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Abstract of the Dissertation

The Fluid Dynamics of Mercury Target Delivery and Exhaust for A Muon

Collider Particle Production System

by

Yan Zhan

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2014

Liquid mercury has been investigated as a potential high-Z target for the production of

Muon particles for the Muon Collider project. This thesis investigates the dynamics of

mercury flow in a design of the target delivery system, with the objective of determining

pipe configurations that yield weak turbulence intensity at the exit of the pipe. Curved

circular pipes with various half-bend angles, with/without nozzles in the exit region, and

with/without welds on the pipe inner surface are studied. Theoretical analysis is carried

out for steady laminar incompressible flow, whereby the terms representing curvature effects

are examined. Subsequent simulations of the turbulent flow regime in the pipes are based

on a realizable k − ε Reynolds-averaged Navier-Stokes (RANS) equations approach. The

simulations in this thesis have been based on the FLUENT commercial computational fluid

dynamics (CFD) codes. The effects of turning angles, presence of a nozzle, and presence of

a weld (on the inner surface of the pipes) on momentum thickness and turbulence intensity

at the exit of the curved pipe are discussed, as are the implications for the target delivery

pipe designs. It was found that the pressure loss from inlet to outlet is nearly the same for

all pipes. A nozzle reduces the turbulence intensity of the flow while a weld increases it.
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In order to locate the free surface of the mercury jet exhausting from the pipe into

air, a coupled level set (LS) and volume of fluid (VOF) method (CLSVOF) has been ap-

plied. When we started this project, FLUENT did not support this approach. Therefore

we developed, validated, and employed a coupled VOF and LS method that uses high-order

weighted essentially non-oscillatory (WENO) schemes for the re-initialization equation in

the LS method. Several successful validations of the developed CLSVOF code are presented

in this dissertation. However, the “production runs” for the jet flow were carried out using

the CLSVOF method that was eventually implemented in FLUENT by the vendor of the

software. The flow conditions obtained at the pipe outlet have been used as the inlet condi-

tions for the free-jet simulations. The dynamics of mercury jet flow are determined by the

combined effects of turning angles and weld.
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Chapter 1

Introduction

In this chapter, we present the background of the study, motivations, review of flow in

curved pipes, and the objectives of the thesis work.

1.1 Mercury Target Issues in the Muon Collider Project

The MERIT experiment at CERN [1, 2] is a proof-of-principle test for a target system

that converts a 4-MW proton beam into a high-intensity muon beam for either a neutrino

factory complex or a Muon Collider (Fig. 1.1). The mercury jet issues from the nozzle at the

end of a delivery pipe to form a target that intercepts an intense proton beam inside a 15-T

solenoid magnet. The use of liquid targets overcomes problematic effects of solid targets, such

as melting/vaporization of components, damage by beam-induced pressure waves for pulsed

beams, and extensive radiation damage. Also, liquid target systems offer the advantage of

continuous regeneration of the target volume. However, the design of the mercury delivery

pipe introduces new challenges.

The MERIT experiment uses a 180◦ bend, which has half-bend angles of 90◦ in the shape

of a “U”, for the delivery of the mercury. This geometry complicates the flow relative to

that in a straight pipe, and affects the quality of the jet. Since the quality of the jet greatly

influences the production of muon particles, it is pertinent to investigate the dynamics of

1



Figure 1.1: Sectional view of the target supple pipe of the MERIT experiment. The mercury
jet generated at the end of the nozzle is on top of the nominal beam trajectory (both mercury
jet and proton beam move from right to left)

the flow of mercury in the 180◦ bend, with a focus on exit-flow properties. Furthermore,

for optimum muon particles production, the mercury jet flow should be laminar or weakly

turbulent.

1.2 Motivations of the Study

In the MERIT experiment, the coupling between pipe geometry, magnetic field and energy

deposition results in very complex flow conditions. In this thesis, an investigation of mercury

internal flow and jet flow is carried out without a magnetic field or high energy deposition.

This clarifies the pure geometry effects of delivery pipe on the dynamics of mercury flow and

it is the baseline for understanding the effects of magnetic field and high energy deposition.

Due to the difficulties of using experimental investigations to optimize the target delivery

pipe, computational fluid dynamics (CFD) comes in handy as a valuable analytical tool. The

commercial code ANSYS FLUENT is a general-purpose CFD code, which is very stable in

simulating incompressible low-speed flows. Also FLUENT has a VOF method for modeling

two phase flows. A CLSVOF method developed in this thesis couples the LS method and

VOF methods via UDFs in FLUENT to achieve a better free interface capturing capability.

This thesis investigates mercury flow inside curved pipes and mercury flow in the jet plume

by using the UDFs in the FLUENT code.
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1.3 Review of Flow in Curved Pipes

Eustice [3, 4] is among the first to demonstrate the existence of a secondary flow in a

curved pipe, an observation he made from injecting ink into water flowing through a pipe.

Dean [5, 6] introduced a parameter which bears his name (Dean number, De ≡ Reδ1/2,

where Re is the Reynolds number based on the area-averaged mean velocity through a pipe

of diameter of 2a, and δ is curvature radio (δ ≡ a/R, where R is radius of curvature and a is

the pipe radius)) to characterize the magnitude and shape of the secondary motions inside

a loosely coiled pipe (δ << 1). Subsequent works by others have investigated curved pipes

with different values of R. Adler [7] presents experimental results of laminar and turbulent

flows in three pipes with different R values. Rowe [8] investigates turbulent water flows for a

curvature ratio of δ = 1/24 in a circular 180◦ bend. Total pressure and yaw angle relative to

the bend axis are measured for a Reynolds number of Re = 236, 000. Enayat et al. [9] reports

on the axial components of the mean and fluctuating velocities for the turbulent water flow

in a circular 90◦ bend for a δ value of 1/5.6 and a wide range of Reynolds numbers. Azzola

et al. [10] compute and measure the developed turbulent flows in a 180◦ bend for δ = 1/6.75

and Reynolds number values of 57, 400 and 110, 000. The standard k − ε model is used.

Answer et al. [11] measure the Reynolds stresses and mean velocity components in vertical

and horizontal planes containing the pipe axis, for air flow in a 180◦ bend, with δ = 1/13

and Re = 50, 000. Sudo et al. [12] report on the measurements of turbulent flow through a

circular 90◦ bend for δ = 1/4. Sudo and his co-workers [13] also measure turbulent air flow

in a 180◦ circular bend for the same δ value, but with Re = 60, 000. The axial, radial, and

circumferential components of the mean velocity and the corresponding components of the

Reynolds stress tensor are reported. Hüttl et al. [14] investigate the influence of curvature

and torsion on turbulent flow in helically-coiled pipes for a Reynolds number Reτ = 230,

where Reτ is based on the friction velocity, uτ . The pipe curvature was found to induce a

secondary flow, which has a strong effect on the dynamics. Rudolf et al. [15] study the flow

characteristics in several curved ducts: single elbow to coupled elbows in shapes of “U,” “S,”
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Figure 1.2: Coordinates along a curved pipe

and non-coplanar right angle, for a fixed value of δ = 1/4 and Re = 60, 000.

The uniqueness of the present study can be found in the effects of the half-bend angle, ϕ

(as shown in Figure 1.2), and that of the presence of a nozzle in the exit region of eight pipe

configurations on the momentum thickness and turbulence intensity at the pipe exit. The

curvature ratios match those of the pipes that are tested in the MERIT experiment. The

pipe geometries investigated are shown in Figure 1.3.

1.4 Review of Turbulent Flows Through Pipes with Rough

Inner Surfaces

Turbulent flows in pipes have always been a major source of inspiring practical problems

in the study of fluid dynamics. Among the numerous investigations in the field, noticeable

efforts have been devoted to the cases in which the pipe had inner-surface roughness, e.g.,

grooves, fins, and other constrictions. These types of problems attracted special attentions

for their wide applications in the fields of heat transfer [17, 18, 19], cardiac-vascular blood

flow studies [20, 21, 22], and the design of unsteady flow meters [23, 24].

Two categories of roughness on the inner surfaces of pipes are usually considered in the

4



Figure 1.3: Configurations of the pipes investigated(normalized by the pipe diameter): with-
out nozzles for ϕ1/ϕ2 of (a-1) 0◦/0◦ (b-1) 30◦/30◦ (c-1) 60◦/60◦ (d-1) 90◦/90◦; with nozzles
for ϕ1/ϕ2 of (a-2) 0◦/0◦ (b-2) 30◦/30◦ (c-3) 60◦/60◦ (d-2) 90◦/90◦
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literature. The first category includes corrugations and grooves, in which case the main

research interests lie in the interactions between vorticity occupying cavities and core flows

along the axial direction of pipes [25, 26, 28, 29]. The other category is related to various types

of constrictions, such as valves in blood vessels [30, 31], welded pipe-flange joints [32, 33],

and turbulators in heat exchangers [16, 19]. For both categories, several physical quantities

are used to describe the properties of the flows, including pressure gradient, pressure loss,

vorticity, maximum velocity, shear stress, turbulence kinetic energy, and turbulence viscosity.

In the following sections, we will review the effects of the two types of inner-surface roughness

on turbulent pipe flows in detail.

1.4.1 Turbulent Flows Through Pipes with Corrugations

Corrugations are discrete grooves placed at periodic intervals along the inner surfaces of

pipes. A lot of efforts have been devoted to the investigation of the interactions between

recirculating fluid inside the grooves and the main flows in the pipe. Previous works in

this filed are focused on the momentum transfer phenomenon between the main flow and

recirculating flows, and the resulting increase in pressure jump and friction forces.

One of the earliest contributions to the study of the effects of corrugations on turbulent

flows through pipes was carried out by Perry and collaborators [25]. In their work, the

“d-type” and “k-type” corrugations were introduced, based on their different effects on the

interactions between flows in grooves and main flows along the axial direction of pipes.

Cavities with a length-to-height ratio less than 4 are referred to as “d-type” corrugations,

which are able to largely isolate the recirculating flows in the grooves from the main flow. In

this case, the equivalent surface roughness length scale depends only on the boundary layer

thickness. On the other hand, the “k-type” corrugations are those with length-to-height

ratios larger than four. This kind of corrugation allows large momentum transfers between

cavity flows and the main flow.

Later experimental studies by Djenidi et al. [26, 27] illustrate that the isolation of the
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recirculating fluid in cavities from outer flows is not a general property of all the d-type

corrugations. They reported significant increase in the turbulent intensities in the vicinity

of downstream corners of the cavities. The existence of interactions between main and

groove flows in pipes with “d-type” corrugations is furthered supported by the numerical

study of Chang and his collaborators [34]. It is shown that both normal and shear stresses

increase noticeably at the opening of the cavities. They also observe that the most significant

enhancement occurred near the downstream corners of the cavities, which is consistent with

the aforementioned results from Djenidi et al. [27].

Sutardi et al. [35] perform experiments on the turbulent flows through pipes with three

different types of transverse grooves and for two different Reynolds numbers. For all the six

tests, the friction factors measured are all larger than those from smooth inner-surface pipe

flows. The drag force in a square groove is 50% higher than that in the semi-circular and

triangular grooves. It is found that the square cavity sustains the existence of two smaller

eddies above the main vortex, which results in more fluid ejections and momentum transfers

from the groove into the core flow.

Increased friction factors in pipes with corrugations compared with those having smooth

inner-surfaces is reported by Eiamsa-ard et al. [28] through simulations. Turbulent forced

convection through channels with “k-type”, “d-type”, and intermediate cavities are simulated.

Their main conclusion is consistent with that by Sutardi’s group [35]: grooved channels

provide considerable increase in the friction factor over smooth channels. This kind of

increase in drag force is also reported by Luo et al. [36] in their simulations of a horizontal

parallel-plate channel with periodic transverse ribs. Recirculating flow patterns are formed

in the cavity between two adjacent ribs, and their interaction with the core flow is inferred

to be the cause of the increase in the friction factor. The interaction between vortex flows

in grooves and the main flow in the axial direction is further corroborated by Yang[37],

Vijiapurapu and Cui [38], and experiments by Promvonge and Thianpong [39] and Dong et

al. [40].
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1.4.2 Turbulent Flows in Pipes with Constrictions

Turbulent flows through constrictions have attracted much attention recently for their

increasing relevance in many engineering applications. Both experimental studies and nu-

merical simulations have revealed the ability of constrictions to cause significant resistance

to flow and pressure loss [41, 42, 43]. Independent studies [44, 45] showed that vortical

structures occurred in the vicinity of the constrictions when the main flow is in the deceler-

ation phase. Besides, several authors reported that the increases in shear stress and loss of

pressure resulting from the existence of restrictions are larger in the deceleration phase than

in the acceleration phase [46, 47, 48]. Most of the these applications are in the physiological

sciences and bioengineering. In this dissertation, we study the turbulent flows in pipes with

constriction/weld in the field of mechanical engineering, which has not been stated by other

people as we know.

1.5 Review of Multiphase Models

There are generally two approaches for modelling two-phase flow: one-fluid model and

two-fluid model. The main difference between these two models is the number of conservation

equations solved. The one-fluid model solves one set of conservation equations for the mixture

and is more widely used than the two-fluid model for two-phase flow. In the one-fluid model,

the interfacial motion can be computed using Lagrangian tracking methods or Eulerian

capturing methods. Lagrangian tracking techniques [49] are very accurate and efficient for

flexible moving boundaries with small deformations. Examples include the MAC (marker

and cell) methods [50], arbitrary Lagrangian-Eulerian methods, [51, 53, 54], and the front

tracking methods. [55, 56] However, the tracking techniques are difficult to use in the cases

where the interface breaks up or coalesces with another interface. Also, additional remeshing

is required when a large deformation of the interface occurs. Eulerian capturing methods use

an auxiliary function for the motion of the interface and have a wide range of applicability.
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The Level Set (LS) and Volume of Fluid (VOF) methods are two examples of one-fluid model

using the Eulerian capturing methods. They are robust but require a higher mesh resolution.

In this work, both of these methods are used.

The LS method [57, 58, 59, 60] uses a zero contour of a continuous signed distance

function, known as the level set function, to represent the interface. The distance function

is positive on one side of the interface and negative on the other. The motion of interface

is governed by the level set transport equation and a re-initialization equation is applied to

make the level set function a signed distance function. The LS method has better accuracy

in computing curvature and the normal to the interface. However, it is not conservative,

leading to a significant, physically incorrect loss/gain of mass for incompressible two-phase

flow.

The VOF method [61, 62, 63, 71] describes the interface with a volume of fluid function,F ,

which is defined as the volume fraction of one of the fluids in each cell. F is zero or unity

in cells with a pure fluid, but has a value of 0 < F < 1 in cells containing more than

one fluid. The interface is explicitly described in each "multi-fluid” cell based on F . The

distribution of F is solved through an advection equation using the reconstructed interface

and the underlying velocity field. In an incompressible continuity equation, the conservation

of mass equals to the conservation of volume. Therefore, the volume-of-fluid advection to

advance an interface conserves the volume. The conservation of volume of each fluid is

an important property of the VOF method. However, the VOF method lacks an accurate

method for calculating surface tension in problems with high density ratios. Moreover, a

higher-order of accuracy is difficult to achieve for VOF method because of the discontinuity

in the volume fraction.

In order to obtain a better performance in capturing an interface, a combination of LS and

VOF, abbreviated as CLSVOF, has been used by many researchers [72, 73, 74, 75, 76, 77, 78].

The CLSVOF method retains the advantages of each method: LS, to compute curvature and

normal to the interface, and VOF, to capture the interface. Normally, the CLSVOF method
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is superior to the individual LS and VOF methods [72, 79, 80].

1.6 Objectives of the Thesis Research

This thesis work has the following objectives: (i) Analysis of the secondary flow in a

curved pipe; (ii) Numerical simulations of turbulent mercury flow in a curved pipe with/without

a weld, with the purpose of studying the effects of pipe geometry and weld on turbulence

intensity at the pipe exit; (iii) Numerical simulation of mercury jet flow using the exit con-

ditions of pipe flow as the inlet conditions.

Rather than proposing a new numerical code, this study works with the user-defined

functions (UDFs) in commercial code FLUENT to carry out the various simulations in this

study.

In this dissertation, we describe mathematical models, numerical algorithms, numerical

verification and validation, numerical simulations for the internal flow and jet flow. In

chapter 2, the governing equations for internal laminar and turbulent flow, LS method, VOF

method, the coupling between LS and VOF, and the continuum surface model are presented.

In chapter 3, the numerical procedure of solving the governing equations are described. In

chapter 4, verification and validations of the simulations are given. The results of mercury

pipe flow and mercury jet flow are presented in chapter 5. The dissertation concludes with

future work in chapter 6.
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Chapter 2

Governing Equations and Boundary

Conditions

2.1 Governing Equations for Laminar Flow in Curved

Pipes

To better understand the global resulting flow in the target delivery pipe, a first study,

which is restricted to the modeling of laminar flow through standard bends, without magnetic

field or energy deposition is carried out.

The motion of a fluid particle in a pipe segment, assuming isothermal conditions, is

governed by the conservation of mass and momentum of the flow. The cylindrical polar

coordinate system (r, θ, z) is used for the baseline straight pipe of circular cross-section, where

r is the radial distance, θ is the azimuthal angle, and z is the axial coordinate direction. The

vector (u,v,w), in dimensional form, denotes the components of the instantaneous velocity

in the r, θ, and z coordinate directions, respectively. Steady state and incompressible flow

conditions are assumed. The non-dimensional continuity equation in the straight pipe can

be written as

Lc(u
∗, v∗, w∗) = 0, (2.1)
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where (u∗, v∗, w∗) are the non-dimensional components of the instantaneous velocity.

The non-dimensional momentum equations in the normalized r∗, θ∗, and z∗ coordinate

directions of the straight circular pipe can be written as

LMi
(u∗, v∗, w∗) = 0, (2.2)

where i = 1, 2, and 3 refer to the r∗, θ∗, and z∗ components, respectively. Thus, [84]

Lc(u
∗, v∗, w∗) ≡ ∂u∗

∂r∗
+
u∗

r∗
+

1

r∗
∂v∗

∂θ∗
+
∂w∗

∂z∗
, (2.3)

LM1(u
∗, v∗, w∗) ≡ ∂u∗

∂t∗
+ u∗

∂u∗

∂r∗
+
v∗

r∗
∂u∗

∂θ∗
+ w∗

∂u∗

∂z∗
− v∗2

r∗
+
∂p∗

∂r∗

− 1

Re
(∇∗2u∗ − u∗

r∗2
− 2

r∗2
∂v∗

∂θ∗
), (2.4)

LM2(u
∗, v∗, w∗) ≡ ∂v∗

∂t∗
+ u∗

∂v∗

∂r∗
+
v∗

r∗
∂v∗

∂θ∗
+ w∗

∂v∗

∂z∗
+
u∗v∗

r∗
+

1

r∗
∂p∗

∂θ∗

− 1

Re
(∇∗2v∗ +

2

r∗2
∂u∗

∂θ∗
− v∗

r∗2
), (2.5)

LM3(u
∗, v∗, w∗) ≡ ∂w∗

∂t∗
+ u∗

∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
+ w∗

∂w∗

∂z∗
+
∂p∗

∂z∗
− 1

Re
∇∗2w∗. (2.6)

The scales for dimensionalization are as follows:

u∗ = u/Ub, v
∗ = v/Ub, w

∗ = w/Ub, r
∗ = r/2a, z∗ = z/2a,

p∗ = p/ρU2
b , Re ≡

2aUbρ

µ
, (2.7)

where p is the reduced pressure, ρ is the mass density of fluid, a is the radius of the circular

pipe, and Ub is the bulk velocity:

Ub =

∫
u(r, θ)rdrdθ∫

rdrdθ
, (2.8)

12



Figure 2.1: Curvilinear coordinates for the periodically-curved pipe y = b sin(nx)

where u(r, θ) is the instantaneous axial velocity component.

The Laplacian operator, ∇∗2, is

∇∗2 ≡ 1

r∗
∂

∂r∗
(r∗

∂

∂r∗
) +

1

r∗2
∂2

∂θ∗2
+

∂2

∂z∗2
. (2.9)

The motion of a fluid in a curved pipe whose center-line varies locally in a two-dimensional

plane will be described in the curvilinear coordinates (r, θ, z̃), as shown in Fig. 2.1.

The coordinates r and θ are the same as those defined for a straight pipe, while z̃ is a

coordinate direction which is positive along the flow direction and is locally tangential to the

pipe center-line. The coordinates (r, θ, z̃) are a right-handed system and are always mutually

orthogonal when the pipe center-line is a two-dimensional curve [85]. The vector (u,v,w)

represents the instantaneous velocity components in the r, θ, and z̃ coordinate directions,

respectively.

Murata [85] has analyzed the steady laminar motion of a fluid through pipes of circular

cross-section, assuming small center-line curvature. We will use his model as the starting

point for identifying the sources of secondary flows and compare the velocity distributions

associated with such sources to one obtained from a CFD analysis of the same physical

problem. For this purpose, we consider a pipe profile of the form y = b sin(nx) (Figure 2.1),

where b = 0.1, · · · , 1, 2, 3, · · · and n = 0.05, 0.1, · · · , 1, · · ·. We illustrate with the results for

b = 3.0 and n = 0.1. The results will be examined at the arbitrary point x = 60, where the
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flow is already fully-developed. The following relations are defined:

x = z̃ − nbr cos θ

L
cos(nx), y = b sin(nx) +

r cos θ

L
, z = r sin θ,

Γ1
33 = −Lκc

√
g33 cos θ,Γ2

33 =
L

r
κc
√
g33 sin θ,Γ3

13 = Γ3
31 =

L
√
g33

κc cos θ,

Γ3
23 = Γ3

32 = − L
√
g33

κcr sin θ,Γ3
33 =

1
√
g33

∂

∂z̃

√
g33, (2.10)

where

L = [1 + n2b2 cos2(nx)]1/2, (2.11)

√
g33 = L(1 + rκc cos θ), (2.12)

κc =
n2b sin(nx)

L3
. (2.13)

Compared to Eqn. (2.3) through (2.6), the additional terms can be non-dimensionalized

using the following scales:

g∗33 = g33, Γ1∗
33 = aΓ1

33,Γ
2∗
33 = Γ2

33a
2, Γ3∗

13 = aΓ3
13, Γ3∗

31 = aΓ3
31, Γ3∗

23 = Γ3
23,

Γ3∗
32 = Γ3

32, Γ3∗
33 = aΓ3

33. (2.14)

The non-dimensional continuity and momentum equations can then be written as follows:

Continuity:

L̃c(u
∗, v∗, w∗) = 0, (2.15)

where

L̃c(u
∗, v∗, w∗) =

1

r∗
∂(r∗u∗)

∂r∗
+

1

r∗
∂v∗

∂θ
+

1
√
g33

∂w∗

∂z̃∗
+ Γ3∗

31u
∗ + Γ3∗

32

v∗

r∗
. (2.16)

Momentum:

L̃Mi
(u∗, v∗, w∗) = 0, (2.17)
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where

L̃M1(u, v, w) = u∗
∂u∗

∂r∗
+
v∗

r∗
∂u∗

∂θ∗
− v∗2

r∗
+

w∗
√
g33

∂u∗

∂z̃∗
+ Γ1∗

33

w∗2

g33

+
∂p∗

∂r∗

− 1

Re
[
∂2u∗

∂r∗2
+

1

r∗
∂u∗

∂r∗
− u∗

r∗2
+

1

r∗2
∂2u∗

∂θ∗2
+

1

g33

∂2u∗

∂z̃∗2

− 2

r∗2
∂v∗

∂θ∗
+

Γ1∗
33

g33

(Γ3∗
13u
∗ + Γ3∗

23

v∗

r∗
− ∂u∗

∂r∗
) +

Γ2∗
33

g33

(v∗ − ∂u∗

∂θ∗
)

+
Γ3∗

33

g33

∂u∗

∂z̃∗
+

1

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ1∗

33) + 2Γ1∗
33

∂

∂z̃∗
(
w∗
√
g33

)}], (2.18)

L̃M2(u
∗, v∗, w∗) = u∗

∂v∗

∂r∗
+
v∗

r∗
∂v∗

∂θ∗
+
u∗v∗

r∗
+

w∗
√
g33

∂v∗

∂z̃∗
+ Γ2∗

33

r∗w∗2

g33

+
1

r∗
∂p∗

∂θ∗
− 1

Re
[
∂2v∗

∂r∗2
+

1

r∗
∂v∗

∂r∗
− v∗

r∗2
+

1

r∗2
∂2v∗

∂θ∗2

+
1

g33

∂2v∗

∂z̃∗2
+

2

r∗2
∂u∗

∂θ∗
+

Γ2∗
33

g33

(Γ3∗
13r
∗u∗ − u∗ + Γ3∗

23v
∗ − ∂v∗

∂θ∗
)

−Γ1∗
33

g33

∂v∗

∂r∗
− Γ3∗

33

g33

∂v∗

∂z̃∗
+
r∗

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ2∗

33)

+2Γ2∗
33

∂

∂z̃∗
(
w∗
√
g33

)}], (2.19)

L̃M3(u
∗, v∗, w∗) = u∗

∂

∂r∗
(
w∗
√
g33

) +
v∗

r∗
∂

∂θ∗
(
w∗
√
g33

) +
w∗

g33

∂w∗

∂z̃∗

+
2w∗
√
g33

(Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
) +

1

g33

∂p∗

∂z̃∗

− 1

Re
[
∂2

∂r∗2
(
w∗
√
g33

) +
1

r∗
∂

∂r∗
(
w∗
√
g33

) +
1

r∗2
∂2

∂θ2
(
w∗
√
g33

)

+
1

g33

∂

∂z̃∗
(

1
√
g33

∂w∗

∂z̃∗
) +

1

g33

{u∗ ∂
∂z̃∗

(Γ3∗
13) +

v∗

r∗
∂

∂z̃∗
(Γ3∗

23)}

+
w∗
√
g33

{ ∂
∂r∗

(Γ3∗
13) +

1

r∗2
∂

∂θ
(Γ3∗

23)}

+Γ3∗
13{

2

g33

∂u∗

∂z̃∗
+ 2

∂

∂r∗
(
w∗
√
g33

) +
1

r∗
w∗
√
g33

}

+
2Γ3∗

23

r∗2
{ r
∗

g33

∂v∗

∂z̃∗
+

∂

∂θ∗
(
w∗
√
g33

)}+
w∗
√
g33

{(Γ3∗
13)2 + (

Γ3∗
32

r∗
)2}
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− 1

g33

{Γ1∗
33

∂

∂r∗
(
w∗
√
g33

) + Γ2∗
33

∂

∂θ∗
(
w∗
√
g33

)}]. (2.20)

2.2 Governing Equations for Turbulent Flow

2.2.1 Continuity and Momentum Equations

As stated earlier, the mean flow (U∗, P ∗) is calculated with RANS, where the mean flow

is related to the instantaneous (u∗, p∗) and fluctuating (u′)∗, (p′)∗) components as follows:

u∗ = U∗ + (u′)∗ (2.21)

p∗ = P ∗ + (p′)∗. (2.22)

The governing equations for the mean flow can be expressed in terms of mass conservation

(continuity):
∂U∗

∂t
+∇∗ ·U∗ = 0, (2.23)

and the momentum conservation:

∂U∗

∂t
+ U∗ · ∇∗U∗ = − 1

ρ∗
∇∗P ∗ +

1

Re
∇∗·τ ∗ + F. (2.24)

The internal mercury pipe flow is assumed to be steady state without the gravity force.

Thus, the continuity and momentum equations can be simplified to be

∇∗·U∗ = 0, (2.25)

and,

U∗·∇∗U∗ = − 1

ρ∗
∇∗P ∗ +

1

Re
∇∗·τ ∗. (2.26)
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The shear stress tensor, τ ∗, is modeled as

τ ∗ij = (µ∗ + µ∗t )(
∂U∗i
∂x∗j

+
∂U∗j
∂x∗i

) (2.27)

and the eddy viscosity is computed from

µ∗t = ρ∗Cµ
k∗2

ε∗
, (2.28)

where k∗ is the kinetic energy of turbulence, k∗ ≡ 1
2
((u′)∗

2
+ (v′)∗

2
+ (w′)∗

2
), and ε∗ is its

dissipation rate. Cµ is modeled as [89]

Cµ =
1

A0 + As
k∗U(∗)

ε∗

, (2.29)

where

U (∗) ≡
√
S∗ijS

∗
ij + Ω

∗
ijΩ
∗
ij, (2.30)

S∗ij =
1

2
(U∗i,j + U∗j,i), (2.31)

Ω
∗
ij =

1

2
(U∗i,j − U∗j,i). (2.32)

S∗ij is the symmetric part of the rate-of-strain (deformation) tensor, with Ω
∗
ij the antisym-

metric part.

The model constants A0 and As are given as [89]

A0 = 4.04, As =
√

6 cosφ, (2.33)

where

φ =
1

3
cos−1(

√
6W ),W =

S∗ijS
∗
jkS
∗
ki

S̃∗3
, S̃∗ =

√
S∗ijS

∗
ij. (2.34)
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2.2.2 Realizable k − ε model

A Reynolds-averaged Navier-Stokes (RANS) equation approach will suffice for the current

problem in which the fluid is bounded by a circular, no-slip wall, and the interest is mainly

on the mean flow. The Reynolds stress model (RSM) [86] has been judged to be the most

accurate RANS model for turbulent flow in curved pipes, as it includes memory effects

and the effects of streamline curvature. However, RSM is a six-equation model that is

computationally expensive for practical engineering problems. Several options exist for the

simpler one- or two-equation RANS approaches, including the Spalart-Allmaras (SA) [87],

Standard k− ε (SKE) [88], and Realizable k− ε (RKE) [89] models. In this work, the RKE

model is selected for the simulation of the curved-pipe internal flow problem.

The k − ε turbulent model is a useful engineering approach for predicting the mean

velocity profiles of turbulent flows. In general, the stand k − ε model qualitatively predicts

most turbulent flows, while it fails to give consistent prediction for the plane jet and round

jet problems [90, 91]. The RKE model is also used for the turbulent jet flow simulation.

The non-dimensional equations for RKE model can be written as [89]

∂k∗

∂t
+ U∗·∇∗k∗ = ∇∗ · [( 1

Re
+

1

σkRet
)∇∗k∗] +G∗t − ε∗, (2.35)

∂ε∗

∂t
+ U∗·∇∗ε∗ = ∇∗ · [( 1

Re
+

1

σεRet
)∇∗ε∗] + C1S

∗
ε∗ − C2

1

a

ε∗2

k∗ +
√
ν∗ε∗

, (2.36)

where σk and σε are the turbulent Prandtl numbers for k and ε, respectively. Ret is the

Reynolds number based on the eddy viscosity (Eqn. (2.28)).

The production of turbulence kinetic energy, G∗t , is evaluated in a manner consistent with

the Boussinesq hypothesis:

G∗t = (2
1

Ret
S
∗
ij −

2

3
k∗δij)U

∗
i,j. (2.37)
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The constants for the RKE model are

σk = 1.0, σε = 1.2, C1 = max[0.43,
Γ

Γ + 5
], C2 = 1.9, (2.38)

where

Γ = S
k

ε
, S =

√
2SijSij. (2.39)

2.2.3 Boundary Conditions

The inlet velocity for all pipes is that of a fully developed flow for a straight pipe aligned

with the x-direction:

U∗ = V ∗ = 0,W ∗ = W ∗(r∗). (2.40)

The discrete form ofW ∗(r∗) is taken as the solution at the exit of a straight pipe obtained

from an auxiliary simulation, with the axial velocity profile shown in Fig. 2.2. At the inlet,

the mean pressure is P = 30 bar (or P ∗ = 30), while the turbulence conditions are

k∗ =
3

2
(U∗I)2, ε∗ =

C3/4
µ k∗3/2

l∗
, (2.41)

where I is the turbulence intensity, I = 0.16Re−1/8. The values of Cµ and l∗ are:

Cµ = 0.09, l∗ = 0.07D∗h, (2.42)

and D∗h = 2. No-slip conditions are specified at the wall,

U∗ = V ∗ = W ∗ = 0, (2.43)

while zero-gradient conditions are assumed at the pipe exit:

∇∗nU∗ = ∇∗nV ∗ = ∇∗nW ∗ = ∇∗nP ∗ = · · · = 0, (2.44)
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Figure 2.2: Fully developed normalized velocity profile W ∗(r∗) at pipe inlet

where ∇∗n ≡ ∂∗/∂n∗ and “n∗” is the outward-pointing normal at the outlet.

2.3 The Level Set Method

In the level set (LS) [57, 60, 92, 93, 94], the level set function, φ, is used to represent and

propagate the free surface. The interface, where the points have the φ value of 0, divides the

liquid region (φ > 0) from the gas region (φ < 0). The interface is transported by the level

set equation:

φt + u · ∇φ = 0. (2.45)

Note that the dimensional form of the equations are presented and used for the description

of the two-phase problem.

2.3.1 Reynolds-Averaged Level Set Equation

In an incompressible flow, ∇ · u = 0, and the LS equation is mathematically equivalent

to the conservation law:

φt +∇ · (uφ) = 0. (2.46)

In a turbulent flow field, φ and u may be decomposed into mean and fluctuating compo-
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nents:

φ = Φ + φ′, (2.47)

u = U + u′. (2.48)

Applying Reynolds-averaging to the instantaneous Φ equation yields

φt +∇ · (Uφ+ u′φ́) = 0. (2.49)

The scalar flux term is modeled via the gradient-flux approximation [96]:

−u′φ́ = DT∇φ, (2.50)

where the turbulent diffusivity is

DT = c1k
2
/ε (2.51)

and c1 is a constant. Nilsson and Bai used c1 = 0.129 [97], a value that will also be used in

this thesis. Thus, the averaged equation, omitting the averaging symbols, can be written as

φt +∇ · (Uφ−DT∇φ) = 0. (2.52)

In the LS method, the density and the dynamic viscosity are described as

ρ(x, t) = ρl[1−Hε(φ(x, t))] + ρgHε(φ(x, t)), µ(x, t) = µl[1−Hε(φ(x, t))]

+µgHε(φ(x, t)),(2.53)

where the subscripts l and g denote liquid and gas phase, respectively[98]. Hε is the smoothed
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Heaviside function[58]

Hε(φ) =


0 if φ < −ε,

(φ+ ε)/2ε+ sin(πφ/ε)/2π if |φ| < ε,

1 if φ > ε,

(2.54)

where ε is a parameter whose value ranges from one to two times the local mesh size close

to the interface. Physically, ε represents half of the interface thickness.

2.3.2 Re-initialization Equation

In order to make φ the signed normal distance and interface as the zero level set function,

a re-initialization equation is required [58]:

φτ + S(φ0)(|∇φ| − 1) = 0, (2.55)

where φ0 is the initial condition of φ and S is the sign function, which can be defined as

S(φ0) =
φ0√
φ2

0 + δε
, (2.56)

where the parameter, δε = 10−16, which is introduced in order to avoid division by zero.

Equation (2.55) is written in the form

φτ + w · ∇φ = S(φ0), (2.57)

for the purpose of spatial discretization, where w is the unit velocity vector pointing away

from the interface φ0 = 0. φ0 is the initial condition for Eqn. (2.57) and

w = S(φ0)
∇φ
|∇φ|

, (2.58)
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2.4 The Volume of Fluid Method

The volume of fluid (VOF) method uses the volume fraction of one of the fluids within

each cell to determine the interface. The volume fraction is one if the cell is filled with the

liquid phase, zero if the cell is filled with the gas phase, and between zero and one in cells

containing an interface. The liquid volume fraction, F , is advected with the velocity field:

∂F

∂t
+ u · ∇F = 0. (2.59)

Given the fixed grid, the velocity field u, and the field F at the previous time step, the liquid

volume fraction field F can be updated. The 2D interface is considered to be a continuous,

piecewise smooth curve. In order to reconstruct the interface, first we need to determine

which cells contain the interface, and then decide the location in these cell by considering the

volume fraction, F , in the cells bounding the interface. The simplest reconstruction method

for the interface is the Simple Line Interface Calculation (SLIC) [100], which is first-order

accurate. More accurate VOF techniques attempt to fit the interface through piecewise linear

segments, like the Piecewise Linear Interface Calculation (PLIC) [63] method. Figure 2.3

(a) shows the exact value of the volume of fraction for a smooth circular arc over a square

grid. An interface that has been reconstructed using SLIC method is shown in Fig. 2.3(b),

while the one reconstructed by the PLIC method is given in Fig. 2.3(c).

In the VOF method, the density and the dynamic viscosity are approximated by the

following formulas:

ρ(x, t) = ρlF + ρg(1− F ), µ(x, t) = µlF + (µg(1− F ), (2.60)

where l and g denote “liquid” and “gas” phases, respectively, and F is the liquid volume

fraction.
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Figure 2.3: (a) The exact interface for a circular arc over a square grid; Interface recon-
structed by the scheme of: (b) Simple Line Interface Calculation (SLIC) (c) Piecewise Linear
Interface Calculation (PLIC)

2.5 Coupling Level Set and Volume of Fluid

The LS method tends to lose/gain mass [79]. The VOF method encounters numerical

difficulties at the interface and it is difficult to calculate the interface curvature. CLSVOF

method overcomes these problems by mitigating the disadvantages of these two methods.

To couple the VOF method and the LS method, the volume fraction F , in a given cell

of the domain, at time t, is defined as a function of the level set φ[64]:

F (Ω, t) =
1

|Ω|

∫
Ω
Hε(φ(x, y, t))dxdy, (2.61)

where Hε is the smoothed Heaviside function defined in Eqn. (2.54) and dxdy is the element

area.

When the present project was started, FLUENT did not support the CLSVOF method,

only implementing the VOF method. Therefore we only needed to solve the LS method and

couple it to the VOF method inside FLUENT. In Nichita’s Ph.D. thesis [49] , a detailed

algorithm for his CLSVOF method through FLUENT is presented (Fig. 2.4), which is also

used in this thesis.

However, Nichita’s code was implemented only for structured (Cartesian) grids and for

laminar flows. Based on Nichita’s CLSVOF algorithm, this work develops a CLSVOF mod-
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Figure 2.4: Algorithm of CLSVOF method used in this thesis

ule that is applicable to unstructured meshes, by solving the level set and re-initialization

equations in a transformed coordinate system.

2.6 The Continuum Surface Model

For multiphase flow, the surface tension force is considered in the momentum equations.

The CSF (Continuum Surface Force) model of Brackbill et al. [67], is used to approximate

the surface tension force:

Fst = σκ(φ)nδε(φ), (2.62)

where σ is the surface tension coefficient. For mercury-air, its value is 0.4855 N/m at room

temperature. δε(φ) is the smoothed delta function, which is defined as the derivative of the

smoothed Heaviside function, Hε(φ), with respect to φ:

δε(φ) =


0 if |φ| > ε,

1/2ε+ cos(πφ/ε)/2ε if |φ| < ε.
(2.63)
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κ is the mean curvature of the interface, and n is the normal vector of the interface. In the

LS method, they are defined as

n =
∇φ
|∇φ|

, κ = ∇ · ∇φ
|∇φ|

. (2.64)
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Chapter 3

Numerical Procedure

3.1 Discretization of The Continuity Equation

Control-volume-based technique is used in the commercial FLUENT code, which re-

quires integrating the governing equations about each control volume. Eqn. (2.23) is a

non-dimensional continuity equation in differential equation form. The integral form of a

dimensional continuity equation for an arbitrary control volume Ω assuming incompressible

flow can be written as
∂

∂t

∫
Ω

UdΩ +
∫
S
(U · nS)dS = 0, (3.1)

where nS is the local, outward-pointing unit normal to the S.

Equation (3.1) can be discretized on a given control volume in the computational domain

to yield the discretized equation

∂U

∂t
4V +

Nfaces∑
f

UfAf = 0 (3.2)

where Nfaces is the number of faces enclosing the control volume, Uf is the velocity normal

to the face f , and Af is the area of face f .
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3.1.1 Temporal Discretization

The first-order explicit discretization is used for temporal term:

Un+1 −Un

∆t
∆V = Γ(Un), (3.3)

where Γ incorporates any spatial discretization.

3.1.2 Spatial Discretization

The spatial discretization in Eq. (3.2) in the integral form is

Γ(U) =
∫
S
(U · nS)dS. (3.4)

And its discretized form can be written as

Γ(U) = −
Nfaces∑
f

UfAf . (3.5)

The FLUENT saves all fluid information at the cell centers. Taking the 2D control

volume shown in Fig. 3.1 (uniform ∆x and ∆y) as an example, the discretized form of the

continuity equation is

Γ(U) = −(Ui+1/2,j − Ui−1/2,j)4 y − (Vi,j+1/2 − Vi,j−1/2)4 x, (3.6)

where Ui+1/2,j, Ui−1/2,j, Vi,j+1/2, and Vi,j−1/2 are the velocities on the faces surrounding the

control volume (i, j).

The values of the velocities at the cell surfaces (Ui+1/2,j, Ui−1/2,j, Vi,j+1/2, Vi,j−1/2), can be

calculated from the values of velocity at the cell centers. Linear interpolation of cell-centered

velocities to the face results in unphysical checker-boarding of pressure [68]. Instead, a

procedure similar to that by Rhie and Chow [69] is used to prevent checkerboarding. The
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Figure 3.1: Two dimensional control volume for continuity equation

values of the velocities at the cell surfaces are momentum-weighted averages instead of linear

averages:

Uf =
Uc0/ap,c0 + Uc1/ap,c1

1/ap,c0 + 1/ap,c1
+
df
ρf

[(Pc0 + (∇P )c0 · r0)− (Pc1 + (∇P )c1 · r1)]

= Ĵf +
df
ρf

(Pc0 − Pc1), (3.7)

where Uc0 , Uc1 and Pc0 , Pc1 are the normal velocities and pressures within the two cells

on either side of the face f , ap,c0 and ap,c1 are the under-relaxation factors for velocity.

The under-relaxation factors are used in the pressure-based solver in FLUENT to stabilize

the convergence behavior of the outer nonlinear iterations [68]. Ĵf contains the influence

of velocities in these cells. The term df is a function of aP , the average of the momentum

equation coefficients aP for the cells on either side of face f [68]. ρf is value of density at

the cell surfaces.

This procedure works well as long as the velocity variation between cell centers is smooth.

However, when there are jumps or large gradients of velocity, the face velocities cannot be

interpolated using this momentum-weighted averaging [68]. Instead, other alternate inter-

polation methods should be used:
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(1) The linear scheme computes the face velocities as the average of the cell-center ve-

locities of the adjacent cells:

Uf =
Uc0 + Uc1

2
. (3.8)

(2) The second-order upwind scheme:

Uf = U +∇U · r, (3.9)

where U and∇U are the cell-centered value and its gradient in the upstream cell, and r is the

displacement vector from the upstream cell centroid to the face centroid. The determination

of ∇U is required in this scheme, which can be computed by Green-Gauss cell-based method

or least-squares cell-based method. When a polyhedral mesh is used, the cell-based least

square gradients are recommended for use over the Green-Gauss cell-based method. The

details of the evaluation of gradients can also be found in the FLUENT theory guide [68].

It is illustrated in the FLUENT theory guide that the second-order scheme is not applicable

to the VOF model [68].

(3) The central-differencing scheme

The central-differencing scheme provides improved accuracy for LES (Large Eddy Simu-

lation) calculations [68].

Uf =
1

2
(Uc0 + Uc1) +

1

2
(∇Uc0 · rc0 +∇Uc1 · rc1), (3.10)

where ∇Uc0 and ∇Uc1 are the normal velocities within the two cells on either side of the face

f respectively, and r is the vector directed from the cell centroid toward the face centroid.

30



3.2 Discretization of The Momentum Equation

The non-dimensional differential equation form of the momentum equations is given in

Eq. (2.24). The dimensional integral form of the momentum equations is

ρ[
∂

∂t

∫
Ω

UdΩ +
∫
S
(UU·nS)dS] = −

∫
S
PnSdS+

∫
S

(τ · nS)dS+
∫

Ω
FdΩ. (3.11)

The discretization of the above equations on a given control volume, or cell yields

ρ
∂U

∂t
∆V + ρ

Nfaces∑
f

(UfUf ·Af ) = −
Nfaces∑
f

PAf +
Nfaces∑
f

τ ·Af+F∆V, (3.12)

where Nfaces is the number of faces enclosing the control volume, Uf is the velocity vector

normal to the face f , Uf ·Af is the volume flux through the face, Af is the face area vector,

∆V is the volume of the cell.

3.2.1 Temporal Discretization

The generic expression for the above equation is given by

ρ
d

dt

∫
Ω

UdΩ = Γ(U), (3.13)

where Γ incorporates any spatial discretization. The first-order explicit discretization is

ρ
Un+1 −Un

∆t
∆V = Γ(Un). (3.14)

3.2.2 Spatial Discretization

The spatial discretization, Γ(U), defined as

Γ(U) = −
∫
S
(UU·nS)dS −

∫
S
PnSdS+

∫
S

(τ · nS)dS+
∫

Ω
FdΩ (3.15)
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can be written as

Γ(U) = −ρ
Nfaces∑
f

(UfUf ·Af )−
Nfaces∑
f

PAf +
Nfaces∑
f

τ ·Af+F∆V. (3.16)

Applied to the same 2D control volume shown in Fig. 3.1,the corresponding discretizations

are as follows:

Γ(U) = −(E
(1)
i+1/2,j − E

(1)
i−1/2,j)4 y − (K

(1)
i,j+1/2 −K

(1)
i,j−1/2)4 x

−(Pi+1,j − Pi,j)∆y + F
(1)
i,j ∆x∆y (3.17)

Γ(V ) = −(E
(2)
i+1/2,j − E

(2)
i−1/2,j)4 y − (K

(2)
i,j+1/2 −K

(2)
i,j−1/2)4 x

−(Pi,j+1 − Pi,j)∆x+ F
(2)
i,j ∆x∆y, (3.18)

where E(1), E(2), K(1), and K(2) are defined as follows

E(1) = ρU2 − (µ+ µt)
∂U

∂x
, (3.19)

E(2) = ρUV − (µ+ µt)
∂V

∂x
, (3.20)

K(1) = ρUV − (µ+ µt)
∂U

∂y
, (3.21)

K(2) = ρV 2 − (µ+ µt)
∂V

∂y
. (3.22)

Thus

E
(1)
i+1/2,j = ρU2

i+1/2,j − (µ+ µt)
∂U

∂x

∣∣∣∣∣
i+1/2,j

, (3.23)

E
(1)
i−1/2,j = ρU2

i−1/2,j − (µ+ µt)
∂U

∂x

∣∣∣∣∣
i−1/2,j

, (3.24)

E
(2)
i+1/2,j = ρ(UV )i+1/2,j − (µ+ µt)

∂V

∂x

∣∣∣∣∣
i+1/2,j

, (3.25)

E
(2)
i−1/2,j = ρ(UV )i−1/2,j − (µ+ µt)

∂V

∂x

∣∣∣∣∣
i−1/2,j

, (3.26)
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Figure 3.2: Cell p and its adjacent cells nb, neighboring the cell p

K
(1)
i,j+1/2 = ρ(UV )i,j+1/2 − (µ+ µt)

∂U

∂y

∣∣∣∣∣
i,j+1/2

, (3.27)

K
(1)
i,j−1/2 = ρ(UV )i,j−1/2 − (µ+ µt)

∂U

∂y

∣∣∣∣∣
i,j−1/2

, (3.28)

K
(2)
i,j+1/2 = ρV 2

i,j+1/2 − (µ+ µt)
∂V

∂y

∣∣∣∣∣
i,j+1/2

, (3.29)

K
(2)
i,j−1/2 = ρV 2

i,j−1/2 − (µ+ µt)
∂V

∂y

∣∣∣∣∣
i,j−1/2

. (3.30)

The face velocities and face gradients can be interpolated through the values at the cell

centers by the schemes described for the continuity equation. Consequently, Eqns. (3.17)

and (3.18) can be written as

Γ(U) = −ai,jUi,j −
∑
nb

anbUnb −∆y(Pi+1,j − Pi,j)− F 1
i,j∆x∆y, (3.31)

Γ(V ) = −bi,jVi,j −
∑
nb

bnbVnb −∆x(Pi,j+1 − Pi,j)− F 2
i,j∆x∆y, (3.32)

where a, anb b, and bnb are linearized coefficients for U , Unb, V , and Vnb respectively.∑
nb anbUnb and

∑
nb bnbVnb represent all the convective and diffusive contributions from the

neighboring nodes. The subscript nb refers to the neighboring cells, as the locations between

the cell center p and the adjacent cells nb shown in Fig. 3.2.

3.2.3 Pressure-Velocity Coupling SIMPLE (Semi Implicit Method

for Pressure Linked Equations) Scheme

The SIMPLE algorithm uses the relationship between velocity and pressure correction

to enforce mass conservation and to obtain the pressure field [68]. First, we guess a pressure
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P ∗. Then a velocity U∗f can be computed by P ∗ through Eqn.(3.7)

U∗f = Ĵ∗f +
df
ρf

(P ∗c0 − P
∗
c1

). (3.33)

However, U∗f does not satisfy the continuity equation. A correction is introduced:

Uf = U∗f + U ′f , (3.34)

which satisfies the continuity equation. The SIMPLE scheme postulates that U ′f be written

as

U ′f =
df
ρf

(P ′c0 − P
′
c1

), (3.35)

where P ′ is the cell pressure correction.

Substitute the correction equations (3.34) and (3.35) into the discrete continuity equa-

tion (3.2) to obtain a discrete equation for the pressure correction P ′ in the cell:

aPP
′ =

∑
nb

anbP
′
nb + c, (3.36)

where the source term c is the net flow rate into the cell:

c =
Nfaces∑
f

U∗fAf . (3.37)

Once a solution for Eqn. (3.36) has been obtained, the cell pressure and face velocity are

corrected by

P = P ∗ + aP Ṕ , (3.38)

Uf = J∗f +
df
ρf

(P ′c0 − P
′
c1

), (3.39)

where ap is the under-relaxation factor for pressure. The corrected Uf satisfies the discrete
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continuity equation identically during each iteration.

3.3 Discretization of the k and ε Equations

The integral form of the k and ε equations are

ρ[
∂

∂t

∫
Ω
kdΩ +

∫
S
(kU·nS)dS] =

∫
S
[(µ+

µt
σk

)∇k · nS]dS+
∫

Ω
(Gk − ρε)dΩ, (3.40)

ρ[
∂

∂t

∫
Ω
εdΩ +

∫
S
(εU·nS)dS] =

∫
S
[(µ+

µt
σε

)∇ε · nS]dS

+
∫

Ω
(ρC1Sε− ρC2

ε2

k +
√
νε

)dΩ. (3.41)

Appling the above equations to each control volume, or cell, in the computational domain,

yields the discretized k and ε equations on a given cell:

ρ
∂k

∂t
∆V + ρ

Nfaces∑
f

kfUf ·Af =
Nfaces∑
f

(µ+
µt
σk

)∇kf ·Af+(Gk − ρε)∆V, (3.42)

ρ
∂ε

∂t
∆V + ρ

Nfaces∑
f

εfUf ·Af =
Nfaces∑
f

(µ+
µt
σε

)∇kf ·Af

+(ρC1Sε− ρC2
ε2

k +
√
νε

)∆V. (3.43)

3.3.1 Temporal Distretization

The temporal discretization uses the first-order explicit integration as the temporal dis-

cretization of the continuity and momentum equations:

kn+1 − kn

∆t
∆V = Γ(kn), (3.44)

εn+1 − εn

∆t
∆V = Γ(εn), (3.45)

where Γ equation incorporates the spatial discretization of the k or ε equation.
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3.3.2 Spatial Discretization

The spatial discretization in k and ε equations in integral form are

Γ(k) = −
∫
S
(kU·nS)dS] +

∫
S
[(µ+

µt
σk

)∇k · nS]dS+
∫

Ω
(Gk − ρε)dΩ, (3.46)

Γ(ε) = −
∫
S
(εU·nS)dS] +

∫
S
[(µ+

µt
σε

)∇ε · nS]dS

+
∫

Ω
(ρC1Sε− ρC2

ε2

k +
√
νε

)dΩ. (3.47)

Their corresponding discretized equations can be written as

Γ(k) = −ρ
Nfaces∑
f

kfUf ·Af +
Nfaces∑
f

(µ+
µt
σk

)∇kf ·Af+(Gk − ρε)∆V, (3.48)

Γ(ε) = −ρ
Nfaces∑
f

εfUf ·Af +
Nfaces∑
f

(µ+
µt
σε

)∇kf ·Af

+(ρC1Sε− ρC2
ε2

k +
√
νε

)∆V. (3.49)

Applied to the same 2D control volume shown in Fig. 3.1, the corresponding discretiza-

tions are as follows:

Γ(k) = −(M
(1)
i+1/2,j −M

(1)
i−1/2,j)4 y − (N

(1)
i,j+1/2 −N

(1)
i,j−1/2)4 x

+(Gk − ρε)i,j∆x∆y (3.50)

Γ(ε) = −(M
(2)
i+1/2,j −M

(2)
i−1/2,j)4 y − (N

(2)
i,j+1/2 −N

(2)
i,j−1/2)4 x

+(ρC1Sε− ρC2
ε2

k +
√
νε

)i,j∆x∆y, (3.51)

where M (1), M (2), N (1), and N (2) are defined as follows

M (1) = ρkU − (µ+
µt
σk

)
∂k

∂x
, (3.52)

M (2) = ρεU − (µ+
µt
σε

)
∂ε

∂x
, (3.53)
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N (1) = ρkV − (µ+
µt
σk

)
∂k

∂y
, (3.54)

N (2) = ρεV − (µ+
µt
σε

)
∂ε

∂y
. (3.55)

Thus

M
(1)
i+1/2,j = ρ(kU)i+1/2,j − (µ+

µt
σk

)
∂k

∂x

∣∣∣∣∣
i+1/2,j

, (3.56)

M
(1)
i−1/2,j = ρ(kU)i−1/2,j − (µ+

µt
σk

)
∂k

∂x

∣∣∣∣∣
i−1/2,j

, (3.57)

M
(2)
i+1/2,j = ρ(εU)i+1/2,j − (µ+

µt
σε

)
∂ε

∂x

∣∣∣∣∣
i+1/2,j

, (3.58)

M
(2)
i−1/2,j = ρ(εU)i−1/2,j − (µ+

µt
σε

)
∂ε

∂x

∣∣∣∣∣
i−1/2,j

, (3.59)

N
(1)
i,j+1/2 = ρ(kV )i,j+1/2 − (µ+

µt
σk

)
∂k

∂y

∣∣∣∣∣
i,j+1/2

, (3.60)

N
(1)
i,j−1/2 = ρ(kV )i,j−1/2 − (µ+

µt
σk

)
∂k

∂y

∣∣∣∣∣
i,j−1/2

, (3.61)

N
(2)
i,j+1/2 = ρ(εV )i,j+1/2 − (µ+

µt
σε

)
∂ε

∂y

∣∣∣∣∣
i,j+1/2

, (3.62)

N
(2)
i,j−1/2 = ρ(εV )i,j−1/2 − (µ+

µt
σε

)
∂ε

∂y

∣∣∣∣∣
i,j−1/2

. (3.63)

The values of k and ε at the cell surfaces (ki+1/2,j, ki,j+1/2, ki−1/2,j, ki,j−1/2, εi+1/2,j, εi,j+1/2,

εi−1/2,j, εi,j−1/2) is accomplished using upwind schemes and the diffusion terms in k and ε

equations always use second-order central-differenced schemes. The first-order upwind and

second-order upwind schemes are described in the context of discretization of continuity

equation. The third-order MUSCL (Monotone Upstream-centered Scheme for Conservation

Laws) scheme is used for the discretization of the k and ε equations when a high order

scheme is required. The third-order MUSCL scheme blends a central differencing scheme

and second-order upwind scheme as [68]

γf = θγf,CD + (1− θ)γf,SOU , (3.64)
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where γ represents a general scalar, γf,CD is a face value obtained with a central differencing

scheme and γf,SOU is a face value obtained with a second-order upwind scheme. The first

term is written as follows:

γf,CD =
1

2
(γ0 + γ1) +

1

2
(∇γ0 · n0 +∇γ1 · n1), (3.65)

where γ0 and γ1 are the values at the centroids of two neighboring control volumes sharing

the same face, ∇γ0 and ∇γ1 are the gradients of the scalar computed at cell centroids and

n0 and n1 are the direction vectors pointing from cell centroid to the face centroid.

The second term, γf,SOU , is computed as

γf,SOU = γ +∇γ · 4s, (3.66)

where γ and ∇γ are the value at the cell center and its gradients in the upstream cell,

respectively. 4s is the displacement vector from the upstream cell centroid to the face

centroid. The gradient ∇γ is computed using the divergence theorem,

∇γ =
1

∆V

Nface∑
f

γ̃fAf . (3.67)

Here, the face values γ̃f are computed by averaging γ from the two cells adjacent to the

face.

3.4 Numerical Procedure for the Level Set Method

3.4.1 UDFs in ANSYS FLUENT

Figure 3.4 illustrates the solution process for the pressure-based solvers, used in this

study. It begins with a two-step initialization sequence that is executed outside the solution

iteration loop. This sequence begins by initializing equations to user-specified (or default)
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values taken from the ANSY FLUENT user interface. Next, PROFILE UDFs are called,

followed by a call to INIT UDFs. Initialization UDFs overwrite initialization values that

were previously set. The solution iteration loop begins with the execution of ADJUST

UDFs. Next, ANSYS FLUENT solves the governing equations of continuity and momentum

sequentially or in a coupled fashion. Subsequently, the energy and species equations are

solved, followed by turbulence and other scalar transport equations, as required. Note that

PROFILE and SOURCE UDFs are called by each “Solve” routine for the variable currently

under consideration (e.g., species, velocity).

Properties are updated after solving the conservation equations, using PROPERTY

UDFs. For the CLSVOF method, the re-initialization and coupling between LS and VOF

method are carried out at the end of each iteration. A check for either convergence or

additional requested iterations is done, and the loop either continues or stops.

Since FLUENT already contains a VOF method, only the LS method needs to be imple-

mented in our code via UDFs. The level set equation is solved by enabling the User Defined

Scalar (UDS) equation in FLUENT. The use of macros DEFINE_UDS_UNSTEADY, DE-

FINE_UDS_FLUX, and DEFINE_DIFFUSIVITY set up the scalar equation for level set

function in FLUENT. The unsteady and advection terms are added to FLUENT in the

User-Defined Scalars panel. The scalar diffusivity is assigned in the Materials panel. The

boundary condition for the scalar equation is assigned in the Boundary Condition panel.

Especially note that the boundary condition for the LS function at inlet must be fixed to

zero, due to that hyperbolic nature of Eq. (2.55). The characteristics propagate outward

from the zero level set, φ = 0.
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3.4.2 UDF’s for the Unsteady Term in Level Set Equation

The unsteady term of the level set function Eq.(2.52) is moved to the right hand side

and discretized as follows:

unsteady term = −
∫

Ω

∂φ

∂t
dΩ = −[

φn+1 − φn

∆t
] ·∆V

= −4V
4t

φn+1 +
4V
4t

φn. (3.68)

The macro DEFINE_UDS_UNSTEADY is used for the user-defined scalar time derivatives.

The temporal discretization uses the first-order explicit time integration as

φn+1 − φn

∆t
= Γ(φn). (3.69)

3.4.3 UDF’s for the Flux Term in Level Set Equation

The advection terms in the level set equation have the following form:

flux term = ∇ · (Uφ). (3.70)

The integral and discretization of the flux terms on a given cell are

flux term in the integral form =
∫
S
(φU·nS)dS (3.71)

flux term in the disrectized form =
Nfaces∑
f

(φfUf ·Af ). (3.72)

The third-order MUSCL scheme is used to calculate the face value φf ,

φf = θφf,CD + (1− θ)φf,SOU , (3.73)
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where the factor θ is set to 0.125 for the problem being studied, and,

φf,CD =
1

2
(φ0 + φ1) +

1

2
(∇φ0 · r0 +∇φ1 · r1), (3.74)

φf,SOU = φ+∇φ · 4s, (3.75)

where φ0 and φ1 are the cell centroid values of the two neighboring control volumes sharing

the same face, ∇φ0 and ∇φ1 are the gradients of the scalar computed at cell centroids and

r0 and r1 are the direction vectors pointing from cell centroid to the face centroid, φ and ∇φ

are the cell-centered value and its gradients in the upstream cell, and 4s is the displacement

vector from the upstream cell centroid to the face centroid. The gradient is computed using

the divergence theorem,

∇φ =
1

∆V

Nface∑
f

φ̃fAf . (3.76)

Here, the face value φ̃f are computed by averaging φ from the two cells adjacent to the

face.

The macro DEFINE_UDS_FLUX is used for the flux term and it needs to return the

scalar value U · A to FLUENT, where A is the face normal vector. Since Eqn. (3.70) is

without the fluid density, it’s just simple to include “return F_FLUX(f,t)/ρ” in the DE-

FINE_UDS_FLUX UDF. The denominator ρ can be determined by averaging the adjacent

cells’ density values C_R (F_C0(f,t), THREAD_T0(t)) and C_R (F_C1(f,t), THREAD_T1(t)),

where C_R is the flow variable macro in UDF for density, t is a pointer to the thread on

which the user-defined scalar flux is to be applied, and f is an index that identifies a face

within the given thread. F_C0, F_C1, THREAD_T0 and THREAD_T1 are neighboring

cells of the face f, and their corresponding threads [68].
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3.4.4 UDF’s for the Diffusion Terms in Level Set Equation

The diffusion terms in the Reynolds-averaged LS equation are

diffusion term = −∇ · (DT∇φ). (3.77)

The integral and discretized forms of the diffusion term are

flux term in the integral form = −
∫
S

(DT∇φ · nS)dS, (3.78)

flux term in the discretized form = −
Nfaces∑
f

(DT∇φf ·Af ). (3.79)

The face value φf uses the same MUSCL scheme as described in Eq.(3.73), and the

gradient of φ on the face is computed using the divergence theorem,

∇φf =
1

∆V

Nface∑
f

φfAf . (3.80)

The diffusion coefficient, DT , used in the macro “DEFINE_DIFFUSIVITY ” is defined

as

DT = c1k
2/ε, (3.81)

and c1 = 0.129 is a constant.

3.4.5 Discretization of Re-initialization Equation

The re-initialization equation is implemented and solved at every time step and a DE-

FINE_EXECUTE_AT_END UDF is used. The temporal term is discretized by means of

TVD Runge-Kutta (RK) methods. The third-order time integration schemes can be written

as

φ(1) = φn + ∆t · L(φn), (3.82)

42



φ(2) =
1

4
[3φn + φ(1) + ∆t · L(φ(1))], (3.83)

φn+1 =
1

3
[φn + 2φ(2) + 2∆t · L(φ(2))], (3.84)

where L(φ) is (Eqn.(2.57))

L(φ) = S(φ0)−w · ∇φ. (3.85)

Flux evaluation must be carried out during each stage of the Runge-Kutta method. The

explicit scheme considered above requires the computation of a time step ∆t to be used in

Eqn. (3.84), such that the stability of the numerical method is ensured. One way of choosing

∆t is

∆t =
Ccfl
U0

×min(∆x,∆y,∆z), (3.86)

where U0 is initial bulk velocity, Ccfl is the CFL number and is chosen as

0 < Ccfl ≤ 1/3. (3.87)

in three space dimensions.

The convection term in Eqn. (2.57) can be expanded as

w · ∇φ = Wξφξ +Wηφη +Wζφζ , (3.88)

where Wi are the contravariant velocities, defined by

Wξ = wxξx + wyξy + wzξz, (3.89)

Wη = wxηx + wyηy + wzηz, (3.90)

Wζ = wxζx + wyζy + wzζz, (3.91)
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where

wx = S(φ0)
φx
|∇φ|

, (3.92)

wy = S(φ0)
φy
|∇φ|

, (3.93)

wz = S(φ0)
φz
|∇φ|

. (3.94)

Two schemes have been used to evaluate the partial derivatives φx, φy, φz, φξ, φη, and φζ in

the spatial discretization using two different finite different methods. The partial derivatives

of φ in the coordinate system (x, y, z) is computed as

∂φ

∂x
= J [(

ξx
J
φ)ξ + (

ηx
J
φ)η + (

ζx
J
φ)ζ ], (3.95)

∂φ

∂y
= J [(

ξy
J
φ)ξ + (

ηy
J
φ)η + (

ζy
J
φ)ζ ], (3.96)

∂φ

∂z
= J [(

ξz
J
φ)ξ + (

ηz
J
φ)η + (

ζz
J
φ)ζ ], (3.97)

where ξx, ηx, ζx, ξy, ηy, ζy, ξz, ηz, and ζz are metrics. The two schemes are described below.

(1) Second-order finite difference scheme

For the derivatives of φ with respect to (x, y, z), the central finite difference is used as

described in Eqn. (3.98). Here, illustrations are given for the term ( ξx
J
φ)ξ and the other

components ()η and ()ζ . The central second-order finite differences are evaluated as

(
ξx
J
φ)ξ =

1

2
[(
ξx
J
φ)i+1,j,k − (

ξx
J
φ)i−1,j,k], (3.98)

when both of the cells (i−1, j, k) and (i+1, j, k) are available. Otherwise, one-sided second-

order finite differences are used. The form of right-sided second-order finite differences is

(
ξx
J
φ)ξ =

1

2
[−3 ∗ (

ξx
J
φ)i,j,k + 4 ∗ (

ξx
J
φ)i+1,j,k − (

ξx
J
φ)i+2,j,k], (3.99)
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and the left-sided second-order finite difference is

(
ξx
J
φ)ξ =

1

2
[3 ∗ (

ξx
J
φ)i,j,k − 4 ∗ (

ξx
J
φ)i−1,j,k + (

ξx
J
φ)i−2,j,k]. (3.100)

For the calculation of φξ,φη, and φζ in Eqn. (3.88), a first-order upwind scheme is used and

the values of the contravariant velocities are used to decide the upwind stencil:

φξ = φi+1/2,j,k − φi−1/2,j,k, (3.101)

φη = φi,j+1/2,k − φi,j−1/2,k, (3.102)

φζ = φi,j,k+1/2 − φi,j,k−1/2. (3.103)

The mid-point values are calculated using the first-order upwind scheme:

φi+1/2,j,k =


φi Wξ ≤ 0

φi+1 Wξ < 0
, (3.104)

φi−1/2,j,k =


φi−1 Wξ ≤ 0

φi Wξ < 0
. (3.105)

Similarly for φi,j±1/2,k and φi,j,k±1/2.

(2) Fifth-order Hamilton-Jacobi WENO scheme

To evaluate the gradient terms using a fifth-order WENO scheme, a point (i, j, k) needs

three points behind and three points after it in every direction. This poses no difficulties

for a point inside the domain, but when the point is within 3 nodes from the boundary,

the scheme doesn’t work anymore due to the lack of points. The stencil structure for the

fifth-order WENO scheme is shown in Fig. 3.3.

The definitions of φx, φy, and φz are given in Eqns.(3.95), (3.96), and (3.97). The partial

derivative terms ( ξx
J
φ)ξ, (ηx

J
φ)η, ( ζx

J
φ)ζ , ( ξy

J
φ)ξ, (ηy

J
φ)η, ( ζy

J
φ)ζ , ( ξz

J
φ)ξ, (ηz

J
φ)η, and ( ζz

J
φ)ζ are

evaluated using WENO scheme, as are φξ, φη, and φζ . Here, the details are only given for
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the partial derivatives of φ with respect to (ξ, η, ζ).

To solve φξ, φη, and φζ using Sussman’s method [64], the following equations are intro-

duced:

a = φ−ξ , b = φ+
ξ , c = φ−η , d = φ+

η , e = φ−ζ , f = φ+
ζ , (3.106)

where a, b, c, d, e, and f are computed with a fifth-order Hamilton-Jacobi WENO approx-

imation. First, the derivative of φ in 1D is described and then the formulations in 3D are

given. To approximate φξ on a left-biased stencil {i−3, i−2, i−1, i, i+1, i+2}, we introduce

φi = φ(i), ∆+φi = φi+1 − φi, and ∆−φi = φi − φi−1. The WENO approximation of φξ is

a combination of the weighted average of φξ, computed by ENO schemes. The 3rd order

accurate ENO scheme will choose one from the following

φ−,0ξ,i =
1

3
∆+φi−3 −

7

6
∆+φi−2 +

11

6
∆+φi−1 (3.107)

φ−,1ξ,i = −1

6
∆+φi−2 +

5

6
∆+φi−1 +

1

3
∆+φi (3.108)

φ−,2ξ,i =
1

3
∆+φi−1 +

5

6
∆+φi −

1

6
∆+φi+1, (3.109)

where φ−,sξ,i is the third-order approximation to φξ based on the sth substencil {i+ s− 3, i+

s− 2, i+ s− 1, i+ s} for s = 0, 1, 2.

The WENO approximation of φξ is a weighted average of φ−,sξ,i (s = 0, 1, 2):

φ−ξ,i = ω0φ
−,0
ξ,i + ω1φ

−,1
ξ,i + ω2φ

−,2
ξ,i . (3.110)

Here, ωs is the weight associated with the sth sub-stencil and the weights satisfy the

consistency equality: ω0 + ω1 + ω2 = 1. The definitions of the weights will be given shortly.

Substituting φ−,sξ,i into φ−ξ,i, we obtain

φ−ξ,i =
1

12
(−∆+φi−2 + 7∆+φi−1 + 7∆+φi −∆+φi+1)

−φWENO(∆−∆+φi−2,∆
−∆+φi−1,∆

−∆+φi,∆
−∆+φi+1), (3.111)

46



where[49]

φWENO(a, b, c, d) =
1

3
ω0(a− 2b+ c) +

1

6
(ω2 −

1

2
)(b− 2c+ d) (3.112)

and the weights ω0 and ω2 are defined as

ω0 =
α0

α0 + α1 + α2

, (3.113)

ω2 =
α2

α0 + α1 + α2

, (3.114)

where

α0 =
1

(δε + IS0)2
,

α1 =
6

(δε + IS1)2
, α2 =

3

(δε + IS2)2
,

IS0 = 13(a− b)2 + 3(a− 3b)2,

IS1 = 13(b− c)2 + 3(b+ c)2,

IS2 = 13(c− d)2 + 3(3c− d)2. (3.115)

Here, δε is used to prevent the denominators from becoming zero. We set δε = 10−16.

By symmetry, the fifth-order WENO for φ+
ξ,i on the right-biased stencil {i+ s− 2, i+ s−

1, i+ s, i+ s+ 1} for s = 0, 1, and 2, can be written as

φ+
ξ,i =

1

12
(−∆+φi−2 + 7∆+φi−1 + 7∆+φi −∆+φi+1)

+φWENO(∆−∆+φi+2,∆
−∆+φi+1,∆

−∆+φi,∆
−∆+φi−1). (3.116)

For the general 3D case, the fifth-order Hamilton-Jacobi WENO approximations for the

first derivative of φ with respect to ξ, η, and ζ are:

φ±ξ,i,j,k =
1

12
(−∆+

ξ φi−2,j,k + 7∆+
ξ φi−1,j,k + 7∆+

ξ φi,j,k −∆+
ξ φi+1,j,k)

±φWENO(∆−ξ ∆+
ξ φi±2,j,k,∆

−
ξ ∆+

ξ φi±1,j,k,∆
−
ξ ∆+

ξ φi,j,k,∆
−
ξ ∆+

ξ φi∓1,j,k), (3.117)
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φ±η,i,j,k =
1

12
(−∆+

η φi,j−2,k + 7∆+
η φi,j−1,k + 7∆+

η φi,j,k −∆+
η φi,j+1,k)

±φWENO(∆−η ∆+
η φi±2,j,k,∆

−
η ∆+

η φi±1,j,k,∆
−
η ∆+

η φi,j,k,∆
−
η ∆+

η φi∓1,j,k), (3.118)

φ±ζ,i,j,k =
1

12
(−∆+

ζ φi,j,k−2 + 7∆+
ζ φi,j,k−1 + 7∆+

ζ φi,j,k −∆+
ζ φi,j,k+1)

±φWENO(∆−ζ ∆+
ζ φi,j,k±2,∆

−
ζ ∆+

ζ φi,j,k±1,∆
−
ζ ∆+

ζ φi,j,k,∆
−
ζ ∆+

ζ φi,j,k∓1). (3.119)

If we define a+, b−, c+, d−, e+, and f+ as follows:

a+ ≡ max(a, 0), b− ≡ min(b, 0),

c+ ≡ max(c, 0), d− ≡ min(d, 0),

e+ ≡ max(e, 0), f− ≡ min(f, 0), (3.120)

then φξ , φη , and φζ can be calculated as follows:

φξ ≡ fs(a
+, b−)

√
max[(a+)2, (b−)2],

φη ≡ fs(c
+, d−)

√
max[(c+)2, (d−)2],

φζ ≡ fs(e
+, f−)

√
max[(e+)2, (f−)2], (3.121)

where fs is given by

fs(a
+, b−) =


sign(a)

sign(b)

if max[(a+)2, (b−)2 = (a+)2,

if max[(a+)2, (b−)2 = (b−)2.
(3.122)

For points that don’t have a complete WENO stencil, second-order schemes are used to

obtain the gradient of φ: one-sided second-order scheme for points on the boundary and

central second-order scheme for the rest. The formulations are shown in Eqns. (3.98), (3.99),

and (3.100).
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3.5 Discretization of Volume of Fluid Equation

The integral form for the volume of fluid equation is

∫
Ω

∂F

∂t
dΩ +

∫
Fu · nSdA = 0. (3.123)

Its discretization on a given cell volume ∆V is

∂F

∂t
∆V +

Nfaces∑
f

Ffuf ·Af = 0. (3.124)

The first-order explicit temporal discretization is used,

F n+1 − F n

∆t
∆V +

Nfaces∑
f

F n
f unf ·Af = 0. (3.125)

The face value of F is obtained by the second-order upwind scheme.

Ff = F +∇F · r, (3.126)

where F and ∇F are the cell-centered value and its gradient in the upstream cell, and r is

the displacement vector from the centroid of the upstream cell to that of the face.

3.6 Coupling Method

3.6.1 Reconstruction of Level Set Values with Planes in Partial

Cells

After solving the convection equations of the level set function φ and the volume fraction

value F , we need to use F to correct φ before solving the reinitialization equation for φ. This

is exactly where the coupling between LS and VOF methods happens, which is necessary
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to overcome the volume loss problem of the original LS method. To make this correction

feasible, we first need to define the interface in the cell Ωijk as a plane (a straight line in

2D). As in Sussman and Puckett [64] , the following reconstructed level set φRijk is defined:

φRijk (x, y, z) = aijk (x− xi) + bijk (y − yj) + cijk (z − zk) + dijk. (3.127)

When the equation is normalized such that a2
ijk+b2

ijk+c2
ijk = 1, as pointed out by Menard

et al [65], the unit vector nijk = (aijk, bijk, cijk) represents the normal to the interface.

Correspondingly, dijk denotes the normal distance from the cell center (xi, yj, zk) to the

interface.

To make φRijk an accurate approximation to the original level set function φ, as in Sussman

and Puckett [64], we minimize the following L2 error:

Eijk =
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

δε (φ)
(
φ− φRijk (x, y, z)

)2
dxdydz. (3.128)

We choose a 27-point stencil and the discrete form of the above error function reads [65]:

Eijk =
i′=i+1∑
i′=i−1

j′=j+1∑
j′=j−1

k′=k+1∑
k′=k−1

wi′−i,j′−j,k′−kδε (φi′j′k′)
(
φi′j′k′ − φRijk (x, y, z)

)2
, (3.129)

where δε (φ) is the smoothed Dirac function with the thickness ε =
√

2min(dx, dy, dz), where

dx, dy, and dz are space step size. wl,m,n are weights that are larger on the central cell (i, j, k)

and smaller on the surrounding cells (i′, j′, k′). In particular, we choose a ratio of 16 between

central cell weight and those of the surrounding cells as in Menard et al.[65]:

wl,m,n =


16 (l,m, n) = (0, 0, 0)

1 (l,m, n) 6= (0, 0, 0)
. (3.130)

To minimize Eijk, its first order derivatives with respect to aijk, biijk, cijk, and dijk should
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all vanish:
∂Eijk
∂aijk

=
∂Eijk
∂bijk

=
∂Eijk
∂cijk

=
∂Eijk
∂dijk

= 0, (3.131)

which leads to the following linear system:



∑∑∑
whX2 ∑∑∑

whXY
∑∑∑

whXZ
∑∑∑

whX∑∑∑
whXY

∑∑∑
whY 2 ∑∑∑

whY Z
∑∑∑

whY∑∑∑
whXZ

∑∑∑
whY Z

∑∑∑
whZ2 ∑∑∑

whZ∑∑∑
whX

∑∑∑
whY

∑∑∑
whZ

∑∑∑
wh


·



aijk

bijk

cijk

dijk


=



∑∑∑
whXφ∑∑∑
whY φ∑∑∑
whZφ∑∑∑
whφ


,

(3.132)

where the following abbreviations are adopted:

∑∑∑
=

i′=i+1∑
i′=i−1

j′=j+1∑
j′=j−1

k′=k+1∑
k′=k−1

, wh = wi′−i,j′−j,k′−kδε (φi′j′k′) ,

X = (xi′ − xi) , Y = (yj′ − yj) , Z = (zk′ − zk) , φ = φi′j′k′ . (3.133)

To solve the above linear system, we use the Gaussian elimination method with pivoting

as illustrated in Press et al. [66].

3.6.2 Correction of the Level Set Values with Volume Fractions

With the plane reconstruction of level set values, we are ready to correct them with the

knowledge of volume fractions, in order to avoid mass loss. The essence of this correction

is based on the idea that the volume of liquid in a given partial cell must be the same, no

matter what method is used to calculate it. More specifically, the liquid volumes calculated

from the level set plane and from the result of the convection equation of the liquid volume

fraction should agree with each other. If we use Fijk to denote the volume fraction of liquid,

we obtain [65]:

1

dxdydz

∫ zk+1/2

zk−1/2

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

Hε

(
φRijk (x, y, z)

)
dxdydz = Fijk. (3.134)
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The above equality will not be satisfied after we solve the advection equations of φijk and

Fijk by using FLUENT. As a result, the Newton iterative method is adopted to modify the

parameter dijk until a given precision is satisfied for the above equation:

dnew
ijk = dijk −

1
dxdydz

∫ zk+1/2
zk−1/2

∫ yj+1/2
yj−1/2

∫ xi+1/2
xi−1/2

Hε

(
φRijk (x, y, z)

)
dxdydz− Fijk

1
dxdydz

∫ zk+1/2
zk−1/2

∫ yj+1/2
yj−1/2

∫ xi+1/2
xi−1/2

δε
(
φRijk (x, y, z)

)
dxdydz

. (3.135)

It is important to note that the Newton iterations are only performed for the cells around

the interface between air and liquid.

3.7 Surface Tension Force for Multiphase Flow

The momentum equations in two-phase flow contain the surface tension terms. The

surface tension terms are approximated using the CSF (Continuum Surface Force) model, as

in Eqn. (2.62). The DEFINE_SOURCE UDF specifies custom source term for momentum

equations in FLUENT,

source term = σκ(φ)nδε(φ). (3.136)

We need to determine the interface curvature, κ, and the normal to the interface, n.

Utilizing level set function, φ, curvature and normal to the interface are computed through

DEFINE_ADJUST function and are then stored in the User Defined Memory (UDM) for

each cell center.

By definition of the normal vector to a level surface, the unit normal −→n is achieved by

normalizing ∇φ with |∇φ|:

nx =
∂φ

∂x
/[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2]1/2, (3.137)

ny =
∂φ

∂y
/[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2]1/2, (3.138)

nz =
∂φ

∂z
/[(
∂φ

∂x
)2 + (

∂φ

∂y
)2 + (

∂φ

∂z
)2]1/2. (3.139)
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The mean surface curvature is computed by taking the partial derivatives of the unit

normal components in the manner consistent with the partial derivatives of φ:

∂nx
∂x

= J [(
ξx
J
nx)ξ + (

ηx
J
nx)η + (

ζx
J
nx)ζ)], (3.140)

∂ny
∂y

= J [(
ξy
J
ny)ξ + (

ηy
J
ny)η + (

ζy
J
ny)ζ)], (3.141)

∂nz
∂z

= J [(
ξz
J
nz)ξ + (

ηz
J
nz)η + (

ζz
J
nz)ζ ], (3.142)

=⇒ κ ≡ ∇ · ∇φ/|∇φ| = ∂nx
∂x

+
∂ny
∂y

+
∂nz
∂z

. (3.143)

Each component of the partial derivatives is evaluated using second-order finite differences

as in Eqs. (3.98), (3.99), and (3.100).

We now discuss the computation of the metrics. The metrics are solved numerically

through the expressions by xξ, xη, xz, etc., which can be computed by finite difference ap-

proximations. To obtain the relations, the differential expressions are considered:

dx =
∂x

∂ξ
dξ +

∂x

∂η
dη +

∂x

∂ζ
dζ,

dy =
∂y

∂ξ
dξ +

∂y

∂η
dη +

∂y

∂ζ
dζ,

dz =
∂z

∂ξ
dξ +

∂z

∂η
dη +

∂z

∂ζ
dζ. (3.144)

The above equations can be cast in a matrix form:


dx

dy

dz

 =


xξ xη xζ

yξ yη yζ

yξ yη yζ




dξ

dη

dζ.

 (3.145)

Inverting, we have

dξ =
∂ξ

∂x
dx+

∂η

∂y
dy +

∂ζ

∂z
dz,
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dη =
∂η

∂x
dx+

∂η

∂y
dy +

∂η

∂z
dz,

dζ =
∂ζ

∂x
dx+

∂ζ

∂y
dy +

∂ζ

∂z
dz, (3.146)

or 
dξ

dη

dζ

 =


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz




dx

dy

dz.

 (3.147)

Comparing the two matrices, we see that


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 =


xξ xη xζ

yξ yη yζ

yξ yη yζ



−1

, (3.148)

from which

ξx = J(yηzζ − yζzη), ξy = J(xζzη − xηzζ), ξz = J(xηyζ − xζyη), (3.149)

ηx = J(yζzξ − yξzζ), ηy = J(xξzζ − xζzξ), ηz = J(xζyξ − xξyζ), (3.150)

ζx = J(yξzη − yηzξ), ζy = J(xηzξ − xξzη), ζz = J(xξyη − xηyξ), (3.151)

where J is the Jacobian of transformation, defined by

J =
∂(ξ, η, ζ)

∂(x, y, z)
=

1

xξ(yηzζ − yζzη) + xη(yζzξ − yξzζ) + xζ(yξzη − yηzξ)
. (3.152)

In 2D, the expression for J is

J = [
∂(x, y)

∂(ξ, η)
]−1 = (xξyη − xηyξ)−1, (3.153)
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Figure 3.3: The three sub-stencils: (a) the left-biased stencil; (b) the right-biased stencil

Figure 3.4: Solution procedure for the pressure-based segregated/coupled solver

so that

ξx = J ∗ yη, ξy = −J ∗ xη, ηx = −J ∗ yξ, ηy = J ∗ xξ. (3.154)

Second-order finite differences are used to discretize the derivatives xξ, xη, xζ , yξ, yη, yζ , zξ, zη,

and zζ . The procedure is the same as those shown in Eqs. (3.98), (3.99), and (3.100).
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Chapter 4

Numerical Verification and Validation

4.1 Understanding the Secondary Flows in Curved Pipes

For better understanding of the secondary flows in a curved pipe, we compare the gov-

erning equations for a curved pipe with those for a straight pipe and study the terms that

represent the differences between two sets of equations. We decompose the equations for a

curved pipe as follows:

L̃c(u
∗, v∗, w∗) = Lc(u

∗, v∗, w∗) +D∗c , (4.1)

L̃M1(u
∗, v∗, w∗) = LM1(u

∗, v∗, w∗) +D∗r , (4.2)

L̃M2(u
∗, v∗, w∗) = LM2(u

∗, v∗, w∗) +D∗θ , (4.3)

L̃M3(u
∗, v∗, w∗) = LM3(u

∗, v∗, w∗) +D∗z̃ , (4.4)

where the first terms on the right-hand side of the equations represent the contribution of a

straight pipe and the remaining terms are due to curvature. The latter can easily be written

as follows:

D∗c ≡
∂w∗

∂z̃∗
(

1
√
g33

− 1) + Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
, (4.5)
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D∗r ≡ w∗
∂u∗

∂z̃∗
(

1
√
g33

− 1) + Γ1∗
33

w∗2

g33

− 1

Re
[
∂2u∗

∂z̃∗2
(

1

g33

− 1) +
Γ1∗

33

g33

(Γ3∗
13u
∗ + Γ3∗

23

v∗

r∗
− ∂u∗

∂r∗
)

+
Γ2∗

33

g33

(v∗ − ∂u∗

∂θ∗
)− Γ3∗

33

g33

∂u∗

∂z̃∗
+

1

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ1∗

33) + 2Γ1∗
33

∂

∂z̃∗
(
w∗
√
g33

)}], (4.6)

D∗θ ≡ w∗
∂v∗

∂z̃∗
(

1
√
g33

− 1) + Γ2∗
33

r∗w∗2

g33

− 1

Re
[
∂2v∗

∂z̃∗2
(

1

g33

− 1) +
Γ2∗

33

g33

(Γ3∗
13r
∗u∗ − u∗ + Γ3∗

23v
∗

−∂v
∗

∂θ∗
)− Γ1∗

33

g33

∂v∗

∂r∗
− Γ3∗

33

g33

∂v∗

∂z̃∗
+
r∗

g33

{ w∗
√
g33

∂

∂z̃∗
(Γ2∗

33) + 2Γ2∗
33

∂

∂z̃∗
(
w∗
√
g33

)}], (4.7)

D∗z̃ ≡ (u∗
∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
)(

1
√
g33

− 1)− w∗

g33

(u∗
∂
√
g33

∂r∗
− v∗

r∗
∂
√
g33

∂θ∗
)

+(w∗
∂w∗

∂z̃∗
+
∂p∗

∂z̃∗
)(

1

g33

− 1) +
2w∗
√
g33

(Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
)

− 1

Re
[(

1
√
g33

− 1)(
∂2w∗

∂r∗2
+

1

r∗
∂w∗

∂r∗
+

1

r∗2
∂2w∗

∂θ∗2
) + (

1

(
√
g33)3

− 1)
∂2w∗

∂z̃∗2

−(
2

g33

∂w∗

∂r∗
− w∗

g2
33

∂g33

∂r∗
+

w∗

r∗g33

)
∂
√
g33

∂r∗
− (

2

g33

∂w∗

∂θ∗
− w∗

g2
33

∂g33

∂θ∗
)

1

r∗2
∂
√
g33

∂θ∗

− 1

g2
33

∂w∗

∂z̃∗
∂
√
g33

∂z̃∗
− w∗

g33

(
∂2√g33

∂r∗2
+

1

r∗2
∂2g33

∂θ∗2
) +

w∗
√
g33

{ ∂
∂r∗

(Γ2∗
13) +

1

r∗2
∂

∂θ∗
(Γ3∗

23)}

+
1

g33

{u∗ ∂
∂z̃∗

(Γ3∗
13) +

v∗

r∗
∂

∂z̃∗
(Γ3∗

23)}+ Γ3∗
13{

2

g33

∂u∗

∂z̃∗
+ 2

∂

∂r∗
(
w∗
√
g33

) +
1

r∗
w∗
√
g33

}

+
w∗
√
g33

{(Γ3∗
12)2 + (

Γ3∗
33

r∗
)2}+

Γ3∗
23

r∗2
{2r∗

g33

∂v∗

∂z̃∗
+ 2

∂

∂θ∗
(
w∗
√
g33

)}

− 1

g33

{Γ1∗
33

∂

∂r∗
(
w∗
√
g33

) + Γ2∗
33

∂

∂θ∗
(
w∗
√
g33

)}]. (4.8)

For fully-developed laminar flow in a straight pipe, D∗c = D∗r = D∗θ = D∗
z̃

= 0 when

g33 = 0, κc = 0, L = 0, Γk∗ij = 0, u∗ = v∗ = 0, and w∗ = w∗(r∗). For fully-developed

laminar flow in the sinusoidal pipe configuration, Eqs. (2.10) to (2.13), and the conditions

u∗ = u∗(r∗, θ∗), v∗ = v∗(r∗, θ∗), and w∗ = w∗(r∗, θ∗) lead to the following simplification of

the curvature terms:

D∗c (u
∗, v∗, w∗) ≡ Γ3∗

31u
∗ + Γ3∗

32

v∗

r∗
=

κc cos θ∗

1 + r∗κc cos θ∗
u∗ − κc sin θ∗

1 + r∗κc cos θ∗
v∗, (4.9)

D∗r(u
∗, v∗, w∗) ≡ Γ1∗

33

w∗2

g33

= − w∗2κc cos θ∗

1 + r∗κc cos θ∗
, (4.10)

D∗θ(u
∗, v∗, w∗) ≡ Γ2∗

33

r∗w∗2

g33

=
w∗2κc sin θ∗

1 + r∗κc cos θ∗
, (4.11)
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D∗z̃(u
∗, v∗, w∗) ≡ (u∗

∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
)(

1
√
g33

− 1)− w∗

g33

(u∗
∂
√
g33

∂r∗
− v∗

r∗
∂
√
g33

∂θ∗
)

+
∂p∗

∂z̃∗
(

1

g33

− 1) +
2w∗
√
g33

(Γ3∗
31u
∗ + Γ3∗

32

v∗

r∗
)

= (u∗
∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂θ∗
)[

1

L(1 + rκc cos θ∗)
− 1]− w∗

g33

(u∗
∂
√
g33

∂r∗

−v
∗

r∗
∂
√
g33

∂θ∗
) +

∂p∗

∂z̃∗
(

1

L2(1 + rκc cos θ∗)2
− 1)

+
2w∗
√
g33

κc
cos θ∗u∗ − sin θ∗v∗

1 + r∗κc cos θ∗
. (4.12)

We propose that Eqns. (4.10) and (4.11) describe the secondary flows in a curved pipe.

To test this hypothesis, we evaluate these terms (D∗r and D∗θ) using velocities obtained from

a straight pipe, and compare the results to the velocities (u∗ and v∗) obtained directly from

a numerical simulation of the flow in a curved pipe. Physically, D∗r and D∗θ represent inertial

forces caused by the presence of the curvature, with units in Newtons when expressed in

dimensional form. The profiles of u∗ and v∗ are plotted in Fig. 4.1(a) and Fig. 4.1(b),

respectively. The iso-contours of D∗r and D∗θ are obtained by substituting the straight-pipe

velocity solutions into the expression for these terms. The results are shown in Fig. 4.1(c)

and Fig. 4.1(d). The qualitative similarity between Fig. 4.1(a) (Fig. 4.1(b)) and Fig. 4.1 (c)

(Fig. 4.1(d)) support the suggestion that the inertial terms identified above contribute to

the secondary flow in curved pipes. The inertial terms identified in this paper are consistent

with the centrifugal force terms discussed in Berger et al. [106]. It is also important to note

that D∗r and D∗θ do not include the terms v∗2/r∗ and u∗v∗/r∗, respectively. Although these

other terms were referred to as centrifugal force terms in Webster and Humphrey [107], it

seems as if their significance is found in their ability to promote instability, even in a straight

pipe.

The author acknowledges that the procedure just described for identifying the secondary

flow terms in the equations is ad hoc. A more rigorous approach could try to isolate ex-

plicit, physically-meaningful terms in the momentum equations, in the same manner that

the Navier-Stokes equations in a rotating frame of reference involve the additional terms

58



Figure 4.1: Contour plots of (a) u∗, (b) v∗, (c) D∗r , and (d) D∗θ at x = 60 of the periodically-
curved pipe (Re = 1000)
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ρ[Ω×Ω× r+2Ω× u] [108], which, respectively, consist of the centrifugal and Coriolis force

fields. (Ω, r and u are the vectors of angular velocity, position, and instantaneous rotating

frame velocity, respectively.) The present problem appears to be more complicated and the

foregoing analysis has been carried out only for insight.

4.2 Realizable k − ε Model For Flow in Curved Pipes

SA, SKE, and RKE models are applied to simulate turbulence flow in a 90◦ bend curved

pipe. The results show that RKE model has better performance than the other two. The test

conditions are taken from Sudo [12] and consist of a 90◦ bend (Fig. 4.2) with δ = 1/4. The

pipe has a 100-diameter upstream tangent section and a 40-diameter downstream tangent

section. The results are compared in Fig. 4.3 for the static pressure coefficient, Cp, at 17.6

diameters upstream of the bend. The variable s is a pseudo coordinate direction, introduced

in this section for the purpose of describing the locations on the straight (tangent) portions

of the pipe. This consists of the upstream tangent (−1 ≤ s ≤ 0−) and the region after the

bend (0+ ≤ s ≤ 5). Note that θ = −90◦ is the convex side of the bend, while θ = 90◦ is the

concave side, which is consistent with the use in Sudo’s experiment. Fairly close agreement

between the methods is apparent. However, the RKE results match the experimental data

better than the results from SA and SKE for the three locations plotted in Figure 4.3. Thus,

the RKE model is used for subsequent pipe calculations in this paper.

4.3 Numerical Validations of the Developed CLSVOF Model

Numerical tests are presented in this section to verify and validate the accuracy and sta-

bility of the CLSVOF method. The ε in Eq. (2.54) is set to 1.5∆x, where ∆x is the mesh size

in the x direction. The CLSVOF method is validated with two forms of convection velocities:

constant velocity and vortex velocity. Pure movements of interface are expected without any

deformation under constant velocity with the goal of establishing that the CLSVOF code
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Figure 4.2: The sketch of a curved pipe with a 90◦ bend. CV implies “convex (inner) side”,
CC is “concave (outer) side”, (xc, yc) denotes the curvature center and R is the radius of
curvature

Figure 4.3: Longitudinal distribution of static pressure at the convex (θ = −90◦), concave
(θ = 90◦) and bottom (θ = 0◦) sides of the 90◦ bend (Re = 60, 000)
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doesn’t have any artificial velocities for the momentum equations. The deformation of in-

terface happens under the vortex velocity. The results of the CLSVOF method developed

in this paper is compared with the CLSVOF method built in ANSYS FLUENT as well as

with some results in the literature.

4.3.1 Droplet Movement Due to A Constant Velocity Field

Initially, we have a blob of fluid (assuming 2D), which is being considered by another

fluid. The radius of the blob is 0.15 mm and it is initially centered at (−0.25, 0.25) in a unit

square domain. Wall boundary condition is used at all sides. Convection by three different

constant velocity vectors is tested: (U = 1, V = 0), (U = 0, V = −1), and (U = 1, V = −1).

The results are shown in Figs. 4.4, 4.5, and 4.6. No deformation of droplet but only pure

movement is observed in all cases, which illustrates that there is no artificial movement when

the driving velocity field is constant.

4.3.2 Droplet Deformation Due to A Vortex Velocity Field

Using the same conditions as in Rider [52], the simulation of the time reversed single

vortex flow is presented. A droplet of fluid with a radius of 0.15 mm, initially centered at

(0.5, 0.75) in a unit square domain, is deformed by a vortex velocity field defined by the

following stream function:

ψ(x, y) =
1

π
sin2[πx] sin2[πy] cos(πt/T ), (4.13)

where T is the period and the velocity components are defined by

U = −∂ψ
∂y
, V =

∂ψ

∂x
. (4.14)

The droplet is water and air surrounds it. A surface tension coefficient of 0.1N/m is
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Figure 4.4: Convection of a blob of fluid under the velocity (U = 1,V = 0) in the developed
CLSVOF method and a grid of 128 × 128 at (a) t = 0s, (b) t = 0.25s, (c) t = 0.5s, and
(d)t = 0.75s
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Figure 4.5: Convection of a blob of fluid under the velocity (U = 0,V = −1) in the developed
CLSVOF method and a grid of 128 × 128 at (a) t = 0s, (b) t = 0.25s, (c) t = 0.5s, and
(d)t = 0.75s
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Figure 4.6: Convection of a blob of fluid under the velocity (U = 1,V = −1) in the developed
CLSVOF method and a grid of 128 × 128 at (a) t = 0s, (b) t = 0.25s, (c) t = 0.5s, and
(d)t = 0.75s
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used for air-water. A no-slip wall boundary condition is used for all boundaries. Under the

formation of the time periodic vortex velocity field, the largest deformation of the droplet of

fluid happens at t = T/2 and it goes back to its initial shape at t = T . This test can be used

to access the code’s ability to resolve the thin fluid filaments formed by interface stretching.

The deformation reaches different levels for different time periods. Three different time

periods were tested for the developed CLSVOF method: T = 2.0s, T = 6.0, and T = 12.0s,

using three different mesh densities: 128 × 128, 256 × 256, and 512 × 512. Since detail

simulation results of T = 6.0s is available in Nichita’s developed CLSVOF method [49], here

we compare the results of T = 6.0 obtained from the developed CLSVOF method in this

paper to the CLSVOF results from FLUENT and the available data in Nichita’s paper [49].

Figs. (4.7), (4.8), and (4.9) show the interface deformations with a time period of T = 2

on a grid of 128× 128, and 256× 256, and 512× 512 mesh points, respectively. Figs. (4.10)

and (4.12) show the interface deformation with a time period of T = 6 on a grid of 128×128,

and 256 × 256, and 512 × 512 mesh points, respectively. Figs. (4.19) and (4.21) show the

interface deformation with a time period of T = 12 on a grid of 128 × 128, and 256 × 256,

and 512 × 512 mesh points, respectively. All the results show that the deformation of the

droplet increases as the time period increases and breakup happens at large time periods,

e.g. T = 12. When refining the mesh, the tip of the filament becomes sharper and the

difference between (a) and (c) is smaller. When the mesh is 512 × 512, the droplet returns

perfectly to its initial shape. Also, for the simulations with a time period of T = 6, the

results of FLUENT are shown in Fig. (4.13) on a grid of 128 × 128 mesh points, and the

results from Nichita’s simulations [49] are shown in Figs. (4.16), (4.17), and (4.18). We can

see that the results of the developed CLSVOF method agree with those by FLUENT and

Nichita.
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Figure 4.7: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/2) in the developed CLSVOF method and a grid of 128×128

at (a) t = 0s (b) t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c)

Figure 4.8: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/2) in the developed CLSVOF method and a grid of 256×256

at (a) t = 0s (b) t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c)
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Figure 4.9: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/2) in the developed CLSVOF method and a grid of 512×512

at (a) t = 0s (b) t = 1s (c) t = 2s (d) enlarged comparison between (a) and (c)

Figure 4.10: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the developed CLSVOF method and a grid of 128×128

at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)
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Figure 4.11: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the developed CLSVOF method and a grid of 256×256

at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

Figure 4.12: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the developed CLSVOF method and a grid of 512×512

at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

69



Figure 4.13: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the CLSVOF method in ANSYS FLUENT and a grid

of 128× 128 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

Figure 4.14: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the CLSVOF method in ANSYS FLUENT and a grid

of 256× 256 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)
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Figure 4.15: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) in the CLSVOF method in ANSYS FLUENT and a grid

of 512× 512 at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

Figure 4.16: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) from the Nichita’s simulation and a grid of 128 × 128

at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)
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Figure 4.17: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) from the Nichita’s simulation and a grid of 256 × 256

at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)

Figure 4.18: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/6) from the Nichita’s simulation and a grid of 512 × 512

at (a) t = 0s (b) t = 3s (c) t = 6s (d) enlarged comparison between (a) and (c)
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Figure 4.19: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/12) in the developed CLSVOF method and a grid of

128 × 128 at (a) t = 0s (b) t = 6s (c) t = 12s (d) enlarged comparison between (a)
and (c)

Figure 4.20: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/12) in the developed CLSVOF method and a grid of

256 × 256 at (a) t = 0s (b) t = 6s (c) t = 12s (d) enlarged comparison between (a)
and (c)
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Figure 4.21: Deformation of a droplet of fluid convected by a vortex field of
ψ(x,y)= 1

π
sin2[πx]sin2[πy]cos(πt/12) in the developed CLSVOF method and a grid of

512 × 512 at (a) t = 0s (b) t = 6s (c) t = 12s (d) enlarged comparison between (a)
and (c)

4.4 Two Dimensional Jet Simulations Based on FLUENT

Code

Before starting the simulation of mercury jet for the Muon Collider project, two dimen-

sional jet is simulated first to verify the FLUENT code.

4.4.1 Two Dimensional Laminar Round Jet Flow

The two dimensional jet simulation studied in this case is a laminar round jet with

the advantage of analytical solution given by Schlichting[109]. The problem is shown in

Fig. 4.22. Air emerges into still air issuing from a circular orifice at x = 0. At any cross

section, the momentum flux is assumed constant. Air jet spreads at a constant pressure of

1 bar. Temperature is constant at 300 K. The Reynolds number based on the inlet velocity

(0.64 m/s) is 400. The density of air is 1.16kg/m3 and kinematic viscosity is 1.610− 5m2/s.
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Figure 4.22: Typical 2D laminar round jet streamline pattern

The governing equations for the 2D laminar round jet flow are

∂u

∂x
+

1

r

∂(rv)

∂r
= 0 (4.15)

u
∂u

∂x
+ v

∂u

∂r

1

r

∂(rv)

∂r
≈ ν

r

∂

∂r
(r
∂u

∂r
) (4.16)

The analytical solution is

u =
3J

8πµx
(1 +

C2η2

4
)−2, (4.17)

where C ≡ ( 3J
16πρν2

)1/2, J = ρ
∫∞
−∞ u

22πrdr, and η = r
x
.

The boundary conditions for the 2D laminar round jet are shown in Fig. 4.23. Constant

axial velocity is assumed at the velocity inlet. The edges at the inlet side ate set as a non-slip

wall boundary condition. Considering the round jet, axis boundary condition is used for the

center line and only halved model for the simulation. The results of the 2D laminar round jet

simulation are analyzed as below. Figure 4.24 shows the center line velocity (uc) distribution

with the distance (x) away from the jet nozzle. uc drops as x increases, roughly following

the order of 1/x. The radial distribution of mean velocity (u) at locations x = 10d,x = 30d,

x = 50d, x = 70d, and x = 90d are shown in Fig. 4.25. The numerical u is very close to

the theoretical u at x = 30d, but the difference becomes bigger at downstream locations.

Jet half-width is defined as the radial distance from the axis to the position at the which

the absolute value of the axial velocity drops to half its value on the axis. The relationship

between jet half-width and distance from the jet nozzle is mostly linear, which can be seen
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Figure 4.23: The boundary conditions for 2D laminar round jet

Figure 4.24: The distribution of the center line velocity of the 2D round jet with axial
distance

in Fig. 4.26. Self-similarity distribution can be observed in Fig.4.27. Fig. 4.28 shows the

changes in the momentum thickness at different locations downstream of the jet. It can be

seen that the rate of change of the momentum thickness reduces downstream of the jet.

4.4.2 Two Dimensional Laminar Plane Jet Flow

Schlichting [109] reported the analytical solutions for a 2D laminar plane jet. The problem

is shown in Fig. 4.29. Air emerges into a still air from a 2D slot at x = 0. At any cross

section, the momentum flux is constant. Air jet spreads at a constant pressure of 1 bar.

Temperature is constant at 300 K. The Reynolds number based on the inlet velocity (0.64

m/s) is 400. The density of air is 1.225 kg/m3 and kinematic viscosity is 1.4607310−5 m2/s.
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Figure 4.25: Radial distribution of the mean stream velocity of the 2D round jet at (a)
x/d = 10, (b)x/d = 30, (c) x/d = 50, (d) x/d = 70, and (e) x/d = 90. Note that u is
normalized by umax ( umax =max(u)) and radius r by jet inlet diameter d.

Figure 4.26: Axial distribution of the half-width of 2D round jet. Note that r1/2 and distance
x are normalized by jet inlet diameter d.
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Figure 4.27: 2D round jet self-similarity

Figure 4.28: The changes in the momentum thickness of 2D round jet with axial distance.

Figure 4.29: Typical 2D laminar plane jet is streamline pattern
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The governing equations for the 2D laminar plane jet are

∂ux
∂x

+
∂uy
∂y

= 0 (4.18)

ux
∂ux
∂x

+ uy
∂uy
∂y

≈ ν
∂2uy
∂y2

(4.19)

The analytical solution is

ux = (
3J2

32νx
)1/3 sech2(γ), (4.20)

uy = (
Jν

6x2
)1/3[2γ sech2(γ)− tanh(γ)], (4.21)

where γ ≡ ( J
48ν2

)1/3 y
x2/3

, and J =
∫∞
−∞ u

2dy.

The boundary conditions for the 2D laminar plane jet are shown in Fig. 4.30. Constant

axial velocity is assumed at the inlet. The edges at the inlet side are set as non-slip condition.

Assuming the symmetry of the jet, symmetry boundary conditions are used at the center

line, and only half of the model are simulated. The results of the 2D laminar plane jet

simulation are analyzed the same way as those of the 2D laminar round jet. Figure 4.31

shows the distribution of the center line velocity (uc) with the distance (x) away from the

jet nozzle. uc drops with x roughly following the order x1/3. The radial distribution of mean

stream velocity (u) at locations x = 10d,x = 30d, x = 50d, x = 70d, and x = 90d are

shown in Fig. 4.32. The numerically observed u is very close to theoretical u at x = 30d, but

diverges from the analytical solution downstream. The relationship between jet half-width

and the distance from the jet nozzle is mostly linear, which can be seen in Fig. 4.33. Self-

similarity can be observed in Fig.4.34. Fig. 4.35 shows the changes in momentum thickness

at different locations downstream of the jet. The rate of change of momentum thickness

reduces downstream of the jet.
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Figure 4.30: Boundary conditions settings for 2D laminar plane jet

Figure 4.31: Variation of the center line velocity of the 2D plane jet with axial distance
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Figure 4.32: Radial distribution of the mean axial velocity in a 2D plane jet at (a) x/d = 10,
(b)x/d = 30, (c) x/d = 50, (d) x/d = 70, and (e) x/d = 90. Note that u is normalized by
umax ( umax =max(u)) and radius r by jet inlet diameter d.
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Figure 4.33: Axial distribution of the half-width of 2D plane jet. Note that r1/2 and distance
x are normalized by jet inlet diameter d.

Figure 4.34: 2D plane jet self-similarity

Figure 4.35: The axial distribution of the momentum thickness of 2D plane jet with axial
distance.

82



Figure 4.36: The boundary conditions for the 2D turbulent jet simulations

4.4.3 Two Dimensional Turbulent Jet Flow

In this section, the ability of FLUENT code to accurately simulate jet breakup is tested.

An axis-symmetric liquid jet flows into still gas with a mean bulk velocity of 100 m/s.

The inlet jet diameter is 100µm, and the Reynolds number UD/νliquid is equal to 5, 800.

Figure 4.36 shows the boundary conditions of the problem. The jet inlet uses constant

velocity of 100 m/s. The width of the computational domain is chosen 3JD or 5JD, where

JD is the jet inlet diameter. The length is 50JD. The properties of the two phases are

shown in table 4.1. To define the mesh size, we assume that only a primary break up occurs

for the smallest droplet. This implies that the Weber number is at least smaller that 10 [65],

which gives a minimum mesh size of 2.36µm:

We ≡ ρu24x
σ

= 10⇒4x =
Weσ

ρu2
=

10 ∗ 0.06

696 ∗ 100 ∗ 100
= 2.36µm (4.22)

With the grid spacing of 2.36µm, the uniform grid size is 127× 2120 for a width of 3JD and

212× 2120 for 5JD.

Table 4.1: The properties of two phases in the 2D turbulent jet simulation
phase Density Viscosity Surface Tension
Gas 25kg/m3 4× 10−7m2/s 0.06N/m

Liquid 696kg/m3 1.724× 10−6m2/s

The VOF method is the standard two-phase method in FLUENT code. However, the

new version, current ANSYS FLUENT 14.5, has the capability for the CLSVOF method.

Here, we apply both VOF and CLSVOF method in FLUENT to simulate the 2D two-
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Table 4.2: The locations of the onset of turbulent breakup for 2JD simulations in FLUENT
codes

Case Location of onset of turbulent breakup
3 Jet-Diameter in VOF 14JD
3 Jet-Diameter in CLSVOF 1.6JD
5 Jet-Diameter in VOF 11.6JD
5 Jet-Diameter in CLSVOF 0.4JD

phase jet flow. Large-eddy simulations (LES) has been widely used to simulate turbulent

jet flow and it seems to be a feasible candidate to obtain the necessary unsteady date for

the jet [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. In LES, the scales of

turbulent eddies larger than the computational mesh spacing are computed directly. Eddies

smaller than the grid spacing (subgrid scale eddies) are modeled. Therefore, more scales

of the turbulent eddies can be resolved directly when the mesh is finer, as in the direct

numerical simulation (DNS) approach. Here, an implicit large eddy simulation method,

which is called monotone integrated large-eddy simulation, or MILES, has been used. Navier-

Stokes equations (NSE) are discretized through finite volumes on a fine mesh of the problem,

which is finer than that of LES but coarser than that of DNS. Discretization error appears in

the division term. There is no explicit filtering in MILES, but the discretization provides top-

hat-shaped-kernel implicit filtering [122] ( 1
δVp

∫
ΩP
fdV , where δVp is volume of the mesh unit,

ΩP is the domain of the mesh unit). MILES resolves large eddies and uses physics-capturing

numerics.

Figures 4.37, 4.38, and 4.39 are the results of 3JD jet case using VOF method, while

Figs. 4.40, 4.41 and 4.42 are the results using CLSVOF method. The CLSVOF results show

more jet breakups and the location of breakup is closer to the jet inlet. So is the 5JD

CLSVOF simulation, as shown in Figs. 4.43 through 4.48. Table 4.2 gives the locations of

the onset of turbulent breakup for 2D turbulent jet simulation with FLUENT.

When 100 < Wel < 1.1 × 106, 3400 < Rel < 8.5 × 105, and 0.001 < OHl < 0.017, P.K

Wu developed out a surface breakup regime map for turbulent liquid jets in still gases, seen

in Fig. 4.49 [123], where We is Weber number, We = ρDU2

σ
and OH is Ohnesorge number,
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Figure 4.37: The contour of volume of fraction of liquid for the 3JD simulation using the
VOF method in FLUENT code.

OH = µ√
ρDσ

. Also, the equations for the location of the onset/end of turbulent breakup are

given in Fig. 4.49. The Wel, Rel, and OHl for the studied jet problem are

Wel =
ρlDU

2

σ
=

696× 0.0001× 1002

0.06
= 11600, (4.23)

OHl =
µl√
ρDσ

=

√
Wel
Rel

=

√
11600

5800
= 0.01857, (4.24)

which are within the considered range in Wu’s work. Therefore, the location of onset/end

of turbulent breakup for the studied problem is

xi = 2000We−0.67
l JD = 3.783JD (4.25)

xe = 1.58× 10−5We1.68
l JD = 106.4JD, (4.26)

where xi is the location of the onset and xe is the location of the end of breakup. Since the

computational domain only has a length of 50JD, the end location of breakup can not be

obtained in the present simulations. Thus, only the location of the onset of breakup can

be compared between the calculation (Eq. (4.26)) and the simulation (4.2). Although both

the VOF and CLSVOF results for the onset location are not 3.783JD as in Eq. (4.26), the

CLSVOF results leads to a smaller value of x− i, which is much better than that from VOF.

In subsequent simulations, the CLSVOF model will be used to model the two-phase flow

problem.
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Figure 4.38: The contour of axial velocity for the 3JD simulation in VOF method of FLU-
ENT code.

Figure 4.39: The contour of Z vorticity for the MILES 3JD simulation using VOF multiphase
model.

Figure 4.40: The contour of volume of fraction of liquid for the MILES 3JD simulation using
CLSVOF multiphase model.

Figure 4.41: The contour of axial velocity for the MILES 3JD simulation using CLSVOF
multiphase model.
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Figure 4.42: The contour of Z vorticity for the MILES 3JD simulation using CLSVOF
multiphase model.

Figure 4.43: The contour of volume of fraction of liquid for the MILES 5JD simulation using
VOF multiphase model.

Figure 4.44: The contour of axial velocity for MILES 5JD simulation using VOF multiphase
model.
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Figure 4.45: The contour of Z vorticity for the MILES 5JD simulation using VOF multiphase
model.

Figure 4.46: The contour of volume of fraction of liquid for the MILES 5JD simulation using
CLSVOF multiphase model.

Figure 4.47: The contour of axial velocity for the MILES 5JD simulation using CLSVOF
multiphase model.
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Figure 4.48: The contour of Z vorticity for the MILES 5JD simulation using CLSVOF
multiphase model.

Figure 4.49: Surface breakup regime map for turbulent liquid jets in still gases when aero-
dynamic effects are small (liquid/gas density ratios are larger than 500)
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Chapter 5

Results

5.1 Mercury Internal Flow in A Curved Pipe without A

Weld

5.1.1 Problem Description

Since mercury flow becomes fully-developed long before approaching the first 90◦ half-

bend angle, this geometry has been simplified by shortening the inflow section. The eight

geometries investigated (Fig. 1.3) have length dimensions that are the same as in the MERIT

experiment: the pipe radius is a, curvature radius R,= 2.33a, and the inflow and outflow

lengths of straight pipe are matched, with or without a nozzle at the exit region. The half-

bend angles ϕ1/ϕ2 investigated are 0◦/0◦, 30◦/30◦, 60◦/60◦, and 90◦/90◦. The Reynolds

number based on the bulk velocity and pipe diameter is approximately equal to 8.244× 105

and the Dean number is 5.401× 105.

A full model is tested for the pipe without a weld, whereas symmetry conditions are

used for the pipe without or with a nozzle, allowing the use of half of the model, to save on

computational cost. The computational grid points are 3.7×106−5×106 and 3.9×106−6×106

for pipes of various turning angles without and with nozzles, respectively. There are 48 grid
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Figure 5.1: Radial distribution of U∗ as a function of location along the 0◦/0◦ pipe

points in the circumferential direction and the grid density is 1.8◦/ node for the half-bend

angle. The distance of the first grid point adjacent to the wall is decided by y+ ≈ 1, where

y+ ≡ uτy/ν, uτ is the friction velocity at the wall, y is the distance to the wall and ν is

the local kinematic viscosity of the fluid. Approximately 15 grid points are within the inner

layer. The boundary conditions have been described in Chapter 2 of this paper.

5.1.2 Axial Velocity Distribution

As stated earlier, the pseudo coordinate distance, s, is used to describe the locations of

points in the straight portions of the pipe, while the bend angles, ϕ1 and ϕ2, are used for the

curved portions. These coordinates are depicted in Figure 1.2. The upstream tangents of all

the curved pipes investigated in this paper are of the same length (−5.17 ≤ s ≤ 0−). So are

the downstream tangents (0+ ≤ s ≤ 8.3375). Figures 5.1 through 5.4 show the radial (r∗)

axial-velocity (U∗) distribution for pipes without a nozzle. The effects of the bend angle on

flow in the curved pipes are presented only for the cases without nozzles in order to isolate

the complication of the nozzles.

In Fig. 5.1, the velocity distribution is identical for the three values of distance s examined,

since there is no bend and the flow has already reached the fully developed profile by the inlet

of the pipe. The 30◦/30◦, 60◦/60◦, and 90◦/90◦ pipes are also imposed the fully developed

flow at the inlet, which is a similar, symmetrical, radial distribution of U∗, shown in Fig. 5.1.

At the start of the first half-bend (“Bend Starts” for 30◦/30◦ (Fig. 5.2), “Bend Starts” for
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Figure 5.2: Radial distribution of U∗ as a function of location along the 30◦/30◦ pipe

Figure 5.3: Radial distribution of U∗ as a function of location along the 60◦/60◦ pipe

Figure 5.4: Radial distribution of U∗ as a function of location along the 90◦/90◦ pipe

92



60◦/60◦(Fig. 5.3), and “Bend Starts” for 90◦/90◦ (Fig. 5.4)), the convex (inner) side of the

pipe (near r∗ = −1) shows higher magnitudes of U∗. At the end of the first half-bend

(ϕ1 = 30◦ for 30◦/30◦ (Fig. 5.2), ϕ1 = 60◦ for 60◦/60◦(Fig. 5.3) maintains its direction at the

start of the bend, but with reduced magnitude. That is, at “Bend Starts” and at ϕ1 = 30◦

for the 30◦/30◦ pipe (Fig. 5.2), ∂U∗/∂r∗ is negative with a magnitude that is smaller for

ϕ1 = 30◦ relative to “Bend Starts”. Similarly, for the 60◦/60◦ (Fig. 5.3) pipe, ∂U∗/∂r∗ is

negative with a reduced magnitude at ϕ1 = 60◦. However, for the 90◦/90◦ (Fig. 5.4) pipe,

∂U∗/∂r∗ changes its direction at ϕ1 = 90◦. That is ∂U∗/∂r∗ is positive with high velocity

region at the center of pipe. For all curved pipes, ∂U∗/∂r∗ is negative, and the high velocity

region is located near the concave side (r∗ = 1) as the flow leaves the second half bend.

Actually, for the 90◦/90◦ pipe, the high velocity region moves to the concave side (r∗ = 1)

before the flow leaves out of the second half bend (Fig. 5.4)).

In Fig. 5.5 - Fig. 5.9, the effects of having a nozzle at the exit are shown. For the straight

pipe, the nozzle causes a symmetric velocity profile respect to the radial direction, as we move

downstream through the pipe (Fig. 5.5). The flow develops complicated patterns (back flow)

near the inner side of the half-bend, with one turning point in the velocity profile for both

curved pipe with and without a nozzle. The back flow is stronger in the pipe of larger

half bend angle. However, the existence of the second half-bend recovers the oscillation (in

r∗ = −1) for all curved pipes. That is to say back flow is weaker at the same relative locations

after the second half-bend as those after the first half-bend. Take the 90◦/90◦ pipe as an

example, the back flow near the convex side (r∗ = −1) is stronger in ϕ1 = 90◦ (Fig. 5.8(d))

than in ϕ2 = 90◦ (Fig. 5.9(g)). At the exit plane (s = 8.3375), the flow in the pipes with

nozzles tend to have higher velocities in the −0.9 < r∗ < 1 region, the velocity profile is

uniform radially, and the wall boundary layer is much thinner, when compared with those

without a nozzle (Fig. 5.5(c), Fig. 5.6(e), Fig. 5.7(e), and Fig. 5.9(g)). The results show

that the effect of the nozzle on the upstream flow is extremely weak. The nozzle only comes

into effect on the flow at the beginning of the nozzle (s = 4.032). The decreasing cross-
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Figure 5.5: Comparison of radial distribution of U∗ at the same location along the 0◦/0◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)s = 4.032
(c)s = 8.3375

sectional area of the nozzle along the flow path leads to a decrease in the static pressure.

The flow being subsonic, the velocity profile becomes steeper at the beginning of the nozzle

(s = 4.032). The 90◦/90◦ pipes are further investigated in Fig. 5.10 and 5.11 because of the

current application in the MERIT experiment (90◦/90◦). The velocity distribution is similar

for these two cases until the nozzle appears (s = 4.032). At the end of the first bend, the

axial velocity magnitude increases near the concave side while decreasing near the convex

side. This pattern is caused by the cross-stream pressure gradient. Once the high velocity

fluid encounters the adverse pressure gradient on the convex side, it starts to move towards

the concave side (The abbreviations “CC” and “CV” are used in these figures to denote the

concave and convex sides, respectively.) . The flow becomes more and more stratified toward

the exit (s = 8.3375) when the effect of the bend becomes insignificant.
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Figure 5.6: Comparison of radial distribution of U∗ at the same location along the 30◦/30◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)ϕ1 = 30◦

(c)ϕ2 = 30◦ (d)s = 4.032 (e)s = 8.3375
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Figure 5.7: Comparison of radial distribution of U∗ at the same location along the 60◦/60◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)ϕ1 = 60◦

(c)ϕ2 = 60◦ (d)s = 4.032 (e)s = 8.3375
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Figure 5.8: Comparison of radial distribution of U∗ at the same location along the 90◦/90◦

pipe without (square symbols) and with (delta symbols) a nozzle: (a)s = 0− (b)ϕ1 = 30◦

(c)ϕ1 = 60◦ (d)ϕ1 = 90◦ (e)ϕ2 = 30◦
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Figure 5.9: Comparison of radial distribution of U∗ at the same location along the 90◦/90◦

pipe without (rectangular symbols) and with (delta symbols) a nozzle: (f)ϕ2 = 60◦ (g)ϕ2 =
90◦ (h)s = 4.032 (i)s = 8.3375
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Figure 5.10: The contour of U∗ as function of location along the 90◦/90◦ without a nozzle
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Figure 5.11: The contour of U∗ as function of location along the 90◦/90◦ with a nozzle
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5.1.3 Momentum Thickness

One goal of the present study is to determine the pipe configuration that has the potential

to give the least disturbance in the circular jet shear layer that eventually issues from the

nozzle. Therefore, some knowledge of the distribution of the momentum thickness δθ at the

nozzle exit becomes important. For example, linear stability analysis of Michalke [126] and

Plaschko [127] and the experimental work of Cohen and Wygnanski, [128] Corke et al., [129]

and Corke and Kusek [130] showed that for large 2a/δθ (2a/δθ � 1), both axisymmetric

(m = 0) and the first spinning or helical instability modes (m = ±1 or −1) are unstable in

the initial jet shear layer.

The polar distribution of δθ is shown in Fig. 5.12 and Fig. 5.13 for pipes without and

with a nozzle, respectively. The number “0” in the polar plots refers to the wall, while the

numbers “1”, “2”, and “3” respectively refer to the distances 0.1a, 0.2a, and 0.3a measured

from the wall. Momentum thickness decreases with decreasing radius. For pipes without a

nozzle (Fig. 5.12), the distribution of δθ is non-uniform at the exit but similar. The azimuthal

variation of δθ becomes stronger as the half-bend angle increases. Thus 90◦/90◦ shows the

strongest azimuthal variation of δθ compared to other pipes. At the exit plane, δθ attains its

minimum value at θ = 0◦ and its maximum value at θ = 180◦. Note that the straight pipe

does not show an azimuthal variation of δθ. Figure 5.13 shows a fairly uniform δθ distribution

for all pipes, when nozzles are present at the exit.

The differences in the azimuthal variation of δθ can be explained by the relationship

between momentum thickness and axial velocity, where the latter, at pipe exit, is shown in

Figs. 5.2-5.4 for the various pipe configurations. Note that the 90◦/90◦ pipe shows the most

asymmetry in the distribution of the axial velocity (Fig. 5.4), and hence in the azimuthal

distribution of δθ. For pipes with nozzles, the axial velocity profile is fairly uniform in the

azimuth, which explains the uniform azimuthal distribution of δθ.
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Figure 5.12: Momentum thickness distribution at the exit plane of pipes for turning angles of:
(a)0◦/0◦ (b)30◦/30◦ (c)60◦/60◦ (d)90◦/90◦. These pipes do not have nozzles and θ = 180◦,
0◦ correspond to the convex and concave sides of the pipes, respectively

Figure 5.13: Momentum thickness distribution at the exit plane of pipes for turning angles
of: (a)0◦/0◦ (b)30◦/30◦ (c)60◦/60◦ (d)90◦/90◦. These pipes have nozzles and θ = 180◦, 0◦

correspond to the convex and concave sides of the pipes, respectively
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5.1.4 Turbulence Intensity

The turbulence intensity at the exit of pipe is of interest, as it determines the turbulence

level in the jet. This quantity is defined in this dissertation as

I =

√
2

3
(
k

U2
b

), (5.1)

where k is the turbulence kinetic energy per unit mass and Ub has been used as a scale for

úrms, the root-mean-squared fluctuating velocity. The radial distribution of I at the exit

plane along the horizontal direction is presented in Fig. 5.14. I is found to have high values

near the walls, with a large gradient for all pipes. It is clear to see that I is reduced when

having a nozzle. For the pipe without a nozzle, I increases as the half-bend angle increases.

For example, the 90◦/90◦ pipe has the strongest turbulence intensity. The radial distribution

of I is symmetrical for the straight pipe (0◦/0◦), with a flat interior, as expected. The profile

of I with r∗ along the horizontal direction for the 30◦/30◦, 60◦/60◦, and the 90◦/90◦ pipes

without nozzles, shows higher values near r∗ = −1 (concave side) compared to r∗ = 1 (convex

side). The higher values of I on the convex side for the 60◦/60◦ pipe without a nozzle are

related to the instabilities associated with adverse pressure gradient. With nozzles, there is

a steeper radial gradient of I near wall in the 0◦/0◦, 30◦/30◦, 60◦/60◦, and 90◦/90◦ pipes

compared to those without nozzles. I is nearly flat in the interior region (−0.6 < r∗ < 0.6).

In the region of −1 < r∗ < −0.6, I has relatively higher values as the half-bend angle

decreases from nonzero value. Generally speaking, the straight pipe with a nozzle is the pipe

with least turbulence intensity among all eight pipes.

5.1.5 Discussions

The objective of this study is to comparatively evaluate various pipe configurations that

have been proposed for liquid target delivery in the Muon Collider project. The desirable

configurations are those that lead to the weakest turbulence intensity levels and the smallest
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Figure 5.14: The horizontal distribution of turbulence intensity at the exit plane. Subscripts
“with” and “without” denote presence or absence of a nozzle at pipe exit

momentum thickness at the exit plane. Eight pipe configurations with different turning

angles are studied, without and with a nozzle at the exit region of the pipe. A simple

analytical study is performed to describe the laminar flow in curved pipes, in relation to

the terms representing curvature effects. The realizable k− ε (RKE) RANS model has been

applied to simulate turbulent flows in the pipes. At the exit plane of the pipe without

a nozzle, δθ is smaller at θ = 0◦ relative to the value at θ = 180◦ (Figure 5.12), where

a lower level of turbulence intensity occurs. The effects of nozzle include the azimuthal

homogenization of the flow, and hence a uniform velocity, as well as a uniform azimuthal

distribution of δθ. The nozzle also significantly reduces the turbulence intensity at the pipe

exit. However, the straight pipe has the least turbulence intensity, because of the absence

of secondary flows. From the effects of bend and nozzle shown in this study, a straight pipe

with a convergent nozzle was found to have the weakest turbulence intensity level at the exit

plane.
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5.2 Mercury Internal Flow in A Curved Pipe with A

Weld

5.2.1 Problem Description

From the borescope video of the interior of the titanium nozzle for the Muon Collider

project, ominous weld beads are visible. It seems like these “turbulators” are responsible for

much of the poor performance of the jet. The key issue is the azimuthal-symmetry of the

bead. As a start, an azimuthally symmetric bead is modeled for the 90◦/90◦ pipe. Then

a nozzle with beads more closer to reality is modeled, which is azimuthally-asymmetric,

for example, a 30◦ azimuthal bead with its center transverse to the bend plane. Both the

azimuthally-symmetric and the asymmetric beads are located close to the beginning of the

nozzle taper and have a semicircular cross-section, as illustrated in Figures 5.15 (a) and (b),

respectively. We can see that the inner radius of the semicircular bead is 1/16 inches.

5.2.2 Computation of the Pipe Simulation with An Azimuthally

Complete Weld

In order to determine the proper mesh density for the pipe simulation with a weld, a

mesh independence study has been carried out on the 90◦/90◦ pipe with an azimuthally

symmetric bead, as shown in Fig. 5.16. The values of turbulent intensity, I, at the pipe

exit are comparable for the cases in which grid numbers are 2.5 million and 3.2 million,

respectively. When the grid number is 2.5 million, the pipe simulation is independent of

mesh.

The effects of the azimuthal symmetric semicircle bead/weld are studied by comparing

the I (turbulence intensity) at the exits of pipes with/without a weld. The comparison can

be found in Fig. 5.17. It is clear that the turbulence level is higher at the center region of

the pipe in the case of the pipe with a weld, which implies that a weld enhances turbulence.
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Figure 5.15: (a) Location of the bead in the 90◦/90◦ pipe (b) Dimensions of the semi-circular
bead
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Figure 5.16: Mesh independence check for the pipe with an azimuthally-symmetric bead

The effects of a bend are negligible at the pipe exit, as evidenced by the less asymmetric

distribution of I in the direction of r∗ (Fig. 5.16).

5.2.3 Computation of the Pipe Simulation with An Azimuthally

Incomplete Weld

The geometry of the 90◦/90◦ pipe with an azimuthally-asymmetric 30◦ weld is shown in

figure 5.18. The 30◦ bead is located along the flow direction as does the 360◦ bead. The

inner diameter as well as the geometry of the bead are otherwise the same as those for the

360◦ bead. The only difference is the azimuthal angle 30◦ versus 360◦.

Four different meshes are used in the simulations when the pipe has a 30◦ weld. The

total mesh points vary from the relatively coarse 0.7 million to the relatively fine 16 million.

The later simulations are carried out for all four different mesh grids. For the 30◦ weld case,

mesh independence was observed at 5 million grid points. The analyses of asymmetric weld

calculations are carried out for the following quantities:
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Figure 5.17: Comparison of turbulence intensity between the pipe without a weld and the
pipe with an azimuthally-symmetric weld

Figure 5.18: The 90◦/90◦ pipe with an azimuthally-asymmetric 30◦ bead/weld
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(1) Wall shear stress, τw, is calculated as

τw = µ
∂U

∂n
|w, (5.2)

where ∂U
∂n
|w is the velocity gradient at the wall. From the wall shear stress, a velocity scale,

Uw (friction velocity, also called shear velocity), is introduced:

Uw =

√
τw
ρ
. (5.3)

The shear velocity characterizes the turbulence strength, urms, and laminar sub-layer

thickness at the boundary, δS

urms ∼ Uw (5.4)

δS = 5ν/Uw. (5.5)

(2) Turbulence kinetic energy (TKE), k, is the mean kinetic energy per unit mass asso-

ciated with eddies in turbulent flow. Generally, the turbulent kinetic energy is calculated by

the mean of the turbulence normal stresses:

k =
1

2
((ú)2 + (v́)2 + (ẃ)2). (5.6)

(3) Momentum thickness, δθ, is the distance by which a surface would have to be moved

parallel to itself towards the reference plane in an inviscid fluid stream of velocity Umax to

give the same total momentum as exists between the surface and the reference plane in a

real fluid.

δθ =
∫ a

0

U

Umax

(1− U

Umax

)dr. (5.7)

The distributions of the wall shear stress (τw), kinetic energy of turbulence (k), kinetic

energy dissipation rate (ε), the mean velocity (U), and the friction velocity (Uw) from the
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beginning to the end of the pipe are shown in Figs. 5.19 and 5.20 along the top and bottom

surface of the pipe. The top surface passes through the middle of the weld. The “S” on the

x-axis of these figures is defined as the normalized by the pipe diameter at the inlet. The

results are compared for the four different mesh densities: 0.7 million, 3 million, 5 million,

and 16 million. The results for the cases of 5 million and 16 million show good agreement,

indicating that the mesh independence has been achieved at 5 million. The top surface

distribution of τw, k, ε, U , and Uw (Fig. 5.19) shows a local drop at roughly S = 13, which

coincides with the center of the 30◦ weld. However, there are no changes to the distribution

of k and ε at S = 13 on the bottom line, as shown in Fig. 5.20, which implies the effect of the

30◦ weld are too weak to influence the flow on the opposite surface to the weld. Downstream

in the 30◦ weld case, τw, k, ε, and Uw, but not U , increase rapidly along both the top and

bottom surfaces, until S = 16.62, where the narrowest straight part of the nozzle starts.

Figs. 5.22 and 5.23 show the detailed distribution of τw, k, ε, U , and Uw along two

orthogonal lines passing through the middle of the weld. The locations of the two orthogonal

lines on the weld surface are shown in Fig. 5.24. Mesh independence is observed again by

the agreement between the 5 million and 16 million cases. The distribution of τw, k, ε,

U , and Uw along the line of constant Z (Fig. 5.22) is almost symmetric about the Y mid-

value shown in the figure. This is not the case near the wall, where the magnitudes of

τw, k, ε, U , and Uw are smaller on the outer side (Y = −0.0716) than the inner side

(Y = −0.0664) of the pipe. However, this difference is very small as can be seen from the

Fig. 5.22. Also, for the distribution of τw and Uw, the lowest values at the pipe center region

(−0.0706 < Y < −0.0666) are located to the outer side (Y = −0.0716) of the pipe. This

implies that the downstream effects of the bends still remain up to the location of the 30◦

weld but are not significant any more. Along the line of constant Y in the weld region, the

magnitudes of τw, k, ε, U , and Uw are much larger in the upstream than in the downstream

of the weld. This can be explained by the flow separation. When pressure in the direction

of flow increases (adverse pressure gradient), the boundary layers tend to separate from
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Figure 5.19: The distribution of wall shear stress, turbulence kinetic energy, turbulence
kinetic energy dissipation rate, mean axial velocity, and friction velocity along the top line
on the pipe wall
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Figure 5.20: The distribution of wall shear stress, turbulent kinetic energy, turbulence kinetic
energy dissipation rate, mean axial velocity, and friction velocity along the bottom line on
the pipe wall
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Figure 5.21: The locations of top and bottom surfaces on the pipe wall

the surface. As a result of the increasing fluid pressure, the potential energy of the fluid

increases, leading to a decreased kinetic energy. When boundary layer separation happens,

the boundary layer thickens, resulting in a reduced wall shear stress.

The exit of the nozzle is akin to the start of the jet flow. Therefore the distribution of

k and δθ at the pipe exit is used for the subsequent jet flow study as shown in Figs. 5.25

and 5.26 respectively. After the convergent nozzle, the distributions of both k and δθ are

uniform, although the magnitudes of k and δθ differ for different meshes. Also, two planes

normal to the pipe axis in the vicinity of the weld, as shown in Figs. 5.27, have been chosen to

investigate the distribution of k and δθ in the vicinity of the weld. The plane of z = 0.0430405

is upstream compared to the plane of z = 0.0380405. Compared with the high k magnitude

region at the weld location on the plane of z = 0.0430405 (Fig. 5.28), the magnitude of k

increases by up to 200% on the plane of z = 0.00380405 (Fig. 5.29) at the same weld location.

Neither magnitude nor the position of its biggest magnitude of k at the pipe center change.

δθ increases locally in the vicinity of the 30◦ weld (90◦ location in Fig. 5.30), which is caused

by the thickened boundary layer when flow separation happens. Also, δθ increases smoothly

and is locally symmetric at the 180◦ location (Fig. 5.31). Other than at these locations, δθ
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Figure 5.22: The distribution of wall shear stress, turbulent kinetic energy, turbulent dissi-
pation rate, and friction velocity along the constant Z line across the weld center
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Figure 5.23: The distribution of wall shear stress, turbulence kinetic energy, turbulence
kinetic energy dissipation rate, and friction velocity along the constant Y line across the
weld center

Figure 5.24: The locations of top and bottom surfaces on the pipe wall crossing the weld
center
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Figure 5.25: Distribution of k at the pipe exit when grid number is (a) 0.7 million (b) 3
million (c) 5 million (d)16 million

maintains the same values before and after the weld.

5.2.4 The Effects of A Bend and A Weld

In order to study the effects of bend and weld on the internal pipe flow, three configu-

rations have been chosen: straight pipe without a weld, 90◦/90◦ pipe without a weld, and

90◦/90◦ pipe with a 30◦ weld. Static pressure, wall shear stress, axial velocity, momentum

thickness, turbulence intensity, and turbulence kinetic energy dissipation rate are analyzed

for the flows in these three pipes.

Static Pressure Develops From the Inlet to the Outlet of the Pipe

The static pressure difference between the inlet and the outlet of the pipe is almost the

same for all three cases. The pressure loss is 297 Pa for the straight pipe without a weld, 301

Pa for the 90◦/90◦ pipe without a weld, and 301 Pa for the 90◦/90◦ pipe with a 30◦ weld.

This shows little effects of bend and weld on the change in static pressure.

In a more detailed study, static pressure from inlet to outlet of the pipe are analyzed
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Figure 5.26: Distribution of δθ at the pipe exit when the number of grid points is: (a) 0.7
million (b) 3 million (c) 5 million (d)16 million

Figure 5.27: Locations of two constant Z planes in the vicinity of the 30◦ weld
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Figure 5.28: Distribution of k on the plane at z = 0.0430405, when the number of grid points
is: (a) 0.7 million (b) 3 million (c) 5 million (d)16 million

Figure 5.29: Distribution of k on the plane at z = 0.0380405, when the number of grid points
is: (a) 0.7 million (b) 3 million (c) 5 million (d)16 million
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Figure 5.30: Distribution of δθ on the plane at z = 0.0430405, when the number of grid
points is: (a) 0.7 million (b) 3 million (c) 5 million (d)16 million

Figure 5.31: Distribution of δθ on the plane at z = 0.0380405, when the number of grid
points is: (a) 0.7 million (b) 3 million (c) 5 million (d)16 million
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Figure 5.32: Center line and line along the wall (over the weld): (a) straight pipe without a
weld, (b) 90◦/90◦ pipe without a weld, and (c) 90◦/90◦ pipe with a 30◦ weld

along the centerline of the pipe as well as along a line on the wall that passes over the weld,

whose locations are shown in Fig. 5.32. Fig. 5.33 shows the static pressure change along the

center line as well as an enlarged plot near the weld location. Fig. 5.34 is the plot along the

line on the wall over the weld and a close-up of the weld region. In general, the distribution

of static pressure doesn’t vary much between the three pipes, with only a minor difference

near the weld location: for the bent pipe with/without a weld, the static pressure only differs

along the wall, while the static pressure in a straight pipe differs from that of bend pipes

along both the center line and the line on the wall.

Wall Shear Stress Changes From the Inlet to the Outlet of the Pipe

Figure 5.35 shows the changes in the wall shear stress from the inlet to the outlet of

the pipe along the wall. The wall shear stress of the straight pipe without a weld behaves

differently from that of the other two cases involving pipes, starting bent from s = 5.17 (the

location of the first bend) to s = 15 (after the weld). The difference in wall shear stress only

exists near the location of weld for the two bent pipes.
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Figure 5.33: Static pressure changes along the center line: (a) From inlet to outlet of the
three studied pipes and (b) enlarged plot near the weld location (weld centers at s = 12.482).
“CL_ 0” is the center line along the straight pipe without a weld, “CL_ 90” is the center
line along the 90◦/90◦ pipe without a weld, and “CL_ 90+weld” is the center line along the
90◦/90◦ pipe with a 30◦ weld
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Figure 5.34: Static pressure changes along the wall: (a) From inlet to outlet of of the three
studied pipes and (b) enlarged plot near the weld location (weld centers at s = 12.482).
“TL_ 0” is the line along the wall of the straight pipe without a weld, “TL_ 90” is the line
along the wall of the 90◦/90◦ pipe without a weld, and “TL_ 90+weld” is the line along wall
of the 90◦/90◦ pipe with a 30◦ weld

Figure 5.35: Wall shear stress changes along the wall from inlet to outlet of the three studied
pipes. “TL_ 0” is the line along the wall of the straight pipe without a weld, “TL_ 90” is
the line along the wall of the 90◦/90◦ pipe without a weld, and “TL_9 0+weld” is the line
along wall of the 90◦/90◦ pipe with a 30◦ weld
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Plots Near the Vicinity of the Weld Location

The axial velocity, momentum thickness, turbulence intensity, and turbulence kinetic

energy dissipation rate are plotted at four s locations for the three studied pipes. Figure 5.36

gives the locations of planes at four s locations: s = 12.478 (before the weld), s = 12.482

(middle of the weld), s = 12.601 (after the weld), and s = 17.892 (pipe exit). Figures 5.37,

5.38, and 5.39 are the contour maps of the axial velocity in the straight pipe without a weld,

the 90◦/90◦ pipe without a weld, and the 90◦/90◦ pipe with a 30◦ weld, respectively. The

bent pipes show asymmetric axial velocity distributions when flow passes through the bends.

Furthermore, flow reversal occurs before the weld and more significant after the weld for the

bent pipe with a weld. Flow becomes uniformly distributed after the nozzle for all the three

pipes. Figures 5.40, 5.41, and 5.42 are plots of the momentum thickness for the three pipes.

The figures show a consistently uniform distribution of momentum thickness at all four s

locations for the three pipes. The plots of turbulence intensity for the three pipes are shown

in Figs. 5.43, 5.44, and 5.45. The turbulence intensity at the exit of the pipes without welds

decreased compared to the values at other s locations. However, the turbulence intensity

increases at the exit of the pipe with a weld. Note that all the three pipes have nozzles. It

seems that a nozzle reduces the turbulence intensity of the flow, while the weld makes the

flow more turbulent. Turbulence kinetic energy dissipation rate increases at the exits of all

the three pipes, as shown in Figs. 5.46, 5.47, and 5.48.

5.3 Mercury Turbulent Jet Flow

Mercury flows out of the target delivery pipe to form a free jet. The sketch of the

free mercury jet with MHD (magnetohydrodynamic) and energy deposition for the MERIT

experiment is shown in Fig. 5.49. The mercury jet study in this paper doesn’t consider MHD

and energy deposition, but only mercury-air two-phase jet flow, which is the base line of the

complicated, real-jet problem in MERIT experiment.
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Figure 5.36: Planes at s = 12.478, s = 12.482, s = 12.601, and the exit (s = 17.892). (a)
y − z view of the plane locations, (b) default view of the plane locations, and (c) enlarged
view of the plane locations in the vicinity of a weld

Figure 5.37: Contour maps of the axial velocity for the straight pipe without a weld: (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.38: Contour maps of axial velocity for the 90◦/90◦ pipe without a weld: (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.39: Contour maps of axial velocity for the 90◦/90◦ pipe with a 30◦ weld: (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.40: Plot of momentum thickness for the straight pipe without a weld: (a)s = 12.478,
(b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.41: Plot of momentum thickness for the 90◦/90◦ pipe without a weld: (a)s = 12.478,
(b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.42: Plot of momentum thickness for the 90◦/90◦ pipe with a 30◦ weld at (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.43: Contour of turbulence intensity for the straight pipe without a weld: (a)s =
12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.44: Contour maps of turbulence intensity for the 90◦/90◦ pipe without a weld:
(a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.45: Contour maps of turbulence intensity for the 90◦/90◦ pipe with a 30◦ weld:
(a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit
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Figure 5.46: Contour of turbulent kinetic energy dissipation rate for the straight pipe without
a weld at (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.47: Contour maps of turbulent kinetic energy dissipation rate for the 90◦/90◦ pipe
without a weld: (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

129



Figure 5.48: Contour maps of turbulent kinetic energy dissipation rate for the 90◦/90◦ pipe
with a 30◦ weld: (a)s = 12.478, (b) s = 12.482, (c) s = 12.601, and (d) exit

Figure 5.49: Sketch of the mercury free jet with MHD and energy deposition for the MERIT
experiment
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Figure 5.50: The Side view of mercury jet flow (a) in dimensional spatial units (b) normalized
spatals units, with jet inlet diameter as the scale

5.3.1 Two Dimensional Turbulent Mercury Jet Flow

A two-dimensional mercury jet flows into air is studied first. When only assume the

primary breakup, the critical liquid Weber number is less than 10 [65]. In this case, we can

show that the smallest mesh size required to capture jet break up is approximately 0.9µm:

We ≡ ρu24x
σ

= 10⇒4x =
weσ

ρu2
=

10 ∗ 0.4855

13456 ∗ 20 ∗ 20
= 0.9µm ≈ 8.86 ∗ 10−5D, (5.8)

where D is the jet diameter.

From the mercury jet sketch in the MERIT experiment (Fig. 5.49), we can obtain the

side view of mercury jet flow on the y − z plane in both dimensional (Fig. 5.50(a)) and

non-dimensional (Fig. 5.50(b)). The real mercury jet problem has a computational domain

with a width of 15D and a length of 124.4D. For the mesh size requirement (Eq. 5.8), we

would need a mesh with 2.44 ∗ 1011 grid points when the mesh is uniform. Therefore, we

reduced the lengths of the computational domain with the (supposedly) least influence on

the jet flow. Also, a halved model is used when considering axisymmetric boundary condition

at the centerline. Also, the computational domain is reduced in length, width, and height,

(Fig. 5.51). Figure. 5.52 shows the boundary conditions for the 2D mercury jet simulation.

The velocity profile at the outlet of a straight nozzle pipe is assumed (Fig. 5.53) at the inlet

of the jet flow. The result of αHg is shown in Fig. 5.54, which shows a very rich jet breakup

phenomenon.
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Figure 5.51: Simplified two-dimensional mercury jet model with reduced length, width, and
height

Figure 5.52: The boundary conditions for the two dimensional mercury jet simulation

Figure 5.53: The velocity profile at the inlet of the two dimensional mercury jet simulation

Figure 5.54: Contour map of the volume fraction of mercury for the two-dimensional mercury
jet simulation over: (a) the whole computational domain (b) 0 < x < 0.2 for enlarged view
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Figure 5.55: Schematics of target delivery system by V. Graves

5.3.2 Three Dimensional Mercury Turbulent Jet Flow

Figure 5.55 is the schematic of the target delivery system in the MERIT experiment.

The simulation of a three dimensional mercury jet using the length, width, and height in

Fig. 5.55 would lead to a total of 6.8 × 1015 grid points, assuming a uniform mesh spacing

0.9µm (Eq. (5.8)). Therefore, it is necessary to reduce the lengths of the computational

model. Figure 5.56 shows the simplification of the computational model to a parallelepiped

of sides 3D × 3D × 50D. Moreover, MILES requires a big number of mesh points for the

three-dimensional simulation. With the limited computational resources, we have used time-

averaged RANS method for the simulation. Therefore, the turbulent model of RKE has been

used here, instead of MILES. Although the complicated unsteady structure on free interface

may be time-averaged, it is still possible to analyze the deformation of the jet under different

inputs conditions.

The outlet conditions of pipe simulation is assumed at the inlet of the domain used for

the mercury jet simulation. In order to determine the effects of having a bend and a weld

on the mercury jet interface deformation, the outlet conditions from a straight nozzle pipe

without a weld, a 90◦/90◦ pipe without a weld, and a 90◦/90◦ pipe with a 30◦ off bend plane
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Figure 5.56: Simplification of the three-dimensional mercury jet model:(a) in dimensional
spatial units, (b) normalized spatial units, with jet inlet diameter as the scale, (c) simplified
model with reduced length, width, and height (normalized by jet inlet diameter, D)

weld, are used in the domain for mercury jet simulation. Therefore, we classify the three

dimensional mercury jet simulation into three cases: Case 1 uses the pipe axial conditions of

a straight nozzle pipe flow without a weld, Case 2 uses the pipe axial conditions of a 90◦/90◦

pipe flow without a weld, and Case 3 uses the pipe axial conditions of a 90◦/90◦ pipe flow

with a 30◦ off bend plane weld.

Because of the symmetry of the axial flow from a straight pipe without a weld, a half

nozzle is used in Case 1 with a symmetry boundary condition. Figure 5.57 describes the

boundary conditions for the Case 1. Velocity profile from the outlet of the straight pipe

without a weld (Fig. 5.58) is assumed at the jet inlet. The results of αHg and Uz are shown

in Figs. 5.59 and 5.60. The axial flow from the 90◦/90◦ pipe without a weld is also symmetric.

Case 2 has the same boundary conditions as Case 1 (Fig. 5.57). The velocity profile at

the inlet of Case 2 jet is shown in Fig. 5.61. The Case 2 jet simulation results are shown in

Figs. 5.62 and 5.63. The axial flow from the 90◦/90◦ pipe with a 30◦ weld is asymmetric.

Therefore a complete model needs to be used for Case 3, (Fig. 5.64). The velocity profile at
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Figure 5.57: The boundary conditions for the three-dimensional mercury jet simulation case
1. The dimension shown in the sketch is normalized by jet inlet diameter, which is 0.01m.
No gravity effects are included in the model. Case1: The jet inlet conditions use outputs of
straight nozzle pipe without a weld

Figure 5.58: The axial velocity profile imposed at the inlet of the three dimensional mercury
jet simulation Case 1 (a) x line plot (b) y line plot
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Figure 5.59: Contour maps of the volume fraction of mercury, αHg, for three-dimensional
mercury jet simulation Case 1

Figure 5.60: Contour maps of the axial velocity, Uz, for three-dimensional mercury jet sim-
ulation Case 1
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Figure 5.61: The axial velocity profile imposed at the inlet of the three dimensional mercury
jet simulation case 2 (a) x line plot (b) y line plot

Figure 5.62: Contour maps of the volume fraction of mercury, αHg, for three-dimensional
mercury jet simulation Case 2
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Figure 5.63: Contour maps of the axial velocity, Uz, for three-dimensional mercury jet sim-
ulation Case 2

the jet inlet is shown in Fig. 5.65, and results are shown in Figs. 5.66 and 5.67.

Case 1 is the baseline case, without a bend or weld on jet flow, while Case 3 is the most

complicated case of the three. The comparative jet deformation between these two cases is

of interest. Figure 5.68 is the difference in αHg between Case 1 and Case 3 at different z

locations. The larger values in Fig. 5.68 indicates bigger differences in jet shape. The differ-

ence becomes more pronounced downstream of the jet. At z = 45 cm, the bigger difference

occurs at the positive x (line y = 0), the first quadrant, and the second quadrant. It seems

to indicate some effects or combined effects of the bend and weld on the jet deformation.

In order to obtain a more quantitative insight on the observed jet deformation, we calculate

the ellipticity of the deformed jet.
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Figure 5.64: The boundary conditions for the three-dimensional mercury jet simulation Case
3. The dimensions shown in the sketch are normalized by the jet inlet diameter, which is
0.01m. No gravity effects are included in the model. Case 3: The jet inlet conditions use
outputs of 90◦/90◦ pipe with a 30◦ weld

Figure 5.65: The axial velocity profile imposed at the inlet of the three-dimensional mercury
jet simulation, Case 3 (a) x line plot (b) y line plot
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Figure 5.66: Contour maps of the volume fraction of mercury, αHg, for three-dimensional
mercury jet simulation Case 3
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Figure 5.67: Contour maps of the axial velocity, Uz, for three-dimensional mercury jet sim-
ulation Case 3
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Figure 5.68: Difference of αHg between three-dimensional mercury jet simulation, Case 1
and Case 3
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Figure 5.69: Draft of ellipse fitting: a is the major axis, b is the minor axis, and θ is the
rotational angle

5.3.3 Least Squares Fitting of Ellipses

In this section, we will detail the least squares method used to fit an ellipse to given

points in the plane, as the draft shown in Fig. (5.69).

In analytic geometry, the ellipse is defined as a collection of points (x, y) satisfying the

following implicit equation [132]:

ã1x
2 + ã2xy + ã3y

2 + ã4x+ ã5y = ã6, (5.9)

where ã6 6= 0 and ã2
2 − 4ã1ã3 < 0.

To simplify the following analysis, we normalize the above implicit form by dividing ã6

an both sides of the equality sign, which reduces to

a1x
2 + a2xy + a3y

2 + a4x+ a5y = 1. (5.10)

Several new notations needs to be introduced to ease our discussion. For two vectors s =

(s1, s2, . . . , sm)T and t = (t1, t2, . . . , tm)T, the tensor product between them are defined as

s⊗ t = (s1t1, s2t2, . . . , smtm)T . (5.11)

Assuming nmeasurements ((x1, y1), (x2, y2), ..., (xn, yn) are given, we define x = (x1, x2, . . . , xn)T
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and y = (y1, y2, . . . , yn)T, then the following cost function needs to be minimized

C (β) = (Xβ − 1)T (Xβ − 1) , (5.12)

whereX = [x⊗ x, x⊗ y, y ⊗ y, x, y] is a n-by-5 matrix, β = (a1, a2, a3, a4, a5)T consists of the

parameters to be determined, and 1 is a n-dimensional column vector with all 1’s. Expand

the matrix multiplication, we get

C (β) = βTXTXβ − 21TXβ + n. (5.13)

To minimize C (β) it is requested that

∂C (β)

∂β
= 2βTXTX − 21TX = 0, (5.14)

from which we get

β =
(
XTX

)−1
XT1. (5.15)

The next step is to extract geometric parameters of the best-fitting ellipse from the algebraic

equation (5.10). We first check the existence of a tilt, which is present only if the coefficient

B in (5.10) is non-zero. If that was the case, we first need to eliminate the tilt of the ellipse.

Denoting the tilt angle of the ellipse by θ, the following coordinate rotation transformation

is employed 
x = cos θx′ − sin θy′

y = sin θx′ + cos θy′
. (5.16)

Substitute the above expressions into Eq. (5.10), we get

(
a1c

2 + a2cs+ a3s
2
)
x′2 +

(
−2a1cs+ a2

(
c2 − s2

)
+ 2a3cs

)
x′y′ +(

a1s
2 − a2cs+ a3c

2
)
y′2 + (a4c+ a5s)x

′ + (−a4s+ a5c) y
′ + 1 = 0, (5.17)
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where c = cos θ and s = sin θ. Let the term before x′y′ to be zero, the following equation for

θ is achieved

−2a1 cos θ sin θ + a2

(
cos θ2 − sin θ2

)
+ 2a3 cos θ sin θ = 0, (5.18)

from which we know θ = 1
2

arctan
(

a2
a1−a3

)
. Now the constants c and s are known, Eq. (5.17)

is reduced to

a′1x
′2 + a′3y

′2 + a′4x
′ + a′5y

′ = 1, (5.19)

where a′1, a′3, a′4 and a′5 are all known constants. The only remaining step for the ellipse

fitting is to transform Eq. (5.19) into the following canonical form

(x′ − x′0)2

b2
+

(y′ − y′0)2

a2
= 1, (5.20)

in which (x′0, y
′
0) is the center of the ellipse in the rotated coordinate system, and a and b are

the lengths of the semi-axes. Applying a square completion method to Eq. (5.17), we get

(x′ + a′4/ (2a′1))2

(a′6/a
′
1)

+
(x′ + a′5/ (2a′3))2

(a′6/a
′
1)

= 1, (5.21)

where a′6 = 1 + (a′24 )/(4a′1) + (a′25 )/(4a′3). Compare Eqs. (5.20) and (5.21), it easy to notice

x′0 =
−a′4
2a′1

, y′0 =
−a′5
2a′3

, a =

√
a′6
a′1
, b =

√
a′6
a′3
. (5.22)

Substitute the above expressions of x′0 and y′0 into Eq. (5.16), we get the coordinate of the

ellipse center in the original coordinate system


x0 = − cos θ

a′4
2a′1

+ sin θ
a′5
2a′3

y0 = − sin θ
a′4
2a′1
− cos θ

a′5
2a′3

. (5.23)

The mercury jet was considered at z = 30 cm and z = 45 cm, which are the locations of

view port 1 and view port 2, respectively. 40 points were digitized in mercury jet simulations
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Figure 5.70: Least square fitting of ellipses for 3D mercury jet simulations using as input
the output from a straight pipe without a weld: (a) contour of volume fraction of mercury
at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume fraction of mercury at
z = 45 cm, (b) ellipse fitting at z = 45 cm.

at these z values, shown in Figs. (5.59),(5.62), and (5.66). The results of fitting ellipse to

these digitzed points are shown in Figs. (5.70), (5.71), and (5.72).

In the results of ellipse fitting, no big significant differences are found among different

cases. To quantify this, uncertainties in the fitting should be estimated. Here we apply an

error analysis formulated by Prof. McDonald [133]. It gives a prescription for fitting a set

of m points, {xj, yj}, (perhaps from digitization of an image) to an ellipse, with the general

form (with 5 parameters ai),

a1x
2 + a2xy + a3y

2 + a4x+ a5y − 1 = 0. (5.24)
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Figure 5.71: Least square fitting of ellipses for 3D mercury jet simulations using as input
the output from a 90◦/90◦ pipe without a weld: (a) contour of volume fraction of mercury
at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume fraction of mercury at
z = 45 cm, (b) ellipse fitting at z = 45 cm
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Figure 5.72: Least square fitting of ellipses for 3D mercury jet simulations using as input
the output from a 90◦/90◦ pipe with a 30◦ weld: (a) contour of volume fraction of mercury
at z = 30 cm, (b) ellipse fitting at z = 30 cm, (c) contour of volume fraction of mercury at
z = 45 cm, (b) ellipse fitting at z = 45 cm
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In addition, we give an estimate of the errors on the best-fit values of the parameters ai.

(1) Errors on the Parameters of the Quadratic Form (Eq. 5.24). We first define the

auxiliary data set {zij}, (i = 1, 5, j = 1,m),

zi,j = (x2
j , xjyj, y

2
j , xj, yj). (5.25)

Among many possible measures of the goodness of fit,1 we adopt the simplest, writing

χ2 =
m∑
j=1

(
∑5
i=1 aizij − 1)2

σ2
j

, (5.26)

where σj is the measurement uncertainty associated with the data point (xj, yj). The best-fit

parameters âi are those that minimize the function χ2 for a set of measurements {zij}.

We consider the case that the σj are not known, but assumed to have the common value σ.

Then, by supposing that the function χ2 is actually a chi-square [137, 138, 139, 140, 141, 142]

with m − 5 degrees of freedom, the best-fit (minimum) χ2 has most probable value m −

5. Assuming that the best-fit χ2 has this value, the unknown σ is determined, and error

estimates for the best-fit parameters i follow via standard procedures.2

A great insight is that exp(−χ2/2) can be thought of another way. It is also the (un-

normalized) probability distribution that the polynomial coefficients have values ai when

their best-fit values are âi with uncertainties due to the measurements {xj, yj}. Expressing

this in symbols,

exp(−χ2/2) = const× exp

(
−

5∑
k=1

5∑
l=1

(ak − âk)(al − âl)
2σ2

kl

)
, (5.27)

or equivalently

χ2/2 = const +
5∑

k=1

5∑
l=1

(ak − âk)(al − âl)
2σ2

kl

. (5.28)

1For a survey of 13 measures, see [134],[135].
2For a discussion of this approach for polynomial fitting, see the lab manual of Prof. McDonald [143].
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The uncertainty on âk is σkk in this notation. In Eqs. (5.27) and (5.28) we have introduced

the important concept that the uncertainties in the coefficients âk are correlated. That is,

the quantity σ2
kl is a measure of the probability that the values of âk and âl both have positive

fluctuations at the same time. In fact, σ2
kl can be negative indicating that when âk has a

positive fluctuation then âl has a correlated negative one.

One way to see the merit of minimizing the χ2 is as follows. According to Eq. (5.28) the

derivative of χ2 with respect to ak is

∂χ2

∂ak
=

5∑
l=1

al − âl
σ2
kl

, (5.29)

so that all first derivatives of χ2 vanish when all al = âl. That is, χ2 is a minimum when the

coefficients ai take on their best-fit values âi. A further benefit is obtained from the second

derivatives:
∂2χ2

∂ak∂al
=

1

σ2
kl

. (5.30)

For our particular χ2 (5.26), with σj = σ, the first derivatives are

∂χ2

∂ak
=

m∑
j=1

zkj(
∑5
i=1 aizij − 1)

σ2
=

1

σ2

5∑
i=1

m∑
j=1

aizijzkj −
1

σ2

m∑
j=1

zkj, (5.31)

and the second derivatives are

∂2χ2/2

∂ak∂al
=

1

σ2

m∑
j=1

zkjzlj ≡
Mkl

σ2
. (5.32)

Using the matrix Mkl introduced in Eq. (5.32), the condition that the first derivatives (5.31)

vanish at the best-fit coefficients âk can be written as

5∑
i=5

Mikâi =
m∑
j=1

zkj ≡ Vk. (5.33)

We then calculate the inverse matrix M−1 and apply it to find the best-fit coefficients âk
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(which do not depend on the as-yet-unknown value of σ),

k =
5∑
l=1

M−1
kl Vl. (5.34)

Comparing eqs. (5.30) and (5.32) we have

1

σ2
kl

=
Mkl

σ2
. (5.35)

The uncertainty in best-fit coefficient âi is then reported as

σ
i

= σii =
σ√
Mii

. (5.36)

All that remains is to find the value of the unknown uncertainty σ = σj on the measure-

ments. For this, we set the χ2 for the best-fit parameters i equal to the number of degrees

of freedom, m− 5,

χ2(âi) = m− 5 =
m∑
j=1

(
∑5
i=1 âizij − 1)2

σ2
, (5.37)

such that σ is determined to be

σ =

√√√√∑m
j=1(

∑5
i=1 âizij − 1)2

m− 5
, and σ

i
= σii =

√√√√∑m
j=1(

∑5
k=1 âkzkj − 1)2

(m− 5)
∑m
j=1 z

2
ij

. (5.38)

(2) Errors on the Conventional Ellipse Parameters An alternative description of the ellipse

of Eq. (5.24) is that it has semimajor axis of length a which makes angle θ to the x-axis,

semiminor axis of length b, and center at (x0, y0). The shape parameters a, b and θ depend

only on a1, a2 and a3, while the center of the ellipse depends on all five of the ai. We now

deduce the alternative parameters, and their fit errors, in terms of the ai and the errors on

the latter as found in sec. 1.

We first translate the coordinates according to x′ = x− x0 and y′ = y− y0 such that the
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resulting parameters a′i of the quadratic form have

a′1 = a1, a′2 = a2, a′3 = a3, a′4 = 2a1x0 + a2y0 + a4, a′5 = a2x0 + 2a3y0 + a5. (5.39)

For the ellipse to be centered at x′ = 0 = y′ we need a′4 = 0 = a′5, which leads to

x0 =
a2a5 − 2a3a4

4a1a3 − a2
2

, y0 =
a2a4 − 2a1a5

4a1a3 − a2
2

. (5.40)

As a check, we note that if a4 = 0 = a5 then the original ellipse was centered on the origin,

and indeed eq. (5.40) implies that x0 = 0 = y0.

To deduce the error on, say, x0 we first consider the differential,

dx0 =
a5da2 + a2da5 − 2a4da3 − 2a3da4 − x0(4a3da1 + 4aada3 − 2a2da2)

4a1a3 − a2
2

. (5.41)

Then, on squaring this we can identify (dx0)2 with the squared error σ2
x0

when we identify

the products dai daj with the σ2
ij found in Eq. (5.35).

The determine the shape parameters a, b and θ we perform a coordinate rotation by

angle θ with respect to the x′-axis3 (which is parallel to the x-axis),

x′′ = x′ cos θ + y′ sin θ, x′ = x′′ cos θ − y′′ sin θ, (5.42)

y′′ = −x′ sin θ + y′ cos θ, y′ = x′′ sin θ + y′′ cos θ, (5.43)

and require that a′′2 = 0, in which case a′′1 = 1/a2 and a′′3 = 1/b2. This leads to

tan 2θ =
a2

a1 − a3

, cos 2θ =
a1 − a3√

a2
2 + (a1 − a3)2

, sin 2θ =
a2√

a2
2 + (a1 − a3)2

, (5.44)

σθ =
cos2 2θ

2a1 − a3

√
tan2 2θ(σ2

11 + σ2
33 − 2σ2

13) + σ2
22 − 2 tan 2θ(σ2

12 − σ2
23), (5.45)

3We could also make the rotation directly from the (x, y) coordinates, with no affect on the shape
parameters, as these don’t depend on a4 and a5. However, if parameters x0 and y0 are deduced only after
this rotation, they appear to depend on θ, which complicates the expressions for their errors.
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and

1

a2
= a1 cos2 θ + a2 sin θ cos θ + a3 sin2 θ =

a1 + a3 + (a1 − a3) cos 2θ + a2 sin 2θ

2

=
a1 + a3 +

√
a2

2 + (a1 − a3)2

2
, (5.46)

1

b2
= a1 sin2 θ − a2 sin θ cos θ + a3 cos2 θ =

a1 + a3 − (a1 − a3) cos 2θ − a2 sin 2θ

2

=
a1 + a3 −

√
a2

2 + (a1 − a3)2

2
. (5.47)

Note that 1/b2 ≤ 1/a2, which means that b is the semimajor axis, and a is the semiminor

axis. Note also that tan 2θ = tan 2(θ − π/2), so there is an ambiguity in Eq. (5.44) as to

whether θ is the angle to the semimajor or the semiminor axis.

As a measure of the departure of the ellipse from a circle we introduce the ellipticity

(flattening) %,4

% ≡ b

a
≥ 1 , %2 =

a1 + a3 +
√
a2

2 + (a1 − a3)2

a1 + a3 −
√
a2

2 + (a1 − a3)2
≡ C+

C−
. (5.48)

Taking the differential, we have

2% dϑ =
dC+ − %2 dC−

C−
≡ C1 da1 + C2 da2 + C3 da3

C−
, (5.49)

where

C± = a1 + a3 ±
√
a2

2 + (a1 − a3)2 = a1 + a3 ± S, S ≡
√
a2

2 + (a1 − a3)2, (5.50)

C1 = 1− %2 +
a1 − a3

S
(1 + %2) = −2[a2

2 − 2a3(a1 − a3)]

SC−
≡ −2

D1

SC−
, (5.51)

C2 =
a2

S
(1 + %2) =

2a2(a1 + a3)

SC−
≡ 2

D2

SC−
, (5.52)

C3 = 1− %2 − a1 − a3

S
(1 + %2) = −2[a2

2 + 2a1(a1 − a3)]

SC−
≡ −2

D3

SC−
. (5.53)

4If we define %′ = (b− a)/a = %− 1, so that %′ = 0 for a circle, then σ%′ = σ%.
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Then, the error σ% on the ellipticity % is given by

σ% =
1

%SC2
−

√
D2

1σ
2
11 +D2

2σ
2
22 +D2

3σ
2
33 − 2D1D2σ2

12 − 2D2D3σ2
23 + 2D1D3σ2

13 . (5.54)

Of course, the “error” computed this way assumes that the fit is “good”, which might not

be the case. A separate judgment should be made as to whether the fit is indeed “good"

before taking seriously the error estimates presented here.

The calculations of theta and ellipticity, and their errors, for the six cases are shown in

Table 5.1. The ellipticity is not significantly different in any of these cases. However, in some

cases the estimated errors are extremely large, which may be a hint that the error-estimation

procedure is itself not very accurate.

Table 5.1: Ellipticity and fitting errors
θ % σθ σ%

Case 1 (z = 30cm) 0.00 1.04 6.52× 10−2 5.96× 10−3

Case 1 (z = 45cm) 0.00 1.03 1.52× 100 8.18× 10−2

Case 2 (z = 30cm) 0.00 1.04 4.24× 102 3.97× 101

Case 2 (z = 45cm) 0.00 1.06 1.91× 103 2.46× 102

Case 3 (z = 30cm) 0.46 1.03 4.09× 10−1 1.80× 10−2

Case 3 (z = 45cm) −0.23 1.03 3.85× 100 2.31× 10−1
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Chapter 6

Concluding Remarks

The intensity of turbulence in mercury target flow has a significant influence on the

particle produced. This work studies the flow in several pipe geometries, with and without

weld, with the purpose of identifying the configuration that gives the least turbulence.

A theoretical analysis of the simpler laminar flows in the curved pipes has been undertaken

for some basic knowledge of the system, followed by numerical modeling of the turbulent

counterpart of the flow. A realizable k− ε model has been chosen for this purpose, and used

as implemented in the FLUENT commercial CFD code. The results show that the straight

pipe (zero half-bend angle) with a nozzle gives the flow with the least turbulence intensity.

A weld causes the fluid to flow backwards and increases the turbulence intensity of the flow.

On the other hand, the presence of a nozzle causes a reduction in the turbulence intensity.

Due to time constraint, the built-in CLSVOF method in FLUENT has been used to sim-

ulate the two-phase jet flows in this project, as opposed to the procedure that we developed,

even though the latter had also been validated. Rich jet breakups are observed in the two

dimensional mercury jet simulation using the MILES method. For 3D mercury jet simula-

tion, it requires a big number of grid points using MILES. In this case, the RKE turbulent

model is applied instead. Although unsteady structures on the jet interface is smoothed in

the results of the RKE model, it is still useful in analyzing the deformation of the jet. Jet
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experiences larger deformations from a pipe with a weld compared to that without a weld.

Least square ellipse fitting is used to quantitatively analyze the jet deformation. The

magnitude of ellipticity is very close to each jet simulation, which uses three outputs of

pipe simulations as jet inputs. From ellipticity fitting error, we can clearly see that the jet

simulation based on the outputs of a 90◦/90◦ pipe with a 30◦ weld has the largest error. It

indicates the biggest influences on jet flow from a bend pipe with a weld.

The developed CLSVOF method has just been worked through. Successful preliminary

tests proves its ability in capturing sharp filaments. However, it needs to be tested more rig-

orously. e.g. for the Rayleigh-Taylor instability problem. The CLSVOF that we developed,

unlike the one in FLUENT, is based on a curvilinear coordinate system, which means that it

can be used for complex geometries. This capability needs to be further tested for accuracy.

A parallel implementation of the developed CLSVOF method should be carried out, since

only the serial implementation has been done in the thesis work.

For the three-dimensional mercury jet simulation, one more case is suggested in which

the inlet conditions use the the outputs from the 90◦/90◦ pipe with a 30◦ weld on the bend

plane (note: case 3 uses the outputs from the 90◦/90◦ pipe with a 30◦ weld off the bend

plane). Further, the error of the fitting analysis needs to be improved.
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Appendix A

Properties of Mercury

Table A.1: The properties of mercury
Temperature Density Specific Heat Thermal Conductivity Kinematic Viscosity

(K) (kg/m3) Capacity (103J/kgK) (W/mK) (10−7m2/s)
300 13546 0.139 8.34 1.1257
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