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Abstract of the Dissertation 

Event-based Modeling and Control of An Advanced Manufacturing System 

by 

Yang Li 

Doctor of Philosophy 

in 

Mechanical Engineering 

Stony Brook University 

2014 

Although the widely application of advanced IT technology has enabled production information 

to become increasingly transparent, detailed and real-time, the utilization of the information for 

system modeling and control remains largely unexplored. In fact, instantaneously transforming 

information gathered from a vast array of sources into useful knowledge for effective decision 

making has been identified as one of the six grand challenges in the vision for manufacturing 

2020 and beyond. It is necessary to have a real-time integrated system modeling and control 

method, which utilizes the production information to quickly respond to unpredictable 

disturbance to manufacturing system and ensure smooth production and high productivity. This 

dissertation is devoted to this end. 

In this dissertation, the impact of disruption events on system productivity in both serial and 

parallel production lines is quantitatively evaluated. Built on the analysis, an event-based 

modeling (EBM) approach is developed to estimate the systematic impact of individual machine 

and supporting activity (e.g. material handling, quality inspection and maintenance). EBM 

instantaneously captures the system dynamics using distributed sensor information. To evaluate 

the performance of a production line segment, standalone throughput (SAT) definition and an 

event-based estimation method are developed. A market demand driven system model is 

established to unify the analysis of system productivity and market demand satisfaction. A 

supervisory control algorithm is developed to continuously improve system productivity and 

market demand satisfaction (MDS). A Markov decision process (MDP) model is built to assist 

the control decision making in the supervisory control algorithm.   
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

In the globalized and interconnected market, demand fluctuation along with the requirements of 

high product quality, low cost, short leading time and high customization has leaded to an 

increase in the complexity of manufacturing systems [1]. A production system must quickly 

ramp up the newly developed technologies, new tools and equipment if it is to meet the various 

challenges. However, new technology insertions and frequent changes in its manufacturing 

processes also result in a production system usually staying in a transient state which is unstable, 

more unpredictable and dynamic comparing with a steady state production system. This 

normally leads to a low productivity and quality. To improve system performance and 

productivity, it is necessary to have a real-time modeling and control methodology to quickly 

realize system dynamics under disruption events and make control decisions to continuously 

improve system performance.       

Production system modeling and control have been studied extensively during the past fifty 

years and numerous results have been presented and successfully applied in system planning, 

designing and controlling [2-4]. Most of these studies focus on steady state analysis based on 

long-term system performance measurements and assuming production systems being static. 

However, disruption events may derive the system deviate from the optimal design and expected 



 

2 

 

target. As a result, it is not uncommon to observer that a production system cannot achieve its 

predicted performance.  

Although the advancement in IT technology has enabled the production information to 

become increasingly transient, detailed and in real-time, the utilization of the information for 

real-time modeling and control has been largely lagged behind [4-7]. The information is either 

used to calculate the average system parameters, such as mean time to repair (MTTR) and mean 

time between failures (MTBF), or estimate the isolated performance indicators or matrices, such 

as throughput and machine idling time. It is mostly used for isolated local control, but is not 

connected to efficiently collect, disseminate, and interpret the information at an overall system 

level. To fill the gap, a system level integrated modeling approach is needed to capture the 

production system dynamic processes and evaluate production system performance fully 

utilizing the rich real-time information. And an optimal control methodology is necessary to 

continuously improve system performance based on the real-time analysis. This dissertation is 

devoted to this end.  

1.2 Problem Addressed and Solutions 

In this work, an event-based methodology is developed to model and control a multi-stage 

production system in real-time.  

Firstly, the impacts of disruption events are quantified. Disruption events are arguably the 

single most significant reason to cause system inefficiency. Accurate estimation of the impacts of 

disruption events is of significance to find the true causes (e.g. machines or supporting activities) 

of system inefficiency and provide guidance for system control. In this work, we develop a data-

driven method to quantify the impacts of disruption events in a general production line in real-
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time based on online information such as machine random failures, buffer levels, etc. Our 

analysis indicates that not all the production loss at any single machine is permanent. Only the 

production loss happened at the last slowest machine1 contributes to the permanent production 

loss of the system. Therefore, the impacts of a disruption event can be quantified as the 

production loss at the last slowest machine caused by the event, which is denoted as the 

permanent production loss caused by the event.  

Based on the analysis, we develop an event-based modeling (EBM) approach to capture 

system dynamics in real-time. EBM naturally integrates the two most significant system 

concerns: system capacity and production loss and quantifies the impacts of machines and 

supporting activities (e.g. material handling, maintenance, etc.) to system productivity with a 

single unified index, i.e. permanent production loss. And the permanent production loss caused 

by a machine or a supporting activity is proved to be the summation of the permanent production 

loss caused by the disruption events resulted from the machine or supporting activity.  

It is not uncommon that a complex multistage manufacturing system is segmented into 

several subsystems for efficient local management. It is important to evaluate the performance of 

each subsystem to improve overall system productivity. Therefore, we introduce the standalone 

throughput (SAT) of a production line segment to quantify the capability of a subsystem, where 

SAT of a production line segment is defined as the productivity of the line segment while not 

being affected by its upstream and downstream machines. A data-driven method based on online 

production information is developed to estimate the SAT of a line segment in real-time.  

                                                           
1 The slowest machines are defined as the machines with the largest machine cycle time and the last slowest 

machine denotes the slowest machine that is closest to the end-of-line machine.  
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To improve system productivity and market demand satisfaction, a supervisory control 

algorithm is developed. The supervisory control algorithm is a feedback control process by 

periodically identification and mitigation of machine capacity bottleneck (MC-BN) and machine 

failure bottleneck (MF-BN). Real-time EBM based and stochastic EBM based methods are 

developed to identify MC-BNs and MF-BNs. Markov decision model is established to decide 

which method should be used at different system state. The numerical analysis has proved that 

the proposed supervisory control algorithm will lead to the largest improvement in productivity 

compared with other control algorithms [8].  

The remainder of this dissertation is structured as follows: Chapter 2 introduces the literature 

review; Chapter 3 discusses the methods to evaluate the systematic impacts of disruption events 

in different production line configurations; an integrated system modeling approach, i.e. EBM, is 

developed in Chapter 4; SAT definition and an estimation method are discussed in Chapter 5; 

Chapter 6 develops a market demand supervisory control algorithm in a production system; 

Chapter 7 will discuss an optimal control in a production system; the conclusion and future work 

are discussed in Chapter 8.   
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Chapter 2 

LITERATURE REVIEW 

In this chapter, the relevant literature is discussed. Section 2.1 reviews available literature on 

how disruption events impact system dynamics. Section 2.2 introduces the literature about 

system modeling and analysis. Section 2.3 reviews the existing works about system improvement 

and control. Section 2.4 summaries the conclusions.  

2.1 Impacts of Disruption Events 

The literature dealing with the analysis of impacts of disruption events is relatively limited. Most 

of the existing analysis focuses on the evaluation of disruption events impacts with stochastic 

methods or simulation [3, 9-13]. Recently, a data-driven method has been developed to quantify 

the impact of disruption events to system productivity in serial production systems [3, 7, 10].  

Paper [13] investigates the impact of disruptions on the operation of a supply chain. A 

network-based modelling methodology is presented to determine the impact of a disruption or 

change to supply chain and the whole system. The modeling approach, i.e. disruption analysis 

network (DA-NET), models how disruption or change disseminates through a supply chain 

system and quantifies the impact of the attributes.  

Paper [12] presents a disruption recovery model for a single stage production and inventory 

system. The model is formulated as a constrained non-linear optimization program and solved 

using both a heuristic method and an evolutionary algorithm. It is proved that the heuristic 

method is able to accurately solve the model with significantly less time compared to the 
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evolutionary algorithm. And it is shown that the optimal recovery schedule is dependent on the 

shortage cost parameters and the extent of the disruption.  

Paper [9] discusses the disruption management in industries. The authors proposed an 

approach to minimize the impact of disrupting events on the whole system, which is based on an 

analysis of disrupting events and the characterization of the recovery process and on a 

cooperative repair method. The method is based on a cooperative distributed problem solving 

approach supported by a multi-agent system framework.  

Paper [11] considers the propagation of disruption events and the capability of a system that 

can recover from the events. Two important measures of resilience (i.e. throughput settling time 

(TST) and overtime to recover (OTTR)) for a general serial-parallel production system with 

finite buffers are defined and analyzed. The exact analysis for TST and OTTR in a two stage 

system is derived and an approximation method based on system decomposition is developed to 

analyze the TST and OTTR in general multi-stages systems. The paper concludes that parallel 

systems are more resilience than serial systems and larger buffers in serial-parallel system can 

make system more resilience.  

Event-based analysis evaluate the impacts of disruption events to system productivity based 

on measured online information such as buffer levels, machine random downtime, and machine 

starvation and blockage. Paper [10] discusses the impacts of single isolated disruption event to 

system productivity in a production line with single slowest machine. It has been proved that the 

impact of an isolated disruption event only apparent in a relatively long run if the duration 

exceeds a threshold that the slowest machine is starved, blocked or down because of the event. 

Paper [7] further extends the analysis to a generic scenario where disruption events occur 
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concurrently. The analysis unified the analysis to both isolated disruption event and multiple 

disruption events. It indicates that any stoppage event at the unique slowest machine, due to 

starvation, blockage or machine failure, incurs production loss to the system that is impossible to 

recover in the future.  

2.2 System Modeling and Analysis 

A production system is a complex system. The complexity of a production system comes from 

the complex process line layout, randomness in the process, including machine random 

breakdowns, processing time variation, and the random number of parts produced by the system. 

Extensive works have been done in the area of production system modeling and analysis, which 

are important for design, operation and management of production systems [14-17]. Studies can 

be grouped into analytical methods and simulation-based methods. In this section, we will 

introduce the simulation models and analytical models. 

2.2.1 Simulation Models 

Simulation models are widely adopted to evaluate performance of complex manufacturing 

systems [14, 18-23]. Data-driven modeling and simulation is a method that allows users to create 

and run simulation model without doing programming [24]. In this method, the information 

specifying the model must be presented to generate the appropriate models. It enables users, 

rather than operation specialists, to prepare and run simulations, and achieve the ability to 

reconfigure the models for assessing changed or alternative scenarios [14, 18]. Paper [21] 

presents a conceptual framework to generate a WITNESS simulation model from graph-based 

process plans and resource configurations for a job shop manufacturing system. Ford Motor 

Company developed an assembly simulation tool that allows semi-automatic model generation 
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which is built from data in an EXCEL spreadsheet. However, data-driven simulation is not a 

replacement for the general purpose simulation tool but an assembly simulation tool that is 

valuable in certain circumstances with a relatively quicker model generation and minimum 

simulation expertise. 

Event relationship graph (ERG) is a simulation model technique for a discrete-event system. 

Paper [19] presents a linear programming formulation for a single-server queuing system and the 

solutions represented the dynamic system trajectory. Constraints of the mathematical formulation 

are derived from the edges of the ERG. Event relationship graph modeling has certain 

advantages in terms of simplicity and efficiency in simulation. However, for complicated DEDS 

with random events, such as random machine failures in production line, the linear programming 

formulation is very difficult to apply. 

Parallel and distributed simulation is another approach for simulating manufacturing systems 

[20, 23]. The method has advantages in terms of computing efficiency. However, simulation 

tasks need to be divided into many sub-tasks to be executed concurrently. The method is very 

suitable for loosely coupled system with weak interactions. It cannot be directly applied to 

closely coupled systems. In general, with increasing complexity of a manufacturing system, 

modeling and simulation of a production process becomes more challenging and requires more 

expert knowledge and effort.  

2.2.2 Analytical Models 

Based on the different line configurations, the analytical modeling and analysis of production 

systems in large-volume manufacturing can be categorized into three: serial production lines, 
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assembly systems and parallel systems. Additionally, the transient analysis of production line 

performance is also discussed in this section.  

 Serial Line 

For analytical modeling approach, exact analytical results only exist for the two-machine one 

buffer system and the system with infinite buffer capacity or without buffers. For longer systems, 

approximation methods based on the results of analysis of two machines system are investigated 

[16]. 

Papers [15, 25, 26] develop a decomposition method to analyze serial production lines. The 

decomposition method is developed based on the representation of 𝑀 − 1 buffer systems, in 

which, each buffer system includes two machines and one buffer. In each two-machine, one-

buffer system, two pseudo-machines are introduced to model the upstream and downstream lines 

of the buffer. For example, in the ith two-machine, one-buffer system, pseudo-machine 𝑀𝑢(𝑖) 

models the line upstream of the buffer 𝑏𝑖, and 𝑀𝐷(𝑖) models the line downstream from the buffer 

bi. The parameters of the pseudo-machines are determined by solving a group of equations based 

on the conservation of flow, flow rate-idle time, and resumption of flow relationships. These 

equations together with boundary conditions provide a total of 4(𝑀 − 1) equations with 4(𝑀 −

1) unknowns. Computational algorithms have been introduced to solve the equations, such as 

Dallery-David-Xie (DDX) algorithms and the accelerated DDX (ADDX) algorithm [27, 28]. In 

most cases, the ADDX algorithms can converge and provide a faster speed and more accurate 

estimation [29].  

References [30, 31] develop an aggregation method consisting of forward and backward 

aggregation. In the backward aggregation, the last two machines and the buffer between them are 
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aggregated into a single machine and then the new machine is aggregated with the machine 

before it. The aggregation is repeated until all the machines and buffers between them are 

aggregated into a single machine. In forward aggregation, the aggregation process begins from 

the first two machines and the buffer in between and is repeated until all machines and buffers 

becomes a single machine. The system throughput is estimated as the throughput of the single 

machine in backward or forward aggregation approach. The advantage of the method is that all 

the aggregation procedures have been analytically proved to be convergent and the accuracy of 

the aggregation procedures has been determined either analytically or numerically. However, the 

method is developed based on assumptions that machines have either Bernoulli, geometric or 

exponential machine reliability model. It is hard to extend the method to production systems with 

different machine reliability distribution. 

References [32, 33] investigate non-exponential distribution machine systems. 

Decomposition methods based on the Markov chain approach have been applied to approximate 

the performance of the system. However, such approaches are typically computationally 

intensive and are difficult to extend to complex systems. 

 Assembly Lines 

Approximate solutions for assembly systems can be obtained by generalizing the results of 

throughput analysis of serial lines. The aggregation and decomposition methods presented in 

serial lines can be extended to the analysis of assembly systems.  

References [15, 34] develop efficient decomposition methods for calculating the throughput 

of tree structured assembly system. The method decomposes the assembly/disassembly system 

into two-machine, one buffer lines. Pseudo-machines are used to model the part of the line 
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upstream of the buffer and the part of the line downstream from the buffer. Similarly, based on 

the equations of the conservation of flow, flow rate-idle time, and resumption of flow 

relationships, a total of 4(𝑀 − 1) equations with 4(𝑀 − 1) unknowns can be obtained. The 

same computational algorithms, like DDX, can be used to solve the decomposition equations.  

Similar to the serial line case, an aggregation method was developed in [35-37] to study 

assembly systems. The idea behind the approximation is as follows. Firstly, a virtual serial line 

consisting of one component line and the assembly line are considered. In the virtual serial line, 

the first machine m01 in the assembly line is modified such that the impacts from other 

component lines are included. Then, using a serial line evaluation method, the probability for the 

buffer before machine m01 not being empty can be calculated. Now consider a virtual serial line 

composed of another components line and the assembly line, where the first machine in an 

assembly line is again modified by considering the probability that the buffer before machine 

m01 is empty. Then the probability that the buffer is empty is calculated. The probability is used 

for the second iteration and continued. The process is repeated until the iterations are converged. 

The result is the estimates of the production rate. 

Paper [38] investigates an unbalanced, continuous flow assembly system with two inputs. A 

new system, which is identical to the original, is defined with the assumption that the assembly 

machine is completely reliable. The throughput of the original system is approximated using the 

availability of the new defined system multiplied the availability of the assembly machine and its 

speed.  

 Parallel Lines 
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Production lines with parallel structures are widely used in many production systems to achieve a 

greater productivity or reliability. A parallel structure can be split into several sub-lines in 

parallel. In case one machine in a parallel structure fails, parts can still go through other sub-lines 

to keep production moving, but with a slower rate. Most analyses study parallel lines by 

equivalence, i.e. aggregating parallel machines into an equivalent single machine.  

Paper [29] considers series-parallel flow lines where each stage consists of multiple parallel 

machines and finite buffers. The multiple machines in each stage are approximated by an 

equivalent single machine. The system performance is analyzed using equivalent machine and 

ADDX algorithm is used to estimate the throughput. Similar ideas are used in References [39] 

and [40], where [39] consider inhomogeneous lines and [40] extends the study to non-identical 

parallel machine case.  

Paper [37] proposes an overlapping decomposition method to estimate the throughput of 

parallel lines which allows multiple machines and buffers in sub-lines in parallel structures. The 

method takes into consideration of the effects from other part of a parallel production line by 

manipulating the starvation and blockage incidents at the first and last machine in each sub-line 

as downtime events, and a recursive procedure is applied to estimate the production rate of the 

system. 

 Transient Analysis of A Production System 

Transient characteristics have significant manufacturing implications [41]. Production transients 

characterize the process of reaching the steady state system output. System often operates at 

transient regimes. For example, in the process of continuous improvement, the machine 

parameters change every day or even every shift. The steady state can hardly be reached. Before 



 

13 

 

the steady can be reached, the system can suffer significant production loss. Therefore, accurate 

evaluation of transients in production systems is of practical importance.  

The transient behavior of the transfer line after a sudden station breakdown can be 

approximated using metamodels in the form of first-order continuous exponential delays 

function [42]. Earlier works in References [43-45] have studied the transient behavior of 

communication networks. The main focus of the research is on the transient evolution of the 

probability distribution of the buffer levels to its stationary distribution. Papers [42, 46, 47] 

further extend the results to transfer lines with Bernoulli machines and characterizes of the 

transients in production rate and work-in-process inventory. In paper [48], the second largest 

eigenvalue of the transient matrices is used to characterize the transients in geometric production 

lines. Markov chain approach is adopted to develop the transition matrices. However, the large 

dimensionality of the transition matrices impedes the method to be applied to systems with more 

than two machines.  

2.3 Production System Control and Improvement 

The control and improvement of a production system is another important topic in the analysis of 

production system. In the past two decades, a lot of literature have been devoted to the topic [49-

51].  

In [52-59], the continuous improvement of Bernoulli and Exponential lines has been 

addressed. The continuous improvement is divided into two categories: constrained improvement 

and unconstrained improvement. In constrained improvement, limited resources, such as buffer 

capacities, work force, etc., are re-allocated in order to improve the system production. Criteria 

are presented to determine if a system is improvable and to provide a characterization of 



 

14 

 

unimprovable allocations. In unconstrained improvement, system is improved through the 

identification and elimination of bottlenecks by allocating additional resources, where a 

bottleneck is defined as a machine whose performance impedes the system output in the 

strongest manner. A bottleneck identification tool based on machine blockages and starvations is 

also developed.  

Paper [60] studies the performance of the Kanban, minimal blocking, basestock, CONWIP, 

and hybrid Kanban-CONWIP control policies in a serial production line based on simulations 

analysis. Two main performance measures, which are service level and the amount of work-in-

progress (WIP), are measured and compared in both constant and changing demand rates cases. 

The results indicate that the best parameter choices for the hybrid policy are lower than the other 

three policies while the same service level is maintained and the WIP difference among the 

policies grows as the demands on service level increase. The study also finds that the CONWIP 

and hybrid policies give significantly better response to changes in the demand rate.   

Paper [61] discusses the design and analysis of Kanban-controlled pull-system with 

exponential machines and finite buffers. The closed formulas are derived for system performance 

matrices, which are the customer service level, finished goods inventory, and the release 

throttling. The system-theoretic properties are investigated and methods to evaluate the lean 

number of Kanban for a desired level of customer service are derived.  

Paper [62] addresses the optimal control of production rate in a failure prone production 

system in order to minimize the discounted inventory cost. The paper formulates the problem as 

an optimal controlling of a continuous-time system with jump Markov disturbances and an 

infinite horizon discounted cost criterion. The analysis indicates that the optimal solution is 
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simply characterized by a certain critical number, i.e. optimal inventory level. The production 

system should produce parts at their maximum rate if the current inventory level is less than the 

optimal inventory level; the production system should not produce any parts if the current 

inventory level is higher than the optimal inventory level; the production system should produce 

parts exactly equal to demand if the current inventory level is equal to the optimal inventory 

level.  

Paper [63] studies the optimal control of a single stage periodic-review inventory production 

system with state-dependent random yield. The system is subject to stochastic demand and its 

order size is determined based on an order-up-to logic. The paper develops an approximation to 

estimate the near optimal order-up-to level and maintenance interval. Three methods are 

developed to decompose the problem and compute the policies parameters either sequentially or 

separately. The approximation method and the three methods are compared and the result 

indicates that the approximation method can lead to the best system performance as well as 

lowest system cost.  

Markov decision theory has been widely used for production system control. In [64], the 

control of preventive maintenance is studied. The paper uses the embedding technique from 

Markov decision theory to find a class of control limit policies. Paper [65] formulates an 

integrated decisions of maintenance and production using a Markov Decision Process. A double-

threshold policy is presented and exact and approximate methods for evaluating the performance 

of this policy and computing tis optimal parameters are derived. In [66], the authors studied the 

optimal policy for modular product reassembly within a remanufacturing setting where a firm 

receives production returns with variable quality and reassembles products of multiple classes to 
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customer orders. The problem is formulated as a Markov decision process and the structure of 

the optimal control policy is proved to be a state-dependent threshold-based control rule.  

2.4 Conclusion 

In spite of those efforts, the study of real-time modeling and control of a production system is 

still limited. Most of the system modeling analysis focuses on using stochastic method to 

estimate the system performance in steady-state. Although there are some studies discussing the 

real-time analysis of system performance, they are still too specific to be applied in general 

production systems. An integrated real-time system modeling approach has not been well 

developed. Additionally, it can be observed that most existing control algorithms are developed 

based on certain heuristic standards or stochastic analysis by assuming that systems are in 

steady-state. There is no existing scheme that integrates the real-time modeling and control of a 

production system. This dissertation is devoted to this end.  
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Chapter 3 

REAL-TIME ANALYSIS OF DISRUPTION EVENTS IN SERIAL 

PRODUCTION SYSTEMS 

3.1 Introduction 

Accurate estimation of the impact of disruption events, especially those that cause the most 

production loss, is of significant importance for deciding where to allocate limited resources in a 

multi-stage manufacturing systems as well as the establishing of a real-time system modeling 

method. In this section, we focus on the quantitative evaluation of the impact of disruption 

events in serial production lines. We begin with the analysis of the impact of disruption events in 

a serial production line with single slowest machine and then extend to more generic scenarios 

where multiple slowest machines exist.  

3.2 System Description, Assumptions and Notations 

A serial manufacturing system typically consists of a series of machines separated by finite 

buffers. A group of operations are performed on unfinished products based on a predetermined 

sequence order. Additionally, supporting activities, such as maintenance and material handling, 

are also integral components of the overall production system. Figure 3.1 shows a typical 

example of the interdependency and dynamic interactions of machines and supporting activities. 

The smooth and efficient operation of the production line not only relies on the timely 

completion of required production operations at each machine and the coordination among 

multiple machines, but also the smooth coordination between machines and supporting activities. 
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 In this dissertation, a simplified serial production line consisting of 𝑀 machines and 𝑀 − 1 

buffers shown in Figure 3.2 is considered. The following definitions and assumptions on an 

integrated battery production system are adopted. 

1) A buffer 𝑏𝑖, 𝑖 = 1,… ,𝑀 − 1, refers to a material handling device (e.g., boxes or lift forks, 

conveyors, etc.), which stores and moves unfinished jobs from upstream machine to 

downstream machine. Each buffer has a finite buffer capacity 𝐵𝑖.  

2) 𝑏𝑖(𝑡) denotes the buffer level of buffer 𝑏𝑖 at time 𝑡. 

3) A production line consists of both manual and automatic machines, where mi denotes the 𝑖𝑡ℎ 

machine in the production line. Automatic machines usually have constant processing 

speeds; while the processing speeds of manual machines could vary. For both scenarios, we 

can always find the smallest processing time of a machine 𝑚𝑖, which is referred to as the 

base cycle time 𝑇𝑖. For each machine, any production cycle that is longer than the base cycle 

 
Figure 3.1 Demonstration of the interdependency and dynamic interactions among production and 

supporting activities 

 

 
Figure 3.2 A serial production line consisting of M machines and M-1 buffers 
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time will be treated as a special random downtime event, referred to as over-cycle event. A 

machine can be down because of tool wear, power outages, as well as over-cycle. 

4) The rated speed of a machine  𝑚𝑖 is 
1

𝑇𝑖
 and the instantaneous speed of machine 𝑚𝑖 at time 𝑡 is denoted 

as 𝑠𝑖(𝑡). A machine can produce product at a speed not greater than its rated speed, i.e. 𝑠𝑖(𝑡) ≤
1

𝑇𝑖
. 

5) A machine 𝑚𝑀𝑘
∗  is defined as the slowest machine if it has the largest base cycle time among 

all the machines, i.e. 𝑀𝑘
∗ = arg max

𝑖=1,…,𝑀
 (𝑇𝑖) , 1 ≤ 𝑘 ≤ 𝑀. There can be one or multiple 

slowest machines in a system. 𝑚𝑀∗ denotes the slowest machine that is closest to the end-of-

line machine 𝑚𝑀. It is also denoted as the last slowest machine. 

6) A machine is starved if the machine is up and its immediate upstream buffer is empty. A 

machine is blocked if the machine is up, its immediate downstream buffer is full and the 

immediate downstream machine does not take a product from the buffer. A machine cannot 

be down when it is starved or blocked. 

7) 𝑋(𝑇) = ∫ 𝑠𝑀(𝑡)𝑑𝑡
𝑇

0
 denotes the output of the production system during time period of (0, 𝑇]. 

8) Supporting activities 𝑚𝑀+1, … ,𝑚𝑀+𝑁 , (e.g., maintenance, material handling, etc.) are 

referred to as processes which provide necessary supports to ensure the proper functioning of 

various machines. Any supporting activities that fail to finish their tasks timely will result in 

the stoppage of the corresponding machines. For example, if material handling staff fails to 

deliver parts to a machine on time, the machine will be down because of material shortage. 

We define those events as supporting activity failure event. Specifically, 𝑚𝑀+1  refers to 

material handling in this paper. 

9) Quality inspection equipment, such as sensors, inspection machines, etc., is installed to detect 

and trace the root causes of product defects. In battery production lines, products that are 
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detected with quality defects will be scrapped directly. Anytime there is a scrapped part at a 

check point (a sensor or an inspection machine), all the operation time of the upstream 

machines devoted to the scrapped product can be considered as downtime caused by the 

quality failure. We define those downtime events as quality failure events.    

10) A disruption event 𝑒𝑖 refers to a machine random downtime event, over-cycle event, quality 

failure event or supporting activity failure event. 𝑒𝑖 = (𝑚𝑖1 , 𝑚𝑖2 , 𝑡𝑖 , 𝑑𝑖), 1 ≤ 𝑖1 ≤ 𝑀 +𝑁, 1 ≤

𝑖2 ≤ 𝑀, denotes the failure of 𝑚𝑖1results in 𝑚𝑖2 being down at time 𝑡𝑖 for 𝑑𝑖. If 𝑖1 = 𝑖2, 𝑒𝑖 =

(𝑚𝑖1 , 𝑚𝑖2 , 𝑡𝑖 , 𝑑𝑖) denotes a machine random downtime event, over-cycle event, or quality 

failure event at machine 𝑚𝑖1 , 1 ≤ 𝑖1 ≤ 𝑀 which begins at 𝑡𝑖 and lasts for a time period of 𝑑𝑖. 

On the other hand, if 𝑖1 ≠ 𝑖2, 𝑒𝑖 = (𝑚𝑖1 , 𝑚𝑖2 , 𝑡𝑖 , 𝑑𝑖) denotes a quality failure event (1 ≤ 𝑖1 ≤

𝑀) or supporting activity failure event (𝑀+ 1 ≤ 𝑖1 ≤ 𝑀 +𝑁) caused by 𝑚𝑖1 which results 

in machine 𝑚𝑖2 being down at time 𝑡𝑖 for a time period of 𝑑𝑖. 𝐸 denotes a sequence of 

disruption events, i.e. 𝐸 = [𝑒1, … , 𝑒𝑛]. 

11) 𝑇𝐿(𝑒𝑖) denotes permanent production time loss caused by disruption event 𝑒𝑖; 𝑃𝐿(𝑒𝑖) 

denotes the permanent production loss attributed to disruption event 𝑒𝑖; 𝑃𝐿𝑖 denotes 

permanent production loss attributed to 𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑀 + 𝑁. 

3.3 Dynamics in Serial Production Lines with Single Slowest Machines  

In this section, we will start with the concept of the opportunity window. Then we will give the 

expression of permanent production time loss of each disruption event, where the permanent 

production time loss denotes the system production time loss caused by a disruption event that is 

impossible to recover in the future. The opportunity window 𝑊(𝑚𝑖2
) is defined as the longest 
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possible downtime duration of machine 𝑚𝑖2 that does not result in permanent production loss in 

the system [7, 10]. It can be expressed as  

𝑊(𝑚𝑖2
) = sup {𝑑 ≥ 0: s. t. ∃𝑇∗(𝑑), ∫ 𝑠𝑀(𝑡; 𝑒)

𝑇

0
= ∫ 𝑠𝑀(𝑡)𝑑𝑡

𝑇

0
, ∀𝑇 ≥ 𝑇∗(𝑑)}  

where ∫ 𝑠𝑀(𝑡; 𝑒)𝑑𝑡
𝑇

0
 and ∫ 𝑠𝑀(𝑡)𝑑𝑡

𝑇

0
 are the production volume of the end-of-line machine 𝑆𝑀, 

whose output is defined as the output of the system, at time T,  with and without inserted 

downtime event 𝑒 = (𝑚𝑖1 ,𝑚𝑖2
, 𝑡𝑖 , 𝑑𝑖). 

If all the machines operate perfectly, the opportunity window of any machine 𝑚𝑖2 is the time 

it takes for the buffers between machines 𝑚𝑖2 and 𝑚𝑀∗ to become empty if machine 𝑚𝑖2 in 

upstream of machine 𝑚𝑀∗ or full if machine 𝑚𝑖2 is downstream of machine 𝑚𝑀∗. And the 

opportunity window for machine 𝑚𝑀∗ is zero. Therefore, we have 

𝑊(𝑚𝑖2) = {

𝑇𝑀∗ ∑ 𝑏𝑘(𝑡)
𝑀∗−1
𝑘=𝑖2

𝑖2 < 𝑀
∗

0 𝑖2 = 𝑀
∗

𝑇𝑀∗ ∑ 𝐵𝑘 − 𝑏𝑘(𝑡)
𝑖2−1
𝑘=𝑀∗ 𝑖2 > 𝑀

∗

  

Not every downtime event can cause the permanent production time loss of the whole 

production line. Only those events whose durations exceed their opportunity windows2 

contribute to the permanent production loss to the system. The smallest downtime duration 𝑑𝑖
∗ 

for a machine 𝑚𝑖2 can be found as  

 𝑑𝑖
∗ = inf {𝑑 ≥ 0: s. t. 𝑇𝑀∗ ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡

𝑡𝑖+𝑑𝑖
𝑡𝑖

= 𝑊(𝑚𝑖2)} 

                                                           
2 In other words, those disruption events cause the unique slowest machine to be starved, blocked or breakdown.  
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where ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑𝑖
𝑡𝑖

 denotes the production volumes of machine 𝑚𝑀∗ during time (𝑡𝑖, 𝑡𝑖 +

𝑑𝑖]. 𝑑𝑖
∗ is the time it takes for the buffers between machines 𝑚𝑖2 and 𝑚𝑀∗ to become empty 

(𝑚𝑖2 < 𝑚𝑀∗) or full (𝑚𝑖2 > 𝑚𝑀∗). If the actual downtime duration 𝑑𝑖 ≤ 𝑑𝑖
∗, there is no 

permanent production time loss. If the actual downtime duration 𝑑𝑖 > 𝑑𝑖
∗, the permanent 

production time loss equal to 𝑑𝑖 − 𝑑𝑖
∗. The permanent production time loss due to disruption 

event  𝑒 = (𝑚𝑖1 ,𝑚𝑖2 , 𝑡𝑖, 𝑑𝑖) is defined as  

𝐿(𝑒) = {
𝑑𝑖 − 𝑑𝑖

∗, 𝑑𝑖 > 𝑑𝑖
∗

0, 𝑑𝑖 ≤ 𝑑𝑖
∗  

3.4 Dynamics in Serial Production Lines with Multiple Slowest 

Machines 

Last section has discussed the impact of disruption events in serial production systems with 

single unique slowest machine. The analysis indicates that any stoppage event at the unique 

slowest machine, due to starvation, blockage, or machine failure, incurs production time loss to 

the system that is impossible to recover in the future. However, it is not unusual that a system 

can have multiple slowest machines. In such a scenario, there are more than one reference 

slowest machines that need to be considered to evaluate the impact of disruption events. 

Therefore, the last slowest machine 𝑆𝑀∗ is selected as a reference machine. We will show that 

any stoppage at the last slowest machine 𝑆𝑀∗ contributes to the production time loss of the line. It 

is noted that the output of the end-of-line machine is used as the output of a production line [17], 

i.e. 𝑋(𝑇) = ∫ 𝑠𝑀(𝑡)𝑑𝑡
𝑇

0
.  
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Proposition 3.1 Given a realization of a production process subject to a sequence of disruption 

events  �⃗⃗� = [𝑒1, … , 𝑒𝑛] and suppose max
𝑙=1,…,𝑛

{𝑡𝑙 + 𝑑𝑙} < 𝑇,if the last slowest machine 𝑚𝑀∗ stops 

for a duration of D during (0, 𝑇], then for the end-of-line machine 𝑚𝑀, ∃ 𝑇∗ ≥ 𝑇, s.t.  

∫ 𝑠𝑀(𝑡)𝑑𝑡
𝑇′

0
− ∫ 𝑠𝑀(𝑡; 𝐸)𝑑𝑡

𝑇′

0
= D 𝑇𝑀∗⁄ , ∀𝑇′ > 𝑇∗ (3.1) 

where ∫ 𝑠𝑀(𝑡)𝑑𝑡
𝑇′

0
 and  ∫ 𝑠𝑀(𝑡; 𝐸)𝑑𝑡

𝑇′

0
 are the output of the end-of-line machine 𝑚𝑀 without 

and with disruption events �⃗⃗� = [𝑒1, … , 𝑒𝑛] during (0, 𝑇′]. 

Proof: For the line segment between machines 𝑚𝑀∗ and 𝑚𝑀, applying the principle of 

conservation of flow, we have 

∫ 𝑠𝑀∗(𝑡)𝑑𝑡
𝑇′

0
− ∫ 𝑠𝑀(𝑡)𝑑𝑡

𝑇′

0
= ∑ 𝑏𝑘(𝑇

′)𝑀−1
𝑘=𝑀∗ − ∑ 𝑏𝑘(0)

𝑀−1
𝑘=𝑀∗  (3.2) 

∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑇′

0
− ∫ 𝑠𝑀(𝑡; 𝐸)𝑑𝑡

𝑇′

0
= ∑ 𝑏𝑘(𝑇

′; 𝐸)𝑀−1
𝑘=𝑀∗ − ∑ 𝑏𝑘(0; 𝐸)

𝑀−1
𝑘=𝑀∗  (3.3) 

where ∫ 𝑠𝑀∗(𝑡)𝑑𝑡
𝑇′

0
 and ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡

𝑇′

0
 denote the output of the last slowest machine 𝑚𝑀∗ 

without and with disruption events �⃗⃗� = [𝑒1, … , 𝑒𝑛] during  (0, 𝑇′]. ∫ 𝑠𝑀(𝑡)𝑑𝑡
𝑇′

0
 and 

∫ 𝑠𝑀(𝑡; 𝐸)𝑑𝑡
𝑇′

0
 denote the output of the end-of-line machine 𝑚𝑀 without and with disruption 

events �⃗⃗� = [𝑒1, … , 𝑒𝑛] during  (0, 𝑇′]. Without disruption events, machine 𝑚𝑀∗ is the unique 

slowest machine in the line segment between machines 𝑚𝑀∗ and  𝑚𝑀, i.e. 𝑇𝑀∗(𝑡) >

max (T𝑀∗+1, … , 𝑇𝑀). Machine 𝑚𝑀∗ has the least output among machines 𝑚𝑀∗ , … ,𝑚𝑀, i.e. 

∫ 𝑠𝑀∗(𝑡)𝑑𝑡
𝑇′

0
< min {∫ 𝑠𝑀∗+1(𝑡)𝑑𝑡

𝑇′

0
, … , ∫ 𝑠𝑀(𝑡)𝑑𝑡

𝑇′

0
}. The buffer levels between machines 𝑚𝑀∗ 

and 𝑚𝑀 will decrease gradually until they become empty, i.e. ∑ 𝑏𝑘(𝑇1)
𝑀−1
𝑘=𝑀∗ = 0, after a period 

of  𝑇1. Therefore, ∀𝑇′ > 𝑇1, we have  
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∫ 𝑠𝑀∗(𝑡)𝑑𝑡
𝑇′

0
= ∫ 𝑠𝑀(𝑡)𝑑𝑡

𝑇′

0
− ∑ 𝑏𝑘(0)

𝑀−1
𝑘=𝑀∗  (3.4) 

Similarly, when the production line is subject to a sequence of disruption events �⃗⃗� =

[𝑒1, … , 𝑒𝑛], ∃𝑇2 such that ∀𝑇′ > 𝑇2 ≥ 𝑇, the buffer levels between the machines 𝑆𝑀∗ and 𝑆𝑀 is 

empty since there is no disruption events after time 𝑇. Therefore, the equation 3.3 becomes 

∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑇′

0
= ∫ 𝑠𝑀(𝑡; 𝐸)𝑑𝑡

𝑇′

0
− ∑ 𝑏𝑘(0; 𝐸)

𝑀−1
𝑘=𝑀∗   (3.5) 

Without disruption events, the last slowest machine will neither be starved nor blocked and 

its speed is always 𝑠𝑀∗(𝑡) =
1

𝑇𝑀∗
 . The term ∫ 𝑠𝑀∗(𝑡)𝑑𝑡

𝑇′

0
 in Equation 3.4 can be calculated 

as ∫ 𝑠𝑀∗(𝑡)𝑑𝑡
𝑇′

0
=

𝑇′

𝑇𝑀∗
. Similarly, the term∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡

𝑇′

0
 in Equation 3.5 can be calculated as 

∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑇′

0
=

𝑇′−𝐷

𝑇𝑀∗
. Given the production line has the same initial buffer levels, which 

is ∑ 𝑏𝑘(0)
𝑀−1
𝑘=𝑀∗ = ∑ 𝑏𝑘(0; 𝐸)

𝑀−1
𝑘=𝑀∗ , through Equations 3.4 and 3.5, we have ∃𝑇∗ ≥ max{𝑇1, 𝑇2},  

∫ 𝑠𝑀(𝑡)𝑑𝑡
𝑇′

0
− ∫ 𝑠𝑀(𝑡; 𝐸)𝑑𝑡

𝑇′

0
= ∫ 𝑠𝑀∗(𝑡)𝑑𝑡

𝑇′

0
− ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡

𝑇′

0
= D 𝑇𝑀∗⁄ , ∀𝑇′ > 𝑇∗   

End of the proof. 

Proposition 3.1 indicates that the production time loss caused by a disruption event can be 

quantified as the time that the last slowest machine is starved or blocked by the event. We denote 

the time as the permanent production time loss caused by the disruption event. Considering an 

arbitrary disruption event 𝑒𝑖 = (𝑚𝑖1 ,𝑚𝑖2 , 𝑡𝑖, 𝑑𝑖)  ∈ 𝐸, we want to find the exact time that the last 

slowest machine is starved or blocked by event 𝑒𝑖, or in other words, the permanent production 

time loss caused by the event. For ease of expression, 𝑊𝑖 is adopted to denote the time that 

machine 𝑚𝑀∗ begins to be starved or blocked by event 𝑒𝑖, which is the opportunity window of 
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machine 𝑚𝑖2. We will discuss the scenario that 𝑑𝑖 > 𝑊𝑖; otherwise, the permanent production 

time loss will simply be zero.  

In the case of  𝑖2 < 𝑀∗, applying the principle of conservation of flow to the line segment 

between machines 𝑚𝑖2 and 𝑚𝑀∗ during (𝑡𝑖, 𝑡𝑖 + 𝑑𝑖], yields  

∫ 𝑠𝑚𝑖2
(𝑡)𝑑𝑡

𝑡𝑖+𝑑𝑖
𝑡𝑖

− ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑𝑖
𝑡𝑖

= ∑ 𝑏𝑘(𝑡𝑖 + 𝑑𝑖; 𝐸) − 𝑏𝑘(𝑡𝑖; 𝐸)
𝑀∗−1
𝑘=𝑖2

 (3.6) 

where ∫ 𝑠𝑚𝑖2
(𝑡)𝑑𝑡

𝑡𝑖+𝑑𝑖
𝑡𝑖

 and ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑𝑖
𝑡𝑖

 denote the output of machines 𝑚𝑖2 and 𝑚𝑀∗ 

during (𝑡𝑖, 𝑡𝑖 + 𝑑𝑖], respectively. Since machine 𝑚𝑖2 is down during  (𝑡𝑖 , 𝑡𝑖 + 𝑑𝑖], the term 

∫ 𝑠𝑚𝑖2
(𝑡)𝑑𝑡

𝑡𝑖+𝑑𝑖
𝑡𝑖

 is zero. Equation 3.6 becomes 

∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑𝑖
𝑡𝑖

= ∑ 𝑏𝑘(𝑡𝑖; 𝐸) − 𝑏𝑘(𝑡𝑖 + 𝑑𝑖; 𝐸)
𝑀∗−1
𝑘=𝑖2

  (3.7) 

∀𝑑 ≥ 𝑊𝑖, all the buffers 𝐵𝑖2+1, … , 𝐵𝑀∗  are empty at 𝑡𝑖 + 𝑑, i.e. ∑ 𝑏𝑘(𝑡𝑖 + 𝑑; 𝐸) = 0
𝑀∗−1
𝑘=𝑖2

. The 

Equation 3.7 can be reorganized as 

∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑𝑖
𝑡𝑖

= ∑ 𝑏𝑘(𝑡𝑖; 𝐸)
𝑀∗−1
𝑘=𝑖2

    (3.8) 

Therefore, 𝑊𝑖 can be represented as 

𝑊𝑖 = inf {𝑑 ≥ 0: 𝑠. 𝑡. ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑

𝑡𝑖
= ∑ 𝑏𝑘(𝑡𝑖; 𝐸)

𝑀∗−1
𝑘=𝑖2

}.  

Machine 𝑚𝑖2 resumes operation at time 𝑡𝑖 + 𝑑𝑖. Since the buffers between machines 𝑚𝑖2 and 

𝑚𝑀∗ are empty, it takes ∑ 𝑇𝑘
𝑀∗−1
𝑘=𝑖2

 for an unfinished job to reach the last slowest machine 𝑚𝑀∗. 

The permanent production time loss 𝑇𝐿(𝑒𝑖) caused by the disruption event 𝑒𝑖 can be represented 

as  
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𝑇𝐿(𝑒𝑖) = 𝑑𝑖 −𝑊𝑖 + ∑ 𝑇𝑘
𝑀∗−1
𝑘=𝑖2

    (3.9) 

Similarly, if 𝑖2 > 𝑀∗, following the same procedure by applying the principle of 

conservation of flow to the line segment between machines 𝑚𝑖2 and 𝑚𝑀∗ except letting 

∑ 𝑏𝑘(𝑡𝑖 + 𝑑; 𝐸)
𝑖2−1
𝑘=𝑀∗ = ∑ 𝐵𝑘

𝑖2−1
𝑘=𝑀∗ . 𝑊𝑖 can be represented as  

𝑊𝑖 = inf {𝑑 ≥ 0: 𝑠. 𝑡. ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑

𝑡𝑖
= ∑ 𝐵𝑘 − 𝑏𝑘(𝑡𝑖; 𝐸)

𝑖2−1
𝑘=𝑀∗ }.  

Machine 𝑚𝑖2will resume operation at time 𝑡𝑖 + 𝑑𝑖. Machines 𝑚𝑀∗ , … ,𝑚𝑖2 receive an unfinished 

job from their upstream buffers immediately. The last slowest machine 𝑚𝑀∗ is no longer 

blocked. The permanent production time loss caused by the disruption event becomes  

𝑇𝐿(𝑒𝑖) = 𝑑𝑖 −𝑊𝑖    (3.10) 

In the case of  𝑖2 = 𝑀∗, since the breakdown of the last slowest machine 𝑚𝑀∗ directly 

contribute to the overall permanent production loss of the production line, the permanent 

production time loss resulted from the disruption event can be calculated as 

𝑇𝐿(𝑒𝑖) = 𝑑𝑖   (3.11) 

We can combine Equations 3.9, 3.10 and 3.11 into a single equation  

𝑇𝐿(𝑒𝑖) = {

max {𝑑𝑖 −𝑊𝑖 + ∑ 𝑇𝑘
𝑀∗−1
𝑘=𝑖2

, 0}, 𝑖2 < 𝑀
∗ 

𝑑𝑖 , 𝑖2 = 𝑀
∗ 

max {𝑑𝑖 −𝑊𝑖, 0},  𝑖2 > 𝑀
∗  

   (3.12) 

where 𝑊𝑖 can be expressed as 
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𝑊𝑖 =

{
  
 

  
 inf {

𝑑 ≥ 0: 𝑠. 𝑡. ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑

𝑡𝑖
=

∑ 𝑏𝑘(𝑡𝑖; 𝐸)
𝑀∗−1
𝑘=𝑖2

} , 𝑖2 < 𝑀∗

0, 𝑖2 = 𝑀
∗

inf {
𝑑 ≥ 0: 𝑠. 𝑡. ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡

𝑡𝑖+𝑑

𝑡𝑖
=

∑ 𝐵𝑘 − 𝑏𝑘(𝑡𝑖; 𝐸)
𝑖2−1
𝑘=𝑀∗

} , 𝑖2 > 𝑀∗

   (3.13)  

The value of  𝑊𝑖 can be obtained through easy calculation based on the sensor information, i.e. 

the least time it takes for the buffers between machines 𝑚𝑖2 and 𝑚𝑀∗ to become empty or full.  

3.5 Conclusion 

The analysis provides a quantitative way to evaluate the impact of each disruption event to the 

whole production system in terms of permanent production time loss. It is important to note that 

a serial production line with single unique slowest machine is a special case of a general serial 

line with multiple slowest machines. The above discussion unifies the disruption event analysis 

of serial production lines with single or multiple slowest machines. 
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Chapter 4 

REAL-TIME ANALYSIS OF DISRUPTION EVENTS IN PARALLEL 

PRODUCTION SYSTEMS 

4.1 Introduction 

Manufacturing production systems with parallel structures are widely used in many production 

systems to achieve a greater productivity or reliability. A parallel structure can be split into 

several sub-lines in parallel. In case one machine in a parallel structure fails, parts can still go 

through other sub-lines to keep production moving, but with a slower rate. Although tremendous 

efforts have been devoted to the performance evaluation on serial transfer lines, difficulties still 

exist in studying production lines with parallel structures because of their complex configuration. 

In addition, transient characteristics can be potentially very useful in real-time production control 

[10, 41]. The transient analysis of production lines with parallel structures is even more difficult. 

Therefore, in this section, we reveal the impact of each disruption event in a parallel production 

system and characterize its transient behavior to guide for real-time production control. We will 

use downtime events as examples. Other disruption events caused by supporting activities can be 

similarly analyzed.  

4.2 System Description, Assumptions and Notations 

For ease of expression, the continuous flow model is adopted in this chapter to analyze the 

dynamics of a parallel production line, because the production dynamics can be conveniently 

described by integral or differential equations [67, 68]. The method can be easily extended to 
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discrete event systems. The continuous flow model assumes that the quantity of parts in a buffer 

varies continuously from zero to its capacity. A production line with multiple parallel structures 

or single machines is illustrated in Figure 4.1 (a), and Figure 4.1 (b) represents the zoom-in detail 

of a parallel structure on the line. The following assumptions are made in this paper: 

1) In Figure 4.1 (a), each rectangle represents a single machine or a parallel structure denoted as 

𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑀. 𝑚𝑖 is defined as a virtual machine, each circle represents a buffer denoted as 

𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑀 − 1. There are M virtual machines and 𝑀 − 1 buffers in a parallel production 

line. 𝐵𝑖 is used to denote the maximum capacity of buffer 𝑏𝑖 and 𝑏𝑖(𝑡) is used to denote the 

buffer level at time instant t.  

 
Figure 4.1 Demonstration of the interdependency and dynamic interactions among production and 

supporting activities 

 
Figure 4.1   
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2) As shown in Figure 4.1 (b), a virtual machine 𝑚𝑖 consists of 𝑁𝑖 serial sub-lines, 𝑁𝑖 ≥ 1. For 

the jth sub-line in a virtual machine, 1 ≤ 𝑗 ≤ 𝑁𝑖, there are 𝑀𝑗 single machines and 𝑀𝑗 − 1 

buffers, 𝑀𝑗 ≥ 1. Each rounded rectangle represents a single machine denoted as 𝑚𝑖
𝑗,𝑘

, which 

is the kth machine in the jth sub-line, 1 ≤ 𝑘 ≤ 𝑀𝑗. Each circle represents a buffer denoted as 

𝑏𝑖
𝑗,𝑘

, which is the kth buffer in the jth sub-line. 𝐵𝑖
𝑗,𝑘

 is used to denote the maximum capacity 

of buffer 𝑏𝑖
𝑗,𝑘

 and 𝑏𝑖
𝑗,𝑘
(𝑡) is used to denote the buffer level at time instant t.  

3) 𝑠𝑖
𝑗,𝑘
(𝑡) denotes the speed of machine 𝑚𝑖

𝑗,𝑘
 at time instant t and 𝑇𝑖

𝑗,𝑘
 denotes the cycle time, 

with 
1

𝑇
𝑖
𝑗,𝑘 being the rated speed.  

4) 𝑚
𝑖

𝑗,𝑀𝑗
∗

 is denoted as the last slowest machine in the jth sub-line of parallel structure 𝑚𝑖, i.e., 

𝑀𝑗
∗ = arg min

1≤𝑘≤𝑀𝑗

1

𝑇
𝑖
𝑗,𝑘, which is closed to the end-of-line machine.  

5) For each parallel structure, the first machine in each sub-line, 𝑚𝑖
𝑗,1
, 1 ≤ 𝑗 ≤ 𝑁𝑖, has equal 

probability to take the last part in buffer 𝑏𝑖−1, if it is not blocked. Similarly, buffer 𝑏𝑖 receive 

the last fraction of part (to make the buffer full) from any unstarved machines 𝑚
𝑖

𝑗,𝑀𝑗 , 1 ≤ 𝑗 ≤

𝑁𝑖, with equal probabilities.  

6) Machines cannot fail when they are idle.  

7) In the main production line, as shown in Figure 1 (a), the first virtual machine can never be 

starved and the last virtual machine can never be blocked, while starvation and blockage 

definition for a virtual machine will be provided in Section 4.3. 

8) The parallel production system is subject to a sequence of disruption events, denoted as �⃗⃗� =

[𝑒1, … , 𝑒𝑛], where 𝑒𝑖 = (𝑚𝑖
𝑗,𝑘
, 𝑡𝑖, 𝑑𝑖) denotes machine 𝑚𝑖

𝑗,𝑘
 is down at 𝑡𝑖 and lasts for a time 

period of 𝑑𝑖.  
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4.3 Dynamics of A Single Parallel Structure 

To start the analysis of a production line with mixed single machines and parallel structures, a 

virtual machine concept is introduced as described in Section 4.2, Figures 4.1 (a) and 4.1 (b). A 

virtual machine 𝑚𝑖 is defined as a machine including 𝑁𝑖 sub-lines, 𝑁𝑖 ≥ 1. Therefore, a virtual 

machine could be a single machine with only one work-in-process when 𝑁𝑖 = 1, or a parallel 

structure with multiple work-in-process when 𝑁𝑖 > 1.  

Consider an isolated virtual machine 𝑚𝑖 with 𝑁𝑖 sub-lines, it is assumed that the production 

of each sub-line is independent from each other. This is a realistic assumption for industrial 

parallel production lines. Therefore, the superposition property is applied to a virtual machine in 

terms of its throughput and the throughput of every sub-line. 

Each sub-line in a virtual machine is a serial line. Therefore, the theories developed for serial 

lines from previous studies can be applied. Based on Chapter 3, we define the opportunity 

window 𝑊𝑖
𝑗,𝑘

 of a machine 𝑚𝑖
𝑗,𝑘

 at the ith sub-line of a virtual machine 𝑚𝑖, as the longest 

downtime duration for the machine at time t without causing permanent production loss at the 

end-of-line machine in the sub-line, i.e. 𝑊𝑖
𝑗,𝑘
= sup {𝑑 ≥ 0: s. t. ∃𝑇∗(𝑑), ∀𝑇 >

𝑇∗(𝑑), ∫ 𝑠
𝑖

𝑗,𝑀𝑗(𝑡)𝑑𝑡
𝑇

0
= ∫ 𝑠

𝑖

𝑗,𝑀𝑗(𝑡; 𝑒)𝑑𝑡
𝑇

0
}, where ∫ 𝑠

𝑖

𝑗,𝑀𝑗(𝑡; 𝑒)𝑑𝑡
𝑇

0
 and ∫ 𝑠

𝑖

𝑗,𝑀𝑗(𝑡)𝑑𝑡
𝑇

0
 are the 

production volume of the end-of-line machine 𝑚
𝑖

𝑗,𝑀𝑗
 with and without an inserted disruption 

event 𝑒 = (𝑚𝑖
𝑗,𝑘
, 𝑡𝑖, 𝑑𝑖) respectively. 

It has been proved in serial lines that not all the disruption events can cause permanent 

production loss to the system. Only those that last longer than their opportunity windows can 

cause permanent production loss to the whole line. Furthermore, if a disruption event causes a 
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stoppage event of the last slowest machine, then the production loss on the last slowest machine 

is the permanent production loss for the line and all other machines. This conclusion applies to 

any sub-line of a virtual machine. Therefore, the permanent production loss on a sub-line can be 

similarly evaluated. Suppose there is an event 𝑒 = (𝑚𝑖
𝑗,𝑘
, 𝑡𝑖 , 𝑑𝑖) at the ith sub-line of virtual 

machine 𝑚𝑖, whose downtime duration d  is larger than its corresponding opportunity window 

𝑊𝑖
𝑗,𝑘

. Then in the sub-line, for any machine 𝑚𝑖
𝑗,𝑙
, 1 ≤ 𝑙 ≤ 𝑀𝑗 , there is always a 𝑇∗ ≥ 𝑡 + 𝑑, 

which depends on the location of the last slowest machine 𝑚
𝑖

𝑗,𝑀𝑗
∗

, such that 

∫ 𝑠𝑖
𝑗,𝑙(𝑡)𝑑𝑡

𝑇

0
− ∫ 𝑠𝑖

𝑗,𝑙(𝑡;  𝑒)𝑑𝑡
𝑇

0
= ∫ 𝑠

𝑖

𝑗,𝑀𝑗
∗

(𝑡)𝑑𝑡
𝑇

0
− ∫ 𝑠

𝑖

𝑗,𝑀𝑗
∗

(𝑡;  𝑒)𝑑𝑡
𝑇

0
, ∀𝑇 ≥ 𝑇∗  (4.1) 

where ∫ 𝑠𝑖
𝑗,𝑙(𝑡; 𝑒)𝑑𝑡

𝑇

0
 and ∫ 𝑠𝑖

𝑗,𝑙(𝑡)𝑑𝑡
𝑇

0
 are the production volume of machine 𝑚𝑖

𝑗,𝑙
 with and 

without disruption event 𝑒 and ∫ 𝑠
𝑖

𝑗,𝑀𝑗
∗

(𝑡;  𝑒)𝑑𝑡
𝑇

0
 and ∫ 𝑠

𝑖

𝑗,𝑀𝑗
∗

(𝑡)𝑑𝑡
𝑇

0
 are the production volume of 

machine 𝑚
𝑖

𝑗,𝑀𝑗
∗

 with and without disruption event 𝑒. It is noted that 𝑠
𝑖

𝑗,𝑀𝑗
∗

(𝑡; 𝑒) can be measured 

in normal production and the rate 𝑠
𝑖

𝑗,𝑀𝑗
∗

(𝑡) is just the rated speed 
1

𝑇
𝑖

𝑗,𝑀𝑗
∗ of machine 𝑚

𝑖

𝑗,𝑀𝑗
∗

. 

Equation 4.1 indicates that in a sub-line if a downtime event causes production loss to the last 

slowest machine, then the production system suffer the same amount of production loss.  

Since a virtual machine 𝑚𝑖 satisfies superposition property, the permanent production loss at 

a virtual machine is simply the summation of the permanent production loss at each sub-line. We 

use 𝐿𝑖 to denote the permanent production loss at a virtual machine 𝑚𝑖 during (0, 𝑇] amd it can 

be expressed as  

𝐿𝑖 = ∑ ∫ 𝑠
𝑖

𝑗,𝑀𝑗
∗

(𝑡)𝑑𝑡
𝑇

0
− ∫ 𝑠

𝑖

𝑗,𝑀𝑗
∗

(𝑡;  𝑒)𝑑𝑡
𝑇

0

𝑁𝑖
𝑗=1     (4.2) 
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A set �̃�𝑖 = {𝑚𝑖
1,𝑀1

∗

, … ,𝑚
𝑖

𝑁𝑖,𝑀𝑁𝑖
∗

} is defined to include the slowest machine in each sub-line of 

a virtual machine 𝑚𝑖. The notations  �̃�𝑖(𝑡) and �̃�𝑖(𝑡;  𝑒) are denoted as �̃�𝑖(𝑡) = ∑ 𝑠
𝑖

𝑗,𝑁𝑗(𝑡)
𝑁𝑖
𝑗=1  and 

�̃�𝑖(𝑡; 𝑒) = ∑ 𝑠
𝑖

𝑗,𝑁𝑗(𝑡;  𝑒)
𝑁𝑖
𝑗=1  to represent the summation of production rates of all machines in the 

set �̃�𝑖 without and with disruption event 𝑒. 
1

𝑇𝑖
 is defined as 

1

𝑇𝑖
= ∑

1

𝑇
𝑖

𝑗,𝑀𝑗
∗

𝑁𝑖
𝑗=1 , which is the 

summation of the rated speed of the slowest machine in each sub-line of the virtual machine 𝑚𝑖. 

Then Equation 4.2 can be rewritten as  

𝐿𝑖 = ∫ �̃�𝑖(𝑡)𝑑𝑡
𝑇

0
− ∫ �̃�𝑖(𝑡;  𝑒)𝑑𝑡

𝑇

0
   (4.3) 

Similarly, the value of the rate �̃�𝑖(𝑡;  𝑒) can be measured in normal production and the rate �̃�𝑖(𝑡) 

is just 
1

𝑇𝑖
. Therefore, any disturbance event resulting in a decrease of the rate �̃�𝑖(𝑡; 𝑒) contribute 

to a permanent production loss of the virtual machine 𝑚𝑖.  

In serial lines, it is well defined that a machine is starved if it is up and the upstream buffer is 

empty, and a machine is blocked if it is up with the downstream buffer is full and the 

downstream machine does not take a part from the buffer. However, there are no straight forward 

definitions for starvation and blockage of a virtual machine. For a virtual machine 𝑚𝑖, even 

when its upstream buffer is empty, virtual machine 𝑚𝑖 may still have work-in-process (WIP) 

which may maintain the same production rate of the virtual machine. Similarly, if the 

downstream buffer of 𝑚𝑖 is full, it may still have available space which can accept parts from its 

upstream virtual machines. Therefore, a virtual machine can be reasonably treated as being 

starved or blocked if the duration of the upstream buffer being empty or the downstream buffer 

being full is long enough to cause the rate �̃�𝑖(𝑡;  𝑒) to decrease. 
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Definition 4.1 Assume buffer 𝑏𝑖−1 in front of a virtual machine 𝑚𝑖 , 𝑖 ≥ 2, is empty, this event 

can be denoted as 𝑒𝑠 = (𝑏𝑖−1 = 0, 𝑡, 𝑑) to represent buffer 𝑏𝑖−1 is empty at time t for a duration 

of d. 𝑚𝑖 is defined to be starved if 𝑒𝑠 causes permanent production loss at virtual machine 𝑚𝑖 as 

evaluated in Equation 4.3. 

Definition 4.2 Assume buffer 𝑏𝑖 in the downstream of a virtual machine 𝑚𝑖 , 𝑖 ≥ 2, is full, and the 

downstream machine 𝑚𝑖+1 does not take a part from the buffer 𝑏𝑖,  this event can be denoted as 

𝑒𝑏 = (𝑏𝑖 = 𝐵𝑖, 𝑡, 𝑑) to represent buffer 𝑏𝑖 is full at time t for a duration of d. 𝑚𝑖 is defined to be 

blocked if 𝑒𝑏 causes permanent production loss at virtual machine 𝑚𝑖 as evaluated in Equation 

4.3. 

Note that the definitions are applicable for a virtual machine consisting of single machine or 

multiple sub-lines. In the case of single machine, disruption events 𝑒𝑠 and 𝑒𝑏 causes immediate 

stoppage of the virtual machine 𝑚𝑖. 

4.4 Analysis of A Sequence of Concurrent Disruption Events in A 

Parallel Production Line 

In this Section, we will discuss how disruption events impact a parallel production system with 

multiple virtual machines. It is not unusual that there may be multiple slowest virtual machines 

in a parallel production line, which is defined as 𝑚𝑀𝑖
∗ , 1 ≤ 𝑖 ≤ 𝑀, with the smallest speed 

1

𝑇𝑀𝑖
∗
, 

i.e. 𝑀𝑖
∗ = arg min

1≤𝑗≤𝑀

1

𝑇𝑗
. It has been proved in a serial line with multiple slowest machines that any 

disruption events resulting in a starvation or blockage of the last slowest virtual machine 

contributes to the permanent production loss of the line. A similar conclusion can be obtained in 

parallel production systems.  
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Similarly, the throughput of the end-of-line virtual machine is used as the throughput of a 

line, and permanent production loss at the end-of-line virtual machine is defined as the 

permanent production loss of the line. Among the multiple slowest virtual machine, the last 

slowest virtual machine, or in other words, the one closest to the end-of-line virtual machine, is 

naturally selected. For convenience, 𝑀∗ is still used to refer to the last slowest virtual machine.  

Proposition 4.1 Given a realization of a production process subject to a sequence of disruption 

events  �⃗⃗� = [𝑒1, … , 𝑒𝑛] and suppose max
𝑙=1,…,𝑛

{𝑡𝑙 + 𝑑𝑙} < 𝑇, for the end-of-line virtual machine 𝑚𝑀, 

∃ 𝑇∗ ≥ 𝑇, s.t.  

∫ �̃�𝑀(𝑡)𝑑𝑡
𝑇′

0
− ∫ �̃�𝑀(𝑡;  𝐸)𝑑𝑡

𝑇′

0
= ∫ �̃�𝑀∗(𝑡)𝑑𝑡

𝑇′

0
− ∫ �̃�𝑀∗(𝑡;  𝐸)𝑑𝑡

𝑇′

0
, ∀𝑇′ > 𝑇∗  (4.4) 

Proof: For convenience, a notation 𝑏𝑘−𝑙 is used to represent a set of buffers which includes all 

the buffers on the path from a set of machines k, such as �̃�𝑖, to another set of machines l. 𝐵𝑘−𝑙 

denotes the summation of the buffer capacities of all the buffers in set 𝑏𝑘−𝑙, and 𝑏𝑘−𝑙(𝑡) is the 

summation of their buffer levels at time t.  

For the line segment between the sets �̃�𝑀∗ and �̃�𝑀, applying the conservation of flow, we 

have 

∫ �̃�𝑀∗(𝑡)𝑑𝑡
𝑇

0
= ∫ �̃�𝑀(𝑡)𝑑𝑡

𝑇

0
+ (𝑏�̃�𝑀∗−�̃�𝑀

(𝑇) − 𝑏�̃�𝑀∗−�̃�𝑀
(0))  

∫ �̃�𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑇

0
= ∫ �̃�𝑀(𝑡; 𝐸)𝑑𝑡

𝑇

0
+ (𝑏�̃�𝑀∗−�̃�𝑀

(𝑇; 𝐸) − 𝑏�̃�𝑀∗−�̃�𝑀
(0; 𝐸))  

Without downtime events, the virtual machine 𝑚𝑀∗ is treated as the unique slowest machine 

in the line segment from virtual machines 𝑚𝑀∗  to 𝑚𝑀, i.e. 
1

𝑇𝑀∗
< min {

1

𝑇𝑀∗+1
, … ,

1

𝑇𝑀
}. The total 
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buffer levels 𝑏�̃�𝑀∗−�̃�𝑀
(𝑇′) between �̃�𝑀∗ and �̃�𝑀 will decrease gradually until they become zero 

after a time period of 𝑇1
∗. Therefore, ∀𝑇′ ≥ 𝑇1

∗, we have  

∫ �̃�𝑀∗(𝑡)𝑑𝑡
𝑇′

0
= ∫ �̃�𝑀(𝑡)𝑑𝑡

𝑇′

0
+−𝑏�̃�𝑀∗−�̃�𝑀

(0)  

When a production process is subject to a set of disruption events �⃗⃗� = [𝑒1, … , 𝑒𝑛], there 

exists 𝑇2
∗, and 𝑏�̃�𝑀∗−�̃�𝑀

(𝑇′; 𝐸) = 0, ∀𝑇′ ≥ 𝑇2
∗, since there is no disruption events after T. 

Therefore, ∀𝑇′ ≥ 𝑇2
∗, we have  

∫ �̃�𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑇′

0
= ∫ �̃�𝑀(𝑡; 𝐸)𝑑𝑡

𝑇′

0
− 𝑏�̃�𝑀∗−�̃�𝑀

(0; 𝐸)  

Given the fact that the initial conditions are exactly the same, i.e. 𝑏�̃�𝑀∗−�̃�𝑀
(0) =

𝑏�̃�𝑀∗−�̃�𝑀
(0; 𝐸), we have ∀𝑇′ ≥ max (𝑇1

∗, 𝑇2
∗) 

∫ �̃�𝑀(𝑡)𝑑𝑡
𝑇′

0
− ∫ �̃�𝑀(𝑡;  𝐸)𝑑𝑡

𝑇′

0
= ∫ �̃�𝑀∗(𝑡)𝑑𝑡

𝑇′

0
− ∫ �̃�𝑀∗(𝑡;  𝐸)𝑑𝑡

𝑇′

0
  

End of the proof. 

Note that the value of the rate �̃�𝑀∗(𝑡; 𝐸) can be measured in normal production and the rate 

�̃�𝑀∗(𝑡) is just 
1

𝑇𝑀∗
. The Proposition 4.1 indicates that if a disruption event causes a production 

loss to the last slowest virtual machine 𝑚𝑀∗, then it also causes the same amount of permanent 

production loss to the production line. This naturally applies to a production line with a unique 

slowest virtual machine since the slowest one is the last slowest one.  

Evaluating the impact of disruption events to a production line with multiple virtual 

machines are very important in real-time production control, such as prioritizing the limited 

resources to the most needed location. To understand the permanent production loss caused by 

an arbitrary disruption event, analyzing the starvation and blockage condition of the last slowest 

virtual machine is important. For convenience, we use 𝑆𝑇𝑖(𝑡) = 1 and 𝐵𝐿𝑖(𝑡) = 1 to denote 
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virtual machine 𝑚𝑖 is starved and blocked at a given time t, and 𝑆𝑇𝑖(𝑡) = 0 and 𝐵𝐿𝑖(𝑡) = 0 to 

denote virtual machine 𝑚𝑖 is not starved and blocked at time t.  

Proposition 4.2 Given a realization of the production process subject to a sequence of 

disruption events �⃗⃗� = [𝑒1, … , 𝑒𝑛], the necessary and sufficient condition for permanent 

production loss because of a disruption event 𝑒𝑓 = ( 𝑚𝑖
𝑗,𝑘
, 𝑡𝑓 , 𝑑𝑓), 𝑚 < 𝑀∗ is 

𝑆𝑇𝑖(𝑡; 𝐸) = 0 and  𝑆𝑇𝑥(𝑡; 𝐸) = 1, ∀𝑥 ∈ (𝑖, 𝑀
∗] (4.5) 

where 𝑡′ < 𝑡 < 𝑡𝑙 + 𝑑𝑙 and 𝑡′ = inf{𝑡 ≥ 𝑡𝑙 : ∑ 𝑏𝑖
𝑗,𝑙(𝑡; 𝐸)

𝑀𝑖−1
𝑙=𝑘 = 0}. 𝑡′ is the time for buffers 

between the machine 𝑚𝑖
𝑗,𝑘

 and the end-of-line machine 𝑚
𝑖

𝑗,𝑀𝑗
in the jth sub-line of the virtual 

machine 𝑚𝑖 to become empty.  

 Proof: The output rate of the virtual machine 𝑚𝑖 is 𝑠𝑖𝑜𝑢𝑡(𝑡) = ∑ 𝑠𝑖
𝑙,𝑀𝑙𝑁𝑖

𝑙=1 (𝑡). 𝑠𝑖𝑜𝑢𝑡(𝑡) will not 

be decreased because of the disruption event 𝑒𝑓 until the last machine 𝑚
𝑖

𝑗,𝑀𝑗
 in the sub-line j 

being starved, i.e. 𝑠
𝑖

𝑗,𝑀𝑗(𝑡) = 0 or in other words, ∑ 𝑏𝑖
𝑗,𝑙
(𝑡)

𝑀𝑗−1

𝑙=𝑘 = 0. Let 𝑡′ = inf{𝑡 ≥

𝑡𝑙 : ∑ 𝑏𝑖
𝑗,𝑙(𝑡; 𝐸)

𝑀𝑖−1
𝑙=𝑘 = 0}, we will prove the sufficient condition by contradiction.  

Finally, we suppose there is a virtual machine between virtual machines 𝑚𝑖 and 𝑚𝑀∗ not 

being starved, i.e. ∃𝑥 ∈ (𝑖,𝑀∗], 𝑆𝑇𝑥 = 0. Then, the permanent production loss is caused by 

disruption events at the virtual machine 𝑚𝑥 rather than disruption event 𝑒𝑓. Then we suppose that 

the virtual machine 𝑚𝑖 is not starved, i.e. 𝑆𝑇𝑖 = 1. The permanent production loss is caused by 

disruption events at its upstream virtual machines, which also contradicts with the assumption 

that permanent production loss occurs due to the disruption event 𝑒𝑓. Therefore, 𝑡 >
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𝑡′:  𝑆𝑇𝑖(𝑡; 𝐸) = 0 and  𝑆𝑇𝑥(𝑡; 𝐸) = 1, ∀𝑥 ∈ (𝑖, 𝑀
∗] is the sufficient condition for existing 

permanent production loss caused by the disruption event 𝑒𝑓. 

The necessary condition is straight forward. If ∃𝑡 > 𝑡′:  𝑆𝑇𝑖(𝑡; 𝐸) = 0 and  𝑆𝑇𝑥(𝑡; 𝐸) = 1,

∀𝑥 ∈ (𝑖, 𝑀∗], then the slowest virtual machine is starved because of the disruption event 𝑒𝑓.  

End of the proof. 

Therefore, one can always find the smallest possible downtime duration 𝑑𝑙
∗ such that 

Equation 4.5 is satisfied, i.e. 

𝑑𝑓
∗(𝑡) = inf{𝑡 > 𝑡′:  𝑆𝑇𝑖 = 0 and 𝑆𝑇𝑥(𝑡; 𝐸) = 1, ∀𝑥 ∈ (𝑖,𝑀∗]}    (4.6) 

Proposition 4.3 Given a realization of the production process subject to a sequence of 

disruption events �⃗⃗� = [𝑒1, … , 𝑒𝑛], the necessary and sufficient condition for permanent 

production loss because of a disruption event 𝑒𝑓 = (𝐶0, 𝑚𝑖
𝑗,𝑘
, 𝑡𝑓 , 𝑑𝑓), 𝑚 > 𝑀∗ is 

𝐵𝐿𝑖(𝑡; 𝐸) = 0 and  𝐵𝐿𝑥(𝑡; 𝐸) = 1, ∀𝑥 ∈ [𝑀∗, 𝑖) (4.7) 

where 𝑡′ < 𝑡 < 𝑡𝑙 + 𝑑𝑙 and 𝑡′ = inf{𝑡 ≥ 𝑡𝑙 : ∑ 𝑏𝑖
𝑗,𝑙(𝑡; 𝐸)𝑘−1

𝑙=1 = ∑ 𝐵𝑖
𝑗,𝑙𝑘−1

𝑙=1 }. 𝑡′ is the time for 

buffers between the machine 𝑚𝑖
𝑗,1

 and the end-of-line machine 𝑚𝑖
𝑗,𝑘

in the jth sub-line of the 

virtual machine 𝑚𝑖 to become full.  

 Proof: The input rate of the virtual machine 𝑚𝑖 is 𝑣𝑖𝑖𝑛(𝑡) = ∑ 𝑣𝑖
𝑙,1𝑁𝑖

𝑙=1 (𝑡). 𝑣𝑖𝑖𝑛(𝑡) will not be 

decreased because of the disruption event 𝑒𝑓 until the first machine 𝑚𝑖
𝑗,1

 in the sub-line j being 

blocked, i.e. 𝑣𝑖
𝑗,1(𝑡) = 0 or in other words, ∑ 𝑏𝑖

𝑗,𝑙
(𝑡)

𝑗−1
𝑙=1 = ∑ 𝐵𝑖

𝑗,𝑙𝑗−1
𝑙=1 . Let 𝑡′ = inf{𝑡 ≥

𝑡𝑙 : ∑ 𝑏𝑖
𝑗,𝑙
(𝑡)

𝑗−1
𝑙=1 = ∑ 𝐵𝑖

𝑗,𝑙𝑗−1
𝑙=1 }, we will prove the sufficient condition by contradiction.  
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Finally, we suppose there is a virtual machine between virtual machines 𝑚𝑖 and 𝑚𝑀∗ not 

being blocked, i.e. ∃𝑥 ∈ [𝑀∗, 𝑚𝑖), 𝐵𝐿𝑥 = 0. Then, the permanent production loss is caused by 

disruption events at the virtual machine 𝑚𝑥 rather than disruption event 𝑒𝑓. Then we suppose that 

the virtual machine 𝑚𝑖 is not blocked, i.e. 𝐵𝐿𝑖 = 1. The permanent production loss is caused by 

disruption events at its downstream virtual machines, which also contradicts with the assumption 

that permanent production loss occurs due to the disruption event 𝑒𝑓. Therefore, 𝑡 >

𝑡′:  𝐵𝐿𝑖(𝑡; 𝐸) = 0 and  𝐵𝐿𝑥(𝑡; 𝐸) = 1, ∀𝑥 ∈ [𝑀
∗, 𝑖) is the sufficient condition for existing 

permanent production loss caused by the disruption event 𝑒𝑓. 

The necessary condition is straight forward. If ∃𝑡 > 𝑡′:  𝐵𝐿𝑖(𝑡; 𝐸) = 0 and  𝐵𝐿𝑥(𝑡; 𝐸) = 1,

∀𝑥 ∈ [𝑀∗, 𝑖), then the slowest virtual machine is blocked because of the disruption event 𝑒𝑓.  

End of the proof 

Similarly, one can always find the smallest possible downtime duration 𝑑𝑙
∗ such that Equation 

4.8 is satisfied. i.e. 

𝑑𝑓
∗(𝑡) = inf{𝑡 > 𝑡′:  𝐵𝐿𝑖(𝑡; 𝐸) = 0 and  𝐵𝐿𝑥(𝑡; 𝐸) = 1, ∀𝑥 ∈ [𝑀

∗, 𝑖)}    (4.8) 

Proposition 4.4 Given a realization of the production process subject to a sequence of 

disruption events �⃗⃗� = [𝑒1, … , 𝑒𝑛], the necessary and sufficient condition for permanent 

production loss because of a disruption event 𝑒𝑓 = (𝐶0, 𝑚𝑖
𝑗,𝑘
, 𝑡𝑓 , 𝑑𝑓), 𝑚 = 𝑀∗ is 

𝐵𝐿𝑖(𝑡; 𝐸) = 0 and  𝑆𝑇𝑖(𝑡; 𝐸) = 0, 𝑖 = 𝑀∗ (4.9) 

where 𝑡′ < 𝑡 < 𝑡𝑙 + 𝑑𝑙 and  
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𝑡′ =

{
 
 

 
 inf {𝑡 ≥ 𝑡𝑙 : ∑ 𝑏𝑖

𝑗,𝑙𝑀𝑗
∗−1

𝑙=𝑘 = 0} , 𝑘 < 𝑀𝑗
∗

𝑡𝑙 , 𝑘 = 𝑀𝑗
∗

inf {𝑡 ≥ 𝑡𝑙 : ∑ 𝑏𝑖
𝑗,𝑙𝑘−1

𝑙=𝑀𝑗
∗ = ∑ 𝐵𝑖

𝑗,𝑙𝑘−1
𝑙=𝑀𝑗

∗ } , 𝑘 > 𝑀𝑗
∗

  

𝑡′ is the time for buffers between the machine 𝑚𝑖
𝑗,𝑘

 and the last slowest machine 𝑚
𝑖

𝑗,𝑀𝑗
∗

in the jth 

sub-line of the virtual machine 𝑚𝑖 to become empty (𝑖 < 𝑀𝑗
∗) or full (𝑖 > 𝑀𝑗

∗).   

 Proof: We choose 𝑘 < 𝑀𝑗
∗ as an example. The case when 𝑗 ≥ 𝑀𝑖

∗ can be easily proved in a 

similar way. The rate �̃�𝑀∗(𝑡; 𝐸) of the virtual machine 𝑚𝑀∗ will not decrease because of the 

disruption event  𝑒𝑓 until the machine 𝑚
𝑀∗

𝑗,𝑀𝑗
∗

 is starved, i.e. 𝑣
𝑀∗

𝑗,𝑀𝑗
∗

(𝑡; 𝐸) = 0, or in other words, 

∑ 𝑏𝑀∗
𝑗,𝑙
(𝑡; 𝐸)

𝑀𝑗
∗−1

𝑙=𝑗
= 0. Let 𝑡′ = inf {𝑡 ≥ 𝑡𝑙 :  ∑ 𝑏𝑀∗

𝑗,𝑙
(𝑡; 𝐸)

𝑀𝑗
∗−1

𝑙=𝑗
= 0}, we will prove the sufficient by 

contradiction. 

Firstly, we suppose that the last slowest virtual machine 𝑚𝑀∗ is starved or blocked. The 

permanent production loss is caused by disruption events at its upstream and downstream virtual 

machines, which is contradicted with the assumption that the permanent production loss occurs 

because of the disruption event 𝑒𝑓. Therefore, 𝑡 > 𝑡′: 𝐵𝐿𝑀∗(𝑡; 𝐸) = 0 and  𝑆𝑇𝑀∗(𝑡; 𝐸) = 0 is the 

sufficient condition for existing permanent production loss caused by the disruption event 𝑒𝑓.  

The necessary condition is straight forward. ∀𝑡 > 𝑡′, we have �̃�𝑀∗(𝑡; 𝐸) = �̃�𝑀∗(𝑡). If >

𝑡′:  𝐵𝐿𝑀∗(𝑡; 𝐸) = 0 and  𝑆𝑇𝑀∗(𝑡; 𝐸) = 0, the last slowest virtual machine is neither starved nor 

blocked. Permanent production loss can only occur because of the disruption event 𝑒𝑓.  

End of the proof 
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Therefore, we can always find the slowest possible downtime duration 𝑑𝑓
∗ of the disruption 

event 𝑒𝑓 such that Equation 4.9 is satisfied 

𝑑𝑓
∗(𝑡) = inf{𝑡 > 𝑡′:  𝐵𝐿𝑖(𝑡; 𝐸) = 0 and  𝑆𝑇𝑖(𝑡; 𝐸) = 0, 𝑖 = 𝑀∗}    (4.10) 

The smallest possible downtime duration 𝑑𝑓
∗ of a disruption event which will not cause 

permanent production loss for the line can be evaluated using Equations 4.6, 4.8 and 4.10. The 

threshold 𝑑𝑓
∗ is actually the opportunity window of the machine 𝑚𝑖

𝑗,𝑘
. If the actual downtime 

duration 𝑑𝑙 is less than the threshold 𝑑𝑓
∗, there is no permanent production loss. However, if the 

downtime duration 𝑑𝑙 exceeds 𝑑𝑓
∗, the permanent production loss due to 𝑒𝑓 becomes nonnegative. 

The opportunity window 𝑑𝑓
∗ for machine 𝑚𝑖

𝑗,𝑘
 is the time it takes, from time 𝑡𝑙, for the last 

slowest virtual machine 𝑚𝑀∗ to just become starved (𝑚 < 𝑀∗) or blocked (𝑚 > 𝑀∗). 

However, to attribute the permanent production loss to associated disruption events in a 

parallel production system becomes more complicated than in a serial line. In serial lines, the last 

slowest virtual machine only operates at two speeds: its rate speed and zero. The permanent 

production time loss caused by a disruption event 𝑒𝑓 = (𝑚𝑖, 𝑡𝑓 , 𝑑𝑓) in a serial line can be 

expressed as 𝑑𝑓 − 𝑑𝑓
∗ where 𝑑𝑓 is the downtime duration and 𝑑𝑓

∗ is the opportunity window of the 

machine 𝑚𝑖 at time t. However, in a parallel production system, the last slowest virtual machine 

can operate at more than two rates, and its rate �̃�𝑀∗(𝑡; 𝐸) keeps changing. Therefore, it is very 

difficult to evaluate the permanent production loss based on the changing �̃�𝑀∗(𝑡; 𝐸). For a 

disruption event 𝑒𝑓 = ( 𝑚𝑖
𝑗,𝑘
, 𝑡𝑓 , 𝑑𝑓), the value 𝑑𝑓 − 𝑑𝑓

∗ does not represent an exact permanent 

production time loss, but only indicates the longest possible duration of a permanent production 
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loss caused by 𝑒𝑓. There is no simple proportional relationship between the permanent 

production loss and the value 𝑑𝑓 − 𝑑𝑓
∗ in parallel systems. 

For ease of discussion, a notation 𝐿(𝑒𝑓) is used to represent a permanent production loss 

caused by a disruption event 𝑒𝑓. For a parallel system subjecting to a sequence of disruption 

events �⃗⃗� = [𝑒1, … , 𝑒𝑛], when E contains only one disruption event 𝑒1 = (𝑚𝑖
𝑗,𝑘
, 𝑡1, 𝑑1), the 

permanent production loss of the system caused by 𝑒1 can be calculated based on Proposition 4.1 

as 

𝐿(𝑒1) = {
∫ �̃�𝑀∗(𝑡)𝑑𝑡
𝑡1+𝑑1

𝑡1+𝑑1
∗ − ∫ �̃�𝑀∗(𝑡; 𝑒1)𝑑𝑡

𝑡1+𝑑1

𝑡1+𝑑1
∗ , 𝑑1 > 𝑑1

∗

0, 𝑑1 ≤ 𝑑1
∗
  

where 𝑑1
∗ is the opportunity window of the machine 𝑚𝑖

𝑗,𝑘
, which can be determined from 

Equations 4.6, 4.8 and 4.10 depend on the location of 𝑚𝑖
𝑗,𝑘

.  

If E contains more than one disruption event, the rate �̃�𝑀∗(𝑡; 𝐸) keeps changing subject to 

disruption events 𝑒1, … , 𝑒𝑛. In addition, it is possible that two or more disruption events can 

overlap, i.e. ∃𝑝 ≠ 𝑞, [𝑡𝑝, 𝑡𝑝 + 𝑑𝑝) ∩ [𝑡𝑞 , 𝑡𝑞 + 𝑑𝑞) ≠ 𝜙. In this case, it is even more difficult to 

evaluate the permanent production loss and attribute the loss to associated downtime events. For 

convenience, a notation 𝜏(𝑡; 𝑒𝑓) = {0, 1} is adopted to denote whether a disruption event 𝑒𝑓 

causes permanent production loss. Specifically, 𝜏(𝑡;  𝑒𝑓) = 0 indicates that the event 𝑒𝑓 does not 

cause permanent production loss and 𝜏(𝑡;  𝑒𝑓) = 1 indicates that the event 𝑒𝑓 causes permanent 

production loss. Usually, the starvation, blockage and breakdown of each machine can be 

obtained from production lines. Using real data or simulation, it can be determined if a virtual 

machine is starved or blocked based on Definitions 4.1 and 4.2. In addition, 𝜏(𝑡;  𝑒𝑓) can be 
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determined based on Propositions 4.2, 4.3 and 4.4. Then the permanent production loss caused 

by a disruption event 𝑒𝑓 to the overall system can be calculated as  

𝐿(𝑒1) = {
∫ 𝜏(𝑡;  𝑒𝑓)[�̃�𝑀∗(𝑡) − �̃�𝑀∗(𝑡; 𝑒1)]𝑑𝑡
𝑡1+𝑑1

𝑡1+𝑑1
∗ , 𝑑1 > 𝑑1

∗

0, 𝑑1 ≤ 𝑑1
∗
  

It is possible, by coincidence, two or more different disruption events may result in 

overlapping permanent production loss to associated disruption events by using any allocation 

rules, such as even distribution of the amount of the production loss. 

4.5 Conclusion 

In this Section, the concept of virtual machine is introduced to represent a single machine or a 

parallel structure in a production line. The dynamic of a single virtual machine is studied. The 

superposition property of a virtual machine determines that any permanent production loss at a 

sub-line is also permanent to the whole virtual machine. This research unifies the analysis of 

serial production lines and parallel production lines in terms of disruption events impacts. The 

analysis suggests that the impacts of any disruption events are only apparent when the last 

slowest virtual machine is starved or blocked.  
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Chapter 5 

EVENT-BASED MODELING OF DISTRIBUTED SENSOR 

NETWORKS IN PRODUCTION SYSTEMS 

5.1 Introduction 

Multistage manufacturing systems are characterized by their complex dynamics subject to 

constant changes caused by technology insertion, engineering modifications, as well as 

disruption events. To support daily operation, distributed sensors are used to provide real-time 

data describing the status of each process. Despite the big potential in improving productivity, 

the advantages of distributed sensor networks are not fully realized for overall system efficiency 

due to a lack of system level modeling method.  

Motivated by this need, an event-based modeling (EBM) method is developed to evaluate the 

performance of all the stations and supporting activities in real-time based on the sensor data 

(e.g., buffer levels and machine random failures). This approach quantifies the systematic 

impacts of all the production and supporting activities with single unified index. It provides a 

severity ranking of production and supporting activities which is very useful for plant managers 

to allocate the limited resources to where they are needed the most. 

5.2 A Virtual Multiple Layers Sensor Framework 

To serve for the system monitoring and modeling, a virtual multiple layers sensor framework is 

established. Figure 5.1 shows a certain battery production line with a distributed sensor network. 

The sensor network is “sliced” into three virtual layers and each layer has its unique function. 
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The first virtual layer is defined as material flow sensing layer which includes inductive 

proximity sensors, counter sensors, etc. to track all time-stamped material flow. Both buffer 

levels and machines’ speeds are measured by the sensors in the first virtual layer. The second 

virtual layer is defined as event diagnosis layer which includes thermal sensors, pressure sensors, 

inspection machines, etc. to track the disruption events resulted from machines and supporting 

activities. The third virtual layer is system modeling layer which interprets the sensed 

information from the first two layers to formulate an integrated system model. 

5.3 Mathematical System Dynamics Description 

Event-based modeling (EBM) is developed to capture all the activities, resources and disruption 

events from the multiple layers sensor framework in a production system3. The material flow 

sensing layer captures the material flow and the event diagnose layer captures the disruption 

events and possible changes. The interactions among machines and supporting activities can be 

                                                           
3 For ease of discussion, a serial production line defined in Chapter 3 is adopted. The approach can be easily 

extended to complex production lines with parallel structures. 

 

 
Figure 5.1 A production line with sensor system 

 

Figure 5.1  A production line with sensor system 
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treated as “internal forces”, and the disruptions can be treated as “external forces”. Therefore, the 

system dynamics with sensor data can be represented by a state space equation as:      

�̇�(𝑡) = 𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))   (5.1) 

where 𝑈(𝑡) = �⃗⃗� = [𝑒1, … , 𝑒𝑛]  denotes a sequence of disruption events during period (0, 𝑡].   

To solve the state space equation 5.1, the following homogeneous and nonhomogeneous 

functions are considered. 

�̇�(𝑡) = 𝑓(𝑡, 𝑋(𝑡))   (5.2) 

�̇�(𝑡) = 𝑓(𝑡, 𝑋(𝑡), 𝑈(𝑡))   (5.3) 

Equation 5.2 describes a virtual scenario that there are no disruption events in a production 

line. The output of the system is constrained by the base cycle time of the slowest machine, i.e. 

𝑇𝑀∗ [7, 17]. Therefore, the complementary solution 𝑋𝑐(𝑡) for the homogeneous function can be 

denoted as 

𝑋𝑐(𝑡) = 𝑡/𝑇𝑀∗   (5.4) 

𝑋𝑐(𝑡) is the largest production output that can be possibly produced by the system during (0, 𝑡] 

and is denoted as base output.  

Equation 5.3, on the other hand, describes the impact of disruption events �⃗⃗� to the overall 

system performance. The particular solution 𝑋𝑝(𝑡) for the nonhomogeneous function is the 

complementary of  𝑋𝑐(𝑡) and is expressed as 

𝑋𝑝(𝑡) = 𝑋(𝑡) − 𝑋𝑐(𝑡)   (5.5) 
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𝑋𝑝(𝑡) measures the production loss caused by disruption events �⃗⃗� and is denoted as output loss.  

The dynamic EBM naturally integrates two important components: the capacity of the system 

(i.e. 𝑋𝑐(𝑡)) and the impact of random disruptions to the system (i.e. 𝑋𝑝(𝑡)). They reflect two 

important considerations into the decision making process: what we expect and what we actually 

have. Tracing and reducing the root causes of 𝑋𝑝(𝑡) is the goal in order to improve system 

performance. Next, we will develop an algorithm to evaluate 𝑋𝑝(𝑡) and to trace it to individual 

machine and supporting activity. 

5.4 The systematic impact of machines and supporting activities 

It has been shown in Section 5.3 that the systematic impact of each disruption event can be 

quantified as the permanent production time loss caused by the event. Therefore, system 

production loss 𝑋𝑝(𝑡) can be quantified using the concept of permanent production time loss 

caused by each disruption event. To find the relationship, we have the following Proposition.  

Proposition 5.1 Given a realization of a production process subject to a sequence of disruption 

events  �⃗⃗� = [𝑒1, … , 𝑒𝑛] within (0, 𝑇], the system output loss 𝑋𝑝 is 

𝑋𝑝(𝑡) = −|⋃ [𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖

∗ + 𝑇𝐿(𝑒𝑖))𝑖∈𝑛𝑆 |/𝑇𝑀∗  (5.6) 

where 𝑛𝑆 = {𝑖 = 1,… , 𝑛, 𝑠. 𝑡. , 𝑇𝐿(𝑒𝑖) > 0} and 𝑑𝑖
∗ = inf {𝑑 > 0: 𝑠. 𝑡. 𝑇𝐿(𝑒𝑖) > 0}. 

Proof: Let’s consider a disruption event 𝑒𝑖 = (𝑚𝑖1 ,𝑚𝑖2 , 𝑡𝑖, 𝑑𝑖), based on our earlier 

discussion, the last slowest machine 𝑚𝑀∗ is down (𝑖2 < 𝑀∗), starved (𝑖2 = 𝑀
∗) or blocked (𝑖2 >

𝑀∗) by the event at time 𝑡𝑖 + 𝑑𝑖
∗. If 𝑑𝑖 > 𝑑𝑖

∗, machine 𝑚𝑀∗ will stop at time 𝑡𝑖 + 𝑑𝑖
∗ until 𝑡𝑖 +

𝑑𝑖
∗ + 𝑇𝐿(𝑒𝑖). We thus attribute the stoppage of the last slowest machine 𝑚𝑀∗ during time [𝑡𝑖 +
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𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖

∗ + 𝑇𝐿(𝑒𝑖)) to the disruption event. On the other hand, if 𝑑 ≤ 𝑑∗, no stoppage of the 

slowest machine will be resulted from the disruption event. Therefore, set of time intervals 

during which the last slowest machine 𝑚𝑀∗ stops as a result of disruption events �⃗⃗� can be 

reconstructed as follows: 

𝐼𝑀∗ = {[𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖

∗ + 𝑇𝐿(𝑒𝑖)), 𝑖 = 1,… , 𝑛, 𝑠. 𝑡. , 𝑇𝐿(𝑒𝑖) > 0} 

Since any stoppage of the slowest machine 𝑚𝑀∗ can only result from disruption events �⃗⃗�, the 

last slowest machine can only stop during the time intervals contained in the set 𝐼𝑀∗. Therefore, 

the overall stoppage time 𝐷 of the last slowest machine 𝑚𝑀∗ during (0, 𝑇] can be denoted as  

𝐷 = |⋃ [𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖

∗ + 𝑇𝐿(𝑒𝑖))𝑖∈𝑛𝑆 |  

It has been proved in Proposition 3.1 that the system output loss 𝑋𝑝(𝑡) can be measured as  

𝑋𝑝(𝑡) = 𝑋(𝑇′; 𝐸) − 𝑋(𝑇′) = −D 𝑇𝑀∗⁄  

Therefore, the system output loss 𝑋𝑝(𝑡) can be presented as  

𝑋𝑝(𝑡) = −|⋃ [𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖

∗ + 𝑇𝐿(𝑒𝑖))𝑖∈𝑛𝑆 |/𝑇𝑀∗  

End of the proof. 

Based on Proposition 5.1, 𝑋𝑝(𝑡) can be attributed to each disruption event 𝑒𝑖 proportionally to 

the associate permanent production time loss 𝑇𝐿(𝑒𝑖). If a disruption event 𝑒𝑖 does not overlap 

with other disruption event, the output loss due to the disruption event is 𝑃𝐿(𝑒𝑖) = −|[𝑡𝑖 +

𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖

∗ + 𝑇𝐿(𝑒𝑖)|/𝑇𝑀∗ = −𝑇𝐿(𝑒𝑖)/ 𝑇𝑀∗. If 𝑒𝑖 overlaps with other disruption events, i.e. ∃𝑗 ≠

𝑖, [𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖

∗ + 𝑇𝐿(𝑒𝑖)) ∩ [𝑡𝑗 + 𝑑𝑗
∗, 𝑡𝑗 + 𝑑𝑗

∗ + 𝑇𝐿(𝑒𝑗)) ≠ 𝜙, the output loss in the 
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overlapping period will be equally shared among the corresponding events. We will use 𝑃𝐿(𝑒𝑖) 

to denote the output loss attributed to event  𝑒𝑖.  

The systematic impact of each machine and supporting activity can also be quantified. The 

permanent production loss of each disruption event can be further aggregated and attributed to 

the corresponding machines or supporting activities. We assume that there is a sequence of 

disruption events 𝑒𝑖,1, … , 𝑒𝑖,𝑛𝑖 caused by 𝑚𝑖. The permanent production loss caused by 𝑚𝑖, 1 ≤

𝑖 ≤ 𝑀 + 𝑁, can be represented as  

𝑃𝐿𝑖 = ∑ 𝑃𝐿(𝑒𝑖,𝑘) 
𝑛𝑖
𝑘=1     (5.7) 

By using permanent production loss as a unified index, the impact to the overall system from 

individual machine and supporting activity can be quantified. It provides a natural severity 

ranking of machines and supporting activities, which is very important in real-time production 

control, such as prioritizing the limited resources to where they are needed most. 

5.5 A Case Study 

 
Figure 5.2 A battery assembly line with 7 machines and 3 buffers 

 
Figure 5.2.  A battery assembly line with 7 machines and 3 buffers 
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In the case study, a battery assembly line segment is used as shown in Figure 5.2, which is based 

on a true battery assembly line. The assembly line consists of 7 machines that perform various 

operations, such as filling, assembling and welding. The empty space between adjacent machines 

serves as buffers where unfinished product can be temporally stored until the next machine is 

available. At each machine, certain parts are assembled to unfinished products. Parts are 

delivered from central stocking area to appropriate machines by a material handling staff and 

stored in a buffer beside the machine, which is called a line-side buffer 𝑙𝑏𝑖, 1 ≤ 𝑖 ≤ 5. The line-

side buffer level decreases gradually as parts are consumed at a machine. When the line-side 

buffer levels reach a certain value, a requirement is sent out to the central stocking area asking 

for parts. The level is called a reorder point and it refers to the duration over which the remaining 

parts would last for assembling, such as 15 minutes. 

We use a simulation model to generate production data, which otherwise is obtained from the 

distributed sensor system. For confidentiality reasons, we mock up the parameters of machines 

and buffers, which are shown in Tables 5.1 and 5.2. Mean time to repair (MTTR) and mean time 

between failures (MTBF) are used to generate system variation and they are assumed to be an 

exponential distribution. For ease of discussion, it is assumed that there is single type of part that 

will be assembled at each assembly machine and the number of part being assembled to the 

unfinished products is fixed to be 1. A material handling staff can only deliver one type of part at 

each trip which can fill up a line-side buffer. There are 2 material handling staffs in the central 

stocking area. The line-side buffer capacity, delivering time from the central stocking area to 

each machine and the reorder point of each line-side buffers are listed in Tables 5.3 to 5.5. 
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Table 5.1  Parameters of machines 

Machines Cycle time 

(sec/cell) 

MTTR 

(Min) 

MTBF 

(Min) 

𝑚1 40 10 70 

𝑚2 30 15 70 

𝑚3 40 10 80 

𝑚4 30 19 75 

𝑚5 25 20 70 

𝑚6 24.4 20 85 

𝑚7 25 11 70 

 

 

 

Table 5.2  Parameters of buffers 

Buffers Buffer capacity 

𝑏1 72 

𝑏2 39 

𝑏3 39 

 

 

Table 5.3  Parameters of the line-side buffers 

Line-side buffers Buffer capacity 

𝑙𝑏1 325 

𝑙𝑏2 325 

𝑙𝑏3 

𝑙𝑏4 

𝑙𝑏5 

350 

375 

400 
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Table 5.4  Delivering time to each line-side buffer 

Line-side buffers Delivering time 

(Min) 

𝑙𝑏1 25 

𝑙𝑏2 25 

𝑙𝑏3 

𝑙𝑏4 

𝑙𝑏5 

40 

45 

55 

 

 

Table 5.5  Reorder point of each line-side buffer 

Line-side buffers Reorder point 

(Min) 

𝑙𝑏1 25 

𝑙𝑏2 25 

𝑙𝑏3 

𝑙𝑏4 

𝑙𝑏5 

39 

43 

55 

 

 

Table 5.6  Permanent production loss of each machine 

Machines Permanent production loss 

(Parts) 

𝑚1 0 

𝑚2 3 

𝑚3 

𝑚4 

𝑚5 

𝑚6 

𝑚7 

𝑚8 

0 

38 

110 

93 

151 

56 
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The simulation working time is one shift (8 hours per shift). In Table 5.6, we list the 

permanent production loss attributed to each machine and supporting activity (i.e. material 

handling in this case study). In the early works [10], the bottleneck is proven to be the machine 

whose upstream machines are more likely to be blocked and downstream machines are more 

likely to be starved. Based on the accumulated blockage and starvation time of each machine, 

which is shown in Figure 5.3, machines 𝑚5 and 𝑚7 (marked with arrow) are identified as the 

bottlenecks. In Table 5.6, machines 𝑚5 and 𝑚7 cause the most permanent production loss. The 

machines causing the highest permanent production loss indicates the exact same bottlenecks. 

Although the bottleneck identification methods can identify all the local bottlenecks, the 

significance of bottlenecks is just based on heuristics. In addition, bottleneck methods do not 

take into account of the impact from supporting activities and quality issues, and thus may not be 

able to identify the real causes of system inefficiency when supporting activities or quality are 

big concerns.  

On the other hand, the analysis based on EBM provides the severity ranking of both 

machines and supporting activities in terms of the permanent production loss, i.e. 𝑚7 > 𝑚5 >

 
Figure 5.3  The accumulated blockage and starvation time of each machine 

 
Figure 5.3.   
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𝑚6 > 𝑚8 > 𝑚4 > 𝑚2, where 𝑚8 denotes the material handling process. It can help plant floor 

managers to identify the machines or supporting activities that contribute the most to system 

output loss. This integrated model and analysis provide more detailed information for resource 

and budget allocation. For example, the maintenance work can be prioritized based on event or 

machine severity ranking.  

Table 5.7  Comparison of system output improvement using policy1, policy 2 and policy 3 

 Policy 1 Policy 2 Policy 3 

Improvement [178, 190] [29, 33] [118,123] 

An alternative way to improve system output is to make certain machines produce extra 

products before a production shift, which is not an unusual practice in the plant floor operation. 

Then a question arises about which machines should work for extra time and how many extra 

products or extra time those machines should work. In practice, the machines and the number of 

extra products are determined based on the engineers’ experience or heuristic rules. Now EBM 

provides a quantifiable solution through evaluating the permanent production loss of each 

machine. Specifically, machines with the highest accumulated permanent production loss should 

be selected and the numbers of extra products should equal to the permanent production loss of 

the selected machines. We further illustrate this conclusion with the following two numerical 

experiments. 

The first numerical experiment is used to illustrate that the machines with the highest 

accumulated permanent production loss should be selected. Three policies are compared. In 

policy 1, machines 𝑚5 and 𝑚7, which cause the most permanent production loss, are selected. In 

policy 2, machines 𝑚1 and 𝑚4, which have the smallest standalone throughput, are selected. In 

policy 3, machines 𝑚4 and 𝑚5, which have the most accumulated downtime, are selected. The 
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selected machines in the three policies are required to produce 100 extra products for a fair 

comparison and sensitivity analysis. Simulation models are developed to compare the system 

output improvement applying the three continuous improvement policies. With 50 replications 

and eight hours of working time in simulation, table 5.7 illustrates the 95% confidence interval 

(CI) of the system output improvement of each policy. The result indicates that EBM based 

policy (policy 1) can lead to the largest production improvement. 

The second numerical experiment is used to demonstrate that the number of extra products 

should be the permanent production loss of the selected machines. Consequently, the system 

output improvement in this scenario is expected to be the summation of the extra products 

produced by each selected machine. Nine experiments are tested. In the 𝑖𝑡ℎ experiment, the 

numbers of extra products produced on 𝑚5 and 𝑚7 equal to 10 + 20𝑖 and 1 + 30𝑖, 1 ≤ 𝑖 ≤ 9. 

Each experiment has a simulation time of one shift with 50 replications. Figure 5.4 illustrates the 

simulation results with 95% CI of system output improvement of each experiment. The result 

indicates that the system output improvement increases with the number of extra products until 

reaches the maximum value as in experiment 5, where the number of extra products equals to the 

 
Figure 5.4  95% CI of system output improvement of each numerical experiment 
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permanent production loss of the selected machines (i.e. permanent production loss is 261 parts). 

Any extra parts beyond the permanent production loss (i.e. experiment 𝑖, 𝑖 ≥ 6) have no extra 

contribution to the system output improvement. It is clear that the maximum system output 

improvement from simulation matches the permanent production loss evaluation from EBM 

model. The case study also demonstrates a numerical validation of EBM model.  

5.6 Conclusion 

In this chapter, a sensor system with three virtual layers is developed for multi-stage 

manufacturing systems. The first two virtual layers convert the material flow into information 

flow and send the information to the third virtual layer. The sensor information is further 

transferred into true knowledge in the third layer through an integrated system modeling 

approach, i.e. EBM. Dynamic EBM naturally integrates two important system considerations, i.e. 

system capacity and production loss. A unified system performance index, i.e. permanent 

production loss caused by disruption events, machines and supporting activities provides a 

natural severity ranking of all the machines and supporting activities.  
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Chapter 6 

STANDALONE THROUGHPUT ANALYSIS ON THE PROPAGATION 

OF DISTURBANCES IN PRODUCTION SUB-SYSTEMS 

6.1 Introduction 

Standalone throughput (SAT) of a single machine is one of the most widely used performance 

indexes in industry due to its clear definition, ease of evaluation and the ability to provide a 

guidance for continuous improvement in production system. A complex multistage 

manufacturing system is typically segmented into several subsystems for efficient local 

management. It is important to evaluate performance of each subsystem to improve overall 

system productivity. However, the definition of standalone throughput of a production subsystem 

is not as clear as for a single machine in current literature or in practice, not to say an effective 

evaluation method. This chapter deals with the standalone throughput of a serial production line 

segment. The definition and implication of standalone throughput of a line segment is discussed. 

A data-driven method is developed based on online production data and is proved analytically 

under a practical assumption. In addition, the method is verified through simulation case studies 

to be an accurate and fast estimation of the standalone throughput of a production line segment.  

6.2 System Descriptions and Assumptions 

Continuous flow models is adopted in this chapter to analyze the dynamics of a serial production 

line consisting of 𝑀 machines and 𝑀 − 1 buffers and a line segment with 𝑙𝑀 machines and 
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𝑙𝑀 − 1 buffers as shown in Figures 6.1 (a) and 6.1 (b), respectively. The following descriptions 

and assumptions are made. 

1) Buffers 𝑏1, … , 𝑏𝑀−1 have finite capacities, which are denoted as 𝐵1, … , 𝐵𝑀−1. For ease of 

expression, we use 𝑏1(𝑡),… , 𝑏𝑀−1(𝑡) to denote the buffer levels of buffers 𝑏1, … , 𝑏𝑀−1 at 

time 𝑡. 

2) Machines 𝑚1, … ,𝑚𝑀 has rated speeds, which are 
1

𝑇1
, … ,

1

𝑇𝑀
. We use 𝑠1(𝑡), … , 𝑠𝑀(𝑡) to denote 

the speed of machines 𝑚1, … ,𝑚𝑀 at time 𝑡. 

3) Buffers 𝑏𝑙1, … , 𝑏𝑙𝑀−1 in the line segment 𝑙 as shown in Figure 1 have finite capacities, which 

are denoted as 𝐵𝑙1, … , 𝐵𝑙𝑀−1. For ease of expression, we use 𝑏𝑙1(𝑡),… , 𝑏𝑙𝑀−1(𝑡) to denote 

the buffer levels of buffers 𝑏𝑙1, … , 𝑏𝑙𝑀−1 at time 𝑡. 

 
Figure 6.1  A serial production line with a line segment l 
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4) Machines 𝑚1, … ,𝑚𝑀 in the line segment 𝑙 as shown in Figure 1 has rated speeds, which are 

1

𝑇1
, … ,

1

𝑇𝑀
. We use 𝑠1(𝑡), … , 𝑠𝑀(𝑡) to denote the speed of machines 𝑚1, … ,𝑚𝑀 at time 𝑡. 

5) The first machine 𝑚1 can never be starved and the last machine 𝑚𝑀 can never be blocked. 

6) A machine cannot fail when it is idle.  

7) 𝑚𝑀∗ denotes the last slowest machine in the overall system, i.e. 𝑀∗ = arg min
1≤i≤M

1

𝑇𝑖
. 

8) 𝑚𝑀𝑙
∗ denotes the last slowest machine in the line segment, i.e. 𝑀∗ = arg min

1≤𝑖≤𝑙𝑀

1

𝑇𝑖
. 

9) Production line is subject to a sequence of random downtime events 𝐸 = [𝑒1, … , 𝑒𝑛], where 

𝑒𝑖 = (𝑚𝑘, 𝑡𝑖, 𝑑𝑖) denotes a random downtime event that at time 𝑡𝑖, machine 𝑚𝑘 is down for 

𝑑𝑖. 

10) Production line segment 𝑙 is subject to a sequence of random downtime events 𝐸𝑙𝑑 =

[𝑒𝑙𝑑1, … , 𝑒𝑙𝑑𝑛], where 𝑒𝑙𝑑𝑖 = (𝑚𝑙𝑘, 𝑡𝑖, 𝑑𝑖) denotes a random downtime event that at time 𝑡𝑖, 

machine 𝑚𝑙𝑘 is down for 𝑑𝑖. 

11) The first machine 𝑚𝑙1 in the line segment 𝑙 is subject to a sequence of starvation events 

𝐸𝑙𝑓𝑠 = [𝑒𝑙𝑓𝑠1, … , 𝑒𝑙𝑓𝑠𝑛], where 𝑒𝑙𝑓𝑠𝑖 = (𝑚𝑙1, 𝑡𝑙𝑓𝑠𝑖 , 𝑑𝑙𝑓𝑠𝑖) denotes a starvation event at time 

𝑡𝑙𝑓𝑠𝑖, the first machine 𝑚𝑙1 is starved for 𝑑𝑙𝑓𝑠𝑖. 

12) The last machine 𝑚𝑙𝑀 in the line segment 𝑙 is subject to a sequence of starvation events 

𝐸𝑙𝑙𝑏 = [𝑒𝑙𝑙𝑏1, … , 𝑒𝑙𝑙𝑏𝑛], where 𝑒𝑙𝑙𝑏𝑖 = (𝑚𝑙𝑀, 𝑡𝑙𝑙𝑏𝑖 , 𝑑𝑙𝑙𝑏𝑖) denotes a starvation event at time 

𝑡𝑙𝑙𝑏𝑖, the first machine 𝑚𝑙𝑀 is starved for 𝑑𝑙𝑙𝑏𝑖. 

6.3 Analysis of Current Disruption Events  

We suppose that the serial production line, which is shown in Figure 6.1, is subjected to a 

sequence of disruption events 𝐸 = [𝑒1, … , 𝑒𝑛]. Based on the analysis in Chapter 3, if an 
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disruption event 𝑒𝑖 ∈ 𝐸 has 𝑑𝑖 > 𝑑𝑖
∗, the last slowest machine 𝑚𝑀∗ is forced to be stopped during 

(𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖]. We can reconstruct the stoppage events of the last slowest machine from the 

downtime events with nontrivial permanent production time loss. The total time that the last 

slowest machine is stopped can be evaluated as 

| ⋃ (𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖]𝑖∈𝑛𝑠 |  (6.1) 

where 𝑛𝑠 = {𝑖 = 1,… , 𝑛, s. t. 𝐿(𝑒𝑖; 𝐸) > 0} denotes the number of disruption events that causes 

the last slowest machine being stopped.  

During with the potential overlaps of the stoppage events constructed based on Equation 6.1 

is cumbersome. It would be of interest to find a set of conditions under which the total 

production time loss due to a sequence of disruption events 𝐸 can be expressed as the simple 

summation of 𝐿(𝑒𝑖) and investigate how often this type of scenarios may occur. In other words, 

we would like to know the necessary and sufficient conditions, as relaxed as possible, for the 

following equality to hold. 

|⋃ (𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖]𝑖∈𝑛𝑠 | = ∑ 𝐿(𝑒𝑖)

𝑛
𝑖=1  (6.2) 

Proposition 6.1 Given a realization of the production process subject to a sequence of downtime 

events 𝐸 = [𝑒1, … , 𝑒𝑛] within time interval (0, 𝑇], (𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖] ∩ (𝑡𝑗 + 𝑑𝑗

∗, 𝑡𝑗 + 𝑑𝑗] ≠ 𝜙, 𝑖 ≠

𝑗 ∈ 𝑛𝑠, if and only if 𝑡𝑖 + 𝑑𝑖
∗ = 𝑡𝑗 + 𝑑𝑗

∗. 

Proof: If 𝑡𝑖 + 𝑑𝑖
∗ = 𝑡𝑗 + 𝑑𝑗

∗, then we have (𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖] ∩ (𝑡𝑗 + 𝑑𝑗

∗, 𝑡𝑗 + 𝑑𝑗] = (𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 +

min{𝑑𝑖, 𝑑𝑗}) ≠ 𝜙, since 𝑖, 𝑗 ∈ 𝑛𝑠. We will prove the sufficiency by contradiction. Suppose 𝑡𝑖 +

𝑑𝑖
∗ ≠ 𝑡𝑗 + 𝑑𝑗

∗. Let assume 𝑡𝑖 + 𝑑𝑖
∗ > 𝑡𝑗 + 𝑑𝑗

∗ without loss of generality. Based on the definition of  
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𝑑𝑗
∗, at time 𝑡𝑗 + 𝑑𝑗

∗ the slowest machine 𝑚𝑀∗ is forced to stop until at least time 𝑡𝑗 + 𝑑𝑗. 

Therefore, we have  

𝑊(𝑚𝑖) = ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡
𝑡𝑖+𝑑𝑖

∗

𝑡𝑖
= ∫ 𝑠𝑀∗(𝑡; 𝐸)𝑑𝑡

𝑡𝑖+(𝑡𝑗+𝑑𝑖
∗−𝑡𝑖)

𝑡𝑖
  (6.3) 

This contradicts our definition of 𝑑𝑖
∗ since 𝑡𝑗 + 𝑑𝑗

∗ − 𝑡𝑖 < 𝑑𝑖
∗.  

End of the proof. 

Together with Equation 6.2 and Proposition 6.1, we can easily establish the following 

corollary. 

Corollary 6.1 Given a realization of the production process subject to a sequence of disruption 

event 𝐸 = [𝑒1, … , 𝑒𝑛], within time interval (0, 𝑇], if 𝑡𝑖 + 𝑑𝑖
∗ = 𝑡𝑗 + 𝑑𝑗

∗, ∀𝑖 ≠ 𝑗 ∈ 𝑛𝑠, then the total 

stoppage time of the slowest time the last slowest machine 𝑚𝑀∗ is |⋃ (𝑡𝑖 + 𝑑𝑖
∗, 𝑡𝑖 + 𝑑𝑖]𝑖∈𝑛𝑠 | =

∑ 𝐿(𝑒𝑖)
𝑛
𝑖=1 , and so does the total production time loss.   

In Proposition 6.1, the condition 𝑡𝑖 + 𝑑𝑖
∗ = 𝑡𝑗 + 𝑑𝑗

∗, ∀ 𝑖 ≠  𝑗 ∈  𝑛𝑠, is not as restrictive as it 

appears. First of all, two downtime events have to be overlapped, i.e., (𝑡𝑖, 𝑡𝑖 + 𝑑𝑖] ∩

(𝑡𝑗 , 𝑡𝑗 + 𝑑𝑗] ≠ 𝜙. Moreover, if 𝑖 <  𝑀∗ and 𝑗 > 𝑀∗, the buffer content between machine 𝑚𝑖  and 

𝑚𝑀∗  has to be exactly the same with the available buffer space between machine 𝑚𝑀∗ and 𝑚𝑖 at 

time 𝑚𝑎𝑥(𝑡𝑖, 𝑡𝑗); if both machines are upstream or downstream of the last slowest machine 𝑚𝑀∗, 

the buffers between machine 𝑚𝑀∗ and 𝑚𝑖 has to be either empty or full at time 𝑚𝑎𝑥(𝑡𝑖, 𝑡𝑗) when 

both machines are down. Our experience indicates that the occurrence frequency of these 

incidents is conceivably small and good approximation can still be achieved without considering 

the overlaps. 
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6.4 Definition and Estimation of Standalone Throughput of a 

Production Line Segment 

For a single machine 𝑚𝑖, the SAT is 𝑆𝐴𝑇𝑖 =
1

𝑇𝑖
𝐴𝑖, where 𝐴𝑖  is the availability of machine  𝑚𝑖. 

The SAT of a single machine is actually the throughput of a machine when it is isolated from 

production line. Therefore, the SAT of a machine is not concerned with its blockage and 

starvation, which reflects the interaction with other machines. 

Similarly, the SAT of a production line segment refers to its throughput when the line 

segment is isolated from its upstream and downstream. For a line segment 𝑙, as shown in Figure 

6.1 (b), the interaction of 𝑙 with its upstream and downstream comes from the starvation of the 

first machine and the blockage of the last machine. Now the problem is reduced to exclude the 

effects from first machine starvation and the last machine blockage of a line segment. However, 

the SAT of a line segment is not a simple extension from 𝑆𝐴𝑇𝑖. Given the production count 𝑃𝐶𝑙𝑀 

of the last machine in a production line segment over a time period 𝑇, one estimation used in 

practice is: 

𝑆𝐴𝑇𝑙 =
𝑃𝐶𝑙𝑀

𝑇−(𝑡𝑙𝑓𝑠+𝑡𝑙𝑙𝑏)
  (6.4) 

where 𝑡𝑙𝑓𝑠 is the total amount of time for the first machine being starved and 𝑡𝑙𝑙𝑏 is the total 

amount of time for the last machine being blocked. 

A careful examination finds that if even the starvation of the first machine is excluded from 

the calculation, the rest of the line segment can still process and output products through the last 

machine of the line segment. Similarly, the exclusion of the blockage of the last machine cannot 
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prevent the production flow into the line segment. Therefore, simple exclusion of the total 

starvation from the first machine and the total blockage from the last machine does not truly 

isolate the production line segment. To capture the true standalone productivity of a line 

segment, we need to carefully evaluate the permanent production time loss caused by the 

starvation of the first machine and the blockage of the last machine in the line segment. 

In order to analyze the impact from 𝐸𝑙𝑓𝑠 and 𝐸𝑙𝑙𝑏 to the line segment 𝑙, we treat 𝐸𝑙𝑓𝑠 and 𝐸𝑙𝑙𝑏 

as downtime events as well. Therefore, the total downtime events on 𝑙 can be expressed as 

𝐸𝑙 = 𝐸𝑙𝑓𝑠 + 𝐸𝑙𝑙𝑏 + 𝐸𝑙𝑑 (6.5) 

𝐸𝑙 = [𝑒𝑙1, … , 𝑒𝑙𝑛], where we use 𝑒𝑙𝑖 = (𝑚𝑙𝑖, 𝑡𝑙𝑖 , 𝑑𝑙𝑖), 𝑙𝑖 = 𝑙1, … , 𝑙𝑛, to represent a downtime vent 

that at time 𝑡𝑙𝑖, machine 𝑚𝑙𝑖 is down for 𝑑𝑙𝑖. To distinguish downtime events 𝐸𝑙𝑓𝑠 and 𝐸𝑙𝑙𝑏 from 

𝐸𝑙𝑑, we call 𝐸𝑙𝑓𝑠 and 𝐸𝑙𝑙𝑏 as generic downtime events and 𝐸𝑙𝑑 as random downtime events. 

The SAT of 𝑙 concerns the throughput of 𝑙 in isolation from the whole system, i.e. the 

throughput with respect to only random downtime events 𝐸𝑙𝑑 = [𝑒𝑙𝑑1, … , 𝑒𝑙𝑑𝑛]. We denote 

𝑆𝐴𝑇𝑙(𝐸𝑙𝑑) as standalone throughput of line segment 𝑙. Therefore, we have definition of SAT of a 

line segment. 

Definition 6.1 Given a realization of the production line segment l subjected to a sequence of 

random downtime events 𝐸𝑙𝑑 = [𝑒𝑙𝑑1, … , 𝑒𝑙𝑑𝑛] during time period (0, 𝑇], the SAT of the line 

segment l is: 

𝑆𝐴𝑇𝑙(𝐸𝑙𝑑) =
∫ 𝑠𝑀𝑙

∗(𝑡;𝐸𝑙𝑑)𝑑𝑡
𝑇
0

𝑇
 (6.6) 
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where ∫ 𝑠𝑀𝑙
∗(𝑡; 𝐸𝑙𝑑)𝑑𝑡

𝑇

0
 is the production count of the slowest machine in the line segment with 

𝐸𝑙𝑑. 

However, production count ∫ 𝑠𝑀𝑙
∗(𝑡; 𝐸𝑙𝑑)𝑑𝑡

𝑇

0
 is impossible to obtain since the line segment 𝑙 

is integrated in the whole production system. It is advantageous to calculate 𝑆𝐴𝑇𝑙 from available 

information such as production count ∫ 𝑠𝑀𝑙
∗(𝑡; 𝐸𝑙𝑑)𝑑𝑡

𝑇

0
, buffer levels, starvation and the blockage 

of machines and random downtime events.  

According to conclusions in Chapter 3, the stoppage events on the last slowest machine 𝑚𝑀𝑙
∗ 

can be reconstructed and total stoppage time is 𝑡𝑙 = | ∪𝑖∈𝑛𝑠 (𝑡𝑙𝑖 + 𝑑𝑙𝑖
∗ , 𝑡𝑙𝑖 + 𝑑𝑙𝑖)|, where 𝑛𝑠 =

{𝑙𝑖 =  𝑙1, … , 𝑙𝑛, 𝑠. 𝑡.  𝑑𝑙𝑖 > 𝑑𝑙𝑖
∗ }. Furthermore, 𝑡𝑙 can be attributed to 𝑡𝑙 = 𝑡𝑙𝑓𝑠 + 𝑡𝑙𝑙𝑏 + 𝑡𝑙𝑑, 

where 𝑡𝑙𝑓𝑠, 𝑡𝑙𝑙𝑏 and 𝑡𝑙𝑑 denotes the stoppage of the last slowest machine 𝑚𝑀𝑙
∗ due to 𝐸𝑙𝑓𝑠, 𝐸𝑙𝑙𝑏 

and 𝐸𝑙𝑑, respectively. Specifically, 𝑡𝑙𝑓𝑠 can be expressed as 𝑡𝑙𝑓𝑠 = | ∪𝑖∈ 𝑛𝑙𝑓𝑠  (𝑡𝑙𝑓𝑠𝑖 + 𝑑𝑙𝑓𝑠𝑖
∗ , 𝑡𝑙𝑓𝑠𝑖 +

𝑑𝑙𝑓𝑠𝑖)|, where 𝑛𝑙𝑓𝑠  = {𝑖 = 𝑙𝑓𝑠1,… , 𝑙𝑓𝑠𝑛, 𝑠. 𝑡.  𝑑𝑙𝑓𝑠𝑖  > 𝑑𝑙𝑓𝑠𝑖
∗ }. Similarly, 𝑡𝑙𝑙𝑏 can be expressed as 

𝑡𝑙𝑙𝑏 = | ∪𝑖∈ 𝑛𝑙𝑙𝑏𝑖 (𝑡𝑙𝑙𝑏𝑖 + 𝑑𝑙𝑙𝑏𝑖
∗ , 𝑡𝑙𝑙𝑏𝑖 + 𝑑𝑙𝑙𝑏𝑖]|, where 𝑛𝑙𝑙𝑏 = {𝑖 = 𝑙𝑙𝑏1,… , 𝑙𝑙𝑏𝑛, 𝑠. 𝑡.  𝑑𝑙𝑙𝑏𝑖 > 𝑑𝑙𝑙𝑏𝑖

∗ }  

and 𝑡𝑙𝑑 can be expressed as 𝑡𝑙𝑑 = | ∪𝑖∈ 𝑛𝑙𝑑 (𝑡𝑙𝑑𝑖 + 𝑑𝑙𝑑𝑖
∗ , 𝑡𝑙𝑑𝑖 + 𝑑𝑙𝑑𝑖), where 𝑛𝑙𝑑 = {𝑖 =

𝑙𝑑1,… , 𝑙𝑑𝑛, 𝑠. 𝑡.  𝑑𝑙𝑑𝑖 > 𝑑𝑙𝑑𝑖
∗ }. 

Furthermore, if we assume that 𝑡𝑖 + 𝑑𝑖
∗ ≠ 𝑡𝑗 + 𝑑𝑗

∗, ∀ 𝑖 ≠ 𝑗, according to Proposition 6.1, 

𝑡𝑙𝑓𝑠 = ∑ 𝑑𝑙𝑓𝑠𝑖 − 𝑑𝑙𝑓𝑠𝑖
∗

𝑖∈ 𝑛𝑙𝑓𝑠  . Similarly, 𝑡𝑙𝑙𝑏 = ∑ 𝑑𝑙𝑙𝑏𝑖 − 𝑑𝑙𝑙𝑏𝑖
∗

𝑖∈𝑛𝑙𝑙𝑏   and 𝑡𝑙𝑑 = ∑ 𝑑𝑙𝑑𝑖 − 𝑑𝑙𝑑𝑖
∗

𝑖∈𝑛𝑙𝑑  . 

Note that 𝑡𝑙𝑓𝑠 is the portion which causes the permanent production time loss from the total 

starvation time of the first machine, and 𝑡𝑙𝑙𝑏 is the portion of which caused the permanent 

production time loss from the total blockage time of the last machine. 
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Proposition 6.2 For a production line segment 𝑙 subject to a sequence of downtime events, 𝐸𝑙 =

𝐸𝑙𝑓𝑠 + 𝐸𝑙𝑙𝑏 + 𝐸𝑙𝑑 = {𝑒𝑙1, … , 𝑒𝑙𝑛} during (0, 𝑇], assuming 𝑡𝑖 + 𝑑𝑖
∗ ≠ 𝑡𝑗 + 𝑑𝑗

∗, ∀ 𝑖 ≠  𝑗, then for 

𝑇′ = 𝑇 − 𝑡𝑙𝑓𝑠 − 𝑡𝑙𝑙𝑏, ∃ 𝑇∗, ∀ 𝑇′ >  𝑇∗, the SAT of the line segment 𝑙 is 

𝑆𝐴𝑇𝑙 =
∫ 𝑠𝑀∗(𝑡;𝐸𝑙)𝑑𝑡
𝑇
0

𝑇′
 (6.7) 

Proof: The line segment 𝑙 is subject to 𝐸𝑙 = 𝐸𝑙𝑓𝑠 + 𝐸𝑙𝑙𝑏 + 𝐸𝑙𝑑, where 𝐸𝑙𝑓𝑠 and 𝐸𝑙𝑙𝑏 are generic 

downtime events, and 𝐸𝑙𝑑 are random downtime events. The production count of machine 𝑚𝑀𝑙
∗ is 

𝑃𝐶𝑀𝑙
∗ = ∫ 𝑠𝑀𝑙

∗(𝑡; 𝐸𝑙)𝑑𝑡
𝑇

0
= (𝑇 − 𝑡𝑙𝑑 − 𝑡𝑙𝑓𝑠 − 𝑡𝑙𝑙𝑏)

1

𝑇𝑀∗
 (6.8) 

For 𝑇′ > 𝑇∗, the up time ratio of machine 𝑚𝑀𝑙
∗ over 𝑇′ is 𝑈𝑀𝑙

∗ =
𝑇′−𝑡𝑙𝑑

𝑇′
 and 𝑈𝑀𝑙

∗ is a constant. 

Therefore, from Equation 6.8, we have 

𝑈𝑀𝑙
∗ =

𝑇′−𝑡𝑙𝑑

𝑇′
=

(𝑇′−𝑡𝑙𝑑)
1

𝑇𝑀𝑙
∗

𝑇′
1

𝑇𝑀𝑙
∗

=
∫ 𝑠𝑀𝑙

∗(𝑡;𝐸𝑙)𝑑𝑡
𝑇
0

𝑇′
𝑇𝑀𝑙

∗ (6.9) 

Assuming a virtual scenario that the line segment is subjected to only random downtime 

events 𝐸𝑙𝑑
𝑣  during time period (0, 𝑇𝑣], then the up time ratio of the machine 𝑚𝑀𝑙

∗ over time 𝑇𝑣 is 

still 𝑈𝑀𝑙
∗, ∀𝑇𝑣 > 𝑇∗, we have 𝑈𝑀𝑙

∗ =
𝑇𝑣−𝑡𝑙𝑑

𝑣

𝑇𝑣
=

𝑇′−𝑡𝑙𝑑
𝑣

𝑇′
. 

In this virtual scenario, the production count 𝑃𝐶𝑀𝑙
∗

𝑣  of the machine 𝑚𝑀𝑙
∗ is 

𝑃𝐶𝑀𝑙
∗

𝑣 = ∫ 𝑠𝑀𝑙
∗(𝑡; 𝐸𝑙𝑑

𝑣 )𝑑𝑡
𝑇

0
= (𝑇𝑣 − 𝑡𝑙𝑑

𝑣 )
1

𝑇𝑀𝑙
∗
 (6.10) 

According to Definition 6.1, the SAT of the line segment 𝑙 in this virtual scenario can be 

represented as  
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𝑆𝐴𝑇𝑙 =
∫ 𝑠𝑀𝑙

∗(𝑡;𝐸𝑙𝑑
𝑣 )𝑑𝑡

𝑇
0

𝑇𝑣
=

𝑇𝑣−𝑡𝑙𝑑
𝑣

𝑇𝑣
1

𝑇𝑀𝑙
∗
 (6.11) 

Therefore,  

𝑈𝑀𝑙
∗ = 𝑆𝐴𝑇𝑙 ∙ 𝑇𝑀𝑙

∗ (6.12) 

Comparing Equations 6.9 and 6.12, SAT of a line segment 𝑙 becomes 

𝑆𝐴𝑇𝑙 =
∫ 𝑠𝑀𝑙

∗(𝑡;𝐸𝑙)𝑑𝑡
𝑇
0

𝑇′
 (6.13) 

End of the proof. 

Proposition 6.2 provides us a method to estimate the SAT of line segment 𝑙 with online data. 

In Equation 6.7, production count ∫ 𝑠𝑀𝑙
∗(𝑡; 𝐸𝑙)𝑑𝑡

𝑇

0
 can be obtained directly from online 

information. 𝑇′, on the other hand, can be calculated based on information of buffer levels and 

starvation and blockage of machines. According to the definition of 𝑑𝑙
∗, we can define the 

permanent production time loss of the line segment 𝑙 due to the starvation event 𝑒𝑙𝑓𝑠𝑖 of the first 

machine 𝑚𝑙1 as 

𝐿𝑙𝑓𝑠(𝑒𝑙𝑓𝑠𝑖; 𝐸𝑙𝑓𝑠) = {
𝑑𝑙𝑓𝑠𝑖 − 𝑑𝑙𝑓𝑠𝑖

∗ , 𝑑𝑙𝑓𝑠𝑖 > 𝑑𝑙𝑓𝑠𝑖
∗

0, 𝑑𝑙𝑓𝑠𝑖 ≤ 𝑑𝑙𝑓𝑠𝑖
∗  (6.14) 

where 𝑑𝑙𝑓𝑠𝑖
∗  can be evaluated as the time for the buffers between the first machine and  𝑚𝑀

∗  to 

just become empty. Therefore, 𝑡𝑙𝑓𝑠 can be represented as 

𝑡𝑙𝑓𝑠 = ∑ 𝐿𝑙𝑓𝑠(𝑒𝑙𝑓𝑠𝑖; 𝐸𝑙𝑓𝑠)
𝑙𝑓𝑠𝑛
𝑙𝑓𝑠𝑖=𝑙𝑓𝑠1  (6.15) 
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Similarly, we define the permanent production loss of the line segment 𝑙 due to the blockage 

event 𝑒𝑙𝑙𝑏𝑖 of the last machine as 

𝐿𝑙𝑙𝑏(𝑒𝑙𝑙𝑏𝑖; 𝐸𝑙𝑙𝑏) = {
𝑑𝑙𝑙𝑏𝑖 − 𝑑𝑙𝑙𝑏𝑖

∗ , 𝑑𝑙𝑙𝑏𝑖 > 𝑑𝑙𝑙𝑏𝑖
∗

0, 𝑑𝑙𝑙𝑏𝑖 ≤ 𝑑𝑙𝑙𝑏𝑖
∗  (6.20) 

where 𝑑𝑙𝑙𝑏𝑖
∗  can be evaluated as the time for the buffers between the last machine and  𝑚𝑀∗ to 

just become full. Therefore, 𝑡𝑙𝑙𝑏 can be represented as 

𝑡𝑙𝑙𝑏 = ∑ 𝐿𝑙𝑙𝑏(𝑒𝑙𝑙𝑏𝑖; 𝐸𝑙𝑙𝑏)
𝑙𝑙𝑏𝑛
𝑙𝑙𝑏𝑖=𝑙𝑙𝑏1  (6.21) 

Then 𝑇′ is calculated as 𝑇′ = 𝑇 − 𝑡𝑙𝑓𝑠 − 𝑡𝑙𝑙𝑏. 

6.5 Application of Estimation Method and Simulation Results 

 
Figure 6.2  A serial production line with a line segment l 
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Simulation case studies are based on a true automotive machining line, as shown in Figure 6.2. 

We mock up the parameters of the production line for confidential consideration. In order to 

verify the SAT calculation in Equation 6.7, an isolated simulation model is generated only for 

line segment 𝒍. The whole production line has seventeen machines and sixteen buffers. The line 

segment 𝐥 includes six machines and five buffers. All machines are serially connected. 

Table 6.1 Parameters of machines in the production system in case 1 

Machines 
Cycle time 

 

(Parts/min) 

MTTR 

(Min) 

MTBF 

(Min) 

𝑚1 20 3 33.91 

𝑚2 20 4 10 

𝑚3 20 8 20 

𝑚4 20 6 11 

𝑚5 20 4 12 

𝑚6 20 6 12 

𝑚7 20 6 13 

𝑚8 19 2.5 2 

𝑚9 20 4.4 6.4 

𝑚10 20 7.8 24 

𝑚11 20 2.6 9 

𝑚12 20 4.4 10 

𝑚13 20 3.7 8 

𝑚14 20 3 6.5 

𝑚15 20 2.2 23.62 

𝑚16 20 11.5 10 

𝑚17 20 7.9 20 
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Table 6.2  Parameters of buffers in the production system in case 1 

Buffers Buffer capacity Initial buffer level 

𝑏1 10 5 

𝑏2 35 18 

𝑏3 25 13 

𝑏4 10 5 

𝑏5 10 5 

𝑏6 10 5 

𝑏7 10 5 

𝑏8 10 5 

𝑏9 10 5 

𝑏10 10 5 

𝑏11 115 58 

𝑏12 10 5 

𝑏13 100 50 

𝑏14 10 5 

𝑏15 10 5 

𝑏16 10 5 

 

 

Table 6.3  Parameters of machines in the line segment l in case 1 

Machines 
Cycle time 

 

(Parts/min) 

MTTR 

(Min) 

MTBF 

(Min) 

𝑚𝑙1 20 4 12 

𝑚𝑙2 20 6 12 

𝑚𝑙3 20 6 13 

𝑚𝑙4 19 2.5 2 

𝑚𝑙5 20 4.4 6.4 

𝑚𝑙6 20 4 24 
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Table 6.4  Parameters of buffers in the line segment l in case 1 

Buffers Buffer capacity Initial buffer level 

𝑏𝑙1 10 5 

𝑏𝑙2 10 5 

𝑏𝑙3 10 5 

𝑏𝑙4 10 5 

𝑏𝑙5 10 5 

The initial parameters of the production line in case 1 are shown in Table 6.1 and Table 6.2, 

and the parameters of the line segment 𝒍 are shown in Table 6.3 and Table 6.4. For each scenario, 

we linearly increase the values of MTTR, buffer capacities, and initial buffer capacities. Note 

that the parameters in the first scenario as shown in Tables 6.1 to 6.4, are mocked up based on 

the true automotive machining line for confidential reason. The other 8 scenarios are based on 

simulation data to further demonstrate the effectiveness of the estimation method. 

Specifically, in scenario 𝑗, the MTTR of machine 𝑚𝑖 in the production line. 

𝑀𝑇𝑇𝑅𝑖(𝑘) = {
𝑀𝑇𝑇𝑅𝑖(1) + (𝑖 − 1), 𝑚 = 3,4,6,7,10,16,17

𝑀𝑇𝑇𝑅𝑚(1) + 2(𝑖 − 1), 𝑚 ≠ 3,4,6,7,10,16,17
  

The capacity of buffer 𝐵𝑚 in the production line is 

𝐵𝑚(𝑖) = {
𝐵𝑚(1) + (𝑖 − 1), 𝑚 = 2,6,11,13

𝐵𝑚(1), 𝑚 ≠ 2,6,11,13
  

The MTTR of machine 𝑚𝑙𝑚 in the line segment is 

𝑀𝑇𝑇𝑅𝑙𝑚(𝑖) = {
𝑀𝑇𝑇𝑅𝑙𝑚(1) + (𝑖 − 1), 𝑙𝑚 = 2,3,6

𝑀𝑇𝑇𝑅𝑙𝑚(1) + 2(𝑖 − 1) 𝑙𝑚 ≠ 2,3,6
  

The capacity of buffer 𝐵𝑙𝑚 in the line segment is 
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𝐵𝑙𝑚(𝑖) = {
𝐵𝑙𝑚(1) + (𝑖 − 1), 𝑙𝑚 = 2

𝐵𝑙𝑚(1), 𝑙𝑚 ≠ 2
  

Table 6.5  Comparison of 95% confidence interval of SAT for the line segment l using estimation method 

and simulation result 

Scenario SAT (Estimation) SAT (Simulation) 

1 [5.6161, 5.7557] [5.6594, 5.8243] 

2 [4.0662, 4.1684] [4.0682, 4.2326] 

3 [3.1951, 3.3134] [3.1850, 3.3353] 

4 [2.6288, 2.7497] [2.6437, 2.7701] 

5 [2.2166, 2.3173] [2.2282, 2.3445] 

6 [2.0259, 2.1093] [2.0097, 2.1048] 

7 [1.7057, 1.7694] [1.6819, 1.7930] 

8 [1.5119, 1.5803] [1.5048, 1.5973] 

9 [1.3737, 1.4379] [1.3490, 1.4355] 

 
Figure 6.3  Estimation using Equation 6.7 vs. Definition 6.1 in case 1 
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Figure 6.5 Estimation using Equation 6.7 vs. Definition 6.1 in case 3 

 

 

 
Figure 6.4 Estimation using Equation 6.7 vs. Definition 6.1 in case 2 
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Figure 6.6 Estimation using Equation 6.7 vs. Definition 6.1 in case 4 

 

 
Figure 6.7 Estimation using Equation 6.7 vs. Definition 6.1 in case 5 
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Figure 6.3  Estimation using Equation 6.7 vs. Definition 6.1 in case 1 

 
Figure 6.9 Estimation using Equation 6.7 vs. Definition 6.1 in case 7 

 

Figure 6.9   

 
Figure 6.8  Estimation using Equation 6.7 vs. Definition 6.1 in case 6 
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Figure 6.10 Estimation using Equation 6.7 vs. Definition 6.1 in case 8 

 

 

Figure 6.10   

 
 

Figure 6.11 Estimation using Equation 6.7 vs. Definition 6.1 in case 9 
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In each scenario, we compare the estimation method in Equation 6.7 and the simulation 

results. The simulation setup is 50 hours warm-up period and 24 hours running time with 35 

replications. Table 6.5 demonstrates the results with 95% confidence interval for nine scenario 

studies. Figure 6.3 to Figure 6.11 illustrates the comparison of the estimation method and 

simulation. 

The comparisons show close agreement between the estimation method and simulation 

results. For scenarios from high availability of machines to low availability of machines (lower 

than 40%), the estimation method consistently evaluate the SAT of a line segment with high 

accuracy. 

6.6 Conclusion 

This paper provides the definition of and an estimation algorithm for SAT of a serial production 

line segment. The estimation method is analytically proven under the assumption of no 

concurrent downtime events. Based on the fact that concurrent downtime events are very rare, 

the estimation method can be used to evaluate the SAT of a line segment with high accuracy. 

Our case studies further confirm this conclusion. The estimation method provides a data-driven 

algorithm through utilizing production online data to quickly and accurately evaluate SAT of a 

serial line segment in a production system. It provides important insights in understanding 

production line dynamics. This quantitative tool can help production managers better identify 

problems and improve overall system performance. Our future work will extend the knowledge 

of serial production line to more complex production line segments, such as parallel line and 

loop back configuration. 
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Chapter 7 

MARKET DEMAND-ORIENTED MODELING AND CONTROL OF 

MANUFACTURING SYSTEMS 

7.1 Introduction 

Advanced manufacturing system must quickly ramp up the newly developed technologies, tools, 

equipment, and resources if it is to meet production needs for a variety of machinery and motive 

applications. Such systems are subject to frequent new/improved technology insertions, 

dramatically fluctuating market demands, and engineering modification for new processes. These 

challenges greatly impact the productivity of the manufacturing [4]. Therefore, improving the 

production throughput to satisfy market demands have become a critical issue for many 

manufacturing industries. 

Battery manufacturing systems could be typical examples of such systems. A typical battery 

production system consists of four functional areas: powder production, tube fabrication, cell 

assembly and battery assembly. In powder production, raw materials are mixed according to a 

certain proportion. Then, the powders are pressed and shaping into tubes through machining 

processes and the tubes are assembled into cells with covers, electrodes and other components. 

The finished cells are connected through welding (e.g., laser welding) and assembled into 

modules. Several modules are assembled into a battery pack and stored in finished-goods 

buffers. The batteries packs are delivered to customers based on market demand. Battery 

production lines typically include multistage manufacturing processes with combined manual 
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and automatic operations. For example, loading/unloading operations are manual and welding or 

pressing operations are automatic.  

There exhibit unique features in a multistage battery manufacturing system. Firstly, machines 

at each process stage may have different input and output rates. For example, the tube pressing 

machine could use 500g powder to produce one tube and the battery assembly machine could 

take nine cells to produce one battery pack during a machine cycle. Secondly, a battery 

production line can be highly unsynchronized with different process stages combining both 

manual and automatic operations and therefore having large variance in process rates. In this 

situation, capacity differences among machines as well as machine cycle time variance are major 

constrains that restrict battery production line throughput. Besides this, machine random 

downtime also impacts production efficiency. A new system modeling and in-depth analysis are 

needed to continuously improve customer demand satisfaction and system throughput with the 

above features. This chapter is devoted to this end. 

7.2 Market Demand Driven System Descriptions, Assumptions and 

Notations 

In this paper, we consider a continuous-flow production system consisting of 𝑀 machines 

(represented as rectangles) and 𝑀 − 1 in-process buffers (represented as circles) as shown in 

Figure 7.1. Machine 𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑀, denotes the 𝑖𝑡ℎ machines. Buffer 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑀 − 1, 

denotes the 𝑖𝑡ℎ in-process buffers. Buffer 𝑏𝑀 represents the finished-goods buffer and virtual 

machine 𝑚𝑀+1 represents a market demand. The following definitions and assumptions on a 

market demand driven system are adopted. 
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1) Although the market demand of a production line varies with time, it is constant during a 

certain time period 𝑇, such as a quarter or a month. Therefore, in this research, market 

demand is assumed to be a sequence of fixed values described by {𝑐𝑑1, … , 𝑐𝑑𝑛} (parts/

unit time), which are denoted as market demand rates. In addition, it is assumed ∀𝑐𝑑𝑖 ∈

{𝑐𝑑1, … , 𝑐𝑑𝑛}, 𝑐𝑑𝑖 ∙ 𝑇 > 𝑂𝑃𝑠𝑦𝑠(𝑇), i.e. market demand is assumed to be higher than 

production count, where 𝑂𝑃𝑠𝑦𝑠(𝑇) is the production count (or productivity) of the system 

during (0, 𝑇].Virtual machine 𝑚𝑀+1 has identical rated input and output rates, i.e. 𝑠𝑀+1
𝑖𝑛 =

𝑠𝑀+1
𝑜𝑢𝑡 = 𝑐𝑑𝑖 and it cannot be down.  

2) Each buffer 𝑏𝑖, 𝑖 = 1,… ,𝑀, has a finite buffer capacity, which is denoted as 𝐵𝑖. For 

simplicity, 𝑏𝑖(𝑡) is used to denote the buffer level of buffer 𝑏𝑖 at time 𝑡.  

3) A production line consists of both manual and automatic machines. Each automatic machine 

𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑀, has a constant cycle time 𝑇𝑖 and is characterized by one up state and one 

down state, which are denoted as 𝛼𝑖 = 1 and 𝛼𝑖 = 0. Automatic machine 𝑚𝑖 obeys the 

exponential reliability model. When the machine is in its up state, it could transit into down 

state due to a machine random failure event with a transition rate 𝑝𝑖 and when it is down, it 

could be repaired with a transition rate 𝑟𝑖. Thus, the mean time between failure (MTBF) and 

mean time to repair (MTTR) of the machine are 
1

𝑝𝑖
 and 

1

𝑟𝑖
.  

Manual machines do not have fixed cycle time. However, for each manual machine 𝑚𝑖, 1 ≤

𝑖 ≤ 𝑀, it is always possible to find the smallest cycle time 𝑇𝑖, which is referred to as the base 

 
Figure 7.1  A production line and its market demand 

 
Figure 7.1.   
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cycle time. Any production cycle that lasts longer than the base cycle time will be treated as a 

special machine random failure event, referred to as an over-cycle event. Manual machine 𝑚𝑖 

has one up state and one down state, which are denoted as 𝛼𝑖 = 1 and 𝛼𝑖 = 0. It obeys the 

exponential reliability model. When the machine is up, it can transit into down state due to an 

over-cycle event with a transition rate 𝑝𝑖, and when the machine is down, the over-cycle 

event could finish with a transition rate 𝑟𝑖. The mean time between failure (MTBF) and mean 

time to repair (MTTR) of the machine are 
1

𝑝𝑖
 and 

1

𝑟𝑖
. For simplicity, we refer random failure 

events to as the events causing both automatic machine and manual machine down state for 

the rest of the paper. 

4) Raw material 𝐴0 enters the system from machine 𝑚1. Each machine 𝑚𝑖 , 𝑖 = 1,… ,𝑀, 

receives 𝜆𝑖 parts of 𝐴𝑖−1 from the previous buffer 𝑏𝑖−1 to produce one part of 𝐴𝑖 and enters 

the following buffer 𝑏𝑖, where 𝐴𝑖 refers to the part produced by machine 𝑚𝑖. 

5) If machine 𝑚𝑖 , 𝑖 = 1,… ,𝑀, is up and not starved or blocked, it has a rated input rate 𝑠𝑖
𝑖𝑛 and 

a rated output rate 𝑠𝑖
𝑜𝑢𝑡, where 𝑠𝑖

𝑖𝑛 =
𝜆𝑖

𝑇𝑖
 and 𝑠𝑖

𝑜𝑢𝑡 =
1

𝑇𝑖
. Additionally, we use 𝑣𝑖

𝑖𝑛(𝑡) and 

𝑣𝑖
𝑜𝑢𝑡(𝑡) to denote the instantaneous input and output rates of machine 𝑚𝑖 at time 𝑡, where 

𝑣𝑖
𝑖𝑛(𝑡) ≤ 𝑠𝑖

𝑖𝑛 and 𝑣𝑖
𝑜𝑢𝑡(𝑡) ≤ 𝑠𝑖

𝑜𝑢𝑡. 

6) The first machine 𝑚1 is never starved and the last virtual machine 𝑚𝑀+1 is never blocked. 

7) A machine 𝑚𝑖, 1 < 𝑖 ≤ 𝑀 + 1, is completely starved by machine 𝑚𝑗 , 1 ≤ 𝑗 < 𝑖, if the 

following conditions hold: machine  𝑚𝑖 is up, machine 𝑚𝑗 is down and all the buffers in 

between are empty, i.e. 𝑏𝑗 = ⋯ = 𝑏𝑖−1 = 0. A machine cannot be down when it is 

completely starved.  

8) A machine 𝑚𝑖, 1 < 𝑖 ≤ 𝑀 + 1, is partially starved by machine 𝑚𝑗 , 1 ≤ 𝑗 < 𝑖, if the following 
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conditions hold: machine 𝑚𝑖 is up, machine 𝑚𝑗 is up and not starved, the machines’ output 

rates satisfy 
𝑠𝑗
𝑜𝑢𝑡

∏ 𝜆𝑟
𝑖
𝑟=𝑗+1

< 𝑠𝑖
𝑜𝑢𝑡 and all the buffers in between are empty, i.e. 𝑏𝑗 = ⋯ = 𝑏𝑖−1 =

0. When machine 𝑚𝑖 is partially starved by machine 𝑚𝑗, it produces at a reduced output rate 

𝑣𝑖
𝑜𝑢𝑡 =

𝑠𝑗
𝑜𝑢𝑡

∏ 𝜆𝑟
𝑖
𝑟=𝑗+1

.  

9) A machine 𝑚𝑖, 1 ≤ 𝑖 < 𝑀 + 1, is completely blocked by machine 𝑚𝑗 , 𝑖 < 𝑗 ≤ 𝑀 + 1, if the 

following conditions hold: machine 𝑚𝑖 is up, machine 𝑚𝑗 is down and all the buffers in 

between are full, i.e. 𝑏𝑖 = 𝐵𝑖, … , 𝑏𝑗−1 = 𝐵𝑗−1. A machine cannot be down when it is 

completely blocked.  

10) A machine 𝑚𝑖, 1 ≤ 𝑖 < 𝑀 + 1, is partially blocked by machine 𝑚𝑗 , 𝑖 < 𝑗 ≤ 𝑀 + 1, if the 

following conditions hold: machine 𝑚𝑖 is up, machine 𝑚𝑗 is up and not blocked, the 

machines’ output rates satisfy 𝑠𝑗
𝑜𝑢𝑡∏ 𝜆𝑟

𝑗
𝑟=𝑖+1 < 𝑠𝑖

𝑜𝑢𝑡  and all the buffers in between are full, 

i.e. 𝑏𝑖 = 𝐵𝑖, … , 𝑏𝑗−1 = 𝐵𝑗−1. When machine 𝑚𝑖 is partially blocked by machine 𝑚𝑗, it 

produces at a reduced output rate 𝑣𝑖
𝑜𝑢𝑡 = 𝑠𝑗

𝑜𝑢𝑡∏ 𝜆𝑟
𝑗
𝑟=𝑖+1 . 

11) 𝑒𝑝 = (𝑚𝑖, 𝑡
𝑝 , 𝑑𝑝) denotes a disruption event that the end-of-line virtual machine 𝑚𝑀+1 is 

partially starved by 𝑚𝑖 at time 𝑡𝑝 for 𝑑𝑝. Since such disruption event is caused by machine 

capacity differences between 𝑚𝑖 and 𝑚𝑀+1 (asynchronous), it is defined as a disruption 

event caused by machine capacity (DEMC).  

12) 𝑒𝑐 = (𝑚𝑖, 𝑡
𝑐 , 𝑑𝑐) denotes a disruption event that the end-of-line virtual machine 𝑚𝑀+1 is 

completed starved by 𝑚𝑖 at time 𝑡𝑐 for 𝑑𝑐. Since such disruption event is caused by machine 

random failure event, it is defined as a disruption event caused by machine failure (DEMF). 
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Remark 2.1 By modeling the market demand as the end-of-line virtual machine 𝑚𝑀+1, the 

market demand (𝑀𝐷) and the system output (𝑂𝑃𝑠𝑦𝑠) during (0, 𝑇] can be measured as the output 

of the end-of-line virtual machine without and with disruption events, i.e. 𝑀𝐷 = 𝑇 ∙ 𝑐𝑑𝑖 and 

𝑂𝑃𝑠𝑦𝑠 = ∫ 𝑣𝑀+1
𝑜𝑢𝑡 (𝑡)𝑑𝑡

𝑇

0
. Market demand dissatisfaction (𝑀𝐷𝐷) is defined as the number of parts 

that system fails to satisfy customer demand, i.e., 𝑀𝐷𝐷 = 𝑀𝐷 − 𝑂𝑃𝑠𝑦𝑠, which is the production 

loss at the end-of-line virtual machine 𝑚𝑀+1. The problem of market demand satisfaction is 

transferred into the problem of system productivity analysis. 

Remark 2.2 Note that assumption 2 assumes a machine 𝑚𝑖 uses 𝜆𝑖 parts of  𝐴𝑖−1 to produce a 

part 𝐴𝑖. This implies that the input and output rates of machine 𝑚𝑖 follow a relationship of 

𝑣𝑖
𝑖𝑛(𝑡)

𝑣𝑖
𝑜𝑢𝑡(𝑡)

=
𝑠𝑖
𝑖𝑛

𝑠𝑖
𝑜𝑢𝑡 = 𝜆𝑖. 

Remark 2.3 When machine 𝑚𝑖 is partially starved by machine 𝑚𝑗, machine 𝑚𝑖 has a reduced 

speed 
𝑠𝑗
𝑜𝑢𝑡

∏ 𝜆𝑟
𝑖
𝑟=𝑗+1

 , where ∏ 𝜆𝑟
𝑖
𝑟=𝑗+1  denotes the number of 𝐴𝑗 required to produce a 𝐴𝑖. Similarly, 

when machine 𝑚𝑖 is partially blocked by machine 𝑚𝑗, machine 𝑚𝑖 has a reduced speed 

𝑠𝑗
𝑜𝑢𝑡∏ 𝜆𝑟

𝑗
𝑟=𝑖+1 , where ∏ 𝜆𝑟

𝑗
𝑟=𝑖+1  denotes the number of 𝐴𝑖 required to produce a 𝐴𝑗. 

7.3 Stochastic System Model 

Since the exact analytical solution only exists for a two-machine one-buffer system, approximate 

method is necessary to estimate the performance of general complex production systems. In this 

Section, a decomposition technique presented in [67] is utilized to decompose an 𝑀 + 1-machine 

system into a set of 𝑀 two-machine one-buffer subsystems  𝑙𝑖, 𝑖 = 1,… ,𝑀, as shown in Figure 

7.2. Each subsystem 𝑙𝑖 is characterized by one upstream pseudo-machine 𝑚𝑖
𝑢, one downstream 



 

83 

 

pseudo-machine 𝑚𝑖
𝑑 and a buffer 𝑏𝑖 in between, where 𝑚𝑖

𝑢 and 𝑚𝑖
𝑑 model the upstream and 

downstream systems of buffer 𝑏𝑖. Each pseudo-machine 𝑚𝑖
𝑢 can have local states 𝐿𝑆𝑖

𝑢denoting 

machine 𝑚𝑖 is not starved, and remote states 𝑅𝑆𝑖
𝑢 denoting the machine 𝑚𝑖 is starved. Similarly, 

pseudo-machine 𝑚𝑖
𝑑 can have local states 𝐿𝑆𝑖

𝑑 and remote states 𝑅𝑆𝑖
𝑑, which denote the states 

when machine 𝑚𝑖 is not blocked and blocked. To evaluate the performance measure of the 

system such as throughput, unknown parameters need to be determined, which include the output 

rate of pseudo-machine 𝑚𝑖
𝑢 and input rate of pseudo-machine 𝑚𝑖

𝑑 at each state and the transition 

rate matrices of pseudo-machines.  

In each subsystem 𝑙𝑖, we use 𝛼𝑖
𝑢 and 𝛼𝑖

𝑑 to denote the state of pseudo-machines 𝑚𝑖
𝑢 and 𝑚𝑖

𝑑. 

When pseudo-machine 𝑚𝑖
𝑢 is in a local state, i.e. 𝛼𝑖

𝑢 ∈ 𝐿𝑆𝑖
𝑢, state 𝛼𝑖

𝑢 is determined by the states 

of machine 𝑚𝑖, i.e. 𝛼𝑖
𝑢 = 𝛼𝑖. The rated output rate of pseudo-machine 𝑚𝑖

𝑢 is denoted as 

𝜇𝑖
𝑜𝑢𝑡(𝛼𝑖), where 𝜇𝑖

𝑜𝑢𝑡 = 0 if 𝛼𝑖 = 0, and 𝜇𝑖
𝑜𝑢𝑡 = 𝑠𝑖

𝑜𝑢𝑡 if 𝛼𝑖 = 1. When pseudo-machine 𝑚𝑖
𝑢 is in 

a remote state, i.e. 𝛼𝑖
𝑢 ∈ 𝑅𝑆𝑖

𝑢, machine 𝑚𝑖 is partially or completely starved by machine 𝑚𝑗 , 1 ≤

 
Figure 7.2  Decomposition of a production line with M+1 machines 

 
Figure 7.2.   
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𝑗 < 𝑖. The remote state 𝛼𝑖
𝑢 can be described by the local machine state 𝛼𝑖, the state of pseudo-

machine 𝑚𝑖−1
𝑢  in the upstream subsystem 𝑙𝑖−1 and buffer 𝑏𝑖−1, i.e. 𝛼𝑖

𝑢 = {𝑏𝑖−1, 𝛼𝑖−1
𝑢 , 𝛼𝑖}. The 

rated output rate 𝜇𝑖
𝑜𝑢𝑡 is determined by the local states of machine 𝑚𝑗. If machine 𝑚𝑖 is up and 

partially starved by machine 𝑚𝑗, then 𝜇𝑖
𝑜𝑢𝑡 =

𝑠𝑗
𝑜𝑢𝑡

∏ 𝜆𝑟
𝑖
𝑟=𝑗+1

 . If machine 𝑚𝑖 is up and is completely 

starved by machine 𝑚𝑗, then 𝜇𝑖
𝑜𝑢𝑡 = 0 . 

The pseudo-machine 𝑚𝑖
𝑑 can be similarly defined. When 𝑚𝑖

𝑑 is in a local state, i.e. 𝛼𝑖
𝑑 ∈ 𝐿𝑆𝑖

𝑑, 

state 𝛼𝑖
𝑑 is determined by the local states of machine 𝑚𝑖+1, i.e. 𝛼𝑖

𝑑 = 𝛼𝑖+1. The rated input rate 

of pseudo-machine 𝑚𝑖
𝑑 is denoted as 𝜔𝑖

𝑖𝑛(𝛼𝑖+1), where 𝜔𝑖
𝑖𝑛 = 0 if 𝛼𝑖+1 = 0, and 𝜔𝑖

𝑖𝑛 = 𝑠𝑖+1
𝑖𝑛  if 

𝛼𝑖+1 = 1. When pseudo-machine 𝑚𝑖
𝑑 is in a remote state, i.e. 𝛼𝑖

𝑑 ∈ 𝑅𝑆𝑖
𝑑, machine 𝑚𝑖+1 is 

partially or completely blocked by machine 𝑚𝑗 , 𝑖 < 𝑗 ≤ 𝑀 + 1. The remote state 𝛼𝑖
𝑑 can be 

described by the local machine state 𝛼𝑖+1, the state 𝛼𝑖+1
𝑑  of pseudo-machine 𝑚𝑖+1

𝑑  in the 

downstream subsystem 𝑙𝑖+1 and buffer 𝑏𝑖+1, i.e. 𝛼𝑖
𝑑 = {𝑏𝑖+1, 𝛼𝑖+1, 𝛼𝑖+1

𝑑 }. The rated input rate 𝜔𝑖
𝑖𝑛 

is determined by the local states of machine 𝑚𝑗. If machine 𝑚𝑖 is up and partially blocked by 

machine 𝑚𝑗, then 𝜔𝑖
𝑖𝑛 = 𝑠𝑗

𝑖𝑛∏ 𝜆𝑟
𝑗−1
𝑟=𝑖 . If machine 𝑚𝑖 is up and is completely blocked by machine 

𝑚𝑗, then 𝜔𝑖
𝑖𝑛 = 0.  

The transition rate matrices of each pseudo-machine can be determined by solving the 

decomposition equations proposed in literature [67] (shown in Appendix A). However, in this 

paper, we assume that each machine 𝑚𝑖 may have different input and output rates. Therefore, a 

new model is developed with the major assumption of identical input and output rate of each 

machine released from Gershwin’s original model. This released assumption will have two major 
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impacts of the original model. The first one is the buffer level change equation which is 

determined as the difference of parts flowing in and out from the buffer, i.e. 

 �̇�𝑖 = 𝜇𝑖
𝑜𝑢𝑡(𝛼𝑖

𝑢) − 𝜔𝑖
𝑖𝑛(𝛼𝑖

𝑑)  (7.1) 

Secondly, the conservation of mass equations need to take into account the different input 

and output rates of each machine. To address this relationship, 𝜔𝑖−1
𝑖𝑛 = 𝜆𝑖𝜇𝑖

𝑜𝑢𝑡 is imposed to 

represent the inflow rate and outflow rate of pseudo machines 𝑚𝑖
𝑢 and 𝑚𝑖−1

𝑑  with a factor 𝜆𝑖. 

Therefore, the conservation of mass equations for machine 𝑚𝑖 in state 𝛼𝑖 can be expressed as 

∑ prob[{𝑏𝑖, 𝛼𝑖 , 𝛼𝑖
𝑑}]𝜔𝑖−1

𝑖𝑛 ({𝑏𝑖, 𝛼𝑖, 𝛼𝑖
𝑑}){𝑏𝑖,𝛼𝑖,𝛼𝑖

𝑑}∈𝑅𝑆𝑖−1
𝑑 + ∑ prob[{𝛼𝑖}]𝜔𝑖−1

𝑖𝑛 ({𝛼𝑖}){𝛼𝑖}∈𝐿𝑆𝑖−1
𝑑 =

𝜆𝑖 [∑ prob[{𝑏𝑖−1, 𝛼𝑖−1
𝑢 , 𝛼𝑖}]𝜇𝑖

𝑜𝑢𝑡({𝑏𝑖−1, 𝛼𝑖−1
𝑢 , 𝛼𝑖}){𝑏𝑖−1,𝛼𝑖−1

𝑢 ,𝛼𝑖}∈𝑅𝑆𝑖
𝑢 +

∑ prob[{𝛼𝑖}]𝜇𝑖
𝑜𝑢𝑡({𝛼𝑖}){𝛼𝑖}∈𝐿𝑆𝑖

𝑢 ]   (7.2) 

With these two modifications, the probability density functions 𝑓[{𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑}] and boundary 

conditions prob[{0, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑}] and prob[{𝐵𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑}] (i.e. the probability functions when buffer 

𝑏𝑖 is empty or full) can be determined based on the solution algorithm in Appendix B for each 

subsystem 𝑙𝑖. Therefore, all system performance measures can be evaluated. To demonstrate the 

evaluation process with Equations 1 and 2, we discuss below the evaluations of the frequency 

that a subsystem 𝑙𝑖 entering a state {𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑}, the average system output rate and the average 

buffer levels. 

For a subsystem 𝑙𝑖 , 1 ≤ 𝑖 ≤ 𝑀, the probability density function 𝑓(𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑) that the 

subsystem 𝑙𝑖 is in state {𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑} can be expressed as the fraction of time that the system stays 

in the state, i.e., 
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𝑓(𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑)𝛿𝑏𝑖 =
𝑁(𝑏𝑖,𝛼𝑖

𝑢,𝛼𝑖
𝑑)

𝑇

𝛿𝑏𝑖

|𝜇𝑖
𝑜𝑢𝑡(𝛼𝑖

𝑢)−𝜔𝑖
𝑖𝑛(𝛼𝑖

𝑑)|
+ 𝑜(𝛿𝑡) (7.3) 

where 𝑁(𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑) is the number of times that the subsystem 𝑙𝑖 enters state {𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑} during 

(0, 𝑇]. Therefore, the frequency that subsystem 𝑙𝑀 enters state {𝑏𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑} can be determined as 

𝑁(𝑏𝑖,𝛼𝑖
𝑢,𝛼𝑖

𝑑)

𝑇
= |𝜇𝑖

𝑜𝑢𝑡(𝛼𝑖
𝑢) − 𝜔𝑖

𝑖𝑛(𝛼𝑖
𝑑)|𝑓(𝑏𝑖, 𝛼𝑖

𝑢, 𝛼𝑖
𝑑) (7.4) 

System output rate 𝑂𝑃𝑅𝑠𝑦𝑠 is defined as the average number of products produced by the end-

of-line machine 𝑚𝑀+1 per unit time. Note that the pseudo-machine 𝑚𝑀
𝑑  in subsystem 𝑙𝑀 consists 

of a single machine 𝑚𝑀+1. System output rate 𝑂𝑃𝑅𝑠𝑦𝑠 can be expressed as the average output 

rate of pseudo-machine 𝑚𝑀
𝑑  as  

𝑂𝑃𝑅𝑠𝑦𝑠 = ∑ ∑
𝜔𝑀
𝑖𝑛(𝛼𝑀

𝑑 )

𝜆𝑀+1
prob[{0, 𝛼𝑀

𝑢 , 𝛼𝑀
𝑑 }]𝛼𝑀

𝑑 ∈𝐼𝑀
𝑑𝛼𝑀

𝑢 ∈𝐼𝑀
𝑢 +

∑ ∑
𝜔𝑀
𝑖𝑛(𝛼𝑀

𝑑 )

𝜆𝑀+1
prob[{𝐵𝑀, 𝛼𝑀

𝑢 , 𝛼𝑀
𝑑 }]𝛼𝑀

𝑑 ∈𝐼𝑀
𝑑𝛼𝑀

𝑢 ∈𝐼𝑀
𝑢 +

∑ ∑ ∫
𝜔𝑀
𝑖𝑛(𝛼𝑀

𝑑 )

𝜆𝑀+1
𝑓[{𝑏, 𝛼𝑀

𝑢 , 𝛼𝑀
𝑑 }]d𝑏

𝐵𝑀−1

0𝛼𝑀
𝑑 ∈𝐼𝑀

𝑑𝛼𝑀
𝑢 ∈𝐼𝑀

𝑢  (7.5)  (5) 

where 
𝜔𝑀
𝑖𝑛(𝛼𝑀

𝑑 )

𝜆𝑀+1
= 𝑣𝑀+1

𝑜𝑢𝑡 (𝛼𝑀
𝑑 ) denotes the output rate of the end-of-line virtual machine 𝑚𝑀+1, and 

𝐼𝑀
𝑢 = 𝐿𝑆𝑀

𝑢 ∪ 𝑅𝑆𝑀
𝑢  and 𝐼𝑀

𝑑 = 𝐿𝑆𝑀
𝑑 ∪ 𝑅𝑆𝑀

𝑑  denotes all the local states and remote states of pseudo-

machines 𝑚𝑀
𝑢  and 𝑚𝑀

𝑑 . In Equation 5, the first two terms denote the average output rate of the 

pseudo-machine 𝑚𝑀−1
𝑑  when buffer 𝑏𝑀−1 is empty and full and the last term calculates the 

average output rate of the pseudo-machine 𝑚𝑀−1
𝑑  in general states. The expected buffer level 

𝐸[𝑏𝑖] is determined as 

𝐸[𝑏𝑖] = ∑ ∑ ∫ 𝑏𝑓[{𝑏, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑}]d𝑏
𝐵𝑖
0

+ 𝐵𝑖prob[{𝐵𝑖, 𝛼𝑖
𝑢, 𝛼𝑖

𝑑}]𝛼𝑖
𝑑∈𝐼𝑖

𝑑𝛼𝑖
𝑢∈𝐼𝑖

𝑢   (7.6)  
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where 𝐼𝑖
𝑢 = 𝐿𝑆𝑖

𝑢 ∪ 𝑅𝑆𝑖
𝑢 and 𝐼𝑖

𝑑 = 𝐿𝑆𝑖
𝑑 ∪ 𝑅𝑆𝑖

𝑑. 

7.4 Event-based Modeling 

7.4.1 Mathematical System Dynamic Description 

𝑀𝐷𝐷 is measured as the production loss at the end-of-line virtual machine 𝑚𝑀+1. Since virtual 

machine 𝑚𝑀+1 can never be down or blocked, the production loss at the virtual machine can 

only be caused by partial starvation or complete starvation of all upstream machines i.e., DEMCs 

and DEMFs of all machines. DEMCs are caused by machine capacity asynchronization and 

DEMFs are caused by machine random failures. In this situation, identification and mitigation of 

bottlenecks caused by DEMCs (denoted as MC-BN) and DEMFs (denoted as MF-BN) are an 

effective way to reduce 𝑀𝐷𝐷. MC-BN and MF-BN are defined as the machines whose machine 

capacities and machine random failures impede 𝑀𝐷𝐷 in the strongest manner. 

𝑀𝐷𝐷 can be expressed as a function of each individual machine and buffer’s parameters: 

𝑀𝐷𝐷 = 𝑓(𝑠1
𝑖𝑛, 𝑠1

𝑜𝑢𝑡, 𝑝1, 𝑟1, … , 𝑠𝑀
𝑖𝑛, 𝑠𝑀

𝑜𝑢𝑡, 𝑝𝑀, 𝑟𝑀, 𝑠𝑀+1
𝑖𝑛 , 𝑠𝑀+1

𝑜𝑢𝑡 , 𝐵1, … , 𝐵𝑀) (7.7) 

The definitions of MC-BN and MF-BN are defined based on Equation 7.  

Definition 7.1 A machine 𝑚𝑖, 𝑖 = 1,… ,𝑀 is a MC-BN if  

|
𝜕𝑀𝐷𝐷 

𝜕𝑠𝑖
𝑜𝑢𝑡 | > |

𝜕𝑀𝐷𝐷 

𝜕𝑠𝑗
𝑜𝑢𝑡 |, ∀𝑗 ≠ 𝑖  (7.8) 

Definition 7.2 A machine 𝑚𝑖, 𝑖 = 1,… ,𝑀 is a MF-BN if 

𝜕𝑀𝐷𝐷 

𝜕𝑀𝑇𝑇𝑅𝑖
>

𝜕𝑀𝐷𝐷 

𝜕𝑀𝑇𝑇𝑅𝑗
, ∀𝑗 ≠ 𝑖 (7.9) 
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Remark 3.1 The absolute values of  
𝜕𝑀𝐷𝐷

𝜕𝑠𝑖
𝑜𝑢𝑡  is used in Definition 1 because the value is negative, 

i.e. 𝑀𝐷𝐷 decreases as 𝑠𝑖
𝑜𝑢𝑡 increases.    □ 

Definitions 7.1 and 7.2 indicate that a machine is an MC-BN or MF-BN if a perturbation of its 

rated output rate or MTTR leads to the largest decrease or increase of the 𝑀𝐷𝐷. Since there is no 

closed-form expression of 𝑀𝐷𝐷 when system becomes complex and it is very difficult to 

evaluate the derivatives of 𝑀𝐷𝐷, identification methods of MC-BN and MF-BN will be 

developed based on the measurable data or simulation results.  

Assume that the virtual machine 𝑚𝑀+1 is subject to a set of DEMCs 𝐸𝑐 = {𝑒1
𝑐, . . ., 𝑒𝑛𝑐

𝑐 },

𝑛𝑐 ≥ 1, and DEMFs 𝐸𝐹 = {𝑒1
𝐹 , . . ., 𝑒

𝑛𝐹
𝐹 }, 𝑛𝐹 ≥ 1 during  (0, 𝑇], where 𝑒𝑖

𝑐 = (𝑚𝑗 , 𝑡𝑖, 𝑑𝑖) and 

𝑒𝑖
𝐹 = (𝑚𝑘, 𝑡𝑖, 𝑑𝑖) are the 𝑖𝑡ℎ DEMC and DEMF. Then 𝑀𝐷𝐷 can be calculated as 

𝑀𝐷𝐷 = ∑ 𝑑𝑖[𝑠𝑀+1
𝑜𝑢𝑡 − 𝑣𝑀+1

𝑜𝑢𝑡 (𝑒𝑖
𝑐)]𝑛𝑐

𝑖=1 + ∑ 𝑑𝑖𝑠𝑀+1
𝑜𝑢𝑡𝑛𝐹

𝑖=1  (7.10) 

where 𝑛𝑐 and 𝑛𝐹 are the number of DEMCs and DEMFs and 𝑣𝑀+1
𝑜𝑢𝑡 (𝑒𝑖

𝑐) =
𝑠𝑗
𝑜𝑢𝑡

∏ 𝜆𝑟
𝑀+1
𝑟=𝑗+1

 is the 

processing rate of the virtual machine 𝑚𝑀+1 if it is partially starved due to a DEMC 𝑒𝑖
𝑐 =

(𝑚𝑗 , 𝑡𝑖, 𝑑𝑖). Based on Equation 10, indicators for MC-BN and MF-BN identification can be 

developed. 

Proposition 7.1 |
𝜕𝑀𝐷𝐷 

𝜕𝑠𝑖
𝑜𝑢𝑡 | > |

𝜕𝑀𝐷𝐷 

𝜕𝑠𝑗
𝑜𝑢𝑡 |, 𝑖 ≠ 𝑗, if  

𝑃𝑇𝑖

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

>
𝑃𝑇𝑗

∏ 𝜆𝑟
𝑀+1
𝑟=𝑗+1

, where 𝑃𝑇𝑖 = ∑ 𝑑𝑖,𝑙
𝑛𝑖
𝑐

𝑙=1  is the 

summation of the duration of DEMCs caused  by machine 𝑚𝑖.  
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Proof: 𝐸𝑘
𝑐 = {𝑒𝑘,1

𝑐 , . . ., 𝑒𝑘,𝑛𝑘
𝑐

𝑐 } , 𝑛𝑘
𝑐 ≥ 1, denotes the DEMCs caused by machine 𝑚𝑘, where 

𝑒𝑘,𝑙
𝑐 = (𝑚𝑘, 𝑡𝑘,𝑙, 𝑑𝑘,𝑙), 1 ≤ 𝑙 ≤ 𝑛𝑘

𝑐 , is the 𝑙𝑡ℎ DEMC in 𝐸𝑘
𝑐. Based on Equation 7.10, market 

demand dissatisfaction 𝑀𝐷𝐷 can be calculated with 𝐸𝑘
𝑐 as  

𝑀𝐷𝐷 = ∑ ∑ 𝑑𝑘,𝑙 [𝑠𝑀+1
𝑜𝑢𝑡 −

𝑠𝑘
𝑜𝑢𝑡

∏ 𝜆𝑟
𝑀+1
𝑟=𝑘+1

]
𝑛𝑘
𝑐

𝑙=1
𝑀
𝑘=1 + ∑ 𝑑𝑙𝑠𝑀+1

𝑜𝑢𝑡𝑛𝐹

𝑙=1  (7.11) 

Suppose we reduce 𝑠𝑖
𝑜𝑢𝑡 (i.e. the rated output rate of machine  𝑚𝑖) in a small amount 𝛿𝑠. Then 

the market demand dissatisfaction 𝑀𝐷𝐷 becomes  

𝑀𝐷𝐷′ = ∑ ∑ 𝑑𝑘,𝑙 [𝑠𝑀+1
𝑜𝑢𝑡 −

𝑠𝑘
𝑜𝑢𝑡

∏ 𝜆𝑟
𝑀+1
𝑟=𝑘+1

]
𝑛𝑘
𝑐

𝑙=1
𝑘≠𝑖
1≤𝑘≤𝑀 + ∑ 𝑑𝑖,𝑙[𝑠𝑀+1

𝑜𝑢𝑡 −
𝑠𝑖
𝑜𝑢𝑡−𝛿𝑠

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

]
𝑛𝑖
𝑐

𝑙=1 + ∑ 𝑑𝑙𝑠𝑀+1
𝑜𝑢𝑡𝑛𝐹

𝑙=1   

  (7.12) 

The derivative of customer satisfaction in Definition 1 can be calculated with Equations 7.11 

and 7.12 as  

|
𝜕𝑀𝐷𝐷 

𝜕𝑠𝑖
| = lim

𝛿𝑠→0
|
𝑀𝐷𝐷−𝑀𝐷𝐷′

𝛿𝑠
| =

∑ 𝑑𝑖,𝑙
𝑛𝑖
𝑐

𝑙=1

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

 (7.13) 

Therefore, partial derivative in Equation 7.8 is determined by 
𝑃𝑇𝑖

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

, where 𝑃𝑇𝑖 = ∑ 𝑑𝑖,𝑙
𝑛𝑖
𝑐

𝑙=1 .  □  

Proposition 7.2  
𝜕𝑀𝐷𝐷 

𝜕𝑀𝑇𝑇𝑅𝑖
>

𝜕𝑀𝐷𝐷 

𝜕𝑀𝑇𝑇𝑅𝑗
, 𝑖 ≠ 𝑗, if  𝑛𝑖

𝐹 > 𝑛𝑗
𝐹, where 𝑛𝑖

𝐹 denotes the number of 

DEMFs caused by machine 𝑚𝑖.  

Proof: 𝐸𝑘
𝐹 = {𝑒𝑘,1

𝐹 , . . ., 𝑒
𝑘,𝑛𝑘

𝐹
𝐹 } , 𝑛𝑘

𝐹 ≥ 1, denotes the DEMFs caused by machine 𝑚𝑘, where 

𝑒𝑘,𝑙
𝐹 = (𝑚𝑘, 𝑡𝑘,𝑙, 𝑑𝑘,𝑙), 1 ≤ 𝑙 ≤ 𝑛𝑘

𝐹 , is the 𝑙𝑡ℎ DEMF in 𝐸𝑘
𝐹. Based on Equation 7.10, market 

demand dissatisfaction 𝑀𝐷𝐷 can be calculated with 𝐸𝑘
𝐹 as  
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𝑀𝐷𝐷 = ∑ 𝑑𝑙[𝑠𝑀+1
𝑜𝑢𝑡 − 𝑣𝑀+1

𝑜𝑢𝑡 (𝑒𝑙
𝑐)]𝑛𝑐

𝑙=1 + ∑ ∑ 𝑑𝑘,𝑙𝑠𝑀+1
𝑜𝑢𝑡𝑛𝑘

𝐹

𝑙=1
𝑀
𝑘=1   (7.14) 

Suppose we reduce the duration of each downtime event happened at machine 𝑚𝑖 (i.e. MTTR of 

machine  𝑚𝑖) in a small amount 𝛿𝑑. Then the duration of DEMFs at end-of-line virtual machine 

𝑚𝑀+1 caused by machine 𝑚𝑖 is also reduced by 𝛿𝑑. The market demand dissatisfaction 𝑀𝐷𝐷 

becomes  

𝑀𝐷𝐷′ = ∑ 𝑑𝑖[𝑠𝑀+1
𝑜𝑢𝑡 − 𝑣𝑀+1

𝑜𝑢𝑡 (𝑒𝑙
𝑐)]𝑛𝑐

𝑙=1 +∑ ∑ 𝑑𝑘,𝑙𝑠𝑀+1
𝑜𝑢𝑡𝑛𝑘

𝐹

𝑙=1
𝑘≠𝑖
1≤𝑘≤𝑀 +∑ (𝑑𝑖,𝑙 − 𝛿𝑑)𝑠𝑀+1

𝑜𝑢𝑡𝑛𝑖
𝐹

𝑙=1  

  (7.15) 

The derivative of customer satisfaction in Definition 2 can be calculated with Equations 7.14 

and 7.15 as  

𝜕𝑀𝐷𝐷

𝜕𝑀𝑇𝑇𝑅𝑖
= lim

𝛿𝑑→0

𝑀𝐷𝐷−𝑀𝐷𝐷′

𝛿𝑑
= 𝑠𝑀+1

𝑜𝑢𝑡 𝑛𝑖
𝐹 (7.16) 

Since 𝑠𝑀+1
𝑜𝑢𝑡  is a constant, 𝑛𝑖

𝐹 determines the derivative value in Equation 7.9. □ 

𝑃𝑇𝑖  and 𝑛𝑖
𝐹 can be obtained by real-time information or simulation. With real-time 

information or simulation result, 𝑃𝑇𝑖 denotes the summation of the duration of DEMCs caused 

by machine 𝑚𝑖 and 𝑛𝑖
𝐹 denotes the number of DEMFs caused by machine 𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑀. 

Alternatively, based on the stochastic analysis in Section 7.3, 𝑃𝑇𝑖 can be estimated as the 

probability that machine 𝑚𝑖 causes DEMCs (in other words, partially starves virtual machine 

𝑚𝑀+1) and 𝑛𝑖
𝐹 can be estimated as the frequency that machine 𝑚𝑖 causes DEMFs (in other 

words, completely starves virtual machine 𝑚𝑀+1), which are denoted as 𝑃�̃�𝑖 and �̃�𝑖
𝐹 respectively. 

Note that in the last subsystem 𝑙𝑀 (shown in Figure 7.2), the pseudo-machine 𝑚𝑀
𝑑  consists of 

single end-of-line virtual machine 𝑚𝑀+1. To find 𝑃�̃�𝑖 and �̃�𝑖
𝐹, it is equivalent to estimate the 
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probability that machine 𝑚𝑖 partially starves pseudo-machine 𝑚𝑀
𝑑  (i.e. causes DEMCs) and the 

frequency that machine 𝑚𝑖 completely starves pseudo-machine 𝑚𝑀
𝑑  (i.e. causes DEMF). For the 

ease of expression, 𝐺𝑖
𝑝
 and 𝐺𝑖

𝑐 are used to denote the states that pseudo-machine machine 𝑚𝑀
𝑑  is 

partially and completely starved by a machine 𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑀. 

When pseudo-machine 𝑚𝑀
𝑑  is partially starved by machine 𝑚𝑖, the subsystem 𝑙𝑀 is in a state 

{0, 𝛼𝑀
𝑢 , 𝛼𝑀

𝑑 }, where 𝛼𝑀
𝑑 ∈ 𝐺𝑖

𝑝
. 𝑃�̃�𝑖 can be estimated as the probability that the subsystem is in 

such states, i.e. 

 𝑃�̃�𝑖 = ∑ ∑ 𝑃[{0, 𝛼𝑀
𝑢 , 𝛼𝑀

𝑑 }]𝛼𝑀
𝑢 ∈𝐼𝑀

𝑢
𝛼𝑀
𝑑 ∈𝐺

𝑖
𝑝  (7.17) 

where 𝐼𝑀
𝑢 = 𝐿𝑆𝑀

𝑢 ∪ 𝑅𝑆𝑀
𝑢 . When the last virtual machine 𝑚𝑀+1 is completely starved by machine 

𝑚𝑖, the subsystem 𝑙𝑀 is in a state {0, 𝛼𝑀
𝑢 , 𝛼𝑀

𝑑 }, where 𝛼𝑀
𝑑 ∈ 𝐺𝑖

𝑐. The frequency that virtual 

machine 𝑚𝑀+1 is completely starved by machine 𝑚𝑖 (i.e. �̃�𝑖
𝐹) can be calculated based on 

Equation 7.4 as 

�̃�𝑖
𝐹 = ∑

𝑁(0,𝛼𝑀
𝑢 ,𝛼𝑀

𝑑 )

𝑇𝛼𝑀
𝑢 ∈𝐼𝑀

𝑢 = ∑ |𝜇𝑀
𝑜𝑢𝑡(𝛼𝑀

𝑢 ) − 𝜔𝑀
𝑖𝑛(𝛼𝑀

𝑑 )|𝑓(0, 𝛼𝑀
𝑢 , 𝛼𝑀

𝑑 )𝛼𝑀
𝑢 ∈𝐼𝑀

𝑢 , 𝛼𝑀
𝑑 ∈ 𝐺𝑖

𝑐 (7.18) 

7.4.2 Independent MC-BNs and MF-BNs Identification 

Propositions 7.1 and 7.2 provide indicators for MC-BN and MF-BN, i.e. the machine 𝑚𝑖 with the 

highest value of  
𝑃𝑇𝑖

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

 (or 
𝑃�̃�𝑖

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

) is MC-BN and the machine with the highest value of  𝑛𝑖
𝐹 

(or  �̃�𝑖
𝐹) is MF-BN. However, the machines with the second largest indicators are not necessary 

the next MC-BN and MF-BN when current MC-BN and MF-BN are mitigated.  

Therefore, to find the second or third independent MC-BNs and MF-BNs, sensitivity analysis 

must be repeated when the previous MC-BNs and MF-BNs are mitigated. The following iterative 
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procedure is used to identify independent MF-BNs with severity ranking. MC-BNs can be 

similarly identified. For the ease of discussion, we use MF-BN(j) to denote the 𝑗𝑡ℎ, 1 ≤ 𝑗 ≤ 𝑀, 

significant independent MF-BN. 

1) Let 𝑗 = 1 and identify MF-BN(j) using MF-BN indicator.  

2) Decrease the MTTR of MF-BN(j) by 10% and identify the MF-BN in the updated system. 

The new MF-BN is denoted as MF-BN*. 

3) If MF-BN* does not indicate any MF-BN(k), 1 ≤ 𝑘 ≤ 𝑗, MF-BN(j+1) = MF-BN* and update 

𝑗 = 𝑗 + 1. Otherwise, return to Step 2. 

4) If 𝑗 > 𝑀 or 𝑀𝐷𝐷 = 0, terminate the procedure; otherwise, return to Step 2. 

Note that the procedure uses simulation or stochastic analysis to find MF-BN and MC-BN 

indicators. To identify independent MC-BNs and MF-BNs, the simulation or stochastic analysis 

must be repeated. Although the method is very useful for independent MC-BNs and MF-BNs 

identification through off-line calculation, it is a computational expensive procedure. It is 

difficult to apply the method to identify MC-BNs and MF-BNs in real-time.  

To identify MF-BNs in real-time, a data-driven method is developed through utilizing online 

data. Numerical studies indicate that most of the major MF-BNs (e.g. the first two or three MF-

BNs) identified based on the iterative procedure are turning points, where a turning point refers 

to a machine that is more likely to cause its upstream machines to be completely starved and 

downstream machines to be completely blocked and is less likely to be completely starved or 

blocked compared with its adjacent machines [10]. Therefore turning points can be defined as 

local MF-BNs and can be found based on a data-driven method developed in literature [10]. An 

MF-BN can be identified as a machine 𝑚𝑖 if  
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Figure 7.3  Simulation verification example 1 

 

 
Figure 7.4  Simulation verification example 2 

 

 
Figure 7.5  Simulation verification example 3 
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𝑇𝐵𝑖
𝑐 − 𝑇𝑆𝑖

𝑐 > 0, 𝑖 ≠ 1,𝑀 + 1 

𝑇𝐵𝑖
𝑐 − 𝑇𝑆𝑖

𝑐 < 0, 𝑖 ≠ 1,𝑀 + 1 

𝑇𝐵𝑖
𝑐 + 𝑇𝑆𝑖

𝑐 < 𝑇𝐵𝑖−1
𝑐 + 𝑇𝑆𝑖−1

𝑐 , 𝑖 ≠ 1,𝑀 + 1 

𝑇𝐵𝑖
𝑐 + 𝑇𝑆𝑖

𝑐 < 𝑇𝐵𝑖+1
𝑐 + 𝑇𝑆𝑖+1

𝑐 , 𝑖 ≠ 1,𝑀 + 1 

if 𝑖 = 1: 𝑇𝐵1
𝑐 − 𝑇𝑆1

𝑐 > 0, 𝑇𝐵2
𝑐 − 𝑇𝑆2

𝑐 < 0, 𝑇𝐵1
𝑐 + 𝑇𝑆1

𝑐 < 𝑇𝐵2
𝑐 + 𝑇𝑆2

𝑐 

if 𝑖 = 𝑀 + 1: 𝑇𝐵𝑀
𝑐 − 𝑇𝑆𝑀

𝑐 > 0, 𝑇𝐵𝑀+1
𝑐 − 𝑇𝑆𝑀+1

𝑐 < 0, 𝑇𝐵𝑀+1
𝑐 + 𝑇𝑆𝑀+1

𝑐 < 𝑇𝐵𝑀
𝑐 + 𝑇𝑆𝑀

𝑐  

where 𝑇𝐵𝑖
𝑐 and 𝑇𝑆𝑖

𝑐 are the accumulated complete blockage and starvation time of machine 𝑚𝑖. 

The severity of the local MF-BNs can be determined based on MF-BN indicator values, i.e. the 

natural value ranking of 𝑛𝑖
𝐹. 

Numerical experiments are performed to verify the major MF-BNs and their severity 

rankings based on the data-driven method and MF-BN indicator ranking. Extensive simulation 

studies have been performed, and three examples are shown in Figures 7.3-7.5. MF-BNs 

identified by data-driven method with indicator severity rankings are shown in the first row of 

Tables 7.1-7.3. It can be observed that in all three systems, the local MF-BNs with indicator 

severity rankings match the results based on the simulation iterative procedure. 

Table 7.1  Results for MC-BNs and OC-BNs identification in system 1 

Data-driven method MF-BN 𝑚2     

Iterative simulation  MF-BN 𝑚2 𝑚3 𝑚4 𝑚1 𝑚5 

 

Table 7.2  Results for MC-BNs and OC-BNs identification in system 2 

Data-driven method MF-BN 𝑚5 𝑚2     

Iterative simulation MF-BN 𝑚5 𝑚2 𝑚4 𝑚6 𝑚3 𝑚1 
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Table 7.3  Results for MC-BNs and OC-BNs identification in system 3 

Data-driven method MF-BN 𝑚5 𝑚7      

Iterative simulation MF-BN 𝑚5 𝑚7 𝑚2 𝑚4 𝑚6 𝑚3 𝑚1 

7.4.3 Supervisory Control Scheme 

To reduce 𝑀𝐷𝐷 in a market demand driven system, a supervisory control algorithm is 

introduced. The control is a feedback process which involves two steps: 

1) Collecting information about critical performance measures over time; 

2) Taking appropriate control actions based on the collected information. 

It means periodically monitoring 𝑀𝐷𝐷, comparing it to a desired level which obviously can be 

presented as 𝑀𝐷𝐷∗ = 0, identifying the main causes of 𝑀𝐷𝐷 > 0, and taking corrective actions 

to eliminate the causes. It is similar to the plan-do-check-act cycle for continuous improvement.  

Since MC-BN and MF-BN are the main reasons causing system failing to satisfy market 

demand (i.e. 𝑀𝐷𝐷 > 0), the control action focuses on identifying and mitigating the MC-BNs 

and MF-BNs. Specifically, when MC-BNs and MF-BNs are identified based on the 

aforementioned methods, limited resources and budget can be prioritized and focused  on the 

selected MC-BNs and MF-BNs to most effectively improve the system performance. For 

example, extra workers can be assigned to MC-BNs to increase their rated output rates and 

maintenance priority can be scheduled for MF-BNs to decrease their MTTRs. 
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7.5 Case Study 

Extensive numerical experiments are performed to verify the methods to identify MC-BNs and 

MF-BNs and the effectiveness of control policies focusing on MC-BNs and MF-BNs. As an 

illustration, a market demand driven system consisting of 6 machines is selected, which is shown 

in Figure 7.6.  

Table 7.4  MC-BNs and MF-BNs identified based on iterative procedure and indicators 

Iterative simulation MF-BN 𝑚3 𝑚1 𝑚4 𝑚2 𝑚5 

 MC-BN 𝑚4 𝑚3 𝑚2 𝑚1  

 Computational time 15 mins     

Indicators with 

simulation 
MF-BN 𝑚3 𝑚1 𝑚4 𝑚2 𝑚5 

 MC-BN 𝑚4 𝑚3 𝑚2 𝑚1  

 Computational time 8 mins     

Indicators with 

stochastic 
MF-BN 𝑚3 𝑚1 𝑚4 𝑚2 𝑚5 

 MC-BN 𝑚4 𝑚3 𝑚2 𝑚1  

 Computational time 3 mins     

Table 7.4 shows the MC-BNs and MF-BNs results based on three methods. Sensitivities 

∆𝑀𝐷𝐷 

∆𝑠𝑖
𝑜𝑢𝑡  and 

∆𝑀𝐷𝐷 

∆𝑀𝑇𝑇𝑅𝑖
 are estimated numerically with steps 𝜕𝑠𝑖

𝑜𝑢𝑡 = 0.05𝑠𝑖
𝑜𝑢𝑡 and 𝜕𝑀𝑇𝑇𝑅𝑖 =

0.05𝑀𝑇𝑇𝑅𝑖 and the iterative procedure is adopted to identify all the independent bottlenecks. 

These results are shown in the “Iterative simulation” row. Bottlenecks based on the indicators 

𝑃𝑇𝑖

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

 and 𝑛𝑖
𝐹 through simulation evaluation are shown in the ”Indicators with simulation” 

 
Figure 7.6  A battery production line and its market demand  
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row. Bottlenecks based on the indicators 
𝑃�̃�𝑖

∏ 𝜆𝑟
𝑀+1
𝑟=𝑖+1

 and �̃�𝑖
𝐹 through stochastic evaluation is shown 

in the “Indicators with stochastic” row.  

 
Figure 7.7  𝑴𝑫𝑫𝒄 and 𝑴𝑫𝑫𝑭 caused by each machine 

 
Figure 7.8  𝑴𝑫𝑫 changes with supervisory control focusing on MF-BNs 

 
Figure 7.9 𝑀𝐷𝐷 changes with supervisory control focusing on MC-BNs 
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In addition, the effects of improving MC-BNs and MF-BNs are analyzed. For convenience, 

𝑀𝐷𝐷𝑐 and 𝑀𝐷𝐷𝐹 are used to denote the 𝑀𝐷𝐷 caused by DEMCs and DEMFs. Figure 7.7 

shows the portions of  𝑀𝐷𝐷𝑐 and 𝑀𝐷𝐷𝐹 caused by each machine. It can be observed that 

DEMFs cause the most of 𝑀𝐷𝐷.  Therefore, the supervisory control is focused on MF-BNs first. 

MF-BNs are identified and improved with a control interval of 24 hours and 𝑀𝐷𝐷𝑐 and 𝑀𝐷𝐷𝐹 

after each improvement are shown in Figure 7.8. According to the result, the control gradually 

decreases the  𝑀𝐷𝐷𝐹 portion and the overall 𝑀𝐷𝐷. This is due to the fact that the improvements 

of MF-BNs reduce the overall downtime, which naturally decreases 𝑀𝐷𝐷𝐹. When the 

continuous improvements on MF-BNs cannot further decrease the overall 𝑀𝐷𝐷, the supervisory 

control switches to MC-BNs mitigation. Similarly, the control gradually reduces the 𝑀𝐷𝐷𝑐 

portion and the overall 𝑀𝐷𝐷, and changes the ratio of  the 𝑀𝐷𝐷𝐹 portion and the 𝑀𝐷𝐷𝑐 portion 

as shown in Figure 7.9.  

Table 7.5  The three control policies  

  𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

Policy 1 Output rate (increase by %) 0 5% 15% 30% 0 

 MTTR (decrease by min) 2 0 3 1 0 

Policy 2 Output rate (increase by %) 0 5% 15% 30% 0 

 MTTR (decrease by min) 0 1 3 2 0 

Policy 3 Output rate (increase by %) 0 0 5% 15% 30% 

 MTTR (decrease by min) 3 2 1 0 0 

Table 7.6  𝑀𝐷𝐷 changes caused by the three policies 

 Policy 1 Policy 2 Policy 3 

Throughput increase 36 19 8 

𝑀𝐷𝐷 decrease 36 19 8 

Lastly, the effectiveness and the benefits of using the proposed supervisory control 

methodology are demonstrated through comparing with two other control policies in a simulation 

time of 24 hours. The three policies are listed in Table 7.5. In policy 1, the major MF-BNs are 

identified as 𝑚3, 𝑚1 and 𝑚4 and MC-BNs are identified as 𝑚4, 𝑚3 and 𝑚2 based on the 
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iterative procedure. The output rates of the three major MC-BNs are increased by 30%, 15% and 

5% and the MTTRs of the major three MF-BNs are decreased by 3, 2 and 1 minute. In policy 2, 

the top three machines are selected based on the highest sensitivity values without using iterative 

procedure in Section 7.4.2. The output rates of the three machines with the highest sensitivity 

values 
𝜕𝑀𝐷𝐷

𝜕𝑠𝑖
𝑜𝑢𝑡  are increased by 30%, 15% and 5% and the MTTRs of the three machines with the 

highest sensitivity values 
𝜕𝑀𝐷𝐷

𝜕𝑀𝑇𝑇𝑅𝑖
 are decreased by 3, 2 and 1 minute. In policy 3, the output rates 

of the three machines with the lowest output rate are increased by 30%, 15% and 5% and the 

MTTRs of the three machines with the highest MTTR are decreased by 3, 2 and 1 minute.  Table 

7.6 shows the 𝑀𝐷𝐷 decrease and throughput increase when the three control policies are 

applied. The result indicates that the proposed supervisory control brings the most 𝑀𝐷𝐷 

reduction (throughput increase). This validates that the most effective way to improve system 

throughput and reduce MDD is through identification and mitigation of MC-BNs and MF-BNs. 

7.6 Conclusion 

This chapter addresses multistage production system performance using a Markovian 

continuous-flow model with a decomposition method. The model captures the key features of 

machines with different input and output rates as well as large variance in machine cycle time, 

which were not normally described in the existing analytical models. A market demand driven 

system is developed by modeling market demand as the end-of-line virtual machine. In such a 

system, any market demand dissatisfaction, i.e. 𝑀𝐷𝐷, can be measured as the production loss at 

the end-of-line virtual machine. An event-based methodology is developed to categorize the 

𝑀𝐷𝐷 caused by machine capacity bottlenecks (MC-BNs) and machine failure bottlenecks (MF-

BNs). Indicators for MC-BN and MF-BN identification are proposed. It is shown that the MC-
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BN and MF-BN identification indicators are related to DEMCs and DEMFs. Based on the 

identification indicators, an iterative procedure and a data-driven method are developed to 

identify all the independent MC-BNs and MF-BNs. A supervisory control algorithm to identify 

and mitigate MC-BNs and MF-BNs is introduced. The case study confirms that the supervisory 

control focusing on MC-BNs and MF-BNs can most efficiently increase system throughput and 

reduce 𝑀𝐷𝐷. 

In the future, optimal control algorithms will be developed to minimize 𝑀𝐷𝐷 through 

improving MC-BNs and MF-BNs with constrains (e.g. limited resources and budget). 

7.7 Appendix 

7.7.1 Transaction Matrices of Pseudo-machines 

The states of a pseudo-machine 𝑚𝑖
𝑢, 1 ≤ 𝑖 ≤ 𝑀, can be categorized into two: local states 𝐿𝑆𝑖

𝑢 and remote 

states 𝑅𝑆𝑖
𝑢. The size of local states 𝐿𝑆𝑖

𝑢 and remote states 𝑅𝑆𝑖
𝑢 are assumed to be 𝐿𝑁𝑖

𝑢 and 𝑅𝑁𝑖
𝑢. The 

transition rate matrix of pseudo-machine is a (𝐿𝑁𝑖
𝑢 + 𝑅𝑁𝑖

𝑢) × (𝐿𝑁𝑖
𝑢 + 𝑅𝑁𝑖

𝑢) square matrix. Depending 

on the transition links, the transition rate matrix 𝜏𝑖
𝑢 consists of four sub-matrices as: 

𝜏𝑖
𝑢 = [

𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢∗) 𝜏𝑖

𝑢(𝛼𝑖
𝑢∗, 𝛼𝑖

𝑢)

𝜏𝑖
𝑢(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) 𝜏𝑖

𝑢(𝛼𝑖
𝑢, 𝛼𝑖

𝑢)
]  

where 𝜏𝑖
𝑢(𝑘, 𝑗) denotes the transition rate sub-matrix from 𝑘 to 𝑗 and 𝛼𝑖

𝑢∗ and 𝛼𝑖
𝑢 denote the local states 

and remote states of pseudo-machine 𝑚𝑖
𝑢.  

The sub-matrix 𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢∗) is a 𝐿𝑁𝑖

𝑢 × 𝐿𝑁𝑖
𝑢 square matrix. It can be determined based on the 

transition rate of machine 𝑚𝑖, i.e. 

 𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢∗) = 𝜏𝑖(𝛼𝑖 , 𝛼𝑖

′) (7.19) 
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where 𝜏𝑖(𝛼𝑖 , 𝛼𝑖
′) denotes the transition rate of machine 𝑚𝑖 from state 𝛼𝑖 to 𝛼𝑖

′. 

The sub-matrix 𝜏𝑖
𝑢(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) is a 𝑅𝑁𝑖

𝑢 × 𝐿𝑁𝑖
𝑢 matrix. It links remote states 𝛼𝑖

𝑢 with local states 𝛼𝑖
𝑢∗. 

The transition can be triggered for two reasons: the machine 𝑚𝑗 causing DEMFs is repaired or machine 

𝑚𝑖 is down. Therefore, the transition rate matrix consists of two contributions 𝜏𝑖
𝑢,1(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) and 

𝜏𝑖
𝑢,2(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗), which are found as 

𝜏𝑖
𝑢,1(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) = 𝑟𝑗, 𝛼𝑖

𝑢 = {0, 𝛼𝑖−1
𝑢 , 𝛼𝑖} ∈ 𝑅𝑆𝑖

𝑢, 𝛼𝑖
𝑢∗ = {𝛼𝑖} ∈ 𝐿𝑆𝑖

𝑢 (7.20) 

𝜏𝑖
𝑢,2(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) = 𝑝𝑖 , 𝛼𝑖

𝑢 = {0, 𝛼𝑖−1
𝑢 , 𝛼𝑖} ∈ 𝑅𝑆𝑖

𝑢, 𝛼𝑖
𝑢∗ = {𝛼𝑖} ∈ 𝐿𝑆𝑖

𝑢 (7.21) 

The transition rate matrix 𝜏𝑖
𝑢(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) can be calculated as  

𝜏𝑖
𝑢(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) = 𝜏𝑖

𝑢,1(𝛼𝑖
𝑢, 𝛼𝑖

𝑢∗) + 𝜏𝑖
𝑢,2(𝛼𝑖

𝑢, 𝛼𝑖
𝑢∗) (7.22) 

The sub-matrix 𝜏𝑖
𝑢(𝛼𝑖

𝑢, 𝛼𝑖
𝑢) is a 𝑅𝑁𝑖

𝑢 × 𝑅𝑁𝑖
𝑢 square matrix. It links the remote states 𝛼𝑖

𝑢 with remote 

states 𝛼𝑖
𝑢. The transition occurs when a machine 𝑚𝑗, 𝑗 ≠ 𝑖, transfers from state 𝛼𝑗 to state 𝛼𝑗

′ such that the 

pseudo-machine 𝑚𝑖
𝑢 transfers from a remote state  𝛼𝑖

𝑢 = {0, 𝛼𝑖−1
𝑢 , 𝛼𝑖} to another remotes state 𝛼𝑖

𝑢′ =

{0, 𝛼𝑖−1
𝑢′ , 𝛼𝑖}. The transition rate matrix can be expressed as  

𝜏𝑖
𝑢(𝛼𝑖

𝑢, 𝛼𝑖
𝑢′) = 𝜏(𝛼𝑗, 𝛼𝑗

′), 𝛼𝑖
𝑢 = {0, 𝛼𝑖−1

𝑢 , 𝛼𝑖} ∈ 𝑅𝑆𝑖
𝑢, 𝛼𝑖

𝑢′ = {0, 𝛼𝑖−1
𝑢′ , 𝛼𝑖} ∈ 𝑅𝑆𝑖

𝑢 (7.23) 

The sub-matrix 𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢) is a 𝐿𝑁𝑖

𝑢 × 𝑅𝑁𝑖
𝑢matrix. It links local states 𝛼𝑖

𝑢∗ with remote states 𝛼𝑖
𝑢. 

According to the analysis in [67], the transition rate matrix can be calculated as 

𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢) =

prob[{𝛼𝑖
𝑢∗}]∑ 𝜏𝑖

𝑢(𝛼𝑖
𝑢∗,𝑞)𝑞∈𝐼𝑖

𝑢 −∑ 𝜏𝑖
𝑢(𝛼𝑖

𝑢∗,𝑞)prob[{𝑞}]𝑞∈𝑅𝑆𝑖
𝑢

prob[{𝛼𝑖
𝑢∗}]

 (7.24) 

where 𝐼𝑖
𝑢 = 𝑅𝑆𝑖

𝑢 ∪ 𝐿𝑆𝑖
𝑢. 
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Similarly, the transition rate matrix of a pseudo-machine 𝑚𝑖
𝑑 , 1 ≤ 𝑖 ≤ 𝑀 − 1, can be determined. 𝐿𝑁𝑖

𝑑 

and 𝑅𝑁𝑖
𝑑 denote the size of local states 𝐿𝑆𝑖

𝑑 and remote states 𝑅𝑆𝑖
𝑑 of pseudo-machine 𝑚𝑖

𝑑. The transition 

rate matrix of pseudo-machine is a (𝐿𝑁𝑖
𝑑 + 𝑅𝑁𝑖

𝑑) × (𝐿𝑁𝑖
𝑑 + 𝑅𝑁𝑖

𝑑) square matrix, which is expressed as  

𝜏𝑖
𝑑 = [

𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑∗) 𝜏𝑖

𝑑(𝛼𝑖
𝑑∗, 𝛼𝑖

𝑑)

𝜏𝑖
𝑑(𝛼𝑖

𝑑 , 𝛼𝑖
𝑑∗) 𝜏𝑖

𝑑(𝛼𝑖
𝑑 , 𝛼𝑖

𝑑)
]  

𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑∗) is a square matrix with a size of 𝐿𝑁𝑖

𝑑 × 𝐿𝑁𝑖
𝑑 and can be determined as 

𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑∗) = 𝜏𝑖+1(𝛼𝑖+1, 𝛼𝑖+1

′ ) (7.25) 

𝜏𝑖
𝑑(𝛼𝑖

𝑑 , 𝛼𝑖
𝑑∗) is a matrix with a size of 𝑅𝑁𝑖

𝑑 × 𝐿𝑁𝑖
𝑑 and can be determined as 

𝜏𝑖
𝑑,1(𝛼𝑖

𝑑, 𝛼𝑖
𝑑∗) = 𝑟𝑗, 𝛼𝑖

𝑑 = {𝐵𝑖, 𝛼𝑖+1, 𝛼𝑖+1
𝑑 } ∈ 𝑅𝑆𝑖

𝑑, 𝛼𝑖
𝑑∗ = {𝛼𝑖+1} ∈ 𝐿𝑆𝑖

𝑑 (7.26) 

𝜏𝑖
𝑑,2(𝛼𝑖

𝑑, 𝛼𝑖
𝑑∗) = 𝑝𝑖 , 𝛼𝑖

𝑑 = {𝐵𝑖, 𝛼𝑖+1, 𝛼𝑖+1
𝑑 } ∈ 𝑅𝑆𝑖

𝑑 , 𝛼𝑖
𝑑∗ = {𝛼𝑖+1

′ } ∈ 𝐿𝑆𝑖
𝑑 (7.27) 

𝜏𝑖
𝑑(𝛼𝑖

𝑑 , 𝛼𝑖
𝑑∗) = 𝜏𝑖

𝑑,1(𝛼𝑖
𝑑 , 𝛼𝑖

𝑑∗) + 𝜏𝑖
𝑑,2(𝛼𝑖

𝑑 , 𝛼𝑖
𝑑∗) (7.28) 

𝜏𝑖
𝑑(𝛼𝑖

𝑑 , 𝛼𝑖
𝑑) is a 𝑅𝑁𝑖

𝑑 × 𝑅𝑁𝑖
𝑑 square matrix and is determined as  

𝜏𝑖
𝑑(𝛼𝑖

𝑑 , 𝛼𝑖
𝑑′) = 𝜏(𝛼𝑗 , 𝛼𝑗

′), 𝛼𝑖
𝑑 = {𝐵𝑖, 𝛼𝑖+1, 𝛼𝑖+1

𝑑 } ∈ 𝑅𝑆𝑖
𝑑, 𝛼𝑖

𝑑′ = {𝐵𝑖, 𝛼𝑖+1
′ , 𝛼𝑖+1

𝑑′ } ∈ 𝑅𝑆𝑖
𝑑 (7.29) 

𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑) is a 𝐿𝑁𝑖

𝑑 × 𝑅𝑁𝑖
𝑑 square matrix and is determined as  

𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑) =

prob[{𝛼𝑖
𝑑∗}]∑ 𝜏𝑖

𝑑(𝛼𝑖
𝑑∗,𝑞)

𝑞∈𝐼𝑖
𝑑 −∑ 𝜏𝑖

𝑑(𝛼𝑖
𝑑∗,𝑞)prob[{𝑞}]

𝑞∈𝑅𝑆𝑖
𝑑

prob[{𝛼𝑖
𝑑∗}]

  (7.30) 

where 𝐼𝑖
𝑑 = 𝑅𝑆𝑖

𝑑 ∪ 𝐿𝑆𝑖
𝑑. 

7.7.2 Solution Algorithm 

According to the analysis in [67], the computational algorithm for decomposition equations is 

shown below. 
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Step 1:  

1) Determine the state space of each pseudo-machine 𝑚𝑖
𝑢, 1 ≤ 𝑖 ≤ 𝑀, described in Section 7.3. 

2) Determine the sub-matrices of transition rate 𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢∗), 𝜏𝑖

𝑢(𝛼𝑖
𝑢, 𝛼𝑖

𝑢∗) and 𝜏𝑖
𝑢(𝛼𝑖

𝑢, 𝛼𝑖
𝑢) 

based on Equations 7.19-7.23. 

3) Estimate the sub-matrices of transition rate 𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢) with a low starting value. 

4) Determine the state space of each pseudo-machine  𝑚𝑖
𝑑 , 1 ≤ 𝑖 ≤ 𝑀. 

5) Determine the sub-matrices of transition rate 𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑∗), 𝜏𝑖

𝑑(𝛼𝑖
𝑑 , 𝛼𝑖

𝑑∗) and 𝜏𝑖
𝑑(𝛼𝑖

𝑑, 𝛼𝑖
𝑑) 

based on Equations 7.25-7.29. 

6) Estimate the sub-matrices of transition rate 𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑) with a low starting value. 

7) Analyze each subsystem 𝑙𝑖 using the method proposed by Tan and Gershwin [68] and find 

the initial values for the performance measures and state probabilities. 

Step 2:  

1) Calculate the probabilities that pseudo-machine 𝑚𝑖
𝑢 is in a remote state 𝛼𝑖

𝑢 ∈ 𝑅𝑆𝑖
𝑢 using 

prob[{0, 𝛼𝑖−1
𝑢 , 𝛼𝑖}] = prob[{0, 𝛼𝑖−1

𝑢 , 𝛼𝑖−1
𝑑 = 𝛼𝑖}] + ∑ prob[{0, 𝛼𝑖−1

𝑢 , 𝛼𝑖−1
𝑑 }]𝛼𝑖−1

𝑑 ∈𝑅𝑆𝑖
𝑑   

And calculate the probabilities that pseudo-machine 𝑚𝑖
𝑑 is in a remote state 𝛼𝑖

𝑑 ∈ 𝑅𝑆𝑖
𝑑 using 

prob[{𝐵𝑖, 𝛼𝑖+1, 𝛼𝑖+1
𝑑 }] = prob[{𝐵𝑖, 𝛼𝑖+1

𝑢 = 𝛼𝑖+1, 𝛼𝑖+1
𝑑 }] + ∑ prob[{0, 𝛼𝑖+1

𝑢 , 𝛼𝑖+1
𝑑 }]𝛼𝑖+1

𝑢 ∈𝑅𝑆𝑖+1
𝑢   

2) Calculate the probabilities that pseudo-machine 𝑚𝑖
𝑢 is in a local state 𝛼𝑖

𝑢 ∈ 𝐿𝑆𝑖
𝑢 and the 

probabilities that pseudo-machine 𝑚𝑖
𝑑 is in a local state 𝛼𝑖

𝑑 ∈ 𝐿𝑆𝑖
𝑑 using Equation 7.2. 

3) Update the sub-matrix of transition rate 𝜏𝑖
𝑢(𝛼𝑖

𝑢∗, 𝛼𝑖
𝑢) with Equation 7.24 and the sub-matrix 

of transition rate 𝜏𝑖
𝑑(𝛼𝑖

𝑑∗, 𝛼𝑖
𝑑) with Equation 7.30.  
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4) Analyze each subsystem 𝑙𝑖 using the method proposed by Tan and Gershwin [68] and update 

the values of performance measures and state probabilities. 

Step 3:  

1) Given a small tolerance value δ, check the following equation  

|λ̃𝑖+1 − 𝜆𝑖+1| ≤ 𝛿, 1 ≤ 𝑖 ≤ 𝑀 − 1  

where λ̃𝑖+1 =
𝜇𝑖
𝑜𝑢𝑡

𝜇𝑖+1
𝑜𝑢𝑡. If the equation holds, finish the iteration. Otherwise, go back to Step 2. 
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Chapter 8 

AN IMPROVED SUPERVISORY CONTROL SCHEME 

8.1 Introduction 

In Chapter 7, we have introduced a supervisory control scheme to improve system performance 

and market demand satisfaction. In the scheme, both real-time EBM based and Stochastic EBM 

based bottleneck identification and mitigation rules can be used. Both rules have their advantages 

and limitations. For example, real-time EBM considers realized production trajectory, but may 

not be accurate in predicting future production status in face of uncertainties. The real-time EBM 

based rule is efficient only within a relatively small time window. Stochastic EBM, on the other 

hand, is developed to estimate the long-term steady state system performance. Stochastic EBM 

based rule may not be as efficient as real-time EBM based rule in improving system performance 

in small time windows. Nevertheless, it has higher control efficiency when time windows 

become large. Therefore, a question arises naturally as when real-time EBM based and stochastic 

EBM based rules will be used for system control. Additionally, it remains a problem as how 

frequency to update the EBM based rules. If the time interval control is too short, it may result in 

chasing noise, but too long of time interval control will miss the opportunity.  

Motivated by the questions, in this chapter, we use Markov decision model to find the 

optimal control policies for bottleneck identification and mitigation rules’ selection and their 

updating. Based on the optimal policies, an improved supervisory control scheme is further 

developed.   
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8.2 Problem Formulation 

8.2.1 System Descriptions 

The system that we consider consists of a production line, a finished-goods buffer and a market 

demand virtual machine, which is shown in Figure 8.1. The existing literature [15-17] has 

enabled us to model a manufacturing system as a single virtual machine with aggregation method 

or decomposition method. Therefore, in this chapter, we use virtual machine 𝑚1 to model the 

manufacturing system. The system has following characteristics: 

1) Real-time EBM based and stochastic EBM based rules are used to identify bottlenecks. For 

ease of expression, we use 𝑓0 to represent real-time EBM based rule and 𝑓1 to represent 

stochastic EBM based rule. Both rules are updated simultaneously when a certain criteria is 

satisfied. 𝑎 is denoted as the policy age, which is defined as: 

𝑎(𝑡) = {
𝑔(𝑡), 𝑇𝑛 < 𝑡 < 𝑇𝑛+1
0, 𝑡 = 𝑇𝑛+1

  (8.1) 

where 𝑔(𝑡) is a non-decreasing function of time 𝑡 and 𝑇𝑛 and 𝑇𝑛+1 are the 𝑛th and 𝑛 + 1th 

time when the EBM policies are updated. For ease of discussion, we assume that 𝑔(𝑡) =

𝑎(𝑡 − 1) + 1. This assumption can be relaxed without any problem.  

 
 

Figure 8.1 An advanced manufacturing system 
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2) Virtual machine 𝑚1 has a constant rated speed, denoted by 𝑠1 (units/time unit). Virtual 

machine 𝑚1 has one up state (𝛼1 = 1) and one down state (𝛼1 = 0). It obeys Bernoulli 

reliability model [Liang Zhang, Meerkov]. At time 𝑡, virtual machine 𝑚1 has a probability of 

𝑝1(𝑓𝑖, 𝑎) being up and has a probability of 1 − 𝑝1(𝑓𝑖, 𝑎) being down, where 𝑖 = 1, 2 and 𝑎 ≥

0. 𝑝1(𝑓𝑖, 𝑎) is a function of rules {𝑓0, 𝑓1} and policy age 𝑎 with the following properties: (a) 

𝑝1(𝑓𝑖, 𝑎) is an decreasing function of policy age 𝑎, (b) there exists a time 𝑡0, such that 

{
𝑝1(𝑓0, 𝑎) < 𝑝1(𝑓1, 𝑎), 𝑎 ≤ 𝑡0
𝑝1(𝑓0, 𝑎) > 𝑝1(𝑓1, 𝑎), 𝑎 > 𝑡0

. All the machine state changes occur at the end of a time 

unit.  

3) Virtual machine 𝑚2 has a constant rated speed, denoted as 𝑑 (units/time unit). It can never 

break down.  

4) Finished-goods buffer 𝑏1 has a finite buffer capacity, which is denoted as 𝐵1. For ease of 

expression, we still use 𝑏1, 1 ≤ 𝑏1 ≤ 𝐵1, to denote the buffer level of the finished-goods 

buffer 𝑏1.  

5) Backordering is not allowed. Any product demand that is not satisfied in a time unit will be 

lost permanently. It cannot be made up at latter production. 

6) System state cam be expressed as {𝑎, 𝑏1} ∈ 𝑆. The state space is the set 𝑆 = {0,1, 2, … } ×

{0, 1, … , 𝐵1}. 

8.2.2 Decision Variables 

There are two decision variables: variable 𝑓 indicating the bottleneck identification rule that will 

be selected, i.e. real-time EBM based rule 𝑓0 or stochastic EBM based rule 𝑓1, and variable 𝛽 

determining whether the rules 𝑓0 and 𝑓1 are updated. Specifically, 𝛽 = 0 denotes that the rules 

are not updated and 𝛽 = 1 denotes that the rules are updated. The aim is to find an optimal 
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control policy {𝜋𝑓 , 𝜋𝛽}, such that the expected system cost 𝑉𝑡+1 is minimized at each state 

{𝑎, 𝑏1} ∈ 𝑆. 

8.2.3 Cost Function 

The expected system cost function consists of the average operation cost, fixed cost to update 𝑓0 

and 𝑓1, and lost sale penalty. The following notations are used: 

𝑐0, average operational cost per time unit, 

𝑐𝑢, fixed cost for updating 𝑓0 and 𝑓1, 

𝑐−, unit lost sale penalty per time unit. 

Let 𝜆 (0 < 𝜆 < 1) denote a discount factor. When system is in state {𝑎, 𝑏1}, 𝑎 ≥ 0, 0 ≤ 𝑏1 ≤ 𝐵1, 

and control actions {𝑓, 𝛽} are used, the expected discounted system cost 𝑉𝑡+1
{𝑓,𝛽}

(𝑎, 𝑏1) through an 

infinite horizon can be represented with the following recursive equations: 

𝑉𝑡+1
{𝑓,𝛽}(𝑎, 𝑏1) = 𝑐0 + 𝛽𝑐𝑢 + 𝑐

−[(1 − 𝑝1(𝑓𝑖, 𝑎))max(𝑑 − 𝑏1, 0)] + 𝜆[𝑝1(𝑓𝑖, 𝑎)𝑉𝑡(𝑎 +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 𝑎))𝑉𝑡(𝑎 + 1,min(𝑏1 − 𝑑, 0))]  (8.2) 

where 𝑉𝑡(𝑎, 𝑏1) is the minimum expected discounted system cost when system is in state {𝑎, 𝑏1}. 

This minimum cost and the optimal policy can be found by solving the following recursive 

optimality equations: 

  𝑉𝑡+1
𝛽=0(𝑎, 𝑏1) = 𝑉𝑡+1

{𝜋𝑓,𝛽=0}(𝑎, 𝑏1) = min𝑖=0,1{𝑐0 + 𝑐
−[(1 − 𝑝1(𝑓𝑖, 𝑎))max(𝑑 − 𝑏1, 0)] +

𝜆[𝑝1(𝑓𝑖, 𝑎)𝑉𝑡(𝑎 + 1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 𝑎))𝑉𝑡(𝑎 + 1,min(𝑏1 − 𝑑, 0))]},

 (8.3) 
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𝑉𝑡+1
𝛽=1(𝑎, 𝑏1) = 𝑉𝑡+1

{𝜋𝑓,𝛽=1}(𝑎, 𝑏1) = min𝑖=0,1{𝑐0 + 𝑐𝑢 + 𝑐
−[(1 − 𝑝1(𝑓𝑖, 0))max(𝑑 − 𝑏1, 0)] +

𝜆[𝑝1(𝑓𝑖, 0)𝑉𝑡(0,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 0))𝑉𝑡(0,min(𝑏1 − 𝑑, 0))]},  (8.4)  

𝑉𝑡+1(𝑎, 𝑏1) = min{𝑉𝑡+1
𝛽=0(𝑎, 𝑏1), 𝑉𝑡+1

𝛽=1(𝑎, 𝑏1)},   (8.5) 

𝑉0(𝑎, 𝑏1) = 0. (8.6) 

where 𝜋𝑓 is the optimal policy for bottleneck identification and mitigation rules’ selection and 𝜋𝛽 

is the optimal policy for rules 𝑓0 and 𝑓1’s updating. Equations 8.2 and 8.3 determine the optimal 

policy 𝜋𝑓 when 𝛽 = 0 and 𝛽 = 1 respectively. Equation 8.5 determines the optimal value of 𝛽 at 

state {𝑎, 𝑏1}, i.e. 𝜋𝛽. Equation 8.6 gives the initial condition.  

8.3 The Structure of the Optimal Policies 

In order to identify the structure of the optimal control policies, we introduce the following 

properties of the optimal expected discounted cost functions. 

Lemma 8.1 The cost function 𝑉𝑡(𝑎, 𝑏1)satisfies the following relations: 

a. 𝑉𝑡(𝑎, 𝑏1) ≥ 𝑉𝑡(𝑎, 𝑏1
′), 𝑎 ≥ 0 and 0 ≤ 𝑏1

′ ≤ 𝑏1 ≤ 𝐵1, 

b. 𝑉𝑡(𝑎, 𝑏1) ≤ 𝑉𝑡(𝑎′, 𝑏1), 𝑎′ ≥ 𝑎 ≥ 0 and 0 ≤ 𝑏1 ≤ 𝐵1. 

Proof: We will prove the Lemma by induction. The Lemma holds for 𝑡 = 0 based on the 

definition of 𝑉0(𝑎, 𝑏1) = 0. Assume that the Lemma holds for 𝑡 − 1, 𝑡 > 0. We will show that 

the Lemma also holds for 𝑡.  

Part a: Based on Equations 8.3 and 8.4, we have: 

𝑉𝑡+1
𝛽=0(𝑎, 𝑏1) = min𝑖=0,1{𝑐0 + 𝑐

−(1 − 𝑝1(𝑓𝑖, 𝑎))max(𝑑 − 𝑏1, 0) + 𝜆[𝑝1(𝑓𝑖, 𝑎)𝑉𝑡(𝑎 +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 𝑎))𝑉𝑡(𝑎 + 1,min(𝑏1 − 𝑑, 0))]}  
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≥ min𝑖=0,1{𝑐0 + 𝑐
−(1 − 𝑝1(𝑓𝑖, 𝑎))max(𝑑 − 𝑏1

′ , 0) + 𝜆[𝑝1(𝑓𝑖, 𝑎)𝑉𝑡(𝑎 +

1,min(𝑏1
′ + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 𝑎))𝑉𝑡(𝑎 + 1,min(𝑏1

′ − 𝑑, 0))]}  

= 𝑉𝑡+1
𝛽=0

(𝑎, 𝑏1
′)  

𝑉𝑡+1
𝛽=1(𝑎, 𝑏1) = min𝑖=0,1{𝑐0 + 𝑐

−(1 − 𝑝1(𝑓𝑖, 0))max(𝑑 − 𝑏1, 0) + 𝜆[𝑝1(𝑓𝑖, 0)𝑉𝑡(0,min(𝑏1 +

𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 0))𝑉𝑡(0,min(𝑏1 − 𝑑, 0))]}  

≥ min
𝑖=0,1

{𝑐0 + 𝑐
−(1 − 𝑝1(𝑓𝑖, 0))max(𝑑 − 𝑏1

′ , 0) + 𝜆[𝑝1(𝑓𝑖, 0)𝑉𝑡(0,min(𝑏1
′ + 𝑠1 −

𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 0))𝑉𝑡(0,min(𝑏1
′ − 𝑑, 0))]}  

= 𝑉𝑡+1
𝛽=1

(𝑎, 𝑏1
′)   

where 𝑏1
′ ≥ 𝑏1. Therefore, based on Equation 8.6, we can prove: 

𝑉𝑡(𝑎, 𝑏1) = min{𝑉𝑡+1
𝛽=0(𝑎, 𝑏1), 𝑉𝑡+1

𝛽=1(𝑎, 𝑏1)}  

≥ min{𝑉𝑡+1
𝛽=0(𝑎, 𝑏1

′), 𝑉𝑡+1
𝛽=1(𝑎, 𝑏1

′)} = 𝑉𝑡(𝑎, 𝑏1
′), 𝑏1 ≤ 𝑏1

′ .  

Part b: Based on Equation 8.3, we have: 

𝑉𝑡+1
𝛽=0(𝑎, 𝑏1) = min𝑖=0,1{𝑐0 + 𝑐

−(1 − 𝑝1(𝑓𝑖, 𝑎))max(𝑑 − 𝑏1, 0) + 𝜆[𝑝1(𝑓𝑖, 𝑎)𝑉𝑡(𝑎 +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 𝑎))𝑉𝑡(𝑎 + 1,min(𝑏1 − 𝑑, 0))]}  

≤ min𝑖=0,1{𝑐0 + 𝑐
−[(1 − 𝑝1(𝑓𝑖, 𝑎′))max(𝑑 − 𝑏1, 0)] + 𝜆[𝑝1(𝑓𝑖, 𝑎)𝑉𝑡(𝑎′ +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓𝑖, 𝑎))𝑉𝑡(𝑎′ + 1,min(𝑏1 − 𝑑, 0))]}  
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= min𝑖=0,1{𝑐0 + 𝑐
−(1 − 𝑝1(𝑓𝑖, 𝑎′))max(𝑑 − 𝑏1, 0) + 𝜆[𝑉𝑡(𝑎′ + 1,min(𝑏1 −

𝑑, 0)) − 𝑝1(𝑓𝑖, 𝑎)(𝑉𝑡(𝑎′ + 1,min(𝑏1 − 𝑑, 0)) − 𝑉𝑡(𝑎′ + 1,min(𝑏1 + 𝑠1 −

𝑑, 𝐵1)))]}  

≤ min𝑖=0,1{𝑐0 + 𝑐
−(1 − 𝑝1(𝑓𝑖, 𝑎′))max(𝑑 − 𝑏1, 0) + 𝜆[𝑉𝑡(𝑎′ + 1,min(𝑏1 −

𝑑, 0)) − 𝑝1(𝑓𝑖, 𝑎′)(𝑉𝑡(𝑎′ + 1,min(𝑏1 − 𝑑, 0)) − 𝑉𝑡(𝑎′ + 1,min(𝑏1 + 𝑠1 −

𝑑, 𝐵1)))]}  

= 𝑉𝑡+1
𝛽=0

(𝑎′, 𝑏1)  

where 𝑎 ≤ 𝑎′. The first inequality holds based on the assumption that 𝑝1(𝑓𝑖, 𝑎) decreases when 𝑎 

increases, i.e. 𝑝1(𝑓𝑖, 𝑎) ≥ 𝑝1(𝑓𝑖, 𝑎′) and the assumption that 𝑉𝑡(𝑎, 𝑏1) increases when 𝑎 increases. 

The second inequality holds based on Part a, i.e. 𝑉𝑡(𝑎′ + 1,min(𝑏1 − 𝑑, 0)) − 𝑉𝑡(𝑎′ +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) > 0, and the assumption that 𝑝1(𝑓𝑖, 𝑎) decreases when 𝑎 increases, i.e. 

𝑝1(𝑓𝑖, 𝑎) ≥ 𝑝1(𝑓𝑖, 𝑎′).  

It is easy to prove that 

𝑉𝑡+1
𝛽=1(𝑎, 𝑏1) = 𝑉𝑡+1

𝛽=1(𝑎′, 𝑏1), 𝑎 ≤ 𝑎′.   

Therefore, based on Equation 8.6, we can prove: 

𝑉𝑡(𝑎, 𝑏1) = min{𝑉𝑡+1
𝛽=0(𝑎, 𝑏1), 𝑉𝑡+1

𝛽=1(𝑎, 𝑏1)}  

≤ min{𝑉𝑡+1
𝛽=0(𝑎 + 1, 𝑏1), 𝑉𝑡+1

𝛽=1(𝑎 + 1, 𝑏1)} = 𝑉𝑡(𝑎 + 1, 𝑏1), 𝑎 ≤ 𝑎′. 

End of the proof. 
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Let 𝑉(𝑎, 𝑏1) denote the minimum expected discounted cost with initial state being {𝑎, 𝑏1} ∈

𝑆. From Proposition 3.1 in [69], it follows that 𝑉(𝑎, 𝑏1) is 𝑉(𝑎, 𝑏1) = lim
𝑡→∞

𝑉𝑡(𝑎, 𝑏1). Hence the 

Lemma 8.1 can be expressed with the following Lemma: 

Lemma 8.2 The cost function 𝑉(𝑎, 𝑏1)satisfies the following relations: 

a. 𝑉(𝑎, 𝑏1) ≥ 𝑉(𝑎, 𝑏1 + 1), 𝑎 ≥ 0 and 0 ≤ 𝑏1 ≤ 𝐵1 − 1, 

b. 𝑉(𝑎, 𝑏1) ≤ 𝑉(𝑎 + 1, 𝑏1), 𝑎 ≥ 0 and 0 ≤ 𝑏1 ≤ 𝐵1 − 1. 

Lemma 8.2.a indicates that the expected discounted cost function 𝑉(𝑎, 𝑏1) is non-increasing 

with respect to finished-goods buffer level 𝑏1. Lemma 8.2.b indicates that the expected 

discounted cost function 𝑉(𝑎, 𝑏1) is non-decreasing with respect to policy age 𝑎. As a 

consequence of Lemma 8.2, we can obtain the following Lemmas: 

Lemma 8.3  

a. 𝑉{𝑓0,𝛽}(𝑎, 𝑏1) ≤ 𝑉{𝑓1,𝛽}(𝑎, 𝑏1), 0 < 𝑎 ≤ 𝑡0 or 𝛽 = 1, 

b. 𝑉{𝑓0,𝛽}(𝑎, 𝑏1) ≥ 𝑉{𝑓1,𝛽}(𝑎, 𝑏1), 𝑎 > 𝑡0 and 𝛽 = 0. 

Proof: We will prove Part a. Suppose policy age is less than the time threshold 𝑡0, i.e. 0 <

𝑎 ≤ 𝑡0. Then based on the assumption 𝑝1(𝑓0, 𝑎) ≥ 𝑝1(𝑓1, 𝑎), Lemma 8.2.a and Equation 8.3 and 

8.4, we have: 

𝑉{𝑓0,𝛽=0}(𝑎, 𝑏1) = min𝑖=0,1{𝑐0 + 𝑐
−(1 − 𝑝1(𝑓0, 𝑎))max(𝑑 − 𝑏1, 0) + 𝜆[𝑝1(𝑓0, 𝑎)𝑉(𝑎 +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓0, 𝑎))𝑉(𝑎 + 1,min(𝑏1 − 𝑑, 0))]}  

≤ min𝑖=0,1{𝑐0 + 𝑐
−[(1 − 𝑝1(𝑓1, 𝑎))max(𝑑 − 𝑏1, 0)] + 𝜆[𝑉(𝑎 + 1,min(𝑏1 −

𝑑, 0)) − 𝑝1(𝑓1, 𝑎)(𝑉𝑡(𝑎 + 1,min(𝑏1 − 𝑑, 0)) − 𝑉𝑡(𝑎 + 1,min(𝑏1 + 𝑠1 −

𝑑, 𝐵1)))]}   
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= 𝑉{𝑓1,𝛽=0}(𝑎, 𝑏1). 

𝑉{𝑓0,𝛽=1}(𝑎, 𝑏1) = min𝑖=0,1{𝑐0 + 𝑐
−[(1 − 𝑝1(𝑓0, 0))max(𝑑 − 𝑏1, 0)] + 𝜆[𝑝1(𝑓0, 0)𝑉(0,min(𝑏1 +

𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝑓0, 0))𝑉(0,min(𝑏1 − 𝑑, 0))]}  

≤ min𝑖=0,1{𝑐0 + 𝑐
−[(1 − 𝑝1(𝑓1, 0))max(𝑑 − 𝑏1, 0)] + 𝜆[𝑉(0,min(𝑏1 −

𝑑, 0)) − 𝑝1(𝑓1, 0)(𝑉𝑡(0,min(𝑏1 − 𝑑, 0)) − 𝑉𝑡(0,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)))]}   

= 𝑉{𝑓1,𝛽=1}(𝑎, 𝑏1). 

The case when 𝛽 = 1 and Part b can be proved similarly. 

End of the proof. 

Lemma 8.3 shows that if policy age 𝑎 is less or equal to the threshold 𝑡0, i.e. 0 ≤ 𝑎 ≤ 𝑡0, or 

rules 𝑓0 and 𝑓1 are updated, i.e. 𝛽 = 1, real-time EBM based rule 𝑓0 is preferred. If policy age 𝑎 

is larger than the threshold 𝑡0, i.e. 𝑎 > 𝑡0, and 𝛽 = 0, stochastic EBM based rule 𝑓1 is preferred. 

Therefore, the optimal control policy 𝜋𝑓 is a control limit rule: 

Proposition 8.1 The optimal control policy 𝜋𝑓, as a function of policy age 𝑎 and decision 

variable 𝛽, is a control limit rule. That is 𝜋𝑓 = {
𝑓0, 𝑖𝑓 0 ≤ 𝑎 ≤ 𝑡0 𝑜𝑟 𝛽 = 1
𝑓1, 𝑖𝑓 𝑎 ≥ 𝑡0 𝑎𝑛𝑑 𝛽 = 0

.  

Then we will prove that the optimal control policy 𝜋𝛽 is also a control limit rule.  

Lemma 8.4 If 𝑉  𝛽=0(𝑎, 𝑏1) ≥ 𝑉  𝛽=1(𝑎, 𝑏1), 0 ≤ 𝑏1 ≤ 𝐵1, then ∀𝑎′ ≥ 𝑎,  𝑉  𝛽=0(𝑎′, 𝑏1) ≥

𝑉  𝛽=1(𝑎′, 𝑏1), 0 ≤ 𝑏1 ≤ 𝐵1.  

Proof: If 𝑉  𝛽=0(𝑎, 𝑏1) ≥ 𝑉  𝛽=1(𝑎, 𝑏1), then based on Equations 8.3 and 8.4, we have  
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𝑉  𝛽=0(𝑎, 𝑏1) = 𝑉
{𝜋𝑓,𝛽=0} = 𝑐0 + 𝑐

−[(1 − 𝑝1(𝜋𝑓 , 𝑎))max(𝑑 − 𝑏1, 0)] + 𝜆[𝑝1(𝜋𝑓 , 𝑎)𝑉𝑡(𝑎 +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝜋𝑓 , 𝑎)) 𝑉𝑡(𝑎 + 1,min(𝑏1 − 𝑑, 0))]  

≥ 𝑉  𝛽=1(𝑎, 𝑏1) = 𝑉
{𝜋𝑓,𝛽=1} = 𝑐0 + 𝑐𝑢 + 𝑐

− [(1 − 𝑝1(𝜋𝑓 , 0))max(𝑑 − 𝑏1, 0)] +

𝜆 [𝑝1(𝜋𝑓 , 0)𝑉(0,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝜋𝑓 , 0)) 𝑉(0,min(𝑏1 − 𝑑, 0))]  

Then for 𝑉𝛽=0(𝑎′, 𝑏1), 𝑎
′ ≥ 𝑎, we have:  

𝑉𝛽=0(𝑎′, 𝑏1) = 𝑉
{𝜋𝑓,𝛽=0} = 𝑐0 + 𝑐

−[(1 − 𝑝1(𝜋𝑓 , 𝑎
′))max(𝑑 − 𝑏1, 0)] + 𝜆[𝑝1(𝜋𝑓 , 𝑎

′)𝑉𝑡(𝑎
′ +

1,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝜋𝑓 , 𝑎
′))𝑉𝑡(𝑎′ + 1,min(𝑏1 − 𝑑, 0))]  

≥ 𝑉𝛽=0(𝑎, 𝑏1) ≥ 𝑉𝛽=1(𝑎, 𝑏1) = 𝑐0 + 𝑐𝑢 + 𝑐
− [(1 − 𝑝1 (𝜋𝑓𝑖

, 0))max(𝑑 − 𝑏1, 0)] +

𝜆 [𝑝1(𝜋𝑓 , 0)𝑉(0,min(𝑏1 + 𝑠1 − 𝑑, 𝐵1)) + (1 − 𝑝1(𝜋𝑓 , 0)) 𝑉(0,min(𝑏1 −

𝑑, 0))] = 𝑉𝛽=1(𝑎′, 𝑏1). 

The first inequality has been proved in Lemma 8.1 and the second inequality holds according to 

the assumption that 𝑉𝛽=0(𝑎, 𝑏1) ≥ 𝑉𝛽=1(𝑎, 𝑏1).  

End of the proof. 

According to Lemma 8.4, optimal policy 𝜋𝛽 is a control limit rule. The following Proposition 

provides the mathematical expression of the optimal policy 𝜋𝛽. 

Proposition 8.2 For fixed buffer level 𝑏1, optimal control policy 𝜋𝛽 is a control limit rule, i.e. 

𝜋𝛽 = {
0, 0 ≤ 𝑎 ≤ 𝑎∗(𝜋𝑓 , 𝑏1)

1, 𝑎 > 𝑎∗(𝜋𝑓 , 𝑏1)
.  
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It means for fixed buffer level 𝑏1, there exists a critical policy age 𝑎∗(𝜋𝑓 , 𝑏1) such that if 𝑎 >

𝑎∗, the optimal policy 𝜋𝛽 requires an update, i.e. 𝜋𝛽 = 1, and if 0 ≤ 𝑎 ≤ 𝑎∗, the optimal policy 

𝜋𝛽 does not require an update, i.e. 𝜋𝛽 = 0. The critical policy age 𝑎∗(𝜋𝑓 , 𝑏1) is the least policy 

age 𝑎 such that ∀𝑎′ ≥ 𝑎, 𝑉𝛽=0(𝑎, 𝑏1) ≥ 𝑉𝛽=1(𝑎, 𝑏1). Mathematically, it can be expressed as 

𝑎∗(𝜋𝑓 , 𝑏1) = inf {𝑎|𝑉
𝛽=0(𝑎, 𝑏1) ≥ 𝑉𝛽=1(𝑎, 𝑏1), 𝑎 ≥ 0} and determined based on the policy 

iterative algorithm in [70].  

Figure 8.2 shows the structure of the optimal control policy 𝜋𝛽 graphically. The figure shows 

all the possible states with the buffer capacity being 𝐵1 = 6. The critical switching line divides 

the whole state space into two regions. The upper part is the “updating region” and the lower part 

is the “not updating region”.  

 
 

Figure 8.2 The graphic structure of optimal control policy 𝜋𝛽 
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8.4 An Improved Supervisory Control Scheme 

We integrate the optimal control policies into the supervisory control scheme (introduced in 

Chapter 7) and show the improved supervisory control scheme in figure 8.3. Different from the 

control scheme in Chapter 7, we introduce a controller into the improved supervisory control 

scheme, which selects bottleneck identification and mitigation rules and decides whether to 

update the rules based on the optimal policies 𝜋𝑓 and 𝜋𝛽.  

Extensive numerical analysis has been performed to verify the effectiveness of the improved 

supervisory control scheme. In the analysis, we compare the market demand satisfaction and 

system cost changes when different control schemes (including the old supervisory control 

scheme, improved supervisory control scheme, first-come, first-serve policy, etc.) are applied. 

The results show that the improved supervisory control scheme can lead to the highest market 

demand satisfaction while keeping the lowest system cost.  

 
 

Figure 8.3 An improved supervisory control algorithm 
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8.5 Conclusion 

In this chapter, we use Markov decision model to study the optimal selection of bottleneck 

identification and mitigation rules and the optimal control of their updating in an advanced 

manufacturing system. The system consists of two virtual machines, which model a production 

line and market demand and a finished-goods buffer. Using Markov decision technique, we have 

shown that for a fixed finished-goods buffer level, the optimal policies for bottleneck 

identification and mitigation rules’ selection and their updating are control limit rules regarding 

to policy age.  

The analysis answers the questions: “if real-time EBM and stochastic EBM based bottleneck 

identification and mitigation rules are different, which rules should be used,” and “when should 

we update EBM based rules”.  We integrate the optimal control policies into the supervisory 

control algorithm in Chapter 7. Extensive numerical analysis shows that with the new control 

algorithm, system performance is further improved in terms of market demand satisfaction while 

system cost is significantly decreased.  
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Chapter 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

This dissertation focuses on real-time modeling and control of multistage manufacturing 

systems. Five related problems in the domain of system modeling and control are addressed. The 

major achievements of the dissertation can be summarized as follows: 

1) The impact of disruption events in both general serial production lines and general parallel 

production lines has been addressed, where multiple slowest machines exists in both 

situations. The analysis unifies the general serial production lines and general parallel 

production lines and provides a quantifiable way to evaluate the impact of disruption events 

to system productivity. It indicates that not all the disruption events can cause permanent 

production loss in the system. Only the disruption events that force the last slowest machine 

to stop (through starvation, blockage or breakdown) contribute to the permanent production 

loss at a production line. And the impact of a disruption event can be quantified with the 

permanent production loss caused by the disruption event, which is defined as the production 

loss at the last slowest machine caused by the event.  

2) A sensor system with three virtual layers is developed for multi-stage manufacturing 

systems. The first two virtual layers convert the material flow into information flow and send 

the information to the third virtual layer. The sensor information is further transferred into 

true knowledge in the third layer through an integrated system modeling approach, i.e. EBM. 

Dynamic EBM naturally integrates two important system considerations, i.e. system capacity 
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and production loss. A unified system performance index, i.e. permanent production loss 

caused by disruption events, stations and supporting activities provides a natural severity 

ranking of all the stations and supporting activities. 

3) The definition of SAT and an estimation method are developed to evaluate the performance 

of a subsystem. The SAT of a subsystem is defined as the productivity of the line segment 

while not being affected by its upstream and downstream machines. The estimation method 

provides a data-driven algorithm through utilizing production online data to quickly and 

accurately evaluate SAT of a subsystem. The analysis provides important insights in 

understanding production line dynamics. This quantitative tool can help production managers 

better identify problems and improve overall system performance.  

4) The market demand satisfaction has been analyzed in the dissertation. A market demand 

driven system is developed by modeling market demand as the end-of-line virtual machine. 

In such a system, any market demand dissatisfaction, i.e. 𝑀𝐷𝐷, can be measured as the 

production loss at the end-of-line virtual machine. This unifies the analysis of market demand 

satisfaction and system productivity. An event-based methodology is developed to categorize 

the 𝑀𝐷𝐷 caused by machine capacity bottlenecks (MC-BNs) and machine failure 

bottlenecks (MF-BNs). Indicators for MC-BN and MF-BN identification are proposed. It is 

shown that the MC-BN and MF-BN identification indicators are related to DEMCs and 

DEMFs. Based on the identification indicators, an iterative procedure and a data-driven 

method are developed to identify all the independent MC-BNs and MF-BNs. A supervisory 

control algorithm to identify and mitigate MC-BNs and MF-BNs is introduced. The case 

study confirms that the supervisory control focusing on MC-BNs and MF-BNs can most 

efficiently increase system throughput and reduce 𝑀𝐷𝐷.  
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5) A Markov decision model has been developed to find the optimal policies for bottleneck 

identification and mitigation rules’ selection and their updating in an advanced 

manufacturing system. The analysis answers the questions in the supervisory control scheme 

in Chapter 7 as: “if real-time EBM and stochastic EBM based bottleneck identification and 

mitigation rules are different, which rules should be used,” and “when should we update 

EBM based rules”.  Based on the analysis, an improved supervisory control scheme is 

developed by integrating the optimal control policies integrated into previous supervisory 

control algorithm. Extensive numerical analysis shows that with the new control algorithm, 

system performance is further improved in terms of market demand satisfaction while system 

cost is significantly decreased. 

The original contribution of the dissertation is summarized as follows: 

1) An event-based modeling (EBM) approach has been developed as an integrated real-time 

system modeling method. It is a comprehensive system modeling method, which takes into 

considerations of every aspects of a manufacturing system, including machines, supporting 

activities, etc. EBM approach is novel because it is a data driven method which transfers the 

sensor information into useful managerial knowledge in real-time. It provides a step forward 

in real-time modeling of dynamic systems. 

2) A supervisory control algorithm is developed to integrate EBM, the integrated real-time 

system modeling tool, into system control. The algorithm analyzes the most up-to-date 

system dynamics with EBM and makes proper corrective control decisions based on this 

analysis. Comparing with the control methods based on long-term steady state analysis, the 
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supervisory control algorithm provides a more comprehensive control strategy especially for 

dynamic systems with unpredicted changes, random disturbances and economy oscillations.  

9.2 Future Work 

Future work could be conducted in the following areas: 

1) Extend the EBM method to the “integrated manufacturing system”, which includes 

production systems and supply chains. The success of an advanced manufacturing system not 

only depends on the smooth operation within the production system, but also relies on the 

close cooperation between the production system and supply chains. However, in most 

existing literature, the modeling and control of supply chain system and production system 

are analyzed separately. The analysis can be useful in improving individual production 

system and supply chain system’s performance. However, it is difficult to extend the 

methods to analyze the integrated manufacturing system. To achieve the overall system 

efficiency, it is necessary to extend the EBM method to the integrated manufacturing system.  

2) In Chapter 8, we use stationary Markov decision model to find the optimal control policies. 

The analysis is useful for system control in any large time scales, but may have a poor 

control of the system during small time segments. To overcome the problem, in the future, 

we will use more advanced decision theories, such as weighted Markov decision theory, to 

provide more comprehensive control strategies.    
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