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Abstract of the Thesis 

Computer Aided Design of Planar Four-Bar Linkages On iOS  

Using a Novel SVD Algorithm  

by 

Xin Ge 

Master of Science 

in 

Mechanical Engineering 

Stony Brook University 

2013 

 

    Motion synthesis has been a practical topic existing for a long time. Various 

methods have been tried and put into practice. It is well done by the scientists and 

engineers to solve large equations of matrix. Although it can be done and get the good 

result, the efficiency is low and labor is very much consuming. Comparatively, our 

methods are much more easier and efficient, it is more suitable for the software to 

realize the calculation by itself.  

    It is mature in PCs to have a motion synthesis software, but since the mobile 

system is going into everyday life and there is no such an app being able to undertake 

this function. With the latest theory of Fourier and quaternions, it is able to build this 

app on iPad to process both the simulation and motion synthesis functionalities with 

high accuracy and speed. 
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Chapter 1 

Introduction and Background 

 

1.1  Background on motion synthesis 

    Planar linkages have been studied for hundreds of years for it is the most 

common and basic mechanical system. The earliest research on the motion synthesis 

was done by Burmester, who developed an approach to deal with at most five position 

synthesis. He showed that one could get infinite solutions with four positions or less 

and six, one or no solution with five positions. Ravani and Roth [1, 2] provided the 

relative approach on the manifold fitting problem and shows the problem can be 

solved by fitting a pencil of quadrics. Recent works can be found in Ping Zhao, 

Anurag Purwar, Q.J.Ge [3] who introduce quaternion into motion synthesis 

calculation to save computational time and simplify calculating steps and Xiangyun, 

Li, Ping Zhao and Q.J.Ge [4] who use Fourier method to solve path problems. More 

modern research on the motion synthesis can be referenced in texts of McCarthy [5].  

 

1.2  Background on the mobile system CAD software 

    Along with the popularity of the mobile devices, people start to use their 

personal phones or tablets to deal with more daily activities. The mobile devices have 
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more advantages over the PC in many areas than people usually think. Generally 

mobile devices are much cheaper than a PC and the performance is not that much lost. 

It expects the tablet market will grow by 37 percent on average each year between 

2012 and 2016, with volumes reaching 389 million units, accounting for 59 percent of 

total PC shipments [6]. One of the reason it is so popular is the portability of such 

kinds of small and middle devices. 

    People download softwares (which is usually called apps on the mobile systems) 

from the online app stores by separate OS. Normally an app store contains thousands 

and even millions of different apps online. But among them, most are games and daily 

useful productivity apps, few are the professional apps facing to the technical persons. 

We can see some of the engineering apps on the mobile systems. In june 2011, 

ASME.org recommended 5 mobile apps for the engineers [7]. The five apps are 

Mechanical Engineer, AutoCAD WS, Cross Section Cal, Mech Ref, Mechanics 

Basics. Four of them are reference apps and only one is for the real design.  

On Fabruary 2013, ASME.org posted another page with the name of "The 

Engineering Design Apps: A Work in Progress" [8]. It said:" While there are many 

mobile apps useful to engineers in the areas of calculation tools, formulas, libraries, 

viewers, and collaboration, there is paucity when it comes to design." The article 

introduced ForceEffect, which the software developer Gianluca Natalini introduced 

FingerCAD and Finger3D in 2010, he said they were the only CAD apps on the 

iTunes store. It allows users to use their fingers to fulfill the functionalities of the 

CAD softwares almost as the same as it is on the PCs for the first time. Recently the 
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ForceEffect joined with ForceEffect Motion, the latter of which can also do the 

motion simulation of a multi-linkage mechanism drawn by the users. 

It is obvious that there is still a large market and blank waiting to be filled on the 

mobile apps for the engineers. With such a need in design, we have developed the 

technical app to realize not only the functionality of simulation but also synthesis.  

 

1.3  iOS introduction 

    iOS ( previously iPhone OS) is the mobile operating system developed by Apple 

Inc. It is used as the operating system in iPhone, iPod touch, iPad and Apple TV.  

    According to data published by IDC and cited by AppleInsider [9], Apple's 

global share of the smartphone market grew from 18.8 percent to 25.1 percent during 

2012. iPad had 43.6% of global tablet market share. This makes it the biggest market 

in worldwide. According to TechCrunch, iOS aquired almost 80% of the enterprise 

market share compared with Android in 2011 and 2012. From the statistics, iOS gains 

a large amount of users among the world. 

    iOS is developed, managed and distributed only by Apple Inc. and the apps can 

only be downloaded through app store, which make it the most secure operating 

system in the world. The most distinguished feature of iOS is the multi-touch 

functionality with high smoothness, sensitivity, accuracy and speed.  

    Objective-C is the only core programming language for developing iOS apps, 

although many other languages, C++ and C mostly, are also accepted within the code. 
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According to the TIOBE Programming Community Index for April 2013 [10], 

Objective-C is the fourth mostly used programming language worldwide which is 

19.598%, next only to C (17.862%), Java (17.681%) and C++ (9.714%). It is the 

language ascends fastest for the past three years.  

    Objective-C was created in the 1980s and is inherited from the C language. It 

adds to the traditional C some objective oriented structures. Objective-C syntax is 

much easier to read than other programming language. It is arranged in a way that you 

can understand it when you look at it, just like look at any human language.  

    For example, the following line from Objective-C compares whether the contents 

of a variable called someName is equal to David: 

 

    [someName isEqualToString:@"David"] 

 

    It doesn’t take much energy to understand what is to be achieved in the code 

snippet. In traditional C, this could be written as follows: 

 

    strcmp (someName,"David") 

 

    We can see that even though the C statement is a bit shorter, it doesn't declare 

much what the code is actually doing. 

    There are many advantages using Objective-C language, except for 

understandability and efficiency. More can be found in "Sams Teach Yourself iOS 6 
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Application Development in 24 Hours( 4th Edition)" by John Ray [11].  

 

1.4  The objective of this app 

    This app was originally faced to college students as an educational software. 

They could use it in class or off class, both for presentation and textbook supplement. 

It can also extended into research assisting tool while users may use it to test their 

ideas expediently, verify certain theories or just try to get some inspirations from it. 

Based on the applicability, the app may have a helpful role in the industry fields. It 

will help engineers visually understand and correct some design work benefited from 

our latest motion synthesis theories. Even for the common users, they can still gain 

much knowledge from our well-classified four bar linkages user interface. 
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Chapter 2 

Theoretical Foundation 

 

2.1  Introduction on the simulation 

    Four-bar linkage is the easiest and most widely used planar linkage mechanism. 

Other multi-bar linkages can all be treated as constructed by several four-bar linkages.  

A four-bar linkage of which all the kinematic joints are revolute joints is called a 

revolute four-bar mechanism, about which our app only concerns.  

 

 
 

Figure 1.1: A revolute four-bar mechanism 
 

    A four-bar linkage met the condition: 

 

lmin + lmax ≤ l’ + l’’ 

 

is called Grashof linkage. The sum of the lengths of the shortest and longest link must 
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be less (at most equal) than the sum of the lengths of the other two links. Another is 

non-Grashof linkage. 

    Followed by the classification from SoftIntegration Inc [12], the two categories 

can be classified as such: 

 

Grashof linkage: 

    For linkages of this type continuous relative motion between the shortest link and 

its adjacent links is possible. 

Crank-Rocker:  

    This type of Grashof linkage is obtained when the shortest link is the input link 

(r2). The input link has full motion. The output link has a limited range of motion that 

is defined as follows: 

 

lower limit: "
414 180 θθθ −+°=   

upper limit: '
414 180 θθθ −+°=  

where ]
2

)(cos[
41

2
23

2
4

2
1'

4 rr
rrrra −−+

=θ    

and 

]
2

)(cos[
41

2
23

2
4

2
1"

4 rr
rrrra +−+

=θ  
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Figure 2.2: Crank-rocker linkage 
 

Double-Rocker:  

    This type of Grashof linkage is obtained when the shortest link is the floating 

link (r3). Note that the complete relative motion between the shortest link and its 

adjacent links are still possible. Both the input and output links have limited ranges of 

motion that are defined as follows: 

 

Input Link 

lower limit: '
212 θθθ +=   

upper limit: "
212 θθθ +=   

where ]
2

)(cos[
21

2
43

2
2

2
1'

2 rr
rrrra −−+

=θ    
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and 
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Output Link 
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Figure 2.3: Double-rocker linkage 
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Rocker-Crank:  

    This type of Grashof linkage is obtained when the shortest link is the output link 

(r4). The output link has full motion. The input link has a limited range of motion that 

is defined as follows: 

 

lower limit: "
212 θθθ +=    

upper limit: "
212 θθθ +=   

where ]
2

)(cos[
21

2
43

2
2

2
1'
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and 

]
2

)(cos[
21

2
43

2
2

2
1'

2 rr
rrrra +−+

=θ   

 
Figure 2.4: Rocker-crank linkage 



11 

 

Double-Crank:  

    This type of Grashof linkage is obtained when the shortest link is the ground link 

(r1). Both the input and output links have full motion. 

 

 
 

Figure 2.5: Double-crank linkage 
 
 

 

Non-Grashof linkage: 

    For linkages of this type continuous relative motion between any two of its links 

is not possible. 
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Inward/Inward limited triple rocker:  

    When r1 + r2 < r3 + r4 the input link (r2) of the linkage is said to be inward 

limited. When r1 + r4 < r2 + r3 the output link (r4) of the linkage is said to be inward 

limited. 

    When a link is inward limited there are limits on the possible values of the angle 

of the link that the actual angle must remain outside (the link is limited when moving 

in the inward direction). 

    The limits are defined as follows: 

 

Input Link 

lower limit: "
212 θθθ +=   

upper limit: '
212 360 θθθ −°+=   

where ]
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2
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2
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4 rr
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Figure 2.6: Inward/Inward limited triple rocker 

 

Outward/Inward Limited Triple Rocker: 

    When r1 + r2 >= r3 + r4 the input link (r2) of the linkage is said to be outward 

limited. When r1 + r4 < r2 + r3 the output link (r4) of the linkage is said to be inward 

limited. 

    When a link is outward limited there are limits on the possible values of the 

angle of the link that the actual angle must remain inside (the link is limited when 

moving in the outward direction). 

    When a link is inward limited there are limits on the possible values of the angle 

of the link that the actual angle must remain outside (the link is limited when moving 

in the inward direction). 

    These limits are defined as follows: 
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Input Link 
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Output Link 
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Figure 2.7: Outward/Inward Limited Triple Rocker 
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Inward/Outward Limited Triple Rocker: 

    When r1 + r2 < r3 + r4 the input link (r2) of the linkage is said to be inward 

limited. When r1 + r4 >= r2 + r3 the output link (r4) of the linkage is said to be 

outward limited. 

    When a link is inward limited there are limits on the possible values of the angle 

of the link that the actual angle must remain outside (the link is limited when moving 

in the inward direction). 

    When a link is outward limited there are limits on the possible values of the 

angle of the link that the actual angle must remain inside (the link is limited when 

moving in the outward direction). 

    These limits are defined as follows: 

 

Input Link 

lower limit: '
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Figure 2.8: Inward/Outward Limited Triple Rocker 

 

 

Outward/Outward Limited Triple Rocker: 

    When r1 + r2 >= r3 + r4 the input link (r2) of the linkage is said to be outward 

limited. When r1 + r4 >= r2 + r3 the output link (r4) of the linkage is said to be 

outward limited. 

    When a link is outward limited there are limits on the possible values of the 

angle of the link that the actual angle must remain inside (the link is limited when 

moving in the outward direction). 

    When a link is outward limited there are limits on the possible values of the 

angle of the link that the actual angle must remain inside (the link is limited when 
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moving in the outward direction). 

    These limits are defined as follows: 

 

Input Link 
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Figure 2.9: Outward/Outward Limited Triple Rocker 
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2.2.  The relative theories on simulation 

2.2.1  The Rotation of Coupler Link 

 

Figure 2.10: Four-bar mechanism example 

 

    Figure 2.10 shows a four-bar mechanism in the fixed coordinate XOY. A0 and B0 

are the two fixed pivots of the ground links. Let AA0 be the input link, AB be the 

coupler and BB0 be the driven link. The length of A0B0, AA0, AB and BB0 are l1, l2, l3 

and l4 respectively. 

    With the constant angular velocity, we have the equation 

 

Φ = ωt + φ0                                     (1) 

where φ0 is the initial input angle and ω is the angular velocity.  

    The point of the simulation problem if to find the coupler angle λ which depends 
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on the input angle and the link ratios as following 

 

l21 = l2/l1, l31 = l3/l1, l41 = l4/l1                          (2) 

     

    With the loop closure equations, we can get the coupler angle λ 

 

)(2
)()()( 21

φ

φφφλ

A
B

ei
ΔΔ±−

=                    (3) 

 

where  

                  A(φ) = l31 ( l21e− jφ − 1) , 

                  B(φ) = 1 + l21 + l321 − l421 − 2l21 cos φ,  

                  ∆1(φ) = 1 + l21 − (l31 + l41)2 − 2l21 cosφ,  

  ∆2(φ) = 1 + l21 − (l31 − l41)2 − 2l21 cosφ.             (4) 

 

    The sign ± represents the two configurations of the same four-bar linkages. 

 

2.2.2  The Path of Coupler Point 

    To get the path of the coupler point, we can use Fourier representation of the 

coupler point path of a four-bar mechanism.  

    Let A0 = x0 + iy0 be the complex number representing the fixed pivot A0 and let 
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z = reiα be the position of point P on the moving frame with respect to the coupler 

link AB. The position of P in the global frame XOY can be given by 

 

P=A0+l2eiθ2 +zeiθ3 =A0+l2eiθ1eiφ+zeiθ1eiλ                    (5) 

 

2.3  Introduction on the motion synthesis 

    The motion synthesis is very important in the mechanism design when the aim is 

to find the best solution by the given positions as the output poses. With the right 

approach, one can get the idealized multi-bar (four-bar in our app) linkages passing 

through all the poses exactly (five positions or less) or most closely (six positions or 

more). A better approach will minimize the cost and maximize the efficiency. It can 

also provide the simplest mechanism to the designer. 

    For the finite position synthesis, let’s introduce the most famous Burmester 

theory [13]. Burmester theory can be used to seek the circling point in a moving body 

by the given movements of the same body.  

    The following is the two-position synthesis example 
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Figure 2.11: Example of two position synthesis  

 

    There are two points on the same moving body A and B, which moves from A1 

to A2 and B1 to B2. The circling point of the moving body in this example can be 

achieved by finding the intersection of two lines perpendicular to the A1A2 and B1B2, 

respectively. Based on the theory, positions of four or less will give infinite solutions. 

    As to the five positions synthesis, Burmester obtained the circling points curve 

generated by the four positions of the five. Burmester shows that these curves can 

intersect as many as four points, which means it can have six solutions, one solution 

or no solution. 

 

2.4  The relative theories on the motion synthesis 

2.4.1  Brief Introduction on Quaternion 

    The theory implements quaternion into the calculation as an input format. Before 
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going into the details of the theory, a brief introduction on quaternion should be 

completed. 

The quaternions are a way of formatting number system with extension to 

complex numbers. They were first presented by Irish mathematician William Rowan 

Hamilton in 1843.  

Quaternions combine both translation and rotation in one format of numbers. 

They form a four-dimensional space while complex numbers form a 

three-dimensional space.  

Quaternion is a number with the form of ai+bj+ck+d ( dcba ,,, are real numbers, 

1222 −=== kji , jikjkiikjijkkjikij −==−==−== ,,,,, ). 2222 dcba +++ is 

called the modulus of a quaternion. The calculation rules can be easily found in any of 

the texts mentioning quaternions.  

    Quaternions can be used in computer graphics and graphical analysis to present 

the position and rotation of a 3D object. It is also used in control theory, signal 

processing, positioning control, physics and mechanics. Quaternions are more stable 

and easier than most of the matrix transformation. 

 

2.4.2  Kinematic Mapping of Planar Kinematics 

    The general solution of the displacement of a rigid body in a plan can be 

introduced as the translation part and the rotation part. Let M represent a coordinate 

frame of the moving body and F be a fixed global frame. Then the planar 
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displacement can be represented as a transformation of point or line coordinates from 

M to F. The point coordinate transformation associated with a planar displacement is 

given by 
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    The line coordinate transformation for the same displacement is given by the 

transpose of the inverse of [H] 
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    If one introduces  
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    The former can be transferred into  
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and  
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of which 12
4

2
3 =+ ZZ . 

    The four-dimensional vector );;;( 4321 ZZZZZ =  is said to define a point in 

projective three-space called the Image Space of planar displacement, denoted as S. In 

this way, a planar displacement is represented by a point in S; a 1- DOF motion is 

represented by a curve and a 2-DOF motion is represented by a surface. 

    Let (x; y) denote the coordinates of a point in the moving frame M and (X; Y) 

their corresponding coordinates with respect to the fixed frame F. It follows from (9) 

that 
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    Let (l1; l2; l3) denote the coordinates of a line in M where 12
2

2
1 =+ ll  and the 

absolute value of l3 is the distance from the origin of M to the line. Let (L1; L2; L3) be 
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the coordinates of the same line with respect to F. It follows from (10) that 
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2.4.3  RR and PR Dyads: the Original Formulation 

    A planar RR dyad defines a 2-DOF motion that one point stays on a circle. In 

general, a circle can be given as a set of four homogeneous coordinates );;;( 3210 aaaa  

(where 00 ≠a ) as 

 

,022)( 321
22

0 =++++ aYaXaYXa                   (13) 

 

where the center (Xc; Yc) of the circle and the radius R are given by 
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and when 00 =a , what we get is 022 321 =++ aYaXa  which is the expression of a 

straight line. Substituting (11) into (13), we obtain an equation of fourth order in 

terms Zi (i = 1; 2; 3; 4), which factors into two quadratic terms. One is 2
4

2
3 ZZ +  and 
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the other is as follows 
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    This quadric surface is called the constraint manifold of the RR dyad.   

    When 00 =a , Eq.(13) reduces to a linear equation representing a line and Eq.(15) 

reduces to 
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    This is the constraint manifold of a 2-DOF motion for which one point stays on a 

line, i.e., the motion of a PR dyad. 

 

2.4.4  RR and PR Dyads: the Unified Formulation 

    We note that all five terms involving Zi (i = 1; 2; 3; 4) in Eq. (16) are exactly 

elements of the matrix [H] as given by (9). Furthermore, if we let 
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it follows that the constraint manifold is defined by five unconstrained homogeneous 

parameters )5;;2;1( =iai . This gives us a clue to rewrite Eq.(15) into: 
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where 
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    Note that Eq.(18) contains all elements of the matrices [H] and [H] as given by 

(9) and (10), respectively. The only new term in Eq.(18) is 2
2

2
1 ZZ + . The set of eight 

homogeneous parameters )8;;2;1( =ipi  are not independent, however. It follows 

from Eq.(19) that they must satisfy the following two relations: 
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It is clear from (19) that when 011 == ap , one has 032 == pp  and that both 

relations in (20) are automatically satisfied. 
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2.4.5  RP Dyad: the Unified Formulation 

    The motion of a RP dyad is constrained such that a line L = (L1; L2; L3) of M 

stays tangent to a given circle C. Let the circle be defined in the same way as before, 

i.e., by (13), which can be expressed in matrix form: 
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    The adjoint of the coefficient matrix above is given by 
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    It is well known in projective geometry of conics that a line L = (L1; L2; L3) stays 

tangent to the circle C when 

 

[ ] 0=LCL adj
T                            (23) 

 

which is known as the dual conic. 

    Instead of substituting (12) directly into (23) to obtain the constraint manifold of 

RP dyad, we first seek to simplify [Cadj]. In view of Eq.(14), we have 

22
0

2
2

2
130 Raaaaa −+= , where R is the radius of the circular constraint. Substituting 
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this relationship into (22), we can decompose [Cadj] into 
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    Substituting (24) into (23), we obtain 
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    The solution to Eq.(25) yields 
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which indicates that the distance from the center of the circle C with homogeneous 

coordinates ),,( 021 aaa −−  to the tangent line L is equal to the radius of C. 

    Furthermore, in view of (12), we have 
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where 12
2

2
1 =+ ll . Substituting (12) and (27) into (26), we can put the resulting 

constraint manifold in the same form as (18) where 
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    Again, the above coefficients satisfy the relations (20). Thus we have the 

following Theorem regarding the representation of kinematic dyads, RR, PR, and RP 

in the image space: 

    Theorem: All three dyads can be represented by quadric surfaces of the form 

(18) with eight homogeneous coefficients ),,,( 821 ppp  . In addition, only a subset 

of these quadrics such that the first seven coefficients satisfy (20) is constraint 

manifolds for the dyads. 

 

2.4.6  Algebraic Fitting of a Pencil of Quadrics for Finite-Position Synthesis 

    Now consider the problem of fitting a pencil of quadrics to a set of N points, 

arranged such that they define an image curve rather than a surface. This problem can 

be formulated an over-constrained linear problem [A]p = 0 where the coefficient 

matrix becomes the matrix [A] is given by: 
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where 
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are the terms of the ith position represented in quaternion form. 

    The over-constrained system of linear equations, [A]p = 0, which is equivalent as 

[A]T[A]p = 0, can be viewed as to solve for the eigenvectors v of [A]T[A], with their 

corresponding eigenvalues to be zero, or as close to zero as possible. This idea comes 

from the definition of a matrix’s eigenvector: (λ[I]－[A]T [A])v = 0, when λ equals to 

zero, its corresponding eigenvector v is obviously the solution of [A]T[A]p = 0, 

Likewise, if l is very close to zero, v becomes an approximated solution. 

    In [23], we have found that for a set (more than 5) of displacements that define 

an image curve, there exists a pencil of quadrics that best fit the given data points. The 

coefficients p = (p1; p2; …; p8) for the pencil of quadrics are defined by the 

eigenvectors [ ]821 φφφφ vvvv =  and [ ]821 ββββ vvvv = , corresponding to 

two smallest singular values, i.e., 

 

βφ βφ vvp +=                           (31) 

 

where ϕ, β are real scalars. 

For five-position synthesis, since the rank of matrix [A] is in general five, there 

will be three zero eigenvalues for [A]T[A] that lead to three eigenvectors: vα, vβ and 
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vγ. 

Thus the coefficients for the pencil of quadrics now becomes: 

 

.γβα γβα vvvp ++=                        (32) 

 

Only those that satisfy (20) correspond to constraint manifolds of planar dyads. 

Substituting Eq. 32 into (20), we obtain the following two quadratic equations, 
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where rɑγ = ɑ/γ and rβγ = β/γ. These two quadratic equations can be converted to one 

quartic equation and hereby can be analytically solved. Note that a quartic equation 

has up to four real roots, which means we will find up to four constraint manifolds 

that fit the five given position precisely. Since the intersection of any two of the four 

constraint manifolds defines a four-bar linkage, there are up to six four bar linkages 

that interpolates through the given five positions. This is consistently with the 

classical Burmester theory. Moreover, this new formulation allows handling of four 

bar linkages formed not only by revolute joints but prismatic joints as well. 

    After the coefficient vector p, which satisfies (20) is obtained, the type of dyads 

can be easily identified: 

1. If 01 ≠p , p represents an RR dyad. 

2. If 01 =p  as well as 032 == pp , p represents a PR dyad. 
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3. If 01 =p  as well as 054 == pp , p represents an RP Dyad. 
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Chapter 3 

Inside the Program 

 

3.1  Introduction on the overall scheme 

    "To design is much more than simply to assemble, to order, or even to edit; it is 

to add value and meaning, to illuminate, to simplify, to clarify, to modify, to dignify, 

to dramatize, to persuade, and perhaps even to amuse."  

- Paul Rand 

 

3.1.1  Basic elements of the software UI design 

    A blog named《Principles of User Interface Design》of famous user interface 

designer Joshua Porter [15] shows 19 basic principles of UI design: 

1. Clarity 

2. Interfaces allowing interaction 

3. Try everything to catch attention 

4. Guide the users 

5. Direct manipulation 

6. One main action per screen 

7. Keep secondary actions secondary 
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8. Every step is natural 

9. Appearance follows behavior 

10. Consistency 

11. Strong visual hierarchies 

12. Have a good organization 

13. Highlight 

14. Progressive disclosure 

15.Help people inline 

16. A crucial moment: the zero state 

17. Great design is invisible 

18. Keep in mind with other design disciplines 

19. Interfaces should be useful 

 

3.1.2  Basic elements of the software program design 

    In one of the blog by Christopher Diggins [16] named《The Principles of Good 

Programming》, he gives 17 basic principles of program design: 

1. Don’t repeat 

2. Abstract 

3. Keep it as simple as possible 

4. Avoid Creating a YAGNI 

5. Do the simplest thing 
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6. Don’t make the users think 

7. Open/Closed Principle 

8. Write Code good for maintaining 

9. Principle of least astonishment 

10. Single Responsibility Principle 

11. Minimize Coupling 

12. Maximize Cohesion 

13. Hide Implementation Details 

14. Law of Demeter 

15. Avoid Premature Optimization 

16. Reuse code 

17. Separate concerns 

 

3.2  Simulation 

3.2.1  Overall construction 

    The aim of the simulation is to allow users to draw any four-bar linkages by 

fingers on the screen and with enough information (ground links and power) the 

system shows the animation of the movement of the given four-bar.  

There are three steps users should provide to the system: draw a four-bar linkage, 

give two ground links, choose a power link. If one wants to see the motion simulation 

of any point on the coupler link, they can give any single point by touch on the screen. 
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The animation will show the moving path of that particular point with a fixed 

coordinate on the coupler. It also shows the classification of the four-bar linkages in 

real time. 

 

 

Figure 3.1: Screenshot of the simulation interface on iPad 

 

3.2.2  UI design 

    Figure 3.1 shows a real user interface on iPad. One may see that all the buttons 

are in the shape of hexagon. One of the reasons is to save the space on the screen and 

maximize the input areas. Another reason is to make an impression of “growing” by 

showing buttons based on the step user is going on.  
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    The buttons on the upper left corner of the screen are the main operating buttons 

for input. Users can use two fingers to move the mechanism (translation movement). 

    The functionality of each button is as following: 

 

 

  

Figure 3.2: Buttons functionalities (simulation) 

 

    The special feature of the operating button on the upper left corner will appear 

one by one based on which step the users are utilizing. When moving to the next step, 

the previous step will automatically fade and be disabled for avoiding errors. This also 

helps to act as an instructive guide for the users since users will know easily when and 

where to press the next button.  

Home 
Clear Screen 

Add Motion Point 

Draw Line 

Motor 

Ground Links 

Change Button 

Classification 

Animation 

Play/Pause 

Stop 
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    The classification label on the upper right corner is based on the same theories in 

chapter 2. The hints will change in real time along with the four-bar linkage users 

give.  

    Here are some mechanisms in each category: 

 

Grashof:   
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Figure 3.3: Screenshots of Grashof linkages categories 
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Non-Grashof: 
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Figure 3.4: Screenshots of non-Grashof linkages categories 
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3.2.3. Algorithm 

    The following is the flowchart of the program in the simulation part. 

 

Figure 3.5: Flowchart of simulation 
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3.3  Synthesis 

3.2.1  Overall construction 

    The aim of the synthesis is to allow users to give any five positions (more 

accepted in the future) and synthesize the four-bar mechanism that can go through 

these positions with both the coordinates and orientations matched.  

    Here is the screenshot of the synthesis screen. 

 

 

    Figure 3.5: Screenshot of the synthesis part on iPad 

 

    Unlike the simulation, in synthesis users should provide the system the output 

positions only. With the latest theories, the system will calculate the given 
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information and shows the relative solutions, which would be six solutions, one 

solution or no solution. It can also give the necessary information of the mechanism 

on the screen.  

 

3.2.2  UI design 

    Figure 3.5 shows a screenshot of the synthesis on iPad. The button design is the 

same as the one in simulation because of the consistency. The arrangement of the 

buttons is similar, although some buttons are changed and rearranged. A calculation 

button is added to pre-calculate the mechanism with the input given. A change circuit 

button is added to change the different circuit for some of the linkages have a circuit 

effect. A statistics button is added to show the users the relative length and coordinate 

information of the mechanism on the screen. A set of solution button is added to allow 

users to choose different solutions by pressing two of the four buttons for the 

condition that if there are six solutions. It also adds a label telling users how many 

solutions there are by the input they give. 

    The following is the specific functionalities of each of the button: 
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Figure 3.6: Buttons functionalities (synthesis) 

     

    When users press the statistics button on the right lower corner, a popover comes 

out. A popover is smaller and easier to have an overall view of the information shown 

than put them in a different screen. It saves both time and energy for the users. 

    The statistics screen shows the four bar synthesis data in relative units, including 

all the four bar length, fixed pivots coordinates and moving pivots position.  

    The next is the statistics screen: 

 

Home 

Draw coordinate 
Add coordinate 

Calculate 

Clear all 

Change Coordinate Classification 

Animation 

Solution set 

Solution hint 

Circuit 

Play/Pause 

Statistics 

Stop 
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Figure 3.7: Statistics screen 

    The solutions number can be six, one or zero. They are given as following: 
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Figure 3.8: Screenshots of six solutions 

 

Figure 3.9: Screenshot of one solution 
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Figure 3.10: Screenshot of no solution 

 

3.2.3  Algorithm 

The following is the flowchart of the synthesis part of the program. 
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Figure 3.11: Flowchart of synthesis 
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Chapter 4 

Problems Solved 

 

4.1  Eigen Problem 

    In the main algorithm part of the program, it needs to calculate the eigenvectors 

of an 8 by 8 matrix. Xcode has an imbedded math library LAPACK (Linear Algebra 

PACKage) [17]. 

    LAPACK was a Fortran 90 library and provided routines for solving systems of 

simultaneous linear equations, least-squares solutions of linear systems of equations, 

eigenvalue problems, and singular value problems. The associated matrix 

factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) can also be 

calculated, as are related computations such as reordering of the Schur factorizations 

and estimating condition numbers. Dense and banded matrices are handled, but not 

general sparse matrices. In all functions, they are suitable for real and complex 

matrices, in both single and double precision. 

    LAPACK is also extended to other machines with the names of ScaLAPACK, 

PLAPACK and CLAPACK.  

    An example can be shown as following of solving the eigenvector problem in 

Objective-C using LAPACK: 
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    __CLPK_integer n = 8, lda = 8, info, lwork; 

        double wkopt; 

        double* work; 

        double w[8]; 

        double A[8*8] = { 

            2.3643, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 

           4.5422, 5.5424, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,  

           0.5435, -5.4640, 3.4375, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 

           4.3535,  -3.0982, 0.4387, 5.6655, 0.0000, 0.0000, 0.0000, 0.0000, 

           -2.2223, 2.3937, 6.5943,  -3.4932, -9.0101, 0.0000, 0.0000, 0.0000, 

      0.0011, -4.5443, 0.4446, 10.3445, 4.3322, 0.4456, 0.0000, 0.0000,      

      9.0193, -8.4593, -9.4733, 2.3455, 8.3342, 4.5436, 9.3572, 0.0000, 

      2.3822, 4.5443, 0.3532, -3.255, -3.4526, 4.5938, -3.3048, 4.5938 

    }; 

        lwork = -1; 

        dsyev_( "Vectors", "Upper", &n, A, &lda, w, &wkopt, &lwork, &info ); 

        lwork = (__CLPK_integer)wkopt; 

        work = (double*)malloc( lwork); 

        dsyev_( "Vectors", "Upper", &n, A, &lda, V, work, &lwork, &info ); 

 

    dsyev_() is to calculate the eigenvalues and/or eigenvectors of a N by N 
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symmetric. 

    The problem occurred when the program is transferred from the Mac to the iPad. 

The eigenvectors are not the same when the eigenvalues are zeros. Several other 

solutions, such as solving SVD and using Jacobian method are tried. The results 

between Mac computer and the iPad mobile system are still not the same with 

eigenvalues of zero, even though it gives the same results with non-zero eigenvalues.  

    After checking the eigenvectors and calculating the fitting errors, it is found that 

the eigenvectors should be in the same vector space because the dot products of two 

of the eigenvectors are zero which means they are perpendicular to each other, the 

modulus of each is one meaning they are unit vectors. The results show that all of the 

eigenvectors are effective and give the right mechanism. 

    But in the future a better way of avoiding the zero value is on pursuit. One 

method is to transfer mathematically all the zero values into one to avoid floating 

point precision which needs to transfigure the original 8 by 8 matrix A.    

 

4.2  Simulation Method 

    In the simulation part of the program, three algorithms had been used.  

    The first version was purely calculating the situations in each of the categories 

and depended on the position of the driver’s bar. It extends to as many as almost 32 

different conditions, which is quite complex and easy to make a mistake. 

    The second method is getting the intersecting points of the two circles path of 
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driver bar and driven bar go along with. This method asks for choosing the right 

intersecting point and ignoring another. On the extreme points of the moving paths, 

the positions of the two points are the same. When the mechanism moves backwards, 

the system can’t choose another point as to make the coupler bar move a whole circle. 

The mechanism always goes through on a half path instead of a closed loop. Another 

problem of this method is also the complexity of the categorization.  

    The final algorithm in the program that is being used now is the Fourier Method 

which was mentioned before in the theoretical part of this thesis. This method uses the 

general four-bar linkages model so that the result can be used in all of the situations 

with only “one” calculation, although it does need to set the maximum and minimum 

angles in each category. The latter is very easy to get and can cause much less 

mistakes. 

 

4.3  Multi-touch functionalities 

    iOS allows single finger and multi-finger touch screen functionalities. Users can 

use their fingers to touch, swipe, pinch, rotate and press in order to reach certain 

features. In this app, users need to use one finger to drag a line, to touch the screen to 

give the links and power positions, to give a moving frame coordinate. Users can also 

use two fingers to pinch to zoom in/out, two fingers to move to translate the canvas. 

In the future, it might be contains three finger touch or relevant functionalities. 

    It is not complex and works fine with a few multi-touch features. When the 
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touch-based functions become more complex and they interact with each other, the 

system may have a cognition problem. That is to say, when we have more than two 

multi-finger functionalities, they may interact with each other and give the wrong 

indication to the system. 

    For example, if we have a two finger touch functionality to realize the pinch to 

zoom in/out feature and we also have a two finger touch functionality to realize the 

move to translate the coordinate feature. When user uses two fingers to do the pinch, 

the system will sometimes judge it as a translation, vice versa. But this situation is not 

very obvious and it can be attributed to the sensitivity of the touch screen.  

    The program also has a way to avoid it or to make the use of it. One can add the 

following sentence to allow the simultaneous gesture recognition: 

 

- (BOOL) gestureRecognizer: (UIGestureRecognizer *) gestureRecognizer 

shouldRecognizeSimultaneouslyWithGestureRecognizer: (UIGestureRecognizer*) 

otherGestureRecognizer { 

    return YES; 

} 

    The return can be NO in order to cancel the simultaneous gesture recognition. 
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Chapter 5 

Summary 

 

5.1  The extension of this app 

    This app can be used in class as educational software for presentation and 

instruction as a supplement of the textbook. The students can understand multiple four 

bar linkages visually and practically try by themselves. It can also extended into 

research assisting tool while users may use it to test their ideas efficiently, verify 

certain theories or just try to get some inspirations from it. Based on the applicability, 

the app may have a helpful role in the industry fields. It will help engineers visually 

understand and correct some design work benefited from our latest motion synthesis 

theories. Even for the common users, they can still gain much knowledge from our 

well-classified four bar linkages user interface. 

 

5.2  The future development of this app 

    This app will include not only four bar linkages in the future. Focused on a big 

scale, it should be able to synthesize multi-bar linkages beyond four bars. Slider will 

be added in the future to complete all the situations in four bar linkages. It will be also 

able to synthesize positions more than five positions and less than five positions. 
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More features of the user interface will be added as the progress of the development 

goes. The graphics will be optimized. A spatial version of user interface might be 

coming in the future. 
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