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Abstract of the Thesis

Analysis and Design of Configuration Memory Linkage
Systems Using Homotopy Continuation Methods

by

Donghe Li

Master of Science

in

Mechanical Engineering

Stony Brook University

2013

Shape memory materials have different shapes, volume, stiffness, and electrical

resistances in response to the change of temperature or electromagnetic fields. In this

research, we developed methods for designing planar linkages that can be actuated with

springs made from shape memory materials.The resulting linkages are called the

configuration memory linkage systems, which can memorize linkage configurations at

different temperatures. The change in ambient temperatures would effect the change in

the stiffness of the springs and thereby moves the linkage from one configuration to

another. Homotopy continuation methods are used to solve the system of polynomial

equations for linkage design.
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Chapter 1 Introduction

Homotopy continuation methods have been proven very reliable and efficient to

approximate all isolated solutions of polynomial systems in engineering field during

the past decades(see[2]). In general, small changes in the coefficients of a polynomial

system will result in small changes to the roots of that system. That is the basic theory

of homotopy continuation methods.

In chapter 2, we will talk about the theory of homotopy continuation methods. They

can trace the solutions from one polynomial system to anther polynomial system. With

the new package Bertini, actually the system does not have to be polynomial. It can

include since and cosine functions as long as we can find the start solutions to the start

system. In addition, general linear product decompositions are used when we use the

total degree homotopy and the total degree is too large.

In chapter 3, we will talk about the applications of multistable mechanisms and the

characteristics of shape memory alloys in the engineering field.

In chapter 4, four bar linkages with torsional and linear shape memory alloy springs

are discussed. By using homotopy continuation method, we can find all the isolated

solutions, which are also the equilibrium positions. In addition, for given several

equilibrium or stable positions, synthesis problems are formulated by using homotopy

continuation methods. Several examples of analysis and synthesis are given.

In chapter 5, we will do analysis of multi-linkage system. First, a four by four

linkage without shape memory alloy springs and with shape memory alloy springs are

studied and be compared. Second, the formulations of a general case of multi-linkage

are discussed in the last part.

In chapter 6, future work about the applications of shape memory alloy materials

are presented.
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Chapter 2 Basic Theory of Homotopy Continuation Methods

2.1 Polynomials systems

Systems of polynomial equations often arise in science and engineering. There are

three types of polynomials systems: polynomials in one variable, multivariate

polynomial systems and trigonometric equations[1]. In general, polynomials in one

variable have the form
1

0 1 1( ) ,d d
d df x a x a x a x a
     (1)

where daa ,,0  are the coefficients and the integer powers of x , namely 1, x , 2x ,

 , dx , are monomials. Usually in science and engineering the coefficients are real

numbers although sometimes they may be complex. If we consider )(xf as a

function that maps complex numbers to complex numbers, the number of solutions will

equal to exactly d points, counting multiplicities.

Multivariate polynomial systems are more popular in science and engineering

compared to polynomials in one variable. There are several ways to define this type of

polynomial systems[2]. One is the standard list of polynomials, given in any kinds of

formats, such as standard form, various factored forms. Another one is to consider a

polynomial systems as a particular basis for an ideal in a polynomial ring, ],,[ nx xxk  .

Given a basis, the ideal generated from the basis can be defined to be the basis itself

along with all sums of elements in the ideal and products of ideal elements with ring

elements[2]. More details about the ideal in general and ideals in particular are

discussed in [3].

Trigonometric functions are often used to formulate problems in geometry and

kinematics. In most cases, one can converted them to polynomials using the

polynomial relations, such as 1cossin 22   . However, not all trigonometric

expressions can be converted to polynomials. One example is xx sin . That problem
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could be solved by using approximating technique in some softwares[4].

2.2 Basic theory of homotopy continuation methods

In 1996, A new area called Numerical Algebraic Geometry was first developed by

Andrew Sommese and Charles Wampler[6]. The numerical path following techniques

are very reliable to approximate all isolated solutions of polynomial systems. Also,

polynomial homotopy methods are globally convergent methods for finding all the

isolated solutions to polynomial equations[4]. In[6], compared to the isolated solutions,

new techniques was developed to approximate all positive dimensional irreducible

components of the solution set of a polynomial system,

As discussed in [6], there are two stages in homotopy continuation methods. Frist,

we need one target system and one start system. The target system are the polynomial

equations which we want to solve. The start system is constructed to help us to solve

the target system during the homotopy path tracking process. The target system and

start system should have exactly as many regular solutions as the root count, counting

multiplicities. Then, this start system can be embedded in the following homotopy[6]

,0)()()1(),(  xtfxgttxh  ],1,0[t (2)

As t moves from 0 to 1, we can see that )(xh will move from the start system to our

target system. As a result, the second stage is that the homotopy continuation methods

will trace the paths of the solutions of the start system towards the solutions of the

target system. This method uses the fact that small changes in the coefficients of a

polynomial systems can lead to small changes of the roots of systems[4]. The random

complex number  can overcome the weakness of the homotopy method.

After defining the homotopy, we need to solve it. For polynomials in one variable,

we can simply solve them by finding the eigenvalues of the companion matrix. For

multivariate polynomial systems, one can use predictor-corrector methods to trace the

solution paths defined by the homotopy. More details about the Euler prediction and

Newton correction are discussed in [1]. The adaptive step size control method can
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determines the step length to avoid path crossing in Newton's method while doing

quadratic convergence[6]. In[2], three new numerical technique are discussed to apply

homotopy continuation. The first one is to increase precision as needed in the path

tracking process in order to decrease the computational time of using high precision.

The second method is compute the scheme structure of an ideal supported at a single

point. The last one is to approximate all solutions of a certain class of two-point

boundary value problems from homotopy continuation.

Since the homotopy continuation methods are numerical, we need some softwares

to do the algorithms of homotopy continuation. There are a number of packages

discussed in [1]. Homlab can run in the Matlab and use mainly general linear product

homotopy and parameter homotopy. Hompack, Polsys_plp are sequence of

sophisticated continuation algorithms, written in Fortran. This code can only deal with

isolated solutions of square systems. PHoM is a C++ code which use polyhedral

homotopies. Again, this package can only find isolated solutions of square systems.

PHCpack uses a variety of homotopies including all kinds of structures, except

polynomial products. The algorithms of PHCpack can handle positive dimensional

solutions in addition to isolated roots. Bertini is a C code and most recent package for

computation in numerical algebraic geometry. Bertini can apply algorithms for

computing and manipulating structures of an algebro-geometric nature. Bertini can be

found on the official Bertini website. In this thesis, we will use Bertini as our tool to do

homotopy continuation methods.

2.3 Polynomial structures

A very important part of homotopy continuation methods is to choose an

appropriate start systems. In this paper, we will discuss only zero dimensional systems

in which the number of unknowns equal to the number of equations. In general, there

are two types of homotopies: homotopy without providing start systems and user

defined homotopy. In the first case, Bertini will automatically create a start system, and
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solve the start system to find the start points at the beginning of each path[7]. This kind

of homotopy is called total degree homotopy. The total degree homotopy uses the least

information of the structure of the target systems[1]. Given a polynomial by the

number of variables n and a list of degrees id , ni ,,1 , a simple system for total

degree homotopy can be created as

.0

1

1
1

)(
2

1

2

1
































nd
n

d

d

z

z
z

zg


(3)

From the classical Bezout Theorem, we know that the number of finite, non singular

solutions to a generic member of the total degree family is nddN 1 [1]. This start

system can be solved easily by getting id roots for iz , we can see that all of these

roots are non singular. This start system will have the same number of solutions as the

most general member of the total degree family. However, in some case the total

degree N could be very large. Thus the computational time could be very large. We

need to construct a start system from which fewer path will be traced.

In[1], several start systems are discussed from easier to specificity. Of course, the

total degree start system is the easiest one. On the top of this one is multihomogeneous

start system and linear products start system. The start system with the fewest paths is

monomial products and coefficient parameter. Those are the most difficult ones to

solve. In this paper, we will use only general linear products start system. For example,

given the following target system

0
82
54

),( 2
21

2
1

2
2
1

2

1
21 
























xxx
xx

f
f

xxf (4)

If we let yx, be the linear combination of monomials cbyax  for arbitrary

complex constants[4],[5], after examining the structure of polynomials of the target

systems, we can have
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2111 , xxxf  (5)

21212 , xxxxf  . (6)

Then, we will have the following start system

0
))()((

))((
),(

72615423211

52413211

2

1
21 






















bxbxbbxbbxb

axaxaaxa
g
g

xxg (7)

Coefficient 765432154321 ,,,,,,,,,,, bbbbbbbaaaaa are random complex numbers. By

solving all the combinations of the linear equations, we can learn that the number of

solutions is 5, which is lower than the total degree 632  . We can also express 2x

in term of 1x from the first equation, and substitute it in the second equation. Again,

we can get the number of solutions to be 5. However, In some large polynomial

systems, the number of the solutions could be largely reduced by the general linear

product method. Note that we should use complex numbers for all the coefficient in

order to make the start system generic.
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Chapter 3 Multistable Mechanisms and Shape Memory Materials

3.1 Application of multistable mechanisms

Multistable mechanisms are useful in many devices such as relays, threshold

switches, valves and memory cells, etc. [8]. One advantage of such mechanisms is that

they do not need extra force or energy to maintain their stabilities in every stable state.

A Magnetic Shape Memory Alloys based actuator is proposed to keep a stable position

when no current is applied to reduce the heat losses in the coils[9].

In [13], by capturing the essential parameters of bistability of our mechanisms, one

can determine multistable behavior. A desired number of stable positions can be

satisfied by using the above methodology. In [4], the stable and equilibrium positions

of mechanisms are found by polynomial homotopy continuation method. In [5], the

author formulate and solve the synthesis equations for a compliant four-bar linkage

with certain specified equilibrium positions.

3.2 Shape memory materials

A shape memory alloy is an alloy that can remember its original shape. It is widely

used in the area of aircraft, piping, automotive, robotics, medicine, optometry,

orthopedic surgery, dentistry and engines. It is useful because its shape, stiffness,

position, even the natural frequency will change in response to the temperature or the

electromagnetic fields.
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Fig 3.1 Martensite

Fig 3.1 is an example of martensite. As we can see, the changes of characteristics

are different between heating and cooling process[23]. Nickel-titanium alloys have

been found to be the best choice of all SMAs[14].

By using a self-tuning fuzzy PID controller a new progress of a SMA position

control system is proposed in[16]. In[17], the applications of the SMA materials for

passive, active and semi-active controls of civil structures is presented. A low-profile

bidirectional folding actuator based on SMA sheets is presented for meso- and

microscale systems[18]. In addition, the Shape Memory Alloy can be used as artificial

muscles as actuators to design artificial limbs that are lightweight, compact and

dexterous, which can mimic human body[19]. In [20], Shape Memory Alloy for

automotive applications is discussed in details. In [21], the author present the design

and dynamics of a new Shape Memory Alloy actuator which possesses impressive

payload lifting capabilities.
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Chapter 4 Configuration Memory Four Bar Linkage Systems

4.1 Background

4.1.1 Traditional methods for synthesis of four bar linkage systems

In [22], there are two methods for synthesis of four bar linkage in general. One is

graphical synthesis, and another one is analytical synthesis technique.

For two prescribed positions and three prescribed positions, we can simply use

graphical method by picking up the moving pivots and we will have infinite number of

solutions. Another analytical method for two prescribed positions and three prescribed

positions is to use dyad[22].

Fig 4.1 Synthesis using dyads

From Fig 4.1, we can formulate the synthesis equations by the closed loop:

5,4,3,2,)1()1(  jeZeW j
ii jj  (1)

For four and five prescribed positions, we need advanced analytical methods. In

[22], By handling four vector equations of (1), synthesis for four prescribed positions

can be solved. Based on the synthesis of four prescribed positions, synthesis of five

prescribed positions is formulated by using circle and center point curves. More
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detailed are discussed in [22].

4.1.2 Seudo-rigid body made of compliant four bar linkage systems

Compliant mechanisms are linkage systems whose positions are determined by the

elastic deformation of joint and link elements[10]. Pigoski and Duffy [11] studied the

planar two-spring system consisting of point connect to ground by two compliant limbs.

Their analysis concluded as many as six equilibrium positions for a given external load.

Sun et al. [12] studied a planar three-spring system with a moving platform and found a

maximum 54 equilibrium positions.

In [4] and [5], Su and McCarthy studied a four bar linkage system with only two

torsional springs and formulated analysis and synthesis problems(see Fig 4.2).

Fig 4.2 A compliant four-bar linkage

Next, we will make some declarations[4]. )]([ R is the 2 by 2 rotation matrix of

angle  and T
iiie ]sin,[cos)(   . In addition, 1w and 2w are coordinates of two

moving pivots in the moving plane, while 1W and 2W are coordinates of two moving

pivots in the fixed plane. Also, 1r and 2r are the lengths of left and right link from

point G to point W.

From [4], we can get the analysis equations:



11

0)()()())](([: 11212212
2

1 








 erGGerwwR
P
P

(2)

0)()())](([: 11222112
4

3 








 ervervwwR
P
P

(3)

0)()1(: 21221115  vvkvkTP in  (4)

The first and second equations come from the closed loop by using vectors. The

third and fouth equations are derived by taking derivatives of the first and second

equations. The last one is an equilibrium equation and comes from the principle of

virtual work. With five equations and five unknowns in [4], six solutions are found by

using homotopy continuation methods.

From [5], we will have the following synthesis equations:

1,10))](([: 1
0
11111  njGWRGWK jjj

j  (5)

1,10))](([: 2
0
22222  njGWRGWK jjj

j  (6)

1,10)()1(: 2122111  njvvkvkE jjjjj
j  (7)

1,,10)()()(: 22211121  njvGWGWvWWV jjjjjj
j  (8)

The first part and second part are kinematic equations. The third part are

equilibrium equations. The last part are velocity equations. In total, there are 7(n-1)

scalar equations with 9+4(n-1) independent unknowns. As, a result, the maximal

number of equilibrium positions for synthesis is four.

4.2 Analysis of four bar linkages with SMA springs

4.2.1 Analysis of four bar linkage with one spring

First, let us consider torsional springs. There are many types of four bar linkage. In

this thesis, we will take crank-crank linkage as an examples, since it has a large range

of motion. In Figure 4.2, we can see that we have four choices to put the springs. The

position with input angle 1251  will be defined as the undeformed states for all
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four cases. The length from point 1G to point 2G is 10 and the length from point 1W

to point 2W is 23. The lengths of left and right bars are both 26.

Fig 4.3 Crank-crank Linkage with One Torsional Spring

We know that the energy of torsional spring can be calculated as

2

2
1  kV (9)

k is the torsional stiffness and  is the change of the angle. If we set 1 as the

input, we will have the function V with respect to 1 . The range of 1 could be

from  to  , and so does angle 2 . As a result, the energy of the two springs

on the bottom can go to infinity and that is not what we want. The input 1 should
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have an limited range. In this example, the angle 1 and 2 have an limited range.

However, that is not always true, which will increase the complexity of the analysis.

Now we set the range of input angle 1 to be )310,50(  as an example. Use (9),

we can draw the energy curves for all the four cases in Fig 4.3. Here, all the values of

stiffness are set to be unit one as an example.

Fig 4.4 Energy curves of four cases for torsional springs

From the Fig 4.4, we can see that there are two stable positions on the two top

joints, while there are only one stable positions on the two bottom joints. As a result, to

make a four bar linkage have more stable positions, top joints play an important role.

For other types of four bar linkage, we can still use this method to find out the joints

which can make more stable positions.
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Next, we will talk about the linear springs used in the four bar linkage. To compare

with the case of torsional springs, we use the same linkage in Fig 4.3 as an example. To

put the linear springs on the linkage, two end points are needed. There are infinite ways

to choose the end points on the four bar linkage. To better compare with the torsional

springs, the end points are chosen a limited length of a away along the limb from

the four joints(see Fig 4.5 below). The energy of each linear springs are

4,3,2,1
2
1 2  ilkV iii (10)

The il can be calculated using law of cosines. Again, we use the same parameters as

the example in(Fig 4.3).

Fig 4.5 Crank-crank Linkage with One Linear Spring
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When we use linear spring, even the range of input 1 is from  to  , the

lengths of all the springs are limited, which are different from torsional springs. The

value of a is set to be 2 and the undeformed length of all linear springs correspond to

the position where the input 1 equal to 125 . Use (10), we can calculate the energy

curves fo all four cases as

Fig 4.6 Energy curves of four cases for linear springs

From Fig 4.6, we can see that when using linear springs, all four energy curves have

two stable positions. The top two curves are almost the same as the cases of torsional

springs, because the ranges of the angels on the top joints are very small. For the

bottom joints, the lengths of linear springs will change periodically as the input angle

change from  to  . As a result, we can see that linear springs can get better
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results for generating multistable positions.

4.2.2 Analysis of four bar linkage with multiple SMA springs

Using only one SMA spring can give us more than one stable positions. However,

when the stiffness changes the stable positions will not change, since they should stay

still to maintain their lowest energy. So, using more than one SMA springs, we will

have more stable positions.

Based on the analysis of [4], we will do more analysis of four bar linkage with

Shape Memory Alloy springs. Let us consider the torsional springs first. Actually, we

do not need to use four springs for all the joints. Here, we study the general case.

Fig 4.7 Four bar linkage with four torsional springs

Fig 4.7 is a four bar linkage with four torsional springs on the four joints. The

potential energy of torsional springs is

2
24

2
13

2
22

2
11 )(

2
1)(

2
1)(

2
1)(

2
1   kkkkV . (11)

Without providing external force and torque, in equilibrium positions the derivative of

the potential energy with respect to input angle 1 should equal to zero. That is
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0
1

2
2413

1

2
22

1

1
11

1











 d
dkk

d
dk

d
dk

d
dV (12)

With (2), (3) and (12), we can solve these equations and get the equilibrium positions

by using homotopy continuation methods[4].

Since we use Shape Memory Alloy springs, each springs will have two levels of

stiffness. When the stiffness changes, the corresponding equilibrium position will

change. In total, we will have 2222  =16 sets of equilibrium positions.

If we define
1

1 


d
dv  and

1

2
2 


d
dv  , we can rewrite (12) as

0)()1( 224132122111
1

 vkkvvkvk
d
dV 


(13)

Since we have the mixed terms of sine, cosine and j
i , we need to approximate

j
i in term of since and cosine functions using the following formula[4]:

1,12,1)coscos(sin 2
321  njiccc j

i
j

i
j

i
j

i  (14)

The stability of an equilibrium point can be checked by the second derivative of the

potential energy. From Eq. (13), we compute

1

22
4

1

1
3

1

212
2

1

11
12

1

2 ][][)]([)]1([












 d
vdk

d
dk

d
vvdk

d
vdk

d
Vd 










 (15)

The position is stable only if 02
1

2


d
Vd .

Next, we will consider the linear springs. If we change all the torsional springs in

Fig 4.7 into linear springs, we will get a new four bar linkage(Fig 4.8). Again, we do

not actually need to use all of them in general.
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Fig 4.8 Four bar linkage with four linear springs

The lengths of linear springs are ,,,, 4321 llll The potential energy of linear springs

will be:

2
44

2
33

2
22

2
11 )(

2
1)(

2
1)(

2
1)(

2
1 lklklklkV  (16)

Again, we can take first derivative of energy and set to equal zero. That is

0
1

4
44

1

3
33

1

2
22

1

1
11

1


 d

dllk
d
dllk

d
dllk

d
dllk

d
dV (17)

By combining this equation (17) with (2) and (3), we can solve this system by

using homotopy continuation method. Before using homotopy continuation method, we

need to transform (17) to polynomials by solving

1

4

1

3

1

2

1

1
4321 ,,,,,,,

 d
dl

d
dl

d
dl

d
dlllll .

By the law of cosine, we will have





















2
22

4

1
22

3

2
22

2

1
22

1

cos2
cos2
cos2
cos2






aaaal
aaaal
aaaal
aaaal

(18)

By taking derivative of (18), we will have



19


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

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

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
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1
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cos12
sin2
cos12
sin2
cos12
sin2






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
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
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
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
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(19)

To eliminate the non-polynomial terms of icos1 and icos1 2,1i , we

introduce new terms 4,3,2,1, imi by adding new equations
















01cos
01cos
01cos
01cos

2
2
44

1
2
33

2
2
22

1
2
11






mN
mN
mN
mN

(20)

By substituting 4,3,2,1, imi into (17), and clearing the denominators, we will

have a purely polynomial equation.

To check stability, we can compute the second derivative of energy. At last, if we

use user-defined homotopy from Bertini, actually we do not need to transform the non

polynomial terms to polynomials. However, in that case, we need to find a good start

system, and solve it. That is a challenging process since there is no general way for

solving non polynomial systems.

4.2.3 Examples of analysis with SMA springs

Let us use the four bar linkage in Fig 4.7 and Fig 4.8 as an example. The system

parameters are

.24.95,00.125,26,0,10,0,0 0
2

0
1212211

  rrGGGG yxyx

5,5.11,5,5.11 2211  yxyx wwww .

First, let us use only two torsional springs on 1k and 3k here as an example. The
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first set of stiffness is 3,100 31  kk , and the second set of stiffness is

18,100 31  kk .

The four bar linkage in [4] has a stable position where the energy is zero. Here, we

will make a little change to increase the range of stable positions with changed stiffness.

We will set undeformed angles to be:
 24.95,50,28.286,52.66 0

2
0
1

0
2

0
1  

So the angle relations should be

2,1,01
000  isissiii  (21)

where 2,1,,, 000 isissi  are the angles in the situation of 00.1251  .

In (14), we use approximations to express i in term of isin and icos . In

this example, we will have  cos,sin, at the same time. We need to do the

approximation by using (14) too. The error is about 1.5% when the angle is between
90 and 90 . So, we choose the range of 1 to be ]310,50[  , and the range of

5.0 will be ]90,90[  . Then we can use half angle functions in (14). In this example,

the change of 2,1, ii will be in the range of ]90,90[  . So, we will have two

more constrains
 180180   (22)

2,1,9090  ii
  (23)

By formulating the start system(see[4]), we can solve the polynomial systems. By

running the homotopy code in Bertini, we will get 10 solutions for the case of

3,100 31  kk and 8 solutions for the case of 18,100 31  kk . By checking the

constraints of (22) and (23), we can only have three solutions for each set of springs.

By checking the second derivative of energy, we found that in each case, there are

two stable positions and one unstable position. Using the parameters in Table 4.1 and

Table 4.2, these positions are shown in Fig 4.9 and Fig 4.10.
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Table 4.1 Solutions of torsional springs for 3,100 31  kk

case 1
a 0.9987 0.0517 0.5596 0.9597 0.0762 -0.108 0.9971 0.9941
b 0.4352 -0.900 1.6846 1.4747 0.0511 0.5636 0.9987 0.8261
c 0.9173 -0.398 1.0125 1.3923 0.4669 0.4692 0.8843 0.8831

Table 4.2 Solutions of torsional springs for 18,100 31  kk

case 2
a 0.9959 -0.089 0.6045 1.0745 0.2827 0.1091 0.9592 0.9941
b 0.6405 -0.767 1.6356 1.6216 0.2462 0.5909 0.9692 0.8067
c 0.8899 -0.456 1.1212 1.4556 0.4599 0.5069 0.8879 0.8621

Fig 4.9 Three equilibrium configurations of a compliant four bar linkage of case 1.

)5.0cos(  )5.0sin(  1v )sin( 12v )sin( 2 )cos( 1

)5.0cos( 

)cos( 2

)5.0sin(  1v 2v )sin( 1 )sin( 2 )cos( 1 )cos( 2
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Positions (a) and (b) are stable and (c) is unstable. The last one is the energy curve.

Fig 4.10 Three equilibrium configurations of a compliant four bar linkage of case 2.

Positions (a) and (b) are stable and (c) is unstable. The last one is the energy curve.

Let us compare the two energy curves in Fig 4.9 and Fig 4.10 . By changing

stiffness from case 1 to case 2, one stable position will move to another stable position

and vice versa.

Next, we will use only two linear springs on 1k and 3k . All other parameters are

same as above. The first set of stiffness is 1,100 31  kk , and the second set of

stiffness is 20,20 31  kk . Since the total degree is only 4608, we can use Bertini to
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apply total degree homotopy. It takes less than 5 minutes to finish the whole process.

The undeformed length of each spring will be chosen as 2.19 and 2.29. In addition,

a=2(see Fig 4.8). From (20) and (23), we can see that there are two constraints

3,1,0  imi (24)

2,1,9090  ii
  (25)

There are 32 solutions for case 1 and 20 solutions for case 2. Using the constraints

of (24) and (25), we will have 4 solutions for case 1 and 3 solutions for case 2.

Table 4.3 Solutions of linear springs for 1,100 31  kk

case 1
a 0.9823 0.1873 0.5633 0.9275 0.9211 -0.993 0.3894 0.1174
b -0.742 -0.671 1.6608 1.3952 0.9108 -0.653 0.4124 0.7574
c 0.6778 -0.735 1.0184 1.3958 0.9971 -0.714 -0.076 0.6998
d -0.034 0.9994 0.9688 0.6135 0.6101 -0.994 0.7924 0.1054

Table 4.4 Solutions of linear springs for 20,20 31  kk

case 2
a -0.961 0.278 1.3357 0.8708 0.7209 -0.828 0.6931 0.5609
b 0.9576 -0.288 0.6487 1.1249 0.998 -0.888 0.0557 0.4606
c 0.5895 0.8077 0.7679 0.6886 0.6869 -0.998 0.7267 -0.069

)cos( )sin( 1v )sin( 12v )sin( 2 )cos( 1

)cos(

)cos( 2

)sin( 1v 2v )sin( 1 )sin( 2 )cos( 1 )cos( 2
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Fig 4.11 Four equilibrium configurations of 1,100 31  kk

In Fig 4.11, Positions (a) and (b) are stable, while (c) and (d) are unstable. Fig

4.12 below is the energy curve.

Fig 4.12 Energy curve of 1,100 31  kk
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Fig 4.13 Four equilibrium configurations of 20,20 31  kk . Positions (a) and (b) are

stable and (c) is unstable. The last one is the energy curve.

By comparing the two energy curves above, we can see that, if we change stiffness

from 1,100 31  kk to 20,20 31  kk , the stable position of (a) and (b) in Fig

4.11 will move to the stable positions of (b) and (a) in Fig 4.13 respectively and and

vice versa. By comparing the torsional springs and linear springs, we can see that linear

springs can give us larger displacement of stable positions with changed stiffness.

4.3 Synthesis of four bar linkage with SMA springs

4.3.1 Synthesis of four bar linkage with SMA springs for general case

In this section, we will try to design a four bar linkage to make it pass through n
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prescribed stable positions, and determine the maximal value of n . In total, there are

three constraints: geometric equations, equilibrium equations and stability inequalities.

There are three methods for solving those equations and inequalities: direct search

methods, homotopy continuation method and analytical methods. In the first part, we

will introduce direct search methods.

First, let us consider the geometric equations. For one prescribed position, we need

eight values to determine the corresponding four bar linkage, which are the coordinates

of two moving pivots and two fixed pivots.

yxyxyxyx wwwwGGGG 22112211 ,,,,,,,

As long as these eight independent values are determined, we can get the four bar

linkage. So, we can say that the solutions of four bar synthesis of one prescribed

position are in an eight dimensional space.

Table 4.5 show the relationship between independent unknowns and the number of

prescribed configurations.

Table 4.5 Relationship

No. of Prescribed configurations 1 2 3 4 5

No. of Independent unknowns 8 6 4 2 0

Since these unknowns are independent, the coefficients of stiffness in the equilibrium

equations can be solved in terms of those independent unknowns.

Next, we will consider the equilibrium equations. Now, we will use only two SMA

springs and both have two levels of stiffnesses. One set of stiffnesses corresponds to

one equilibrium configuration. The first stable position is the undeformed natural state.

Let us rewrite the equilibrium equations and inequalities as

2,12,1,0  jikckc bjbjaiai (26)

2,12,1,0  jikqkq bjbjaiai (27)
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The coefficient 2,12,1,,,,  jiqqcc bjaibjai can be determined by the four bar

linkage and be expressed in term of all the independent unknowns. All the values of

stiffness should be greater than zero, and as a result, (26) and (27) can be expressed as:

2,12,1,0  ji
c
c

k
k

ai

bj

bj

ai (28)

2,12,1,0  jiq
c
c

q bj
ai

bj
ai (29)

Now, if we want to design a four bar linkage to pass through 5 stable positions,

there will be only one solution for the linkage. In general, this solution will not satisfy

(28) and (29). Next, we can try 4 stable positions. Since the first one is undeformed

state, we will have three equations of (28) and three inequalities of (29). We will

consider the ratio of stiffness in (28) as one unknowns. In fact, as long as (28) satisfy

the following inequalities (30), there will be real solutions for the values of stiffness.

2,12,1,0  ji
c
c

ai

bj (30)

From Table 4.5, we can see that there are two independent unknowns, which should

satisfy (29) and (30). We can use direct search method to find the feasible region in a

two-dimensional plane for the two independent unknowns with the constraints ((29)

and (30). So the maximal number of stable configurations for synthesis using two

springs is four.

For three stable configurations and two stable configurations synthesis, there will

be more independent unknowns, which means that the solutions are in a four and six

dimensional space for the constraints of (29) and (30).

Next, if all the stiffnesses are predetermined, there will be 1n equations of (28)

for n specified stable configurations. The number of independent unknowns will be

)5(2 n . To have solutions, n should satisfy )1()5(2  nn , which is 67.3n .

So for predetermined values of stiffness, the maximal number of stable configurations

for synthesis using two springs is three.
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In the second part, we will try to use homotopy continuation method to solve the

problem above. Since this method can only handle polynomials equations, we need to

transform all the inequalities to equations. First, since all the values of stiffness should

be greater than zero, to eliminate those constraints we need to predetermine all the

values of stiffness in (28). For inequalities (29), we can choose a positive number kN

to make the left side of (29) equal to iN .

4,3,2,1,2,12,1,  kjiNq
c
c

q kbj
ai

bj
ai (31)

From the direct search method, we can figure out that, if all the stiffnesses are

predetermined, there will be 1n equations of (28) and 1n equations of (31) for

n specified stable configurations. The number of independent unknowns will be

)5(2 n . To have solutions, n should satisfy )22()5(2  nn , which is 3n .

So for predetermined values of stiffness, by using the homotopy continuation methods,

the maximal number of stable configurations for synthesis using two springs is three.

Actually, when we use the homotopy continuation method more equations with the

same number of unknowns are needed because of some non-linear parts(see [4] and [5]

for more details).

In the third part, we will talk about the analytical method. It takes two steps, First,

we need to do synthesis of four bar linkage without caring about stability. After that,

we can get all the coefficients of (28). However, all the coefficient should satisfy (29)

and (30). If they do, then we can get all the ratios of stiffness. Otherwise, this method

fails. We need to go to the first step to do the synthesis again.

If we compare the above three methods, we could find out that the direct search

methods will have solutions for probability one, but need lots of work. The analytical

methods need little work,but have large chance of failure. So, next section, we will give

an example for the homotopy continuation methods.

4.3.2 Example of synthesis of four bar linkage with SMA springs
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In this section, we will give an example for synthesis of four bar linkage with SMA

springs using homotopy continuation methods.

First given two prescribed positions in Table 4.6:

Table 4.6 Two prescribed stable configurations

Position Orientation(degree) Stability
)30,30(0 C 45 Stable

)40,20(1 C 0 Stable

Next, we need to give all the equations for homotopy continuation methods. In this

example, we use two torsional SMA springs for 1k and 3k in Fig 4.8. Since there are

two stable configurations,, we will use only one set of stiffness(see Table 4.7):

Table 4.7 Stiffness for each spring

Springs 1k 3k
Stiffness 40 1

The first stable position is undeformed state, so we do not need to care about it. We

have one equilibrium equation and stable equation. In order to handle the derivative

parts in the above two equations, we need two more equations by taking the first and

second derivative of equation (2). In addition, one equation from (5) and one equation

from (6) are needed. Because of the cosine and since function, we need to introduce

one more equation to treat the cosine and since part as two unknowns.

Now we can put all the equations all together: From last section, we know that for

two position synthesis, there are six independent unknowns. However, there are only

one equilibrium equation and one stable equation. We need to specify four independent

unknowns. First, we choose the first moving pivot to be (-10,-5). The value of N is

chosen as 1.5. The length of the input link is 8.391 r and the length of the next
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grounded links is also 8.392 r .

Now, from the geometric relationship, we can get the following values:
 12.141,50.61,45,62.34,0,9 0

111111  yx GG
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The term of )(),( 22  ee can be solved by the following equations[5]:

2,1,0)(  ierGW iiii 

The first vector equation is geometric constraint equation. The second and third are

equilibrium and stable equation. The fourth and fifth are equations used for the new

derivative parts. The last two scaler equations are used to eliminate non-linear parts.

Since 41, PP and 5P are vector equations, in total we have ten equations with ten

unknowns: 2221212222 cos,sin,,,,,,,,  vvwwGG yxyx .

By using homotopy continuation method, we can find all the isolated solutions. In

this example, four solutions are found in Table 4.8.

Table 4.8 Solutions of example

solutions xG2 yG2 xw2 yw2

1 13.85 -30.76 -28.26 -37.66

2 -7.626 1.117 -11.80 -75.40

3 -44.08 16.80 -27.28 -38.38

4 -8.226 0.074 -22.65 -51.76

Next, we will draw the four solutions in Fig 4.14.
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Fig 4.14 Four solutions

If we do the synthesis for three stable configurations using homotopy continuation

methods, we may get few solutions since we have more constraints.
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Chapter 5 Configuration Memory Sculpture Systems

In this chapter, shape memory alloy springs will be added on sculpture systems to

make them memorize some configurations. When temperature of the shape memory

alloys springs changes, one configuration can move to another configuration.

5.1 Configuration memory four by four linkage system

5.1.1 Analysis of four by four linkage system without springs

In this section, we will discuss a four by four linkage system (see Fig 5.1).

Fig 5.1 Four by four linkage

Four points 4321 ,,, FFFF are fixed on the horizontal YX  plane and have the

same Z coordinates. In addition, the whole linkage system is symmetric along the

ZX  and ZY  planes. All the lengths of limb are L. Now, our task is to determine

different stable status of the linkage by pulling the center O up to different levels.

Next, we will define all the points:

),,0(),,0,(),,0,0( 441 zdBzdAzO 
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),2,0(),,,(),,0,2( 323 zcEzbbDzcC 

)0,2,2(),,2,(),,,2( 155 aaFzefGzfeF 

We have nine unknowns: fedcbzzzz ,,,,,,,, 5432 . So nine equations are need to

determine the linkage system.

Now, we define 222 )()()( zzyyxx BABABAAB  . From the length of

limbs we will have the following equations:

6,5,4,3,2,1

0
0
0
0
0
0

:

22
1

22

22

22

22

22






























i

LFF
LDF
LCF
LAD
LAC
LOA

Pi (1)

Suppose the weight of each limb is mg , and the total potential energy will be

)6434(2 54321 zzzzzmgV  (2)

Next, we will determine the degree of freedom. Since this linkage is symmetric, we

can only consider the rod 1,,,,, FFDFCFADACOA . Each rod has six degree of

freedom, the maximum of degree of freedom will be 3666  . There are eight knots

including multiplicities and 2438  freedoms will be removed. In addition, because

of the symmetry of the linkage, point A, point C and point D can only move in a fixed

plane, and this will remove 3 freedoms. Also, we do not need to care about the

rotations of each rod along the centric line, and this will remove 6 freedoms. So, the

remaining degree of freedom is 3632436  . We can choose three independent

unknowns as our degree of freedom. Here, we choose 432 ,, zzz .

According to the principle of virtual work, a system will be in equilibrium if for all

virtual displacements the work done on the system by the external forces equals the

change in the potential energy of the system, that is
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Given that all the external forces equal zero, we will have the following equations

from equations(3):
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From (4), we have new unknowns of the derivative parts. These unknowns can be

solved by taking derivative of six equations of (1) to 432 ,, zzz respectively. As a

result, we have new 18 equations with new 18 unknowns. After solving those equations

analytically, we can express the derivative parts in term of unknowns.

To check stability, we need to consider the Hessian matrix of potential energy.
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A equilibrium configuration is stable only if the Hessian matrix H is positive definite,

that is all of its eigenvalues are positive.

5.1.2 Examples of four by four linkage system without springs

Now, an example of analysis of four by four linkage without springs is given here.

The parameters are 1.1,1  La . First, we pull 1z to a height of 0.11 z . By using

homotopy method, we get two solutions. Now we pick the solution with the lowest

energy, and trace that solution by changing 5.0,2.0,1.0,4.0,7.01 z using
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user defined homotopy to find out how the linkage will move when we pull the point

1z straight up. Next, we will draw the linkage for six cases from Table 5.1.

Fig 5.2 case 1 Fig 5.3 case 2

Fig 5.4 case 3 Fig 5.5 case 4

Fig 5.6 case 5 Fig 5.7 case 6
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From Fig 5.2 to Fig 5.7 we can see the changes of linkage for different level of the

center. Table 5.1 is the solutions for six cases above.

Table 5.1 Solutions of six cases

No. 2z 3z 4z 5z b c d e f

1 -1.4 -0.77 -1.56 -0.56 1.08 0.85 0.94 0.89 1.08
2 -1.39 -0.76 -1.43 -0.56 1.07 0.85 0.82 0.89 1.08
3 -1.37 -0.75 -1.24 -0.56 1.04 0.84 0.7 0.89 1.08
4 -1.32 -0.74 -1.02 -0.56 0.99 0.84 0.61 0.89 1.08
5 -1.24 -0.73 -0.76 -0.55 0.92 0.82 0.54 0.88 1.08
6 -1.12 -0.7 -0.48 -0.54 0.83 0.79 0.5 0.86 1.08

5.1.3 Analysis of four by four linkage system with springs

In the first case, we add four springs in our four by four linkage system (see Fig

5.8).

Fig 5.8 Four by four linkage with four springs

The stiffness is 1k , and the new potential energy will be

2
0154321 )2(2)6434(2 ldkzzzzzmgV  (6)
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and 0l is the undeformed length of all springs. By taking partial derivative of (6) to

432 ,, zzz , we can have the following equations:
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All other equations are the same as the linkage without springs.

For the second case, we add eight springs in our four by four linkage system (see

Fig 5.9).

Fig 5.9 Four by four linkage with eight springs

The stiffness of the new springs is 2k , and the new potential energy will be

2
02

2
0154321 ))2(2(2)2(2)6434(2 ufekldkzzzzzmgV  (8)

and 0u is the undeformed length of all new springs. By taking partial derivative of (8)

to 432 ,, zzz , we can have the following equations:



38











































































0)2)()2(2(24)2(24)64(2

0)2)()2(2(24)2(24)63(2

0)2)()2(2(24)2(24)64(2

44
02

4
01

4

5

4

33
02

3
01

3

5

3

22
02

2
01

2

5

2

z
f

z
eufek

z
dldk

z
zmg

z
V

z
f

z
eufek

z
dldk

z
zmg

z
V

z
f

z
eufek

z
dldk

z
zmg

z
V

Still, all other equations are the same as the four by four linkage without springs.

By using homotopy continuation method, we can solve all those equations.

5.1.4 Example of analysis with four SMA springs

Now, we will give some examples of four by four linkage with four springs. The

undeformed length of all springs is 1.6, and 5.01 z . we will try different values of

stiffness to see how the number of solutions change.

Table 5.2 Number of solutions with different stiffness

Stiffness 1 2 4 8 16 32

No. of solutions 2 2 8 8 8 8

From Table 5.2, we can see that as the stiffness changes from 2 to 4, the number of

solutions will jump from 2 to 8, which means that the existence of springs can increase

the number of solutions. When the values of stiffness passed 4, the number of solutions

will stay on 8, which means that existence of springs can generate only limited number

of solutions.

Next, we will pick the stiffness of 1 and 16 to design configuration memory linkage.

For stiffness of 1, we have two solutions and we will pick the solution with the lower

energy, which is also a stable configuration, as our first configuration. Now, we will

use homotopy continuation method to trace that solution to stiffness 16. After doing

that, we will have a new corresponding solution of stiffness 16. Table 5.3 are the two
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solutions and case 1 is for stiffness 1, while case 2 is for stiffness 16.

Table 5.3 Solutions for two case above

Case 2z 3z 4z 5z b c d e f

1 -1.10 -0.73 -0.42 -0.56 0.84 0.83 0.60 0.88 1.08

2 -0.83 -0.79 -0.08 -0.58 0.79 0.89 0.93 0.91 1.08

Next, we can do the simulations for the two solutions.

Fig 5.10 Solutions for the two cases above

In Fig 5.10, the first configuration is for the case of stiffness 1. The second is for

the case of stiffness 16. When the stiffness change from 1 to 16, the first configuration

will move to second configuration. When the stiffness goes back to 1, the configuration

will also go back its initial state.

5.2 General case of square linkage systems

Now, we will consider the general case of square linkage systems. To make only

one center point O , the linkage systems should have even number of rods along each

side. So, suppose we have nn 22  linkage systems and what will try to do is to

determine the state in different height of the center point O . See Fig 5.11.
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Fig 5.11 General Square Linkage System

Since this is a symmetric system, we only need to consider one triangular part (see

Fig 5.12).

Fig 5.12 Triangular part
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We have 15.15.0 2  nn undefined points except point O and point 1F , which

will give us 35.45.1 2  nn unknowns. However, because of symmetric relationship,

111 , nn BBAA  will remove 12 n unknowns. As a result, the number of unknowns

will actually be 25.25.1 2  nn . From the length of each rod, we will have nn 2

equations:
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So, we need 25.15.0 2  nn more equations. Next, we will discuss the degree of

freedoms. Each rod has six degree of freedom, the maximum of degree of freedom will

be nn 66 2  . There are 15.05.1 2  nn knots including multiplicities and so

35.15.4 2  nn freedoms will be removed. In addition, because of the symmetry of

the linkage, point 111 , nn BBAA  can only move in a fixed plane, and this will

remove 12 n freedoms. Also, we do not need to care about the rotations of each rod

along the centric line, and this will remove nn 2 freedoms. So, the remaining degree

of freedom is 25.15.0 2  nn , which is equal to the number of equations we need in

the beginning. . We can choose 25.15.0 2  nn independent unknowns as our degree

of freedom. Here, we choose z coordinates of points which are counted from the

bottom to the top and from left to the right in Fig 4.6, which is 12 mzz  . Let

25.15.0 2  nnm .

The potential energy of the linkage systems will be:

)( 22332211  mm zzzzmgV   (10)
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where 11 m  are coefficients by counting all the rods in the linkage system and

11 mzz  are z coordinates of points which are counted from the bottom to the top

and from left to the right except O and 1F in Fig 4.6.

According to the principle of virtual work, we will have the following equations:
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Because of the new unknowns of
1

2
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m

mm

z
z

z
z  , we need more equations. By taking

derivative of (9) to 12 mzz  , we will have )( 2 nnm  new equations and )( 2 nnm 

new unknowns. In total, we have ( 25.25.1 2  nn )+ )( 2 nnm  equations and the same

number of unknowns. Each equation except in (11) will have the degree of 2. So the

total degree will be )1)(( 2

2  mnn . Even given a small value 3 to n , the total degree will

be 842 , which is very large. So, we can use user defined homotopy to decrease the

number of paths to be traced(see [4] and [5].

For the case with springs, we can simply change the equations of potential energy

parts. Sometimes we can get nonlinear parts such as root square of unknowns. In that

case, we need to introduce a new value to substitute them into the equations.
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Chapter 6 Future Work

Numerical homotopy continuation methods have been developed for over twenty

years, but are not widely used in the engineering field. In the future, multi-linkage

systems with shape memory springs can be developed by using homotopy methods.

These can be used in the switches and valves. We can also use shape memory materials

in the toy to make it have more movement without being provided with energy. The

main advantage of shape memory alloy is that it does not need extra power to change it

the state. The homotopy continuation methods are best for find all the isolated solutions

of complicated systems. By combining this two merits, we can devise more economic

and efficient mechanisms to satisfy our need.
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