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Abstract of the Dissertation
Task Driven Geometric Synthesis of Planar and

Spherical Mechanisms
by

Ping Zhao

Doctor of Philosophy
in

Mechanical Engineering

Stony Brook University
2013

This dissertation deals with the classical problem of designing planar and

spherical mechanisms for motion generation from a new, task driven perspec-

tive. The field of mechanism synthesis dates back to the days of Industrial

Revolution and the traditional approach to the problem involves two major

steps: type synthesis and dimensional synthesis, where the former deals with

the selection of the joint types as well as the topology of a mechanism, and

the latter aims at finding the link dimensions of the mechanism. The problem

of dimensional synthesis lends itself naturally to mathematical treatment and

thus became a highly developed field. This is not, however, quite the case for

type synthesis. This is especially disappointing as type synthesis contains the

genesis of innovation and as such it plays a key role in mechanism design.

This dissertation presents a new, task driven paradigm for simultaneous

type and dimensional synthesis by developing general design equations that

integrate the parameters for link dimensions as well as joint types. In partic-
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ular, for planar mechanism synthesis, a unified representation is developed for

planar dyads consisting of all combinations of revolute and prismatic joints.

This leads to a novel algorithm for planar four-bar linkage synthesis that not

only greatly reduces the complexity in solving the design equations but also

allows for the extraction of joint types directly from the given task. Further-

more, the same algorithm is applicable to both the exact synthesis involving

five or less given positions as well as approximate synthesis involving six or

more positions. The algorithm has also be used to develop a unified algorithm

for task driven, simultaneous type and dimensional synthesis of planar six-bar

linkages for five position exact synthesis. Central to this new formulation of

planar mechanism synthesis is the use of planar kinematic mapping that trans-

forms the problem of linkage synthesis into that of fitting the position data

into a pencil of general quadrics associated with planar dyads. The specific

joint type of a dyad is identified after the data fitting process. Due to similar-

ity of planar and spherical kinematic mappings, the task driven paradigm has

been extended to the synthesis of spherical linkages as well.
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Chapter 1

Introduction and Background

In this dissertation, the problem of task-driven motion synthesis of planar and

spherical mechanisms is studied. More specifically, we focus on motion approx-

imation from the viewpoint of kinematic extraction of geometric constraints

from a given set of planar, spherical, or spatial displacements. Previous re-

search work related to this topic has been published in [6, 7, 8, 9, 10, 5, 4, 1, 11].

In this introductory chapter, a general overview on background and the exist-

ing work in the area of task-driven geometric synthesis is presented followed

by the main contributions of this dissertation.

The synthesis of mechanisms and robotic systems have been a popular

task in mechanical engineering field. In general, the design of mechanisms and

robotic systems are consisted of two fundamental steps: type synthesis and

dimensional synthesis, in which the former seeks the basic types of the joints,

the configuration of the mechanism, etc, and the latter aims at solving for

the dimensions of the links, geometric features, etc. Before the development

of modern kinematics and dynamics, machine design had been an experience-
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based process, in which the type and the dimensions had been mostly fig-

ured out by designer’s experiences, or through try and error method. Even

since Industrial Revolution, machine theorists and kinematicians have sought

to develop a theory to analyze and synthesize mechanisms so that engineers

could approach the problem in a rational way, which would allow designing

of mechanisms and robotics to become a systematic knowledge that could be

grasped by anyone, without the premise of experience. Franz Reuleaux [12]

and Ivan Artobolevsky [13] first laid the foundation for modern kinematics

by developing a system for mechanism classifications. Hunt [14], Phillips [15],

Bottema and Roth [16], Erdman and Sandor [17], McCarthy [18] have also

proposed comprehensive works towards kinematic geometry more recently. In

1993, Erdman [19] summarized the development of modern kinematics in the

forty years till 1992. Most of these existing work make efforts towards the

applications of kinematics to the analysis and synthesis of mechanisms and

robotic systems. There also exist comprehensive treatments that summarize

the fundamentals of kinematics as an engineering science, such as Theoretical

Kinematics by Bottema and Roth [16] and Introduction to Theoretical Kine-

matics by McCarthy [20]. In recent years, after these modern theoretical basis

that have been established, the two fundamental steps of mechanisms and

robotic systems design: type synthesis and dimensional synthesis have also

been developed comprehensively.

In the last century, thanks to the drastic progress of fundamental science,

especially mathematical analysis and computational techniques, dimensional
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synthesis has become an extensively researched subject with many textbook-

s. The synthesis equations can now be systematically derived with various

mathematical formulation such as vector loop closure equations [17], quater-

nion/dual quaternion [21], homogeneous matrices [22]. For spatial open chain

linkage synthesis, Su and McCarthy [23] proposed an algebraic curve/surface

formulation that leads to a polynomial system with relatively low complexity

in 2005, which converges with [24, 25], and these polynomial system can be

solved through iterative optimization [26],analytical methods [27, 23] or con-

tinuation (homotopy) method [22]. Many softwares have also been developed

to achieve this goal, including LINCAGES [28, 29], Sphinx [30] and SPADES

[31], as well as Synthetica (Su et al. [32]), which firstly aims at synthesis of spa-

tial linkages. All of these mechanism design software focus on the dimensional

synthesis with specified mechanism topologies.

On the other hand, not as much research work has been carried out on type

synthesis, except a certain amount of literatures that have covered that topic

in planar motion synthesis area. A comprehensive review of research in this

area can be found in Mruthyunjaya [33]. These research work mostly focus on

transformation of binary chains; the various geometric configuration of ternary

links; reducing the complexity of mechanisms by replacing the existing parts

with simpler links; and direct algebraic determination of matrices representing

chains. To implement these approaches, the techniques includes direct visual

inspection, graphical theory, group theory or matrix representation. The main

task of all these work, however, is rather on the classification and enumeration

3



of mechanisms.

Therefore, to achieve both the optimal type and dimensions, recently re-

searchers have been seeking to combine both of the two steps during machine

design process. Sedlaczek et al. [34], Frecker et al.[35] seek to employ Genetic

Algorithms to obtain the solution of this combined problem, while Hayes and

Zsombor-Murray [36] use a unified polynomial system to solve it. [37] pro-

posed the concept of Qualitative Kinematics that attempts to combine type

and dimensional synthesis through artificial intelligence approach.

The idea of kinematic mapping, first proposed by Blaschke [38] and Grun-

wald [39] almost a century ago, however, was employed for a modern treatment

in the formative texts of Bottema and Roth [16] and McCarthy [20]. In 1983,

Ravani and Roth [40, 41] proposed a kinematic mapping approach for motion

approximation of both type and dimensional synthesis, which seeks to realize

various type of four-bar linkage synthesis with linear approximation. Their

algorithm has two features: (1) fit the set of image points to two constraint

manifolds simultaneously; and (2) use a tangent hyperplane approximation

of constraint manifolds to obtain the normal distance. The resulting algo-

rithm is highly nonlinear and requires many initial choices to converge to a

reasonable solution. Larochelle [42, 43] presented a different approach to the

constraint manifold fitting problem that has the following two features: (1) fit

the set of image points to a single constraint manifold; and (2) use a direct

search method to obtain the normal distance directly. The restriction to a

single manifold greatly reduces the difficulty in the fitting problem and only
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one random initialization is required to converge to a good solution for a RR

dyad. Pursuant to Ravani and Roth’s kinematic mapping approach for mech-

anism synthesis, further research has been done by Bodduluri and McCarthy

[44], Bodduluri [45], Larochelle [46, 47], Ge and Larochelle [48], Husty et al.

[49]. More recently, Wu et al. [50] and Purwar et al. [51] have demonstrated

a visual, computer graphics approach for multi-degrees of freedom mechanis-

m design that exploits the connection between constraint manifold geometry

and its apparent effect on the parameters of a mechanism to interactively per-

form kinematic synthesis. Hayes et al. [52, 52] have presented preliminary

results for combining type and dimensional synthesis of planar mechanisms

for multi-pose rigid body guidance. Ge et al. [7] recently presented planar

4R linkage synthesis using the approach proposed in this paper but focuses

only on constraint manifolds of RR dyads. In the research work presented in

this dissertation, kinematic mapping based approach is mostly used for the

task-driven Geometric Synthesis of Mechanisms and Robotic Systems.

Initially, a task driven approach to simultaneous type and dimensional

synthesis of planar four-bar linkage mechanisms is presented. Planar linkages

are the most common form of mechanisms found in mechanical systems and

have been a subject of interest and research in machine design area for many

decades. See McCarthy and Soh [53], Sandor and Erdman [54], Hunt [14],

Hartenberg and Denavit [55], Suh and Radcliffe [56] for state of the art as

well as established methods and theory in kinematic synthesis of machines.

Despite that, various proposed solutions to planar mechanism design for the

5



approximate motion synthesis have had a strong non-linear nature, and in

general the algorithms are inefficient and require dealing with the type and

dimension synthesis separately. The research work proposed in this chapter

uncovers the geometric constraint hidden in the given motion via a linear, two-

step method. The method is fast and efficient and also provides the optimal

dimensions of the mechanism which can execute that motion.

The earliest approach to the motion synthesis problem was dealt with by

Burmester [57], who posited that a given four-bar linkage can go through at

most five positions exactly (precision position synthesis). For a continuous

motion or more than five positions, typically only an approximate motion syn-

thesis can be performed. In the kinematic mapping approach to kinematic

synthesis, planar displacements in Cartesian Space are mapped into points in

a three-dimensional projective space (called Image Space of Planar Kinemat-

ics), while workspace constraints of a mechanism map into algebraic manifolds

in the same space. In this way, a single degree of freedom motion of a planar

mechanism is represented by the intersection curve of two algebraic manifolds.

The problem of motion approximation is transformed into a algebraic curve

fitting problem in the image space, where various methods in approximation

theory may be applied. This includes the definition of the approximation er-

ror (called structural error) in the image space, formulation of a least squares

problem and application of appropriate numerical methods to find values of

the design variables for minimization of the error. In this dissertation, we are

dealing with the use of the image space of planar kinematics for approximate
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task driven simultaneous type and dimensional synthesis of planar four-bar

linkages. While the constraint manifolds associated with planar four-bar link-

ages are algebraic, geometric (or normal) distances have been used as default

metric for least-squares fitting of these algebraic manifolds. It shows that

the problem of kinematic synthesis of planar four bar linkage can be solved

by directly fitting a pencil of quadrics to a set of image points defining the

image curve of a desired motion. Using the Image Space of planar displace-

ments, we obtain a class of quadrics, called G-manifolds, with eight linear and

homogeneous coefficients as a unified representation for constraint manifolds

of all four types of planar dyads, RR, PR, and PR, and PP . Given a set

of image points that represent a set of planar displacements, the problem of

synthesizing a planar four-bar linkage becomes that of finding a pencil of G-

manifolds that best fit the image points in the least squares sense. This least

squares problem is solved using Singular Value Decomposition. The linear

coefficients associated with the smallest singular values are used to define a

pencil of quadrics. Additional constraints on the linear coefficients are then

imposed to obtain a planar four-bar linkage that best guides through the set

of given displacements. In this paper, we study algebraic fitting of quadric

surface from this perspective and develop a new and unified method for kine-

matic synthesis of four-bar linkages (including both revolute and sliding joints)

based on linear least-squares fitting of a pencil of quadrics. The result is an

efficient and linear algorithm that naturally extracts the geometric constraints

of a motion and leads directly to the type and dimensions of a mechanism for
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motion generation.

In the next part, after obtaining the general approach for a set of planar

displacements, we then revisit the classical Burmester’s problem of the exact

synthesis of a planar four-bar mechanism with five or less given positions. This

is a well studied subject [16, 20]. Recently, a comprehensive solution to the

Burmester problem that includes not only RR dyads but PR, RP and PP has

been developed by J. Angeles and his coworkers [58, 59, 60, 61]. As extended

from general algebraic motion approximation approach in the previous part of

this dissertation, we also uses prescribed task positions to obtain “candidate”

manifolds and then find feasible constraint manifolds among them. The first

step is solved by null space analysis,and the second one is reduced to find-

ing the solution of two quadratic equations. Five-position synthesis could be

solved exactly with up to four resulting dyads. For four-position synthesis,

a limited number of solutions could be selected from the ∞1 many through

adding an additional linear constraint equation without increasing the compu-

tational complexity. This linear constraint equation could be obtained either

by defining one of the coordinates of the center/circle points, by picking the

ground line/coupler line, or by adding one additional task position, all of which

are proved to be able to convert into the same form as in (3.18). For three-

position synthesis, two additional constraints could be imposed in the same

way to select from the ∞2 many solutions. The result is a novel algorithm that

is simple and efficient, which allows for task driven design of four-bar linkages

with both revolute and prismatic joints, as well as handling of different kinds
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of additional constraint conditions in the same way.

The following chapter seek the compatibility of our task-driven algebraic-

fitting based approach in approximated synthesis problem, and take a further

study on the performance of this approach when facing a common issue in

kinematic synthesis: frame-dependence issue, which denotes whether the syn-

thesis result remains the same while the given motion are measured in differ-

ent fixed or moving frames. Both exact and approximated motion synthesis

examples have been listed, and the results show that while our approach is

frame-independent for exact synthesis, a transformation in fixed or moving

frame does affect the synthesis result for approximated motion synthesis.

Following the completeness of exact and approximated synthesis of planar

four-bar linkages, we then extend to the synthesizing of planar six-bar linkages

for motion generation. After the discussion of various categories of four-bar

linkage synthesis that has been discussed in previous work, the second simplest

type of planar closed chain is the six-bar linkages, each of which is formed by

four binary links and two ternary links using seven 1-DOF joints. When the

two ternary links are directly connected via a 1-DOF joint, one obtains a

Watt six-bar linkage; when two ternary links are connected through a binary

link, one obtains a Stephenson six-bar linkage. Depending on the choice of

the ground link, there are two distinct types of Watt six-bar linkage (I, II)

and three distinct types of Stephenson six-bar linkages (I, II, III). As the end-

effector (or coupler) in a six-bar linkage may be considered as constrained

by both dyad (2R) and triad (3R), a six-bar linkage may be designed by

9



developing a triad synthesis method, in addition to dyad synthesis. Chase et

al. [62] developed a triad synthesis method for the design of a Stephenson III

six-bar linkage for five positions. A homotopy based approach to synthesize

Stephenson six-bar linkages has been reported by Schreiber et al. [63] to deal

with additional side conditions. Lin and Erdman [64] was able to design planar

triads for six positions. Built on this 3R formulation, Soh and McCarthy [53]

presented a procedure for five-position synthesis for the Watt I and Stephenson

I, II, and III six-bar structures. Their basic idea is to obtain a 3R chain that

guides a moving body through the five given tasks using inverse kinematics.

To convert a four-link 3R chain (with the ground link as the fourth link) into

a six-bar linkage, they add two 2R dyads to the 3R chain to reduce the degree

of freedom of the system from three to one. They noted that this approach

does not apply to the Watt II because its floating link is not connected to the

ground frame by a 3R chain.

The current work builds on the results of Soh and McCarthy [53] and

develops a unified procedure for five position synthesis that is applicable to

all six topologically different planar linkages consisting of one four-bar and

five six-bar structures. In addition, our formulation of the problem unifies the

treatment for R joints and P joints, i.e., the dyads include RR, RP, PR and

triads include RRR, RRP, RPR, PRR etc. Furthermore, instead of starting

the design process with a 3R chain as in [53], we start by analyzing the five

task positions first to determine all feasible dyads (RR, RP, PR, PP) using a

planar quaternion based formulation as in last chapter. This formulation leads
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to a simple algorithm that reduces the dyad synthesis problem to the solution

of a quartic equation. There are either (a) four real solutions yielding four

feasible dyads and thus six feasible four-bar linkages, or (b) two real solutions

yielding two feasible dyads and thus one feasible four-bar linkage or (c) no real

solution yielding no feasible four-bar linkage. If a feasible four-bar exists and is

deemed satisfactory, then no further action is required. If no feasible four-bar

exists or none of the feasible four-bar linkages is deemed satisfactory, then we

move on to design six-bar linkages for the five task positions. This algorithm

can handle all four types of planar dyads with or without prismatic joints. In

synthesizing six-bar linkages, a novel classification of six-bar linkages suitable

for task driven design is developed. It is based on the number of dyads used

to constrain an end-effector, which is required to guide through five specified

task positions.

The continuous portion of this dissertation seeks the solution to spherical

four-bar motion approximation from the viewpoint of extraction of circular

geometric constraints from a given set of spherical displacements. A spher-

ical four-bar mechanism is a closed chain linked by four revolute joins that

incidents with one point. In the kinematic mapping approach to kinematic

synthesis, spherical displacements in Cartesian Space can also be mapped into

points in a three-dimensional projective space (called Image Space of Spherical

Kinematics), while workspace constraints of a mechanism map into algebraic

manifolds in the same space. Thus the spherical motion approximation prob-

lem can also be converted into a algebraic curve fitting problem in the image
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space. In this part of work, we seek to extend our approach for planar case

to spherical four-bar linkage synthesis. Existing works on this topic includes

[65, 66, 44, 48, 67, 68], in which Ruth and McCarthy [68] described the im-

plementation of spherical four-orientation synthesis in the software SphinxPC,

which encodes a new formulation of classical Burmester theory based on the

equation of a spherical triangle which yields a convenient parameterized equa-

tion for the central-axis cone. Purwar et al. [65] brings together the kinematics

of spherical robot arms and freeform rational motions to study the problem

of synthesizing constrained rational motions for Cartesian motion planning,

and realized the synthesis of spherical 2R and 3R robot arms. Also based on

kinematic mapping, Husty et al. [67] proposed an approach to the five spher-

ical position synthesis by converting the design problem into a polynomial

of degree six. Most of these works either focus on a finite spherical position

synthesis or involves a great amount of computation. While our approach

is simply consisted by two steps. Since we have formulated the data fitting

process in linear form, the first step is finding a pencil of general quadratic

manifolds in the image space that best fit the given image points in the least

squares sense, which is done by using Singular Value Decomposition and solv-

ing for the singular vectors. The singular vectors associated with the smallest

singular values are then linearly combined to define the coefficients of a pencil

of quadrics. Second, four additional constraints on the linear coefficients are

then imposed to identify the quadric that qualified to represent a spherical

circular constraint from the pencil of quadrics. After the inverse computa-
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tion converting the quadric coefficients to the spherical four-bar parameters,

a spherical 4R linkage that best guides through the set of given displacements

can be obtained.

In the last portion of this dissertation we presents a method for fine-tuning

a geometrically constrained planar motion in the context of motion approxi-

mation. This work builds on previous research [69] that seeks to identify and

extract point trajectories of an explicitly given planar motion. A one-degree-

of-freedom planar motion may be defined by requiring two points of the moving

body stay on two separate curves in the plane during the motion. The point

trajectories to be extracted are curves such as line-segments, circles, ellipses

or coupler curves of a four-bar linkage that can be easily generated with a

simple mechanism. Once two point trajectories are obtained, the remaining

issue is to determine the length of the “coupler link” that connects the two

point trajectories such that the resulting motion best approximates the origi-

nal motion. In this paper, the concept of kinetic energy is used for combining

translation with rotation when calculating the “distance” between two planar

displacements. A simple, direct search method for obtaining the optimum

length of the coupler link is presented that minimizes the standard deviation

of the motion error in terms of the kinetic energy based distance measure for

planar displacements.

The rest of the proposal is organized as follows. Chapter 2 studies the

problem of simultaneously type and dimensional synthesis for a set of planar

displacements taken from coupler motion of different types of four-bar linkages.
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Chapter 3 revisits the classical Burmester’s problem of the exact synthesis of

a planar four-bar mechanism with five or less given positions, and realizes

various kinds of additional physical requirements in the synthesis process with

a unified treatment. Chapter 4 seeks the handling of approximated motions

with our task-driven algebraic-based fitting approach, and studies the frame-

dependence property for both exact and approximated motion synthesis. In

Chapter 5, the classical problem of synthesizing Watt’s or Stephenson’s six-bar

linkages for motion generation is discussed. Then, spherical 4R synthesis is

studied in Chapter 6 from the viewpoint of extraction of circular geometric

constraints from a given set of spherical displacements. At last, a method

is presented in Chapter 7 for fine-tuning a geometrically constrained planar

motion in the context of motion approximation. The final chapter remarks on

the main contributions of this research.
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Chapter 2

A Task Driven Approach to
Simultaneous Type and
Dimensional Synthesis of Planar
Four-bar Linkages

In this chapter, we are dealing with the use of the image space of planar kine-

matics for approximate task driven simultaneous type and dimensional synthe-

sis of planar four-bar linkages. While the constraint manifolds associated with

planar four-bar linkages are algebraic, geometric (or normal) distances have

been used as default metric for least-squares fitting of these algebraic mani-

folds. Ravani and Roth[40] used normal distance to develop a least-squares

algorithm for fitting the image curve of a four-bar motion. Their algorithm

has two features: (1) fit the set of image points to two constraint manifolds

simultaneously; and (2) use a tangent hyperplane approximation of constraint

manifolds to obtain the normal distance. The resulting algorithm is highly

nonlinear and requires many initial choices to converge to a reasonable so-
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lution. Larochelle [42, 43] presented a different approach to the constraint

manifold fitting problem that has the following two features: (1) fit the set

of image points to a single constraint manifold; and (2) use a direct search

method to obtain the normal distance directly. The restriction to a single

manifold greatly reduces the difficulty in the fitting problem and only one ran-

dom initialization is required to converge to a good solution for a RR dyad.

More recently, Wu et al. [50] and Purwar et al. [51] have demonstrated a

visual, computer graphics approach for multi-degrees of freedom mechanism

design that exploits the connection between constraint manifold geometry and

its apparent effect on the parameters of a mechanism to interactively perform

kinematic synthesis. Hayes et al. [52, 52] have presented preliminary results

for combining type and dimensional synthesis of planar mechanisms for multi-

pose rigid body guidance. Ge et al. [7] recently presented planar 4R linkage

synthesis using the approach proposed in this chapter but focuses only on con-

straint manifolds of RR dyads. In that vein, this chapter completes that work

for all other planar dyad types and provides a unified treatment for all types

of planar dyad motions.

This chapter studies the problem of using algebraic distance for least-

squares fitting of quadric equations defining the constraint manifolds. In con-

trary to the existing approach of trying to use the intersection curve of two

algebraic manifolds for curve fitting, this chapter shows that the problem of

kinematic synthesis of planar four bar linkage can be solved by directly fit-

ting a pencil of quadrics to a set of image points defining the image curve of
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a desired motion. The leads to a very simple and fast algorithm for linkage

synthesis.

The problem of fitting algebraic manifolds (or surfaces) has also received

considerable attention in CAD and pattern recognition. A brief review of the

work in this area has been presented in Ge et al. [7]. All the existing work for

quadric surface fitting in CAD, however, deals with surface data that lead to

a unique best fit surface. In kinematics, however, a given motion is mapped to

a curve in the image space. Thus, the problem of quadric surface fitting in the

context of kinematic mapping is fundamentally different from CAD. Since only

curve data is given, the result is not a unique quadric but a pencil of quadrics

that share the same curve of intersection. In this chapter, we study algebraic

fitting of quadric surface from this perspective and develop a new and unified

method for kinematic synthesis of four-bar linkages (including both revolute

and sliding joints) based on linear least-squares fitting of a pencil of quadrics.

The organization of the chapter is as follows. Section 2.1 reviews the con-

cept of kinematic mapping and image space in so far as necessary for the

development of this chapter. Section 2.2 presents line and circle geometric

constraints associated with planar dyad motions. Section 3.3 deals with con-

straint manifolds associated with planar dyads defined by a combination of

revolute and prismatic joints and presents a unified representation of a gener-

alized manifold in the form of a general quadric. Section 2.4 deals with the

problem of algebraic fitting of a pencil of quadric surfaces to a set of image

points for an image curve defining a desired motion. Several examples of classic
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four-bar linkage motions are presented in Section 3.5.

2.1 Parameterizing a Planar Displacement

A planar displacement can be decomposed into the translation of a point

(d1, d2) on the moving body as well as rotation of the body by an angle φ.

Let M denote a coordinate frame attached to the moving body and F be

a fixed reference frame. Then a planar displacement can be represented as a

transformation of point or line coordinates fromM to F . The point coordinate

homogeneous transformation matrix associated with a planar displacement is

given by

[H] =

⎡⎣ cosφ − sinφ d1
sinφ cosφ d2
0 0 1

⎤⎦ . (2.1)

The line coordinate transformation for the same displacement is given by the

transpose of the inverse of [H] (see [16]):

[H]=([H]−1)T =

⎡⎣ cosφ −sinφ 0
sinφ cosφ 0

−d1 cosφ−d2 sinφ d1 sinφ−d2 cosφ 1

⎤⎦ . (2.2)

The transformations [H] and [H] are said to be dual to each other.

Introducing the following kinematic mapping from Cartesian space param-
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eters (d1, d2, φ) to Image Space coordinates Z = (Z1, Z2, Z3, Z4) (see [40]),

Z1 =
1

2
(d1 sin

φ

2
− d2 cos

φ

2
), (2.3)

Z2 =
1

2
(d1 cos

φ

2
+ d2 sin

φ

2
),

Z3 = sin
φ

2
,

Z4 = cos
φ

2
,

we can reparameterize the homogeneous transforms [H] and [H] in quadratic

form

[H] =

⎡⎣ Z2
4 − Z2

3 −2Z3Z4 2(Z1Z3 + Z2Z4)
2Z3Z4 Z2

4 − Z2
3 2(Z2Z3 − Z1Z4)

0 0 Z2
3 + Z2

4

⎤⎦ , (2.4)

[H] =

⎡⎣ Z2
4 − Z2

3 −2Z3Z4 0
2Z3Z4 Z2

4 − Z2
3 0

2(Z1Z3 − Z2Z4) 2(Z2Z3 + Z1Z4) Z2
3 + Z2

4

⎤⎦ (2.5)

where Z2
3 + Z2

4 = 1.

The four-dimensional vector Z = (Z1, Z2, Z3, Z4) is said to define a point

in a projective three-space called the Image Space of planar displacement,

denoted as Σ. In this way, a planar displacement is represented by a point in

Σ; a single degree of freedom (DOF) motion is represented by a curve and a

two DOF motion is represented by a surface in Σ [40].

2.2 Constraining a Planar Displacement

In this chapter, we consider only one- and two-DOF motions that are con-

strained by simple geometric constraints such as lines and circles. This in-
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cludes 2-DOF planar motions of a rigid body subject to one of the following

four types of geometric constraints:

1. one of its points stays on a circle: this can be realized by a planar RR

dyad, where R denotes a revolute joint; see Fig.2.1(a);

2. one of its points stays on a line: this can be realized by a planar PR

dyad, where P denotes a prismatic joint; see Fig.2.1(b);

3. one of its lines stays tangent to a given circle: this can be realized by a

planar RP dyad; see Fig.2.1(c);

4. one of its lines translates along another line: this can be realized by a

planar PP dyad; see Fig.2.1(d).

A planar motion subject to any two constraints listed above (including two

of the same types) results in a 1-DOF motion called planar four-bar motion.

Planar four-bar linkages include planar 4R, slider-crank, inversions of slider-

crank, as well as double-slider mechanisms; see Fig. 2.2 for some such linkages.

In this section, we develop representations of circular and linear constraints

that lead to a unified representation of planar dyad motions listed above.

Let X = (X1, X2, X3) (where X3 �= 0) denote the homogeneous coordinates

of a point. Then the following equation:

2a1X1 + 2a2X2 + a3X3 = a0

(
X2

1 +X2
2

X3

)
, (2.6)
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Figure 2.1: Geometric constraints of a planar dyad of types (a) RR, (b) PR,
(c) RP , and (d) PP

defines a circle C when a0 �= 0. The center of the circle is given by the

homogeneous coordinates

a = (a1, a2, a0) (2.7)

and the radius r of the circle satisfies

a20r
2 − a0a3 = a21 + a22. (2.8)

When a0 = 0, the Eq.(2.6) reduces to the equation of a line:

2a1X1 + 2a2X2 + a3X3 = 0. (2.9)
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Figure 2.2: Geometric Constraints of some planar fourbar linkages (a) RRRR,
(b) RRPR, (c) RRRP , (d) RRPP

Thus, Eq.(2.6) is a unified presentation for both a circle and a line.

As a planar RR dyad and a PR dyad defines, respectively, a 2-DOF mo-

tion of a rigid body for which one of its points stays on a circle and on a

line, Eq. (2.6) also provides a unified representation of geometric constraints

associated with such two dyads.

We now consider an RP dyad that defines a 2-DOF planar motion for

which one of its lines stays tangent to a given circle C. This requires a line

22



representation of a circle. First, we recast Eq. (2.6) in matrix form:

[X1 X2 X3]

⎡⎣ −a0 0 a1
0 −a0 a2
a1 a2 a3

⎤⎦⎡⎣ X1

X2

X3

⎤⎦ = 0. (2.10)

The adjoint of the coefficient matrix in above is given by

[Cadj] =

⎡⎣ −a0a3 − a22 a1a2 a0a1
a1a2 −a0a3 − a21 a0a2
a0a1 a0a2 a20

⎤⎦ . (2.11)

It is well known in projective geometry of conics (see [70]) that a line with

coordinates L = (L1, L2, L3) stays tangent to the circle C when

LT [Cadj]L = 0. (2.12)

Using Eq. (2.8), we can decompose [Cadj] as

[Cadj] =

⎡⎣ a21 a1a2 a0a1
a1a2 a22 a0a2
a0a1 a0a2 a20

⎤⎦−
⎡⎣ a20r

2 0 0
0 a20r

2 0
0 0 0

⎤⎦ . (2.13)

Substituting [Cadj] from (2.13) into Eq. (2.12), we obtain, after some algebra

a1L1 + a2L2 + a0L3 = ±a0r
√
L2
1 + L2

2. (2.14)

This yields two lines that are r-distance away from the center of the circle,

a = (a1, a2, a0). In addition, when r = 0, the two lines overlap into one that

passes through a.

PP dyad is a special type of dyad, whose second link actually follows a

rectilinear motion with no change in orientation. The motion of a PP dyad is
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constrained such that the angle between a line L = (L1, L2, L3) and another

line (2a1, 2a2, a3) in F is a constant, which can be described as:

2a1L1 + 2a2L2 = k. (2.15)

where k is a constant that corresponds to the angle between the two lines.

Equation (2.15) can be seen as a special case of Eq. (2.14). Thus, all four

planar dyads, RR, PR, RP , and PP , can be represented in terms of geometric

constraints given by Eqns. (2.6) and (2.14). Furthermore, the left hand side

of Eqns. (2.6) and (2.14) are linear combinations of point and line coordinates,

respectively.

2.3 A Unifying Representation for Planar Dyad

Motions

In this section, we first derive a generalized quadric manifold that is common

to 2-DOF motions subject to constraints containing linear and quadratic terms

in Eqns. (2.6) and (2.14). We then show how this manifold can be used to

develop a unified representation for constraint manifolds of planar RR, PR,

RP , and PP dyads.

2.3.1 G-Manifolds for Planar Dyad Motions

Let x = (x1, x2, x3) andX = (X1, X2, X3) denote the homogeneous coordinates

of a point in the moving frame M and the fixed frame F , respectively; and

let l = (l1, l2, l3) and L = (L1, L2, L3) denote the homogeneous coordinates

of a line in M and F , respectively, where l21 + l22 = 1 and the absolute value
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of l3 is the distance from the origin of M . In view of X = [H]x, where [H]

is given by Eq. (2.4), a linear combination of the point coordinates as shown

in point constraint Eq (2.6) involves only five distinct elements of the matrix

[H]; likewise, in view of L = [H]l, where [H] is given by Eq. (2.5), a linear

combination of the line coordinates as shown in Eq. (2.14) involves only five

distinct elements of the matrix [H]. Furthermore, it can be shown that the

nonlinear term (X2
1 + X2

2 )/X3 in Eq. (2.6) produces only one new element

(Z2
1 + Z2

2), and that the nonlinear term in Eq. (2.14) is given by√
L2
1 + L2

2 = (Z2
3 + Z2

4)
√
l21 + l22 = Z2

3 + Z2
4 . (2.16)

Thus, by collecting all of these independent terms appearing in the constraint

equations, we obtain the following common representation of geometric con-

straints expressed by Eqns. (2.6) and (2.14) in terms of image space coordinates

Zi (i = 1, 2, 3, 4):

q1(Z
2
1 + Z2

2) + q2(Z1Z3 − Z2Z4) + q3(Z2Z3 + Z1Z4)

+q4(Z1Z3 + Z2Z4) + q5(Z2Z3 − Z1Z4) + q6Z3Z4

+q7(Z
2
3 − Z2

4) + q8(Z
2
3 + Z2

4) = 0. (2.17)

This defines a quadric surface in the Image Space with eight homogeneous co-

efficients qi (i = 1, 2, · · · , 8). In this chapter, we call this quadric a generalized

constraint manifold or G-manifold for short. For this generalized-manifold to

become the constraint manifold (or C-manifold), of a planar RR, PR, RP , or

PP dyad, one must impose additional constraints on the coefficients qi.

25



2.3.2 C-Manifolds of RR and PR Dyads

Figure 2.3: A right circular hyperboloid of one sheet defined by Z2
1 + (Z2 −

2Z3)
2 − 4Z2

3 = 5

Consider first a planar 2-DOF motion of a rigid body for which a point

x on moving body remains on a circle with center (a1, a2, a0) and radius r of

the fixed frame, i.e., satisfies the circular constraint of Eq. (2.6). Substituting

X = [H]x, where [H] is given in Eq. (2.4), into Eq. (2.6), we obtain, after
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some algebra,

2a1(Z1Z3 + Z2Z4) + 2a2(Z2Z3 − Z1Z4)+

(−2a1x2+2a2x1)
x3

Z3Z4 +
(a1x1+a2x2)

x3
(Z2

4 − Z2
3)+

1
2
a3(Z

2
3 + Z2

4) =
a0
x2
3
(2x23(Z

2
1 + Z2

2)− 2x1(Z1Z3 − Z2Z4)−

2x2(Z2Z3 + Z1Z4) +
1

2x3
(x21 + x22)(Z

2
3 + Z2

4))

(2.18)

After collecting like terms, we obtain:

−2a0x3(Z
2
1 + Z2

2) + 2a0x1(Z1Z3 − Z2Z4) + 2a0x2(Z2Z3 + Z1Z4)+
2a1x3(Z1Z3 + Z2Z4) + 2a2x3(Z2Z3 − Z1Z4) + 2(a2x1 − a1x2)Z3Z4−
(a1x1 + a2x2)(Z

2
3 − Z2

4) +
1

2x3
(a3x

2
3 − a0x

2
1 − a0x

2
2)(Z

2
3 + Z2

4) = 0
(2.19)

We may rewrite Eq. (2.19) in the form of G-manifolds (Eq. (2.17) with the

following coefficients qi:

q1 = −2a0x3,
q2 = 2a0x1, q3 = 2a0x2,
q4 = 2a1x3, q5 = 2a2x3,
q6 = 2(a2x1 − a1x2), q7 = −(a1x1 + a2x2),
q8 = (a3x

2
3 − a0x

2
1 − a0x

2
2)/(2x3).

(2.20)

The inverse computation from coefficients qi to constraint parameters (ai, xi)

can be done as follows:

a0 : a1 : a2 : a3 = −q1 : q4 : q5 : (4q8 − q1(q
2
6 + 4q27)

q24 + q25
), (2.21)

x1 : x2 : x3 = (q6q5 − 2q7q4) : −(q6q4 + 2q7q5) : (q
2
5 + q24). (2.22)

It follows from Eq. (2.20) that the coefficients qi must satisfy the following

two relations:

q1q6 + q2q5 − q3q4 = 0,
2q1q7 − q2q4 − q3q5 = 0.

(2.23)
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Note that the coefficient q8 is not constrained by Eq. (2.23) and thus can be

used as the homogenizing factor. Thus, there are a total of five independent

coefficients, which is consistent with the number of parameters required to

define an RR dyad. Only a subset of the G-manifold (2.17) whose coefficients

satisfy Eq. (2.23) corresponds to the C-manifolds associated with a circular

constraint of Eq. (2.6). In particular, when a0 �= 0, we obtain the constraint

manifold of a RR dyad whose projection onto the hyperplane Z4 = 1 is a

hyperboloid of one sheet [40, 20, 7, 51]. Figure 2.3 shows an example of such

a hyperboloid. When a0 = 0, we obtain the constraint manifold of a PR

dyad whose projection onto Z4 = 1 is a hyperbolic paraboloid (Fig. 2.4).

Furthermore, it follows from Eq. (2.20) that when a0 = 0, one has q1 = q2 =

q3 = 0 and that both relations in Eq. (2.23) are automatically satisfied. This

means that the constraint manifold of a PR dyad may be considered as a

special case of that of a RR dyad.

2.3.3 C-Manifold of RP Dyad

The motion of a RP dyad is constrained such that a line l = (l1, l2, l3) on

moving body stays tangent to a given circle C of fixed frame. Substituting

L = [H]l, where [H] is given by Eq. (2.5), and Eq. (2.16) into Eq. (2.14),

we can put the resulting C-manifold in the same form as given by Eq. (2.17)

where

q1 = 0, q2 = 2a0l1 q3 = 2a0l2,
q4 = 0, q5 = 0,
q6 = −2a1l2 + 2a2l1, q7 = −a1l1 − a2l2, q8 = a0(l3 ± r),

(2.24)
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Figure 2.4: A hyperbolic paraboloid defined by Z1Z2 − Z3 = 0

and the inverse computation is done as follows:

l1 : l2 : l3 = q2 : q3 : 2q8,
a0 : a1 : a2 = (q22 + q23) : (−q3q6 − 2q2q7) : 2(q2q6 − 2q3q7),

(2.25)

where a0 can be arbitrarily chosen. As both l3 and r are lumped into q8,

without any loss of generality, we may set r = 0, i.e., requiring that the line

L passes through the fixed point (a1, a2, a0) instead of being tangent to the

circle C. The set of five nonzero coefficients (q2, q3, q6, q7, q8) are homogeneous
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but otherwise independent of each other. Furthermore, since q1 = q4 = q5 = 0,

it follows that Eq. (2.23) is automatically satisfied. Projecting this manifold

onto Z4 = 1, one obtains a hyperbolic paraboloid, the same type of quadric as

obtained in case of PR dyad.

2.3.4 C-Manifold of PP Dyad

PP dyad is a special type of mechanism, whose second link actually follows

a translational motion with no change in angle. The motion of a PP dyad is

constrained such that the angle between a line L = (l1, l2, l3) in M and a line

(2a1, 2a2, a3) in F is a constant. Substituting L = [H]l in Eq. (2.15) as in RP

case, we can put the resulting constraint manifold in the same form as (2.17)

where
q1 = 0, q2 = 0 q3 = 0,
q4 = 0, q5 = 0,
q6 = 2a1l2 − 2a2l1, q7 = a1l1 + a2l2, q8 = −k

2
.

(2.26)

Since q1 through q5 are all equal to zero, it follows that Eq. (2.23) is automat-

ically satisfied. Projecting this manifold onto Z4 = 1, one obtains two parallel

planes in the form of Z3 = constant. With only two equations and four un-

knowns to solve for, the inverse computation will result in infinite solutions.

This is because of the position of the line can be arbitrary for pure translation.

2.3.5 Sufficiency of the Unified Representation

From the above sections, we have found that all the four types of planar dyads,

RR, PR, RP and PP , can be converted to a unified representation including

the G-manifold (2.17) and the two conditions (2.23). Conversely, it is not
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difficult to show that when q1 �= 0, the G-manifold (2.17) whose coefficients

satisfy the two conditions (2.23) reduces to a hyperboloid of one sheet:

[q1Z1 +
1
2
(q2 + q4)Z3 +

1
2
(q3 − q5)]

2

+[q1Z2 +
1
2
(q3 + q5)Z3 +

1
2
(q2 − q4)]

2

= 1
4
(q22 + q23 + q24 + q25 − 4q1q8)(Z

2
3 + 1)

(2.27)

and that when q1 = 0, the G-manifold satisfying (2.23) reduces to a hyperbolic

paraboloid:

Z3[(q3 + q5)Z2 + (q7 + q8)Z3 + (q2 + q4)Z1 + q6] =
(q5 − q3)Z1 + (q2 − q4)Z2 + (q7 − q8).

(2.28)

Thus, it is concluded that the unified representation is both necessary and

sufficient for representing all four types of planar dyads, RR, PR, RP and

PP .

It is well known that a planar four-bar linkage can be defined by combining

two planar dyads from the group of four dyads: RR, PR, RP , and PP .

This results in planar 4R, slider-crank, inversions of slider-crank, as well as

double slider mechanisms. In the past, the Image Curve of a planar four-

bar linkage has been represented as intersection of two constraint manifolds

directly associated with the two dyads. In this chapter, however, we represent

the Image Curve by a pencil of quadrics (2.17) that satisfy the conditions on

the coefficients given by (2.23). Instead of fitting a pair of constraint manifolds

directly, we first fit a pencil of G-manifolds (2.17) to the set of image points

and then impose constraints (2.23) to identify two C-manifolds from the pencil

of G-manifolds. This decoupling of constraints (2.23) from the curve fitting

process not only removes the bottleneck in the fitting of the image curve of a
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four-bar linkage but also unifies the synthesis of all types of planar four-bar

linkages. The choice of a R or P joint in a four-bar linkage is determined by

the input positions only and is obtained after the fitting process for a pencil

of G-manifolds.

2.4 Algebraic Fitting of a Pencil of G-Manifolds

Now consider the problem of fitting a pencil of G-manifolds to a set of N

image points, arranged such that they define an image curve rather than a

surface. This problem can be formulated as an over-constrained linear problem

[A]q = 0 obtained by substituting for the given values of the image points

using Eq. (2.17), where q is the column vector of homogeneous coefficients

qi(i = 1 . . . 8). The coefficient matrix [A] is given by:

[A] =

⎡⎢⎢⎢⎢⎢⎢⎣
A11 A12 A13 A14 A15 A16 A17 A18

...
...

...
. . .

...
...

...
AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8

⎤⎥⎥⎥⎥⎥⎥⎦ (2.29)

where, for the ith image points, we have

Ai1 = Z2
i1 + Z2

i2, Ai2 = Zi1Zi3 − Zi2Zi4, (2.30)

Ai3 = Zi2Zi3 + Zi1Zi4, Ai4 = Zi1Zi3 + Zi2Zi4,

Ai5 = Zi2Zi3 − Zi1Zi4, Ai6 = Zi3Zi4,

Ai7 = Z2
i3 − Z2

i4, Ai8 = Z2
i3 + Z2

i4.

In linear algebra, the Singular Value Decomposition (SVD) [71] of an N×8
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matrix [A] is a factorization of the form:

[A] = [U ][S][V ]T (2.31)

where [U ] is an N × N orthonormal matrix, whose N columns, called the

left singular vectors of [A], are the eigenvectors of [A][A]T ; [S] is an N × 8

rectangular diagonal matrix with 8 non-negative real numbers on the diagonal,

whose values are square roots of the eigenvalues of [A][A]T (or equivalently

[A]T [A]); and [V ]T is an 8 × 8 orthonormal matrix, whose 8 columns, called

the right singular vectors, are the eigenvectors of [A]T [A].

The over-constrained system of linear equations, [A]q = 0, can be solved

as a total least squares minimization problem with the constraint qTq = 1.

The solution turns out to be the right singular vectors of [A] corresponding

to the least singular values. These vectors form an orthonormal set of basis

vectors spanning the nullspace of [A], or in other words, solutions to [A]q =

0. Therefore, the rank of matrix [A], and in turn its nullity (8−rank) will

determine the number of zero singular values. For the case of two RR dyads,

or one RR and one RP or PR dyads, the rank of [A] reduces to 6. While, for

two PR or two RP dyads, the rank of [A] is 5 (three coefficient values qi are

zero), thereby giving three zero singular value solutions if the given positions

belong to a four-bar motion exactly.

For a two-dimensional set of points (or surface data), if there is a perfect fit,

there will be only one singular value that is equal to zero. This leads to a unique

singular vector that defines the coefficients of a G-manifold that best fits the

data; for a one-dimensional set of points (or curve data), if there is a perfect fit,
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there will be at least two singular values that are close to zero. In this case, they

lead to a singular plane, which may be defined by a pair of orthonormal singular

vectors, say, v1 = [v11 v12 . . . v18] and v2 = [v21 v22 . . . v28], corresponding to

two smallest singular values. Thus, we may represent a general unit singular

vector in the singular plane by

q = v1 cos θ + v2 sin θ (2.32)

where θ is the angle between q and v1. In view of Eq. (2.17), the singular

vector q given by (2.32) defines a pencil of G-manifolds as θ varies. It needs

emphasizing here that the two singular vectors corresponding to the smallest

singular values may not necessarily represent the valid C-manifolds of a dyad

because they may not satisfy the two conditions Eq. (2.23). Among the G-

manifolds given by Eq. (2.32), only those defined by the values of θ that satisfy

(2.23) are C-manifolds.

To find the appropriate values θ, we use (2.23) to formulate the following

least squares problem:

E(θ) = [q1q6 + q2q5 − q3q4]
2 + [2q1q7 − q2q4 − q3q5]

2, (2.33)

e =
√
E.

where qi are given by (2.32). It is not difficult to show that the minimization

of the above leads to the following condition

4∑
i=0

Ki cos
(4−i) θ sini θ = 0, (2.34)
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Figure 2.5: Examples: Six types of classic planar four-bar linkages.

where Ki are defined by the components of v1 and v2. It is clear that Eq.(2.34)

can be reduced to a quartic equation in tan θ. Thus, the optimal value for θ

can be easily obtained either analytically and numerically. Our interest will

be only in the smallest possible values of e.

2.5 Examples

Now, we present several examples of classic four-bar linkage motions that

illustrate the effectiveness of our approach. The six types of linkage examples

are plotted as in Fig. 2.5
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2.5.1 Exact RRRR Motion Synthesis

Here, we use an example of a four-bar RRRR coupler motion to illustrate our

approach. As shown in Fig. 2.5, the linkage parameters for RRRR example

are as follows: the two ground pivots P1 and P2 are located at (−2.2, 0.1) and

(1.15, 0.38), respectively, and the link lengths of the crank link, coupler link

and output link are 1.2377, 3.5721 and 4.6712, respectively. We sample 10

positions from this motion as given in Table 2.1. The size for matrix [A] as in

Eq. (2.29) is 10× 8.

Table 2.1: Ten given poses of an RRRR motion

Translation Rotation (degree)
(-0.8253,-1.0329) 91.91
(-1.6554,-0.2721) 66.99
(-2.6392,0.2920) 49.90
(-3.5027,0.3088) 43.94
(-4.0549,-0.2141) 45.58
(-4.1022,-1.0521) 52.87
(-3.5805,-1.8708) 64.52
(-2.6250,-2.3408) 78.84
(-1.5557,-2.2742) 93.02
(-0.8016,-1.7382) 101.25

The first step is to find the two smallest singular values and their corre-

sponding singular vectors of [A]. The singular values are listed in Table 2.2

in the increasing order of magnitude. Two near zero singular values are:

σ1 = 5.72×10−16, σ2 = 4.77×10−15. Their associated singular vectors (v1,v2)

are listed in Table 2.3. The G-manifolds that these singular vectors define are

shown in Fig. (2.6). From the error e in the table we can tell that neither of
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Table 2.2: RRRR example: singular values of [A]

5.72× 10−16 4.77× 10−15 0.0081 0.2087 0.2617 1.6043 2.1558 11.71

Table 2.3: RRRR Example: A pair of orthonormal singular vectors that cor-
respond to singular values σ1 = 5.72× 10−16 and σ2 = 4.77× 10−15 are listed
in the first two rows (v1,v2). After optimization, the new resulting vectors
are given by vr1 and vr2. The last column e indicates the error of C-manifolds
constraint fitting, which is defined by (2.33). For the sake of saving space,
only two digits are shown here. More detailed data could be found in [1].

q1 q2 q3 q4 q5 q6 q7 q8 e
v1 -0.24 0.15 -0.03 -0.71 0.01 0.09 0.54 -0.33 0.17
v2 0.23 -0.83 -0.23 -0.05 -0.07 -0.06 0.39 0.18 0.13
vr1 0.17 -0.78 -0.23 -0.20 -0.07 -0.03 0.49 0.11 5× 10−13

vr2 -0.30 0.37 0.03 -0.67 0.03 0.10 0.41 -0.37 2× 10−12

these two G-manifolds define a C-manifold of a valid dyad type even though

they intersect in the given image curve defined by the 10 given positions.

Minimizing e(θ) in Eq.(2.33) leads to four solutions given by

θ1 = 77.61◦, e1 = 5.26× 10−13

θ2 = −16.08◦, e2 = 2.09× 10−12

θ3 = −59.24◦, e3 = 0.1617
θ4 = 30.77◦, e4 = 0.1838

Clearly, only the first two solutions for which the values of e are close to zero

can be admitted as C-manifolds. In the upcoming examples, we will only

report the admissible solutions. The two new resulting vectors qualified to be

the two C-manifolds are given as vr1 and vr2 in Table 2.3. They are shown

in Fig. 2.7; the 10 image points in the figure denote 10 given positions in

Table 2.1 and lie on the intersection of the two manifolds. Furthermore, by

applying the inverse transformation given by Eq. (2.21) on the two resulting
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Figure 2.6: RRRR example: two G-manifolds defined by two singular vectors
(v1,v2) in Table 2.3; v1 defines a hyperboloid of one sheet, while v2 defines a
hyperboloid of two sheets. However, none of them represents a C-manifold.

vectors (vr1 and vr2) in Table 2.3, for vr1 we obtain: a0 : a1 : a2 : a3 = 1 :

1.15 : 0.38 : 20.3597, x1 : x2 : x3 = 4.59 : 1.34 : 1, and for vr2 it leads to:

a0 : a1 : a2 : a3 = 1 : 2.20 : 0.10 : −3.3177, x1 : x2 : x3 = 1.24 : 0.1 : 1. It is

easily verified that they match with the given parameters.

2.5.2 Exact RRRP Motion Synthesis

In this section, we consider the coupler motion of an RRRP (Slider-Crank)

mechanism as shown in Fig. 2.5. The linkage parameters for RRRP example

are as follows: the ground pivot P is (0, 1) and the algebraic expression for the

sliding line L is x+2y+1 = 0. The link lengths of the crank link and coupler

link are 1 and 3, respectively. We take 10 positions from this motion as given in
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Figure 2.7: RRRR example: two resulting constraint manifolds identified from
a pencil of quadrics; the manifolds are hyperboloids of one sheet that satisfy
the conditions imposed by Eq. (2.23); the 10 black image points lying on the
intersection curve in the figure denote 10 given positions in Table 2.1.

Table 2.4. Following the procedure given before, we obtain the singular values

of the matrix [A], which are listed in Table 2.5. Two near zero singular values

are: σ1 = 1.22×10−16, σ2 = 3.06×10−16, and their associated singular vectors

(v1,v2) are listed in the first two rows in Table 2.6. The two G-manifolds that

these singular vectors define are shown in Fig 2.8. Minimizing E in Eq. (2.33)

leads to two valid solutions corresponding to the near-zero values of e:

θ1 = 85.82◦, θ2 = 44.85◦. (2.35)

The two new resulting vectors qualified to be C-manifolds are given in

the last two rows of Table 2.6 – vr1 represents a hyperboloid of one sheet
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Figure 2.8: RRRP example: two quadrics defined by two singular vectors in
Table 2.6. None of the two quadrics represent a constraint manifold.

Figure 2.9: RRRP example: two resulting constraint manifolds identified from
a pencil of quadrics; the manifolds are hyperboloid of one sheet (RR dyad) and
a hyperbolic-paraboloid (PR dyad); the 10 black image points in the figure
denote 10 given positions in Table 2.4.
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Table 2.4: Ten given poses of an RRRP motion

Translation Rotation (degree)
(4.2333,0.4588) -74.5577
(3.6700,0.6457) -77.5362
(3.1974,1.1114) -69.7769
(2.7965,1.5640) -56.6879
(2.5215,1.7742) -43.9111
(2.5562,1.7066) -35.2713
(3.0101,1.4572) -33.3185
(3.7451,1.1415) -38.6715
(4.3905,0.8285) -49.6796
(4.5797,0.5694) -63.1693

Table 2.5: RRRP Example: The singular values of [A].

1.22× 10−16 3.06× 10−16 0.0122 0.0899 0.2608 1.3379 1.7190 14.66

and thus gives an RR dyad, while vr2 represents a hyperbolic-paraboloid,

which represents a PR dyad. For the PR dyad, it is expected that coefficients

q1, q2, q3 be equal or close to zero, which indeed, is the case here. After the

inverse computation, for vr1 we obtain: a0 : a1 : a2 : a3 = 1 : 0.00 : 1.00 :

−0.0028, x1 : x2 : x3 = −2.00 : −3.00 : 1, and for vr2 it leads to a0 : a1 : a2 :

a3 = 0.00 : 1 : 2.00 : 2.00, x1 : x2 : x3 = 1.00 : −3.00 : 1. It is easily verified

that the two dyads combined together constrain the motion of the RRRP

linkage as given.
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Table 2.6: RRRP example: The two singular vectors associated with G-
manifolds are listed in the first two rows, and the two resulting vectors qualified
to be C-manifolds are listed in the last two rows. For the sake of saving space,
only two digits are shown here. More detailed data could be found in [1].

q1 q2 q3 q4 q5 q6 q7 q8 e
v1 0.02 0.04 0.05 -0.17 -0.35 -0.8019 -0.45 -0.03 0.02
v2 0.18 0.36 0.54 -0.01 -0.20 0.2969 -0.30 0.58 0.02
vr1 -0.18 -0.35 -0.53 0.00 0.18 -0.35 0.27 -0.58 1× 10−11

vr2 0.00 0.00 0.00 -0.17 -0.33 -0.84 -0.42 -0.08 5× 10−12

2.5.3 Example: Exact RRPR Motion Synthesis

In this section, we present an example of an RRPR (swinging block) coupler

motion. As shown in Fig. 2.5, the linkage parameters for RRPR example are

as follows: the two ground pivots P1 (revolute joint) and P2 (RP joint) is (0, 1)

and (2, 3), respectively, and the crank link length is 2. We take 10 positions

from this motion as given in Table 2.7. The singular values from SVD analysis

are listed in Table 2.8. Two near zero singular values are: σ1 = 9.08× 10−17,

σ2 = 3.65 × 10−16 and their associated singular vectors are listed in the first

two rows in Table 2.9. The two G-manifolds that these singular vectors define

are shown in Figure 2.10. Minimizing the e in Eq. (2.33) leads to:

θ1 = −43.78◦, θ2 = 28.22◦. (2.36)

The two new vectors qualified to be C-manifolds are given in the last

two rows of Table 2.9 and they are shown in Figure 2.11. After the inverse

computation, for vr1 we obtain: a0 : a1 : a2 = 1 : 2.00 : 3.00, l1 : l2 : l3 =

0.00 : 1 : 3.00, and for vr2 it leads to a0 : a1 : a2 : a3 = 1 : 0.00 : 1.00 : 2.9979,
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Figure 2.10: RRPR example: two quadrics defined by two singular vectors
(v1 and v2) in Table 2.9

Figure 2.11: RRPR example: two resulting constraint manifolds identified
from a pencil of quadrics; the 10 black image points in the figure denotes 10
given positions in Table 2.7. The hyperboloid represents the RR dyad, while
the hyperbolic paraboloid represents the RP dyad.
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Table 2.7: Ten given positions of the RRPR example

Translation Rotation (degree)
(-0.2632,5.2514) 65.1413
(2.4011,6.0359) 4.0516
(1.2685,5.9747) 2.1413
(-0.3345,5.5449) 12.8366
(-1.5528,4.5777) 26.5651
(-2.0939,3.3984) 41.2736
(-1.9950,2.4302) 56.1413
(-1.5422,1.9847) 70.4980
(-1.1217,2.1684) 83.1413
(-1.0000,3.0000) 90.0000

Table 2.8: RRPR Example: The singular values of [A].

9.08× 10−17 3.65× 10−16 0.0515 0.3709 0.6897 2.5741 3.3496 21.80

x1 : x2 : x3 = −2 : −2.99 : 1. It is easily verified that the two dyads combined

together constrain the motion of the RRPR linkage as given.

2.5.4 Example: Exact PRPR (Slider-Swinging Block)
Motion Synthesis

In this section, we test our approach with an example of a PRPR (Slider-

Swinging Block in Fig. 2.5) coupler motion. The linkage parameters for PRPR

example are as follows: the ground pivot P is (3,−2) and the algebraic ex-

pression for the sliding line L is x + y + 2 = 0. We take 10 positions from

this motion as given in Table 2.10. Following the same procedure, we get the

singular values which are listed in Table 2.11. Two near zero singular values

are: σ1 = 7.31× 10−17, σ2 = 4.38× 10−16 and their associated singular vectors
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Table 2.9: RRPR example: The two singular vectors associated with G-
manifolds are listed in the first two rows, and the two resulting vectors qualified
to be C-manifolds are listed in the last two rows.For the sake of saving space,
only two digits are shown here. More detailed data could be found in [1].

q1 q2 q3 q4 q5 q6 q7 q8 e
v1 -0.14 -0.28 -0.58 0.00 0.14 0.05 0.45 -0.59 0.06
v2 -0.14 -0.29 -0.13 0.00 0.14 -0.89 -0.23 0.09 0.12
vr1 0.00 0.00 0.32 0.00 0.00 -0.65 -0.49 0.49 1× 10−13

vr2 -0.19 -0.38 -0.57 0.00 0.19 -0.38 0.29 -0.48 1× 10−12

are listed in the first two rows in Table 2.12. The two quadrics that these

singular vectors define are shown in Figure 2.12. Minimizing e leads to:

θ1 = −7.82◦, θ2 = 23.25◦. (2.37)

Table 2.10: Ten given positions of the PRPR example

Translation Rotation (degree)
(3.4099,-4.2601) -19.1790
(4.0197,-4.3714) -15.9454
(4.6593,-4.3932) -11.8887
(5.3252,-4.2873) -6.7098
(6.0000,-4.0000) 0
(6.6343,-3.4644) 8.7462
(7.1222,-2.6291) 19.9831
(7.3017,-1.5359) 33.6901
(7.0562,-0.4015) 48.8141
(6.4721,0.4721) 63.4349

The two new qualified resulting vectors are given in the last two rows of

Table 2.12. These two C-manifolds are shown in Figure 2.13. After the inverse

computation, for vr1 we obtain: a0 : a1 : a2 : a3 = 0.00 : 1 : 1.00 : 4.0034,
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Figure 2.12: PRPR example: Two G-manifolds defined by two singular vec-
tors (v1 and v2) in Table 2.12

Figure 2.13: PRPR example: two resulting C-manifolds identified from a
pencil of G-manifolds, the 10 black image points in the figure denotes 10 given
positions in Table 2.10.
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Table 2.11: PRPR Example: The singular values of [A].

7.31× 10−17 4.38× 10−16 0.0073 0.0340 0.0880 1.0423 3.7198 40.55

Table 2.12: PRPR example: The two singular vectors associated with G-
manifolds are listed in the first two rows, and the two resulting vectors qualified
to be C-manifolds are listed in the last two rows. For the sake of saving space,
only two digits are shown here. More detailed data could be found in [1].

q1 q2 q3 q4 q5 q6 q7 q8 e

v1 0.00 0.00 -0.55 0.21 0.21 -0.04 -0.13 0.77 0.01

v2 0.00 0.00 -0.08 -0.09 -0.09 0.95 -0.26 -0.01 0.17

vr1 0.00 0.00 0.00 -0.12 -0.12 0.95 -0.24 -0.12 1× 10−10

vr2 0.00 0.00 -0.29 0.00 0.00 0.87 -0.29 0.29 6× 10−12

x1 : x2 : x3 = −6.0017 : 1.9983 : 1, and for vr2 it leads toa0 : a1 : a2 = 1 :

2.9997 : −2.00, l1 : l2 : l3 = 0.00 : 1 : −2. It is easily verified that the two

dyads combined together constrain the motion of the PRPR linkage as given.

2.5.5 Example: Exact PRRP Motion Synthesis

Here, we present an example of a PRRP (Double-Slider) coupler motion. As

shown in Fig. 2.5, the linkage parameters for RRRP example are as follows:

the algebraic expressions for the two sliding lines L1 and L2 are x+ y + 2 = 0

and 2x + 2y = 0, respectively. The coupler link lengths is 5. We take 10

positions from this motion as given in Table 2.13. Following the procedure

given before, we get the singular values which are listed in Table 2.14.

As discussed before, the nullity of matrix [A] in this and for the next

example is three. Therefore, we get three singular values that are almost zero:

σ1 = 1.72 × 10−16, σ2 = 3.04 × 10−16 and σ3 = 2.06 × 10−15. The associated
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singular vectors are listed in the first three rows in Table 2.15, and three G-

manifolds that these singular vectors define are shown in Figure 2.14. From

the table, it is clear that none of the singular vectors define a valid C-manifold

as the errors are not close to zero. To identify the constraint manifolds, we

combine all three singular vectors, and minimizing e in Eq. (2.33) with the

scaling-constraint to be λ21+λ
2
2+λ

2
3 = 1. Note that since we have 2 unknowns,

there will always exist four solutions to (2.33) that make e equal to zero:

φ1 = 6.5012◦, θ1 = −53.9823◦ (2.38)

φ1 = −38.4272◦, θ1 = −61.8403◦

φ1 = 0.8126◦, θ1 = −68.4349◦

φ1 = 13.9134◦, θ1 = 71.4804◦.

Table 2.13: Ten given positions of the PRRP example

Translation Rotation (degree)
(4.4548,1.4274) 35.2293
(4.6078,1.7039) 41.7571
(4.6878,1.9439) 48.2429
(4.6948,2.1474) 54.7707
(4.6259,2.3129) 61.4299
(4.4745,2.4372) 68.3271
(4.2288,2.5144) 75.6050
(3.8683,2.5341) 83.4809
(3.3533,2.4767) 92.3403
(2.5933,2.2967) 103.0519

The four new resulting optimum vectors associated with constraint mani-

folds are given in the last four rows of Table 2.15 and the resulting manifolds
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Figure 2.14: PRRP example: three quadrics defined by three singular vec-
tors in Table 2.15. Clearly, none of these hyperboloid of one sheet quadrics
represent a linear constraint.

Figure 2.15: PRRP example: three resulting constraint manifolds identified
from three different pencil of quadrics; the 10 black image points lying on the
intersection curve in the figure denote 10 given positions.
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Table 2.14: PRRP Example: The singular values of [A].

1.72× 10−16 3.04× 10−16 2.06× 10−15 0.014 0.10 0.64 2.17 21.32

Table 2.15: PRRP example: Three orthonormal singular vectors that cor-
respond to singular values σ1 = 1.72 × 10−16, σ2 = 3.04 × 10−16 and
σ3 = 2.06 × 10−15 are listed as v1,v2, and v3. After optimization, the new
resulting vectors qualified to be the constraint manifolds are given as vr1, vr2,
vr3, and vr4. For the sake of saving space, only two digits are shown here.
More detailed data could be found in [1].

q1 q2 q3 q4 q5 q6 q7 q8 e

v1 0.07 0.26 -0.15 0.48 -0.52 -0.14 0.61 0.13 0.13

v2 -0.03 -0.09 0.05 -0.02 0.28 -0.95 0.07 0.08 0.02

v3 0.19 0.68 -0.39 -0.05 0.21 -0.01 -0.28 0.47 0.12

vr1 0.00 0.00 0.00 -0.27 0.10 0.84 -0.44 -0.08 1× 10−17

vr2 -0.13 -0.46 0.26 -0.13 -0.13 0.72 -0.10 -0.39 2× 10−17

vr3 0.00 0.00 0.00 -0.16 -0.06 0.93 -0.29 -0.11 3× 10−18

vr4 0.00 0.00 0.00 -0.18 0.47 -0.83 -0.19 0.14 1× 10−18

are shown in Figure 2.15. All the quadrics are now seem to be hyperbolic-

paraboloids which represent line constraints except vr2, which turns out to be

a hyperboloid. After the inverse computation, for vr1 we obtain: a0 : a1 : a2 :

a3 = 0.00 : 0.9316 : −0.3635 : 1.1367, x1 : x2 : x3 = −1.8072 : 3.8408 : 1,

for the hyperboloid vr2 it is: a0 : a1 : a2 : a3 = 1 : −1.00 : −1.00 : 4.25,

x1 : x2 : x3 = −3.50 : 2.00 : 1, for vr3 it leads to a0 : a1 : a2 : a3 =

0.00 : 0.9283 : 0.3719 : 2.5989, x1 : x2 : x3 = −5.2262 : 3.8086 : 1, and

for vr4 it leads to: a0 : a1 : a2 : a3 = 0.00 : 0.3552 : −0.9348 : −1.1591,

x1 : x2 : x3 = −1.8393 : 0.1311 : 1. Now it shows that the hyperboloid of

one sheet(vr2) turns out to be the circle trajectory traced by the middle point

of the coupler link. However, we find that the other three linear constraints
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are not the same ones as in given parameters. Any linear combination of

these three resulting vectors satisfies the given data and the two relations in

Eq. (2.23). Thus, there exists many solutions of double-sliders that can realize

the given motion.

2.5.6 Example: Exact RPPR (Double-Swinging Block)
Motion Synthesis

In this section, we test our approach with an example of RPPR (Double-

Swinging Block) coupler motion. As shown in Fig. 2.5, the linkage parameters

for RRRP example are as follows: the two RP joints P1 and P2 are located at

(1, 2) and (3,−2), respectively. The angle between the two swing links is 90◦.

Ten positions from this coupler motion are given in Table 2.16. Following the

same procedure, we get the singular values which are listed in Table 2.17, and

three singular values that are close to zero: σ1 = 1.89×10−16, σ2 = 2.02×10−16

and σ3 = 6.49 × 10−16, which is the same situation as double-slider. The

associated singular vectors are listed in the first three rows in Table 2.18, and

the three quadrics that these singular vectors define are shown in Figure 2.16.

To identify the constraint manifolds, we follow the same procedure as in last

section(double-slider example), which leads to:
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φ1 = −53.9434◦, θ1 = 38.0828◦ (2.39)

φ1 = 59.0978◦, θ1 = −51.4634◦

φ1 = 68.4625◦, θ1 = −47.6594◦

φ1 = −66.1936◦, θ1 = −68.6608◦.

Table 2.16: Ten given positions of the RPPR example

Translation Rotation (degree)
(2.0823,-4.3526) -103.9349
(2.2938,-4.4509) -99.4349
(2.5323,-4.5512) -94.9349
(2.8008,-4.6479) -90.4349
(3.1010,-4.7350) -85.9349
(3.4336,-4.8060) -81.4349
(3.7980,-4.8541) -76.9349
(4.1926,-4.8725) -72.4349
(4.6145,-4.8548) -67.9349
(5.0596,-4.7947) -63.4349

The four new resulting vectors associated with constraint manifolds are

given in the last four rows of Table 2.18 and the resulting manifolds are shown

in Figure 2.17. Similar as double-slider mechanism, there also exists a hy-

perboloid of one sheet. After the inverse computation, for the hyperboloid

vr1 we obtain: a0 : a1 : a2 : a3 = 1 : 1.9998 : 0.00 : 1.0115, x1 : x2 : x3 =

−5.6577 : −2.8288 : 1, for vr2 it leads to a0 : a1 : a2 = 1 : −0.2359 : 0.08222,

l1 : l2 : l3 = 0.2356 : 0.9719 : 4.0818, for vr3 it is: a0 : a1 : a2 = 1 :

−0.1034 : 0.9143, l1 : l2 : l3 = 0.3942 : 0.9191 : 4.8296, and for vr4 it leads to:
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Figure 2.16: RPPR example: three quadrics defined by three singular vectors
in Table 2.18. All the three quadrics are hyperboloid of one sheet, therefore,
none represent a valid constraint manifold.

Figure 2.17: RPPR example: three resulting constraint manifolds identified
from three different pencil of quadrics; the intersection curve is also shown.
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Table 2.17: RPPR Example: The singular values of [A].

1.89× 10−16 2.02× 10−16 6.49× 10−16 0.0015 0.02 0.20 2.19 31.05

Table 2.18: RPPR example: Three orthonormal singular vectors that cor-
respond to singular values σ1 = 1.89 × 10−16, σ2 = 2.02 × 10−16 and
σ3 = 6.49 × 10−16 are listed in the first three rows. After optimization, the
new resulting vectors qualified to be the constraint manifolds are given in the
last four rows. For the sake of saving space, only two digits are shown here.
More detailed data could be found in [1].

q1 q2 q3 q4 q5 q6 q7 q8 e

v1 -0.09 -0.39 0.25 0.19 0.00 0.66 0.52 0.20 0.11

v2 0.06 0.02 0.55 -0.11 0.00 -0.62 0.48 0.25 0.06

v3 -0.01 -0.26 -0.14 0.02 0.00 -0.17 0.41 -0.85 0.005

vr1 0.07 0.40 0.20 -0.14 0.00 -0.40 -0.40 0.68 3× 10−18

vr2 0.00 -0.10 -0.43 0.00 0.00 -0.10 -0.01 -0.89 5× 10−18

vr3 0.00 -0.15 -0.35 0.00 0.00 -0.15 0.12 -0.91 3× 10−18

vr4 0.00 0.29 -0.11 0.00 0.00 0.29 -0.63 0.65 1× 10−18

a0 : a1 : a2 = 1 : 4.1389 : 0.2095, l1 : l2 : l3 = 0.9287 : −0.3709 : 4.2042. Now it

shows that the hyperboloid of one sheet(vr1) turns out to be the circle trajec-

tory traced by the intersection point of the two moving lines(the vertex of the

angle between the two lines). Similar to double-slider mechanism, here also

we find many solutions for double-swinging block coupler motion synthesis.

2.6 Conclusions

In this chapter, we presented a novel method for synthesizing planar motion

using kinematic mapping. Instead of finding two special quadric constraint

manifolds associated with a four-bar linkage with nonlinear (quadratic) coeffi-

cients, which makes the problem difficult to compute, we used a more general
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form of quadric such that its coefficients are linear. Furthermore, we seek to

fit a given set of image points to a pencil of quadrics. This leads to a linear

least squares problem that can be readily solved using SVD algorithm. After

obtaining the pencil of quadrics that contains the constraint manifolds, we

then impose the quadratic constraints associated with the constraint manifold

to find the two special quadrics. The resulting algorithm for planar four-bar

linkage synthesis is not only vastly more efficient but also unifies the treatment

of dyads composed from revolute joints and sliding joints.
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Chapter 3

On the Complete Synthesis of
Finite Positions with Constraint
Decomposition Via Kinematic
Mapping

As a mechanism motion is typically defined by algebraic constraints, the use

of the kinematic mapping transforms these algebraic constraints into algebraic

manifolds in the image space Σ. Thus, a single degree of freedom motion of a

planar mechanism is represented by the curve of intersection of two algebraic

manifolds. The problem of motion approximation is transformed into an al-

gebraic curve fitting problem in Σ, where various methods in approximation

theory may be applied. Although conceptually straightforward, this kinematic

mapping based formulation leads to a highly nonlinear optimization problem

which requires sophisticated numerical algorithm for the solution. Recently,

Ge et al. [7] presented a fast and efficient algorithm for motion approximation

by separating the task of data fitting and constraint fitting for constraint man-
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ifolds of a planar 4R linkage. In this chapter, we revisit the classical Burmester

problem for exact synthesis of five or less given positions. Unlike the previous

work that approximates the prescribed motion via the process of optimization,

it turned out that for five-position synthesis, the two constraint equations could

be analytically solved, which results in up to 4 planar dyads, containing either

revolute joint or prismatic joint, that fit the prescribed positions exactly. For

four or less positions, infinite numbers of solutions are obtained, but we can

determine a limited number from them by imposing different kinds of con-

straints, e.g., defining one of the coordinates of the center/circle points, by

picking the ground line/coupler line, or by adding additional task position.

It has been proved that all of these additional physical constraints are able

to convert into the same form of a linear constraint equation, which is then

added back into the problem and solved without increasing the computational

complexity.

The organization of the chapter is as follows. Section 3.1 reformulates our

algebraic-fitting based synthesis approach for five positions, and provides an

example that results in six solutions, including three crank-slider mechanisms,

all of which could exactly realize the five given positions. Section 3.2 deals with

the synthesis of four given positions. To select a limited number of solutions

from the infinite many, three different ways of imposing additional constraints

are introduced, and they are all proved to be equivalent as a linear constraint

equation. Examples are also provided respectively for these three cases. Sec-

tion 3.3 extends to the synthesis of three positions, which is demonstrated to
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be similar as four-position synthesis, and designer could choose two additional

constraints flexibly.

3.1 Five-position Synthesis with Algebraic Fit-

ting of a Pencil of Quadrics.

In our previous work[7], we have find that for a planar position Z = (Z1, Z2, Z3, Z4)

that can be realized by one of the three types of planar dyads: RR, PR or RP,

it has to satisfy a quadratic equation:

p1(Z
2
1 + Z2

2) + p2(Z1Z3 − Z2Z4) + p3(Z2Z3 + Z1Z4)

+p4(Z1Z3 + Z2Z4) + p5(Z2Z3 − Z1Z4) + p6Z3Z4

+p7(Z
2
3 − Z2

4) + p8(Z
2
3 + Z2

4) = 0, (3.1)

with two additional conditions:

p1p6 + p2p5 − p3p4 = 0,
2p1p7 − p2p4 − p3p5 = 0.

(3.2)

where the coefficient vector p corresponds to one of the three types of dyads,

and based on p we can determine the type and the dimension of the dyad[7].

Now if we consider the classical Burmester problem of synthesizing 5 planar

positions, it can be formulated as solving five linear equations with the two
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constraints listed in (3.2):

⎡⎢⎢⎢⎢⎣
A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
p2
p3
p4
p5
p6
p7
p8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (3.3)

where
Ai1 = Z2

i1 + Z2
i2, Ai2 = Zi1Zi3 − Zi2Zi4,

Ai3 = Zi2Zi3 + Zi1Zi4, Ai4 = Zi1Zi3 + Zi2Zi4,
Ai5 = Zi2Zi3 − Zi1Zi4, Ai6 = Zi3Zi4,

Ai7 = Z2
i3 − Z2

i4, Ai8 = Z2
i3 + Z2

i4.

(3.4)

are the terms of the ith position represented in quaternion form.

Instead of solving the five linear equations together with the two quadratic

equations (3.2), we first compute the null space solution p = (p1, p2, . . . , p8)

from the linear system (3.3) to obtain the candidate solutions for the five

position Burmester problem. We then find such column vectors in the null

space that satisfy (3.2). This effectively decomposes the Burmester problem

into two much simpler subproblems. The null-space problem is linear and can

be readily solved using various algebraic means, e.g., Gaussian Elimination,

QR Decomposition, or as used in this paper, Singular Value Decomposition

(SVD) method. After that, the second subproblem can be reduced to a quartic

equation with one unknown.

Since the rank of [A] is five, the matrix [A]T [A] has three zero eigenvalues

and the corresponding eigenvectors, vα, vβ and vγ, define the basis for the

null space. Let α, β, γ denote three real parameters. Then, any vector in the
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null space of [A] is given by:

p = αvα + βvβ + γvγ. (3.5)

For vector p to satisfy Eq. (3.2), we substitute (3.5) into (3.2) and obtain two

homogeneous quadratic equations F1(α, β, γ) = 0 and F2(α, β, γ) = 0 as:

F1(α, β, γ) =
K10α

2 +K11β
2 +K12αβ +K13αγ +K14βγ +K15γ

2 = 0,

F2(α, β, γ) =
K20α

2 +K21β
2 +K22αβ +K23αγ +K24βγ +K25γ

2 = 0,

(3.6)

where Kij are defined by components of the three eigenvectors obtained from

SVD algorithm. These two equations can be further reduced to a single quartic

equation in one unknown in terms of the ratio of two of the three homoge-

neous parameters (α, β, γ) and thus can be analytically solved. Since a quartic

equation may have four real roots, two real roots or no real roots, there could

be four solutions, two solutions, or no solutions for the coefficients p of the

constraint manifold of planar dyads. As coefficients p are homogeneous, in

this paper, we normalize them such that p · p = 1.

In addition, since F1 and F2 are homogeneous quadratic functions, they can

be plotted as two quadratic curves in α-β plane(Figure. 3.1) if we set γ = 1.

As discussed above, these two quadratic curves may intersect into up to four

points, which actually denote the up to four feasible solutions of (α, β) so that

they can be substituted into (3.5) with γ = 1 and yield the resulting dyads.

Furthermore, by investigating whether the solution p falls into one of the

following four patterns, we can determine the type of the resulting dyads:
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1. if p1 = p2 = p3 = p4 = p5 = 0, the resulting dyad is a PP dyad;

2. if p1 = p2 = p3 = 0, the resulting dyad is a PR dyad;

3. if p1 = p4 = p5 = 0, the resulting dyad is a RP dyad;

4. if none of the above, the resulting dyad is a RR dyad.

and the dimension information can also be determined by:

a0 : a1 : a2 : a3 = p1 : p4 : p5 : (4p8 − p1(p26+4p27)

p24+p25
),

x = p6p5−2p7p4
p25+p24

, y = −p6p4+2p7p5
p25+p24

.
(3.7)

where (x, y) is the coordinates of the point in the moving frame M that traces

a circle, and the expression of that circle in the fixed frame is a0(X
2 + Y 2) +

2a1X+2a2Y +a3 = 0, which is for RR dyad case. When p1 = p2 = p3 = 0, we

have a0 = 0, and the circle degenerates into a straight line: 2a1X+2a2Y +a3 =

0 and we obtain the dimensions for PR dyad.

Or if it is a PR dyad, the dimensions are:

l1 : l2 : l3 = p2 : p3 : 2p8,
a0 : a1 : a2 = (p22 + p23) : (q3q6 + 2q2q7) : 2(−q2q6 + 2q3q7),

(3.8)

where l = (l1, l2, l3) is the homogenous line coordinates for the straight line in

moving frame M , which always passes through a fixed point (−a1,−a2, a0) in
fixed frame F .

Example 1: Five-Position Synthesis

Now consider five task positions given in Table 3.1. The substitution of the

data in the table into (2.3) yields five image points Zi (i = 1, 2, 3, 4, 5), which
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Figure 3.1: Five-position example: visualization of the two quadratic curves
obtained from Eq. (3.6) in α-β plane, in which each intersection point denotes
one group of feasible solutions as in (3.10) .

Table 3.1: Example 1: Five task positions
1 2 3 4 5

d1 3.6700 2.7965 2.5562 3.7451 4.5797
d2 0.6457 1.5640 1.7066 1.1415 0.5694
φ −77.5362◦ −56.6879◦ −35.2713◦ −38.6715◦ −63.1693◦

are then substituted into (3.3) to obtain the matrix [A]. The application of

SVD algorithm to [A] yields the following eigenvalues:

0, 0, 0, 0.0038, 0.0407, 0.8890, 1.4832, 107.5677

as well as eight eigenvectors from the matrix [A]T [A]. Listed in Table 3.2

are three of the eigenvectors associated with zero eigenvalues defining the

null space of [A]. We note that these eigenvectors in general do not define

the constraint manifolds of planar dyads. Instead, these three orthonormal
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p1 and p4

p2 and p3

Figure 3.2: Example 1: four constraint manifolds associated with Table 3.3.
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eigenvectors define the null space that may yield the constraint manifolds. We

use (3.2) to define the following deviation from the constraint manifolds of

planar dyads:

e =
√
[p1p6 + p2p5 − p3p4]2 + [2p1p7 − p2p4 − p3p5]2. (3.9)

Listed in the last column of Table 3.2 are these deviations and they happen to

be all non-zero for this example, which means that none of the three eigenvec-

tors represent the constraint manifolds associated with the five specified task

positions.

To obtain the coefficient vectors p that define the constraint manifolds,

we follow the procedure leading to (3.6) and solve the resulting two quadratic

equations to obtain four real solutions:

(α/γ)1 = 1.7646, (β/γ)1 = −1.3727,
(α/γ)2 = −1.5764, (β/γ)2 = −0.8212,
(α/γ)3 = −0.1447, (β/γ)3 = 0.9733,
(α/γ)4 = 0.7266; (β/γ)4 = 1.3161.

(3.10)

Substituting them into (3.5), we obtain the homogeneous coordinates (listed

in Table 3.3) of four constraint manifolds (shown in Figure 3.2) associated

with four feasible dyads for the five given positions (listed in Table 3.1). The

last coefficient vector p4 in Table 3.3 has the special feature that its first three

coordinates are identically zero (up to floating point error), and thus represents

a PR dyad. The other three are all RR dyads. They define three planar 4R

linkages as well as three slider-crank mechanisms. Three constraint circles and

one constraint line as well as their respective circle points are computed using
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Table 3.2: Example 1: Three eigenvectors defining the null space with
deviation e.

(v1, v2, v3, v4, v5, v6, v7, v8) e

vα (0.0076,-0.3896,-0.1690,-0.3351,0.3048,-0.0558,0.7320,0.2747) 0.1884

vβ (-0.0035,0.1329,0.0558,0.2911,0.2460,0.8939,0.1864,-0.0102) 0.0554

vγ (0.2023,0.2060,0.5127,-0.2219,-0.1643,0.0816,-0.0829,0.7510) 0.1363

Table 3.3: Example 1: Four normalized coefficient vectors of the constraint
manifolds of four planar dyads.

(p1, p2, p3, p4, p5, p6, p7, p8) Dyad

p1 (0.1773,0.3546,0.5319,−2× 10−13,-0.17730.3546-0.26590.5762) RR

p2 (0.0876,-0.0334,0.1640,-0.3560,-0.2934,-0.7779,-0.2066,0.3219) RR

p3 (0.1103,-0.2435,0.1108,-0.4372,0.1417,-0.1265,0.5540,0.6182) RR

p4 (−3× 10−8,−3× 10−7,−8× 10−7,0.1655,0.3310,0.8276,0.4138,0.0828) PR

(3.7) and are shown in Table 3.4.

3.2 Four-Position Synthesis

In this case, the matrix [A] in (3.3) becomes a 4×8 matrix and thus the matrix

[A]T [A] is of rank 4. The application of SVD algorithm hereby yields four zero

eigenvalues. Let vα, vβ, vγ and vμ denote four eigenvectors associated with

the zero eigenvalues. They form the basis of the four-dimensional null space

of [A]. Any vector p in the null space as given by

p = αvα + βvβ + γvγ + μvμ (3.11)

defines a candidate constraint manifold of a planar dyad that is compatible

with the four specified task positions. We need to select the real parameters
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Table 3.4: Example 1: homogeneous coordinates of the constraint circle (or
line) and the circle point.

(a0, a1, a2, a3) (x, y)

p1 (1, 0,−1, 0) (−2,−3)
p2 (1,−4.0639,−3.3470, 11.0521) (0.3807,−1.8715)
p3 (1,−3.9639, 1.2843, 16.5279) (2.2084,−1.0049)
p4 (0, 1, 2, 2) (1,−3)

(α, β, γ, μ) such that both constraints in Eqs.(3.2) are satisfied. This leads to

F1(α, β, γ) +G1(α, β, γ, μ) = 0,
F2(α, β, γ) +G2(α, β, γ, μ) = 0.

(3.12)

where F1 and F2 are the same form as in (3.6), and:

G1(α, β, γ, μ) = K16μ
2 +K17αμ+K18βμ+K19γμ,

G2(α, β, γ, μ) = K26μ
2 +K27αμ+K28βμ+K29γμ.

(3.13)

Similarly, Kijs are obtained from Zi (i = 1, 2, 3, 4). If we set one of the

homogeneous parameters to be 1, e.g., μ = 1, the two quadratic functions

F1+G1 and F2+G2 can then be plotted as two quadratic surfaces in α−β−γ
space(Figure. 3.3), and the intersection of these two quadratic surfaces denotes

feasible solutions for (α, β, γ) with μ = 1. It is obvious that for these two

quadratic equations, the homogeneous parameters (α, β, γ, μ) have ∞1 many

solutions, which formulate a curve as shown in the figure.

Example 2: Four-Position Synthesis

Consider four task positions shown in Table 3.5, which is taken from [2].

The application of SVD algorithm yields the following eight eigenvalues:

0, 0, 0, 0, 0.0602, 3.2629, 20.9944, 3173.6955.
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Figure 3.3: Four-position example: visualization of F1 + G1 and F2 + G2

(Eq. (3.14), obtained from Eq. (3.35)) in α − β − γ space are two quadratic
surfaces when homogeneous parameter μ is set to be 1. The intersection curve
denotes ∞1 of feasible solutions for the given four positions in Table. 3.5.

Table 3.5: Example 2: Four task positions from [2].
1 2 3 4

d1 -3.339 -2.975 -3.405 -7.435
d2 1.360 7.063 9.102 11.561
φ 150.94◦ 114.94◦ 100.22◦ 74.07◦

As expected, there are four zero eigenvalues. The four eigenvectors defining the

basis of the four-dimensional null space are listed in Table 3.6. As discussed

in Section. 3.2, for these prescribed four positions, we substitute (3.11) into

(3.2), and rearrange these two quadratic equations in the form of (3.35), which
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Table 3.6: Example 2: Four basis vectors for the null space and deviation e.
(v1, v2, v3, v4, v5, v6, v7, v8) e

vα (0.0321,0.1655,-0.0515,0.3788,0.1200,-0.0801,0.8964,-0.0326) 0.0368

vβ (0.0151,0.0365,-0.0061,0.1131,-0.1060,0.9860,0.0467,-0.0043) 0.0121

vγ (0.1612,0.0102,0.6817,-0.0143,-0.6982,-0.0780,0.1242,0.0032) 0.5162

vμ (0.0244,0.1725,0.0004,0.3279,-0.0148,-0.0354,-0.1391,0.9172) 0.0634

have been plotted in Figure. 3.14:

0.0032α2 − 0.0058β2 − 0.0504γ2 + 0.0880μ2 + 0.0882αβ+
0.1174αμ+ 0.0715βμ+ 0.0583αγ + 0.3195βγ + 0.3602μγ = 0,

0.0023α2 − 0.0301β2 + 0.2604γ2 − 0.0073μ2 − 0.0141αβ−
0.0139αμ− 0.0408βμ+ 0.0832αγ + 0.0258βγ − 0.0110μγ = 0,

(3.14)

Furthermore, in order to select limited number of solutions from the infinity

number, one more constraint need to be added. For practical four-position

synthesis instance, generally three cases of physical constraints can be used to

limit the solution set: to define the center point(fixed pivot) of an RR dyad, or

the circle point(moving pivot) of an RR dyad, or to select a fifth task position

and add to the problem. These three ways of imposing additional constraints

are discussed in the following subsections.

3.2.1 Imposing additional constraint by selecting center
point(fixed pivot)

According to Eq. (3.7), the homogeneous coordinates of the center point of an

RR dyad is (−a1
a0
,−a2

a0
), which can also be represented by the elements of p as:

Xc = −p4
p1
, Yc = −p5

p1
. (3.15)
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Since for four-position synthesis, the resulting homogeneous parameters (α, β, γ, μ)

have ∞1 many solutions, by imposing an additional constraint condition of the

center point, the number of solution set can be reduced to a limited number.

Either the Xc or Yc can be set to a certain constant, and hereby the additional

constraint equation can be formulated as −p4
p1

= const or −p5
p1

= const, which

substituted into (3.11) obviously yields a linear relationship for (α, β, γ, μ).

More generally, without increasing the complexity of the problem(so that

the complexity is still equivalent as solving two quadratic equations, which is

analytically solvable), we can define a straight line L1Xc + L2Yc + L3 = 0 to

constrain the center point (Xc, Yc), and the constraint equation can be easily

derived as:

−L1p4 − L2p5 + L3p1 = 0 (3.16)

imposing (3.11) yields:

[α β γ μ]

⎡⎢⎢⎣
−vα4 − vα5 vα1
−vβ4 − vβ5 vβ1
−vγ4 − vγ5 vγ1
−vμ4 − vμ5 vμ1

⎤⎥⎥⎦
⎡⎣ L1

L2

L3

⎤⎦ = 0. (3.17)

where vαi denotes the ith element of vα.

Obviously the above equation is a linear relationship for (α, β, γ, μ):

Cαα + Cββ + Cγγ + Cμμ = 0 (3.18)

where ⎡⎢⎢⎣
Cα

Cβ

Cγ

Cμ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−vα4 − vα5 vα1
−vβ4 − vβ5 vβ1
−vγ4 − vγ5 vγ1
−vμ4 − vμ5 vμ1

⎤⎥⎥⎦
⎡⎣ L1

L2

L3

⎤⎦ . (3.19)
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Also, if we set one of the homogeneous parameters μ to be 1, and plot the

above linear constraint equation (3.18) in α− β − γ space, we obtain a plane,

which can then be combined with (3.35), as plotted in Figure. 3.4, and reduce

the number of solutions to 4(Figure. 3.5). These solutions will give us resulting

RR dyads whose center points always lie on the line of L1Xc +L2Yc +L3 = 0,

except for the special case that p1 = p4 = p5 = 0(as stated in Section.3.1, this

is an RP dyad), which will make (3.16) always true for any (L1, L2, L3).

Now we know Eq. (3.18) is derived from the straight line L1Xc+L2Yc+L3 =

0 that the center points(fixed pivots) lie on. From the perspective of a closed-

loop four-bar linkage, this straight line actually describes the line of the ground

link, on which the two fixed pivots locate. In other words, this additional linear

constraint equation (3.18) is obtained by picking the line of ground link of the

four-bar linkage.

Example of selecting the line of ground link as additional constraint:

With the prescribed four positions in Table. 3.5 and the two quadratic

surfaces we obtained in previous discussion(Eq. (3.14)), first let us set the line

of ground link to beXc−Yc = 0 as the additional constraint, which represented

in (L1, L2, L3) is (1,−1, 0). With Eq. (3.19), the additional linear constraint

equation is obtained to be:

−0.0601α− 0.3346β + 0.7474γ − 0.1609μ = 0 (3.20)

Combining the above linear equation with the two quadratic equations in

70



The constraint plane and surface of F1 +G1

The constraint plane and surface of F2 +G2

Figure 3.4: Selecting ground line for four-position example: visualization of
the fixed line Xc − Yc = 0 (Eq. (3.20)) is a plane in α − β − γ space when
homogeneous parameters μ is set to be 1. The plane is then combined with
the two quadratic surfaces in Figure. 3.14.
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Figure 3.5: Selecting ground line for four-position example: the constraint
plane of (3.20)(Xc − Yc = 0) as well as two quadratic surfaces(F1 + G1 and
F2+G2) obtained from Eq. (3.14) intersect into four points, which denote four
groups of feasible solutions for (α, β, γ, μ).

Eq. (3.14) as shown in Figure. 3.4 and Figure. 3.5, we obtain four real solutions.

Exclude one of the special case that p1 = p4 = p5 = 0, the rest three RR dyads

are listed in Table.3.7. From the dimensions of (a0, a1, a2, a3) it is easily verified

that their center points do lie on the straight line of Xc − Yc = 0.

On the other hand, a more interesting question is proposed: given an

arbitrary linear relationship of (α, β, γ, μ), i.e. Eq. (3.18), is it possible to

find the line parameter (L1, L2, L3) which associated with (Cα, Cβ, Cγ, Cμ) that

constrains the circle point? From (3.17), this problem can be viewed as seeking

72



Table 3.7: Example 2: Constraint circles and circle points of the resulting RR
dyads when selecting the line of ground link to be Xc − Yc = 0.

(a0, a1, a2, a3) (x, y)

p1 (1,−4.9562,−4.9562, 7.9671) (0.7720,-8.5028)
p2 (1,−10.4646,−10.4646, 142.9280) (-3.4322,-22.3021)
p3 (1, 12.0701, 12.0701,−17.2315) (-6.5679,0.1791)

the parameter (L1, L2, L3) such that⎡⎢⎢⎣
−vα4 − vα5 vα1
−vβ4 − vβ5 vβ1
−vγ4 − vγ5 vγ1
−vμ4 − vμ5 vμ1

⎤⎥⎥⎦
⎡⎣ L1

L2

L3

⎤⎦
is equivalent as the homogeneous coefficients (Cα, Cβ, Cγ, Cμ). Or:⎡⎢⎢⎣

−vα4 − vα5 vα1
−vβ4 − vβ5 vβ1
−vγ4 − vγ5 vγ1
−vμ4 − vμ5 vμ1

⎤⎥⎥⎦
⎡⎣ L1

L2

L3

⎤⎦ = λ

⎡⎢⎢⎣
Cα

Cβ

Cγ

Cμ

⎤⎥⎥⎦ . (3.21)

where λ denotes a homogeneous factor for (Cα, Cβ, Cγ, Cμ). From (3.21) it

is obvious that (L1, L2, L3) are linearly dependent on the right side of the

equation. In other words, if the right side, (Cα, Cβ, Cγ, Cμ), is scaled by λ,

then the solution (L1, L2, L3) will also scale by λ, which remains equivalent as

(L1, L2, L3) since they are homogeneous line parameters. Thus λ turns out to

be redundant, and we can simplify (3.21) as:⎡⎢⎢⎣
−vα4 − vα5 vα1
−vβ4 − vβ5 vβ1
−vγ4 − vγ5 vγ1
−vμ4 − vμ5 vμ1

⎤⎥⎥⎦
⎡⎣ L1

L2

L3

⎤⎦ =

⎡⎢⎢⎣
Cα

Cβ

Cγ

Cμ

⎤⎥⎥⎦ . (3.22)
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It is known that for the non-homogeneous linear equations to have exact so-

lutions, the rank of augmented matrix needs to be the same as the coefficient

matrix. In this case, the augmented matrix [Au1] is:

[Au1] =

⎡⎢⎢⎣
−vα4 − vα5 vα1 Cα

−vβ4 − vβ5 vβ1 Cβ

−vγ4 − vγ5 vγ1 Cγ

−vμ4 − vμ5 vμ1 Cμ

⎤⎥⎥⎦ (3.23)

Therefore, only if the coefficients (Cα, Cβ, Cγ, Cμ) are given such that the rank

of [Au1] is 3, then there exists one unique group of solutions for (L1, L2, L3),

which means a straight line that constrains the center point can be obtained.

To sum up, in this subsection we showed that for four-position synthesis, a

limited number of resulting dyads could be determined from the ∞1 many by

selecting a straight line that constrains the center points(fixed pivots). This

was achieved by converting the line parameter (L1, L2, L3) to a linear constraint

equation of (α, β, γ, μ) (Eqns. (3.16)-(3.19)), which then combined with (3.35)

to yield up to four real solutions. It needs to be pointed out that this line

actually denotes the line of ground link of the resulting four-bar linkage. In

addition, we also demonstrate that given an arbitrary linear equation as in

form of (3.18), if the coefficients (Cα, Cβ, Cγ, Cμ) are given such that the rank

of [Au1] is 3, its associated line (L1, L2, L3) of ground link could also be found

by solving Eq. (3.22).
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3.2.2 Imposing additional constraint by selecting circle
point(moving pivot)

For the circle point, from Eq. (3.7) it is not obvious to find a linear expression

such that the computational complexity will not be increased. However, if

we consider the two existing constraint equations in (3.2), by representing p4

and p5 with the other terms and substituting back into (3.7), the circle point

coordinates (xc, yc) can actually be derived as simple as:

xc = −p2
p1
, xc = −p3

p1
. (3.24)

Therefore, similar as the center point case, without increasing the computa-

tional complexity we can imposing an additional constraint that the circle

point always lies on a straight line L1xc + L2yc + L3 = 0, and the linear

relationship of (α, β, γ, μ) then becomes:

[α β γ μ]

⎡⎢⎢⎣
−vα2 − vα3 vα1
−vβ2 − vβ3 vβ1
−vγ2 − vγ3 vγ1
−vμ2 − vμ3 vμ1

⎤⎥⎥⎦
⎡⎣ L1

L2

L3

⎤⎦ = 0. (3.25)

It is obvious that this additional linear constraint equation has the same form

as (3.18), which can also be combined with (3.35) and reduce the number of

solutions to 4 (Figure. 3.6 and Figure. 3.7). Similarly, these solutions will also

give us RR dyads whose circle points always lie on the line of L1xc+L2yc+L3 =

0, except for the special case that p1 = p2 = p3 = 0(PR dyad).

In addition, from the perspective of a closed-loop four-bar linkage, this line

that constrains the circle points, L1xc + L2yc + L3 = 0, actually describes the
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line of coupler link viewed in the moving frame of the resulting four-bar linkage,

which means this additional linear constraint equation (3.25) is obtained by

picking the line of coupler link of the four-bar linkage.

When given an arbitrary linear relationship: Cαα+Cββ+Cγγ+Cμμ = 0,

similar as (3.22) in the previous subsection, to find a group of line coordinates

(L1, L2, L3) it represents, we need to investigate the rank of the augmented

matrix [Au2], which for circle point is:

[Au2] =

⎡⎢⎢⎣
−vα2 − vα3 vα1 Cα

−vβ2 − vβ3 vβ1 Cβ

−vγ2 − vγ3 vγ1 Cγ

−vμ2 − vμ3 vμ1 Cμ

⎤⎥⎥⎦ (3.26)

Only if the coefficients (Cα, Cβ, Cγ, Cμ) are given such that the rank of [Au2] is

3, they can associate with a straight line (L1, L2, L3) that constrains the circle

point.

Example of selecting the line of coupler link as additional constraint:

Let us go back to the four-position synthesis example as in Table. 3.5,

instead of selecting the ground link line, if we set the line of coupler link to be

xc − yc +1 = 0 and substitute into Eq. (3.19), the additional linear constraint

equation now becomes:

0.2361α + 0.1380β + 0.7666γ + 0.2961μ = 0 (3.27)

Combining the new linear equation with the two quadratic equations in

Eq. (3.14), we also obtain four real solutions(Figure. 3.6 and Figure. 3.7).
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The constraint plane and surface of F1 +G1

The constraint plane and surface of F2 +G2

Figure 3.6: Selecting coupler line for four-position example: visualization of
the moving line xc − yc + 1 = 0 (Eq. (3.27)) is also a plane in α− β − γ space
when homogeneous parameters μ is set to be 1.
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Figure 3.7: Selecting coupler line for four-position example: the constraint
plane of (3.20)(xc− yc+1 = 0 ) as well as two quadratic surfaces(F1+G1 and
F2+G2) obtained from Eq. (3.14) intersect into four points, which denote four
groups of feasible solutions for (α, β, γ, μ).

Exclude one of the special case that p1 = p2 = p3 = 0, the rest three RR dyads

are listed in Table.3.8. It can also be verified that their circle points lie on the

straight line of xc − yc + 1 = 0.

In addition, from the previous analysis, in this example for the given four

positions in Table. 3.5, we could specify the Xc or Yc for the center point to

be a certain value as Xc = k or Yc = k, or for circle point, xc = k or yc = k,

and by sampling a set of different values of k, the center point curve or the

circle point curve could also be plotted as shown in Figure. 3.8.
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Figure 3.8: Example 2: the center point curve and circle point curve for the
prescribed four positions in Table. 3.5
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Table 3.8: Example 2: Constraint circles and circle points of the resulting RR
dyads when selecting the line of coupler link to be xc − yc + 1 = 0.

(a0, a1, a2, a3) (x, y)

p1 (1, 5.7187,−3.2666, 12.2447) (-2.4871,-1.4871)
p2 (1,−20.5213,−3.2108,−6737.81) (42.7201,43.7201)
p3 (1,−2.7494, 168.7220,−1098.68) (-7.0418,-6.0418)

3.2.3 Imposing additional constraint by selecting a fifth
task position

In this subsection we are seeking an additional constraint that associated with

a fifth task position. After mapping the fifth position into four-dimensional

quaternion space, from the previous discussion, we know that for the fifth

position to be realized by the resulting dyad, it has to satisfy:

pT [Aa1 ... Aa8]
T = 0. (3.28)

where [Aa1 ... Aa8] is a row vector constructed by Eq. (3.4) with the information

of the additional position. Substituting p = αvα+βvβ+γvγ+μvμ, and taking

the homogeneous factor into consideration we have:

[α β γ μ]

⎡⎢⎢⎣
vα

vβ

vγ

vμ

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z2
1 + Z2

2

Z1Z3 − Z2Z4

Z2Z3 + Z1Z4

Z1Z3 + Z2Z4

Z2Z3 − Z1Z4

Z3Z4

Z2
3 − Z2

4

Z2
3 + Z2

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (3.29)

which indicates that adding one additional position is still equivalent as the

linear constraint equation (3.18) of the four homogeneous unknowns (α, β, γ, μ)
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, and thus it can be combined with (3.35) and hereby determine up to four

groups of real solutions.

Example of selecting a fifth task position as additional constraint:

In this section of discussion, we have proved that for the four-position

synthesis, besides picking the ground line or the coupler line, alternatively

we can also reduce the solution set to a limited number by selecting the fifth

position. In our example in Table. 3.5, we define the fifth position such that

d1 = −9.171, d2 = 11.219, φ = 68.65◦, which comes from the fifth position in

[2]. This leads to the following linear relation:

−0.0375α + 0.0230β + 0.1948γ + 0.0281μ = 0. (3.30)

Now it is proved that all of the three means of adding additional constraints:

selecting the ground line/coupler line, or a fifth task position, will eventually

be converted to the same form of a linear constraint equation of (α, β, γ, μ).

All the three additional constraints in this four-position synthesis example,

Eq.(3.20), Eq.(3.27) and Eq.(3.30), have the same form as in (3.18).

Solving (3.14) together with (3.30), we obtain only one pair of real solu-

tions:

(α/γ)1 = 0.9986, (β/γ)1 = −5.2500, (μ/γ)1 = −1.3070;
(α/γ)2 = 8.4764, (β/γ)2 = 2.7108, (μ/γ)2 = 2.1755.

(3.31)

The other pair are complex. The constraint circles and circle points of the

two resulting dyads are listed in Table 3.9. These two center points and circle

points can also be found in the center point curve and circle point curve in

Figure. 3.8.
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Table 3.9: Example 2: Constraint circles and circle points when selecting the
fifth task position to be d1 = −9.171, d2 = 11.219, φ = 68.65◦.

(a0, a1, a2, a3) (x, y)

p1 (1,−7.9879,−0.0279,−131.5185) (2.9323,-8.0241)
p2 (1, 7.9968,−0.0009,−0.0232) (-3.5794,-0.4356)

The same question is proposed for this case: given an arbitrary linear

relationship of (α, β, γ, μ), e.g. Cαα + Cββ + Cγγ + Cμμ = 0, we will inves-

tigate if it is possible to find a position (Z1, Z2, Z3, Z4) that associated with

(Cα, Cβ, Cγ, Cμ).

This problem can also be converted as solving a group of equations:

⎡⎢⎢⎣
vα

vβ

vγ

vμ

⎤⎥⎥⎦
⎡⎢⎣ Ae1

...
Ae8

⎤⎥⎦ =

⎡⎢⎢⎣
vα

vβ

vγ

vμ

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z2
1 + Z2

2

Z1Z3 − Z2Z4

Z2Z3 + Z1Z4

Z1Z3 + Z2Z4

Z2Z3 − Z1Z4

Z3Z4

Z2
3 − Z2

4

Z2
3 + Z2

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎣
Cα

Cβ

Cγ

Cμ

⎤⎥⎥⎦ . (3.32)

as well as

Z2
3 + Z2

4 = 1. (3.33)

which can be viewed as five non-homogeneous quadratic equation with

five unknowns((Z1, Z2, Z3, Z4) as well as λ) and could be solved with many

numerical means. Interestingly, for this problem, up to 6 groups of real so-

lutions could be obtained, which means that given a group of linear coeffi-

cients (Cα, Cβ, Cγ, Cμ), it could associate with as many as six planar positions.
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In other words, it is a one-to-many mapping between additional linear con-

straint equation Cαα + Cββ + Cγγ + Cμμ = 0 and the additional position

(Z1, Z2, Z3, Z4) that we would like to impose.

Now in the example as we previously discussed, we would also like to in-

vestigate the linear constraint equation Eq. (3.30) derived by position d1 =

−9.171, d2 = 11.219, φ = 68.65◦, and see if it also associates with other po-

sitions. According to (3.32), this question could be answered by solving five

non-homogeneous quadratic equations, which will yield up to 6 groups of real

solutions. Obviously d1 = −9.171, d2 = 11.219, φ = 68.65◦ is one of them, and

since complex solutions always come in pairs, thus there will exist at least one

more real solution. After solving these four quadratic equations with numer-

ical algorithms, we find the other solution is d1 = −14.1935, d2 = 2.3730, φ =

53.76◦, which should be able to realized by the resulting dyads in Table. 3.9.

The resulting four-bar mechanism, the four given poses in Table. 3.5 as

well as these two additional positions that associate with (3.30) are plotted in

Figure. 3.9.

In conclusion, for four-position synthesis, generally there are three ways

that could reduce the ∞1 many solutions to a limited number as well as asso-

ciate with practical meanings: picking a straight line that denotes the ground

link, picking a straight line that denotes the coupler link, or selecting a fifth

task position and adding it to the synthesis problem. With our algebraic

fitting based approach, these three means can be unified as imposing an addi-

tional linear additional constraint Cαα+Cββ +Cγγ +Cμμ = 0, which is then
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Figure 3.9: Example 2: the resulting four-bar mechanism after imposing the
fifth position (d1 = −9.171, d2 = 11.219, φ = 68.65◦). The linear constraint
equation derived from d1 = −9.171, d2 = 11.219, φ = 68.65◦ also associates
with another position of d1 = −14.1935, d2 = 2.3730, φ = 53.76◦, and these
two positions are plotted in light gray color while the given four poses are in
dark black color.

combined with (3.35) and determine up to four real solutions of dyads.

3.3 Three-Position Synthesis

In three-position synthesis case, there are only three linear equations in the

form of (3.1) and the null space of the resulting coefficient matrix [A] is five

dimensional. There are five zero eigenvalues from the matrix [A]T [A]. The

corresponding eigenvectors are denoted by vα,vβ,vγ,vμ,vη. A vector in the

null space is given by

p = αvα + βvβ + γvγ + μvμ + ηvη (3.34)
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and only those p that satisfy (3.2) define the constraint manifolds of feasible

dyads:

F1(α, β, γ) +G1(α, β, γ, μ) +H1(α, β, γ, μ, η) = 0,
F2(α, β, γ) +G2(α, β, γ, μ) +H2(α, β, γ, μ, η) = 0.

(3.35)

where F1, F2, G1 and G2 are the same form as in (3.6) and (3.36), and:

H1(α, β, γ, μ, η) = K110η
2 +K111αη +K112βη +K113γη +K114μη,

H2(α, β, γ, μ, η) = K210η
2 +K211αη +K212βη +K213γη +K214μη.

(3.36)

In this case, there are ∞2 solutions for p. To select a limited number of p,

we may use two linear equations in the form of:

Cαα + Cββ + Cγγ + Cμμ+ Cηη = 0 (3.37)

From the discussion in the four-position synthesis section, this can be done by

selecting any two from the three common physical constraints: ground line,

moving line, or additional task position, which will reduce the ∞2 number of

solutions to a limited number. In this case, we actually expand the possibilities

and freedom of imposing physical constraint during synthesis process. For

example, besides of defining solely fixed pivot or moving pivot, designer could

even define both the ground line and the coupler line. What’s more, all of

these additional constraints are eventually converted into a unified form.

3.4 Conclusions

We presented a novel algorithm that uses specified task positions to obtain

“candidate” manifolds and then find feasible constraint manifolds among them.

The first part is solved by null space analysis. The second part is reduced
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to finding the solution of two quadratic equations. Five-position synthesis

could be solved exactly with up to four resulting dyads. For four-position

synthesis, a limited number of solutions could be selected from the ∞1 many

through adding an additional linear constraint equation without increasing the

computational complexity. This linear constraint equation could be obtained

either by defining one of the coordinates of the center/circle points, by picking

the ground line/coupler line, or by adding one additional task position, all

of which are proved to be able to convert into the same form as in (3.18).

For three-position synthesis, two additional constraints could be imposed in

the same way to select from the ∞2 many solutions. This algorithm has two

advantages: it can synthesize both joint type and dimensions of a four-bar

linkage simultaneously and it can handle the complete synthesis of three, four,

and five positions in the same way.
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Chapter 4

Constraint Decomposition Via
Kinematic Mapping:
Approximated Motion Synthesis
and Frame-Dependence Study

In the previous two chapters, we have established a task-driven algebraic-

fitting based approach for planar dyad synthesis. In contrary to the existing

approach of trying to use the intersection curve of two algebraic manifolds for

curve fitting, this chapter shows that the problem of kinematic synthesis of

planar four bar linkage can be solved by directly fitting a pencil of quadrics

to a set of image points defining the image curve of a desired motion. First,

using the Image Space of planar displacements, a class of quadrics, called G-

manifolds, with eight linear and homogeneous coefficients is obtained, which

serves as a unified representation for constraint manifolds of all four types

of planar dyads, RR, PR, and PR, and PP . Additional constraints on the

linear coefficients are then imposed to obtain a planar four-bar linkage that
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best guides through the set of given displacements. That gives us an efficient

and linear algorithm that naturally extracts the geometric constraints of a

motion and leads directly to the type and dimensions of a mechanism for

motion generation, and it is applied in the recapture of mechanism for the

given coupler motion of all types of four-bar linkages. Then in Chapter 3,

the classical Burmester’s problem of the exact synthesis of a planar four-bar

mechanism with five or less given positions is then revisited. It turned out

that for five-position synthesis, up to 4 planar dyads could be found that fit

the prescribed positions exactly.

In this chapter, we seek the compatibility of our approach in approximated

synthesis problem, and take a further study on the performance of this ap-

proach when facing a common issue in kinematic synthesis: frame-dependence

issue, which denotes whether the synthesis result remains the same while the

given motion are measured in different fixed or moving frames.

4.1 Approximated Motion Synthesis with Con-

straint Decomposition Approach

In Chapter 2 we have shown that synthesis of planar dyads for N given posi-

tions could be converted to the problem of fitting a pencil of G-manifolds to a

set of N image points, and can further be formulated as an over-constrained

linear problem [A]q = 0 obtained by substituting for the given values of the

image points in Eq. (2.17), where q is the column vector of homogeneous
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coefficients qi(i = 1 . . . 8). The coefficient matrix [A] is given by:

[A] =

⎡⎢⎢⎢⎢⎢⎢⎣
A11 A12 A13 A14 A15 A16 A17 A18

...
...

...
. . .

...
...

...
AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8

⎤⎥⎥⎥⎥⎥⎥⎦ (4.1)

where, for the ith image points, we have

Ai1 = Z2
i1 + Z2

i2, Ai2 = Zi1Zi3 − Zi2Zi4, (4.2)

Ai3 = Zi2Zi3 + Zi1Zi4, Ai4 = Zi1Zi3 + Zi2Zi4,

Ai5 = Zi2Zi3 − Zi1Zi4, Ai6 = Zi3Zi4,

Ai7 = Z2
i3 − Z2

i4, Ai8 = Z2
i3 + Z2

i4.

Furthermore, for coefficient vector q to be qualified to represent any type of

planar dyad, it has to satisfy:

q1q6 + q2q5 − q3q4 = 0,
2q1q7 − q2q4 − q3q5 = 0.

(4.3)

4.1.1 Singular Value Decomposition

It is shown that the over-constrained system of linear equations, [A]q = 0, can

be solved as solving for the null-space of [A], with the constraint qTq = 1.

The singular vectors form an orthonormal set of basis vectors spanning the

null-space of [A], or in other words, solutions to [A]q = 0. When there are

five or less positions, as shown in Chapter 3, the rank of [A] is in general five

or less. For N positions, if there is a perfect fit, there will be a pair of or-

thonormal singular vectors, say, v1 = [v11 v12 . . . v18] and v2 = [v21 v22 . . . v28],
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corresponding to two zero singular values, which gives us the general solution

space formed by:

q = v1 cos θ + v2 sin θ (4.4)

where θ is the angle between q and v1. In view of Eq. (2.17), the singular vector

q given by Eq. (4.4) defines a pencil of G-manifolds as θ varies. Similarly, in

case of three zero singular values, we can define a singular space defined by

an orthonormal frame of three singular vectors, say, v1 = [v11 v12 . . . v18],

v2 = [v21 v22 . . . v28], and v3 = [v31 v32 . . . v38] corresponding to three smallest

singular values. Then, a general unit singular vector is parameterized by

q = v1 cos θ cosψ + v2 sin θ cosψ + v3 sinψ, (4.5)

where θ, φ are longitude, latitude angles, respectively, for a point on a unit

sphere. Substituting into (4.3), with two quadratic equations and two un-

knowns, we could obtain a group of exact solutions. In general, however, there

may not be a perfect fit, in which case, no singular value will be small e-

nough to be viewed as zero. Since the two conditions in (4.3) require a perfect

satisfaction for q to be qualified to represent a dyad, and by the discussion

above we learn that only by taking three singular vectors can we assure it,

therefore, for arbitrarily given motions which result in no zero-singular values,

three singular vectors that associated with three smallest singular values are

selected to formulate Eq. (4.5). Substituting for components of q in Eq. (4.3),

and solving the two quadratic equations of θ, ψ yields up to four groups of

real solutions, which can then be used to determine q by (4.5). Once q is
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Table 4.1: The 18 prescribed poses from an example in Luu and Hayes [3].

Translation Rotation (degree)
1 (0.0,1.0) 0
2 (0.1,1.0) 4.5
3 (0.2,1.0) 9.0
4 (0.3,1.0) 13.5
5 (0.4,1.0) 18.0
6 (0.6,1.0) 27.0
7 (0.7,1.0) 31.5
8 (0.8,1.0) 36.0
9 (1.0,1.0) 45.0
10 (1.0,0.9) 49.5
11 (1.0,0.8) 54.0
12 (1.0,0.7) 58.5
13 (1.0,0.6) 63.0
14 (1.0,0.4) 72.0
15 (1.0,0.3) 76.5
16 (1.0,0.2) 81.0
17 (1.0,0.1) 85.5
18 (1.0,0.0) 90.0

determined, both the type and the dimensions of the dyads can be instantly

found by the calculation formulas in Eq.(2.21), Eq.(2.22) or Eq.(2.25).

4.1.2 Example: Approximate Motion Synthesis

In this section, an example of 18 prescribed poses that cannot be realized

exactly by a four-bar mechanism is taken from Luu and Hayes [3]. These

poses are also listed in Table. 4.1, and they define a square corner. After

constructing the matrix [A] and performing SVD, the singular values are:

1.15× 10−4, 2.91× 10−3, 6.30× 10−3, 0.1230, 0.1520, 0.9677, 2.3695, 6.0250.
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Table 4.2: Approximated Example: Three orthonormal singular vectors that
correspond to singular values σ1 = 1.15 × 10−4, σ2 = 2.91 × 10−3 and σ3 =
6.30× 10−3 are listed as v1,v2, and v3. After optimization, the new resulting
vectors qualified to be the constraint manifolds are given as vr1, and vr2. The
last column e states the constraint fitting error as in Eq. 2.33.

(q1, q2, q3, q4, q5, q6, q7, q8) e

v1 (-0.4165,-0.0823,-0.0002,0.3547,0.3569,-0.6361,0.3194,0.2449) 0.3340

v2 (0.1316,0.0034,0.1076,0.3944,-0.6617,-0.4606,-0.4034,-0.0525) 0.1113

v3 (0.1188,-0.4116,-0.0244,-0.6037,-0.3609,-0.2636,0.2771,0.4181) 0.2171

vr1 (0.1618,-0.1358,0.0931,0.1699,-0.7428,-0.5257,-0.2849,0.0925) 2.22× 10−16

vr2 (-0.1607,0.1353,0.0913,0.7311,-0.1663,-0.5556,-0.2606,-0.0933) 8.87× 10−17

Unlike the exact synthesis, which gives two- or three- near-zero singular

values, for approximated motion, none of them is reasonably close to zero.

Therefore, we take three singular vectors associated with the three smallest

singular values. The associated singular vectors are listed in the first three rows

in Table 4.2. Large values of constraint errors in the last column indicates that

none of these three singular vectors is qualified to represent a valid dyad type.

To identify the constraint manifolds, we combine all three singular vectors as in

Eq. (4.5), and substitute in Eq. (4.3). Solving these two quadratic equations,

we obtain two sets of real roots:

ψ1 = 19.6766◦, θ1 = 89.6971◦ (4.6)

ψ2 = −25.0331◦, θ2 = 56.2717◦

The two new resulting optimum vectors associated with constraint man-

ifolds are given in the last two rows of Table 4.2. Now we can determine

the type and the dimensions of the dyads. Since neither q1 is zero, we can
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tell that both of the dyads are RR type. After the inverse computation,

for vr1 we obtain: a0 : a1 : a2 : a3 = 1 : −1.0497 : 4.5901 : −1.2520,

x1 : x2 : x3 = 0.8392 : −0.5753 : 1, and also for vr2 it is: a0 : a1 : a2 :

a3 = 1 : 4.5505 : −1.0353 : −1.2897, x1 : x2 : x3 = 0.8422 : 0.5684 : 1. The

two resulting manifolds are plotted in Figure. 4.1. With this information, we

constructed the four-bar linkage and generated its coupler motion. Figure 4.2

shows that the resulting motion coincides quite well with the given 18 poses.

Figure 4.1: Approximated example: two resulting C-manifolds. The black
dots denotes the image points for the 18 prescribed poses, which lie almost
exactly on the intersection curve.

4.2 Case Study of Fixed Frame Dependence

In this section, both exact and approximated examples are presented to test

the performance of our approach on fixed frame transformation. First, five
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Figure 4.2: Approximated example: the resulting four-bar linkage and part of
the coupler motion it generated (in light red color). The 18 given poses are
also plotted in dark blue color.

positions for exact synthesis are listed in Table . 4.3 as the original given data,

after applying a transformation to the fixed frame (translational displacement

is (1, 0), and rotational displacement is 90◦), these five positions measured in

the new fixed frame are listed in the second half of Table . 4.3.

Now, for the original set of data, we substitute them into matrix [A] and

solve for the null space, and then apply the two quadratic conditions (4.3) and

solve for the qualified solutions. At last, we obtain two resulting vectors. After

the inverse computing as in section 3.1, we find that both the two resulting

dyads are RR dyads, and their dimensions are listed the type and dimensions

of the two resulting dyads are listed in Table. 4.4.

Then, after a fixed-frame transformation, we use the new measurements
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Table 4.3: Five original given positions(d1, d2, φ) as well as their new
measurements in a transformed fixed frame(d′1, d

′
2, φ

′).

1 2 3 4 5

d1 -3.39 -2.975 -3.405 -7.435 -14.1935
d2 1.36 7.063 9.102 11.561 2.373
φ 150.94◦ 114.94◦ 100.22◦ 74.07◦ 53.7585◦

d′1 1.36 7.063 9.102 11.561 2.373
d′2 4.39 3.975 4.405 8.435 15.1935
φ′ 60.94◦ 24.94◦ 10.22◦ −15.93◦ −36.2415◦

Table 4.4: The dimensions of the two resulting dyads for the five original given
positions, where (Xc, Yc) and Rc denotes the fixed pivot location, the crank
link length of the RR dyad, and (x, y) denotes the moving point location on
the moving rigid-body.

(Xc, Yc) Rc (x, y)

p1 (7.9628,−0.1345) 14.0001 (2.8128,−8.0509)
p2 (−8.0723, 0.1267) 7.9445 (−3.5227,−0.3736)

of the five given positions (second half of Table. 4.3), and repeat the above

routine. Two new resulting RR dyads are obtained, and their dimensions are

listed in Table. 4.4.

Comparing the two groups of results, it is obvious that the crank link

lengths and moving point locations are identical, while the fixed pivots only

differ by a transformation of (1,0) and 90◦, which is also identical with the

transformation to the original fixed frame. Therefore, this example indicates

that our algebraic-fitting based approach is fixed-frame independent for exact

motion synthesis.

Next, for the approximated example presented in the last section, we also
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Table 4.5: The dimensions of the two resulting RR dyads of the five positions
measured in a transformed fixed frame.

(Xc, Yc) Rc (x, y)

p′
1 (−0.1345,−6.9628) 14.0001 (2.8128,−8.0509)

p′
2 (0.1267, 9.0723) 7.9445 (−3.5227,−0.3736)

apply a fixed transformation (1,0) and 90◦ to the fixed frame, and hereby

obtain a new group of data for the given 18 positions as listed in Table. 4.6.

Substituting these new data into our dyad synthesis routine yields two new

resulting RR dyads. As listed in Table. 4.7, and if we also take the same fixed

transformation (1,0) and 90◦ to the fixed pivots of q1 and q2, it turns out that

the new resulting dyads are close to, but not identical with the resulting dyads

from the original 18 positions.

Therefore, we can draw the conclusion that for approximated motion syn-

thesis, a transformation to the fixed frame will affect the synthesis results

slightly.

4.3 Case Study of Moving Frame Dependence

The similar issue, moving frame dependence, is also studied in this section.

First, a moving-frame transformation (translational displacement is (0, 1), and

rotational displacement is 90◦) is applied to the five given positions in Table

. 4.3, and we obtain a new group of given data(d1′′, d2′′, φ′′) as listed in the

Table . 4.8.

Using the new group of data for our algebraic-fitting based synthesis proce-
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Table 4.6: The 18 prescribed positions from Luu and Hayes [3] measured in a
new fixed frame.

(d′1, d
′
2) φ′ (degree)

1 (1.0,1.0) -90.0
2 (1.0,0.9) -85.5
3 (1.0,0.8) -81
4 (1.0,0.7) -76.5
5 (1.0,0.6) -72.0
6 (1.0,0.4) -63.0
7 (1.0,0.3) -58.5
8 (1.0,0.2) -54.0
9 (1.0,0.0) -45.0
10 (0.9,0.0) -40.5
11 (0.8,0.0) -36.0
12 (0.7,0.0) -31.5
13 (0.6,0.0) -27.0
14 (0.4,0.0) -18.0
15 (0.3,0.0) -13.5
16 (0.2,0.0) -9.0
17 (0.1,0.0) -4.5
18 (0.0,0.0) 0

dure, two resulting RR dyads are obtained, and listed in Table. 4.9. Comparing

the new dimension with Table. 4.4, it can be found that the fixed pivot loca-

tions and the crank link lengths are identical, while the moving point locations

differ by a transformation of (0,1) and 90◦. Therefore, from this example we

can also find that our approach is moving-frame independent for exact motion

synthesis.

After an example of exact motion synthesis, we also apply a moving trans-

formation (0,1) and 90◦ to the 18 poses in Table. 4.1, and substituting these

new data into our dyad synthesis routine yields two new resulting RR dyads
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Table 4.7: The dimensions of the two resulting RR dyads of the 18 positions
from Table. 4.1(q1 and q2). q′

1 and q′
2 are from the same 18 positions

measured in a transformed fixed frame(Table. 4.6).

(Xc, Yc) Rc (x, y)

q1 (−1.0497, 4.5901) 4.5737 (0.8392,−0.5753)
q2 (4.5505,−1.0353) 4.5265 (0.8421, 0.5683)

q′
1 (4.6022, 2.0568) 4.5884 (0.8390,−0.5762)

q′
2 (−1.0399,−3.5609) 4.5395 (0.8414, 0.5703)

Table 4.8: After applying a moving-frame transformation to the five original
given positions from Table . 4.3, the new data (d1′′, d2′′, φ′′) are listed below.

1 2 3 4 5

d1′′ -3.8757 -3.8817 -4.3891 -8.3966 -15.0001
d2′′ 0.4859 6.6413 8.9245 11.8355 2.9642
φ′′ 240.94◦ 204.94◦ 190.22◦ 164.07◦ 143.759◦

as listed in Table. 4.10. Similarly, if we also take the same moving transfor-

mation (0,1) and 90◦ to the moving pivots of q1 and q2 and compare them

with q1′′ and q2′′, the two groups of results are also very close to each other,

but not identical.

4.4 Conclusion

In this chapter, first we have shown that how approximated motion synthe-

sis is handled with our algebraic-fitting based approach, which includes an

Singular Value Decomposition as well as solving two quadratic constraint e-

quations. After that, the frame-dependence property has been studied. Both

exact and approximated motion synthesis examples have been listed, and the

98



Table 4.9: After applying a moving frame transformation to the original data
from Table. 4.3, the dimensions of the two new resulting dyads are listed here.

(Xc, Yc) Rc (x, y)

p1′′ (7.9628,−0.1345) 14.0001 (−9.0509,−2.8128)
p2′′ (−8.0723, 0.1267) 7.9445 (−1.3736, 3.5227)

Table 4.10: The dimensions of the two resulting RR dyads After applying a
moving frame transformation to the 18 positions from Table. 4.1.

(Xc, Yc) Rc (x, y)

q1′′ (−1.0519, 4.5953) 4.5802 (−1.5764,−0.8389)
q2′′ (4.5487,−1.0356) 4.5240 (−0.4330,−0.8426)

results show that while our approach is frame-independent for exact synthesis,

a transformation in fixed or moving frame does affect the synthesis result for

approximated motion synthesis.
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Chapter 5

Task-Drive Complete Synthesis
of One DOF Planar Six-Bar
Linkages For Five Prescribed
Positions

The current chapter builds on the results of Soh and McCarthy [53] and de-

velops a unified procedure for five position synthesis that is applicable to all

six topologically different planar linkages consisting of one four-bar and five

six-bar structures. In addition, our formulation of the problem unifies the

treatment for R joints and P joints, i.e., the dyads include RR, RP, PR and

triads include RRR, RRP, RPR, PRR etc. Furthermore, instead of starting

the design process with a 3R chain as in [53], we start by analyzing the five

task positions first to determine all feasible dyads (RR, RP, PR, PP) using a

planar quaternion based formulation [7]. This formulation leads to a simple

algorithm that reduces the dyad synthesis problem to the solution of a quartic

equation. There are either (a) four real solutions yielding four feasible dyads
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and thus six feasible four-bar linkages, or (b) two real solutions yielding t-

wo feasible dyads and thus one feasible four-bar linkage or (c) no real solution

yielding no feasible four-bar linkage. If a feasible four-bar exists and is deemed

satisfactory, then no further action is required. If no feasible four-bar exists

or none of the feasible four-bar linkages is deemed satisfactory, then we move

on to design six-bar linkages for the five task positions.

In synthesizing six-bar linkages, we developed a novel classification of six-

bar linkages suitable for task driven design. It is based on the number of

dyads used to constrain an end-effector, which is required to guide through

five specified task positions.

For a Type I six-bar linkage, the end-effector is constrained by two dyads,

which forms a four-bar linkage. In this case, the four-bar linkage can be

expanded into a six-bar linkage by adding a new dyad in two distinct ways.

One is to add a triad to either the input link or the output link and the

resulting six-bar linkage is known as a Watt II linkage. The other way is to

add a triad to the end-effector and the resulting six-bar linkage is known as a

Stephenson IIIb linkage. In both cases, the addition of a new dyad does not

change the number of DOF of the system, which is 1 (Figure 5.1).

For a Type II six-bar linkage, the end-effector is constrained only by one

dyad. In this case, we expand the 2 DOF dyad into a 2-DOF five-bar closed

chain by adding a triad, again without changing the number of DOF of the

system. We then add a binary link to the five-bar chain to reduce the DOF

from 2 to 1. This approach leads to four Stephenson six-bar structures (IIa, I,
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Type I-A 
(Four-bar Linkage)

Type I-B 
(Watt II)

Type I-C 
(Stephenson IIIb)

Figure 5.1: Three types of linkages constrained by two dyads.

IIb, III) as shown in Figure 5.2.

For a Type III six-bar linkage, the end-effector is not constrained by any

dyad. In this case, we first make the end-effector to be the end link of a triad

so that its DOF remains to be 3. We then add a binary link and a ternary link

to reduce DOF of the system from 3 to 1. This results in two Watt six-bar

structures (Ia, Ib) as shown in Figure 5.3.

The organization of the chapter is as follows. Section 5.1 reviews the con-

cept of planar quaternions in so far as necessary for the development of this

chapter. Section 5.2 presents a unified representation for circle and line con-

straints in planar kinematics. Section 5.3 introduces a simple algorithm for the

five position Burmester problem with both circle and line constraints. Section

5.4 presents a task driven approach to five position synthesis for designing

four-bar and six-bar linkages. Section 5.5 presents three examples to illustrate

this approach including a novel six-bar linkage for lifting an individual with

age disability from seating position to standing position.
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5.1 Task Driven Approach to Five Position

Synthesis

Based on the discussion of five-position synthesis approach presented in the

last chapter, we now present a new and unified procedure for task driven

design of four- and six-bar linkages with R and P joints for guiding a rigid

body through five specified task positions.

We start with analyzing the five given positions using the simple algorithm

for the general Burmester problem. This algorithm yields not only the number

of dyads that are compatible with the five given positions but also the specific

types (RR, RP, PR, RR) of the dyads as well as their dimensions. In this

chapter, we call these compatible dyads the feasible dyads. One of the distinct

advantage of our algorithm is that it can resolve the issue of joint type (R or

P) as well as linkage dimensions simultaneously from the same analysis proce-

dure. This process could yield either four feasible dyads, or two feasible dyads,

or no feasible dyads from the five positions. Among the feasible dyads, a de-

signer may further determine whether they are acceptable based on additional

design requirements such as branch defect, crank requirements, restrictions on

link lengths as well as the locations of the fixed and moving pivots etc. The

application of these additional requirements may further reduce the number

of feasible dyads.
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Type A 
(Stephenson IIa)

Type B 
(Stephenson I)

Type C 
(Stephenson IIb)

Type D 
(Stephenson IIIa)

Figure 5.2: Four types of Stephenson six-bar linkages. The end-effector (link
3) is constrained by one dyad.

5.1.1 Type I: The end-effector is constrained by two
dyads

When there exist two or more feasible dyads, any two dyads can be used to

constrain the end-effector (the coupler link) so that its DOF is reduced from

3 to 1. The result is a four-bar linkage whose fixed pivots and moving pivots

can be determined using (3.7) and (3.8). If need to be, one has two options to

expand the resulting four-bar linkage into six-bar linkages without changing

the number of DOF. One is to attach another triad between the ground link

and one of the input or output links. This results in a Watt II six-bar linkage.

Another is to attach a triad to the coupler link. This results in a Stephenson

IIIb six-bar linkage.

Figure 5.1 shows three linkages constrained by two dyads. For comparison,
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we also include the conventional naming scheme for six-bar linkages as was

used in Soh and McCarthy [53].

5.1.2 Type II: The end-effector is constrained by one
dyad

If only one feasible dyad is deemed satisfactory, the end-effector as part of the

dyad has 2 DOF. In this case, we first expand the dyad into a five-bar closed

chain by adding a triad, without changing the number of DOF, which is 2.

The triad could be any of the valid triads defined with R or P joints such as

RRR, RRP, RPR, PRR. Once a triad has been selected, the joint parameters

could be obtained using inverse kinematics from the five given positions. We

then seek to add the sixth binary link to the five-bar chain to obtain a six-

bar linkage and at the same time reduces the DOF of the system from 2 to

1. In this case, the choice of the sixth link is not arbitrary but has to be

determined from the five specified task positions. There are four distinct ways

of attaching this binary link and they are shown in Figure. 5.2. They result

in four Stephenson six-bar linkages (I, IIa, IIb, IIIa).

For Stephenson IIa, we first compute five positions of link 4 relative to

link 2. We then apply the SVD algorithm to these five positions to determine

where to attach the sixth binary link in order to form a four-bar linkage using

links 2, 3, 4, and 6. In this case, since the five-bar chain provides one feasible

dyad, we know there exist feasible solutions as the resulting quartic equation

yields feasible solutions in pairs. Thus, one may obtain up to three feasible

Stephenson IIa linkages.
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Type A 
(Watt Ia)

Type B 
(Watt Ib)

Figure 5.3: Two Types of Watt I six-bar linkages for each choice of a triad.
The end-effector (link 4) is not constrained by any dyad.

For Stephenson IIb, we first compute five positions of link 3 relative to link

5. We then apply the SVD algorithm to determine where to attach the sixth

binary link to form a four-bar linkage using links 3, 4, 5, 6. Again, one could

obtain up to three feasible Stephenson IIb linkages.

Similarly, we can compute five positions of link 5 relative to link 2 and use

links 1, 2, 6, and 5 to form a four-bar linkage. This results in up to three

feasible Stephenson I linkages.

For the Stephenson IIIa linkage type, one can use link 1, 6, 4, and 5 to form

a four-bar linkage and use five positions of link 4 for dyad synthesis. Again,

there could be up to three feasible linkages.

In summary, when there is only one feasible dyad, one may obtain up to

12 Stephenson six-bar linkages for each choice of a triad.
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5.1.3 Type III: The end-effector is not constrained by
any dyad

When the end-effector is not constrained by any dyad, it has 3 DOF and can

be easily made as the end link of a triad, without changing the number of

DOF. Again, we may select any one of the several triad types involving R

and/or P joints. To reduce the DOF from 3 to 1, we seek to add one binary

link and one ternary link to obtain a six-bar linkage. As shown in Figure 5.3,

this leads to two Watt six-bar structures (Ia, Ib). The process of adding a

new link requires the synthesis of a four-bar linkage as discussed earlier. For

Watt Ia, this involves synthesizing the four-bar linkage with links 1, 2, 3, 5 and

subsequently the second four-bar with links 3, 4, 6, and 5. As each four-bar

could yield up to 3 new solutions, we will have up to 9 Watt Ia six-bar linkages.

Similarly, we can conclude that we will have up to 9 Watt Ib six-bar linkages

as well.

In summary, when there is no feasible dyad, one may obtain up to 18 Watt

I six-bar linkages for each choice of the triad.

5.2 Examples

In this section we present three examples to demonstrate the task driven design

process for synthesizing planar linkages that guide through five specified task

positions.
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Figure 5.4: Example 1: Four circle constraints defining four RR dyads.

5.2.1 Example 1: Five task positions with four feasible
dyads

First consider five task positions given in Table. 5.1. The application of our

task analysis algorithm leads to four feasible RR dyads. The coefficients p

for the constraint manifolds of these dyads are listed in Table. 5.2. The cir-

cle points (x, y) and the homogeneous coordinates of the circle constraints,

(a0, a1, a2, a3), are obtained using (3.7). The results are listed in Table 5.3 and

shown graphically in Figure. 5.4. These four circle constraints define four RR
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Figure 5.5: Example 2: Two circle constraints defining two RR dyads.

dyads, which could be used to construct six four-bar linkages.

Table 5.1: Example 1: A set of five task positions that leads to four feasible
dyads.

E1 E2 E3 E4 E5

Translation (3.67,0.645) (1.98,1.56) (2.56,1.7) (3.5,1.14) (4.5,0.55)

Rotation (degree) -77 -56 -35 -38 -63

5.2.2 Example 2: Five task positions with two feasible
dyads

Now consider another set of five task positions listed in Table. 5.4. In this

case, our task analysis algorithm yields only two real solutions p1 and p2 for

homogeneous coordinates of the constraint manifolds of planar dyads. Listed

in Table 5.5 are these two solutions. Listed in Table 5.6 are the homogeneous

coordinates of the two circle constraints and coordinates of two circle points.
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(a) A Stephenson IIIa six-bar linkage with no P joint.
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(b) A Stephenson IIIa six-bar linkage with one P joint.

Figure 5.6: Example 2: Two six-bar linkages obtained by constraining a five-
bar chain with an additional link connecting to the ground.

These two circles are also shown in Figure 5.5. These two circle constraints

define two dyads, which could be used to construct a four-bar linkage.

Suppose only one of the two dyads, say for example, p2, is deemed accept-

able. We choose to use a triad (3R) to replace the dyad associated with p1.

We select the pivot on the moving body to be located at (3, 0) and the fixed

pivot to be (1, 1). The link lengths of the first two links are set to be identi-

cal, which is 2. The location of the second joint can be easily calculated by

inverse kinematics: (0.7488,−0.9842), (1.4125,−0.9570), (1.8163,−0.8258),
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Table 5.2: Example 1: Homogeneous coordinates p of the constraint manifolds
of planar dyads:

p1 (-0.0663,0.2310,-0.0235,0.3231,-0.1201,-0.3040,-0.5838,-0.6242) RR dyad

p2 (-0.0775,-0.2565,-0.2139,-0.0647,0.1845,-0.7894,0.1475,-0.4465) RR dyad

p3 (-0.1037,0.1002,-0.2892,0.0253,-0.4493,-0.3638,-0.6388,-0.3907) RR dyad

p4 (0.0450,0.0607,-0.0262,-0.2308,-0.3672,0.6290,-0.0486,0.6383) RR dyad

Table 5.3: Example 1: Coordinates of four circle constraints and four circle
points:

vector a0 : a1 : a2 : a3 x y
p1 1 : −4.8708 : 1.8109 : 25.3914 3.4815 -0.3537
p2 1 : 0.8353 : −2.3813 : 4.4677 -3.3112 -2.7609
p3 1 : −0.2441 : 4.3333 : 6.3577 0.9667 -2.7887
p4 1 : −5.1255 : −8.1550 : 54.5546 -1.3472 0.5821

(2.6789,−0.0867), (2.8306, 0.1945). This results in a five-bar linkage with two

degrees of freedom such that its third link passes through the five given posi-

tions. As shown in Figure. 5.2, we seek to add the sixth link between link 4

and link 1 to obtain a Stephenson IIIa linkage. We use the five positions of

link 4 to find one or more dyads that are compatible with the resulting five-bar

linkage. As feasible dyads must come in pairs and there is already a feasible

one, which is formed by link 4 and 5, we know that there exists at least one,

perhaps three feasible solutions to connect the sixth link from the ground link

to link 4. In this example, there exists only one solution for the sixth link,

which is shown in Figure 5.6(a).

As stated earlier, one of the important advantages of our approach is that

the algorithm automatically generates a linkage design that includes one or
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more prismatic joint if it is warranted. To illustrate this point, we now select

a different 3R chain such that the third joint is located at (2, 0), the first joint

(the ground joint) is changed to (0, 1) and the two link lengths remain to be

2. It follows that the locations of the second joint are: (0.7362,−0.8596),

(1.3691,−0.4580), (1.8097, 0.1484), (1.9961, 0.8744), (1.9021, 1.6180). In this

case, our algorithm generates three dyads that could be used to define the

sixth link between link 4 and link 1, two of which are RR dyads and the third

one is a PR dyad. The first three coordinates of p1 are close to zero, which

means that the resulting RR dyad has such a large radius that it could be

approximated by a PR dyad. Shown in Figure 5.6(b) is the Stephenson IIIa

six-bar linkage that includes this P joint.

Table 5.4: Example 2: A set of five task positions that leads to two feasible
dyads. For the sake of saving space, only two digits are shown here. More
detailed data could be found in [4].

E1 E2 E3 E4 E5

Translation (-0.86,2.01) (0.21,2.94) (2.12,4.08) (3.98,4.33) (3.40,5.16)

Rotation (degree) -26 -45 -85 -125 -97

5.2.3 Example 3: A six-bar linkage generating a Sit-to-
Stand motion

Sit-to-Stand(STS) motion executed by individuals is a biomechanically de-

manding task requiring muscle strength greater than other activities of daily

life (ADL), such as ambulation or stair climbing (Ploutz- Snyder et al. [72]).

It is also known that more than two million people of age 64 or older in the
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Table 5.5: Example 2: Homogeneous coordinates of two constraint manifolds.

p1 (-0.0749,0.1518,0.0032,-0.0758,0.4196,0.8531,0.0677,-0.2392) RR dyad

p2 (0.1067,-0.3788,-0.0215,-0.2904,-0.1256,-0.3874,0.5283,0.5616) RR dyad

Table 5.6: Example 2: Coordinates of two circle constraints and two circle
points.

vector a0 : a1 : a2 : a3 x y
p1 1 : 1.0109 : −5.5980 : 8.6605 2.0255 0.0430
p2 1 : −2.7224 : −1.1771 : 8.4095 3.5505 0.2013

U.S. have difficulty in rising from a chair (Dawson et al. [73]). Purwar et

al. [74] have designed a six-bar mechanism which is incorporated in a custom,

portable, compact walker frame that enables people with such disability to

stand up from a seated position, and then lower themselves without assistance

from a caretaker. It is desirable that the upper body stays horizontal during

the motion from the seating position to the standing position. We specify

five task positions with the same orientation, i.e., 0◦ but the hip joint goes

through five different locations: (−6.41,−9.8), (−3.85,−10.5), (−0.4,−6.3),

(1, 6.3), (0.9, 8.6) with the origin of the moving frame being at the hip joint.

Since all five task positions share the same orientation, our task analysis

algorithm yields no feasible dyads. So we start with a 3R chain and synthesize

a six-bar linkage. The third joint of the 3R chain is selected at the hip, i.e.,

(0, 0), the ground joint is at (11.329,−5.823) and the lengths of link 2 and 3 are

set to be 10.5 and 14.92, respectively. As shown in Figure 5.3, we next choose

to add link 5 between link 1 and link 3. Using our task analysis algorithm,
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Table 5.7: Example 2: Homogeneous coordinates for three dyads that could
be used to define link 6 between link 4 and link 1.

p1 (0.0019,-0.0040,0.0042,-0.2321,0.4498,0.4359,0.7315,0.1365) PR dyad

p2 (0.0140,-0.0265,0.0349,-0.2720,0.4330,0.1427,0.7954,0.2887) RR dyad

p3 (0.0143,-0.0656,0.0894,-0.1176,-0.0254,-0.8517,0.1902,0.4598) RR dyad

we obtain four feasible dyads. In addition to the original ground joint, we

obtain three more feasible ground joints: (0.237,−0.225), (17.689,−1.655),

and (12.284,−9.643). The responding lengths of link 5 are: 6.967, 4.286, and

21.513. For practical considerations, we select link 5 to have the ground joint

with coordinates (0.237,−0.225) and link length of 6.967. The addition of link

5 reduces the DOF of the system from 3 to 2.

Link 6 is added between link 5 and 4 to reduce the system DOF from 2 to 1.

We use the third task position as the reference position and compute five posi-

tions of link 5 relative to the moving frame (link 4). Applying our task analysis

algorithm again to the resulting five positions of link 5 with respect to link 4,

we obtain the locations of two R joints of link 6 relative to the moving frame.

Figure 5.7 shows the synthesized Watt Ia six-bar linkage at the third position.

At this position, the coordinates of five moving pivots are (7.304,−9.013),

(6.286,−3.683), (9.316, 5.022), (−0.415,−6.326) and (2.227,−15.425). The t-

wo fixed pivots are located at (0.237,−0.225) and (11.329,−5.283). Figure 5.8

shows the synthesized Watt Ia six-bar linkage passing through the remaining

four specified task positions. Figure. 5.9 illustrates a prototype for the as-

sistive device, which is being brought to the market with the support from a
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Figure 5.7: Example 3: The synthesized six-bar linkage for the generation of
Sit-to-Stand motion at the third task position.

Research Foundation of SUNY Technology Accelerator Fund. An early version

of a fully functional prototype being tried by someone with Multiple Sclerosis

can be seen at http://youtu.be/pRZYHL400nI

5.3 Conclusions

In this chapter, we developed a task-driven unified methodology for synthe-

sizing six-bar linkages for five-position motion generation. Central to our

methodology is a null-space-analysis based task analysis algorithm that re-
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Figure 5.8: Example 3: The Sit-and-Stand six-bar linkage at task positions
1,2 (top) and 4, 5 (bottom).
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Figure 5.9: Example 3: the sketch for the prototype that employs two identical
six-bar linkages, one on each side. The linkage position shown in this prototype
is the same as the position 4 in Figure. 5.8.
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duces the five-position synthesis problem to the solution of a quartic equation.

The algorithm is formulated using planar quaternions which lead to a unified

representation of all four types of planar dyads, RR, RP, PR, and PP, using a

set of eight homogeneous coordinates (p1, p2, . . . , p8) satisfying two quadratic

equations. A novel feature of this algorithm is that it solves the five-position

Burmester problem by analyzing the five given positions directly. One can now

determine, directly, whether a particular set of five positions can be realized

with any of the four planar dyads, and if not, one can proceed to synthesize

six-bar linkages for five-position motion generation. In addition, this chapter

provides also a new classification of planar six-bar linkages based on whether

a rigid body (the end-effector) can be constrained with two dyads (Type I),

or one dyad (Type II), or no dyad (Type III). While the traditional classifi-

cation, named after Watt and Stepheson, are based on how four binary links

and two ternary links are connected and is more suitable for the analysis of

six-bar linkage, our classification focuses on how the end-effector is constrained

as part of a six-bar linkage and is thus more suitable for task driven design.
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Chapter 6

A Task Driven Approach to the
Synthesis of Spherical Four-bar
Linkages Using Algebraic
Fitting Method

It is well-known that the maximum number of positions that can be realized

exactly by a spherical four-bar mechanism is five (McCarthy and Soh [53]).

We are dealing with an arbitrary number of positions requiring approximate

motion synthesis. Existing solutions to the design of spherical mechanisms

for approximated motion synthesis, however, use non-linear optimization to

minimize the error between given positions and the positions realized by the

designed mechanism. We have previously presented a simple two-step linear

algorithm for planar four-bar linkages synthesis [9]. This work is an exten-

sion of that. During the synthesis process, we use kinematic mapping to map

given task displacements as points (we call them task image points) and the

workspace constraints of the coupler of a spherical mechanism as intersection
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of quadrics in a higher dimensional space, called the image space of spherical

displacements (Blaschke [38] and Grunwald [39]). Ravani and Roth [40, 41],

Bottema and Roth [16] and McCarthy [20] have extensively employed this

mapping technique to give rise to a rich set of methods for kinematic synthesis

and analysis of mechanisms and robots. The quadrics define the constraint

manifold of the spherical mechanism and we seek to fit the given task image

points to a pencil of quadrics via a straight-forward least squares approxi-

mation method. In the second step, we identify the quadrics that actually

represent the workspace constraints implication being that not all quadrics

that belong the pencil are the constraint manifolds.

Use of kinematic mapping for spherical four bar motion synthesis (exact or

approximate) is not new (Bodduluri and McCarthy [44], Ge and Larochelle

[48]). Husty et al. [67] proposed an approach to the five spherical posi-

tion synthesis by converting the design problem into a polynomial of degree

six. Venkataramanujam and Larochelle [75] propose a non-linear optimization

method for spherical RR-dyads and four-bar synthesis. More recently, Pur-

war et al. [65] have demonstrated a visual, computer graphics approach for

multi-degrees of freedom spherical mechanism design.

Existing approaches to spherical mechanisms synthesis problem either focus

on finite synthesis or involve a great amount of computation due to the non-

linear nature of the algorithms employed. On the other hand, our approach

consists of two linear steps. We formulate the data fitting process in linear

form and first find a pencil of quadrics in the image space that best fit the given
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image points in the least squares sense, which is done by using Singular Value

Decomposition. The singular vectors associated with the smallest singular

values are linearly combined to define the coefficients of a pencil of quadrics.

Second, four additional constraints on the linear coefficients are then imposed

to identify the quadrics that are best qualified to represent a spherical circular

constraint from the pencil. After the inverse computation from the quadric

coefficients to the spherical 4R parameters, a spherical 4R linkage that best

guides through the set of given displacements is obtained.

The organization of the chapter is as follows. Section 6.1 reviews the con-

cept of quaternion, kinematic mapping and image space in so far as necessary

for the development of this chapter. Section 6.2 presents spherical circular ge-

ometric constraints associated with spherical dyad motions. Section 6.3 deals

with synthesizing the circular constraint with our approach. First a pencil of

quadric surfaces are found that best fit the given image points in least-square

sense, and then those surfaces qualified to associate with spherical circular

constraint are identified. An example of exact spherical four-bar linkage cou-

pler motion is presented in Section 6.4 to illustrate our approach, followed by

an approximate motion example in section 6.

6.1 Parameterizing a Spherical Displacement

Any rotation in three-dimensional space can be represented by a rotation axis

and a rotation angle about the axis. Let s = (sx, sy, sz) denotes a unit vector

in the direction of the rotation axis, and θ denotes the rotation angle. We can
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then represent the rotation with Euler-Rodrigues parameters:

q1 = sx sin(θ/2), q2 = sy sin(θ/2), q3 = sz sin(θ/2), q4 = cos(θ/2). (6.1)

A quaternion of rotation can be constructed from the Euler-Rodrigues param-

eters as follows:

q = q1i+ q2j+ q3k+ q4, (6.2)

which is also written as a quadruple of numbers (q1, q2, q3, q4). Quaternion q is

called a unit quaternion when q21 + q
2
2+ q

2
3 + q

2
4 = 1. See Bottema and Roth[16]

and McCarthy[20] for more details on quaternions and the ensuing discussion.

A quaternion can be converted to its corresponding 3D rotational matrix

by:

[R] =
1

S2

⎡⎣ q24 + q21 − q22 − q23 2(q1q2 − q4q3) 2(q1q3 + q4q2)
2(q1q2 + q4q3) q24 − q21 + q22 − q23 2(q2q3 − q4q1)
2(q1q3 − q4q2) 2(q2q3 + q4q1) q24 − q21 − q22 + q23

⎤⎦ , (6.3)

where S2 = q21 + q22 + q23 + q24. Equation 6.1 also defines a kinematic mapping

from the Cartesian space parameters to a three-dimensional projective space

called the image space of spherical displacement parameterized by homoge-

neous coordinates q = (q1, q2, q3, q4). In this way, a spherical displacement is

represented by a point in image space, and a single degree of freedom motion

is represented by a curve in image space.

6.2 Constraining a Spherical Displacement with

an RR-dyad

In this chapter, since all the displacements are considered as 3D rotations

only, we can set both fixed frame and moving frame at the origin (center
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of a unit sphere), while the moving frame rotates with respect to the fixed

frame. A spherical RRRR linkage can be seen as two RR-dyads with their

floating links connected with each other. A spherical RR-dyad (Fig. 6.1)

geometrically constraints a point on the moving rigid body to trace a circle on

the unit sphere. The other spherical RR-dyad similarly constraints another

point of the coupler link to another circle. Let us consider the constraints

associated with a spherical RR-dyad. Let (x, y, z) denotes the moving frame

Figure 6.1: A spherical 2R robot arm.

coordinates of a point on the moving rigid body, then using the rotational

matrix in Eq. (6.3), the homogeneous coordinates (X, Y, Z,W ) of the same

point in the fixed frame can be written as:

X =
(q24 + q21 − q22 − q23)x+ 2(q1q2 − q4q3)y + 2(q1q3 + q4q2)z,
Y =
2(q1q2 + q4q3)x+ (q24 − q21 + q22 − q23)y + 2(q2q3 − q4q1)z,
Z =
2(q1q3 − q4q2)x+ 2(q2q3 + q4q1)y + (q24 − q21 − q22 + q23)z,
W = q21 + q22 + q23 + q24.

(6.4)
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Note that if (x, y, z) locates on the unit sphere, i.e., if x2 + y2 + z2 = 1 is

imposed, then (X, Y, Z,W ) also lies on a unit sphere.

To reflect the constraint that a point traces a circular path on the sphere,

one may seek to determine the expression of that circle first. However, since

(X, Y, Z,W ) has already been restricted to the unit sphere, a much easier way

to represent circles on a unit sphere can be obtained. A circle on the unit

sphere can be viewed as the intersection of the unit sphere and a hyperplane

aX+bY +cZ+dW = 0. Now that (X, Y, Z,W ) always lies on the sphere, what

needs to be imposed is only the expression of the plane. In other words, as

long as (X, Y, Z,W ) satisfies aX+bY +cZ+dW = 0, given that it already lies

on the unit sphere, its trajectory will be a spherical circle, and the spherical

center A = (Ax, Ay, Az) of the circle (as the fixed pivot in Figure. 6.1) locates

at:

Ax = − a√
a2 + b2 + c2

, (6.5)

Ay = − b√
a2 + b2 + c2

,

Az = − c√
a2 + b2 + c2

.

and the radius of the circle is denoted by the sphere center angle α:

α = |arccos( d√
a2 + b2 + c2

)|. (6.6)
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or the other equivalent choice:

Ax =
a√

a2 + b2 + c2
, (6.7)

Ay =
b√

a2 + b2 + c2
,

Az =
c√

a2 + b2 + c2
,

and

α = |arccos(− d√
a2 + b2 + c2

)|. (6.8)

Now, substituting terms in Eq. (6.4) into aX+bY +cZ+dW = 0, we obtain

the following algebraic equation that represents a quadric in the quaternion

space:

P1(q
2
4 + q21 − q22 − q23) + 2P2(q1q2 − q4q3) + 2P3(q1q3 + q4q2)

+2P4(q1q2 + q4q3) + P5(q
2
4 − q21 + q22 − q23) + 2P6(q2q3 − q4q1)

+2P7(q1q3 − q4q2) + 2P8(q2q3 + q4q1) + P9(q
2
4 − q21 − q22 + q23)

+P10(q
2
1 + q22 + q23 + q24) = 0, (6.9)

where
P1 = ax, P2 = ay, P3 = az,
P4 = bx, P5 = by, P6 = bz,
P7 = cx, P8 = cy, P9 = cz,
P10 = d.

(6.10)

From the above equation we have 10 homogeneous coefficients, but only 7 pa-

rameters. Furthermore, a, b, c, d and x, y, z are homogeneous coordinates as

well. Thus, we should be able to find four relationships within those 10 homo-

geneous coefficients. It can be found that the 10th coefficient is independent
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of the rest, and the first 9 parameters satisfy the following equations:

P1 : P2 : P3 = P4 : P5 : P6,
P4 : P5 : P6 = P7 : P8 : P9,
P1 : P2 : P3 = P7 : P8 : P9,

(6.11)

which is equivalent to

P1P5 = P4P2, P1P6 = P4P3, P2P6 = P5P3,
P4P8 = P7P5, P4P9 = P7P6, P5P9 = P8P6,
P1P8 = P7P2, P1P9 = P7P3, P2P9 = P8P3.

(6.12)

By observing the above 9 equations, it is not difficult to find that these 9 equa-

tions are actually dependent, and only 4 of them, which have to contain all the

coefficients from P1 to P9, are sufficient and necessary to capture the relations

in Eq. (6.11). For example, in this chapter we take these four equations to

represent (6.11):

P1P5 − P4P2 = 0, P2P6 − P5P3 = 0,
P1P8 − P7P2 = 0, P2P9 − P8P3 = 0.

(6.13)

It is easy to derive that the above four equations are equivalent as (6.11) (i.e.

the rest five equations in (6.12) can be obtained by these four) except for the

case that P1, P2 and P3 are all equal to zero or that P2, P5 and P8 are all equal

to zero. However, if P1 = P2 = P3 = 0 or P2 = P5 = P8 = 0 does appear, then

one extra equation is required, which has to exclude these three coefficients.

For example, in this chapter, we use:

P4P9 − P7P6 = 0 (6.14)

To sum up, suppose we are given 10 arbitrary coefficients P = {P1, P2, ...P10},
then we can use Eq. (6.10) to find the parameters a, b, c, d and x, y, z only if
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they satisfy the four relationships in (6.13), or if P1 = P2 = P3 = 0 or P2 =

P5 = P8 = 0 as well as (6.14) are satisfied. Now if we set that x2+ y2+ z2 = 1

since it has to be on the unit sphere, the inverse calculation from the coefficients

P to the parameters works as follows

x = P1√
P 2
1+P 2

2+P 2
3

, y = P2√
P 2
1+P 2

2+P 2
3

, z = P3√
P 2
1+P 2

2+P 2
3

or
x = P4√

P 2
4+P 2

5+P 2
6

, y = P5√
P 2
4+P 2

5+P 2
6

, z = P6√
P 2
4+P 2

5+P 2
6

or
x = P7√

P 2
7+P 2

8+P 2
9

, y = P8√
P 2
7+P 2

8+P 2
9

, z = P9√
P 2
7+P 2

8+P 2
9

a : b : c : d = P1 : P4 : P7 : xP10

or
a : b : c : d = P2 : P5 : P8 : yP10

or
a : b : c : d = P3 : P6 : P9 : zP10

(6.15)

Thus, spherical circular constraint can now be represented in terms of

geometric constraints given by Eq. (6.9). By setting q4 = 1 we can project

the quadric into three-dimensional image space. It can be shown that the

projected manifold is a hyperboloid of one sheet[20]. Figure. 6.2 shows an

example of the manifold in 3D image space for an RR-spherical dyad.

6.3 Synthesizing Spherical Circular Constrain-

t with Algebraic Fitting

In the previous section, we have formulated a spherical circular constraint in

the form of an image space quadric. Now we show how we determine the

constraint manifold of RR-dyads that best fit the given image points. We first
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Figure 6.2: The image space manifold of the quadric in (6.9) for the spher-
ical circular constraint is defined as follows: its center on the sphere is
C = (0.4243, 0.5657,−0.7071) and its radius that represented by the sphere
center angle is α = 64.9◦.

find a pencil of quadrics that best fit the given point in the least square sense,

and then we extract the quadrics that represent a spherical circular constraint

from the pencil.

6.3.1 Least Square Fitting of a Pencil of Quadrics

Now consider the problem of fitting a pencil of quadrics to a set of N image

points. This problem can be formulated as an over-constrained linear problem

[A]P = 0 obtained by substituting for the given values of the image points

using Eq. (6.9), where P is the column vector of homogeneous coefficients
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Pi(i = 1 . . . 10). The coefficient matrix [A] is given by:

[A] =

⎡⎢⎢⎢⎢⎢⎢⎣
A11 A12 A13 A14 A15 A16 A17 A18 A19 A110

...
...

...
. . .

...
...

...
AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10

⎤⎥⎥⎥⎥⎥⎥⎦
(6.16)

where, for the ith image points, we have

Ai1 = q2i4 + q2i1 − q2i2 − q2i3 , Ai2 = 2(qi1qi2 − qi4qi3), (6.17)

Ai3 = 2(qi1qi3 + qi4qi2), Ai4 = 2(qi1qi2 + qi4qi3),

Ai5 = q2i4 − q2i1 + q2i2 − q2i3 , Ai6 = 2(qi2qi3 − qi4qi1),

Ai7 = 2(qi1qi3 − qi4qi2), Ai8 = 2(qi2qi3 + qi4qi1),

Ai9 = q2i4 − q2i1 − q2i2 + q2i3 , Ai10 = q2i1 + q2i2 + q2i3 + q2i4 .

In linear algebra, the Singular Value Decomposition (SVD) [71] of an

N × 10 matrix [A] is a factorization of the form:

[A] = [U ][S][V ]T (6.18)

where [U ] is an N ×N orthonormal matrix, whose N columns, called the left

singular vectors of [A], are the eigenvectors of [A][A]T ; [S] is an N × 10 rect-

angular diagonal matrix with 10 non-negative real numbers on the diagonal,

whose values σ1 through σ10 are square roots of the eigenvalues of [A][A]T (or

equivalently [A]T [A]); and [V ]T is an 10 × 10 orthonormal matrix, whose 10

columns, called the right singular vectors, are the eigenvectors of [A]T [A].
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The over-constrained system of linear equations, [A]P = 0, can be solved

as a total least squares minimization problem with the constraint PTP = 1.

The orthonormal singular vectors that associate with the least singular values

are the least square solutions to [A]P = 0.

In view of Eq. (6.9), the least square solutions of [A]P = 0 might not be

necessarily qualified to represent a spherical circular constraint because they

may not satisfy the four conditions in Eq. (6.13). Therefore, the next step

is to identify those “appropriate” solutions from a linear combination of the

singular vectors of the least singular values:

P = α1v1 + α2v2 + α3v3 + α4v4 + α5v5. (6.19)

The above defines a pencil of quadrics in the image space as αi vary. Here we

take five singular vectors v1 through v5 since there are four equations in (6.13)

to be satisfied and the fact that they are all homogeneous. Substituting (6.19)

into (6.13) we obtain 4 homogeneous quadratic equations. Since α1 through

α5 are also homogeneous, for simplification purpose, α1 can be set to be 1

such that these four homogeneous equations become non-homogenous. A lot

of numerical algorithms could handle a group of these quadratic equations.

We use NSolve function in Mathematica software, which can solve our four

equations efficiently.

We define ec to be the kinematic constraint error that measures deviation

from a spherical circular constraint:

E = [P1P5 − P2P4]
2 + [P1P6 − P3P4]

2 + [P2P6 − P3P5]
2

+[P4P8 − P5P7]
2

ec =
√
E.

(6.20)
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where Pi are given by (6.19). We will impose that this error be zero for a

quadric to represent the constraints of a spherical RR-dyad.

Furthermore, we also need to measure the surface fitting error es for the

image points of the prescribed positions, i.e., the error function that tells us if

the constraint manifold we find with our approach fits the given image points

well. Considering that in Eq. (6.18), the singular values σ in [S] actually reflect

the least-square error of the algebraic fitting for the given data [A], we can

write the surface fitting error function for the pencil as

es =
√

α2
1σ

2
1+α2

2σ
2
2+α2

3σ
2
3+α2

4σ
2
4+α2

5σ
2
5

α2
1+α2

2+α2
3+α2

4+α2
5

. (6.21)

6.4 Exact Motion Synthesis Example

Here, we use an example of an exact spherical four-bar RRRR coupler mo-

tion to illustrate our approach, i.e., we start with a known spherical four-bar

linkage, sample a few positions from its motion, and then see if our algorithm

can capture the original linkage. Granted that the example is contrived to be

successful, it does demonstrate the utility of our approach. The linkage pa-

rameters are as follows: the two fixed pivots P1 and P2 are located at (−1, 0, 0)

and (0,−1, 0) on a unit sphere, respectively, and the sphere center angle of the

crank, coupler, and output links are 30◦, 60◦ and 75◦, respectively. We sample

12 positions from this motion as given in Table 6.1. These 12 positions are

also plotted in Figure. 6.3.

Now we start from these given position data in Table 6.1 to test if our

approach can successfully identify the two circular constraints of two RR-
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Table 6.1: Twelve given spherical displacements and their representation in
quaternion format.

Rotation Axis Angle◦ (q1, q2, q3, q4)

1 (0.273,0.484,0.831) 64.18 (0.246,0.436,0.749,0.436)
2 (0.211,0.454,0.866) 61.27 (0.185,0.398,0.759,0.481)
3 (0.160,0.426,0.891) 57.38 (0.135,0.358,0.750,0.539)
4 (0.129,0.400,0.907) 52.91 (0.103,0.319,0.724,0.603)
5 (0.122,0.383,0.916) 48.22 (0.091,0.286,0.683,0.666)
6 (0.140,0.381,0.914) 43.57 (0.097,0.263,0.630,0.725)
7 (0.185,0.403,0.896) 39.23 (0.117,0.255,0.567,0.775)
8 (0.249,0.460,0.852) 35.57 (0.145,0.268,0.500,0.813)
9 (0.322,0.556,0.767) 33.16 (0.176,0.304,0.420,0.837)
10 (0.378,0.671,0.638) 32.68 (0.204,0.362,0.345,0.842)
11 (0.400,0.769,0.499) 34.44 (0.226,0.435,0.282,0.825)
12 (0.400,0.825,0.400) 37.86 (0.246,0.506,0.246,0.790)

Table 6.2: Singular values of [A]

2.51× 10−16 2.38× 10−15 0.0007 0.0080 0.0173
0.0872 0.2786 1.0317 2.1011 6.5142

dyads in the given linkage. The size for matrix [A] as in Eq. (6.16) is 12× 10.

The first step is to find the singular values and their corresponding singular

vectors of [A] via Singular Value Decomposition. The singular values are

listed in Table 6.2 in the increasing order of magnitude. Note that there are

two singular values that are almost zero. This is because our data is perfectly

curve data, i.e., they lie exactly on the intersection of two hyperboloids. Next,

we take five smallest singular values and their associated singular vectors (v1

through v5) as listed in Table 6.3. From the kinematic constraint error ec

in the table we can tell that none of these five manifolds represents a valid

spherical circular constraint.
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Figure 6.3: 12 given positions on the sphere.

By constructing a pencil as in Eq. (6.19) and substituting it into (6.13),

we obtain 4 homogeneous quadratic equations. Letting α1 equal to 1 makes

them non-homogeneous and we can solve for remaining αi. Among the roots

of these four equations, complex ones are excluded, as well as those roots that

will lead to P1 = P2 = P3 = 0 or P2 = P5 = P8 = 0 but cannot satisfy

Eq. (6.14). The rest of the valid solutions and their constraint fitting error ec

as well as surface fitting error es are listed in Table 6.4.

In the column of ec, since the four quadratic equations are constructed

based on the constraint fitting, all the solutions fit the kinematic constraint

perfectly. Also, from the surface fitting error es we can see that the constraint

manifold defined by the first two solutions fit the given data perfectly, while

the last two solutions contain some error in given data fitting. Therefore, we
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Table 6.3: Five orthonormal singular vectors that correspond to five smallest
singular values as in Table. 6.2. The last column ec indicates the error of
constraint fitting, which is defined by (6.20). For the sake of saving space,
only two digits are shown here. More detailed data could be found in [5].

(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10) ec
v1 (0.00,-0.35,0.61,0.00,0.11,0.20,0.00,0.00,0.00,-0.67) 0.1389
v2 (0.00,-0.15,0.26,0.00,-0.48,-0.83,0.00,0.00,0.00,-0.01) 0.2457
v3 (-0.16,0.44,-0.20,0.55,0.07,-0.18,-0.12,0.17,0.39,-0.46) 0.3318
v4 (-0.33,0.27,0.33,-0.22,0.17,-0.05,0.23,-0.54,0.50,0.17) 0.3424
v5 (-0.53,-0.32,-0.22,-0.18,0.55,-0.33,0.18,0.30,-0.07,-0.03) 0.4355

Table 6.4: Four groups of valid solutions for α1 through α5. ec and es indicates
their constraint fitting error and surface fitting error in Eq. (6.20) and Eq. 6.21,
respectively. For the sake of saving space, only two digits are shown here. More
detailed data could be found in [5].

(α1,α2,α3,α4,α5) ec es
Solution 1 (1,0.24,0.00,0.00,0.00) 3.13× 10−9 2.50× 10−16

Solution 2 (1,-2.38,0.00,0.00,0.00) 1.21× 10−8 2.40× 10−16

Solution 3 (1,10.44,6.47,-0.31,-0.33) 3.63× 10−9 0.0006
Solution 4 (1,0.08,0.02,-0.61,-0.36) 6.79× 10−9 0.0064

choose the first two solutions, and find the two resulting coefficient vectors

from (6.19). These two constraint manifolds are plotted in Fig. 6.4; the 12

image points in the figure denote 12 given positions in Table 6.1 and lie on the

intersection of the two manifolds.

By observing the first two solutions, we see that the final resulting coeffi-

cient vector P defined by Eq. (6.19) is only consisted of the first two singular

vectors (α3, α4, α5 are almost zero), whose associated singular values are zero

as shown in Table. 6.2. This is because our given data is perfect, and our

expected results are supposed to lie within the exact null space of [A], which
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Figure 6.4: Two resulting constraint manifolds identified from a pencil of
quadrics; the manifolds are hyperboloids of one sheet that satisfy the condi-
tions imposed by Eq. (6.13); the 12 black image points lying on the intersection
curve in the figure denote 12 given positions in Table 6.1.

for the perfect given data is the singular-plane defined by the two singular

vectors of zero singular values of which there are only two.

Furthermore, by applying the inverse computation given by Eq. (6.15) on

the two resulting coefficient vectors, we can obtain the parameters of the two

resulting circular constraints as listed in Table. 6.5. It is easily verified that

the two dyads combined together constrain the motion of the spherical RRRR

linkage as given.
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Table 6.5: The dimensions of the two resulting spherical RR-dyads:

vector a : b : c : d x y z
vr1 1 : 0.0000 : 0.0000 : 0.8660 0.0000 0.5000 -0.8660
vr2 0.0000 : 1 : 0.0000 : 0.2588 0.0000 -0.5000 -0.8660

6.5 Approximate Motion Synthesis Example

In this section, we present an approximate motion example, whose prescribed

poses are obtained by truncating the rotation angle in Table. 6.1 to the whole

number, as shown in Table 6.6.

Table 6.6: The 12 prescribed approximated poses
Rotation Axis Angle◦ (q1, q2, q3, q4)

1 (0.273,0.484,0.831) 64 (0.245,0.435,0.747,0.438)
2 (0.211,0.454,0.866) 61 (0.185,0.397,0.757,0.485)
3 (0.160,0.426,0.891) 57 (0.134,0.357,0.747,0.545)
4 (0.129,0.400,0.907) 53 (0.103,0.320,0.725,0.602)
5 (0.122,0.383,0.916) 48 (0.090,0.285,0.680,0.669)
6 (0.140,0.381,0.914) 44 (0.098,0.265,0.635,0.719)
7 (0.185,0.403,0.896) 39 (0.116,0.254,0.564,0.777)
8 (0.249,0.460,0.852) 36 (0.147,0.271,0.501,0.809)
9 (0.322,0.556,0.767) 33 (0.175,0.303,0.418,0.839)
10 (0.378,0.671,0.638) 33 (0.206,0.366,0.348,0.839)
11 (0.400,0.769,0.499) 34 (0.224,0.430,0.279,0.829)
12 (0.400,0.825,0.400) 38 (0.246,0.508,0.246,0.788)

Following the same procedure, after obtaining the singular values of [A]

(Table. 6.7) and the singular vectors associated with five smallest singular

values (Table 6.8), we substitute those non-qualified vectors into (6.19) and

(6.13). Similarly, four homogeneous quadratic equations with five unknowns

are then constructed. Letting α1 equal to 1 makes them non-homogeneous and
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Table 6.7: Singular values of [A] for the approximated example.

3.79× 10−4 0.0010 0.0031 0.0073 0.0105
0.0438 0.1444 0.5279 1.3539 3.6922

Table 6.8: Five orthonormal singular vectors that correspond to five smallest
singular values for the approximated example. For the sake of saving space,
only two digits are shown here. More detailed data could be found in [5].

(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10) ec
v1 (-0.27,-0.09,0.13,-0.31,-0.13,-0.01,0.03,0.05,-0.11,0.88) 0.3429
v2 (-0.35,-0.00,-0.05,0.25,0.79,0.09,-0.22,-0.21,-0.27,0.09) 0.1572
v3 (-0.47,0.05,-0.23,0.69,-0.45,0.12,0.17,-0.08,-0.02,0.07) 0.3516
v4 (-0.01,0.30,-0.43,-0.02,0.01,-0.59,0.02,0.42,-0.45 ,0.00) 0.4570
v5 (-0.21,0.16,0.40,-0.22,-0.27,0.23,-0.04,-0.13,-0.70,-0.30) 0.2592

we can solve for remaining αi. We rule out those unacceptable roots as in last

example, and obtain four solutions. The valid solutions and their constraint

fitting error ec as well as surface fitting error es are listed in Table 6.9.

Again, ec indicates that all the solutions fit the kinematic constraint per-

fectly, because the four quadratic equations are constructed based on that. By

applying the inverse computation given by Eq. (6.15) on those four resulting

coefficient vectors, dimensions of the parameters of those spherical circular

constraints are listed in Table. 6.10. Comparing with Table. 6.5, it can be

found that vr1 and vr4 are actually very close to those two in the exact ex-

ample. We then calculate the locations of the two circle centers (fixed pivots)

are: (−0.0068,−1,−0.0052) and (−0.9988, 0.0142,−0.0474), respectively, and

their radius (link length) represented in sphere center angle are 73.9418◦ and

29.0881◦.
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Figure 6.5: The resulting spherical RRRR linkage constructed by vr1 and vr4

for the approximated synthesis example.

Those four resulting dyads are plotted in the form of 3D image space

quadratic manifolds in Figure. 6.6. And the spherical RRRR linkage con-

structed by vr1 and vr4 is shown in Figure. 6.5.

6.6 Conclusions

In this chapter, we have extended our previous work for planar four-bar syn-

thesis case to spherical four-bar linkage synthesis. The novelty of our approach

lies in linearization of an otherwise non-linear problem. We achieve this by

finding a pencil of quadrics in the image space that best fit the given image

points in the least squares sense and then we impose additional constraints

on the pencil to separate out qualifying constraint manifold of spherical RR-
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Table 6.9: Approximated example: Four groups of valid solutions for α1

through α5. ec and es indicates their constraint fitting error and surface fitting
error in Eq. (6.20) and Eq. 6.21, respectively.

α1,α2 ,α3,α4,α5 ec es
Solution 1 (1,2.7477,-19.3633,50.9312,-0.3269) 9.86× 10−13 1.45× 10−6

Solution 2 (1,4.9167,-1.9715,-2.7507,-1.2318) 2.01× 10−15 1.99× 10−4

Solution 3 (1,1.8588,-4.6311,3.1037,2.8302) 1.28× 10−15 5.64× 10−4

Solution 4 (1,1.2748,-3.2178,-2.1117,-0.9790) 2.86× 10−16 8.45× 10−4

Table 6.10: The dimensions of the four resulting spherical RR-dyads of the
approximated synthesis example:

vector a : b : c : d x y z
vr1 0.0068 : 1 : 0.0052 : 0.2766 -0.0135 -0.5009 -0.8654
vr2 1 : 0.5360 : −0.5835 : 1.0359 -0.5159 0.5621 -0.6464
vr3 1 : −4.5301 : 1.2694 : 1.7383 0.3434 -0.4068 -0.8465
vr4 1 : −0.0143 : 0.0475 : 0.8749 0.0223 0.4754 -0.8795

dyads. After the inverse computation that converts the quadric coefficients to

the spherical 4R parameters, a spherical 4R linkage that best guides through

the set of given displacements can be obtained. The resulting algorithm for

spherical four-bar linkage synthesis is vastly more efficient than existing ap-

proaches.
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Figure 6.6: Approximated example: the first figure shows vr1 and vr4, which
are close to the two resulting constraint manifolds in exact synthesis exam-
ple. The second one shows vr2 and vr3 which although are hyperboloids of
one sheet, do not represent a spherical RR-dyad constraint. The 12 black
image points lying on the intersection curve in the figure denote 12 prescribed
approximated poses in Table 6.6.
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Chapter 7

Fine-Tune Geometrically
Constrained Planar Motions

This chapter deals with the problem of planar motion approximation from

the perspective of constraints identification and acquisition. A given motion is

assumed to be given explicitly, i.e., it is given either parametrically or discretely

in terms of an ordered sequence of displacements. The goal is to find two

geometric constraints of a planar body that are approximately compatible with

the given motion. This problem has been referred to as Kinematic Acquisition

of Geometric Constraints in Wu et al. [69], in which a least-squares method has

been developed to identify a point of the moving body such that its trajectory

best matches a given geometric constraint. If a good match is found, then

the chosen geometric constraint is considered to be approximately compatible

with the given motion. It follows that two compatible geometric constraints

obtained this way may be considered as defining a constrained motion that

approximates the given motion. The overall objective of this research is to

develop a constrained based framework for task driven design of mechanisms
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that can handle type and dimensional synthesis simultaneously.

The current chapter builds on this research [69] and presents a method for

fine-tuning a geometrically constrained planar motion in the context of kine-

matic acquisition of geometric constraints. A one-degree-of-freedom planar

motion may be defined by requiring two points of the moving body stay on

two separate curves in the plane during the motion. The point trajectories

to be extracted are curves such as line-segments, circles, ellipses or coupler

curves of a four-bar linkage that can be easily generated with a simple mech-

anism. Once two point trajectories are obtained, the remaining issue is to

determine the length of the “coupler link” that connects the two point trajec-

tories such that the resulting motion best approximates the original motion.

In this chapter, the concept of kinetic energy is used for combining translation

with rotation when calculating the “distance” between two planar displace-

ments. A simple, direct search method for obtaining the optimum length of

the coupler link is presented that minimizes the standard deviation of the mo-

tion error in terms of the kinetic energy based distance measure for planar

displacements.

The organization of the chapter is as follows. Section 7.1 reviews a method

for kinematic acquisition of geometric constraints. Section 7.2 introduces a

simple kinematic distance metric for two planar displacements that is based

on the notion of kinetic energy. Section 7.3 presents a new “distance” metric

for two planar motions that is frame bi-invariant. It is based on the notion of

standard deviation in statistics and probability theory. Section 7.4 outlines a
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simple algorithm for fine-tuning a constrained motion. Section 7.5 presents an

example to illustrate the method proposed by the chapter.

Figure 7.1: The solid curve g is the standard geometric constraint, the solid
curve G is transformed from g, and the dash curve V is the trajectory of
moving point v.

7.1 Kinematic Acquisition of Geometric Con-

straints

This section reviews the work of Wu et al. [69] in so far as necessary for

the development of this chapter. We restrict ourselves to point-geometric

constraints, i.e., those constraints that are defined as point paths.

A linear transformation in the plane that preserves the shape but not the

scale of a curve is called an equiform displacement [16]. Such a transformation

is used because it is desirable to obtain a representation of a curve that is

invariant with respect to rigid-body transformation in the plane as well as

scaling. Let g = (xg,, yg) and G = (xG, yG) denote a specified curve and its
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new configuration after an equiform displacement (in Figure 7.1):

G = [E]g +Δ =

[
a −b
b a

]
g +

[
xΔ
yΔ

]
. (7.1)

Thus, an equiform displacement has four degrees of freedom and are defined

by the parameters (a, b, xΔ, yΔ). One can obtain the scaling factor λ and the

angle of rotation, ξ, associated with the equiform rotation [E] from:

λ =
√
a2 + b2, ξ = arctan(b/a). (7.2)

Figure 7.2: A given four-bar mechanism with A0B0 = 3.8, A0A1 = 2.4, A1B1 =
5 and B0B1 = 4.6. As crank A0A1 rotates for 360◦, the coupler link A1B1

undergoes a periodic closed motion.

The main task in kinematic acquisition is to identify a point v = (vx, vy)

in the moving body such that its trajectory V best approximates a giv-

en curve. Wu et al. [69] presented a least squares method for computing

(λ, ξ, xΔ, yΔ, vx, vy) such that the trajectory traced out by v approximates a

given curve in the least squares sense. In this method, it is assumed that the

specified motion is given explicitly as an ordered sequence of N discrete posi-

tions. In this way, a choice for v results in a set of N points on the trajectory
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of the motion. A given constraint curve is discretized into a set of N equal-

spaced points. The sum of the squares of the errors between these two sets

of N points is to be minimized for determining (a, b) and v. As an example,

for a known crank-rocker mechanism as shown in Figure 7.2, they generate

100 positions that approximate the coupler motion and use them to define

the given motion to be approximated. They then attempted to retrieval four

different types of constraints: (I) a circle, (II) an arc, (III) an ellipse and (IV)

the coupler curve of a four-bar motion. All these curves are parameterized in

term of the input angle of the crank A0A1. The results are shown in Table 7.1

and Figure 7.3.

It is clear that the circular constraint A and the circular arc C are the

original constraints of the crank-rocker mechanism. Now consider replacing

the circle arc C with the ellipse B as a geometric constraint. In this case, the

crank-rocker mechanism may be alternatively generated with constraints A

and B. The remaining question is to find the coupler link length L between A

and B such that the constrained motion defined by A and B best approximates

the given motion. Figure 7.4 illustrates this point with two constraint curves

as ellipses.

7.2 Distance Between Two Rigid-body Con-

figurations

In order to measure the quality of motion approximation, it is necessary to

determine how far apart two given planar configurations (or positions) are
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Figure 7.3: The rigid body follows the motion of the coupler of a four-bar
mechanism approximately. The trajectories (dash curves) of four points A,
B, C and D on this rigid body are identified to optimally match the geomet-
ric constraints circle, arc, ellipse and a four-bar coupler curve (solid curves),
respectively.

separated. It is clear that the relative displacement between the two con-

figurations captures the separation of the two, which in term is determined

by three independent parameters including two parameters associated with

the translation component and one parameter (the angle) associated with the

rotation component. It is often desirable, however, to have a single num-

ber obtained as a combination of the three parameters to characterize the

separation or the “distance” between two configurations. As translational

distance and rotation angle have different units, direct combination of these

two does not yield a distance metric that is physically neither consistent

nor meaningful. This issue has attracted the attention of many researchers

[41, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85]. It has been argued that kinematic
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Table 7.1: Results of constraint identification where n denotes the location
of the optimal starting point on the given constraint curve and S is the total
error.

λ ξ(◦) xΔ yΔ xv yv n S
I 2.3971 -53.9353 -1.5146 -1.2352 -1.1421 -1.6271 7 0.0028
II 4.5837 28.1608 1.8172 -3.0513 2.8075 1.4162 91 0.0201
III 2.4068 171.3758 -0.6827 -1.3393 -0.1947 -1.5914 44 0.0283
IV 0.9948 0.1315 -0.3484 2.5372 -0.5480 2.7983 0 0.0172

C2=f2"coupler link"
C1=f1

Figure 7.4: Two constraint curves and their coupler link.

distance metrics ideally should be scalable and invariant with respect to choice

of both the moving and fixed reference frames [77] and various mathematical

tools have been used for formulating the distance metrics such as kinematic

mappings [41], Lie Groups [77], and object-shape dependent metrics [76].

In this chapter, we use a simple and computationally efficient metric for

characterizing the separation of two planar configurations. Consider two rigid-

body configurations defined as A and A′ in Figure 7.5. The relative displace-

ment from A to A′ is defined by the translation components Δx,Δy, and

rotation angle Δθ, measured in the moving frame x-o-y. With respect to the
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Figure 7.5: Two rigid-body configurations.

fixed frame X-O-Y, we have

Δx = ΔX cos θo +ΔY sin θo,
Δy = −ΔX sin θo +ΔY cos θo

(7.3)

where θo is the orientation of x-o-y relative to X-O-Y and ΔX,ΔY are the com-

ponents of translation measured relative to X-O-Y. To obtain a single measure

of the separate, we use the following simple and straightforward combination:

‖D̃‖ =
√

(Δx)2 + (Δy)2 + ρ2(Δθ)2, (7.4)

where ρ is a weight factor with the same unit as Δx or Δy. It is clear that the

choice of ρ affects how much the rotation angle θ is figured into the kinematic

distance metric ‖D̃‖. In Srinivasan and Ge [86], the concept of kinetic energy
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has been used to combine translational and rotational motions in fine-tuning

rational B-spline motions. In this chapter, we extend this concept to the fine-

tuning of geometrically constrained motions.

Assume that the moving coordinate frame is attached to the center of mass

of the moving body and that a constant force as well as a constant moment is

applied to the body to move a stationary body from position A to A′. In other

words, we assume that the body has constant linear and angular acceleration

during the motion. At position A′, the end linear and angular speeds are then

given by

VA′ =
2

τ

√
(Δx)2 + (Δy)2, ωA′ =

2

τ
Δθ (7.5)

where τ denote the time it takes to move the body from position A to A′. In

this way, the change in kinetic energy of the moving body during the motion

from A to A′ may be estimated as:

TA−A′ =
2

τ 2
[m(Δx)2 +m(Δy)2 + I(Δθ)2],

=
2m

τ 2
[(Δx)2 + (Δy)2 +

I

m
(Δθ)2] (7.6)

where m denote the total mass of the moving body and I the moment of

inertia with respect to the center of mass. Comparing (7.4) with (7.6), we

may consider the kinetic energy TA−A′ to be proportional to the squares of the

distance ‖D̃‖ if we set

.ρ2 = I/m (7.7)

i.e., if we consider ρ to be the radius of gyration of the moving object. Thus,

through the use of kinetic energy, we can combine the translation and rota-
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tion components naturally when defining a kinematic distance metric. In this

chapter, we use (7.4) and (7.7) for estimating the separation of two planar

configurations.

It is noted here that this definition of distance between two configurations

is only fixed-frame invariant. Park [77] has shown that a bi-invariant metric

for planar displacements do not exist. Any metric for SE(3) can only be made

either fixed-frame invariant or moving-frame invariant.

7.3 “Distance” Between Two Planar Motions

In statistics and probability theory, standard deviation is a widely used mea-

surement to show how much dispersion there is from the expected value [87].

A low standard deviation indicates that the data points tend to be very close

to the expected value, while a high standard deviation indicates that the data

are much more spread out. In addition, standard deviation is also the basis

for measuring confidence in statistical conclusions. In this section, we seek to

apply the notion of standard deviation to measure the quality of an approxi-

mating motion.

Consider a given motion, M = {X(t), Y (t), θ(t)}T , and its approximating

motion,M ′ = {X ′(t), Y ′(t), θ′(t)}T , where X, Y and θ represent the origin and

orientation of the moving frame with respect to a fixed frame. Suppose we

take multiple observations of the two motions and let {t} = {t1, t2, · · · , tN}
be the time sequence for the observations. This leads to two distributions

of positions, {M1,M2, . . . ,MN} and {M ′
1,M

′
2, . . . ,M

′
N}. For each pair of the
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corresponding positions, Mi and M ′
i , we compute their spatial separation,

Δxi,Δyi,Δθi, using (7.3) and then the averages Δx, Δy, Δθ over the resulting

data sets. The standard deviations for each of the three components are given

by

σ(Δx) =

√∑N
i=1(Δxi −Δx)2

N − 1
, (7.8)

σ(Δy) =

√∑N
i=1(Δyi −Δy)2

N − 1
,

σ(Δθ) =

√∑N
i=1(Δθi −Δθ)2

N − 1
.

These standard deviations capture the variation or dispersion in the observed

positions. Using (7.4) and (7.7) to combine these three standard deviations,

we obtain

D̂ =
√
σ2(Δx) + σ2(Δy) + ρ2σ2(Δθ), (7.9)

where ρ is the radius of gyration of the rigid body. Equation (7.9) defines the

“distance” between the two motions M and M ′.

For example, when the two sets of positions, {M1,M2, . . . ,MN} and {M ′
1,M

′
2, . . . ,M

′
N}.

are completely identical, we have σ(Δx) = σ(Δy) = σ(θ) = 0 and thus D̂ = 0.

It is important to point out that this is true even when the two sets of positions

are not identical but differ by a rigid-body transformation ΔM . In this case,

the averages Δx, Δy, and Δθ capture the rigid transformation ΔM . Thus

the change of the choice of a moving frame affects only the averages, not the

standard deviations. Since the relative displacement itself is independent of
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the choice of the fixed frame, we conclude that our definition of the “distance”

between two motions is frame bi-invariant. As far as we know, this is the first

definition of a frame bi-invariant kinematic distance metric. Previously, only

an approximately bi-invariant metric has been proposed for planar motions

[79]. We would like to emphasize that this claim of bi-invariant metric is for

planar motions, not for planar displacements. As alluded to earlier, there is

no bi-invariant metric for planar displacements.

Table 7.2 and 7.3 are generated based on Figure 7.6. They show that a

change of moving frame will result in different distances between the corre-

sponding positions. However, substituting the standard deviation σ into (7.9),

the distance D̂ remains the same for both cases.

Figure 7.6: Two discrete planar motions M and M ′ with 5 positions. The two
sets of positions M and MT in dark gray indicate the same planar motion M
but differ by a rigid body transformation.
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Table 7.2: The distances and their standard deviation between M and M ′

measured in moving frame M . By substituting σ Into (7.9), we obtain ̂DMM ′

equals to 2.3230

1 2 3 4 5 σ

Δx -5.0264 -6.5321 -6.8874 -7.7009 -6.5872 0.9697
Δy 8.6643 7.5178 6.7747 6.1366 8.7712 1.1544
Δθ 0.1377 0.6415 0.9921 1.4408 1.4038 0.5477

Table 7.3: The distances and their standard deviation between MT and M ′

measured in MT . From (7.9), ̂DMM ′ also equals to 2.3230

1 2 3 4 5 σ

Δx 2.6722 0.8007 0.0201 -1.0044 1.6615 1.4236
Δy 6.8140 7.0954 6.8325 6.9716 8.0082 0.4962
Δθ -0.6623 -0.1585 0.1921 0.6408 0.6038 0.5477

7.4 The Algorithm for Motion Fine-Tuning

We now return to the problem of fine-tuning geometrically constrained motion-

s, i.e., we would like to search for an optimal coupler length L that maintains

the rigid-body constraint and at the same generates a constrained motion

that closely approximates the given motion. Here is an simple direct-search

algorithm. It is quite straight-forward to perform the optimization:

1. Define the lower and upper limits of L from the original data sets (see,

for example, Figure 7.7).

2. Generate a time sequence, {t} = {t1, t2, · · · , tN}, for a continuous mo-

tion.

3. For each choice of Lj with the range, compute a sequence of displace-
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Figure 7.7: The ”coupler link length” between each point on the circle and its
corresponding point on the ellipse before our optimization do not satisfy the
rigid-body condition. The X-axis denotes one hundred points on the circle.

ments, (X2(ti, Lj), Y2(ti, Lj), θ(ti, Lj)), and calculate Δxi, Δyi, Δθi using

(7.3), for all i = [1, 2, . . . , N ].

4. Use (8) and (7.9) to compute the “distance” between the given motion

and the constrained motion, D̂(j) for the jth L.

5. Repeat the above for all Lj in the range.

6. Find the minimum value of D̂∗ and its corresponding L∗, which gives

the optimal coupler link length.

7.5 EXAMPLE

In Wu et al. [69], for a crank-rocker motion Mg = {xg(t), yg(t), θg(t)}T , we
have already identified several constraint curves as shown in Figure 7.3 (circle

A, ellipse B, circular arc C, and a more general coupler curve D) as well as
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their starting points. Now we choose two from these four curves, the circle A

and the ellipse B, as new constraints for the given motion. Due to errors in

approximation, the new location of points may have a slightly difference from

its original location, thus the rigid-body condition of constant coupler length

is not satisfied as shown in Figure 7.7, i.e., the distance between each pair of

corresponding points may not equal to each other. Therefore, our objective

here is to re-parameterize the coupler link, so that the resulting motion is as

close to the original crank-rocker motion as possible, subject to the constraint

that the link lengths must remain constant throughout the whole period of

the motion.

With the method discussed above, assume the rigid body configuration is

a square(ρ2 = 1
6
), we have refined the parameter and got the optimal link

length, and the uniform length is 0.9318. Now the resulting motion and the

given motion are shown in the first and third figure in Figure 7.8. We sampled

10 configurations from 100 positions in the motion. Note that the two motions

may not appear to be close intuitively, because there might be a rigid-body

transformation. However, it is exactly the advantage of our method, because

we do not have to worry about the choice of reference frames during the opti-

mization process. To show that these two motions are actually close to each

other, we choose a different position on the rigid body of the given motion

to put the moving frame, that is, apply a rigid transformation to the given

motion. Now the resulting and transformed given motion are largely the same,

as in the second and the third in Figure 7.8.
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given motion
^2=1/6

transformed given motion
^2=1/6

resulting motion
^2=1/6

Figure 7.8: The original given motion(first figure) is not intuitively close to
the resulting motion(the third figure, constrained by two standard geometric
curves: circle and ellipse), but after the given motion being applied by a rigid
body transformation(second figure), we can see that the transformed given
motion is largely close to the resulting motion. Here during optimization
process we assume ρ2 = 1

6
, which indicates the rigid body shape is a square as

shown in figure.

7.6 Conclusions

In this chapter we presented a method for fine-tuning a geometrically con-

strained planar motion in the context of motion approximation. In particular,

we have developed a new kinematic distance metric for two planar motions

that is frame bi-invariant. This greatly simplifies the motion fine-tuning pro-

cess as we do not have to worry about the choice of the reference frames. In
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addition, the concept of kinetic energy has also been applied for combining

translation with rotation such that the resulting distance metric between two

displacements are scalable. A simple, direct search method for obtaining the

optimum length of the coupler link is presented to illustrate how this new

metric can be used in the motion fine-tuning process, although the time it

consumed is about 30s, which might be relatively longer than other efficient

algorithms. Future research will look for a faster search method for the motion

fine-tuning problem.

157



Chapter 8

Conclusion

The contribution of the dissertation is developing a task-driven design tech-

nique with constraint-based kinematic geometry for planar and spherical mech-

anisms. Based on the kinematic mapping approach, we presents a break-

through development that allows designers to obtain a desired mechanism that

could realize the prescribed requirements through a unified treatment for both

type and dimensional synthesis. To sum up, the research work accomplished in

this dissertation includes several subjects: (a) The problem of planar four-bar

motion approximation has also been studied. Using the Image Space of planar

displacements, a class of quadrics, called G-manifolds, with eight linear and

homogeneous coefficients is obtained, which serves as a unified representation

for constraint manifolds of all four types of planar dyads, RR, PR, and PR,

and PP . Additional constraints on the linear coefficients are then imposed

to obtain a planar four-bar linkage that best guides through the set of given

displacements. The result is an efficient and linear algorithm that naturally

extracts the geometric constraints of a motion and leads directly to the type
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and dimensions of a mechanism for motion generation. (b) After obtaining the

general approach for a set of planar displacements, the classical Burmester’s

problem of the exact synthesis of a planar four-bar mechanism with five or less

given positions is then revisited. It turned out that for five-position synthesis,

up to 4 planar dyads could be found that fit the prescribed positions exactly.

For four or less positions, infinite numbers of solutions are obtained, but we

can determine a limited number from them through various means of adding

additional physical constraint, and within our framework, these various con-

straints are all demonstrated to be equivalent as a linear constraint equation

with unified form. Therefore, a unified treatment have been developed to deal

with all situations. (c) We have shown that approximated motion synthesis

can also be handled with our algebraic-fitting based approach, which includes

an Singular Value Decomposition as well as solving two quadratic constraint e-

quations. In addition, the frame-dependence property has been studied. Both

exact and approximated motion synthesis examples have been listed, and the

results show that while our approach is frame-independent for exact synthesis,

a transformation in fixed or moving frame does affect the synthesis result for

approximated motion synthesis. (d) Our algebraic fitting approach for planar

four-bar linkage has been extended to planar six-bar mechanisms in this part

of work. Two types of one DOF six-bar linkages, Watt’s and Stephenson’s

six-bar linkages have been analyzed. Both of these two six-bar mechanisms

could be viewed as the combination of two four-bar mechanism. The synthesis

of them consists three major steps: synthesizing a dyad with a set of planar
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displacements; synthesizing a triad with given positions, i.e. a dyad with least

algebraic fitting error; synthesizing a dyad with the relative displacements be-

tween two sets of displacements. Combining these three steps we can realize

all types of Watt’s and Stephenson’s six-bar linkages. Till this point, major

types of planar mechanism have been covered by our approach. (e) In the

end we also studied spherical motion synthesis. By representing the spherical

circular constraint as an intersection of a plane and the sphere, a 10× 10 giv-

en data matrix is established and 4 additional constraints are imposed. The

formulation of this problem turns out to be similar as planar case, and even-

tually merges to solving the approximated null-space of a linear system, as

well as imposing quadratic constraint equations afterwards. (f) A method for

fine-tuning a geometrically constrained planar motion in the context of motion

approximation has been proposed. It builds on the recent work that seeks to

identify and extract point trajectories of an explicitly given planar motion. A

simple, direct search method for obtaining the optimum length of the coupler

link is presented that minimizes the standard deviation of the motion error in

terms of the kinetic energy based distance measure for planar displacements.

Overall, The presented work advocates a general unified motion synthesis

technique based on various given tasks for planar and spherical mechanisms,

which is obtained through kinematic extraction of geometric constraints from

a given set of planar or spherical displacements. For arbitrary given tasks,

following this unified procedure designers could always obtain the optimal

planar or spherical mechanisms. It is hoped that the fruits of this research

160



would lead to an innovation and a commercialization in mechanism design as

well as other fields connected with kinematics.
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