

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Efficient Numerical Algorithms for

Heterogeneous Computation of PDE

Extended Systems with Applications

A Dissertation Presented

by

Yiyang Yang

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

May 2015

Stony Brook University

The Graduate School

Yiyang Yang

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Xiaolin Li - Dissertation Advisor

Professor, Department of Applied Mathematics and Statistics

Svetlozar Rachev - Chairperson of Defense

Professor, Department of Applied Mathematics and Statistics

Yuefan Deng - Member

Professor, Department of Applied Mathematics and Statistics

Anthony Phillips - Outside Member

Professor, Department of Mathematics

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Efficient Numerical Algorithms for
Heterogeneous Computation of PDE
Extended Systems with Applications

by

Yiyang Yang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

Partial Differential Equations (PDEs) and corresponding numerical schemes

are explored to simulate scientific and engineering problems including parachute

simulation and American option pricing. These problems involve appropriate

coupling of several equations systems. A revised spring-mass model is used

to describe the motion of parachute canopy and string motion which consid-

ers both string stiffness and angular stiffness. This model is validated by the

material’s Young’s modulus and Poisson ratio and is proved to be convergent

to continuum mechanics. The Navier-Stokes equation is applied to simulate

the fluid field and a second-order accurate numerical scheme is used, together

iii

with the introduction of the concept ”penetration ratio” to simulate fabric

porosity which has great impact on the drag performance of the parachute. A

partial-integro differential equation based on generalized hyperbolic distribu-

tion is built to simulate the price of American option pricing after coupling

certain free boundary condition to describe early exercise property.

Due to the complex nature of above applications and the corresponding

numerical scheme structure, Graphics Processing Unit (GPU) is introduced

to derive efficient heterogeneous computing algorithms. The most compu-

tationally intensive and parallelizable parts of the application are identified

and accelerated greatly based on the single-instruction multiple data (SIMD)

architecture. During the parallelization process, parallel execution, memory

hierarchy and instruction usage are optimized to maximize parallelization ef-

fect. For the spring-mass system, we achieved 6× speedup and greatly im-

proved the parachute simulation efficiency. The system of one-dimensional

gas dynamics equations is solved by the Weighted Essentially Non-Oscillatory

(WENO) scheme; the heterogeneous algorithm is 7-20× faster than the pure

CPU based algorithm. For single American option, the numerical integrations

are parallelized at grid level and 2× speedup is realized; for multiple option

pricing, each thread is in charge of one option and the algorithm reaches 400×

speedup.

Key Words: partial differential equations (PDEs), parachute simulation,

American option pricing, front tracking, GPU

iv

To my Parents and all loving ones

v

Table of Contents

List of Figures . xiv

List of Tables . xvi

Acknowledgements . xvii

1 Partial Differential Equations 1

1.1 Basic Definitions and Classifications 2

1.2 PDEs in Science and Engineering 5

1.2.1 Wave Equation . 5

1.2.2 Laplace Equation . 7

1.2.3 Heat Equation . 8

1.3 Modeling based on PDE extended System 10

1.3.1 Euler Equations and Navier-Stokes Equations 11

1.3.2 Spring-Mass Model . 15

1.3.3 Partial-Integro Differential Equation 18

2 Numerical Scheme and Application Implementation 24

2.1 General Numerical PDE Schemes 25

vi

2.1.1 Wave Equation . 25

2.1.2 Heat Equation . 26

2.1.3 Poisson Equation . 28

2.1.4 Conservation Law . 30

2.1.5 Boundary Condition 34

2.1.6 Numerical ODE Scheme 35

2.2 Numerical Methods for PDE extended Systems 37

2.2.1 Numerical Solver for Advection Term 37

2.2.2 Projection Method for Navier-Stokes equation 40

2.2.3 Numerical Solver for Spring Model 44

2.2.4 Numerical Solver for PIDE 45

2.3 Application Implementation 50

2.3.1 Front Tracking based on FronTier 51

2.3.2 Parachute Simulation 52

2.3.3 Canopy Porosity Simulation 57

2.3.4 Parachute Clusters and Collision Handling 63

2.3.5 American Option Pricing 65

3 GPU Application . 68

3.1 Introduction to GPU . 68

3.1.1 GPU Architecture . 68

3.1.2 Improving GPU Performance 71

3.2 GPU Accelerated PDE Scheme 76

3.2.1 Explicit Scheme . 76

3.2.2 Efficient Tridiagonal Solver 77

vii

3.3 Heterogeneous Algorithms for Applications 80

3.3.1 WENO Scheme for Gas Dynamics 80

3.3.2 Spring Mass Model . 82

3.3.3 American Option Pricing 85

4 Numerical Results . 88

4.1 Experiment Platform . 88

4.2 Advection Solver for Gas Dynamic 89

4.3 Parachute Simulation . 90

4.3.1 Angled Deployment . 90

4.3.2 Canopy Porosity Simulation 92

4.4 American Option Pricing . 93

4.5 Acceleration Effect of Heterogeneous Algorithms 101

4.5.1 Optimized Resource Allocation 101

4.5.2 GPU Application for Gas Dynamics 103

4.5.3 GPU Application for Spring Model 105

4.5.4 GPU Application for American Option Pricing 106

5 Conclusions . 116

Bibliography . 119

viii

List of Figures

1.1 (a) Rest triangle TX0
whose vertices are Xi0. (b) Deformed tri-

angle TX whose vertices are Xi. 16

1.2 Density function of generalized hyperbolic distribution with dif-

ferent parameters. From left to right: (1) λ = 2.0, α = 4.0,

β = −1.5, δ = 0.1, µ = −1.0; (2) λ = 1.0, α = 4.0, β = −1.5,

δ = 0.2, µ = −0.5; (3) λ = 0.0, α = 3.0, β = 0.0, δ = 0.4, µ = 0.0;

(4) λ = −1.0, α = 2.5, β = 1.0, δ = 0.8, µ = 0.5; (5) λ = −2.0,

α = 2.0, β = 1.5, δ = 1.6, µ = 1.0. 21

2.1 The flow chart of FronTier library. 51

2.2 A cluster of three G11 parachutes. 65

2.3 The difference between the collision handling for fluid interface

and the fabric surface. The upper two plots show the topologi-

cal bifurcation of fluid interface. The lower two plots show the

repulsion of the fabric collision. 66

3.1 Architecture of multi-GPU devices. Each GPU hardware con-

sists of memory (global, constant, shared) and 14 SMs. Each SM

consists of 32 SPs and can run 1536 threads simultaneously. . . 69

ix

3.2 Fifth order WENO scheme stencils. Each point represents a com-

putational node. Red points are updated by the threads while

the green points are only used as data source. Each thread up-

dates one red point only. (a) Without shared memory usage,

each thread reads seven points’ information. (b) With shared

memory, each thread reads only one point’s information. In the

testing case, the number of threads in one block is 512. With-

out shared memory usage, each block will fetch 512 × 7 = 3584

points’ information; with shared memory, only 512 + 6 = 518

points’ information is necessary. 83

3.3 Flow chart of the complete algorithm. The computation of the

spring model, which is marked by red color, is the most time con-

suming section. This part is calculated in parallel by the GPU

device with multiple threads in order to improve the computa-

tional efficiency . 84

3.4 Without-GPU (Left) and With-GPU (Right) flow charts for single

American option pricing. 86

3.5 Without-GPU (Left) and With-GPU (Right) flow charts for mul-

tiple American options pricing. 87

4.1 Sod problem results, the solution domain is [−1, 1]. The mesh

size of the first figure is 400 and the second one’s is 3200. 91

x

4.2 Angled deployment of C-9 parachute with the flow. The deploy-

ment starts with a 15◦ angle between the initial parachute and

the direction of flow. The parachute experiences only slight asym-

metry of the canopy. The plots show the parachute at (from left

to right) t = 0sec, t = 1.5sec and t = 3.0sec respectively. 93

4.3 Angled deployment of C-9 parachute with the flow. This sequence

starts with a 60◦ angle between the initial parachute and the

direction of the flow. In this case, the canopy skirt is dangerously

wrapped at the lower side of the canopy. The plots show the

parachute at (from left to right) t = 0sec, t = 1.5sec and t =

3.0sec respectively. 94

4.4 Inversion of the parachute canopy during an angled drop. The

alignment of the parachute started with a 75◦ angle with the

direction of the velocity. A complete inversion occurs at t = 2sec.

The two plots are views of the inverted canopy from different

directions. 95

4.5 Porosity simulation, velocity in x direction, with penetration ratio

from left to right, top to bottom: γ = 0, 0.25, 0.5, 0.75 96

4.6 Porosity simulation, velocity in y direction, with penetration ratio

from left to right, top to bottom: γ = 0, 0.25, 0.5, 0.75 97

4.7 Porosity simulation, vorticity, with penetration ratio from left to

right, top to bottom: γ = 0, 0.25, 0.5, 0.75 98

xi

4.8 European option prices based on the variance gamma process

with parameters c = 1.0, λ+ = 7.0 and λ− = 9.0; the CGMY

model with parameters C = 1.0, G = 7.0, M = 9.0 and Y = 0.7;

the normal inverse Gaussian process with parameters α = 8.15,

β = −2.5 and δ = 0.767; the generalized hyperbolic process with

parameters λ = 1, α = 8.15, β = −2.5 and δ = 0.767. 100

4.9 Left: American option prices under the generalized hyperbolic

distribution; Right: difference between option prices based on

PIDE and Black-Scholes. Other parameters are α = 8.15, β =

−2.5, δ = 0.767. 108

4.10 Left: American option prices under the generalized hyperbolic

distribution; Right: difference between option prices based on

PIDE and Black-Scholes. Other parameters are λ = 1.0, β =

−2.5, δ = 0.767. 109

4.11 Left: American option prices under the generalized hyperbolic

distribution; Right: difference between option prices based on

PIDE and Black-Scholes. Other parameters are λ = 1.0, α =

8.15, δ = 0.767. 109

4.12 Left: American option prices under the generalized hyperbolic

distribution; Right: difference between option prices based on

PIDE and Black-Scholes. Other parameters are λ = 1.0, α =

8.15, δ = 0.767. 110

xii

4.13 Left: American option prices under the generalized hyperbolic

distribution; Right: difference between option prices based on

PIDE and Black-Scholes. Other parameters are λ = 1.0, α =

8.15, β = −2.5. 110

4.14 Early exercise boundaries for American options based on the gen-

eralized hyperbolic distribution (x-axis: exercise price; y-axis:

time to maturity). Parameters are (Left) α = 8.15, β = −2.5, δ =

0.767; (Right) λ = 1.0, β = −2.5, δ = 0.767. 111

4.15 Early exercise boundaries for American options based on the gen-

eralized hyperbolic distribution (x-axis: exercise price; y-axis:

time to maturity). Parameters are λ = 1.0, α = 8.15, δ = 0.767. . 111

4.16 Early exercise boundaries for American options based on the gen-

eralized hyperbolic distribution (x-axis: exercise price; y-axis:

time to maturity). Parameters are λ = 1.0, α = 8.15, β = −2.5. . 112

4.17 GPU computing performance on different block sizes and mesh

sizes for Sod problem. 113

4.18 GPU (left) and CPU (right) time per step for gas dynamic sim-

ulation based on WENO. The GPU computing time is 29-86×

faster than CPU’s. However, GPU total time is only 4-20× faster

than CPU’s. This is due to the time used to transfer the data

between the host and the device in GPU. From the left plot, we

can clearly see that the time spent on copying data is at least

twice larger than the time spent on computing. 114

xiii

4.19 GPU (left) and CPU (right) time per step for spring model simu-

lation. The GPU computing time and total time are 5-6× faster

than CPU’s. This is due to the negligible time used to transfer

the data between the host and the device. 114

4.20 GPU (left) and CPU (right) time per step for single option pric-

ing. The GPU computing time is 1.7-12× faster than CPU’s.

However, the performance of GPU is worse when the mesh size

is small. Because the time used to transfer the data dominates

GPU calculation time. 115

4.21 GPU (left) and CPU (right) time per step for multiple option

pricing. The GPU computing time is relatively stable when the

number of options is smaller or equal than 2048. 115

xiv

List of Tables

4.1 A Dell Precision T7600 Workstation with dual NVIDIA Quadro

graphics cards was used to set up the test environment. 89

4.2 errors and convergence of the variance gamma process and pa-

rameters are c = 1.0, λ+ = 7.0 and λ− = 9.0 95

4.3 Errors and convergence of the CGMY model and parameters are

C = 1.0, G = 7.0, M = 9.0 and Y = 0.7 99

4.4 Errors and convergence of the normal inverse Gaussian process

and parameters are α = 8.15, β = −2.5 and δ = 0.767 99

4.5 Errors and convergence of the generalized hyperbolic process and

parameters are λ = 1, α = 8.15, β = −2.5 and δ = 0.767 99

4.6 Execution capacity analysis. In this application, each thread

needs 63 registers and each block needs (block size+2×ghost size)

× (number of shared doubles per thread) × sizeof(double)

shared memory where ghost size = 3, number of shared dou-

bles per thread is decided by the algorithm which is 11 and

sizeof(double) = 8 is decided by the compiler. Given these pa-

rameters and the size of registers and shared memory per SM,

maximum number of blocks can be calculated for given block size. 102

xv

4.7 GPU and CPU computing time of solving one dimensional Euler

equations by the fifth order WENO scheme in one step. Eight

different mesh sizes (1024, 2048, 3072, 4096, 5120, 6144, 7168,

8192) were tested with both pure CPU code and hybrid (CPU and

GPU) code. Based on the analysis and experiments in Table 4.6,

we choose one of the best block size 128 here. The hybrid code

is 8-20× faster than the pure CPU code for the computation of

the intensive part when the mesh size is larger than 2048. In the

table, ”Time of copy data from Host to Device” and ”Time of

copy data from Device to Host” denoted by ”H2D” and ”D2H”,

respectively. 104

4.8 GPU and CPU computing time of three dimensional spring model.

Spring models with eight different mesh sizes of 2641, 4279, 6466,

9064, 12361, 15567 were tested with both pure CPU code and

hybrid (CPU and GPU) code. The hybrid code is 5-6× faster

than the pure CPU code for computing the intensive part. . . . 105

4.9 Operation time of single option pricing under the generalized hy-

perbolic distribution, parameters λ = 1.0, α = 8.15, β = −2.5, δ =

0.767 . 106

4.10 Operation time of multiple options pricing under the general-

ized hyperbolic distribution, parameters λ = 1.0, α = 8.15, β =

−2.5, δ = 0.767 . 108

xvi

Acknowledgements

I would like to express my sincere gratitude to my adviser, Pr. Xiaolin

Li. He is the best advisor, who gave me inspiring suggestions on research and

patient guidance towards my PhD degree; He is my family, who support me for

every decision I made and we enjoy family time together during Thanks-giving

and Christmas; He is a good friend, with whom I can share any happiness and

sorrow. I feel so proud to be his student and enjoy all the four-year time spent

with him.

I really appreciate the encouragement and valuable technical suggestions

from Pr. Svetlozar Rachev, Pr. Yuefan Deng and Pr. Anthony Phillips. You

are the most outstanding researchers in your field. I feel so excited and grateful

to have you in my defense committee.

Many thanks to my colleagues, Dr. JoungDong Kim, Dr. Yan Li, Dr.

Yijing Hu, Dr. Qiangqiang Shi, Zheng Gao, Xiaolei Chen, Saurabh Joglekar,

Jingfang Qu and Muye Chen. Thanks to Pr. Li, we shared many happy hours

every Friday.

During my PhD career, I got a lot support from my parents, family

members and close friends. I want to dedicate this thesis to all the people I

love and these people knowing I am not perfect but still love me.

xvii

Chapter 1

Partial Differential Equations

The research of partial differential equation (abbreviated PDE) dates

back to 18th century when Euler, d’Alembert, Lagrange and Laplace used it

as a central tool in the description of mechanics of continua and the study of

models in physical science [15]. Since the middle of the 19th Century, due to

the contribution of Riemann and other scientists, PDE became an essential

tool in other branches of mathematics. This duality of viewpoint has been

central to the analysis of PDE until today.

Linear PDE is discussed most in textbooks and usually have analytical

solutions when coupled with certain boundary condition. However, nonlinear

PDE is more important within real world problems and current mainstream

research [18].

Nowadays, more complicated partial differential equations or differential

equation systems are developed to describe problems in various fields. These

equations are almost unable to be solved by analytical methods. At the same

time, more advanced computing technique and resources motivated us to solve

1

all these problems numerically. Large scale simulation enables us to get more

intuitive idea about the target problem and save great experimental cost.

The complex nature of many practical problem, together with the ad-

vanced computing technique and improvement of hardware drive us to explore

heterogeneous computing algorithm to solve target problem more efficiently.

1.1 Basic Definitions and Classifications

A partial differential equation [64, 32] is an equation involving a function

u of several variables and its partial derivatives. For a function u (x1, · · · , xn),

the corresponding PDE has the form

F (x1, · · · , xn, ux1, · · · , uxn, ux1x1, ux1x2, · · ·) = 0. (1.1)

The order of the above equation is the order of the highest derivative occurring

in the equation. PDE can be classified according to linearity :

1. linear: the equation depends linearly on u and its derivatives;

2. semilinear: all derivatives of u occur linearly with coefficients depending

only on x;

3. quasilinear: all highest-order derivatives of u occur linearly with coeffi-

cients depending only on x, u and lower-order derivative of u.

A simple example of a first-order PDE is

ut + a (u)ux = 0, (1.2)

2

when a (u) = a is a constant, it is a linear equation called transport equation;

when a (u) = u, it is a quasilinear equation called inviscid Burgers equation.

After introducing the concept of Laplacian or Laplace operator

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
, (1.3)

we can discuss several second-order PDE

ut = k∆u, (1.4)

utt = c2∆u, (1.5)

∆u = 0. (1.6)

Eq. (1.4) is called heat equation which represents the diffusion of heat through

an n-dimensional body; Eq. (1.5) is wave equation which represents surface

wave when n = 2 and sound or light wave when n = 3; Eq. (1.6) is n-

dimensional Laplace equation. Eq. (1.4) and Eq. (1.5) are evolutionary equa-

tions because they describe phenomena that may change with time; Eq. (1.6)

is satisfied by the steady-state solutions of Eq. (1.4) and Eq. (1.5) which is

time independent.

In order for a PDE to have unique solution, additional side conditions

should be imposed. Side conditions are usually in the form of initial conditions,

for example

u (x, t0) = g (x) , (1.7)

3

or boundary conditions, for example

u (x0, t) = h (t) , (1.8)

or combination of the two.

Eq. (1.4)-Eq. (1.6) are homogeneous equations which means if φ (x, t) is

the solution of the PDE, then kφ (x, t) is also the solution of the PDE. To

obtain corresponding nonhomogeneous equation, we add function f

ut − k∆u = f, (1.9)

utt − c2∆u = f, (1.10)

∆u = f. (1.11)

In Eq. (1.9) and Eq. (1.10), f can be considered as heat source and external

forcing term respectively which lead to nonhomogeneous heat and wave equa-

tions. Eq. (1.11) is nonhomogeneous Laplace equation or Poisson equation.

Second-order equations are most widely used in many different area. In

the case when the derivatives of second-order all occur linearly, the PDE can

be represented as

a (x, y)uxx + b (x, y)uxy + c (x, y)uyy = d (x, y, u, ux, uy) (1.12)

4

and the corresponding characteristic curve is

dy

dx
=
b±

√
b2 − 4ac

2a
(1.13)

which have three cases:

1. Hyperbolic equation, b2 > 4ac, there are two characteristics;

2. Parabolic equation, b2 = 4ac, there is only one characteristic;

3. Elliptic equation, b2 < 4ac, there are no characteristics.

1.2 PDEs in Science and Engineering

In this section, we discuss three most typical PDEs: wave equation,

Laplace equation and heat equation. These PDEs have analytical solutions

when coupled with certain side conditions. Even though the forms are quite

simple, they can explain many physical and mechanical phenomenon and are

the corner stones for understanding more complicated PDE system.

1.2.1 Wave Equation

First, consider transport or advection equation, which is a special case of

wave equation, coupled with initial boundary condition















ut + aux = 0

u (x, 0) = h (x)

, (1.14)

5

where u is a function of two variables (x, t) and a is a constant. Based on the

method of characteristics, the solution can be derived as

u (x, t) = h (x− at) . (1.15)

A more general case is the one-dimensional wave equation

utt − c2uxx = 0 (1.16)

governs wave motion in a string and the propagation speed c is a constant.

Assume µ = x+ ct, η = x− ct transforms Eq. (1.16) to

uµη = 0. (1.17)

The general solution of Eq. (1.17) is u (µ, η) = F (µ) + G (η) which gives the

equivalent solution

u (x, t) = F (x+ ct) +G (x− ct) . (1.18)

Given initial conditions

u (x, 0) = g (x) , ut (x, 0) = h (x) (1.19)

where g and h are arbitrary functions. The d’Alembert’s formula for the

6

solution of the initial problem is

u (x, t) =
1

2
[g (x+ ct) + g (x− ct)] +

1

2c

∫ x+ct

x−ct
h (ǫ) dǫ. (1.20)

For multiple-dimensional wave equations, that is n > 1, they can be solved by

mean reduction to the one-dimensional case and use above process to obtain

corresponding solution.

Wave equation applies perfectly to model air pollution, dye dispersion or

traffic flow with u representing the density of the pollutant, dye or traffic at

position x and time t [55], as well as the propagation of light and sound.

1.2.2 Laplace Equation

The Laplace equation

∆u = 0, in Ω, (1.21)

and the corresponding nonhomogeneous equation, Poisson equation

∆u = f, in Ω (1.22)

are frequently used in the physical science to describe steady-state behavior.

To solve the equation and obtain unique solutions, appropriate boundary

condition should be coupled:

1. Dirichlet boundary condition, state on the boundary ∂Ω is defined

u (x) = h (x) , x ∈ ∂Ω; (1.23)

7

2. Neumann boundary condition, normal derivative on the boundary layer

∂Ω is

∂u (x)

∂~n
= ~n · ∇u (x) = h (x) , x ∈ ∂Ω (1.24)

3. Robin boundary condition, arise naturally from the physical consideration

of heat flow

∂u (x)

∂~n
+ αu (x) = h (x) , x ∈ ∂Ω (1.25)

where α is constant values and ~n denotes the normal direction to ∂Ω.

For specific domain, separation of variables method can be used to find solution

satisfy the boundary condition. Finding Green’s function is another typical

method to find the solution of Laplace equation. Elliptic equations can be

applied to simulate steady irrotational flows. It can also be used to model

static electric, magnetic, gravitational and fluid velocity field.

1.2.3 Heat Equation

Regard a physical body with constant heat conductivity k as a bounded

region Ω in domain Rn, then the heat or diffusion equation is

ut = k∆u, x ∈ Ω, t > 0 (1.26)

where u (x, t) represents the temperature of the body at point x and time t.

This equation describes the propagation or diffusion of heat.

The appropriate side conditions are initial condition which describes the

8

initial temperature:

u (x, 0) = g (x) (1.27)

and boundary conditions:

1. Dirichlet boundary condition, temperature is controlled on the boundary

∂Ω

u (x, t) = h (x, t) , x ∈ ∂Ω, t > 0; (1.28)

2. Neumann boundary condition, heat flow through boundary ∂Ω is con-

trolled

∂u (x, t)

∂~n
= h (x, t) , x ∈ ∂Ω, t > 0 (1.29)

where ~n denotes the normal direction to ∂Ω;

3. Robin boundary condition, which governs heat flow by Newton’s law of

cooling

∂u (x, t)

∂~n
+ αu (x, t) = h (x, t) , x ∈ ∂Ω, t > 0 (1.30)

where α is constant values and ~n denotes the normal direction to ∂Ω.

The solution of an initial/boundary heat equation can be obtained using eigen-

functions of the Laplacian; the solution of the pure initial value problem can

be derived using Fourier transformation in Rn. Given the pure initial value

problem as














ut = ∆u, t > 0, x ∈ Rn

u (x, 0) = g (x) , x ∈ Rn

, (1.31)

9

if g (x) is bounded and continuous for x ∈ Rn, then

u (x, t) =
1

(4πt)
n
2

∫

Rn

e−
|x−y|2

4t g (y) dy. (1.32)

The temperature u (x, t) changes over time as heat spreads throughout

space. The heat equation is used to determine the change in u (x, t). The rate

of change of u (x, t) is proportional to the “curvature” of u (x, t). Thus, the

sharper the corner, the faster it is rounded off. Over time, the tendency is for

peaks to be eroded and valleys to be filled in.

Heat equation has very wide applications. It can be used to simulate

particle diffusion process, or the random trajectory of a single particle subject

to the particle diffusion equation which is known as Brownian motion. As the

name indicated, a direct application is to predict the thermal transfer profiles

and the measurement of the thermal diffusivity in polymers. It is also used

in financial mathematics to model the price of options and the Black-Scholes

equation can be transformed into heat equation. There are also applications

in the field of image processing and machine learning.

1.3 Modeling based on PDE extended System

To simulate real world system and realize applications in various fields,

much more complicated PDE or even PDE systems should be derived. Ordi-

nary differential equation (abbreviated ODE) or ODE systems are sometimes

coupled together to facilitate simulations under certain assumptions. Another

extended case is the partial-integro differential equation arise in the financial

10

modeling. In this section, several PDE based or extended models are intro-

duced, together with corresponding applications.

1.3.1 Euler Equations and Navier-Stokes Equations

Euler equations and Navier-Stokes equations are the most important for-

mulas to govern the motion of fluid. Euler equations first appeared in Euler’s

article in 1757. Navier-Stokes equations were originally derived in the 1840s

on the basis of conservation laws and first-order approximations. In the early

1900s, assuming sufficient randomness in microscopic molecular process, they

are derived from molecular dynamics [100]. The basic method to derive the

both formula is through principles of conservation of mass, momentum and

energy [39, 58].

The conservation of mass law requires

∂ρ

∂t
+∇ · (ρ~u) = 0 (1.33)

where ρ (~x, t) is spatial mass density field and ~u (~x, t) is associated spatial

velocity field.

The conservation of linear momentum law requires

ρ

[

∂~u

∂t
+ (~u · ∇) ~u

]

= ∇ · S+ ρ~b (1.34)

where S (~x, t) is the Cauchy stress field and ~b (~x, t) is the spatial body force

per unit mass.

11

The conservation of angular momentum law require that

ST = S. (1.35)

The conservation of energy law requires

ρ

[

∂φ

∂t
+ (~u · ∇)φ

]

= ∇ (S · ~u)−∇ · ~q + ρr (1.36)

where φ (~x, t) is the internal energy field per unit mass, ~q (~x, t) is the Fourier-

Stokes heat flux vector field, r (~x, t) is the heat supply field per unit mass.

Different choices of stress fields will lead to equation for different type of

fluid. In the world of ideal fluid which is inviscid, the Cauchy stress field is

given as

S (~x, t) = −p (~x, t) I. (1.37)

In the case of absent extra body force, Euler equation can be derived as































∂ρ
∂t

+∇ · (ρ~u) = 0

∂~u
∂t

+ (~u · ∇) ~u = −1
ρ
∇p

∂E
∂t

+∇ · (~u (E + p)) = 0

. (1.38)

where ρ is the fluid density, ~u is the velocity of the fluid field, p is the pressure,

E = ρe + 1
2
ρ~uT~u is the total energy density with e being the specific internal

energy per unit mass. Due to the model assumption, Euler equation is most

appropriate for simulating compressible inviscid fluid which has large Reynolds

12

number, such as bullet ejection, spacecraft entrance and so on.

In the incompressible Newtonian fluid case, mass density field is uniform

which means it is constant ρ0 in the field. Thus, Eq. (1.33) implies

∇ · ~u = 0. (1.39)

The Newtonian Cauchy stress field is given as

S (~x, t) = −p (~x, t) I+ ν
(

∇~u (~x, t) +∇~u (~x, t)T
)

. (1.40)

In the case of absent extra body force, Navier-Stokes equation for incompress-

ible Newtonian fluid can be derived as















∇ · ~u = 0

ρ0
[

∂~u
∂t

+ (~u · ∇) ~u
]

= −∇p + ν∇2~u

(1.41)

where ν is the kinematic viscosity and ρ0 is the fluid density, ~u is the velocity

of the fluid field, p is the pressure. Due to the incompressible and viscous as-

sumption, Navier-Stokes equation has wide applications in physics, geoscience,

aerospace and even medical simulation when coupled with certain boundary

conditions and other appropriate constraints.

Both Euler equation and Navier-Stokes equation are nonlinear PDE. They

aim at describing the fluid motion during evolution. They both have first-order

term which governs the advection behavior. However, Euler equation does not

have diffusion term due to the lack of viscosity. They both can demonstrate the

13

motion under extra body force by introducing nonhomogeneous source terms.

Initial condition specifies the initial state of the fluid field and boundary condi-

tions specifies the behavior of fluid near interface. To realize good simulation

result, different initial and boundary conditions should be set according to the

requirement of the problem:

1. Inlet boundary conditions: the distribution of all flow variables are spec-

ified at inlet boundaries mainly flow velocity.

2. Outlet boundary conditions: the distribution of all flow variables are

specified at outlet boundaries mainly flow velocity.

3. Wall boundary conditions: used to the simulate fluid near solid regions.

In viscous flows, no-slip conditions are enforced at wall

~unormal = ~uWall (1.42)

~utangential = 0 (1.43)

which means tangential fluid velocity equal to wall velocity, i.e. “no-

slip”, and normal velocity is set to be zero.

4. Constant pressure boundary conditions: used when boundary values of

pressure are known and the exact details of the flow distributions are

unknown. This usually includes pressure inlet and outlet conditions.

5. Periodic boundary conditions: used when physical geometry of interest

and expected flow pattern and the thermal solution are of periodically

14

repeating nature.

1.3.2 Spring-Mass Model

ODE system are usually coupled with PDE systems in real application.

In this section, an ODE system derived from spring mass model is introduced

to simulate fabric motion, such as skin, soft tissue, paper and textile.

When no external driving force is applied, the fabric surface is a con-

servative system whose total energy (kinetic energy and potential energy) is

a constant. The fabric surface is represented by a high-quality triangulated

mesh. Each mesh point is a mass node and the connection between them are

springs. Assume each mesh point represents a point mass m in the spring

system with position vector xi , the kinetic energy of the point mass i is

Ti =
1
2
m|ẋi|2, where ẋi is the time derivative, or velocity vector of the point

mass i. Based on Newton’s second law, an ODE system can be derived as

m
dẋi
dt

= Fi (1.44)

where Fi is the force from the spring system on mass i. Simple spring model

only considers force due to spring elongation and compression. Van Gelder

argued [34] that the simple spring-mass model cannot be related to the con-

tinuum model for the linear elastic membrane and therefore not suitable to

represent the fabric surface. Recent publication by Delingette [27] proposed

a revision to add angular stiffness. Thus, the force in Eq. (1.44) considers

not only tensile stiffness due to elongation, but also angular stiffness due to

15

resistance of angular deformation.

X30

X10

X20

X3

X2X1

I02
I01

I03

I2 I1

α1

α2

α3

β3

β1
β2

I3

Figure 1.1: (a) Rest triangle TX0
whose vertices areXi0. (b) Deformed triangle

TX whose vertices are Xi.

As illustrated in Fig. 1.1, for a triangle in equilibrium TX0
, the initials

states are given by area AX0
, angles αi, and lengths l0i , i = 1, 2, 3 in equilib-

rium; while AX, βi and li denote the area, angles, and lengths of the deformed

triangle TX respectively. The edge elongation can be written as dli = li − l0i .

The potential energy is given as

W (TX0
) =

3
∑

i=1

1

2
k
TX0

i (dli)
2 +

3
∑

i = 1

j = (i+ 1)mod3

k = (i+ 2)mod3

γ
TX0

i dljdlk (1.45)

where k
TX0

i and γ
TX0

i are tensile and angular stiffness respectively

k
TX0

i =
(l0i)

2
(2 cot2 αi · (λ+ µ) + µ)

8AX0

(1.46)

16

γ
TX0

i =
l0j l

0
k (2 cotαj cotαik · (λ+ µ)− µ)

8AX0

(1.47)

with λ and µ as the Lame coefficients of the material.

Apply Rayleigh-Ritz method to analyze the fabric surface, which states

that system evolve by minimizing its membrane energy, the force can be rep-

resented as

Fi =

N
∑

j=1

ηijFij (1.48)

and

Fij =
(

k̃ijdlij + γ̃ijdlij

)

eij (1.49)

where

k̃ij = kT1ij + kT2ij , γ̃ij =
γT1i dlim + γT1j dljm + γT2i dlin + γT2j dljn

dlij
(1.50)

and eij is the unit vector from Xi to Xj .

Eq. (1.44) is a second-order ODE, which can also be written as a first-

order ODE system














d
dt
xi = ui

d
dt
ui = Fi

(1.51)

which is linear and nonhomogeneous.

17

1.3.3 Partial-Integro Differential Equation

A seminal application of heat equation is to simulate option price which

gives the well-known Black-Scholes Equation [8]

∂V

∂t
(t, S) + rS

∂V

∂t
(t, S) +

σ2S2

2

∂V

∂t
(t, S)− rV (t, S) = 0 (1.52)

where V (t, S) gives the option price at time t and underlying asset price S, r

is the risk-free rate, σ is the volatility of underlying asset. Given the property

of heat equation, the value of option smooths over time. The most important

assumption is that the underlying asset S follows geometric Brownian motion

dSt
St

= αdt+ σdWt. (1.53)

This diffusion process contains Brownian motion (Wt)t≥0. Eq. (1.53) implies

that the log return of underlying asset satisfies normal distribution.

Empirical market observation demonstrates that normal distribution which

fails to capture skewness and asymmetry properties of underlying asset [52].

A possible solution is to use exponential Lévy model to simulate the price of

the underlying asset which represents the extreme returns as discontinuities in

the prices [22].

Lévy process is a right-continuity and left-limits stochastic process with

values in Rd such that X0 = 0 and satisfies following properties:

1. Independent increments: for every increasing sequence of times t0, · · · , tn,

the random variables Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1
are independent;

18

2. Stationary increments: the law of Xt+h −Xt does not depend on t;

3. Stochastic continuity: ∀ǫ > 0, limh→0 P (|Xt+h −Xt| ≥ ǫ) = 0.

Based on Lévy-Khinchin theorem, any Lévy process on Rd can be uniquely

represented by characteristic triplet (A, ν, γ) through characteristic function

E
[

eizXt
]

= etψ(z), z ∈ Rd (1.54)

ψ (z) = −1

2
zTAz + iγT z +

∫

Rd

(

eiz
T x − 1− izTx1|x|≤1

)

ν (dx) . (1.55)

The form of characteristic function implies that infinitely divisible distribu-

tions can be used to construct Lévy process. There are some research focusing

on pricing options under exponential Lévy process assumption. Barndorff [6]

proposes the Lévy model under normal inverse Gaussian process. Madan, Carr

and Chang [60] price European options under exponential variance gamma pro-

cess. In this paper, exponential Lévy process is constructed with generalized

hyperbolic distribution which has density function

fGH (x;λ, α, β, δ, µ) = a (λ, α, β, δ)
[

δ2 + (x− µ)2
]

(λ− 1
2)

2

×Kλ− 1

2

(

α

√

δ2 + (x− µ)2
)

exp [β (x− µ)] (1.56)

where

a (λ, α, β, δ) =
(α2 − β2)

λ
2

√
2παλ−

1

2 δλKλ

(

δ
√

α2 − β2
) (1.57)

19

and Kλ (·) is the modified Bessel function of the third kind

Kλ (z) =
1

2

∫ ∞

0

yλ−1 exp

[

−z
2

(

y +
1

y

)]

dy. (1.58)

The density function depends on five parameters: λ ∈ R characterizes certain

sub-classes of generalized hyperbolic distribution; α > 0 determines the shape;

0 ≤ |β| < α represents the skewness; δ > 0 is the scaling parameter; µ ∈ R

indicates the location. As illustrated in Fig. 1.2, the shape of probability

density function is quite flexible and can better describe the distribution of

market return. The corresponding Lévy measure ν (x) is

ν (x) =















eβx

|x|

(

∫∞
0

exp
(

−
√

2y+α2|x|
)

π2y[J2
λ(δ

√
2y)+Y 2

λ (δ
√
2y)]

dy + λe−α|x|
)

λ ≥ 0

eβx

|x|
∫∞
0

exp
(

−
√

2y+α2|x|
)

π2y[J2
−λ(δ

√
2y)+Y 2

−λ(δ
√
2y)]

dy λ < 0

, (1.59)

where Jλ (·) and Yλ (·) are the Bessel functions of the first and second kind

respectively.

Assume the price of a financial asset is the exponential of a Lévy process

St = S0e
rt+Xt (1.60)

where Xt is a Lévy process with Lévy triplet (σ, ν, γ) and interest rate r. Then,

the discounted price of underlying asset e−rtSt = S0e
Xt is a martingale if and

only if
∫

|y|>1

ν (dy) ey <∞, (1.61)

20

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

λ=2.0,α=4.0,β=−1.5,δ=0.1,µ=−1.0

λ=1.0,α=3.5,β=−1.0,δ=0.2,µ=−0.5

λ=0.0,α=3.0,β=0.0,δ=0.4,µ=0.0

λ=−1.0,α=2.5,β=1.0,δ=0.8,µ=0.5

λ=−2.0,α=2.0,β=1.5,δ=1.6,µ=1.0

Figure 1.2: Density function of generalized hyperbolic distribution with differ-

ent parameters. From left to right: (1) λ = 2.0, α = 4.0, β = −1.5, δ = 0.1,

µ = −1.0; (2) λ = 1.0, α = 4.0, β = −1.5, δ = 0.2, µ = −0.5; (3) λ = 0.0,

α = 3.0, β = 0.0, δ = 0.4, µ = 0.0; (4) λ = −1.0, α = 2.5, β = 1.0, δ = 0.8,

µ = 0.5; (5) λ = −2.0, α = 2.0, β = 1.5, δ = 1.6, µ = 1.0.

γ +
σ2

2
+

∫

(

ey − 1− y1|y|≤1

)

ν (dy) = 0. (1.62)

Based on the equivalent martingale measure transformation, the price of

the option can be represented as

Vt = E
[

e−r(T−t)H (ST) |Ft

]

(1.63)

where H (ST) is the payoff of the option at maturity. The Partial-Integro dif-

21

ferential equation (abbreviated PIDE) can be obtained directly from applying

the Ito’s formula

∂V

∂t
(t, S) + rS

∂V

∂S
(t, S) +

σ2S2

2

∂2V

∂S2
(t, S)− rV (t, S)

+

∫

ν (dy)

[

V (t, Sey)− V (t, S)− S (ey − 1)
∂V

∂S
(t, S)

]

= 0. (1.64)

Assume f (τ, x) = P (t, S) , τ = T − t and x = ln S
S0
, denote

Lf (τ, x) = fτ (τ, x)−
(

r − σ2

2

)

fx (τ, x)−
σ2

2
fxx (τ, x) + rf (τ, x)

−
∫

ν (dy) [f (τ, x+ y)− f (τ, x)− (ey − 1) fx (τ, x)] , (1.65)

where r is the risk-free rate, σ2 is the volatility of underlying asset, S0 is the

initial price of underlying asset and τ denotes time to maturity.

This PIDE is a linear and evolutionary equation which has both first-

order advection term and second order diffusion term. As a result, given the

initial condition, the solution will smooth over time. The integral term makes

this formula nonhomogeneous and can be regarded as an extra source term.

After coupling appropriate initial and boundary conditions, it can be applied

to price different types of options:

1. European put option:

Lf (τ, x) = 0, (1.66)

f (0, x) = max [K − S0e
x, 0] , (1.67)

22

f (τ, x) = max
[

Ke−rτ − S, 0
]

, x→ ∞, (1.68)

where K is the strike price of the option.

2. American put option:

Lf (τ, x) = 0, τ > 0, x > xf (τ) (1.69)

f (τ, x) = K − S0e
x, τ > 0, x ≤ xf (τ) (1.70)

f (τ, x) ≥ max [K − S0e
x, 0] , τ > 0 (1.71)

Lf (τ, x) ≥ 0, τ > 0 (1.72)

f (0, x) = max [K − S0e
x, 0] (1.73)

where

xf (τ) = inf {x ∈ R |f (τ, x) > max [K − S0e
x, 0]} (1.74)

is the transformed free boundary and K is strike price of the option.

23

Chapter 2

Numerical Scheme and Application

Implementation

With more advanced computational techniques, it is possible to derive

numerical results of PDEs which have no analytical solution or too compli-

cated to be solved analytically. In this chapter, general numerical schemes

for classic PDE forms are discussed, together with the treatment of different

boundary conditions. Then, three major applications and corresponding nu-

merical schemes are illustrated in detail. The first case is in the computational

fluid dynamics area. The numerical scheme for solving Euler equation and

Navier-Stokes equation are given, as well as the special treatment of bound-

ary condition to simulate porous boundary case. The second case is to solve

spring mass model numerically. Through appropriate coupling, they can be

used to simulate the interaction between fluid and interface which lead to a lot

of applications in different area, and in this particular case, we focus on the

simulation of parachute deployment process. The third application is to price

American option numerically which solves PIDE with an efficient algorithm.

24

2.1 General Numerical PDE Schemes

General finite difference schemes for different PDEs are discussed con-

cisely in this section, together with the treatment of different boundary condi-

tions [94]. This should be the foundation for solving more complicated PDEs

and PDE extended systems numerically.

2.1.1 Wave Equation

The simplest wave equation is the first order advection equation

ut + aux = 0 (2.1)

where a is the wave speed and x ∈ (−∞,∞). Assume R = a ∆t
∆x

, some typical

numerical schemes and corresponding accuracy and stability conditions are:

1. Upwind Scheme

un+1
j − unj
∆t

+ 1a>0 · a
unj − unj−1

∆x
+ 1a<0 ·

unj+1 − unj
∆x

= 0 (2.2)

this scheme is O (∆x,∆t); stability requires −1 ≤ R ≤ 0 for a < 0 and

0 ≤ R ≤ 1 for a > 0.

2. Central Explicit Scheme

un+1
j − unj
∆t

+ a
unj+1 − unj−1

2∆x
= 0 (2.3)

this scheme is O (∆x2,∆t) and unconditionally unstable.

25

3. Central Implicit Scheme

un+1
j − unj
∆t

+ a
un+1
j+1 − un+1

j−1

2∆x
= 0 (2.4)

this scheme is O (∆x2,∆t) and unconditionally stable.

4. Lax-Wendroff Scheme

un+1
j − unj
∆t

+ a
unj+1 − unj−1

2∆x
− 1

2
a2∆t

(

unj+1 − 2unj + unj−1

∆x2

)

= 0 (2.5)

this scheme is O (∆x2,∆t) and stability requires |R| ≤ 1.

2.1.2 Heat Equation

For parabolic diffusion equation

ut = buxx (2.6)

where b > 0 and assume r = b ∆t
∆x2

. Some typical numerical schemes and

corresponding accuracy and stability conditions are:

1. Central Explicit Scheme

un+1
j − unj
∆t

= b
unj+1 − 2unj + unj−1

∆x2
(2.7)

this scheme is O (∆x2,∆t) and stability requires r < 1
2
.

26

2. Central Implicit Scheme

un+1
j − unj
∆t

= b
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
(2.8)

this scheme is O (∆x2,∆t) and uncondionally stability.

3. Crank-Nicolson Scheme

un+1
j − unj
∆t

=
b

2

(

unj+1 − 2unj + unj−1

∆x2
+
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2

)

(2.9)

this scheme is O (∆x2,∆t2) and uncondionally stability.

For implicit and Crank-Nicolson scheme, a tridiagonal system of equations

should be solved

Ax = d (2.10)

where coefficient matrix A is a tridiagonal matrix and d is a vector

A =



























b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0
. . .

. . .
. . . 0

...
. . . an−1 bn−1 cn−1

0 · · · 0 an bn



























, d =



























d1

d2
...

dn−1

dn



























. (2.11)

Thomas or double-sweep algorithm can be used to solve the equation in O(8n)

operations.

27

2.1.3 Poisson Equation

Consider two dimensional Poisson’s equation, assume u (x, t) is the exact

solution

△u = uxx + uyy = f (x, y) (2.12)

on a domain of unit square and ui,j is the numerical solution on a rectangle

mesh with size ∆x = ∆y = h in both x and y directions, the finite difference

equation can be written as

∆hui,j =
ui−1,j + ui,j−1 + ui+1,j + ui,j+1 − 4ui,j

h2
= fi,j . (2.13)

Eq. (2.13) can be expressed in the matrix form Au = d, where A = {aij}

with ai−1,j = ai,j−1 = ai+1,j = ai,j+1 = −1
4
and ai,j = 1. The right hand side

is −1
4
h2fi,j . A general iteration algorithm is to split the matrix A into two

matrices, that is let A = B − C, then the equation becomes Bu = Cu + d.

The iteration takes the form

Buk+1 = Cuk + d, (2.14)

or equivalently

uk+1 = B−1Cuk +B−1d. (2.15)

Define ek = uk+1 − uk, then

ek = B−1Cuk −B−1Cuk−1 = B−1Cek−1 =
(

B−1C
)k
e0 (2.16)

28

For the iteration algorithm to converge, it requires the spectral radius of B−1C

to be smaller than 1, that is

ρ
(

B−1C
)

< 1

which requires the magnitude of eigenvalue of B−1C. be smaller than 1.

There are several iteration methods:

1. Jacobi iteration

uk+1
i,j =

1

4

(

uki−1,j + uki,j−1 + uki+1,j + uki,j+1

)

− 1

4
h2fi,j (2.17)

The equivalent matrix form is Au = b and A = B − C, B = I, C =

− (L+ U).

2. Gauss-Seidel iteration

uk+1
i,j =

1

4

(

uk+1
i−1,j + uk+1

i,j−1 + uki+1,j + uki,j+1

)

− 1

4
h2fi,j (2.18)

The equivalent matrix form is Au = b and A = B − C, B = I + L,

C = −U .

3. SOR iteration

uk+1
i,j = ωuki,j+

1

4
(1− ω)

(

uk+1
i−1,j + uk+1

i,j−1 + uki+1,j + uki,j+1

)

−1

4
(1− ω)h2fi,j

(2.19)

The equivalent matrix form is (1− ω)Au = (1− ω) b, which implies

29

(1− ω)A = B − C

B = I + (1− ω)L, C = ωI − (1− ω)U. (2.20)

2.1.4 Conservation Law

Consider conservation law

ut + f (u)x = 0

several classical numerical schemes are:

1. Lax-Friedrich Scheme

un+1
j =

1

2

(

unj−1 + unj+1

)

− ∆t

2∆x

(

f
(

unj+1

)

− f
(

unj−1

))

(2.21)

2. Lax-Wendroff Scheme

u
n+ 1

2

j+ 1

2

=
1

2

(

unj−1 + unj+1

)

− ∆t

2∆x

(

f
(

unj+1

)

− f
(

unj
))

(2.22)

un+1
j = unj −

∆t

∆x

(

f
(

u
n+ 1

2

j+ 1

2

)

− f
(

u
n+ 1

2

j− 1

2

))

(2.23)

3. Godunov Scheme

un+1
j = unj −

∆t

∆x

(

f
(

uR
j+ 1

2

)

− f
(

uR
j− 1

2

))

(2.24)

30

where uR
j+ 1

2

is the Riemann solution at xj+ 1

2

uR
j+ 1

2

= V
(

unj , u
n
j+1, 0

)

, uR
j− 1

2

= V
(

unj−1, u
n
j , 0
)

(2.25)

and V (l, r, 0) is the Riemann solution obtained by using l as the left

initial state and r as the right initial state.

4. WENO Scheme

ut|x=xj =
1

∆x

(

fj+ 1

2

− fj− 1

2

)

(2.26)

where
{

fj+ 1

2

}

are reconstructed value of f (u) at uj+ 1

2

with WENO

scheme [45]. Discretize the space into uniform intervals of size ∆x and

denote xj = j△x, uj = u (xj) and fj = f (uj). For a general flux f (u),

it can be splitted into two parts

f (u) = f+ (u) + f− (u) (2.27)

where df+(u)
du

≥ 0 and df−(u)
du

≤ 0 are monotone functions. This can be

realized by the formula

f± (u) =
1

2
(f (u)± αu) (2.28)

where α = max
∣

∣f
′
(u)
∣

∣ and the maximum is taken over the whole rele-

vant range of u. The reconstruction for f+ (u) uses a biased stencil with

one more point to the left and that for f− (u) uses a biased stencil with

one more point to the right to obey correct upwinding. Let f̂+
j+ 1

2

and

31

f̂−
j+ 1

2

be the numerical fluxes obtained from the positive and negative

parts respectively, then

f̂j+ 1

2

= f̂+
j+ 1

2

+ f̂−
j+ 1

2

. (2.29)

Consider the rth-order approximate of f+
j+ 1

2

at r candidate stencils de-

noted by Sk, k = 0, · · · , r − 1

Sk = (xj+k−r+1, · · · , xj+k) , (2.30)

then the rth-order approximation is

qrk (fj+k−r+1, · · · , fj+k) =
j+k
∑

l=j+k−r+1

ark,lfl (2.31)

where
{

ark,l
}

are constant coefficients. When r = 3, it gives

q30 = 1
3
fj−2 − 7

6
fj−1 +

11
6
fj

q31 = −1
6
fj−2 +

5
6
fj−1 +

1
3
fj .

q32 = 1
3
fj−2 +

5
6
fj−1 − 1

6
fj

(2.32)

WENO reconstructed the value of function f+ (u) at uj+ 1

2

uses all the

r candidate stencils, which all together contain (2r − 1) grid values of f

to give a (2r − 1)th-order approximation

f̂+
j+ 1

2

= q2r−1
r−1 (fj−r+1, · · · , fj+r−1) (2.33)

32

and it can also be represented as the combination of r polynomials

f̂+
j+ 1

2

=

r−1
∑

k=0

ωkq
r
k (fj+k−r+1, · · · , fj+k) . (2.34)

Through simple algebra, coefficients {Cr
k} can be derived from

q2r−1
r−1 (fj−r+1, · · · , fj+r−1) =

r−1
∑

k=0

Cr
kq
r
k (fj+k−r+1, · · · , fj+k) (2.35)

and
∑r−1

k=0C
r
k = 1. When r = 3, this gives

C3
0 =

1

10
, C3

1 =
6

10
, C3

2 =
3

10
. (2.36)

The choice of weight {ωk} based on {Cr
k} and follows a convex combina-

tion

ωk ≥ 0,
r−1
∑

k=0

ωk = 1 (2.37)

for stability and consistency. The weight ωk for stencil Sk is defined by

ωk =
αk

α0 + · · ·+ αr−1
(2.38)

where

αk =
Cr
k

(ǫ+ ISk)
2 (2.39)

ǫ > 0 is a small value and usually set as 10−6, {ISk} are the smooth

33

indicators of the stencil Sk which has the interpolation polynomial qk (x)

ISk =

r−1
∑

l=1

∫ x
j+1

2

x
j− 1

2

h2l−1
(

q
(l)
k

)2

dx (2.40)

where q
(l)
k is the lth-derivative of qk (x) and Eq. (2.40) is the sum of the

L2 norms of all the derivatives of the interpolation polynomial qk (x)

over the interval
(

xj− 1

2

, xj+ 1

2

)

. When r = 3, the corresponding smooth

indicators are

IS0 =
13
12
(fj−2 − 2fj−1 + fj)

2 + 1
4
(fj−2 − 4fj−1 + 3fj)

2

IS1 =
13
12
(fj−1 − 2fj + fj+1)

2 + 1
4
(fj−1 − fj+1)

2

IS2 =
13
12
(fj − 2fj+1 + fj+2)

2 + 1
4
(3fj − 4fj+1 + 3fj+2)

2

(2.41)

which gives fifth-order accurate WENO scheme. After the reconstruction

process, the problem is simplified as an ODE

du

dt
= L (u) . (2.42)

2.1.5 Boundary Condition

For Dirichlet boundary condition u (x, t) = h (x, t) , x ∈ ∂Ω, it can be

numerically represented as

unk = h (xk, tn) . (2.43)

For Neumann boundary condition ux (x, t) = h (x, t) , x ∈ ∂Ω, the first

34

order approximation is

unk = unk+1 −∆xh (xk, t
n) (2.44)

and the second order approximation is

unk−1 = unk+1 − 2∆xh (xk, t
n) (2.45)

where xk ∈ ∂Ω, xk+1 ∈ Ω and xk−1 is a ghost point.

2.1.6 Numerical ODE Scheme

ODE has wide applications and usually couples with PDE in simulations.

A simple example is Newton’s second law of motion which describes the rela-

tionship between displacement x and time t of the object. The order of ODE

is determined by highest-order derivative. However, ODE with higher-order

can be transformed into equivalent first-order system. So we only look into

numerical methods for first-order ODEs

~yt = f(t, ~y), (2.46)

for simplicity, we consider only single scalar ODE. There are several typical

methods:

1. Taylor Series Methods

35

(a) Forward Euler scheme

yk+1 = yk + hf (tk, yk) (2.47)

first order accuracy and stability requires |1 + hλ| < 1.

(b) Backward Euler scheme

yk+1 = yk + hf (tk+1, yk+1) (2.48)

implicit first order accuracy scheme and unconditionally stable.

(c) Second-order scheme

yk+1 = yk+hf (tk, yk)+
h2

2
[ft (tk, yk) + fy (tk, yk) f (tk, yk)] (2.49)

2. Runge-Kutta methods: single-step methods with similar motivation with

Taylor series methods, but avoid calculating higher derivatives by eval-

uating f several times between tk and tk+1

(a) Second-order Heun’s method

yk+1 = yk +
h

2
(k1 + k2) (2.50)

where

k1 = f (tk, yk)

k2 = f (tk + h, yk + hk1)
(2.51)

36

(b) Fourth-order Runge-Kutta method

yk+1 = yk +
h

6
(k1 + 2k2 + 2k3 + k4) (2.52)

where

k1 = f (tk, yk)

k2 = f
(

tk +
h
2
, yk +

h
2
k1
)

k3 = f
(

tk +
h
2
, yk +

h
2
k2
)

k4 = f (tk + h, yk + hk3)

(2.53)

3. Multistep methods

yk+1 =

m
∑

i=1

αiyk+1−i + h

m
∑

i=0

βif (tk+1−i, yk+1−i) (2.54)

where {αi} and {βi} are determined by polynomial interpolation.

2.2 Numerical Methods for PDE extended Systems

2.2.1 Numerical Solver for Advection Term

Advection Solver

A lot of complicated PDE systems involve advection term Eq. (2.55)

ut + af(u)x = 0. (2.55)

37

A usual numerical method is to reconstruct the second term and transform it

into an ODE

ut = L (u) . (2.56)

Eq. (2.56) can be derived from reconstructed based on PDE (ex: Euler equa-

tion) or directly from ODE (ex: spring model case). Then a 4th-order Runge-

Kutta method can be used to solve the equation numerically

u(1) = un + 1
2
∆tL (un)

u(2) = un + 1
2
∆tL

(

u(1)
)

u(3) = un +∆tL
(

u(2)
)

un+1 = 1
3

(

−un + u(1) + 2u(2) + u(3)
)

+ 1
6
∆tL

(

u(3)
)

. (2.57)

Solve Euler Equation based on WENO

WENO scheme is used to reconstruct the derivative term and Euler equa-

tion is solved to demonstrate the process of advection solver. High-order nu-

merical methods have been widely used to effectively resolve complex flow

features such as turbulent or vertical flows [31]. High-order shock-capturing

schemes such as the Essentially Non-Oscillatory (ENO) and Weighted ENO

(WENO) [59, 46] schemes not only make the computational fluid dynamics

(CFD) solvers get rid of extremely fine mesh for complex flows, but also per-

fectly eliminate the oscillations near discontinuities.

To numerically solve one-dimensional Euler equation

Ut + F (U)x = 0 (2.58)

38

where

U =













ρ

ρu

E













, F (U) =













ρu

ρu2 + p

(E + p)u













(2.59)

E = ρ

(

e+
u2

2

)

, p = ρe (γ − 1) , γ = 1.4 (2.60)

ρ, u, P , e and γ denote the density, velocity, pressure, internal energy per

unit mass and ratio of specific heats, respectively. The Jacobian matrix of the

Euler equations is defined as

A =
∂F (U)

∂U
(2.61)

The eigenvalues of the Jacobian matrix A are

λ1 = u− c, λ2 = u, λ3 = u+ c (2.62)

where c =
√

γp
ρ

is the sound speed, and the corresponding right eigenvectors

are

r1 =













1

u− a

H − ua













, r2 =













1

u

u2

2













, r3 =













1

u+ a

H + ua













(2.63)

where H is the total specific enthalpy, which is related to the specific enthalpy

h and other variables, namely

H = (E+p)
ρ

= 1
2
u2 + h, h = e+ P

ρ
(2.64)

39

We denote the matrix whose columns are eigenvectors in Eq. (2.63) by

R = (r1, r2, r3) (2.65)

and denote L = R−1. The eigenvalue decomposition of A is

A = L−1ΛL (2.66)

where Λ = diag (u− c, u, u+ c). Then, Eq. (2.58) can be transformed as

(LU)t + Λ (LU)x = 0 (2.67)

which consists of three independent one-dimensional hyperbolic equations.

Each equation can be transformed using WENO scheme then solved by ad-

vection solver.

2.2.2 Projection Method for Navier-Stokes equation

Projection method is an effective method to numerically solve time-dependent

incompressible fluid flow problems. The method is pioneered by Chorin [19, 20]

based on the observation that the left-hand side of the momentum equation

ρ0

[

∂~u

∂t
+ (~u · ∇) ~u

]

= −∇p+ ν∇2~u (2.68)

is a Hodge decomposition. Thus, there exists a project operator P which

projects a vector field onto the space of divergence-free vector fields with ap-

40

propriate boundary condition. The advantage of the projection method is

that the computation of velocity and the pressure fields are decoupled. Some

approximation to the momentum equation Eq. (2.68) is used to determine

an intermediate velocity ~u∗, then an elliptic equation is solved to enforce the

divergence constraint required by incompressible property

∇ · ~u = 0. (2.69)

In some variations, the advection term and viscous term are calculated sepa-

rately in Eq. (2.68). The original projection method is that the velocity field

is forced to satisfy a discrete divergence constraint at the end of each time

step. Projection methods which enforce a discrete divergence constraint, or

exact projection methods, have often been replaced with approximate pro-

jection methods because of observed weak instabilities and the desire to use

more complicated or adaptive finite difference meshes. Additionally, as with

all fractional step methods, a crucial issue is how boundary conditions are

determined for some or all of the intermediate variables.

In the 1980s, several second-order accurate projection methods were pro-

posed, including Goda [38], Bell [7], Kim and Moin [48] and Van Kan [98].

These methods are mostly based on the second-order, time-discrete semi-

implicit forms of Eq. (2.68) and Eq. (2.69)

un+1 − un

∆t
+

1

ρ
∇pn+ 1

2 = − [(u · ∇) u]n+
1

2 +
ν

2ρ
∇2
(

un+1 + un
)

(2.70)

∇ · un+1 = 0 (2.71)

41

where [(u · ∇)u]n+1/2 represents a second-order approximation to the advec-

tive derivative term at time level tn+1/2 which is usually computed explicitly.

Spatially discretized versions of the coupled Eq. (2.70) and Eq. (2.71) are cum-

bersome to solve directly. Therefore, a fractional step procedure can be used

to approximate the solution of the coupled system by first solving an analog to

Eq. (2.70) for an intermediate quantity u∗, and then projecting this quantity

onto the space of divergence-free fields to yield un+1. In general this procedure

can be summarized as [16]:

Step 1: Solve for the intermediate field u∗

u∗ − un

∆t
+

1

ρ
∇q = − [(u · ∇)u] n+1/2 +

ν

2ρ
∇2 (u∗ + un) (2.72)

B (u∗) = 0 (2.73)

where q represents an approximation to pressure pn+1/2 and B (u∗) is the

corresponding boundary condition for u∗ which must be specified as part

of the method.

Step 2: Perform the projection step

u∗ = un+1 +
∆t

ρ
∇φn+1 (2.74)

∇ · un+1 = 0 (2.75)

using boundary conditions consistent with B (u∗) = 0 and un+1|∂Ω =

un+1
b .

42

Step 3: Update the pressure

pn+1/2 = q + L
(

φn+1
)

(2.76)

where the function L represents the dependence of pn+1/2 on φn+1. Once

the time step is completed, the predicted velocity u∗ is discarded which

will not be used again at that or later time steps.

There are three choices that need to be made in the design of such a method:

1. pressure approximation q in Eq. (2.72)

2. boundary condition B (u∗) = 0 in Eq. (2.73)

3. pressure-update equation L (φn+1) in Eq. (2.76)

An important issue is that given the boundary condition B (u∗) = 0 for u∗

and boundary condition un+1|∂Ω = un+1
b for un+1

b , the boundary condition for

φ can be derived through Eq. (2.74).

In the first step of the method, if q is a good approximation to pn+1/2, the

field u∗ may not differ significantly from the fluid velocity and thus a reasonable

choice for the boundary condition B (u∗) = 0 may be (u∗ − ub) |∂Ω = 0. On the

other hand, one may not be interested in computing the pressure at every time

step and would like to choose q = 0 and obviate the third step in the method.

In this case u∗ may differ significantly from the fluid velocity, requiring the

boundary condition B (u∗) = 0 to include a nontrivial approximation of ∇φn+1

in Eq. (2.74). Regarding the third step of the method, substituting Eq. (2.76)

43

into Eq. (2.72), eliminating u∗, and comparing with Eq. (2.70) yield a formula

for the pressure-update in second-order accuracy

pn+1/2 = q + φn+1 − ν∆t

2
∇2φn+1. (2.77)

The last term of Eq. (2.77) plays an important role in computing the correct

pressure gradient and allows the pressure to retain second-order accuracy up to

the boundary. Without this term, the pressure gradient may have zeroth-order

accuracy at the boundary even if the pressure itself is high-order accurate.

The implementation of the numerical solver for the Navier-Stokes equa-

tion can be summarized as following:

1. Solve advection term: uses advection solver introduced in Sec. 2.2.1

2. Solve diffusion term: uses Crank-Nicolson scheme Eq. (2.9)

3. Perform projection: solve Poisson equation to obtain φ

4. Update new velocity and pressure

2.2.3 Numerical Solver for Spring Model

Eq. (1.51) implies that the spring model can be represented as a first-

order system of equations

d

dt







x

u






=







u

F

m






(2.78)

44

where x is the location of the mass point, u is the velocity of mass point and

F is the force on the mass point which come from the spring system and is

calculated from the information of neighbor mass points via Eq. (1.48). This

is an ODE system and can naturally be solved using the numerical solver

introduced in Sec. 2.2.1.

To simulate the motion fabric, this equation is calculated for each mass

point in the spring system. The most time consuming part is the calculation of

force Fi on mass point i for all mass points. However, since the force on each

mass point can be calculated independently through spring elongation and

angular deformation, they can be computed simultaneously to accelerate the

program. This drives us to use heterogeneous computing technique and offload

parallelable part to GPU. A detailed algorithm will be given in Sec. 3.3.2.

2.2.4 Numerical Solver for PIDE

The numerical scheme of PIDE is explored in the domain [0, T]× [−A,A].

The discrete grid on the domain is:

τn = n△t, n = 0, · · · ,M, △t = T

M
; (2.79)

xk = −A + k△x, k = 0, · · · , N, △x =
2A

N
. (2.80)

And the initial condition can be transformed as

f (τ0, xk) =















K − S0e
xk , xk < log K

S0

0, xk ≥ log K
S0

, k = 0, · · · , N. (2.81)

45

Choose A such that −A < log K
S0
< A, then the boundary condition for

European option is

f (τ, x) =















Ke−rτ − S0e
x, (τ, x) ∈ [0, T]× (−∞,−A]

0, (τ, x) ∈ [0, T]× [A,∞)

, (2.82)

and for American option is

f (τ, x) =















K − S0e
x, (τ, x) ∈ [0, T]× (−∞,−A]

0, (τ, x) ∈ [0, T]× [A,∞)

. (2.83)

Due to the constant coefficient, the advection term can be computed with

central implicit scheme using Eq. (2.4) and the diffusion term can be computed

with central implicit scheme Eq. (2.8). This gives

fn+1
k − fnk

△t =

(

r − σ2

2
−
∫

R

g (y) (ey − 1) dy

)

fn+1
k+1 − fn+1

k−1

2△x +

σ2

2

fn+1
k+1 − 2fn+1

k + fn+1
k−1

(△x)2
−rfnk +

∫

R

g (y) [f (τn, xk + y)− f (τn, xk)] dy, (2.84)

assume

I1 =

∫

R

g (y) (ey − 1) dy (2.85)

In,k2 =

∫

R

g (y) [f (τn, xk + y)− f (τn, xk)] dy (2.86)

which should be computed using efficient numerical method.

The Lévy measure of generalized hyperbolic distribution is g (y) which is

46

singular at 0 and g (y) e−βy is even function. Then the calculation of I1 can be

simplified as

I1 =

∫ ∞

−∞
g (y) (ey − 1) dy

=

∫ 0

−∞
g (y) (ey − 1) dy +

∫ ∞

0

g (y) (ey − 1) dy

=

∫ ∞

0

g (−y)
(

e−y − 1
)

dy +

∫ ∞

0

g (y) (ey − 1) dy

=

∫ ∞

0

g (y)
[

e−2βy
(

e−y − 1
)

+ ey − 1
]

dy. (2.87)

In,k2 is the integration term which causes the major difference from tradi-

tional Black-Scholes equation. The formula of In,k2 is

In,k2 =

∫ ∞

−∞
[f (τn, xk + y)− f (τn, xk)] g (y) dy (2.88)

which contains numerical results {fnk } and should be updated explicitly in

each time step. Divide the original integration domain into five sub-intervals,

then calculate each part with appropriate methods.

∫ ∞

−∞
[f (τn, xk + y)− f (τn, xk)] g (y)dy

=

∫ x0−xk

−∞
[f (τn, xk + y)− fnk] g (y) dy

+

∫ −△x

x0−xk
[f (τn, xk + y)− fnk] g (y) dy

+

∫ △x

−△x
[f (τn, xk + y)− f (τn, xk)] g (y) dy

47

+

∫ xN−xk

△x
[f (τn, xk + y)− fnk] g (y) dy

+

∫ ∞

xN−xk
[f (τn, xk + y)− fnk] g (y) dy. (2.89)

The integration in the center sub interval [−△x,△x] is

∫ △x

−△x
[f (τn, xk + y)− f (τn, xk)] g (y)dy

=

∫ △x

−△x

[

f (τn, xk) + yfx (τn, xk) +O
(

y2
)

− f (τn, xk)
]

g (y)dy

≈
∫ △x

−△x
fx (τn, xk) yg (y) dy ≈ fnk+1 − fnk−1

2△x

∫ △x

−△x
yg (y) dy, (2.90)

where
∫ △x
−△x yg (y) dy can be calculated as

∫ △x
0

y
(

1− e−2βy
)

g (y) dy.

The integration on the right sub-interval [△x, xN − xk] can be estimated

with composite trapezoid method. Trapezoid method is chosen because the

numerical value of {fnk } are known at grid point {k△x}.

∫ xN−xk

△x
[f (τn, xk + y)− fnk] g (y) dy

=

N−k−1
∑

i=1

∫ (i+1)△x

i△x
[f (τn, xk + y)− fnk] g (y) dy

≈
N−k−1
∑

i=1

(

fnk+i − fnk
)

g (i△x) +
(

fnk+i+1 − fnk
)

g ((i+ 1)△x)
2

△x

=

[

fnk+1 − fnk
2

g (△x) +
N−k−1
∑

i=2

(

fnk+i − fnk
)

g (i△x)

48

+
fnN − fnk

2
g ((N − k)△x)

]

∆x (2.91)

The left sub-interval [x0 − xk,−△x] can be estimated with similar method

∫ −△x

x0−xk
[f (τn, xk + y)− f (τn, xk)] g (y) dy

=

∫ xk−x0

△x
[f (τn, xk − y)− fnk] e

−2βyg (y)dy

=
k−1
∑

i=1

∫ (i+1)△x

i△x
[f (τn, xk − y)− f (τn, xk)] e

−2βyg (y)dy

≈
k−1
∑

i=1

(

fnk−i − fnk
)

e−2βi△xg (i△x) +
(

fnk−i−1 − fnk
)

e−2βi△xg ((i+ 1)△x)
2

△x

=

[

fnk−1 − fnk
2

e−2β△xg (△x) +
k−1
∑

i=2

(

fnk+i − fnk
)

e−2βi△xg (i△x)

+
fn0 − fnk

2
e−2βk△xg ((N − k)△x)

]

∆x. (2.92)

When y ∈ [xN − xk,∞), xk+y ≥ xN , then f (τn, xk + y) = 0 which gives

simple numerical estimation

∫ ∞

xN−xk
[f (τn, xk + y)− f (τn, xk)] g (y) dy

= −fnk
∫ ∞

xN−xk
g (y) dy. (2.93)

When y ∈ (−∞, x0 − xk], xk + y ≤ x0 = −A, then f (τn, xk + y) =

Ke−rτn −S0e
xk+y for European option; f (τn, xk + y) = K−S0e

xk+y for Amer-

ican option. The integration in the left to infinity sub-interval can be estimated

49

as
∫ x0−xk

−∞
[f (τn, xk + y)− f (τn, xk)] g (y)dy

=

∫ x0−xk

−∞

[

K − S0e
xk+y − fnk

]

g (y) dy

=

∫ ∞

xk−x0

[

K − S0e
xk−y − fnk

]

e−2βyg (y)dy

= (K − fnk)

∫ ∞

xk−x0
e−2βyg (y) dy − S0e

xk

∫ ∞

xk−x0
e−(2β+1)yg (y) dy. (2.94)

To calculate In,k2 , we need {fnk }, {g (k△x)},
∫ △x
−△x yg (y) dy,

∫∞
k△x g (y) dy,

∫∞
k△x e

−2βyg (y) dy and
∫∞
k△x e

−(2β+1)yg (y) dy, where k = 1, · · · , N − 1. Since

the Lévy measure g (y) in this case has quite complicate form as stated in

Eq. (1.59) which is an integration and should be estimated numerically. To

accelerate the algorithm, the calculation of g (y) is limited in the positive half

axis. Due to the independence of integration for each grid point, they can be

computed simultaneously using heterogeneous algorithm to further accelerate

as illustrated in Sec. 3.3.3.

2.3 Application Implementation

In this section, we focus on the parachute simulation based on front track-

ing method which involves fluid-structure interaction, canopy porosity simu-

lation, clustered parachutes and collision handling. Another important topic

is American option pricing based on exponential Lévy process built on gener-

alized hyperbolic distribution.

50

2.3.1 Front Tracking based on FronTier

Initializing physical problem

Parallel interface communication

Parallel subdomain communication

Construct computational grid

Construct gridline-interface crossing

Normal propagation of interface

Tangential propagation of interface

Parallel interface communication

Check cross and untangle interface

Redistribution of interface

Parallel interface communication

Construct computational grid

Terminate run

Continue for next step?

Output time step data

Parallel subdomain communication

Sweep close-to-interface grid points

Vectorized sweep of interior solver

Construct gridline-interface crossing

Initialization

Interface propagation

Interpolant construction

Finite difference update

No

Yes

Figure 2.1: The flow chart of FronTier library.

51

We run fluid-structure interacted simulation on the FronTier library

which sets foundation on front tracking method. Fig. 2.1 shows the major

steps of the front tracking process. There are two tasks to be accomplished at

each time step: first, dynamically evolve the front which describe the motion

of the interface; then, calculate the numerical solutions in smooth regions sur-

rounded by the fronts. More details about the FronTier library can be found

in [9, 10].

One of the best features of FronTier library is the delicate handling of

interface geometry which enables reliable fluid-structure interaction simula-

tion. A hyper-surface is treated as a topologically linked set of marker points.

The library contains data structure and functionalities to optimize and resolve

the hyper-surface mesh with topological consistency. The library has been

used for the simulations of fluid interface instabilities [29, 28, 36, 35], diesel

jet droplet formation [11], and plasma pellet injection process [75, 76]. In

these problems, the hyper-surface is used to model the interior discontinuities

of materials and such manifold surface may undergo complicated changes in

geometry and topology.

The simulation of parachute involves quite unique interface handling. The

parachute canopy, made up of fabric, is not a separable interface and requires

considering of porosity. Fabric surface cannot bifurcate which calls for special

collision handling, especially for the case of parachute clusters simulation.

52

2.3.2 Parachute Simulation

Researchers have studied parachute with different methods including em-

pirical analysis [68], semi-numerical simulation [69] and through experiments

[70, 69]. There are many attempts to simulate parachute via computational

method. Stein and Benney used finite element method to simulate fluid and

structure dynamics [84, 83, 81, 85, 82]. Tezduyar [92, 91, 90, 89, 93] had

successfully addressed the computational challenges in handling the geometric

complexities and the contact between parachutes in a cluster by applying the

Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) method. Us-

ing the immersed boundary method to study the semi-opened parachute in

both two and three dimensions, Kim and Peskin [49, 50], performed simula-

tions at small Reynold number (about 300) case. Yu and Min [101] studied the

transient aerodynamic characteristics of the parachute opening process. Kara-

giozis used the large-eddy simulation to study parachute in Mach 2 supersonic

flow [47]. Purvis [71, 72] used springs to represent the structures of forebody,

suspension lines, canopy, etc. In these papers, the authors used cylindrical

coordinate with the center line as the axis. An algorithm called PURL to

couple the structure dynamics (PRESTO) and fluid mechanics (CURL) was

developed by Strickland [87]. In this algorithm mass is added to each structure

node based on the diagonally added mass matrix and a pseudo is computed

from the fluid code which is the sum of the actual pressure and the pressure

associated with the diagonally added mass. Tutt and Taylor [96, 95] used an

Eulerian-Lagrangian penalty coupling algorithm and multi-material ALE ca-

pabilities with LS-DYNA to replicate the inflation of small round canopies in

53

a water tunnel.

While solving incompressible Navier-Stokes equation, boundary condi-

tion plays an important role in simulating fluid structure interaction. For the

parachute simulation, the boundary condition consists of two parts, the ex-

ternal boundary and two interior sides of the canopy surface. Three different

external boundary conditions are implemented. The periodic boundary re-

quires no special treatment. The Dirichlet boundary is usually preset on the

upwind side while the flow-through boundary is on the downwind side. The

only approximation is to assume the downwind side of flow-through boundary

is a constant extrapolation. This is required for the parabolic equation.

The interaction between fluid and the canopy is the most crucial part of

the algorithm for the parachute simulation. The system described by Eq. (1.51)

conserves the total energy. However in dynamic simulation of the fabric sur-

face, the total energy may increase and the system can be excited due to

stretching and compression by external forces. Therefore adding a damping

force will help to stabilize the system. When there is an external velocity field

ve, we define the external impulse as Iei = mvei , where vei is the external driv-

ing velocity at point xi. At any given time, the spring system can be solved

and the internal impulse Isi can be derived. Since the spring force is a function

of the relative position of the point mass with respect to its neighbors, we can

use the superposition principle and add to the total impulse

Ii = Iei + Isi . (2.95)

54

Physically, the canopy experiences three forces, the gravitational force

due to the weight of the fabric, the lift force due to the pressure difference

between the two sides of the canopy, and the internal force, which in our model

is the spring restoring force and the friction force (to prevent the spring system

becoming over-excited). The gravitational force of the payload is propagated

through the spring system from the string chord to the boundary of the canopy,

and then spread to each mass point of the canopy through the elastic sides

of simplices. Although the interaction between the fluid and canopy has the

participation of both the external and the internal forces, for each mass point

in the spring system, we can still divide the impulse into three components,

the gravitational impulse, the fluid impulse due the pressure difference between

the two sides of the canopy, and the internal impulse due to its neighboring

mass points in the spring system, that is

Ici = Icgi + Icpi + Icsi. (2.96)

Our current model has not considered the fluid interaction between the mass

point of the string chord and the payload. Therefore for these mass points,

the impulse is

Isi = Isgi + Issi. (2.97)

The external impulse due to gravity and pressure is time integrated for each

mass point, that is

Igi =

∫ t

0

mgdt (2.98)

55

for both canopy and string chord mass points and

Ipi =

∫ t

0

σ
(

p− − p+
)

ndt (2.99)

for canopy points only, where p− and p+ are the pressure on lower and upper

sides of the canopy, σ is the mass density of canopy per unit area, and n is

the unit normal vector pointing from lower to upper side of the canopy. The

internal impulse for both canopy and string chord mass points are solved by

the damping spring system. The impulse due to payload force is propagated

through the string chords to the edge points of the canopy surface.

The interaction between the canopy and fluid is through the normal ve-

locity component of each mass point on the canopy. At every time step, the

fluid exerts an impulse to the mass points, but this part of the impulse is bal-

anced by the gravitational impulse and the restoring force of the spring. The

normal component of the superposition of the three forces feeds back to the

fluid in the following step. The result is that the momentum exchange between

the canopy and the fluid is equal in magnitude and opposite in directions, a

requirement by Newton’s third law.

To prevent the spring system getting into over-excited state, we add a

damping force to the system. Therefore, the complete system of equations is

the following














d
dt
xi = ui

d
dt
ui =

1
m
(Fi + f ei)− κvsi

(2.100)

where Fi is the internal force from spring system, f ei is the external force, κ

56

is the damping coefficient and vsi is the velocity component due to the spring

impulse vsi =
I
s
i

m
.

To simulate the reaction of the canopy, the increment of the impulse at

each point on the canopy can be calculated by Peskin’s delta function method

f (x, t) =

∫

F (s, t) δ (x−X (s, t)) ds (2.101)

where F is the superposition of three forces from the spring system

F (xi, i) =
d

dt
(Ig + Ip + Is) . (2.102)

2.3.3 Canopy Porosity Simulation

The porosity of parachute canopy greatly affects parachute performance.

There are two forms of parachute porosity: for canopy manufactured from

solid fabric, the porosity (sometimes referred as fabric permeability) is defined

as the airflow through canopy cloth in ft3/ft2/min (cubic feet per minute per

square feet) at 1
2
inch water pressure; for slotted canopies which has geometric

openings, porosity is defined in percent as the ratio of all open areas to the

total canopy area. Most personnel parachutes and main descent parachute for

air vehicles use materials with porosity from 80 to 150 ft3/ft2/min. Gliding

parachutes use almost imporous materials from 0 to 5 ft3/ft2/min. Slotted

parachutes use geometric porosity in 10% to 35% range [54].

Porosity influences parachute drag, stability and opening forces. Higher

porosity decreases opening forces and oscillation, but reduces drag forces at the

57

same time which is usually not desirable. As a result, parachute canopy poros-

ity is an important factor to consider for both parachute design and parachute

simulation. Different types of parachutes have different design characteristics

requirements [41, 54, 77].

Given the significance of porosity, there are several attempts to simulate

porous canopy parachute motion. Kim and Peskin [51] use immersed boundary

method to simulate parachute motion and derive the relative velocity between

fluid and canopy interface using Darcy’s Law. Tutt [97] simulate parachute

performance under LS-DYNA and use Ergun equation to describes the mag-

nitude of porous flow. Wang, Aquelet, Tutt, Do, Chen and Souli [99] simulate

the interaction between the fluid and porous medium by a Euler-Lagrange

coupling under LS-DYNA framework.

A cloth porosity of 27.4 ft3/ft2/min at 1
2
inch water pressure is equivalent

to 1% geometric porosity [54]. This enables comparison between different

parachutes and uniform simulations among parachutes which have different

porosity types.

We introduce the concept of penetration ratio γ, which is a dimensionless

coefficient 0 ≤ γ ≤ 1. When γ = 0, it means no penetration will happen

and the fluid on two sides of boundary has no connection; when γ = 1, it

means the interface does not exist; when 0 < γ < 1, part of the fluid can

penetrate the canopy and canopy interface is a porous medium. The fluid field

is described by Navier-Stokes equation and solved by projection method [16].

Coupling penetration ratio into projection method transforms fluid through

porous medium simulation into boundary condition treatment.

58

Advection Term

The advection term solver in Sec. 2.2.1 is used to proceed calculation

which requires information from seven nearby points, i.e.

uk+1
i = f

(

uki−3, u
k
i−2, u

k
i−1, u

k
i , u

k
i+1, u

k
i+2, u

k
i+3

)

. (2.103)

When came across boundary, interpolation is required to obtain ghost points.

Assume parachute canopy is between ui and ui+1, then u
k
i+1, u

k
i+2, u

k
i+3 should

be interpolated as

uk,ghosti+p = gp
({

uk1,··· ,n
})

, p = 1, 2, 3 (2.104)

Thus, the calculation of velocity on the boundary is

uk+1
i = f

(

uki−3, u
k
i−2, u

k
i−1, u

k
i , u

k,ghost
i+1 , uk,ghosti+2 , uk,ghosti+3

)

. (2.105)

Coupling penetration ratio γ, we set boundary points as

uk,poroi+p = γuki+p + (1− γ) uk,ghosti+p , p = 1, 2, 3 (2.106)

which leads to new construction formula

uk+1
i = f

(

uki−3, u
k
i−2, u

k
i−1, u

k
i , u

k,poro
i+1 , uk,poroi+2 , uk,poroi+3

)

. (2.107)

59

Diffusion Term

Diffusion part is solved using Crank-Nicolson scheme

uk+1
i − uki
△t =

1

2

(

uk+1
i+1 − 2uk+1

i + uk+1
i−1

△x2 +
uki+1 − 2uki + uki−1

△x2

)

(2.108)

and given a = △t
2△x2 , it can be simplified as

−auk+1
i+1 + (1 + 2a)uk+1

i − auk+1
i−1 = auki+1 + (1− 2a) uki + auki−1. (2.109)

Assume there is canopy interface between ui and ui+1, and consider no

porosity case, we get the velocity from interface uk,statei+1 . Coupling with con-

stant velocity boundary condition, we have

−auk,statei+1 + (1 + 2a)uk+1
i − auk+1

i−1 = auk,statei+1 + (1− 2a)uki + auki−1. (2.110)

Introducing penetration ratio gives

−γauk+1
i+1+(1 + 2a)uk+1

i −auk+1
i−1 = 2 (1− γ) auk,statei+1 +γauki+1+(1− 2a)uki+au

k
i−1.

(2.111)

Projection Step

After obtaining intermediate velocity, projection step is carried out to

obtain pressure and new velocities. Solve Poisson equation gives pressure

pi+1 − 2pi + pi−1 =
ρ△x2
△t div (u∗i) . (2.112)

60

Considering the case which has canopy interface between ui and ui+1, and

using Neumann boundary will give the formula

−pi + pi−1 =
ρ△x2
△t div (u∗i) . (2.113)

Introducing penetration ratio γ gives

γpi+1 − (1 + γ) pi + pi−1 =
ρ△x2
△t div (u∗i) . (2.114)

Update new velocity uses

uk+1
i = u∗i −

△t
2ρ△x (pi+1 − pi−1) (2.115)

when came across boundary between ui and ui+1, the new formula coupled

with penetration ratio is

uk+1
i = u∗i −

γ△t
2ρ△x (pi+1 − pi−1) . (2.116)

Relationship with Darcy’s Law

The penetration ratio γ is a dimensionless parameter which controls the

volume of fluid go through canopy via influencing boundary condition. In

nonporous case, the boundary conditions used for intermediate velocity and

pressure in transportation and projection process respectively are

u∗b = uintf (2.117)

61

∇pb = 0 (2.118)

where uintf is the velocity of interface, i.e. parachute canopy. This gives the

boundary condition of fluid at interface through projection formula

u∗ = u+
∆t

ρ
∇p⇒ ub = uintf (2.119)

which means the velocity of fluid at interface is the velocity of the interface.

After coupling penetration ratio, the boundary condition of intermediate

velocity is derived from interpolation

u∗b =















(1− γ)uintf + γui+1, for ui

(1− γ)uintf + γui, for ui+1

(2.120)

and the boundary condition for pressure is

∇p̃b =
p̃i+1 − pi

△x = γ∇pb. (2.121)

Substitute above equations into projection formula gives

ub =















uintf + γ (ui+1 − uintf) + γ△t
ρ
∇pb, for ui

uintf + γ (ui − uintf) + γ△t
ρ
∇pb, for ui+1

. (2.122)

The difference between the fluid velocity at boundary and the bound-

ary interface velocity is regarded as velocity due to porosity, which can be

62

represented as

uporo = −γ∆x
2

2
∆ub − γ

△t
ρ
∇pb. (2.123)

Darcy’s law describes the fluid through porous medium, which has the

form

q = −κ
µ
∇p (2.124)

where ∇p is the pressure gradient, κ is the intrinsic permeability of medium,

µ is the fluid viscosity and q is the flux. The fluid velocity is related to flux q

by void fraction φ

uporo =
q

φ
. (2.125)

Equivalence the fluid velocity derived from numerical scheme with Darcy’s

law gives

γ =

κ
φµ
∇p

△t
ρ
∇p+ △x2

2
△u

(2.126)

assume △x2 ≪ △t gives simplified form

γ ≈ κρ

△tφµ. (2.127)

2.3.4 Parachute Clusters and Collision Handling

Parachute clusters have been used in a wide range of applications and the

design has been significantly improved over the years. Compared with exces-

sively large single canopy, parachute cluster systems have a number of benefits,

including the ability to rig and manufacture the system, backup protection,

and excellent stability characteristics. The major deficiency of parachute clus-

63

ters is the difficulty in obtaining a time-sequenced opening of all canopies

together.

Most cluster applications described in the literature are National Aero-

nautics and Space Administration (NASA) systems, including the Apollo re-

covery systems and the space shuttle solid rocket booster recovery systems

[63, 21, 54, 33, 80, 56]. However, parachute clusters are employed for many

other applications, including numerous military applications. Military sys-

tems that use clusters include extraction systems and low-velocity airdrop sys-

tems for cargo, which consistently deliver payloads as heavy as 60,000 pounds.

Based on the single parachute modeling, we implemented structures and func-

tions for parachute clusters. Fig. 2.2 demonstrates a cluster consisting of three

G11 parachutes.

The major obstacle in parachute cluster simulation is collision handling.

The FronTier library usually resolves collision and contact of surface by merg-

ing or bifurcation. However, to deal with fabric surface, a major revision has

been added to the library and the resolving collision process can be summa-

rized as:

1. Detect the intersection of two surfaces as triangle lists.

2. Find all triangles located on two corresponding surfaces within the in-

tersection lists.

3. Lift two surfaces properly based on the type of interface.

Fig. 2.3 shows the difference of collision handling between the fluid-fluid inter-

face and the fabric-fabric surface.

64

Figure 2.2: A cluster of three G11 parachutes.

2.3.5 American Option Pricing

The majority of exchange-traded options are American and there are

many attempts to solve American option pricing problems which has no closed

form solution. Based on the seminal work of Black and Scholes [8], Brennan

and Schwartz [65] proposed the finite difference scheme for American options.

Cox, Ross and Rubinstein [25] introduced the binomial tree model. Regression

method proposed by Broadie and Detemple [14] tend to find the approximate

solution. Boyle [12] propose the option pricing method based on Monte Carlo

simulation.

65

Figure 2.3: The difference between the collision handling for fluid interface

and the fabric surface. The upper two plots show the topological bifurcation

of fluid interface. The lower two plots show the repulsion of the fabric collision.

There are many recent papers focus on the option pricing based on ex-

ponential Lévy model. Barndorff [6] propose the Lévy model under normal

inverse Gaussian process. Madan, Carr and Chang [60] obtained closed form

solution for the return density and the prices of European options under vari-

ance gamma process. Cont and Voltchkova [23, 24] propose a general finite

difference method for solving PIDE and prove the convergence of the scheme.

Almendral and Oosterlee [3, 4, 5] numerically solve Merton’s model and PIDE

based on CGMY process by estimating the integration term with Fast Fourier

66

Transformation. Hirsa and Madan [43] price American options under vari-

ance gamma distribution and treat the integro-term by various sub-intervals.

Matache, Petersdorff and Schwab [62] use θ-scheme for time stepping and a

wavelet-Galerkin discretization of the integro-differential operator under vari-

ance gamma and CGMY processes. Sachs and Strauss [73] develop a second

order scheme for Merton’s Model through transforming the PIDE to elimi-

nate convection term and solve dense linear system with conjugate gradient

method. Briani, Natalini and Russo [13] develop an implicit-explicit Runge-

Kutta methods to obtain higher order accuracy scheme for jump-diffusion

model.

Eq. (1.65) can be solved with certain type of boundary condition to price

specific option. In this specific case, we price American option based on expo-

nential Lévy process under generalized hyperbolic distribution. To accelerate

the program, we use heterogeneous algorithm to price both single option and

multiple option prices.

67

Chapter 3

GPU Application

3.1 Introduction to GPU

In this section, the architecture of GPU is introduced, together with

common methods to improve GPU performance which should be considered

carefully while designing heterogeneous algorithms.

3.1.1 GPU Architecture

General Purpose Graphics Processing Units (GPGPU) computing [53] is

to use GPUs together with CPUs to accelerate a general-purpose scientific and

engineering application. Heterogeneous computing can offer dramatically en-

hanced application performance by offloading computation-intensive portions

of the programming code to the GPU units, executing the remainder of the

code still on the CPU. Joint CPU/GPU applications constitute a powerful

combination because CPUs consist of a few cores optimized for serial process-

ing, while GPUs on the other hand, consist of thousands of smaller, more

68

efficient cores are designed for massive parallel calculations. Therefore, run-

ning the serial portions of the code on the CPU and intensive parallel portions

of the code on the GPU improves the performance of the applications greatly.

SM #0

SM
#1

SM
#13

Bus

Shared Memory

SP0 SP1 SP2 SP31

Constant Memory Global Memory

Global Memory Bus

Constant Memory Bus

PCI-E Bus

GPU
#1

GPU #0

Figure 3.1: Architecture of multi-GPU devices. Each GPU hardware consists

of memory (global, constant, shared) and 14 SMs. Each SM consists of 32 SPs

and can run 1536 threads simultaneously.

Fig. 3.1 briefly shows the architecture of Modern GPU which can be

viewed as a set of independent streaming multiprocessors (SMs) [26]. Each

SM contains several scalar processors (SPs) which can execute integer and

floating-point calculation, a multi-thread instruction unit and shared mem-

ory. When flow control transfer from CPU to GPU, functions in device are

triggered which are called kernels. After a kernel is invoked, threads which

69

are copies of this kernel will be distributed to all available multiprocessors.

Based on the Single Instruction Multiple Data (SIMD) parallel programming

style, all threads of a parallel phase will execute the same code. Threads are

grouped into blocks and blocks are arranged into a grid. Blocks and grids can

be one-dimensional, two-dimensional or three-dimensional arrays and they are

assigned unique coordinates in CUDA framework as threadId and blockId to

distinguish threads during execution. There are some limitations on the di-

mension of grids and blocks, as well as the number of threads per block. In

our computing platform, which is Quadro 6000 with compute capability 2.0,

the corresponding limitations are:

1. Maximum number of threads per block is 1024.

2. Maximum dimension size of a thread block is 1024× 1024× 64.

3. Maximum dimension size of a grid is 65535× 65535× 65535.

Threads in a block are executed by processor in a single SM. Given available

resources, multiple blocks can be assigned to the same SM. Blocks can be ex-

ecuted in any order which allows transparent scalability in the CUDA kernels.

CUDA device bundles 32 threads into a warp and threads in the same warp

are handled on the same multiprocessor. At every instruction issue time, a

warp scheduler selects a warp that is ready to execute its next instruction, if

any, and issues the instruction to the active threads of the warp. The number

of clock cycles it takes for a warp to be ready to execute its next instruction

is called the latency, and full utilization is achieved when all warp schedulers

70

always have some instruction to issue for some warp at every clock cycle during

that latency period, or in other words, when latency is completely ”hidden”.

CUDA threads may access data from multiple memory spaces during

their execution [1]:

1. Each thread has private local memory or register.

2. Each thread block has shared memory visible to all threads of the block

and with the same lifetime as the block.

3. All threads have access to the same global memory.

4. There are also two additional read-only memory spaces accessible by all

threads: the constant and texture memory spaces.

The global, constant and texture memory spaces are optimized for different

memory usages. The global, constant, and texture memory spaces are persis-

tent across kernel launches by the same application.

3.1.2 Improving GPU Performance

There are three basic strategies to improve GPU performance:

1. Maximize parallel execution to achieve maximum utilization.

2. Optimize memory usage to achieve maximum memory throughput.

3. Optimize instruction usage to achieve maximum instruction throughput.

The best strategy is determined by the bottleneck of the program. Effort

should be spent on the performance limiter after measuring and monitoring.

71

Maximize Utilization

Maximize utilization means to expose as much parallelism as possible

and keep the system busy most of the time. This parallelism utilization can

be optimized from different hierarchy. From application level, each processor

should be assigned the type of work it does best, that is, serial workloads to the

host and parallel workloads to the devices. This requires exact measuring of

the most time consuming part of the algorithm and efficient algorithm design

to realize optimal heterogeneous computing effect. From device level, paral-

lel execution should be maximized between the multiprocessors of a device.

From Multiprocessor level, the utilization efficiency depends on the number of

resident warps which determine the number of active threads and parallelism

effect. The number of blocks and warps that can reside and be processed

together on the multiprocessor for a given kernel depends on the amount of

registers and shared memory used by the kernel and the amount of registers

and shared memory available on the multiprocessor. During computation, the

variable we can specify is block size which will determine the efficiency in

multiprocessor level. Thus, utilization optimization in multiprocessor level is

transformed into finding the optimal block size. The calculation process can

illustrated as following based on the parameter of out computation platform:

1. Maximum blocks per streaming multiprocessor is 8.

2. Maximum registers per streaming multiprocessor is 32768 (unit 32 bit).

3. Maximum shared memory per streaming multiprocessor is 49152 bytes.

72

4. Maximum warps per streaming multiprocessor is 48, which is equivalent

to maximum 1536 threads per streaming multiprocessor.

Block size determines the number of active threads and occupancy of com-

puting resources in each streaming multiprocessor(SM). Based on the register

limitation, the maximum number of warps per SM is

number of warps per SM =

⌊

total registers

registers per thread× threads per warp

⌋

,

which is equivalent to the maximum number of threads per SM

total active threads = number of warps per SM × threads per warp.

Then, the maximum number of blocks derived from register limitation is

⌊

total active threads

block size

⌋

.

Considering the shared memory limit, the maximum number of threads

per SM is
⌊

total shared memory

shared memory per block.

⌋

In sum, for any fixed block size, the maximum number of blocks per SM

can be calculated as

number of blocks per SM = min

(⌊

total active threads

block size

⌋

,

73

total shared memory

shared memory per block
, limit of blocks per SM.

)

The analysis process based on the actual execution resources is given in Sec. 4.5.1

with great detail about how to derive the optimized block size for gas dynamic

simulation case. Numerical tests results are provided to support this optimiza-

tion strategy.

Maximize Memory Throughput

The most important rule is to minimize data transfers with low band-

width. This means to reduce data transfer between host and the device and

also implies minimizing data transfers between global memory and the device

by maximizing use of on-chip shared memory and caches. Thus, a typical

programming pattern is:

1. Load data from device memory to share memory,

2. Synchronize with all other threads of the block,

3. Process the data in shared memory,

4. Synchronize again if necessary to make sure that shared memory has all

updated result,

5. Write the result back to device memory.

To improve data transfer between host and device, one way is to move more

code from host to device; another way is to batch many small transfers into

a single large transfer which should perform better than making each transfer

74

separately. In Sec. 4.5, the time spent on data transfer between host and

device is demonstrated for each application cases.

Maximize Instruction Throughput

From the aspect of arithmetic instructions, this means use less arithmetic

instructions which has low throughput which includes trading precision for

speed when it does not affect the end result, such as using intrinsic instead

of regular functions, single-precision instead of double-precision or flushing

renormalized number to zero.

Threads from a block are bundled into warps for execution and threads

within a warp must follow the same execution trajectory due to SIMD princi-

pal. All threads must execute the same instruction at the same time. Thus,

any flow control instruction (if, switch, do, for, while) can significantly impact

the effective instruction throughput by causing threads of the same warp to

diverge. When came cross conditional branch depend on thread ID, threads in

same warp may go to different branches which will give different instructions.

Instead of executing different branches simultaneously, the CUDA platform

will instruct the warp to execute the branches in order. While executing one

branch, all threads that evaluated in other branches are effectively deacti-

vated. As a result, the then and else parts are not executed in parallel, but

in serial. This serialization can result in a significant performance loss and is

called thread divergence.

syncthreads() can impact performance by forcing the multiprocessor to

idle which is called synchronization instruction limit.

75

3.2 GPU Accelerated PDE Scheme

There are some successful GPU implementations of numerical methods

for partial differential equations, for example fast multipole methods [40],

nodal discontinuous Galerkin methods [42], finite difference method [26], fi-

nite element methods [88], Fourier spectral methods and non-Fourier spectral

methods [17].

The numerical scheme of specific partial differential equation is usually

derived through discretization and can be represented as a large linear system

of equations

Ax = d. (3.1)

Usually, for explicit scheme, A and x are given to calculate d; for implicit

scheme, A and d are given to solve x.

3.2.1 Explicit Scheme

Explicit time discretization has some benefits for parallelization. Due

to its form, the parallelization process is much easier and intuitive. Kruger

and Westermann [57] introduce numerical techniques for solving partial dif-

ferential equations based on efficient representations of vectors and matrices

on the GPU. Phillips and Massimiliano [67] demonstrate how to solve Hi-

meno benchmark on clusters with GPUs using Jacobi relaxation and improve

efficiency through optimizing memory bandwidth utilization. Alias etc. [2]

introduce the solution of two-dimensional partial differential equations using

parallel Gauss Seidel and Red-Black Gauss Seidel. Parand, Zafarvahedian and

76

Hossayni [66] using GPU to solve transient diffusion type equation by stable

and explicit finite difference method and propose an optimal synchronization

arrangement. Giles etc. [37] discuss the implementation of one-factor and

three-factor PDE models on GPUs using both explicit and implicit schemes.

The calculation of Ax can be realized with the efficient matrix vector

multiplication under the GPU framework. However, due to the property of

finite difference scheme, A is usually a sparse matrix. As a result, it will be a

waste to employ simply matrix vector product structure and a more efficient

method is to assign the computing task of one or several specific grid points

to each thread.

3.2.2 Efficient Tridiagonal Solver

As mentioned in Sec. 2.1.2, tridiagonal system

Ax =



























b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0
. . .

. . .
. . . 0

...
. . . an−1 bn−1 cn−1

0 · · · 0 an bn





















































x1

x2
...

xn−1

xn



























=



























d1

d2
...

dn−1

dn



























= d (3.2)

can be numerically solved with O (8n) operations. As for the parallel algo-

rithm, Hockney [44] proposed the odd-even reduction and Stone [86] intro-

duced the recursive doubling algorithm. These algorithm enable each proces-

sor to process exactly one row of the tridiagonal matrix. We refer the method

in [30]. The basic idea is to eliminate variables from adjacent equations and re-

77

duce the system recursively until a single equation remains. Consider equation

i with upper and lower equation

ai−1xi−2 + bi−1xi−1 + ci−1xi = di−1 (3.3)

aixi−1 + bixi + cixi+1 = di (3.4)

ai+1xi + bi+1xi+1 + ci+2xi+2 = di+1 (3.5)

− ai
bi−1

Eq. (3.3)+Eq. (3.4)− ci
bi+1

Eq. (3.5) gives

a
(1)
i xi−2 + b

(1)
i xi + c

(1)
i xi+2 = h

(1)
i (3.6)

where αi = −ai−1

bi−1
and γi = − ci

bi+1

a
(1)
i = −αiai−1 (3.7)

b
(1)
i = bi + αici−1 + γiai+1 (3.8)

c
(1)
i = γici+1 (3.9)

h
(1)
i = hi + αihi−1 + γihi+1. (3.10)

78

This transformation decompose the system of equations into two sub system

of equations one involves {x2i}, the other involves {x2i+1}



















b
(1)
1 c

(1)
1 0

. . .

a
(1)
3 b

(1)
3

. . . 0

0
. . .

. . . c
(1)
2k−3

. . . 0 a
(1)
2k−1 b

(1)
2k−1





































x1

x3
...

x2k−1



















=



















d
(1)
1

d
(1)
3

...

d
(1)
2k−1



















(3.11)



















b
(1)
2 c

(1)
2 0

. . .

a
(1)
4 b

(1)
4

. . . 0

0
. . .

. . . c
(1)
2k−2

. . . 0 a
(1)
2k b

(1)
2k





































x2

x4
...

x2k



















=



















d
(1)
2

d
(1)
4

...

d
(1)
2k



















. (3.12)

Assume there are 2q − 1 variables, recursively apply above process and

the result in level l can be represented as

a
(l)
i = αia

(l−1)

i−2l−1 (3.13)

b
(l)
i = b

(l−1)
i + αic

(l−1)

i−2l−1 + γia
(l−1)

i+2l−1 (3.14)

c
(l)
i = γic

(l−1)

i+2l−1 (3.15)

h
(l)
i = h

(l−1)
i + αih

(l−1)

i−2l−1 + γih
(l−1)

i+2l−1 (3.16)

where

αi = − ai
bi−2l−1

, γi = − ci
bi+2l−1

(3.17)

and x0 = x2q = 0. Each thread is responsible for solving one variable, above

79

process is repeated until hit two boundaries x0 and x2q . Through this ar-

rangement, each thread takes O (log2 n) operations and total operations are

increased to O (n log2 n). However, consider the parallel effect, the computa-

tion operation is O (log2 n).

To accelerate the computation efficiency, using low-latency shared mem-

ory would be much better than high-latency global memory. As a result, based

on the limitation of thread per block, if the dimension of system of equation

is less or equal than 1536, all threads can be calculated parallely. If the di-

mension exceeds the block thread limit, each thread should calculate several

rows.

3.3 Heterogeneous Algorithms for Applications

3.3.1 WENO Scheme for Gas Dynamics

We illustrate the heterogeneous algorithm for advection solver based on

the computing process of Euler equation. Let {Ii} be a partition of the com-

putation domain R, where Ii = [xi− 1

2

, xi+ 1

2

] is the i-th cell. The evaluation

of the numerical flux at grid point xj+ 1

2

can be calculated by WENO scheme

using following steps:

1. Compute the average state Um
j+ 1

2

by the simple mean Um
j+ 1

2

= 1
2
(Uj +

Uj+1).

2. Compute the eigenvalues λi,j+ 1

2

(i = 1, 2, 3), the matrix R and L based

on the value of Um
j+ 1

2

.

80

3. Do the local characteristic decomposition to get primitive variables.

4. Compute both the positive flux and negative flux.

5. Convert the flux calculated based on primitive variables into physical

space flux.

GPUs parallelization is desirable since the floating point operation of the

above procedures is highly intensive and the size of the partition can be very

large. We interchangeably use the term ”host” to refer to the CPU, and the

term ”device” to refer to the GPUs.

For each time step, the host fulfills three steps:

1. Copy the fluid states of all points to the device.

2. Call the GPU kernel function to calculate the flux on all points and wait.

3. Copy all points’ flux back from the device.

When the GPU kernel function was called, the device was triggered.

Each thread on the device acts according to its identification number. An

activated thread will fetch corresponding fluid state data and perform the flux

calculation according to the WENO scheme.

The computation on different stencils can be performed simultaneously

by GPUs which dramatically enhanced the time efficiency. Fifth order finite

difference WENO scheme is used on structured mesh in these simulations.

Each stencil needs to read the information of six nearby points which is still

very time consuming. The shared memory of the GPUs give a better solution

81

to this problem. Because it is on-chip, shared memory latency is roughly 100x

lower than uncached global memory latency. Shared memory is allocated per

thread block, so all threads in the same block have access to the same shared

memory. Threads can access data in the shared memory loaded from the global

memory by other threads within the same block. Using this capability, the code

reads the information of each point to the shared memory by corresponding

thread once, then for stencils need the information of this point can fetch

it directly from the shared memory. This strategy dramatically enhanced

the performance of the computation. Figure. 3.2 demonstrates the difference

between cases without and with shared memory usage.

3.3.2 Spring Mass Model

Fig. 3.3 is the complete flow chart of the parachute simulation algorithm.

Upon testing, we identified that solving spring model is the most time con-

suming and parallelizable part.

Solving the spring model by 4-th order Runge-Kutta method consists the

following steps:

1. Find the positions of all the neighbors of each vertex.

2. Calculate the force on each vertex using Delingette model.

3. Calculate the acceleration of each vertex.

4. Update the location of the vertex.

82

(a)

(b)

Figure 3.2: Fifth order WENO scheme stencils. Each point represents a com-

putational node. Red points are updated by the threads while the green points

are only used as data source. Each thread updates one red point only. (a)

Without shared memory usage, each thread reads seven points’ information.

(b) With shared memory, each thread reads only one point’s information. In

the testing case, the number of threads in one block is 512. Without shared

memory usage, each block will fetch 512× 7 = 3584 points’ information; with

shared memory, only 512 + 6 = 518 points’ information is necessary.

5. Go to step 2 if this is not the 4-th Runge-Kutta step, end this time step,

otherwise.

The computation of the spring model is time consuming because the number of

the vertices is large. However, at each time step, all vertices are independent.

To accelerate the calculation of this part, we then shift it to the GPU cores

for massively parallel processing.

For each time step, the host performs the following steps:

83

Save Time ?

End Time ?

End

Begin

No

Yes

FronTier++ Initialization

Fluid Field Calculating

FronTier++ Save

Solve Spring Model

Yes

No

Figure 3.3: Flow chart of the complete algorithm. The computation of the

spring model, which is marked by red color, is the most time consuming section.

This part is calculated in parallel by the GPU device with multiple threads in

order to improve the computational efficiency

1. Copy the position and velocity of each point to the device.

2. Invoke GPU kernel function to duplicate current position and velocity

of each vertex for further calculation.

3. Invoke GPU kernel function to calculate acceleration of each point.

4. Invoke GPU kernel function to fulfill the Runge-Kutta step and goto

step 3 if this is not the 4-th Runge-Kutta step.

5. Copy the position and velocity of each point back to host.

84

The difference between this case and the gas dynamics case is that the mesh

here is unstructured triangulated mesh while the mesh used in the gas dynam-

ics problem is structured uniform mesh. Therefore, we can not use the shared

memory of GPUs to further enhance the performance of the computation.

3.3.3 American Option Pricing

The flow chart in Fig. 4.21 (left) illustrates the major steps of the al-

gorithm. After testing, the calculation of Lévy measure {g (k△x)} , k =

1, · · · , N related terms is identified as quite intensive in the pricing of single

option and can be moved to GPU. The corresponding flow chart describes the

process can be found in Fig. 4.21 (right). At each node, three different inte-

gral terms are calculated using three threads. Due to the single-instruction,

multiple-thread hardware execution style of GPU, the threads are organized

to ensure that threads in the same warp will follow same paths of control flow

and avoid extra execution time result from thread divergence.

The motivation of using heterogeneous computing on single American

option pricing is due to the high modeling complexity. In contrast, the pricing

of multiple options which involve large problem scale is also a good candidate

for parallel computing. The independence between each single option and

corresponding unique parameters enables the whole calculation process of one

option being fulfilled in a single thread. Another major advantage is that

this application involves little data transfer and spent most time intensive

floating calculation. Thus, the joint CPU/GPU algorithm greatly outperforms

pure CPU algorithm, especially in large number of options case, and Fig. 3.5

85

End

Begin

FronTier++ Initialization

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

End

Begin

FronTier++ Initialization

Initialize Coefficients

GPU Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

Figure 3.4: Without-GPU (Left) and With-GPU (Right) flow charts for single

American option pricing.

illustrates this process.

86

End

Begin

FronTier++ Initialization

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

End

Begin

FronTier++ Initialization

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Read Space Domain,

Levy Parameters,

Option Parameters

Last Option ?

Yes

No

Initialize Coefficients

Intensive Integrations

Center Part Integration

Time Loop & Output

Option 1 Option N

Figure 3.5: Without-GPU (Left) and With-GPU (Right) flow charts for mul-

tiple American options pricing.

87

Chapter 4

Numerical Results

4.1 Experiment Platform

Numerical experiments based on both the CPU and the GPU are im-

plemented on a dell precision T7600 Workstation with dual Intel Xeon E5-

2687W CPUs and dual NVIDIA Quadro 6000 graphics cards. The Intel Xeon

E5-2687W CPU is the latest multi-threaded multi-core Intel-Architecture pro-

cessor. It offers eight cores on the same die running at 3.10 GHz. The Intel

Xeon E5-2687W processor cores feature an out-of-order super-scalar micro-

architecture, with newly added 2-way hyper-threading. In addition to scalar

units, it also has 4-wide SIMD units that support a wide range of SIMD in-

structions. Each has a separate 32KB L1 cache for both instructions and data

and a 256 KB unified L2 data cache. All eight cores share an 20 MB L3 data

cache. The Intel Xeon E5-2687W processor also features an on-die memory

controller that connects to four channels of DDR memory. Each Quadro 6000

graphics card consists of 14 streaming multiprocessors (SMs) running at 1.15

GHz that share a single 768 KB L2 cache and 6 GB global memory on the

88

device. Each SM consists of 32 streaming processors (SPs), a 48 KB shared

memory and 32768 32-bit registers. Fedora 18 with kernel 3.9.2-200, CUDA

Toolkit 5.0 and GCC 4.7.2 were used in the computations. Table 4.1 shows

the hardware structure of the computer on which the experiments run.

Hardware

CPU

Dual Eight Core XEON E5-2687W, 3.1GHz

64GB DDR3

32KB x 16 L1 Cache, 256KB x 16 L2 Cache

20MB x 2 L3 Cache

GPU

Dual Quadro 6000 with 14 multiprocessor

448 cores, 1.15Hz

6GB global memory, 64 KB constant memory

48KB shared memory

32768 registers per multiprocessor

Software

OS Fedora 18 with kernel 3.9.2-200.fc18.x86 64

Compiler gcc version 4.7.2

CUDA CUDA Toolkit 5.0

Table 4.1: A Dell Precision T7600 Workstation with dual NVIDIA Quadro

graphics cards was used to set up the test environment.

4.2 Advection Solver for Gas Dynamic

The test case for the Euler equations is the shock-tube problem. This

problem is a well-known Riemann problem introduced by Sod [79]. The solu-

89

tion domain is [−1, 1], and the initial conditions are Eq. (4.1).

(ρ, u, p) =















(1, 0, 1) ,

(0.125, 0, 0.1) ,

x 6 0

x > 0

(4.1)

The results are demonstrated in Fig. 4.1. As we can see, this algorithm is

numerically convergent under mesh refinement test and the numerical solution

obtains high accuracy when compared with analytical solution.

4.3 Parachute Simulation

In this section, several parachute based simulation results are demon-

strated. Refer [78] for the convergence test of spring model and the verification

and validation of parachute inflation simulation.

4.3.1 Angled Deployment

The majority of parachute malfunctions occur during the inflation se-

quence. One of the most harmful malfunctions is the canopy ”inversion” which

occurs when one or more gore sections near the skirt of the canopy blows be-

tween the suspension lines on the opposite side of the parachute and then

catches air [74]. That portion then forms a secondary lobe with the canopy

inverted. The condition may work out or may become a complete inversion

i.e. the canopy turns completely inside out [61]. Inversion during parachute

inflation is dangerous as it can completely shut up the inlet of the canopy and

prevent the creation of an air volume under the canopy, thus reduces the drag

90

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t = 0.3 second

x

d
e
n

s
it

y
,
 v

e
lo

c
it

y
,
 p

re
s
s
u

re

exact density

exact velocity

exact pressure

numerical density

numerical velocity

numerical pressure

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t = 0.3 second

x

d
e
n

s
it

y
,
 v

e
lo

c
it

y
,
 p

re
s
s
u

re

exact density

exact velocity

exact pressure

numerical density

numerical velocity

numerical pressure

Figure 4.1: Sod problem results, the solution domain is [−1, 1]. The mesh size

of the first figure is 400 and the second one’s is 3200.

91

force to essentially zero and results in a free fall.

Numerical solution becomes a valuable tool for the parachute design if

computer simulation can reveal and predict malfunctions of the parachute

canopy during the deployment. A group of different drops in which the initial

alignments of the parachute form different angles with the direction of the fluid

velocity are simulated here. Fig. 4.2 shows the case in which the alignment

of canopy-string-payload forms a 15◦ angle with the fluid velocity. In this

case, the canopy only slightly loses its symmetry during the inflation, but the

inflation is normal. The total adjustment to vertical fall takes a longer time,

but the opening of the canopy is just on time. In the case of the parachute

forming a 60◦ angle with the flow, as shown in Fig. 4.3, the side of the parachute

facing the flow is dented and wrapped up and the opening time is increased. In

the case in which the parachute forms a 75◦ angle with the flow, the complete

inversion of the canopy happens at approximately t = 2.0sec. Fig. 4.4 shows

such inverted canopy.

4.3.2 Canopy Porosity Simulation

The motion of fluid around a porous arch-shaped interface is simulated in

the penetration ratio range γ = 0, 0.25, 0.5, 0.75 based on the model introduced

in Sec. 2.3.3.

The density of fluid is 1.2 and the viscosity is 0.000628; the simulation

region is [0, 12] × [−3, 12]. Fig. 4.5 shows the magnitude of velocity in x

direction; Fig. 4.6 shows the magnitude of velocity in y direction; Fig. 4.7

shows the vorticity around the parachute canopy. We can conclude that higher

92

Figure 4.2: Angled deployment of C-9 parachute with the flow. The deploy-

ment starts with a 15◦ angle between the initial parachute and the direction

of flow. The parachute experiences only slight asymmetry of the canopy. The

plots show the parachute at (from left to right) t = 0sec, t = 1.5sec and

t = 3.0sec respectively.

penetration ratio, as a result of high porosity, should lead to higher stability

and less vorticity. This simulation result is consistent with experiments and

observations.

4.4 American Option Pricing

In the first experiment, we try to prove the convergence of the algorithm

and estimate the error via computing European put options based on various

processes. Table 4.2, Table 4.3, Table 4.4 and Table 4.5 record the numer-

ical result under variance gamma process, CGMY model (tempered stable

process), normal inverse Gaussian process and generalized hyperbolic process

respectively. In each table, we list the total error l∞ , error at strike price

93

Figure 4.3: Angled deployment of C-9 parachute with the flow. This sequence

starts with a 60◦ angle between the initial parachute and the direction of the

flow. In this case, the canopy skirt is dangerously wrapped at the lower side

of the canopy. The plots show the parachute at (from left to right) t = 0sec,

t = 1.5sec and t = 3.0sec respectively.

K and CPU operation time for different number of grids. The parameters of

objective option is r = 0.1, σ2 = 0.4, K = 1 and τ = 1. Since the error

convergence rate is between 2 and 4 when we double the grid, the algorithm

is convergent and the accuracy is between first and second order. And the

CPU operation time is quite ideal for variance gamma process, CGMY model

and normal inverse Gaussian process. For generalized hyperbolic process, we

have to estimate double numerical integration which takes more operation time

when compared with other processes.

Fig. 4.8 shows part of the European put option prices under different

underlying processes with same parameters as above tables, as well as the

Black-Scholes result. Among all five lines, the European put option price de-

rived from Black-Scholes is the lowest. Since PIDE are based on exponential

94

Figure 4.4: Inversion of the parachute canopy during an angled drop. The

alignment of the parachute started with a 75◦ angle with the direction of the

velocity. A complete inversion occurs at t = 2sec. The two plots are views of

the inverted canopy from different directions.

Lévy model which characterizes jumps, the results will be higher than corre-

sponding Black-Scholes result.

N M l∞-error error at K CR CPU

100 25 9.8400e-04 7.7600e-04 - 0.01

200 50 4.1900e-04 3.1100e-04 2.4952 0.03

400 100 1.7100e-04 1.2200e-04 2.5492 0.12

800 200 5.6000e-05 3.9000e-05 3.1282 0.69

Table 4.2: errors and convergence of the variance gamma process and param-

eters are c = 1.0, λ+ = 7.0 and λ− = 9.0

The second experiment is to explore the effects of four parameters of

the generalized hyperbolic process on option prices. In Fig. 4.9, Fig. 4.10,

95

Figure 4.5: Porosity simulation, velocity in x direction, with penetration ratio

from left to right, top to bottom: γ = 0, 0.25, 0.5, 0.75

Fig. 4.11, Fig. 4.12 and Fig. 4.13, we demonstrate American put option prices

with three fixed parameters and one flexible parameter; then, these option

prices are compared with the prices derived from the Black-Scholes equation

quantitatively.

96

Figure 4.6: Porosity simulation, velocity in y direction, with penetration ratio

from left to right, top to bottom: γ = 0, 0.25, 0.5, 0.75

In Fig. 4.9, α, β, δ are fixed and larger λ will lead to higher option prices.

In Fig. 4.10, λ, β, δ are fixed and larger α leads to lower option prices. In

Fig. 4.11 and Fig. 4.12, fixed parameters are λ, α, δ and when β > 0, larger

β will lead to higher option prices; when β < 0, lower β will lead to higher

97

Figure 4.7: Porosity simulation, vorticity, with penetration ratio from left to

right, top to bottom: γ = 0, 0.25, 0.5, 0.75

option prices. In Fig. 4.13, we fix parameters λ, α, β and find out larger δ will

lead to higher option prices.

The third experiment is to compute the early exercise boundary for Amer-

ican put options. In Fig. 4.14, Fig. 4.15 and Fig. 4.16, we fix three parameters

98

N M l∞-error error at K CR CPU

100 25 0.0030520 0.0020610 - 0.01

200 50 0.0012890 8.2100e-04 2.5104 0.01

400 100 5.0000e-04 3.0800e-04 2.6656 0.12

800 200 1.5100e-04 9.0000e-05 3.4222 0.69

Table 4.3: Errors and convergence of the CGMY model and parameters are

C = 1.0, G = 7.0, M = 9.0 and Y = 0.7

N M l∞-error error at K CR CPU

100 25 0.0011290 9.5900e-04 - 0.00

200 50 5.3100e-04 4.3000e-04 2.2302 0.02

400 100 2.2900e-04 1.8000e-04 2.3889 0.11

800 200 7.6000e-05 5.9000e-05 3.0508 0.66

Table 4.4: Errors and convergence of the normal inverse Gaussian process and

parameters are α = 8.15, β = −2.5 and δ = 0.767

N M l∞-error error at K CR CPU

100 25 0.0026030 0.0016540 - 0.30

200 50 0.0012290 7.8600e-04 2.1043 0.84

400 100 5.3000e-04 3.4100e-04 2.3050 1.90

800 200 1.7400e-04 1.1000e-04 3.1000 4.88

Table 4.5: Errors and convergence of the generalized hyperbolic process and

parameters are λ = 1, α = 8.15, β = −2.5 and δ = 0.767

99

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Variance gamma process

CGMY process

NIG process

GH process

Black Scholes

Figure 4.8: European option prices based on the variance gamma process with

parameters c = 1.0, λ+ = 7.0 and λ− = 9.0; the CGMYmodel with parameters

C = 1.0, G = 7.0, M = 9.0 and Y = 0.7; the normal inverse Gaussian process

with parameters α = 8.15, β = −2.5 and δ = 0.767; the generalized hyperbolic

process with parameters λ = 1, α = 8.15, β = −2.5 and δ = 0.767.

and verify the effect of the fourth parameter on the early exercise boundary

of American put options. At fixed τ , given same α, β, δ, larger λ will lead to

lower early exercise prices. Given same λ, β, δ, larger α will lead to higher

early exercise prices. Given fixed parameters λ, α, δ, when β > 0, larger β will

lead to lower early exercise prices; when β < 0, smaller β will lead to lower

exercise prices. Fix λ, α, β, larger δ will lead to lower early exercise prices.

100

4.5 Acceleration Effect of Heterogeneous Algorithms

4.5.1 Optimized Resource Allocation

In Sec. 3.1.2, we discussed the optimization of block size based on the

hardware limitation and dynamic resources allocation theoretically. Here we

give a detailed analysis based on the actual execution resources of gas dynamic

simulation case. To find the optimized thread management strategy, we cal-

culate the thread occupancy at different block sizes. This algorithm requires

63 registers per thread. Then, the maximum number of active threads per SM

is
⌊

32768

63× 32

⌋

× 32 = 512,

and this implies the theoretical maximum thread occupancy is

512

1536
=

1

3
.

In Table 4.6, given specific block size, the number of blocks per SM can be

limited by one or several of three major factors: register limitation (544 case),

shared memory limitation (64 case) and block per SM limitation (32 case).

In addition, different block sizes lead to different effective threads per device

which determines the scale of parallelization. As we can see, in the case of block

size 128, 256 and 512, the number of effective threads is larger and they can

handle more threads at the same time. So, in this specific problem, 128, 256

and 512 are optimized block size. However, even in these most optimized cases,

only 33.3% of SM threads are occupied. To further improve the efficiency of the

101

problem, a direct method is to improve the threads occupancy by eliminating

number of registers consumed per thread and corresponding shared memory

per block.

Block size 32 64 128 192 256 384 512 544

Shared memory/block (bytes) 3344 6160 11792 17424 23056 34320 45584 48400

Number
of blocks
limited

by

register 16 8 4 2 2 1 1 0

shared memory 14 7 4 2 2 1 1 1

max blocks/SM 8 8 8 8 8 8 8 8

Effective blocks 8 7 4 2 2 1 1 0

Effective threads/SM 256 448 512 384 512 384 512 0

Effective threads/device 3584 6272 7168 5376 7168 5376 7168 0

SM threads occupancy (%) 16.7 29.2 33.3 25.0 33.3 25 33.3 0

Table 4.6: Execution capacity analysis. In this application, each thread

needs 63 registers and each block needs (block size + 2 × ghost size) ×

(number of shared doubles per thread) × sizeof(double) shared memory

where ghost size = 3, number of shared doubles per thread is decided by

the algorithm which is 11 and sizeof(double) = 8 is decided by the compiler.

Given these parameters and the size of registers and shared memory per SM,

maximum number of blocks can be calculated for given block size.

To verify above analysis, seven groups of test cases with block sizes of

32, 64, 128, 192, 256, 384, and 512, respectively are carried out. Each group

has eight different mesh sizes of 1024, 2048, 3072, 4096, 5120, 6144, 7168,

and 8192. Fig. 4.17 shows the results. In Table 4.6 we conclude that the

effective threads per device is 3584 when the block size is 32. In the the right

102

upper subplot (subplot (2)) of Fig. 4.17, we can see two jumps on the line, the

first jump happened when the mesh size increased from 3072 to 4096 and the

second one from 7168 to 8192. The first one happened because the effective

threads number 3584 is between 3072 and 4096. When the mesh size is 3072,

all the threads can perform simultaneously; however, when the mesh size is

4096, two rounds are needed. In the first round, only 3584 threads can perform

simultaneously and the rest threads have to wait until the first round ends.

Similarly, since 7168 = 3584 × 2 < 8192, two and three rounds needed when

mesh size is 7168 and 8192 respectively. In the same way, we can explain

the jumps in other subplots of Fig. 4.17. In sum, from the consistency of the

analysis in the Table 4.6 and the results in Fig. 4.17, we can conclude that the

method used to optimize the block size is reliable and using optimized block

size to perform calculation is less likely to suffer performance jumps.

4.5.2 GPU Application for Gas Dynamics

The operation time spent on solving sod problem measured by the CPU

clock and the time for GPU intensive computational part are collected in

Table 4.7. Fig. 4.18 displays the GPU time and CPU time for each step. From

Table 4.7 and Fig. 4.18 we can conclude that the application of the GPUs

has clear advantage in the computation of the flux using the advection solver

based on WENO scheme and Runge-Kutta method. The pure computation

time accelerated for 29-86×. For this application, data fetching costs even

more time than computation. However, consider time spent on both the data

transfer and computation, the heterogeneous algorithm is still 4-20× more

103

efficient than pure CPU algorithm.

Mesh
CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

1024 3427 336 118 272 726 29.04 4.72

2048 6896 349 146 273 768 46.97 8.93

3072 10053 365 152 283 800 65.61 12.47

4096 13912 340 183 365 888 75.40 15.54

5120 16774 411 215 321 947 77.49 17.59

6144 20126 397 249 308 954 80.28 20.95

7168 23463 525 271 396 1192 86.10 19.57

8192 25376 509 363 365 1237 69.53 20.41

Table 4.7: GPU and CPU computing time of solving one dimensional Euler

equations by the fifth order WENO scheme in one step. Eight different mesh

sizes (1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192) were tested with both

pure CPU code and hybrid (CPU and GPU) code. Based on the analysis and

experiments in Table 4.6, we choose one of the best block size 128 here. The

hybrid code is 8-20× faster than the pure CPU code for the computation of

the intensive part when the mesh size is larger than 2048. In the table, ”Time

of copy data from Host to Device” and ”Time of copy data from Device to

Host” denoted by ”H2D” and ”D2H”, respectively.

104

4.5.3 GPU Application for Spring Model

The test case of the spring model is stretching a rectangular fabric surface.

In this simulation, the total mass of the membrane is 13g and the spring

constant is 1000N/m.

The total operation time recorded by CPU clock and time for GPU inten-

sive computational part are collected in Table 4.8, together with the barplot

Fig. 4.19 which shows the time spent on each part. As we can see, this ap-

plication spent little time on data transfer and the heterogeneous algorithm

achieves 5-6× speedup.

Mesh
CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

2641 223565 171 41328 644 42143 5.41 5.30

4279 294037 340 42200 1239 43734 6.98 6.72

6466 376137 376 51180 530 52086 7.35 7.22

9064 481941 786 70444 2241 73471 6.84 6.56

12361 554545 687 85744 727 87158 6.47 6.36

15567 601600 1503 96310 1066 98879 6.25 6.08

Table 4.8: GPU and CPU computing time of three dimensional spring model.

Spring models with eight different mesh sizes of 2641, 4279, 6466, 9064, 12361,

15567 were tested with both pure CPU code and hybrid (CPU and GPU)

code. The hybrid code is 5-6× faster than the pure CPU code for computing

the intensive part.

105

4.5.4 GPU Application for American Option Pricing

Single American Option Pricing

After several tests, we found that for single American option pricing the

intensive integrations are the most time consuming part when mesh size is not

too large. Fortunately, we can calculate these integrations in parallel using a

GPU. The total operation time and time for intensive integrations measured

in micro-seconds for computing single option with parameters τ = 1, r =

0.1, σ2 = 0.4, K = 1 are collected in Table 4.9 and an intuitive comparison is

given in Fig. 4.20.

Mesh
CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

128 942539 752740 540774 55 1293569 1.74 0.73

256 2825369 757925 1034025 59 1792009 2.73 1.58

512 8088534 757555 2124162 115 2881832 3.80 2.80

1024 22214927 780483 3867521 79 4648083 5.74 4.78

2048 55254249 810256 6475537 87 7285880 8.53 7.58

4096 134558431 755945 11294322 256 12050523 11.91 11.17

Table 4.9: Operation time of single option pricing under the generalized hy-

perbolic distribution, parameters λ = 1.0, α = 8.15, β = −2.5, δ = 0.767

From Table 4.9 and Fig. 4.20 we can conclude that GPU has an obvious

advantage in computing intensive integrations, which leads to less total opera-

tion time when the mesh size is relatively large. However, when the mesh size

increases, the operation time of other parts, especially time iteration steps,

106

increases gradually and undermines the effect of parallel computing. There is

a trade-off between operation time and accuracy which depends on the mesh

size. In this example, when we require lower accuracy and the mesh size is

relatively small, CPU algorithm is the better choice; when higher accuracy is

required and the mesh size is relatively large, CPU/GPU joint algorithm is the

better choice. But this advantage of CPU/GPU joint application will decrease

as the mesh becomes more refined.

Multiple American Options Pricing

To meet the requirements of timely and efficiently pricing of multiple

options, we transform the CPU algorithm to joint CPU/GPU algorithm. Ta-

ble 4.10 and Fig. 4.21 compares the operation time on pricing multiple options

without GPU and with GPU respectively at a given mesh size of 128. As we

can see, the operation time with GPU is relatively stable and is around 4 sec-

onds when the number of options is below 2048. The ratio of CPU operation

time and CPU/GPU joint operation time improves greatly as the number of

options increases. In summary, the algorithm with GPU has an overwhelm-

ing advantage over the algorithm without GPU on pricing a large number of

options.

107

Number of
options

CPU Time
(micros)

GPU Time (micros) CPU/GPU

H2D Compute D2H Total Compute Total

32 35361760 2902 3892648 96 3895646 9.08 9.08

64 70723520 3484 3900757 324 3904565 18.13 18.11

128 141447040 2752 3954747 195 3957694 35.77 35.74

256 282894080 3199 3955152 382 3958733 71.53 71.46

512 565788160 3200 4097343 1429 4101972 138.09 137.93

1024 1131576320 3232 4366600 1064 4370896 259.14 258.89

2048 2263152640 3257 4767045 1945 4772247 474.75 474.23

4096 4526305280 3328 9540157 3352 9546837 474.45 474.12

Table 4.10: Operation time of multiple options pricing under the generalized

hyperbolic distribution, parameters λ = 1.0, α = 8.15, β = −2.5, δ = 0.767

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lambda=−5.0

lambda=0.0

lambda=5.0

Black Scholes

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

lambda=−5.0

lambda=0.0

lambda=5.0

Figure 4.9: Left: American option prices under the generalized hyperbolic dis-

tribution; Right: difference between option prices based on PIDE and Black-

-Scholes. Other parameters are α = 8.15, β = −2.5, δ = 0.767.

108

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

alpha=8.15

alpha=13.15

alpha=18.15

Black Scholes

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

alpha=8.15

alpha=13.15

alpha=18.15

Figure 4.10: Left: American option prices under the generalized hyperbolic dis-

tribution; Right: difference between option prices based on PIDE and Black-

-Scholes. Other parameters are λ = 1.0, β = −2.5, δ = 0.767.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

beta=−5.0

beta=−2.5

beta=0

Black Scholes

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

beta=−5.0

beta=−2.5

beta=0

Figure 4.11: Left: American option prices under the generalized hyperbolic dis-

tribution; Right: difference between option prices based on PIDE and Black-

-Scholes. Other parameters are λ = 1.0, α = 8.15, δ = 0.767.

109

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

beta=0

beta=2.5

beta=5.0

Black Scholes

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

beta=0

beta=2.5

beta=5.0

Figure 4.12: Left: American option prices under the generalized hyperbolic dis-

tribution; Right: difference between option prices based on PIDE and Black-

-Scholes. Other parameters are λ = 1.0, α = 8.15, δ = 0.767.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta=1.6

delta=0.4

delta=0.1

Black Scholes

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

delta=1.6

delta=0.4

delta=0.1

Figure 4.13: Left: American option prices under the generalized hyperbolic dis-

tribution; Right: difference between option prices based on PIDE and Black-

-Scholes. Other parameters are λ = 1.0, α = 8.15, β = −2.5.

110

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lambda=−5.0

lambda=0.0

lambda=5.0

Black Scholes

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

alpha=8.15

alpha=13.15

alpha=18.15

Black Scholes

Figure 4.14: Early exercise boundaries for American options based on the

generalized hyperbolic distribution (x-axis: exercise price; y-axis: time to

maturity). Parameters are (Left) α = 8.15, β = −2.5, δ = 0.767; (Right)

λ = 1.0, β = −2.5, δ = 0.767.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

beta=−5.0

beta=−2.5

beta=0

Black Scholes

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

beta=0

beta=2.5

beta=5.0

Black Scholes

Figure 4.15: Early exercise boundaries for American options based on the

generalized hyperbolic distribution (x-axis: exercise price; y-axis: time to ma-

turity). Parameters are λ = 1.0, α = 8.15, δ = 0.767.

111

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta=1.6

delta=0.4

delta=0.1

Black Scholes

Figure 4.16: Early exercise boundaries for American options based on the

generalized hyperbolic distribution (x-axis: exercise price; y-axis: time to ma-

turity). Parameters are λ = 1.0, α = 8.15, β = −2.5.

112

2000 4000 6000 8000
100

200

300

400

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

(1) Performance Comparison

32 64 128 192 256 384 512

2000 4000 6000 8000
100

200

300

400

(2) Block size 32

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(3) Block size 64

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(4) Block size 128

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(5) Block size 192

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(6) Block size 256

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(7) Block size 384

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

2000 4000 6000 8000
100

200

300

400

(8) Block size 512

meshsize

c
o
m

p
u
ti
n
g
 t
im

e
 (

m
ic

ro
s
)

Figure 4.17: GPU computing performance on different block sizes and mesh

sizes for Sod problem.

113

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
GPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

x 2
10

x 10
3

Copy data: device to host
Computing time
Copy data: host to device

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

4 CPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

x 2
10

Computing time

Figure 4.18: GPU (left) and CPU (right) time per step for gas dynamic sim-

ulation based on WENO. The GPU computing time is 29-86× faster than

CPU’s. However, GPU total time is only 4-20× faster than CPU’s. This is

due to the time used to transfer the data between the host and the device in

GPU. From the left plot, we can clearly see that the time spent on copying

data is at least twice larger than the time spent on computing.

2641 4279 6466 9064 12361 15567
0

2

4

6

8

10
x 10

4 GPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

Copy data: host to device
Computing time
Copy data: device to host

2641 4279 6466 9064 12361 15567
0

1

2

3

4

5

6

7
x 10

5 CPU

mesh size

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

Computing time

Figure 4.19: GPU (left) and CPU (right) time per step for spring model

simulation. The GPU computing time and total time are 5-6× faster than

CPU’s. This is due to the negligible time used to transfer the data between

the host and the device.

114

0

2

4

6

8

10

12

14
x 10

6 GPU

ti
m

e
 (

m
ic

ro
 s

e
c
o
n
d
)

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Copy data: device to host
Computing time
Copy data: host to device

0

2

4

6

8

10

12

14
x 10

7 CPU

ti
m

e
 (

m
ic

ro
 s

e
c
o
n
d
)

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Computing time

Figure 4.20: GPU (left) and CPU (right) time per step for single option pric-

ing. The GPU computing time is 1.7-12× faster than CPU’s. However, the

performance of GPU is worse when the mesh size is small. Because the time

used to transfer the data dominates GPU calculation time.

0

2

4

6

8

10
x 10

6 GPU

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Copy data: device to host
Computing time
Copy data: host to device

0

1

2

3

4

5
x 10

9 CPU

ti
m

e
 (

m
ic

ro
 s

e
c
o

n
d

)

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

2
11

2
12

mesh size

Computing time

Figure 4.21: GPU (left) and CPU (right) time per step for multiple option

pricing. The GPU computing time is relatively stable when the number of

options is smaller or equal than 2048.

115

Chapter 5

Conclusions

A spring model based on the modifications of Delingette is used for fabric

surface simulation which considers both tensile stiffness and angular stiffness.

This model is convergent to elastic membrane model in continuum mechan-

ics and is ideal for parachute canopy simulation. Navier-Stokes equation is

solved by projection method to describe the incompressible viscous fluid field

for personnel and cargo parachute. These two models are coupled together

using impulse method and achieve realistic parachute deployment simulation.

The porosity of canopy affects the stability, descent rate and drag force of

the parachute. A concept ”penetration ratio” is introduced to transform the

porosity simulation into boundary treatment. This simulation gives a con-

clusion that highly porous canopy will lead to more stable performance, but

less drag force, which is consistent with observations. During the parachute

simulation process, the solving spring model part is identified as most time-

consuming and it is accelerated greatly by using heterogeneous computing

techniques based on GPU.

116

Instead of using the geometric Brownian motion to describe the behavior

of underlying asset, exponential Lévy process is used and a partial integro-

differential equation can be derived for option pricing. Compared with the

Black-Scholes equation, PIDE contains an extra integral term and needs spe-

cial treatment. The integration domain is divided into five parts: the calcula-

tion of the first and the fifth parts are simplified through coupling boundary

condition in advance; trapezoidal rule is adopted to calculate the second and

fourth terms which enables reusing of grid information and pre-calculated value

of Lévy measure; the center part is calculated by applying Taylor expansion

and is pre-calculated to improve efficiency. This algorithm can be applied

to PIDE derived from any distributions. We demonstrate the process with

the model constructed from generalized hyperbolic distribution, due to the

flexibility of its density function. This algorithm is proved to be numerically

convergent and the accuracy is between first and second order. To further ac-

celerate the application, two different heterogeneous algorithms are designed

to accommodate different cases. For single option pricing, integral value at

each grid point are calculated parallely with GPU; for multiple option pricing

case, dramatic efficiency improvement is achieved by simultaneously assigning

each thread the task of pricing one option.

A heterogeneous advection solver is developed based on WENO scheme

and Runge- Kutta method. This algorithm intends to solve the Euler equation

in gas dynamic simulation for compressible fluid cases such as space shuttle

landing parachute. The WENO reconstruction part is accelerated using GPU

techniques. The process of finding optimized block size is demonstrated which

117

enables best parallelization effect under certain execution resource capacity.

Uniform mesh based on finite difference scheme is used during reconstruction

and this allows the usage of shared memory, rather than global memory to

reduce the data fetch latency. Finally, each thread follows exactly same in-

struction which avoids potential latency due to threads divergence. This het-

erogeneous algorithm realize substantial acceleration and can be easily applied

to advection form equations.

In sum, three heterogeneous algorithms are discussed to realize numerical

simulations in scientific and engineering fields. These algorithms are acceler-

ated through coupling GPU techniques appropriately and have wide applica-

tions in solving many different PDE extended systems.

118

Bibliography

[1] Cuda c programming guide. 2014.

[2] Norma Alias, Noriza Satam, Roziha Darwis, Norhafizah Hamzah,
A Ghaffar, Zarith Safiza, Md Islam, et al. Some parallel numerical meth-
ods in solving partial differential equations. 2010.

[3] Ariel Almendral. Numerical valuation of american options under the
cgmy process. Exotic option pricing and advanced Lévy models, pages
259–276, 2005.

[4] Ariel Almendral and Cornelis W Oosterlee. Numerical valuation of op-
tions with jumps in the underlying. Applied Numerical Mathematics,
53(1):1–18, 2005.

[5] Ariel Almendral and Cornelis W Oosterlee. Accurate evaluation of eu-
ropean and american options under the cgmy process. SIAM Journal on
Scientific Computing, 29(1):93–117, 2007.

[6] Ole E Barndorff-Nielsen. Processes of normal inverse gaussian type.
Finance and stochastics, 2(1):41–68, 1997.

[7] John B. Bell, Phillip Colella, and Harland M. Glaz. A second-order pro-
jection method for the incompressible navier-stokes equations. Journal
of Computational Physics, 85:257–283, 1989.

[8] Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. The journal of political economy, pages 637–654, 1973.

[9] W. Bo, B. Fix, J. Glimm, X. Li, X. Liu, R. Samulyak, and L. Wu. Fron-
tier and applications to scientific and engineering problems. Proceedings
in Applied Mathematics and Mechanics, 2007.

[10] W. Bo, B. Fix, J. Glimm, X. L. Li, X. T. Liu, R. Samulyak, and L. L.
Wu. Frontier and applications to scientific and engineering problems.

119

Proceedings of International Congress of Industrial and Applied Mathe-
matics, pages 1024507–1024508, 2008.

[11] W. Bo, X. Liu, J. Glimm, and X. Li. Primary breakup of a high speed
liquid jet. ASME Journal of Fluids Engineering, submitted, 2010.

[12] Phelim P Boyle. Options: A monte carlo approach. Journal of Financial
Economics, 4(3):323–338, 1977.

[13] Maya Briani, Roberto Natalini, and Giovanni Russo. Implicit–explicit
numerical schemes for jump–diffusion processes. Calcolo, 44(1):33–57,
2007.

[14] Mark Broadie and Jerome Detemple. American option valuation: new
bounds, approximations, and a comparison of existing methods. Review
of Financial Studies, 9(4):1211–1250, 1996.

[15] Felix Browder et al. Partial differential equations in the 20th century.
Advances in Mathematics, 135(1):76–144, 1998.

[16] David L Brown, Ricardo Cortez, and Michael L Minion. Accurate pro-
jection methods for the incompressible navier-stokes equations. Journal
of Computational Physics, 168(2):464–499, 2001.

[17] Feng Chen and Jie Shen. A gpu parallelized spectral method for elliptic
equations.

[18] Gui-Qiang G. Chen. Partial differential equations: Origins, develop-
ments and roles in the changing. Technical report, Oxford Mathematical
Institute: The Secrets of Mathematics, 2014.

[19] A. J. Chorin. Numerical solution of the Navier Stokes equations. Math.
Comp, 22:745–762, 1968.

[20] A. J. Chorin. On the convergence of discrete approximations to the
Navier-Stokes equations. Math. Comp, 23:341, 1969.

[21] David J Cockrell and Alec David Young. The aerodynamcis of
parachutes. Technical report, DTIC Document, 1987.

[22] Rama Cont and Peter Tankov. Financial modelling with jump processes,
volume 2. CRC Press, 2004.

120

[23] Rama Cont and Ekaterina Voltchkova. A finite difference scheme for
option pricing in jump diffusion and exponential lévy models. SIAM
Journal on Numerical Analysis, 43(4):1596–1626, 2005.

[24] Rama Cont and Ekaterina Voltchkova. Integro-differential equations
for option prices in exponential lévy models. Finance and Stochastics,
9(3):299–325, 2005.

[25] John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing:
A simplified approach. Journal of financial Economics, 7(3):229–263,
1979.

[26] Duy Minh Dang, Christina Christara, and Kenneth R Jackson. A paral-
lel implementation on gpus of adi finite difference methods for parabolic
pdes with applications in finance. Available at SSRN 1580057, 2010.

[27] Herve Delingette. Triangular springs for modeling nonlinear membranes.
IEEE Transactions on Visualization and Computer Graphics Volume 14
Issue 2, pages 723–731, March 2008.

[28] S. Dutta, E. George, J. Glimm, J. Grove, H. Jin, T. Lee, X. Li, D. H.
Sharp, K. Ye, Y. Yu, Y. Zhang, and M. Zhao. Shock wave interactions
in spherical and perturbed spherical geometries. Nonlinear Analysis,
63:644–652, 2005. University at Stony Brook preprint number SB-AMS-
04-09 and LANL report No. LA-UR-04-2989.

[29] S. Dutta, E. George, J. Glimm, X. L. Li, A. Marchese, Z. L. Xu, Y. M.
Zhang, J. W. Grove, and D. H. Sharp. Numerical methods for the deter-
mination of mixing. Laser and Particle Beams, 21:437–442, 2003. LANL
report No. LA-UR-02-1996.

[30] Daniel Egloff. High performance finite difference pde solvers on gpus.
QuantAlea GmbH, Zurich, Switzerland2010, 2010.

[31] John A. Ekaterinaris. High-order accurate, low numerical diffusion
methods for aerodynamics. Progress in Aerospace Sciences, 41(34):192
– 300, 2005.

[32] Lawrence C. Evans. Partial Differential Equations. American Mathe-
matical Soc., 2010.

[33] EG Ewing, HW Bixby, and TW Knacke. Recovery systems design guide.
Technical report, DTIC Document, 1978.

121

[34] A. Van Gelder. Approximate simulation of elastic membranes by trian-
gulated spring meshes. J. Graphics Tools, 3(2):21–41, March 1998.

[35] E. George, J. Glimm, X. L. Li, Y. H. Li, and X. F. Liu. The influence
of scale-breaking phenomena on turbulent mixing rates. Phys. Rev. E,
73:016304, 2006.

[36] E. George, J. Glimm, X. L. Li, A. Marchese, and Z. L. Xu. A comparison
of experimental, theoretical, and numerical simulation Rayleigh-Taylor
mixing rates. Proc. National Academy of Sci., 99:2587–2592, 2002.

[37] Mike Giles, Endre László, István Reguly, Jeremy Appleyard, and Julien
Demouth. Gpu implementation of finite difference solvers. In Proceed-
ings of the 7th Workshop on High Performance Computational Finance,
pages 1–8. IEEE Press, 2014.

[38] Katuhiko Goda. A multistep technique with implicit difference schemes
for calculating two- or three-dimensional cavity flows. J. Comput. Phys.,
30:76–95, 1979.

[39] Oscar Gonzalez and Andrew M. Stuart. A First Course in Continuum
Mechanics. Cambridge University Press, 2008.

[40] Nail A Gumerov and Ramani Duraiswami. Fast multipole methods on
graphics processors. Journal of Computational Physics, 227(18):8290–
8313, 2008.

[41] Helmut G Heinrich and Eugene L Haak. Stability and drag of parachutes
with varying effective porosity. Technical report, DTIC Document, 1971.

[42] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin
methods: algorithms, analysis, and applications, volume 54. Springer
Science & Business Media, 2007.

[43] Ali Hirsa and Dilip B Madan. Pricing american options under variance
gamma. Journal of Computational Finance, 7(2):63–80, 2004.

[44] Roger W Hockney. A fast direct solution of poisson’s equation using
fourier analysis. Journal of the ACM (JACM), 12(1):95–113, 1965.

[45] G. Jiang and C.-W. Shu. Efficient implementation of weighted ENO
schemes. J. Comput. Phys., 126:202–228, 1996.

122

[46] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of
weighted ENO schemes. Journal of Computational Physics, 126(1):202
– 228, 1996.

[47] K. Karagiozis, R. Kamakoti, F. Cirak, and C. Pantano. A computational
study of supersonic disk-gap-band parachutes using large-eddy simula-
tion coupled to a structural membrane. Journal of Fluids and Structures,
27(2):175–192, 2011.

[48] J. Kim and P. Moin. Application of a fractional-step method to incom-
pressible Navier-Stokes equations. J. Comput. Phys., 59:308, 1985.

[49] Y. Kim and C. S. Peskin. 2-D parachute simulation by the immersed
boundary method. SIAM J. Sci. Comput., 28:2294–2312, 2006.

[50] Y. Kim and C. S. Peskin. 3-D parachute simulation by the immersed
boundary method. Comput. Fluids, 38:1080–1090, 2009.

[51] Yongsam Kim and Charles S Peskin. 2-d parachute simulation by the
immersed boundary method. SIAM Journal on Scientific Computing,
28(6):2294–2312, 2006.

[52] Young Shin Kim, Svetlozar T Rachev, Michele Leonardo Bianchi, and
Frank J Fabozzi. Financial market models with lévy processes and time-
varying volatility. Journal of Banking & Finance, 32(7):1363–1378, 2008.

[53] David B Kirk and W Hwu Wen-mei. Programming massively parallel
processors: a hands-on approach. Morgan Kaufmann, 2010.

[54] Theo W Knacke. Parachute recovery systems design manual. Technical
report, DTIC Document, 1991.

[55] Roger Knobel. An Introduction to the Mathematical Theory of Waves.
American Mathematical Soc., 2000.

[56] AC Knoell. Alaa 2nd aerodynamic deceleration systems conference.
1968.

[57] Jens Kruger and Rudiger Westermann. GPU Gems 2. Pearson Addison
Wesley Prof, 2005.

[58] C. C. Lin and L. A. Segel. Mathematics Applied to Deterministic Prob-
lems in the Natural Sciences. Society for Industrial and Applied Math-
ematics, 1988.

123

[59] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. Journal of Computational Physics, 115(1):200 – 212,
1994.

[60] Dilip B Madan, Peter P Carr, and Eric C Chang. The variance gamma
process and option pricing. European Finance Review, 2(1):79–105,
1998.

[61] Jr. Manley C.Butler and Michael D.Crowe. The design, development and
testing of parachutes using the bat sombrero slider. 15th CEAS/AIAA
Aerodynamic Decelerator Systems Technology Conference, 1999.

[62] Ana-Maria Matache, Tobias Von Petersdorff, and Christoph Schwab.
Fast deterministic pricing of options on lévy driven assets. ESAIM-
Mathematical Modelling and Numerical Analysis, 38(1):37–72, 2004.

[63] Randall C Maydew, Carl W Peterson, and Kazimierz J Orlik-
Rueckemann. Design and testing of high-performance parachutes (la
conception et les essais des parachutes a hautes performances). Techni-
cal report, DTIC Document, 1991.

[64] Robert C McOwen. Partial differential equations: methods and applica-
tions. Pearson Education Inc., 2003.

[65] Robert C Merton, Michael J Brennan, and Eduardo S Schwartz. The
valuation of american put options. The Journal of Finance, 32(2):449–
462, 1977.

[66] K Parand, Saeed Zafarvahedian, and Sayyed A Hossayni. Gpu-
acceleration of parallel unconditionally stable group explicit finite dif-
ference method. arXiv preprint arXiv:1310.3422, 2013.

[67] Everett H Phillips and Massimiliano Fatica. Implementing the himeno
benchmark with cuda on gpu clusters. In Parallel & Distributed Pro-
cessing (IPDPS), 2010 IEEE International Symposium on, pages 1–10.
IEEE, 2010.

[68] J. Potvin. Parachute inflation. McGraw-Hill Yearbook of Science and
Technology, 1998.

[69] J. Potvin, K. Bergeron, G. Brown, R. Charles, K. Desabrais, H. Johari,
V. Kumar, M. McQuilling, A. Morris, G. Noetscher, and B. Tutt. The

124

road ahead: A white paper on the development, testing and use of ad-
vanced numerical modeling for aerodynamic decelerator system design
and analysis. AIAA paper 2011-2501, May 2011.

[70] Jean Potvin and Mark McQuilling. The bi-model: Using cfd in simu-
lations of slowly-inflating low-porosity hemispherical parachutes. AIAA
paper 2011-2542, May 2011.

[71] J. W. Purvis. Prediction of line sail during lines-first deployment. AIAA
21st Aerospace Sciences Meeting, 1983.

[72] J. W. Purvis. Numerical prediction of deployment, initial fill, and in-
flation of parachute canopies. 8th AIAA Aerodynamic Decelerator and
Balloon Technology Conference, 1984.

[73] EW Sachs and AK Strauss. Efficient solution of a partial integro-
differential equation in finance. Applied Numerical Mathematics,
58(11):1687–1703, 2008.

[74] Douglas S.Adams. Lessons learned and flight experience from planetary
parachute development. 7th International Planetary Probe Workshop
(IPPW7), 2010.

[75] R. Samulyak, T. Lu, and P. Parks. A hydromagnetic simulation of pellet
ablation in electrostatic approximation. Nuclear Fusion, 47:103–118,
2007.

[76] R. Samulyak, T. Lu, P. Parks, J. Glimm, and X. Li. Simulation of
pellet ablation for tokamak fuelling with itaps front tracking. Journal of
Physics: Conf. Series, 125:012081, 2008.

[77] WP Shepardson. Problems of parachute design and their relation to
textiles. Technical report, DTIC Document, 1954.

[78] Qiangqiang Shi, Daniel Reasor, Zheng Gao, Xiaolin Li, and Richard D.
Charles. On the verification and validation of a spring fabric for medeling
parachute inflation. Submitted to Journal of Fluids and Structures, 2014.

[79] Gary A Sod. A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws. Journal of Computational
Physics, 27(1):1 – 31, 1978.

125

[80] GA Solt Jr. Performance of and design criteria for deployable aerody-
namic decelerators. US Air Force Flight Dynamics Lab Report, ASD-
TR-61-579, page 357, 1963.

[81] K. Stein, R. Benney, V. Kalro, T. E. Tezduyar, J. Leonard, and M. Ac-
corsi. Parachute fluid-structure interactions: 3-D computation. Comput.
Methods Appl. Mech. Engrg, 190:373–386, 2000.

[82] K. Stein, T. Tezduyar, V. Kumar, S. Sathe, R. Benney, E. Thorn-
burg, C. Kyle, and T. Nonoshita. Aerodynamic interactions between
parachute canopies. J. Appl. Mech., 70:50–57, 2003.

[83] K. R. Stein, R. J. Benney, V. Kalro, A. A. Johnson, and T. E. Tezdu-
yar. Parallel computation of parachute fluid-structure interactions. 14th
Aerodynamic Decelerator Systems Technology Conference, 1997.

[84] K. R. Stein, R. J. Benney, E. C. Steeves, Development U.S. Army Nat-
ick Research, and Engineering Center. A computational model that cou-
ples aerodynamic and structural dynamic behavior of parachutes during
the opening process. Technical report (U.S. Army Natick Laboratories).
United States Army Natick Research, Development and Engineering
Center, Aero-Mechanical Engineering Directorate, 1993.

[85] K. R. Stein, R. J. Benney, T. E. Tezduyar, J. W. Leonard, and M. L.
Accorsi. Fluid-structure interactions of a round parachute: Modeling
and simulation techniques. J. Aircraft, 38:800–808, 2001.

[86] Harold S Stone. An efficient parallel algorithm for the solution of a
tridiagonal linear system of equations. Journal of the ACM (JACM),
20(1):27–38, 1973.

[87] J. H. Strickland, V. L. Porter, G. F. Homicz, and A. A. Gossler. Fluid-
structure coupling for lightweight flexible bodies. 17th AIAA Aerody-
namic Decelerator Systems Technology Conference and Seminar, 2003.

[88] Toru Takahashi and Tsuyoshi Hamada. Gpu-accelerated boundary ele-
ment method for helmholtz’equation in three dimensions. International
journal for numerical methods in engineering, 80(10):1295–1321, 2009.

[89] K. Takizawa, C. Moorman, S. Wright, T. Spielman, and T. E. Tezdu-
yar. Fluid-structure interaction modeling and performance analysis of
the orion spacecraft parachutes. International Journal for Numerical
Methods in Fluids, 65:271–285, 2011.

126

[90] Kenji Takizawa, Timothy Spielman, and Tayfun E. Tezduyar. Space-
time FSI modeling and dynamical analysis of spacecraft parachutes and
parachute clusters. Computational Mechanics, 48:345–364, 2011.

[91] T. E. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space-time finite el-
ement techniques for computation of fluid-structure interactions. Com-
puter Methods in Applied Mechanics and Engineering, 195:2002–2027,
2006.

[92] T. E. Tezduyar, S. Sathe, M. Schwaab, J. Pausewang, J. Christo-
pher, and J. Crabtree. Fluid-structure interaction modeling of ringsail
parachutes. Computational Mechanics, 43:133–142, 2008.

[93] T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christo-
pher. Space-time finite element computation of complex fluid-structure
interactions. International Journal for Numerical Methods in Fluids,
64:1201–1218, 2010.

[94] J. W. Thomas. Numerical Partial Differential Equations. Springer Sci-
ence and Business Media, 1995.

[95] B. Tutt, S. Roland, R. D. Charles, and G. Noetscher. Finite mass sim-
ulation techniques in LS-DYNA. 21st AIAA Aerodynamic Decelerator
Systems Technology conference and Seminar, 2011.

[96] B. A. Tutt and A. P. Taylor. The use of LS-DYNA to simulate the
inflation of a parachute canopy. 18st AIAA Aerodynamic Decelerator
Systems Technology conference and Seminar, 2005.

[97] Benjamin Tutt. The application of a new material porosity algorithm for
parachute analysis. In 9th International LS-DYNA Users Conference,
2006.

[98] J Van Kan. A second-order accurate pressure-correction scheme for vis-
cous incompressible flow. SIAM Journal on Scientific and Statistical
Computing, 7(3):870–891, 1986.

[99] Jason Wang, Nicolas Aquelet, Benjamin Tutt, Ian Do, Hao Chen,
and Mhamed Souli. Porous euler-lagrange coupling: Application to
parachute dynamics. In 9th International LS-DYNA Users Conference,
2006.

127

[100] Stephen Wolfram. New Kind of Science: Notes from the Book. Wolfram
Media Inc., 2002.

[101] Li Yu and Xiao Ming. Study on transient aerodynamic characteristics
of parachute opening process. Acta Mechanica Sinica, 23:627–633, 2007.

128

