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Abstract of the Dissertation
Task Driven Design of Mechanisms and Robotic

Systems using Kinematic Mapping and Fourier Schemes
by

Xiangyun Li

Doctor of Philosophy
in

Mechanical Engineering

Stony Brook University
2014

This dissertation deals with the problem of task driven design of mecha-

nisms and robotic systems via Fourier and Kinematic Mapping schemes. Task

driven design requires that the synthesis process be initiated from the task mo-

tion itself rather than from a specific mechanism or robotic system. In other

words, extrinsic or intrinsic characteristics of task path or motion is considered

as the driving force to the synthesis of mechanisms and robotics systems.

Kinematic Mapping approach is applied in the framework of task driven

design to synthesize multi-degrees-of-freedom planar and spatial manipulators

in a unified way. We present novel, unified, and simultaneous type and dimen-

sional synthesis approaches respectively to planar and spatial parallel manip-

ulator synthesis by using kinematic mapping, surface fitting, and least squares

techniques. Novelty of our approach lies in linearization of a highly non-linear

problem and the fact that the nature of the given motion or displacement

drives the synthesis process without assuming leg topology or their geometry.
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For analysis and simulation of four-bar motion, a unified and efficient algorith-

m is given through finding the parametrization of the planar four-bar motion

in image space represented as intersection curves of two constraint manifolds.

In the field of Computational Shape Analysis it is routine to process and

simplify shapes before comparisons are made. The simplified representation

of shapes is called shape descriptor, which is the intrinsic characteristic or the

signature of the shape. In this dissertation, Fourier transform is employed

to analyze the task path or motion and to obtain their signatures, termed as

Fourier descriptors, in frequency domain. Therefore, we use Fourier descriptors

to address the problem of path and motion synthesis of planar mechanisms.

For motion synthesis problem, a given motion is represented by two finite har-

monic series, one for translational component of the motion and the other for

rotational component. It is shown that there is a simple linear relationship be-

tween harmonic content of the rotational motion and that of the translational

motion for a planar four-bar linkage. For path synthesis problem, we present

an algorithm resolving parameterization issue that has been often ignored in

the past research. This approach has the advantage of unifying a variety of

parameterizations into a unique one based upon the inherent property of the

path.
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Chapter 1

Introduction and Background

In the dissertation, the synthesis and analysis of planar and spatial mechanisms

using Kinematic Mapping and Fourier based design approaches is investigated.

For robotics system of multiple degrees-of-freedom, a geometric constraint

based synthesis theory using Kinematic Mapping is advocated to bridge the

gap between type and dimensional synthesis; Owing to its wide applications in

shape analysis, Fourier approach is naturally applied to solving the path and

motion synthesis problem of one degree-of-freedom planar mechanism. In what

follows, a general overview on background and the existing work is presented

followed by main composition of this dissertation.

Kinematics is the study of classical mechanics which describes the motion

of points, bodies (objects) and systems of bodies (groups of objects) without

consideration of the causes of motion. There exists sizeable amount of lit-

erature (Reuleaux [1], Hunt [2], Phillips [3], Bottema and Roth [4], Erdman

and Sandor [5], McCarthy [6, 7],Erdman [8]) that have treated kinematics as

a fundamental science in its own right. Following previous seminal work in
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development of Kinematics theory and technique, much of the current work of

kinematics deal with synthesis of mechanisms, with focus on the determination

of mechanism types (type synthesis) and/or their link dimensions (dimension-

al synthesis). Type synthesis is also known as number synthesis, structural

synthesis, systematics, classification and enumeration, and census of linkages.

The goal is to come up with the most appropriate mechanism type for the

specified motion requirement. Once a mechanism type is determined, the next

step is to determine the dimensions of the mechanism such as the lengths of the

links so that the output motion of the mechanism best matches the specified

motion. Dimensional synthesis approaches the problem of determination of

kinematic dimensions (link lengths, offsets, etc.) of the mechanism to satisfy

the required motion characteristics. The choice of the method depends largely

on the type of problem to be solved. The problems can be classified as motion

generation, path generation and function generation.

The dimensional synthesis of linkages is an extensively researched subject

with many textbooks. The synthesis equations can be systematically derived

with various mathematical formulations such as vector loop closure equations

[5], quaternion/dual quaternion [9], homogeneous matrices [10]. Recently Su

and McCarthy [11] proposed an algebraic curve/surface formulation for spatial

open chain synthesis. By exploiting the intrinsic geometry of a specific mech-

anism type, this formulation leads to a polynomial system with relatively low

complexity compared with general homogeneous matrix and dual quaternion

formulation. The solution to such a polynomial system in the context of mech-

2



anism design is a well studied topic [12, 13] and the solution techniques include

iterative optimization [14], exact analytical methods [11, 15] and continuation

(homotopy) method [10].

Kinematic Mapping is among the popular approaches to mechanism syn-

thesis, which was proposed by Blaschke [16] and Grunwald [17] almost a cen-

tury ago, and was dug into by Ravani and Roth [18, 19] for motion approxima-

tion. More modern application can be found in the formative texts of Bottema

and Roth [4] and McCarthy [20]. In the kinematic mapping approach to kine-

matic synthesis, both planar and spherical displacements in Cartesian Space

can be mapped into points in a three-dimensional projective space (called Im-

age Space of Planar or Spherical Kinematics), while workspace constraints of

a mechanism map into algebraic manifolds in the same space. In this way, a

single degree of freedom motion of a planar or spherical mechanism is repre-

sented by the intersection curve of two algebraic manifolds. The problem of

motion approximation is transformed into a algebraic curve fitting problem

in the image space, where various methods in approximation theory may be

applied. This includes the definition of the approximation error (called struc-

tural error) in the image space, formulation of a least squares problem and

application of appropriate numerical methods to find values of the design vari-

ables for minimization of the error. Following Ravani and Roth’s kinematic

mapping approach for mechanism synthesis, further research has been done

by Bodduluri and McCarthy [21], Bodduluri [22], Larochelle [23, 24], Ge and

Larochelle [25], Husty et al. [26], and more recently by Wu et al. [27]. Further-
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more, kinematic mapping approach has also been widely used for synthesis and

analysis of parallel robots. Hayes and colleagues [28, 29] presented a unified

treatment for developing kinematic constraint equations of three legged planar

platforms possessing three degrees of freedom. Murray et al. [30] presented a

technique for designing planar manipulators with platform capable of reach-

ing any number of desired poses, which is connected to ground by three RPR

chains. Brunnthaler et al. [31] used kinematic mapping to solve the problem of

designing a spherical four-bar mechanism that interpolates a coupler through

five given orientations. Venkataramanujam and Larochelle [32] employed the

approach of a parameterized constraint manifold and nonlinear optimization

to synthesize spherical open and closed chain for approximating task motion.

Those aforementioned methods involve highly nonlinear optimization or leg

topologies to be specified beforehand. In addition, dimensions of legs are not

fully considered resulting in manipulator taking up a large amount of space.

Later, Dou [33] presented an algorithm to conduct optimal deign of 3-RRR

PPMs and Purwar et al. [34] have recently presented an intuitive, visual syn-

thesis approach for PPMs.

In the context of our task driven design, the emphasis is on extracting from

the task motion itself the useful information from which the design process can

be unfolded, different from the traditional mechanism-dominated design phi-

losophy. With Kinematic Mapping, the task motion is converted to task curve

and workspace of different mechanisms to constraint manifolds in quaternion

space. Depending on the shape of task curve, we seek to find a best mechanis-

4



m type with its associated constraint manifolds fitting the task curve as close

as possible, and further determine its dimensional parameters. In this dis-

sertation, we first studies the rigid body guidance problem for 3-DOF planar

parallel manipulators (PPM) with three-triad assembly. We present a novel,

unified, and simultaneous type and dimensional synthesis approach to planar

parallel manipulator synthesis by using kinematic mapping, surface fitting,

and least squares techniques. Novelty of our approach lies in linearization of a

highly non-linear problem and the fact that the nature of the given motion or

displacement drives the synthesis process without assuming triad topology or

their geometry. The kinematic constraints associated with planar RR-, PR-

and RP-dyads correspond to a single quadric in Image Space, while that of

each of the six planar triads (RRR, RPR, PRR, PPR, RRP and RPP) map to

a pair of quadrics and the space between them. Moreover, the quadrics asso-

ciated with RRR- and RPR-triads are of the same type as that of RR dyads,

of PRR- and PPR-triads as that of PR-, and RRP- and RPP-triads as that

of RP-dyad. This simplification nicely extends a dyad synthesis problem to a

triad synthesis one. The problem is formulated as the least-squares error min-

imization problem to find a family of quadrics that best fit the image points

of task displacements. The fitting error corresponding to each single quadric

of the family is regarded as variation (thickness) of that quadric, which turns

that quadric into a pair of quadrics. Hence, three dyads with minimal surface

fitting errors can be converted to three triads in the Cartesian Space. Build-

ing upon our work of planar parallel manipulator, we further investigate the

5



problem of designing spatial mechanisms by studying the constrained motion

of a rigid body such that one or more of its points stays on a sphere or a plane.

By extending Innocenti’s spatial Burmester problem [35] from purely spherical

constraints to include any combination of spherical and planar constraints for

seven position synthesis of a spatial rigid body. The dissertation provides a

unified formulation using homogeneous coordinates and dual quaternions for

simultaneous dimensional and type synthesis of spatial platform linkages and

manipulators involving spherical and planar constraints.

In addition to the aforementioned research efforts on synthesis theories

and algorithms for mechanisms and robotics systems, Many softwares have

also been developed to implement those theories and algorithms, including

LINCAGES [36, 37], Sphinx [38] and SPADES[39], as well as Synthetica [40],

which firstly aims at synthesis of spatial linkages. All of these mechanism

design software focus on the dimensional synthesis with specified mechanism

topologies. Upon synthesis, motion animation is implemented to analyze the

motion generated by the synthesized mechanism. Traditional way of animating

the coupler motion of a four-bar mechanism is based on loop-closure equation

method (see Norton [41]), which is used to find the coupler point trajectory

and coupler angle when the input link rotates. However, this method has

disadvantage of writing different versions of code for different types of four-bar

mechanisms. In this dissertation, we present a unified and efficient algorithm to

simulate the coupler motion of four-bar mechanisms of all six types constructed

by R- and P- joints.The algorithm again utilizes Kinematic Mapping to find
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the parametrization of the intersection curves of algebraic manifolds of dyads

in Image Space, which is converted to the parametrization of the planar motion

in cartesian space.

The other approach that has received increasing attention lately is the

use of Fourier Descriptors for linkage synthesis. This idea was first explored

by Freudenstein [42] in the context of function generation. The research was

followed by Funabashi [43], Farhang et al. [44, 45], Chu and Cao [46], and

McGarva [47, 48], and Ullah and Kota [49], Nie and Krovi [50], and Wu et

al. [51]. Lately, Chu and Sun [52, 53, 54] have extended Fourier Descriptor

based method to the synthesis of spherical and spatial linkages. While the

path of a coupler point depends on the choice of the coupler point, one may

extract a subset of Fourier descriptors of the path in such a way that they

depend only on the linkage but not on the choice of the coupler point. This

means that for each four bar linkage, one only need to store one set of Fourier

descriptors for all coupler curves. Chu and Cao [46] and Chu and Wang [55]

made this key observation and achieved significant reduction in the size of

the database for numerical atlas using only four design parameters associated

with a four-bar linkage. Instead of searching a matching linkage directly from

a database, Ullah and Kota [49] sought to find the solution by numerical

search method. They also observed that the Fourier formulation allows the

decoupling of the nine design variables involved in path generation and this

has led to the reduction of the dimension of the search space from nine to

five. Recently, Wu et al. [51] further reduced the search dimension from five
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to four. Xie and Chen [56] were the first to extend Fourier Descriptor method

to the image space of kinematic mapping to solve the whole cycle motion

generation problem in four bar linkage synthesis. In their work, image curve

of a desired motion was indexed with Fourier Descriptors which were used to

be matched with those of four-bar coupler motion. Neural networks were used

to establish the relationship between Fourier Descriptors and dimensions of a

four-bar linkage.

While Kinematic Mapping method enables us to accomplish task driven

design by directly matching the task motion with the workspace of candidate

mechanisms, Fourier approach works in an indirect way that captures the char-

acteristic of task path or motion and that of workspace of mechanisms, and

then carries out the matching process. As for motion synthesis, this disserta-

tion tackles the classical problem of dimensional synthesis of planar four-bar

linkages for motion generation. Using Fourier Descriptors, a given motion is

represented by two finite harmonic series, one for translational component of

the motion and the other for rotational component. It is shown that there is a

simple linear relationship between harmonic content of the rotational motion

and that of the translational motion for a planar four-bar linkage. Further-

more, it is shown that the rotational component can be used to identify the

initial angle and the link ratios of a four-bar linkage. The rest of the design pa-

rameters of a four-bar linkage such as locations of the fixed and moving pivots

can be obtained from the translational component of the given motion. This

leads naturally to a decomposed design space for four-bar motion synthesis for
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approximate motion generation.

Much as the Fourier-based approach has been extensively used to synthe-

size mechanism for path and motion generation, it has a limitation in such

application: dependency on parametrization (timing) of path or motion. Un-

der different forms of parametrization, Fourier Descriptors of the same path

or motion have different values. In addition, parametrization of task path or

motion is not necessarily consistent with that of mechanism path or motion.

Different forms of parametrization corresponding to the same task path or mo-

tion would lead to generated mechanisms of different dimensions. As a conse-

quence, it is highly possible that a best solution of mechanism is missed. Nie

and Krovi [50] noticed this problem and skillfully utilized it to render smallest

number of harmonic components for synthesizing coupled multi-link serial open

chain with smallest number of links. Vasiliu and Yannou [57] also mentioned

parametrization issue in their paper but in effect handled the problem of differ-

ent parameter distributions corresponding to different sets of sampling points

under a given parametrization, which is a sampling-independent method. In

this dissertation, we use arc-length parametrization to identify both the task

path and four-bar path . Arc-length parametrization is based on the inher-

ent property of curve: arc length, thus allowing us to compare the Fourier

Descriptors of task path and four-bar path under the same parametrization.

The rest of the dissertation is organized as follows. Chapter 2 deals with

simultaneous type synthesis and dimensional optimization of planar parallel

manipulator using algebraic fitting of a family of quadrics. Spatial platform
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linkage is studied in Chapter 3 from the viewpoint of extraction of spheri-

cal or planar constraint from a given set of spatial displacements. Chapter 4

introduces a unified algorithm for analysis and simulation of planar four-bar

motions defined with r- and p- joints. Chapter 5 presents a Fourier Descriptor

based approach to design space decomposition for planar motion approxima-

tion. Chapter 6 studies the problem of path synthesis of Mechanism using

parametrization-independent non-uniform Fourier approach. Finally, We draw

conclusion remarks in chapter 7.
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Chapter 2

A Task Driven Approach to
Simultaneous Type Synthesis
and Dimensional Optimization
of Planar Parallel Manipulator
Using Algebraic Fitting of a
family of Quadrics

A parallel manipulator is a relatively high performance, accurate and stiff

mechanism that consists of a moving platform connected to a base platform by

several legs. Merlet [58] defines a parallel manipulator as a closed-loop mech-

anism in which the end-effector (mobile platform) is connected to the base

by at least two independent kinematic chains. Early in the history of parallel

mechanism designs, Gough [59] invented the first variable-length octahedral

hexapod and Stewart [60] presented a design of a flight simulator based up-

on a 6-DOF parallel platform. Their work was followed by a great deal of

subsequent developments in the field of parallel mechanisms.

In this chapter, we extend our recent work in motion approximation by a

planar 4R linkage [61]. In a companion paper (Ge et al. [62]), we presented a
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unified approach to type and dimension synthesis of planar four bars consisting

of any type of possible dyads. This approach is realized by formulating a least

squares problem using SVD (singular value decomposition) to extract both the

dimensions and dyad topologies of a four-bar linkage. The general idea is to

first fit the given motion task to a pencil of intersecting quadrics in the image

space, and then impose the kinematic constraints associated with planar dyads

to extract the dyad topology and the dimensions. As for parallel manipula-

tor consisting of triads, we find that there are simple relationships between

geometric constraints of dyads and triads – dyads of RR-type correspond to

triads of RRR- and RPR-type, of PR-type to PRR- and PPR-type, and of

RP-type to RRP- and RPP-type. This observation leads to simplification in

extending single constraint surface of dyads to its thin-shell version, namely,

a pair of constraint surfaces for triads. Furthermore, we choose three pairs

of constraint surfaces with minimal fitting errors, each representing a type of

triad, to construct a 3-DOF manipulator, leading to optimum dimension for

each triad leg, which are assembled together to form a PPM.

Rest of this chapter is organized as follows: in section 2.1, we present

qualitative arguments on the geometric constraints of the dyads and triads. In

section 2.2, we discuss constraint manifolds of dyads and triads. Section 2.3

presents a unifying representation for dyad and triad constraints and give rise

to a generalized manifold (called, G-manifold). In section 2.4, we show how

given image points can be fitted to a pencil of quadrics in a least-squares sense

via SVD and then by solving a Lagrange multiplier minimization problem,
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we can select best fit triads. Finally, we present inverse computation for the

optimal dimensions of the triads in section 2.5 and an example and discussion

in section 2.6.

2.1 Geometric Constraints of Dyads and Tri-

ads

In this section, we discuss simple geometric constraints that can be realized by

three kinds of dyads: RR, PR and RP. Then, these dyad geometric constraints

are extended to those defining triads, thus reflecting the similarity between

corresponding dyads and triads.

We discuss these constraints in the context of task-driven synthesis of mech-

anisms (Wu et al. [63]). The basic idea is to acquire geometric constraints from

the motion itself and then match it with a mechanical system. For example,

some of the constraints can be that a certain point of a moving object can

trace a circle, a circular arc, an ellipse or a straight line. Each constraint can

be realized by a certain mechanism, such as circle by crank and circular arc

by rocker in crank-rocker mechanisms, or straight line by slider in crank-slider

mechanisms. Starting from the motion and obtaining those constraints hidden

inside can simultaneously give us the type of mechanisms that can be used to

best approximate the motion as well as its dimensions. In that regards, we

actually compute both the type and the dimensions.

Geometric constraint of RR, PR and RP Dyads Fig. 2.1 shows the

kinematic diagram for three dyads that are commonly found in four-bar link-
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Figure 2.1: RR, PR and RP dyads and their constraints

ages. From left to right, they are RR, PR and RP. For RR, there is one point

on the end-effector that lies on a circle; for PR, there is one point on the end-

effector that lies on a straight line; for RP, there is a line on the end-effector

that is always tangent to a circle. These three geometric constraints can be

written in an algebraic form, which serve as constraints for the three dyads.

For RP dyad, there could be an infinity of lines (tangent to concentric circles of

different radii) in the moving frame attached to the end effector. We can even

have a line passing through the center of those circles, which gives commonly

known swinging block configuration of the dyad. Normally, we would choose

the effector so as to minimize the length of first link, i.e., radius of the circle.

Figure 2.2: Kinematic diagram of RRR-, RPR-triads and their comparison
with RR dyad

Geometric constraint of RRR, RPR, PRR, PPR, RRP and RPP

triads Fig. 2.2 shows the kinematic diagram for RRR- and RPR-triads. It
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is clear that a point on the end-effector of RRR and RPR stays in the region

of a circular ring, just like the length of first link of RR dyad can change

in an interval. Therefore, the two triads give us the same kind of geometric

constraint and can be treated as same type of open chain geometrically.

Figure 2.3: Kinematic diagram of PRR-, PPR-triads and their comparison
with PR dyad

Fig. 2.3 shows the kinematic diagram for PRR- and PPR-triads. A point

on the end-effector of PRR and PPR stays in the striped region delimited by

a pair of parallel lines, which could be regarded as the offset of the prismatic

joint of PR dyad, along the direction perpendicular to itself.

Figure 2.4: Kinematic diagram of RRP, RPP-triads and their comparisons
with RP dyad

Fig. 2.4 shows the kinematic diagram for triads of RRP and RPP. It is

clear that a line on the end-effector of RRP and RPP is tangent to a circle of

varying radius, just like the length of first link of RP dyad can change in an

interval. As mentioned earlier, we can pick numerous line-circle pairs to de-
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scribe the tangency relationship in the moving frame. We call this as coupling

effect between circle in fixed frame and line on the end-effector. Therefore,

another way to understand this constraint is that when we move the RRP or

RPP triads, there are different lines on the end-effector that will be tangent

to a circle in fixed frame with fixed radius. For the sake of clarity, we pre-

fer using the former interpretation. The coupling effect will also show up in

mathematical derivations of the constraints later on.

2.2 Constraint Manifolds of Dyads and Triads

In this section, we review the concept of planar quaternions as far as necessary

for the development of this chapter and discuss constraint manifolds of dyads

and triads.

Planar Quaternion Consider a planar displacement in X-Y plane shown

in Fig. 2.5. Let d1, d2 denote the coordinates of the origin of the moving

frame M in the fixed frame F and α denote the orientation of M relative to

F. Then, a planar displacement can be represented by a planar quaternion,

Z = (Z1, Z2, Z3, Z4) (see McCarthy [20] ) via following kinematic mapping:

Z1 = (d1/2) cos(α/2)− (d2/2) sin(α/2)

Z2 = (d1/2) sin(α/2) + (d2/2) cos(α/2)

Z3 = sin(α/2) (2.1)

Z4 = cos(α/2)
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Planar quaternion coordinates can be considered as a set of homogeneous co-

ordinates that define the image space of planar displacements (Ravani and

Roth [19] ). The point Z is called the image point of a planar displacement.

The set of image points that represent all planar displacements is called the

image space of planar displacement and is denoted as Σ. In view of Eq. (2.1),

the coordinates of image point must satisfy the following equation, which ac-

tually represents a rigid body constraint:

Z2
3 + Z2

4 = 1 (2.2)

Figure 2.5: A planar displacement.

Displacement of the end-effector of dyads and triads have additional workspace

related constraints that limits their position and orientation in the Cartesian

space. By using quaternion representation, these constraints can be repre-

sented as quadratic surfaces (quadrics) in the image space, called constraint

manifolds. For visualization, we project these four-dimensional quadrics onto

a 3-D subspace (we choose Z4 = 1). Now, we present a qualitative discus-

sion on the constraint manifolds of aforementioned dyads and triads before we
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present a mathematical derivation of their algebraic forms in the next section.

Constraint Manifold of RRR-, RPR-triads and RR-dyads Fig. 2.6

shows the constraint manifolds of triads RRR and RPR. The constraint man-

ifold is a pair of hyperboloids of one sheet and its geometric parameters, such

as location, orientation, and size are a function of triad geometry. Displace-

ments that can be realized by RRR- and RPR-triads must have their image

points in between the two hyperboloids shown in the figure. The constraint

manifold of RR-dyads can be viewed as a single hyperboloid in between these

two boundary hyperboloids. Alternatively, we can treat the single hyperboloid

of RR-dyad as having thickness to become a pair of hyperboloids and space

in between, just like the circle constraint of a RR-dyad becomes circular ring

constraint of an RRR- or RPR-triads.

Figure 2.6: A pair of hyperboloids of one sheet associated with RRR- or RPR-
triads
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Constraint Manifold of PRR-, PPR-triads and PR-dyads Fig. 2.7

shows the constraint manifolds of PRR- and PPR-triads. The constraint man-

ifold is a pair of hyperbolic paraboloids opening up along negative X-axis.

Image points of displacements that can be realized by PRR- and PPR-triads

must be between two surfaces. The constraint manifold of PR-dyads can be

viewed as a single hyperbolic paraboloid in between these two boundary sur-

faces. Alternatively, we can treat the single hyperbolic paraboloid of PR-dyads

as having thickness to become a pair of hyperbolic paraboloids and space in

between, just as the straight line constraint of PR-dyad becomes a striped

region of line constraint for PRR and PPR-triads.

Figure 2.7: A pair of hyperbolic paraboloids opening up along negative X-axis
associated with PRR- or PPR-triads

Constraint Manifold of RRP-, RPP-triads and RP-dyads Fig. 2.8

shows the constraint manifolds of RRP- and RPP-triads. Their constraint

manifold is a pair of hyperbolic paraboloid opening up along positive X-axis

and the space between them, while that of an RP-dyad is a single hyperbolic
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parabolic. Once again, as this hyperbolic paraboloid grows in thickness, we

obtain the constraint manifold of the corresponding triads. Note that both

PR- and RP-dyads have hyperbolic paraboloid (HP) as their constraint man-

ifold. In section 4.4.2, we can differentiate these two quadrics by values of

coefficients of their algebraic equations. For clarity hereafter, HP of PR-dyads

are being called as hyperbolic paraboloid I and that of RP-dyads as hyperbolic

paraboloid II.

Figure 2.8: A pair of hyperbolic paraboloids opening up along positive X-axis
associated with RRP- and RPP-triads

Discussion: Purwar and Gupta [64] have shown that it is intuitive to in-

crease the gap between the pair of constraint surfaces so as to contain the

image points visually. However, they do not attempt to optimize the size

of the constraint surfaces – increasing the gap arbitrarily to contain the im-

age points may lead to large manipulators. Our goal is to minimize the gap

between these pair of surfaces while containing the image points.
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2.3 A Unifying representation for Geometric

Constraints of RR-, PR- and RP- dyads

In this section, we will first express the geometric constraints of the dyads

by algebraic equations, then a unifying quadratic equation representing con-

straints of RR, PR and RP would be given.

2.3.1 Representation of Geometric Constraints

Let X = (X1, X2, X3) (where X3 ̸= 0) denote the homogeneous coordinates

of a point in the fixed frame F and L = (L1, L2, L3) be the homogenous

coordinates of a line in F, where L2
1 + L2

2 = 1 and the absolute value of L3 is

the perpendicular distance to the line from the origin of F.

Circle Constraint If a point travels around a circle in the fixed frame, its

homogeneous coordinates should satisfy the following equation:

a0X
2
1 + a0X

2
2 − 2a1X1X3 − 2a2X2X3 − a3X

2
3 = 0 (2.3)

Rearranging Eq. (2.3), we get:

2a1X1 + 2a2X2 + a3X3 = a0(
X2

1 +X2
2

X3

), (2.4)

where the center of the circle is given by homogeneous coordinates a = (a1, a2, a0)

and radius r satisfies relation

a20r
2 − a0a3 = a21 + a22. (2.5)
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Straight-line Constraint If a point moves along a straight line in the fixed

frame, its homogeneous coordinates should satisfy the following equation

2a1X1 + 2a2X2 + a3X3 = 0, (2.6)

where a = (a1, a2, a3) represents the homogeneous coordinates of the straight

line. Equation (2.6) can be seen as a special case of Eq. (2.4), when the center

point of the circle moves to infinity (a0 = 0).

Line-tangent-to-circle Constraint If a line remains tangent to a circle in

the fixed frame, the constraint equation is obtained by computing the distance

from the center of the circle to the line, which is equal to the radius r of the

circle. If (a1, a2, a0) are homogeneous coordinates of center of the circle while

(L1, L2, L3) are those of the moving line, then from the projective geometry of

conics (Sommerville [65]), we obtain following constrain equation:

a1L1 + a2L2 + a0L3 = ±a0r. (2.7)

Similarity between Eqns. (2.4), (2.6), and (2.7) lays the foundation for

unifying the constraint manifold equations of RR-, PR- and RP- dyads.

2.3.2 A Unifying Representation for Constraint Mani-
folds

Let x = (x1, x2, x3) and X = (X1, X2, X3) denote the homogeneous coordi-

nates of a point on end-effector in the moving frame M and fixed frame F,

respectively. Let l = (l1, l2, l3) and L = (L1, L2, L3) be the homogeneous co-

ordinates of a line of end-effector in M and F, respectively. The relationship
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between x and X for a planar displacement parameterized by (d1, d2, α) is

given as follows:

 X1

X2

X3

 =

 cosα − sinα d1
sinα cosα d2
0 0 1

 x1
x2
x3

 . (2.8)

We denote the transformation matrix in above as [H] and use planar quater-

nion coordinates in Eq. (2.1) to write [H] as

[H] =

 Z2
4 − Z2

3 −2Z3Z4 2(Z1Z3 + Z2Z4)
2Z3Z4 Z2

4 − Z2
3 2(Z2Z3 − Z1Z4)

0 0 Z2
3 + Z2

4

 (2.9)

Using the duality principle between lines and points in a projective plane, we

know that the line coordinates transform as L = [H]l, where matrix [H] is

given by the transpose of the inverse of [H], i.e., [H] = ([H]−1)T and is given

by

[H] =

 Z2
4 − Z2

3 −2Z3Z4 0
2Z3Z4 Z2

4 − Z2
3 0

2(Z1Z3 − Z2Z4) 2(Z2Z3 + Z1Z4) Z2
3 + Z2

4

 . (2.10)

Constraint Manifold of RR Dyad We substitute fixed frame coordinates

from Eq. (2.8) into Eq. (2.4), and collect like terms to get

−2a0x3(Z
2
1 + Z2

2) + 2a0x1(Z1Z3 − Z2Z4) + 2a0x2(Z2Z3 + Z1Z4) +

2a1x3(Z1Z3 + Z2Z4) + 2a2x3(Z2Z3 − Z1Z4) + 2(a2x1 − a1x2)Z3Z4 −

(a1x1 + a2x2)(Z
2
3 − Z2

4) +
1

2x3
(a3x

2
3 − a0x

2
1 − a0x

2
2)(Z

2
3 + Z2

4) = 0.

(2.11)
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We can rewrite Eq. (2.11) in terms of the following coefficients qi:

q1 = −2a0x3, q2 = 2a0x1, q3 = 2a0x2,

q4 = 2a1x3, q5 = 2a2x3, q6 = 2(a2x1 − a1x2),

q7 = −(a1x1 + a2x2),

q8 = (a3x
2
3 − a0x

2
1 − a0x

2
2)/(2x3). (2.12)

The inverse relation between qi and mechanism parameters (ai, xi) is given as

follows:

a0 : a1 : a2 : a3 = −q1 : q4 : q5 : (4q8 −
q1(q

2
6 + 4q27)

q24 + q25
) (2.13)

x1 : x2 : x3 = (q6q5 − 2q7q4) : −(q6q4 + 2q7q5) : (q
2
4 + q25)

Besides, the coefficient qi must satisfy the following two relations:

q1q6 + q2q5 − q3q4 = 0

2q1q7 − q2q4 − q3q5 = 0. (2.14)

Equation (2.11) represents a hyperboloid of one sheet in the image space.

Constraint Manifold of PR-Dyad The formulation for PR-dyad is much

the same as that of RR except that we have a0 = 0. Moreover, q1, q2 and

q3 are zeros because a0 = 0, which means that the constraints in (2.14)

are automatically satisfied. In this case, Eq. (2.11) represents a hyperbol-

ic paraboloid oriented along negative X-axis in 3-D space parameterized by

(Z1/Z4, Z2/Z4, Z3/Z4). We refer to this quadric as a hyperbolic paraboloid I.
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Constraint Manifold of RP-Dyad To obtain the algebraic form of the

constraint manifold of an RP-dyad, we substitute fixed frame line coordinates

from L = [H]l into Eq. (2.7) and obtain an equation of the same form as

Eq. (2.11). The difference lies in the values of qi and it turns the constraint

manifold of hyperboloid of one sheet into a hyperbolic paraboloid oriented

along positive X-axis in 3-D space, which we refer to as a hyperbolic paraboloid

II. The coefficients qi are given by

q1 = 0, q2 = 2a0l1, q3 = 2a0l2,

q4 = 0, q5 = 0, q6 = 2(a2l1 − a1l2),

q7 = −(a1l1 + a2l2),

q8 = a0(l3 ± r). (2.15)

The two relations in Eq. (2.14) are still satisfied by these qi and the inverse

computation is given as follows:

l1 : l2 : (l3 ± r) = q2 : q3 : 2q8 (2.16)

a0 : a1 : a2 = (q22 + q23) : −(q3q6 + 2q2q7) : 2(q2q6 − 2q3q7)

The aforementioned coupling effect shows in the inverse computation for l3

and r. We can fix value of one variable and allow other to change. Normally

for RP dyad, r is set to zero, however, for RPP- and RRP-triads, we fix l3

while allowing r to change in accordance with the first interpretation discussed

in section 2.1.

Based on the above derivations, we now have a common representation for
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constraint manifolds of RR-, PR- and RP- dyads:

q1(Z
2
1 + Z2

2) + q2(Z1Z3 − Z2Z4) + q3(Z2Z3 + Z1Z4)

+q4(Z1Z3 + Z2Z4) + q5(Z2Z3 − Z1Z4) + q6Z3Z4

+q7(Z
2
3 − Z2

4) + q8(Z
2
3 + Z2

4) = 0 (2.17)

This defines a quadric surface in the image space with eight homogeneous

coefficients. Here, we call this quadric a generalized constraint manifold, or

G-manifold. Constraint manifolds of RR-, PR- and RP-dyads are in the subset

of this G-manifold space, which must satisfy Eq. (2.14).

2.4 Algebraic Fitting of G-Manifolds

Now, let us consider the problem of fitting the G-manifolds to a set of N image

points representing task displacements in the Cartesian space. By substituting

for the given values of image points in Eq. (2.17), we obtain an over-constrained

system of linear equations given by [A]q = 0, where q is the column vector

of homogeneous coefficients qi(i = 1 . . . 8). The coefficient matrix [A] of size

N × 8 is given by:

[A] =


A11 A12 A13 A14 A15 A16 A17 A18
...

...
...

. . .
...

...
...

AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8

 (2.18)
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where for the ith image point, we have

Ai1 = Z2
i1 + Z2

i2, Ai2 = Zi1Zi3 − Zi2Zi4

Ai3 = Zi2Zi3 + Zi1Zi4, Ai4 = Zi1Zi3 + Zi2Zi4 (2.19)

Ai5 = Zi2Zi3 − Zi1Zi4, Ai6 = Zi3Zi4

Ai7 = Z2
i3 − Z2

i4, Ai8 = Z2
i3 + Z2

i4

Singular Value Decomposition In linear algebra, the Singular Value De-

composition (SVD) of an N × 8 matrix [A] is a factorization of the form:

[A] = [U ][S][V ]T (2.20)

where [U ] is an N × N orthonormal matrix, whose N columns being called

the left singular vectors of [A] are the eigenvectors of [A][A]T ; [S] is an N ×

8 rectangular diagonal matrix with 8 non-negative singular values of [A] on

the diagonal, which are also the square roots of the eigenvalues of [A]T [A] or

[A][A]T ; [V ] is an 8× 8 orthonormal matrix, whose 8 columns being called the

right singular vectors, are the eigenvectors of [A]T [A] and span the solution of

the linear system [A]q = 0.

The over-constrained system of linear equation [A]q = 0 can be solved

as a total least squares minimization problem, i.e., minimizing the fitting er-

ror ε = ([A]q)T ([A]q) with the constraint qTq = 1. SVD solves this exact

problem with the solution embedded in the column vectors of the matrix [V ]

corresponding to zero singular values of the matrix [S]. The error ε can be
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written as

ε = a21λ1 + a22λ2 + · · ·+ a28λ8 =
8∑

i=1

a2iλi (2.21)

where λi (λ1 < λ2 < · · · < λ8) are eigenvalues of [A]
T [A] or [A][A]T and ai will

be explained in the following proof for Eq. (2.21).

Proof. Since q is a unit vector in an eight dimensional space, we can express

q in terms of a set of orthonormal basis. Column vectors of the matrix [V ],

being called vi(i = 1 . . . 8), are null space solutions of [A]q = 0 and are or-

thonormal vectors, and therefore serve as a suitable basis for a general solution

of coefficient vector q:

q = a1v1 + a2v2 + · · ·+ a8v8 =
8∑

i=1

aivi, (2.22)

where ai are coefficients of linear combination and
√∑8

i=1 a
2
i = 1. Then, we

have

[A]q = [U ][S][V ]T [a1v1 + . . .+ a8v8], (2.23)

where [V ] = [v1, . . . ,v8] and above equation simplifies to

[A]q = [U ][S][a1, . . . , a8]
T . (2.24)

Further simplification of the above gives

[A]q = [U ][
√
λ1a1, . . . ,

√
λ8a8︸ ︷︷ ︸

8

, 0, . . . , 0︸ ︷︷ ︸
n−8

]T = [U ]w (2.25)

For ε, we have the final expression:

ε = ([U ]w)T ([U ]w] = wTw =
8∑

i=1

a2iλi (2.26)
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Based on the characteristic of image curve of task motion, three scenarios

would arise:

Task image points lie on the intersection of a pencil of G-manifolds

In this situation, [A]q = 0 (ignoring floating-point error in real computation).

In other words, q is in the null-space of [A]T [A]. Now that we have a pencil

of G-manifolds that can perfectly fit the task image points, there are at least

two eigenvalues that have to be zero, namely, λ1 = λ2 = 0 while v1 and v2

span the null-space because the rank loss of [A]T [A] is at least two. For motion

generated by four-bar linkage having one RR-dyad with another RR-, PR- or

RP-dyad, the rank of loss is two. Hence, different linear combinations of v1

and v2 can render different G-manifolds that perfectly fit the image curve.

For motion generated by two PR- or two RP-dyads, the rank loss of [A]T [A]

is three (three coefficient values qi are zero). Hence, λ3 will be zero and v3

enters into the null-space basis. Likewise, various linear combinations of v1,

v2 and v3 can construct various G-manifolds that intersecting in a common

image curve. In summary, given that task image points are on the intersection

of a pair of G-manifolds, there has to be more than one zero eigenvalues.

However, only a subset of G-manifolds can be used to construct RR-, PR-

and RP-dyads from the pencil of G-manifolds because they have to satisfy the

constraint Eq. (2.14). We can compute the coefficients of linear combinations

of v1 and v2, or v1, v2 and v3 by imposing this constraint.
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Task image points lie on a single G-manifold In this case, we still

have [A]q = 0 and q is in the null-space of [A]T [A]. However, there is only

one eigenvalue of [A]T [A] that is zero, i.e., λ1 = 0 corresponding to v1. If

components of v1 can satisfy Eq. (2.14), there would be one RR- or PR-

or RP-dyad that can go through the given tasks. However, this is unlikely

to happen in kinematics as the given task usually is a motion or a set of

displacements from which a motion can be constructed (see Purwar and Ge [66]

for motion design), which maps to a curve in the image space. A curve can

be obtained as an intersection of quadrics, which means that we would find

two zero-eigenvalues. On the other hand, single zero-eigenvalue solutions are

common in CAD and reverse engineering, where a point cloud data needs to

be fitted with a surface.

Task image points do not lie on any of G-manifolds For this scenario,

[A]q ̸= 0 and the error ε is not zero. The algebraic fitting error (least square

error) ε can be used to form thin-shell G-manifold (called TG-manifold). As

there is no single G-manifold can perfectly fit the image curve, our goal is

to find the TG-manifolds that can fit the given image points as closely as

possible. Thickness of the thin shell is directly related to the error ε – larger

the least square error, thicker the TG-manifolds will be. Moreover, the thin-

shell G-manifold falls right in the category of constraint manifold of six triads

mentioned in section 3. For using TG-manifold to construct those triads, Eq.

(2.14) still has to be satisfied.
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For finding the minimum ε, we must use all eight vectors vi to form linear

combinations, each combination standing for one G-manifold. Combination

with minimum ε under certain task motion is q = v1 and ϵ is λ1, while the

combination with maximum ε is q = v8 and ϵ is λ8. By imposing Eq. (2.14),

we expect to get a set of solutions for ai, and then we can search for three sets

which render least errors to construct three triads for parallel manipulator.

As Eq. (2.14) are homogeneous second-order equations, we should have at

least three ai substituted in the constraint equations if more than two solutions

(real and imaginary solutions both being counted) are required. If we have

only two ai, there would be no solution or two solutions. Therefore, we choose

a1, a2 and a3 together with vectors v1,v2 and v3 corresponding to the least

singular values to construct q. Therefore, we try to find the best solution

in the space spanned by vi(i = 1, 2, 3) (subspace of original space spanned

vi(i = 1, . . . , 8). Then, the error ε = a21λ1 + a22λ2 + a23λ3.

It is possible that in the subspace spanned by v1,v2 and v3, we may not

find real solutions that satisfy Eq. (2.14), which means that there may not

be a thin-shellthin shell manifold of hyperboloid or hyperbolic paraboloid I

or hyperbolic paraboloid II that can contain the given image points. In this

case, we can incrementally expand our TG-manifold space to vi(i = 1, . . . , 4).

In this case, we have one free variable ai to be assigned value arbitrarily, say,

a4; for each value of a4, we can compute ai, (i = 1, 2, 3) by Eq. (2.14). If this

does not yield a real solution, then we enlarge the solution space by including

a5 until a8. In brief, the needed number of basis eigenvectors increases as
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complexity of task displacements goes up.

Assuming that there exist real solutions in the space spanned by vi(i =

1, . . . , 4), ai, (i = 1, 2, 3, 4) will be real numbers. Since a4 can be chosen arbi-

trarily, there would be more than three real sets of ai, (i = 1, 2, 3, 4) and then

the next step is to locate the three sets that will give us three minimum values

of error ε. Instead of varying a4 and imposing Eq. (2.14) to find corresponding

ai, (i = 1, 2, 3), we reformulate it as a constrained optimization problem using

Lagrange Multiplier approach.

Consider a vector q = a1v1+a2v2+a3v3+a4v4. It has to satisfy two con-

straints in Eq. (2.14), denoted as h1(a1, a2, a3, a4) = 0 and h2(a1, a2, a3, a4) =

0, and sum of square of its coefficients ai is required to be 1, denoted as

g(a1, a2, a3, a4) = 1 or h3(a1, a2, a3, a4) = 0. In view of ε = a21λ1 + a22λ2 +

a23λ3 + a24λ4 in this subspace, the constrained optimization problem is formed

as follows:

Minimize ε = f(a1, a2, a3, a4) (2.27)

Subject to h1(a1, a2, a3, a4) = 0 (2.28)

h2(a1, a2, a3, a4) = 0 (2.29)

h3(a1, a2, a3, a4) = 0 (2.30)

The method of Lagrange multipliers converts this problem to the following

unconstrained optimization problem:

Minimize L(a1, a2, a3, a4, γ1, γ2, γ3) = f + γ1h1 + γ2h2 + γ3h3 (2.31)

Therefore, we have to solve following seven equations and our goal is to locate
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three smallest local minimums out of those solutions.:

∂L

∂ai
= 0

∂L

∂γ1
= 0

∂L

∂γ2
= 0

∂L

∂γ3
= 0 (2.32)

where i = 1, 2, 3, 4. For the case of q = a1v1+a2v2+a3v3, the number of feasi-

ble solutions (real and complex) constrained by Eqs. (2.28), (2.29) and (2.30)

is four and above optimization problem degenerates to solving these three con-

straint equation. This case can still be handled by the above formulation and

therefore contains six equations to solve.

If the subspace spanned by v1,v2 and v3,v4 still cannot yield real solu-

tions, then we expand the subspace to successively include v5, . . ., v8. Thus,

the number of equations would be increased to eleven at most. For the case

of the six or seven equations, it can be solved by MATHEMATICA’s Nsolve

function; for cases of more than seven, it is recommended to apply polynomi-

al homotopy algorithms because of its accuracy and computational efficiency.

Homotopy algorithms are globally convergent methods for finding all of the

isolated solutions to systems of polynomial equations. Here, we use the homo-

topy package PHCpack developed by Jan Verschelde [67, 68]. In addition to

PHCpack, there are other freely available homotopy packages, including POL-

SYSGLP [69], Bertini [70] and HOM4PS2 [71]. Bertini besides supporitng a

user-defined homotopy, provides the regeneration technique for finding isolated

and positive dimensional solutions and is capable of dealing with non-square

systems of polynomials. HOM4PS2 is a polyhedral homotopy solver which, in

general, is a better choice for solving sparse systems.
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2.5 Inverse Computation for Variation of Ge-

ometric Constraints

In section 2.3.1 and 2.3.2, we have already presented the inverse computation

formula for determining dyad geometry parameters from the given values of

qi. Here, we compute geometric constraint variations in order for RR to be-

come RRR or RPR, PR to become PRR or PPR and RP to become RRP or

RPP, namely, inner and outer radius for circular ring constraint, the distance

between the two parallel boundary line in the line stripe constraint and inner

and outer radius for line-tangent-to-circle constraint. We show that q8 appears

in the variation computation and thickness information (least squares error)

is merely related to q8, which will be justified below.

From last section, we found three constraint manifolds of qi(i = 1, 2, 3)

with the smallest least squares errors. We now need to find the thickness of

each constraint manifold. For each qi, we have [A]qi = ∆i. In view of Eq.

(2.17) and Z2
3 + Z2

4 = 1, we have:

q1(Z
2
1 + Z2

2) + q2(Z1Z3 − Z2Z4) + q3(Z2Z3 + Z1Z4)

+q4(Z1Z3 + Z2Z4) + q5(Z2Z3 − Z1Z4) + q6Z3Z4

+q7(Z
2
3 − Z2

4) + q8 = 0 (2.33)

Denoting the maximum and minimum values of ∆ as δmax and δmin re-

spectively, and Eq. (2.33) as f + q8, two boundary constraint surfaces can be

written as as follows:

f+ q8 − δmin = 0 f+ q8 − δmax = 0 (2.34)
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The thickness of constraint manifold is given as |δmax − δmin|. Geometric

constraint variation for RR-, PR- and RP-dyads are presented below.

Variation for RR-dyad In view of Eq. (2.5), r is represented as

r =

√
K − 4q8

q1
, (2.35)

where K =
q24+q25
q21

+
q26+4q27
q24+q25

. Since r is a monotonic square-root function with

respect to q8 and the fitting residue δ shows up in q8, we can easily determine

the range of the varying parameter r:√
K − 4(q8 − δmin)

q1
≤ r ≤

√
K − 4(q8 − δmax)

q1
(2.36)

Variation for PR-dyad From Eq. (2.13), a3
a21+a22

represents the distance D

between the fixed frame origin and line. And with a0 = 0(q1 = 0), we can

write D as:

D =
2q8√
q24 + q25

(2.37)

Therefore, it is obvious that the range of the varying distance D is:

2(q8 − δmax)√
q24 + q25

≤ D ≤ 2(q8 − δmin)√
q24 + q25

(2.38)

Variation for RP-dyad From Eq. (2.16), we have l3 ± r = 2q8√
q22+q23

. As

mentioned earlier if l3 is fixed, while r being changed, we can also write the

equation as:

|l3 −
2q8√
q22 + q23

| = r (2.39)
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If we can let r to be smaller than zero, there is no need to attach the absolute

value sign; given q8 − δmax ≤ q8 − δmin, the range of r is:

l3 −
2q8 − δmin√
q22 + q23

≤ r ≤ l3 −
2q8 − δmax√
q22 + q23

(2.40)

In practice, l3 can be assigned with an arbitrary value by the user. The

lower limit for r sometimes can be negative. The physical meaning is that

when r changes from upper limit to lower one, the tangent line is getting

closer to center of circle as radius of the circle approaches to zero; when r is

zero, the tangent line passes through the center; when r starts from zero to

lower limit, the tangent line moves far away from center in the same direction

as it goes closer to center.

2.6 Example and Discussions

In this section, we present an example to show the effectiveness of our theory

and algorithm. The task motion is arbitrarily given as 16 positions and listed

in Table 2.1.

The size for matrix [A] in Eq. (2.18) now becomes 16×8. The next step is to

find the three smallest singular values and their corresponding right singular

vectors of [A] by SVD. The singular values are listed in Table 2.2. Three

smallest singular values are σ1 = 0.0463, σ2 = 0.0987 and σ3 = 0.3229. Their

associated right singular vectors are listed in Table 2.3. Based on v1, v2 and

v3, we form q = a1v1 + a2v2 + a3v3, substitute ai (i = 1, 2, 3) into Eq. (2.31)

and solve them together with γi (i = 1, 2, 3) using Eq. (2.32). Note that here

36



Translation Rotation(rad)
(-0.2213, -0.9272) -2.9798
(0.5012, -0.0981) -2.6180
(1.2235, 0.6378) -2.3562
(1.9995, 1.3301) -2.0944
(4.2513, 2.8383) -1.1791
(4.5981, 2.8301) -1.0472
(4.7678, 2.6291) -0.9154
(4.8978, 2.0705) -0.2618
(4.2713, 0.9772) 0.4118
(3.5008, 0.0981) 0.5236
(2.6265, -0.7877) 0.6354
(2.0011, -1.3301) 1.0472
(-0.0213, -2.6083) 1.9326
(-0.5981, -2.8301) 2.0944
(-0.8978, -2.7591) 2.3562
(-0.8952, -2.0706) 2.8798

Table 2.1: Task motion defined by 16 positions

0.0463 0.0987 0.3229 2.1115 2.6228 4.2249 5.6068 17.8257

Table 2.2: The singular values of A

q1 q2 q3 q4 q5 q6 q7 q8
v1 -0.1155 -0.0149 -0.1717 -0.1203 0.4055 0.79645 -0.1444 0.3505
v2 -0.1319 -0.0193 -0.1902 0.6657 -0.2392 0.4018 0.3526 -0.3999
v3 0.3211 0.0722 0.4799 -0.3186 0.2838 0.2053 0.5774 -0.3223

Table 2.3: The right singular vectors of A

we only have six equations to solve instead of seven. If we cannot find real

solutions for ai, then a4 will need to be brought in to expand the subspace.

By applying PHCpack to solve those six equations, we get eight real so-
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a1 a2 a3 γ1 γ2 γ3 ε
Sol1 -0.7088 0.7048 0.0291 0.5652 1.0294 -0.0060 6.0106 × 10−3

Sol2 0.6113 0.7554 -0.2359 -0.1292 -0.1965 -0.0122 1.2167 × 10−2

Sol3 0.8579 0.3006 0.4167 -0.0114 2.9800 -0.0206 2.0563 × 10−2

Sol4 0.3414 0.8117 0.4738 -0.4592 -0.2759 -0.0300 3.0082 × 10−2

Table 2.4: The four solutions of ai and γi (i=1,2,3)

lutions and the running time is 384ms on a 64 bit Windows 7 machine with

Intel Core i5 CPU running at 2.40 GHz with 4 GB of RAM. Four solutions

are just sign-different from the other four respectively and thus, there are only

four valid real solutions. These four solutions are listed in Table 2.4, where the

last column ε indicates the surface fitting error. Now that we have four real

solutions, the three qmin1, qmin2 and qmin3 with smallest fitting errors would

be picked to construct our parallel manipulator.

With the knowledge of ai, the values of qmin1, qmin2 and qmin3 are shown in

Table 2.5. Next, we need to determine the type of surfaces that these vectors

represent. First, it is obvious that qmin2 defines a hyperboloid; second, the

first three components of qmin1 and qmin3 are quite close to zeros compared

to other four components (not considering q8 as it does not affect the type

of the surface but only the size). That means these two vector correspond

to hyperbolic paraboloid I surfaces instead of hyperboloids. To verify this

further, we treat these two vectors as hyperboloid and compute the variation

of radius r of circle constraint. The circular ring constraint for qmin1 is shown

in Fig. 2.9. It is clear that the circular ring constraint is very similar to a line-

pair constraint. Therefore, we can assign zeros to qi (i = 1, 2, 3) of qmin1. The
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q1 q2 q3 q4 q5 q6 q7 q8
qmin1 0.0017 0.0009 -0.0016 -0.5452 0.4478 0.2754 -0.3677 0.5397
qmin2 0.2460 0.0407 0.3618 -0.5045 -0.0002 -0.7420 -0.0419 0.0118
qmin3 0.0049 -0.0114 0.0045 0.0358 -0.3942 -0.8896 -0.2227 -0.0461

Table 2.5: The three vectors with smallest surface fitting errors

-5 5
X

-5

5

Y

Figure 2.9: The circular ring constraint qmin1 and traces of a point of end-
effector in the fixed frame. What is being shown here is just a small part of
the ring because of the large values of radius.

optimized constraint is plotted in Fig. 2.10. Likewise for qmin3, we optimize

its circular ring constraint to a line-pair constraint, shown in Fig. 2.11 and

2.12 respectively. The ring constraint of qmin2 is shown in Fig. 2.13.

For qmin1, its varying D is computed as follows:

1.44646 ≤ D ≤ 1.68979 (2.41)

where both two limits have plus sign, meaning two parallel lines are located

on the same side relative to origin.
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Figure 2.10: The optimized line-pair constraint qmin1 and traces of a point of
end-effector in the fixed frame.
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Figure 2.11: The circular ring constraint for qmin3 and traces of a point of
end-effector in the fixed frame. Only a small part of the ring is being shown
here because of the large values of radius.
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Figure 2.12: The optimized line-pair constraint for qmin3 and traces of a point
of end-effector in the fixed frame.
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Figure 2.13: The circular ring constraint for qmin2 and traces of a point of
end-effector in the fixed frame.
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L Link1 x y
y=1.2175x-2.4706 0.1217 -0.5577 0.9633

Table 2.6: Resulting parameters of PRR triad defined by qmin1 and its fitting
error

For qmin2, its varying r is computed as follows:

2.33228 ≤ r ≤ 2.69346 (2.42)

For qmin3, its varying D is computed as follows:

−0.594281 ≤ D ≤ 0.454605 (2.43)

where two limits have different sign, indicating origin is positioned in between

two parallel lines.

Based on the above discussion, qmin1 can be used to construct a PRR- or

PPR-triad, qmin2 to a RRR- or RPR-triad and qmin3 to a PRR- and PPR-triad.

Constraint manifolds for qmin1, qmin2 and qmin3 are shown in Fig. 2.14, 2.15

and 2.16. Let us choose PRR for qmin1 and qmin3, denote the line equation for

first joint P as L, first link as Link1 (the one directly connected to prismatic

joint as shown in Fig. 2.3 and the coordinate of point on end-effector as (x, y)

(in moving frame). These four parameters are listed in Tables 2.6 and 2.8.

Choosing RRR for qmin2, and denoting the coordinate of the fixed pivot as

(Xc, Yc), first link as Link1, second link as Link2 and the coordinate of point

on end-effector as (x, y) (in moving frame), the six parameters for this triad

are listed in Table 2.7.

42



Figure 2.14: A pair of hyperbolic paraboloid I defined by qmin1 and its fitting
error. Image curve of task motion is in between two surfaces.

Figure 2.15: A pair of hyperboloid defined by qmin2 and its fitting error. Image
curve of task motion is in between two surfaces.
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Figure 2.16: A pair of hyperbolic paraboloid I defined by qmin3 and its fitting
error. Image curve of task motion is in between two surfaces.

Xc Yc Link1 Link2 x y
2.0508 0.0009162 2.5129 0.1806 -0.1655 -1.4709

Table 2.7: Resulting parameters of RRR triad defined by qmin2 and its fitting
error

L Link1 x y
y=0.09096x-0.07013 0.5244 2.3402 -0.9171

Table 2.8: Resulting parameters of PRR triad defined by qmin3 and its fitting
error
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2.7 Conclusions

In this chapter, we extended our four-bar synthesis algorithm to planar parallel

manipulator synthesis by discovering similarities between dyads and triads

both in geometric constraints in mechanical space and constraint manifolds

in image space. An exact four-bar motion can be fitted using two or three

eigenvectors of surface fitting matrix and their corresponding singular values

equal to zeros, thus causing fitting error to be zero. However, with the increase

of complexity of task motion, three or more eigenvectors would be used and

their corresponding singular values are nonzero, therefore producing fitting

error. As for parallel manipulators, we need to find three quadrics, satisfying

the requirements for RR-, PR- and RP-dyad, with smallest fitting errors to

generate their thin-shell version in order to contain task image points inside.

The minimum-finding problem is converted to Lagrange multiplier method

with equations solved by homotopy continuation approach.
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Chapter 3

A Unified Algorithm for
Geometric Design of Platform
Linkages with Spherical and
Planar Constraints

The determination of the geometric parameters of a platform robotic system

so that it guides the platform through a number of specified spatial positions

is known as the rigid body guidance problem. This problem has been studied

extensively for planar, spherical, as well as spatial mechanisms known as the

dimensional synthesis or geometric design [4, 35, 72, 73, 74, 75, 76, 77, 78, 79,

80]. The key to the problem is to formulate the design equations for a given

type of mechanism and find the feasible solutions for the link parameters for

a given set of goal positions.The simplest case, called the Burmester problem,

is to find the dimensions of a planar 4R linkages (where R denotes a revolute

joint) for a set of five positions of the coupler link. Geometrically, the coupler

motion of a planar 4R linkage is constrained such that two points of the coupler

lie on two separate circles. In this case, the problem of dimensional synthesis
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is to determine the center and radius of each of the two circles that constrains

the coupler link while it guides a planar body through five task positions. Each

circle defines a planar RR dyad that constrains the coupler link.

Innocenti [35] presented a polynomial solution to the spatial of this Burmester

problem, which is to find the center and radius of each of the five spheres that

constrains a spatial platform while it guides a spatial body through seven task

positions. Each sphere defines a SS chain, where S denotes a spherical (or ball)

joint. This dissertation considers not only spatial motion for which one point

lies on a sphere but also spatial motion for which one point lies on a plane. It

utilizes a unified representation of sphere and a plane to develop a new method

for simultaneous synthesis of dimensions as well as types of the constraints,

spherical or planar, for a given set of seven positions of the platform linkage.

The resulting algorithm is an extension of our recent work for simultaneous

type and dimensional synthesis of planar Burmester problem [81].

The organization of the chapter is as follows. Section 3.1 reviews dual

quaternion based representation of spatial displacement, which serves as the

foundation of our approach. In section 3.2, six manipulator leg types and

their corresponding geometric constraint are discussed. Next, we give a unified

algebraic equation in section 3.3 for those manipulator legs, thus encapsulating

type and geometric constraint information in a single equation. Section 3.4

presents a least square based algorithm to extract geometric parameters from

arbitrarily given finite positions. Section 3.5 provides an numerical example

to demonstrate our approach. Finally, conclusions and future work are given

in section 3.6.
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3.1 Representation of Spatial Displacement

A spatial displacement of a rigid body is commonly represented by the follow-

ing transformation of a moving frame M attached to the moving body with

respect to a fixed frame F attached to the fixed space:


X1

X2

X3

X4

 =

 rx ry rz d

0 0 0 1



x1

x2

x3

x4

 , (3.1)

where, X = (X1, X2, X3, X4) and x = (x1, x2, x3, x4) are homogeneous coordi-

nates of a point in F and M, respectively; rx, ry, rz and d are the axes and

origin of M expressed in F respectively. The matrix [R], formed by rx, ry, rz, is

an orthogonal matrix representing a rotation while d represents a translation.

Alternatively, one may use a unit dual quaternion Q̂ = (Q, Q̃), where the

real part Q = (q1, q2, q3, q4) and the dual part Q̃ = (g1, g2, g3, g4) to represent

a spatial displacement [4]. The real part Q can be constructed with rotation

axis s = (sx, sy, sz) and rotation angle θ, as shown in Fig. 3.1, from the ration

matrix [R] using Cayley’s formula [6]:

Q = (sx sin
θ

2
, sy sin

θ

2
, sz sin

θ

2
, cos

θ

2
) (3.2)
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The dual part Q̃ is given by the formula:


g1

g2

g3

g4

 =
1

2


0 −d3 d2 d1

d3 0 −d1 d2

−d2 d1 0 d3

−d1 −d2 −d3 0




q1

q2

q3

q4

 . (3.3)

It is easy to verify that Q and Q̃ satisfy the following relations:

q21 + q22 + q23 + q24 = 1,

q1g1 + q2g2 + q3g3 + q4g4 = 0. (3.4)

Inversely, the rotation matrix [R] can be parameterized withQ = (q1, q2, q3, q4)

as:


q24 + q21 − q22 − q23 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4 q24 − q21 + q22 − q23 2(q2q3 − q1q4)

2(q1q3 − q2q4 2(q2q3 + q1q4) q24 − q21 − q22 + q23

 (3.5)

The translation vector d = (d1, d2, d3) can be recovered from (4.17) in terms

of (Q, Q̃) by the following:

d = −2


g4q1 − g1q4 + g2q3 − g3q2

g4q2 − g2q4 + g3q1 − g1q3

g4q3 − g3q4 + g1q2 − g2q1

 (3.6)

With unit dual quaternion Q̂, we recast (3.1) and obtain the following rela-
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Figure 3.1: A spatial displacement.

tionship between X = (X1, X2, X3, X4) and x = (x1, x2, x3, x4):

X = QxQ∗ + x4[(Q̃)Q∗ −Q(Q̃)∗] (3.7)

where Q∗ and (Q̃)∗ are conjugates of Q and Q̃, respectively.

3.2 Constraining a Spatial Displacement

In this section, we study various legs of a spatial parallel manipulator that is

subject to either a spherical or planar constraint.

The task-driven synthesis concerns with acquiring geometric constraint

from the task motion and uses it to determine type and dimension of mecha-

nisms simultaneously (Wu et al. [63]). When end effector travels in a spatial

motion constrained by a manipulator leg, point in the end effector could be

subject to certain geometric constraint in fixed frame. Here, we consider spa-

tial motions constrained by simple geometric constraints such as spheres and
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planes and their corresponding manipulator leg.

3.2.1 Spherical Constraint

Now let us consider the displacement of a rigid body (the platform) for which

a point is constrained to stay on surface of sphere. This single algebraic con-

straint reduces the degrees of freedom (DOF) of the moving body from 6 to

5. Three types of open kinematic chains that can be used to generate such a

constraint: RRS, SS and TS (R stands for revolute joint, S for spherical joint

and T for universal joint), although S and T joints can be further decomposed

into combinations of R joints.

Figure 3.2: RRS Leg.

Fig. 3.2 shows an RRS open chain or a leg, where axes of two revolute

joints intersect and form a spherical dyad (2R). The point on the end effector

(or platform), coincident with S joint here, always stays on the surface of the

sphere shown in the figure. Fig. 3.3 shows an SS leg. The point on the end

effector, coincident with S joint here, again always stays on the surface of the
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sphere. It is easy to see that a TS leg as shown in Fig. 3.4 also imposes a

spherical constraint.

Figure 3.3: SS Leg.

Figure 3.4: TS Leg.

Therefore, when a point on the end effector is found to be constrained

on a sphere, we can apply any one of those three legs, RRS, SS and TS, to

trace the task motion. For RRS leg, the design parameters can vary as long
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[H]

Figure 3.5: RRS Leg.

as it satisfies the same spherical constraint. For SS and TS legs, their design

parameters are determined once the sphere constraints are found.

3.2.2 Planar Constraint

When the radius of a sphere is approaching infinity, the spherical constraint re-

duces to a planar constraint. In this case, the original RRS, SS and TS legs for

spherical constraints become RRS, RPS and PRS legs for planar constraints.

For a RRS leg shown in Fig. 3.5, the axes of two revolute joints intersect

at infinity, i.e., they are parallel to each other. The point on the end effector,

coincident with S joint, stays on a plane in the fixed frame. For a RPS leg

shown in Fig. 3.6, the axes of R and P joint are perpendicular to each other.

For a PRS leg shown in Fig. 3.7, the axes of R and P joint are perpendicular to

each other as well. Thus, we may select any one of them to realize the planar

constraint.
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Figure 3.6: RPS Leg.

Figure 3.7: PRS Leg.

3.3 A Unified Representation of Spherical and

Planar Constraints

In this section, we develop representations of spherical and planar constraints

that lead to a unified representation of various open kinematic chains for con-

straint realization.
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3.3.1 Unified Equation for Sphere and Plane

LetX = (X1, X2, X3, X4) (whereX4 ̸= 0) denote the homogeneous coordinates

of a point in the fixed frame. Then the homogeneous sphere equation can be

written as:

2a1X1 + 2a2X2 + 2a3X3 + a4X4 = a0(
X2

1 +X2
2 +X2

3

X4

) (3.8)

where a0 ̸= 0. The center of the sphere is given by the homogenous coordinates:

a = (a1, a2, a3, a0) (3.9)

The radius r of the sphere satisfies:

a20r
2 − a0a4 = a21 + a22 + a23 (3.10)

When a0 = 0, (3.8) becomes the equation of a plane:

2a1X1 + 2a2X2 + 2a3X3 + a4X4 = 0 (3.11)

Hence, Eq. (3.8) is a unified representation for both a sphere and a plane in

homogenous form.

3.3.2 Unified Algebraic Equation for Manipulator Chain-

s

With the unified representation for a sphere and a plane as given above, we now

derive a unified representation for all six kinematic chains or legs associated
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with the spherical and planar constraints.

We substitute fixed frame coordinates X = (x1, x2, x3, x4) expressed by

(3.7) into (3.8), collect all of these independent terms and obtain the following

equation:

p1(−4g4q1 − 4g3q2 + 4g2q3 + 4g1q4) + p2(−2q21 + 2q22 + 2q23 − 2q24)

+p3(−4q1q2 − 4q3q4) + p4(−4q1q3 + 4q2q4)

+p5(4g3q1 − 4g4q2 − 4g1q3 + 4g2q4) + p6(−4q1q2 + 4q3q4)

+p7(2q
2
1 − 2q22 + 2q23 − 2q24) + p8(−4q2q3 − 4q1q4)

+p9(−4g2q1 + 4g1q2 − 4g4q3 + 4g3q4) + p10(−4q1q3 − 4q2q4)

+p11(−4q2q3 + 4q1q4) + p12(2q
2
1 + 2q22 − 2q23 − 2q24)

+p13(4g
2
1 + 4g22 + 4g23 + 4g24) + p14(4g4q1 − 4g3q2 + 4g2q3

−4g1q4) + p15(4g3q1 + 4g4q2 − 4g1q3 − 4g2q4)

+p16(−4g2q1 + 4g1q2 + 4g4q3 − 4g3q4) + p17 = 0.

(3.12)

where pi (i = 1, 2, . . . , 17) are homogeneous coefficients and given as follows:

p1 = a0x1x4, p2 = a1x1x4, p3 = a2x1x4, p4 = a3x1x4

p5 = a0x2x4, p6 = a1x2x4, p7 = a2x2x4, p8 = a3x2x4

p9 = a0x3x4, p10 = a1x3x4, p11 = a2x3x4, p12 = a3x3x4

p13 = a0x
2
4, p14 = a1x

2
4, p15 = a2x

2
4, p16 = a3x

2
4 (3.13)

p17 = a0x
2
1 + a0x

2
2 + a0x

2
3 − a4x

2
4

Husty [82] presented the algebraic equation specifically for spherical constraint.
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Here, we obtain a unified representation for all six legs under either spherical

or planar constraint.

In (3.13), (a1, a2, a3, a4, a0) are homogeneous coordinates of constraint in

the fixed frame while (x1, x2, x3, x4) are homogeneous coordinates of point in

the moving frame. They constitute design parameters of six manipulator legs.

The inverse relation between pi and (ai, xi) is given as follows:

x1 : x2 : x3 : x4 = p1 : p5 : p9 : p13

= p2 : p6 : p10 : p14

= p3 : p7 : p11 : p15 (3.14)

= p4 : p8 : p12 : p16

and

a0 : a1 : a2 : a3 : a4 (3.15)

= p13 : p14 : p15 : p16 : (
p1p2
p14

+
p5p6
p14

+
p9p10
p14

− p17)

= p13 : p14 : p15 : p16 : (
p1p3
p15

+
p5p7
p15

+
p9p11
p15

− p17)

= p13 : p14 : p15 : p16 : (
p1p4
p16

+
p5p8
p16

+
p9p12
p16

− p17)
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It is noted that there exist linear relationships between pi (i = 1, 2, . . . , 16)

p1 : p2 : p3 : p4 = p5 : p6 : p7 : p8

p1 : p2 : p3 : p4 = p9 : p10 : p11 : p12

p1 : p2 : p3 : p4 = p13 : p14 : p15 : p16

p5 : p6 : p7 : p8 = p9 : p10 : p11 : p12 (3.16)

p5 : p6 : p7 : p8 = p13 : p14 : p15 : p16

p9 : p10 : p11 : p12 = p13 : p14 : p15 : p16

It can be found that p17 is an independent coefficient.

In Eq. (3.16), for example, p1 : p2 : p3 : p4 = p5 : p6 : p7 : p8 actually means

p1p6 − p2p5 = p1p7 − p3p5 = p1p8 − p4p5 = 0

p2p7 − p3p6 = p2p8 − p4p6 = p3p8 − p4p7 = 0 (3.17)

The same interpretation applies to the other five equations in Eq. (3.16).

Now that seventeen homogeneous coefficients pi contain seven independent

design parameters a1/a0, a2/a0, a3/a0, a4/a0, x1/x4, x2/x4 and x3/x4, there

exist nine independent constraint equations between pi. By reducing (3.16),

we have:

p2p5 − p1p6 = 0, p2p7 − p3p6 = 0, p2p8 − p4p6 = 0

p2p9 − p1p10 = 0, p2p11 − p3p10 = 0, p2p12 − p4p10 = 0 (3.18)

p2p13 − p1p14 = 0. p2p15 − p3p14 = 0, p2p16 − p4p14 = 0
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It is not difficult to conclude that (3.18) captures the relations in (3.16) except

for the cases of p1 = p2 = p3 = p4 = 0 or p2 = p6 = p10 = p14 = 0. If these two

special cases happen, we need to go back and check (3.16) to see whether all

of its relations are satisfied.

In summary, (3.12) together with (3.18) defines a unified algebraic equation

for six manipulator legs. Here, we call (3.12) a generalized equation, or G-

equation in short.

3.4 Algebraic Fitting of G-Equation

This section seeks to solve the problem of determining the type and dimensions

of a spatial platform mechanism such that the platform guides through a set

of given spatial positions. This problem is reduced to that of fitting a family

of G-equations to these positions using the geometric parameters of spherical

and planar constraints as design parameters.

For simplicity, we write G-equation as pizi = 0 (i = 1, 2, . . . , 17). Therefore,

our goal is to find a set of pi to satisfy pizk,i = 0 (k = 1, 2, . . . , N) for N-

position synthesis, which can be formulated as a linear problem [Z]p = 0.

The coefficient matrix [Z] is given by:

[Z] =



z1,1 z1,2 · · · z1,16 z1,17
...

...
...

. . .
...

...
...

zN,1 zN,2 · · · zN,16 z1,17


(3.19)
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Thus the problem is converted to that of finding the null space of matrix [Z].

To this end, one needs to determine the basis of the null space. First, [Z] is

factorized using Singular Value Decomposition(SVD) (see Golub [83]) to the

following form:

[Z] = [U ][Σ][V ]T (3.20)

where [U ] is an N × N orthogonal matrix whose column vectors are the left

singular vectors of [Z]; [V ]T is the transpose of [V ], which is a 17× 17 orthog-

onal matrix whose column vectors are the right singular vectors of [Z]; [Σ] is

an N × 17 matrix with 17 nonnegative singular values of [Z] on the diagonal.

Hence, the basis of the null space can be constructed by the right singular vec-

tors of [Z], i.e., the column vectors of [V ] whose corresponding singular values

are 0. Furthermore, the right singular vectors and singular values of [Z] are

the eigenvectors and eigenvalues of [Z]T [Z], respectively. Thus, the problem

of finding null space of [Z] is equivalent to that of [Z]T [Z].

Suppose the matrix [Z] has m zero-eigenvalues and denote the correspond-

ing normalized eigenvectors as vi (i = 1, 2, . . . ,m). Let p be a linear combi-

nation of vi, i.e.,

p =
m∑
i=1

livi. (3.21)

In order for p to represent a manipulator leg, its scalar components pi must

satisfy (3.18). Since pi are homogeneous coefficients, we can impose one more

constraint equation requiring p to be a unit vector, i.e., |p| = 1. In views of vi

being unit vectors, the constraint equation is equivalent to the following one:

m∑
i=1

l2i = 1 (3.22)
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We denote this constraint equation as C1(l1, l2, . . . , lm) and those constraints

in (3.18) as Ci(l1, l2, . . . , lm) (i = 2, . . . , 10), respectively.

In order to get finite solutions on li, i.e., finite solutions on p , the number

m of unknowns li should be equal to that of constraint equations. As there are

10 constraint equations Ci, m is assigned as 10, which means the number of

zero-eigenvalues of [Z]T [Z] is 10, i.e, nullity([Z]T [Z])=10. It is known that the

sum of rank and nullity of the same N ×N square matrix is N. Moreover, we

know rank([Z])=rank([Z]T [Z]) and thereby rank([Z])=7. If we pick 7 arbitrary

task positions to construct [Z], rank of [Z] would be 7, thus leading to finite

solutions to li. If number of task positions is reduced by 1, we will have 11

zero-eigenvalues for [Z]T [Z] and li (i = 1, . . . , l11), thus giving us one free

choice of lk (1 ≤ k ≤ 11) to form p. In this case, the solutions of p would be

∞1. In the same manner, the solution of p is ∞r if r positions are reduced

from 7 positions.

In solving Ci, we again employ the polynomial homotopy based algorithm,

as used in chapter 4. With the same algorithm, we also obtain the algebra-

ic fitting error through computing the 7×1 column vector, [Z]p whose scalar

components represent fitting error for every position. By inverting the rela-

tions of (3.14) and (3.15), design parameters ai and xi are calculated. Due to

floating point error, a0 is nonzero even though it represents a planar constrain-

t. Therefore, when a0 is so small that r in (3.10) becomes extremely large, we

simply assign 0 to a0 and get a planar constraint.
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3.5 Numerical Example

In this section, we present an example to demonstrate the effectiveness of the

unified synthesis algorithm.

Seven task positions are given in Table 3.1, which are in the form of rotation

axis vector s=(sx, sy, sz), rotation angle θ and translation vector d=(d1, d2, d3).

After obtaining the eigenvalues and eigenvectors of [Z], the constraint equa-

tions Ci (i = 1, 2, . . . , 10) are generated and fed into PHCpack to find the

solutions. The running time is 65.027 sec on a 64 bit Windows 7 laptop with

Intel Core i5 CPU running at 2.40 GHz with 2 GB of RAM.

sx sy sz θ d1 d2 d3

1 0.0000, 0.0000, 0.0000, 0.0000 0.0000, 0.0000, 2.0000
2 0.4202, -0.9074, 0.0000, 14.5508 -0.0207, 0.0244, 2.6214
3 -0.1432, -0.9897, 0.0000, 16.4166 -0.0391, -0.0116, 2.9175
4 -0.8660, -0.5000, 0.0000, 19.3874 0.0284, -0.0491, 2.8319
5 -0.9999, 0.0081, 0.0000, 30.2119 0.1358, 0.0022, 2.6551
6 -0.9918, 0.1275, 0.0000, 28.6399 0.1184, 0.0309, 2.6532
7 -0.9846, 0.1748, 0.0000, 16.8191 0.0402, 0.0147, 2.7875

Notes: The units of sx, sy, sz, dx, dy, dz are meters; the unit of θ is degree.

Table 3.1: 7 Task Positions

The resulting number of real solutions of pi is 14 and they are separat-

ed into two groups that differ with each other only by a sign. Since pi are

homogeneous coefficients, these two groups are considered identical so there

are only seven real solutions. These seven solutions are listed in Table 3.2.

Through (3.14) and (3.15), ai and xi are computed and listed as in Table 3.3.

By observing a0 and radius of each solution, we find solution 2, 4 and 7 de-

fine planar constraints while others represent sphere constraints. Figure 3.8
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through 3.14 show the constraints with seven given positions, with point on

the end effector connecting to the origin of moving frame by dashed line. The

x-, y-, z-axis of moving frame are colored in red, green and blue, respectively.

Thus, we have identified seven manipulator legs that are compatible with

the seven given task positions. One may select any five of the seven legs to

obtain a single DOF spatial linkage, or any four of the seven legs to obtain

a 2 DOF spatial linkage. For constructing a 3-DOF parallel manipulator, we

can choose three out of those seven solutions. In terms of each solution among

three chosen solutions, there are three corresponding manipulator leg types.

Therefore, the total number of 3-DOF manipulator is 945. One possible 3-

DOF manipulator is shown in Fig. 3.15 in which the first planar constraint,

the second planar constraint and spherical constraint determine the leg A, B

and C respectively.
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p

1 (-0.0474, -0.5327, -0.2527, -0.1144, 0.0490, 0.5502, 0.2610, 0.1181
-0.0019, -0.0218, -0.0103, -0.0047, 0.0182, 0.2047, 0.0971, 0.0439, -0.4422)

2 (-0.0001, -0.3902, 0.2252, -0.0003, -0.0002, -0.6695, 0.3863, -0.0006
0.0000, -0.0004, 0.0002, 0.0000, 0.0001, 0.3868, -0.2232, 0.0003, -0.0070)

3 (0.1335, 0.3597, 0.2806, 0.3692, -0.0482, -0.1299, -0.1013, -0.1333
0.0078, 0.0211, 0.0164, 0.0216, 0.0319, 0.0859, 0.0670, 0.0881, 0.7540)

4 (-0.0013, 0.3548, -0.2058, -0.0032, -0.0025, 0.6825, -0.3959, -0.0062
0.0000, -0.0044, 0.0025, 0.0000, 0.0014, -0.3903, 0.2264, 0.0035, -0.0738)

5 (-0.0653, 0.0266, -0.0754, -0.1892, 0.1867, -0.0759, 0.2156, 0.5406
0.0096, -0.0039, 0.0111, 0.0278, 0.0327, -0.0133, 0.0377, 0.0946, 0.7494

6 (0.1095, 0.3349, -0.2227, 0.2656, 0.0016, 0.0048, -0.0032, 0.0038
-0.0037, -0.0113, 0.0075, -0.0090, 0.0341, 0.1045, -0.0695, 0.0829, 0.8553)

7 (0.0000, -0.3872,-0.2236, 0.0000, -0.0000, 0.6708, 0.3873, -0.0000
0.0000, 0.0000,0.0000,-0.0000,-0.0000, 0.3873, 0.2236, -0.0000, -0.0000)

Table 3.2: 7 Solutions of p

Figure 3.8: Solution 1 defines a spherical constraint
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a0 a1 a2 a3 a4
x1

x4

x2

x4

x3

x4

1 0.0182, 0.2047, 0.0971, 0.0439, 0.6975 -2.6029, 2.6883, 0.1064
2 0.0001, 0.3868, -0.2232, 0.0003, 0.0075 -1.0087, -1.7305, -0.0011
3 0.0319, 0.0859, 0.0670, 0.0882, -0.1202 4.1884, -1.5119, 0.2454
4 0.0014, -0.3903, 0.2264, 0.0035, 0.0794 -0.9093, -1.7489, 0.0112
5 0.0327, -0.0133, 0.0377, 0.0946, 0.4504 -1.9985, 5.7118, 0.2936
6 0.0342, 0.1045, -0.0695, 0.0829, -0.5039 3.2036, 0.0462, -0.1086
7 0.0000, 0.3873, 0.2236, 0.0000, 0.0000 -1.0507, 1.7320, 0.0000

Table 3.3: Design Parameters ai and xi

Figure 3.9: Solution 2 defines a planar constraint
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Figure 3.10: Solution 3 defines a spherical constraint

Figure 3.11: Solution 4 defines a planar constraint
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Figure 3.12: Solution 5 defines a spherical constraint

Figure 3.13: Solution 6 defines a spherical constraint
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Figure 3.14: Solution 7 defines a planar constraint

Figure 3.15: A manipulator with leg A as RPS defined by planar constraint
1, leg B as RPS defined by planar constraint 2 and leg C as SS defined by
spherical constraint 3
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3.6 Conclusions

In this chapter, we extend our previous work in planar and spherical mecha-

nisms to spatial cases in the context of geometric constraints extraction from

task motion. The resulting constraints can be used to determine the type and

dimension of manipulator legs simultaneously. Work of this dissertation has

been focused on spherical and planar constraints. Future work will follow the

same approach and explore more geometric constraints related to other types

of manipulator leg.
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Chapter 4

A Unified Algorithm For
Analysis and Simulation of
Planar Four-bar Motions
Defined With R- and P-Joints

Coupler motion of four-bar linkage is the motion of the moving frame which is

rigidly attached to the coupler of four-bar linkage. Motion synthesis seeks to

synthesize the four-bar mechanism whose coupler motion could be as close as

possible to a prescribed motion or task motion, which is usually specified as

either a set of finite or a continuous time-variant sequence of displacements.

With the synthesized four-bar linkage, we can observe the live coupler motion

through animation or simulation, visually examining the matching between

coupler and task motion.

In our previous paper [62], we presented a task driven approach to simul-

taneous type and dimensional synthesis of planar fourbar linkage mechanism

using algebraic fitting of a pencil of G-manifolds. In general, there are totally
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six possible types of four-bar mechanisms that can be constructed, which are

RRRR, RRRP, RRPR, PRPR, PRRP and RPPR. The advantage of our ap-

proach is that given a prescribed task motion, it can determine all the possible

four-bar types together with their dimensions that are able to track the task

motion. Following the theory, we are currently developing its corresponding

software in iOS system. Fig. 4.1 shows the screen shot of the graphical user

interface (GUI) of the design program on iPad. In terms of the animation part,

we have only implemented RRRR four-bar linkage in the software which builds

on loop-closure equation. We plan to include the animation codes for other

four-bar types as well. However, if the method of loop-closure equation con-

tinues to be used, we have to write six different versions of animation code for

each four-bar type as their loop-closure equations differ a lot, leading to code

redundancy and maintenance problem. Therefore, it is imperative to have a

unified algorithm towards animations of all six types of four-bar mechanisms.
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Figure 4.1: The screen shot of graphical user interface on iPad

According to our synthesis theory, the task positions are transformed into

image points by planar quaternion in image space and a pencil of G-manifolds

are then found to best fit those points. The dyads associated with the G-

manifolds could be type of RR, PR or RP. Then two dyads are chosen to

compose a four-bar linkage, with each dyad limiting the position and orienta-

tion of the coupler in its own workspace. Consequently, in cartesian space the

four-bar coupler motion is the intersection of workspaces of its two constituent

dyads while the coupler motion is transformed into the intersection curve of

two G-manifolds in image space. Therefore, the problem of generating the

coupler motion in cartesian space reduces to the problem of computing the

intersection curve of two G-manifolds in image space. The image space is the
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real projective three-space P3(R) and those G-manifolds are quadrics. For

RR-, PR- and RP-dyad, the quadrics are hyperboloid of one sheet, hyperbolic

paraboloid I (HP I) and hyperbolic paraboloid II (HP II). HP I and II are just

regular hyperbolic paraboloids only with the difference of being opening up

along negative or positive X-axis.

Computing the intersection of two general quadrics is a fundamental com-

putational geometry problem. An exact parametric representation of the in-

tersection is often desirable. The seminal work for computing a parametric

representation of the intersection between two arbitrary quadrics was due to

Levin [84, 85]. It is based on an analysis of the pencil generated by the two

quadrics, i.e., the set of linear combinations of the two quadrics. Building

on Levin’s pioneering work, Dupont et al. [86] presented the first practical

and efficient algorithm for computing an exact parametric representation of

the intersection of two quadric surfaces in three-dimensional real space giv-

en by implicit equations with rational coefficients. In view of the works by

Levin and Dupont et al., we provide a compact and efficient algorithm to find

the parametric form for the intersection of two quadrics which are limited to

hyperboloid and hyperbolic paraboloid.

The organization of the chapter is as follows. Section 4.1 reviews the

routine method for computing coupler motion. Section 4.2 presents our way

of determining coupler motion. Finally, we present six examples in section 4.3

for each type of four-bar mechanism and their visualizations that demonstrate

the method before giving concluding remarks.
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4.1 Loop-closure Equation Based Coupler Mo-

tion Computation for Motion Animation

In this section, we review the common way of computing coupler motion using

loop-closure equation. For simplicity, we use the RRRR-type as an example

to outline the procedure.

Consider a planar 4R linkage shown in Fig. 6.2 with XOY being the fixed

coordinate frame. The fixed pivot A0 is located at point (x0, y0) with A0B0

being the ground link and A0A the input link. Let li denote the length of the

ith link and θ1 the angle measured from the X axis of the fixed frame. Let ϕ,

λ and ψ be the angles of link A0A, AB, B0B as measured from the ground

link A0B0, respectively. A moving frame is attached to coupler link AB at P

with β measured from AB to to its x-axis. Polar coordinates (r, α) represent

the position of P with respect to coupler AB. All the quantities except λ

and ψ are known values after synthesis. When animating the 4R linkage, we

rotate the input link A0A with ϕ being known at a given moment. In order

to calculate the position and orientation of moving frame relative to XOY at

each value of ϕ, the key is to find the coupler angle λ.

Using loop closure equations, it has been shown in [87] that the relationship

between coupler angle λ and input link angle ϕ is given by

eiλ =
−B(ϕ)±

√
∆1(ϕ)∆2(ϕ)

2A(ϕ)
(4.1)
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Figure 4.2: A planar 4R mechanism

where

A(ϕ) = l31(l21e
−jϕ − 1) (4.2)

B(ϕ) = 1 + l221 + l231 − l241 − 2l21 cosϕ (4.3)

∆1(ϕ) = 1 + l221 − (l31 + l41)
2 − 2l21 cosϕ (4.4)

∆2(ϕ) = 1 + l221 − (l31 − l41)
2 − 2l21 cosϕ (4.5)

l21 = l2/l1, l31 = l3/l1, l41 = l4/l1 (4.6)

and the sign ± correspond to the two configurations of the four-bar linkage

for the same input angle.

With λ being known, the position of moving frame, i.e., the position vector

P of its origin P can be obtained by the following vector addition

OP = OA0 +A0A+AP (4.7)
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where

OA0 = [x0, y0] (4.8)

A0A = [l2 cos(ϕ+ θ1), l2 sin(ϕ+ θ1)] (4.9)

AP = [r cos(α + λ+ θ1), r sin(α + λ+ θ1)] (4.10)

The orientation of moving frame is calculated as

orientation = θ1 + λ+ β (4.11)

Moreover, the position of moving pivot A and B can be easily obtained as

follows

OA = OA0 +A0A (4.12)

OB = OA0 +A0A+AB (4.13)

where

AB = [l3 cos(λ+ θ1), l3 sin(λ+ θ1)] (4.14)

With the computed position and orientation of moving frame and coordinates

of moving pivots , we are now able to draw the planar 4R mechanism with

its coupler motion at each frame of animation. However, as mentioned earlier,

this loop-closure method would be different for the other five four-bar types

thus causing six different animation codes to be compiled. In next section, our

approach will be presented which has the benefit of unifying the animation

codes.
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4.2 Image Space Based Coupler Motion Com-

putation for Motion Animation

Our synthesis method in [81] treats the four-bar linkages as mechanisms assem-

bled using two open chains, called dyads, connected together at the ends. Each

dyad imposes kinematic constraints that limit the positions and orientations

of the moving frame connected to the coupler link. By planar quaternion,

kinematic constraints are transformed into geometric constraints, which are

G-manifolds, in image space. Since the coupler motion is subject to both

dyad constraints simultaneously, it is transformed into the image space as the

intersection curve of two G-manifolds.

4.2.1 Dyads and Their G-manifolds

There are three types of dyads in use, which are RR, PR and RP. Their

kinematic diagram are shown in Figs. 4.3, 4.4 and 4.5.
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Figure 4.3: RR Dyad

Figure 4.4: PR Dyad

Figure 4.5: RP Dyad
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The design parameters of RR dyad are fixed pivot coordinates (Xc, Yc)

relative to the fixed frame F, moving pivot coordinates (u, v) relative to the

moving frame M and the length r of first link. The design parameters of PR

dyad are sliding axis coordinates (L1, L2, L3) of P joint relative to F and mov-

ing pivot coordinates (u, v) relative to M. The design parameters of RP dyad

are fixed pivot coordinates (Xc, Yc) relative to F and sliding axis coordinates

(l1, l2, l3) of P joint relative to M.

As shown in chapter 2, The workspace constraint for RR-, PR- and RP-

dyads is represented by a surface called G-manifold in image space. The

homogeneous algebraic equation of G-manifold is given by

q1(Z
2
1 + Z2

2) + q2(Z1Z3 − Z2Z4) + q3(Z2Z3 + Z1Z4)

+q4(Z1Z3 + Z2Z4) + q5(Z2Z3 − Z1Z4) + q6Z3Z4

+q7(Z
2
3 − Z2

4) + q8(Z
2
3 + Z2

4) = 0 (4.15)

with the coefficients qi satisfying the following two relations:

q1q6 + q2q5 − q3q4 = 0

2q1q7 − q2q4 − q3q5 = 0. (4.16)

Upon satisfying Eq.(4.16), Eq.(4.15) represents hyperbolic paraboloid I for PR

dyad when q1 = q2 = q3 = 0 and hyperbolic paraboloid II for RP dyad when

q1 = q4 = q5 = 0. Otherwise, Eq.(4.15) represents hyperboloid for RR dyad.

With S being an arbitrary symmetric matrix of size 4, the three-dimensional

quadric associated to S is then defined as the set Qs = {Z ∈ P3(R) | ZTSZ =
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0}. Here, the quadric is treated in projective three-dimensional space. G-

manifold belongs to ruled quadric and its symmetric matrix G is given as

G =


q1 0 q2+q4

2
q3−q5

2

0 q1
q3+q5

2
q4−q2

2
q2+q4

2
q3+q5

2
q7 + q8

q6
2

q3−q5
2

q4−q2
2

q6
2

q8 − q7

 (4.17)

Please refer to [81] to find out the relationships between design parameters

of RR-, PR- and RP-dyads and qi. Our synthesis approach would give us the

values of qi and design parameters for each G-manifold and its associated dyad.

With the intersection algorithm to be presented later on, the parameterization

Z(t) for the intersection curve can be determined, and then the position and

orientation of M can be obtained through Eq. (4.18)

d1 = 2(Z1Z3 + Z2Z4)/(Z
2
3 + Z2

4)

d2 = 2(Z2Z3 − Z1Z4)/(Z
2
3 + Z2

4)

cosα = (Z2
4 − Z2

3)/(Z
2
3 + Z2

4) (4.18)

sinα = 2Z3Z4/(Z
2
3 + Z2

4)

With the M being calculated at each time instant, those dyad design param-

eters relative to M, i.e., moving joints or moving lines, can be determined

relative to F. Upon working out all the instantaneous information about M

and moving joint or lines, the four-bar motion can then be animated.
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4.2.2 Intersection Algorithm

Given two G-manifolds QG1 and QG2 , the outline of intersection algorithm is

stated as follows

1. Construct the orthonormal transformation matrix P which sends G1 in-

to diagonal matrix G̃1 by computing the eigenvalues and the normalized

eigenvectors of G1. The same matrix P sends QG1 into canonical form

QG̃1
. Determine the parameterization Z(u, v) = [Z1(u, v), Z2(u, v), Z3(u, v),

Z4(u, v)] of the canonical quadric QG̃1
.

2. Compute the matrix G̃2= P TG2P for the quadric QG2 which transforms

QG2 into QG̃2
. Substitute Z(u, v) into the algebraic equation of QG̃2

, i.e.,

ZT G̃2Z = 0, to get the following equation

Z(u, v)T G̃2Z(u, v) = a(v)u2 + b(v)u+ c(v) = 0 (4.19)

solve Eq. (4.19) for u in terms of v and use ∆(v) = b2(v)−4a(v)c(v) ≥ 0

to determine the domain of v such that real solutions exist for u and we

denote the real solutions as u(v). Substitute u(v) into Z(u, v) to get the

parameterization Z(v) for the intersection of QG̃1
and QG̃2

.

3. Finally, PZ(v) is the parameterization for the intersection of QG1 and

QG2 .

In step 1, whether QG1 be a hyperboloid of one sheet or hyperbolic paraboloid

I or hyperbolic paraboloid II, its canonical form QG̃1
stays the same as

aZ2
1 + bZ2

2 − cZ2
3 − dZ2

4 = 0 (4.20)
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and the parameterization Z(u, v) (Dupont et al. [86]) is given as

Z(u, v) = [
u+ av

a
,
uv − b

b
,
u− av√

ac
,
uv + b√

bd
] (4.21)

In step 3, a(v), b(v) and c(v) are polynomials of degree at most two in v due

to the bilinearity of Z(u, v). Therefore, ∆(v) is a polynomial of degree up to

four.

Over the course of the algorithm, we don’t distinguish between the three

types of G-manifolds, thereby unifying the coupler motion generation code.

4.3 Examples and Discussions

Now, we present six examples for the RRRR, RRRP, RRPR, PRPR, PRRP

and RPPR four-bar types. For each example, the inputs are two G-manifolds

corresponding to two dyads that make up a specific four-bar linkage of that

type. The two G-manifolds are represented by their algebraic equations E-

q. (4.15). The outputs are intersection curves of the two G-manifolds. Since

homogeneous equation is used to represent G-manifold, for visualization pur-

pose we need to project it on the hyperplane Z4 = 1.

Example: RRRR Consider an example for RRRR four-bar linkage. The

two algebraic equations of constraint manifolds corresponding to the two RR
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dyads are

RR1 : − 2(Z2
1 + Z2

2) + 9.18(Z1Z3 − Z2Z4) + 2.68(Z2Z3 + Z1Z4)

+2.3(Z1Z3 + Z2Z4) + 0.76(Z2Z3 − Z1Z4) + 0.4064Z3Z4

−5.7877(Z2
3 − Z2

4)− 1.252(Z2
3 + Z2

4) = 0 (4.22)

RR2 : − 2(Z2
1 + Z2

2) + 2.48(Z1Z3 − Z2Z4) + 0.2(Z2Z3 + Z1Z4)

−4.4(Z1Z3 + Z2Z4)− 0.2(Z2Z3 − Z1Z4) + 0.192Z3Z4

+2.738(Z2
3 − Z2

4)− 2.43265(Z2
3 + Z2

4) = 0 (4.23)

The intersection curves are shown in Fig. 4.6. Both G-manifolds are hyper-

boloids of one sheet, which form two intersection curves. Each corresponds to

one configuration of RRRR four-bar mechanism.

Figure 4.6: The black are intersection curves for constraint manifolds of RRRR
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Example: RRRP Consider an example for RRRP (Crank-Slider) mecha-

nism. The two algebraic equations of constraint manifolds corresponding to

RR and PR are

RR : −2(Z2
1 + Z2

2)− 4(Z1Z3 − Z2Z4)− 6(Z2Z3 + Z1Z4)

+0(Z1Z3 + Z2Z4) + 2(Z2Z3 − Z1Z4)− 4Z3Z4

+3(Z2
3 − Z2

4)− 6.5(Z2
3 + Z2

4) = 0 (4.24)

PR : 0(Z2
1 + Z2

2) + 0(Z1Z3 − Z2Z4) + 0(Z2Z3 + Z1Z4)

+2(Z1Z3 + Z2Z4) + 4(Z2Z3 − Z1Z4) + 10Z3Z4

+5(Z2
3 − Z2

4) + 1(Z2
3 + Z2

4) = 0 (4.25)

The intersection curves are shown in Fig. 4.7. One G-manifold is hyperboloid of

one sheet and the other one hyperbolic paraboloid I. There are two intersection

curves and each corresponds to one configuration of Crank-Slider mechanism.

Figure 4.7: The black are intersection curves for constraint manifolds of RRRP
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Example: RRPR Consider an example for RRPR (Swing-Block) mecha-

nism. The two algebraic equations of constraint manifolds corresponding to

RR and RP are

RR : −2(Z2
1 + Z2

2)− 4(Z1Z3 − Z2Z4)− 5.98(Z2Z3 + Z1Z4)

+0(Z1Z3 + Z2Z4) + 2(Z2Z3 − Z1Z4)− 4Z3Z4

+2.99(Z2
3 − Z2

4)− 4.9711(Z2
3 + Z2

4) = 0 (4.26)

RP : 0(Z2
1 + Z2

2) + 0(Z1Z3 − Z2Z4) + 2(Z2Z3 + Z1Z4)

+0(Z1Z3 + Z2Z4) + 0(Z2Z3 − Z1Z4)− 4Z3Z4

−3(Z2
3 − Z2

4) + 3(Z2
3 + Z2

4) = 0 (4.27)

The intersection curves are shown in Fig. 4.8. One G-manifold is hyperboloid

of one sheet and the other one hyperbolic paraboloid II. There are two in-

tersection curves and each corresponds to one configuration of Swing-Block

mechanism.

Figure 4.8: The black are intersection curves for constraint manifolds of RRPR
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Example: PRPR Consider an example for PRPR (Slider-Swinging Block)

mechanism. The two algebraic equations of constraint manifolds corresponding

to PR and RP are

PR : 0(Z2
1 + Z2

2) + 0(Z1Z3 − Z2Z4) + 0(Z2Z3 + Z1Z4)

+2(Z1Z3 + Z2Z4) + 2(Z2Z3 − Z1Z4)− 16Z3Z4

+4.0034(Z2
3 − Z2

4) + 2.0017(Z2
3 + Z2

4) = 0 (4.28)

RP : 0(Z2
1 + Z2

2) + 0(Z1Z3 − Z2Z4) + 2(Z2Z3 + Z1Z4)

+0(Z1Z3 + Z2Z4) + 0(Z2Z3 − Z1Z4)− 5.9994Z3Z4

+2(Z2
3 − Z2

4)− 2(Z2
3 + Z2

4) = 0 (4.29)

The intersection curves are shown in Fig. 4.9. One G-manifold is hyperbolic

paraboloid I and the other one hyperbolic paraboloid II. There are two inter-

section curves and each corresponds to one configuration of Slider-Swinging

Block mechanism.
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Figure 4.9: The black are intersection curves for constraint manifolds of PRPR

Example: PRRP Consider an example for PRRP (Double-Slider) mecha-

nism. The two algebraic equations of constraint manifolds corresponding to

the two PR dyads are

PR1 : 0(Z2
1 + Z2

2) + 0(Z1Z3 − Z2Z4) + 0(Z2Z3 + Z1Z4)

+1.8632(Z1Z3 + Z2Z4)− 0.727(Z2Z3 − Z1Z4)− 5.8423Z3Z4

+3.0797(Z2
3 − Z2

4) + 0.5684(Z2
3 + Z2

4) = 0 (4.30)

PR2 : 0(Z2
1 + Z2

2) + 0(Z1Z3 − Z2Z4) + 0(Z2Z3 + Z1Z4)

+1.8566(Z1Z3 + Z2Z4) + 0.7438(Z2Z3 − Z1Z4)− 10.9583Z3Z4

+3.4351(Z2
3 − Z2

4) + 1.2995(Z2
3 + Z2

4) = 0 (4.31)

The intersection curve is shown in Fig. 4.10. Both G-manifolds are hyperbolic

paraboloid I. There is only one intersection curve corresponding to the single

configuration of Double-Slider mechanism.
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Figure 4.10: The black is intersection curve for constraint manifolds of PRRP

Example: RPPR Consider an example for RPPR (Double-Swinging Block)

mechanism. The two algebraic equations of constraint manifolds correspond-

ing to the two RP dyads are

RP1 : 0(Z2
1 + Z2

2) + 0.4712(Z1Z3 − Z2Z4) + 1.9438(Z2Z3 + Z1Z4)

+0(Z1Z3 + Z2Z4) + 0(Z2Z3 − Z1Z4) + 0.4973Z3Z4

−0.0243(Z2
3 − Z2

4) + 4.0818(Z2
3 + Z2

4) = 0 (4.32)

RP2 : 0(Z2
1 + Z2

2) + 1.8574(Z1Z3 − Z2Z4)− 0.7418(Z2Z3 + Z1Z4)

+06(Z1Z3 + Z2Z4) + 0(Z2Z3 − Z1Z4) + 3.4594Z3Z4

−3.7661(Z2
3 − Z2

4) + 4.2042(Z2
3 + Z2

4) = 0 (4.33)

The intersection curve is shown in Fig. 4.11. Both G-manifolds are hyperbolic

paraboloid II. There is only one intersection curve corresponding to the single

configuration of Double-Swinging Block mechanism.
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Figure 4.11: The black is intersection curve for constraint manifolds of RPPR

4.4 Conclusions

In this chapter, we presented a unified algorithm to the analysis and simulation

of all types of planar four-bar motions.Instead of taking the approach of loop-

closure equation towards simulations of different four-bar types, we employ

planar quaternion to map a four-bar mechanism into a pair of G-manifold

in image space and therefore the four-bar coupler motion ends up being the

intersection curves. The animation problem is then reduced to the problem

of determining the parameterization for the intersection curves. Since our G-

manifolds are in the category of quadrics, and limited to hyperboloid of one

sheet and hyperbolic paraboloid, there exists a simple and efficient algorithm

to finding the parameterization. The six provided examples fully demonstrate

the effectiveness of this algorithm.
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Chapter 5

A Fourier Descriptor Based
Approach to Design Space
Decomposition for Planar
Motion Approximation

In this chapter, we use a combination of kinematic mapping and Fourier De-

scriptors in our approach to motion generation that includes not only whole

cycle motion but also motion over an interval. The image space of kinematic

mapping is used to visualize the structural error for motion approximation. In-

stead of formulating the synthesis problem as a nonlinear least squares problem

in the image space, we decompose the coupler motion into a point trajecto-

ry of the coupler together with a rotational motion of the coupler and use

Fourier descriptors of the point trajectory and rotational motion for motion

comparison and approximation. Building upon our recent work [87] that ex-

tends the Fourier Descriptor based path synthesis problem to include both

whole closed and open paths, we found that the link ratios of the desired four
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bar linkage can be determined directly from the rotational motion alone. This

reduces the dimension of the search space of design parameters from ten to

three. This decomposition of design space greatly improves the speed of the

synthesis process.

The organization of this chapter is as follows. Section 5.1 reviews how

Fourier descriptors may be used for representing whole cycle motion as well as

motion over an interval. Section 5.2 summarizes the basics of planar kinematic

mapping. Section 5.3 presents the loop closure equation of a four bar linkage

in a form that is suitable for the development of this chapter. Then, we show

that the high harmonic content (with order 2 or higher) of a four-bar linkage

comes exclusively from the harmonic content of the rotational component of

a motion. Furthermore, it has been shown that in the space defined by the

Fourier descriptors, there is a linear relationship governing the rotational and

translational components of a planar four-bar motion. This forms the basis for

an efficient algorithm for Fourier Descriptor based method for four-bar linkage

synthesis for motion generation. The details of the algorithm are presented

in Section 5.4. Three examples are presented in Section 5.5 that include both

whole cycle motions and motion segments.

5.1 Fourier Descriptor Based Motion Repre-

sentation

A planar rigid body is shown in in Fig. 5.1. The position of the moving body

relative to a fixed frame F is represented by a frameM attached to the moving
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Figure 5.1: A rigid body with M as its moving Frame and F the fixed frame.
Point (x, y) represents the location of the origin of M and θ the rotation of the
rigid body.

body. While the origin of the moving frameM is given by (x, y), the orientation

of M is defined by the angle θ. A continuous motion results when {x, y, θ}

are defined as functions of the time parameter t, i.e., {x(t), y(t), θ(t)}. We use

complex numbers to represent both the point path (translation of motion )and

the angle (orientation of motion), i.e., z(t) = x(t)+ jy(t) and ejθ(t). When the

motion is closed, both z(t) and ejθ(t) can be considered as periodic functions

and thereby decomposed as harmonics through Fourier transform

z(t) =
∞∑

k=−∞

αke
jkω0t (5.1)

eiθ(t) =
∞∑

k=−∞

βke
jkω0t
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where ω0 = 2π/T , T being the period of time, and the Fourier coefficients αk

and βk are complex numbers given by

αk =
1

T

∫ T

0

z(t)e−jkω0tdt (5.2)

βk =
1

T

∫ T

0

eiθ(t)e−jkω0tdt

In practice, we use a finite number of harmonics to approximate z(t) =

x(t) + jy(t) and ejθ(t) respectively

z(t) ≈
+p∑

k=−p

αke
jkω0t (5.3)

eiθ(t) ≈
+p∑

k=−p

βke
jkω0t

where p is a small positive integer that defines the order of harmonic terms

used in the approximation. In this case, αk and βk (k = −p,−p+1, . . . , p−1, p)

are termed Fourier Descriptors.

Usually the task motion is given discretely in terms of an ordered sequence

of displacements as well as the parameter values ti , with i = 1, . . . , n and 0 ≤

t1 < t2 · · · < tn ≤ T . Therefore, αk and βk can be calculated by formulating

the least squares problem as follows

∆1 =
n∑

i=1

||z(ti)−
+p∑

k=−p

αke
jkω0ti||2

∆2 =
n∑

i=1

||eiθ(t) −
+p∑

k=−p

βke
jkω0ti||2 (5.4)

where ∆1 and ∆2 are errors for path (translation) and angle (orientation)

approximation. Eq. (5.4) can be applied to both closed and open motion.
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For a closed motion, t1 and tn have the relationship: t1 = 0 or t1 ≈ 0 and

tn = T or tn ≈ T ; for an open motion, t1 and tn have the relationship:

0 < c1 = t1 < tn = c2 < T , with c1 and c2 being positive reals.

5.2 Kinematic Mapping

In previous chapter, we have already covered the concept of Kinematic Map-

ping. Here it is used again to visualize the synthesis result and therefore a

brief review becomes necessary. Consider a planar displacement in X-Y plane

shown in Fig. 5.1. Let x, y denote the coordinates of the origin of the moving

frame M with respect to the fixed frame F, and let θ denote the rotation angle

of M relative to F. Then a planar displacement can be represented by a planar

quaternion, Z = (Z1, Z2, Z3, Z4):

Z1 = (x/2) cos(α/2) + (y/2) sin(θ/2)

Z2 = −(x/2) sin(α/2) + (y/2) cos(θ/2)

Z3 = sin(θ/2) (5.5)

Z4 = cos(θ/2)

These four components can be identified as coordinates in the projective three

space P3 called the Image Space of planar kinematics. For the purpose of

visual comparison, we project an image point back to Euclidean three-space
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E3 by

Z1/Z4 = [(x/2) cos(θ/2) + (y/2) sin(θ/2)]/ cos(θ/2)

Z2/Z4 = [−(x/2) sin(θ/2) + (y/2) cos(θ/2)]/ cos(θ/2)

Z3/Z4 = sin(θ/2)/ cos(θ/2) (5.6)

Z4/Z4 = 1

Thus, a planar motion can be graphically represented by a series of points in

E3 with coordinate axes (Z1/Z4, Z2/Z4, Z3/Z4).

5.3 Harmonic Analysis of the Coupler Motion

In this section, we give the Fourier decomposition of translational and ro-

tational component of the four-bar coupler motion. With the aid of their

harmonic representations, there exists a clear-cut relationship between their

Fourier descriptors, which serves as the basis for design space decoupling and

therefore leads to drastic improvement in optimization routine for four-bar

linkage synthesis.

Harmonic Content of the Rotation of the Coupler Link Consider a

planar four-bar linkage shown in Fig. 5.2 with XOY being the fixed coordinate

frame. The fixed pivot A0 is located at point (x0, y0) with A0B0 being the

ground link and A0A the input link. Let li denote the length of the ith link

and and θi the angle measured from the X axis of the fixed frame. Let ϕ, λ

and ψ be the angles of link A0A, AB, B0B as measured from the ground link

A0B0, respectively.
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Figure 5.2: A four-bar mechanism.

Assume that the input link rotates with constant angular velocity ω, we

have

ϕ = ωt+ ϕ0 (5.7)

where ϕ0 is the initial input angle. It is well known that the coupler angle λ

depends only on the input angle ϕ as well as link ratios

l21 = l2/l1, l31 = l3/l1, l41 = l4/l1 (5.8)

This suggest that one may extract link ratios from the harmonic content of

the rotational motion.

Using loop closure equations, it has been shown in [87] that the coupler

angle λ is given by

eiλ =
−B(ϕ)±

√
∆1(ϕ)∆2(ϕ)

2A(ϕ)
(5.9)
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where

A(ϕ) = l31(l21e
−jϕ − 1) (5.10)

B(ϕ) = 1 + l221 + l231 − l241 − 2l21 cosϕ (5.11)

∆1(ϕ) = 1 + l221 − (l31 + l41)
2 − 2l21 cosϕ (5.12)

∆2(ϕ) = 1 + l221 − (l31 − l41)
2 − 2l21 cosϕ (5.13)

and the sign ± correspond to the two configurations of the four-bar linkage

for each input angle. Eq. (5.9) leads to the following well-known feasibility

condition:

∆1(ϕ)∆2(ϕ) ≤ 0. (5.14)

The input link is a crank if this inequality holds for all ϕ ∈ [0, 2π]; otherwise,

it is a rocker.

Fourier series representation of eiλ is given as follow

eiλ =
∞∑

k=−∞

Cke
ikϕ =

∞∑
k=−∞

Cke
ikϕ0eikωt (5.15)

The coefficients Cke
ikϕ0 are calculated by least square fitting method (see [87]

for detail).

Harmonic Content of the Path of a Coupler Point Let us consider

Fourier representation of the coupler point path of a four-bar mechanism. Let

A0 = x0 + iy0 be the complex number specifying the fixed pivot A0 and let

z = reiα represent the position of point P with respect to the coupler link AB.

The position of P with respect to global frame XOY is given by

P = A0 + l2e
iθ2 + zeiθ3 = A0 + l2e

iθ1eiϕ + zeiθ1eiλ (5.16)
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The path P can also be described by Fourier series as

P =
∞∑

k=−∞

Pke
ikωt (5.17)

Equating the right sides of both (5.16) and (5.17), after the substitution of

(5.15) into (5.16), we obtain

P0 = zeiθ1C0 + A0 k = 0 (5.18)

P1 = zeiθ1C1e
iϕ0 + l2e

i(θ1+ϕ0) k = 1 (5.19)

Pk = zeiθ1Cke
ikϕ0 k ̸= 0, 1 (5.20)

Condition For Coupling Rotation With Translation As a planar mo-

tion decomposes into the motion of a point and rotation motion about that

point, one may ask what coupling conditions the two motion components

should satisfy in order for the given motion to be a four-bar motion? Let

Tk (k = −p, . . . , p) denote the complex-number Fourier descriptors of the

point trajectory and let Qk (k = −p, . . . , p) denote those of the orientation

trajectory. In view of (5.20), we have

Tk = Pk = zeiθ1Cke
ikϕ0 , k ̸= 0, 1 (5.21)

In view of Eq. (5.15), we have Qk = Cke
ikϕ0 for all k. This leads to the

following relationship between Tk and Qk:

Tk = zeiθ1Qk = rei(α+θ1)Qk, k ̸= 0, 1 (5.22)

It follows that

|Tk| = r|Qk| k ̸= 0, 1 (5.23)
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where r = |z| is the distance between the coupler point and the moving pivot

A. We now have the following theorem regarding coupling of the harmonic

contents of rotation and translation components of a planar four-bar motion:

Theorem: For a given motion to be compatible with a planar four-bar motion,

Fourier descriptors of its rotational and translational components must

be linearly proportional:

. . .
|T−3|
|Q−3|

=
|T−2|
|Q−2|

=
|T−1|
|Q−1|

=
|T2|
|Q2|

=
|T3|
|Q3|

. . . (5.24)

If a task motion satisfies such a relationship, we can find a four-bar linkage

that can generate the given motion. In general, a task motion may satisfy

(5.24) only approximately so we define the following approximation error:

I =
∑
k ̸=0,1

(|Tk| − r|Qk|)2 (5.25)

As long as I is limited to very small value, the given motion can be generated

approximately by a four-bar mechanism. In order to minimize I, r must satisfy

r =

∑
k ̸=0,1 |Tk|∑
k ̸=0,1 |Qk|

(5.26)

5.4 Fourier Descriptor Based Synthesis Method

In this section, we seek to match or best approximate a task motion with a

four-bar motion in terms of their Fourier Descriptors.
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Match of Fourier Descriptors of Rotation For matching orientation,

the given motion has orientation function specified as ejβ(t), which can be

approximated by Fourier Descriptors as

ejβ(t) ≈
+p∑

k=−p

Qke
jωt (5.27)

In view of Eq. (5.15), we have

Q0 = C0 k = 0 (5.28)

Qk = Cke
jkϕ0 k ̸= 0 (5.29)

Match of Fourier Descriptors of Translation A point path, x(t)+ y(t),

can be approximated by Fourier Descriptors as

x(t) + y(t)j ≈
p∑

k=−p

Tke
jkωt (5.30)

In view of Eq. (5.17), we require

T0 = Q0re
j(α+θ1) + x0 + y0i k = 0 (5.31)

T1 = Q1re
j(α+θ1) + l2e

jθ1ejϕ0 k = 1 (5.32)

Tk = Qkre
j(α+θ1) k ̸= 0, 1 (5.33)

The Synthesis Method From Eqs. (5.31) to (5.33), we can see the prob-

lem of path synthesis for a four-bar mechanism involves ten design variables

{ϕ0, l1, l2, l3, l4, x0, y0, θ1, r, α}. This can be separated into two groups. One is

S1 = {ϕ0, l21, l31, l41,M,N} , where

M = r cos(α + θ1), N = r sin(α+ θ1). (5.34)
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The other group is S2 = {l1, x0, y0, θ1}. The set of variables S1 is used to

match the high harmonics of the point path. From Eqs. (5.28) to (5.29),

the problem of orientation synthesis involves only four design variables S3 =

{ϕ0, l21, l31, l41}. Thus we have the following algorithm:

1. Use the set S3 to synthesize the orientation.

2. Then use the set S1 to synthesize high harmonics part of path. Because

S3 ∈ S1 and S3 is acquired in step one, that leaves S1 − S3 = {M,N}

to match the high harmonics of path. It means we may sacrifice certain

accuracy in path matching for orientation match.

3. Now we have the value of S1. Together with S2, we can match the low

harmonics part of path.

Based on the work by Freudenstein [42] and our numerical experiments,

we notice that the Fourier descriptor decreases asymptotically as its order

goes higher if the four-bar is a crank-rocker or double-crank mechanism. This

means that the loss in accuracy for high harmonics is very small. Fig. 5.3

shows the distribution of Fourier descriptors of various harmonics from 1000

test runs of {l21, l31, l41} for crank-rocker and double-crank mechanisms. It

verifies our claim that the magnitudes of high order harmonics decrease fast

and asymptotically. Only terms of −2,−1 and 2 have relatively large effect on

path matching and other terms are negligible.

We now investigate this issue analytically by deriving a representation of

the coupler angle λ in a form that is similar to the result in Freudenstein [42]
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Figure 5.3: Fourier descriptors of a four-bar linkage at kω where k=-5,-4,-3,-
2,-1, 2, 3, 4, 5.

Figure 5.4: Four-bar linkage with ground link AD, crank AB, coupler link BC
and output link CD. AB = b, BC = c, CD = d,AD = a,BD = e.

to provide a proof that the magnitudes of the Fourier coefficients associated

with λ decrease as their order increases. We use notations shown in Fig. 5.4,

to relate the coupler angle λ and the input angle ϕ. Apply the laws of cosines

and sines to the triangle BCD in Fig. 5.4 to obtain

sin γ

d
=

sin(π − β)

e
=

sin β

e

cos γ =
c2 + e2 − d2

2ce
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This leads to

tan γ =
2cd sin β

c2 + e2 − d2
. (5.35)

For the triangle ABD, we have

e2 = a2 + b2 + 2ab cosϕ. (5.36)

Substitute e in Eq. (5.35) with Eq. (5.36) to obtain

tan γ =
2cd sin(β)

c2 + a2 + b2 + 2ab cos(ϕ)− d2
(5.37)

Furthermore, we have

cos β = µ1 + µ2 cosϕ (5.38)

where µ1 = (a2 + b2 − c2 + d2)/2cd and µ2 = ab/cd. Thus, Eq. (5.37) is

simplified to

tan γ =
δ sin β

1 + δ cos β
=
δ
√

1− (µ1 + µ2 cosϕ)2

1 + δ(µ1 + µ2 cosϕ)
(5.39)

where δ = cd/(c2 − d2). Similarly, we can show that

tanψ1 =
ρ sinϕ

1 + ρ cosϕ
, ρ =

b

a
(5.40)

Finally, the coupler angle λ can be expressed directly in terms of the input

angle ϕ as

λ = γ − ψ1 (5.41)

= arctan(
δ
√
1− (µ1 + µ2 cosϕ)2

1 + δ(µ1 + µ2 cosϕ)
)− arctan(

ρ sinϕ

1 + ρ cosϕ
)

The right-hand side of Eq. (5.41) can be expanded into a Fourier series in ϕ.

Based on Freudenstein [42], we conclude that the resulting Fourier coefficients

decrease as their order increases.

103



The Synthesis Algorithm To find a least squares solution to Eq.(5.33),

we define the following error function for path error:

I1 =
∑
k ̸=0,1

∥Ckre
j(α+θ1+kϕ0) − Tk∥2 (5.42)

=
∑
k ̸=0,1

[(Ak · M−Bk · N − Tkx)
2 + (Ak · N +Bk ·M− Tky)

2]

where Tk = Tkx+ iTky, Cke
ikϕ0 = Ak + iBk, and M,N are given by (5.34). To

minimize I1, it is required that

∂I1
∂M

+
∂I1
∂N

j = 0 (5.43)

which results in

M+ jN =

∑
k ̸=0,1 Tk(Ak −Bk)∑
k ̸=0,1 |A2

k +B2
k|

(5.44)

In addition, we express the set of S2 in Eqs. (5.31) and (5.32) by the set of S3

x0 + y0j = T0 − C0(M+ jN ) (5.45)

l1e
jθ1 = T1e

−jϕ0 − C1(M+ jN ) (5.46)

To find a least squares solution to Eqs. (5.28) and (5.29), we define the fol-

lowing error function for the orientation error:

I2 =

+p∑
k=−p

∥Cke
ikϕ0 −Qk∥2 (5.47)

The path error I1 and the orientation error I2, taken together, define the

motion approximation error in terms of Fourier descriptors of the given motion

and desired motion.

The detailed algorithm is presented as follows
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1. The task motion is approximated with Fourier Descriptors {Tk, Qk} using

Eqs. (5.30) and (5.27), both including the basis functions to the pth

order.

2. In order to match orientation, we initiate the search for S3 = {ϕ0, l21, l31, l41}

where ϕ0 ∈ [0, 2π]. As shown in [87], this can be done either with a direct

search or more efficiently with a simulated annealing algorithm. We can

set the maximum link ratio to be Kmax and require

ln
l1

∈ [
1

Kmax

, Kmax], n ∈ [2, 3, 4] (5.48)

3. Examine the feasibility condition for current S3 using Eq. (5.14). If

Eq. (5.14) is satisfied by all values of the angle ϕ in [0, 2π], go to Step

4; Otherwise, go back to Step 2 for generating a new group of S3. By

doing this, we assume that the desired linkage is either a crank-rocker or

double-crank mechanism.

4. Evaluate the error function I2 and store the value of I2.

5. Search for the minimum value of the error function I2. The correspond-

ing values of S3 yield the orientation that best approximates the given

motion.

6. Compute M + jN by Eq. (5.44) and then evaluate the error function

I1. This results in values for all six elements of S1.

7. Solve for S2 with Eqs. (5.45) and (5.46).
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8. The resulting values of S = S1

∪
S2 produces a design for a four-bar

mechanism such that its coupler motion approximates a task motion.

5.5 Examples

In this section, we present three examples for four-bar linkage synthesis using

the Fourier Descriptor based algorithms. In the first two examples, the former

task motion is a closed coupler motion generated from a known four-bar linkage

and the latter is a closed motion generated by sinusoidal functions. In the last

example, the task motion is an open motion generated by certain functions.

Example 1: Closed Motion First presented is an example such that the

given motion is an ideal motion generated from known dimensions of four-

bar linkage. This is to verify if our algorithm can recover the given four-bar

mechanism. The result is positive, as shown in Table 5.1 and Fig 5.5.

Task motion Synthesized motion
x0 5 5.0057
y0 6 6.0358
θ1 0.1745 0.1877
l1 11 11.1535
l2 6 6.0229
l3 8 8.0305
l4 10 10.2612
r 7 7.0013
α 0.6981 0.7022
ϕ0 0.7854 0.7679

Table 5.1: Comparison between parameters of a given four-bar linkage and
those of the synthesized four-bar linkage
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Figure 5.5: The graph of task motion and synthesized motion in the image
space. The structural error I1 is 3.7184× 10−4 and I2 is 5.5131× 10−5.

Example 2: Closed Motion In this example, the task motion is given

analytically as

xc = 40 cos θ, yc = 45 sin θ, ϕc = 25 sin(θ/2)

where θ = kπ/180 with k = 1, 2, · · · , 360 in degree, i.e., the task motion is

constrained such that one point moves on an ellipse and its angular position

follows a sinusoidal function. The result is shown in Fig. 5.6, which indicates

a reasonably good match.
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Figure 5.6: The graph of task motion and synthesized motion in the image
space. The structural error I1 is 0.5244 and I2 is 5.6873× 10−4.

Example 3: Open Motion Now consider the case where only a segment

of motion is to be followed by a four-bar linkage. Here, we assume that the

input link of the four-bar motion is a crank that can take up a full rotation.

When approximating the given open motion, only part of the coupler motion

would be used. The given motion is a segment of the following

xc = 19 cos θ, yc = 21 sin θ, ϕc =
1

10
θ(θ − 2π). (5.49)

We consider four motion segments as defined by the angular ranges θ ∈ [0, ζ]

where ζ = 0.8π, 0.9π, π, 1.1π, respectively. The results are shown Figs. 5.7,

5.8, 5.9 and 5.10 respectively. Corresponding design parameters are listed

in Table 5.2. Among these four motion segments, ζ = π give us the best

approximation to the task motion. Path errors I1 of the four cases are of

order 10−1, which are quite reasonable. However, while the orientation error

for ζ = π is of order 10−4, the orientation error for ζ = 1.1π is significant as

shown in Fig. 5.10.
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ζ 0.8π 0.9π 1π 1.1π
x0 -0.9571 -1.1133 -1.2760 0.9534
y0 0.2236 0.3326 0.9249 2.0733
θ1 -2.0224 -2.0572 -2.0858 -1.0754
l1 21.7798 21.7450 24.9624 34.3784
l2 19.6018 19.5705 19.9699 20.6270
l3 23.9578 26.0940 32.4511 48.1297
l4 26.1358 26.0940 29.9549 34.3784
r 1.4777 1.6179 1.9623 2.5630
α 2.8105 2.7195 2.3876 -1.5925
ϕ0 2.0595 2.0944 2.1293 1.0472

Table 5.2: The design parameters of synthesized four-bar linkages

Figure 5.7: The graph of task motion and synthesized motion in the image
space. The structural error I1 is 0.5286 and I2 is 0.0048. ζ = 0.8π
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Figure 5.8: The graph of task motion and synthesized motion in the image
space. The structural error I1 is 0.4918 and I2 is 0.0118. ζ = 0.9π

Figure 5.9: The graph of task motion and synthesized motion in the image
space. The structural error I1 is 0.4041 and I2 is 7.41× 10−4. ζ = 1π
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Figure 5.10: The graph of task motion and synthesized motion in the image
space. The structural error I1 is 0.3529 and I2 is 0.1161. ζ = 1.1π

5.6 Conclusions

In this chapter, we apply the Fourier Descriptor method together with least

square fitting to dimensional synthesis of four-bar mechanism for best approx-

imating closed or open task motion. Because a crank-rocker or double crank

mechanism has a pattern that magnitudes of high harmonics content in cou-

pler point path decreases asymptotically, we can match orientation and point

path separately without causing a significant deviation in path error.
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Chapter 6

Parametrization-independent
Non-uniform Fourier Approach
to Path Synthesis of Mechanism

This chapter deals with the classical problem of dimensional synthesis of pla-

nar four-bar linkages for path generation. Using Fourier Descriptors, a given

path is represented by harmonic series. Extensive research has been done on

this approach in mechanism synthesis with constraints that the path is given

a prescribed parametrization or timing beforehand and that the input link

should rotate with constant angular velocity. Little research effort has been

put into pure path synthesis independent of parametrization. Therefore, we

present an exact method that can efficiently and accurately carry out the pure

path matching using arc-length parametrization. Meanwhile, curve normaliza-

tion combined with artificial neural network is used to decompose the search

space, which leads naturally to a fast synthesis approach.

When processed by Fourier Transform, different parametric forms of a task

curve would yield different Fourier descriptors. In Fig. 6.1, the unit circle is
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Figure 6.1: Solid line: paramterization 1. Dash line: parametrization 2. a)
Shape of unit circle in parametrization 1; b) Shape of unit circle in paramter-
ization 2; c) x component of paramterization function z(t) under two different
parametrizations; d) y component of paramterization function z(t) under two
different paramterizations

assigned two different parametrization z1(t) and z2(t). The Fourier transform

of z1(t) is z1(t) = ej2πt while z2(t) as:

z2(t) = (0.1607 + 0.3138i) (6.1)

+ (−0.0759 + 0.0285i)e−j2πt + (0.6117− 0.6020i)ej2πt

+ (0.0053− 0.0018i)e−j4πt + (0.3111 + 0.1758i)ej4πt

+ (−0.0045 + 0.0019i)e−j6πt + (−0.0090 + 0.0674i)ej6πt

It is clear that two sets of Fourier Descriptors are completely different from

each other, though they both define the same geometric curve, i.e., the unit

circle.
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As with task curve, the mechanism coupler curve shares the same prob-

lem. When the crank rotates, a curve would be traced out by coupler point

of the mechanism. For a mechanism of fixed dimensions, different crank ro-

tation functions could lead to different parametrization or timing for the cou-

pler curve. Traditional ways of path synthesis approaches (see Chu [55] and

Wu [87]) assume that crank always rotates with constant angular velocity and

hence predetermine the timing of coupler curve. As a consequence, a best

coupler curve could be missed if its Fourier Descriptors, under that predeter-

mined timing, don’t match those of task curve. In view of the timing issue, it

is suggested that matching of task and coupler curve be implemented in terms

of same parametrization.

In this chapter, we use arc-length parametrization to unify the parametriza-

tion for both task and four-bar coupler curve. Arc-length parametrization is

a parametrization based on the inherent property of curve: arc length. When

comparing two curves by their Fourier Descriptors, we could reparameterize

both of them using arc length as parameter and then initiate the compar-

ison. However, direct arc-length parametrization for coupler curve of four-

bar mechanism requires determination of ten design variables simultaneously,

which would incur tremendous computational cost. In Wu’s [87] and Chu’s

[55] method, the ten-design-parameter synthesis problem is converted to a

four-design-parameter problem because of the assumption that crank rotates

constantly. In our case, we need to find different way to reduce the design cost.

Considering that a curve has position, orientation, size and shape, we can first
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match the shape of task and four-bar coupler curve by curve normalization [88].

The process of curve normalization takes out information about curve’s posi-

tion, orientation and size and merely keep the shape of curve. In later section,

it will be shown that the shape of four-bar coupler curve only depends on three

link ratios and the choice of coupler point. Therefore, we try to match Fourier

Descriptors of four-bar coupler curve after curve normalization with that of

task curve after curve normalization, both under arc-length parametrization,

so as to find link ratios and the choice of coupler point. Because we record the

position, orientation and size of the task curve along its normalization process,

those data are used to find the other five design variables for four-bar mecha-

nism. In order to efficiently determine link ratios and choice of coupler point,

an Artificial Neural Network (ANN) is trained to establishing the relationship

between them and the Fourier Descriptors of normalized coupler curve under

arc-length parametrization.

The organization of the chapter is as follows. Section 6.1 gives a detailed

Fourier Analysis of the four-bar mechanism. The difference from Chapter 5

is that there’s no assumption of constant angular velocity for crank rotation.

Section 6.2 presents a new way of decoupling design space via curve normaliza-

tion. Section 6.3 discusses on arc-length parametrization and Artificial Neural

Network. Section 6.4 gives results and discussion of our approach to justify

its accuracy in pure path generation, together with comparison with other

established Fourier-based path generation algorithms.
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Figure 6.2: A four-bar mechanism.

6.1 Fourier Analysis of the Four-bar Mecha-

nism

Consider a planar four-bar linkage shown in Fig. 6.2 with XOY being the fixed

coordinate frame. The fixed pivot A0 is located at point (x0, y0) with A0B0

being the ground link and A0A the input link. Let li denote the length of the

ith link and and θi the angle measured from the X axis of the fixed frame. Let

ϕ, λ and ψ be the angles of link A0A, AB, B0B as measured from the ground

link A0B0, respectively.

Assume that the input link rotates with angular velocity of function ω(t),

we have

ϕ = tω(t) + ϕ0 t ∈ [0, 1] (6.2)

where ϕ0 is the initial input angle. Here ω(t) suggests that the angular velocity
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may be inconstant, thus allowing various parametrizations.

As in the chapter 4 and 5, the coupler angle λ is given by

eiλ =
−B(ϕ)±

√
∆1(ϕ)∆2(ϕ)

2A(ϕ)
(6.3)

where

l21 = l2/l1, l31 = l3/l1, l41 = l4/l1 (6.4)

A(ϕ) = l31(l21e
−jϕ − 1) (6.5)

B(ϕ) = 1 + l221 + l231 − l241 − 2l21 cosϕ (6.6)

∆1(ϕ) = 1 + l221 − (l31 + l41)
2 − 2l21 cosϕ (6.7)

∆2(ϕ) = 1 + l221 − (l31 − l41)
2 − 2l21 cosϕ (6.8)

and the sign ± correspond to the two configurations of the four-bar linkage

for each input angle.

Now let us consider Fourier representation of the coupler curve of a four-

bar mechanism. Let A0 = x0+ iy0 be the complex number specifying the fixed

pivot A0 and let z = reiα represent the position P with respect to the coupler

link AB. The position of the coupler point relative to global frame XOY can

be represented as

P = A0 + l2e
iθ2 + zeiθ3 = A0 + l2e

iθ1eiϕ + zeiθ1eiλ (6.9)

Ten design variables {l1, l2, l3, l4, x0, y0, θ1, r, α, ϕ0} are encapsulated in the above

equation. Also, P can be described by Fourier series as

P =
∞∑

k=−∞

βke
ik2πt t ∈ [0, 1] (6.10)
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Note that constant angular velocity for crank rotation cannot be presumed

and separation of design variables like Eq. (5.18)-Eq. (5.20) in chapter 5 is

impossible. If we were to match task curve FDs αk directly with coupler

curve FDs βk, we would have to simultaneously search aforementioned ten

design variables, compute P based on Eq. (6.9) and obtain βk from Eq. (6.10)

by Fourier transform to see whether αk = βk. Obviously, such brutal-force

searching would consume impractical amount of time. For the sake of de-

creasing synthesis cost, design space decomposition must be carried out. In

next section, curve normalization is introduced to efficiently reduce the cost

by matching Fourier Descriptors of the normalized task and four-bar coupler

curve. As a result, three link ratios and choice of coupler point can be deter-

mined separately from the other five design variables.

6.2 Decoupling of Design Variables

In this section, we will introduce curve normalization.

Ten design variables {l1, l2, l3, l4, x0, y0, θ1, r, α, ϕ0} are here noted through

previous discussion. By look at those design variables, we found that only l1,

l2, l3, l4, r and α determine the shape and size of coupler curve. x0 and y0 play

a role in translating the coupler curve as a whole; θ1 rotates the coupler curve

as whole; ϕ0 decides the starting point of coupler curve, which has nothing to

do with shape and size. Another reason to ignore ϕ0 is that Fourier transform

have a property of shift-invariance, i.e., it does not depend on the starting
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point. Therefore, Eq. (6.9) can be split into two parts:

P = P1 + P2e
iθ1 (6.11)

where P1 = A0 = x0 + y0 and P2 = l2e
iϕ + zeiλ. P1 is only relevant in deciding

the position of the coupler curve inasmuch it translates the whole curve by a

vector of (x0, y0). ϕ0 in P2 can be chosen according to user demand because it

is only related to the starting point of a coupler curve and thereby just let ϕ0

be 0. P2 represents the shape and actual size of coupler curve. Furthermore,

we can divide P2 by l1 to get P 2 = l2/l1e
iϕ+z/l1e

iλ, which still keeps the shape

of coupler curve. Then z is expressed as xc+yc instead of reiα. Finally, in view

of Eq. (6.3), the shape of coupler curve is determined by five design variables

{l21, l31, l41, xc

l2
, yc
l2
}. For clear representation of coupler point coordinate (xc, yc)

on coupler link l3,
xc

l1
and yc

l1
are changed to xc

l3
and yc

l3
respectively and five

design variables become:

{l21, l31, l41,
xc
l3
,
yc
l3
} (6.12)

The above process gives us the advantage that only have five design variables

needs to be searched while the shape of curve remains untouched. However,

the position, orientation and size of the coupler curve are changed. If we

were to match it with the task curve, curve normalization has to be used to

transform both task curve and the new coupler curve P̄2 into their canonical

configuration. After normalization, both curves would be within a bounding

unit rectangle and thereby pure shape match ensues.
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Figure 6.3: Curve normalization process. in a), we have the original curve; in
b), the curve is rotated around its center to align its major and minor principal
axis of inertia of moment with x-axis and y-axis of fixed frame respectively; in
c), a bounding box with width w and height h is produced to tightly confine
the curve and w/h is determined merely by the shape of the curve; in d), we
resize the curve with its bounding box so that width of bounding box becomes
1 and height w/h and then relocate the bounding box to the origin of fixed
frame.

Curve Normalization Curve normalization procedure was first proposed

by Dikabar and Mruthyunjaya [88] and later used by Sánchez Maŕın and

Pérez González [90]. Recently, Galán-Maŕın et al. [91] applied it with wavelet

descriptors approach to efficiently synthesize crank-rocker mechanism con-

strained by optimal transmission angle. Principle of this procedure is that

we treat the closed curve along which mass uniformly distributed. Through

curve normalization, the major principal axis of moment of inertia is aligned

with the x -axis; then, the width w and height h of the bounding box of the

curve is evaluated; finally, the curve with bounding box is scaled by a factor

of 1/w and translated to be located at origin. Here we say the curve is in

its canonical configuration. Please refer to Appendix for the details of curve
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normalization procedure.

Though the process of curve normalization changes the position, orienta-

tion and size of curve, it holds the shape unchanged. As mentioned previously,

shape exclusively depends on {l21, l31, l41, xc

l3
, yc
l3
}. As long as these parameters

are known, we can compare task curve with four-bar curve in their canonical

configurations, thus efficiently reducing the search space of design variables.

6.3 Numerical Synthesis

In this part, we explain how to find the five design variables in (6.12). Our

method is to approximate the relationship between Fourier Descriptors of curve

and those five design parameters. The Fourier Descriptors should come from

the curve after being normalized and reparametrized with arc length as pa-

rameter. For the purpose of better accuracy, we add direct search method as

the post-procesing stage for neural network to obtain final values of five design

variables. Finally, we will use recovering approach, which recovers the posi-

tion,orientation and size of task curve taken out during curve normalization,

to obtain the values for the other five design variables.

Arc-length Parametrization As said earlier, a curve can have distinct

parametrizations, which are called various representatives of the curve. We

want to single out a unique representative of the curve in a geometrically sig-

nificant way. This is done by referring a curve to its arc length as a parameter.

A curve x(µ) is said to be defined as a function of its arc length if the tangent
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vector x′(µ) = dx/dµ is a unit vector, |x′(µ)| = 1. Then, µ becomes the

parameter of arc length s.

Now consider the task curve with its canonical configuration and assume

the parametrization is given as continuous function of z(t) = x(t) + y(t)j.

Theoretically, the arc-length parametrization can be computed as following

steps: a) by s(t) =
∫ t

0
∥z′(µ)∥dµ, we get the arc length function s against t;

b) compute s−1(t), the inverse function of s(t), and we get time t function

t(s) = s−1(t) against arc length; c) substitute t(s) into z(t) and finally the arc

length parametrization z(s) is obtained. However, it’s impossible to derive an

explicit formula for s−1(t).

Nonetheless, z(t) is usually given as a sequence of N points and thereby

numerical approach can be used. Assume we have the sequence of z(t) taken

as z( 0
N
), z( 1

N
), ..., z(N−1

N
). Next, we treat the curve as polygonal curve and

compute the arc length as follows:

s(n) =

{
0, n = 0,∑n

k=1 ∥z(
k
N
)− z(k−1

N
)∥, n = 1, ..., N − 1.

(6.13)

For the sequence of z( n
N
) (n = 0, 1,. . . , N − 1), we obtain a correspond-

ing sequence of s(n) by Eq.(6.13). Therefore, we formulate the arc-length

parametrization zs(s) = zs(s(n)), 0 ≤ s(n) < L (L is the total length of

curve). Applying Fourier transform (FT)to zs(s) requires that the domain of

s(n) be [0, 1]. So we normalize s(n) by a factor of 1
L
.

Artificial Neural Network Inspired by biological neural networks, an ar-

tificial neural network is a computational structure consisting of a collection
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Figure 6.4: Typical neuron

of interconnected elements, known as neurons, to define a function [92, 93].

The network function is largely determined by the nature of the connections,

which can be adjusted to map an input space to the corresponding desired

output space.

Neuron is the elemental component of an artificial neural network (Fig. 6.4).

The core of a neuron is a transfer function F which maps the sum of the

weighted input wT I and the bias b to the output, i.e.

c = F (wT I+ b) (6.14)

where I denotes the vector of all the inputs Ii to the neuron, and w denotes

the vector of all the weights wi of the connections between the inputs and the

neuron. A neural network is formed by layers of neurons, where the outputs of

one layer become the inputs of next layer. A typical neural network architec-

ture is sown in Fig 6.5. The weights between the kth and (k + 1)th layers are

defined in a weight matrix Wk+1,k whose (j, i) element represents the weight

of the connection between the ith output of the (k + 1)th layer. Consequently

the output vector of the (k + 1)th layer becomes

ck+1 = Fk+1(Wk+1,kIk+1bk+1) (6.15)
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In order to let a neural network map an input space to the desired output

space, the weights and biases are often adjusted through an iterative training

process until the resulting outputs match the targeted outputs. The training

process can be either incremental, where the weights and biases are updated

after each input-target pair, or batch, where the weights and biases are updated

after all the inputs and targets are provided.

Figure 6.5: Typical neural network architecture

Here, we use the widely-adopted backpropagation (BP) algorithm to train

a network to fit the input-output relationship embedded in the sample data.

BP is a supervised learning method which fits a function based on samples of

input-output data pairs. For each input vector, the algorithm estimates the

error between the actual and desired network outputs, and backpropagates it

from the output layer to hidden neurons to estimate the contribution of each

hidden neuron to the output error. It calculates the gradient of each weight,

which indicates the direction of error increase, and updates the weight in the
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opposite direction of the gradient.

After curve normalization and reparametrization using arc length, we have

the Fourier coefficients αk, k = −p, . . . , p. By the work of Li et al. [94], it

is known that for any four-bar mechanism with a input crank, magnitudes

of Fourier coefficients decrease noticeably as the order p goes higher. So we

choose coefficients of order from −3 to 3, i.e., α−3,α−2, . . . , α2, α3 to be Fourier

Descriptors of a curve. In order to train the neural network, we produced

101700 sets of Fourier Descriptors of different four-bar curves generated by

varying design variables (6.12) to train the neural network while using the

other 101700 sets to test the validity of our train neural network to see whether

it can effectively approximate the relationship between harmonic components

and design variables (6.12).

In practical design, the ratio between any two links is not expected to be

extremely large or small. So it is reasonable to predefine a max link ratio in the

design process, say Kmax. Correspondingly, the minimum link ratio is 1
Kmax

.

Therefore, we vary three link ratios l21, l31, l41 in [ 1
Kmax

, Kmax]. Here, Kmax is

taken to be 6. Likewise, it is required that the coordinate of coupler point on

coupler link needs to be dimensionally compatible with the length of coupler

link. So we have similar constraints for xc

l3
and yc

l3
and Kmax for either of them

is 3. Hence, input data for training process are seven Fourier Descriptors and

output data are five design variables.

125



Recovering Method At this moment, we know the values of five design

variables {l21, l31, l41, xc

l3
, yc
l3
}. From the discussion of section 4, P 2 can be com-

puted. According to Eq. (6.11), our goal is to find the four-bar curve P that

best matches the task curve, say, T . Hence, we let T = P and (6.11) becomes:

T = P1 + P2e
iθ1 (6.16)

Next, there are three steps to go in order to match the size, orientation and

position of T and P , during which x0, y0, θ1, l2 could be found

1. First, size match between T and P . Rotate T and P 2 to align their

major principal axis with x-axis of fixed frame respectively and denote

transformed curves to beR(T ) andR(P 2). Compute the width or height

of bounding box for R(T ) and R(P 2) and denote the ratio as w1/w2 or

h1/h2, which is the size ratio between T and P 2. According to Eq.

(6.11), size of P is determined by P2 and P2 is equal to l1P 2. Therefore,

l1 = w1/w2 = h1/h2.

2. Second, orientation match between T and P . We obtain the value of P2

at step 1 by l1P 2. According to Eq. (6.11), the orientation difference

between P and P2 lies on θ1. Therefore, θ1 is measured as the angle from

the major principal axis of P2 to that of T .

3. Finally, position match between T and P . Until now, we know P2e
iθ1 .

Then, we compute the center for T and P2e
iθ1 correspondingly and de-

note them as C1 and C2. The distance vector from C2 to C1 equals to

P1.
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Up until now, values of nine design variables in (6.11) have been found except

for ϕ0. As said earlier, ϕ0 only determines the starting point of curve and is

irrelevant to position, orientation, size and shape of curve. In practical use, the

starting point could be chosen in accordance with user demand. The flowchart

synthesis algorithm is shown in Fig. 6.6 and 6.7.

Figure 6.6: Synthesis Algorithm Flowchart (1)
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Figure 6.7: Synthesis Algorithm Flowchart (2)

6.4 Results and discussion

In this section, we present some examples to show the effectiveness of our

approach and compare with Wu and Chu’s methods respectively. First of all,

we present a task curve that is generated by coupler point P of the Watt II

six-bar shown in Fig. 6.8. Four-bar AEFG functioning as driver linkage is

serially chained with four-bar ABCD of which P serves as the coupler point

to trace out a coupler curve. AEFG must be a double-crank mechanism since

both GF and AE should be able to rotate in full circle respectively. When

GF rotates with constant angular velocity, AE usually rotates with varying

angular velocity. Hence, three different timings are produced by altering the

lengths of GF , FE and AG to change the rotating pattern of AE. Link AB,

BC, CD, BP and CP remain the same to keep the closed curve traced by P

unchanged under these three timings.
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Figure 6.8: Watt II Six-bar

Nine design parameters are chosen as: x0 = 2.2, y0 = 3.5, l1 = 4.4, l21 =

0.5, l31 = 2.8, l41 = 2.7, xc = 1.0, yc = 0.8, θ1 = 0.55. Three sets of AE, EF ,

FG and AG are given as follows:

Parametrization I : AE = 0.50 EF = 1.60 (6.17)

FG = 1.60 AG = 0.35

Parametrization II : AE = 0.50 EF = 0.80 (6.18)

FG = 0.75 AG = 0.40

Parametrization III : AE = 0.50 EF = 2.35 (6.19)

FG = 2.40 AG = 0.10

Rotation functions of link AB corresponding to each parametrization are pre-

sented in Fig. 6.9. By observing the figure, we can see that parametrization III

is close to perfect timing in which link AB rotates uniformly while parametriza-

tion I and parametrization II deviate from pefect timing, which indicates that

link AB rotates with varying angular velocity.
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Figure 6.9: Rotation functions of link AB for three parametrizations

For these different parametrizations, their corresponding sets of Fourier

Descriptors are listed in Table 6.1. It is clear from the table that different

parametrizations will render distinct sets of Fourier Descriptors even though

all correspond to the same curve.

I II III
C−3 0.9743 1.0661 0.6969
C−2 1.7290 1.5949 1.4765
C−1 2.3956 2.0666 3.2828
C0 16.7382 17.2055 17.0292
C1 1.7154 1.4730 2.3377
C2 1.1184 1.0410 0.7418
C3 0.4841 0.5770 0.2318

Table 6.1: Magnitudes of Fourier Descriptors of the task curve for three dif-
ferent parametrizations

For the coming two examples, we are to compare with traditional ways

of synthesis approach. As mentioned in the introduction, they would gener-

ate different Fourier Descriptors given different parametrizations. In order to
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compare their methods with ours based on the same measurement, arc-length

parametrization is employed here to unify the results.

Parametrization I II III
l21 0.5045 0.5072 0.5077
l31 2.8020 2.8039 2.7963
l41 2.7070 2.7096 2.7080
xc 1.0028 0.9942 1.0011
yc 0.8075 0.7908 0.8036
l1 4.3286 4.3549 4.3228
θ1 0.5495 0.5615 0.5599
x0 2.3715 2.4686 2.4719
y0 3.5416 3.4464 3.5058

Table 6.2: The design parameters of synthesized four-bar linkages for three
parametrizations by our method

I II III
C−3 0.4118 0.4118 0.4120
C−2 0.1898 0.1918 0.1906
C−1 3.7119 3.7090 3.7159
C0 17.8644 17.8649 17.8641
C1 1.9250 1.9216 1.9246
C2 0.2560 0.2585 0.2573
C3 0.1550 0.1539 0.1547

Table 6.3: Magnitudes of Fourier Descriptors of three synthesized coupler
curves for three parametrizations after process of arc-length parametrization
by our method

Example 1 First presented are the results of our method. In Table 6.2,

design parameters corresponding to three parametrizations are displayed. We
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can see that those parameters are close to those of the four-bar mechanism

presented at the beginning that generates the task curve. In Table 6.3, Fourier

Descriptors for three parametrizations are shown.

Parametrization I II III
l21 0.7980 0.8554 0.6052
l31 1.7515 4.9052 1.8951
l41 1.9051 4.9980 1.8050
xc 0.8903 0.2190 1.3764
yc 0.6551 0.4433 0.6998
l1 4.2372 3.2539 4.3040
θ1 1.0531 2.7821 0.7563
x0 10.4813 10.8015 5.4999
y0 0.7741 3.4920 2.1181

Table 6.4: The design parameters of synthesized four-bar linkages under three
parametrizations by Wu’s method

I II III
C−3 0.3588 0.3148 0.3954
C−2 0.2429 0.2303 0.2058
C−1 3.8635 3.8858 3.7170
C0 18.1680 18.6918 17.8926
C1 1.5478 1.4226 1.8367
C2 0.2866 0.2687 0.2839
C3 0.1569 0.1279 0.1532

Table 6.5: Magnitudes of Fourier Descriptors of three synthesized coupler
curves by Wu’s method

Second, we use Wu’s synthesis approach to obtain three four-bar mecha-

nisms and show results in Tables 6.4 and 6.5. According to Table 6.4, design
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parameters are quite different from the task four-bar mechanism. Also from

Table 6.5 and Table 6.3 , difference in Fourier Descriptors is notable. The

graphical comparisons of our method and Wu’s are demonstrated in Figs. 6.10,

6.11 and 6.12. Among three parametrizations, parametrization III is close to

perfect timing as pointed out earlier and therefore Wu’s method can yield

good match with original curve. The other two parametrizations deviate from

perfect timing to the extent that reduces the exactness of Wu’s method.
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Figure 6.10: Comparison of Curves under parametrization I
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Figure 6.11: Comparison of Curves under parametrization II
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Figure 6.12: Comparison of Curves under parametrization III

Example 2 In this example, we would compare our method with Chu’s,

another widely used Fourier-based synthesis approach. The task curve and

three parametrizations are same as those specified previously.

Then, we use Chu’s approach to obtain three four-bar mechanisms and

show results in Tables 6.6 and 6.7. The graphical comparisons of our method

and Chu’s are revealed in Figs. 6.10, 6.11 and 6.12. By comparing Chu’s

results with those from Wu’s in Example 1, we find that both approaches
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can output good match when the parametrization is nearly perfect, as in the

case of parametrization III. Besides, the more the parametrization is deviated

from perfect one, the more their synthesized curves differ from the task curve,

which is justified by comparing synthesized curves of both methods under

parametrization I with those of parametrization II in Figs. 6.10 and 6.11.

Clearly, the results for parametrization I are better than those of II because

parametrization I is closer to perfect timing than II as shown in Fig. 6.9.

Parametrization I II III
l21 0.8051 0.9011 0.6050
l31 1.8950 4.9550 1.7516
l41 2.0522 5.0032 1.8452
xc 0.7978 0.2112 1.2720
yc 0.6179 0.4468 0.5649
l1 4.1185 3.0472 4.8738
θ1 3.3154 0.3687 1.0926
x0 10.8081 11.3207 6.3888
y0 0.6750 3.5521 1.1477

Table 6.6: The design parameters of synthesized four-bar linkages under three
parametrizations by Chu’s method

135



I II III
C−3 0.3704 0.3994 0.3939
C−2 0.2667 0.2338 0.2020
C−1 3.7364 3.8833 3.6882
C0 18.1640 18.7623 17.8883
C1 1.5323 1.4473 1.8343
C2 0.3102 0.3250 0.2736
C3 0.1415 0.0523 0.1512

Table 6.7: Magnitudes of Fourier Descriptors of three synthesized coupler
curves by Chu’s method

6.5 Conclusions

In this chapter, we apply the technique of arc-length parametrization to elim-

inate the side effect of parametrization (timing) in traditionally Fourier-based

path synthesis algorithms and realize the pure shape match. By implementing

curve normalization, we successfully reduce the search space of design param-

eters; with Neural Network, five design parameters can be determined quickly

once the network is trained and rest of four parameters are solved by recover-

ing method, specifically by comparing size, orientation and position with task

curve. The results are compared with Wu’s and Chu’s methods to justify that

our method is truly independent of parametrization embedded in the path.

136



Chapter 7

Conclusions

The goal of this dissertation is to put forward a Kinematic Mapping and

Fourier Framework to deal with dimensional and type thesis problem. The

Kinematic Mapping based method gives us a novel way to treat the problem

of type synthesis and that of dimensional optimization simultaneously. Using

Fourier approach, we focus primarily on dimensional synthesis and optimiza-

tion given the type of mechanism, which is demonstrated as being capable of

tackle both path and motion synthesis problem.

By discovering the connection between dyads and triads both in mechani-

cal and image space, our task driven approach to planar four-bar mechanism

synthesis is naturally extended to planar parallel manipulator synthesis. Thus,

we are able to meet the requirement of exactly following any number of arbi-

trarily given poses in planar space. Spatial motion synthesis is also performed

based by extending our methodology in planar case. By characterizing spatial

serial chain as kinematic geometry constraint of sphere and plane, we try to

bridge the gap between type and dimensional synthesis for the structurally
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complicated spatial parallel manipulator. For both planar and parallel ma-

nipulator, homotopy continuation method is used to effectively speed up the

entire design process.

By using Fourier descriptor method, we present an effective algorithm for

planar mechanism synthesis in the context of motion approximation. It builds

on the recent work that mostly targets at path synthesis and apply Fourier

transform to motion synthesis. By observing the relationship between transla-

tion and rotational component of a planar motion, a well-formed algorithm is

proposed to nicely decouple the design space, which leads to drastic improve-

ment in optimization routine. Following motion synthesis problem, we revisit

the old fashioned Fourier based path synthesis problem to address the often-

ignored parametrization issue. Prior to comparing task and four-bar coupler

curve, we reparametrize them both with arc-length as parameter. In order

to decouple the design space, only shape of two curves would be matched by

Fourier descriptors and other design variables can be computed easily with

recovering method. For minimizing search cost, Artificial Neural Network

(ANN) is employed to establish the relationship between Fourier descriptors

and design variables determining curve shape.

It is hoped that the fruits of this research would lead to an innovation and

a commercialization in mechanism design as well as other fields connected with

kinematics.
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Appendix: Normalization of A
Closed Planar Curve

The curve is assumed to be a simple closed polygon of n sides where (xi, yi)

represents the ith vertex of the polygon and (x0, y0) is considered identical to

(xn, yn). All the calculations are done with respect to the length elements of

the polygon.

Step 1: evaluate the length L of the curve. For that, let li denote the ith

edge of the polygon. Then,

li =
√
(xi−1 − xi)2 + (yi−1 − yi)2 (7.1)

L =
n∑

i=1

li (7.2)

Step 2: determine the location of the center of gravity (c.g.) of the curve given

by (cx, cy).

cx =
1

2L

(
n∑

i=1

(xi−1 + xi)
√

(xi−1 − xi)2 + (yi−1 − yi)2

)
(7.3)

cy =
1

2L

(
n∑

i=1

(yi−1 + yi)
√

(xi−1 − xi)2 + (yi−1 − yi)2

)
(7.4)
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Step 3: evaluate the moments of inertia Ixx, Iyy and Ixy of the polygon with

respect to its c.g. (cx, cy).

Ixx =
1

3

n∑
i=1

{li[(yi−1 − cy)
2 + (yi − cy)

2 (7.5)

+(yi−1 − cy)(yi − cy)]}

Iyy =
1

3

n∑
i=1

{li[(xi−1 − cx)
2 + (xi − cx)

2 (7.6)

+(xi−1 − cx)(xi − cx)]}

Ixy =
1

6

n∑
i=1

{li[(xi−1 − cx)(yi − cy) + (xi − cx)(yi−1 − cy)] (7.7)

+2li[(xi−1 − cx)(yi−1 − cy) + (xi − cx)(yi − cy)]}

Step 4: determine the direction, α, of the major principal axis with respect to

the x-axis

α =
1

2
arctan

(
2Ixy

Iyy − Ixx

)
(7.8)

The direction of the major principal axis with respect to the x-axis is given

by α if Ixx < Iyy or α + π/2 if Ixx > Iyy.

Step 5: rotate the polygon by an angle-α by the rotation to the vertices of the

polygon in order to align the major principal axis with the x-axis.(
xi
yi

)
new

=

[
cosα sinα
− sinα cosα

](
xi
yi

)
old

(7.9)

Step 6: evaluate the width w of the bounding box of the resulting polygon.
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Let (Px, Py) and (Qx, Qy) represent the corners of the bounding box obtained

by comparing the coordinates of the points of the polygon. Then the width w

and height h of the bounding box are |Qx − Px| and |Qy − Py|, respectively.

Since the major principal axis is aligned with the x-axis after rotation, w > h.

Step 7: bring the polygon to its normalized configuration. xi
yi
1


normalized

=

 cosα
w

sinα
w

−Px

w

− sinα
w

cosα
w

−Py

w

0 0 1

 xi
yi
1


old

(7.10)
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