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Abstract of the Dissertation

On the Dynamics of Non-Linear Systems and
Actuation Devices

by

Dake Feng

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2014

The research results being presented in this thesis is divided into

two areas. The first area is related to the development of a sys-

tematic method for model parameter identification of a large class

of fully and not fully controlled nonlinear dynamics systems such

as robot manipulators. The developed method is based on Tra-

jectory Pattern Method (TPM). The developed method uses tra-

jectory patterns with feed-forward controls to identify the system

model parameters. The developed method ensures full system sta-

bility; does not require close initial estimated values for the system

parameters to be identified; and provides a systematic method of
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emphasizing on estimation of the parameters associated with lower

order terms of the system dynamics and gradually upgrading the

accuracy with which the model parameters, particularly those as-

sociated with the higher order terms of the system dynamics are

estimated.

The second area of research that is being presented is related to

dynamic response characteristics of electrically powered actuation

systems in general and in non-linear dynamics systems in partic-

ular. Here, the term actuation systems refers to the actuator ele-

ments as well as their driving power electronics and its other related

components. The study shows that the actuation forces/torques

provided by such actuation systems can be divided into two basic

groups. The first group corresponds to the components of the ac-

tuator force/torque that is “actuator motion independent”. The

dynamic response of this group is relatively high and limited only

by the dynamic response limitations - for the case of electrically

driven actuation systems - of the driving power amplifiers, electron-

ics, computational and signal processing devices and components.

The second group corresponds to those components of the actuator

forces/torques that is “actuator motion dependent”. The dynamic

response of this group is relatively low and dependent on the actu-

ator effective inertial load and actuation speed. In all mechanical

systems that are properly designed, the dynamic response of the

first group is significantly higher than those of the second group.
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By separating the required actuating forces/torques into the above

two groups, the dynamic response of such nonlinear dynamics sys-

tems may be determined for a given synthesized trajectory. The

information can also be used to significantly increase the perfor-

mance of control systems of such mechanical systems.
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Chapter 1

Introduction

The dynamics of machines such as robot manipulators and those constructed

with linkage mechanisms, particularly those operating at relatively high speeds,

is highly nonlinear. The dynamics of such mechanical systems constructed

with relatively rigid links, which are considered as fully controlled, or flexible

links, which are considered as not fully controlled, can be modeled as ordinary

differential equations that are linear-in-parameters. Such models accurately

represent a large class of mechanical systems and usually employ appropriate

actuation and controls to form nonlinear dynamics systems.

Identification of the model parameters of such systems such as their kine-

matics and dynamics (inertia) parameters is important for accurate prediction

of the dynamic behavior of the system, and for the system design, path and

trajectory planning and synthesis, and their control. In particular, accurate

identification of model parameters is essential for the control of high-speed and

ultra-precision machines, especially when model-based methods are required

to achieve the desired system performance.
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A review of the published literature indicates that a systematic method for

parameter identification of highly nonlinear and linear-in-parameter mechan-

ical systems such as robot manipulators or other similar computer controlled

machines, particularly if they are desired to operate at high-speeds with very

high precision has not yet been developed.

In this thesis, a new systematic method for model parameter identification

of highly nonlinear and linear-in-parameter mechanical systems, fully con-

trolled and non-fully controlled, are presented and the mathematical proof of

its stability and convergence is provided. The method is based on the Tra-

jectory Pattern Method. In this method, for a pattern of motion the inverse

dynamics model of the system is derived in algebraic form in terms of the tra-

jectory pattern parameters. The system dynamics model parameters are then

identified using a systematic algorithm which ensures system stability as well

as accurate estimation of the model parameters associated with lower as well

as higher order dynamic terms. The method is shown to be fast converging

and does not require initial close estimation of system parameters in order to

ensure convergence.

On the other hand, the dynamics of actuation devices of different types

have been extensively studied. However, a review of published literature indi-

cates that dynamic response issues have not been fully explained for nonlinear

dynamics systems, including mechanical systems such as robot manipulators.

In most current approaches to path and trajectory synthesis and control of

mechanical systems, methods used for linear dynamics systems are generally

employed while treating the effects of nonlinearity as input disturbances. For

highly nonlinear dynamics systems, this usually means that the system opera-
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tion must be relatively slow to ensure stability and effectiveness of the control

system in providing operational precision. Model based feed-forward control

algorithms are also used to minimize the effects of the nonlinear components

of the system dynamics and to achieve better system performance in terms of

operating speed and precision.

The lack of full understanding of the dynamic response characteristics and

limitations of the actuation systems of mechanical systems with highly nonlin-

ear dynamics, however, significantly reduces the effectiveness of their control

system.

This thesis presents study clearly showing that the actuation forces/torques

provided by actuation devices driving mechanical systems can be divided into

two basic groups. The first group corresponds to those components of each

actuator force/torque that are “actuator motion independent”. The dynamic

response of this group is shown to be relatively high and limited only by the

dynamic response limitations - for the case of electrically driven actuation sys-

tems - of the driving power amplifiers, electronics, computational and signal

processing devices and components. The second group corresponds to those

components of the actuator forces/torques that are “actuator motion depen-

dent”. The dynamic response of the latter group is shown to be relatively

low and dependent on the actuator effective inertial load and actuation speed.

In all mechanical systems that are properly designed, the dynamic response

of the first group is significantly higher than those of the second group. By

separating the required actuating forces/torques into the above two groups,

the characteristics of the dynamic response of such nonlinear dynamics sys-

tems may be determined for a prescribed trajectory. The information can also
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be used to significantly increase the performance of control systems of such

mechanical systems by properly synthesized trajectories and control. When a

feed-forward control signal is used, the performance of the system is shown to

be significantly improved by generating each one of the aforementioned group

of components separately considering the dynamic response of the actuation

system to each one of the groups of components.

This thesis consists of six chapters. The material presented in each of

the four chapters following the introduction, Chapter 1, is in most part self

contained. In most chapters, a literature review of the related topics precedes

the main text, and is followed by a discussion and conclusion section. The

illustrations and tables are placed at the end of the corresponding chapter.

The references are listed in alphabetical order at the end of the thesis. The

following is a brief description of the material presented in each chapter of this

thesis.

In Chapter 2, the lowest harmonic trajectory pattern that can be synthe-

sized for point-to-point motions with zero end point velocity, acceleration and

jerk of fully controlled nonlinear dynamics system such as robot manipulators

with rigid links are derived and the proof of their existence are provided. It

is also shown that for such fully controlled dynamic systems, such trajectory

patterns would require actuating forces/torques with the minimum possible

number of harmonic content.

In Chapter 3, a systematic method for parameter identification of highly

nonlinear, linear-in-parameter and fully controlled mechanical systems such as

robot manipulators or other similar computer controlled machines, particu-

larly if they are desired to operate at high-speeds with very high precision is
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presented. Such a method guarantees that the system stays stable at all times

during the identification process and that it can accurately identify param-

eters that contribute to the higher order dynamics terms, particularly those

that become significant at higher operating speeds.

In Chapter 4, a systematic method for parameter identification of highly

nonlinear, non-fully controlled and linear-in-parameter mechanical systems

such as robot manipulators or other similar computer controlled machines

constructed with flexible structure, particularly if they are desired to operate

at high-speeds with very high precision is presented. Such a method is guaran-

tees that the system stays stable at all times during the identification process

and that it can accurately identify parameters that contribute to the higher

order dynamics terms, particularly those that become significant at higher

operating speeds.

In Chapter 5, an experiment is designed to prove the parameter iden-

tification method. A highly nonlinear two degrees of freedom manipulator

is built. The controller adopts Digital Signal Processor as realtime feed-

back/feedforward system and the velocity, position decoder is based on field-

programmable gate array. The experiment follows the proposed procedure in

chapter 3, and the result shows convergence of model parameter identification.

In Chapter 6, it presents a totally new approach at studying the dynamic

response requirements of mechanical systems with open-loop kinematic chain

and nonlinear dynamics such as robot manipulators. It is shown that the dy-

namic response requirements of the system actuators can be associated with

two different groups of components. The first group is shown to correspond to

the components of each actuator force/torque that is “actuator motion inde-
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pendent”. The dynamic response of this group of components of the actuating

forces/torques is shown to be limited only by the dynamic response limita-

tions - for the case of electrically driven actuation systems - of the driving

power amplifiers, electronics, computational and signal processing devices and

components. The second group corresponds to the components of each actua-

tor force/torque that is “actuator motion dependent”. The dynamic response

of this group of components of the actuator forces/torques is limited mainly

by the effective inertia that is experienced by the actuator and its operating

speed. Due to the nature of the currently available electrical, hydraulic and

other actuation systems, the dynamic response of actuation systems is shown

to be generally high to the former group of components and significantly lower

to the latter group of components.
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Chapter 2

On The Minimum Harmonic

Trajectory Pattern For

Point-To-Point Motion

2.1 Introduction

For trajectory synthesis of robot manipulators and computer controlled ma-

chines, polynomial and spline curves have been widely used [1, 2]. Johnson,

et al. in [3] developed a trajectory optimization technique for synthesizing dy-

namically feasible trajectories for mechanical system that approximate a de-

sired trajectory. Korayem, et al. reported another trajectory synthesis method

for optimizing point-to-point motions using the Pontryagin’s minimum prin-

ciple and solving a two-point boundary value problem [4]. When expressed

in Fourier series, all such trajectories contain a considerable number of high

harmonic components. In systems such as robot manipulators, the nonlinear-
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ity of their kinematics and dynamics will also generate a significant number

of harmonics of the harmonics present in the trajectory, thereby requiring the

actuating torques/forces to contain very harmonic content, usually way above

their dynamic response capabilities, particularly for relatively high-speed mo-

tions. As a result, the system becomes incapable of tracking the synthesized

trajectory with precision. In addition, the harmonics present in the actuating

torques/forces may have frequencies that are close to the natural modes of

vibration of the system and therefore cause vibration and control problems as

the manipulator attempts to follow the synthesized trajectory.

The concept of Trajectory Patterns was introduced for synthesis of trajec-

tories with low harmonic content [5, 37, 39] for high-speed and precision mo-

tions with minimal excitation of the natural modes of vibration of a system.

Trajectory patterns are classes of joint trajectories formed by an appropriate

number of basic time functions with a number of trajectory parameters [8].

This method has been shown to be most appropriate for low harmonic motion

synthesis, with the consideration of limitations of the actuator dynamic re-

sponse. Therefore such trajectories can be utilized to synthesize motions with

minimal actuator high harmonic content [9].

In this chapter, the lowest harmonic trajectory pattern that can be synthe-

sized for point-to-point motions with zero end point velocity, acceleration and

jerk of fully controlled nonlinear dynamics system such as robot manipulators

with rigid links are derived and the proof of their existence are provided. It

is also shown that for such fully controlled dynamic systems, such trajectory

patterns would require actuating forces/torques with the minimum possible

number of harmonic content.
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2.2 The Lowest Harmonic Trajectory Pattern

For Point-To-Point Motions

The simplest harmonic trajectory pattern is the one formed by a fundamental

sinusoidal time function and (n− 1) number of its harmonics as described by

x(t) =
n∑

i=0

[ai cos iωt+ bi sin iωt] (2.1)

Where x is the synthesized motion, t is time, ai and bi are the trajectory param-

eters corresponding to the ith trajectory harmonic, and ω is its fundamental

frequency.

Let the point-to-point motion to be synthesized start at the point x0 at

time t = 0 and end at x1 at time t = t1. For a point-to-point motion with

zero end point acceleration and jerk, the trajectory must satisfy the following

eight end conditions

x(0) =
n∑

i=0

ai = x0 (2.2)

x(t1) =
n∑

i=0

[ai cos iωt1 + bi sin iωt1] = x1 (2.3)

ẋ(0) =
n∑

i=1

iωbi = 0 (2.4)

ẋ(t1) =
n∑

i=1

iω[−ai sin iωt1 + bi cos iωt1] = 0 (2.5)
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ẍ(0) =
n∑

i=1

−i2ω2ai = 0 (2.6)

ẍ(t1) =
n∑

i=1

i2ω2[−ai cos iωt1 − bi sin iωt1] = 0 (2.7)

˙̈x(0) =
n∑

i=1

−i3ω3bi = 0 (2.8)

˙̈x(t1) =
n∑

i=1

i3ω3[ai sin iωt1 − bi cos iωt1] = 0 (2.9)

To satisfy the above eight end conditions, the trajectory pattern of Eqn. (2.1)

must in general have a minimum of four harmonics, i.e., for a given fundamen-

tal frequency ω, the trajectory pattern must contain at least three harmonics

of the fundamental frequency, i.e., n must be at least equal to 4.

It is, however, shown below that special type of trajectory patterns do

exist in which such point-to-point motions with zero end point accelerations

and jerks can be synthesized with a fundamental frequency and its second

harmonic. It is also shown that this trajectory pattern constitutes the lowest

possible harmonic point-to-point trajectory that can be synthesized with zero

end point accelerations and jerks.

Firstly, from Eqns. (2.4) and (2.8), it is readily observed that by setting

bi = 0, these two end conditions would always be satisfied and the total number

of end conditions to be satisfied drops to 6 from 8.

Secondly, by examining the end conditions of Eqns. (2.5) and (2.9), it is

readily observed that by setting the time t1 to the half of fundamental harmonic

period, i.e., if t1 =
π
ω
, the latter two end conditions would always be satisfied,
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thereby reducing the number of end conditions to be satisfied for each motion

to be synthesized to 4 as

x(0) =
n∑

i=0

ai = x0 (2.10)

x(
π

ω
) =

n∑
i=0

ai(−1)i = x1 (2.11)

ẍ(0) =
n∑

i=1

−i2ω2ai = 0 (2.12)

ẍ(
π

ω
) =

n∑
i=1

−i2ω2ai(−1)i = 0 (2.13)

Thirdly, by adding and subtracting Eqns.(2.12) and (2.13), the following

relationships between the coefficients ai are derived (here, [n
2
] is defined as the

integer of n
2
):

[n
2
]∑

k=0

a2k+1(2k + 1)2ω2 = 0 (2.14)

[n
2
]∑

k=1

a2k(2k)
2ω2 = 0 (2.15)

Eqns.(2.14) and (2.15) indicate that certain relationship must exist between

the amplitudes of the odd and even harmonics of the trajectory pattern. Now

by setting the amplitudes of the even harmonics to zero, i.e., by setting a2k = 0,

k = 1, 2, ..., the Eqn.(2.15) is then satisfied for all trajectories and the number

of end condition relationships to be satisfied is reduced to 3. The first two of

the relationships correspond to the end positions, Eqns.(2.10) and (2.11), and
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one relates the amplitudes of the odd harmonic components, Eqn.(2.14).

As a result, the lowest harmonic trajectory that can satisfy the aforemen-

tioned end condition related relationships, Eqns.(2.10), (2.11) and Eqn.(2.14),

becomes

x(t) = a0 + a1 cos(ωt) + a3 cos(3ωt) (2.16)

From which we can solve for the three trajectory pattern parameters a0, a1

and a3 as

a0 =
x0 + x1

2
(2.17)

a1 =
9(x0 − x1)

16
(2.18)

a2 =
−x0 + x1

16
(2.19)

By substituting Eqns.(2.17), (2.18) and (2.19) into Eqn.(2.16), the synthe-

sized lowest harmonic trajectory pattern is obtained as

x(t) =
x0 + x1

2
+

9(x0 − x1)

16

[
cos(ωt)− 1

9
cos(3ωt)

]
(2.20)

Taking advantage of the symmetry of the trajectory pattern of Eqn.(2.20),

the trajectory pattern can be expressed as

x(t) = λ(cosωt− 1

9
cos 3ωt) (2.21)

where λ is a parameter indicating the starting position of the synthesized

point-to-point motion as x(0) = 8
9
λ and the end position as x(π

ω
) = −8

9
λ. ,
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The unique trajectory pattern of Eqn.(2.20) or its equivalent (2.21) is

thereby shown to represent the lowest possible harmonic point-to-point motion

with zero end accelerations and jerk.

2.3 Actuation Forces/Torques Pattern for Low-

est Harmonic Point-to-Point Trajectory Pat-

terns

For fully controlled dynamic systems such as robot manipulators and computer

controlled machines with rigid links, the differential equations of motion may

be readily described in the following polynomial form (see [5, 8, 37, 39]]

mẍ+

p,q∑
i=0,j=0

kijẋ
ixj = u (2.22)

where p, q are non-negative integers indicating the highest order term of ẋ

and x with significant amplitude, u is the system input (actuating force or

torque), x is the system output (displacement or rotation), and m and ki,j are

the system kinematics and dynamics parameters.

2.3.1 Harmonic Components of the Actuating Forces/Torques

For a dynamics system represented by the non-linear differential equation

Eqn. (2.22) following the lowest harmonic point-to-point trajectory of Eqn. (2.21),
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the required actuating force/torque is readily shown to become

u(t) = mẍ(t) +

p,q∑
i=0,j=0

kijẋ(t)
ix(t)j = mλω2(− cosωt+ cos 3ωt)

+

p,q∑
i=0,j=0

kijω
iλi+j(− sinωt+

1

3
sin 3ωt)i(cosωt− 1

9
cos 3ωt)j

(2.23)

Expanding the term (− sinωt+ 1
3
sin 3ωt)i, when i is an even integer, then

(− sinωt+
1

3
sin 3ωt)i =

3i
2∑

l=0

al cos(2l)ωt (2.24)

And when i is an odd integer, then

(− sinωt+
1

3
sin 3ωt)i =

3i−1
2∑

l=0

a′l sin(2l + 1)ωt (2.25)

where al, a
′
l are the amplitude coefficients for the corresponding harmonic

functions.

And expanding the term (cosωt− 1
9
cos 3ωt)j, when j is an even integer, then

(cosωt− 1

9
cos 3ωt)j =

3j
2∑

l=0

bl cos(2l)ωt (2.26)

And when j is an odd integer,

(cosωt− 1

9
cos 3ωt)j =

3j−1
2∑

l=0

b′l cos(2l + 1)ωt (2.27)
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where bl, b
′
l are the amplitude coefficients for the corresponding harmonic

functions.

Therefore the highest harmonic present in the term

(− sinωt+
1

3
sin 3ωt)i(cosωt− 1

9
cos 3ωt)j

of the Eqn. (req-actuator-force) has a frequency of 3(i+j)ω. Thus, the highest

frequency component that the actuating force/torque u(t) has to provide has

a frequency of

ωmax = 3(p+ q)ω (2.28)

where (p + q) is defined by the system dynamics, indicating the highest sig-

nificant order of the dynamics of the system, and 3ω is the highest harmonic

component in the trajectory pattern to be followed.

It can therefore be concluded that the trajectory pattern with the low-

est number of harmonics of Eqn. (2.21) for point-to-point motions with zero

end point accelerations and jerks would also demand actuating forces/torques

with the lowest number of harmonics. It is obvious that trajectories with

non-zero end point accelerations and jerks would demand significantly higher

actuating force/torque harmonics due to the required actuating force/torque

discontinuities.

2.4 Conclusions

Trajectory pattern with lowest number of harmonics for point-to-point motions

of fully controlled dynamic systems with zero end point accelerations and jerks
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is shown to be unique and is presented together with its proof of existence

and uniqueness. For such fully controlled dynamics systems such as robot

manipulators with rigid links or other similar computer controlled machines,

it is also shown that the actuating forces/torques required for the system

to track such trajectory patterns also generally contain the lowest possible

harmonic content.

Trajectory patterns with low harmonic content and low harmonic content

of the required actuating forces/torques to track the synthesized trajectories

are important, particularly for higher operating speeds, due to vibration and

control problems and since the frequency of the highest harmonic present in the

actuating force/torque may exceed the dynamic response limit of the system

actuation devices.
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Chapter 3

Model Parameter Identification

for Fully Controlled Nonlinear

Dynamic System

3.1 Introduction

The dynamics of machines such as robot manipulators and those constructed

with linkage mechanisms, particularly those operating at relatively high speeds,

is highly nonlinear. The dynamics of such mechanical systems constructed

with relatively rigid links can be modeled as ordinary differential equations

that are linear-in-parameters. Such models accurately represent a large class

of mechanical systems and usually employ appropriate actuation and controls

to form fully controlled nonlinear dynamics systems.

Identification of the model parameters of such systems such as their kine-

matics and dynamics (inertia) parameters is important for accurate prediction
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of the dynamic behavior of the system, and for the system design, path and

trajectory planning and synthesis, and their control (e.g., see [13]). In partic-

ular, accurate identification of model parameters is essential for the control of

high-speed and ultra-precision machines, especially when model-based meth-

ods are required to achieve the desired system performance.

A number of investigators have developed procedures for the identifica-

tion and calibration of the kinematics parameters of various mechanical sys-

tems, e.g., Ibarra and Perreira [14], Kazerounian and Qian [15], Goswami and

Bosnik [16], Kaizerman, et al. [17] and Zak, et al. [18]. Others have con-

tributed to the development of dynamics parameter identification techniques.

For example, Guo and Angeles [19] developed a method for linearized systems

for on-line recursive least square parameter estimation for feedback gains.

Kawasaki and Nishimura [20] developed a method called “instrument vari-

able method” (IVM) which yields more accurate estimation than least square

methods (LSM). Based on a statistical framework, Swevers, et al. [21] formu-

lated a maximum-likelihood estimation method for the dynamics parameters

of robot models. Lin [22] developed a method which does not require symbolic

dynamics equations to identify the inertia parameters of a manipulator. In

another study, Lin [23] showed an approach to identify the parameters of a

manipulator based on the least square method. Dolanc and Strmcnik [24] used

a piecewise-linear Hammerstein excitation signal for parameter estimation of

nonlinear systems. Kenne, et al. [25] employed radial basis function networks

for time varying parameter estimation of nonlinear systems. Spottswood and

Allemang [26] proposed a frequency domain approach called “Modified Feed-

back of the Output Method” for parameter identification of reduced order
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nonlinear models.

Other related research has been in the area of the development of methods

to identify the structure of appropriate models for nonlinear dynamics systems,

including the present linear-in-parameters systems. For example, Li, et al. [27]

developed a two-stage algorithm for identification of the structure of nonlin-

ear dynamics systems in which an initial model is built from a large pool of

basis functions or model terms and the significance of each term is evaluated.

Gray, et al. [28] used a similar method together with Genetic Programming

for nonlinear model structure identification. This method is an optimization

method which automatically selects model structure elements from a database.

Abdelazim and Malik [29] used a fuzzy logic grey box modeling technique for

identification of the structure of nonlinear dynamics systems. Other published

literature in the area of parameter identification for nonlinear linear-in-the-

parameters dynamics system includes those Chen, et al. [30], Poroddi and

Spinelli [31], and Zhu and Billings [32].

A review of the published literature indicates that a systematic method for

parameter identification of highly nonlinear and linear-in-parameter mechan-

ical systems such as robot manipulators or other similar computer controlled

machines, particularly if they are desired to operate at high-speeds with very

high precision has not yet been developed. Such a method is required to guar-

antee that the system stays stable at all times during the identification process

and that it can accurately identify parameters that contribute to the higher

order dynamics terms, particularly those that become significant at higher

operating speeds.

In this chapter, the development of such a method is presented. The
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method is based on the Trajectory Pattern Method [13, 33–40]. The method

is robust and is applicable to highly nonlinear dynamics systems and does not

require accurate initial estimation of the system parameters. Presented in this

chapter is a comprehensive description and mathematical proof of the devel-

oped method, a preliminary study of which was presented in [? ]. Examples

are also provided of its implementation on highly nonlinear dynamics systems.

3.2 Model Parameter Identification Based On

Trajectory Patterns

The method being described in this chapter is for the identification of param-

eters of a large class of nonlinear dynamics systems that are fully controlled

and are linear-in-parameter. Such systems include various machines such as

robot manipulators and other similar computer controlled machinery that can

be considered to be constructed with rigid links. A dynamics model that ad-

equately describes the dynamic behavior of the system is considered to be

provided. The model parameters are, however, not accurately known and are

needed to be identified. The model parameters are considered to be constant,

but the present method can be used for on-line updating of time varying pa-

rameters as long as the changes are relatively slow.

3.2.1 Trajectory Pattern Method

The present model parameter identification method is based on the Trajec-

tory Pattern Method (TPM) [13, 33–40]. In TPM, a trajectory pattern is
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a collection of appropriate basic time functions with certain number of fixed

(trajectory) parameters with which the desired trajectories are synthesized.

During trajectory synthesis, the trajectory parameters are determined such

that the desired motion is realized. The synthesized motions may be point to

point, tracking, or regulatory (e.g., for vibration suppression) in nature. The

inverse dynamics model of a system is then derived in parametric form for

the selected trajectory (motion) patterns. The motions may be synthesized

using some optimality criterion such as minimum cycle time. The trajectory

patterns that appear to be most advantageous are those constructed using

a number of basic sinusoidal time functions and their harmonics. In which

case, the resulting actuation forces (control signals) become in terms the basic

sinusoidal time functions and a number of their harmonics. The number of

harmonics that appear in the actuation torques is dependent on the degree of

nonlinearity of the dynamics of the system. This permits the selection (syn-

thesis) of those motions that do not contain the natural modes of oscillation of

the system. During the motion, the natural modes of vibration of the system

are therefore not excited. In addition, by limiting the frequency of the highest

harmonic of the actuation signals during the motion synthesis, one can ensure

that the system actuators can meet the dynamic response requirements of the

system.

For a selected trajectory pattern, the structure of the inverse dynamic

model is fixed. This makes it possible to derive analytical relationships be-

tween the parameters of the system (model), the trajectory parameters, and

the control signal parameters. The formulation involves pure algebraic ma-

nipulations. Obviously, the degree of complexity of the derivations involved
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and the amount of algebraic manipulations that need to be performed are

dependent on the complexity of the dynamics of the system and the selected

trajectory pattern. In the work being presented, this characteristic of the TPM

is utilized to develop a systematic method and related algorithms to identify

the parameters of the model of such nonlinear dynamics systems.

3.2.2 Model Parameter Identification Method

In this section, the developed systematic method for identification of the pa-

rameters of the class of fully controlled nonlinear dynamics systems such as

serial robot manipulators with relatively rigid links is described and the math-

ematical proof of its convergence and stability during the identification process

is provided for a system with one degrees-of-freedom. The method can be seen

to be readily extendable to multi-degrees-of-freedom systems. The dynamics

of such systems are described by ordinary differential equations in the form of

so-called linear-in-the-parameters nonlinear systems [27].

The dynamics of the class of fully controlled and linear-in-the-parameters

nonlinear dynamics systems of interest can be described in the following form

mẍ+D(x, ẋ, k1, k2, ..., kn) = u (3.1)

where x is the system output, u is the system input,m, k1, k2,..., kn are the n+1

system parameters to be identified. It is readily shown that the nonlinear term

D can be accurately expressed in polynomial form using Taylor series as shown

in [13, 33–40] for robot manipulators with serial rigid link. The nonlinear term
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D can thereby be expressed in the following form

D(x, ẋ, k1, k2, ..., kn) =
n∑

j=1

kjx
pj ẋqj (3.2)

where pj and qj are non-negative integer exponents of x and ẋ, respectively,

in the jth term of the polynomial.

Now consider the trajectory pattern

xr = λ

[
cos(ωt)− 1

9
cos(3ωt)

]
(3.3)

where xr is the desired motion, ω is the fundamental frequency of the trajectory

and one of the trajectory parameters and λ is the other trajectory parameter.

With the motion starting at time t = 0 and ending at time t = π/ω, i.e., half

the period of the fundamental frequency ω, this trajectory pattern provides

smooth point-to-point motions with zero initial and final velocity, acceleration

and jerk. In this trajectory pattern, the time to complete the point-to-point

motion is determined by the trajectory parameter (fundamental frequency) ω,

and the trajectory parameter λ indicates the total distance traveled during the

motion. The trajectory pattern (4.13) has low harmonic content, thereby is

suitable for synthesizing point-to-point motions in nonlinear dynamics systems

since it can be expected to demand lower actuating force/torque harmonics.

As a result, lower dynamic response is generally required from the actuation

devices as compared to arbitrarily synthesized trajectories. The fundamental

frequency ω can also be selected such that the natural modes of vibration of

the system are not excited in resonance during the motion.
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In the present method, a feed-forward control system with a feedback loop

is used to achieve full system control, as shown in Figure 3.1. The feed-

forward signal ff is calculated from the inverse dynamics model of the sys-

tem, Eqn. (4.1), with the estimated system parameters m, k1, k2,..., kn. The

feedback gains of the linear controller are considered to be large enough to

achieve accurate trajectory tracking. It is shown later in this section that

with the trajectory pattern Eqn. (4.13) and by selecting appropriate values for

the trajectory parameters ω and λ, i.e., for relatively slow (small trajectory

parameter ω) and small point-to-point motions (small trajectory parameter

λ), any nonlinear dynamics system of the form Eqn. (4.1) can be forced to

accurately follow the synthesized trajectory with an appropriately designed

actuation device and a linear feedback control with high enough gains.

In the present method, the feed-forward signal ff , Figure 3.1, is calculated

from the dynamics model of the system, Eqn. (4.1), with the specified tra-

jectory pattern, such as the trajectory pattern Eqn. (4.13). Since the system

parameters are not yet known, their estimated values, denoted here as m′, k′1

, k′2 ,..., k′n are used to calculate the feed-forward signal as

ff = m′ẍr +D(xr, ẋr, k
′
1, k

′
2, ..., k

′
n) (3.4)

The control loop dynamics, Fig. 1, can be seen to be described by

mẍ+D(x, ẋ, k1, k2, ..., kn) = ff + C(e) (3.5)

where C(e) is the control signal and e is the error e = xa − xr, where xa is the
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system output. Substituting xa with xr + e in Eqn. (4.15), we get

më+mẍr +D(xr + e, ẋr + ė, k1, k2, ..., kn) = ff + C(e) (3.6)

However, since D in Eqn. (4.16) is a polynomial function, it can be rear-

ranged into the following form

D(xr + e, ẋr + ė, k1, k2, ..., kn) = D(xr, ẋr, k1, k2, ..., kn) +

D(e, ė, k1, k2, ..., kn) +D′(xr, e, ẋr, ė, k1, k2, ..., kn) (3.7)

where the term D′ is another polynomial function whose order is one less than

the term D. By substituting Eqns. (4.17) and (4.14) into Eqn. (4.16) and

rearranging the resulting equation, we get

më + D(e, ė, k1, k2, ..., kn) +D′(xr, e, ẋr, ė, k1, k2, ..., kn) = m′ẍr −

mẍr +D(xr, ẋr, k
′
1, k

′
2, ..., k

′
n)−D(xr, ẋr, k1, k2, ..., kn) + C(e) (3.8)

and since the termsD andD′ are polynomial functions in which the parameters

kis and k
′
is are coefficients of the polynomial terms, therefore the functions D

and D′ are linear with respect to the parameters kis and k′is. The first four

terms on the right hand side of Eqn. (4.18) can be simplified to

m′ẍr −mẍr +D(xr, ẋr, k
′
1, k

′
2, ..., k

′
n)−D(xr, ẋr, k1, k2, ..., kn) =

∆mẍr +D(xr, ẋr,∆k1,∆k2, ...,∆kn) (3.9)
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where ∆m = m′ −m and ∆ki = k′i − ki are errors in the estimated parameter

values m and ki, i = 1, 2, ..., n.

Then substituting Eqn. (4.19) into Eqn. (4.18), we get

më+D(e, ė, k1, k2, ..., kn) +D′(xr, e, ẋr, ė, k1, k2, ..., kn) =

∆mẍr +D(xr, ẋr,∆k1,∆k2, ...,∆kn) + C(e) (3.10)

Now consider the use of a linear controller such as a PD controller C(e) =

G1ė + G2e, where G1 and G2 are the proportional and derivative gains with

large enough values for the selected trajectory pattern parameters. By sub-

stituting the control signal C(e) into Eqn. (4.20) and expanding the terms D

and D′ into their polynomial forms, we get

më+
n∑

j=1

kje
pj ėqj +

n∑
j=1

kj

j∑
i,l=1

cjile
iėpj−i−1xlrẋ

qj−l−1
r

= ∆mẍr +
n∑

j=1

∆kjx
pj
r ẋ

qj
r +G1ė+G2e (3.11)

where cjil are the coefficients in the expanded term D′.

Rearranging Eqn. (3.11) by bringing all e and ė terms to the left hand side

and neglecting all their higher order terms since both e and ė terms can be

forced to become very small by the selection of small trajectory parameters λ

and ω and large enough controller gains, we get

më−G1ė−G2e = ∆mẍr +
n∑

j=1

∆kjxr
pj ẋr

qj (3.12)

As expected, with the assumption of small enough trajectory parameters λ
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and ω and large enough controller gains, the differential equation describing the

error becomes linear. As can be observed, the requirement of “close enough”

model parameter estimates in general feedforward control has been replaced

by the requirement of “small enough” trajectory parameters λ and ω to ensure

stability with closely approximated linear differential equation describing the

system tracking error, Eqn. (4.21). This means that by using the developed

trajectory pattern method, the system parameters of fully controlled nonlinear

dynamics systems such as robot manipulators with rigid links can be identified

without the availability of good estimated values for the system parameters as

described below.

By substituting the selected trajectory pattern Eqn. (4.13) into the right

hand side of Eqn. (4.21), we get

∆mẍr+
∑n

j=1 ∆kjx
pj
r ẋr

qj = [∆mλω2][− cos(ωt) + cos(3ωt)] +∑n
j=1

{
(∆kjλ

pj+qjωqj)[cos(ωt)− 1

9
cos(3ωt)]pj

[− sin(ωt) +
1

3
sin(3ωt)]qj

}
(3.13)

which can be written as

∆mẍr +
n∑

j=1

∆kjx
pj
r ẋ

qj
r = a0 +

N∑
i=1

[aci cos (iωt) + asi sin (iωt)] (3.14)

where N is the highest harmonic component present in the error as the system

is forced to follow the trajectory pattern Eqn. (4.13). From Eqn. (3.13), it can

be seen that N is 3(pn + qn).

Now as can be seen from Eqn. (3.13), the amplitudes a0, aci and asi of the
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harmonics present in the Eqn. (4.22) can be expressed as a linear combination

of the errors in the estimated values of the system parameters, i.e., ∆m and

∆kj in the present system described by Eqn. (4.1). Thus, by defining constants

bij as the coefficients of the expanded trigonometric polynomials in Eqn. (3.13)

(the underscore standing for either s or c), the amplitudes a0 and a i can be

expressed as

a0 = b0λω
2∆m+

n∑
j=1

b0jλ
pj+qjωqj∆kj (3.15)

a i = b i0λω
2∆m+

n∑
j=1

b ijλ
pj+qjωqj∆kj (3.16)

or in matrix form as

[a0] = B0



λω2 0 ... 0

0 λp1+q1ωq1 ... 0

... ... ... ...

0 0 ... λpn+qnωqn





∆m

∆k1

...

∆kn


 aci

asi

 = Bi



λω2 0 ... 0

0 λp1+q1ωq1 ... 0

... ... ... ...

0 0 ... λpn+qnωqn





∆m

∆k1

...

∆kn


(3.17)

where B0 = [b0 b01 ... b0n], Bi =

 bci0 bci1 ... bcin

bsi0 bsi1 ... bsin

, and i = 1, ..., N .

Now since the trajectory parameters are point to point motions with zero

initial position error and zero initial velocity, acceleration and jerk, therefore
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the resulting e, Eqn. (4.21), as the system closely tracks the selected trajectory

pattern will have the same harmonic content as in the right hand side of the

error equation expressed by Eqn. (4.22). Thus, the resulting tracking error

can be expressed as

e = E0 +
N∑
i=1

[Eci cos (iωt+ ϕi) + Esi sin (iωt+ ϕi)] (3.18)

in which the amplitudes E0 = 0 and Eci and Esi are linear functions of the

errors in the estimated values of the system parameters, i.e., ∆m and ∆kj in

the present system described by Eqn. (4.1), and the phase shift ϕi that can be

readily seen to be given as

ϕi = arctan
G1iω

G2 −m(iω)2
(3.19)

However, since with the initial trajectory parameters that yield relatively

slow and small point to point motions the controller gains can be set to be

relatively large, the resulting phase shifts can be made to be negligible, i.e.,

we can consider ϕi = 0, where i = 1, 2, ...N . It is also noted that as the

present parameter identification proceeds with larger trajectory parameters,

the controller gains can still be set to be relatively large since the error in the

system parameters would also become increasingly smaller.

The amplitudes E0, Eci and Esi in Eqn. (4.24) can be expressed as

E0 = T0a0

E i = Tia i (3.20)
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where T0 = − 1
G2
, Ti = − 1√

i2ω2G2
1+(i2ω2m+G2)2

, and i = 1, ..., N .

Now by substituting a0, aci and asi from Eqn. (3.17) into Eqn. (4.26), the

amplitudes E0, Eci and Esi can be shown to become

[
E0

]
= T0B0



λω2 0 ... 0

0 λp1+q1ωq1 ... 0

... ... ... ...

0 0 ... λpn+qnωqn





∆m

∆k1

...

∆kn


 Eci

Esi

 = TiBi



λω2 0 ... 0

0 λp1+q1ωq1 ... 0

... ... ... ...

0 0 ... λpn+qnωqn





∆m

∆k1

...

∆kn


(3.21)

As can seen from Eqn. (4.27), the amplitudes E0, Eci and Esi of the er-

ror harmonics are linear functions of the errors in the estimated values of

the system parameters, i.e., ∆m and ∆kj in the present system described by

Eqn. (4.1).

Now let the vector Ē = [E0, Ec1, Es1, ...]
T represent the amplitudes of the

error harmonics, Eqn. (4.24), and the vector P̄ = [∆m,∆k1,∆k2, ...]
T repre-

sent the aforementioned errors in the estimated values of the system parame-

ters, Eqn. (4.1). From Eqn. (4.27), the vectors Ē and P̄ are therefore related

by a matrix M as

Ē = MP̄ (3.22)
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where

M =



T0 0 ... 0

0 T1 ... 0

... ... ... ...

0 0 ... TN





B0

B1

...

BN





λω2 0 ... 0

0 λp1+q1ωq1 ... 0

... ... ... ...

0 0 ... λpn+qnωqn


(3.23)

It is readily shown that the matrix M is the product of the indicated

three matrices. The left matrix is diagonal with each term corresponding to

the response amplitude to each error frequency. These terms are therefore

also functions of the fundamental frequency ω and gains G1, G2 as indicated

by Eqn. (4.26). The elements in the middle matrix are constant for a given

system and selected trajectory pattern, Eqns. (4.23). And the right matrix is

also diagonal and in tems of the known trajectory parameters.

It is noted that the elements of the left matrix on the right hand side of

Eqn. (3.23) contain the gains G1 and G2, which may not be known precisely, as

well as the system parameterm. As a result, the estimator matrixM cannot be

calculated directly. However, for a given trajectory parameter ω and for a gain

settings G1 and G2, the estimator matrixM is constant. Thus, Eqn. (4.29) can

be used to calculate the elements of the estimator matrix M experimentally by

measuring the error amplitudes Ē for different trajectory parameters λ and/or

different system parameter correction vectors P̄ = [∆m,∆k1,∆k2, ...]
T .

Once the matrix M is known for a given set of trajectory parameters,

the linear relationship in Eqn. (4.29) can be applied to the measured error

vector Ē to calculate errors in the system parameters given by the vector
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P̄ as P̄ = M+Ē, where M+ is any proper pseudo inverse operator (Moore-

Penrose for example). The system parameters can then updated and the

system parameter identification process continued with larger point-to-point

motions, i.e., larger λ, and/or faster motions, i.e., larger ω.

It is noted that in practice, due to the measurement and rounding error

during the calculations and noise, for the same trajectory parameters and

gains, we may need to update system parameters and repeat the identification

procedure until the convergence of their values within an appropriate range.

It is also important to note that for a given set of trajectory parameters and

controller gains, as the system parameters are identified more accurately the

elements of the measured errors vector Ē diminishes, and becomes difficult

and/or impossible to measure. At which point, we have to either increase the

point-to-point motions, i.e., λ, or its speed, i.e., ω, or decrease the controller

gains to increase the amplitudes of the measured errors, Ē, and make it possible

to more accurately identify the system parameters associated with the higher

order dynamics of the system.

It is also noted that the matrix M is a linear map from the n dimensional

vector space P̄ to the 2N + 1 dimensional vector space Ē with 2N + 1 >

n. Therefore, there are at most n numbers of linear independent harmonic

amplitudes in the vector Ē. If M′ is a full rank n by n sub-matrix of the

matrix M relating n linearly independent amplitudes in the measured error

harmonic amplitudes (an n dimensional sub-vector Ē ′ of Ē), since Ē ′ = M′P̄ ,

by only measuring the error harmonic amplitudes Ē ′, the error in estimated

parameters P̄ can be calculated. The sub-matrix M′ may also be obtained as

was previously described for the matrix M.
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The relationship Eqn. (4.29) can be used to develop a systematic process

for the identification of the parameters of fully controlled nonlinear dynamics

systems. In this process, with an initial estimated values of the system pa-

rameters that do not have to be accurate, the system is forced to track the

trajectory pattern, Eqn. (4.13), starting with relatively small total point-to-

point steps (small λ) and relatively slow motions (small ω) to ensure stability

and relatively accurate tracking of the trajectory pattern. The tracking error

e is then measured, and the amplitudes of its harmonics (i.e., the vector Ē)

are calculated using Fourier integration. Eqn. (4.29) is then used to calculate

errors in the estimated values of the system parameters (∆m and ∆kj) for the

system described by Eqn. (4.1). The model parameters are then updated and

the process is repeated while slowly increasing the trajectory parameters λ and

ω until the values of the system parameters, particularly those related to the

higher order dynamics of the system are determined with enough accuracy.

The following general steps should be used to develop the model parameter

identification algorithms based on the present method

Step 1:

Substitute the selected trajectory pattern (preferably of the form described by

Eqn. (4.13)) into the differential equations of motion of the system to derive the

relationship between the errors in the amplitudes of the N harmonics present

in the control system generated errors Ē and the errors in the estimated values

of the system parameters P̄ , Eqn. (4.29).

Step 2:

Make as good an estimate for the system parameter values as possible. Then

depending on how good these estimates could be expected to be, select rel-
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atively small values for the trajectory parameters. In general, when errors

in the system parameter values are expected to be high, then smaller values

are selected for the trajectory parameters to ensure stability during the initial

trajectory tracking experiments.

Step 3:

For the given trajectory pattern, the error generated by the system controller

is then measured and the amplitudes of its harmonics are calculated and used

in Eqn. (4.29) to calculate the corrections ∆m and ∆kj that should be made

to the estimated values of the system parameters.

Step 4:

The experiment is repeated with the updated values of the system parameters.

If the magnitudes of the amplitudes of the significant harmonics of the error

generated by the system controller are small enough (according to preselected

convergence limits), then go to Step 5. Otherwise, go back to Step 3.

Step 5:

If the magnitudes of all the significant harmonics N of the error generated

by the system controller are small (according to the preselected convergence

limits), and all the parameters to be identified have converged, the parameter

estimation process is completed. Otherwise, increase the trajectory parameters

(larger λ and/or ω, Eqn. (4.13)) and go to Step 3.

It is noted that in this parameter identification process, when the trajec-

tory pattern parameters are small, the errors in the system parameters that

contribute most to the lower harmonics of the system actuation forces/torques

(and the tracking error) are mostly estimated. Then as longer paths, i.e., larger

values of λ, and faster motions, i.e., higher fundamental frequency ω, are used,
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the system parameters that contribute more to the higher order dynamics of

the system are identified.

It is noted that the (estimator) matrix M is not usually square. Thus in

the aforementioned system parameter identification process one has to use an

appropriate method such as a least square algorithm.

It is also noted that the estimator matrix M is preferably derived ana-

lytically, particularly when the system dynamics are highly nonlinear. It is,

however, also possible to determine the elements of the estimator matrix M

experimentally. The latter method is obviously very straight forward and only

requires results of two consecutive error harmonic amplitude measurements

and linear interpolation. The elements of the estimator matrix M may then

be updated as the system parameter identification process proceeds. The ana-

lytically derived estimator matrix M is also updated as the system parameter

identification process proceeds. The analytical formulation of the estimator

matrix is obviously preferred since not all the elements of the matrix are in-

dependent.

The details of the process of applying the developed nonlinear system pa-

rameter identification method is better described through the following exam-

ple.
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3.3 Example

Consider the fully controlled nonlinear dynamics system described by the dif-

ferential equation of motion

mẍ+ k1x+ k2ẋ
2 = u (3.24)

where m, k1 and k2 are the system parameters to be identified; x is the system

output and u is the system input. The trajectory pattern Eqn. (4.13) is used

in the present parameter identification process.

By applying Eqn. (3.11), we get the expanded polynomial form of the

system as

më+ k1e+ k2ė
2 + 2k2ėẋr = ∆mẍr +∆k1xr +∆k2ẋ

2
r +G1ė+G2e (3.25)

Substituting the trajectory pattern, Eqn. (4.13), into Eqn. (4.43) and re-

arranging into harmonic form, we get

më − G1ė−G2e = ∆mẍr +∆k2ẋ
2
r +∆k1xr =

5

9
λ2ω2∆k2

+ (λ∆k1 − λω2∆m) cosωt− 5

6
λ2ω2∆k2 cos 2ωt

− (
1

9
λ∆k1 − λω2∆m) cos 3ωt+

1

3
λ2ω2∆k2 cos 4ωt

− 1

18
λ2ω2∆k2 cos 6ωt

(3.26)

During the identification, the error e between the actual and planned posi-
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tions xa and xr, respectively, of the system is measured as a function of time,

shown in Figure 3.1.

Fourier integration is then used to calculate the amplitudes of the harmon-

ics with the fundamental frequency ω present in the measured error.

As mentioned previously, the output error vector can be defined as Ē =

[E0, E1c, E2c, E3c, E4c, E6c, ]
T , and the error vector in the estimated values of

the system parameter be P̄ = [∆m,∆k1,∆k2]
T

The estimator matrix M, Eqn. (4.29), is determined from Eqn. (4.25)-

Eqn. (4.29) as

M =



T0 0 ... 0

0 T1 ... 0

... ... ... ...

0 0 ... T6





0 0 5
9

−1 1 0

0 0 −5
6

1 −1
9

0

0 0 1
3

0 0 − 1
18




λω2 0 0

0 λ 0

0 0 λ2ω2

 (3.27)

By relating small changes in the parameters being estimated to small

changes in amplitude of error harmonics, a function mapping small changes in

the parameter values to that of amplitudes of the error harmonics, M̄, is ob-

tained. First, from the initially guessed system parameters P̄ , we measure the

error e and calculated its harmonics Ē. Next, from the initialed guessed param-

eters P̄ , we propose three parameters with small changes, P̄1 = P̄ +[δm, 0, 0]T ,

P̄2 = P̄ + [0, δk1, 0]
T , and P̄3 = P̄ + [0, 0, δk2]

T , and then repeat the test to

get three corresponding error vectors Ē1, Ē2, and Ē3. The matrix M̄ can be
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obtained as

M̄ =

[
1
δm

(
Ē1 − Ē

)
| 1

δk1

(
Ē2 − Ē

)
| 1

δk2

(
Ē3 − Ē

) ]
(3.28)

And then the system parameters can be identified by P̄ = M̄
+
Ē.

It is noted that in this case, there are only three components in Ē that

are linearly independent. Therefore, by defining them in a new vector Ē ′ =

[E0, E1c, E3c]
T , a new estimator matrix M′, which is full rank 3 by 3 in dimen-

sion, can be determined as

M′ =


T0 0 0

0 T1 0

0 0 T3




0 0 5
9

−1 1 0

1 −1
9

0



λω2 0 0

0 λ 0

0 0 λ2ω2

 (3.29)

And then the system is identified by P̄ = M̄′−1Ē ′, where the matrix M̄′ can

be obtained with the same method as was described for M̄.

In both cases, the elements of the estimator matrix are updated following

each parameter error identification run.

3.4 Conclusions

A new method for model parameter estimation of linear-in-the-parameters and

fully controlled nonlinear dynamics systems such as robot manipulators with

rigid links is presented and the mathematical proof of its stability and conver-

gence is provided. The method is based on the Trajectory Pattern Method.

In this method, for a pattern of motion the inverse dynamics model of the sys-
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tem is derived in algebraic form in terms of the trajectory pattern parameters.

The system dynamics model parameters are then identified using a systematic

algorithm which ensures system stability as well as accurate estimation of the

model parameters associated with lower as well as higher order dynamic terms.

The method is shown to be fast converging and does not require initial close

estimation of system parameters in order to ensure convergence.

Linear-in-the-parameters and fully controlled nonlinear dynamics systems

constitute a very large class of practical dynamics systems such as robot ma-

nipulators and other computer controlled machinery, particularly high-speed

and precision machines that are constructed with relatively rigid links and

operate at speeds that are well below the first natural mode of vibration of

the system.

It is noted that the main emphasis of the chapter has been in presenting

the developed method and not the development of the optimal method of

its implementation. For example, the use of Moore-Penrose pseudo-inverse

matrix to resolve redundancy in the estimator matrix relationship Eqn. (4.29)

can be significantly improved considering the generally smaller amplitudes

but higher frequencies of the higher harmonic components of the measured

error. In practice, the error rate (velocity) may also be measured and similarly

used in the parameter identification process, particularly to achieve better

measurement noise rejection.
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Figure 3.1: Feedforward Control System For Parameter Identification.

40



Chapter 4

Model Parameter Identification

for None-Fully Controlled

Nonlinear Dynamic System

4.1 Introduction

The dynamics of machines such as robot manipulators and those constructed

with linkage mechanisms, particularly those operating at relatively high speeds,

is highly nonlinear. The flexibility of links or joints, which construct such me-

chanical systems, introduces non-fully controlled complexity. The dynamics

of such mechanical systems can be modeled as ordinary differential equations

that are linear-in-parameters. Such models accurately represent a large class

of mechanical systems and usually employ appropriate actuation and controls

to form non-fully controlled nonlinear dynamics systems.

Identification of the model parameters of such systems such as their kine-
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matics and dynamics (inertia) parameters is important for accurate prediction

of the dynamic behavior of the system, for the design of the system, path

and trajectory planning and synthesis, and their control (e.g., see [13]). In

particular, accurate identification of model parameters is essential for the con-

trol of high-speed and ultra-precision machines, especially when model-based

methods are required to achieve the desired system performance.

A number of investigators have developed procedures for the identifica-

tion and calibration of the kinematics parameters of various mechanical sys-

tems, e.g., Ibarra and Perreira [14], Kazerounian and Qian [15], Goswami and

Bosnik [16], Kaizerman, et al. [17] and Zak, et al. [18]. Others have con-

tributed to the development of dynamics parameter identification techniques.

For example, Guo and Angeles [19] developed a method for linearized sys-

tems for on-line recursive least square parameter estimation for feedback gains.

Kawasaki and Nishimura [20] developed a method called “instrument variable

method” (IVM) which yields more accurate estimation than least square meth-

ods (LSM). Based on a statistical framework, Swevers, et al. [21] formulated a

maximum-likelihood estimation method for the dynamics parameters of robot

models. Lin [22] developed a method which does not require the symbolic

dynamics equations to identify the inertia parameters of a manipulator. In

another study, Lin [23] showed an approach to identify the parameters of a

manipulator based on the least square method. Dolanc and Strmcnik [24] used

a piecewise-linear Hammerstein excitation signal for parameter estimation of

nonlinear systems. Kenne, et al. [25] employed radial basis function networks

for time varying parameter estimation of nonlinear systems. Spottswood and

Allemang [26] proposed a frequency domain approach called “Modified Feed-
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back of the Output Method” for parameter identification of reduced order

nonlinear models.

Other related research has been in the area of the development of methods

to identify the structure of appropriate models for nonlinear dynamics systems,

including the present linear-in-parameters systems. For example, Li, et al. [27]

developed a two-stage algorithm for identification of the structure of nonlin-

ear dynamics systems in which an initial model is built from a large pool of

basis functions or model terms and the significance of each term is evaluated.

Gray, et al. [28] used a similar method together with Genetic Programming

for nonlinear model structure identification. This method is an optimization

method which automatically selects model structure elements from a database.

Abdelazim and Malik [29] used a fuzzy logic grey box modeling technique for

identification of the structure of nonlinear dynamics systems. Other published

literature in the area of parameter identification for nonlinear linear-in-the-

parameters dynamics system includes those Chen, et al. [30], Poroddi and

Spinelli [31], and Zhu and Billings [32].

A review of the published literature indicates that a systematic method for

parameter identification of highly nonlinear, non-fully controlled and linear-

in-parameter mechanical systems such as robot manipulators or other similar

computer controlled machines constructed with flexible structure, particularly

if they are desired to operate at high-speeds with very high precision has

not yet been developed. Such a method is required to guarantee that the

system stays stable at all times during the identification process and that it can

accurately identify parameters that contribute to the higher order dynamics

terms, particularly those that become significant at higher operating speeds.
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In this chapter, the development of such a method is presented. The

method is based on the Trajectory Pattern Method [13, 33–40]. The method is

robust and is applicable to highly nonlinear and non-fully controlled dynamics

systems and does not require accurate initial estimation of the system param-

eters. The mathematical proof of the developed method is provided together

with an example of its implementation on a nonlinear non-fully controlled

dynamics system.

4.2 Model Parameter Identification Method

In this section, the developed systematic method for identification of the pa-

rameters of a class of non-fully controlled nonlinear dynamics systems such as

serial robot manipulators with flexible links or joints is described and the math-

ematical proof of its convergence and stability during the identification process

is provided. The dynamics of such systems are decoupled and described by

ordinary differential equations in the form of so-called linear-in-the-parameters

nonlinear systems as [27]

m1ẍ1 +D(x1, x2, ẋ1, ẋ2, k11, k12, ..., k1n) = u (4.1)

m2ẍ2 + k21x2 + k22x1 = 0 (4.2)

m3ẍ3 + k31x3 + k32x2 = 0 (4.3)

...

mlẍl + kl1xl + kl2xl−1 = 0 (4.4)
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where x1 is the controlled system output, x2, x3,..., xl are non-controlled sys-

tem output, u is the system input (control), and m1, m2,...,ml, k11, k12,..., k1n,

k21, k22, ..., kl1, kl2 are the system parameters to be identified.

It is readily shown that the nonlinear termD in Eqn. (4.1) can be accurately

expressed in polynomial form using Taylor series as shown in [13, 33–40] for

robot manipulators with serial rigid links. The nonlinear term D can thereby

be expressed in the following form

D(x1, x2, ẋ1, ẋ2, k11, k12, ..., k1n) =
n∑

j=1

k1jx
p1j
1 ẋ

q1j
1 x

p2j
2 ẋ

q2j
2 (4.5)

where p1j, q1j, p2j and q2j are non-negative integer exponents of x1, ẋ1, x2 and

ẋ2, respectively, in the jth term of the polynomial.

The vibration equations Eqn. (4.2), Eqn. (4.3), and Eqn. (4.4) can be

rewritten as

x1 = −m2ẍ2 + k21x2
k22

(4.6)

x2 = −m3ẍ3 + k31x3
k32

(4.7)

...

xl−1 = −mlẍl + kl1xl
kl2

(4.8)

Solved from Eqn. (4.6), Eqn. (4.7), and Eqn. (4.8), we can get

x1 =
l−1∑
i=0

r1ix
(2i)
l (4.9)

x2 =
l−2∑
i=0

r2ix
(2i)
l (4.10)
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where r1i, r2i are solved coefficients from the elimination of equations, x
(2i)
l is

the 2i order derivative of xl.

Substitute Eqn. (4.9) and Eqn. (4.10) into Eqn. (4.5), let x = xl, and then

Eqn. (4.1) can be rewritten as a new high order fully controlled dynamics

system

c1x
(2l) +D1(x, ẋ, ẍ, ..., x

(2l−1), c2, c3, c4, ...cn′) = u (4.11)

where D1 is a new nonlinear term in polynomial form

D1(x, ẋ, ẍ, ..., x
(2l−1), c2, c3, c4, ...cn′) =

n′−1∑
j=1

cj+1x
p1j ẋp2j ẍp3j ...(x(2l−1))p(2l)j (4.12)

where p1j, p2j, ... p(2l)j are non-negtive integar exponents of x, ẋ, ẍ, ..., x
(2l−1),

respectively, in the jth term of the polynomial and cj+1 is the coefficient of such

term, which are also the parameters of the new linear-in-parameter dynamics

system. The totally n′ numbers parameters, c1, c2, ...cn′ , can be analytically

derived from the system parameters m1, m2,... . Therefore the system param-

eters can be obtained after identifying the n′ number of parameters from the

new system, Eqn. (4.11).

Now consider the trajectory pattern

xr = λ

[
cos(ωt) +

l−1∑
i=1

ai cos(2i+ 1)ωt

]
(4.13)

where xr is the desired motion, ω is the fundamental frequency of the trajec-

tory and one of the trajectory parameters, λ is the other trajectory parameter
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and ai are the amplitude of harmonic components to ensure ẋr(0) = ẍr(0) =

... = x
(2l+1)
r (0) = ẋr(π/ω) = ẍr(π/ω) = ... = x

(2l+1)
r (π/ω) = 0. With the

motion starting at time t = 0 and ending at time t = π/ω, i.e., half the pe-

riod of the fundamental frequency ω, this trajectory pattern provides smooth

point-to-point motions with zero initial and final velocity, acceleration and

jerk for all outputs x1, x2, ...,xl[? ]. In this trajectory pattern, the time to

complete the point-to-point motion is determined by the trajectory parameter

(fundamental frequency) ω, and the trajectory parameter λ indicates the total

distance traveled during the motion. The trajectory pattern (4.13) has low

harmonic content, thereby is suitable for synthesizing point-to-point motions

in nonlinear dynamics systems since it can be expected to demand low actuat-

ing force/torque harmonics. As a result, lower dynamic response is generally

required from the actuation devices as compared to arbitrarily synthesized

trajectories. The fundamental frequency ω can also be selected such that the

natural modes of vibration of the system are not excited in resonance during

the motion.

In the present method, a feed-forward control system with a linear feedback

loop such as the one shown in Figure 3.1 is used to achieve full system control.

The feed-forward signal ff is calculated from the inverse dynamics model of

the system, Eqn. (4.11), with the estimated system parameters c1, c2,..., cn′ .

The feedback gains of the linear controller are considered to be large enough

to achieve accurate trajectory tracking. It is shown later in this section that

with the trajectory pattern Eqn. (4.13) and by selecting appropriate values

for the trajectory parameters ω and λ, any nonlinear dynamics system of the

form Eqn. (4.11) can be forced to accurately follow the synthesized trajectory
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with an appropriately designed actuation device and a linear feedback control

with high enough gains.

For the trajectory pattern Eqn. (4.13) the feed-forward signal ff , Fig-

ure 3.1, is calculated from the dynamics model of the system, Eqn. (4.11).

Since the system parameters are not yet unknown, their estimated values,

denoted here as c′1 , c′2 ,..., c′n′ are used to calculate the feed-forward signal as

ff = c′1x
(2l)
r +D1(xr, ẋr, ẍr, ..., x

(2l−1)
r , c′2, c

′
3, c

′
4, ...c

′
n′) (4.14)

The control loop dynamics, Figure 3.1, can be described by

c1x
(2l)
a +D1(xa, ẋa, ẍa, ..., x

(2l−1)
a , c2, c3, c4, ...cn′) = ff + C(e) (4.15)

where C(e) is the control signal and e is the error e = xa − xr, where xa is the

system output. Substituting xa with xr + e in Eqn. (4.15), we get

c1e
(2l) + c1x

(2l)
r + D1 (xr + e, ẋr + ė, ẍr + ë, ..., x(2l−1)

r + e(2l−1),

c2, c3, c4, ...cn′) = ff + C(e) (4.16)

However, since D1 in Eqn. (4.16) is a polynomial function, it can be rearranged
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into the following form

D1(xr + e, ẋr + ė, ẍr + ë, ..., x(2l−1)
r + e(2l−1), c2, c3, c4, ...cn′)

= D1(xr, ẋr, ẍr, ..., x
(2l−1)
r , c2, c3, c4, ...cn′)

+D1(e, ė, ë, ..., e
(2l−1), c2, c3, c4, ...cn′)

+D′
1(xr, ẋr, ẍr, ..., x

(2l−1)
r , e, ė, ë, ..., e(2l−1), c2, c3, c4, ...cn′)

(4.17)

where the term D′
1 is another polynomial function whose order is one less than

the term D1. By substituting Eqn. (4.17) and Eqn. (4.14) into Eqn. (4.16) and

rearranging the resulting equation, we get

c1e
(2l) + D1(e, ė, ë, ..., e

(2l−1), c2, c3, c4, ...cn′) +

D′
1(xr, ẋr, ẍr, ..., x

(2l−1)
r , e, ė, ë, ..., e(2l−1), c2, c3, c4, ...cn′)

= c′1x
2l
r − c1x

2l
r +D1(xr, ẋr, ẍr, ..., x

(2l−1)
r , c′2, c

′
3, c

′
4, ...c

′
n′)

−D1(xr, ẋr, ẍr, ..., x
(2l−1)
r , c2, c3, c4, ...cn′) + C(e) (4.18)

Since the terms D1 and D′
1 are polynomial functions in which the parameters

cis and c
′
is are coefficients of the polynomial terms, therefore the functions D

and D′ are linear with respect to the parameters cis and c′is. The first four

terms on the right hand side of the Eqn. (4.18) can be written in the following
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simplified form

c′1x
2l
r − c1x

2l
r +D1(xr, ẋr, ẍr, ..., x

(2l−1)
r , c′2, c

′
3, c

′
4, ...c

′
n′)

− D1(xr, ẋr, ẍr, ..., x
(2l−1)
r , c2, c3, c4, ...cn′) =

∆c1x
2l
r +D1(xr, ẋr, ẍr, ..., x

(2l−1)
r , c2, c3, c4, ...cn′) (4.19)

where ∆ci = c′i − ci are errors in the estimated parameter values ci, i =

1, 2, ..., n′.

By substituting Eqn. (4.19) into Eqn. (4.18), we get

c1e
(2l) + D1(e, ė, ë, ..., e

(2l−1), c2, c3, c4, ...cn′) +

D′
1(xr, ẋr, ẍr, ..., x

(2l−1)
r , e, ė, ë, ..., e(2l−1), c2, c3, c4, ...cn′)

= ∆c1x
2l
r +D1(xr, ẋr, ẍr, ..., x

(2l−1)
r , c2, c3, c4, ...cn′) + C(e)

(4.20)

Now consider the use of a linear controller such as a PD controller C(e) =

G1ė + G2e, where G1 and G2 are the proportional and derivative gains with

large enough values. By substituting the control signal C(e) into the Eqn. (4.20)

and rearranging by bringing all e and ė terms to the left hand side. All their

higher order terms of error can neglected since e terms can be forced to become

very small by the selection of small trajectory parameters λ and ω and large

enough controller gains, we get

−G1ė−G2e = ∆c1x
(2l)
r +

n′−1∑
j=1

∆cj+1x
p1j
r ẋp2jr ẍp3jr ...(x(2l−1)

r )p(2l)j (4.21)
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As expected, with the assumption of small enough trajectory parameters

λ and ω and large enough controller gains, the differential equation describing

the error becomes linear. As can be observed, the requirement of close enough

model parameter estimation in general feedforward control has been replaced

by the requirement of small enough trajectory parameters λ and ω to ensure

stability with closely approximated linear differential equation describing the

system tracking error, Eqn. (4.21).

This means that by using the developed trajectory pattern method, the

system parameters of non-fully controlled nonlinear dynamics systems such as

robot manipulators with flexible links or joints can be identified without the

availability of good estimated values for the system parameters as described

below. By substituting the selected trajectory pattern Eqn. (4.13) into the

right hand side of the Eqn. (4.21) and then expand to harmonics form, we get

∆c1x
(2l)
r +

n′−1∑
j=1

∆cj+1x
p1j
r ẋp2jr ẍp3jr ...(x(2l−1)

r )p(2l)j

= a0 +
N∑
i=1

[aci cos (iωt) + asi sin (iωt)] (4.22)

where N is the highest harmonic component with significant amplitude present

in the error as the system is forced to follow the trajectory pattern Eqn. (4.13).

Now as can be seen from the Eqn. (4.22), the amplitudes a0, aci and asi

of the harmonics can be expressed as a linear combination of the errors in

the estimated values of the system parameters, i.e., ∆cj in the present sys-

tem described by the Eqn. (4.11). Thus, by defining b ij(λ, ω) as polynomial

functions of the trajectory parameters λ and ω (the underscore standing for
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either s or c), the amplitudes a i can be expressed as

a i =
n′∑
j=0

b ij(λ, ω)∆cj (4.23)

Now since the trajectory parameters are point to point motions with zero

initial position error and zero velocity, acceleration and jerk, therefore the re-

sulting error e, Eqn. (4.21), as the system closely tracks the selected trajectory

pattern, will have the same harmonic pattern as the right hand side of the er-

ror equation expressed by the Eqn. (4.22). Thus, the resulting tracking error

can be expresses as

e = E0 +
N∑
i=1

[Eci cos (iωt) + Esi sin (iωt)] (4.24)

in which the amplitudes E0 = 0 and Eci and Esi are linear functions of the

errors in the estimated values of the system parameters, i.e., ∆cj in the present

system that is described by the Eqn. (4.11).

The linear differential equation describing the above tracking error Eqn. (4.21)

generates a phase shift ϕ that can be readily seen to be given as

ϕ = arctan
G1ω

G2

(4.25)

And the amplitudes Eci and Esi can readily be shown to be described as

Eci =
aci cosϕ+ asi sinϕ√

i2ω2G2
1 +G2

2

,

Esi =
asi cosϕ+ aci sinϕ√

i2ω2G2
1 +G2

2

(4.26)
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Now by substituting aci and asi from Eqn. (4.23) into Eqn. (4.26), the

amplitudes Eci and Esi can be shown to become

Eci =

∑n
j=0 bcij(λ, ω)∆cj√
i2ω2G2

1 +G2
2

cosϕ+

∑n
j=0 bsij(λ, ω)∆cj√
i2ω2G2

1 +G2
2

sinϕ

(4.27)

Esi =

∑n
j=0 bsij(λ, ω)∆cj√
i2ω2G2

1 +G2
2

cosϕ+

∑n
j=0 bcij(λ, ω)∆cj√
i2ω2G2

1 +G2
2

sinϕ

(4.28)

As can seen from Eqn. (4.27) and Eqn. (4.28), the amplitudes Eci and Esi

of the error harmonics are linear functions of the errors in the estimated values

of the system parameters, i.e., ∆cj, Eqn. (4.11).

Now let the vector Ē = [E0, E1c, E2c, ...]
T represent the amplitudes of the

error harmonics, Eqn. (4.24), and the vector P̄ = [∆c1,∆c2, ...]
T represent the

aforementioned errors in the estimated values of the system parameters, i.e.,

∆cj in the present system that is described by the Eqn. (4.11). The vectors

Ē and P̄ are therefore related by an appropriately dimensioned matrix M as

Ē = M× P̄ (4.29)

The relationship Eqn. (4.29) can be used to develop a systematic process

for the identification of the parameters of non-fully controlled nonlinear dy-

namics systems. In this process, with an initial estimated values of the system

parameters (that do not have to be accurate), the system is forced to track
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the trajectory parameter Eqn. (4.13) with small enough trajectory parameters

to ensure stability and relatively accurate tracking of the trajectory pattern.

The tracking error e is then measured, the amplitudes of its harmonics (i.e.,

the vector Ē) are calculated using Fourier integration. The Eqn. (4.29) is then

used to calculate errors in the estimated values of the system parameters, i.e.,

∆m and ∆kj. The model parameters are then updated and the process is

repeated while slowly increasing the trajectory parameters, i.e., by increasing

the length of the point to point motions λ and their speed of travel ω, until

the values of the system parameters are determined with the desired level of

accuracy.

The following general steps should be used to develop model parameter

identification algorithms based on the present method:

Step 1:

Substitute the selected trajectory pattern (preferably of the form described by

Eqn. (4.13)) into the differential equations of motion of the system to derive

the relationship between the errors in the amplitudes of the N (significant)

harmonics present in the control system generated errors Ē and the errors in

the estimated values of the system parameters P̄ , Eqn. (4.29).

Step 2:

Make as good an estimate for the system parameter values as possible. Then

depending on how good these estimates could be expected to be, select rela-

tively small values for the trajectory parameters λ and ω. In general, when

errors in the system parameter values are expected to be high, then smaller

values are selected for the trajectory parameters to ensure stability during the

initial trajectory tracking experiments.
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Step 3:

For the given trajectory pattern, the error generated by the system controller

is then measured and the amplitudes of its harmonics are calculated and used

in the Eqn. (4.29) to calculate the corrections ∆m and ∆kj that should be

made to the estimated values of the system parameters.

Step 4:

The experiment is repeated with the updated values of the system parameters.

If the magnitudes of the amplitudes of the significant harmonics of the error

generated by the system controller are small enough (according to a preselected

convergence limits), then go to the Step 5. Otherwise, go back to Step 4.

Step 5:

If the magnitudes of all significant harmonics N of the error generated by the

system controller are small (according to a preselected convergence limits), the

parameter estimation process is completed. Otherwise, increase the trajectory

parameters, i.e., increase λ and/or ω, Eqn. (4.13), and go to the Step 3.

It is noted that in this parameter identification process, when the trajec-

tory pattern parameters are small, the errors in the system parameters that

contribute most to the lower harmonics of the system actuation forces/torques

(and the tracking error) are generally better estimated. Then as the trajectory

pattern parameters are made larger, i.e., as longer paths and faster motions

are used, the better estimation are made of the errors in the system parameters

that contribute to higher harmonics of the system actuation forces/torques,

i.e., the system parameters corresponding to higher order terms of the system

dynamics.

It is noted that the (estimator) matrix M is not usually square. Thus in
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the aforementioned system parameter identification process one has to use an

appropriate method such as one based on a least square algorithm to calculate

system parameter corrections.

It is also noted that the estimator matrix M is preferably derived ana-

lytically, particularly when the system dynamics is highly nonlinear. It is,

however, also possible to determine the elements of the estimator matrix M

experimentally. The latter method is obviously very straight forward and only

requires results of two consecutive error harmonic amplitude measurements

and linear interpolation. The elements of the estimator matrix M may then

be updated as the system parameter identification process proceeds. The ana-

lytically derived estimator matrix M is also updated as the system parameter

identification process proceeds. The analytical formulation of the estimator

matrix is obviously preferred since not all the elements of the matrix are in-

dependent.

The details of the process of applying the developed systematic nonlin-

ear system parameter identification method are better described through the

following example.

4.3 Example

Consider the non-fully controlled nonlinear dynamics system to be identified

shown in Figure 4.1.Two carts m1 and m2 are connected by a linear spring

with rate k3 while cart m1 is bounded to the ground via a nonlinear spring

with rate k(x) = k1x + k2x
3. The control force F is applied on cart m1, and

cartm2 is free. x1 and x2 are the system output. Such system can be described
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by the differential equations of motion as

m1ẍ1 + k1x1 + k2x
3
1 + k3(x1 − x2) = F (4.30)

m2ẍ2 + k3(x2 − x1) = 0 (4.31)

where m1, m2, k1, k2, k3 are the system parameters to be identified; x1 and x2

are the system outputs and F is the system input. Such non-fully controlled

dynamics system can be converted into a higher order fully controlled system,

and then be identified with the presented method.

First solve x1 from Eqn. (4.31)

x1 =
m2

k3
ẍ2 + x2 (4.32)

And then substitute x1 from Eqn.(4.32) into Eqn. (4.30), we have

m1m2

k3
¨̈x2 + (m1 +m2)ẍ2 + k1(

m2

k3
ẍ2 + x2) + k2(

m2

k3
ẍ2 + x2)

3 = F

(4.33)

Rearrange Eqn. (4.33), we get an one degree of freedom linear-in-parameter

fully controlled dynamics system to identify

c1 ¨̈x2 + c2ẍ2 + c3ẍ2x
2
2 + c4ẍ

2
2x2 + c5ẍ

3
2 + c6x2 + c7x

3
2 = F (4.34)
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where

c1 =
m1m2

k3
(4.35)

c2 = m1 +m2 +
k1m2

k3
(4.36)

c3 =
3k2m2

k3
(4.37)

c4 =
3k2m

2
2

k23
(4.38)

c5 =
k2m

3
2

k33
(4.39)

c6 = k1 (4.40)

c7 = k2 (4.41)

Therefore by identifying parameters c1 thru c7, the system parameters m1, m2,

k1, k2, k3 can be obtained.

The trajectory pattern Eqn. (4.42) is synthesized as presented parameter

identification process.

x2r = λ

(
cosωt− 1

6
cos 3ωt+

1

50
cos 5ωt

)
(4.42)

By applying Eqn. (4.21), we get the expanding polynomial form of this

system as

−G1ė−G2e = ∆c1 ¨̈x2r +∆c2ẍ2r +∆c3ẍ2rx
2
2r +∆c4ẍ

2
2rx2r

+∆c5ẍ
3
2r +∆c6x2r +∆c7x

3
2r (4.43)

Eqn. (4.25) shows the phase shifting of this system is ϕ = arctan G1ω
G2

.
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Without loss of generality, we choose the proportional controller to be domi-

nating by set the gain |G2| ≫ |ωG1|. Such that the phase shifting ϕ ≈ 0, and

then only cosine harmonics in the error are significant.

During the identification, the error e between the actual and planned po-

sitions x2a and x2r, respectively, of the system is measured as a function of

time, Figure 3.1.

Fourier integration is then used to calculate the amplitudes of the harmon-

ics with the fundamental frequency ω present in the measured error.

Let the amplitudes of the cosine part error harmonic vector be let the

error vector be Ē = [Ec1, Ec3, Ec5, Ec7, Ec9, Ec11, Ec13, Ec15]
T , and the afore-

mentioned error vector in the estimated values of the system parameter be

P̄ = [∆c1,∆c2, ...,∆c7]
T .

The estimator matrix M, Eqn. (4.29), is determined from Eqn. (4.25)-
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Eqn. (4.28) as

M = − 1

G2
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(4.44)

Alternatively, the estimator matrix M is calculated from the Eqn. (4.26)

by initially using a small change in the system parameter, ∆c1 to ∆c7, and

calculating the corresponding changes in the amplitudes of the error harmonics.

In both cases, the elements of the estimator matrix M is updated fol-

lowing each parameter error identification run. In this example, since the

estimator matrix M is not square, the Moore-Penrose pseudoinverse matrix is
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used to solve for the errors in the system parameter values. Thus, if M+ is the

Moore-Penrose pseudoinverse of the matrix M, then the errors in the system

parameter values P̄ is given by P̄ = M+ × Ē, where Ē is the aforementioned

vector of amplitudes of the harmonics present in the measured error e.

4.4 Conclusions

A new method for model parameter estimation of linear-in-the-parameters and

non-fully controlled nonlinear dynamics systems such as robot manipulators

with flexible links or joints is presented and its mathematical proof of its sta-

bility and convergence is provided. The method is based on the Trajectory

Pattern Method. In this method, for a pattern of motion the inverse dynamics

model of the system is derived in algebraic form in terms of the trajectory

pattern parameters. The system dynamics model parameters are then iden-

tified using a systematic algorithm which ensures system stability as well as

accurate estimation of the model parameters associated with lower as well as

higher order dynamic terms. The method is shown to be fast converging and

that does not require initial close estimation of system parameters in order to

ensure convergence.

The linear-in-the-parameters and non-fully controlled nonlinear dynam-

ics systems constitute a very large class of practical dynamics systems such

as robot manipulators and other computer controlled machinery, particularly

high-speed and precision machines that are constructed with flexible links or

joints and operate at speeds that are well below the first natural mode of

vibration of the system.
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Chapter 5

Experiment and Method

Validation

5.1 Introduction

In this chapter, an experiment is designed and executed to verify the pa-

rameter identification method. A highly nonlinear two degrees of freedom

manipulator is built. The controller adopts Digital Signal Processor as real-

time feedback/feedforward system and the velocity, position decoder is based

on field-programmable gate array. The experiment follows the proposed pro-

cedure in chapter 3, and the result shows convergence of model parameter

identification based on proposed method.
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5.2 System Dynamics Equations of Motion

A two DOF closed loop planar manipulator is built for validating the presented

parameter identification method, shown in Figure 5.1. The model parameters

m12, m3,m4, and m56 represent the masses of the four links; I12, I3,I4, and I56

are the moments of inertia; l1 through l6 are the link lengths between joints;

and r1 through r5 represent the distances from the joint to the centroid of the

links.

θ1, θ2 are system output positions, and τ1, τ2 are system inputs. The

differential equations of motion are

2f1(θ2)θ̈1 + f3(θ2)θ̈2 + 2
df1(θ2)

dθ2
θ̇1θ̇2 +

df3(θ2)

dθ2
θ̇2

2
= τ1 (5.1)

f3(θ2)θ̈1 + 2f2(θ2)θ̈2 −
df1(θ2)

dθ2
θ̇1

2
+
df2(θ2)

dθ2
θ̇2

2
= τ2 (5.2)

where f1(θ2), f2(θ2), and f3(θ2) are nonlinear functions of θ2. The details of

the definition are described in Appendix A.

The planned trajectory patterns for two outputs are

θ1 = θ10 + λ1(cosωt−
1

9
cos 3ωt− 8

9
) (5.3)

θ2 = θ20 + λ2(cosωt−
1

9
cos 3ωt− 8

9
) (5.4)

where θ10 and θ20 are the start position of the two outputs.

Therefore we can expand f1(θ2), f2(θ2), and f3(θ2) to the second order at

the start position θ20, and then the coefficients become the model parameters

to identify. Refer to Appendix A for the relationship among those model
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parameters.

f1(θ2) = a10 + a11(θ2 − θ20) + a12(θ2 − θ20)
2 (5.5)

f2(θ2) = a20 + a21(θ2 − θ20) + a22(θ2 − θ20)
2 (5.6)

f3(θ2) = a30 + a31(θ2 − θ20) + a32(θ2 − θ20)
2 (5.7)

The expansions to the harmonic forms from the polynomial forms are de-

scribed in Appendix B. The matrix M can then be constructed following the

procedure of the last example.

5.3 Experiment Setup

The two degrees of freedom manipulator is built as shown in Figure. (5.2).

Two AC brushless motors are mounted at joint 1 and 2 to generate input

torque. Two incremental quadrature encoders mounted on the shafts of the

motors are used for motion detection.

The control system is built as shown in Figure 5.3. A dell high performance

workstation is the host computer. The GUI program, shown in Figure 5.4,

downloads the estimated parameters onto a hosted 450MHz floating point

TI 6713 DSP system to drive the manipulator using inverse dynamics feed-

forward. Such DSP system reads the actual position profile of joints from

a high speed (50MHz clock) Xilinx Spartan III FPGA based logic circuit,

which is built to decode the pulse signals from the encoders, debounce the

noise, and then output the actual positions. IIR low pass filter and least

square fitting algorithms are implemented in the DSP system for position
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and velocity smoothing. From the error of position, the real time DSP sends

feedback torque commands add to the feed-forward commands to the D/A

converter, to compensate the error. Two power amplifiers, in torque/current

mode, accept the analog command output from D/A converters, to drive the

AC brushless motors. In the mean time, the DSP system communicates with

the GUI program running in the workstation through a PCI-64 bus to report

the error for data analysis and new parameter estimation.

The trajectory parameters for the initial cycle of the identification process

are selected to be λ1 = −14.06◦, λ2 = 11.43◦ and ω = 2rad/s. The controllers

for the two motors are selected to be proportional controllers with gains of 6519

and 4237, which are selected using standard techniques to guarantee stability.

The system parameters are unknown. The initial estimations for the system

parameter values are poorly guessed and adjusted by observing the system

outputs from several randomly picked numbers.

Following each model parameter identification run, the values of the trajec-

tory pattern parameters are increased until the calculated errors in the system

parameter values become small and fall within the desired convergence limit.

Since the total trip for both motors are large enough in this experiment, we

are going to increase only the fundamental frequency parameter of the trajec-

tory pattern. And when the controller output signal reaches about 70% of the

maximum allowed output level, the experiment is finished.
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5.4 Procedure and Result

The matrix M is first calculated numerically with the aforementioned poor ini-

tial system parameter values and updated after each identification run. Before

using the matrix to correct the error for the system parameters, the analytical

matrix form is applied to regulate matrix M by clearing those entries which

should be zero.

Table 5.1: System Parameter Identification Runs.
ω a′10 a′11 a′12 a′20 a21′ a′22 a′30 a′31 a′32
2 2281 1003 0 229 109 0 −1067−4740

2 2285 837 −11 215 173 88 −1061−573−46
2.6 2302 1047 74 178 379 −174−1044−497−28
3.0 2359 927 −189205 534 52 −1085−483192

As can be seen in Table 1, the system parameters corresponding to the

higher order terms of the system dynamics (a′12, a
′
22 and a

′
32 in the present ex-

ample) are updated for more accuracy as larger trajectory pattern parameters

(i.e. higher trajectory velocity) are employed. The smaller trajectory pattern

parameters can also be seen to be enough for relatively accurate identification

of the system parameters corresponding to the lower order terms of the system

dynamics.

Figures 5.5 and 5.6 show that after the parameters are identified, the error

on the output of the system is effectively reduced. At the same time, we may

observe that the driving torque input to the system is almost all from the

feed-forward signal. Therefore this system is successfully identified.
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Figure 5.1: A Two Dof Closed Loop Planar Manipulator.

68



Figure 5.2: The built Two-Dof Closed Loop Planar Manipulator.
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Figure 5.3: Control system schematics
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Figure 5.4: The controller program
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Figure 5.5: System Output Using Guessed Parameters.
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Figure 5.6: System Output Converged From Guessed Parameters.
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Chapter 6

On The Dynamic Response Of

Actuation Devices In Nonlinear

Dynamics Systems

6.1 Introduction

The dynamics of actuation devices of different types have been extensively

studied. For example, a comprehensive review of studies related to different

types of electrical motors is provided by Toliyat and Kliman [41]. Others

have studied different methods for synthesizing trajectory and control me-

chanical systems with nonlinear dynamics such as robot manipulators. For

example, formulation of inverse dynamics and model-based feed-forward con-

trol of dynamics systems such as robot manipulator were studied and trajec-

tory synthesis for minimal actuation force/torque harmonics were developed

using Trajectory Pattern Method (TPM) by Rastegar, et. al [13] - [33].
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However, a review of published literature indicates that dynamic response

issues have not been fully explained for nonlinear dynamics systems, including

mechanical systems such as robot manipulators. In most current approaches

to path and trajectory synthesis and control of mechanical systems, methods

used for linear dynamics systems are generally employed while treating the

effects of nonlinearity as input disturbances. For highly nonlinear dynamics

systems, this usually means that the system operation must be relatively slow

to ensure stability and effectiveness of the control system in providing oper-

ational precision. Model based feed-forward control algorithms are also used

to minimize the effects of the nonlinear components of the system dynamics

and to achieve better system performance in terms of operating speed and

precision.

The lack of full understanding of the dynamic response characteristics and

limitations of the actuation systems of mechanical systems with highly nonlin-

ear dynamics, however, significantly reduces the effectiveness of their control

system.

This chapter presents a totally new approach at studying the dynamic re-

sponse requirements of mechanical systems with open-loop kinematic chain

and nonlinear dynamics such as robot manipulators. It is shown that the dy-

namic response requirements of the system actuators can be associated with

two different groups of components. The first group is shown to correspond to

the components of each actuator force/torque that is “actuator motion inde-

pendent”. The dynamic response of this group of components of the actuating

forces/torques is shown to be limited only by the dynamic response limita-

tions - for the case of electrically driven actuation systems - of the driving
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power amplifiers, electronics, computational and signal processing devices and

components. The second group corresponds to the components of each actua-

tor force/torque that is “actuator motion dependent”. The dynamic response

of this group of components of the actuator forces/torques is limited mainly

by the effective inertia that is experienced by the actuator and its operating

speed. Due to the nature of the currently available electrical, hydraulic and

other actuation systems, the dynamic response of actuation systems is shown

to be generally high to the former group of components and significantly lower

to the latter group of components.

In this chapter, the justification for dividing the actuation forces/torques

into the aforementioned two groups of components and methods for their

derivation for mechanical systems with serial rigid links are presented. The

reasons for dividing the actuation forces/torques into these two groups for un-

derstanding the dynamic response characteristics and limitations of mechanical

systems with nonlinear dynamics are presented. The study also shows the need

for the development of a new approach for feed-forward control of mechanical

systems such as robot manipulators for achieving significantly higher perfor-

mance in terms of speed and precision. Examples are also presented together

with the discussion of the related topics of interest and future work
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6.2 Actuator Motion-Dependent and Motion-

Independent Components

In this section, the concept of “motion-dependent components” and “motion-

independent components” of an actuator force/torque of a mechanical system

is described using an example. Consider the two degrees-of-freedom planar

inverse pendulum system shown in Figure 6.1. The rigid cart has a mass

M and is acted on by a linear actuator providing the force F . The link

(pendulum) element is considered to be massless and connected to the cart

with a revolute joint, have a length L with an end massm that can be assumed

to be concentrated at the link end as shown in Figure 6.1. The pendulum link

is considered to be actuated by a rotary motor that applies a torque τ to the

link at the revolute joint. The displacement of the cart relative to the ground

and the rotation of the link pendulum relative to the cart are indicated as x

and θ, respectively.

The free body diagram of the inverse pendulum system of Figure 6.1 is

shown in Figure 6.2, where F1 and τ1 are ground reaction force and torque

and Rx and Ry are the reaction forces at the pendulum revolute joint. For the

sake of simplicity, the revolute joint is considered to be located at the center

of mass of the cart, where the actuation force F also acts.

Now consider the case in which the cart is held stationary and that the

pendulum is undergoing a simple harmonic motion with an amplitude a given

by

θ = a cosωt (6.1)
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From the free body diagram of Figure 6.2, the required actuation force F

acting on the cart and the actuating torque τ acting on the pendulum at the

revolute joint are readily seen to be

F = mL(θ̈ cos θ − θ̇2 sin θ)

= 4amLω2
[
cosωt cos(a cosωt) + a sin2 ωt sin(a cosωt)

]
= c1 cosωt+ c2 cos 3ωt+ c3 cos 5ωt+ ... (6.2)

τ = mL2θ̈ = −amLω2 cosωt (6.3)

As can be seen in Eqn. (6.2), the actuating force F is a nonlinear function

of the rotary joint motion θ (and any externally applied force, if any) and for

the simple harmonic motion Eqn. (6.1), it must generally provide an actuation

force that could contains several harmonics of the fundamental harmonic of the

motion Eqn. (6.1) with significant amplitude. It is also noted that the force F

is provided by the linear actuator driving the cart while the cart is stationary.

Which means that the force F is generated by the motor power electronics by

properly varying its electromagnetic forces as described in the Appendix A.

In the present case, the force F described by Eqn. (6.2) is in fact a reaction

force required to keep the cart stationary as the pendulum link undergoes the

simple harmonic motion Eqn. (6.1). In this chapter, such components of an

actuation force/torque are referred to as the “motion independent component”

of the actuating force/torque.

In general, the dynamic response of a properly designed power electronics

system driving a DC motor or the like is significantly higher than the dynamic

response of the mechanical system. The dynamic response of actuation devices
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are relatively high to the required “motion independent components” of the

actuating forces/torques. As a result, the cart actuator can be expected to

provide the higher harmonics of the required force, Eqn. (6.2), even for a

relatively large amplitude or high fundamental frequency motions Eqn. (6.1).

On the other hand, as can be seen in Eqn. (6.3), the actuating torque is

a function of its related joint motion - acceleration in this case. In this case,

the actuating torque τ is required to accelerate the pendulum link with the

moment of inertia mL2 about its axis of rotation, which then cause the link to

undergo its prescribed harmonic motion Eqn. (6.1) with its associated varying

joint velocity. As it is shown in the Appendix A, the dynamic response of

an actuator that has to accelerate a load (an effective inertia) and maintain

certain constant or varying joint velocity is limited by the amount of effective

load (effective inertia) and the joint velocity, both of which components may

be varying. In this chapter, these components of an actuation force/torque are

referred to as the “motion dependent component” of the actuating force/torque.

It is noted that for the sake of simplicity, in the above discussion of dy-

namic response limitations of the actuation devices the current and voltage

limitations of the power electronics and related components - for the case of

electrically driven actuation devices - are not considered. That is, the system

is considered to be operating within such limitations. Such an assumption does

not alter the present actuation force component division into “motion depen-

dent” and “motion independent” components. The effects of such limitations

are, however, discussed in the Appendix A.

Now for the case of the cart undergoing a simple harmonic motion x =

b cosωt while the pendulum link is held stationary relative to the cart at an
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angle θ = 0, Figure 6.1, the aforementioned required actuating force and torque

are readily seen to be

F = (M +m)ẍ = −(M +m)bω2 cosωt (6.4)

τ = mLẍ = −mLbω2 cosωt (6.5)

It is then readily observed that the required actuating torque τ is a reaction

torque that is needed to keep the pendulum link at the angle θ = 0, and con-

sists only of a “motion independent component”, Eqn. (6.5), and the dynamic

response of its motor for providing the required torque is relatively high and

dependent only on the dynamic response of its power electronics and related

components.

The actuating force F on the other hand consists only of a “motion depen-

dent component”, Eqn. (6.4), and its dynamic response is relatively low and

dependent on the amount of load (inertia M +m) and its varying velocity as

indicated in the Appendix A.

Now if neither cart nor the pendulum link, Figure 6.1, are stationary, the

system equations of motion become

F = Mẍ+mL(θ̈ cos θ − θ̇2 sin θ) +mẍ

= mL(θ̈ cos θ − θ̇2 sin θ) + (M +m)ẍ = FMI + FMD (6.6)

τ = mLẍ cos θ +mL2θ̈ = τMI + τMD (6.7)

where FMI = mL(θ̈ cos θ−θ̇2 sin θ) is the “motion independent component” and

FMD = (M +m)ẍ is the “motion dependent component” of the actuating force
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F acting on the cart. Similarly, τMI = mLẍ cos θ is the “motion independent

component” and τMD = mL2θ̈ is the “motion dependent component” of the

actuating torque acting on the pendulum link.

The above separation of the actuating forces/torques into the two groups of

“motion independent components” and “motion dependent components” pro-

vides the means of determining the dynamic response characteristics of such

mechanical systems with highly nonlinear dynamics. As it is shown in the Ap-

pendix A, since the generation of the “motion independent components” of the

actuating forces/torques is limited only by the dynamic response limitations

of the actuator power electronics, the actuator can provide this component

at relatively high frequencies demanded by the nonlinearity in the system dy-

namics, as for example can be seen in Eqn. (6.2) and Eqn. (6.6). However, the

dynamic response of an actuator in generating the “motion dependent com-

ponents” of the actuating forces/torques is dependent on the instantaneous

actuating load (effective inertia on which it acts) and the instantaneous speed

of the actuator motion.

The separation of the required actuating forces/torques into the aforemen-

tioned two groups of “motion independent components” and “motion dependent

components” clearly indicates the need for a new approach to the formulation

of feed-forward control signal in feed-forward control systems of mechanical

systems with nonlinear dynamics that considers the dynamics response char-

acteristics and limitations of the actuating devices such as different types of

electric motors and their commonly used electronic power amplifier drivers.

The general design of such feed-forward control systems and their superior

performance is shown by an example in the following section.
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6.3 Example And Simulation

Consider the inverse pendulum system of Figure 6.1 . The current approach

for constructing a model-based feed-forward control with a linear feedback

loop is shown in the block diagram of Figure 6.3. In this control system, the

input desired motion xd, θd and their related velocities and accelerations are

used in the system equations of motion Eqn. (6.6) and Eqn. (6.7) to calculate

the feed-forward force Fff and torque τff , respectively. In the block diagram

of Figure 6.3, the actual position of the cart and the pendulum link are in-

dicated as xa and θa, and their velocities by ẋa and θ̇a, respectively. Their

corresponding error signals, i.e., the difference between the desired and actual

positions ex and eθ and desired and actual velocities ėx and ėθ, Figure 6.3,

are fed back through a (usually a linear PD) controller. The sum of the feed-

forward and the feedback signals is then sent to the electronic power amplifier

via a low pass filter, which is used to remove the high frequency components

of the signal that are considered to be beyond the dynamic response capability

of the system actuators and that may excite natural modes of vibration of the

system. In a system constructed as shown in Figure 6.3, the low pass filter also

serves to filter other high frequency noises and disturbances. The electronic

power amplifiers will then convert the filtered control signal to power signals to

drive the actuating motors to produce the required actuating force and torque

to drive the plant.

As was shown in the previous section, the feed-forward signal, which is

generated using the system equations of motion, Eqn. (6.6) and Eqn. (6.7),

contain high frequency components generated by the “motion independent
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components” of the required actuation force/torque, which are critical for gen-

erating the desired system motion. The commonly used feed-forward control

systems shown in the block diagram of Figure 6.3, however, simply filters all

high frequency components of the feed-forward signal, thereby degrading the

system performance in terms of speed of operation and precision.

The block diagram of the proposed model based feed-forward control sys-

tem is shown in the block diagram of Figure 6.4. In this control system, the

feed-forward signals corresponding to the “motion independent components”

of the required actuating force/torque, i.e., FMI and τMI in Eqn. (6.6) and

Eqn. (6.7), respectively, are separated from those of “motion dependent com-

ponents”, i.e., FMD and τMD in Eqn. (6.6) and Eqn. (6.7), respectively. The

“motion dependent components” of the feed-forward signals are then similarly

filtered with a low pass filter to eliminate nose and other high frequency sig-

nals that may have been generated due to the feedback signals. The “motion

independent components” of the feed-forward signals are however either not

filtered or preferably filtered with a low pass filter with significantly higher cut

off frequency to eliminate higher frequency noise and components that may

have been generated due to the digital nature of currently used control sys-

tems and if actual positions and velocities are not used to minimize step-like

signals at each sampling time. As a result, the higher frequency components

of the electronic power amplifier signals corresponding to the “motion inde-

pendent components” of the actuating forces/torques are not eliminated by the

low pass filter, thereby ensuring that the aforementioned and mainly reaction

forces/torques are provided by the system actuators.

In the present example, the desired motion of the system of Figure 6.1 is
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considered to be given as

xd = 0.1(cos 3t− 1

9
9t) (6.8)

θd = 0.6(cos 12t− 1

9
cos 36t) (6.9)

The system parameters are considered to be given as M = 10 Kg, m = 1 Kg

and L = 0.4 m. Both actuators are considered to be brushless DC motors

with rotor inertia of J = 0.35 Kg-cm2, and parameters K = 0.115 N-m/amp,

L = 7.7 mH, R = 4 ohms, and Imax = 12.3 amp, Figure C.1.

The electronic power amplifier is considered to allow a maximum voltage

of Vmax = 50 volts and provide a peak power of Ppeak = 600 watt. A gear with

radius 0.02 m and a matching rack convert the rotary output from the motor

to linear motion of the cart and its effective inertia is considered to be included

in the mass of the cartM . The PD controller proportional and derivative gain

are selected to be 1000 and 100, respectively. A second order unit gain low

pass filter with undamped natural frequency ωn = 100 rad/s and the quality

factor Q = 1 is used.

Computer simulation was performed for both control systems, Figure 6.3

and Figure 6.4 for the aforementioned desired motion. As expected, both

position and velocity errors were found to be significantly smaller with the

proposed feed-forward control system with the separated motion dependent

and motion independent components, Figure 6.4. For example, the larger

cart position error ex for both control system simulations are shown in the

plot of Figure 6.5. In this plot, the error ex is plotted with solid line for the

proposed control system, Figure 6.4, and with dashed lines for the commonly
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used control system, Figure 6.3.

A close examination of the plots of the error ex of Figure 6.5 and examina-

tion of the computer simulation results also indicates that for the commonly

used feed-forward control system of Figure 6.3, the cart position error ex is

mainly due to the filtered, but required, high frequency components of the

“motion independent component” of the actuating forces.

6.4 Conclusions

The present study clearly shows that the actuation forces/torques provided by

actuation devices driving mechanical systems can be divided into two basic

groups. The first group corresponding to those components of each actuator

force/torque that is “actuator motion independent”. The dynamic response

of this group is shown to be relatively high and limited only by the dynamic

response limitations - for the case of electrically driven actuation systems - of

the driving power amplifiers, electronics, computational and signal processing

devices and components. And the second group corresponding to those com-

ponents of the actuator forces/torques that is “actuator motion dependent”.

The dynamic response of the latter group is shown to be relatively low and

dependent on the actuator effective inertial load and actuation speed. In all

mechanical systems that are properly designed, the dynamic response of the

first group is significantly higher than those of the second group. By sepa-

rating the required actuating forces/torques into the above two groups, the

characteristics of the dynamic response of such nonlinear dynamics systems

may be determined for a prescribed trajectory. The information can also be
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used to significantly increase the performance of control systems of such me-

chanical systems by properly synthesized trajectories and control. When a

feed-forward control signal is used, the performance of the system is shown to

be significantly improved by generating each one of the group of components

separately considering the dynamic response of the actuation system to each

one of the groups of components. An example and practical methods of im-

plementing the proposed feed-forward control for nonlinear dynamics systems

are provided.
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Figure 6.1: Planar inverse pendulum system.
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Figure 6.2: The free body diagram of the pendulum system of Figure 6.1.
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Figure 6.3: Block diagram of a commonly used feed-forward control system.
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Figure 6.4: Block diagram of the proposed feed-forward control system.
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Figure 6.5: The position error for the systems of Figure 6.4 and 6.3.

87



Appendix A

The Differential Equations of

Motion and Their Expansion

The differential equations of motion for the experiment 2-dof manipulator are

2f1(θ2)θ̈1 + f3(θ2)θ̈2 + 2
df1(θ2)

dθ2
θ̇1θ̇2 +

df3(θ2)

dθ2
θ̇2

2
= τ1 (A.1)

f3(θ2)θ̈1 + 2f2(θ2)θ̈2 −
df1(θ2)

dθ2
θ̇1

2
+
df2(θ2)

dθ2
θ̇2

2
= τ2 (A.2)

where

f1(θ2) =
A1

2
+ A2 cos θ2 + A3 cos θ3 + A4 cos θ4 + A5 cos(θ2 − θ3)

f2(θ2) =
A6

2
+
A7

2
[
l4 sin(θ4 − θ2)

l5 sin(θ3 − θ4)
]2 +

A8

2
[
l4 sin(θ3 − θ2)

l3 sin(θ3 − θ4)
]2

+ A5 cos(θ2 − θ3)
l4 sin(θ4 − θ2)

l5 sin(θ3 − θ4)
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f3(θ2) = A6 + A2 cos θ2 + A5 cos(θ2 − θ3)

+ [A7 + A3 cos θ3 + A5 cos(θ2 − θ3)]
l4 sin(θ4 − θ2)

l5 sin(θ3 − θ4)

+ (A8 + A4 cos θ4)
l4 sin(θ3 − θ2)

l3 sin(θ3 − θ4)

and where

A1 = m12r
2
1 + I12 +m3(l1 + l2)

2 +m3r
2
3 + I3

+ m4(l
2
1 + r24) + I4 +m56(l

2
1 + l24 + r25) + I56 (A.3)

A2 = m4l1r4 +m56l1l4 (A.4)

A3 = m56l1r5 (A.5)

A4 = m3(l1 + l2)r3 (A.6)

A5 = m56l4r5 (A.7)

A6 = m4r
2
4 + I4 +m56l

2
4 (A.8)

A7 = m56r
2
5 + I56 (A.9)

A8 = m3r
2
3 + I3 (A.10)

The polynomial form of the differential equations is required to reveal the

harmonic pattern of error related to the parameters for identification, therefore

we need to expand the functions f1, f2, and f3 in a taylor series. Due to the

space limitation, only the expansion of function f1 to the first order is given

as an example.

f1(θ2) = a10 + a11(θ2 − θ20) +O
[
(θ2 − θ20)

2
]

(A.11)
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where

a10 =
A1

2
+ A2cosθ20

+ A3cos[arccos(
l2

2 − l3
2 + l4

2 + l5
2 − 2l2l4cosθ20

2l5
√
l2

2 + l4
2 − 2l2l4cosθ20

)

−arctan(
l4sinθ20

l2 − l4cosθ20
)]

− A4cos[arccos(
l2

2 + l3
2 + l4

2 − l5
2 − 2l2l4cosθ20

2l3
√
l2

2 + l4
2 − 2l2l4cosθ20

)

+arctan(
l4sinθ20

l2 − l4cosθ20
)]

+ A5cos[θ20 − arccos(
l2

2 − l3
2 + l4

2 + l5
2 − 2l2l4cosθ20

2l5
√
l2

2 + l4
2 − 2l2l4cosθ20

)

+arctan(
l4sinθ20

l2 − l4cosθ20
)]

a11 = −A2sinθ20

+ A3(
l2l4(l2

2 + l3
2 + l4

2 − l5
2 − 2l2l4cosθ20)sinθ20

2l5(l2
2 + l4

2 − 2l2l4cosθ20)3/2
√
1− (l2

2−l3
2+l4

2+l5
2−2l2l4cosθ20)2

4l5
2(l2

2+l4
2−2l2l4cosθ20)

− −l2l4cosθ20 + l4
2cosθ220 + l4

2sinθ220
l2

2 − 2l2l4cosθ20 + l4
2cosθ220 + l4

2sinθ220
)

sin[arccos(
l2

2 − l3
2 + l4

2 + l5
2 − 2l2l4cosθ20

2l5
√
l2

2 + l4
2 − 2l2l4cosθ20

)

−arctan(
l4sinθ20

l2 − l4cosθ20
)]

+ A4(
−l2l4(l22 − l3

2 + l4
2 + l5

2 − 2l2l4cosθ20)sinθ20

2l3(l2
2 + l4

2 − 2l2l4cosθ20)3/2
√
1− (l2

2+l3
2+l4

2−l5
2−2l2l4cosθ20)2

4l3
2(l2

2+l4
2−2l2l4cosθ20)

− −l2l4cosθ20 + l4
2cosθ220 + l4

2sinθ220
l2

2 − 2l2l4cosθ20 + l4
2cosθ220 + l4

2sinθ220
)

sin[arccos(
l2

2 + l3
2 + l4

2 − l5
2 − 2l2l4cosθ20

2l3
√
l2

2 + l4
2 − 2l2l4cosθ20

)
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+arctan(
l4sinθ20

l2 − l4cosθ20
)]

+ A5(
−l2l4(l22 + l3

2 + l4
2 − l5

2 − 2l2l4cosθ20)sinθ20

2l5(l2
2 + l4

2 − 2l2l4cosθ20)3/2
√

1− (l2
2−l3

2+l4
2+l5

2−2l2l4cosθ20)2

4l5
2(l2

2+l4
2−2l2l4cosθ20)

− l2l4cosθ20 − l4
2cosθ220 − l4

2sinθ220
l2

2 − 2l2l4cosθ20 + l4
2cosθ220 + l4

2sinθ220
− 1)

sin[θ20 − arccos(
l2

2 − l3
2 + l4

2 + l5
2 − 2l2l4cosθ20

2l5
√
l2

2 + l4
2 − 2l2l4cosθ20

)

+arctan(
l4sinθ20

l2 − l4cosθ20
)]

The expansion shows that there are certain relationships between model

parameters from Eqn. (A.3) through (A.10) and the approximated polynomial

expansion model coefficients as a10 and a11. During the identification, the

approximated model coefficients are directly detected, and then the actual

model parameters can be derived from the given relationships.
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Appendix B

The Expansion to the Harmonic

Form.

The expansion to the harmonic form of Eqn. (A.1) is

2[∆a10 +∆a11(θ2 − θ20) + ∆a12(θ2 − θ20)
2]θ̈1 +

[∆a30 +∆a31(θ2 − θ20) + ∆a32(θ2 − θ20)
2]θ̈2 +

2[∆a11 + 2∆a12(θ2 − θ20)]θ̇1θ̇2 + [∆a31 + 2∆a32(θ2 − θ20)]θ̇2
2
=

−2∆a10λ1ω
2cosωt−∆a30λ2ω

2cosωt+
16

9
∆a11λ1λ2ω

2cosωt

+
8

9
∆a31λ2

2ω2cosωt− 55

27
∆a12λ1λ2

2ω2cosωt− 55

54
∆a32λ2

3ω2cosωt

− 14

9
∆a11λ1λ2ω

2cos2ωt− 7

9
∆a31λ2

2ω2cos2ωt

+
224

81
∆a12λ1λ2

2ω2cos2ωt+
112

81
∆a32λ2

3ω2cos2ωt

+ 2∆a10λ1ω
2cos3ωt+∆a30λ2ω

2cos3ωt− 16

9
∆a11λ1λ2ω

2cos3ωt
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− 8

9
∆a31λ2

2ω2cos3ωt+
88

81
∆a12λ1λ2

2ω2cos3ωt

+
44

81
∆a32λ2

3ω2cos3ωt+
16

9
∆a11λ1λ2ω

2cos4ωt

+
8

9
∆a31λ2

2ω2cos4ωt− 256

81
∆a12λ1λ2

2ω2cos4ωt

− 128

81
∆a32λ2

3ω2cos4ωt+
100

81
∆a12λ1λ2

2ω2cos5ωt

+
50

81
∆a32λ2

3ω2cos5ωt− 2

9
∆a11λ1λ2ω

2cos6ωt

− 1

9
∆a31λ2

2ω2cos6ωt+
32

81
∆a12λ1λ2

2ω2cos6ωt

+
16

81
∆a32λ2

3ω2cos6ωt (B.1)

The expansion to the harmonic form of Eqn. (A.2) is

[∆a30 +∆a31(θ2 − θ20) + ∆a32(θ2 − θ20)
2]θ̈1 +

2[∆a20 +∆a21(θ2 − θ20) + ∆a22(θ2 − θ20)
2]θ̈2 −

[∆a11 + 2∆a12(θ2 − θ20)]θ̇1
2
+ [∆a21 + 2∆a22(θ2 − θ20)]θ̇2

2
=

− 5

9
∆a11λ1

2ω2 − 5

9
∆a31λ1λ2ω

2 +
80

81
∆a12λ1

2λ2ω
2

− 5

9
∆a21λ2

2ω2 +
80

81
∆a32λ1λ2

2ω2 +
80

81
∆a22λ2

3ω2

− ∆a30λ1ω
2cosωt− 2∆a20λ2ω

2cosωt

+
8

9
∆a31λ1λ2ω

2cosωt− 1

3
∆a12λ1

2λ2ω
2cosωt

+
16

9
∆a21λ2

2ω2cosωt− 73

54
∆a32λ1λ2

2ω2cosωt
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− 64

27
∆a22λ2

3ω2cosωt+
5

6
∆a11λ1

2ω2cos2ωt

+
1

18
∆a31λ1λ2ω

2cos2ωt− 40

27
∆a12λ1

2λ2ω
2cos2ωt

− 13

18
∆a21λ2

2ω2cos2ωt− 8

81
∆a32λ1λ2

2ω2cos2ωt

+
104

81
∆a22λ2

3ω2cos2ωt+∆a30λ1ω
2cos3ωt

+ 2∆a20λ2ω
2cos3ωt− 8

9
∆a31λ1λ2ω

2cos3ωt

+
50

81
∆a12λ1

2λ2ω
2cos3ωt− 16

9
∆a21λ2

2ω2cos3ωt

+
94

81
∆a32λ1λ2

2ω2cos3ωt+
46

27
∆a22λ2

3ω2cos3ωt

− 1

3
∆a11λ1

2ω2cos4ωt+
5

9
∆a31λ1λ2ω

2cos4ωt

+
16

27
∆a12λ1

2λ2ω
2cos4ωt+

13

9
∆a21λ2

2ω2cos4ωt

− 80

81
∆a32λ1λ2

2ω2cos4ωt− 208

81
∆a22λ2

3ω2cos4ωt

− 10

27
∆a12λ1

2λ2ω
2cos5ωt+

20

81
∆a32λ1λ2

2ω2cos5ωt

+
70

81
∆a22λ2

3ω2cos5ωt+
1

18
∆a11λ1

2ω2cos6ωt

− 1

18
∆a31λ1λ2ω

2cos6ωt− 8

81
∆a12λ1

2λ2ω
2cos6ωt

− 1

6
∆a21λ2

2ω2cos6ωt+
8

81
∆a32λ1λ2

2ω2cos6ωt

+
8

27
∆a22λ2

3ω2cos6ωt (B.2)
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Appendix C

Dynamic Response of Actuation

Systems

In this section and without the loss of generality the aforementioned concept

of separating the actuation forces/torques of a mechanical system into “mo-

tion independent components” and “motion dependent components” and their

dynamic response limitations are presented for brushless DC motors that are

driven by electronic power amplifiers.

In this section, three different actuator operation cases are studied. In

the first case, the actuator is used to apply force/torque without undergoing

related motion. Such forces/torques are mostly (but not entirely) reaction

forces/torques, and correspond to the aforementioned “motion independent

components” of the actuation forces/torques. In the second case, the actuator

is used to apply force/torque to accelerate a load (effective inertia) and over-

come back electromotive force (EMF). These actuation forces/torques corre-

spond to the aforementioned “motion dependent components” of the actuation
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forces/torques. In the thirds case, the actuator is used to apply a combination

of “motion independent components” and “motion dependent components”, a

case that is generally encountered in mechanical systems with or without non-

linear dynamics.

A representative model of a permanent magnet brushless rotary motor is

shown in Figure C.1. In the model of Figure C.1, τm is an externally applied

ϕ

τm

Amplifier

control signal

Figure C.1: Permanent magnet DC brushless electric motor model.

torque to the motor; ϕ is the motor motion (rotary for the case of present

model); J ′ is the effective (moment of) inertia (load) experienced by the mo-

tor; i is the armature current; R and L are the resistance and inductance of

armature coil, respectively; and u is the voltage across the armature coil.

The dynamics of brushless DC motor of Figure C.1 can be described by

the following two coupled second order ordinary differential equations

τm = kti− J ′ϕ̈ (C.1)

u = iR + Li̇+ kvϕ̇ (C.2)

where kt is the motor torque constant; and kv is the motor velocity related

back EMF coefficient constant, which is determined by the flux density of the

permanent magnets, the reluctance of the iron core of the armature, and the
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number of turns of the armature winding.

In all electric motors, the maximum allowable armature current i and volt-

age u are limited. These limits are hereinafter indicated by

i ≤ Imax (C.3)

u ≤ Umax (C.4)

where Imax is the maximum allowable armature current (motor stall current)

and Umax is allowable armature voltage. In a properly designed actuation sys-

tem, the electronic power amplifier is designed to provide the above maximum

armature current and voltage.

When used to drive a mechanical system, the actuator electronic power

amplifier, Figure C.1, receives a control signal corresponding to the desired

actuation force/torque from the system controller and transmits electric cur-

rent to the motor armature to produce the said actuation force/torque.

As an electronic device, the electronic power amplifier dynamic response

(for most mechanical system operations, the bandwidth of its linear frequency

response) is significantly higher than the dynamic response of any practical

mechanical system, even when its inertia load is only the very lightweight

rotor of the motor. The dynamic response limitation of the actuation system

operating a pure inertia load may be approximated by the “cut off” frequency

presented later in this section.

Thereby considering the fact that in a properly designed actuation sys-

tem such as the one shown in Figure C.1 the dynamic response of the system

electronic power amplifier is significantly higher than those of any practical
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mechanical system, we may safely assume that in operating a properly de-

signed mechanical system, the dynamic response limitations of the system

electronic power amplifier could even be neglected. For the system shown in

Figure C.1, this assumption also means that for operating a mechanical sys-

tem, no frequency limitation needs to be considered on the system electronic

power amplifier for providing the required voltage u and current i. The afore-

mentioned maximum available voltage, Umax and current Imax are obviously

still applicable.

The Case of No-Motion Force/Torque Application

In this case, the motor is kept stationary, i.e., ϕ̇ = 0, and is only required

to provide the torque τm, Figure C.1, to resist the externally applied torque of

the same magnitude but opposite sign. Now let the torque τm be represented

in the form of Fourier series with j number of significant harmonics as

τm =
∑
j

aj cos(jωt+ ψj)

Then from Eqn. (C.1) and Eqn. (C.2), the required armature current i and

voltage across the coil u are readily seen to become

i =
τm
kt

=
∑
j

Ij cos(jωt+ ψj) (C.5)

u = iR + Li̇

= R
∑
j

Ij cos(jωt+ ψj)− L
∑
j

Ijjω sin(jωt+ ψj)

=
∑
j

Ij
√
R2 + L2j2ω2cos(jωt+ ψ′

j) (C.6)
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where Ij =
aj
kt

and ψj are the amplitude and phase of the jth harmonic of the

required current i.

As can be seen from Eqn. (C.5) and Eqn. (C.6), as long as the aforemen-

tioned maximum current and voltage levels Imax and Umax are not reached and

as long as the electronic power amplifier can provide the highest harmonic in

the torque τm, then the actuator can provide the above required torque τm.

At this point it might be of interest to note that the corresponding required

power P from the electronic power amplifier for generating the above toque

τm is

P = ui = i2R + Lii̇ (C.7)

Thereby making the average power requirement

Paver =
1

T

∫ T

0

Pdt =
1

T

∫ T

0

i2Rdt =
∑
j

I2jR

2
(C.8)

where T is the period of the fundamental frequency ω. As expected, since the

actuator does not do any work on a load (inertia), the consumed power is only

due to the coil resistance R.

The Case of “Motion-Generating” Actuation Force/Torque

In this section, the actuator is considered to apply a required level of

force/torque to a load (effective inertia) to achieve a desired motion (accel-

eration and velocity) profile. The brushless DC motor and its electronic power

amplifies of Figure C.1 is still being used.
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In current practice, the frequency response of motor velocity is defined in

terms of the armature (with effective load) speed versus voltage and without

any externally applied torque (τm in Figure C.1). Using a linear model of

the motor, a cut off frequency [41] is then defined using the transfer function

between the voltage V (s) and speed Ω(s) after Laplace transform as

G(s) =
Ω(s)

V (s)/K
=

1

(s2/ω2
n) + 1

(C.9)

where K = kv = kt, ωn = K√
LJ ′ . The natural frequency ωn is considered to

be a cut off frequency, i.e., the highest frequency that the electric motor can

effectively operate.

From the discussion of the previous no-motion force application case, it

is obvious that the above cut off frequency cannot be used to determine the

dynamic response of general mechanical systems (even if their dynamics were

not non-linear) since it only considers the motion response.

In this section we define a cut off frequency that considers the characteris-

tics of both the electric motor as well as its electronic power amplifier. Here,

a cut off frequency ωc is still defined in the absence of any externally applied

force/torque to the motor and the limiting factors considered are the aforemen-

tioned maximum current Imax and maximum voltage Umax that the electronic

power amplifier can provide and that the motor armature can tolerate.

Consider the case in which the motor is undergoing the simple harmonic

motion

ϕ = λϕ cosωϕt (C.10)
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By substituting the motion of Eqn. (C.10) into Eqn. (C.1) and setting the

externally applied torque τm = 0, and for the aforementioned maximum ar-

mature current of Imax, we get

ktImax cosωct = J ′λϕω
2
c cosωct (C.11)

From which our previously described cut off frequency can be seen to become

ωc =

√
ktImax

λϕJ ′ (C.12)

As can be expected, Eqn. (C.12) indicates that higher the maximum current

Imax and lower the motion amplitude and motor inertia load, higher will be

the maximum motion or cut off frequency as previously defined.

In addition, from Eqn. (C.2), the voltage u required to achieve the motion

Eqn. (C.10) at the cut off frequency ωc becomes

u = ImaxR cosωct− (LImax + kvλϕ)ωc sinωct

=
√
I2maxR

2 + (LImax + kvλϕ)2ω2
c cos(ωct+ α) (C.13)

where

α = arccos
ImaxR√

I2maxR
2 + (LImax + kvλϕ)2ω2

c

Eqn. (C.13) provides the corresponding level of voltage that the electronic

power amplifier has to provide. However, this is not the maximum voltage

that the electronic power amplifier has to provide since during the motion,

the motor velocity generates back EMF, which the electronic power amplifier
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must also counter. The maximum level of generated back EMF voltage is

proportional to the motor velocity, which becomes higher with higher motion

frequency and amplitude, Eqn. (C.10).

The Case of Combined External and Motion-Generated

Actuation Force/Torque

Now consider the case in which the motor is providing the simple harmonic

motion described by Eqn. (C.10) while at the same time it has to resist and

externally applied torque

τm = λm cosωmt (C.14)

Substituting Eqn. (C.14) and Eqn. (C.10) into Eqn. (C.1) and solving for

the current i, we obtain

i =
1

kt
(−J ′λϕω

2
ϕ cosωϕt+ λm cosωmt) (C.15)

Eqn. (C.15) clearly shows that required i can be separated into two dis-

tinct components. The first (left) component being motion related, and its

magnitude increases with the load (effective inertia), amplitude of the sim-

ple harmonic motion and square of the motion frequency. This component

of the required current corresponds to the aforementioned “motion dependent

component” of the actuating torque. The ability of the motor to provide this

component of the torque is limited by the aforementioned cut off frequency

ωc, and the system maximum current Imax and maximum voltage Umax that
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either the electronic power amplifier can provide or that the motor armature

can withstand.

The second component is not motion related and is due to the reaction that

the motor has to provide to resist the externally applied torques. This compo-

nent corresponds to the aforementioned “motion independent component” of

the actuating torque. And the ability of the motor to provide this component

of the torque is only limited by the system maximum current Imax and max-

imum voltage Umax, and the dynamic (frequency) response of the electronic

power amplifier, which if it is properly designed, is orders of magnitude higher

than the motor cut off frequency ωc.

The corresponding required voltage u can then be obtained from Eqn. (C.2)

to be

u =
R

kt
(λm cosωmt− J ′λϕω

2
ϕ cosωϕt)−

L

kt
(λmωm sinωmt− J ′λϕω

3
ϕ sinωϕt)− kvλϕωϕ sinωϕt

=
λϕωϕ

kt

√
J ′2ω2

ϕR
2 +

(
J ′ω2

ϕL+ ktkv
)2

cos(ωϕt+ αϕ) +

λm
kt

√
R2 + L2ω2

m cos(ωmt+ αm) (C.16)

where αm and αϕ are the phases. The Eqn. (C.16) clearly shows that simi-

lar to the required current, Eqn. (C.15), the required voltage u also has the

aforementioned two distinct components.

The first (left) component being motion related, and its magnitude in-

creases with the load (effective inertia), amplitude of the simple harmonic mo-

tion and its frequency. This component of the required current corresponds to
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the aforementioned “motion dependent component” of the actuating torque.

The ability of the motor to provide this component of the torque is limited

by the aforementioned cut off frequency ωc, and the system maximum current

Imax and maximum voltage Umax that either the electronic power amplifier can

provide or that the motor armature can withstand.

The second component is not motion related and is due to the reaction that

the motor has to provide to resist externally applied torques. This component

corresponds to the aforementioned “motion independent component” of the

actuating torque. And the ability of the motor to provide this component of

the torque is only limited by the system maximum current Imax and maximum

voltage Umax, and the dynamic (frequency) response of the electronic power

amplifier, which if it is properly designed, is orders of magnitude higher than

the motor cut off frequency ωc.
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