

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Computer Aided Design of Planar Four-Bar Linkages On iOS

Using a Novel SVD Algorithm

A Master Thesis Presented

by

Xin Ge

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Mechanical Engineering

Stony Brook University

May 2013

Copyright by
Xin Ge
2013

This app has the copyright of the following.

Copyright 2012, 2013.
Research Foundation of State University of New York at Stony Brook.

ii

Stony Brook University

The Graduate School

Xin Ge

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Qiaode Jeffery Ge – Thesis Advisor
Professor

Mechanical Engineering Department

Anurag Purwar – Thesis Co-Advisor
Research Associate Professor

Mechanical Engineering Department

Yu Zhou – Committee Chairperson
Assistant Professor

Mechanical Engineering Department

This thesis is accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

iii

Abstract of the Thesis

Computer Aided Design of Planar Four-Bar Linkages On iOS

Using a Novel SVD Algorithm

by

Xin Ge

Master of Science

in

Mechanical Engineering

Stony Brook University

2013

 Motion synthesis has been a practical topic existing for a long time. Various

methods have been tried and put into practice. It is well done by the scientists and

engineers to solve large equations of matrix. Although it can be done and get the good

result, the efficiency is low and labor is very much consuming. Comparatively, our

methods are much more easier and efficient, it is more suitable for the software to

realize the calculation by itself.

 It is mature in PCs to have a motion synthesis software, but since the mobile

system is going into everyday life and there is no such an app being able to undertake

this function. With the latest theory of Fourier and quaternions, it is able to build this

app on iPad to process both the simulation and motion synthesis functionalities with

high accuracy and speed.

iv

To

My father Maobin Ge and mother Guifeng Gong.

Thank you for all your support and always love me.

v

Table of Contents

List	
 of	
 Figures	
 ..	
 viii	

Accknowledgements	
 ..	
 ix	

Chapter	
 1	
 ..	
 1	

Introduction	
 and	
 Background	
 ...	
 1	

1.1 Background on motion synthesis	
 ...	
 1	

1.2 Background on the mobile system CAD software	
 ...	
 1	

1.3 iOS introduction	
 ..	
 3	

1.4 The objective of this app	
 ...	
 5	

Chapter	
 2	
 ..	
 6	

Theoretical	
 Foundation	
 ...	
 6	

2.1 Introduction on the simulation	
 ..	
 6	

2.2. The relative theories on simulation	
 ..	
 18	

2.2.1	
 	
 The	
 Rotation	
 of	
 Coupler	
 Link	
 ..	
 18	

2.2.2	
 	
 The	
 Path	
 of	
 Coupler	
 Point	
 ..	
 19	

2.3 Introduction on the motion synthesis	
 ...	
 20	

2.4 The relative theories on the motion synthesis	
 ...	
 21	

2.4.1	
 	
 Brief	
 Introduction	
 on	
 Quaternion	
 ...	
 21	

2.4.2	
 	
 Kinematic	
 Mapping	
 of	
 Planar	
 Kinematics	
 ...	
 22	

2.4.3	
 	
 RR	
 and	
 PR	
 Dyads:	
 the	
 Original	
 Formulation	
 ..	
 25	

vi

2.4.4	
 	
 RR	
 and	
 PR	
 Dyads:	
 the	
 Unified	
 Formulation	
 ..	
 26	

2.4.5	
 	
 RP	
 Dyad:	
 the	
 Unified	
 Formulation	
 ..	
 28	

2.4.6	
 	
 Algebraic	
 Fitting	
 of	
 a	
 Pencil	
 of	
 Quadrics	
 for	
 Finite-­‐Position	
 Synthesis	
 	
 30	

Chapter	
 3	
 ...	
 34	

Inside	
 the	
 Program	
 ..	
 34	

3.1 Introduction on the overall scheme	
 ...	
 34	

3.1.1	
 	
 Basic	
 elements	
 of	
 the	
 software	
 UI	
 design	
 ..	
 34	

3.1.2	
 	
 Basic	
 elements	
 of	
 the	
 software	
 program	
 design	
 ..	
 35	

3.2 Simulation	
 ...	
 36	

3.2.1	
 	
 Overall	
 construction	
 ...	
 36	

3.2.2	
 	
 UI	
 design	
 ..	
 37	

3.2.3.	
 Algorithm	
 ...	
 45	

3.3 Synthesis	
 ...	
 46	

3.2.1	
 	
 Overall	
 construction	
 ...	
 46	

3.2.2	
 	
 UI	
 design	
 ..	
 47	

3.2.3	
 	
 Algorithm	
 ...	
 53	

Chapter	
 4	
 ...	
 55	

Problems	
 Solved	
 ...	
 55	

4.1 Eigen Problem	
 ...	
 55	

4.2 Simulation Method	
 ...	
 57	

4.3 Multi-touch functionalities	
 ..	
 58	

vii

Chapter	
 5	
 ...	
 60	

Summary	
 ...	
 60	

5.1 The extension of this app	
 ...	
 60	

5.2 The future development of this app	
 ..	
 60	

viii

List of Figures

Figure 1.1: A revolute four-bar mechanism ... 6	

Figure 2.2: Crank-rocker linkage ... 8
Figure 2.3: Double-rocker linkage ... 9	

Figure 2.4: Rocker-crank linkage .. 10	

Figure 2.5: Double-crank linkage .. 11	

Figure 2.6: Inward/Inward limited triple rocker .. 13	

Figure 2.7: Outward/Inward Limited Triple Rocker .. 14	

Figure 2.8: Inward/Outward Limited Triple Rocker .. 16	

Figure 2.9: Outward/Outward Limited Triple Rocker ... 17	

Figure 2.10: Four-bar mechanism example ... 18	

Figure 2.11: Example of two position synthesis .. 21	

Figure 3.1: Screenshot of the simulation interface on iPad ... 37	

Figure 3.2: Buttons functionalities (simulation) .. 38	

Figure 3.3: Screenshots of Grashof linkages categories 39,40,41	

Figure 3.4: Screenshots of non-Grashof linkages categories 42,43,44	

Figure 3.5: Flowchart of simulation ... 45	

Figure 3.5: Screenshot of the synthesis part on iPad ... 46	

Figure 3.6: Buttons functionalities (synthesis) .. 48	

Figure 3.7: Statistics screen ... 49	

Figure 3.8: Screenshots of six solutions ... 49,50,51,52	

Figure 3.9: Screenshot of one solution .. 52	

Figure 3.10: Screenshot of no solution .. 53	

Figure 3.11: Flowchart of synthesis ... 54	

ix

Accknowledgements

 The motion synthesis theories are based on the papers of Qiaode Jeffery Ge,

Ping Zhao, Anurag Purwar. The simulation functionality uses Fourier Method which

is based on the theory by Xiangyn Li and Qiaode Jeffrey Ge.

 Thanks to Shoulin Sun from Dalian University of Technology for the advices to

the former works.

 Thanks to the financial support from Research Foundation of State University of

New York at Stony Brook.

 This work was supported by a TALENT grant awarded to Prof. Anurag Purwar

(PI) and Prof. Jeff Ge (co-PI) by the Teaching, Learning, and Technology Center at

Stony Brook University, NY.

1

Chapter 1

Introduction and Background

1.1 Background on motion synthesis

 Planar linkages have been studied for hundreds of years for it is the most

common and basic mechanical system. The earliest research on the motion synthesis

was done by Burmester, who developed an approach to deal with at most five position

synthesis. He showed that one could get infinite solutions with four positions or less

and six, one or no solution with five positions. Ravani and Roth [1, 2] provided the

relative approach on the manifold fitting problem and shows the problem can be

solved by fitting a pencil of quadrics. Recent works can be found in Ping Zhao,

Anurag Purwar, Q.J.Ge [3] who introduce quaternion into motion synthesis

calculation to save computational time and simplify calculating steps and Xiangyun,

Li, Ping Zhao and Q.J.Ge [4] who use Fourier method to solve path problems. More

modern research on the motion synthesis can be referenced in texts of McCarthy [5].

1.2 Background on the mobile system CAD software

 Along with the popularity of the mobile devices, people start to use their

personal phones or tablets to deal with more daily activities. The mobile devices have

2

more advantages over the PC in many areas than people usually think. Generally

mobile devices are much cheaper than a PC and the performance is not that much lost.

It expects the tablet market will grow by 37 percent on average each year between

2012 and 2016, with volumes reaching 389 million units, accounting for 59 percent of

total PC shipments [6]. One of the reason it is so popular is the portability of such

kinds of small and middle devices.

 People download softwares (which is usually called apps on the mobile systems)

from the online app stores by separate OS. Normally an app store contains thousands

and even millions of different apps online. But among them, most are games and daily

useful productivity apps, few are the professional apps facing to the technical persons.

We can see some of the engineering apps on the mobile systems. In june 2011,

ASME.org recommended 5 mobile apps for the engineers [7]. The five apps are

Mechanical Engineer, AutoCAD WS, Cross Section Cal, Mech Ref, Mechanics

Basics. Four of them are reference apps and only one is for the real design.

On Fabruary 2013, ASME.org posted another page with the name of "The

Engineering Design Apps: A Work in Progress" [8]. It said:" While there are many

mobile apps useful to engineers in the areas of calculation tools, formulas, libraries,

viewers, and collaboration, there is paucity when it comes to design." The article

introduced ForceEffect, which the software developer Gianluca Natalini introduced

FingerCAD and Finger3D in 2010, he said they were the only CAD apps on the

iTunes store. It allows users to use their fingers to fulfill the functionalities of the

CAD softwares almost as the same as it is on the PCs for the first time. Recently the

3

ForceEffect joined with ForceEffect Motion, the latter of which can also do the

motion simulation of a multi-linkage mechanism drawn by the users.

It is obvious that there is still a large market and blank waiting to be filled on the

mobile apps for the engineers. With such a need in design, we have developed the

technical app to realize not only the functionality of simulation but also synthesis.

1.3 iOS introduction

 iOS (previously iPhone OS) is the mobile operating system developed by Apple

Inc. It is used as the operating system in iPhone, iPod touch, iPad and Apple TV.

 According to data published by IDC and cited by AppleInsider [9], Apple's

global share of the smartphone market grew from 18.8 percent to 25.1 percent during

2012. iPad had 43.6% of global tablet market share. This makes it the biggest market

in worldwide. According to TechCrunch, iOS aquired almost 80% of the enterprise

market share compared with Android in 2011 and 2012. From the statistics, iOS gains

a large amount of users among the world.

 iOS is developed, managed and distributed only by Apple Inc. and the apps can

only be downloaded through app store, which make it the most secure operating

system in the world. The most distinguished feature of iOS is the multi-touch

functionality with high smoothness, sensitivity, accuracy and speed.

 Objective-C is the only core programming language for developing iOS apps,

although many other languages, C++ and C mostly, are also accepted within the code.

4

According to the TIOBE Programming Community Index for April 2013 [10],

Objective-C is the fourth mostly used programming language worldwide which is

19.598%, next only to C (17.862%), Java (17.681%) and C++ (9.714%). It is the

language ascends fastest for the past three years.

 Objective-C was created in the 1980s and is inherited from the C language. It

adds to the traditional C some objective oriented structures. Objective-C syntax is

much easier to read than other programming language. It is arranged in a way that you

can understand it when you look at it, just like look at any human language.

 For example, the following line from Objective-C compares whether the contents

of a variable called someName is equal to David:

 [someName isEqualToString:@"David"]

 It doesn’t take much energy to understand what is to be achieved in the code

snippet. In traditional C, this could be written as follows:

 strcmp (someName,"David")

 We can see that even though the C statement is a bit shorter, it doesn't declare

much what the code is actually doing.

 There are many advantages using Objective-C language, except for

understandability and efficiency. More can be found in "Sams Teach Yourself iOS 6

5

Application Development in 24 Hours(4th Edition)" by John Ray [11].

1.4 The objective of this app

 This app was originally faced to college students as an educational software.

They could use it in class or off class, both for presentation and textbook supplement.

It can also extended into research assisting tool while users may use it to test their

ideas expediently, verify certain theories or just try to get some inspirations from it.

Based on the applicability, the app may have a helpful role in the industry fields. It

will help engineers visually understand and correct some design work benefited from

our latest motion synthesis theories. Even for the common users, they can still gain

much knowledge from our well-classified four bar linkages user interface.

6

Chapter 2

Theoretical Foundation

2.1 Introduction on the simulation

 Four-bar linkage is the easiest and most widely used planar linkage mechanism.

Other multi-bar linkages can all be treated as constructed by several four-bar linkages.

A four-bar linkage of which all the kinematic joints are revolute joints is called a

revolute four-bar mechanism, about which our app only concerns.

Figure 1.1: A revolute four-bar mechanism

 A four-bar linkage met the condition:

lmin + lmax ≤ l’ + l’’

is called Grashof linkage. The sum of the lengths of the shortest and longest link must

7

be less (at most equal) than the sum of the lengths of the other two links. Another is

non-Grashof linkage.

 Followed by the classification from SoftIntegration Inc [12], the two categories

can be classified as such:

Grashof linkage:

 For linkages of this type continuous relative motion between the shortest link and

its adjacent links is possible.

Crank-Rocker:

 This type of Grashof linkage is obtained when the shortest link is the input link

(r2). The input link has full motion. The output link has a limited range of motion that

is defined as follows:

lower limit: "
414 180 θθθ −+°=

upper limit: '
414 180 θθθ −+°=

where]
2

)(cos[
41

2
23

2
4

2
1'

4 rr
rrrra −−+

=θ

and

]
2

)(cos[
41

2
23

2
4

2
1"

4 rr
rrrra +−+

=θ

8

Figure 2.2: Crank-rocker linkage

Double-Rocker:

 This type of Grashof linkage is obtained when the shortest link is the floating

link (r3). Note that the complete relative motion between the shortest link and its

adjacent links are still possible. Both the input and output links have limited ranges of

motion that are defined as follows:

Input Link

lower limit: '
212 θθθ +=

upper limit: "
212 θθθ +=

where]
2

)(cos[
21

2
43

2
2

2
1'

2 rr
rrrra −−+

=θ

9

and

]
2

)(cos[
21

2
43

2
2

2
1"

2 rr
rrrra +−+

=θ

Output Link

lower limit: "
414 180 θθθ −+°=

upper limit: "
414 180 θθθ −+°=

where]
2

)(cos[
41

2
23

2
4

2
1"

4 rr
rrrra −−+

=θ

and

]
2

)(cos[
41

2
23

2
4

2
1"

4 rr
rrrra +−+

=θ

Figure 2.3: Double-rocker linkage

10

Rocker-Crank:

 This type of Grashof linkage is obtained when the shortest link is the output link

(r4). The output link has full motion. The input link has a limited range of motion that

is defined as follows:

lower limit: "
212 θθθ +=

upper limit: "
212 θθθ +=

where]
2

)(cos[
21

2
43

2
2

2
1'

2 rr
rrrra −−+

=θ

and

]
2

)(cos[
21

2
43

2
2

2
1'

2 rr
rrrra +−+

=θ

Figure 2.4: Rocker-crank linkage

11

Double-Crank:

 This type of Grashof linkage is obtained when the shortest link is the ground link

(r1). Both the input and output links have full motion.

Figure 2.5: Double-crank linkage

Non-Grashof linkage:

 For linkages of this type continuous relative motion between any two of its links

is not possible.

12

Inward/Inward limited triple rocker:

 When r1 + r2 < r3 + r4 the input link (r2) of the linkage is said to be inward

limited. When r1 + r4 < r2 + r3 the output link (r4) of the linkage is said to be inward

limited.

 When a link is inward limited there are limits on the possible values of the angle

of the link that the actual angle must remain outside (the link is limited when moving

in the inward direction).

 The limits are defined as follows:

Input Link

lower limit: "
212 θθθ +=

upper limit: '
212 360 θθθ −°+=

where]
2

)(cos[
21

2
34

2
2

2
1'

2 rr
rrrra −−+

=θ

Output Link

lower limit: '
414 180 θθθ +°−=

upper limit: '
414 180 θθθ −°+=

where]
2

)(cos[
41

2
32

2
4

2
1'

4 rr
rrrra −−+

=θ

13

Figure 2.6: Inward/Inward limited triple rocker

Outward/Inward Limited Triple Rocker:

 When r1 + r2 >= r3 + r4 the input link (r2) of the linkage is said to be outward

limited. When r1 + r4 < r2 + r3 the output link (r4) of the linkage is said to be inward

limited.

 When a link is outward limited there are limits on the possible values of the

angle of the link that the actual angle must remain inside (the link is limited when

moving in the outward direction).

 When a link is inward limited there are limits on the possible values of the angle

of the link that the actual angle must remain outside (the link is limited when moving

in the inward direction).

 These limits are defined as follows:

14

Input Link

lower limit: "
212 θθθ −=

upper limit: "
212 θθθ +=

where]
2

)(cos[
21

2
34

2
2

2
1"

2 rr
rrrra +−+

=θ

Output Link

lower limit: '
414 180 θθθ +°−=

upper limit: '
414 180 θθθ −°+=

where]
2

)(cos[
41

2
32

2
4

2
1'

4 rr
rrrra −−+

=θ

Figure 2.7: Outward/Inward Limited Triple Rocker

15

Inward/Outward Limited Triple Rocker:

 When r1 + r2 < r3 + r4 the input link (r2) of the linkage is said to be inward

limited. When r1 + r4 >= r2 + r3 the output link (r4) of the linkage is said to be

outward limited.

 When a link is inward limited there are limits on the possible values of the angle

of the link that the actual angle must remain outside (the link is limited when moving

in the inward direction).

 When a link is outward limited there are limits on the possible values of the

angle of the link that the actual angle must remain inside (the link is limited when

moving in the outward direction).

 These limits are defined as follows:

Input Link

lower limit: '
212 θθθ +=

upper limit: '
212 360 θθθ −°+=

where]
2

)(cos[
21

2
34

2
2

2
1'

2 rr
rrrra −−+

=θ

Output Link

lower limit: "
414 180 θθθ −°+=

upper limit: "
414 180 θθθ +°+=

where]
2

)(cos[
41

2
32

2
4

2
1"

4 rr
rrrra +−+

=θ

16

Figure 2.8: Inward/Outward Limited Triple Rocker

Outward/Outward Limited Triple Rocker:

 When r1 + r2 >= r3 + r4 the input link (r2) of the linkage is said to be outward

limited. When r1 + r4 >= r2 + r3 the output link (r4) of the linkage is said to be

outward limited.

 When a link is outward limited there are limits on the possible values of the

angle of the link that the actual angle must remain inside (the link is limited when

moving in the outward direction).

 When a link is outward limited there are limits on the possible values of the

angle of the link that the actual angle must remain inside (the link is limited when

17

moving in the outward direction).

 These limits are defined as follows:

Input Link

lower limit: "
212 θθθ +=

upper limit: "
212 θθθ +=

where]
2

)(cos[
21

2
34

2
2

2
1"

2 rr
rrrra +−+

=θ

Output Link

lower limit: "
414 180 θθθ −°+=

upper limit: "
414 180 θθθ +°+=

where]
2

)(cos[
41

2
32

2
4

2
1"

4 rr
rrrra +−+

=θ

Figure 2.9: Outward/Outward Limited Triple Rocker

18

2.2. The relative theories on simulation

2.2.1 The Rotation of Coupler Link

Figure 2.10: Four-bar mechanism example

 Figure 2.10 shows a four-bar mechanism in the fixed coordinate XOY. A0 and B0

are the two fixed pivots of the ground links. Let AA0 be the input link, AB be the

coupler and BB0 be the driven link. The length of A0B0, AA0, AB and BB0 are l1, l2, l3

and l4 respectively.

 With the constant angular velocity, we have the equation

Φ = ωt + φ0 (1)

where φ0 is the initial input angle and ω is the angular velocity.

 The point of the simulation problem if to find the coupler angle λ which depends

19

on the input angle and the link ratios as following

l21 = l2/l1, l31 = l3/l1, l41 = l4/l1 (2)

 With the loop closure equations, we can get the coupler angle λ

)(2
)()()(21

φ

φφφλ

A
B

ei
ΔΔ±−

= (3)

where

 A(φ) = l31 (l21e− jφ − 1) ,

 B(φ) = 1 + l21 + l321 − l421 − 2l21 cos φ,

 ∆1(φ) = 1 + l21 − (l31 + l41)2 − 2l21 cosφ,

 ∆2(φ) = 1 + l21 − (l31 − l41)2 − 2l21 cosφ. (4)

 The sign ± represents the two configurations of the same four-bar linkages.

2.2.2 The Path of Coupler Point

 To get the path of the coupler point, we can use Fourier representation of the

coupler point path of a four-bar mechanism.

 Let A0 = x0 + iy0 be the complex number representing the fixed pivot A0 and let

20

z = reiα be the position of point P on the moving frame with respect to the coupler

link AB. The position of P in the global frame XOY can be given by

P=A0+l2eiθ2 +zeiθ3 =A0+l2eiθ1eiφ+zeiθ1eiλ (5)

2.3 Introduction on the motion synthesis

 The motion synthesis is very important in the mechanism design when the aim is

to find the best solution by the given positions as the output poses. With the right

approach, one can get the idealized multi-bar (four-bar in our app) linkages passing

through all the poses exactly (five positions or less) or most closely (six positions or

more). A better approach will minimize the cost and maximize the efficiency. It can

also provide the simplest mechanism to the designer.

 For the finite position synthesis, let’s introduce the most famous Burmester

theory [13]. Burmester theory can be used to seek the circling point in a moving body

by the given movements of the same body.

 The following is the two-position synthesis example

21

Figure 2.11: Example of two position synthesis

 There are two points on the same moving body A and B, which moves from A1

to A2 and B1 to B2. The circling point of the moving body in this example can be

achieved by finding the intersection of two lines perpendicular to the A1A2 and B1B2,

respectively. Based on the theory, positions of four or less will give infinite solutions.

 As to the five positions synthesis, Burmester obtained the circling points curve

generated by the four positions of the five. Burmester shows that these curves can

intersect as many as four points, which means it can have six solutions, one solution

or no solution.

2.4 The relative theories on the motion synthesis

2.4.1 Brief Introduction on Quaternion

 The theory implements quaternion into the calculation as an input format. Before

22

going into the details of the theory, a brief introduction on quaternion should be

completed.

The quaternions are a way of formatting number system with extension to

complex numbers. They were first presented by Irish mathematician William Rowan

Hamilton in 1843.

Quaternions combine both translation and rotation in one format of numbers.

They form a four-dimensional space while complex numbers form a

three-dimensional space.

Quaternion is a number with the form of ai+bj+ck+d (dcba ,,, are real numbers,

1222 −=== kji , jikjkiikjijkkjikij −==−==−== ,,,,,). 2222 dcba +++ is

called the modulus of a quaternion. The calculation rules can be easily found in any of

the texts mentioning quaternions.

 Quaternions can be used in computer graphics and graphical analysis to present

the position and rotation of a 3D object. It is also used in control theory, signal

processing, positioning control, physics and mechanics. Quaternions are more stable

and easier than most of the matrix transformation.

2.4.2 Kinematic Mapping of Planar Kinematics

 The general solution of the displacement of a rigid body in a plan can be

introduced as the translation part and the rotation part. Let M represent a coordinate

frame of the moving body and F be a fixed global frame. Then the planar

23

displacement can be represented as a transformation of point or line coordinates from

M to F. The point coordinate transformation associated with a planar displacement is

given by

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

=

100
cossin
sincos

2

1

d
d

H φφ

φφ
 (6)

 The line coordinate transformation for the same displacement is given by the

transpose of the inverse of [H]

[] []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

−

== −

1cossinsincos
0cossin
0sincos

)(

2121

1

φφφφ

φφ

φφ

dddd
HH T (7)

 If one introduces

.
2

cos

,
2

sin

),
2

sin
2

cos(
2
1

),
2

cos
2

sin(
2
1

4

3

212

211

φ

φ

φφ

φφ

=

=

+=

−=

Z

Z

ddZ

ddZ

 (8)

 The former can be transferred into

24

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−−

+−−

=
2
4

2
3

4132
2
3

2
443

423143
2
3

2
4

00
)(22
)(22

ZZ
ZZZZZZZZ
ZZZZZZZZ

H (9)

and

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−

−

−−

=
2
4

2
341324231

2
3

2
443

43
2
3

2
4

)(2)(2
02
02

ZZZZZZZZZZ
ZZZZ
ZZZZ

H (10)

of which 12
4

2
3 =+ ZZ .

 The four-dimensional vector);;;(4321 ZZZZZ = is said to define a point in

projective three-space called the Image Space of planar displacement, denoted as S. In

this way, a planar displacement is represented by a point in S; a 1- DOF motion is

represented by a curve and a 2-DOF motion is represented by a surface.

 Let (x; y) denote the coordinates of a point in the moving frame M and (X; Y)

their corresponding coordinates with respect to the fixed frame F. It follows from (9)

that

.)(2)(2

,)(22)(

2
4

2
3

4132
2
3

2
443

2
4

2
3

423143
2
3

2
4

ZZ
ZZZZyZZxZZY

ZZ
ZZZZyZZxZZX

+

−+−+
=

+

++−−
=

 (11)

 Let (l1; l2; l3) denote the coordinates of a line in M where 12
2

2
1 =+ ll and the

absolute value of l3 is the distance from the origin of M to the line. Let (L1; L2; L3) be

25

the coordinates of the same line with respect to F. It follows from (10) that

.)(2)(2

,)(2

,2)(

32
4

2
3

2413214231
3

2
4

2
3

2
3

2
4143

2

2
4

2
3

2431
2
3

2
4

1

l
ZZ

lZZZZlZZZZL

ZZ
lZZlZZL

ZZ
lZZlZZL

+
+

++−
=

+

−+
=

+

−−
=

 (12)

2.4.3 RR and PR Dyads: the Original Formulation

 A planar RR dyad defines a 2-DOF motion that one point stays on a circle. In

general, a circle can be given as a set of four homogeneous coordinates);;;(3210 aaaa

(where 00 ≠a) as

,022)(321
22

0 =++++ aYaXaYXa (13)

where the center (Xc; Yc) of the circle and the radius R are given by

.,,
0

30
2
2

2
1

0

2

0

1

a
aaaa

R
a
aY

a
aX cc

−+
=−=−= (14)

and when 00 =a , what we get is 022 321 =++ aYaXa which is the expression of a

straight line. Substituting (11) into (13), we obtain an equation of fourth order in

terms Zi (i = 1; 2; 3; 4), which factors into two quadratic terms. One is 2
4

2
3 ZZ + and

26

the other is as follows

.04/)22)((

4/)22)((

)()()(
)()()(

2
4321

22
0

2
3321

22
0

432142104120

32203110
2
2

2
10

=+++++

+−−++

+−+++−−+

+−++−++

Zayaxayxa
Zayaxayxa

ZZxayaZZaxaZZaya
ZZayaZZaxaZZa

 (15)

 This quadric surface is called the constraint manifold of the RR dyad.

 When 00 =a , Eq.(13) reduces to a linear equation representing a line and Eq.(15)

reduces to

.0))(4/())(2/)((

)()()(
2
4

2
33

2
3

2
421

43214132242311

=++−++

+−+−++

ZZaZZyaxa
ZZxayaZZZZaZZZZa

 (16)

 This is the constraint manifold of a 2-DOF motion for which one point stays on a

line, i.e., the motion of a PR dyad.

2.4.4 RR and PR Dyads: the Unified Formulation

 We note that all five terms involving Zi (i = 1; 2; 3; 4) in Eq. (16) are exactly

elements of the matrix [H] as given by (9). Furthermore, if we let

,2/)(),(215214 yaxaaxayaa +=+−= (17)

27

it follows that the constraint manifold is defined by five unconstrained homogeneous

parameters)5;;2;1(=iai . This gives us a clue to rewrite Eq.(15) into:

,0)()(

)()(
)()()(

2
4

2
38

2
4

2
37

4364132542314

4132342312
2
2

2
11

=++−+

+−+++

++−++

ZZpZZp
ZZpZZZZpZZZZp
ZZZZpZZZZpZZp

 (18)

where

.4/))((

,2/)(,
,,

,,,

3
22

08

217216

2514

030201

ayxap
yaxapxayap

apap
yapxapap

++=

+=+−=

==

−=−==

 (19)

 Note that Eq.(18) contains all elements of the matrices [H] and [H] as given by

(9) and (10), respectively. The only new term in Eq.(18) is 2
2

2
1 ZZ + . The set of eight

homogeneous parameters)8;;2;1(=ipi are not independent, however. It follows

from Eq.(19) that they must satisfy the following two relations:

.02
,0

534271

435261

=−−

=−+

pppppp
pppppp

 (20)

It is clear from (19) that when 011 == ap , one has 032 == pp and that both

relations in (20) are automatically satisfied.

28

2.4.5 RP Dyad: the Unified Formulation

 The motion of a RP dyad is constrained such that a line L = (L1; L2; L3) of M

stays tangent to a given circle C. Let the circle be defined in the same way as before,

i.e., by (13), which can be expressed in matrix form:

[] .0
1

0
0

1

321

20

10

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Y
X

aaa
aa
aa

YX (21)

 The adjoint of the coefficient matrix above is given by

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−

−−

=
2
02010

20
2
13021

1021
2
230

aaaaa
aaaaaaa
aaaaaaa

Cadj (22)

 It is well known in projective geometry of conics that a line L = (L1; L2; L3) stays

tangent to the circle C when

[] 0=LCL adj
T (23)

which is known as the dual conic.

 Instead of substituting (12) directly into (23) to obtain the constraint manifold of

RP dyad, we first seek to simplify [Cadj]. In view of Eq.(14), we have

22
0

2
2

2
130 Raaaaa −+= , where R is the radius of the circular constraint. Substituting

29

this relationship into (22), we can decompose [Cadj] into

[] .
000
00
00

22
0

22
0

2
02010

20
2
221

1021
2
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

−

= Ra
Ra

aaaaa
aaaaa
aaaaa

Cadj (24)

 Substituting (24) into (23), we obtain

.0)()(2
2

2
1

22
0

2
302211 =+−+−− LLRaLaLaLa (25)

 The solution to Eq.(25) yields

,
2
2

2
10

302211 R
LLa

LaLaLa
±=

+

+−− (26)

which indicates that the distance from the center of the circle C with homogeneous

coordinates),,(021 aaa −− to the tangent line L is equal to the radius of C.

 Furthermore, in view of (12), we have

2
4

2
3

2
2

2
1

2
4

2
3

2
2

2
1)(ZZllZZLL +=++=+ (27)

where 12
2

2
1 =+ ll . Substituting (12) and (27) into (26), we can put the resulting

constraint manifold in the same form as (18) where

30

).(,22,22
,0,0,2,2,0

3082211712216

542031021

Rlaplalaplalap
pplaplapp

±=+=+=

=====
 (28)

 Again, the above coefficients satisfy the relations (20). Thus we have the

following Theorem regarding the representation of kinematic dyads, RR, PR, and RP

in the image space:

 Theorem: All three dyads can be represented by quadric surfaces of the form

(18) with eight homogeneous coefficients),,,(821 ppp  . In addition, only a subset

of these quadrics such that the first seven coefficients satisfy (20) is constraint

manifolds for the dyads.

2.4.6 Algebraic Fitting of a Pencil of Quadrics for Finite-Position Synthesis

 Now consider the problem of fitting a pencil of quadrics to a set of N points,

arranged such that they define an image curve rather than a surface. This problem can

be formulated an over-constrained linear problem [A]p = 0 where the coefficient

matrix becomes the matrix [A] is given by:

[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

87654321

1817161514131211

NNNNNNNN AAAAAAAA

AAAAAAAA

A




 (29)

where

31

.,

,,
,,

,,

2
4

2
38

2
4

2
37

43641325

4231441323

42312
2
2

2
11

iiiiii

iiiiiiii

iiiiiiiiii

iiiiiiii

ZZAZZA
ZZAZZZZA

ZZZZAZZZZA
ZZZZAZZA

+=−=

=−=

+=+=

−=+=

 (30)

are the terms of the ith position represented in quaternion form.

 The over-constrained system of linear equations, [A]p = 0, which is equivalent as

[A]T[A]p = 0, can be viewed as to solve for the eigenvectors v of [A]T[A], with their

corresponding eigenvalues to be zero, or as close to zero as possible. This idea comes

from the definition of a matrix’s eigenvector: (λ[I]－[A]T [A])v = 0, when λ equals to

zero, its corresponding eigenvector v is obviously the solution of [A]T[A]p = 0,

Likewise, if l is very close to zero, v becomes an approximated solution.

 In [23], we have found that for a set (more than 5) of displacements that define

an image curve, there exists a pencil of quadrics that best fit the given data points. The

coefficients p = (p1; p2; …; p8) for the pencil of quadrics are defined by the

eigenvectors []821 φφφφ vvvv = and []821 ββββ vvvv = , corresponding to

two smallest singular values, i.e.,

βφ βφ vvp += (31)

where ϕ, β are real scalars.

For five-position synthesis, since the rank of matrix [A] is in general five, there

will be three zero eigenvalues for [A]T[A] that lead to three eigenvectors: vα, vβ and

32

vγ.

Thus the coefficients for the pencil of quadrics now becomes:

.γβα γβα vvvp ++= (32)

Only those that satisfy (20) correspond to constraint manifolds of planar dyads.

Substituting Eq. 32 into (20), we obtain the following two quadratic equations,

,0

,0

25242322
2

21
2

20

15141312
2

11
2

10

=+++++

=+++++

KrKrKrrKrKrK

KrKrKrrKrKrK

βγαγβγαγβγαγ

βγαγβγαγβγαγ (33)

where rɑγ = ɑ/γ and rβγ = β/γ. These two quadratic equations can be converted to one

quartic equation and hereby can be analytically solved. Note that a quartic equation

has up to four real roots, which means we will find up to four constraint manifolds

that fit the five given position precisely. Since the intersection of any two of the four

constraint manifolds defines a four-bar linkage, there are up to six four bar linkages

that interpolates through the given five positions. This is consistently with the

classical Burmester theory. Moreover, this new formulation allows handling of four

bar linkages formed not only by revolute joints but prismatic joints as well.

 After the coefficient vector p, which satisfies (20) is obtained, the type of dyads

can be easily identified:

1. If 01 ≠p , p represents an RR dyad.

2. If 01 =p as well as 032 == pp , p represents a PR dyad.

33

3. If 01 =p as well as 054 == pp , p represents an RP Dyad.

34

Chapter 3

Inside the Program

3.1 Introduction on the overall scheme

 "To design is much more than simply to assemble, to order, or even to edit; it is

to add value and meaning, to illuminate, to simplify, to clarify, to modify, to dignify,

to dramatize, to persuade, and perhaps even to amuse."

- Paul Rand

3.1.1 Basic elements of the software UI design

 A blog named《Principles of User Interface Design》of famous user interface

designer Joshua Porter [15] shows 19 basic principles of UI design:

1. Clarity

2. Interfaces allowing interaction

3. Try everything to catch attention

4. Guide the users

5. Direct manipulation

6. One main action per screen

7. Keep secondary actions secondary

35

8. Every step is natural

9. Appearance follows behavior

10. Consistency

11. Strong visual hierarchies

12. Have a good organization

13. Highlight

14. Progressive disclosure

15.Help people inline

16. A crucial moment: the zero state

17. Great design is invisible

18. Keep in mind with other design disciplines

19. Interfaces should be useful

3.1.2 Basic elements of the software program design

 In one of the blog by Christopher Diggins [16] named《The Principles of Good

Programming》, he gives 17 basic principles of program design:

1. Don’t repeat

2. Abstract

3. Keep it as simple as possible

4. Avoid Creating a YAGNI

5. Do the simplest thing

36

6. Don’t make the users think

7. Open/Closed Principle

8. Write Code good for maintaining

9. Principle of least astonishment

10. Single Responsibility Principle

11. Minimize Coupling

12. Maximize Cohesion

13. Hide Implementation Details

14. Law of Demeter

15. Avoid Premature Optimization

16. Reuse code

17. Separate concerns

3.2 Simulation

3.2.1 Overall construction

 The aim of the simulation is to allow users to draw any four-bar linkages by

fingers on the screen and with enough information (ground links and power) the

system shows the animation of the movement of the given four-bar.

There are three steps users should provide to the system: draw a four-bar linkage,

give two ground links, choose a power link. If one wants to see the motion simulation

of any point on the coupler link, they can give any single point by touch on the screen.

37

The animation will show the moving path of that particular point with a fixed

coordinate on the coupler. It also shows the classification of the four-bar linkages in

real time.

Figure 3.1: Screenshot of the simulation interface on iPad

3.2.2 UI design

 Figure 3.1 shows a real user interface on iPad. One may see that all the buttons

are in the shape of hexagon. One of the reasons is to save the space on the screen and

maximize the input areas. Another reason is to make an impression of “growing” by

showing buttons based on the step user is going on.

38

 The buttons on the upper left corner of the screen are the main operating buttons

for input. Users can use two fingers to move the mechanism (translation movement).

 The functionality of each button is as following:

Figure 3.2: Buttons functionalities (simulation)

 The special feature of the operating button on the upper left corner will appear

one by one based on which step the users are utilizing. When moving to the next step,

the previous step will automatically fade and be disabled for avoiding errors. This also

helps to act as an instructive guide for the users since users will know easily when and

where to press the next button.

Home
Clear Screen

Add Motion Point

Draw Line

Motor

Ground Links

Change Button

Classification

Animation

Play/Pause

Stop

39

 The classification label on the upper right corner is based on the same theories in

chapter 2. The hints will change in real time along with the four-bar linkage users

give.

 Here are some mechanisms in each category:

Grashof:

40

41

Figure 3.3: Screenshots of Grashof linkages categories

42

Non-Grashof:

43

44

Figure 3.4: Screenshots of non-Grashof linkages categories

45

3.2.3. Algorithm

 The following is the flowchart of the program in the simulation part.

Figure 3.5: Flowchart of simulation

46

3.3 Synthesis

3.2.1 Overall construction

 The aim of the synthesis is to allow users to give any five positions (more

accepted in the future) and synthesize the four-bar mechanism that can go through

these positions with both the coordinates and orientations matched.

 Here is the screenshot of the synthesis screen.

 Figure 3.5: Screenshot of the synthesis part on iPad

 Unlike the simulation, in synthesis users should provide the system the output

positions only. With the latest theories, the system will calculate the given

47

information and shows the relative solutions, which would be six solutions, one

solution or no solution. It can also give the necessary information of the mechanism

on the screen.

3.2.2 UI design

 Figure 3.5 shows a screenshot of the synthesis on iPad. The button design is the

same as the one in simulation because of the consistency. The arrangement of the

buttons is similar, although some buttons are changed and rearranged. A calculation

button is added to pre-calculate the mechanism with the input given. A change circuit

button is added to change the different circuit for some of the linkages have a circuit

effect. A statistics button is added to show the users the relative length and coordinate

information of the mechanism on the screen. A set of solution button is added to allow

users to choose different solutions by pressing two of the four buttons for the

condition that if there are six solutions. It also adds a label telling users how many

solutions there are by the input they give.

 The following is the specific functionalities of each of the button:

48

Figure 3.6: Buttons functionalities (synthesis)

 When users press the statistics button on the right lower corner, a popover comes

out. A popover is smaller and easier to have an overall view of the information shown

than put them in a different screen. It saves both time and energy for the users.

 The statistics screen shows the four bar synthesis data in relative units, including

all the four bar length, fixed pivots coordinates and moving pivots position.

 The next is the statistics screen:

Home

Draw coordinate
Add coordinate

Calculate

Clear all

Change Coordinate Classification

Animation

Solution set

Solution hint

Circuit

Play/Pause

Statistics

Stop

49

Figure 3.7: Statistics screen

 The solutions number can be six, one or zero. They are given as following:

50

51

52

Figure 3.8: Screenshots of six solutions

Figure 3.9: Screenshot of one solution

53

Figure 3.10: Screenshot of no solution

3.2.3 Algorithm

The following is the flowchart of the synthesis part of the program.

54

Figure 3.11: Flowchart of synthesis

55

Chapter 4

Problems Solved

4.1 Eigen Problem

 In the main algorithm part of the program, it needs to calculate the eigenvectors

of an 8 by 8 matrix. Xcode has an imbedded math library LAPACK (Linear Algebra

PACKage) [17].

 LAPACK was a Fortran 90 library and provided routines for solving systems of

simultaneous linear equations, least-squares solutions of linear systems of equations,

eigenvalue problems, and singular value problems. The associated matrix

factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) can also be

calculated, as are related computations such as reordering of the Schur factorizations

and estimating condition numbers. Dense and banded matrices are handled, but not

general sparse matrices. In all functions, they are suitable for real and complex

matrices, in both single and double precision.

 LAPACK is also extended to other machines with the names of ScaLAPACK,

PLAPACK and CLAPACK.

 An example can be shown as following of solving the eigenvector problem in

Objective-C using LAPACK:

56

 __CLPK_integer n = 8, lda = 8, info, lwork;

 double wkopt;

 double* work;

 double w[8];

 double A[8*8] = {

 2.3643, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

 4.5422, 5.5424, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

 0.5435, -5.4640, 3.4375, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

 4.3535, -3.0982, 0.4387, 5.6655, 0.0000, 0.0000, 0.0000, 0.0000,

 -2.2223, 2.3937, 6.5943, -3.4932, -9.0101, 0.0000, 0.0000, 0.0000,

 0.0011, -4.5443, 0.4446, 10.3445, 4.3322, 0.4456, 0.0000, 0.0000,

 9.0193, -8.4593, -9.4733, 2.3455, 8.3342, 4.5436, 9.3572, 0.0000,

 2.3822, 4.5443, 0.3532, -3.255, -3.4526, 4.5938, -3.3048, 4.5938

 };

 lwork = -1;

 dsyev_("Vectors", "Upper", &n, A, &lda, w, &wkopt, &lwork, &info);

 lwork = (__CLPK_integer)wkopt;

 work = (double*)malloc(lwork);

 dsyev_("Vectors", "Upper", &n, A, &lda, V, work, &lwork, &info);

 dsyev_() is to calculate the eigenvalues and/or eigenvectors of a N by N

57

symmetric.

 The problem occurred when the program is transferred from the Mac to the iPad.

The eigenvectors are not the same when the eigenvalues are zeros. Several other

solutions, such as solving SVD and using Jacobian method are tried. The results

between Mac computer and the iPad mobile system are still not the same with

eigenvalues of zero, even though it gives the same results with non-zero eigenvalues.

 After checking the eigenvectors and calculating the fitting errors, it is found that

the eigenvectors should be in the same vector space because the dot products of two

of the eigenvectors are zero which means they are perpendicular to each other, the

modulus of each is one meaning they are unit vectors. The results show that all of the

eigenvectors are effective and give the right mechanism.

 But in the future a better way of avoiding the zero value is on pursuit. One

method is to transfer mathematically all the zero values into one to avoid floating

point precision which needs to transfigure the original 8 by 8 matrix A.

4.2 Simulation Method

 In the simulation part of the program, three algorithms had been used.

 The first version was purely calculating the situations in each of the categories

and depended on the position of the driver’s bar. It extends to as many as almost 32

different conditions, which is quite complex and easy to make a mistake.

 The second method is getting the intersecting points of the two circles path of

58

driver bar and driven bar go along with. This method asks for choosing the right

intersecting point and ignoring another. On the extreme points of the moving paths,

the positions of the two points are the same. When the mechanism moves backwards,

the system can’t choose another point as to make the coupler bar move a whole circle.

The mechanism always goes through on a half path instead of a closed loop. Another

problem of this method is also the complexity of the categorization.

 The final algorithm in the program that is being used now is the Fourier Method

which was mentioned before in the theoretical part of this thesis. This method uses the

general four-bar linkages model so that the result can be used in all of the situations

with only “one” calculation, although it does need to set the maximum and minimum

angles in each category. The latter is very easy to get and can cause much less

mistakes.

4.3 Multi-touch functionalities

 iOS allows single finger and multi-finger touch screen functionalities. Users can

use their fingers to touch, swipe, pinch, rotate and press in order to reach certain

features. In this app, users need to use one finger to drag a line, to touch the screen to

give the links and power positions, to give a moving frame coordinate. Users can also

use two fingers to pinch to zoom in/out, two fingers to move to translate the canvas.

In the future, it might be contains three finger touch or relevant functionalities.

 It is not complex and works fine with a few multi-touch features. When the

59

touch-based functions become more complex and they interact with each other, the

system may have a cognition problem. That is to say, when we have more than two

multi-finger functionalities, they may interact with each other and give the wrong

indication to the system.

 For example, if we have a two finger touch functionality to realize the pinch to

zoom in/out feature and we also have a two finger touch functionality to realize the

move to translate the coordinate feature. When user uses two fingers to do the pinch,

the system will sometimes judge it as a translation, vice versa. But this situation is not

very obvious and it can be attributed to the sensitivity of the touch screen.

 The program also has a way to avoid it or to make the use of it. One can add the

following sentence to allow the simultaneous gesture recognition:

- (BOOL) gestureRecognizer: (UIGestureRecognizer *) gestureRecognizer

shouldRecognizeSimultaneouslyWithGestureRecognizer: (UIGestureRecognizer*)

otherGestureRecognizer {

 return YES;

}

 The return can be NO in order to cancel the simultaneous gesture recognition.

60

Chapter 5

Summary

5.1 The extension of this app

 This app can be used in class as educational software for presentation and

instruction as a supplement of the textbook. The students can understand multiple four

bar linkages visually and practically try by themselves. It can also extended into

research assisting tool while users may use it to test their ideas efficiently, verify

certain theories or just try to get some inspirations from it. Based on the applicability,

the app may have a helpful role in the industry fields. It will help engineers visually

understand and correct some design work benefited from our latest motion synthesis

theories. Even for the common users, they can still gain much knowledge from our

well-classified four bar linkages user interface.

5.2 The future development of this app

 This app will include not only four bar linkages in the future. Focused on a big

scale, it should be able to synthesize multi-bar linkages beyond four bars. Slider will

be added in the future to complete all the situations in four bar linkages. It will be also

able to synthesize positions more than five positions and less than five positions.

61

More features of the user interface will be added as the progress of the development

goes. The graphics will be optimized. A spatial version of user interface might be

coming in the future.

62

Reference

[1] Ravani, B., and Roth, B., 1983, “Motion Synthesis Using Kinematic

Mappings,” ASME J. Mech., Transm., Autom. Des., 105(3), pp.460-467.

[2] Ravani, B., and Roth, B., 1984, “Mappings of Spatial Kinematics,” ASME

J.Mech., Transm., Autom, Des., 106(3), pp. 341-347.

[3] Ge, Q.J. and Zhao, P. and Purwar, A. and Li, X. 2012. “A novel approach to

algebraic fitting of a pencil of quadrics for planar 4R motion synthesis,”

ASME Journal of Computing and Information Science in Engineering, 12(4),

p.041003.

[4] Li, X. and Zhao, P. and Ge, Q.J. 2012. “A fourier descriptor based approach to

design space decomposition for planar motion approximation,” ASME

International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference. Paper No. 2012-71264.

[5] McCarthy, J. M., 1990, Introducation to Theoretical Kinematics, MIT,

Cambridge, MA.

[6] Analysts at Canalys. Available at http://www.canalys.com/newsroom/

wintel-pc-market-share-set-fall-65-2013.

[7] Chitra Sethi, ASME.org. Available at http://www.asme.org/kb/news---articles/

articles/technology-and-society/mobile-apps-for-engineers--what’s-in-store-.

63

[8] Nancy Giges, ASME.org. Available at http://www.asme.org/kb/

news---articles/articles/technology-and-society/engineering-design-apps--a-wo

rk-in-progress.

[9] AppleInsider staff. Available at http://appleinsider.com/articles/13/01/25/

apples-iphone-grew-to-251-global-market-share-in-2012.

[10] TIOBE Programming Community Index for April 2013. Available at

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

[11] Ray, J., 2013, Sams Teach Yourself iOS 6 Application Development in 24

Hours (4th Edition), Pearson Education, Inc.

[12] SoftIntegration Inc: Ch Mechanism Toolkit. Available at

http://www.softintegration.com/chhtml/toolkit/mechanism/fourbar.

[13] Burmester Theory. Available at https://en.wikipedia.org/wiki/

Burmester's_theory.

[14] Joshua Porter: “Principles of User Interface Design”. Available at

http://bokardo.com/principles-of-user-interface-design.

[15] Christopher Diggins: “The Principles of Good Programming”. Available at

http://www.artima.com/weblogs/viewpost.jsp?thread=331531.

[16] LAPACK. Available at http://www.netlib.org/lapack/.

