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Abstract of the Dissertation 

Application of Machine Learning To Decision Support Systems 

by 

Han Yu 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2013 

This dissertation presents applications of machine learning methods to clinical 

data sets and development of a decision support system. Our goal is to develop machine 

learning methods to predict potential healthcare problems before the onset of the actual 

diseases. Our research involves two examples with high-dimensional data. The 

independent variables are selected depending on the quality of prediction, and the models 

will be trained on the subspaces of the training data set. We also employed feature 

extraction technique to the original feature space such as PCA, FCA, data transformation, 

etc. This projection of the original feature space to lower the dimension is proven to be 

efficient in reducing the dimension of the data set. Recently, a non-probabilistic classifier 

called support vector machines (SVM) has been developed. The main idea of SVM is 

about mapping the input vectors into a high-dimensional feature space, and then a linear 

decision surface is constructed. Thus, the prediction will be based on the relative position 

of the data point with the decision surface. A tree-based ensemble method called Random 

Forest also received attention. Using a random selection of features to split each node 
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yields error rates that make this method compare favorably to Adaboost. In this 

dissertation, we applied several machine learning methods and techniques to develop a 

reliable decision support system.  
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Chapter 1 Introduction 

1.1 Machine learning and the history of classification 

In statistics and computer science, machine learning theory is a newly proposed 

direction about the learning and the study of models which can uncover the hidden 

patterns in the data, and furthermore, to predict the unknowns based on the properties 

learned from training data sets. In recent years, a great number of new regression and 

classification methods such as support vector networks and artificial neural networks 

(ANN) have been proposed by researchers. On the other hand, classifier combination 

methods have also become an active research area in machine learning theory. Many 

studies have been published to illustrate the advantages and disadvantages of these 

combination techniques. 

There are a number of well-known classification tools in machine learning theory, 

for example, Support Vector Machines (SVM), proposed by Cortes and Vapnik (1995), 

which was originally used for binary classification problems. Its base idea is to mapping 

the data points to a high-dimensional space, and then constructs a hyper plane or set of 

hyper planes in this space, which can split the data points into two distinguishable classes, 

and thus can be used for classification, regression, or other tasks. Good separation is 

achieved by maximizing the marginal distance to the nearest training data points of any 

classes. In addition to linearly separable problems, SVM can also be extended to learn 

linearly non-separable problems by first projecting the input data onto a high-dimensional 
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feature space using kernel functions and formulating a linear classification problem in 

that feature space. Lee and Lin (2001) have explained the multi-category SVM models, 

which extend the binary SVM to multi-category classification problem. Based on these 

techniques, many research and applications using SVM have been carried out. Lu, 

Plataniotis and Ventesanopoulos (2001), for example, argue that SVM is superior to 

traditional empirical risk minimization principle employed by most of neural networks. 

Based on these studies, it has been proven by many researchers that SVM is becoming a 

state-of-the-art model in machine learning theory, and has been successfully applied to a 

number of applications ranging from classification and regression, face detection and 

verification, hand writing recognition, and speech verification.  

Another direction of machine learning models is followed by the recent 

introduction of ensemble-voting approaches. Random Forest (RF) proposed by Breiman 

(2001), is one of such ensemble method, it combines the results of multiple decision tree 

classifiers by majority voting. In modern statistics, it is well-known that models based on 

data sets which contain a huge number of predictors and relatively small sample sizes are 

unstable. Breiman (2001) has genuinely avoided such difficulties by dividing the original 

feature space into a number of small partitions, and then assigning each partition to a 

single individual base classifier. Thus, RF predicts the unknown class category of a test 

data by combining the votes of multiple base classifiers. Many variations of the classical 

RF model have been proposed, which demonstrate the advantages of the combination 

paradigm over the individual classifier models. In this dissertation we also propose a new 

model by combining the optimal kernel selection algorithm with the RF ensemble method, 

and thus to further improve the diversity property of the classifier ensemble technique. 
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In this dissertation, we first introduce multiple classification models and their 

variations in chapter 2, and then we introduce two examples, to develop and compare the 

performance of these classification models. In chapter 3 and 4, we explain the details and 

research backgrounds for these examples, along with model validations, variable 

selection and predictions. Discussion and conclusion are given in chapter 5, with 

potential improvements and future studies in chapter 6. 

1.2 Introduction to Detection of Gastrointestinal Bleeding (GIB) 

and pathology background  

It is well known that prophetic diagnostic techniques are becoming an essential 

part of modern healthcare controls. Preventive measures are progressively introduced by 

healthcare specialists and play a vital part for the treatment of patients with possible 

healthcare problems. However, identifying underlying healthcare problems with little 

presence of symptoms has been proven to be a challenging issue for modern healthcare 

system. A decision support system is needed for predicting potential risks for individuals 

with inconspicuous symptoms. Our goal was to develop statistical methods to formulate a 

decision support system by using clinical and laboratory information, and thus to 

facilitate the detection of latent healthcare problems.  

In the prediction of potential bleeding source and cohort identification among 

patients with acute gastrointestinal bleeding (GIB) study, we have developed a model to 

help gastroenterologists to determine whether the patients need urgent intervention. 

Patients with acute GIB are usually evaluated by home primary doctors. Patients with 

acute GIB may require urgent endoscopy to avoid further damage to the digestive system, 
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with utilizing limited healthcare resources for those who need it the most. In our study, 

we utilize the ICD-9 codes to measure the patients with acute GIB. Three data sets have 

been introduced from hospital medical records database, with all variables required to 

develop and test models. Machine learning models including SVM and RF are trained 

and tested. And in the model validation stage, we compared the performance of these 

models using sensitivity (SN), specificity (SP), Negative Predictive Value (NPV), 

Positive Predictive Value (PPV) and overall accuracy (ACC). 

1.3 Introduction to Schizophrenia detection and pathology 

background  

In the prediction of risk for developing schizophrenia study, we have collected 

165 cases in our dataset, among them 51 cases were healthy control, 19 cases were 

schizoaffective, 60 cases were schizophrenia patients, 20 cases were bipolar patients and 

14 cases were major depressive disorder (MDD) patients. RF and SVM have been used to 

classify these data. We first use cross validation to evaluate the performance of these 

classification methods by comparing sensitivity, specificity, PPV, NPV and prediction 

accuracy on retained data sets. Then we applied the tuned models to the control group to 

predict the potential risks of developing schizophrenia before symptoms solidify into 

psychosis. The model with best predictive power for this data set was proposed and 

summarized in Chapter 4 and 5. 
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Chapter 2 Methodology 

In our research, we applied multiple machine learning models to analyze the data 

set, each model was trained and their performances were compared. The key idea of these 

models was to use selected explanatory variables to predict the response variables using 

various statistical techniques. Methods we applied were, but not limited to, data 

interpolation, feature extraction, discriminant analysis and kernel learning. 

Model training was performed on a randomly selected subset of patients, and 

tested on the remaining data set in model validation part. Data interpolation technique 

and robust methods were applied so that patients with missing data will not be discarded; 

categorical variables were changed into indicator variables. For each missing value in the 

data set, we used median to fit in the empty entry if the variable is numerical, and we 

used mode to fit in if the variable is categorical. This interpolation method may not 

provide any additional information, but in this way we can retain as much as information 

the original data set provided us. If we simply delete patients with missing data, all the 

cases with other entries that are not missing will be lost.   

We applied 10-fold cross validation (CV) method to estimate how accurately a 

predictive model would perform in practice. The following statistics were calculated, if 

applicable: SN, SP, PPV, NPV and ACC.  
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2.1 Introduction to RF and its variations  

RF is an ensemble classifier that combines multiple decision trees using the 

bagging algorithm. Bagging algorithm is a widely used ensemble based algorithm 

(Breiman et al., 1996), and the random selection of features, introduced by Ho et al. 

(1995), Amit and Geman (1997), is to construct an ensemble of decision trees with 

controlled variation with maximum feature diversity. In this algorithm, different training 

data sets are randomly drawn with replacement from the original training data set. Each 

training data set is used to train one individual classifier. The result is then given as a 

combination of individual classifiers by taking a majority vote of their decisions.  

 

In 2009, the Apache Software Foundation initiated an open resource project to 

provide free implementations of machine learning algorithms on the Hadoop platform 

(https://cwiki.apache.org/MAHOUT/mahout-wiki.html, 

https://cwiki.apache.org/confluence/display/MAHOUT/Random+Forests). For a 2-way 



7 
 

classification problem, let X be a matrix of N rows and M columns, where xij is the value 

of the jth attribute in the ith input data point. Let Y be a vector of n elements,  

where yi is the response class of the ith data point. The Y values are categorical. Each 

decision tree is grown to its full potential and the simplified pseudo code is explained in 

Algorithm 2.1.1. 

Algorithm 2.1.1. Construction of a decision tree  

Define function: Decision_Tree(X,Y)  

Select m variable at random with replacement out of M variables 

For j=1…m 

If jth attribute is categorical then 

 (here pl is defined 

as the entropy of Y, i.e.  for ,  is the entropy of Y among 

only those records in which X has value v) 

Else if jth attribute is real-valued 

 

 Let j* = argmaxj IGj  

If j* is categorical then 

For each value v of the jth attribute 

Let Xv = subset of rows of X in which Xij = v. Let Yv = corresponding subset of Y 

Let Childv = Decision_Tree (Xv,Yv) 

Return a decision tree node, splitting on jth attribute. The number of children equals the number 

of values of the jth attribute, and the vth child is Childv 

Else j* is real-valued and let t be the best split threshold 

Let XLO = subset of rows of X in which Xij <= t. Let YLO = corresponding subset of Y 
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Let ChildLO = Decision_Tree (XLO,YLO) 

Let XHI = subset of rows of X in which Xij > t. Let YHI = corresponding subset of Y 

Let ChildHI = Decision_Tree (XHI,YHI) 

Return a decision tree node, splitting on jth attribute. It has two children corresponding to 

whether the jth attribute is above or below the given threshold. 

 

RF consists of a collection of tree-structured classifiers  where 

{ } are independent and identically distributed random vectors and each tree casts a unit 

vote for the most popular class at input X. Each tree is grown 1) sample as many cases 

from the original data set, but with replacement, to form the training data set. 2) sample m 

(m<<M) columns at random for each different node, where M is the number of input 

columns. Run the decision tree algorithm to fully grow a tree structured model using 

greedy algorithm. The value of m will be held constant during the entire training step. 3) 

Each decision tree model is grown to its full potential. There is no pruning. For an 

individual decision tree, the prediction is based on the trained nodes of the original tree, a 

vector V of M columns where Vj = the value of the jth attribute. The prediction algorithm 

is illustrated as in Algorithm 2.1.2. 

Algorithm 2.1.2. Prediction of the label of a single case  

Define function Classify(node,V) 

if node.attribute = j then the split is done on the jth attribute 

If node is a Leaf then 

   Return the value predicted by node 

Else 
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   Let j = node.attribute 

   If j is categorical then 

      Let v = Vj 

      Let childv = child node corresponding to the attribute's value v 

      Return Classify(childv,V) 

   Else j is real-valued 

      Let t = node.threshold  

      If Vj < t then 

          Let childLO = child node corresponding to (<t) 

          Return Classify(childLO,V) 

      Else 

          Let childHI = child node corresponding to (>=t) 

         Return Classify(childHI,V) 

 

Breiman (2001) suggested that we pick a large number of base classifiers, and let 

 may optimize RF model’s performance. For prediction, a new sample is 

plugged in for each tree. The leaf class that this sample ended up with will become its 

prediction. The sample point will be plugged in all the trees in the forest, and the 

ensemble will use majority voting to determine the final prediction.  

Much literature has suggested that RF will constantly deliver a lower 

generalization error than many other ensemble methods. For example, Dietterich et al. 

(1998) have reported that it performs better than bagging. Breiman suggested that to 

improve accuracy, we need to minimize the correlation between individual base 

classifiers, at the same time maintaining strength.  
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As the classification combination technique is more popular, people are actively 

search for the reason. Banfield et al. (2004) reported a comparison of ensemble methods, 

Bauer et al. (1999) and Shi et al. (2007) also carried out an empirical comparison of 

voting classification algorithms. From the results of these empirical researches, Adaboost 

turned out to be a very comparative ensemble technique. However random selection of 

subspaces and bagging may deliver better results in certain cases. Base classifier’s 

diversity is a very important property of an ensemble, thus explained (Banfield et al., 

2004) the advantage of the classical AdaBoost. Based on the idea proposed by Breiman 

(2001), Rodríguez et al. (2006) proposed a new ensemble construction method, which 

aims at building accurate and diverse classifiers. Its key idea is to apply feature extraction 

methods to the partitions divided from the original feature space, and reconstruct a new 

feature set for each base classifier in the ensemble. In the application part, Rodríguez et al. 

(2006) has proposed to apply principal component analysis (PCA) as the feature 

extraction method.  

As Breiman (2001) proposed, Rodríguez et al. (2006) also chose the decision tree 

as the base classifier for their advantage of sensitivity of change of axis. Aside from PCA, 

other alternative feature extraction methods may be used as well (Heijden et al., 2004; 

Webb, 1999; Fern and Brodley 2003).  

Aside from feature extractions in sub-dimensional space, there are also other 

proposals to improve the performance of RF. From the structure of the construction of RF, 

it is natural to consider the quality of base classifiers. In the following paragraph, we 

briefly introduce the method that we applied in our research.  
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Instead of majority voting, Tsymbal et al. (2006) proposed that by replacing the 

combination function for RF, the performance can be improved further. In classical RF, 

Breiman proposed a majority voting technique to combine the results of base classifiers, 

which is one of the most popular and simplest techniques used to combine the results of 

base classifiers in a classification ensemble. Another commonly employed technique is 

weighted voting, where the combination function will gather each vote according to the 

weight proportional to the estimated performance of the corresponding classifier. By 

applying this technique the ensemble model will usually achieve a better predictive 

performance than simple majority voting (Bauer, 1999). As a selective voting method, 

Tsymbal et al. (2006) proposed a new method which is called dynamic integration 

information selection. In contrast to the static methods introduced previously, this method 

considers each new instance to be processed into the model.  

In order to combine the dynamic methods to RF, Tsymbal et al. (2006) studied the 

internal structure of RF. As a state-of-the-art machine learning method, it has an 

appealing property that each tree is built on a bootstrap sample of the original training set. 

Thus RF can use the remaining data (out-of-bag samples) to evaluate the base classifier’s 

performance including correlation feature importance and marginal accuracy. The 

bagging algorithm is described as following: Given a training data set T of size n, 

bagging algorithm will generates m new training sets Ti, each of size n′ < n, 

by sampling from T uniformly and with replacement. By sampling with replacement, 

some observations may be repeated in each Ti. Then m models are fitted using 

the m bootstrap samples, the ensemble will combine the results of all the base classifiers 

by averaging the output (for regression) or voting (for classification). Breiman (2001) 
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suggested that by applying this technique, RF can reach an improved stability and better 

accuracy. It can also reduce variance and helps to avoid over fitting. By taking advantage 

of this property, the distance function to determine the neighborhood of the current test 

instance in dynamic integration can be defined. Thus a neighborhood for local 

performance estimates can be calculated and transformed into the voting weights. In our 

research we followed their steps to use the heterogeneous Euclidean distance which is 

defined as: 

݀௛௘௢௠ሺݔଵ, ଶሻݔ ൌ ඨ෍ ௔݉݋݄݁
ଶሺݔଵ, ଶሻݔ

௠

௔ୀଵ
 

 

where x1 and x2 are two instances, a is a numeric feature, and m is the number of features. 

The Euclidean distance for numeric features and the overlap distance for categorical 

features were proved to be robust in many applications (Wilson et al., 1997; Shi et al. 

2012). In addition, from the original construction of RF, it has an inbuilt instance 

similarity metric. Breiman (2001) suggested that the proportion of base classifier, i.e., the 

decision tree, where similarity between two cases can be measured if they fall into the 

same leaf. Therefore, based on their definitions and derivations, Tsymbal et al. (2006) 

concluded that the definition of the dynamic weight for the ith model for a new instance x 

would be 
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where k is the size of the neighborhood, OOBi is the set of out-of-bag instances for model 

i, I(.) is an indicator function,  is a distance-based relevance coefficient and 

 

Aside from the modification of voting procedure, recent studies put more 

importance on the construction of the ensemble methods, and the prediction quality of the 

base classifiers is also an important factor to consider. Bernard et al. (2012) proposed a 

new induction algorithm for RF by constructing an adaptive tree. The main idea is to 

guide the tree induction so that each tree will complement the existing trees in the 

ensemble as much as possible. As stated in Breiman’s original RF paper, a classical RF 

will build each base classifier independently from each other. This means each new tree 

is arbitrarily added to the forest, and the attribute selection is purely random. Thus, it is 

reasonable to suspect the quality of each base classifier within the ensemble. Bernard et 

al. (2009) suggested that sometimes, blindly introducing such base classifiers can worsen 

the ensemble performance, and if we carefully select the base classifiers, and create 

criteria for the entrance of the base classifier, the final ensemble may outperform the 

classical RF. Bernard et al. (2012) further illustrates this concept by comparing the OOB 

prediction accuracy using the sequential forward search, which proves that there exists at 

least one sub-forest which outperforms the classical RF. In order to avoid this drawback, 
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they proposed the Dynamic Random Forest, by making the tree induction dependent on 

the ensemble under construction. More specifically, the DRF algorithm is actually taking 

a weight of each randomly selected training subsample according to the predictions given 

by all the trees already added to the forest. The proposed contribution of each training 

subsample for the induction of the next tree is as: 

 

where x is an input data point and y is its true class, hi(x) is the ith classifier ouput, hoob is 

the set of out of bag trees of x.  

Bernard et al. (2012) has explicitly illustrated the algorithm for constructing the 

DRF, which is referenced here in Algorithm 2.1.5 for comparison with previously 

illustrated algorithms for different variations of RF, including the original RF by Breiman 

(2001). 

Algorithm 2.1.5. Construction of DRF  

Let: T the training set (xi, yi) 

Let: N the number of training instances in T 

Let: M the number of features 

Let: L the number of trees in the forest to be built 

Let: W(c(x, y)) a weighting function inversely proportional to c(x, y) 

Ensure: forest the ensemble of trees that compose the forest 

for all xi in T do 

D1(xi)=1/N 
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end for 

for l from 1 to L do 

 Tl =a bootstrap sample, made with randomly sampled (with replacement) 

training  instances from T, according to a uniform distribution 

Tl=Tl weighted with Dl 

tree=RandomTree(Tl) 

fores=forest  tree 

Z=0 

for all xi in T do 

 if ooBTrees(xi) is not empty then 

  Dl+1(xi)=W(c(xi, yi)) 

 Else 

  Dl+1(xi)= Dl(xi) 

 end if 

 Z=Z + Dl+1(xi) 

end for 

for all xi in T do 

 Dl+1(xi)= Dl+1(xi)/Z 

end for 

end for 

return forest 
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2.2 RF with Optimal Kernel Selection (RF-OK), 

In addition to modify the voting methods for RF, it is natural to consider the 

improvement of the performance of base classifiers in an ensemble. Chen et al. (2013) 

proposed a new model using Fisher’s linear discriminant analysis (LDA) as the base 

classifier in RF. In this paper, the splitting feature of RF to construct subspaces of sample 

points is kept, and then they applied the Canonical LDA to each subset to serve as a base 

classifier of the ensemble method. A majority voting is carried out to summarize all the 

predictions of the base classifiers. Chen et al. (2013) applied this method to 27 real and 

simulated data sets and claims that Canonical Forest is significantly higher in accuracy 

than other ensemble methods in the majority of theses 27 data sets. According to his 

paper, Canonical Forest performs well in reducing variance compared to other ensemble 

methods. 

It is well known that LDA  is an efficient linear classifier and dimension reduction 

method for linearly separable data sets, and for linearly non-separable data sets, people 

proposed the kernel LDA method to solve this problem. The main idea is to first map the 

data points from its original space into a feature space, then apply LDA in the feature 

space to classify the points. Therefore picking a good kernel is the key to achieve a good 

classification performance. Ensemble methods such as RF may involving the splitting of 

the original sample space and then construct new subsample spaces for each base 

classifier, therefore it is natural to believe that linearly non-separable data sets may exist 

in such subsamples, and due to its structural nature of kernels and a huge number of 

subspaces in ensemble, it is not possible to manually pick kernels for each base classifier 

in such scenarios. Kim et al. (2006) proposed a method to numerically find the optimal 
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kernel for Kernel Fisher’s Discriminant Analysis (KFDA) over a given convex set of 

kernels. The key idea is to reformulate this problem as a tractable convex optimization 

problem which interior-point methods can solve. Therefore, by taking the advantage of 

the optimal kernel selection technique for KFDA, it is possible to construct an ensemble 

method with KFDA as its base classifier and each of them may own its specific optimal 

kernel automatically selected by an optimization algorithm. This method is proposed by 

Kim et al. (2006) and their paper is summarized here to explain our approach. Based on 

their previous work, we propose a new ensemble method based on the concept explained 

above.  

KFDA has been well studied by many researchers over recent years as an efficient 

classifier and dimension reduction method. Its main goal is to find a direction in the 

feature space HK, onto which the projections of sets ሼݔ௜ሽା and ሼݔ௜ሽି are well separated. 

As usual, the seperation of these two sets are measured by the ratio of the variance 

between class, ሺߤ்ݓା െ ∑ሺ்ݓ ,ሻଶ, and the variance within the classିߤ்ݓ ݏ ൅ା ∑ ିݏ ሻݓ. 

Therefore, the KFDA will try to find an optimal direction which maximize the ratio  

,ݓሺܨ ݇ሻ ൌ
ሼߤ்ݓ௞

ା െ ௞ߤ்ݓ
ିሽଶ

∑ሺ்ݓ ൅ି௞ ∑ ൅ିܫߜ
௞ ሻݓ

 

where  is a positive regularization parameter, I is the identity matrix in HK. Kim et al. 

(2006) shows that the weight factor  

࢝∗ ൌ ൬෍ ൅
ି

௞
෍ ൅ܫߜ

ି

௞
൰
ି૚

ሺߤ௞
ା െ ௞ߤ

ିሻ 

maximizes ܨሺݓ, ݇ሻ  by using Cauchy-Schwartz inequality.  
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Mika et al. (2003) showed that the optimal weight vector can be found within the 

span of the image of the training inputs through the feature mapping. That is, there exists 

∗ߙ ∈ ܴ௠ such that 

∗ݓ ൌ෍ ௜ߙ
∗

௠

௜ୀଵ
߮௞ሺݔ௜ሻ ൌ ܷ௞ߙ∗ 

where ܷ௞ ൌ ሾ߮௞ሺݔଵሻ, … , ߮௞ሺݔ௠ሻሿ. And a closed form expressions for  can be found 

(Kim et al. 2006) as: 

∗ߙ ൌ
1
ߜ
ሾܫ െ ܫߜሺܬ ൅  ௞ሿܽܩܬሻିଵܬ௞ܩܬ

Where 

ܽ ൌ ܽା െ ܽି 

ܽା ൌ ൥൬
1
݉ା

൰1௠శ

0
൩ , ܽି ൌ ൥

0

൬
1
݉ି

൰ 1௠ష
൩ 

ܬ ൌ ൤
ାܬ 0
0 ܬି ൨  

 

ାܬ ൌ
1

ඥ݉ା
൬ܫ െ

1
݉ା

1௠శ
1௠శ
் ൰ , ܬି ൌ

1

√݉ି
ሺܫ െ

1
݉ି

1௠ష
1௠ష
் ሻ,	 

௞ܩ ൌ ሼܩ௜௝ሽ and ܩ௜௝ ൌ ,௜ݔ൫ܭ ,௝൯ݔ ,௜ݔ൫ܭ ௝൯ݔ ൌ൏ ߮ሺݔ௜ሻ, ߮ሺݔ௝ሻ ൐ுೖ 

Here 1௡ is the vector of all ones in ܴ௡.  
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It is impractical and unnecessary to consider all possible kernels, thus we can 

consider a special case of kernels, that is, the set of all convex kernels K consists of 

convex combinations of user given kernels, i.e.  

൝ܭอܭ ൌ෍ ௜ܭ௜ݓ
௡

௜ୀଵ
,෍ݓ௜

௜

ൌ ௜ݓ,1 ൐ 0ൡ 

For a given set of kernels K1,…,Kn,. To numerically implement this technique, Kim et al. 

(2006) proposed that by using the Schur complement technique (Boyd and Vandenberghe, 

2004), we can rewrite this problem into an Semi definite programming problem as 

 

where ݐ ∈ ߠ ,ܴ ∈ ܴ௠ and  

 

Predefining a set of kernels and finding an appropriate semi definite numerical 

solver (such as CSDP or SeDuMi) to solve this optimization problem will give us the 

optimal kernel for each individual base KFDA classifier. Therefore, the ensemble which 

splits the original sample space into subspaces and applies KFDA as its base classifier 

can be viewed as a variation of RF. The algorithm of constructing RF-OK can be 

expressed as in Algorithm 2.2.1. 

Algorithm 2.2.1. Construction of RF-OK. 
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Training phase 

Let Tn be the training data set 

Let M be the number of variables 

Let N be the number of rows 

Let y be the response variable  

Let n be the rows of bootstrap samples, n<N 

Let p be the number of base classifiers 

Let  

For i=1 to p 

Randomly pick m variables and the response variable y, to construct the ith 

framework Ti 

 For j=1 to n 

Randomly pick one row from the training data set Tn (taking a bootstrap 

sample) and then fill up the empty entries with the m corresponding variables and 

the response variable y and store this row into Ti, jth row 

End for 

Train the ith KFDA base classifier based on sub training set Ti, and store it in the R 
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2.3 SVM and its application 

The Support Vector Network is a machine learning classification model that first 

developed for 2-way classification problem. The key idea of SVM is by multi-

dimensional splitting. Assuming the input data matrix is a combination of 

multidimensional data points, which can be mapped into a high dimensional feature space, 

SVM tries to construct a super linear decision surface based on several support vectors. 

This decision surface splits the training data set into two decision subspace so that a 

classification decision can be made. 

S4 object Ki 

End for 

Classification phase 

Let x be the given prediction sample vector 

For i=1 to p 

 Split the vector as we did in training phase, subset Ti, store it into vector xi 

 Plug xi into base classifier Ki, calculate the classification prediction predi 

End for 

Summarize the results based on the prediction vector pred using majority voting  
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SVM belong to the supervised learning class, which can be used for multiple 

application types, including classification, regression etc. The method was initially 

proposed by Cortes and Vapnik (1995), and was first used to solve the linearly separable 

data sets. They introduced the concept of classification margin and the essence of SVM - 

margin maximization. This methodology is then extended to data which are not fully 

linearly separable by introducing the kernel tricks and the soft margin concept.  By 

implementing the idea of slack variables and the trade-off between maximizing the 

margin and minimizing the number of misclassified labels, SVM can be further extended 

to classify linearly non-separable problems and regression problems. 

SVM maps the input vectors into high dimensional feature space Z through some 

non-linear mapping. The algorithm will construct a hyper-linear decision surface 

according to an optimization function which will ensure a high generalization ability of 

the classification machine. 

For example (Cortes and Vapnik, 1995), to obtain a decision surface to a 

H
2

H
1

d
1

2
 

C lass1
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polynomial of degree 2, we can create a feature space Z such that there are  

coordinates: 

    coordinates, 

    coordinates, 

   coordinates, 

where . Then the hyper plane is constructed. For an input pattern, it was 

first transformed into some high-dimensional feature space, and then based on the 

optimal hyper plane constructed, the output classification result is determined.  

In order to optimize the performance of SVM, the construction of a good 

separating hyper plane is a necessity. Fletcher (2009) briefly explained the background 

theory and application of constructing such planes. The algorithm can be implemented 

using multiple programming languages. The basic theory behind SVM is as follows: 

Assume we have N data points as the training data set. For each data point xi , there are H 

attributes available. The response variable is of two classes yi = -1 or +1. That is: 

ሼݔ௜, ݅  ௜ሽwhereݕ ൌ 1,… ௜ݕ , ܰ, ∈ ሼെ1,൅1ሽ, ݔ ∈ ܴு 

Here we assume that the data are linearly separable. Under these assumptions this hyper 

plane can be described by , where w is the normal to the hyper plane. The 

closest data points to the hyper plane are defined as the support vectors. 

The aim of SVM is to construct a plane such that this plane can be as far as 

possible from the closest members of both classes. In order to position the hyper plane to 
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be as far from the support vectors as possible, we need to maximize this margin.  

Geometrically we can find that the margin is equal to   (Cortes and Vapnik, 1995, 

Fletcher, 2009), thus we can convert this problem into an optimization problem 

formulated as 

 

s.t.     for any i 

By applying quadratic programming optimization and Lagrange multipliers this problem 

can be rewritten into a convex quadratic optimization problem (QP), in which a QP 

solver will suffice to solve.  

In addition to performing linear classification, SVM can also perform non-linear 

classification by applying the kernel trick, which implicitly mapping the data points into 

high-dimensional feature spaces and then perform classification analysis. In practice, it is 

possible that the data points are linearly non-separable. Therefore, to treat this kind of 

data we must start with maps and transformations of the original data. But due to 

insufficient memory and possible computational limitation, it is not possible to explicitly 

map great amounts of data points into feature space, and then perform classification 

analysis in the new feature space. Thus we can construct the target function in 

optimization problem discussed above, by applying kernel tricks to avoid such difficulty. 

Figure 2.3.1 is an illustration of kernel trick by converting linearly non-separable problem 

into linearly separable problem.  

Figure 2.3.1. Illustration of kernel trick. 
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Dot product or inner product is an algebraic operation defined in high-

dimensional feature spaces. Kernel function is used to implicitly calculate this product 

from its original space. In other words, it is capable of performing the multiplication in 

feature space without actually mapping the vectors into the feature space. Only inner 

products of the mapped inputs in the feature space need to be determined without the 

necessity to explicitly calculate the mapping. Therefore, by the help of kernel tricks and 

non-linearly mapping technique, we can construct the SVM in feature space for data sets 

that are originally linearly non-separable.  

Common kernels applied in SVM are Linear, Radial basis, Polynomial, sigmoidal 

kernels given as: 

Linear:    

Polynomial:   

Radial basis:   
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Sigmoid:   

Figure 2.3.2 illustrates the difference between hard margin and soft margin in SVM, 

Figure 2.3.3 illustrates the difference between large penalties and small penalties in SVM. 
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Figure 2.3.2. Hard margin of SVM (linearly separable) and soft margin of SVM (training 

error) 

 

Figure 2.3.3, different penalty effect for training error, large C and small C respectively. 

 

 

SVM can also be extended to multi-class classification problems. Literature 

suggests that there are mainly two ways to solve this problem. First is the one to others 

method, i.e., for each different class, take the sample with same label as one class, and all 

the others as the other class. For the n (n>2) class problem, n SVM classifiers will be 

trained and denote the ith classifier as Ci. Then we pick the class which has the largest 

margin as the prediction.  



28 
 

Another method is pair wise distinguishing. Different class labels will be arranged 

as a tree-like structure, and multiple SVMs will be constructed for each splitting node to 

distinguish the classes. A bottom-up elimination tree was proposed by Pontil et al. (1998), 

for recognition of 3D objects and was applied to face recognition in (Guodong et al., 

2000). Figure 2.3.4 (b) shows a binary tree structure for 4 classes. For a coming test data 

point, two pairs are compared, the winner will be tested in an upper level until the top of 

the tree is reached. For these two methods, usually the one to others method are favored 

by researchers for better time complexity. But empirical study showed that the 

classification performance of these two methods are much similar to each other 

(Nakajima et al., 2000). 

Like RF, SVM can also provide variable importance analysis based on the 

evaluation of variable prediction power. Variable selection algorithms require a ranking 

criterion to distinguish important variables from less important variables. The ranking 

starts with a calculation of the criteria Ct, which resembles to ANN variable selection 

methods (Leray and Gallinari et al., 1999). Two approaches can be used to rank the 

criteria as below. 

Zero order method: The algorithm repeatedly removes the variable that produces the 

smallest value of Ct. The ranking criterion will be Rc(i)=Ct(i) when the ith variable is 

removed. 

First order method: Variables are ranked according to their influence on the criterion, 

which is measured by the absolute value of the derivative Rc(i)=| |  

The most commonly used Ct is the weight vector ||w||2 defined as 
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ܴ௘ሺ݅ሻ ൌ ሺ௜ሻ||ଶݓ|| ൌ෍ߙ௞
∗ሺ௜ሻߙ௝

∗ሺ௜ሻݕ௞ݕ௝ܭ
ሺ௜ሻሺݔ௞, ௝ሻݔ

௞,௝

 

where K(i) is the Gram matrix of the training dataset, when the variable i has been 

removed.  

SVM has been applied to multiple scenarios after its proposition, and is shown to 

be accurate and efficient. Byun et al. (2002) conducted a survey on variations of SVM 

and its applications, and found that the most commonly applied area is the pattern 

recognition part. Byun et al. (2002) classified the pattern recognitions into seven 

categories according to their aims, and the survey (partial) is summarized as follows: 

Face detection 
 Frontal face detection 
 orthogonal Fourier-Mellin Moments as an input, Terrillon et al. (2000) 
Combination of multiple methods 

Eigenface for a coarse face detection followed by an SVM for fine 
detection, Li et al. (2000) 

Face Verification 
Reformulated Fisher’s linear discriminant ratio to quadratic problem to 

apply SVM, Tefas et al. (2001) 
Object Recognition 

Input feature for SVM was extracted by PCA, Guo et al. (2001) Guodong 
et al. (2000) 

3D range data for 3D shape features and 2D textures are projected onto 
PCA subspace and PC.s are input to SVMs, Wang et al. (2002) 

Handwritten Character/ Digit Recognition 
 SVM, global view model for recognition, Choisy et al. (2001) 

Speaker/ Speech Recognition 
SVMs are used to accept keyword or reject non-keyword for speech 
recognition, Ma et al. (2001) 
Combined Gaussian Mixture Model in SVM outputs text independent 
speaker verification, Dong et al. (2001) 

Image Retrieval 
 Boundaries between classes were obtained by SVM, Guo et al. (2001) 

SVMs were used to separate two classes of relevant and irrelevant images, 
Druker et al. (2002) Tian et al. (2000) Zhang et al. (2001) 
Analytical Models for Understanding Misbehavior and MAC Friendliness 
in CSMA networks, Shi et al. (2009) 
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Prediction 
C-ascending SVMs were suggested based on the assumption that it was 
better to give more weights on recent data than distant data, Tay et al. 
(2001) 

Other Classifications 
  

Misbehavior and MAC Friendliness in CSMA Networks Shi et al. (2007) 
Competition, cooperation, and optimization in Multi-Hop CSMA 
networks, Shi et al. (2011) 
Hyperspectral data classification, Zhang et al. (2001) 
storm cell classification, Ramirez et al. (2001) 
Image classification, Zhang et al. (2001) 

 

It is a well known problem that due to different angle, lights, weather and wearing 

glasses or not, people’s face can be much different from time to time, thus render the face 

recognition a very difficult problem for machines. Illuminations and other environmental 

parameters can also affect the machine’s accuracy. Due to SVM’s structural simplicity 

and high level degree of freedom, researchers are actively using SVM with different input 

features and different kernels to achieve a better performance. 
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Chapter 3 Prediction of potential bleeding 

source and cohort identification among patients 

with GIB data set 

3.1 Explanation of the data set 

Due to an aging population, acute GIB is drawing more and more attention in 

modern healthcare system. Further reductions in mortality will most likely require 

introduction of novel strategies to aid identification of the cohort requiring aggressive 

resuscitation and endoscopic intervention to prevent complications and death from 

ongoing bleeding. Delays in intervention usually result from failure to adequately 

recognize the source and severity of the bleed. The goal of this study is to utilize 

mathematical models to formulate a decision support system utilizing clinical and 

laboratory information to predict the source.  

Chu et al. (2007) suggested a statistical method to predict the bleeding source and 

identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require 

urgent intervention, including endoscopy. They applied RF, SVM, shrunken centroid (SC), 

linear discriminant analysis (LDA), k-nearest neighbor (kNN), logistic regression (logistic), 

boosting and ANN to their data set, and compared the performance using out of sample 

prediction accuracy and ROC curves. From the test results and Figure 3.1.1 to 3.1.4, Chu et al. 

(2007) concluded that, RF consistently provided a best prediction accuracy given the 
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collected data set. Therefore, generalization of mathematical methods to other data sets and 

build a decision support system for evaluation and management of patients with acute GIB 

may lead to a promising future. 

In our analysis, we generalized Chu et al. (2007) method to two other clinical data 

sets, i.e. Mayo clinic’s data set (Mayo) and Blatchford’s data set (Blatchford), along with 

Chu et al. (2007) data set (Chu). A survey was carried out and the data was collected 

accordingly. 

In Chu’s data set, there are 123 patients, 6273 entries with 852 missing values. 

Variables with too many missing values were deleted. 82 patients suffer from upper bowl 

bleeding, 30 patients suffer from lower bowl bleeding, and 11 patients suffer from middle 

bowl bleeding. 78 patients have received blood resuscitation and 79 patients have 

received urgent endoscopy. 5 patients were receiving care in home, 77 patients were 

receiving care in ICU, and the rest patients were receiving care in monitor floor. 

In Mayo Clinic’s data set, there are 400 patients, 11200 entries with 605 missing 

values. Variables with too many missing values were deleted. 134 patients suffer from 

upper bowl bleeding, 74 patients suffer from lower bowl bleeding, and 192 patients suffer 

from middle bowl bleeding. 29 patients have received blood resuscitation. 294 patients 

were receiving care in home, 89 patients were receiving care in ICU, and the rest patients 

were receiving care in monitor floor. 

In Blatchford’s data set, there are 1895 patients, 115595 entries with 87126 

missing values. Variables with too many missing values were deleted. 369 patients have 

received blood resuscitation and 380 patients have received urgent endoscopy. 1132 



33 
 

patients were receiving care in home. The rest 763 patients were receiving care in ICU or 

in monitor floor. 

Four response variables were considered to predict the risk of GIB, i.e. 

 Bleeding source (Source): The irrefutable identification of a bleeding source 

at upper endoscopy, colonoscopy, small bowel enteroscopy or capsule 

endoscopy.  

 Blood resuscitation (Resuscitation): Urgent blood resuscitation referred 

specifically to the administration of blood and blood products to correct loss 

of intravascular volume and presence of coagulopathy.  

 Urgent endoscopy (Endoscopy): Technology used to identify patients with 

acute upper-GI bleeding, provide additional information about patient’s 

digestive system. 

 Disposition: a tendency, either physical or mental, toward a given disease. 

And we used patient demographics, presenting symptoms, comorbidities, clinical 

exam/blood tests to predict the response variables. A complete list of independent variable 

explanations is as the following : 

 Prior GI Bleed: patient GI bleeding history. 

 Hematochezia: the passage of red blood through the rectum. The cause is 

usually bleeding in the colon or rectum, but it may result from the loss of 

blood higher in the digestive tract although blood passed from the stomach or 

small intestine generally loses its red coloration through enzymatic activity on 

the erythrocytes. Cancer, colitis, and ulcers are among causes of hematochezia. 
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 Hematemesis: vomiting of bright red blood, indicating rapid upper GI 

bleeding, commonly associated with esophageal varices or peptic ulcer. The 

rate and the source of bleeding are determined by endoscopic examination. 

Any blood found in the stomach is removed by nasogastric suction.  

 Melena: abnormal black tarry stool that has a distinctive odor and contains 

digested blood. It usually results from bleeding in the upper GI tract and is 

often a sign of peptic ulcer or small bowel disease. 

 Duration: Duration of the symptoms. 

 Syncope/Presyncope: A brief loss of consciousness caused by a sudden fall of 

blood pressure or failure of the cardiac systole, resulting in cerebral anemia. 

 Unstable CAD: atherosclerosis of the coronary arteries, which may cause 

angina pectoris, myocardial infarction, and sudden death.  

 COPD: Chronic obstructive pulmonary disease. A term used to describe 

chronic lung diseases, like chronic bronchitis, emphysema, and asthma. 

 CRF: chronic renal failure (CRF), gradual loss of kidney function, with 

progressively more severe renal insufficiency until the stage called chronic 

irreversible kidney failure or end-stage renal disease. 

 Risk for stress ulcer: indicator variable for whether patient exposed to the risk 

of developing a certain type of ulcer. 

 Cirrhosis: Cirrhosis is a chronic degenerative disease in which normal liver 

cells are damaged and are then replaced by scar tissue. 

 ASA/NSAIDS: Abbreviation for nonsteroidal antiinflammatory drugs, under 

drug; for example, aspirin, ibuprofen. 
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 PPI: Abbreviation for inorganic pyrophosphate (diphosphate). 

 Systolic BP: The phase of blood circulation in which the heart's pumping 

chambers (ventricles) are actively pumping blood. The ventricles are 

squeezing (contracting) forcefully, and the pressure against the walls of the 

arteries is at its highest. 

 Diastolic BP: The phase of blood circulation in which the heart's pumping 

chambers (ventricles) are being filled with blood. During this phase, the 

ventricles are at their most relaxed, and the pressure against the walls of the 

arteries is at its lowest. 

 Heart Rate: heart pumping speed or frequency. 

 Orthostatis: maintenance of an upright standing posture. In some medical tests 

a patient may need to maintain orthostasis for a long period to stimulate a rise 

in aldosterone concentration. 

 NG lavage: the irrigation or washing out of an organ, as of the stomach or 

bowel. 

 Rectal: Of, relating to, or situated near the rectum. 

 Hct: Hematocrit, measures how much space in the blood is occupied by red 

blood cells. It is useful when evaluating a person for anemia. 

 Cr: Conditioned reflex. 

 BUN: Blood urea nitrogen, a waste product that is formed in the liver and 

collects in the bloodstream; patients with kidney failure have high BUN levels. 



36 
 

 INR:  international normalized ratio index of blood coagulability (normal INR 

= 1); anticoagulant therapy (e.g. warfarin) adjusts INR to 2-4 (i.e. 

anticoagulated blood takes twice to four times as long to clot) 

 Source: source of bleeding. 

 Severity: indicator variable of measure of severity. 

 Ulcer: defined as mucosal erosions equal to or greater than 0.5 cm of an area 

of the gastrointestinal tract that is usually acidic and thus extremely painful. 

 Varix: refers to distended veins. 

 MW tear: A Mallory-Weiss tear occurs in the mucus membrane of the lower 

part of the esophagus or upper part of the stomach, near where they join. The 

tear may bleed. 

 Diverticula: an outpouching of a hollow (or a fluid filled) structure in the body. 

Usually implies that the structure is not normally present. 

 AVM: a congenital disorder of the veins and arteries that make up the 

vascular system. 

 Dieulafoy: a medical condition characterized by a large tortuous arteriole in 

the stomach wall that erodes and bleeds. 

3.2 Variable selection 

In RF, the rationale behind variable importance ranking is by permutation 

(Breiman 2001). The key idea is the following: If the variable contains crucial 

information regarding the response variable, then if we randomly permute it, the link 

between this predictor variable and response variable might be weaken, thus if we still 



37 
 

use this predictor variable to predict the response variable then the prediction accuracy 

should be substantially decreased. On the other hand if this variable is not closely related 

to the response variable then the prediction accuracy should not be changed significantly. 

Several trials have been performed to evaluate the variable importance in the GIB data. 

The result is summarized in Table 3.2.1. 

Table 3.2.1. Variable importance ranking. 

Endoscopy Disposition Resuscitation 

  RF   RF   RF 

Syncope 5.6 HR 6 Syncope 8.4 

HR 5.1 Hct 5.1 DBP 6.7 

DBP 4.3 SBP 4.6 HR 4 

Hct 4 DBP 4.2 Hct 3.5 

BUN 4 BUN 2.5 SBP 3.1 

Hematemesis 3.4 Cr 2.3 Hematemesis 2 

SBP 3.2 Syncope 2.1 BUN 1.6 

Cr 1.9 Melena 0.9 Cr 0.9 

PPI 0.8 Hematemesis 0.8 Melena 0.5 

Hx_of_GIB 0.7 Hx_of_GIB 0.6 Hx_of_GIB 0.5 

Cirrhosis 0.7 Unstable_CAD 0.5 PPI 0.4 

Sex 0.6 Cirrhosis 0.5 ASA_NSAID 0.3 

ASA_NSAID 0.4 PPI 0.4 Cirrhosis 0.3 

Unstable_CAD 0.36 Sex 0.3 Sex 0.3 

Melena 0.3 ASA_NSAID 0.3 Unstable_CAD 0.2 
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Figure 3.2.2. Variable importance ranking for Endoscopy.

 

Figure 3.2.3. Variable importance ranking for Disposition.
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Figure 3.2.4. Variable importance ranking for Resuscitation.

 

As we can see from Table 3.2.1 and Figure 3.2.2 to 3.2.4, the variable importance 

ranking by RF agrees with the result in Chu et al. (2007), but several important variables 

for the prediction are missing.  This may negatively affect the prediction results. 

3.3 Statistical analysis and modeling  

We applied RF and SVM to analyze the data set using 10 fold cross validation. 

Model training was performed on a randomly selected subset of patients, and tested on 

the remaining data set. Categorical variables were changed to indicator/dummy variables. 

For variable with missing data, we used median to fit in the empty entry if the variable is 
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validation (CV) were performed. For every 10-fold CV, the following statistics were 
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For SVM, the R-software package e1071 is used. Variables were scaled and the 

tolerance level was set to .001. Radial, Sigmoid and linear kernels were considered. The 

program can dynamically search for optimal kernel parameters for different data sets. The 

results are summarized in Table 3.3.1 to Table 3.3.4.  

Table 3.3.1. Prediction statistics for Resuscitation, train on Mayo and Chu merged dataset, 
10-fold cross validation 50 repetitions. 

Weighted_SVM Mean Std Min Max 

Overall 0.823  0.041 0.743 0.895

RF Mean  Std  Min  Max 

Overall 0.808  0.041 0.695 0.876

 

Table 3.3.2. Prediction statistics for Endoscopy, train on Mayo and Chu merged dataset, 
10-fold cross validation 50 repetitions. 

Weighted_SVM Mean Std Min Max 

Overall 0.888  0.027 0.81  0.943

Sensitivity 0.874  0.038 0.791 0.953

Specificity 0.937  0.05  0.824 1 

PPV 0.66  0.08  0.486 0.818

NPV 0.983  0.013 0.957 1 

RF Mean  Std  Min  Max 

Overall 0.952  0.018 0.905 0.99 

Sensitivity 0.969  0.013 0.94  0.989

Specificity 0.884  0.072 0.6  1 

PPV 0.878  0.048 0.778 0.962

NPV 0.97  0.019 0.912 1 

 

Table 3.3.3. Prediction statistics for Disposition, train on Mayo and Chu merged dataset, 
10-fold cross validation 50 repetitions. 
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Weighted_SVM Mean Std Min Max 

Overall 0.745  0.049 0.61  0.848

RF Mean  Std  Min  Max 

Overall 0.765  0.037 0.676 0.848

 

Table 3.3.4. Prediction statistics for Source of Bleeding, train on Mayo and Chu merged 
dataset, 10-fold cross validation 50 repetitions. 

Weighted_SVM Mean Std Min Max 

Overall 0.587  0.046 0.495 0.667

RF Mean  Std  Min  Max 

Overall 0.634  0.045 0.543 0.743

 

We have also applied RF to Blatchford’s data set, Mayo clinic data set and Chu et 

al. (2007) data, the parameters are adjusted through several cross validation trials: 500 

trees were grown, the number of variables randomly sampled at each node was p , 

where p is the number of explanatory variables, the option of variable importance was set 

to True, proximity was set to be True so that the proximity measure among the rows will 

be calculated. The out of sample prediction results are summarized in Table 3.3.1 to 3.3.6. 

Table 3.3.5. Prediction statistics for Resuscitation, Train on Adrienne, test on Adrienne, 
10-fold cross validation 50 repetitions. 

RF Mean Std Min Max 

Overall 0.918 0.058 0.76 1

Sensitivity 0.926 0.086 0.615 1

Specificity 0.918 0.079 0.647 1

PPV 0.951 0.059 0.706 1

NPV 0.876 0.108 0.571 1
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Table 3.3.6. Prediction statistics for Endoscopy, Train on Adrienne, test on Adrienne, 10-
fold cross validation 50 repetitions. 

RF Mean Std Min Max 

Overall 0.81 0.072 0.6 0.96

Sensitivity 0.712 0.176 0.222 1

Specificity 0.869 0.086 0.556 1

PPV 0.851 0.097 0.55 1

NPV 0.741 0.146 0.429 1

 

One more difficulty we encountered is that in these datasets, the response 

variables are unbalanced. Most of the classification models tend to predict individuals 

with low prediction confidence to the majority class to improve the overall accuracy. In 

order to overcome this, we used different decision thresholds in RF’s prediction, that is, 

in RF, individual decision trees were generated and classification is done by majority 

voting within the forest of these trees. We can modify this voting procedure by setting 

different thresholds and pick the threshold that optimizes our prediction accuracy. The 

results with different threshold are summarized in Figures 3.3.7 to 3.3.12 and Tables 

3.3.13 to 3.3.15.  

Figure 3.3.7. Sensitivity for Blatchford's data set changing threshold RF. 
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Figure 3.3.8. Specificity for Blatchford's data set changing threshold RF. 

 

Figure 3.3.9. NPV for Blatchford's data set changing threshold of RF. 
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Figure 3.3.10. NPV for RF train on Chu’s data set and test on Blatchford's data set. 

 

Figure 3.3.11. Sensitivity for RF train on Chu’s data set and test on Blatchford's data set. 
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Figure 3.3.12. Specificity for RF train on Chu’s data set and test on Blatchford's data set. 
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Disposition  0.4  65.79  96.02  80.64  83.85 

Disposition  0.45  64.74  98.32  80.54  84.8 

Disposition  0.5  64.61  99.03  80.59  85.17 

Disposition  0.55  64.35  99.65  80.57  85.44 

Disposition  0.6  64.22  99.73  80.53  85.44 

Disposition  0.65  64.09  100  80.51  85.54 

Disposition  0.7  64.09  100  80.51  85.54 

Disposition  0.75  63.96  100  80.45  85.49 

Disposition  0.8  63.96  100  80.45  85.49 

Disposition  0.85  63.96  100  80.45  85.49 

Disposition  0.9  62.52  100  79.83  84.91 

Disposition  0.95  36.96  100  70.18  74.62 

 

Note: From the cut off analysis we can see that there is not much difference from 
threshold 0.5 to 0.9, the model performance may achieve an optimal prediction accuracy 
at 0.5 empirically. 

 

Table 3.3.14. Prediction statistics for 10-fold CV of RF for Resuscitation changing 
thresholds For Blatchford’s dataset 

Variable  threshold  sensitivity  specificity  NPV  accuracy 

Resuscitation  0.05  97.02  74.18  99.04  93.07 

Resuscitation  0.1  95.93  87.68  98.89  89.29 

Resuscitation  0.15  95.39  93.97  98.83  94.25 

Resuscitation  0.2  94.58  96.66  98.66  96.25 

Resuscitation  0.25  94.31  98.17  98.62  97.41 

Resuscitation  0.3  94.04  99.08  98.57  98.1 

Resuscitation  0.35  93.5  99.54  98.44  98.36 

Resuscitation  0.4  93.22  99.67  98.38  98.42 

Resuscitation  0.45  92.95  99.67  98.32  98.36 

Resuscitation  0.5  92.14  99.67  98.13  98.21 

Resuscitation  0.55  89.97  99.74  97.63  97.84 

Resuscitation  0.6  87.53  99.8  97.07  97.41 

Resuscitation  0.65  84.55  99.8  96.39  96.83 

Resuscitation  0.7  82.11  99.93  95.85  96.46 

Resuscitation  0.75  77.51  100  94.84  95.62 

Resuscitation  0.8  71.27  100  93.5  94.41 

Resuscitation  0.85  66.12  100  92.43  93.4 
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Resuscitation  0.9  52.57  100  89.71  90.77 

Resuscitation  0.95  11.92  100  82.44  82.85 

 

Table 3.3.15. Prediction statistics for 10-fold CV of RF for Resuscitation changing 
thresholds 

Variable  threshold  sensitivity  specificity  NPV  accuracy 

Resuscitation  0.05  99.08  2.71  41.67  80.32 

Resuscitation  0.1  98.95  2.71  38.46  80.21 

Resuscitation  0.15  98.56  4.61  43.59  80.26 

Resuscitation  0.2  97.64  13.01  57.14  81.16 

Resuscitation  0.25  95.94  20.33  54.74  81.21 

Resuscitation  0.3  94.1  27.37  52.88  81.11 

Resuscitation  0.35  91.22  35.23  49.24  80.32 

Resuscitation  0.4  88.01  43.36  46.65  79.31 

Resuscitation  0.45  83.81  55.01  45.11  78.21 

Resuscitation  0.5  77.79  65.04  41.45  75.3 

Resuscitation  0.55  68.87  75.88  37.09  70.24 

Resuscitation  0.6  56.23  84.55  31.84  61.74 

Resuscitation  0.65  43.97  94.31  28.93  53.77 

Resuscitation  0.7  28.7  97.29  24.81  42.06 

Resuscitation  0.75  17.04  98.65  22.33  32.93 

Resuscitation  0.8  12.84  98.92  21.53  29.6 

Resuscitation  0.85  10.09  99.46  21.1  27.49 

Resuscitation  0.9  6.82  100  20.6  24.96 

Resuscitation  0.95  2.82  100  19.92  21.74 

 

By choosing an optimal threshold for each response variable in Figure 3.3.7 to 

3.3.12, we can remarkably increase the diagnostic statistics for a certain type of response 

variable with an acceptable cost of other test statistics and provide a suitable diagnostic in 

accordance with the priority. In clinical trials, for example, people are more concerned 

with life threatening emergencies, thus, a high NPV is more preferable than a high PPV. 

Doctors can make a more confident decision based on a high NPV to relieve a patient 

from ICU and rearrange the limited medical resource to more needing instances. 
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3.4 Model validation and prediction 

Figure 3.4.1. Illustration of a 3-fold Cross Validation procedure. 
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Table 3.3.1 through Table 3.3.6 summarizes the results for each response variable 

of each data set. Both models have achieved accuracy higher than 80% for Disposition 

and Resuscitation. In Table 3.3.3 and 3.3.4, the low performance may be because of 

different measure scales used in different data sets, or missing of important predictors. 

From the tables we can see that the performance of RF in Chu’s data set is very 

good for all of the test statistics, Resuscitation prediction accuracy is over 91%, and 

Endoscopy prediction accuracy is over 80%. However, the sensitivity for Endoscopy is 

around 70%. For models trained on Mayo clinic’s data set and tested on Chu’s data set, 

SVM and RF yield similar results for Resuscitation and Disposition. RF can achieve 

better prediction accuracy in Endoscopy than weighted SVM. The reason might because 

the importance ranking of predictors for these two models is different. For Source of 

bleeding, the prediction accuracy for both models is not good. One potential reason is that 

the predictors used may not provide enough information for this response variable. The 

absolute value of predictors in importance ranking is not as high as those calculated for 

other response variables. 
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Chapter 4 Prediction of the risk for 

developing schizophrenia dataset 

4.1 Explanation of the data set 

There were 165 cases in this dataset. Among them, 51 cases were healthy control, 

19 cases were schizoaffective, 60 cases were schizophrenia patients, 20 cases were 

bipolar patients and 14 cases were MDD patients. We had one missing observation. Our 

data set contains demographic information, Neuropsychological Test Scores, PANSS 

scales and global assessment function of current and past scores. A summary of the data 

is given in Table 4.1.1. 

 
Table 4.1.1, Summary of the base statistics of variables for Schizo dataset. 
 

  
AG
E 

ONSE
T 

MO
M 
AGE 

DA
D 
AGE 

MNTHRE
S 

UPSI
T 

FSIQ 
PTO
T 

NTO
T 

GTO
T 

GAFCU
R 

GAFPA
S 

N 165 103 122 115 128 144 132 136 138 138 59 61 

Mean 
35.

1 
22.5 27.8 31.4 4.5 32 

100.
6 

10.4 11.7 23.9 37.3 46 

SD 11 7.3 6.4 6.9 1.5 4.4 17.6 5.6 5.5 8.8 16.1 12.5 

 
We have included the following variables to explain the potential risks of 

developing schizophrenia: 

 BRAGE_M: Mother’s age at birth 

 BRAGE_F: Father’s age at birth 

 FAMHXANY: Family history of schizophrenia 

 MNTHRES: Mean OLF Threshold 
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 UPSIT: University of Pennsylvania Smell Identification Test 

 VIQ: Verbal IQ 

 PIQ: Performance IQ 

 VIQP: Verbal performance differential score‐  

 FSIQ: Full Scale Intelligence Quotient 

 VCI, POI, WMI, PSI, WSINFS, WSPIXCS, WSDSS, WSPIXAS, WSVOCS, 

WSBDS, WSARITHS, WSOBASSS, WSCOMPS, WSDSYMS, WSSIMILS, 

WSMATRS, WSLETNMS, WSSYMSES, WSSYMBS: verbal subtests 

(arithmetic, digit span, information, vocabulary, comprehension, similarities) 

and the performance subtests (object assembly, picture arrangement, picture 

completion, digit symbol, block design) 

 PTOT: Positive Syndrome Scale 

 NTOT: Negative Syndrome Scale 

 GTOT: General Syndrome Scale 

 GAF CUR: Global Assessment Function, current‐  

 GAF PAS: Global Assessment Function, past‐   

 DIAGALL: control (0), schizo-affective (1), schizo (2), bipolar (3), MDD (4) 

And the base statistics are summarized in Table 4.1.2 
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Table 4.1.2, base statistics for variables in Schizo dataset in different response classes. 

    
AGE ONSET 

MOM 
AGE 

DAD 
AGE 

MNTHRES UPSIT FSIQ PTOT NTOT GTOT GAFCUR GAFPAS

0 

N 51 0 40 37 41 44 37 40 41 41 0 0

Mean 33.1    29.2 32.2 4.5 33 106 7 7.6 16.8    

SD 11.6    6.3 6.7 1.2 4 13 0 1.6 1.7    

1 

N 19 17 11 10 17 17 17 15 15 15 12 12

Mean 36.5 22.1 24.3 27.1 4.3 31.9 95.6 12.4 13.7 27.4 32.3 39.8

SD 9.3 7.7 5 7.2 1.3 4.1 19.7 4.4 4.9 8.1 9.6 8.7

2 

N 60 58 46 46 46 54 50 57 57 57 32 34

Mean 35.1 23.2 27.8 32.6 4.4 31 96.7 12.9 13.6 26.5 31 43.7

SD 10.7 6.1 6.5 6.3 1.9 5.1 20.1 7 5.8 10 12 10.4

3 

N 20 16 16 15 12 16 18 12 13 13 9 9

Mean 34.5 21.2 27.1 30.7 4.6 32.9 100.4 8.4 11.9 25.8 55.2 56.3

SD 8.9 8 7.6 8.1 0.9 3.2 13.9 1.7 5.8 4.2 14.3 12.8

4 

N 14 12 9 7 12 12 10 12 12 12 6 6

Mean 40.5 21.6 26.7 27.1 4.5 31.8 109 9.8 14.1 29.1 54.5 55.8

SD 14 10.8 4.7 5.9 1 2.9 15.7 4.6 5.9 9 17.9 16.9
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4.2 Variable selection 

As we introduced in section 3.2, we first need to calculate the measure of 

importance for each independent variable, and see the amount of information provided by 

each predictor for each response variable. 

Table 4.2.1, RF variable importance ranking based on GINI information, for case 1, 
Patient=0, Control=1 

   MeanDecreaseAccuracy MeanDecreaseAccuracy 

GTOT  1.60249 wscomps  0.11387 

NTOT  0.82428 wmi  0.06118 

FAMHXANY  0.70125 vci  0.05366 

wssymbs  0.56408 psi  0.05126 

PTOT  0.50378 wsvocs ‐0.0072 

poi  0.41329 MNTHRES ‐0.0259 

wsariths  0.40423 upsittot  ‐0.0412 

wsdsyms  0.33302 wsbds  ‐0.1069 

viq  0.23051 BRAGE_M ‐0.1353 

wsletnms  0.22943 wsinfs  ‐0.1591 

wssimils  0.22209 wspixas ‐0.1735 

fsiq  0.18969 SEX  ‐0.1996 

wsmatrs  0.17318 wsobasss  ‐0.2998 

piq  0.12694 wsdss  ‐0.3154 

wspixcs  0.11738 BRAGE_F  ‐0.3171 

 



54 
 

 

Table 4.2.2, RF variable importance ranking based on GINI information, for case 2, 
Schizophrenia=0, other patients=1 (Schizoaffective, Bipolar, MDD) 

  
MeanDecreaseAccuracy     MeanDecreaseAccuracy 

FAMHXANY  2.06931 wspixas 0.4761 

BRAGE_F  1.4703 wsvocs  0.45682 

piq  1.02641 poi  0.44095 

wssimils  0.98579 viq  0.43473 

GTOT  0.97018 wsinfs  0.41911 

GAF_CUR  0.96445 wmi 0.4011 

GAF_PAS  0.83952 wsdss 0.30026 

wsdsyms  0.81262 NTOT  0.26068 

wsletnms  0.8096 wsbds  0.20949 

wsariths  0.80477 BRAGE_M 0.09341 

vci  0.69907 wscomps  0.0826 

psi  0.63355 SEX  0.00286 

wssymbs  0.61744 wsmatrs  ‐0.1066 

PTOT  0.60839 wspixcs  ‐0.1236 

MNTHRES  0.60402 wsobasss  ‐0.2416 

fsiq  0.51841 upsittot  ‐0.4441 

 

1.602488

0.824278
0.701246

0.564075
0.503775

0.4132870.404231
0.333019

0.2305110.2294290.2220850.1896850.1731760.1269360.1173840.113865
0.0611750.0536630.051264

‐0.00721‐0.02592‐0.04116
‐0.1069‐0.13527‐0.15906‐0.17352‐0.19963
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Table 4.2.3, RF variable importance ranking based on GINI information, for case 3, 
Schizophrenia & Schizoaffective=0, Bipolar & MDD=1 

  
MeanDecreaseAccuracy     MeanDecreaseAccuracy 

GAF_CUR  2.49081 NTOT  0.14042 

FAMHXANY  1.88823 piq 0.10439 

GAF_PAS  1.55906 GTOT 0.08722 

wsvocs  1.27433 fsiq  0.08399 

psi  0.97184 wsdsyms  0.00376 

PTOT  0.93487 wspixas  ‐0.001 

MNTHRES  0.87919 wsariths  ‐0.1468 

wssymbs  0.74608 wsinfs  ‐0.1477 

wmi  0.52184 SEX ‐0.1597 

upsittot  0.44601 wsbds ‐0.2207 

vci  0.33599 wscomps  ‐0.3026 

BRAGE_F  0.21955 BRAGE_M  ‐0.5168 

viq  0.19126 wsmatrs  ‐0.6383 

wspixcs  0.19068 wsdss  ‐0.6704 

wsletnms  0.16099 wssimils  ‐0.8203 

poi  0.14388 wsobasss  ‐1.2616 

 

2.069309

1.470299

1.0264110.9857880.9701750.964453
0.8395220.812620.8096020.804771

0.6990740.6335490.6174440.6083940.6040220.5184080.47610.4568210.4409470.4347290.4191130.401095
0.3002590.2606830.209485

0.0934120.0826010.002858
‐0.10655‐0.12363
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‐0.44407

‐1
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4.3 Statistical analysis and modeling  

In this study, we applied RF model to predict the risk for developing 

schizophrenia. To evaluate the performance of RF, we ran multiple rounds of 10-fold 

cross validation and checked the out of sample prediction accuracy. Based on this 

evaluation, we picked the model with the best prediction performance, and then applied 

this model to the control group. In this way, we can assess the risk of developing 

schizophrenia among the participants who are currently in the healthy control group. 

To achieve this goal, we first divide the participants into two groups: 

schizophrenia patients and the healthy control group based on doctor’s diagnoses. Then, 

we use the symptoms of schizophrenia patients to further split the patient group into 

several small groups. Thus, we can split this problem into 3 different scenarios:  

1) Patient=0, Control=1 

2) Schizophrenia=0, other patients=1 (Schizoaffective, Bipolar, MDD) 

2.490805

1.88823

1.559063
1.274334

0.9718390.9348670.879189
0.746075
0.5218380.4460060.3359920.2195510.1912590.1906820.1609850.1438760.1404180.1043930.0872180.0839860.003757‐0.00104

‐0.14679‐0.14769‐0.15968‐0.22073‐0.30258
‐0.51684
‐0.63825‐0.67036

‐0.82026

‐1.2616
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3) Schizophrenia & Schizoaffective=0, Bipolar & MDD=1   

In each scenario, we trained and tested RF model using 10-fold CV with 50 

repetitions, the test statistics were summarized. The analysis was performed using R 

package RandomForest (Liaw and Wiener, 2002) with all default parameters. 

Independent variables included in the model were: Paternal age, Maternal age, Family 

history, Mean OLF Threshold ,SEX, UPSIT, VIQ, PIQ, VCI, POI, WMI, PSI, WSINFS, 

WSPIXCS, WSDSS, WSPIXAS, WSVOCS, WSBDS, WSARITHS, WSOBASSS, 

WSCOMPS, WSDSYMS, WSSIMILS, WSMATRS, WSLETNMS, WSSYMSES, 

WSSYMBS, PTOT, NTOT and GTOT. 

Another state-of-the-art machine learning model we applied to this data set was 

SVM. In SVM, weights are a biasing mechanism for specifying the relative importance 

of target values (classes). By default, SVM will automatically assign equal weights to all 

response classes. However, if the training data does not represent a realistic distribution, 

one can bias the model to compensate for class values that are under-represented. If we 

increase the weight for a class, the percent of correct predictions for that class will 

increase. 

For 2-way classification, given a training set of instance-label pairs (xi, yi); i = 

1,…, l, where xi belongs to  Rn and yi belongs to {1,-1}, SVM (Cortes and Vapnik, 1995) 

require the solution of the following optimization problem: 
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we can rewrite this target function into: 

 

subject to ݕ௜ሺ்߮ݓሺݔ௜ሻ ൅ ܾሻ ൒ 1 െ  ௜ߝ

Therefore, we can choose constants C1 and C2 inversely proportional to the class 

sizes. That is, if we have l1 training samples in class 1 and l2 in class 2, 

assign C1 and C2 such that C1/C2 = l2/l1. 

In this study, we applied SVM, with and without class weight adjustment, to the 

same training and testing data sets. Their performance is summarized in Table 4.3.1. 
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Table 4.3.1, Out of sample prediction statistics of SVM in different scenarios.  

SVM with class weight performance   SVM without class weight performance 

Case 1 

  Mean Std Min Max 

Case 1 

  Mean Std Min Max 

Overall 0.808 0.068 0.636 0.939 Overall 0.753 0.075 0.545 0.939 

Sensitivity 0.786 0.088 0.571 0.957 Sensitivity 0.886 0.072 0.68 1 

Specificity 0.851 0.117 0.429 1 Specificity 0.473 0.16 0 0.857 

PPV 0.646 0.123 0.375 0.9 PPV 0.657 0.2 0 1 

NPV 0.921 0.063 0.765 1 NPV 0.788 0.086 0.531 0.96 

Case 2 

  Mean Std Min Max 

Case 2 

  Mean Std Min Max 

Overall 0.741 0.068 0.609 0.87 Overall 0.694 0.079 0.478 0.87 

Sensitivity 0.771 0.126 0.5 1 Sensitivity 0.684 0.141 0.357 1 

Specificity 0.718 0.13 0.462 1 Specificity 0.723 0.118 0.429 1 

PPV 0.779 0.108 0.5 1 PPV 0.718 0.127 0.429 1 

NPV 0.723 0.114 0.467 1 NPV 0.686 0.133 0.385 1 

Case3 

  Mean Std Min Max 

Case 3 

  Mean Std Min Max 

Overall 0.704 0.069 0.522 0.87 Overall 0.698 0.072 0.565 0.826 

Sensitivity 0.646 0.198 0.2 1 Sensitivity 0.145 0.132 0 0.6 

Specificity 0.73 0.104 0.5 0.938 Specificity 0.944 0.057 0.765 1 

PPV 0.824 0.089 0.583 1 PPV 0.718 0.082 0.55 0.889 

NPV 0.524 0.139 0.2 0.833 NPV NA NA NA NA 
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Table 4.3.1 shows that SVM with class weight adjustment constantly report a 

higher prediction accuracy than SVM without weight adjustment. This phenomenon is 

result from the imbalance of the original data set. The ratio of patients that are 

schizo/schizo effective over Bip/MDD is 2.31/1, and as a result, SVM model have a great 

tendency to predict majority class, which leads to a very low sensitivity. In detecting 

potential patient stage, SVM without class weight adjustment will classify nearly every 

person as potential patient if we don’t assign appropriate class weights to the model. 

4.4 Model validation 

In our study, the performance of machine learning models is evaluated by ACC, 

SN, SP, PPV and NPV. 

Overall accuracy (ACC) is obtained by the total number of correct predictions 

divided by total number of predictions.  

Sensitivity (SN) measures the proportion of actual positives which are correctly 

identified as such. Specificity (SP) measures the proportion of actual negatives which are 

correctly identified as such. 

Positive predictive value (PPV) is the proportion of true positives among the 

positive predictions and negative predictive value (NPV) is the proportion of true 

negatives among the negative predictions. 
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Table 4.4.1, Out of sample prediction statistics in Model validation part for case 1, 
patient=0, control=1 

SVM Mean Std Min Max 

Overall 0.808 0.068 0.636 0.939

Sensitivity 0.786 0.088 0.571 0.957

Specificity 0.851 0.117 0.429 1

PPV 0.646 0.123 0.375 0.9

NPV 0.921 0.063 0.765 1

RF Mean Std Min Max 

Overall 0.845 0.011 0.829 0.866

Sensitivity 0.891 0.008 0.876 0.903

Specificity 0.744 0.029 0.706 0.804

PPV 0.755 0.017 0.725 0.784

NPV 0.885 0.012 0.87 0.91
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Table 4.4.2, Out of sample prediction statistics in Model validation part for case 2, 
Schizophrenia=0, other patients=1 (Schizoaffective, Bipolar, MDD) 

SVM Mean Std Min Max 

Overall 0.741 0.068 0.609 0.87

Sensitivity 0.771 0.126 0.5 1

Specificity 0.718 0.13 0.462 1

PPV 0.779 0.108 0.5 1

NPV 0.723 0.114 0.467 1

RF Mean Std Min Max 

Overall 0.701 0.013 0.673 0.717

Sensitivity 0.684 0.026 0.623 0.717

Specificity 0.716 0.025 0.683 0.767

PPV 0.72 0.014 0.695 0.741

NPV 0.681 0.017 0.648 0.708
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Table 4.4.3, Out of sample prediction statistics in Model validation part for case 3, 
Schizophrenia & Schizoaffective=0, Bipolar & MDD=1 

SVM Mean Std Min Max 
Overall 0.704 0.069 0.522 0.87

Sensitivity 0.646 0.198 0.2 1

Specificity 0.73 0.104 0.5 0.938

PPV 0.824 0.089 0.583 1

NPV 0.524 0.139 0.2 0.833

RF Mean Std Min Max 

Overall 0.73 0.011 0.708 0.752

Sensitivity 0.365 0.026 0.294 0.412

Specificity 0.887 0.013 0.861 0.911

PPV 0.765 0.007 0.747 0.778

NPV 0.583 0.029 0.522 0.65
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Table 4.4.1, 4.4.2 and 4.4.3 suggests that the prediction accuracy for 

distinguishing patients and healthy control is over 80% for both models. In case 2, SVM 

achieved a higher prediction accuracy and sensitivity than RF, but also a little unstable 

than RF. In case 3, RF reported a higher overall accuracy, but sensitivity of RF is 

significantly lower than SVM due to imbalanced data set. 

4.5 Potential patients identification 

In order to detect the risk for developing schizophrenia, we first apply machine 

learning models to distinguish potential patients from healthy people. In this study, we 

randomly divided the control group into 3 sub-groups: G1, G2 and G3. Based on these 3 

sub-groups, we proposed a test protocol to identify potential patients who are currently in 

healthy control group, i.e. 

1) Use G1 and G2 plus 113 patients to form a training data set, use G3 as the test data set 

to train and test our model.  

2) Use G1 and G3 plus 113 patients to form a training data set, use G2 serve as the test set.  

3) Use G2 and G3 plus 113 patients to form a training data set, use G1 serve as the test 

data set.  

Therefore, each person in control group was evaluated once, and we summarized the 

results in Table 4.5.1. 

Table 4.5.1 indicates that, among the 51 healthy controls, 18 of them might be at 

risk for schizophrenia. PANSS scores and family history of schizophrenia were identified 

as very important variables in variable importance ranking analysis.  
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Secondly, we divide the patient group into 2 sub-groups: Schizophrenia versus 

Schizoaffective/Bipolar/MDD patients, and applied same test protocol to healthy control 

group to distinguish Schizophrenia from other mental disorders. Table 4.5.2 indicates that 

11 people may potentially affected by mental disorders and 5 of them might be 

schizophrenic. 

Thirdly, we further divide the patient group into 2 sub-groups based on their 

symptoms, and applied same test protocol. The prediction results are summarized in 

Table 4.5.3. Participants with ID number 11051 and 11503, who were identified as “other 

diseases” in earlier analysis were classified as Bipolar/MDD patient in this analysis as 

well.  
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Table 4.5.1, Prediction of potential patients using RF with all default parameters, case 1, 
patient=0, control=1 

Patient ID  Prediction  Patient ID Prediction  Patient ID  Prediction

3  potential patients  11053 potential patients 11020  control 

6  potential patients  5 control  11022  control 

7  potential patients  9 control  11023  control 

19  potential patients  11 control  11024  control 

11003  potential patients  11001 control  11025  control 

11008  potential patients  11002 control  11026  control 

11017  potential patients  11004 control  11027  control 

11021  potential patients  11006 control  11029  control 

11028  potential patients  11007 control  11030  control 

11033  potential patients  11009 control  11032  control 

11040  potential patients  11010 control  11034  control 

11043  potential patients  11011 control  11035  control 

11044  potential patients  11012 control  11036  control 

11046  potential patients  11013 control  11037  control 

11047  potential patients  11016 control  11042  control 

11048  potential patients  11018 control  11045  control 

11051  potential patients  11019 control  11050  control 
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Table 4.5.2, Prediction of potential patients using RF with all default parameters, case 2, 
Schizophrenia=0, other patients=1 (Schizoaffective, Bipolar, MDD) 

Patient ID Prediction  Patient ID Prediction Patient ID Prediction 

11003 others  11002 control  11025 control 

11017 others  11004 control  11026 control 

11043 others  11006 control  11027 control 

11044 others  11007 control  11029 control 

11051 others  11008 control  11030 control 

11053 others  11009 control  11032 control 

7 Scz  11010 control  11033 control 

19 Scz  11011 control  11034 control 

11021 Scz  11012 control  11035 control 

11028 Scz  11013 control  11036 control 

11046 Scz  11016 control  11037 control 

3 control  11018 control  11040 control 

5 control  11019 control  11042 control 

6 control  11020 control  11045 control 

9 control  11022 control  11047 control 

11 control  11023 control  11048 control 

11001 control  11024 control  11050 control 
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Table 4.5.3, Prediction of potential patients using RF with all default parameters, case 3, 
Schizophrenia & Schizoaffective=0, Bipolar & MDD=1 

Patient ID Prediction  Patient ID Prediction Patient ID Prediction 

11047 bip  11004 control  11025 control 

11051 bip  11006 control  11026 control 

11053 bip  11007 control  11027 control 

3 scz  11008 control  11029 control 

7 scz  11009 control  11030 control 

19 scz  11010 control  11032 control 

11021 scz  11011 control  11034 control 

11028 scz  11012 control  11035 control 

11033 scz  11013 control  11036 control 

11046 scz  11016 control  11037 control 

5 control  11017 control  11040 control 

6 control  11018 control  11042 control 

9 control  11019 control  11043 control 

11 control  11020 control  11044 control 

11001 control  11022 control  11045 control 

11002 control  11023 control  11048 control 

11003 control  11024 control  11050 control 
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In model validation part, RF is reporting a higher overall accuracy in 

distinguishing patients among healthy control (case 1), but in distinguishing 

schizophrenia from other mental disorders (case 2) and distinguishing 

schizophrenia/schizoaffective from bipolar/MDD analysis (case 3), the performance of 

RF is exceeded by SVM with class weight adjustment. Therefore, it is reasonable to 

assume that SVM with class weight adjustment may deliver a higher prediction 

confidence in such cases. Thus we re-ran the entire analysis using SVM with class weight 

adjustment and summarized the results in Table 4.5.4 to 4.5.6. 
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Table 4.5.4, Prediction of potential patients using SVM, class proportion as the class 
weights, case 1, patient=0, control=1 

Patient ID  Prediction  Patient ID Prediction Patient ID Prediction 

3  potential patient 11001 control 11025 control 

5  potential patient 11002 control 11026 control 

6  potential patient 11004 control 11027 control 

7  potential patient 11006 control 11029 control 

11  potential patient 11007 control 11030 control 

19  potential patient 11009 control 11032 control 

11003  potential patient 11010 control 11033 control 

11008  potential patient 11011 control 11035 control 

11018  potential patient 11012 control 11036 control 

11022  potential patient 11013 control 11037 control 

11028  potential patient 11016 control 11040 control 

11034  potential patient 11017 control 11042 control 

11045  potential patient 11019 control 11043 control 

11046  potential patient 11020 control 11044 control 

11051  potential patient 11021 control 11047 control 

11053  potential patient 11023 control 11048 control 

9  control 11024 control 11050 control 
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Table 4.5.5, Prediction of potential patients using SVM, using class proportion as the 
class weights, case 2, Schizophrenia=0, other patients=1 (Schizoaffective, Bipolar, MDD) 

Patient ID Prediction  Patient ID Prediction Patient ID Prediction 

11003 others  11002 control 11026 control 

11008 others  11004 control 11027 control 

11022 others  11006 control 11029 control 

11043 others  11007 control 11030 control 

11051 others  11009 control 11032 control 

3 scz  11010 control 11033 control 

5 scz  11011 control 11034 control 

6 scz  11012 control 11035 control 

7 scz  11013 control 11036 control 

11 scz  11016 control 11040 control 

19 scz  11017 control 11042 control 

11018 scz  11019 control 11044 control 

11028 scz  11020 control 11045 control 

11037 scz  11021 control 11046 control 

11053 scz  11023 control 11047 control 

9 control  11024 control 11048 control 

11001 control  11025 control 11050 control 
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Table 4.5.6, Prediction of potential patients using SVM, using class proportion as the 
class weights, case 3, Schizophrenia & Schizoaffective=0, Bipolar & MDD=1 

Patient ID Prediction  Patient ID Prediction Patient ID Prediction 

11003 bip  11002 control 11026 control 

11008 bip  11004 control 11027 control 

11022 bip  11006 control 11029 control 

11043 bip  11007 control 11030 control 

11051 bip  11009 control 11032 control 

3 scz  11010 control 11033 control 

5 scz  11011 control 11034 control 

6 scz  11012 control 11035 control 

7 scz  11013 control 11036 control 

11 scz  11016 control 11040 control 

19 scz  11017 control 11042 control 

11018 scz  11019 control 11044 control 

11028 scz  11020 control 11045 control 

11037 scz  11021 control 11046 control 

11053 scz  11023 control 11047 control 

9 control  11024 control 11048 control 

11001 control  11025 control 11050 control 
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In Table 4.5.4, SVM have identified 16 participants as potential patients, compare 

to RF results in Table 4.5.1, participants with ID 3, 6, 7, 19, 11003, 11008, 11028, 11046, 

11051, 11053 are classified as potential patients by both models. Table 4.5.5 indicates 

that 15 people may suffer from mental disorder and 10 of them are schizophrenia. 

Compare to RF, 4 more people are identified as patients, this could result from a higher 

sensitivity/PPV of SVM model, and a low NPV of RF indicates a higher probability of 

false “green light” among healthy control group. In case 3, sensitivity for RF is only 

0.365, thus it is reasonable to expect more potential patients from SVM model. 

Participants with ID 3, 6, 7, 19, 11003, 11028, 11051 are classified as potential patients 

from all three cases and from both models, and participant with ID 11053 is classified as 

potential patient in all the cases by both models, but in case 2 and 3, this person is 

classified as schizophrenia by SVM model, and Bip/MDD by RF model. 
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Chapter 5 Results and Conclusion 

From the out of sample prediction results we can see that the prediction 

performances are very promising for a computer based decision support system. The goal 

of this development is to provide an appropriate method to alleviate the pressure of 

limited medical resources, and to provide a preventive solution for patients with health 

concerns. By implementing this technology, professionals can get fast and stable results 

from this system and make judgments with more confidence and efficiency. Patients can 

get a self-diagnose by using this system and make suitable decision based on the 

prediction results. 

In the study of GIB detection, it is impractical and economically unjustifiable to 

subject every patient with acute GIB to an urgent endoscopy, as only 20% of patients 

with acute GIB require urgent intervention. In our study, we have developed multiple 

machine learning predictive models, and successfully applied them to clinical data sets to 

predict clinical outcomes in a variety of conditions. But due to the inaccuracy of the 

records of our retrospective data set, and randomness of the decisions for Endoscopy, the 

prediction performance might be unstable for some data points. However, computer-

based methods still prove to be a valuable decision support system, and as such, to 

optimize the cares of patients with acute gastrointestinal bleeding.  Our models 

successfully achieved over 80-90% accuracies for Disposition and Resuscitation for the 

Blatchford data set, and the accuracies for Chu’s data set are over 81% and 91% for 

Endoscopy and Resuscitation respectively. Tuned threshold RF may provide a more 

flexible prediction and better performance in specified area. RF and SVM are designed 
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for high-dimensional data with a large feature space (i.e. large number of predictor 

variables), and their numerical application algorithms are designed accordingly as well, 

so that they may reach a good computational efficiency. 

In the study of Schizophrenia detection, Schizophrenia is characterized by a 

breakdown of thought processes and by a deficit of typical emotional responses. Many 

studies in modern neurology proven that this deficit is biologically measurable. Like 

other mental disorders, Schizophrenia is relatively inconspicuous and hard to notice. It 

may share common features with other mental diseases. Examining every potential 

patient using hospital standards is impractical and hard to implement. Therefore, 

developing computer based application to predict potential risks for such mental disorder 

can be highly efficient and economically practical. In our study, we developed multiple 

machine learning methods to uncover the possible relationship between patients’ 

independent variable and response variable, to distinguish between Schizophrenia, MDD, 

Bipolar and Schizoaffective. Furthermore, by applying such models, we can identify 

potential patients among healthy control group and predict the risk of developing mental 

disorder, such as Schizophrenia, in the near future. In this study, we split the process into 

3 major cases. In the first case, RF achieved a better overall accuracy, sensitivity and 

PPV, which are 84.5%, 89.1% and 75.5% respectively. In the second case, SVM had a 

better performance in all aspects. And in the third case, although RF achieved a better 

overall accuracy, this was at the cost of extremely low sensitivity due to a highly 

imbalanced data set, the performance of weight adjusted SVM is much more stable 

compared to RF in this case.  
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Chapter 6, Future Study 

In our study, we have introduced several machine learning models and their 

variations to provide a statistical inference on clinical data sets. The primary goal is to 

build a suitable decision support system for both professionals and patients. To achieve 

this goal, we can split this big project into two parts. Firstly, we need to develop 

appropriate statistical methods to uncover the potential connections between predictors 

and response variables. Secondly, we need to apply numerical methods to implement 

these methods. Currently, we are still in the stage of developing appropriate methods that 

can deliver accurate predictions. Back testing results indicates that models introduced 

here have a promising future in computer-based online diagnostic systems. However, 

several issues still remain unanswered, e.g., the imbalanced response classes, sensitivity 

of Endoscopy in GIB study, inefficient optimal weight selection algorithm, ineffectual 

accuracy maximization algorithm.  

Literature suggest that cost sensitive modeling, or proportional bootstrapping 

resampling technique may have a good impact in dealing with imbalanced data set. 

Applying approximation methods to rewrite the weight assigning algorithm into a 

quadratic programming problem and applying numerical solver, like Gradient Descent or 

Newton-like methods, may prove to be both efficient and accurate. In software 

development, the model performance might be affected by computer hardware and its 

operating systems. Appropriate programming skills are a necessity to find a fitting 

remedy for such problems. The computational efficiency of numerical methods is also 

being a concern. 
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