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Abstract of the dissertation

Electromechanical Response of Piezoelectric Cellular
Architectures: The effect of topological features and

deformation modes

by

Sumantu Iyer

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2014

Piezoelectric composites have played a major role in significantly enhancing

the capabilities of hydrophones, sensors and actuators by providing better

electromechanical coupling and lower acoustic impedances when compared to

monolithic piezoelectric ceramics. Recent developments in the field of piezo-

electric composites has led to the investigation into piezoelectric cellular de-

signs that have the potential to further increase the sensitivity of existing

piezoelectric devices. Accordingly the present study involves:- i) Investigat-

ing the role of topology and the direction of poling on the effective proper-

ties of piezoelectric cellular solids; ii) The role of deformation mechanisms on

the structure-property relation of piezoelectric cellular architectures to cate-

gorize cellular topologies based on the dominant mode of deformation (i.e.,

bending vs. stretching) and iii) Develop an analytical model based on the

homogenization technique to predict the overall electromechanical properties

of piezoelectric foam structures. First, a finite element model is developed

to characterize the complete electromechanical properties of the most general
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form of elastically anisotropic and piezoelectrically active foams with honey-

comb structures has been proposed. Four classes of piezoelectric honeycomb

structures are identified depending on the relative orientation of the poling

direction with the porosity direction (longitudinal and transverse) and the

geometry of the honeycombs (isotropic and anisotropic).

To study the role of the major deformation modes in the ligaments of

piezoelectric cellular struts on the effective electromechanical properties of the

given cellular topology, three main architectures (foams) that exemplify bend-

ing and stretching dominated piezoelectrically active cellular solids cellular

solids are considered. These structures represent hexagonal, tetragonal and

triangular cellular topologies with the connectives of three, four and six cell

walls per vertex, respectively.

An analytical framework based on the homogenization method has been

developed to predict the effective electromechanical properties of periodic, par-

ticulate and porous, piezoelectric composites with anisotropic constituents.

Expressions are provided for the effective moduli tensors of n-phase compos-

ites based on the respective strain and electric field concentration tensors. By

taking into account the shape and distribution of the inclusion and by invoking

a simple numerical procedure, solutions for the electromechanical properties

of a general anisotropic inclusion in an anisotropic matrix are obtained.

Finally using Bloch’s theorem in conjunction with finite element analy-

sis, this work investigates the relationships between inherent microstructural

features (such as lattice symmetry, relative density and constituent material)

and the acoustic properties (such as wave dispersion, band gaps, and acous-

tic anisotropy) of architectured lattice materials. The coupling between mi-

crostructural features and band gaps is investigated in hexagonal lattice ge-

ometry which is inspired by the two dimensional Bravais family of lattices.
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CHAPTER 1

Introduction

1.1 Prior work in the area of cellular architectures

Cellular materials in the form of foams [8, 9], hierarchical and lattice-based

architectures [10, 11, 12, 13] have gained substantial importance in a wide

range of automotive (e.g. [14, 15, 16]), aerospace (e.g. [3, 17]), naval (e.g.

[18, 19]), and biomedical (e.g. [9, 20, 21]) applications. Traditionally, cellular

solids have been attractive for their ability to provide, at low densities, many

practical properties such as significant stiffness and strength as well as energy

absorption capabilities. More recently, cellular solids have also been recognized

for their tremendous potential as multifunctional and active materials and

several efforts have been focused on developing smart foam materials from

electric field activated piezoelectric materials [22, 23, 24, 25, 26], temperature

activated shape memory materials and magnetic field activated shape memory

materials [27].

Amongst smart foams, piezoelectric foams, with their electromechanical

coupling properties and low densities, have been recognized for their unique

set of piezoelectric properties such as reduced acoustic impedance and en-

hanced sensitivity which are desirable in many sensor and device applications

such as hydrophones. Consequently, several experimental studies, analytical

and numerical models have been developed towards understanding the elec-

tromechanical properties of piezoelectric foams with both closed type porosity

(i.e., 3-0 connectivity) and open type porosity (i.e., 3-1 and 3-3 connectivity)

[28, 29].

Haun and Newnham fabricated 1-3-0 type piezoelectric lead zirconate

titanate (PZT) - polymer composites using a single large void at the center

1



of the composite and showed that such a composite significantly enhances a

hydrophones sensing abilities by increasing the figures of merit such as the

hydrostatic strain coefficient (dh) and the hydrostatic figure of merit (dh ·
gh) [28]. Arai et al. constructed a hydrophone using porous piezoelectric

ceramics of 3-0 type and demonstrated that the hydrophone sensitivity was

higher than that of solid piezoceramic by 20 db [30]. Li et al. used a sintering

process to fabricate 3-0 type porous piezoelectric ceramics and observed a

large increase in the piezoelectric charge coefficient with increasing porosity

volume fraction [31]. Marselli et al. also fabricated 3-0 type porous PZT

piezoelectric materials which exhibited hydrostatic figures of merit which were

significantly higher than that observed in solid PZT [32]. Ueda et al. presented

PZT based 3-0 type cellular architectures that exhibited large-strain responses

using a multilayer mechanism which overcomes the small-strain limitation of

solid piezoelectric ceramic materials thereby making them useful for a broad

range of applications. Ting et al. studied the effects of several materials and

processing parameters on the piezoelectric properties and identified an epoxy

coating on a 3-0 type porous sample to generate improved piezoelectric figures

of merit [33, 34].

Bast and Wersing showed that the acoustic impedance (Z) for PZT mate-

rials with 3-1-type porosity decreases with increasing porosity volume fraction

[35]. Wirges et al. developed an optimized sequence of steps for preparing

3-1 type piezoelectric structures from non-voided polyethylene tetraphalate

(PETP) films by foaming with carbon dioxide, biaxial mechanical stretching,

controlled void inflation and bipolar electric discharge. Their new optimized

PETP foams exhibited a large piezoelectric coefficient with low elastic stiffness

[36].

Roncari et al. demonstrated that by using different techniques to fab-

ricate the 3-3 type porous PZT composites, the pore size distribution, pore

volume fractions and their acoustic impedance could be affected significantly.

Lee et al. also fabricated 3-3- type porous PZT-PZN piezoelectric materials

using a ball-milling method and reported large hydrostatic figures of merit

values as well [37, 38].
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Analytical models developed to study the behavior of composite piezo-

electric materials include the preliminary works by Banno who used a modified

cubes model to explain the behavior of piezoelectric ceramics with closed pores

(3-0 type) and open pores (3-1 type) [39]. Dunn and Taya solved the equiva-

lent Eshelby inclusion problem for a single ellipsoidal inclusion in an infinite

piezoelectric medium using the Greens function approach [40, 41]. By com-

bining their results for a single particle with the effective medium approach

of Mori and Tanaka, they derived closed form solutions for porous piezoelec-

tric materials with 3-0 type closed porosity and with 3-1 type open porosity

for the case of piezoelectric materials that exhibit transverse isotropy in their

elastic properties. Bowen and Topolov also provided a method to predict the

electromechanical properties of piezoelectric materials with 3-0 type closed

porosity and 3-1 type open porosity as well [42]. Gomez and Espinosa derived

a model to predict the dielectric properties of porous piezoelectric materials

and the dielectric coupling generated by the introduction of a second phase to

the pores as well [43].

Challagulla and Venkatesh [44] formulated an asymptotic homogenization

method to obtain the complete electromechanical properties of 2-2 type layered

composites with anisotropic constituents. They studied two classes of layered

piezoelectric composites (i.e., longitudinally layered and transversely layered)

to obtain the effective properties in the limits of both large-volume (i.e., bulk)

and small-volume (i.e., thin-film) systems. An extension of the asymptotic ho-

mogenization method to obtain the properties of 1-3 type long-fiber piezoelec-

tric composites with transversely isotropic constituents was presented in the

works of Bravo-Castillero,et al. [2]. Bisegna and Luciano [45, 46] provided vari-

ational bounds to estimate the homogenized properties of piezoelectric com-

posites as well. Hori and Nemat-Nasser [47] have obtained Hashin-Shtrikman

type exact bounds for electroactive composites. The bounds presented by

them are general and apply to non-linear constituent phases although exact

solutions are not provided for the fully anisotropic matrix-particle material

property tensors.

A summary of the existing analytical and numerical models developed to
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Table 1.1: A summary of the analytical and numerical models developed to predict the
electromechanical response of three types of piezoelectric composites.

Existing models developed to predict the effective properties of piezoelectric composites.

Particulate composites Long-fiber composites Laminate-composites

Analytical Models

Transversely Isotropic

Dunn and Taya Dunn and Taya Otero et al.
[48] [49] [50]

Mikata Mikata
[51] [52]

Bravo-Castillero et al.
[53]

Anisotropic

Banno Banno Banno
[39] [39] [39]

Hori and Nemat-Nasser Hori and Nemat-Nasser Lee
[47] [47] [54]

Hori and Nemat-Nasser
[47]

Bowen and Topalov Bowen and Topalov Chen et al.
[55] [55] [56]

Bowen and Topalov
[55]

Kar-Gupta and Venkatesh Challagulla and Venkatesh
[57] [44]

Present Model Present model Present model

Numerical Models

Transversely Isotropic
Kar-Gupta and Venkatesh Pettermann and Suresh Kar-Gupta and Venkatesh
[58] [59] [60]

Kar-Gupta and Venkatesh
[61]

Anisotropic

Kar-Gupta and Venkatesh Pettermann and Suresh Wang
[58] [59] [62]

Kar-Gupta and Venkatesh
[60]

Iyer and Venkatesh Kar-Gupta and Venkatesh
[63] [58]

Iyer and Venkatesh
[64]

study the effective response of periodic piezoelectric composites is presented

in Table 1.1.

Iyer and Venkatesh developed three-dimensional finite element models

to characterize the electromechanical response of 3-0 type closed foams and

demonstrated that such closed foam systems exhibited a strong dependence on

the shape of the enclosed porosity [24, 25]. Kar-Gupta and Venkatesh also de-

veloped numerical models to examine the electroelastic properties of 3-1 type

open foam structures with circular and elliptical porosity and demonstrated

that the orientation of the porosity with respect to the poling direction had a

significant influence on the effective piezoelectric properties [26, 65]. March-

eselli and Venkatesh presented models to characterize the piezoelectric prop-

erties of 3-1 type open foam structures with hollow fibers and demonstrated

that the effective properties of such foam materials can be suitably tailored by
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modifying the matrix and the fiber material [66]. Challagulla and Venkatesh

developed three-dimensional finite-element models to completely characterize

the elastic, dielectric and piezoelectric properties of 3-3 type open piezoelectric

foam structures with asymmetric interconnects, symmetric interconnects, and

without any interconnects and benchmarked them with respect to 3-1 type

long porous piezoelectric foams [22, 23, 67]. Bosse et al. extended the work

of Challagulla and Venkatesh and investigated the role of porosity shape in

determining the effective properties of 3-3 type open piezoelectric foams [67].

One of the most significant issues related to topology-property coupling

is the role of the dominant deformation mode. Existing piezoelectric foams

have architectures with low nodal connectivity (i.e. average number of liga-

ments connected to a vertex is approximately three). It is generally recognized

that the low connectivity of solid foams leads to a bending dominated defor-

mation mode (i.e. cell walls deform mainly by bending), and therefore, their

macroscopic mechanical properties (i.e. stiffness and strength) are far from

being optimal [68, 69]. Similarly, the electromechanical properties of piezo-

electric foams with low nodal connectivity might be far from optimal. To

understand the impact of deformation mode on the electromechanical prop-

erties one can refer to scaling laws developed for structural passive cellular

solids [70]. These laws show that stiffness and strength for bending dominated

2D foam structures scale with relative density as ρ3 and ρ2 , respectively. On

the other hand, stiffness and strength, for 2D cellular solids whose cell walls

deform mainly by stretching (i.e. stretching dominated foam), scale linearly

with relative density as ρ . Clearly, switching ligament deformation mode

from bending to stretching is accompanied by an order of magnitude increase

in the mechanical properties (i.e., stiffness and strength), especially at very

low relative densities (<30%). Generalizing these trends and extending them

to piezoelectric foams is not straightforward as the role of deformation modes

on the electromechanical response of piezoelectric foams is inherently more

complex than in structures with non-active constituents. The added complex-

ity is due to the anisotropy of the foam constituent material (i.e., piezoelectric
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material), the coupled electro-mechanical nature of the problem, the sensi-

tivity of the foam properties to the poling direction and its orientation with

respect to the porosity of cellular solids. Nevertheless, it can be predicted that

in bending-dominated foam, the deformation is not uniform and is localized

near vertices while large population of the cell walls will be almost stress free.

Accordingly, charge will be localized near bending zones, while a majority of

the ligaments will be charge free. In addition, at charge localized zones, the

charge will change sign abruptly across the thin ligaments as one side is under

tension and the other is under compression. On the other hand, in stretching-

dominated foams, deformation and charge distribution will be more uniform,

in terms of magnitude and sign. So, stretching-dominated piezoelectric foams

will exhibit higher stiffness, strength, toughness, better load sharing, more

uniform deformations and uniform charge, as compared to bending dominated

foams.

Periodic cellular (lattice) materials, by virtue of their repeating microstruc-

tures and associated geometric impedance mismatch, also exhibit wave dis-

persion, frequency dependent transmissibility, and directional characteristics

that are inherently dependent on their constituent material and mesoscale mi-

crostructural features [71]. These characteristics render lattice materials as

potential candidates to perform as low frequency phononic crystals and meta-

materials for radar, sonar, wave guiding, wave modulation and isolation appli-

cations. To accelerate the wide-spread implementation of lattice materials as

hinges for phononic crystals, it is of empirical importance to first establish the

ability to engineer them to exhibit application-tailored properties and tunable

behavior (e.g. to activate/deactivate band gaps). Achieving tunability and

application-oriented tailorablity requires an understanding of the phononic,

acoustic, wave dispersive and directional properties of the lattices and their

interactions with various lattice features (e.g., cell wall thickness, ligament

deformations modes, etc.)[72].

Accordingly, using Bloch’s theorem in conjunction with finite element
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analysis, this work investigates the relationships between inherent microstruc-

tural features (such as lattice symmetry, relative density and constituent ma-

terial) and the acoustic properties (such as wave dispersion, band gaps, and

acoustic anisotropy) of architectured lattice materials [73]. The coupling be-

tween microstructural features and band gaps is investigated in hexagonal

lattice geometry which is inspired by the two dimensional Bravais family of

lattices. Results illustrate that band structure and phononic properties are

highly sensitive to relative density and can scale non-uniformly with it as

eigenmodes are associated with relative density dependent deformation mech-

anisms. Moreover, results show that band gaps can potentially be activated

and deactivated using macroscopic strain fields. The latter opens horizons for

realizing cellular based phononic crystals with tunable properties.

1.2 Outline of the dissertation

Overall, a comprehensive set of models and results exist to demonstrate that

the introduction of (closed or open) porosity in piezoelectric materials en-

hances their utility in certain practical applications. Furthermore, the influ-

ence of microstructural features on the effective properties of certain classes of

piezoelectric foams such as those exhibiting 3-3 type connectivity have been

presented [32, 38]. However, within the context of 3-1 type piezoelectric foams,

the effective electromechanical properties of honeycomb-type foam structures

have not yet been investigated.

Moreover it has been well established that periodic composite materials

exhibit wave dispersive properties due to the repeating lattice structure and

material properties mismatch. However whether cellular solids can expand the

scope of the current applicability of lattice architectures to provide a noiseless

environment in devices, is yet to be established. It will be shown that the cel-

lular topologies studied in the current work, can operate in the sub kHz range

and block out undesirable frequencies and provide a vibrationless environment.

Furthermore, as passive honeycomb type foam structures with their unique

and tailorable microstructural and topological features have already been proven
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to provide enhanced stiffness to out-of-plane shear deformations, an interesting

question that follows naturally is:

“Can active honeycomb foams with a desirable combination of mechanical

stiffness, piezoelectric properties and dynamic properties be developed?”

Hence, the objectives of the present study are:

1. To develop a finite element model to characterize the complete electrome-

chanical properties of the most general form of elastically anisotropic and

piezoelectrically active foams with honeycomb structures;

2. To establish the relationships between the microstructural features of

the honeycomb structures and their effective properties over a range of

relative densities; and

3. To identify novel piezoelectric honeycomb structures that provides the

best combination of mechanical and piezoelectric properties.

4. To realize the potential of cellular topologies as frequency band gap gen-

erators to be applied as noise filters, wave guides and acoustic isolators.

The present work has been organized as follows. Chapter 2 concerns

a detailed analysis on the electromechanical response of piezoelectric cellular

architectures using a finite-element model. Chapter 3 looks at the electrome-

chanical response of cellular solids and the role of cellular topology by study-

ing the dominant deformation modes in the struts of a given cellular solid.

The role of bending vs. stretching deformation in the struts is looked at by

analysing three characteristic unit-cells. Chapter 4 presents the details of the

analytical model developed to study and characterize piezoelectric particu-

late/porous composites using a homogenization method. Finally, Chapter 5

contains details of the method used in studying the frequency-structure cou-

pling properties of cellular architectures.
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CHAPTER 2

Electromechanical Response of Piezoelectric
Honeycomb Foam Structures

2.1 Outline of the chapter

The present work has been organized as follows. Section 2.2 illustrates a

classification of porous piezoelectric materials. Section 2.3 highlights the con-

stitutive relations that govern the behavior of coupled piezoelectric materials

in the linear elastic domain and identifies the characteristic figures of merit

of significance to the applications of piezoelectric materials (e.g., in sensors).

Section 2.4 presents the details of the finite element-based numerical model

developed in the present study to characterize the effects of microstructural

features and relative densities on the electro-elastic behavior of piezoelectric

honeycomb foam structures. The electromechanical properties of piezoelectric

honeycomb structures predicted by the finite element model are discussed in

Section 2.5 and principal conclusions from the present study are highlighted

in Section 2.6.

2.2 Classification of Piezoelectric Honeycomb Foams

In general, piezoelectric foam materials can be grouped into three distinct

types:

1. 3-0 type, where the porosity is enclosed in all three dimensions by the

continuous matrix phase;

2. 3-1 type, where the porosity exhibits connectivity in the 1-direction,

which is similar to the case of long fibers embedded in the continuous
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matrix phase which is connected to itself in all three directions.

3. 3-3 type, where the porosity exists in an open inter-connecting network

where both the matrix phase and the porosity exhibiting connectivity in

all three directions.

Figure 2.1: Schematic illustration showing: Schematic illustrating four classes of (longi-
tudinally or transversely porous and isotropically or anisotropically shaped) piezoelectric
honeycomb foam structures (with hexagonal porosity) and two classes of reference foam
structures (with square porosity) investigated in the present study. (The poling direction is
indicated by the red arrow).

The honeycomb foam structures considered in the present study exhibit

3-1 type connectivity. Depending on the relative orientation of the poling

direction with the porosity direction and the geometry of the honeycombs,

four classes of piezoelectric honeycomb foam structures are identified (Fig.

2.1):
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1. Longitudinally porous honeycombs: Structures where the poling direc-

tion is parallel to the porosity direction.

2. Transversely porous honeycombs: Structures where the poling direction

is orthogonal to the porosity direction.

3. Isotropic/Regular honeycombs: Structures which exhibit in-plane geo-

metric isotropy with an aspect-ratio of
√
3.

4. Anisotropic/Irregular honeycombs: Structures which exhibit in-plane ge-

ometric anisotropy with an aspect-ratio less than or greater than
√
3.

In the present study, the electromechanical response of the four classes

of piezoelectric honeycomb foam structures are characterized over a range of

porosity volume fractions and benchmarked with the properties of a reference

foam structure with square-shaped porosity. An overview of the constitutive

relations that govern the electromechanical response of piezoelectric materials

in the linear elastic domain is given in Section 2.3.

2.3 Constitutive Relations for Piezoelectric Materials

The constitutive relations that govern the behavior of piezoelectric materials

in the linear elastic domain as represented (in stress-charge) form is as follows:

σij = CE
ijklεkl − ekijEk (2.1)

Dk = ekijεij + κε
kiEi (2.2)

where σ is the stress tensor, ε is the strain tensor, E is the electric field

vector,D is the electric displacement vector, CE is the stiffness tensor with the

superscript ‘E’ indicating that the measurement of the components have been

carried out at zero/constant electric field, κε is the permittivity tensor with

the superscript ‘ε’ indicating that the components of κ have been measured

at constant or zero strain, e is the piezoelectric coupling tensor. Following the
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representation of Nye [74], Eq. (2.1) and (2.2) can also be written as:

σa = CE
abεb − ekijEk (2.3)

Di = eibεb + κε
kiEk (2.4)

where a and b are derived from ij and kl as follows: for ij or kl = 11, 22, 33, 23, 13,

and 12, a and b, respectively, correspond to 1, 2, 3, 4, 5, and 6. In Eqns. (2.1)

and (2.2) i, j, k, l correspond to regular Cartesian coordinates ranging from 1

to 3. Eqns. (2.3) and (2.4) are the most general representation of the consti-

tutive behavior of the piezoelectric materials with 45 independent constants

- 21 elastic, and 18 piezoelectric and 6 dielectric (or permittivity) constants.

For the complete characterization of the piezoelectric behavior of a material

all 45 material constants have to be determined. In order to assess the util-

ity of piezoelectric composites in practical applications, combinations of the

fundamental electromechanical properties (i.e., figures of merit) are usually

invoked. Some figures of merit that are of direct importance to porous piezo-

electric materials and their potential applications (e.g., in hydrophones) are the

piezoelectric coupling constant (kt), the acoustic impedance (Z), the hydro-

static strain coefficient (dh), and the hydrostatic figure of merit (dhgh)[25, 24].

The finite element model developed in the present study to characterize the

complete electromechanical properties and the corresponding figures of merit

of piezoelectric honeycombs is described in Section 2.4.

2.4 Finite-element model for piezoelectric honeycomb

foams

The finite-element model developed in the present study uses the basis that

the complete electromechanical response of a large periodic piezoelectric foam

structure can be captured by characterizing the electromechanical behavior

of a representative volume element of the material, i.e., the unit cell. The

finite-element analysis of the unit cell is carried out using a commercially

available software (ABAQUS). Eight-node linear piezoelectric brick (C3D8E)
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elements are used to mesh the unit cell. Each node is allowed a total of four

degrees of freedom three translational degrees of freedom (i.e., 1, 2, 3) and

one electric potential degree of freedom (i.e., 9). To ensure that the unit cell

Figure 2.2: (a, b) Schematic illustrating the piezoelectric honeycomb and reference foam
structures and their corresponding unit cells. (c, d) The unit-cell finite-element models
representing an isotropic honeycomb foam structure with 25% relative density. All isotropic
honeycombs regardless of relative density have aspect ratio (d1/d2) equal to 1.73. The aspect
ratio of the anisotropic honeycomb considered in the present study is ten times that of the
regular/isotropic honeycomb. The figures show the master nodes located at the vertices of
the unit-cell. R16, RR16, U16, UU16 are shown as examples of the nodes on the boundary
that are used to set up the periodic constraint equations (Eqn. (2.5),(2.6)).

captures the response of the entire foam material, certain periodic boundary

conditions must be enforced. These conditions make sure that the deformation

and electric potential of a unit cell are compatible across its boundaries with

that of the adjacent unit cells [25]. Compatibility is ensured by forcing parallel

faces of the unit cell to remain parallel during deformation. To facilitate

applying the periodic conditions, the honeycomb unit cell is modeled using a

periodic mesh that is symmetric in the xy, yz and xz planes. The periodic

boundary conditions are achieved by connecting each node on one side (e.g.,
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left) with the corresponding node on the opposite side of the unit cell (e.g.,

right) using constraint equations that are defined with respect to the master

nodes, located on the vertices of the unit cell. They are shown in Fig. 2.2 and

are referred to as A,AA,B,BB,C,CC,D, and DD. The constraint equations

are designed such that they allow the master nodes to control the overall

behavior of the unit cell. All loads (mechanical and electrical) are applied to

the master nodes only. The master node A is fixed and electrically grounded for

all simulations to prevent rigid body motion. The total number of constraint

equations is almost half the number of boundary nodes in the model. To

write the constraint equations in a compact form, nodes on boundary lines

connecting two master nodes are assigned to a node set. Therefore, eight

node sets are defined such that: R contains the nodes between A and D; RR

contains nodes between AA and DD; S contains nodes between B and C; SS

contains nodes between BB and CC; U contains nodes between A and B; UU

contains nodes between AA and BB; T contains nodes between C and D; TT

contains nodes between CC and DD. In terms of the node sets and master

nodes the constraint equations are given as:

PR
i − PA = P S

i − PB;PRR
i − PAA = P SS

i − PBB; (2.5)

P T
i − PD = PU

i − PA;P TT
i − PDD = PUU

i − PAA (2.6)

where“P” refers to the degrees of freedom (i.e., P = 1, 2, 3, and 9) and i repre-

sents the node in the set (Figure 2.2). By subjecting a particular unit cell to a

set of controlled mechanical and electrical loading conditions and studying its

response, all 45 corresponding material constants (i.e. complete electroelastic

moduli) can be determined. The main feature of this three-dimensional finite

element model is that all four types of unit cells that represent the four classes

of piezoelectric honeycombs identified in Section 2.2, are subject to a common

set of electrical and mechanical loading conditions in order to determine the

components of the electroelastic moduli of a given foam structure. For the

present study the piezoelectric honeycomb unit-cell is assigned a thickness of

one-element in the out-of-plane direction, i.e., 3-direction. This generalized
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plane-strain approach is valid as we consider 3-1 type foams where the ma-

terial is considered to be fairly thick along the 3-direction. Furthermore, the

electromechanical response of a unit-cell has also been checked to ensure that it

accurately represents the electromechanical response of a larger volume of ma-

terial comprised of many unit-cells. Earlier work by Kar-Gupta and Venkatesh

also demonstrated that the generalized plane strain models accurately capture

the results of three-dimensional finite element models as well [75, 76].

2.5 Results and Discussions

The finite element model developed in the present study for characterizing the

electromechanical properties of honeycomb foams structures is first validated

with an analytical model developed earlier to predict the elastic properties of

such honeycombs. Upon verifying that the results of the finite element model

agree well with the analytical model for elastic properties, the finite element

model is extended to predict the structure-electromechanical property relation-

ships in honeycomb foam structures. A model piezoelectric system PZT-7A

with a high piezoelectric coefficient d33 is chosen for the present study. As the

primary focus of the present study is on low-density piezoelectric foams (which

are expected to exhibit enhanced hydrostatic figures of merit), foam structures

over a limited range of relative densities from 5% to 30% are analyzed. How-

ever, the finite element models can be readily extended to characterize the

electromechanical properties of high-density foams with relative densities that

are greater than 30% as well. The properties for a polycrystal PZT-7A poled

in the 3-direction can be found in Table A.1.

2.5.1 Comparison of the numerical model with analyt-

ical models for honeycomb foam structures

An analytical model that predicts the complete electromechanical properties

of bulk piezoelectric honeycomb structures is at present not available.

By taking into consideration, several deformation mechanisms such as

15



flexure, hinging and stretching, Evans and Masters [1] developed an analytical

model for predicting the elastic properties (i.e., the elastic moduli and Poisson’s

ratios) of honeycomb foam structures made from constituent materials that

exhibit elastic isotropy. The accuracy of the finite element model developed

in the present study in predicting the properties of the honeycomb structures

is assessed by comparing the results of the finite element with those of the

analytical model for a model material such as aluminum that exhibits elastic

isotropy. Fig. 2.3(a) illustrates that there is indeed very good agreement

between the predictions of the finite element model and the analytical model,

for the elastic moduli in two directions and the Poisson’s ratio.

Figure 2.3: Comparison between the predictions of the analytical model (A) by Masters
et al. [1] and those of the finite element model (FEM) developed in the present study for
the Young’s Moduli of an aluminum honeycomb.

An analytical model based on the asymptotic homogenization method was

developed by Saha et al. [77] for predicting some of the elastic and piezoelec-

tric constants of Class I type longitudinally porous honeycomb-cored sandwich

16



shell structures (in the thin-film limit where the out-of-plane thickness is van-

ishingly small). Figures 2.3(b) and 2.3(c) provide a comparison of the results

of analytical model (for thin-film honeycombs) with the results of the finite

element model developed in the present study (for bulk honeycombs). It is

observed that some of the elastic constants such as C11 and C22 are reasonably

well-predicted by the analytical model as compared to other elastic constants

(such as C12) or piezoelectric constant (such as e32) - As the analytical model

[77] was developed for thin shell structures, out-of-plane constants such as C33

or e33 are not predicted by the model. Furthermore, the analytical model [77]

also does not provide explicit expressions for dielectric constants of the hon-

eycomb structures.

Figure 2.4: Variation of the overall elastic constants with relative density in several classes
of piezoelectric honeycomb foam structures.

The results of the finite element model developed in the present study for

bulk honeycomb structures are also compared to the predictions of an analyt-

ical model that was developed by Dunn and Taya [48] for a bulk piezoelectric
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system with cylindrical porosity, as both the honeycomb structures and the

cylindrically porous structures exhibit 3-1 type connectivity. As observed in

Figs. 2.4 and 2.5, the principal material constants in the out-of-plane (i.e., 3)

direction (i.e., C33, κ33 and e33), predicted by the finite element model for Class

I type hexagonal-shaped honeycomb foams agree well with the predictions of

the analytical model for cylindrically porous structures. This is expected as the

out-of-plane properties of piezoelectric foams (and long-fiber composites) are

not influenced significantly by the shape of the porosity (or fibers). However,

the in-plane and other shear constants (such as C11, C12 or C13) are expected

to demonstrate strong dependence on the microstructure and the shape of the

foam structures. Hence, the finite element model is expected to capture the

in-plane and shear properties more accurately than the analytical model [48].

2.5.2 Electromechanical properties of piezoelectric hon-

eycomb foam structures

Figs. 2.4-2.5 present the elastic, dielectric and piezoelectric properties of lon-

gitudinally porous and transversely porous honeycomb structures over a range

of relative densities.

2.5.2.1 Longitudinally porous honeycomb foam structures

Most of the elastic, dielectric and piezoelectric constants of the longitudinally

porous honeycomb foams (with the exception of the in-plane elastic constants,

C12 and C66) exhibit linear dependence on the volume fraction (or relative

density) of the material. However, it should be noted that this observation

may not hold when the porosity is not aligned with the poling direction. Most

of the electromechanical properties of the longitudinally porous honeycombs

(with hexagonal shaped porosity) are similar to that of the reference foam

structure with square-shape porosity. The piezoelectric honeycombs exhibit

significantly enhanced in-plane elastic constants C12 and C66 as compared to

the foams with square shaped porosity while the foams with the square shaped

porosity exhibit significantly enhanced in-plane elastic properties such as C11
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and C22.

Figure 2.5: Variation of the overall piezoelectric and dielectric constants with relative
density in several classes of piezoelectric honeycomb foam structures.

Amongst the normal material constants, the properties in the “longitudi-

nal” direction (such as C33, e33, κ33) of the honeycomb structures are generally

observed to be higher than the in-plane constants (such as C11 or C22). This ob-

servation can be explained on the basis that the dominant deformation mode

in the out-of-plane (3-direction) is axial while the deformation mode in the

in-plane directions (1 or 2-direction) is bending/hinging. However, amongst

the elastic material constants, the properties in the out-of-plane “transverse”

direction (i.e., C13, C23) are observed to show greater compliance than the

in-plane constant C12. This observation can be attributed to the fact that

honeycomb architecture results in an out-of-plane Poisson’s ratio that is at

least an order of magnitude smaller than the in-plane Poisson’s ratio. For ex-

ample, for the case with a relative density of 15%, the in-plane Poisson’s ratio
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ν12 is 0.9 while the out-of-plane Poisson’s ratios ν13 and ν23 are 0.02 and 0.006,

respectively. Therefore, for example, the normal stress in the 1-direction due

to normal strain in the 2- direction, which is governed by C12, is larger than

the normal stress in the 3-direction due to normal strain in the 2- direction,

which is governed by C32.

The shear constants involving the out of plane direction (i.e., C44, C55)

show a linear dependence on increasing relative density of the foam material.

This linear trend is mostly due to the dominance of the axial loading in the

3-direction which also makes the foam stiffer under out-of-plane shear loading

condition. The corresponding in-plane shear constants, C66, was observed to

show a non-linear trend with respect to increasing volume fraction which is

expected as the dominant mode of deformation is bending in the struts and

ligaments of the foam structures along the 1- and 2-directions.

Figure 2.6: Variation of select figures of merit with relative density in several classes of
honeycomb foam structures.

The piezoelectric figures of merit of the longitudinally porous foams do

not exhibit significant dependence on the shape of the porosity with the piezo-

electric coupling constant, acoustic impedance, hydrostatic strain coefficient

and the hydrostatic figure of merit of the hexagonal honeycombs being similar
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to that of the square foams (Fig. 2.6).

2.5.2.2 Transversely porous honeycomb foam structures

Unlike the trends observed in the case of longitudinally porous foam struc-

tures, the electromechanical properties of transversely porous foam structures

(with the exception of C22 and κ22) exhibit significant dependence on the

shape of the porosity. Select elastic, dielectric and piezoelectric constants

such as C13, C23, C44, C55, κ33, e15 and e31 of the honeycombs are higher than

that of the square-shaped foams while select electroelastic moduli such as

C11, C12, C33, C66, κ11, e32 and e33 are higher for the foams with square-shaped

porosity (Fig. 2.5). Interestingly, the ‘honeycomb architecture’ results in the

piezoelectric constant e31 being significantly enhanced for the honeycomb foam

structure as compared to the foam structure with square-shaped porosity (Fig.

2.5).

The piezoelectric figures of merit of the transversely porous foams also

exhibit a strong dependence on the shape of the porosity, with the hexagonal

foams exhibiting enhanced hydrostatic strain coefficient and lower acoustic

impedance while the square foams exhibiting enhanced piezoelectric coupling

constant and hydrostatic figure of merit (Fig. 2.6).

In transversely porous anisotropic honeycomb structures (with aspect-

ratio less than
√
3), the in-plane elastic properties such as C12 and C66 are in-

creased significantly when compared to their isotropic counterparts. The piezo-

electric coupling constant and the acoustic impedance are reduced, while the

hydrostatic strain coefficient and the hydrostatic figure of merit are enhanced

significantly. For example, in the PZT-7A transversely porous anisotropic hon-

eycomb structures with 10% relative density, the hydrostatic figure of merit is

2485% greater than that observed for the transversely porous isotropic honey-

comb structures. When compared to the reference foam structure (with 10%

relative density) which is longitudinally poled with square porosity (i.e., Class

V structure), C12, C66, and the hydrostatic figure of merit of the transversely

poled anisotropic honeycomb structures (which belong to Class IV) are en-

hanced by, respectively, 800%, 1100% and 53000%. Thus, it is possible to
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Figure 2.7: The spatial variation in electric fields developed in an unpoled piezoelectric
honeycomb structure in response to an external electric field applied along the out-of-plane
(i.e., three) direction (a) and in-plane (i.e., two) direction (b). The spatial variation in
electric fields developed in an unpoled piezoelectric honeycomb structure filled with a second-
phase material in response to an external electric field applied along the out of- plane (i.e.,
three) direction (c) and in-plane (i.e., two) direction (d).

create piezoelectric honeycomb structures with the desirable combination of

mechanical properties and piezoelectric characteristics.

As the finite element model used in the study of porous piezoelectric

composite enables the determination of 45 independent electromechanical con-

stants, the crystal symmetry of the honeycomb foam structures can be iden-

tified as well. In the model system consisting of fully dense PZT-7A, higher

order crystal symmetry (i.e., 6mm) is observed. In the longitudinally porous

isotropic honeycomb structures, the same higher order crystal symmetry is

maintained. However, in the transversely porous honeycomb structures, the

crystal symmetry is reduced to the group (mm2).
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Overall, by tailoring the shape of the honeycomb foam structures the

mechanical and piezoelectric properties of the piezoelectric materials can be

optimized as required in practical applications.

In Fig. 2.7(a) and Fig. 2.7(c), the externally applied electric field along

the three direction is 10 kV/mm and the internally developed electric fields are

also 10 kV/mm. In Fig. 2.7(b) and Fig. 2.7(d), the externally applied electric

field along the two directions is 10 kV/mm. In Fig. 2.7(b), the internally

developed electric fields in regions I, III, IV, and VI are about 6 kV/mm,

whereas regions II and V experience electric fields of about 0.15 kV/mm.

In Fig. 2.7(d), the internally developed electric fields in regions I, III, IV,

and VI are about 6 kV/mm, whereas regions II and V experience electric

fields of about 2 kV/mm. The dielectric constant of the filler material in Fig.

2.7(b) and Fig. 2.7(d) is about 1/10th of that of the honeycomb material

(i.e., PZT-7A). In the finite element models developed in this study, it is

assumed that all regions in the piezoelectric foams are poled uniformly in one

direction. From a practical point of view, such uniform poling can be readily

realized in longitudinally porous honeycombs as uniform electric fields in the

out-of-plane (i.e., 3) direction can be easily created in such honeycombs (Fig.

2.7(a)(c)). However, poling transversely porous piezoelectric honeycombs in a

uniform manner could be challenging as finite element simulations of the poling

process indicate that the electric fields developed in the in-plane direction,

in un-poled honeycombs, are not uniform in all regions of the honeycombs.

Thus, some regions may remain un-poled or be poled in a direction that is

different from the direction that is originally intended in the poling process

(Fig. 2.7(b)). However, if the porous regions were to be filled by a material

with an elastic modulus and dielectric constant that is considerably lower

than that of the honeycomb (e.g., a polymer), then significant improvements

in the uniformity of the poling characteristics across a wider region of the

foams could be achieved as uniform electric fields are created in most of the

honeycombs during the poling process (Fig. 2.7(d)). (Alternately, a poled,

solid piezoelectric material may, in principle, be selectively treated (i.e., laser

machined or chemically etched) such that the inner regions of the honeycombs
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are removed while retaining the honeycomb network to create a uniformly

poled foam structure as well).

The important conclusions drawn from the present study of piezoelectric

honeycombs are highlighted in the following section.

2.6 Conclusions

Passive honeycomb type foam structures with their unique and tailorable mi-

crostructural and topological features have already been proven to provide

enhanced stiffness to out of plane shear deformations. Active piezoelectric

foam materials (which have internal architectures that are different from the

honeycombs) have been demonstrated to exhibit piezoelectric properties that

are useful for several device applications. However, it is unclear whether ac-

tive honeycomb foams with a desirable combination of mechanical properties

and piezoelectric properties can be developed. Hence, the present study was

focused on establishing the relationships between the microstructural features

of the piezoelectric honeycomb structures and their effective properties over

a range of relative densities, and the following principal conclusions were ob-

tained.

1. A three-dimensional finite element model was developed to character-

ize the complete electromechanical properties of the most general form

of elastically anisotropic piezoelectrically active foams with honeycomb

structures.

2. Depending on the relative orientation of the poling direction with the

porosity direction (Longitudinal and Transverse) and the geometry of

the honeycombs (Isotropic and Anisotropic), four classes of piezoelectric

honeycomb foam structures were identified.

3. Most of the elastic, dielectric and piezoelectric constants of the longi-

tudinally porous honeycomb foams (with the exception of the in-plane

elastic constants, C12 and C66) exhibit linear dependence on the volume

fraction (or relative density) of the material. Furthermore, most of the
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electromechanical properties of the longitudinally porous honeycombs

(with hexagonal shaped porosity) are similar to that of the reference

foam structure with square-shape porosity.

4. Unlike the trends observed in the case of longitudinally porous foam

structures, the electromechanical properties of transversely porous foam

structures (with the exception of C22 and κ22) exhibit significant depen-

dence on the shape of the porosity.

5. The piezoelectric figures of merit of the longitudinally porous foams do

not exhibit significant dependence on the shape of the porosity with the

piezoelectric coupling constant, acoustic impedance, hydrostatic strain

coefficient and the hydrostatic figure of merit of the hexagonal honey-

combs being similar to that of the square foams.

6. The piezoelectric figures of merit of the transversely porous foams also

exhibit a strong dependence on the shape of the porosity with the hexag-

onal foams exhibiting enhanced hydrostatic strain coefficient and lower

acoustic impedance while the square foams exhibiting enhanced piezo-

electric coupling constant and hydrostatic figure of merit.

7. In transversely porous anisotropic honeycomb structures (with aspect-

ratio less than
√
3), the in-plane elastic properties such as C12 and C66

are increased significantly when compared to their isotropic counterparts.

The piezoelectric coupling constant and the acoustic impedance are re-

duced, while the hydrostatic strain coefficient and the hydrostatic figure

of merit are enhanced significantly. For example, in the PZT-7A trans-

versely porous anisotropic honeycomb structures with 10% relative den-

sity, the hydrostatic figure of merit is 2485% greater than that observed

for the transversely porous isotropic honeycomb structures. Thus, it is

possible to create piezoelectric honeycomb structures with the desirable

combination of enhanced mechanical properties and enhanced piezoelec-

tric characteristics.
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CHAPTER 3

On The Relationships Between Cellular
Structure, Deformation Modes and

Electromechanical Properties of
Piezoelectric Cellular Solids

3.1 Outline of the chapter

Due to their underlying cellular architecture, all piezoelectric active foams are

fundamentally similar to structural cellular solids, which have been extensively

studied in both forms - stochastic [8, 9](i.e., foams) and periodic [10, 11, 12, 13]

(e.g. honeycombs and lattice-based architectures), and have been adopted by

a wide range of industries such as automotive (e.g. [14, 15, 16]), aerospace

(e.g. [3]) and naval. The underlying similarities between active and structural

foams render many of the observations and governing laws associated with

structural foams, which preceded active foams by decades, readily applicable

to active foams. Accordingly, based on the extensive research performed on

the topology-property coupling in structural foams, it can be anticipated that

the electromechanical properties of piezoelectric active foams are strongly cou-

pled to their cellular topology and morphology. This coupling is recognized

as a consequence of cellular ligaments acting as networks with preferred or

admissible deformation modes and mechanisms [10, 11, 12, 13, 8].

Different cellular architectures exhibit different deformation modes and

macroscopic properties. The existence of topology-property coupling on one

hand highlights the need for reaching a better understanding of the effect

of the different topological parameters on the electromechanical response of
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piezoelectric foams. More importantly, understanding this coupling is instru-

mental to the development of optimized or application tailored piezoelectric

cellular solids.

Understanding the topology-property coupling is also motivated by the

forthcoming capabilities of the rapidly progressing additive manufacturing pro-

cesses such as solid freeform fabrication, rapid prototyping and 3D printing.

These techniques will open horizons for piezoelectric cellular solids as they will

provide the possibility to fabricate parts of any arbitrary material composi-

tion and internal microarchitecture at the mesoscopic length scale. Hence, one

can envision a stage at which piezoelectric cellular solids can be designed to

provide a wide range of electromechanical properties that can be controlled by

the cellular architecture.

The level of enhancement and the scaling laws governing the electrome-

chanical properties for stretching dominated piezoelectric foams have not been

established yet. This work aims to provide answers in this regard by quantify-

ing the enhancement in the electromechanical properties and establishing the

scaling laws associated with piezoelectric active foams that have a stretching

dominated deformation mode.

In this paper, we utilize finite element analysis to characterize the effect of

deformation modes (bending vs. stretching) on the complete electromechan-

ical properties of piezoelectric active foams by studying piezoelectric foams

with varying cellular architectures, representative of foams with bending and

stretching dominant deformation modes. Also, this work explores the rela-

tionships between the microstructural features of piezoelectric foams and the

dominant modes of deformation. The present work has been organized as fol-

lows. Section 3.2 illustrates the methodology utilized and discusses the details

of the developed finite element models. Results are discussed in Section 3.3

and principal conclusions from the present study are highlighted in Section

3.4.
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3.2 Methodology

3.2.1 Specimens: geometry, cellular features

Three classes of piezoelectric cellular solids are considered in Fig. (3.1). These

have been selected to represent foams with low, moderate and high nodal con-

nectivity, which can exhibit bending-dominated, mixed-mode, or stretching-

dominated deformation characteristics, depending on the loading conditions.

Nodal connectivity, α, is defined as the average number of ligaments connected

at a node (or vertex). The low connectivity class is represented by a hexag-

onal honeycomb structure (α = 3) while the moderate connectivity class is

represented by tetragonal structure (α = 4), and the high connectivity class

is represented by triangular structure (α = 6).

From literature for passive cellular solids, we infer that, low connectivity

honeycombs generally deform in a bending mode under in-plane normal and

shear loading conditions, while highly connected cellular structures, (with a

connectivity of 6 in 2D), generally deform in a stretching mode under all load-

ing conditions [53, 54, 59]. The tetragonal structures deform in a mixed-mode

depending on the in-plane loading direction; when the load is aligned with

ligaments it deforms in a stretching mode but when the load is not aligned

with cellular ligaments (and for in-plane shear loading) tetragonal structures

deform in a bending deformation mode. Therefore, one can consider the three

selected classes as representatives of cellular solids that exhibit different de-

formation modes, which will permit the investigation of the effect of foam

structure (topology) and deformation modes on the effective electromechani-

cal properties of piezoelectric foams.

A model piezoelectric constituent material, PZT-7A, is chosen for the

present study. The electromechanical properties of PZT-7A are presented in

Table 3.1. The three cellular classes considered in the present work have

relative densities ranging from 5% to 20%. In each of the three classes of

cellular materials, longitudinally poled (i.e. poled along the porosity axis)

and transversely poled (i.e. poled orthogonal to the porosity axis) systems are

considered. The three cellular classes have the same relative density range (5%
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Figure 3.1: A schematic showing the structures studied in the present work. The structures
represent a honeycomb, square and triangular unit-cell configurations with the relative direc-
tion of poling (blue arrow). The direction of the porosity being aligned with the 3-direction
for the case of longitudinally poled structures and the 2-direction for transversely poled
structures.

to 20%) and constituent material, which is PZT-7A. The electromechanical

properties of PZT-7A are presented in Table 3.1. All specimens are poled in

the transverse direction, perpendicular to the porosity direction.

3.2.2 Constitutive Behaviour of Piezoelectric Cellular

Solids

The most general representation of the electromechanical coupled constitutive

relationships for a piezoelectric material, in the linear regime, is given by:

σij = CE
ijklεkl − ekijEk (3.1)

Dk = ekijεij + κε
kiEi (3.2)

The terms have been previously explained in detail in Section 2.3 but for

sake of completeness will be re-iterated here - σ is the stress tensor, ε is the
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Table 3.1: The fundamental properties of the model piezoelectric system PZT-7A (poled
in the 2-direction) chosen for the present study (ρ = 7700 kg/m3).

Properties PZT-7A
C11 = C22(GPa) 148
C12(GPa) 74.2
C13 = C23(GPa) 76.2
C33 131
C44 = C55(GPa) 25.3
C66(GPa) 35.9
e15 = e23(C/m

2) 9.31
e31 = e32(C/m

2) -2.324
e33(C/m

2) 10.9
κ11 = κ22(nC/V m) 3.98
κ33(nC/V m) 2.081

strain tensor, E is the electric field vector, D is the electric displacement

vector, CE is the stiffness tensor with the superscript ‘E’ indicating that

the measurement of the components have been carried out at zero/constant

electric field, κε is the permittivity tensor with the superscript ‘ε’ indicating

that the components of κ have been measured at constant or zero strain, e is

the piezoelectric coupling tensor.

3.2.3 Finite Element Modeling of Piezoelectric Cellular

Solids

Unit-cell approach is utilized in this work; where in the complete electrome-

chanical response of large periodic piezoelectric foam structure is character-

ized by modeling the electromechanical behavior of a representative volume

element. The finite element analysis of the unit cell is carried out using com-

mercially available software (ABAQUS). Eight-node linear piezoelectric brick

(C3D8E) elements are used to mesh the unit cell. Each node is allowed a total

of four degrees of freedom three translational degrees of freedom (i.e., 1, 2,

3) and one electric potential degree of freedom (i.e., 9 per ABAQUS conven-

tion). To ensure that the unit cell captures the response of the entire foam

material, periodic boundary conditions are enforced. These conditions ensure

that the deformation and electric potential of a unit cell are compatible across
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Figure 3.2: (a) A schematic showing the triangular structure studied in the present work.
(b) Highlighted unit-cell showing the masters nodes and nodes from the sets R, RR, S, SS,
T, TT, U, UU located along the boundaries of the unit-cell. .

its boundaries with that of the adjacent unit cells as explained in [25, 24]. Pe-

riodicity is ensured by forcing parallel faces of the unit cell to remain parallel

during deformation. To facilitate applying the periodic conditions, the unit

cell is modeled using a periodic mesh that is symmetric in the 1-2, 2-3 and

1-3 planes. The periodic boundary conditions are achieved by connecting each

node on one side (e.g., left) with the corresponding node on the opposite side

of the unit cell (e.g., right) using constraint equations that are defined with

respect to master nodes. Master nodes are located on the vertices of the unit

cell. They are shown in Fig. 3.2 and are referred to as A,AA,B,BB,C,CC,D,

and DD. Although Fig. 3.2 represents the triangular geometry the process

followed to set up the period boundary conditions applies for all geometries.

The constraint equations are designed such that they allow the master nodes

to control the overall behavior of the unit cell. All loads (mechanical and elec-

trical) are applied to the master nodes only. The master node A is fixed and

electrically grounded for all simulations to prevent rigid body motion. The

constraint equations used in the model are given in Eqs. (2.5) and (2.6).

3.2.4 Effective elastic properties

Using finite element analysis, for each of the three piezoelectric classes consid-

ered (see Fig. 3.1), the effective elastic constants represented by CE
ijkl in Eqn.

31



Figure 3.3: Variation of the overall stiffness elastic constants with relative density for the
three model unit-cells used in the present study with α = 3, 4, 6 denoting the triangular,
square and honeycomb unit-cells respectively.

(3.1), the engineering elastic moduli (E) and Poissons ratios were obtained.

Effective constants were obtained for a range of relative densities (Fig. 3.4,3.3)

as well as for longitudinally poled and transversely poled systems.

The finite element results for the longitudinally poled hexagonal struc-

tures were first validated using an analytical model developed for longitudi-

nally poled foams with circular porosity [40] (which structurally resemble the

hexagonal-shaped foams considered in this work). For the longitudinally

poled systems, it is demonstrated that all the three foam structures exhibit

similar out-of-plane (i.e. 3-direction) behaviour. This outcome is anticipated

as, regardless of foam structure (or topology), the three cellular architectures

have the same projected area density, and in an out-of-plane loading scenario,

the cell walls are loaded axially. However, Fig. 3.4 illustrates that the in-plane

(i.e. 1-2 plane) behavior is highly sensitive to foam topology and connectiv-

ity. For instance, normal effective moduli (C11 and C22) are the lowest for

the honeycomb structure and the highest for the tetragonal structure (whose
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Figure 3.4: Variation of the overall engineering elastic constants with relative density for
the three model unit-cells used in the present study with α = 3, 4, 6 denoting the triangular,
square and honeycomb unit-cells respectively.

ligaments, for the particular loading scenario used in this study, are aligned

with loading direction). C11 and C22 for the triangular structure approach

those of tetragonal structure. Coupling modulus C12 that defines developed

stresses along the lateral direction (i.e. 2-direction) due to axial strain (i.e.

1-direction) is highest for the honeycomb structure and the lowest for the

tetragonal structure. This modulus is related to the Poissons ratio which is

sensitive to topology, particularly to inclined ligaments that couple the two

material principal directions. The most sensitive elastic property to foam

topology is the in-plane shear modulus (C66), which is significantly higher for

the triangular structures as compared to that of both hexagonal and tetragonal

structures (Fig. 3.4).

3.3 Results

However, for the transversely poled systems, the normal elastic modulus along

the 2-direction is the least sensitive to the foam topology as the three structures
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have the same projected area density along the 2-direction and upon loading

along the 2-direction the cell walls of all the three structures are loaded axially.

On the other hand, the shear modulus in the 1-3 plane (i.e. C55) is the most

sensitive to the foam topology with the foam structure with the highest nodal

connectivity (i.e. the triangular structure) exhibiting the highest C55 modulus.

Overall, Fig. 3.4 illustrates that the effective out-of-plane elastic prop-

erties (i.e. along 3-direction for longitudinally poled systems and along the

2-direction for transversely poled systems), for all the three foam structures,

are insensitive to the geometry of the foam and depend linearly on relative

density. On the other hand, the dependence of the in-plane effective elastic

properties (i.e. in the 1-2 plane for longitudinally poled systems and in the 1-3

plane for transversely poled systems) on relative density exhibit dependence

on the foam structure. Such that, this dependence is linear for triangular and

tetragonal foam structures (where the deformation is stretching dominated)

and generally non-linear for hexagonal honeycombs (where the deformation

is bending dominated). This observation is consistent with passive cellular

solids literature, which illustrates that for a stretching- or bending-dominated

deformation, the corresponding elastic properties, respectively, vary linearly

or non-linearly with relative density.

3.3.1 Effective piezoelectric properties

Using finite element models, the effective piezoelectric constants represented by

ekij in Eq. (3.1) were computed for the three classes of foam structures shown

in Fig. 3.1, for a range of relative densities Fig. 3.5. For each of the three

foam classes, the corresponding piezoelectric properties of longitudinally poled

and transversely poled systems were also obtained. For the foams considered,

the non-zero effective piezoelectric properties are e15, e24, e33, e31 and e32. In

general, the piezoelectric properties of longitudinally poled foam structures are

independent of the foam structure or topology (Fig. 3.1). However, significant

dependence of the piezoelectric properties on the foam topology is observed in

the transversely poled foams.
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Figure 3.5: Variation of the overall piezoelectric constants with relative density for the
three foam structures studied in the present work with α = 3, 4, 6 denoting the triangular,
square and honeycomb structures respectively.

With respect to the variation of effective piezo properties with relative

density, the triangular and tetragonal topologies exhibit generally linear de-

pendence, while the hexagonal topology exhibits non-linear dependence. This

non-linear dependence is associated with shear/bending deformation related

piezoelectric properties.

Amongst the transversely poled structures, the highest and the lowest

e33 and e32 piezoelectric constants are observed, respectively, in the case of

tetragonal and hexagonal foam structures. On the other hand, the piezo-

electric constant e31 is highest for the hexagonal structure and lowest for the

tetragonal structure while the piezoelectric constant e15 is highest for the trian-

gular structure and lowest for the tetragonal structure. Thus, foam structure

or topology can be tailored to optimize a set of piezoelectric constants that

are desired for a particular application.
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3.3.2 Effective dielectric properties

The effective piezoelectric constants represented by κε
ij in Eqn. (3.2) were

obtained for the three foams shown in Fig. 3.1 for a range of relative den-

sities (Fig 3.5) for longitudinally poled and transversely poled systems. In

general, the dielectric constants - κ11, κ22, and κ22, of longitudinally poled

foams and the dielectric constant κ22 of the transversely poled foam structures

are independent of the foam structure or topology (Fig. 3.5). However, the

dielectric constants - κ11 and κ33 of the transversely poled foam structures

exhibit significant dependence on foam topology. Amongst the transversely

poled structures, the tetragonal foams exhibit the highest κ11 and the lowest

κ33 dielectric constants while the triangular and honeycomb foams exhibit rel-

atively similar effective dielectric properties that are 10% off those exhibited

by tetragonal foams.

3.3.3 Effective Figures of merits

The aforementioned fundamental materials constants are represented in this

section via the industry adopted figures of merit. These figures are defined

as combinations of the fundamental material constants and are used widely

to assess the utility of piezoelectric materials for practical applications. Four

figures of merit are of direct interest to piezoelectric foams and their potential

applications (e.g., ultrasound images and energy harvesters), and they are: the

piezoelectric charge coefficient (dh), the hydrostatic figure of merit (dhgh), the

acoustic impedance (Z), and the coupling constant (kt) [75].

Piezoelectric charge coefficient: The piezoelectric charge coefficient (dh = d31+

d32 + d33), captures the effective strength of electro-mechanical coupling in a

piezoelectric material, especially, in the conversion of mechanical loads to elec-

trical signals.

Hydrostatic figure of merit: In general, an important design consideration for

transducers is the signal-to-noise ratio which is determined by the spectral

noise pressure. In order to enhance the signal-to-noise ratio, the spectral noise

pressure must be minimized, for which the hydrostatic figure of merit (dhgh)
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Figure 3.6: Variation of the overall piezoelectric figures of merit with relative density
for the three foam structures studied in the present work with α = 3, 4, 6 denoting the
triangular, square and honeycomb unit-cells respectively.

should be maximized.

Acoustic impedance: The acoustic impedance, (defined as Z =
√
ρCD

33 , when

3 is the poling direction), modulates the extent of signal transmission or reflec-

tion at the piezoelectric device/environment interface, where ρ is the density

of the material.

Piezoelectric thickness coupling constant: The piezoelectric thickness coupling

constant, which for a material poled along the 3-direction is defined as, kt =√
CE

33/C
D
33 . It represents the efficiency of energy conversion between the elec-

trical and mechanical domains, with systems exhibiting larger coupling con-

stants (ideally ∼ 1) being more desirable [78].

The effective fundamental material constants (elastic, piezoelectric and

dielectric) presented in Figs. 3.4 and 3.5 were used to compute the figures of

merit defined above with the results plotted in Fig. 3.6 against relative den-

sity. In general, the figures of merit of longitudinally poled foam structures

are independent of the foam structure or topology (Fig. 3.6). However, sig-

nificant dependence of the figures of merit on the foam topology is observed

in the transversely poled foams which is expected, as the figures of merit are
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mostly dependent on the principal material elastic, piezoelectric and dielectric

constants (i.e. C33, e33 and κ33) which have been shown to exhibit sensitivity

to the foam topology (in the transversely poled foams). Amongst the longitu-

dinally poled systems, the triangular structures with α = 6, exhibit figures of

merit which are similar to other foam structures as well as outstanding in-plane

shear properties which are significantly better than those of the tetragonal or

hexagonal foam structures.

Overall, the transversely poled systems exhibit better figures of merit

(Z, dh and dhgh) than the longitudinally poled systems. Amongst the trans-

versely poled systems, the tetragonal structure with a moderate level of nodal

connectivity of 4, exhibits the best overall combination of high piezoelectric

coupling constant, piezoelectric charge coefficient and the hydrostatic figure of

merit with marginally higher acoustic impedance as compared to that of the

hexagonal or triangular foams. Thus, by modifying the foam structure and the

poling characteristics of piezoelectric foams, their mechanical and functional

properties can be application tailored and optimized.

3.3.4 Scaling Laws

Dependence of effective properties of cellular solids on relative density is often

represented by scaling laws (e.g.,[3]) and generally follows,

E∗

Es
= c (ρ)n = c

(
ρ∗

ρs

)n

(3.3)

where c and n are fitting parameters, E∗ and Es represent the effective prop-

erty of the foam and constituent material, respectively. In addition, ρ is the

relative density which is defined as the ratio of the density of the foam (ρ∗) to

the density to the constituent material (ρs). Scaling laws are useful from an

application perspective as they: allow for predicting the effective properties

of foams over a continuous range of relative densities based on few discrete

data points, assist in approximating the effective properties of foams as long
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Table 3.2: The variation with relative density of the effective electromechanical properties
of transversely poled piezoelectric foams with honeycomb, tetragonal and triangular struc-
tures captured by the scaling laws, with the corresponding coefficients a and n as described
by Gibson and Ashby [3]. (C∗, e∗ and κ∗ represent foam properties while C, e and κ represent
the properties of the constituent solid material.)

Properties Honeycomb Square Triangular
a n a n a n

C∗
11/C11 0.3286 1.231 0.5245 1.062 0.4445 1.091

C∗
12/C12 0.4203 1.047 0.3602 2.152 0.2353 1.124

C∗
13/C13 0.4223 1.129 0.4793 1.078 0.4522 1.079

C∗
22/C22 0.3388 1.192 0.4339 1.068 0.3178 1.055

C∗
23/C23 0.402 1.098 0.3628 1.139 0.321 1.067

C∗
33/C33 0.8254 1.012 0.837 1.013 0.8248 1.009

C∗
44/C44 0.6625 1.07 0.6225 1.076 0.5729 1.025

C∗
55/C55 0.5779 1.084 0.6098 1.069 0.5887 1.07

C∗
66/C66 2.219 3.052 0.5023 3.219 0.5031 1.029

e∗16/e16 1.236 3.091 0.2252 3.159 0.2645 1.134
e∗21/e21 -1.523 0.9733 0.2646 2.32 -0.5407 -0.9093
e∗22/e22 0.4677 1.123 0.6595 1.06 0.495 1.031
e∗23/e23 0.3637 1.56 0.4201 1.193 0.3648 1.154
e∗34/e34 0.6626 1.07 0.6225 1.076 0.5729 1.025
κ∗
11/κ11 0.899 1.06 1.052 1.015 0.8381 1.048

κ∗
22/κ22 0.7561 0.9269 0.6523 1.077 0.4135 0.5346

κ∗
33/κ33 1.315 0.9787 1.347 0.981 1.482 1.035

as they are used across foams with fairly similar cellular architectures and con-

stituent materials, and provide some insight into the deformation mechanisms.

For instance, as illustrated in reference [3], as the power n increases, bending

deformation is dominant and as it approaches unity, stretching deformation is

dominant. For the piezoelectric cellular specimens considered in this work,

all effective data presented in Figs. 3.4, 3.5 and 3.6, were fitted to the scaling

law (Eqn. (3.3)). Resulting fitting constants are reported in Tables 3.2 and

3.3. The in-plane shear properties of the honeycomb structures (i.e., C66 in

the longitudinally poled system and C55 in the transversely poled system) vary

with relative density in a non-linear manner (i.e. n = 3) indicating that the

in-plane shear behavior is bending dominated and hence, the in-plane mod-

uli are expected to be less than that of tetragonal or triangular structures

where the corresponding shear moduli vary with relative density in a linear

manner (i.e. n = 1) indicating that the in-plane shear behavior is stretching

dominated. The out-of-plane normal properties (i.e. C33 in the longitudinally

systems and C22 in the transversely poled systems) for the three foam struc-

tures exhibit linear variation with relative density (i.e. n = 1) indicating that
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Table 3.3: The variation with relative density of the effective electromechanical proper-
ties of longitudinally poled piezoelectric foams with honeycomb, tetragonal and triangular
structures captured by the scaling laws, with the corresponding coefficients a and n as de-
scribed by Gibson and Ashby [3]. (C∗, e∗ and κ∗ represent foam properties while C, e and κ
represent the properties of the constituent solid material.)

Properties Honeycomb Square Triangular
a n a n a n

C∗
11/C11 0.3212 1.207 0.4429 1.065 0.3915 1.107

C∗
12/C12 0.4053 1.03 0.3097 2.156 0.2277 1.072

C∗
13/C13 0.3442 1.121 0.3381 1.116 0.3354 1.098

C∗
22/C22 0.3216 1.208 0.4429 1.065 0.3081 1.034

C∗
23/C23 0.3444 1.121 0.3381 1.116 0.2806 1.044

C∗
33/C33 0.7496 1.015 0.7515 1.017 0.7379 1.009

C∗
44/C44 0.6229 1.075 0.6159 1.072 0.5248 1.014

C∗
55/C55 0.6229 1.075 0.6159 1.072 0.6321 1.072

C∗
66/C66 1.528 3.058 0.3597 3.212 0.3947 1.014

e∗15/e15 0.6229 1.075 0.6159 1.072 0.6321 1.072
e∗24/e24 0.6229 1.075 0.6159 1.072 0.5248 1.014
e∗31/e31 0.3442 1.121 0.3381 1.116 0.3354 1.098
e∗32/e32 0.3444 1.121 0.3381 1.116 0.2806 1.044
e∗33/e33 1.091 0.9944 1.099 0.9978 1.095 0.9968
κ∗
11/κ11 0.6232 1.075 0.5903 1.036 0.565 1.061

κ∗
22/κ22 0.481 0.9115 0.5903 1.036 0.2484 0.3903

κ∗
33/κ33 0.9523 0.9552 1.02 1.001 1.008 0.9953

their out-of-plane normal behavior is stretching dominated.

3.4 Discussion and summary

The piezoelectric foams analyzed in this work represent three distinct classes

of cellular solids. Hexagonal structures represent bending dominated foams

while the triangular structures represent stretching dominated foams. Finally,

tetragonal structures represent foams whose dominant deformation mode is

dependent on the loading scenario. This classification is based on Maxwells

stability criterion which, in the field of cellular solids, has been utilized to

give insight into why passive foams are almost always bending dominated

[79, 80, 81]. For this discussion it would be instructive to first provide a

summary of Maxwells rule.

Maxwells rule as explained in Ref. [69] defines the condition for a pin-

jointed frame made up of b struts and j frictionless joints, like those in Fig.

3.7, to be both statically and kinematically determinate. This condition in 2D
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Figure 3.7: (a, b) Shows a schematic illustrating an example of bending and axially
deforming structures

is written as,

M = b− 2j + 3 = s−m (3.4)

where s and m counts the number of states of self-stress and of mechanisms,

respectively. Mathematically, mechanism means that the pin-jointed frame

can deform at zero macroscopic force, while self-stress means that struts of

a frame can exhibit stresses at zero macroscopic force. However, within the

structural mechanics community, mechanism refers to frame with zero stiffness

(can collapse under zero force), while self-stress refers to truss with redundant

members. Each of s and m can be determined by finding the rank of the

equilibrium matrix that describes the frame in a full structural analysis [82].

A rigid framework has m = 0. For a large periodic pin-jointed structure with b

struts, j joints and an average connectivity α, one can define a relation between

b, j and α. Deshpande et al. [69] defined this relation as:

b ∼=
jα

2
(3.5)

Using this relation in conjunction with Maxwells criterion, Deshpande

et al. [69] analytically showed that the necessary and sufficient condition for

rigidity of 2D and 3D periodic frames with similarly situated nodes is α = 6

and α = 12, respectively. If the connectivity α exceeds these values the frame is
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redundant (has self-stress states). Accordingly, a pin-jointed triangular struc-

ture with a connectivity (α) of 6 is rigid, while pin-jointed tetragonal (α = 4)

and hexagonal (α = 3) frames are mechanisms. Moreover, by using Maxwells

criterion, one can find that the pin-jointed tetragonal and hexagonal frames

have one (m = 1) and three (m = 3) mechanisms, respectively. Therefore,

pin-jointed hexagonal frame will collapse under loading along the 1 and 2 di-

rections as well as under shear. On the other hand, pin-jointed tetragonal

frame can withstand loads along the 1 and 2 direction but collapses under

shear (the single mechanism).

Now, one can imagine that the joints of the pin-jointed frames analyzed

above (hexagonal, tetragonal and triangular) can be locked. That is, the joints

are not allowed to rotate and can transmit moment. The effect of locking the

joints can be anticipated. The pin-jointed triangular frame is a truss whose

struts are two-point members and are subjected to axial forces. Therefore,

locking the joints of the pin-jointed triangular frame will not have significant

effects; at most it would give rise to negligible bending stresses in few struts.

Conversely, locking the joints of the pin-jointed hexagonal frame has a sig-

nificant effect; it will eliminate the three mechanisms and allow the frame to

exhibit axial and shear stiffness. As the locked joints are responsible for the

load carrying capacity of the hexagonal frame, and as the joints can transfer

only moments, struts of the pin-jointed hexagonal frame with locked joints

deform mostly by bending, regardless of the loading scenario.

Finally, locking the joints of the pin-jointed tetragonal structure would

not affect its response under pure axial loading (along the 1 or 2 directions);

however, it would eliminate its shear-type single mechanism and allow the

tetragonal frame to provide shear stiffness by promoting bending deformations

in the struts. Accordingly, the pin-jointed tetragonal structure with locked

joints exhibits a response that depends on the loading scenario; its struts are

loaded axially under macroscopic axial loading (in the 1 and 2 direction) and

by bending under macroscopic shear loading (in the 1-2 plane).

Each of the piezoelectric cellular structures analyzed in this work can be

derived from one of the idealized pin-jointed frames with locked joints discussed
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above. Therefore, the analysis of rigidity in the idealized pin-jointed frames, as

summarized above, can give valuable insight regarding the mechanical behavior

of the piezoelectric cellular structures. The triangular piezoelectric structure

is derived from a rigid pin-jointed frame and should deform predominantly by

cell wall stretching. On the other hand, the hexagonal piezoelectric structure is

derived from a pin-jointed frame with three mechanisms and should be bending

dominated. Therefore, the triangular specimen should be mechanically stiffer

in the in-plane (i.e. 1-2 plane), which agree with the finite element results.

Finally, the tetragonal piezoelectric foam is derived from the tetragonal

pin-jointed frame; therefore it should exhibit axial deformation under uniaxial

loading and bending deformation under shear loading. This agrees well with

the finite element results which show that the tetragonal specimen has effective

elastic and piezoelectric properties that approach those of the triangular spec-

imen under uniaxial loading and approach those of the hexagonal specimen

under shear loading (see Figs. 3.4, 3.5 and 3.6).

To confirm that the dominant deformation modes exhibited by the simu-

lated piezoelectric specimens follow the preceding theoretical arguments, stresses

developed in the struts of the piezoelectric specimens were extracted, analyzed

and used to determine the dominant deformation mode as outlined in Ref. [83].

As the deformation is elastic and stiffness of the struts is uniform, stresses

developed in struts can be decomposed using simple mechanics of materials

approach into a uniform axial stress and a bending stress that varies linearly

along the thickness of the struts. Subsequently, the level of axial and bending

stresses are used to deduce the dominate deformation mode.

For the triangular foams, stress decomposition analysis and stress con-

tours demonstrate that, for in-plane uniaxial loading conditions (i.e. 1-2 plane

in longitudinally poled systems); the struts are loaded by mostly axial stresses.

Under in-plane shear loading (i.e. 1-2 plane in longitudinally poled systems)

two thirds of the struts (inclined struts) are observed to be loaded axially

while the straight struts are dominated by bending. However, the maximum

bending stress in the horizontal struts is less that 25% of the axial stress ob-

served in the inclined struts. For the tetragonal specimens, stress contours
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Table 3.4: Analysis of the bending and axial stresses developed across the foam struts at
representative locations L1 and L2 in the honeycomb, tetragonal and triangular foams with
20% relative density when subjected to six (normal and shear) loading conditions. The N
metric is evaluated using the formula, N = 1- (Bending stress / Axial Stress).

Honeycomb (L1) Honeycomb (L2)
Properties Bending

Stress (Pa)
Axial Stress
(Pa)

N Bending
Stress (Pa)

Axial Stress
(Pa)

N

C11 2.35E+04 2.81E+06 0.992 1.36E+06 2.65E+06 0.487
C22 1.35E+04 3.67E+04 0.631 1.15E+06 2.34E+06 0.508
C33 1.80E+00 1.86E+04 1 5.01E+04 3.30E+06 0.985
C44 1.30E-07 1.04E-03 1 1.68E-02 3.75E-01 0.955
C55 8.50E-05 1.35E+00 1 1.58E-02 1.44E-01 0.89
C66 1.83E+06 3.00E+01 -60900 2.33E+08 7.14E+07 -2.26

Tetragonal (L1) Tetragonal (L2)
Properties Bending

Stress (Pa)
Axial Stress
(Pa)

N Bending
Stress (Pa)

Axial Stress
(Pa)

N

C11 7.82E+04 4.61E+06 0.983 4.59E+04 2.26E+05 0.797
C22 4.76E+04 2.58E+05 0.816 0.00E+00 3.90E+06 1
C33 1.05E+05 5.26E+06 0.98 1.41E+04 3.40E+06 0.996
C44 3.19E-05 1.33E-03 0.976 7.54E-02 4.38E+00 0.983
C55 6.44E-03 1.27E+00 0.995 1.03E-02 1.01E-02 -0.0155
C66 2.29E+04 2.50E-01 -91600 2.17E+06 7.16E+04 -2.93

Triangular (L1) Triangular (L2)
Properties Bending

Stress (Pa)
Axial Stress
(Pa)

N Bending
Stress (Pa)

Axial Stress
(Pa)

N

C11 5.14E+05 1.57E+07 0.967 1.40E+06 4.30E+06 0.675
C22 1.76E+04 2.43E+05 0.928 7.48E+05 6.91E+06 0.892
C33 5.78E+05 1.67E+07 0.965 5.90E+03 1.68E+07 1
C44 1.23E-04 1.68E-03 0.927 3.28E-03 1.23E+00 0.997
C55 3.18E-02 1.95E+00 0.984 2.96E-03 1.49E+00 0.998
C66 1.06E+06 2.50E+03 -425.0 2.55E+05 4.17E+06 0.939

show that under axial loading the struts are under pure axial loading. On the

other hand, for shear loading, the struts mostly exhibit bending-type deforma-

tion with the maximum bending occurring near the vertices where maximum

bending stresses are more than three orders of magnitude more than the axial

stresses.

Finally, for honeycombs, under all loading directions, stress contours

showed significant bending deformation with the maximum occurring near ver-

tices. Alkhader and Vural [83] showed using finite element analysis that around

20% of the elastic energy stored in a honeycomb is in the form of stretching

energy. Furthermore, the difference in the axial and bending stresses nor-

malized by the axial stress can be used as a metric to gauge the extent of

axial vs. bending deformations and predict stiffness level (i.e. high vs. low)

when the foams are subjected to fundamental macroscopic deformation modes
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Figure 3.8: A schematic showing the cross-sections L1 and L2 used to study the effects
of axial and bending stresses (in the struts). The cross-section represents regions within
the unit-cell (highlighted) with maximum stress. Also shown are the local (L1 and L2) and
global coordinates system to analyze the stress in the sections. (Inset) stresses on the top
(σa - solid line) and bottom (σb - dashed line) are also shown.

(e.g. C11 from uniaxial strain, C66 from shear strain). When this metric is

close to or equal to one, then predominant mode of deformation is expected

to be stretching. As bending stresses increase, then proportionally this metric

decreases as well (Table 3.4). In this table, axial and bending stresses were

found at the force transition points under maximum stresses (referred to as

L1 and L2 in Fig. 3.8). According to the metric (Table 3.4), we expect the

four-noded tetragonal structure to deform mostly by stretching when loaded

uniaxially in the in-plane direction (i.e. 1 and 2 direction in longitudinally

poled systems) as the observed metric is the highest.

Consequently, we expect the corresponding elastic moduli (i.e. C11 or

E11 and C22 or E22) to be the highest for the four-noded foam structure.
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Similarly, the six-noded triangular structure is expected to deform mostly by

stretching under in-plane shear loading (i.e. 1-2 plane in longitudinally poled

systems) as the corresponding metric is the highest. Consequently, we expect

the corresponding in-plane shear modulus (i.e. C66 or G12) to be the highest

for the six-noded honeycomb structure as well. These predictions on the elastic

moduli based on the analysis of bending and axial stresses are consistent with

the trends observed in the finite element analysis (Fig. 3.4).

One should be careful in extending results from this work to other piezo-

electrically active cellular solids, since the pin-jointed frame analysis per-

formed, assumes that the pin-jointed structure is large, periodic and has self-

situated nodes. Piezoelectric cellular solids with finite, random or non-periodic

structures can still be derived from parent pin-jointed structures, but the nec-

essary and sufficient condition of rigidity for these structures might not be

6 in 2D. Instead, the rigidity analysis can be used in a general perspective

to provide insight into the mechanical behavior of these piezoelectric cellular

solids.

To illustrate, the degree of rigidity of these structures can be related

to the number of independent collapse mechanisms (m) in their parent pin-

jointed frames through average connectivity α. Then, in general, as the av-

erage nodal connectivity increases, the number of collapse mechanisms in the

parent structure decreases and the structure shifts toward being stretching

dominated. This trend continues until the connectivity satisfies the rigidity

condition, beyond which an increase in connectivity increases the number of

states of self-stress (redundant members) and has little effect on the effective

mechanical properties.

An interesting phenomenon that is worth highlighting is the ability of

foam structures or topology to affect the crystal symmetry of a piezoelectric

cellular solid. For instance, although the parent material used has negative e31,

the triangular piezoelectric specimen exhibited a positive effective e31 (see Fig.

3.5). This reversal in sign is caused mainly by the contribution of the inclined

struts to the surface charge along the 2-direction due to a load along the 1-

direction. To illustrate, Fig. 3.9 shows the surface charge distribution observed
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Figure 3.9: (a) A schematic showing the unit-cell under uniaxial strain along the 1-
direction where l is the position of the nodes along the face in the 2-direction and L is the
total length of the face perpendicular to the 2-direction. (b) A plot showing the variation
of the electric displacement along the nodes on the face perpendicular to the 2-direction.

on the top of surface of the triangular specimen due to uniaxial strain along

the 1-direction. This figure shows that near the vertices, where the inclined

ligaments are contributing, the charge distribution is positive, while the rest

of the top surface is exhibiting close to null distribution (very small positive

value).

3.5 Conclusions

Active piezoelectric foams are a novel class of materials that have been recently

proven to exhibit unique electromechanical properties. Within the context

of piezoelectric foams one of the most significant issues related to structure-

property coupling is the role of the dominant deformation mode (i.e., bending

vs. stretching), which in turn is influenced by a number of factors such as

nodal connectivity of the foams, the nature of stresses applied to the foam, the

inherent elastic, dielectric and piezoelectric anisotropy of the foam constituent

material, the sensitivity of the foam properties to the poling direction and its

orientation with respect to the porosity of cellular solids, much of which are

yet to be fully understood. Hence, finite element models were developed to

characterize the effect of deformation modes (bending vs. stretching) on the
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complete electromechanical properties of piezoelectric active foams by studying

piezoelectric foams with varying cellular architectures, representative of foams

with bending and stretching dominant deformation modes and the following

principal conclusions were obtained.

1. The principal elastic, dielectric and piezoelectric properties (such as C33,

κ33 and e33) of piezoelectric foams are insensitive to foam structure or

topology in the longitudinally poled systems. However, the principal

electromechanical properties (i.e. C33, κ33 and e33) are strongly influ-

enced by the foam structure in the transversely poled systems.

2. The in-plane (i.e. 1-2 plane for longitudinally poled systems and the 1-3

for transversely poled systems) behavior is very sensitive to foam struc-

ture and connectivity. The highest in-plane elastic moduli (C11 and C22

in the longitudinally poled systems and C11 and C33 in the transversely

poled systems) are obtained in the four-noded tetragonal foams while

the highest in-plane shear moduli (i.e. C66 for the longitudinally poled

system and C55 for the transversely poled system) are obtained in the

six-noded triangular foam structures.

3. The effective out-of-plane elastic properties (i.e. along 3-direction for

longitudinally poled systems and along the 2-direction for transversely

poled systems), for all the three foam structures depend linearly on rela-

tive density. On the other hand, the dependence of the in-plane effective

elastic properties (i.e. in the 1-2 plane for longitudinally poled systems

and in the 1-3 plane for transversely poled systems) is linear for triangu-

lar and tetragonal foam structures and generally non-linear for hexagonal

honeycombs.

4. The linear variation of electromechanical properties of piezoelectric foams

with relative density is generally associated with a stretching mode of

deformation while the non-linear variation is associated with relatively

more bending mode of deformation. Thus, the piezoelectric foams can

exhibit enhanced stiffness or enhanced compliance in different directions
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depending on the deformation mode (respectively, stretching or bend-

ing) which in-turn is influenced by nodal connectivity and the nature

of stress that is applied. For example, the six-noded triangular foams

exhibit outstanding in-plane shear modulus as the dominant mode of

deformation under in-plane shear loading is stretching.

5. Appropriate scaling laws that can be assist in predicting the effective

electromechanical properties of piezoelectric cellular solids have been

identified. The coefficients of the scaling laws that were obtained further

indicate that the triangular structures deform predominantly by axial

stretching.

6. Amongst the longitudinally poled systems, the triangular structures with

the highest nodal connectivity of six exhibit figures of merit (acoustic

impedance, piezoelectric charge coefficient, hydrostatic figure of merit

and piezoelectric coupling constant) which are similar to other foam

structures as well as outstanding in-plane shear properties which are sig-

nificantly better than those of the tetragonal or hexagonal foam struc-

tures.

7. Overall, the transversely poled systems exhibit better figures of merit

(acoustic impedance, piezoelectric charge coefficient and hydrostatic fig-

ure of merit) than the longitudinally poled systems. Amongst the trans-

versely poled systems, the tetragonal structure with a moderate level of

nodal connectivity of four exhibits the best overall combination of high

piezoelectric coupling constant, piezoelectric charge coefficient and the

hydrostatic figure of merit with a marginally higher acoustic impedance

as compared to that of the hexagonal or triangular foams.

8. Results confirm that foam structure or topology can be tailored to op-

timize a set of piezoelectric constants that are desired for a particular

application.
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CHAPTER 4

Electromechanical Response of (3-0, 3-1)
Particulate, Fibrous, and Porous

Piezoelectric Composites with Anisotropic
Constituents: An Analytical Model based on

the Homogenization Method

4.1 Outline of the chapter

Amongst the models that were developed following the Eshelby-type approach,

early work was focused on extending the Eshelby’s solution [84] for anisotropic

piezoelectric inclusions in the elastic domain [85, 86, 87, 88]. However, a closed-

form solution for the components of the Eshelby tensor was not obtained.

Consequently, a numerical scheme was employed to solve for the components of

the Eshelby tensor for an anisotropic system [89]. Prior work done by Deeg [90]

and Wang [91] was extended by Dunn and Taya [48] to obtain a solution for the

piezoelectric inclusion problem. An alternate solution to the inclusion problem

was presented by Beneveniste [92] and Chen [93] who extended the generalized

solution of Hill and Walpole. Dunn and Taya [48] and Beneveniste [92] and

Chen [93] obtained the four tensors that comprise the equivalent of the Eshelby

tensor in the piezoelectric domain. However, they did not provide explicit

closed-form expressions for them. Dunn et al. [94, 49] gave the explicit forms

for the equivalent Eshelby tensor in terms of a surface integral over a unit

sphere, which had to be evaluated numerically. Mikata [51] derived explicit

solutions for the components of the Eshelby tensor by solving a special bi-cubic
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equation [52] which was specialized for the case of spheroidal inclusions.

Several analytical models that predict the electromechanical properties

of piezoelectric composites by invoking homogenization techniques have also

been developed. Challagulla and Venkatesh [44] formulated an asymptotic

homogenization method to obtain the complete electromechanical properties

of 2-2 type layered composites with anisotropic constituents. They studied

two classes of layered piezoelectric composites (i.e., longitudinally layered and

transversely layered) to obtain the effective properties in the limits of both

large-volume (i.e., bulk) and small-volume (i.e., thin-film) systems. An ex-

tension of the asymptotic homogenization method to obtain the properties of

1-3 type long-fiber piezoelectric composites with transversely isotropic con-

stituents was presented in the works of Bravo-Castillero,et al. [2]. Bisegna

and Luciano [45, 46] provided variational bounds to estimate the homogenized

properties of piezoelectric composites as well. Hori and Nemat-Nasser [47]

have obtained Hashin-Shtrikman type exact bounds for electroactive compos-

ites. The bounds presented by them are general and apply to non-linear

constituent phases although exact solutions are not provided for the fully

anisotropic matrix-particle material property tensors. However, an analyt-

ical model that provides explicit closed-form solutions to the most general

problem of a piezoelectric composite with anisotropic particulate constituents

is not yet available.

Hence, the objectives of the present study are: (i) To develop an ana-

lytical framework for predicting the complete elastic, dielectric and piezoelec-

tric properties of piezoelectric composites with anisotropic constituents; (ii)

To validate the analytical model with a finite element model for a range of

piezoelectric composites that exhibit varying degrees of elastic anisotropy and

piezoelectric activity.

In the present study, the homogenization method introduced by Suquet

et al. [95] is invoked to predict the electromechanical properties of piezoelectric

composites with anisotropic constituents. This method has been successfully

used to predict the homogenized properties of fiber-reinforced elastomers with

periodic microstructures by Brun et al. [96]
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The present work is outlined as follows, Section 4.2 presents the math-

ematical formulation of the piezoelectric problem, the constitutive equations,

and the periodic fields. Section 4.3 highlights the concepts that have been

invoked to solve the equilibrium equations with the approximation of piece-

wise constant polarization fields that are introduced to simplify the equations

for the strain and the electric field and expressions for the effective electrome-

chanical properties are provided in terms of the concentrations tensors. The

details of the three-dimensional finite-element model invoked in the present

study to predict the effective properties of periodic piezoelectric composites,

are provided in Section 4.4. The results of the analytical model developed in

the present study are compared to those of the finite element model for four

piezoelectric composite systems that exhibit varying degrees of anisotropy in

Section 4.5. Key conclusions from the present study are presented in Section

4.6.

4.2 Preliminaries on piezoelectric composites with pe-

riodic microstructure

Consider an infinitely large composite made up of aligned long cylindrical

fibers/pores distributed periodically in a piezoelectric matrix phase (Fig. 4.1).

It is assumed here when discussing ‘effective properties’ that there is a sepa-

ration of length-scales within the problem. The local or microscopic scale is

one where the heterogeneities can be identified separately. The macroscopic

or overall scale is one where the heterogeneities can be ‘averaged-out’. A given

sample of this material is assumed to occupy a volume Ω, with boundary ∂Ω.

The effective properties at the macroscopic scale are determined using geomet-

ric and material data of an appropriate representative volume element or unit

cell. The infinitely large composite can be generated by adding contiguously

the unit cell in all three directions.

In the remainder of the paper, symbolic and Einstein index notation is

used to represent field variables (scalars, vectors, and tensors). In symbolic

notation, a vector or tensor is represented by a bold face letter. In index
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notation, partial differentiation is denoted by a ‘comma’, e.g., the divergence

of stress using symbolic and indicial notation would be given, respectively, by,

∇ · σ = σij,j where repeating indices imply a summation.

Figure 4.1: Schematic illustration showing: (a) an infinite piezoelectric body with periodic
distribution of long cylindrical fibers and (b) a square unit-cell occupying volume Ω.

A material point within the given specimen is denoted by x (at the mi-

croscopic level). The infinitesimal strain tensor, ε, at x for a displacement

field, u and the electric field, E, in terms of a scalar electric potential ϕ are

defined as:

εij =
1

2
(ui,j + uj,i), En = −ϕ,n (4.1)

The constitutive behaviour of the matrix and the cylindrical fibers is assumed

to be linear elastic and characterized by the stored-energy functions, W (1) and

W (2), respectively. The two functions are taken to be convex functions of

the strain(ε) and electric field (E), so that the local energy function of the

composite may be written as:

W (x; ε,E) = (1− χ(x))W (1)(x; ε,E) + χ(x)W (2)(x; ε,E) (4.2)
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where χ is known as the characteristic function, equal to 1 if the position

vector x is inside phase r and zero otherwise and describes the distribution

of the phases (i.e., the microstructure). Taking piezoelectricity as a linear

phenomenon, the work function, W (r)(r = 1, 2), is assumed to be a convex

function. The local constitutive behaviour for the constituent phases in the

piezoelectric composite can be derived from the convex work energy function,

W (r)(ε,E) = 1
2
L
(r)
ijklε

(r)
ij ε

(r)
kl − e

(r)
kijE

(r)
k ε

(r)
ij − 1

2
κ
(r)
ij E

(r)
i E

(r)
j as:

σ =
∂W

∂ε
(x; ε,E) and D =

∂W

∂E
(x; ε,E) (4.3)

where, σ is the Cauchy stress tensor and D is the electric displacement vec-

tor. The effective stored energy function, W̃ , of the two-phase piezoelectric

composite under the separation of length-scales hypothesis is given by,

W̃ (x; ε,E) = min
ε∈K(ε)

max
E∈J (E)

2∑
r=1

c(r)
⟨
W (r)(x; ε,E)

⟩(r)
(4.4)

and defined over the set of all kinematically admissible strain and electric fields

given by K and J , such that:

K(ε) = {ε| with ε =
1

2

(
∇u+∇uT

)
in Ω, u = εx on ∂Ω} (4.5)

and

J (E) = {E| with E = −∇ϕ in Ω, ϕ = −E · x on ∂Ω} (4.6)

In all the expressions presented above, the triangular brackets ⟨·⟩ and ⟨·⟩(r) de-
note, respectively, the volume averages over the specimen,(Ω), and the phase

r (Ω(r)). The scalars, c(1) and c(2) denote the volume fractions of the two con-

stituent phases of the periodic composite. It is also important to note that the

average electroelastic energy, W̃ , stored in the fiber-reinforced composite when

subjected to an affine strain and electric field (Hill-type boundary data [97])

is consistent with the condition ⟨ε⟩ = ε and ⟨E⟩ = E. The following is the

equivalent statement of Hill’s lemma for the case of piezoelectric constituent
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phases,

⟨σ : ε⟩ = ⟨σ⟩ : ⟨ε⟩ and ⟨D · E⟩ = ⟨D⟩ · ⟨E⟩ (4.7)

From the arguments presented above we can then say that the macroscopic

constitutive behaviour for composite can then be expressed by:

σ =
∂W̃

∂ε
(x; ε,E) and D =

∂W̃

∂E
(x; ε,E) (4.8)

where σ = ⟨σ⟩ and D = ⟨D⟩ are the average stress and the average electric

displacement in the fiber-reinforced composite, respectively. The variational

problem for electroelastic composites in the linear elastic domain (4.4) with

periodic microstructure can be expressed explicitly as follows:

W̃ (x; ε,E) = min
ε∈K(ε)

max
E∈J (E)

1

|Ω|

∫
Ω

W (x; ε,E)dx (4.9)

4.3 Suquet estimates for linear piezoelectric constituents

Based on the framework presented in the previous section, the main objec-

tive of the current study is to provide explicit homogenization estimates for

the electromechanical properties of a periodic distribution of particulate inclu-

sions/exclusions of arbitrary geometrical shape in a general piezoelectric ma-

trix phase of anisotropic material symmetry. This is accomplished by extend-

ing Suquet’s homogenization estimates [95] to the domain of periodic piezo-

electric composites. This method has already been applied to elastic materials

and provides good estimates for the effective properties of composite materi-

als with periodic microstructure. This section outlines the basic framework of

how the Suquet estimates have been used to derive estimates for effective elec-

tromechanical constants. Making use of the results provided by Suquet for

two-phase composites with periodic microstructure (Fig. 4.2), an estimate for

the overall stored-energy function, W̃ , is provided using the volume fraction

of the fibres, c(2), with stored-energy function, W (2), distributed periodically
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Figure 4.2: Schematic representation of the microstructures showing: (a) a square distri-
bution of long cylindrical pores, and (b) hexagonal distribution of long cylindrical pores.

in a piezoelectric matrix with stored-energy function, W (1).

The linear constitutive equations can be derived from (4.3) and are written as:

σij = Lijklεkl + ekijϕ,k (4.10)

Dk = ekijεij − κkiϕ,i (4.11)

The above relations (4.10) and (4.11) characterize the complete electrome-

chanical response of a piezoelectric composite. The tensors, L, e, and κ,

respectively, denote the fourth-rank elastic modulus tensor with major and

minor symmetry, the piezoelectric constant tensor with minor symmetry in i

and j, and the dielectric constants tensor with major symmetry. Latin indices

have been employed in the derivation of the present model with all indices

ranging from 1 to 3. The piezoelectric composite has to satisfy the following

equilibrium equations:

∂σij

∂xj

= σij,j = 0 and
∂Dk

∂xk

= Dk,k = 0 (4.12)

which, respectively, ensure mechanical equilibrium and the absence of free

charge. In addition to the equilibrium equation, the jump conditions for stress

and electric displacement across the boundary interface ∂Ω, given by: [σ · n]
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= 0 and [D · n] = 0, on the opposite sides of ∂Ω must be satisfied.

Substituting the constitutive Eqs. (4.10) and (4.11) for stress and electric

displacement into Eq. (4.12) and using the definition for infinitesimal strain

and electric field, the equilibrium and charge-free condition can be written in

terms of the material property tensors as,

[Lijkl(x)εkl],j + [ekij(x)ϕ,k],j = 0 (4.13)

[eikl(x)εkl],i − [κik(x)ϕ,k],i = 0 (4.14)

Note the argument x in the above equations denotes the dependence of the

fundamental material constants on the position vector in the representative

volume element.

At this point it is useful to introduce a homogeneous reference medium

with constant properties (L(0), e(0),κ(0)) and polarization fields defined by,

τ (L) = [L(r) − L(0)]ε, τ (CE) = [e(r) − e(0)]E, τ (Cε) = [e(r) − e(0)]ε, τ (κ) =

[κ(r) − κ(0)]E. The superscripts (CE) and (Cε) denote the coupling of the

piezoelectric constant in Eqs. (4.13) and (4.14) with the electric field and

strain, respectively. The form of the equilibrium equations for stress and the

Maxwell equation for electric displacement, on the introduction of the reference

medium and the polarization fields are given by:

L
(0)
ijmnum,nj + e

(0)
kijϕ,kj +

[
τ
(L)
ij + τ

(CE)
ij

]
,j
= 0 (4.15)

and

e
(0)
ikluk,li − κ

(0)
ik ϕ,ki +

[
τ
(Cε)
i − τ

(κ)
i

]
,i
= 0 (4.16)

The local problem for the displacement and electric potential can be split

into its overall and periodic parts such that u = u0 + u∗ and ϕ = ϕ0 + ϕ∗,

where the quantities with superscript (·)0 and (·)∗ denote the average and

periodic components of the overall fields, respectively. Here, we have used the

periodicity of the micro-structure in order to be able to re-write the equilibrium

equations for the stress and electric displacement as a super-position of the two
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strain states, the periodic strain at the microscopic level and the overall strain

at the boundary of the infinite medium. It is important to note that the volume

average of the periodic strain and electric field is zero, i.e., the periodic strain

and electric field are anti-symmetric across the boundaries of the representative

volume element (RVE) [95]. Re-writing the stress equilibrium equation by

decomposing the overall strain and electric field, we note that the far-field

strain and electric field (which are constants) satisfy the following equation,

L0
ijmnu

0
m,nj + e0nijϕ

0
,nj = 0 and e

(0)
imnu

0
m,ni − κ

(0)
in ϕ

0
,ni = 0 (4.17)

The solution for the periodic strain and electric field are outlined in the fol-

lowing sub-section.

4.3.1 Periodic Green’s operators

To simplify the above equations we introduce, respectively, the stress and

electric displacement polarization fields τ and t such that: τij = τ
(L)
ij + τ

(CE)
ij

and ti = τ
(Cε)
i + τ

(κ)
i which in terms of the material property tensors is given

by,

τij = ∆Lijklεkl +∆eijkϕ,k (4.18)

ti = ∆eijkεjk +∆κikϕ,k. (4.19)

Eqs. (4.15) and (4.16) should be solved for the periodic strain and electric

field such that the stress equilibrium and Maxwell’s equation for a represen-

tative volume element are satisfied. The divergence of the stress and electric

displacement in the form given by Eq. (4.15) and Eq. (4.16) can be solved

for the strain and electric field by taking the Fourier transform and solving for

the periodic Green’s operators [98, 96, 99]. Note that the method of Fourier

transform to pass the above equations to Fourier space is made possible by the

introduction of the reference medium with constant electromechanical prop-

erties. Substituting Eqs.(4.18)and(4.19) using the newly defined polarizations

fields τ and t in Eq.(4.15) and Eq. (4.16) give the following relations (in
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Fourier space):

−Kikû∗
k − qiϕ̂∗ + iξj τ̂ij = 0 (4.20)

−qiû∗
k + pϕ̂∗ + iξit̂i = 0 (4.21)

where the terms K, q, and p are given by, Kik = L
(0)
ijklξjξl; qi = e

(0)
kijξjξk and

p = κ
(0)
ik ξiξk, the explicit forms of which have been given for a periodic square,

hexagonal and cubic distribution of fibers/pores in Appendix C. The Eqs.

(4.20) and (4.21) can then be used to solve for the components of the periodic

displacement and electric potential in Fourier space which are given by:

û∗
m = iNmiξj τ̂ij +

i

p
Nmiqit̂kξk (4.22)

and

ϕ̂∗ =
i

p
qkNkiξj τ̂ij +

i

p

(
1

p
qkNkiqi − 1

)
ξlt̂l (4.23)

where K and N represent the acoustic tensor of the homogeneous reference

medium and its inverse, respectively. The ( ·̂ ) denotes the Fourier transform

of the corresponding field within the parenthesis (for e.g., û is the Fourier

transform of displacement). To solve for the periodic strains and electric fields

in the Fourier space we take the gradients of the displacement and electric

potential. The final expressions for strain and electric field are in the form

of the periodic Lippmann-Schwinger integral equation (in Fourier space) [98]

given by:

û∗
m,n = −Nmiξjξnτ̂ij −

1

p
Nmiqiξnξk t̂k (4.24)

and

ϕ̂∗
,p = −1

p
qkNkiξjξpτ̂ij −

1

p

(
1

p
qkNkiqi − 1

)
ξpξlt̂l (4.25)
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The above equations can be further simplified by identifying the 3 period

Green’s operators associated with the elastic, piezoelectric, and dielectric con-

stants, respectively. The expressions for the Green’s operators are given by:

Hmnji = Nmiξjξn (4.26)

βkmn =
1

p
Nmiqiξnξk (4.27)

γpl =
1

p

(
1

p
qkNkiqi − 1

)
ξpξl (4.28)

4.3.2 Equations for strain and electric field

The periodic strains derived in the previous section can be combined with

the applied strain, ε0, on the boundary of the unit cell assemblage to yield an

expression for the overall strain in the unit cell. The equations for the gradient

of displacement and the electric field in the unit cell are given by:

um,n = ε0mn −
∑

ξ∈R∗−{0}

Hmnij τ̂ije
iξ · x −

∑
ξ∈R∗−{0}

βkmnt̂ke
iξ · x (4.29)

and

ϕ,p = ϕ0
,p −

∑
ξ∈R∗−{0}

βpij τ̂ije
iξ · x −

∑
ξ∈R∗−{0}

γplt̂le
iξ · x (4.30)

The polarizations in the stress and electric field are constant in the phase (ma-

trix/particle) but are overall non-homogeneous in the representative volume

element. When solving the above set of equations it is common to assume

piece-wise constant polarization fields. This provides a good approximation

when computing the overall properties of the periodic piezoelectric composite

and gives us bounds for the electromechanical properties as shall be seen with

the comparisons with finite-element analysis results. For constant polariza-

tion fields it can be shown the bounds obtained are those of Voigt and Reuss

depending on the chosen field, i.e., by assuming constant strain we obtain

Voigt bounds and by assuming constant stress polarization we obtain Reuss
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bounds. The polarization fields are not required to satisfy the compatibil-

ity equation because they are trial fields for stress and electric displacement.

From the definition of the Fourier transform of the polarization fields we have,

τ̂ij = ⟨τij (x) e−iξ · x⟩ and t̂l = ⟨tl (x) e−iξ · x⟩. Using the property of the po-

larizations to be constant in the phases, we can use a first-order (piece-wise

constant) approximation to define the polarization field in terms of a charac-

teristic function, in real space as,

τij (x) =
n∑

r=1

χ(r) (x) τij, ti (x) =
n∑

r=1

χ(r) (x) ti (4.31)

where χ(r) is the characteristic function, the value of which is equal to 1 when

x ∈ r and zero otherwise. After evaluating the volume integrals (from the

definition of the Fourier transform) we obtain,

τ̂ij =
n∑

r=1

c(r)τ
(r)
ij

⟨
e−iξ · x

⟩(r)

, t̂i =
n∑

r=1

c(r)t
(r)
i

⟨
e−iξ · x

⟩(r)

(4.32)

where the ⟨·⟩ operator denotes the volume average given by, 1
|V |

∫
V
e−iξ · xdx.

For a two-phase composite we choose the properties of the reference medium

such that the polarization in the matrix phase is zero. This is achieved by

making
[
L(0), e(0),κ(0)

]
=

[
L(1), e(1),κ(1)

]
. Eq. (4.32) can then be further

simplified by making use of the fact that the polarization in the matrix is zero,

to obtain the expression for τ̂ij given by,

τ̂ij = c(2)
(
∆L

(2)
ijmnε

(2)
mn +∆ekijϕ

(2)

,k

)⟨
e−iξ · x

⟩(2)

(4.33)

and the polarization t̂l as,

t̂l = c(2)
(
∆e

(2)
lmnε

(2)
mn −∆κlmϕ

(2)

,m

)⟨
e−iξ · x

⟩(2)

(4.34)

We can determine the average strains in the particle phase by substituting

the above defined equations for polarizations in stress and electric displacement
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in Eq. (4.29) and Eq. (4.30) to obtain,

ε(2)mn = ε0mn −∑
ξ∈R∗−{0}

c(2)Hs
mnij

⟨
e−iξ · x

⟩(2) ⟨
eiξ · x

⟩(2) (
∆L

(2)
ijpqε

(2)
pq +∆ekijϕ

(2)

,k

)
−

∑
ξ∈R∗−{0}

c(2)βs
kmn

⟨
e−iξ · x

⟩(2) ⟨
eiξ · x

⟩(2) (
∆e

(2)
lmnε

(2)
mn −∆κlmϕ

(2)

,m

)
(4.35)

and

ϕ
(2)

,p = ϕ0
,p −∑

ξ∈R∗−{0}

c(2)βs
pij

⟨
e−iξ · x

⟩(2) ⟨
eiξ · x

⟩(2) (
∆L

(2)
ijmnε

(2)
mn +∆ekijϕ

(2)

,k

)
−

∑
ξ∈R∗−{0}

c(2)γs
pl

⟨
e−iξ · x

⟩(2) ⟨
eiξ · x

⟩(2) (
∆e

(2)
lmnε

(2)
mn −∆κlmϕ

(2)

,m

)
(4.36)

The superscript ‘s’ implies that the tensor has been symmetrized in order to

obtain the symmetric part of the gradient of displacement. The symmetriza-

tion is carried out as follows, Hs
ijmn = 1

4
(Hijmn +Hjimn +Hijnm +Hmnij),

βs
imn = 1

2
(βimn + βinm), and γs

mn = 1
2
(γmn + γnm).

We define the three microstructural tensors, P,Q, andR, the components

of which depend on the fundamental property tensors of the matrix (elastic,

piezoelectric and dielectric), the shape of the inclusion/exclusion as well as

its distribution in the matrix phase. From the above Eqs. (4.35) and (4.36)

we can write the strain and electric field in the particle phase in terms of the

microstructural tensors as:

ε(2)mn = ε0mn −
[
P
(22)
ijmn∆L

(2)
ijpq +Q

(22)
kmn∆e

(2)
kpq

]
ε(2)pq

−
[
P
(22)
ijmn∆e

(2)
pij −Q

(22)
kmn∆κ

(2)
kp

]
ϕ
(2)

,p (4.37)
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and

ϕ
(2)

,p = ϕ0
,p −

[
Q

(22)
pij ∆L

(2)
ijmn +R

(22)
pl ∆e

(2)
lmn

]
ε(2)mn

−
[
Q

(22)
pij ∆e

(2)
kij − R

(22)
pl ∆κ

(2)
lk

]
ϕ
(2)

,k (4.38)

where the microstructural tensors can be expressed in terms of the periodic

Green’s operators by,

P
(22)
ijmn =

∑
ξ∈R∗−{0}

c(2)Hs
mnij

⟨
e−iξ · x

⟩(2) ⟨
eiξ · x

⟩(2)

, (4.39)

Q
(22)
kmn =

∑
ξ∈R∗−{0}

c(2)βs
kmn

⟨
e−iξ · x

⟩(2) ⟨
eiξ · x

⟩(2)

, (4.40)

R
(22)
pl =

∑
ξ∈R∗−{0}

c(2)γs
pl

⟨
e−iξ · x

⟩(2) ⟨
eiξ · x

⟩(2)

. (4.41)

Following are the equations for the effective elastic, piezoelectric and di-

electric moduli for a general n-phase composite. The expressions for the effec-

tive moduli tensors for a two-phase composite can be found in the Appendix

A of this paper. The above defined microstructural tensors are also termed

as the equivalent Eshelby tensors for a periodic piezoelectric composite. The

overall effective electromechanical material constants can be derived from the

average strain and electric fields and are given by,

L̃ijkl = L
(n)
ijkl +

n−1∑
r=1

c(r)(L
(r)
ijmn − L

(n)
ijmn)A

(r)
mnkl +

n−1∑
r=1

c(r)(e
(r)
pij − e

(n)
pij )B

(r)
pkl (4.42)

ẽimn = e
(n)
imn +

n−1∑
r=1

c(r)(e
(r)
ikl − e

(n)
ikl )A

(r)
klmn −

n−1∑
r=1

c(r)(κ
(r)
ik − κ

(n)
ik )B

(r)
kmn (4.43)

κ̃in = κ
(n)
in +

n−1∑
r=1

c(r)(κ
(r)
ik − κ

(n)
ik )b

(r)
kn −

n−1∑
r=1

c(r)(e
(r)
ikl − e

(n)
ikl )a

(r)
kln (4.44)

where A and B are the strain concentration tensors and a and b are the

electric field concentration tensors. The explicit forms of the concentration
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tensors are presented in Appendix A.

4.3.3 Calculating the vectors in Fourier space

To calculate the the properties of the effective electromechanical tensors, L̃, ẽ,

and κ̂, we need to evaluate the equivalent vectors in Fourier space describing

the microstructure of the given unit cell configuration. In the equations used

to compute the microstructural tensors P, Q, and R (see Appendix B), we

define the Fourier vectors in the reciprocal lattice as,

Figure 4.3: Schematic representation of the microstructure showing a cubic distribution
of spherical pores.

R∗ = {ξ | ξ = n1G1 + n2G2 + n3G3, ni ∈ Z} (4.45)

with

G1 = 2π
Y2 ∧Y3

Y1 · (Y2 ∧Y3)
, G2 = 2π

Y3 ∧Y1

Y1 · (Y2 ∧Y3)
, G3 = 2π

Y1 ∧Y2

Y1 · (Y2 ∧Y3)
(4.46)

Here, the base vectors Yi (i = 1, 2, 3) characterize the periodic distribution

of the fibers in the real space (i.e., in R3). The expressions for the cubic and
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square distribution of the pores as shown in Figs. 4.3 and 4.4 are given by;

Y1 = d(1, 0, 0); Y2 = d(0, 1, 0); Y3 = d(1, 0, 0) (4.47)

Y1 = d(1, 0, 0); Y2 = d(0, 1, 0); Y3 = ∞ (4.48)

where, the rectangular Cartesian basis {ei} denotes the frame of reference in

the real space, d3 → ∞, d1, and d2, serving to describe the in-plane distribution

of the long cylindrical pores, as depicted by Fig. 4.4(a). For the case of the

spherical pores in a cubic distribution, we have d1 = d2 = d3 = d, which

describes the distribution of the pores in the three Cartesian coordinates (see

Fig. 4.3). The specialization of expressions (4.47) and (4.48) to the case of

square distribution of cylindrical pores, hexagonal distribution of cylindrical

pores and cubic distribution of spherical pores is provided in Appendix B.

Figure 4.4: Schematic representation showing the in-plane fiber distribution and geomet-
rical parameters of: (a) a square distribution of long cylindrical pores, and (b) a hexagonal
distribution of cylindrical pores.
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4.4 Three-dimensional finite-element model for predict-

ing the fundamental properties and figures of merit

of piezoelectric composite materials

4.4.1 Aspects of the three-dimensional finite-element

model

A unit cell based three-dimensional finite element model is invoked in the

present study where in the complete electromechanical response of an infinitely

large periodic piezoelectric composite material is captured by characterizing

the electromechanical behaviour of a unit cell. Since the unit cell is designed

to capture the response of the entire composite material certain boundary

conditions must be enforced to make sure that the deformation and electric

potential of a unit cell are compatible across its boundaries with the adja-

cent unit cells [60]. In the present study, two types of three-dimensional

unit cells were constructed in order to characterize the electromechanical re-

sponse of piezoelectric materials with long cylindrical pores (1-3 type) and

with closed spherical pores (3-0 type). In order to maintain the periodicity of

the electromechanical loading across the boundary of the unit cell the following

boundary conditions are imposed:

(i) Periodicity in the 1− direction is given by :PR − PA = P S − PB;

PRR − PAA = P SS − PBB; P V − PA = PW − PB; P V V − PDD =

PWW − PCC ; PXM − PA = PXP − PB.

(ii) Periodicity in the 2− direction is given by :P T − PD = PU − PA;

P TT − PDD = PUU − PAA; PWW − PC = PW − PB; P Y P − PC =

P YM − PB; PXM − PA = PXP − PB.

(iii) Periodicity in the 3− direction is given by :PUU − PAA = PU − PA;

P SS − PAA = P S − PA; PZP − PAA = PZM − PA.

By subjecting a particular unit cell to a set of controlled mechanical and
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electrical loading conditions and characterizing its response, all 45 material

constants of a piezoelectric composite can be determined. The main feature

of this three-dimensional finite-element model is that both types of unit cells

are subject to a common set of electrical and mechanical loading conditions

in order to determine the components of the electroelastic moduli of a given

composite.

Figure 4.5: The finite element mesh used to model the properties of a (3-0) type porous
piezoelectric system with spherical porosity - (a) a cross-section of unit cell showing the
details of the mesh on the boundary of the spherical pore, and (b) the mesh on the surface
of the unit cell showing the location of the masters nodes on the vertices of the unit cell.

The finite-element analysis for the unit cell is carried out using com-

mercially available software (ABAQUS). Eight-node linear piezoelectric brick

(C3D8E) elements are used to mesh the unit cell. Each node is allowed a

total of four degrees of freedom (i.e., 1, 2, 3) and one electric potential de-

gree of freedom (i.e., 9). The nodes located on the vertices of the unit cell,

A(AA), B(BB), C(CC), D(DD), are designated as master nodes, and P refers

to all the four degrees of freedom (i.e., P = 1, 2, 3, 9). The constraint equations

are such that they allow the master nodes to control the overall behaviour of

the unit cell. All loads (mechanical and electrical) are applied to the mas-

ter nodes only. The master node A is fixed and electrically grounded for all

simulations to prevent rigid body motion (PA = 0 for P = 1, 2, 3, 9).
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A detailed description of the constraint equations and the method used

to determine all 45 (21 elastic, 15 piezoelectric, and 6 dielectric) independent

electroelastic constants has been given in the Appendix of Ref. [60]. Details

of the finite element mesh created for modeling a piezoelectric material with

spherical porosity are presented in Fig. 4.5

4.4.2 Piezoelectric figures of merit

In order to assess the performance characteristics of devices made from piezo-

electric composites, several figures of merit are generally identified. In order

to assess the suitability of porous piezoelectric materials for applications such

as in hydrophones, the following four figures of merit are typically consid-

ered: the piezoelectric coupling constant (kt), the acoustic impedance (Z),

the piezoelectric charge coefficient (dh), and the hydrostatic figure of merit

(dh · gh).

In the following subsections, the Voigt contracted notation is used to

express the four figures of merit identified in the present study. According to

this notation the indices, 11 = 1, 22 = 2, 33 = 3, 23 = 4, 13 = 5, 12 = 6.

Therefore L1111 = C11, L3333 = C33, L2323 = C44, etc.

4.4.2.1 Piezoelectric coupling constant

The thickness-mode piezoelectric coupling constant, kt =
√

1− CE
33/C

D
33 (in

the longitudinal extension mode) describes the efficiency of conversion between

the electrical and mechanical energy by the piezoelectric material. The ratio of

the stored converted energy of one kind (mechanical or electrical) to the input

energy of the second kind (electrical or mechanical) is defined as the square

of the coupling coefficient. Materials with larger coupling constants (∼ 1) are

typically more desired.
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4.4.2.2 Acoustic impedance

The acoustic impedance (Z) given by Z =
√
CD

33ρ, represents the overall

acoustic load at the interface between the hydrophone/device and the en-

vironment, where ρ is the effective density of the material. Good impedance

matching between the device and the surrounding media is essential to en-

hance the performance of the hydrophone. Since porous piezoelectric materi-

als have lower densities than pore-free materials they are targeted for use in

hydrophone applications. The effective density is calculated using the formula,

ρ = c(1)ρ(1)+c(2)ρ(2), where c(1), c(2) are the volume fractions of the two phases

and ρ(1), ρ(2), are their respective densities.

4.4.2.3 Hydrostatic strain coefficient

The hydrostatic (or piezoelectric) strain coefficient, dh = d31+d32+d33, is the

measure of the effective strength of electromechanical coupling in a piezoelec-

tric material. It is especially important in the conversion of mechanical loads

(under hydrostatic loading) to electrical signals (in a given direction, e.g., 3).

It describes the polarization that results from a change in hydrostatic stress.

To enhance the sensitivity of the hydrophone to the detection of sound, a large

value for the piezoelectric charge coefficient is desired. The piezoelectric strain

coefficient (d) can be evaluated from the piezoelectric stress coefficient (e) as,

dijk = eimnS
E
mnjk, where SE is the elastic compliance tensor.

4.4.2.4 Hydrostatic figure of merit

The hydrostatic figure of merit, dh · gh defines the hydrophones’ sensing and

actuating capability. The sensitivity of a hydrophone depends primarily on

the voltage that is produced by a hydrostatic pressure wave. The hydrostatic

voltage coefficient, gh, relates the electric field across a transducer to the ap-

plied hydrostatic stress, and is therefore an important parameter for evaluating

piezoelectric materials for use in hydrophones. The gh coefficient is related to

the dh coefficient by the permittivity constant (κ33) as gh = dh/κ33. Porous

piezoelectric materials usually demonstrate higher values for the hydrostatic
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figure of merit than fully dense monolithic piezoelectric materials or pore-free

piezo-ceramic composites.

The results obtained from the analytical model and their relationship

to the results obtained from the finite element models are discussed in the

following section 4.5.

4.5 Results and discussion

The analytical model developed in the present study is invoked to predict the

complete set of elastic, dielectric and piezoelectric properties of two solid (3-

1 type) fiber composite systems and three porous ((3-0 type) and (3-1 type))

piezoelectric material systems (that exhibit varying degrees of anisotropy) over

a wide range of volume fractions. The predictions of the analytical model de-

veloped in the present study are compared to that of an analytical model

developed earlier for piezoelectric composites with transversely isotropic con-

stituents and a three-dimensional finite element model developed in the present

study for piezoelectric composites with anisotropic constituents. The proper-

ties of the piezoelectric materials considered in the present work are given in

Table A.1.

4.5.1 Comparison of the fundamental electromechanical

properties predicted by the analytical model with

an existing analytical model for piezoelectric com-

posites with transversely isotropic constituents

The electro-elastic moduli predicted by the analytical model developed in the

present study are compared to that of the asymptotic homogenization-based

analytical model developed by Bravo-Castillero et al. [2], which provides ex-

plicit expressions for the electromechanical properties of 3−1 type piezoelectric

fiber composites with transversely isotropic consituents. (The model developed

by Bravo-Castillero et al. is applicable to fiber composites with a square dis-

tribution of fibers.) Two material systems, i.e., a ceramic-ceramic (Barium
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Titanate(matrix) - PZT-7A (fiber)) and a polymer-ceramic (PVDF (matrix)

- PZT-7A (fiber)) were chosen for the analysis.

Figure 4.6: The variation of the electromechanical properties of a (3-1) type piezoelectric
composite with fibers aligned in the direction of poling with volume fraction predicted by the
analytical model developed in the present study and the asymptotic homogenization-based
model (AHM) [2] in model Barium Titanate - PZT-7A and PVDF - PZT-7A systems.

The two material systems were chosen to represent a range of material

systems where the constituent phases have relatively similar electromechanical

properties (i.e., Barium Titanate - PZT-7A) as well as systems where one phase

is considerable stiffer than the other phase (i.e., PVDF - PZT-7A). Overall the

electromechanical properties predicted by the analytical model developed in

the present study compare well with those predicted by the model presented by

Bravo-Castillero et al. [2] (Fig. 4.6) for both the composite material systems.

The largest difference between the predicted properties from the two models

was observed for the longitudinal stiffness constant C33 in the PVDF - PZT-7A

system and found to be about 17% at 50% fiber volume fraction. The elastic

properties in the “transverse” direction C11 and C22 show only a 3% difference

at 50% fiber volume fraction.
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4.5.2 Comparison of the fundamental electromechanical

properties predicted by the analytical model and

the finite element model

While prior studies have been successful in estimating the overall properties of

composites with transversely isotropic particle and matrix phases, the model

developed in the present study can predict the components of the effective

moduli for any anisotropic periodic piezoelectric composite. For e.g., Dunn

and Taya [49] and Mikata [52] have presented models that give explicit solu-

tions for the components of equivalent Eshelby tensor for transversely isotropic

phases but do not give closed-form solutions for anisotropic inclusions. Also

their works specifically dealt with single inclusions in infinite media, which is

the equivalent Eshelby problem for piezoelectric materials. An external scheme

(in their case the Mori-Tanaka mean field approach) has to then be applied

to the solution for a single inclusion to predict the effective properties across

finite volume fractions. On the other hand, our analytical model (based on

Suquet estimates [95]) take into account the distribution of the particle in the

matrix phase and give solutions for effective moduli at finite volume fractions

as well. That the analytical model developed in the present study yields accu-

rate predictions for all the effective electromechanical constants for a periodic

piezoelectric composite is demonstrated in the following sections. However,

we note that this model does not take into account any interactions between

particles in adjacent unit cells and the accuracy of the model predictions at

the percolation limit has not been assessed.

Fig. 4.7 presents a comparison of the elastic constants predicted by the

analytical model and the finite element model developed in the present study

and their variation with volume fraction of porosity for a model anisotropic

piezoelectric system (i.e., barium sodium niobate single crystal which exhibits

mm2 crystal symmetry). It is evident that the analytical model works well

in predicting all the independent constants with the difference between the

analytical model predictions and the finite-element model predictions being

less than 4% for all constants. This demonstrates the utility of the analytical
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Figure 4.7: The variation of the elastic properties of a (3-0) type porous piezoelectric
material with porosity volume fraction predicted by the analytical model and the finite
element model in a model barium sodium niobate single crystal piezoelectric system.

model developed in the present study where even a linear approximation for the

stress and electric field polarizations yields fairly accurate results for predicting

the elastic properties of the piezoelectric composite.

A comparison between the overall piezoelectric and dielectric constants

obtained from the analytical and finite-element model is presented in Fig. 4.8.

Here again it is observed that the there is very good agreement between the

predictions given by the two models. As expected, the piezoelectric constants

(e15, e24, e31 and e32) and the dielectric constants (κ11, κ22, and κ33) show

decreasing trends with increase in porosity volume fraction.

4.5.3 Comparison of the figures of merit predicted by

the analytical model and the finite element model

To demonstrate the applicability of the current analytical model in predict-

ing the properties of piezoelectric composite materials that belong to several

73



Figure 4.8: The variation of the piezoelectric and dielectric properties of a (3-0) type
porous piezoelectric material with porosity volume fraction predicted by the analytical model
and the finite element model in a model barium sodium niobate single crystal piezoelectric
system.

crystal symmetry classes, the analytical model was invoked for three model

piezoelectric single crystal material systems, each with spherical and cylin-

drical porosity. Subsequently, four figures of merit that are important for

practical applications of porous piezoelectric materials were also identified for

a range of porosity volume fractions. In general, all the four figures of merit

are well-predicted by the analytical model and showed a high degree of corre-

spondence when compared with the results of the finite-element model (with

the maximum differences between the predictions of the analytical model and

the final element model being less than 2%). Of particular interest to note

are the values for the piezoelectric strain coefficient(dh) and the hydrostatic

figure of merit (dh · gh) for the case of piezoelectric materials with spherical

porosity in all three materials (Fig. 4.9). The steep increase in the values

of these figures of merit with increasing porosity had been observed earlier

by Iyer and Venkatesh [64, 63], making piezoelectric ceramics with spherical

porosity useful for hydrophone sensing applications.
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Figure 4.9: The variation of select figures of merit in (3-0) type and (3-1) type porous
piezoelectric materials with porosity volume fraction predicted by the analytical model and
the finite element model in three model single crystal piezoelectric systems.

4.6 Conclusions

Several analytical models have been developed to predict the fundamental

properties of select classes of piezoelectric composite materials such as those

that exhibit transverse isotropy. Furthermore, finite element based numerical

models have been developed to predict the electromechanical properties of

piezoelectric composites with anisotropic constituents. However, an analytical

model that provides explicit closed-form solutions to the most general problem

of a piezoelectric composite with anisotropic particulate constituents is not yet

available.

In the present study, an analytical framework, based on the homoge-

nization methods developed by Suquet [95], has been developed to predict

the effective properties of periodic anisotropic particulate composites. Expres-

sions have been provided for the effective moduli tensors of n-phase composites
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based on the respective strain and electric field concentration tensors. Previous

analytical models developed by Dunn and Taya [49] and Mikata [51] provide

closed-form expressions for the electromechanical properties of single inclusions

in infinite transversely isotropic media. Hence, the analytical model presented

in this study takes their work forward by examining the microstructure of the

periodic composite and incorporating a scheme that results in the prediction

of the overall electromechanical constants of piezoelectric composites for finite

volume fractions. Furthermore, in the present study, no dependence on ma-

terial symmetry is assumed when deriving the equivalent Eshelby tensors for

the periodic composite.

By taking into account the shape and distribution of the inclusion and

by invoking a simple numerical procedure, solutions for the electromechanical

properties of a general anisotropic inclusion in an anisotropic matrix are ob-

tained. While analytical expressions are provided for composites with spherical

and cylindrical inclusions, numerical evaluation of integrals over the compos-

ite microstructure is required in order to obtain the expressions for a gen-

eral ellipsoidal particle in a piezoelectric matrix. It can also be shown that

the approximation that the polarization fields be piece-wise continuous yield

Hashin-Shtrikman type bounds for the effective moduli tensors.

The predictions of the analytical model developed in the present study

for the electroelastic moduli of piezoelectric composites demonstrate excel-

lent agreement with the results obtained from three-dimensional finite-element

models for several piezoelectric systems that exhibit varying degrees of elastic

anisotropy.

However, the analytical model developed in this study has some limi-

tations. The interactions between particles at high volume fractions are not

taken into consideration. Furthermore, this model is not applicable to com-

posites with a random distribution of particles in the matrix phase. Neverthe-

less, the theory is general in terms of predicting the overall electromechanical

properties for periodic piezoelectric composites with n-phases and anisotropic

fundamental property tensors.
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CHAPTER 5

Band Gaps in Bravais Lattices Inspired
Periodic Cellular Materials and The Effect

of Relative Density and Strain Fields

5.1 Introduction

Topology-optimized periodic cellular materials have a promising potential in

active sound attenuation and filtering devices due to their unique frequency-

and topology-dependent sound wave dispersion and transmission characteris-

tics. Lattice (periodic cellular) materials, as a result of their periodic archi-

tecture, give rise to geometric impedance mismatch which, in turn, causes

complex destructive wave interference phenomena over specified frequency

bands (i.e. band-gaps or stop-bands) [100, 73]. At these bands or frequencies

wave transmissibility is diminished and its propagation is blocked. Phononic

band-gap (PBG) materials, due to their ability to control the propagation of

mechanical waves, are increasingly being considered as potential candidates

to perform as low frequency phononic crystals and metamaterials in radar,

sonar, wave guiding, wave modulation and isolation applications. In addition,

this phenomenon of barriers (band-gaps) in the frequency spectrum has been

especially targeted for its potential towards being used in sound filtering in

the audible range particularly in today’s environment of ever increasing sound

pollution.

The interest in cellular based PBG materials is further amplified as they

can be engineered at the micro- or meso-scales to exhibit novel and unique

mechanical properties, not readily exhibited by monolithic existing materials.
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Multiple efforts have been exerted to understand and subsequently engineer

PBG cellular materials.

In general, these efforts often aimed to highlight the relationship between

cellular topological features in terms of fundamental building blocks of periodic

lattice structures (i.e., unit cells) and observed band-gaps (e.g. in order to

design lattices with specific vibration isolation characteristics [101]) under out-

of-plane and in-plane wave propagation.

For out-of-plane elastic wave propagation, band gaps and directional char-

acteristics have been investigated in hexagonal [102] and grid-like lattices [103],

while for in-plane elastic waves, Kagome, hexagonal, triangular, and grid-like

lattice structures were studied [104, 105]. These efforts highlighted that band-

gaps and directionality vary widely among the different lattices, are dependent

on topological features and speed of sound in constitutive materials, and can

be potentially tuned by composing cellular lattice materials from constituents

with contrasting properties (densities or speed of sounds) or by altering the

lattice topology. Accordingly in this study, the wave dispersion characteristics

have been studied in honeycomb, triangular and tetragonal structures Fig. 5.1.

More recent efforts have focused on optimizing and tuning the response

of PBG lattice materials. In this regard, Sigmund and Jensen [101] showed

that the band-gaps in a given periodic structure comprised of two-phase com-

posites materials, can be optimized to exhibit enhanced band-gap properties.

Kushwaha et al. [72] presented full band-gap structure calculations for elas-

tic composites tuned to applications where a vibrationless environment was

desired. Bertoldi and Boyce [106, 107] studied the potential for using insta-

bilities in tuning the wave propagation and band gaps in periodic structures.

Bertoldi and Boyce [106, 107] subjected periodic elastomers to large strain

deformations and studied the shift in the band-gap as a result of the induced

buckling modes. Their results show that deformation patterns due to buckling

can drastically shift the band-gaps in a sudden but controlled manner. Khelif

et al. [108, 109] obtained numerical results showing PBG’s in quartz cylin-

ders embedded in an epoxy matrix and found that band-gaps can be tuned by
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Figure 5.1: Schematic illustration of a hexagonal lattice - (a) Highlights the unit-cell within
the hexagonal lattice system and its corresponding unit vectors (b) Highlights the unit-cell
within the tetragonal lattice system and its corresponding unit vectors (c) Highlights the
unit-cell within the triangular lattice system and its corresponding unit vectors.

controlling the spacing between the quartz cylinders.

From the above mentioned literature review it can be established that

architectured periodic lattice materials, by virtue of their periodic spatial ar-

chitecture, exhibit wave dispersion characteristics, direction dependent wave

propagation behavior, frequency dependent phononic band-gaps [100, 73, 110],

and therefore, can guide, steer, transmit or block sound and elastic waves

[102, 111, 112]. Moreover, lattice based metamaterials/phononic crystals can

provide characteristics and operate at frequencies not always achievable with

monolithic metamaterials; in particular lattice based metamaterials can oper-

ate at very low frequencies (sub Hz to KHz), which are particularly important

for radar and sonar applications and in situations where long range wave pen-

etrability is essential.

In order to capitalize on the potential of architectured materials and to
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use them in the aforementioned applications, they need to be designed to de-

liver, precise and tunable pass-gap frequency characteristics, wave dispersion

and directionality characteristics suited to the requirement of the given device.

However, the extent to which microstructural features such as solid relative

density influences the fundamental acoustic properties of such phononic mate-

rials is at present not fully understood. Accordingly, this work aims to provide,

1. A better understanding of the effects of relative density on the band

gaps and directional wave characteristics in three chosen lattice configu-

rations.

2. Establish the knowledge base necessary to realize application-tailored

band-gaps and wave characteristics through tuning the lattice topology

and relative density of architectured lattice materials.

The remainder of this study has been organized as follows; Section 5.2

elaborates on the theoretical background necessary to study the evolution of

the frequency band gaps in cellular solids. The founding work of Brillouin is

explained in context of Bloch’s wave theory, specialized to the case of cellular

composites. Section 5.3 discusses the results and discussions from the study

of Bloch wave analysis of cellular solids. Finally the conclusions and the path

to future advancements in the area of Bloch wave analysis of cellular solids, is

discussed in the Section 5.4.

5.2 Technical Approach and Theoretical Background:

Characterizations of Dispersion, Band Gaps and Di-

rectionality in Lattices

Frequency dependent band-gap phenomenon in PBG materials is fundamen-

tally similar to electron propagation and electron band-gaps in solid state

physics. Therefore the techniques of Brillouin zones and Bloch waves [71]

which stem from the realm of solid state physics have been extensively uti-

lized to investigate wave propagation in architectured (lattice) phononic crys-

tals (e.g.[73, 113]).
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Similarly, in this work, wave propagation in lattice-based systems is stud-

ied and characterized using the well-established Bloch’s wave theorem in con-

junction with finite element computations. Bloch’s wave theorem is imple-

mented in this work following the work outlined in Refs. [73, 102, 71, 114].

The implementation of which is described in the following subsections.

5.2.1 Unit cell and lattice vectors identification

A unit cell, by definition, is the smallest representative element of a large

periodically repeating lattice system through translations along the lattice

base vectors. To illustrate, a periodic hexagonal lattice and its corresponding

unit cell are shown in Fig. 5.2. In this example, the lattice base vectors are

described as eL
1 and eL

2 such that the superscript L refers to lattice space.

Here, bold letters are used to represent vector quantities. Using the lattice

space vectors any point in the lattice structure can be located. For instance,

the location of point p in cell n1, n2 can be defined as,

ρp(n1, n2) = rp + n1e
L
1 + n2e

L
2 (5.1)

where rp represents the location of point p with reference to the unit cell whose

n1 and n2 components are equal to zero.

5.2.2 Bloch’s wave theorem and its application to the

unit-cell

Without any loss of generality, the hexagonal lattice is used to illustrate the

process of implementing Bloch’s wave theorem. Bloch’s theorem states that

the displacement of a point p in the reference unit cell due to a wave propa-

gating through it at a frequency ω can be stated as,

u(rp) = upoe
(iωt−k · rp) (5.2)
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Figure 5.2: Schematic showing the lattice space, reciprocal space and Brillouin zone for a
honeycomb lattice with (a) representation of the lattice space and unit cell, (b) reciprocal
space and 1st Brillouin zone in the physical space.

such that po is the origin of the reference cell, upo is the amplitude of the

propagating wave and k is the wave vector. Based on Bloch’s theory, the

displacement of a point p in the cell n1, n2 whose location is ρp(n1, n2) can be

expressed as,

urp = u(rp)e
k · (ρp − rp) = u(rp)e

(k1n1+k2n2) (5.3)

where the right most term is a result of the relations k · eL
1 = k1 and k · eL

2 =

k1, since the wave vector is defined in the lattice reciprocal space as is shown

below (Eq. (5.3)). This equation accounts for wave dispersion and attenuation

in the lattice structure through the wave vector k. This assumption satisfies

Bloch’s theorem since it inherently assumes that a proportionate change in

wave amplitude due to dispersion and attenuation from cell to cell does not

depend on the location of the cell within the periodic system [73].

5.2.3 Dispersion relations and free wave motion

The aforementioned subsections provided the foundation for determining the

periodic boundary conditions that accommodate dispersive behavior across a

cell. These boundary conditions are implemented into the elastodynamic equi-

librium equations to result in the dispersion governing equations that implicitly

relate the wave frequency to the wave vector k. The elastodynamic equilib-

rium equations are solved using finite element computations in ABAQUS, for
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Figure 5.3: Schematic showing the first Brillouin zones and irreducible first Brillouin
zones for (a) Hexagonal unit cell with irreducible first Brillouin zone represented by I1, (b)
Tetragonal unit cell with irreducible first Brillouin zone represented by I2 and (c) Triangular
unit cell with irreducible first Brillouin zone represented by I3

an isotropic material (steel, E = 200 GPa,ν = 0.33) where damping is as-

sumed to be negligible. Accordingly, the elastodynamic equilibrium equations

are written as, (
K− ω2M

)
u = f (5.4)

where u = [u0, u1, u2, ui]
T and f = [f0, f1, f2, fi]

T are the nodal displacements

and forces vectors, respectively. K and M are the element stiffness and mass

matrices for the unit cell, respectively. ω represents the natural frequencies of

the system which are equal to the number of degrees of freedom. Force and

displacement vectors are expressed in terms of boundary and non-boundary

degrees of freedom to facilitate applying the Bloch’s theorem boundary con-

ditions. Substituting the force and displacement vectors in Eq. (5.4) results

in, (
Kr − ω2Mr

)
ur = 0. (5.5)

In Eq. (5.5), Kr and Mr are the reduced element stiffness and mass matrices

for the unit cell and are functions of (k1, k2) and ur is the reduced displacement

vector ur = [u0, ui]
T. Symmetry of the first Brillouin zone can be exploited

such that only the irreducible part of the first Brillouin (Fig. 5.3) zone needs

to be probed. To demonstrate, the first eigenmode surface ω1(k1, k2) for the

unit cell shown in Fig. 5.3(a) is obtained and presented in Fig. 3(a) in terms

of the (ξ1, ξ2) representation of (k1, k2) (i.e. in the physical space following Eq.
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(5.4)). This figure has two planes of symmetry along the 1 and 2 axes which are

the planes of symmetry of the irreducible first Brillouin zone. Surfaces defined

by ω = ω(k1, k2) are the phase constant surfaces or dispersion surfaces. Each

dispersion surface defines the dispersion characteristics and frequency-wave

number relations for a particular mode. The following subsection describes

the implementation of Bloch’s wave theorem using a finite-element code to

determine band-gaps in cellular solids. In the present study the first 10 eigen-

frequencies have been obtained for each phase constant or dispersion surface.

5.2.4 Implementation of Bloch’s wave theorem

The eigenvalue problem, Eq. (5.5), is used to define the band gap structure

of periodic architectured lattices by varying k1 and k2 along the perimeter of

the irreducible 1st Brillouin zone and solving Eq. (5.5). In order to imple-

ment the periodic constraint equations in the commercially available software,

ABAQUS, we start with modeling the honeycombs as an assembly of rigidly

connected beams with three degrees of freedom (1, 2 and 6 in ABAQUS con-

vention).

In accordance with Bloch’s theorem, periodicity constraint equations that

connect the unit-cell’s generalized displacements, in addition to equilibrium

conditions can then be written as (Fig. 5.2):

u1 = ek1u0

u2 = ek2u0 (5.6)

and

f1 = −ek1f0

f2 = −ek2f0 (5.7)

The solutions to Eq. (5.5) are the eigenfrequencies of the periodic cellular

lattices and correspond to the resonant frequencies of the structure. In order

to obtain the complete dispersion characteristics of the lattice, two out of the
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Figure 5.4: Schematic showing the contours along the perimeter of the irreducible first
Brillouin zones for (a) Hexagonal unit cell , (b) Tetragonal unit cell and (c) Triangular unit
cell.

three unknowns, k1, k2, ω have to be defined. In our case we define k1, k2 and

solve for ω. For the purpose of obtaining the frequency band-gaps in our

analyses we further assume that wave motion occurs without attenuation. For

this purpose we then assign k1, k2 as pairs of imaginary numbers (k1 = iε1,

k2 = iε2). The complete solution is thus obtained by varying k1 and k2 within

the cellular structure to obtain, ω = ω(k1, k2) as illustrated in Fig. 5.3. For

the purpose of saving computational costs, the evaluation of the dispersion

diagrams can be significantly reduced by exploiting the symmetry of the first

Brillouin zone (FBZ) (Fig. 5.3), which is determined based on the symmetry

of the cellular solid. A smaller zone within the FBZ can further be exploited

to study phase constant surfaces such that variation of the k-vector is only

examined along the outer perimeter of the irreducible first Brillouin zone (IR-

FBZ) (Fig. 5.4). Note that limiting the variation of the wave vector along

the contour of the irreducible first Brillouin zone is practised extensively in

almost all the literature relating to wave propagation in composite structures,

although a rigorous mathematical proof of its validity is still awaited.

5.2.5 Determining the directional characteristics

Wave directional characteristics of periodic lattices which are inherently de-

fined by the dispersion surfaces are represented in this work in terms of their

phase velocity and group velocity as well as their dependence on frequency and
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wave direction. Phase and group velocity provide a better application-tailored

perspective and also better illustrate both the dispersive characteristics of lat-

tices and their acoustic anisotropy. Phase velocity and group velocity are

determined from the dispersion surfaces using,

cp =
ω

k
û and cg =

(
∂ω

∂k1
,
∂ω

∂k2

)T

(5.8)

where k = |k|. û is the unit vector pointing in the direction of the wave

vector,
(
k
k

)
, and ω is the frequency. Thus, the aforementioned theoretical-

computational based approach, based on integrating Bloch’s theory with finite

element computations, will be used to characterize the dispersion and direc-

tional characteristics in all lattices considered in this work. Results for each

lattice will provide its wave band structure, dispersion surfaces, phase velocity

and group velocity for multiple modes.

5.3 Results and Discussions

The Bloch wave-FE based methodology was used to obtain the dispersion

surfaces for the first 10 eigenmodes for the relative densities 5%, 10%, 15%,

20%, 25%, 30%. The obtained dispersion surfaces are presented in Fig. 5.5.

This figure shows that increased relative density increases the frequencies of

the modes and shifts the dispersion surfaces upward, which is what would be

expected in general as increased density increases wave propagation speed and

increases the systems natural frequencies. However, based on Fig. 5.5, the

effect of increased relative density on both natural frequencies and dispersion

surfaces is not always linear. This is best illustrated by the nonlinear depen-

dence of the spacing between the dispersion surfaces for the first 10 modes on

relative density. Such behavior can be rationalized as eigenmodes have their

own dominant deformation mechanisms, and therefore, different eigenmodes

(wave propagation modes) depend differently on relative density. For each

of the 6 relative densities analyzed, the first Brillouin zone was obtained and

used to determine the band gap structure based on the first 10 modes. The
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Figure 5.5: Iso-frequency surfaces for the hexagonal honeycomb, showing the first 10
eigenmodes for the relative densities of 5%, 10%, 15%, 20%, 525%, 30%.

band gap structures for the hexagonal specimen with relative densities of 5%,

10%, 15%, 20%, 25%, and 30% are presented in Fig. 5.5. This figure shows

that gaps in the frequency spectrum were seen only at relative densities of

10%, 15%, 20% and 25%, whereas no band gaps were observed at 30% or 5%

relative density.
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Figure 5.6: Frequency dispersion plots for the first 10 eigenmodes for the hexagonal lattice
system for the relative densities of 5%, 10%, 15%, 20%, 525%, 30%. The band gaps have
been highlighted (where present) shaded dark red.

5.3.1 Band-gap dispersion diagrams

In order to study the band-gap characteristics in cellular lattice architectures,

the frequency band-gap dispersion diagrams were plotted for the hexagonal,

tetragonal and triangular lattice configurations.

5.3.1.1 Hexagonal lattice architectures

The band gaps at 10%, 20% and 25% relative densities were around 1000 HZ,

2000 HZ, and 2100 HZ, respectively. Two bands (1300 HZ and 1700 HZ)

were observed at 15% relative density. The effect of relative density on the

band gap structure is not very intuitive. Clearly with increased density, the

frequency and band structure is scaled upwardly but nonlinearly. Increased

density affects higher modes more than lower modes; therefore, when increased

relative density results in band gaps, these gaps will be exist at the higher

frequencies (i.e. between higher order eigenmodes). A linear dependence on

relative density would translate in widening bang gaps with increased relative

density. However, based on Fig. 5.6 it can be observed that the band gaps

were closed at 30% relative density instead of widening as the relative density

was increased from 25% to 30%. This highlights the nonlinear dependence
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Figure 5.7: Mode I dispersion surfaces for the hexagonal honeycomb, showing the first 10
eigenmodes for the relative densities of 5%, 10%, 15%, 20%, 25%, 30%.

of the band gap structure on relative density. This behavior points to two

important results. First, the band gap structure can vary significantly by

changing relative density. Second, relative density can be used to obtain a

tuned band gap structure. Moreover, by considering relative density as an

additional tuning parameter along with topological features, the potential for

designing application tailored band gap structures is greatly amplified.

To investigate the wave propagation characteristics and the effects of rel-

ative density on the wave phase speed and its direction, the dispersion surfaces

for the first modes were extracted and plotted as isolines in Fig. 5.7. Each

line in these plots implicitly represents the frequency dependent dispersion

relation in terms of the direction dependent dispersion parameters at certain

wave propagation mode. Near the origin of Fig. 5.7, the dispersion rela-

tions follow a circular profile which means that these dispersion relations are

direction independent (i.e. wave propagating at the frequency of the partic-

ular isoline frequency would disperse in the same manner irrespective to the

propagation direction). On the other hand, at higher frequencies, dispersion

relations become more anisotropic (i.e. direction dependent). The aforemen-

tioned behavior is, to a great extent, visible at all relative densities. However,
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Figure 5.8: Frequency dispersion plots for the first 10 eigenmodes for the tetragonal lattice
system for the relative densities of 5%, 10%, 15%, 20%, 525%, 30%. Note that no band gaps
were observed for the tetragonal lattice configuration.

at higher densities the gradient between the isolines changes and tends to in-

crease. Although in the neighbourhood of the first two modes, no band gaps

were observed, interest here is focused on the first two modes as they repre-

sent the more basic and pure deformation modes (i.e. shear and longitudinal

modes of in-plane wave propagation). At higher eigenmodes, wave propagates

through complex mixed deformation modes.

5.3.1.2 Tetragonal lattice architectures

From the dispersion diagrams depicting the frequency band gaps, it was ob-

served that no frequency band gaps existed for 5% - 30% relative densities

(Fig. 5.8). A phenomenon known was veering was observed between between

resonant frequency modes for all the relative densities plotted in the dispersion

diagrams. coupled systems Veering is said to be observed when, for multi-

ple eigenmodes, solutions to the elastodynamic equilibrium equations come

infinitesimally close but do not become equal in value. This is a degenerate

of the solutions to the elastodynamic equilibrium equations and is a common

phenomenon found in the solution of eigenvalue problems containing weakly

coupled systems.
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Figure 5.9: Mode I dispersion surfaces for the tetragonal lattice, showing the first 10
eigenmodes for the relative densities of 5%, 10%, 15%, 20%, 25%, 30%.

This observation can be understood in light of the frequency contour plots

for tetragonal structures, as shown in Fig. 5.9. By studying the configuration

of the unit cell, we can say that the struts are axial and perpendicular to the

direction of wave propagation.

This implies that the relative density has a linear relationship with strut

thickness and therefore proportionately affects the area of material interacting

with the incoming wave. In the iso-frequency plots we observe that there is no

discontinuity in the spread within the frequency spectrum in the irreducible

first Brillouin zone. This observation can be compared to the honeycomb

case where a nonlinear dependence was reported for the relationship between

relative density and the frequency band gaps.

5.3.1.3 Triangular lattice architectures

The band gaps at 15% and 20% relative densities were found to be between

2000 HZ and 3000 HZ, respectively and are shown in Fig. 5.10. Two bands

(2100 HZ and 2800 HZ) were observed at 15% relative density. The effect

of relative density on the band gap structure is nonlinear and non-intuitive.
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Figure 5.10: Frequency dispersion plots for the first 10 eigenmodes for the triangular
lattice system for the relative densities of 5%, 10%, 15%, 20%, 525%, 30%. The band gaps
have been highlighted (where present) shaded dark red.

Unlike the honeycomb lattice structure, the triangular lattice does not show

a large variation in the frequency range of the the band gaps. This can be

accounted by the structure of the triangular lattice which is more isotropic

when compared to the honeycomb lattice. It must also be noted that, in

the frequency dispersion plots (Fig. 5.10), the lower branch remains nearly

invariant to the in relative density. This branch corresponds to the shear

mode of a homogeneous medium with this slope defining the corresponding

equivalent shear modulus and density of the homogenized medium. This can

be further established by studying the frequency contours in the first Brillouin

zone as given in Fig. 5.11.

5.3.2 Phase velocity diagrams

In order to study the band-gap characteristics in cellular lattice architectures,

the frequency band-gap dispersion diagrams were plotted for the hexagonal,

tetragonal and triangular lattice configurations.

Dispersion surfaces from Fig. 5.7 were used in conjunction with Eq. (6)

to compute the direction and frequency dependent propagation phase velocity

for the first two modes. Computed phase velocity plots are presented in Fig.

5.12, for the first and second eigenmodes, respectively. Phase velocity for the
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Figure 5.11: Mode I dispersion surfaces for the triangular lattice, showing the first 10
eigenmodes for the relative densities of 5%, 10%, 15%, 20%, 25%, 30%.

first mode (Fig. 5.12) shows that the velocity is highly dependent on direction

due to the hexagonal cellular topology.

In addition, the figure shows that phase velocity increases with increas-

ing relative density which is expected as the stiffness of the structure increases

substantially with increased relative density. Here increased relative density

translates to an increase in the ligament thickness which increases the stiffness

of the structure. More importantly, as the structure is bending dominated

(i.e. its ligaments are mostly loaded by bending moments), its stiffness depen-

dence on relative density (i.e. thickness) is nonlinear. The observed change in

phase velocity was about 5 folds when the relative density was increased from

5% to 30%. Phase velocity plots were also evaluated to analyse the role of

the non-isotropic behaviour of the lattice and their dispersive characteristics.

On comparing the phase velocities of the triangular structure with the cor-

responding phase velocity diagrams of the honeycomb structure (Fig. 5.13).

The regular honeycomb as well as the triangular structures behave as regular

isotropic solids at low frequencies. However on comparing Figs. 5.12 and 5.13,

we observe that only the honeycomb is non-dispersive. At higher frequencies
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Figure 5.12: Phase velocity diagrams obtained from the first 20 mode I isofrequency lines
for hexagonal honeycomb, showing the first 10 eigenmodes for the relative densities of 5%,
10%, 15%, 20%, 525%, 30%.

the phase velocity diagrams for the triangular lattice suggest that there is a

shift from four-lobed to six-symmetry.

As intuitively can be predicted, the anisotropic phase velocity charac-

teristics with its four planes of symmetry remain unchanged irrespective to

relative density. This is true as the whole system was scaled uniformly. It

should be noted that the phase velocity plots are for the first 10 dispersion

isolines (i.e. lowest frequencies) seen in Fig. 5.7. At higher frequencies disper-

sion characteristics change and become more anisotropic.

As compared to the first mode, the phase velocity for the second mode ex-

hibits very different characteristics. The velocity for the lowest 10 frequencies

are isotropic and frequency independent. The phase velocity for the second

mode exhibits interesting and not quite explicable or predicted behavior as the

phase velocity seems to be insensitive to relative density. This might stem from

a deformation pattern specific to the second eigenmode at the low frequencies

that excite mostly axial deformation in the ligaments. In such cases, stiffness

and mass of the hexagonal specimen scales linearly with relative density and

therefore the speed of sound remains constant irrespective of relative density.

However, this rationalization is qualitative and the observed unique behavior
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Figure 5.13: Phase velocity diagrams obtained from the first 20 mode I isofrequency lines
for triangular lattice, showing the first 10 eigenmodes for the relative densities of 5%, 10%,
15%, 20%, 525%, 30%.

requires more analysis and scrutiny.

5.4 Conclusions

Bloch’s theorem in conjunction with finite element analysis was used to in-

vestigate the relationships between relative density and constituent material

anisotropy on the acoustic properties, wave dispersion, band gaps, and acoustic

anisotropy of hexagonal lattice materials. Results illustrate that band struc-

ture and phononic properties are highly sensitive to relative density and can

scale non-uniformly with relative density as eigenmodes are associated with

relative density dependent deformation mechanisms. Moreover, results show

that band gaps can potentially be activated and deactivated using macroscopic

strain fields. The latter opens horizons for realizing cellular based phononic

crystals with tunable properties. The potential for manipulating band gaps

using simple uniform tensile strain fields was assessed by computing the band

structure and band gaps before and after deformation. It is widely expected

that very large strains can dramatically change the band gap structure of cel-

lular architectures. However, here the focus on using relatively small strains
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Figure 5.14: Phononic crystals, showing the band gaps structure exhibited by (a) regular
honeycomb specimen (based on the 1st 10 modes), (b) Stretching the phononic honeycomb
crystal eliminates the two band gaps exhibited by unstretched honeycombs. The band gaps
have been highlighted (where present) shaded dark red.

(up to 5%) to manipulate and tune band gaps. Accordingly, anisotropic con-

stituent material was used to build a hexagonal specimen whose geometric

features are identical to the specimens used in this work so far. This path

was pursued as the combination of anisotropic material and strain field can

provide the required significant effect on band structure. For the anisotropic

hexagonal specimen, the Bloch wave-FE approach was used as illustrated be-

fore, to obtain the band structure in the strain free state and in a state with

5% unidirectional tensile strain. The band gap structures from these two cases

are presented in Fig. 5.14 (a) and (b). This figure shows that the strain free

specimen has two band gaps that disappear when the 5% stretch is applied.

The ramification of this observation is significant as it illustrates the potential

for creating cellular architectures with tunable band gap properties that can

be activated or deactivated using strain fields.
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CHAPTER 6

Appendix

Appendix A. Electromechanical properties of common

piezoelectric materials.

Table A.1: The room-temperature fundamental electromechanical properties of the piezo-
electric materials, Barium Titanate, Barium Sodium Niobate, Lithium Niobate, and PVDF
(single crystals) and PZT-7A (polycrystal), utilized in the analytical and finite-element
models. The values for (C, e, κ) are given in (Pa, C/m2, C/V m) respectively [4, 5, 6, 7].

Barium Titanate Barium Sodium Niobate Lithium Niobate PZT-7A PVDF
BaTiO3 Ba2NaNb5O15 LiNbO3 Pb (ZrxT i1−x)O3 − (C2H2F2)n −

C11 1.504E+11 2.389E+11 2.029E+11 1.480E+11 4.840E+09
C12 6.563E+10 1.042E+11 5.292E+10 7.620E+10 2.720E+09
C22 1.504E+11 2.474E+11 2.029E+11 1.480E+11 4.840E+09
C13 6.594E+10 5.006E+10 7.491E+10 7.420E+10 2.220E+09
C23 6.594E+10 5.214E+10 7.491E+10 7.420E+10 2.220E+09
C33 1.455E+11 1.351E+11 2.431E+11 1.310E+11 4.630E+09
C14 0.000 0.000 8.999E+09 0.000 0.000
C24 0.000 0.000 -8.999E+09 0.000 0.000
C44 4.386E+10 6.494E+10 5.590E+10 2.530E+10 5.260E+07
C55 4.386E+10 6.579E+10 5.590E+10 2.530E+10 5.260E+07
C56 0.000 0.000 8.985E+09 0.000 0.000
C66 4.237E+10 7.576E+10 7.488E+10 3.590E+10 1.060E+09
e15 11.404 2.763 3.424 9.310 -1.999E-03
e16 0.000 0.000 -2.534 0.000 0.000
e21 0.000 0.000 -2.538 0.000 0.000
e22 0.000 0.000 -2.538 0.000 0.000
e24 11.404 3.377 3.423 9.310 -1.999E-03
e31 -4.322 -0.445 0.194 -2.324 4.344E-03
e32 -4.322 -0.285 0.194 -2.324 4.344E-03
e33 17.36 4.335 1.309 10.99 -1.099E-01
κ11 1.284E-08 2.081E-09 7.437E-10 3.984E-09 6.641E-11
κ22 1.284E-08 2.187E-09 7.437E-10 3.984E-09 6.641E-11
κ33 1.505E-08 4.516E-10 2.656E-10 2.081E-09 7.083E-11
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Appendix B. The concentration tensors for strain and

electric field A, a, B, b

The expressions for the average strain and electric field in the particle phase

can be used to derive expressions for the effective elastic, piezoelectric, and

dielectric tensors. Solving (4.37) and (4.38) for the two unknowns ε(2)mn and

ϕ
(2)

mn we obtain equations with the following form:-

ε
(2)
kl = A

(2)
mnklε

0
mn + a

(2)
klqϕ

0
,q, ϕ,o

(2)
= B(2)

omnε
0
mn + b(2)

op ϕ
0
,p (A.1)

where A and a are the strain concentration tensors for the particle phase and

B and b are the corresponding electric field concentration tensors. The ex-

pressions for the effective moduli tensors in terms of the concentration tensors

are given by:

L̃ijkl = L
(1)
ijkl + c(2)∆L

(2)
ijmnA

(2)
mnkl + c(2)∆e

(2)
pijB

(2)
pkl (A.2)

ẽimn = e
(1)
imn + c(2)∆e

(2)
iklA

(2)
klmn − c(2)∆κ

(2)
ik B

(2)
kmn (A.3)

κ̃in = κ
(1)
in + c(2)∆κ

(2)
ik b

(2)
kn − c(2)∆e

(2)
ikla

(2)
kln (A.4)

The explicit expressions for the concentration tensors in terms of the mi-

crostructural tensors, are given below. At this point it would worthwhile

to mention that solving for the fourth-order strain concentration tensor A(2)

would require the implementation of a numerical code capable of solving 36

equations in 36 unknowns in order to determine all its independent compo-

nents. Note that the concentration tensor A(2) only has minor symmetry.

A(2) =
[
Is −

(
P(22)∆L(2) +Q(22)∆e(2)

)
−
(
P(22)∆e(2) −Q(22)∆κ(2)

)
{
I−

(
Q(22)∆e(2) −R(22)∆κ(2)

)}−1 (
Q(22)∆L(2) +R(22)∆e(2)

)]−1

(A.5)

a(2) = −A(2)
(
P(22)∆e(22) −Q(22)∆κ(2)

)
{I
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−
(
Q(22)∆e(2) −R(22)∆κ(2)

)}−1
(A.6)

B(2) =
{
I−

(
Q(22)∆e(2) −R(22)∆κ(2)

)}−1(
Q(22)∆L(2) +R(22)∆e(2)

)
(A.7)

b(2) =
{
I−

(
Q(22)∆e(2) −R(22)∆κ(2)

)}−1

+ B(2)
(
P(22)∆e(2) −Q(22)∆κ(2)

){
I−

(
Q(22)∆e(2) −R(22)∆κ(2)

)}−1
(A.8)

where the tensors I and Is are the 2nd and 4th order identity tensors, re-

spectively. The symmetric 4th-order identity tensor is defined in terms of the

Kronecker delta as follows:

Isijkl =
1

2
(δikδjl + δilδjk) (A.9)

δij =

{
1 if i = j;

0 if i ̸= j.
(A.10)

Appendix C. The microstructural tensors P, Q, R

In this appendix, explicit expressions for the components of the microstructural

tensors P,Q,R which characterize the three types of geometric configurations

i.e., (a) periodic square distribution of long pores/fibers, (b) periodic cubic

distribution of spheres, and (c) hexagonal distribution of long pores/fibers,

have been given.

Periodic square distribution

For the periodic square distribution, the base vectors Yi (i = 1, 2, 3) are given

by Y1 = d e1, Y2 = d e2, Y3 = ∞ e3, where d is the length of edge of the
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square.

Pijmn =
+∞∑

n1=−∞

+∞∑
n2=−∞

−{n1 =n2 =0}

c(2)Hs
ijmn

4J2
1 (bk)

b2k2
, (A.11)

Qijk =
+∞∑

n1=−∞

+∞∑
n2=−∞

−{n1 =n2 =0}

c(2)βs
ijk

4J2
1 (bk)

b2k2
, (A.12)

Rij =
+∞∑

n1=−∞

+∞∑
n2=−∞

−{n1 =n2 =0}

c(2)γs
ij

4J2
1 (bk)

b2k2
, (A.13)

where ξ1 = 2πn1/d, ξ2 = 2πn2/d, ξ3 = 0, b =
√

c(2)

π
, and k = 2π

√
n2
1 + n2

2

and it is recalled that J1(·) is the Bessel function of first kind and c(2) is the

volume fraction of the second phase. The superscript “s” on the tensors on

the right-hand side indicates symmetrization.

Periodic cubic distribution

For the periodic cubic distribution of spherical voids, the base vectors Yi

(i = 1, 2, 3) are given by Y1 = d e1, Y2 = d e2, Y3 = d e3. The expressions

for P, Q, R specializes to:

Pijmn =
+∞∑

n1=−∞

+∞∑
n2=−∞

+∞∑
n3=−∞

−{n1 =n2 =n3 =0}

c(2)Hs
ijmn

[
3 (−bk cos(bk) + sin(bk))

b3k3

]2
, (A.14)

Qijk =
+∞∑

n1=−∞

+∞∑
n2=−∞

+∞∑
n3=−∞

−{n1 =n2 =n3 =0}

c(2)βs
ijk

[
3 (−bk cos(bk) + sin(bk))

b3k3

]2
, (A.15)

Rij =
+∞∑

n1=−∞

+∞∑
n2=−∞

+∞∑
n3=−∞

−{n1 =n2 =n3 =0}

c(2)γs
ij

[
3 (−bk cos(bk) + sin(bk))

b3k3

]2
, (A.16)
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where ξ1 = 2πn1/d, ξ2 = 2πn2/d, ξ3 = 2πn3/d, b =
[
3c(2)

4π

] 1
3
, and k =

2π
√

n2
1 + n2

2 + n2
3.

Periodic hexagonal distribution

For the periodic hexagonal distribution, the base vectors Yi (i = 1, 2, 3) are

given by Y1 =
√
3d e1, Y2 =

√
3d/2 e1 + 3d/2 e2, Y3 = ∞ e3, where d is the

length of the sides of the regular hexagon, so that expressions for P, Q, R

specializes to:

Pijmn =
+∞∑

n1=−∞

+∞∑
n2=−∞

−{n1 =n2 =0}

c(2)Hs
ijmn

4J2
1 (bk)

b2k2
, (A.17)

Qijk =
+∞∑

n1=−∞

+∞∑
n2=−∞

−{n1 =n2 =0}

c(2)βs
ijk

4J2
1 (bk)

b2k2
, (A.18)

Rij =
+∞∑

n1=−∞

+∞∑
n2=−∞

−{n1 =n2 =0}

c(2)γs
ij

4J2
1 (bk)

b2k2
, (A.19)

where ξ1 = 2πn1/
(√

3d
)
, ξ2 = 2π(2n2 − n1)/3d, ξ3 = 0. Note that now,

b =
√

3
√
3c(2)

2π
, and k = 4π

3

√
n2
1 − n1n2 + n2

2

Appendix D. Explicit closed-form expressions for K, q

and p for a square, hexagonal and cubic distribution of

fibers/pores in a general anisotropic piezoelectric matrix.

The closed-form expressions for all the components of K, q and the scalar

quantity p, derived in Eqs. (4.20) and (4.21) for square, hexagonal and cubic

distribution of fibers/pores (of arbitrary geometry) in a general anisotropic

piezoelectric matrix are provided in the three tables D.1, D.2 and D.3. It can

be observed that the components of K, q and p are dependent on the periodic
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Table D.1: A table showing all the components of the quantities used in Eq.(4.20) for a
square distribution of fibers/pores in a general anisotropic piezoelectric matrix.

Component Square

K11 4π2
(
C11n

2
1 + 2C16n1n2 + C66n

2
2

)
/d2

K12 = K21 4π2
(
C12n1n2 + C16n

2
1 + C26n

2
2 + C66n1n2

)
/d2

K13 = K31 4π2
(
C14n1n2 + C15n

2
1 + C46n

2
2 + C56n1n2

)
/d2

K22 4π2
(
C22n

2
2 + 2C26n1n2 + C66n

2
1

)
/d2

K23 = K32 4π2
(
C24n

2
2 + C25n1n2 + C46n1n2 + C56n

2
1

)
/d2

K33 4π2
(
C44n

2
2 + 2C45n1n2 + C55n

2
1

)
/d2

q1 4π2
(
e11n

2
1 + e16n1n2 + e21n1n2 + e26n

2
2

)
/d2

q2 4π2
(
e12n1n2 + e16n

2
1 + e22n

2
2 + e26n1n2

)
/d2

q3 4π2
(
e14n1n2 + e15n

2
1 + e24n

2
2 + e25n1n2

)
/d2

p 4π2
(
κ11n

2
1 + 2κ12n1n2 + κ22n

2
2

)
/d2

distribution of the second phase as well the elastic, piezoelectric and dielectric

constants. The periodic Green’s operators given in Eqs. (4.26),(4.27) and

(4.28), can be derived by using the expressions provided in the tables. The

notation used in the tables is the Voigt contracted notation as explained in

Section 4.4. According to this notation the indices, 11 = 1, 22 = 2, 33 = 3,

23 = 4, 13 = 5, 12 = 6. Therefore L1111 = C11, L3333 = C33, L2323 = C44, etc.

The second subscript of the piezoelectric constants follow the aforementioned

Voigt notation, whereby e111 = e11, e122 = e12, e133 = e13, e123 = e14, etc.

The quantity denoted by “d” is the length of the sides of the square, cube or

hexagonal unit-cell.
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Table D.2: A table showing all the components of the quantities used in Eq.(4.20) for a
hexagonal distribution of fibers/pores in a general anisotropic piezoelectric matrix.

Component Hexagonal

K11 (4π2/9)
(
3C11n

2
1 − 2C16

√
3n2

1 + 4C16

√
3n1n2 + C66n

2
1 − 4C66n1n2 + 4C66n

2
2

)
/d2

K12 = K21 −(4π2/9)
(
−3C16n

2
1 + C12

√
3n2

1 − 2C12

√
3n1n2 + C66

√
3n2

1 − 2C66

√
3n1n2 − C26n

2
1 + 4C26n1n2 − 4C26n

2
2

)
/d2

K13 = K31 −(4π2/9)
(
−3C15n

2
1 + C14

√
3n2

1 − 2C14

√
3n1n2 + C56

√
3n2

1 − 2C56

√
3n1n2 − C46n

2
1 + 4C46n1n2 − 4C46n

2
2

)
/d2

K22 (4π2/9)
(
3C66n

2
1 − 2C26

√
3n2

1 + 4C26

√
3n1n2 + C22n

2
1 − 4C22n1n2 + 4C22n

2
2

)
/d2

K23 = K32 (4π2/9)
(
3C56n

2
1 − C25

√
3n2

1 + 2C25

√
3n1n2 − C46

√
3n2

1 + 2C46

√
3n1n2 + C24n

2
1 − 4C24n1n2 + 4C24n

2
2

)
/d2

K33 (4π2/9)
(
3C55n

2
1 − 2C45

√
3n2

1 + 4C45

√
3n1n2 + C44n

2
1 − 4C44n1n2 + 4C44n

2
2

)
/d2

q1 −(4π2/9)
(√

3e16n
2
1 − 2

√
3e16n1n2 +

√
3e21n

2
1 − 2

√
3e21n1n2 − 3e11n

2
1 − e26n

2
1 + 4e26n1n2 − 4e26n

2
2

)
/d2

q2 −(4π2/9)
(√

3e12n
2
1 − 2

√
3e12n1n2 +

√
3e26n

2
1 − 2

√
3e26n1n2 − 3e16n

2
1 − e22n

2
1 + 4e22n1n2 − 4e22n

2
2

)
/d2

q3 −(4π2/9)
(√

3e14n
2
1 − 2

√
3e14n1n2 +

√
3e25n

2
1 − 2

√
3e25n1n2 − 3e15n

2
1 − e24n

2
1 + 4e24n1n2 − 4e24n

2
2

)
/d2

p −(4π2/9)
(
2
√
3κ12n

2
1 − 4

√
3κ12n1n2 − 3κ11n

2
1 − κ22n

2
1 + 4κ22n1n2 − 4κ22n

2
2

)
/d2

Table D.3: A table showing all the components of the quantities used in Eq.(4.20) for a
cubic distribution of fibers/pores in a general anisotropic piezoelectric matrix.

Component Cubic

K11 4π2
(
C11n

2
1 + 2C15n1n3 + 2C16n1n2 + C55n

2
3 + 2C56n2n3 + C66n

2
2

)
/d2

K12 = K21 4π2
(
C12n1n2 + C14n1n3 + C16n

2
1 + C25n2n3 + C26n

2
2 + C45n

2
3 + C46n2n3 + C56n1n3 + C66n1n2

)
/d2

K13 = K31 4π2
(
C13n1n3 + C14n1n2 + C15n

2
1 + C35n

2
3 + C36n2n3 + C45n2n3 + C46n

2
2 + C55n1n3 + C56n1n2

)
/d2

K22 4π2
(
C22n

2
2 + 2C24n2n3 + 2C26n1n2 + C44n

2
3 + 2C46n1n3 + C66n

2
1

)
/d2

K23 = K32 4π2
(
C23n2n3 + C24n

2
2 + C25n1n2 + C34n

2
3 + C36n1n3 + C44n2n3 + C45n1n3 + C46n1n2 + C56n

2
1

)
/d2

K33 4π2
(
C33n

2
3 + 2C34n2n3 + 2C35n1n3 + C44n

2
2 + 2C45n1n2 + C55n

2
1

)
/d2

q1 4π2
(
e11n

2
1 + e15n1n3 + e16n1n2 + e21n1n2 + e25n2n3 + e26n

2
2 + e31n1n3 + e35n

2
3 + e36n2n3

)
/d2

q2 4π2
(
e12n1n2 + e14n1n3 + e16n

2
1 + e22n

2
2 + e24n2n3 + e26n1n2 + e32n2n3 + e34n

2
3 + e36n1n3

)
/d2

q3 4π2
(
e13n1n3 + e14n1n2 + e15n

2
1 + e23n2n3 + e24n

2
2 + e25n1n2 + e33n

2
3 + e34n2n3 + e35n1n3

)
/d2

p 4π2
(
κ11n

2
1 + 2κ12n1n2 + 2κ13n1n3 + κ22n

2
2 + 2κ23n2n3 + κ33n

2
3

)
/d2
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