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Abstract of the Thesis 

Energy performance evaluation and energy savings opportunities 

for Manufacturing systems 

by 

Shiyao Wang 

Master of Science 

in 

Mechanical Engineering 

Stony Brook University 

2013 

 

Presently, with the development of modern manufacturing system, the usage of energy is 

growing rapidly. Since most of fuel we use are non-renewable resources, fuel becomes a very big 

part of cost. How to use the energy more efficiently is the main concern now. This thesis 

provides a systematic method to evaluate the energy efficiency of a production system and 

decompose the unnecessary energy waste of a manufacturing facility from the measured data 

with stochastic frontier analysis model. A new energy efficiency indicator is developed for the 

energy consumption level and efficiency of machines and production lines. Energy savings 

opportunity widows are applied to maximize energy consumption efficiency and enable the 

rearranging of the scheduled maintenance without permanent production loss. 
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1 Introduction 

 Productivity and quality of manufacturing systems have been analyzed extensively for more 

than 60 years [1-7]. On the contrary, very few researches are focused on the utilization of energy. 

With the rapidly increasing energy costs and environment pollution, more and more concerns are 

paid on reducing energy consumption and green-house gas emission. According to the 

investigation by U.S. EIA, the manufacturing industry in the U.S has spent $96 billion on the 

fuel and electricity consumption [8]. The energy consumption cost in transportation alone in the 

manufacturing industry is over $4 billion, in which $791 million are attributed to motor vehicle 

assembly plants [8].  

 According to Assessment Study on Sensors and Automation in the Industries of the Future from 

the US Department of Energy Industrial Technologies Program, “integrated plant-wide control” 

is projected to achieve about 317 trillion Btu/yr energy savings, while “real-time control of 

energy usage” has a projected savings of 280 trillion Btu/yr [9]. However, the research has 

mostly been on the individual machine level [10], like how to improve the performance of a 

machine, not about the control of the entire production line. At the machine level there can be an 

80% reduction in energy consumption if instead of leaving non-bottleneck machines idle, these 

machines are turned off until needed [11,12]. It has also been discovered that 85% of energy in a 

manufacturing environment is utilized for functions not related to the production of parts [13]. 

 During a production operation the energy consumption in industry plants can be divided into 

two fundamental parts, caused by production operations and caused by facilities. The facility 

section is mainly impacted by the HVAC and lightning use. Production operations are formed by 

normal production and waste. The efficiency of energy consumption comes from the normal 

production operations. On the other hand, the waste brings the inefficiencies of the line, which 

consists of two different parts, the unsynchronized part and unscheduled downtime.  The 

unsynchronized part can be described as the technical limitation of the production line, the 

unscheduled downtime represent the random failure factor in operations. The construction is 

showed as figure-1 below: 
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Figure- 1 Constitution of energy consumption 

 

 

 There are few studies that address factory floor planning while considering energy saving 

opportunities [14-16]. Previous work in this area has been focused on control of the quality of 

products and the expected throughput without considering the energy saving potential. These 

methods treat the energy consumption as a result of high level decision making and scheduling. 

The energy consumption is considered a byproduct of the production system and not a main 

driver in the decision process on the factory floor or the control scheme of the overall system. 

 Some existing methods, such as the energy treasure hunt developed at GE [17] focus on 

developing weekend and daily shut down plans, and managing the leak tag program. Such 

program is mainly based on non-operation obvious waste, requires expert knowledge on the part 

of the inspector, and is a “trial and error” manual procedure. There is still a lack of integrated 

systematic control methodology to drive overall effective energy savings. 

 One main obstacle in providing an integrated systematic control scheme is the lack of 

appropriate performance indicators for facilities, the most common way is using energy 

consumed per part. This key performance indicator (KPI) can express the relationship between 
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throughput and energy consumption directly. Many energy dashboard companies use this KIP as 

the main factor on their interfaces. However, two parameters in their KPI are final production 

account and total energy consumption, which are very unscientific for ignoring the uncompleted 

jobs. If only counting final completed parts, it is impossible to determine the energy hog in a 

specified production line and energy efficiency level is inaccurate.  

 The structure of the thesis is as follows. In Section 2 we will provide the methods that have been 

developed by other scholars. Section 3 will discuss the SFA model for the purpose of detecting 

the energy consumption performance of plant view. In the following Section 4 we will discuss 

the energy savings opportunity windows and optimization. We will provide the conclusion and 

future work in Section 5. 
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2 Literature Review 
 

 A lot of studies have been made in the past few years on the evaluation of energy consumption 

and energy savings opportunity for the manufacturing industry [18]. 

2.1 Industry-specific micro-economic analyses 

 Anton Dietmair and Alexander Verl have published a paper about energy consumption 

modeling and optimization for production machines [19]. The efficiency in general is commonly 

agreed to be expressed by the equation:            
       

            
[20]. So for each production 

process the efficiency can be calculated by the benefit and effort. For example, in the cutting 

processes, the object of operation is remove material on the working parts. The more material 

has been cut, the higher benefit there will be, and the effort is the energy consumption to operate 

the machine.       and      ( )  are the energy and power consumption for specific process. 

      and      ( ) are the integral of energy and power consumption.      and     ( ) are the 

volume and remove rate of removed material. The expressions are as follows:      
     

    
  , 

     ( )  
     ( )

    ( )
. This method allows managers to compare energy efficiency between 

different processes alternatives, and can be extended to other production alternatives. However 

there are some processes which have no accurate model for the benefit, such as surface quality. 

Therefore, the efficiency of processing can be seen as the ratio between the absolute minimum of 

the energy that is required,          and the actual energy consumption of the machine,      :

            
        

     
 . However in the real situation, it is every hard to get the minimum 

theoretical energy consumption for manufacturing applications. Thus, instantaneous power 

consumption can take replace to represent the instantaneous efficiency of the machine which is 

completing a process:         ( )  
     ( )

        ( )
. The machine energy consumption efficiency for 

the whole time can be expressed as the integral by time step as          
∫      ( )  

∫        ( )  
[19].   
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2.2 Energy trend decomposition methods 

 Trend decomposition is one of the most common ways to analyze the energy or green-house 

emissions trends [21]. Particularly, when facing the energy consumption in industrial operation 

in which area the energy consumption can be sorted by various uses. Trend decomposition has 

been proven to be a very practical method to detect the cause of industrial structure or the output 

index from factors during the production operation that may change the energy consumption. 

This method also provides guidance for the decrease in energy efficiency, and a number of other 

factors. In recent studies, it has been extended to the decomposition of carbon emissions trends. 

 The trend decomposition is widely used in various researches. However, there is no standard or 

generally agreed upon method for energy trend decomposition. Thus, it is very important to 

employ the proper method to ensure an accurate analysis. There are four methods which have 

been used most in different condition: 1) theoretical foundation, 2) adaptability or transferability, 

3) ease of implementation, 4) ease of interpretation of results [22]. In 2007, in order to establish 

carbon reduction policies in 14 EU countries, Diakoulaki and Mandaraka determine provide the 

analytical result of whether the decoupling of CO2 emission increases with the industry 

development by index decomposition of emission trends [23]. 

2.3 Econometric methods 

 These studies proved that econometric method can be applied to illustrate a large number of 

problems. The econometric method does not have the limitation from data, such as problems 

about instantaneous, spatial and sectorial detail. Analysis methods are varied with the object. For 

example, single-equation models, large numbers of methods can be applied from very simple, 

such as OLS, to a sophisticated one.  On the other hand, there are some limitations for the 

econometric methods. After all, it is solving industrial problem with the economic models. The 

obstacle exists that it can only provide guidance in a more macroscopic view instead the 

engineering detail, like neglect of productivity. A paper [24] written by Adeyemi and Hunt in 

2007, with the principle by GH, GS, and Huntington, explores the issue of energy saving 

technical change and the asymmetric price responses.  With the panel data from 15 OECD 

countries from 1962 to 2003, they tentatively prove that the increase of energy demand by 
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corporations are more related to asymmetric price responses instead of energy saving technical 

change.  

2.4 ‘Bottom-up’ method 

 Different studies refer to the ‘Bottom-up’ method. This model can be implemented in wide 

ranges from macroscopic view to microscopic view, and the model can be varied from complex 

to simple. It needs more detail of the processes or even a specific technology to be utilized. 

Three methods are widely used in the ‘Bottom-up method:’ 1) ‘hybrid’ models 2) optimization, 

and 3) simulation [18]. The advantage of ‘Bottom-up’ method is that users are able to detect 

whether the emerging technologies can reduce the energy consumption or not with the model, 

and changes in demand and fuel prices can be considered explicitly. However, it is hard to find 

the linear relationships between each identified process and technology, which means there is 

difficulty to apply the linear optimization [25], so the economic scale cannot be represented. The 

paper [26] by Murphy et al., does not use constant elasticity of substitution function as the basis 

from which to depart, these researchers have taken a ‘Bottom-up’ approach and inserted 

‘behavior realism’ and equilibrium feedbacks and employed the ‘hybrid’ modeling framework as 

the simulation algorithm for solution. This framework makes use of econometrically estimated 

parameters to describe the key micro-economic behaviors. It allows users to draw the trajectories 

of potential functionality of new technologies, while comparing different specific processes.   
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3 Stochastic Frontier Modeling 
 

 For the purpose of deciding and locating the problems of operation over all the possible factors 

that might impact the energy consumption efficiency, we choose stochastic frontier modeling as 

the method of regression. This method is very accurate to analyze the technical inefficiency of 

specified factors from cross section data. 

3.1  The methodology 

 This section utilizes a stochastic frontier model from a manufacturing energy efficiency level 

optimization problem. Since stochastic frontier analysis (SFA) was proposed in 1977 as an 

economic mathematical model by Aigner and Lovell and Schmidt (1977) and Meeusen and Van 

den Broeck (1977), many researches and applications have been made. The concept is used to 

evaluate the production inefficiency and decomposed inefficiency into its technical and allocated 

components [27].  

The SFA model can be expressed as     (   )            , where y is the observed 

outcome (goal attainment),   is vector variable input, and β is vector technical parameter related 

to each variable. The error component   which follows the distribution (0,  
 ) is defined to 

capture the stochastic disturbance to the output. The other error component   is a non-negative 

number which is used to indicate the impact of technical inefficiency.  Therefore most producers 

set the stochastic frontier above or below     (   )          for   =0 or   ≥0.  Further 

research by Battes and Corra assigned a half normal distribution to  , thus   ,  
  and   

  

associate with u, are parameters that need to be estimated. Either distributional assumption on   

implies that the composed error (   ) is negatively skewed, and statistical efficiency requires 

that the model be estimated by maximum likelihood (which we abbreviated MLE). After 

estimation, an estimate of mean technical inefficiency in the sample was provided by  (  )  

 (   )       in the half normal-exponential case. 

 Previous research by Lovell and Schmidt announced that it is not feasible to estimate technical 

inefficiency by observation since it is not possible to separate individual residuals into their two 

components (  and  ). Then Jondrow et al. (1982) quickly proposed in his paper (JLMS) that 
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           can represent technical inefficiency for each individual variable in both mean and 

mode of conditional distribution.  

 Unlike other most of other study in this area, the estimation of model parameter   is the first 

concern.  The goal of this research is estimate and analysis the technical inefficiency in samples 

or aggregated samples.  SFA is only a tool for estimation, therefore it is impossible to find a 

model which is suitable for every field. Production and cost analysis model is based on Cobb-

Douglas, or other forms of logarithmic models. The Cobb-Douglas model can be express in 

general as:   

 

        (Eq.1) 

 Where  

 A = Represents the total factor productivity; 

L = Labor input (the total number of person-hours worked in the data collecting period); 

K = Capital input (the monetary worth of all machinery, equipment, and buildings); 

Y = Total production. 

 

3.2 The model 

 The concept of using SFA to evaluate energy efficiency level can be easily expressed in terms of 

a liner regression model [28]. To evaluate energy consumption efficiency the most direct indictor 

can be described in form of kWh/unit. Thus a simple linear equation for this can be written as: 

                              (Eq.2) 

Where 

    Energy usage, either electricity, non-electricity energy; 

   Production, measured by physical production; 

 With measured data from plant, a regression can be made to fit the parameters   and  . 

However, there is a difference between the actual output and estimated output for the data may 

not be measured perfectly and it is only a simple expression of the relationship between input 
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and output, the estimated parameters rely on that any departures in the plant data from Eq.2 are 

“random” [29]. So the actual relationship between output and inputs are as Eq.3: 

             (Eq.3) 

           

Where 

    = Random error term. 

 In order to get the best case that leads to the least summation of departures from average level, 

ordinary least square regression (OLS) is one way to reach the goal. However, the data above 

average means the inefficiency which is the most interest. This departure of energy use per 

production may be caused by HVAC system or capacity utilization. Maximum likelihood 

estimation provides solution to establish a frontier based on Eq.3, and we will obtain the best-

case frontier that has the lowest energy use per production. 

 Even though the frontier has been made to indicate the efficiency between actual energy use and 

the best case, this is still not a perfect model. There still is some error during data collecting or 

analysis that has not been considered, and in equations every inputs represents the factor that 

contributes to the manufacturing energy use, so it is necessary to include the stochastic error, in 

term of   , which may have positive or negative affect into consideration. At the same time, there 

will be another form of error    refers to technical inefficiency. Unlike the random error term, 

technical inefficiency can only be positive which follows the half-normal distribution in our case. 

So the general form of SFA model for energy consumption per production will be: 

                  ⁄   (    )  (  -  ) (Eq.4) 

 

        
   

 

 Where 

    Energy usage, either electricity, non-electricity energy; 

   Production, measured by physical production; 

   Systematic decision variables (i.e., plant capacity, or utilization   rates); 
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   Parameters to be estimated. 

 Here the assumption has been made that energy inefficiency   is distributed according to half-

normal distribution. Then it is possible to estimate parameters of Eq. 3, along with the 

distribution parameters of u. This kind of approach has its advantages. The estimated parameters 

can normalize systematic impact and indicate the distribution of efficiency. The standard linear 

regression can only provide guidance of average performance but frontier regression captures the 

behavior of best performer which is the baseline in our case. 

 Thus with given data for the target, with Eq.3, it is possible to compute the difference between 

actual energy consumption and estimated baseline: 

 
  

  
  (    )        (Eq.5) 

 Since we have the technical inefficiency    and probability distribution of it, it is easy to 

calculate the probability that technical inefficiency is bigger than the estimation. Here we define 

 ( ) as the cumulative probability density function for a half-normal distribution: 

  (    )  
√ 

 √ 
   ( 

  

   
 )        (Eq.6)    

                                                           And      

                 (    )  ∫  ( )  
 

 
                           (Eq.7) 

 Here we can use two different    from two SFA models where one of them contains all the 

independent variables and the other does not have the variable. From the difference of them we 

can have a score, which is our final technical inefficiency (TI). 

       
     (Eq.8) 

 This score reflects the impact from random components that has not been considered in function 

 (       ).  So the TI give manager guidance of energy inefficiency of a plant by computing 

distribution of technical inefficiency, and specific standardized system factors will be eliminated. 

This model will provide hypothetical and practical view of plant operation. EXCEL data tool 

solver provides simulation of maximum likelihood solution to estimate half-normal distribution 

frontier after the standard regression. 
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 The final equation for energy consumption is: 

 
  

  
                                                     (Eq.9) 

 Where 

  E=Total energy use (in kWh) 

  Y=Total number of completed jobs 

  HDD= Heating degree days (in   ) for the plant 

  CDD= Cold degree days (in  ) for the plant 

  Utilization= Utilization percentage for the plant, defined an actual  

                    output/potential output under fully used capacity.   

   = Vector parameters to be estimated 

 The variable v is distributed as N(0,  
 ). 

 

3.3 Procedure 

1) According to the mathematic model we have, use OLS to get all the parameters that will be 

used to describe the frontier.   

2) Assumptions that have been made above,          
   and           

   are both 

independently distributed, non-related with independent variable. So we have mean of    as 

 (  )  √    , variance of    as  (  )  (   )  
   . The same reason, for the stochastic 

error we can also have mean of     as  (  )   , variance of    as  (  )    
  So according 

to the relationship          we can have the variance of    as the summation of  (  ) and 

 (  ), which is  (  )    
  (   )  

    

3) According to the assumption of distribution on    and   , probability density function can be 

written as: 

  (  )   (√    )      (   
     

 ) (Eq.10) 

  (  )  (√    )
      (  

     
 ) (Eq.11) 
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 Based on the independency assumption, joint probability density function of    and    is the 

product of their probability density functions: 

  (     )  (     )
      (   

    
 ⁄    

     
 ) (Eq.12) 

 For the relationship that         , joint probability density function can be expressed as: 

  (     )  (     )
      (   

    
 ⁄  (     )

     
 ) (Eq.13) 

 Integrate function above by   , we can have   ’s marginal probability function: 

  (  )  ∫  (     )     
 

 
 (√   )

  
    (     )     (   

     )    (Eq.14) 

                 (     ) (      )   

Where  

 (x) = Cumulative distribution function of x 

 ( )= Probability density function of x 

      ⁄   

  (  
    

 )  ⁄  

 

 From the result above, we can have  (  )    (  )   √    ,   (  )  (   )  
      

   

4) We can describe the logarithm likelihood function for i 
th

 sample in formula below: 

        √         ∑    (     ⁄ )  (   )  ∑   
 

        (Eq.15) 

                    Where  

           Maximum likelihood coefficient 

 Use first order condition to apply the maximum optimization, we can have formulas as follows: 

 
     

      
 

     
 

    ∑   
  

    
 

    ∑
 (      )  

 (      )
 
      (Eq.16) 

 
    

  
  

 

 
∑

 (      )  

 (      )
 
      (Eq.17) 
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∑   

  
    

 

 
∑

 (      )  

 (      )
 
      (Eq.18) 

 
    

   
 

 

  
∑   

     
 
    

 

 
∑

 (      )  

 (      )
 
      (Eq.19) 

 With data analysis and data solver in EXCEL we can program and solve these functions and 

determine all the parameters we need from OLS,       ,   . 

5) Repeat the process, eliminating the variable we are interested in. This provides   
  and the 

final     for this variable will be: 

       
     (Eq.20) 

 After all these procedures, we can detect the operation inefficiency of specified facility. The 

difference of the research with exist method is my research is based on self-benchmark 

comparison. It is a time-based analyze, the data are all collected from the same plant, instead of 

from different plants or different area. This is a more practical guidance for manager to observe 

the problem and make improvement by collected data. 

3.4 Case study 

 Here we use data collected from a plant of GM during 2011. The table below listed all the 

factors that might impact the energy inefficiency which we concern.  

Date Y 

(KWH/Unit) 

HDD CDD Utilization Lighting β_0 Production 

Count 

Total 

Energy 

(KWH) 

2011/1/18 154.54 31 0 119% 13.82 1 3745 578752.3 

2011/1/19 166.41 42 0 122% 15.96 1 3851 640844.91 

2011/1/20 177.6 43 0 124% 18.84 1 3893 691396.8 

2011/1/21 171.41 51 0 124% 10.14 1 3891 666956.31 

2011/1/24 171.79 44 0 123% 18.63 1 3886 667575.94 

2011/1/25 158.36 37 0 132% 12.45 1 4139 655452.04 

2011/1/26 168.63 36 0 125% 10.32 1 3921 661198.23 

2011/1/27 161.64 39 0 130% 12.19 1 4092 661430.88 

2011/1/28 168.51 37 0 126% 12.85 1 3961 667468.11 

2011/1/31 191.33 51 0 113% 15.53 1 3555 680178.15 

2011/2/1 189.46 46 0 116% 13.71 1 3643 690202.78 

2011/2/2 497.28 44 0 40% 19.10 1 1252 622594.56 

2011/2/3 171.89 50 0 130% 14.26 1 4085 702170.65 
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For the convenience of display, here we only select the data from January. As shown above 

during the whole month the plant worked only 9 days. And the data named as HDD, means the 

degrees that have been changed by heating operation. The same, CDD means the degrees that 

have been changed by cooling operation. The 0 shows that there is no operation of such 

operation, which makes sense, since during the January there is no need to turn on the cooling 

system. The Utilization shows the percentile usage compared with full capacity. Lighting is the 

running time of lighting system. Y which is calculated by   
            

                
 is the depended 

variable. 

 After modeling and analyzing by EXCEL, we can get result as followed (here we just use 

utilization and lighting as the research object): 

Variables Coefficients Standard Error t Stat 

Intercept 194.76 74.13 2.63 

HDD 1.02 0.39 2.57 

CDD 0 0 65535 

Utilization -61.20 50.77 -1.20 

Lighting 0.57 0.83 0.69 

MLE (l(β,λ,σ)): -27.06  :  5.17E-02   : 23.98 
Table- 2 estimation result calculated with overall operation factors 

 The table above shows the parameter of each variable when we consider every factor after 

modeling and estimation. 

Variables Coefficients Standard Error t Stat 

Intercept 215.06 66.62 3.23 

HDD 1.05 0.388 2.70 

CDD 0 0 65535 

Utilization -71.69 47.35 -1.51 

MLE (l(β,λ,σ)): -27.54  :  2.17E-02   : 26.64 
Table- 3 estimation result calculated without lighting system 

The table above shows the parameter of each variable when we consider all factors except 

lighting after modeling and estimation.  

2011/2/4 165.72 44 0 129% 19.75 1 4056 672160.32 

… … … … … … … … … 

Table- 1 Historical data from plant in 2011 
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Variables Coefficients Standard Error t Stat 

Intercept 106.39 17.00 6.35 

HDD 1.087 0.37 3.23 

CDD 0 0 65535 

Lighting 0.94 0.78 1.11 

MLE (l(β,λ,σ)): -24.99  :  4.47E+03   : 24.99 
Table- 4 estimation result calculated without utilization system 

The table above shows the parameter of each variable when we consider all factors except 

utilization after modeling and estimation.  

Overall Lighting Utilization TI-Lighting TI-utilization 

-7.3091 -7.7657 1.4242 0.4566 -8.7333 

3.5472 6.2759 6.7019 -2.7286 -3.1547 

-5.8401 -8.3162 0.0061 2.4761 -5.8461 

-3.7806 -1.3013 0.0056 -2.4793 -3.7862 

-0.9159 -0.9273 0.0093 0.0113 -0.9252 

7.3304 5.3746 13.3693 1.9559 -6.0388 

-0.7718 -1.1816 1.3538 0.4098 -2.1256 

5.3300 4.9212 9.7826 0.4088 -4.4526 

4.2253 3.7177 14.8491 0.5076 -10.6238 

Table- 5 results comparison 

 Since we have the standard error for each case, it is easy for us to get the TI of each factor. The 

overall standard errors indicate the effect from all the probable factors and stochastic impacts. 

And lighting and utilization represent the standard errors that do not take them into consideration. 

So by the difference of overall and lighting, overall and utilization we can have the technical 

inefficiency of those two factors which eliminate the stochastic factor. 

 We can show the result in charts which can be observed more clearly: 
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Figure- 2 SFA estimation result for lighting system 

 

 
Figure- 3 Technical inefficiency for lighting system 

 

 As far as we can see in the first chart above, the black bar represents the standard error of  

overall factors, and the dashed bar represents the standard error of factors except lighting system. 

The differences between two sorts of standard errors will be the technical inefficiency for 

operation on lighting system, as the second chart show. The result suggests that the 2
nd

, 4
th

, 5
th

 

day in the whole month have the positive value of technical efficiency, in other words they have 
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a negative effect on the energy efficiency. The rest of days in this month perform well. The 

bigger the value is, the less efficiently the lighting system performs.  

 
Figure- 4 SFA estimation result for utilization system 

 

 

 
Figure- 5 Technical inefficiency for utilization system 
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inefficiency on utilization. From the original data we can observe that on 2011/1/31, it has the 

highest energy per part, and a small utilization. However it cannot be proven that there is a direct 

relationship between those two factors, but it reflects the problem of the system and the accuracy 

of the SFA model. 
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4 Energy Dynamic Distribution and Energy Efficiency 

Performance Indicator 

 From the SFA modeling above, it is possible to detect the energy inefficiency problem in the 

plant level. However, when the result shows that utilization has the negative impact on energy 

consumption efficiency, SFA modeling will not be able to provide more detailed information and 

locate the problem. Therefore, we invent an energy efficiency performance indicator (EEPI) and 

energy dynamic distribution (EDD) to show in detail which specified machine causes the 

inefficiencies. 

 

4.1 Baseline setup 

 We use the EEPI to signify energy consumption efficiency more dynamically and accurately, so 

it is important to set up the baseline energy consumption. In this report, series line has been set as 

the target. 

 For the purpose, the baseline has to be a case without any random breakdown events. This 

eliminates the impact of random failure which is leads to the inefficiency. The process for 

defining the baseline is as follows:  

1) The slowest machine with a rated-speed: 

           (Eq.21) 

Where     is the cycle time of the slowest machine. 

2) The production count of the line is  . 

There for the overall production time,    should be: 

    
 

   
       (Eq.22) 

 

 This is the best case scenario:  the shortest possible time that the production line can produce M 

products. We set this case as our base line. 
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4.2 Real Scenario Study 

 In real production operations, there always exist random breakdown events, which will likely 

lead to permanent loss for the production system. This means the actual operation time     must 

be equal (if there is not any random breakdown event happens during the operation) or larger 

than    in the same situation by producing   jobs. 

       (Eq.23) 

 This will help sort energy consumption into two parts. The baseline energy consumption, which 

is represented by    and random downtime waste energy which is represented by   . However, 

in order to standardize and quantize the energy, we assume, the machines consume the same 

amount of energy in one time unit when it is running. So it is easy to get the expression of     

and     : 

      (
  

  
) (Eq.24) 

      (  
  

  
) (Eq.25) 

 Where 

   = Total energy consumption of the whole production system. 

    = Baseline energy consumption. 

    = Wasted energy caused by stochastic downtime events. 

 

 

 It can be further categorized into another two forms. The unsynchronized part comes from the 

technical constrain which determined by rated-speed of each work station and structure of the 

system. Expression will be given: 

    
      (

   

  
) (Eq.26) 

    
      (  

   

  
) (Eq.27) 
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          (Eq.28) 

 Where 

     = Time of machine    uses to produce   jobs. 

     = Rate-speed of machine    .  

   
  = Baseline energy consumption for machine    . 

   
  = Unsynchronized energy waste on machine    .  

 

    and     should be distributed to each machine by different principles.    is the proportion 

of the rated power level of the machine to the total rated energy consumption of every machine.  

   represents the energy consumption when machine is running normally. On the other hand,  

   should follow the proportion of permanent loss for    indicates the waste energy caused by 

the random breakdown events. The expression is as follows: 

        (
  

∑   
 
   

) (Eq.29) 

        (
  

∑   
 
   

) (Eq.30) 

  Where 

    = Rated power level of machine  ’s.  

    = Permanent loss caused by machine    .  

     and     = Distributed categorized energy for each machine    . 

  

 The permanent loss will generate when the slowest machine is blocked or starved, so in the 

program we will count the number of time steps that slowest machine are starved or blocked, and 

then multiply the speed of slowest machine to get the permanent loss on production counts. 

 

 The EEPI has to indicate the efficiency of machines, must reflect the energy consumption in 

term of per unit job. Therefore, production count need to be integrated with each distributed 

energy,     ,    : 

            (       )    (Eq.31) 
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                     (Eq.32) 

           ∑     
 
    (Eq.33) 

             ∑     
 
    ∑

   

  

 
    (Eq.34) 

  Where 

    = the production count of machine    .  

           =Actual energy dynamic distribution of machine    . 

           = Actual energy dynamic distribution of the whole production system. 

           =Baseline energy dynamic distribution of machine    . 

           = Baseline energy dynamic distribution of the whole production system. 

 

 

 So far, EDD only shows the energy consumption level, it is not enough to indicate the efficiency, 

the EDD provide here gives the energy using level, for there exists probability that machines 

who have high EDD are just purely huge energy consumer. Therefore, it is necessary to check 

the relationship between     and    : 

           (       ) (Eq.35) 

  Where 

       = Energy efficiency performance indicator of machine  .  

  

 

  The advantage of this method is by using KPI, not only can evaluate the energy efficiency level 

of the whole production system, but also can give guidance of situation of each machine in a 

dynamic and scientific way with respect of each step’s energy consumption. 

 

4.3 Case study 

 Here we just use simulation with reasonable parameters to prove the practicability. 
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4.3.1 Case1: Slowest machine is the energy bottleneck 

  First, aim on a production line which has the very simple structure. This is a five machine and 

four buffer (5M4B) line. They all have the same efficiency and power consumption. Machine 3 

is the slowest machine. Simulation time is set as 10080 minutes, with 500 minutes warm up time. 

The parameters are given as follows: 

Station MTTF 

(min) 

MTTR 

(min) 

Rated 

Speed 

(min/part) 

Power     

(kw) 

Buffer Buffer 

capacity 

Initial 

buffer level 

Efficiency 

Machine1 150 37.5 3 100 Queue2 18 9 80% 

Machine2 150 37.5 3 100 Queue3 18 9 80% 

Machine3 150 37.5 5 100 Queue4 18 9 80% 

Machine4 150 37.5 3 100 Queue5 18 9 80% 

Machine5 150 37.5 3 100    80% 

Table- 6 Parameters of simulation for case 1 

  Figure-7 gives us the energy consumption level of the production line. The dashed line above 

gives the actual energy consumption level of manufacturing each part for the whole production 

line. And the solid line below represents the theoretical energy consumption level of 

manufacturing each part for the whole production line. The higher the value is means the bigger 

the energy consumption level of this production line. As we can see, at the beginning there is a 

very imtense fluctuation. This is because the machine efficiency is distributed exponentially for 

the whole simulation time, any downtime at the very beginning will make machine very 

unefficient leading to the energy concumption level to be very high at that time point. After 2000 

minutes the EDD level comes to a steady state.  This will reflect the energy consumption level of 

production line. 

Figure- 6 Line structure for simulation 
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Figure- 7 EDD on production line level for case 1 

 

 The bar graphs below gives us the individule EDD of each machine and EEPI of each machine 

at moment of 5000. In Figure-8, the dashed region represent the theoretical proprotion of energy 

consumption for an operation machine. And the region filled with solid behind dashed region 

shows the actual energy consumption for an operation machine.  The difference between those 

two indicators means the energy waste caused by permanent loss on the production counts. The 

higher value of two indicators, the more energy consumption level machine will be. Figure-9 

shows the rate of actual part and baseline part of energy consumption, which is treated as energy 

efficiency of the operation machine. The higher the value is, the more energy efficiency the 

operation machine is.The charts suggest that Machine 3 has the highest energy consumption 

level, and lowest energy efficiency. Thus, Machine 3 can be determined as the energy bottleneck 

of  production line. In this case the slowest machine is the energy bottleneck.  
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Figure- 8 EDD on individual machine level at 500 time step for case 1 

 

 
Figure- 9 EEPI on individual machine level at 500 time step for case 1 
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4.3.2 Case 2: The slowest machine is not the energy bottleneck 

 The slowest machine will not always be the energy bottleneck. The parameters listed below 

illustrate that Machine 3 is still the slowest machine, while Machine 2 has the smallest efficiency.  

Station MTTF 

(min) 

MTTR 

(min) 

Rated 

Speed 

(min/part) 

Power     

(kw) 

Buffer Buffer 

capacity 

Initial 

buffer level 

Efficiency 

Activity1 150 37.5 3 100 Queue2 18 9 80% 

Activity2 150 100 3 100 Queue3 18 9 60% 

Activity3 150 16.66667 5 100 Queue4 18 9 90% 

Activity4 150 37.5 3 100 Queue5 18 9 80% 

Activity5 150 37.5 3 100    80% 

Table- 7 Parameters of simulation for case 2 

 According to the result at simulation time 5000, it is obviously that Machine 2 has the highest 

energy consumption and lowest energy efficiency.  This proves that the slowest machine does 

not have to be the energy bottleneck. 

 
Figure- 10 EDD on production line level for case 2 
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Figure- 11 EDD on individual machine level at 500 time step for case 2 

 

 
Figure- 12 EEPI on individual machine level at time step for case 2 

 

 By simulation we find the machine which has the highest energy consumption level not always 

be the most inefficient machine. There is probability that some machine has the higher power 

consumption to produce a part, but it has the most efficiency on utilizing the energy. So it is a 

smart method to evaluate the production energy consumption with EDD in the whole line level. 

In order to locate the energy bottleneck, the user needs to combine EEPI and EDD together. 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

ED
D

Machine Number

EDD_Waste

EDD_Basline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

EE
P

I

Machine Number

EEPI



 

28 

 

5 Energy savings Opportunities Window and Optimization 

 Since we can evaluate the energy performance from both plant and production line view, the 

next step is to improve the energy efficiency of the manufacturing system.  

5.1 Opportunity window 

 In order to saving energy in machine perspective, we brought a concept called opportunity 

window [28-30]. This is a time period when the downtime duration exceeds this threshold would 

have permanent impact on system performance; usually reflect on the production count.  

Permanent loss is the difference between production line throughput with and without taking 

scheduled downtime events. The definition for opportunity window can be seen below: 

  (  )                 ( ) ∫   ( )   ∫   
ˇ

(   )        ( )
 

 

 

 
     (Eq.36)      

 Where  

 ∫   ( )  
 

 
 and ∫   

ˇ
( )  

 

 
 = the production counts of the end of line machine. 

     at time T with and without the inserted downtime event    (        )   respectively. 

Utilizing this opportunity, certain machine can be turned to energy savings mode for an amount 

of time less than or equal to their respective opportunity window without negatively impacting 

the normal production. 

 Not every random downtime event contributes to a permanent production loss for the production 

line. It is proven in [29-31] that given a realization of the production process subject to  a 

sequence of downtime events                   and supposing that                     

 , if the slowest machine    stops for D time units during [0, T], then for any machine m in the 

production line there exists a       , such that, 

 ∫   ( ′)   ′
 ′

 
 ∫   ( ′  )   ′

 ′

 
 

 

   
   ′     (Eq.37) 

 Where 
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 ∫   ( ′)   ′
 ′

 
and ∫   ( ′  )   ′

 ′

 
= the production counts of the end of line 

machine  without and with a sequence of downtime events E respectively. 

Thus the smallest possible downtime duration   
  for   ℎ failure event    (        ) is found: 

   
                  ∫     

    

  
 ′   (    (    ))  (Eq.38)  

 Where  

   
 

 = the time it takes to make buffers between machine m and M
* 

to become empty if 

        m < M
* 

or become full if m > M
* 

. 

 If the actual downtime event di >di
*
 then the permanent loss of production counts will be di

*
-di. 

If the downtime event di <di
*
 then there will not be any permanent loss on the production line. 

 

5.2 Expected energy opportunity window 

 If all machines operate without any downtime, energy savings opportunity window of any 

station   at time   in the serial production line is: 

                        
 ( )  

{
 
 

 
 
    ∑   (  )  

                                  

                                                                

    ∑ (     (  )) 
                    

 (Eq.39)  

Where 

      The slowest machine 

      The buffer level of buffer k at moment     

      The buffer capacity of buffer k 

    
 ( )   The opportunity window for machine m at time t 
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 Since there would not be any permanent loss on production counts while inserting the 

opportunity window, after a certain period of time the system should recover to its original status. 

The maximum energy opportunity window is then the amount of time that it takes upstream 

buffers (m>M
/*

) to fill completely and for downstream buffers (m<M
*
) to empty completely. 

This can be seen below: 

   
      ( )  

{
 
 

 
 

    ∑   
  

                                  

                                                           

    ∑   
 
                                  

 (Eq.40) 

 

5.3 Case Study 

 The production system for the case study is a production line with 5 machines and 4 buffers 

(5M4B). Buffer capacity is set as 18 and initial buffer level is 9. The parameters of the line can 

be seen in the table below. The simulation time is 10080 minutes, with 500 minutes warm up 

time. 

Station MTTF 

(min) 

MTTR 

(min) 

Rated 

Speed 

(min/part) 

Power     

(kw) 

Buffer Buffer 

capacity 

Initial 

buffer level 

Efficiency 

Machine1 150 37.5 3 100 Queue2 18 9 80% 

Machine2 150 37.5 3 100 Queue3 18 9 80% 

Machine3 150 37.5 5 100 Queue4 18 9 80% 

Machine4 150 37.5 3 100 Queue5 18 9 80% 

Machine5 150 37.5 3 100    80% 

Table- 8 Parameters for simulation on ESO  

 

5.3.1 Case 1: d=0 

 The line is first run without any inserted opportunity windows. This will provide us with 

production data for a line that has no inserted downtime events. This will serve us as a control 

case for this numerical simulation. The EDD of the entire line can be calculated by Eq.32. The 

maximum opportunity window for each machine can be calculated by Eq.31: 



 

31 

 

 

Machine      

Machine1 180 

Machine2 90 

Machine3 0 

Machine4 90 

Machine5 180 

Table- 9 Maximum opportunity window for each machine 

 

 
Figure- 13 EDD of production line level without inserted ESO 

 

 The solid line gives us the baseline energy consumption, which is the energy consumption 

without any permanent production loss. The dashed line represents the actual EDD for the entire 

manufacturing line. The EDD and EEPI for each machine can also be calculated, and show as 

followed figures: 
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Figure- 14 EDD on individual machine level at 500 time step without inserted ESO 

 

 
Figure- 15 EEPI on individual machine level at 500 time step without inserted ESO 

 

 The Machine3 is the energy bottleneck, for it is the slowest machine. It has no opportunity 

window to prevent the permanent loss, every downtime events will impact the system.  

0

20

40

60

80

100

120

1 2 3 4 5

ED
D

Machine Number

EDD_Waste

EDD_Basline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

EE
P

I

Machine Number

EEPI



 

33 

 

5.3.2 Case 2 : d ≤ di
*
 

 For the second case, we insert certain sequence downtime events                   to 

manufacturing line during the operation listed in the follow table.  

 

e    

 
 

   

 

  
 ( )    

 
 

 

e1 1,2,4,5 100,50,50,100 
 

180,70,75,175 140 

e2 1,2,4,5 100,50,50,100 160,60,90,170 880 

e3 1,2,4,5 100,50,50,100 
 

155,90,90,180 2590 

e4 1,2,4,5 100,50,50,100 180,90,90,180 2990 

e5 1,2,4,5 100,50,50,100 
 

175,75,80,175 3850 

e6 1,2,4,5 100,50,50,100 140,70,85,180 4530 

e7 1,2,4,5 100,50,50,100 
 

180,90,90,180 4780 

e8 1,2,4,5 100,50,50,100 170,80,80,175 5470 

e9 1,2,4,5 100,50,50,100 
 

170,50,80,180 5830 

e10 1,2,4,5 100,50,50,100 105,90,60,150 6290 

e11 1,2,4,5 100,50,50,100 
 

180,90,90,180 6960 

e12 1,2,4,5 100,50,50,100 180,90,90,180 7190 

e13 1,2,4,5 100,50,50,100 
 

145,75,75,160 7640 

e14 1,2,4,5 100,50,50,100 160,90,75,160 8140 

e15 1,2,4,5 100,50,50,100 
 

180,90,90,180 8580 

e16 1,2,4,5 100,50,50,100 150,90,75,150 8910 

e17 1,2,4,5 100,50,50,100 180,90,90,180 9640 

Table- 10 Inserted ESO without permanent production loss 

 

 Obviously, duration of each downtime event is within the current opportunity window. The time 

points of downtime event are selected under the condition that with inserted downtime event 

there will not be any permanent loss after the whole simulation time.  
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Figure- 16 EDD of production line level with inserted ESO 

 

 
Figure- 17 EDD on individual machine level at 500 time step with inserted ESO 
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Figure- 18 EEPI on individual machine level at 500 time step with inserted ESO 

 

 

 Since there is no permanent loss for the production line, it is very obvious that EDDActual for the 

whole production line has decreased significantly, and EDDBaseline also slightly decreased. The 

EEPI and EDD for individual machine have not changed, that can be proved by the Eq.31 and 

Eq.32. For the only parameter changed in the situation is total energy consumption W, there is no 

impact on the production count. So the ratio between    and    is still the same, which results 

in the remaining of individual EEPI. Actually, it is easy to understand that the energy saving is 

coming from the decrease on    
 , the unsynchronized part of energy. The inserted downtime 

events makes the other machines more synchronized to the slowest machine. 
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Figure- 19 Production counts of machine5 and machine 3 between 4000 to 5000 time step 

 

 The production counts for Machine 5 and Machine 3 can be seen from the figures above. Only 

two machines are shown since each machine expect the slowest has the same parameters and 

would make it difficult to see the inserted opportunity windows in the production count graph if 

all were shown at once. Therefore only the slowest machine and the last machine are shown 

since the production count of last machine will equal to the production count of the entire line. 

Only a portion of simulation is shown as well to better illustrate the production count of each 

time.  

5.4 Optimization control 

 Since the opportunity window can only be calculated with the real-time data, we cannot predict 

the opportunity window. Even after we calculated the opportunity window by the real-time data, 

we cannot promise in the next time step after taking the opportunity window the machine will 

100% be on for the machine has its stochastic downtime events. If not, the next time step will 

cause the permanent loss to the production line. Although, taking the opportunity window by 

real-time online data can lead to the least permanent loss to the manufacturing line which ideally 

no permanent loss. However, it is very complicated and unpredictable. In this situation managers 
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have the limited resources, it is may generate more cost than the loss for production count. 

Therefore our goal is how to take the energy opportunity window more strategically. 

 We brought some advanced conditions based on the condition of least permanent loss. First of 

all, never take the full opportunity window in order to leave some space for the coming 

unpredictable downtime events. Second, it is more practicably for managers if there is a schedule 

to take energy saving opportunity windows.  

 We have made the simulation of inserting downtime events in the operation within the present 

opportunity window. From the result we can notice some phenomenon that might help us on the 

strategy making: 1) all the downtime events are fixed for each machine. 2) there is likely a 

regular time period between each time of taking energy opportunity window.  

 With these phenomena, we can make a linear regression about the time point of inserting 

downtime event based on the case in the case 2 in previous section. We can have: 

 
Figure- 20 Downtime events line fit plot with inserted fixed ESO 1 

 

 

 Coefficients Standard Error 

Intercept 651.62 243.87 

ESO Interval 544.66 23.80 

Table- 11 OLS regression result 1 
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 From the result we can treat the intercept as the first time of taking opportunity window, and 

regression result of downtime events coefficients can be treated as the distance between taking 

each opportunity window. However, this is only one case of study, we need to do more cases 

with different parameters changing to get the result of what exactly has impact on the distance of 

two breakdown events, here we call it opportunity window control cycle. 

5.4.1 Case1: change the di (di< di*) 

 Few cases have been done when we change the period length of downtime events. We want to 

know the relationship between the frequency of control and the length of ESO. 

 As take opportunity window each time as follows: 

Machine ESO 

Machine1 60 

Machine2 30 

Machine3 0 

Machine4 30 

Machine5 60 

Table- 12 ESO parameters 2 

 

 The downtime column represents the length of opportunity window that we inserted each time 

point. And dots on the downtime events line fit plot shows the time points we inserted 

opportunity window in orders, with such data we can provide regression and get the predicted 

time period between two different opportunity window, in this case which is 452 minutes. 

 The regression result would be as follows: 

 

 

Coefficients Standard Error 

Intercept 481.68 170.45 

ESO Interval 412.74 14.23 
Table- 13 OLS regression result 2 
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Figure- 21 Downtime events line fit plot with inserted fixed ESO 2 

 

 Then we prolong the duration of downtime events the parameters are shown in following table: 

As take opportunity window each time as follows: 

Machine ESO 

Machine1 80 

Machine2 40 

Machine3 0 

Machine4 40 

Machine5 80 

Table- 14 ESO parameters 3 

 

 The regression result would be as follows: 

 

Coefficients Standard Error 

Intercept 526.68 60.96 

ESO Interval 432.74 4.45 
Table- 15 OLS regression result 3 
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Figure- 22 Downtime events line fit plot with inserted fixed ESO 3 

 

 Here we continue increase the duration of downtime events, as it is still within the maximum 

opportunity window. 

 As take opportunity window each time as follows: 

Machine ESO 

Machine1 120 

Machine2 60 

Machine3 0 

Machine4 60 

Machine5 120 

Table- 16 ESO parameters 4 

 

 The regression result would be as follows: 

 

Coefficients Standard Error 

Intercept 151.54 227.21 

ESO Interval 684.75 26.68 
Table- 17 OLS regression result 4 
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Figure- 23 Downtime events line fit plot with inserted fixed ESO 4 

 

 The result shows that the longer the opportunity has been taken, the longer distance between 

each breakdown event will be. This implies that when we taking longer opportunity window, the 

recovery time will be longer too. The recovery time is the opposite process of taking opportunity 

window, it takes upstream buffers (m>M
/*

) to empty completely and for downstream buffers 

(m<M
*
) to fill completely.  

5.4.2 Case 2: ESO optimization control 

 The cases we have done are all based on the result from one run, but not from a trial which 

contains more than one run to make it big enough to provide statics and general meaning. We 

want to prove that the scheduled inserting of energy saving opportunity window will not or little 

bit impact on the production count. 

Here we use a case in this section, the downtime event are as follows: 

Machine ESO 

Machine1 120 

Machine2 60 

Machine3 0 

Machine4 60 

Machine5 120 

Table- 18 ESO parameters for optimization control 
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 The difference is here we use a trial instead of a single run. The trial consists of 20 individual 

runs, which are all follow the exponential distribution, the 20 runs are generated from 20 

different seeds by the simulation software. With the same method above we can have 20 

different regression results which will not be shown here, then calculate the average of two 

coefficients. There we can have: 

 

Coefficients 

Intercept 270.14 

ESO Interval 646.07 
Table- 19 Average estimation result for trial 

 

 Then we take the opportunity window with the calculated coefficients, first time at 270 and 

every 646 minutes we insert a downtime event, and after simulating the 20 runs, we can have the 

average production counts and the 95% interval of it. Compare it with the production counts 

without taking any opportunity window, as follows: 

 

Low 95% Rang Average High 95% Range 

Without ESO 1408.50 1561.33 1714.16 

With ESO 1447.67 1479.15 1510.63 

Table- 20 95% confidence interval for with and without inserted ESO 

 

 It is obviously that there is overlapping between the production counts interval. In stochastic 

analysis, this means there is possibility that with inserting the scheduled downtime event there 

will not be any permanent loss in the whole production operation. The result illustrated that it is 

practicably that we take the energy savings opportunity window with a schedule. It is more 

enforceable for managers to apply opportunity window in the real production operation, and it is 

more convenient to control the manufacturing system. With this manner, energy has been saved 

without impact the throughput which is the main goal of the manufacturing industry. It 

maximizes the energy consumption efficiency, reduces the cost, and decreases the emission of 

greenhouse gases.  

 On the other hand, during the production action, there always need scheduled maintenance to 

keep the machines in a good condition. In other word, the as the operation time increase for a 

machine the probability of failure on this machine will increase. The maintenance on machines 
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can maintain the probability or even decrease the number for the machine to let machines have 

better performance. But this maintenance always come with the price that managers have to shut 

down machines event they have not meet the failure, the loss on the throughput will appear. The 

energy savings opportunity windows provide a solution to the managers to rearrange the 

scheduled maintenance without permanent loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 

 

6 Conclusions and Future Work 

 Energy efficiency is a key issue for future factories. Since the technology of energy 

consumption efficiency constrained by machine itself cannot be improved because of the energy 

source and method of utilizing power, what we can do now is find solution of investigate the 

unnecessary waste on energy during the processing operation and give solution to improve it. In 

the thesis, we applied SFA model into the industry operation. By estimation with measured data 

from real operation, we can detect during the processing which operation has the least technical 

inefficiency in a plant view. The result shows us that within January the lighting system has been 

energy efficient for most of the working days. For utilization, which can be treated as machines 

operation, are all inefficient during the whole month. And the unprocessed data sort of can shows 

the same phenomena which mean our estimation make sense and are accurate.  

 We have brought a new energy consumption efficiency evaluation method. With two indicators 

EEPI and EDD users are able to know the energy consumption level of a production line, and 

locate the energy consumption bottleneck which is the most energy inefficiency machine. 

Comparing with other familiar method, this method has taken consider into the energy use in 

each time step, instead of only use the overall production count and overall energy use. Also, 

with limited measured data, this method use the most accurate way to decompose energy 

consumption into two different parts, W1 which is the minimum theoretical energy consumption 

for the line, and W2 which is the dynamic distributed wasted energy. 

 Inserting energy savings opportunity windows is the solutions that we proposed to improve 

energy consumption efficiency. The case study illustrates that there is significant decrease on the 

energy consumption level while we insert opportunity window. One advantage of ESO is that 

users do not have to worry about decline on the throughput. However, the calculation of ESO is 

hard to predict it can only be calculate by the real-time data. Thus, after considering the 

convenience and practicability of application on real manufacturing system, we use OLS to 

estimate the optimized schedule for taking ESO. And the result shows that with the increasing on 

downtime period of each insert, the distance between two downtime events will increase. And 

the exponential distributed trial tells us the scheduled ESO inserting will statistically not cause 

any permanent loss for the production system. 
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 In the future, we want to apply the EDD and EEPI to a more complex line structure, such as 

parallel line, assembly line, and closed loop line, for in real manufacturing industry most of study 

objects all have very complex line structures. How to evaluate their energy consumption level is 

one of our research targets in the future. Also, now the taking of ESO can only decrease the 

energy consumption level not also increase the energy efficiency at the same time. We want to 

develop a more practical solution that can increase the energy efficiency of the production line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

46 

 

Reference 

[1] Guorong Chen, Liang Zhang
*
, Member, IEEE, Jorge Arinez, Member, IEEE, and Stephan 

Biller, Member, IEEE, “Energy-Efficient Production Systems Through Schedule-Based 

Operations” IEEE Trans. Auto. Sci. Eng., vol. 10, no.1, Jan 2013. 

[2] N. Viswanadham and Y. Narahari, Performance Modeling of Automated Manufacturing 

Systems. Englewood Cliff, NJ: Prentice Hall, 1992. 

[3] J. A. Buzacott and J. G. Shanthikumar,“Stochastic Models of Manufacturing Systems”. 

Englewood Cliff, NJ: Prentice Hall, 1993. 

[4] H. T. Papadopoulos, C. Heavy, and J. Browne, “Queueing Theory in Manufacturing Systems 

Analysis and Design”. London, U.K.: Chapman & Hill, 1993. 

[5] ] S. B. Gershwin, “Manufacturing Systems Engineering”. Englewood Cliff, NJ: Prentice Hall, 

1994. 

[6] T. Altiok, “Performance Analysis of Manufacturing Systems”. New York: Springer-Verlag, 

1997. 

[7] ] J. Li and S. M. Meerkov, “Production Systems Engineering”. New York: Springer, 2009. 

[8] “ U.S. Department of Commerce: Annual Survey of Manufacturers,” 2009. [Online]. 

Available: http://www.census.gov/manufacturing/asm/index.html. 

[9] Bennet, B., Boddy, M., Doyle, F., Jamshidi, M., Ogunnaike, and T., “Assess-ment Study on 

Sensors and Automation in the Industries of the Future: Reports on Industrial Controls”, 

Information Processing, Automation, and Robotics," DOE Energy Efficiency and Renewable 

Energy Industrial Technologies Program, 2004. 

[10] NAM, Efficiency and Innovation in US Manufacturing Energy Use, 2005. 

[11] Mouzon, G., Yildirim, M.B., and Twomey, J., “Operational Methods for Minimization of 

Energy Consumption of Manufacturing Equipment”, International Journal of Production 

Research, 45, 4247-4271, 2007. 

[12] Mouzon, G., Yildirim, M.B.,“A Framework to Minimize Total Energy Consumption and 

Total Tardiness on a Single Machine”, International Journal of Sustainable Engineering, 1(2), 

105-116, 2008. 

[13] Chen, G., Zhang, L., Arinez, J., and Biller, S., “Energy Consumption Reduction in Serial 

Production Lines via Optimal Startup Schedule”, 6th Annual ASME International Manufacturing 

Science and Engineering Conference, Corvallis, OR, 2011. 

http://www.census.gov/manufacturing/asm/index.html


 

47 

 

[14] Guerrero, C.A., Wang, J., Li, J., Arinez, J., Biller, S., Huang, N., and Xiao, G., “Production 

System Design to Achieve Energy Savings in an Automotive Paint Shop”, International Journal of 

Production Research Volume 49, No. 22, 6679-6785, 2011. 

[15] Sun, Z., Biller, S., Gu, F., and Li, L., “Energy Consumption Reduction for Sustainable 

Manufacturing Systems Considering Machines with Multiple Power States”, 6th Annual ASME 

International Manufacturing Science and Engineering Conference, Corvallis, OR, 2011. 

[16] Fan, K., Uhan, N., Zhao, F., and Sutherland, J.W., “A New Approach to Scheduling in 

Manufacturing for Power Consumption and Carbon Footprint Reduction”, Proceedings of 

NAMRI/SME Volume 39, Corvallis, OR, 2011. 

[17] “Data collection framework on energy consumption in manufacturing”, IIE Annual 

Conference and Expo, Orlando, FL. 

[18] Lorna A. Greening, Gale Boyd, Joseph M. Roop, “Modeling of industrial energy 

consumption: An introduction and context”, Energy Economics, Volume 29, Issue 4, Pages 599-

608, July 2007. 

[19] Anton Dietmair, Alexander Verl, “Energy consumption modeling and optimization for 

production machines”, IEEE International Sustainable Energy Technologies Conference, 24-27， 

Nov.2008 

[20] P. Bertoldi and S. Kromer, “Efficiency Valuation – Concepts and Practice”, Proceedings of 

the 2005 ECEEE, Panel 5, European Council for an Energy Efficient Economy, 2005. 

[21] Tol, R.S.J., Weyant, J.P., “Energy economics' most influential papers”, Energy Economics 

28 (3), 405–409, 2006. 

[22] Liu, N., Ang, B.W., “Factors shaping aggregate energy intensity for industry: energy 

intensity versus product mix”, Energy Economics 29, 609–635 (this issue), 2007. 

[23] Diakoulaki, D.C., Mandaraka, M., “Decomposition analysis for assessing the progress in 

decoupling industrialgrowth from CO2 emissions in the EU manufacturing sector”. Energy 

Economics 29, 636–664 (this issue), 2007. 

[24] Adeyemi, O., Hunt, L.C., “Modeling OECD industrial energy demand: Asymmetric price 

responses and energy saving technical change”. Energy Economics 29, 693–709 (this issue), 

2007. 

[25] Miranda-da-Cruz, S., “A model approach for analyzing trends in energy supply and demand 

at country level: case study of industrial development in China”. Energy Economics 29, 913–933 

(this issue), 2007. 

http://www.sciencedirect.com/science/article/pii/S0140988307000448
http://www.sciencedirect.com/science/article/pii/S0140988307000448


 

48 

 

[26] Murphy, R., Rivers, N., Jaccard, M.J., “Hybrid modeling of industrial energy consumption 

and greenhouse gas emissions with an application to Canada”. Energy Economics 29, 826–846 

(this issue), 2007. 

[27] Subal C. Kumbhakar, C. A. Knox Lovell, “Stochastic Frontier Analysis”, 2000  

[28] Gale A.Boyd, “ Development of a Performance-based Industrial Indicator for Automobile 

Assembly Plants ”, Decision and Information Sciences Division Argonne National Laboratory, 

May 2005. 

[29] Chang, Q., Xiao, G. Biller, S., and Li, L., “Energy Saving Opportunity Analysis of 

Automotive Serial Production Systems”, IEEE Transaction on Automation Science and 

Engineering. DOI: 10.1109/TASE.2012.2210874, 2012. 

[30] Chang, Q. Biller, S., Xiao G, and Liu, J., “Transient Analysis of Downtimes and Bottleneck 

Dynamics in Serial Manufacturing Systems”, ASME Transaction, Journal of Manufacturing 

Science and Engineering, Vol 132, Iss. 5, 051015, Oct. 2010. 

[31] Liu, J., Chang, Q., Xiao, G., and Biller, S., “The Costs of Downtime Incidents in Serial 

Multi-Stage Manufacturing Systems”, ASME Transaction, Journal of Manufacturing Science and 

Engineering, Vol 134, Issue 2, 02101, April 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 

 

Appendix 
 

Appendix A: The EXCEL Visual Basic code to realize SFA: 

1) Analysis: this program is used for calculate the decision variables by SFA model  
Sub analysis() 

Application.ScreenUpdating = False 

Sheet2.Range("A8:R230").Select 

Sheet2.Range("A8:I230").ClearContents 

Sheet2.Range("J8:Q230").ClearContents 

Selection.Borders(xlDiagonalDown).LineStyle = xlNone 

Selection.Borders(xlDiagonalUp).LineStyle = xlNone 

Selection.Borders(xlEdgeLeft).LineStyle = xlNone 

Selection.Borders(xlEdgeTop).LineStyle = xlNone 

Selection.Borders(xlEdgeBottom).LineStyle = xlNone 

Selection.Borders(xlEdgeRight).LineStyle = xlNone 

Selection.Borders(xlInsideVertical).LineStyle = xlNone 

Selection.Borders(xlInsideHorizontal).LineStyle = xlNone 

Selection.Font.Italic = False 

With Selection 

    .HorizontalAlignment = xlRight 

    .VerticalAlignment = xlBottom 

    .WrapText = False 

    .Orientation = 0 

    .AddIndent = False 

    .IndentLevel = 0 

    .ShrinkToFit = False 

    .ReadingOrder = xlContext 

    .MergeCells = False 

End With 

Sheet2.Range("A5:A230").Select 

Sheet2.Range("A8").Activate 

Selection.NumberFormat = "m/d/yyyy" 

 

Dim xR As Range 

Dim D1, D2 As Date 

D1 = Sheet2.Cells(5, 1) 

D2 = Sheet2.Cells(5, 2) 

 

    If D1 > D2 Then 

        MsgBox ("Input Error") 

    Exit Sub 

    End If 

     

Set xR = Range("sheet1!A2").CurrentRegion 

With xR 

.AutoFilter 

.AutoFilter Field:=1, Criteria1:=">=" & D1, Operator:=xlAnd, Criteria2:="<=" & D2 

Range("sheet1!A2").CurrentRegion.Copy 

Range("sheet2!A7").PasteSpecial xlValues 
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.AutoFilter 

End With 

 

Dim df As Integer, i As Integer 

i = 8 

df = 0 

 

Do While IsEmpty(Sheet2.Cells(i, 1)) = False 

    i = i + 1 

    df = df + 1 

Loop 

 

For i = 0 To df - 1 

    Range("J8").Offset(i, 0).Select 

    ActiveCell.FormulaR1C1 = "=SUMPRODUCT(R6C3:R6C7,RC[-7]:RC[-3])" 

Next 

 

For i = 0 To df - 1 

    Range("K8").Offset(i, 0).Select 

    ActiveCell.FormulaR1C1 = "=RC[-9]-RC[-1]" 

Next 

 

For i = 0 To df - 1 

        Range("L8").Offset(i, 0).Select 

        ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-1]" 

Next 

 

For i = 0 To df - 1 

        Range("M8").Offset(i, 0).Select 

        ActiveCell.FormulaR1C1 = "=RC[-2]*R2C1/SQRT(R2C2)" 

Next 

For i = 0 To df - 1 

        Range("N8").Offset(i, 0).Select 

        ActiveCell.FormulaR1C1 = "=NORM.S.DIST(RC[-1],TRUE)" 

Next 

 

For i = 0 To df - 1 

        Range("O8").Offset(i, 0).Select 

        ActiveCell.FormulaR1C1 = "=LN(RC[-1])" 

Next 

     

For i = 0 To df - 1 

        Range("P8").Offset(i, 0).Select 

        ActiveCell.FormulaR1C1 = "=RC[-6]" 

Next 

 

For i = 0 To df - 1 

        Range("Q8").Offset(i, 0).Select 

        ActiveCell.FormulaR1C1 = "=RC[-15]-RC[-1]" 

Next 
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Range("I2").Value = df 

Application.Run "ATPVBAEN.XLAM!Regress", ActiveSheet.Range(Cells(8, 2), Cells(7 

+ df, 2)), _ 

ActiveSheet.Range(Cells(8, 3), Cells(7 + df, 6)), False, False, , ActiveSheet.Cells(9 + df, 

1) _ 

, False, False, False, False, , False 

 

Cells(6, 3) = Cells(26 + df, 2).Value 

Cells(6, 4) = Cells(27 + df, 2).Value 

Cells(6, 5) = Cells(28 + df, 2).Value 

Cells(6, 6) = Cells(29 + df, 2).Value 

Cells(6, 7) = Cells(25 + df, 2).Value 

 

    Range(Cells(7, 1), Cells(7 + df, 18)).Borders(xlEdgeLeft).LineStyle = xlContinuous 

    Range(Cells(7, 1), Cells(7 + df, 18)).Borders(xlEdgeTop).LineStyle = xlContinuous 

    Range(Cells(7, 1), Cells(7 + df, 18)).Borders(xlEdgeBottom).LineStyle = 

xlContinuous 

    Range(Cells(7, 1), Cells(7 + df, 18)).Borders(xlEdgeRight).LineStyle = xlContinuous 

    Range(Cells(7, 1), Cells(7 + df, 18)).Borders(xlInsideVertical).LineStyle = 

xlContinuous 

    Range(Cells(7, 1), Cells(7 + df, 18)).Borders(xlInsideHorizontal).LineStyle = 

xlContinuous 

    Range("A2").Select 

    ActiveCell.FormulaR1C1 = "1" 

 

    SolverOk SetCell:="$C$2", MaxMinVal:=1, ValueOf:=0, 

ByChange:="$C$6:$G$6,$A$2" _ 

        , Engine:=1, EngineDesc:="GRG Nonlinear" 

     SolverOptions MaxTime:=0, Iterations:=0, Precision:=0.000001, Convergence:= _ 

        0.0001, StepThru:=False, Scaling:=True, AssumeNonNeg:=False, Derivatives:=1 

 

    SolverOk SetCell:="$C$2", MaxMinVal:=1, ValueOf:=0, 

ByChange:="$C$6:$G$6,$A$2" _ 

        , Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve 

End Sub 

 

And the operation interface are as shown in below: 
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Figure-1 

Appendix B: Calculation: this program is made for the last result of SFA 

 Sub Calculation() 

    Application.ScreenUpdating = False 

    Sheets("sheet2").Activate 

    analysis 

 

    Sheets("sheet3").Activate 

    analysis2 

 

    Sheets("sheet4").Activate 

    analysis4 

 

    Sheets("sheet1").Activate 

    Range("P8:S230").ClearContents 

    Dim a As Integer 

    a = Cells(1, 15) 

     

    For x = 1 To a 

     Sheets("Sheet1").Cells(7 + x, 16) = Sheets("Sheet2").Cells(7 + x, 17) 

     Sheets("Sheet1").Cells(7 + x, 17) = Sheets("Sheet3").Cells(7 + x, 17) 

     Sheets("Sheet1").Cells(7 + x, 18) = Sheets("Sheet4").Cells(7 + x, 17) 

    Next 

    

    For n = 8 To 7 + a 

     Sheets("Sheet1").Cells(n, 19) = Sheets("Sheet1").Cells(n, 17) - Sheets("Sheet1").Cells(n, 

16) 

     Sheets("Sheet1").Cells(n, 20) = Sheets("Sheet1").Cells(n, 18) - Sheets("Sheet1").Cells(n, 

16) 

 

        If Cells(n, 19) = 0 Then 

         Cells(n, 19) = "" 
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        End If 

         

        If Cells(n, 20) = 0 Then 

         Cells(n, 20) = "" 

        End If 

    Next 

     

    ActiveSheet.ChartObjects("Chart 7").Activate 

    ActiveChart.PlotArea.Select 

    ActiveChart.SeriesCollection(1).Values = Range(Sheets("Sheet1").Cells(8, 16), 

Sheets("Sheet1").Cells(a + 7, 16)) 

     

    ActiveSheet.ChartObjects("Chart 7").Activate 

    ActiveChart.PlotArea.Select 

    ActiveChart.SeriesCollection(2).Values = Range(Sheets("Sheet1").Cells(8, 17), 

Sheets("Sheet1").Cells(a + 7, 17)) 

     

    ActiveSheet.ChartObjects("Chart 7").Activate 

    ActiveChart.PlotArea.Select 

    ActiveChart.SeriesCollection(3).Values = Range(Sheets("Sheet1").Cells(8, 18), 

Sheets("Sheet1").Cells(a + 7, 18)) 

 

    ActiveSheet.ChartObjects("Chart 1").Activate 

    ActiveChart.PlotArea.Select 

    ActiveChart.SeriesCollection(1).Values = Range(Sheets("Sheet1").Cells(8, 19), 

Sheets("Sheet1").Cells(a + 7, 19)) 

     

    ActiveSheet.ChartObjects("Chart 1").Activate 

    ActiveChart.PlotArea.Select 

    ActiveChart.SeriesCollection(2).Values = Range(Sheets("Sheet1").Cells(8, 20), 

Sheets("Sheet1").Cells(a + 7, 20)) 

     

    ActiveSheet.Shapes.Range(Array("Button 5")).Select 

    ActiveSheet.Shapes("Button 5").ScaleWidth 0.8444444444, msoFalse, _ 

        msoScaleFromTopLeft 

    ActiveSheet.Shapes("Button 5").ScaleHeight 0.6746983837, msoFalse, _ 

        msoScaleFromTopLeft 

    Range("A1").Select 

End Sub 

 

 

And the operation interface is as shown below: 
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Figure-2 

 

Appendix C: The code to realize energy consumption evaluation 

 

1) the SIMUL8 interface: 

 
Figure-3 

2) The EXCEL Visual Basic code to realize EEPI and EDD: 

Sub calculation() 
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Application.ScreenUpdating = False 

Sheets("OW").Select 

Range("H2:M1008").Select 

Selection.clearcontents 

Dim m As Integer, n As Integer, t As Double, j As Integer, i As Integer, k As Integer, x As 

Integer, y As Integer, b As Integer, a As Integer 

Dim PC_m() As Double, buffer() As Integer, D() As Double, t_total() As Double, OW() As 

Double, speed() As Double, BC() As Integer, mtbf() As Double, mttr() As Double 

Dim index_down() As Integer, index_up() As Integer, index As Double, PL() As Double, 

PL_total As Double, power_total As Double 

Dim S_star As Integer, BTC As Integer, tp As Double, W1 As Double, W2 As Double, E_total 

As Double, Em1() As Double, Em2() As Double, power() As Double 

Dim KPI_total As Double, KPI_m() As Double, t_step As Integer 

Dim BL() As Double, ST() As Double, SUM() As Double, r As Integer, indicator() As Integer, 

BN As Integer, BNE As Integer, KPI_indicator As Double 

Dim power_step() As Integer 

Dim KPI_ideal() As Double, KPI_total_ideal As Double, status() As Integer, 

energy_consumption() As Double, energy_total As Double 

Dim warm_up As Double, KPI_SCORE() As Double, energy_status() As Double, RC() As 

Double 

i = 2 

j = 2 

k = 2 

m = 0 

n = 0 

b = 0 

t_step = 1 

warm_up = 1 

t = 0 

S_star = 0 

index = 0 

PL_total = 0 

power_total = 0 

Sheets("Downtime").Activate 

Do While IsEmpty(Cells(1, i)) = False 

    m = m + 1 

    i = i + 1 

Loop 

 

Do While IsEmpty(Cells(j, 1)) = False 

    n = n + 1 

    j = j + 1 

Loop 

 

Do While IsEmpty(Sheets("BufferLevel").Cells(1, k)) = False 

    b = b + 1 

    k = k + 1 

Loop 
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ReDim buffer(1 To b, 1 To n) As Integer, BC(1 To b) As Integer, KPI_m(1 To m) As Double, 

Em1(1 To m) As Double, Em2(1 To m) As Double 

ReDim D(1 To m, 1 To n) As Double, t_total(1 To j) As Double, PC_m(1 To m, 1 To n) As 

Double, OW(1 To m) As Double, mtbf(1 To m) As Double, mttr(1 To m) As Double 

ReDim index_down(1 To m) As Integer, index_up(1 To m) As Integer, speed(1 To m) As Double, 

PL(1 To m) As Double, power(1 To m) As Double 

ReDim BL(1 To m, 1 To n) As Double, ST(1 To m, 1 To n) As Double, SUM(1 To m, 1 To n) As 

Double, indicator(1 To m) As Integer 

ReDim KPI_ideal(1 To m) As Double, status(1 To m, 1 To n) As Integer, energy_consumption(1 

To m) As Double, KPI_SCORE(1 To m) As Double 

ReDim energy_status(1 To m, 1 To n) As Double, RC(1 To m) As Double, power_step(1 To m) 

As Integer 

For x = 1 To m 

    mtbf(x) = Sheets("Inputs").Cells(x + 1, 2) 

    mttr(x) = Sheets("Inputs").Cells(x + 1, 3) 

    speed(x) = Sheets("Inputs").Cells(x + 1, 4) 

Next 

 

'Sheets("Inputs").Cells(25, 4) = speed(8) 

For x = 1 To m 

    If speed(x) > index Then 

        index = speed(x) 

        S_star = x 

    End If 

Next x 

 

For y = 1 To n 

    t_total(y) = Cells(y + 1, 1) - warm_up 

Next 

 

For x = 1 To m 

    power(x) = Sheets("Inputs").Cells(x + 1, 5) 

Next 

 

For x = 1 To m 

    power_total = power_total + power(x) 

Next 

 

For x = 1 To m 

    For y = 1 To n 

        D(x, y) = Sheets("Downtime").Cells(y + 1, x + 1) * t_total(y) / 100 

    Next 

Next 

 

For x = 1 To m 

    For y = 1 To n 

        PC_m(x, y) = Sheets("PC").Cells(y + 1, x + 1) 

    Next 

Next 

 

For x = 1 To m 
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    For y = 1 To n 

        BL(x, y) = Sheets("BL").Cells(y + 1, x + 1) 

    Next 

Next 

 

For x = 1 To m 

    For y = 1 To n 

        ST(x, y) = Sheets("ST").Cells(y + 1, x + 1) 

    Next 

Next 

 

For x = 1 To m 

    For y = 1 To n 

        SUM(x, y) = BL(x, y) + ST(x, y) 

    Next 

Next 

 

For x = 1 To b 

    BC(x) = Sheets("Inputs").Cells(x + 1, 7) 

Next 

 

For x = 1 To b 

    For y = 1 To n 

       buffer(x, y) = Sheets("BufferLevel").Cells(y + 1, x + 1) 

    Next 

Next 

 

Sheets("Status").Cells(2, 2) = n 

For x = 1 To n 

    Sheets("Status").Cells(x + 1, 1) = t_total(x) 

Next 

 

For y = 1 To n 

    For x = 1 To m 

        Sheets("summation").Cells(y + 1, x + 1) = SUM(x, y) 

    Next 

Next 

 

For x = 1 To m 

    For y = 1 To n 

    If y < n Then 

     Sheets("Status").Cells(y + 1, x + 1) = D(x, y + 1) - D(x, y) 

        If Sheets("Status").Cells(y + 1, x + 1) < 0.9 Then 

            Sheets("Status").Cells(y + 1, x + 1) = t_step 

            Else 

            Sheets("Status").Cells(y + 1, x + 1) = 0 

        End If 

     Sheets("summation").Cells(y + 1, x + 1) = SUM(x, y) 

    End If 

    Next 

Next 
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For y = 1 To n 

    For x = 1 To m 

         status(x, y) = Sheets("Status").Cells(y + 1, x + 1) 

    Next 

Next 

 

For x = 1 To m 

    power_step(x) = Sheets("Inputs").Cells(x + 1, 5) 

Next 

 

Sheets("Status").Activate 

For y = 2 To n 

    r = 0 

    BNE = 1 

    KPI_total = 0 

    KPI_total_ideal = 0 

    KPI_indicator = 0 

    PL_total = 0 

    energy_total = 0 

    tp = PC_m(m, y) * speed(m) 

 

    For x = 1 To m 

        energy_status(x, y) = status(x, y) * power(x) 

        

        energy_consumption(x) = energy_consumption(x) + energy_status(x, y) 

    Next 

     

    For x = 1 To m 

        energy_total = energy_total + energy_consumption(x) 

    Next 

     

    W1 = energy_total * tp / t_total(y) 

    W2 = energy_total * (t_total(y) - tp) / t_total(y) 

    For x = 1 To m 

' this part of logic determine the bottleneck by the starve block method 

        If BL(x, y) > ST(x, y) Then 

            indicator(x) = 1 

            Else 

            indicator(x) = 0 

        End If 

         

        r = r + indicator(x) 

             

            BTC = 0 

            a = 0 

            If x < S_star Then 

                For k = x To (S_star - 1) 

                    BTC = BTC + buffer(k, y) 

                Next 

                OW(x) = BTC * speed(S_star) 
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            End If 

             

            If x = S_star Then 

               OW(x) = 0 

            End If 

             

            If x > S_star Then 

                For k = S_star To (x - 1) 

                    BTC = BTC + buffer(k, y) 

                    a = a + BC(k) 

                Next 

                OW(x) = (a - BTC) * speed(S_star) 

            End If 

' this part of logic determine the KPI 

        If status(x, y) = 0 Then 

            BTC = 0 

            a = 0 

            If x < S_star Then 

                For k = x To (S_star - 1) 

                    BTC = BTC + buffer(k, y) 

                    a = a + BC(k) 

                Next 

                RC(x) = (a - BTC) * 1 / (1 / speed(x) - 1 / speed(S_star)) 

                If BTC = 0 Then 

                    PL(x) = PL(x) + t_step / speed(S_star) 

                End If 

            End If 

             

            If x = S_star Then 

               PL(x) = PL(x) + t_step / speed(S_star) 

               RC(x) = 0 

            End If 

             

            If x > S_star Then 

                For k = S_star To (x - 1) 

                    BTC = BTC + buffer(k, y) 

                    a = a + BC(k) 

                Next 

                RC(x) = BTC * 1 / (1 / speed(x) - 1 / speed(S_star)) 

                If BTC = a Then 

                    PL(x) = PL(x) + t_step / speed(S_star) 

                End If 

            End If 

            Sheets("OW").Cells(y - 1, x + 7) = RC(x) 

        End If 

        Sheets("PL").Cells(y - 1, x + 1) = PL(x) 

    Next 

     

    For x = 1 To m - 1 

        If r = m Then 

            BN = m 
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        Else 

            If r = 0 Then 

                BN = 1 

            Else 

                If indicator(x) = indicator(x + 1) Then 

                Else 

                        If SUM(x, y) > SUM(x + 1, y) Then 

                            BN = x + 1 

                        Else 

                                If SUM(x, y) < SUM(x + 1, y) Then 

                                    BN = x 

                                End If 

                        End If 

                End If 

            End If 

        End If 

    Next   

    For x = 1 To m 

            PL_total = PL_total + PL(x) 

    Next     

    For x = 1 To m 

        If PL_total > 0 Then 

            Em2(x) = W2 * PL(x) / PL_total 

        End If 

              Em1(x) = W1 * power(x) / power_total 

        If PC_m(x, y) > 0 Then 

              KPI_m(x) = (Em1(x) + Em2(x)) / PC_m(x, y) 

              KPI_ideal(x) = Em1(x) / PC_m(x, y) 

        End If 

        If Em1(x) + Em2(x) > 0 Then 

              KPI_SCORE(x) = 100 * Em1(x) / (Em1(x) + Em2(x)) 

        End If 

              KPI_total_ideal = KPI_total_ideal + KPI_ideal(x) 

              KPI_total = KPI_total + KPI_m(x) 

              Sheets("KPI").Cells(y, x + 2) = KPI_m(x) 

              Sheets("KPI").Cells(y, x + 9) = KPI_ideal(x) 

              Sheets("Sheet1").Cells(y, x) = Em2(x) 

    Next 

    For x = 1 To m 

        If KPI_m(x) > KPI_indicator Then 

            KPI_indicator = KPI_m(x) 

            BNE = x 

        End If 

        Sheets("OW").Cells(y - 1, x + 1) = OW(x) 

    Next 

    Sheets("KPI").Cells(y, 17) = KPI_total 

    Sheets("KPI").Cells(y, 18) = (KPI_total - KPI_total_ideal) 

    Sheets("KPI").Cells(y, 16) = KPI_total * (KPI_total - KPI_total_ideal) 

    Sheets("PL").Cells(y, 9) = PL_total 

    Sheets("Sheet1").Cells(y, 14) = power_total 

    Sheets("Sheet1").Cells(y, 10) = W1 
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    Sheets("Sheet1").Cells(y, 11) = W2 

    Sheets("PL").Cells(y - 1, 1) = y 

    Sheets("OW").Cells(y - 1, 1) = y 

    Sheets("KPI").Cells(y, 1) = KPI_total 

    Sheets("KPI").Cells(y, 2) = KPI_total_ideal 

    Sheets("calculation").Cells(y - 1, 1) = y 

    Sheets("calculation").Cells(y - 1, 2) = BN 

    Sheets("calculation").Cells(y - 1, 3) = BNE     

Next 

    Sheets("Inputs").Activate 

End Sub 

 

The interface is as followed: 

 

 
Figure-4 


