machine. Once selected, the video is

initialized and the main while loop begins, which calls getJoints(). getjoints() waits for a message from

the OSC server, which would contain player data. If no player data is received, it exits the function, but

the while loop calls it again on the next iteration to check for messages. If player data is found, the

player data, which includes the joint data, is added to the player class and moveArm() is called.

moveArm() sends a request message to the Ardiuno Uno and then waits for the replay with the Wii

control data. After it gets the data, and parses and conditions the data using getWii() and its helper

functions, the parsed Wii command string value that includes the controlling variable for whether to

actively process the inverse kinematics is checked. If the condition is false, it simple returns the last

values of all the servos, motor controls, and gripper states. If the condition is true, the program uses

getKinect() to parse the player data for the necessary joint data and then start conditioning it for the

88

inverse kinematics by getting the rotate angle, getting the humerus and ulna link lengths using

trigonometry, getting the length and magnitude of the arm, position of the start and end effector, and

then maps end result values from Kinect space to robot arm space. The new mapped values are sent to

IK(), where inverse kinematics finds the servo values and returns them. After a few checks, the values

are sent to the smoothArd() function to be smoothed using a 3-period weighted average. These

smoothed values are saved in the servo value arrays and are sent Arduino Mega in the moveArd()

function. The new servo values are saved to the global values using angles() and the program runs

showVid() before ending the program loop and returns to the main while loop.

89

Figure 4-1: Flowchart for Main Kinect Processing

4.2.1.2 Sub functions

4.2.1.2.1 scan()

Sub function scans through available serial ports and returns list to operator.

Initialize global
variables and

arrays

Import
libraries

Start
OSCeleton

server

Configure then parse
robot.cfg (Figure 3-36)

and write to related
variables

Configure
Computer.cfg
(Figure 3-37)

New
Entry?

Run scan() (Figure 4-2), enter
and return parameters, save

entry

Select computer.cfg
configuration

Initialize and start
robot cam and

window

Begin
Main
loop Run getJoints()

Set Kinect text color to green
and run drawPlayer() (Figure

4-4)

Player
found?

Run showVid()
Figure 4-6 Run moveArm()

Send wii
nunchuck

request code

Get and parse
wii stream with

getWii()

Run getKinect(), condition
result, then run IK() and

condition result.

Capture
player?

Run showVid()

Figure 5-3

Run
angles()

Run smoothArd()
Figure 4-3

ensure wA is level and
send values to robot

with moveArd()

Yes

Yes

No

No

Yes

No

90

Figure 4-2: Flowchart for scan()

4.2.1.2.2 smoothArd()

This function contains the smoothing algorithm on the calculated servo values to smooth the motion

profile.

Declare available[]

For i from range 0 to 256,
see if it serial port (i)

exists on this computer

Port(i)
Exists?

Add port(i) to available[]

Increment i

Return available[]

i > 256?

Yes

No

Yes

No

91

Figure 4-3: Flowchart for smoothArd()

4.2.1.3 Helper Functions

4.2.1.3.1 drawPlayer()

This function creates a new image canvas using mat, and then gets an upper body joint pair and sends it

to drawLine() to be calculated and drawn.

Get Global servo array,
aveLen, and new calculated

joints

Add joints to array

Assemble joint arrays into joints[]

∑
𝑗

∑ 𝑖𝑛
𝑖

𝑛

𝑗

 𝑠𝑗

For each element of joints[], iterate

Return weighted average of each
servo value

Get Global image array and
mat array value

Create a new blank array for
image from mat a blanked mat

for each listed joint pair that is
also in in users

Send joint pair to drawline()
(Figure 4-5)

92

Figure 4-4: Flowchart for drawPlayer()

4.2.1.3.2 drawLine()

This function takes the player data and the two joints, then maps it on the image array and draws lines

between the found z and y points, as well as circles at the found points.

Figure 4-5: Flowchart for drawLine()

4.2.1.3.3 showVid()

This function gathers video elements and then displays frame image on the screen.

Get player, joint 1 and joint 2,
as well as the global color
array and the image array

array, aveLen, and new

Get and map the x and y
coordinates of each joint

Draw a circle centered on
the x and y of each joints

Draw a line between the two points

Yes

No

Get global variables for rval and
rimg.

Rval True?

Run addText()
Figure 4-8

Display rimg image

Run waitKeyPress()
Figure 4-7

93

Figure 4-6: Flowchart for showVid()

4.2.1.3.4 waitKeyPressed()

This decision tree function sets flags and performs operations based on user input.

Figure 4-7: Flowchart for waitKeyPressed()

4.2.1.3.5 addText()

This function goes through system parameters and places the desired text strings in the video image.

Get global variables for csv file and
the flags for file and recording.

Get key stroke

Release cam, close any open files,
close all windows, exit python.

Key is Q

Set recording to 0,
close files, set file to 0

Set recording to 1

Set recording to 2

Key is R

Key is S

Key is P

No

No

No

No

End function

Yes

Yes

Yes

Yes

94

Figure 4-8: Flowchart for addText()

4.2.2 Arduino Mega

4.2.2.1 Main Processing loop

This revised version of the firmware (Figure 4-9) begins by importing the 2 libraries, the modified

Roomba500.h, and Servo.h,. It creates arrays for the easing function, initializes a few pins, and the servo

global variables, serial global variables, servo global variables, the input array, feedback, and a few

helper variables are initialized. The firmware enters setup(), where there servos are attached, pins are

declared as inputs and outputs, serial communication parameters are set, and communication between

the Roomba and the Arduino and the Arduino Mega and the computer are established. Once the setup

is complete, the program enters the main loop, void loop(). The loop starts waiting for serial input. If no

input is found, it simple instructs each servo and the Roomba motors to move to the last value of their

respective globals. If there is Serial input, the program finds the start byte, which equals 255, and then

parses the serial string and organizes the values. After conditioning the motors to be value appropriate

for the Roomba, it sets the gripper servo based on the gripper state and runs moveArd(), the new easing

Put “Operator” in rimg

Put “no operator” in rimg

Get global variables
rimg, recording state,
and each servo angle

value

For all servo values and states,
put value as text in rimg

Operator
detected

?

Yes

No

95

algorithm. The results of moveArd() are either quadIO() or quadoO(), which make changes to the global

servo values, or doing nothing. Send all 6 global servo values each servo and the motor vales to the

roomba. After a delay of 15ms, the Arduino checks the serial input again.

Figure 4-9: Flowchart for Arduino Mega Main Code

Include servo.h,
roomba500.h, motor
arrays, as well as all
helper variables sR,

sA, e, wR, wA, kC, gR,
mL, mR, fB, mT initial

values

Declare pin
values for

motor control,
serial, and

feedback pins,
and variables.

Declare motor
timing, variables
for interacting

with serial comm
serial buffer array,

and helper
variables St

ar
t

vo
id

 s
e

tu
p

()
 Delay 2 seconds,

start serial
communication

for computer
and Roomba at

115.2 kbps

Pulse Roomba
wake pin, wait 2
seconds. Attach
all 6 motors, set
Roomba to full
mode, and run
start mvements

St
ar

t
vo

id
 lo

o
p

()

m
o

ve
Se

rv
o

s(
)

Fi
gu

re
 4

-1
0

Serial
input

Available?

Find startbyte and
parse serial string

for motion
commands. Set

newval[], wR, wA,
kC, gR, mL, mR, fB,

mT

Condition mL
and mR,

gR = 1?

Close gripper
Open Gripper

Get new motor
values and send

them to
respective output

Send motor
instructions to

roomba

Wait 15 ms

Yes

Yes No

No

96

4.2.2.2 Sub functions

4.2.2.2.1 moveServos()

This decision tree function runs the multi-servo easing algorithm

For each servo, set
pos = 0, dur = 20, cur

∢= start, moving
state= 1, delta,

For each servo
check moving

state

new ∢=
cur ∢?

Pos = dur

new
∢ ≠cur ∢?

Δ to
move
< 1°?

Set state
= 1, reset
pos and

dur

Update pos and
cur ∢, run quadIO

Update
pos, run
quadIO

Pos >
dur

Yes

Add to dur
and run
quadIO

No State 1
(Stopped)

Yes

State 2
(Direction
Change)

State 0 (Moving)

No

Change in
direction?

New ∢ - cur ∢<
delta or goal is

< delta or is
delta loops

away?

Start
Easing

Function

Get new ∢ and cur ∢
for each servo from

serial and
feedback/calculations

No

Yes

new ∢<
cur ∢?

No

Yes

No

Add 5° from
goal, set state
= 2, set dur =
5, run quadO

Subtract 5° from
goal, set state =
2, set dur = 5,

run quadO

Consider
conditions met,
set all variables,

run quadIO

Do
nothing

Reset easing
variables, set
goal = new ∢,
set state = 0,
run quadIO

Start
Servo

Functi

Reset easing
variables, set
goal = new ∢,
set state = 0,
run quadIO

State 3

(Transit

Update pos,
run quadO

Update cur ∢, set start
= cur ∢, goal = new

∢,state = 0, reset pos
and dur, run quadIO

No

No

No

Yes

Yes

Yes

97

Figure 4-10: Flowchart for moveArm() for Arduino Mega

4.2.2.2.2 quadIO()

This function calculates the next value the “in-out” easing algorithm and returns it.

Figure 4-11: Flowchart for quadIO()

4.2.2.2.3 quadO()

This function calculates the next value the “out” easing algorithm and returns it.

Figure 4-12: Flowchart for quadO

Get t,b, c, and d

Calculate c/2*t*t + b and return answer

Calculate (–c/2 * ((--t)*(t-2) - 1) + b) and return answer

(t/=d/2) < 1?

No

Yes

Calculate (-c *(t/=d)*(t-2) + b) and return answer

Get t,b, c, and d

98

4.2.3 Arduino Uno

4.2.3.1 Main Processing Function

Figure 4-13: Progressed Wii Nunchuck Code

START PROGRAM

Set up serial and I2C
communication

Request datastream from Nunchuck
and delay for 0.5 seconds to calibrate

joystick

Define joystick axis, gyroscope
axis, and button variables.

Send joystick and gyroscope
axis over serial to computer

Send control variables to
computer over serial.

Flush serial buffer and wait for
Serial request from computer

Set Kinect
capture to

enabled

Set Kinect
capture to
disabled

Enabled

Closed

Disable

d

Open

Set state to open
gripper

Set state to close
gripper

Start Program Loop

Start Program Setup

If Z pressed check state
of gripper

If C pressed, check Kinect
capture state

Request and parse data
stream from Nunchuck

99

4.3 Schematics

4.3.1 Communication

Arduino Mega

Camera

Servos

Video
Tx

Kinect

Computer

Wii Nunchuck Arduino Uno

Roomba

115.2kbps

UART

115.2kbps

UART
PWM

I2C

900Mhz

FM

USB

NTSC

0V-2.8V

SCI

(115.2 kbps

UART)

Video Rx Video

Grabber

USB
RCA

100

Chapter 5

Full System Testing

5.1 Overview

With the theory applied and the simulations run, the time has come to put the new program into the

control system and test out changes on the test bed robot. Unlike the previous tests, which tested the

modular usability of the each enhancement, these tests will involve direct control with all the

enhancements in concert and examine if and how they improve the robot’s ability to accomplish the

required tasks.

5.2 Test 1- Control

5.2.1 Overview

A mechatronics system requires each component to work in synergy with the other components. If

there is a failure in one component, there is them a breakdown of the system as a whole. This test

checks to ensure that the individually tested systems work together in the system as a whole

5.2.2 Metrics

Each test will be graded on a Pass/Fail metric

5.2.3 Procedure

The start-up and control procedure of the robot system will be walked through.

First, the program will be run. The configuration file information will be entered and the program will

enter the while loop. The operation will document if the video GUI shows, verifying the Visual GUI start,

and if the process variables change, verifying that the configuration files worked. The operator will then

engage active capture. The console output will show the inverse kinematics activity, which verifies the

101

inverse kinematics engine working, and the robot arm will start moving in relation to the operator’s

body or by command of the joystick, which verifies the robot arm output. The operator will them record

a motion capture.

5.2.4 Initial Results

Test Pass/Fail

Configuration File Test Pass

Passes parameters Pass

Visual GUI start Pass

Inverse Kinematics Pass

Computer/Robot Communications Fail

Robot Output Pass

Table 5-1: Initial Synergy Testing Results

5.2.5 Discussion and Problem Solving

5.2.5.1 Overview

With the program started up, the operator bravely stood in front of the Kinect and initialed active

capture. Nothing responded, yet the servos were jittering (Table 5-1). The code had compiled, the

algorithm worked, but the microcontroller on the robot as not responding to input. An investigation to

why commenced. A program was written that communicated with the Arduino using text input from

the operator.

5.2.5.2 Convert from “if” statements to “switch” cases

A timer was added to the Arduino Mega program which showed the millisecond time the loop began

and when the loop finished executing. It showed an over 15ms duration of execution even though the

state was 1, which was the shortest conditional. This was longer than the forced 15ms delay for the

102

servos. The conditionals were then changed from “if/else to “switch/else” statements. The program

then ran in 2ms consistently. When testing the input/output, this did not solve either of the problems

5.2.5.3 Faster processor?

The servo twitching was theorized to be due to timing issues. If the time it takes to execute is longer

than the PWM timeout, the servos could malfunction. The Arduino Mega is running at 16Mhz [15], and

the Arduino Due is running at 84Mhz with a 32bit processor [16]. Most of the programming and

hardware is interchangeable between the Mega and the Due. The new prototyping board was

purchased, programmed, and swapped in. The servos stopped jittering, yet the microcontroller still was

not responding to immediately to commands. However, the Roomba library could not be properly

implemented on the Due. As the Due was a Band-Aid to the frustrating issue, and it could not drive the

robot mobile base, the design turned back to the Mega. The problem was eventually solved by

tweaking some conditionals and changing the Serial parameters.

5.2.5.4 Solution- Serial flushing

The serial buffer and latency have been the most frustrating problems to overcome. There was a similar

issue with the Arduino Uno and getting the values form the Wii Nunchuck. A well placed flushing of the

serial buffer finally did the trick. It was hoped that the same would hold true here. It did. However, the

solution was that the serial flushing had to occur in the transmitting python code and the Arduino

receiving code, despite instructions being sent on string at a time, as well as shortening the serial

timeout.

5.2.6 Retest

Test Pass/Fail

Configuration File Test Pass

Passes parameters Pass

103

Visual GUI start Pass

Inverse Kinematics Pass

Computer/Robot Communications Pass

Robot Output Pass

Table 5-2: Final Synergy Testing Results

Figure 5-1: Recorded Kinect Output from Test Capture

5.2.7 Discussion

With the communication restored, the control system performed as initially expected and passed the

basic start up tests, as shown in Table 5-2. The initial results of this tests show how sensitive this system

is concerning the failure of certain key control. For safety, a time out sequence can be found in the

robot side firmware that freezes the arm in the last known orientation, as well stops the Roomba

motors. If there were issues with some skeletal tracking, as detailed in Section 3.3, the system was able

to seamlessly handle it, and even was able to bring the arm back right to the base and then reach out

(Figure 5-1). The motion capture recording and playback were successes.

0

50

100

150

200

1

3
0

5
9

8
8

1
1

7

1
4

6

1
7

5

2
0

4

2
3

3

2
6

2

2
9

1

3
2

0

3
4

9

3
7

8

4
0

7

4
3

6

4
6

5

4
9

4

5
2

3

5
5

2

5
8

1

6
1

0

6
3

9

6
6

8

Se
rv

o
 A

n
gl

e
s

Kinect Frames

5DOF Motion from Raw Kinect Capture

Shoulder Rotate

Shoulder angle

Eblow

Wrist Angle

Wrist Rotate

104

5.3 Test 2- Stability and Dexterity

5.3.1 Overview

This test is the primary test: is the output of the robot arm more controllable and predictable with the

new system? If the arm is not smoother or the operator is unable to perform even simple gestures, then

the operator will not be able to manipulate objects and cannot be self-reliant. This test is an important

test to the combined working relationship of the solutions produced by the above research and design.

5.3.2 Parameters and Metrics

The testing parameters will be a comparison between these capture smoothing states

 Raw value Kinect servos output + Servo PID (no smoothing)

 Smoothed Kinect servos output + Servo PID (Kinect Side Only Smoothing)

 Raw value Kinect servos output + Servo Easing (Robot Side Only Smoothing)

 Smoothed Kinect servos output + Servo Easing (Dual Smoothing)

The operator motion patterns that will be analyzed will be

 Full arm motion from left to right

 Full arm motion from right to left

 Full arm motion from down to up

 Full arm motion from up to down

 “Reach out and touch target”

The overall stability of the system, as measured from the arm, will be charted. A count and the

amplitude of unnecessary movements, bounces or sways, will be recorded and compared. The system

with the lowest amplitude and count will be determined to be the most “stable”.

105

5.3.3 Procedure

The operator will move in the following patterns:

 Full arm motion from left to right

 Full arm motion from right to left

 Full arm motion from down to up

 Full arm motion from up to down

 “Reach out and touch target”

These motions will be recorded. The appropriate smoothing parameters will be adjusted on both the

computer software and the robot firmware. A triple axis accelerometer and placed horizontally in the

gripper. The recorded motions will then be played back for each robot and Kinect output smoothing

state and the accelerometer data will be analyzed and compared.

The frames in this test are based on the 115200 bps, the highest refresh rate, on the accelerometer. The

Accelerometer‘s axis position is a relative position that is internal to the accelerometer.

106

5.3.4 Results

5.3.4.1 Test Data

Figure 5-2: Original System Configuration (Raw Kinect and Servo PID)

Figure 5-3: Raw Kinect and Servo Easing Algorithm Results

-600

-400

-200

0

200

400

600

1
1

7
8

0
3

5
5

9
5

3
3

8
7

1
1

7
8

8
9

6
1

0
6

7
5

1
2

4
5

4
1

4
2

3
3

1
6

0
1

2
1

7
7

9
1

1
9

5
7

0
2

1
3

4
9

2
3

1
2

8
2

4
9

0
7

2
6

6
8

6
2

8
4

6
5

3
0

2
4

4
3

2
0

2
3

3
3

8
0

2
3

5
5

8
1

3
7

3
6

0
3

9
1

3
9

4
0

9
1

8

R
e

la
ti

ve
 A

xi
s

P
o

si
ti

o
n

Frames

Raw-Servo XYZ

Raw-Servo X

Raw-Servo Y

Raw-Servo Z

-500

-400

-300

-200

-100

0

100

200

300

400

500

1

1
8

5
7

3
7

1
3

5
5

6
9

7
4

2
5

9
2

8
1

1
1

1
3

7

1
2

9
9

3

1
4

8
4

9

1
6

7
0

5

1
8

5
6

1

2
0

4
1

7

2
2

2
7

3

2
4

1
2

9

2
5

9
8

5

2
7

8
4

1

2
9

6
9

7

3
1

5
5

3

3
3

4
0

9

3
5

2
6

5

3
7

1
2

1

3
8

9
7

7

4
0

8
3

3

R
e

la
ti

ve
 A

xi
s

P
o

si
ti

o
n

Frames

Raw-Easing XYZ

Raw-Easing X

 Raw-Easing Y

Raw-Easing Z

107

Figure 5-4: Smoothed Kinect Output and Servo PID Results

Figure 5-5: Smoothed Kinect Output and Servo Easing

-600

-400

-200

0

200

400

600

1

1
9

4
2

3
8

8
3

5
8

2
4

7
7

6
5

9
7

0
6

1
1

6
4

7

1
3

5
8

8

1
5

5
2

9

1
7

4
7

0

1
9

4
1

1

2
1

3
5

2

2
3

2
9

3

2
5

2
3

4

2
7

1
7

5

2
9

1
1

6

3
1

0
5

7

3
2

9
9

8

3
4

9
3

9

3
6

8
8

0

3
8

8
2

1

4
0

7
6

2

R
e

la
ti

ve
 A

xi
s

P
o

si
ti

o
n

Frame

Smooth-Servo XYZ

Smooth-Servo X

Smooth-Servo Y

Smooth-Servo Z

-600

-400

-200

0

200

400

600

1
1

9
4

2
3

8
8

3
5

8
2

4
7

7
6

5
9

7
0

6
1

1
6

4
7

1
3

5
8

8
1

5
5

2
9

1
7

4
7

0
1

9
4

1
1

2
1

3
5

2
2

3
2

9
3

2
5

2
3

4
2

7
1

7
5

2
9

1
1

6
3

1
0

5
7

3
2

9
9

8
3

4
9

3
9

3
6

8
8

0
3

8
8

2
1

4
0

7
6

2

R
e

la
ti

ve
 A

xi
s

P
o

si
ti

o
n

Frames

Smooth-Easing XYZ

Smooth-Easing X

Smooth-Easing Y

Smooth-Easing Z

108

5.3.4.2 X Axis

Figure 5-6: Raw Kinect Output and Servo PID X Axis

Figure 5-7: Raw Kinect Output and Servo Easing X Axis

-600

-400

-200

0

200

400

600

1

2
6

6
9

5
3

3
7

8
0

0
5

1
0

6
7

3

1
3

3
4

1

1
6

0
0

9

1
8

6
7

7

2
1

3
4

5

2
4

0
1

3

2
6

6
8

1

2
9

3
4

9

3
2

0
1

7

3
4

6
8

5

3
7

3
5

3

4
0

0
2

1

R
e

la
ti

ve
 X

 P
o

si
ti

o
n

Frames

Raw-Servo X

Raw-Servo X

-500

-400

-300

-200

-100

0

100

200

300

400

1

2
6

6
9

5
3

3
7

8
0

0
5

1
0

6
7

3

1
3

3
4

1

1
6

0
0

9

1
8

6
7

7

2
1

3
4

5

2
4

0
1

3

2
6

6
8

1

2
9

3
4

9

3
2

0
1

7

3
4

6
8

5

3
7

3
5

3

4
0

0
2

1

R
e

la
ti

ve
 X

 P
o

si
ti

o
n

Frames

Raw-Easing X

Raw-Easing X

109

Figure 5-8: Smoothed Kinect Output and Servo PID X Axis

Figure 5-9: Smoothed Kinect Output and Servo Easing X Axis

-600

-400

-200

0

200

400

600

1

2
8

4
7

5
6

9
3

8
5

3
9

1
1

3
8

5

1
4

2
3

1

1
7

0
7

7

1
9

9
2

3

2
2

7
6

9

2
5

6
1

5

2
8

4
6

1

3
1

3
0

7

3
4

1
5

3

3
6

9
9

9

3
9

8
4

5

R
e

la
ti

ve
 X

 P
o

si
ti

o
n

Frame

Smooth-Servo X

Smooth-Servo X

-600

-400

-200

0

200

400

600

1

2
8

4
7

5
6

9
3

8
5

3
9

1
1

3
8

5

1
4

2
3

1

1
7

0
7

7

1
9

9
2

3

2
2

7
6

9

2
5

6
1

5

2
8

4
6

1

3
1

3
0

7

3
4

1
5

3

3
6

9
9

9

3
9

8
4

5

R
e

la
ti

ve
 X

 P
o

si
ti

o
n

Frames

Smooth-Easing X

Smooth-Easing X

110

Figure 5-10: X Axis Comparison

Figure 5-11: Comparison between the Original and the Progressed System Smoothing Algorithm for the X Axis

-1500

-1000

-500

0

500

1000

1500

1

1
8

5
7

3
7

1
3

5
5

6
9

7
4

2
5

9
2

8
1

1
1

1
3

7

1
2

9
9

3

1
4

8
4

9

1
6

7
0

5

1
8

5
6

1

2
0

4
1

7

2
2

2
7

3

2
4

1
2

9

2
5

9
8

5

2
7

8
4

1

2
9

6
9

7

3
1

5
5

3

3
3

4
0

9

3
5

2
6

5

3
7

1
2

1

3
8

9
7

7

4
0

8
3

3

R
e

la
ti

ve
 X

 P
o

si
ti

o
n

X Axis Comparison

Raw-Servo X

Smooth-Easing X

Smooth-Servo X

Raw-Easing X

-600

-400

-200

0

200

400

600

1

1
7

8
0

3
5

5
9

5
3

3
8

7
1

1
7

8
8

9
6

1
0

6
7

5

1
2

4
5

4

1
4

2
3

3

1
6

0
1

2

1
7

7
9

1
1

9
5

7
0

2
1

3
4

9

2
3

1
2

8

2
4

9
0

7

2
6

6
8

6

2
8

4
6

5

3
0

2
4

4

3
2

0
2

3

3
3

8
0

2

3
5

5
8

1

3
7

3
6

0
3

9
1

3
9

4
0

9
1

8

R
e

la
ti

ve
 X

 P
o

si
ti

o
n

Frames

Original System vs. Progressed System X Axis

Raw-Servo X

Smooth-Easing X

111

5.3.4.3 Y Axis

Figure 5-12:Raw Kinect Output and Servo PID Y Axis

Figure 5-13: Raw Kinect Output and Servo Easing Y Axis

-400

-300

-200

-100

0

100

200

300

400

500

600

1

2
6

6
9

5
3

3
7

8
0

0
5

1
0

6
7

3

1
3

3
4

1

1
6

0
0

9

1
8

6
7

7

2
1

3
4

5

2
4

0
1

3

2
6

6
8

1

2
9

3
4

9

3
2

0
1

7

3
4

6
8

5

3
7

3
5

3

4
0

0
2

1R
e

la
ti

ve
 Y

 A
xi

s

Frames

Raw-Servo Y

Raw-Servo Y

-100

0

100

200

300

400

500

1

2
6

6
9

5
3

3
7

8
0

0
5

1
0

6
7

3

1
3

3
4

1

1
6

0
0

9

1
8

6
7

7

2
1

3
4

5

2
4

0
1

3

2
6

6
8

1

2
9

3
4

9

3
2

0
1

7

3
4

6
8

5

3
7

3
5

3

4
0

0
2

1

R
e

la
ti

ve
 Y

 P
o

si
ti

o
n

Frames

 Raw-Easing Y

 Raw-Easing Y

112

Figure 5-14: Smoothed Kinect Output and Servo PID Y Axis

Figure 5-15: Smoothed Kinect Output and Servo Easing Y Axis

-300

-200

-100

0

100

200

300

400

500

600

1

2
8

4
7

5
6

9
3

8
5

3
9

1
1

3
8

5

1
4

2
3

1

1
7

0
7

7

1
9

9
2

3

2
2

7
6

9

2
5

6
1

5

2
8

4
6

1

3
1

3
0

7

3
4

1
5

3

3
6

9
9

9

3
9

8
4

5R
e

la
ti

ve
 Y

 P
o

si
ti

o
n

Frames

Smooth-Servo Y

Smooth-Servo Y

-200

-100

0

100

200

300

400

500

600

1

2
8

4
7

5
6

9
3

8
5

3
9

1
1

3
8

5

1
4

2
3

1

1
7

0
7

7

1
9

9
2

3

2
2

7
6

9

2
5

6
1

5

2
8

4
6

1

3
1

3
0

7

3
4

1
5

3

3
6

9
9

9

3
9

8
4

5

R
e

la
ti

ve
 Y

 P
o

si
ti

o
n

Frames

Smooth-Easing Y

Smooth-Easing Y

113

Figure 5-16: Y Axis Comparison

Figure 5-17: Comparison between the Original and the Progressed System Smoothing Algorithm for the Y Axis

-400

-300

-200

-100

0

100

200

300

400

500

600

1
1

7
8

0
3

5
5

9
5

3
3

8
7

1
1

7
8

8
9

6
1

0
6

7
5

1
2

4
5

4
1

4
2

3
3

1
6

0
1

2
1

7
7

9
1

1
9

5
7

0
2

1
3

4
9

2
3

1
2

8
2

4
9

0
7

2
6

6
8

6
2

8
4

6
5

3
0

2
4

4
3

2
0

2
3

3
3

8
0

2
3

5
5

8
1

3
7

3
6

0
3

9
1

3
9

4
0

9
1

8

R
e

la
ti

ve
 Y

 P
o

si
ti

o
n

Y Axis Comparison

 Raw-Easing Y

Smooth-Servo Y

Smooth-Easing Y

Raw-Servo Y

-400

-300

-200

-100

0

100

200

300

400

500

600

1

1
7

8
0

3
5

5
9

5
3

3
8

7
1

1
7

8
8

9
6

1
0

6
7

5

1
2

4
5

4

1
4

2
3

3

1
6

0
1

2

1
7

7
9

1

1
9

5
7

0

2
1

3
4

9
2

3
1

2
8

2
4

9
0

7

2
6

6
8

6

2
8

4
6

5

3
0

2
4

4

3
2

0
2

3

3
3

8
0

2

3
5

5
8

1

3
7

3
6

0

3
9

1
3

9

4
0

9
1

8

R
e

la
ti

ve
 Y

 P
o

si
ti

o
n

Frames

Original System vs. Progressed System Y Axis

Raw-Servo Y

Smooth-Easing Y

114

5.3.4.4 Z Axis

Figure 5-18: Raw Kinect Output and Servo PID Z Axis

Figure 5-19: Raw Kinect Output and Servo Easing Z Axis

-200

-100

0

100

200

300

400

500

600

1
2

5
1

2
5

0
2

3
7

5
3

4
1

0
0

4
5

1
2

5
5

6
1

5
0

6
7

1
7

5
7

8
2

0
0

8
9

2
2

6
0

0
2

5
1

1
1

2
7

6
2

2
3

0
1

3
3

3
2

6
4

4
3

5
1

5
5

3
7

6
6

6
4

0
1

7
7

R
e

la
ti

ve
 Z

 P
o

si
ti

o
n

Frames

Raw-Servo Z

Raw-Servo Z

-50

0

50

100

150

200

250

300

350

400

1
2

5
1

2
5

0
2

3
7

5
3

4
1

0
0

4
5

1
2

5
5

6
1

5
0

6
7

1
7

5
7

8
2

0
0

8
9

2
2

6
0

0
2

5
1

1
1

2
7

6
2

2
3

0
1

3
3

3
2

6
4

4
3

5
1

5
5

3
7

6
6

6
4

0
1

7
7

R
e

la
ti

ve
 Z

 P
o

si
ti

o
n

Frames

Raw-Easing Z

Raw-Easing Z

115

Figure 5-20: Smoothed Kinect Output and Servo PID Z Axis

Figure 5-21: Smoothed Kinect Output and Servo Easing Z Axis

-200

-100

0

100

200

300

400

500

600

1

2
8

4
7

5
6

9
3

8
5

3
9

1
1

3
8

5

1
4

2
3

1

1
7

0
7

7

1
9

9
2

3

2
2

7
6

9

2
5

6
1

5

2
8

4
6

1

3
1

3
0

7

3
4

1
5

3

3
6

9
9

9

3
9

8
4

5

R
e

la
ti

ve
 Z

 P
o

si
ti

o
n

Frames

Smooth-Servo Z

Smooth-Servo Z

-50

0

50

100

150

200

250

300

350

400

1

2
8

4
7

5
6

9
3

8
5

3
9

1
1

3
8

5

1
4

2
3

1

1
7

0
7

7

1
9

9
2

3

2
2

7
6

9

2
5

6
1

5

2
8

4
6

1

3
1

3
0

7

3
4

1
5

3

3
6

9
9

9

3
9

8
4

5

R
e

la
ti

ve
 Z

 P
o

si
ti

o
n

Frames

Smooth-Easing Z

Smooth-Easing Z

116

Figure 5-22: Z Axis Comparison

Figure 5-23: Comparison between the Original and the Progressed System Smoothing Algorithm for the Z Axis

5.3.5 Discussion

An overview of the graphical data illustrates that the X position was the most dynamic of the positions

(Section 5.3.4.2). It held the most noise in motion, as well as the most movement. The data shows that

any system that uses the servo easing algorithm was considerably smoother than a comparable system

-200

-100

0

100

200

300

400

500

600

1
1

7
8

0
3

5
5

9
5

3
3

8
7

1
1

7
8

8
9

6
1

0
6

7
5

1
2

4
5

4
1

4
2

3
3

1
6

0
1

2
1

7
7

9
1

1
9

5
7

0
2

1
3

4
9

2
3

1
2

8
2

4
9

0
7

2
6

6
8

6
2

8
4

6
5

3
0

2
4

4
3

2
0

2
3

3
3

8
0

2
3

5
5

8
1

3
7

3
6

0
3

9
1

3
9

4
0

9
1

8

R
e

la
ti

ve
 Z

 P
o

si
ti

o
n

Z Axis Comparison

Raw-Easing Z

Smooth-Servo Z

Smooth-Easing Z

Raw-Servo Z

-200

-100

0

100

200

300

400

500

600

1

1
7

8
0

3
5

5
9

5
3

3
8

7
1

1
7

8
8

9
6

1
0

6
7

5

1
2

4
5

4
1

4
2

3
3

1
6

0
1

2
1

7
7

9
1

1
9

5
7

0

2
1

3
4

9

2
3

1
2

8

2
4

9
0

7

2
6

6
8

6

2
8

4
6

5

3
0

2
4

4

3
2

0
2

3

3
3

8
0

2

3
5

5
8

1

3
7

3
6

0

3
9

1
3

9

4
0

9
1

8

R
e

la
ti

ve
 Z

 P
o

si
ti

o
n

Frames

Original System vs. Progressed System Z Axis

Raw-Servo Z

Smooth-Easing Z

117

that didn’t. There were considerably fewer spikes in motion, as well as a tighter raw motion profile for

the systems with servo easing than those without. In the Y values, as shown in Figure 5-13 and Figure

5-15, it seemed that the smoothed Kinect output added more noise than the Raw Kinect values did. This

is most likely because of the easing parameters slowing down and speeding up instead of the more

linear motion profile of the servo motor PID. Thus, it is not really noise, but an effect of the system

motion on the accelerometer. The results concluded that the combination that had the best system

response was the smoothed Kinect output coupled with the servo easing algorithm. There was a drastic

improvement over the original system’s performance and stability versus the new system’s performance

and stability (Figure 5-11, Figure 5-17, and Figure 5-23).

5.4 Test 3- Usability

5.4.1 Overview

An assistive device should be able to retrieve objects easily. In this test, the real output of the robot will

be examined. Similar to the Senior Design Final Test, the robot must traverse a room and pick up and

object and retrieve it for the operator. This test focuses on the effectiveness of the addition of the

Visual GUI on the use of the robot.

5.4.2 Procedure

The robot will move from the starting position and, with the operator being able to directly observing

the robot, the operator must pick up an object and return it and the robot back to the starting position.

The test will be done with and without the Visual GUI. This is a timed test. The attempts towards

grabbing the target object as well as the primary method of viewing the robot’s action will be recorded.

118

5.4.3 Results

Test Time Tries Primary Visual Usage

Original System 82 seconds 4 At Robot

With Visual GUI 57 seconds 2 At GUI

Table 5-3: Visual GUI Effectiveness Test Results

5.4.4 Discussion

With the kinks worked out in Test 1 and the verified stability shown in in Test 2, the robot arm

performed as expected. The new found system stability greatly increased the operator’s ability to

execute the task, as the target was quickly found and retrieved with fewer tries and a faster time than

without the Visual GUI, as shown in Table 5-3.

It was found best to turn of the direct control of the system while moving and then use it when you had

approached the target. This allowed the camera’s built in latency to not affect operation, and was

easier on the operator in terms on necessary effort and concentration, as they did not have to hold a

position and could move around freely, yet guide the robot with the joystick.

5.5 Overall Discussion

After getting the system to properly function in synergy, data was able to be gleaned concerning the

usability of the system.

In terms of comparing the smoothing algorithms and their effectiveness,

 Smoothing of Kinect Values + Servo Easing produced the best results

 Servo Easing produced the most dramatic improvement over the controllability and stability of

the system.

 Smoothing of Kinect Values had a marginal, yet noticeable improvement over the Raw Kinect

Values

119

The system, concerning the effectiveness of the Visual GUI,

 Using Smoothing of Kinect Values + Servo Easing, and the Visual GUI was able to retrieve the

target object faster than without either system.

 The Visual GUI was the most effective improvement in retrieving items due to the increased

effective hand eye coordination

120

Chapter 6

Further Work

6.1 Conclusion

The goal of taking this proof of concept assistive control system and maturing it into a more capable and

effective device was satisfied. The ease of performing complex kinematics on the test bed platform

opens the door for a new breed of assistive household robots to be researched, developed, and

produced. These robots can potentially bring self-reliance to those that are to dependents, and with

that comes pride, less depression, and an overwhelmingly higher quality of life for the demography of

operators.

To accomplish this goal, a design methodology was used. Research and development of tools, such as

the recording system and the output simulator, were necessary to facilitate the successful completion of

the assigned goals. The research included testing and parametric analysis of existing “natural

interaction” software, embedded systems design and microcontroller programming methodologies, and

smoothing techniques on existing systems. The designing included writing the computer side software,

controller firmware, and getting these devices to work well together to create something greater than

the sum of its parts.

Testing showed that the design implementations worked well together, but had mixed initial results

when working in synergy. The OpenNI SDK+NiTE + Python solution was found to still be the SDK of

choice for development and deployment of the control system for 3 reasons:

1. it’s skeletal joint tracking system was superior that the Official Kinect SDK for the direct control

required by this control system

121

2. It cross-compiles with more operating systems, as do the supporting libraries

3. It works with the growing range of depth sensor, not limiting the system builder to just the

present Hardware.

A 3-period, moving, weighted averaging scheme was found to produce the best results for smoothing

the inverse kinematics results of the raw inverse kinematics results, in terms of response time, small

motion precision, and overall error. It was successfully incorporated into an algorithm on the computer

side program and greatly reduced the noise on the output’s motion profile. On the robot side, the

easing algorithm was successfully incorporated into the microcontroller’s firmware in conjunction with

using a decision tree. The visual feedback made it easier to control the arm outside of line of sight and

gave the operator necessary information about the system while using it. The configuration file allowed

the average operator, and researcher, to take advantage of the universal nature of this control system

and set their robot parameters to work with the system.

In full system testing, there were some issues that were eventually overcome. The trouble with the

serial latency, the timing of the video display function, and its helper functions, to not slow down the

system and keep it as real time as possible, and still be informative, and the incorporation of the easing

algorithm were all eventually solved. The results of the test were

 The smoothing of both the Kinect output data and the servo easing algorithms considerably

improved system stability and performance in comparison to the original system. This

combination was also the best improvement.

 The Servo Easy algorithm was the most effective algorithm to use in making the output more

stable.

 The Visual GUI improved the time duration and reduced the operator efforts in the retrieval of

the target object

122

While this is not a fully featured and completed final product, it is a vast improvement over the proof of

concept in terms of system usability. Further work into looking at more complex implementations of

smoothing or better performing inverse kinematics engines can be done, but the goal of the project

scope were reached at this point.

6.2 Known Issues

6.2.1 Auto-Start Camera

In Windows XP, Ubuntu, and OSX, the first camera that is available will start. In windows 7 and

Windows 8, there is a drop down box form the Video Source. There is no known way around that in this

implementation. Further study should be done to get it working.

6.2.2 Compiling OSCeleton

Visual Studio 2008 or 2010 are required to compile OSCeleton. Visual Studio 2012 gives errors. Building

from the source code using CMake in any OS has not been tested. CMake or Cygwin may e necessary.

Further investigation is needed.

6.2.3 OpenNI2

This “Open Source and Universal” system will not work with the OpenNI2 SDK. The reason being is that

OSCeleton only compiles with version 1. The work around is to use NI Mate, a trial based software that

costs £198 after 30 days and has given trouble when renewing the free trial license. It will provide the

same OSC interface as the free OSCeleton. Email conversations with the CEO of Delimate, Julius

Tuomisto, on August 4th showed little desire to implement a cheaper version of the software due to

current overhead. Therefore, either a free or cheap alternative needs to be found or further work is

needed to get OSCeleton to compile and run with OpenNI2.

123

6.3 Two Arms

The Kinect, and this code, is capable of tracking both arms. The code is already there The necessary

extra changes to the code will take about 5 minutes of coding, and a bit of testing, or a bit longer if the

link lengths are different. The second arm will allow for a greater flexibility of tasks and open up the

capabilities of remote activities such as moving complex objects, cooking, and other two handed tasks.

While the further work depth in designing the system is pretty shallow, plus a two armed robot is

necessary, the research potential into that interaction is still vast.

6.4 Different Drive Systems

Only basic tests were done to see and implement a feasible universal system. Steppers and large scaled

DC motors may be the drive of choice in a real world system. Further work needs to be done to ensure

that it is 100% compatible for those systems.

Testing on the system with digital servos, instead of analog, for mitigating disturbances, should be done.

The digital servos have many benefits, from higher holding torques, to faster and better response times.

They also have some consequences, like higher power requirements. The servo motors on the observed

mounted mobile robot arms at Stony Brook University and all but one servo on the proof of concept test

bed robot were analog. Experiments in seeing if a conversion from analog to digital servos will produce

better results should be a next step activity for continued work with the available test bed mobile

robots.

There are also drop-in, open servo motor controllers that provide feedback from the OpenServo project.

These will be useful for experimentations and better for conducting further research. They should be

considered for next-gen test beds, if it is servo based.

124

6.5 Hand device

While the Wii Nunchuck Controller is a quite capable, readily available, and cheap device, it is not

without its shortcomings for this project. As there is an Arduino Uno attached to the controller, a

variety of different enhancements can be added only hardware alterations to the basic handheld piece.

These additions are

 Feedback gripper trigger based on the servo implementation

 Additional Buttons for greater range of “in capture mode” control

6.6 Other Sensors

6.6.1 Asus Xtion series

The Xtion and Xtion Pro Live are similar depth sensor devices powered by the same company that the

Kinect uses: PrimeSense. The OpenNI SDK is PrimeSense’s SDK, so it will work as a drop in replacement

with the Kinect. This sensor boasts a faster frame rate and two options for depth resolution. Its

application as a possible depth sensor replacement should be investigated. [11]

6.6.2 Kinect 2

The Kinect 2 is on the horizon and coming out for Windows developers in November 2013 for $399

(hopefully cheaper academically). Unlike the Xbox 360 Kinect, the Xbox One’s Kinect 2 will be unable to

be hacked there will be no capability to plug it into your computer It boasts performance enhancements

that might solve all of the problems with joint detection and tracking that are currently being

experienced. It is 3 times as sensitive, a much better skeleton tracking system that is capable of now

truly detecting hands and shoulder shrugs. It now also has orientation tracking built in, lowering

processing requirements on that. It also has new monitors and capabilities like facial recognition,

muscle stressing, and heart beat sensor which can be used to alter the sensitivity of the Kinect as people

125

tend to focus more and become more tense [10]. Its application as a possible depth sensor replacement

should be investigated after its introduction into the marketplace.

6.7 Embedded system

The Raspberry Pi is becoming an extremely popular development platform. It has a HDMI and RCA

Video out, and runs Debian Linux, and is capable of running OpenNI, Python, and can communicate with

the Arduino Prototyping boards. It also can use the Asus xTion series depth sensor, which now licenses

the same PrimeSense’s technology that enables skeleton tracking on the Microsoft Kinect. Due to the

success of control system’s universal hardware and software versatility of the OpenNI+Python SDK, this

system, in its current form, can be ported quite easily onto this platform. This will allow for an all-

around smaller, embedded version of the testing platform, with only some frames per second

compromises.

6.8 GUI

A good, powerful, clean user interface is necessary for ease and efficiency of use. The text based

configuration system can be drop box based. The parameters and variables can be always in the user’s

field of view. The operator can potentially view the Video streams of both the robot FPV and the

Kinect’s RGB-D and Skeleton at the same time, allowing for ease of use. Also, using OpenNI,

LibFreeNect, and the operating system’s speech recognition software, the implementation of verbal

commands and full control of the Kinect’s tilt motor can be achieved.

6.9 Recording

In ways were made into recording the servo output stream and playing it back to control the robot.

These can be made into separate files and saved for different tasks, like “Open refrigerator”, or “Pick up

cup”. If the operator requires a more automated task, where all the variables are pretty constant, they

can replay the task over and over. Using a speech recognition program, they can call these recordings

126

into action without having to stress themselves. This is especially convenient for those who require the

arm to do a motion that they themselves cannot. Another, more able-bodied, person can be recorded

and then the operator can simply call the action when necessary.

6.10 Computer Vision

As this implementation uses OpenCV, which can tie directly into most video streams, including the

Kinect’s through OpenNI, a host of computer vision based assistive algorithms can be introduced. For

example, object detection, where you can select an object on the screen and the system automatically

retrieves it, obstacle detection, or even filters to allow for easy remote home surveillance- an important

thing to have if you are unable to get out of bed. Other power tools can be created when coupled with

the recording capability, such as adaptive playback of picking up an object, opening the fridge door, or

even self-navigation back to the point of origin for easy retrieval purposes can be achieved. This is a rich

area for further study.

6.11 Better Predictive Algorithms

Some of the potential operators are those with a spastic muscle disorder. This does not allow them to

walk very well, but they still have some use of their arms. This special group of operators needs to be

addressed, as there may be a way to give them an effective control system without the need of direct

control. This may require an adaptive algorithm and enhanced computer vision routines in order to

“guess” what that operator is trying to retrieve.

127

Works Cited

[1] WormFood, "AVRBaudCalc," [Online]. Available: http://www.wormfood.net/avrbaudcalc.php.

[2] K. Khoshelham, "ACCURACY ANALYSIS OF KINECT DEPTH DATA," in ISPRS Calgary 2011 Workshop,

Calgary, 2011.

[3] Microsoft.com, "Kinect Sensor Setup, Requirements, Support | Kinect for Windows," [Online].

Available: http://www.microsoft.com/en-us/kinectforwindows/purchase/sensor_setup.aspx.

[Accessed 16 November 2012].

[4] Kinect for Windows Team, "Near Mode: What it is (and isn't)," 20 January 2012. [Online]. Available:

http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/20/near-mode-what-it-is-and-isn-

t.aspx?Redirected=true. [Accessed 30 November 2012].

[5] Msdn.microsoft.com., "Tracking Skeletons in Near Depth Range," 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/hh855353.aspx. [Accessed July].

[6] Microsoft Research Cambrigde & Xbox Incubation, "Real-Time Human Pose Recognition in Parts

from Single Depth Images," 2011. [Online].

[7] Microsoft, "http://www.microsoft.com/en-us/kinectforwindows/news/faq.aspx," 2012. [Online].

[Accessed 30 November 2012].

[8] Openni.org, "OpenNI SDK Release Notes | OpenNI," 2012. [Online]. Available:

http://www.openni.org/openni-sdk/openni-sdk-release-notes/.

128

[9] Openni.org, "NiTE 2.2 | OpenNI," 2012. [Online]. Available: http://www.openni.org/files/nite/.

[10] K. Wagner, "Kinect 2 Full Video Walkthrough: The Xbox Sees You Like Never Before," Gizmodo, 21

May 2013. [Online]. Available: http://gizmodo.com/kinect-2-full-video-walkthrough-the-xbox-sees-

you-like-509155673 . [Accessed 27 July 2013].

[11] Autoponics.org, "Switching from Kinect to Asus Xtion Pro Live | Autoponics," 13 March 2012.

[Online]. Available: http://autoponics.org/?p=160. [Accessed 18 July 2013].

[12] W. Thompson, T. Dyer and Y. Zhou, "Improved Control System using Natural Human Pose Imaging

for Robotics and Telepresence Assistive Devices," Simon's Fellowship Presentation, Stony Brook,

2012.

[13] Docs.opencv.org., "HighGUI — OpenCV 2.4.6.0 documentation," 14 July 2011. [Online]. [Accessed

17 May 2013].

[15] Arduino.cc, "Arduino - ArduinoBoardMega2560," Arduino.cc, 2010. [Online]. Available:

http://arduino.cc/en/Main/ArduinoBoardMega2560 . [Accessed 3 August 2013].

[16] Arduino.cc, "Arduino - ArduinoBoardDue," Arduino.cc, 2012. [Online]. Available:

http://arduino.cc/en/Main/ArduinoBoardDue. [Accessed 2013 August 3].

[17] E. M. Berti, A. J. S. Salmerón and F. Benimeli, "Kalman Filter for Tracking Robotic Arms Using low

cost 3D Vision System," in ACHI 2012 : The Fifth International Conference on Advances in Computer-

Human Interactions, Valencia, 2012.

[18] A. P. L. Bo, M. Hayashibe and P. Poignet, "Joint Angle Estimation in Rehabilitation with Inertial

129

Sensors," in Engineering in Medicine and Biology Society, Boston, 2011.

I

Appendix A- Copyright Permission

34 Morris Ave,

Huntington, NY, 11743

8//15/13

616 54th Street

Brooklyn NY, 11220

Dear William Thompson,

Hey buddy, I hope you are enjoying packing for college. I am praying only for the

best for you! As per our conversation online that is taking place right now, and only

mentioned because they are telling me to mention it, I am completing a doctoral

dissertation at Stony Brook University entitled “IMPROVED USABILITY FOR A

CONTROL SYSTEM USING HUMAN BODY IMAGING AS THE CONTROL

METHOD FOR ARM BASED ROBOTICS IN ASSISTIVE TECHNOLOGIES”. I

would like your permission to reprint in my dissertation excerpts from the following:

The citation is that of these two images of the disturbances from the control system

that we worked, as follows:

II

The requested permission extends to any future revisions and editions of my

dissertation, including non-exclusive world rights in all languages, and to the

prospective publication of my dissertation by UMI. These rights will in no way

restrict republication of the material in any other form by you or by others authorized

by you. Your signing of this letter will also confirm that you own [or your company

owns] the copyright to the above-described material. If these arrangements meet with

your approval, please sign this letter where indicated below and return it to me in the

enclosed return envelope. Thank you very much. Stay in touch!

Sincerely,

Taurean Dyer

PERMISSION GRANTED FOR THE

USE REQUESTED ABOVE:

William Thompson Date:

____8/15/2013___

	Abstract of Thesis
	Table of Figures
	List of Tables
	Acknowledgements
	Chapter 1 Introduction and Background
	1.1 Motivation
	1.2 Background on Tele-operated Mobile Robotics
	1.3 Background on Hardware and Software Control Systems for Robotic Arms
	1.3.1 Hardware
	1.3.2 Software

	1.4 Back ground of Proof of Concept Control System
	1.5 Thesis Structure

	Chapter 2 Proof-of-Concept Control System Design
	2.1 Introduction
	2.2 Control System Design Concept
	2.2.1 Overview
	2.2.2 Communication
	2.2.3 Input
	2.2.3.1 Kinect Input
	2.2.3.2 Wii Nunchuck
	2.2.3.2.1 Overview
	2.2.3.2.2 Arduino Uno

	2.2.4 Processing
	2.2.4.1 Overview
	2.2.4.2 Necessary Programs
	2.2.4.3 Libraries
	2.2.4.4 Process

	2.2.5 Output
	2.2.5.1 Overview
	2.2.5.2 Hardware
	2.2.5.3 Firmware

	Chapter 3 This Project
	3.1 Introduction
	3.1.1 Overview
	3.1.2 Intended Improvements of the Control System

	3.2 System Specifications
	3.2.1 Hardware Specifications
	3.2.2 Software Specifications

	3.3 Comparing the OpenNI SDK versus the Microsoft’s Official Kinect SDK
	3.3.1 Overview
	3.3.2 Microsoft Kinect SDK
	3.3.2.1 System Requirements
	3.3.2.2 Overview of Microsoft Kinect SDK Methodology
	3.3.2.3 Seated Mode Tests
	3.3.2.3.1 Overview
	3.3.2.3.2 Testing Procedure
	3.3.2.3.3 Parameters and Grading
	3.3.2.3.4 Seated Mode Results

	3.3.2.4 Near Mode +Seated Mode Tests
	3.3.2.4.1 Overview
	3.3.2.4.2 Testing Procedure
	3.3.2.4.3 Near Mode + Seated Mode Results

	3.3.2.5 Discussion of Overall Results

	3.3.3 OpenNI SDK+NiTE 2.2 SDK
	3.3.3.1 System Requirements
	3.3.3.2 Overview of OpenNI+NiTE SDK(with python bindings)Methodology
	3.3.3.3 Ease of Changing Variables
	3.3.3.4 Skeletal Tracking
	3.3.3.4.1 Overview
	3.3.3.4.1.1 Metrics

	3.3.3.4.2 Procedure
	3.3.3.4.3 Results:
	3.3.3.4.4 Discussion

	3.3.4 Final choice in SDK
	3.3.4.1 Metrics
	3.3.4.2 Parametric Matrix
	3.3.4.3 Discussion

	3.4 Mitigating Servo Jerkiness
	3.4.1 Overview
	3.4.2 Proof of Concept System
	3.4.3 Input- Mitigating Kinect Noise
	3.4.3.1 Explored Solutions
	3.4.3.1.1 Overview
	3.4.3.1.2 Problems
	3.4.3.1.3 Metric
	3.4.3.1.4 Parameter tuning of Raw Kinect Data (For reference)
	3.4.3.1.4.1 Introduction
	3.4.3.1.4.2 Implementation
	3.4.3.1.4.3 Findings

	3.4.3.1.5 Servo Value Smoothing Program Implementation
	3.4.3.1.6 Moving Average
	3.4.3.1.6.1 Introduction
	3.4.3.1.6.2 Data

	3.4.3.1.7 Moving Weighted Average
	3.4.3.1.7.1 Introduction
	3.4.3.1.7.2 Data

	3.4.3.1.8 Findings
	3.4.3.1.9 Method of Choice

	3.4.4 Output- Servo Jerkiness and System feedback
	3.4.4.1 Overview of the Issue and Solution
	3.4.4.2 Getting Hardware Feedback
	3.4.4.3 Cascading PID
	3.4.4.3.1 Overview

	3.4.4.4 Easing
	3.4.4.4.1 Overview
	3.4.4.4.2 Implementation
	3.4.4.4.2.1 Motion Profile and Setup
	3.4.4.4.2.2 Microcontroller Code

	3.4.4.4.3 Findings

	3.5 Visual feedback implementation
	3.5.1 Introduction
	3.5.2 Remote Viewing Implementation
	3.5.2.1 Addition packages to install
	3.5.2.2 Programming

	3.5.3 GUI Implementation
	3.5.4 Kinect View Implementation
	3.5.4.1 Motivation
	3.5.4.2 Background on How it was Accomplished

	3.5.5 Results
	3.5.6 Discussion

	3.6 Configuration Files
	3.6.1 Overview
	3.6.2 Implementation
	3.6.2.1 Considerations for Config File Schema
	3.6.2.1.1 Machine Identifier
	3.6.2.1.2 Inverse Kinematics
	3.6.2.1.3 Communications port
	3.6.2.1.4 Motor and Feedback Types

	3.6.2.2 Programming

	3.6.3 Test 1
	3.6.3.1 Overview
	3.6.3.2 Task 1
	3.6.3.3 Task 2
	3.6.3.4 Results
	3.6.3.5 Discussion
	3.6.3.5.1 Profile Creation Test
	3.6.3.5.2 Profile Selection Test
	3.6.3.5.3 Verdict

	3.7 Summary of Research and Design Work

	Chapter 4 Progressed System
	4.1 Overview
	4.2 Code
	4.2.1 Python
	4.2.1.1 Main Process Loop
	4.2.1.2 Sub functions
	4.2.1.2.1 scan()
	4.2.1.2.2 smoothArd()

	4.2.1.3 Helper Functions
	4.2.1.3.1 drawPlayer()
	4.2.1.3.2 drawLine()
	4.2.1.3.3 showVid()
	4.2.1.3.4 waitKeyPressed()
	4.2.1.3.5 addText()

	4.2.2 Arduino Mega
	4.2.2.1 Main Processing loop
	4.2.2.2 Sub functions
	4.2.2.2.1 moveServos()
	4.2.2.2.2 quadIO()
	4.2.2.2.3 quadO()

	4.2.3 Arduino Uno
	4.2.3.1 Main Processing Function

	4.3 Schematics
	4.3.1 Communication

	Chapter 5 Full System Testing
	5.1 Overview
	5.2 Test 1- Control
	5.2.1 Overview
	5.2.2 Metrics
	5.2.3 Procedure
	5.2.4 Initial Results
	5.2.5 Discussion and Problem Solving
	5.2.5.1 Overview
	5.2.5.2 Convert from “if” statements to “switch” cases
	5.2.5.3 Faster processor?
	5.2.5.4 Solution- Serial flushing

	5.2.6 Retest
	5.2.7 Discussion

	5.3 Test 2- Stability and Dexterity
	5.3.1 Overview
	5.3.2 Parameters and Metrics
	5.3.3 Procedure
	5.3.4 Results
	5.3.4.1 Test Data
	5.3.4.2 X Axis
	5.3.4.3 Y Axis
	5.3.4.4 Z Axis

	5.3.5 Discussion

	5.4 Test 3- Usability
	5.4.1 Overview
	5.4.2 Procedure
	5.4.3 Results
	5.4.4 Discussion

	5.5 Overall Discussion

	Chapter 6 Further Work
	6.1 Conclusion
	6.2 Known Issues
	6.2.1 Auto-Start Camera
	6.2.2 Compiling OSCeleton
	6.2.3 OpenNI2

	6.3 Two Arms
	6.4 Different Drive Systems
	6.5 Hand device
	6.6 Other Sensors
	6.6.1 Asus Xtion series
	6.6.2 Kinect 2

	6.7 Embedded system
	6.8 GUI
	6.9 Recording
	6.10 Computer Vision
	6.11 Better Predictive Algorithms

	Works Cited
	Appendix A- Copyright Permission

