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Abstract of the Dissertation

Identification and Model Reduction of MIMO systems in Triangular
Input Balanced Form

by

Xiao Yu

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

December 2014

Consider a discrete-time linear time invariant (LTI) d-dimensional innova-
tions model,

z (t+ 1) = Az (t) +Bx (t) , (1)

y (t) = Cz (t) + x (t) , (2)

where y (t) is a sequence of d-dimensional measurement vectors and z (t) is a
state vector of dimension n. The triangular input balanced (TIB) representation
of the LTI system was introduced by A.Mullhaupt and K.Riedel [1] in 1995. In
the Single-Input Single-Output (SISO) case, the TIB pair is uniquely determined
by the poles of the system. However, the poles alone are not enough to fully
characterize the Multi-Input Multi-Output (MIMO) TIB pair. We parametrize
MIMO transfer functions in terms of data of the Schur tangential algorithm.
The inner part appears as a Blaschke-Potapov factorization. We relate these
parameters to TIB and lattice realizations, and use this correspondence to con-
struct novel methods for model reduction and identification.

iii



To my parents

iv



Contents

1 Introduction 1
1.1 Motivating Trends . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of The Dissertation . . . . . . . . . . . . . . . . . . 4

2 Mathematical Preliminary 5
2.1 Digital Filters and Transfer Functions . . . . . . . . . . . . . . . 5
2.2 State Space Description . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Popapov Factorization and Blaschke-Potapov Factor . . . . . . . 9
2.4 Douglas-Shapiro-Shields Factorization . . . . . . . . . . . . . . . 10
2.5 Real Schur Decomposition and Lanczos Algorithm . . . . . . . . 11
2.6 Low Grade Matrices and Consecutive Subblock Product . . . . . 12
2.7 Information Geometry of Linear Systems . . . . . . . . . . . . . . 14

3 Triangular Input Balanced Form (SISO case) 17
3.1 The Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Orthogonal Function Point of View . . . . . . . . . . . . . . . . . 21
3.3 Schur Algorithm Point of View and Lattice Filter . . . . . . . . . 22

4 MIMO TIB Form 30
4.1 Hanzon-Olivi-Peeters parametrization . . . . . . . . . . . . . . . 30
4.2 Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Relation to Potapov factorization . . . . . . . . . . . . . . . . . . 36
4.4 From the MIMO TIB pair to tangential Schur data . . . . . . . . 37

5 Matrix Structures of the MIMO TIB form 39
5.1 Consecutive Subblock Product Structure . . . . . . . . . . . . . . 39
5.2 Band Fraction and Hessenberg Unitary Matrices . . . . . . . . . 40
5.3 Band Fraction Stucture of MIMO TIB form . . . . . . . . . . . . 45

6 Model Identification and Reduction 57
6.1 Model Reduction Technique Review . . . . . . . . . . . . . . . . 57
6.2 Fast Partial Block Hankel SVD . . . . . . . . . . . . . . . . . . . 62
6.3 Hybrid Model Reduction with TIB . . . . . . . . . . . . . . . . . 63
6.4 Model Idenfication with TIB . . . . . . . . . . . . . . . . . . . . 66
6.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



A Appendix 79
A.1 An Extension of Schur-Horn Theorem . . . . . . . . . . . . . . . 79
A.2 Multi-period Quadratic Programming Solver with l1 term . . . . 85

vi



List of Tables

1 recover poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2 1/f noise approximation with different number of poles . . . . . . 76

vii



List of Figures

1 Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 four Matlab algorithms vs. ours . . . . . . . . . . . . . . . . . . . 69
3 Matlab winner vs. ours . . . . . . . . . . . . . . . . . . . . . . . 70
4 reduce to 64 poles . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5 reduce to 20 poles . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6 reduce to 40 poles . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7 reduce to 80 poles . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8 reduce to 100 poles . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9 1/f noise approximation first 100 impulse response . . . . . . . . 77
10 System identification with prescribed basis . . . . . . . . . . . . . 78

viii



Acknowledgement

It has been four and half years since I came to the States from China to
pursue my doctoral degree, I am grateful that I have received tremendous help
from numerous people.

Foremost on this list is my advisor, Professor Andrew Mullhaupt, who gave
me a good problem to solve, provided guidance on my research always patience.
His insights showed me what an interesting field the matrix analysis can be and
how it is related to almost every field of modern applied mathematics. He is
a great educator, he taught me not only how to do mathematics, and how to
apply mathematics to real world problems, but also how to become a selfless
giver that takes care of the people around him, a leader that trust his team.
I would like to thank Professor Zari Rachev for his support through the years
of my doctoral research. Many thanks to Professor Robert Frey for having
created such a unique graduate program. I also thank Dr.Riedel for having
invented the TIB form 20 years ago along with Andrew, the work later becomes
the foundation of my dissertation. I thank Professor Christopher Bishop, who
played a key role in my introduction of complex analysis.

My gratitude also goes out to various of students and my colleagues: Xu
Dong, Tengjie Jia, Xiaoping Zhou, Pengyuan Shao, Angela Cao, Ruoyu Zhou,
Youxi Lin, Yu Mu, Xiang Shi, Mike Tiano, Tim De Lise, Tianyu Lu, Hua Mo,
Riyu Yu, and Ke Zhang, etc. It’s my great honor to study and work with
you. I’m thankful to the staff in the deparment: Christine Rota and Laurie
Dalessio. I would like to express my special appreciation to Jaehyung Choi and
Edourd Coakley, who spent innumerable efforts on reviewing and revising my
dissertation.

I would like to thank a group of my fridends named “finger laker”: Yuyang
Zhang, Alex Wang, Susie Sun, Nick Song, Mark Huang, Si Chen, Wei Cao,
Ran Ma, Yiran Wang, Pu Zhao, Yujiao Chen and Feng Chen. We shared our
happiness and sadness ever since the finger lake trip and gradually became
family.

At last, I want to give my utmost thanks to my parents.

ix



1 Introduction

1.1 Motivating Trends

Linear system identification and reduction technique have been intensively
studied for decades [1, 2, 5, 19, 38]. We are primarily interested in the discrete-
time linear time invariant state-space dynamical systems. These systems can
be used to model and predict time series.

Dynamical systems are the basic framework for modeling and control of an
enormous variety of complex systems of scientific interest or industrial value.
Examples include heat transfer, temperature control in various media, signal
propagation and interference in electric circuits, wave propagation and vibra-
tion suppression in large structures, and behavior of micro-electro-mechanical
systems. Direct numerical simulation of the associated models has been one of
the few available means for studying complex underlying physical phenomena.
However, the ever increasing need for improved accuracy requires the inclusion
of ever more detail in the modeling stage, leading inevitably to ever larger-scale,
ever more complex dynamical systems. Simulations in such large-scale settings
often lead to unmanageably large demands on computational resources, which
is the why we care about large scale problem.

It is often desirable to represent a high order system by a lower order sys-
tem, the use of statistical, fundamental, hidden, or explicit factor models, and
principal component analysis are common examples within quantitative finance
applied fields. In most instances, such lower order models provide reasonable
accuracy for realization, control, and computational purposes. The fast devel-
opment and use of smaller processors, such as personal and minicomputers, in
the design, analysis, and implementation of dynamic systems enhance the im-
portance and increased interest in effective model reduction schemes. One of
the main results of the dissertation is a model reduction algorithm that beats
the commercial packages algorithms (Example 34).

We choose to focus on the state space realization because of their definite
advantages. Such realizations are amenable to hardware implementations; they
can be easily generalized to the time-variant case, and they act as useful utilities
in the formulation and analysis of the given system. It is possible to apply the
vast knowledge of matrix theory in the analysis, while the non-uniqueness of
state space realizations provides the design engineer with the choice of using
one that is better suited for the purpose at hand. This choice may be governed
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Figure 1: Digital Filter

by truncation errors, roundoff errors, sensitivity issues, etc.
Let’s assume the market as a digital filter, in reality, we only get to observe

the output information, i.e. the quotes, trades, volumes, etc., which we will call
such system identification problem the “Blind system identification” (BSI) [45].
BSI is a fundamental signal processing technology aimed at retrieving unknown
information of a system from its output only. This technology is particularly
suitable for applications where all the available data are generated from an un-
known system driven by an unknown input. For example, returns modeled and
predicted for one or more future period can be combined with optimization to
perform a portfolio selection, such as described in the Appendix. The word
“blind” simply means that the system’s input is not available to (cannot be seen
by) the signal processor. Note that if either the system function or the input
signal is known, it becomes a more standard and simpler problem. The notion
of BSI (or the like, such as blind deconvolution) has become well known since
the early 1980s. During the 1990s, there has been an increasing research in-
terest devoted to BSI. Unlike most of the work in the 1980s, research in the
1990s tended to explore to a higher degree the diversities inherent in multiple-
output systems. The multiple-output systems arise from multisensor systems,
multichannel data acquisition, or fractional sampling systems. Research arti-
cles recently produced by the signal processing community contain a significant
amount of new knowledge that can be applied by many other communities, such
as the seismic community, speech community, and medical community.

In the 1990s, Mullhaupt and Riedel developed the triangular input balanced
(TIB) representation for single-input single-output (SISO) discrete-time linear
state-space systems, which was proven to be a desirable parametrization for sys-
tem identification and reduction [13]. The key feature of the TIB parametriza-
tion is it has an orthogonal basis which is uniquely and accurately determined
by the poles of the system. The other benefit of TIB is that the feedback/ad-
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vance matrix has a band ratio structure or consecutive subblock structure which
enables fast updates of the state in the state space system. An extension to the
Schur-Horn theorem relating to the consecutive subblock structure is provided
in the Appendix. Naturally we want to expand the TIB SISO case to the multi-
input multi-output (MIMO) case, which can deal with multi-dimension data
instead of a single time series, e.g. different foreign exchange pairs, bid and ask,
trade prices and trade volumes, etc. The motivation of the dissertation is thus:
we want to find the MIMO TIB representation and related band ratio structure,
as well as identification and reduction algorithms for MIMO TIB systems.

1.2 Problem Overview

A causal discrete-time linear time invariant systems can be charaterized by
a transfer function, which is the z-transformation of an impulse response {hn}
(see section 2),

H (z) =

∞∑
n=0

hnz
n. (3)

Then let’s consider a state space discrete-time linear time invariant d-dimensional
model,

z (t+ 1) = Az (t) +Bx (t) , (4)

y (t) = Cz (t) +Dx (t) , (5)

where y (t) is a sequence of d-dimensional measurement vectors and z (t) is a
state vector of dimension n. The impulse response corresponds to the state
space system is given by

ĥk = CAk−1B, k > 0 (6)

and ĥ0 = D. The reduction/realization problem is of determining a quadruple
(A,B,C,D) such that

{
ĥn

}
is close to {hn} . There are several criteria to

measure how close the estimated impulse reponse to the “real” impuse response
{hn} , and among them the H2 criterion and H∞ criterion are heavliy studied
[24, 25, 26, 34, 50, 55]. The H2 criterion minimizes the expression

∞∑
k=0

|hk − ĥk|2, (7)
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while the H∞ criterion minimizes

‖


h1 h2 h3 · · ·
h2 h3

h3
. . .

...
. . .

−


ĥ1 ĥ2 ĥ3 · · ·
ĥ2 ĥ3

ĥ3
. . .

...
. . .

 ‖2. (8)

However, as we explain in section 2.7 we seek to miminize the information dis-
tance, which is the l2 difference between the log-transfer function and log-estimated
transfer function.

In the MIMO case, the first problem we solve is the parametrization, for
which the work of Hanzon and Olivi [21, 24] provides insight. We then generalize
the existing hybrid model reduction algorithm and adaptive model identification
algorithms to the MIMO case. In addition, we generalized the band ratio and
consecutive subblock structure of SISO TIB to matrix case.

1.3 Organization of The Dissertation

The paper is structured as follows: Section 2 introduces some background
knowledge we need for our results; In Section 3, we discuss the SISO TIB case
from several different angles, and also the relationship with the celebrated lattice
filter; Section 4 studies the result of [22], which is a generalization of MIMO TIB
representation and the lattice filter. We give the parametrization a new inter-
pretation, and discuss the realationship between the lossless transfer functions,
realization matrices and tangential Schur data. In Section 5, we find several
structures for the MIMO TIB representation as consequences of the low grade
attribute; in Section 6, efficient model reduction and identification algorithms
for MIMO linear system in VMOA (Space of analytic functions of Vanishing
Mean Oscillation) are developed by making use of FFT and TIB form.
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2 Mathematical Preliminary

2.1 Digital Filters and Transfer Functions

A causal digital filter is a tranformation that takes any digital signal {xn}∞n=0 ⊆
Rp×1, called an input signal, to a digital signal {yn}∞n=0 ⊆ Rq×1, called the cor-
responding output signal. A digital filter is also characterized as convolution
with a sequence of complex numbers (matrices),

h0, h1, h2, . . .

in the sense that that the output {yn} is obtained from the input {xn} by
convolution with the “filter sequence” {hn}∞n=0 ⊆ Rp×q as

{yn} = {hn} ∗ {xn} , (9)

or equivalently,

yn =

∞∑
i=0

hixn−i. (10)

As is clear from this definition, a digital filter satisfies three properties: linearity,
time-invariance, and causality [1]. For this reason, the digital filter is also called
a causal linear time-invariant (LTI) system, the sequence {hn}used to define the
system is also called the impulse response. A LTI system with impulse response
{hn} is called stable if and only if {hn} lives in l1, which is

∞∑
n=0

|hn| < ∞. (11)

When {hn} is a finite sequence (i.e., hn = 0,∀n > M, where M is some non-
negative integer), the digital filter is called a Finite Impulse Response (FIR)
digital filter. If infinitely many hn are nonzero, the filter is called an Infinite
Impulse Response (IIR) digital filter.

The transfer function of the filter H (z) is the z-transformation of the impulse
response {hn} ,

H (z) :=

∞∑
n=0

hnz
n. (12)

Since the z-transformation takes convolution of sequences to algebraic multipli-

5



cation of polynomials, we have

Y (z) = H (z)X (z) , (13)

where

X (z) :=

∞∑
n=0

xnz
n, Y (z) :=

∞∑
n=0

ynz
n, (14)

that is, the spectrum of the output signal is obtained by multiplying the spec-
trum of the input signal by the transfer function. An IIR filter with a rational
transfer function H (z) is stable if and only if all the poles of the rational func-
tion H (z) lie in the open unit disk |z| < 1 [1]. Our main research interest is the
stable LTI system.

2.2 State Space Description

The state space system

z (t+ 1) = Az (t) +Bx (t) , (15)

y (t) = Cz (t) + x (t) , (16)

where A,B,C,D are m×m,m× p, q×m, and q× p matrices independent of t,
effects a convolution of {xt}and {ht} , where {ht} is the impulse response

hk = CAk−1B, k > 0, (17)

and h0 = I. In (15) the vector zt which contains all of the important information
is called the state, the matrix A which governs the state is called the system/ad-
vance/feedback matrix, and the matrix B that dictates the input the control
sequence is called the control/innovation matrix. In equation (16) the matrix
C that describes how the state is measured is called the observation/measure-
ment matrix. Here {yt} and {xt} are p × 1 and q × 1 column vectors respec-
tively, hence the system may also be called Multi-Input/Multi-Output (MIMO)
system. In the special case when both p and q are equal to 1, it’s called a
Single-Input/Single-Output (SISO) system.

By the Cayley-Hamilton theorem, there is a polynomial p (z) of degree less
than or equal to m, such that p (A) = 0. We normally write this polynomial as

p (A) =

m∏
k=1

(λkI −A) (18)
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where {λk} are the eigenvalues of A (replicated for multiplicity). In particular
this allows us to express Am as a linear combination of I, A, . . . , Am−1. In view
of this, the (semi-infinite) Krylov matrix(

B AB A2B · · ·
)

(19)

has colums spanned by the columns of the reachability matrix

R =
(
B AB · · · Am−1B

)
. (20)

The Krylov matrix is full rank if and only if the reachability matrix R is non-
singular. A state space system with this property is callled reachable. We also
have the reachability Grammian

P = RR∗. (21)

The reachability Grammian is positive definite if and only if the reachability
matrix is non-singular, i.e. the reachability Krylov matrix has full rank. Sim-
ilarly, a state space system is called observable if and only if the observability
matrix

O =


C

CA
...

CAm−1

 (22)

is non-singular, in which case the observability Grammian

Q = O∗O (23)

is positive definite. It follows that a state space system is minimal if and only
if it is both reachable and observable. We now form the infinite block Hankel
matrix

ΓH =


h1 h2 h3 · · ·
h2 h3 · · ·
h3 · · ·
· · ·

 , (24)

where {ht} is the impulse response. Any (block) Hankel matrix has a full rank
factorization in Krylov matrices, which corresponds to a state space system, and

7



such a full rank factorization is called minimal. Kronecker’s Theorem states that
the infinite Hankel matrix ΓH has finite rank if and only if the singular part

Hs (z) =

∞∑
t=1

htz
t (25)

is a (strictly) proper rational function in z-domain [1]. Furthermore, the rank
of ΓH agrees with the number of poles of Hs (z) , which multiplication is taken
into consideration.

Under a change of coordinates of the state space from z to Tz, where T is
any non-singular transformation,

Tzt+1 =
(
TAT−1

)
(Tzt) + (TB)xt, (26)

yt =
(
CT−1

)
(Tzt) + xt. (27)

The coordinate change corresponds to the change of the state space system
parameters from (A,B,C) to

(
TAT−1, TB,CT−1

)
, while the impulse response

(and Hankel matrix) is preserved:

(
CT−1

) (
TAT−1

)k
(TB) = CT−1TAkT−1TB (28)

= CAkB. (29)

Observability, reachability and minimality are all preserved under the change of
state space coordinates, as this transformation preserves the positive definiteness
of the reachability Grammian and the observability Grammian, by Sylverster
inertia.

From realizaiton theory it follows that any proper rational matrix-valued
function G (z) can be written in the form of

G (z) = D + C (zIm −A)
−1

B, (30)

where (A,B,C,D) is an appropriate quadruple of matrices and m is the state
space dimension [1]. The associated quadruple is called a state space realization
of G (z) . To such a realization we associate the block-partitioned matrix

R =

(
D C

B A

)
, (31)

8



which we call the realization matrix.

2.3 Popapov Factorization and Blaschke-Potapov Factor

Let Σ be a k×k Hermitian unitary matrix . Note that Σ is unitarily similar
to a signature matrix J , i.e., there exists a unitary k × k matrix U for which

UΣU∗ attains the form

(
Iq

−Ir

)
for some non-negative integers q and r with

q+r = k. A square rational matrix function Θ(z) of size k×k is called J-inner,
if at every point of analyticity of z of Θ(z) it satisfies

Θ(z)
∗
JΘ(z) ≤ J, |z| < 1, (32)

Θ(z)
∗
JΘ(z) = J, |z| = 1, (33)

Θ(z)
∗
JΘ(z) ≥ J, |z| > 1. (34)

The McMillan degree is the dimension of the feedback matrix when the system
is minimal.

Theorem 1. Every rational J-inner matrix-valued function (mvf) U (λ) can be
represented as a finite product of elementary Blaschke-Potapov factors. More-
over, if the McMillan degree of U (λ) is equal to r, then U (λ) may be expressed
as the product of r primary Blaschke Potapov factors that are each normalized
at a point α times a constant J-unitary matrix on either the left or the right.

Proof. See Chapter 11 of Dym [7].

In [30], M.Olivi provides an alternative parametrization of the Blaschke-
Potapov factors, namely,

Bω,u (z) := I +

(
1− ω̄z

z − ω
− 1

)
uu∗, (35)

with u an unit vector. It has simple properties such as

detBω,u (z) =
z − ω

1− ω̄z
, (36)

and
Bω,u (1/ω̄)u = 0. (37)
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In the SISO case, we have the finite or infinite Blaschke product

B (z) =
∏
i

z − ωi

1− ω̄iz
. (38)

The following lemma is well known.

Lemma 2. The Blaschke product B (z) is convergent, if and only if that∑
i

(1− |ωi|) < ∞. (39)

Proof. See [1].

2.4 Douglas-Shapiro-Shields Factorization

A strictly proper transfer function can be represented by means of the
Douglas-Shapiro-Shields factorization

H = PG, (40)

where G is rational lossless, P is rational unstable matrix, and G and H have
same McMillan degree. The set of Cp×p-valued rational lossless functions of
degree n will be denoted by Lp

n. Note that the function H belongs to the set
H (G) , the orthogonal complement of H2G into H̄2. Denotes the projection
πn (G) of F onto H (G) , in H2 approximation case, since H (G) is a vector
space, we want to minimize the objective function

min
G

‖F − πn (G) ‖22. (41)

It was proved that Lp
n is a smooth manifold, therefore we now deal with a

minimization problem over a manifold, which is the nice set-up to use differential
tools. In the scalar case, the manifold Ln

p is trivial, in particular, it is an open
subset of a Euclidean space. In the multivariable case, the main difficulty was
to find a nice parametrization for the manifold Lp

n, which was done by means
of Schur parameters, determined by a tangential Schur algorithm, and used as
local coordinates[22].
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2.5 Real Schur Decomposition and Lanczos Algorithm

The Real Schur Form will be used for getting the real form of MIMO TIB
when there are complex conjugate pairs of poles, and the Lanczos algorithm will
be used for computing the parital SVD of block Hankel matrices.

Theorem 3. For any matrix A ∈ Cn×n, there exists a unitary matrix Q ∈ Cn×n

such that
A = QTQ∗, (42)

where T is lower triangular with the eigenvalues of A on its diagonal. Further-
more, Q can be chosen so that the eigenvalues appear in any order along the
diagonal.

This is the Schur decomposition. When A ∈ Rn×n, A can have complex
conjugate pair of eigenvalues which would lead to complex elements in Q and
T. To avoid complex number in computations, we must lower our expectations
and compromise with the calculation of an alternative decomposition known as
the real Schur decomposition.

Theorem 4. (Real Schur Decomposition) If A ∈ Rn×n, then there exists an
orthogonal Q ∈ Rn×n such that

QTAQ =


R11 R12 · · · R1m

R22 · · · R2m

. . .
...

Rmm

 (43)

where each Rii is either a 1×1 matrix or a 2×2 matrix having complex conjugate
eigenvalues.

Proof. See Chapter 7 of [60].

The theorem shows that any real matrix is orthogonally similar to an upper
(lower) quasi-triangular matrix.
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The Lanczos algorithm is an iterative algorithm to compute the m eigen-
values and eigenvectors of an order n linear system with a limited number of
operations O (mn) , where m is much smaller than n. To get he eigenvalues
of matrix A, unlike the power method, the more advanced algorithms such as
Arnoldi’s algorithm and the Lanczos algorithm, save the information of a se-
ries of vectors Ajv, j = 0, 1, . . . , n − 1, and use the Gram-Schmidt process or
Householder algorithm to reorthogonalize them into a baiss spanning the Krylov
subspace corresponding to the matrix A. The Lanczos algorithm can be viewed
as a simplified Arnoldi’s algorithm in that it applies to Hermitian matrices.
The m’s step of the algorithm transforms the matrix A into a tridiagonal ma-
trix Tmm. After the matrix Tmm is calculated, one can solve its eigenvalues λ(m)

i

and their corresponding eigenvalues u
(m)
i using the QR algorithm in as little as

O
(
m2
)

work. It can be proved that the eigenvalues are approximate eigenval-
ues of the original matrix A. One thing worth pointing out is that to get the
eigenvalues of A, we don’t necessarily know A, all we need is the multiplication
with A.

2.6 Low Grade Matrices and Consecutive Subblock Prod-
uct

A notation of low grade was developed by A.Mullhaupt and K.Riedel in [3].

Definition 5. The upper (lower) grade of a matrix M, written ugrade (M)

(lgrade (M)) is the maximum rank of a part of symmetric partition above (be-
low) the diagonal. The grade of a matrix M is the maximum rank of an off diago-
nal part of a symmetric partition, that is, grade (M) = max {lgrade (M) , ugrade (M)} .

Here are some examples of low grade commonly used matrices.

Proposition 6. Companion matrices and Jordan matrices have grade 1. Ele-
memtary row (column) operation matrices, Householder, and hyperbolic House-
holder transformations, Givens and signed Givens rotations all have grade 1.

[3] also provides some algebraic properties of the grade and lgrade.
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Theorem 7. Let M1 and M2 be an n× n matrix. Then

1. lgrade (M1 +M2) ≤ lgrade (M1) + lgrade (M2) ;

2. lgrade (M1M2) ≤ lgrade (M1) + lgrade (M2) ;

3. lgrade
(
M−1

)
= lgrade (M) ;

4. grade
(
M−1

)
= grade (M) .

Before further discussion of the relationship between low grade and band ra-
tio structure, we first want to introduce the concept of consecutive subblock
products, which is an equally important matrix structure widely used in matrix
analysis, digital signal processing and control theory.

Definition 8. Let Fk be an n×n matrix such that Fkej = ej and e∗jFk = e∗j for
j < k and for j > k+d. Then M = F1F2 · · ·Fn−d is called a consecutive subblock
product of order d.

In other words, Fk is the identity except for a (d+ 1) × (d+ 1) block on the
main diagonal,

Fk =



Ik−1

∗ · · · ∗
...

. . .
...

∗ · · · ∗
In−k−d


. (44)

Mullhaupt and Riedel pointed out that consecutive subblock products are low
grade matrices [3].

The following theorem discusses the connection between lgrade matrices and
the existence of their band fraction representation. We will then prove any
advance matrix in a TIB pair has low-grade, and therefore a band fraction
representation.

Theorem 9. Suppose lgrade (M) ≤ d. Then there are matrices L and H such
that LM = H with L lower triangular and lwidth (L) ≤ d and lwidth (H) ≤ d

and uwidth (H) ≤ uwidth (M) .
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Now we want to restrain our interest to the application of low grade structure
on TIB representations.

Theorem 10. If M is unitary, then lgrade (M) = ugrade (M) .

Proof. Since M−1 = M∗, then lgrade (M) = ugrade
(
M−1

)
= ugrade (M) .

Corollary 11. Let M be unitary and Hessenberg, then grade (M) = 1.

2.7 Information Geometry of Linear Systems

Definition 12. Given a family of probability distributions parametrized by θ,

the Fisher information matrix is defined as

F (θ) = E
(
(∂θ log p (x, θ)) (∂θ log p (x, θ))

T | θ
)

(45)

=

ˆ
p (x, θ) (∂θ log p (x, θ)) (∂θ log p (x, θ))

T
dµ (x) (46)

=

ˆ (
∂θp (x, θ)√
p (x, θ)

)(
∂θp (x, θ)√
p (x, θ)

)T

dµ (x) . (47)

Because it’s positive definite, the Fisher information matrix determines an inner
product as follows

〈u, v〉F (θ) := uTF (θ) v, (48)

‖u‖F (θ) =
√
〈u, u〉F (θ). (49)

The Jeffreys prior is a non-informative prior distribution on parameter space
that is propotional to the square root of the determinant of the Fisher informa-
tion matrix.

The distance between two points P,Q is given by the shortest length of all
piecewise smooth path γQ

P joining these two points. The length of a path γ (t)

is
´
γ
‖γ′ (t) ‖F (θ)dt, a curve that encompasses this shortest path is geodesic.
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Definition 13. Suppose that θ (t) , 0 ≤ t ≤ 1 is a smooth path connecting
θ (0) = θ0 and θ (1) = θ1, the information distance between θ0 and θ1 I (θ0 | θ1)
is defined by

I (θ0‖θ1) = min

ˆ 1

0

√
θ̇ (t)

T
F (θ) θ̇ (t)dt. (50)

The information distance is independent with respect to smooth changes of
coordinates on the manifold.

We will use a univariate normal distribution parametrized by mean and stan-
dard deviation as an example. The PDF for univariate Gaussian distribution
is

f (x, µ, σ) =
1√
2πσ

exp

(
− (x− µ)

2

2σ2

)
, (51)

each point in the upper half plane H =
{
(µ, σ) ∈ R2 | σ > 0

}
associates a dis-

tribution in univariate normal family. A proper distance arises from the Fisher
information matrix, which would be computed as follows:

∂ log f (x, µ, σ)

∂µ
=

(x− µ)

σ2
, (52)

∂ log f (x, µ, σ)

∂σ
= − 1

σ
+

(x− µ)
2

σ3
, (53)

then the Fisher information matrix is

F (µ, σ) =

(
1
σ2 0

0 2
σ2

)
, (54)

so the expression for the metric is

ds2F =
dµ2 + 2dσ2

σ2
. (55)

Amari and Nagaoka [31] pointed out in order to analyze the similarity between
two systems or two time series, and consider the problems of approximation,
estimation, and dimension lowering, it is necessary to consider the space con-
sisting of all such systems and analyze its geometric structure. A discrete linear
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system is described by a transfer function

H (z) =

∞∑
i=0

hiz
i, (56)

with
xt = H (z) εt. (57)

We assume
∑∞

i=0 |hi| < ∞ so it is a stable system. If the input εt is i.i.d. white
Gaussian noise, then the output is a stationary Gaussian time series. Amari
and Nagaoka [31] studied the space of Gaussian time series L which consists of
the set of all S that satisfy

ˆ π

−π

| logS (ω) |2dω < ∞. (58)

The metric tensor of the statistical manifold of
(
· · · x−1 x0 x1 · · ·

)
can

be derived from the spectral density function:

gij (ξ) =
1

2π

ˆ π

−π

(∂i logS) (∂j logS) dω, (59)

where the partial derivative is the derivative with respect to the coordinate
system of the model parameter ξ. In z-domain, we have

gij =
1

2πi

ˆ
|z|=1

(∂i logH (z)) (∂j logH (z))
∗ dz

z
. (60)

From Choi and Mullhaupt [61], for a transfer function parametrized in the form

logH (z) =

∞∑
i=0

aiz
i, (61)

the Fisher information matrix would be the identity in cepstrum coordinates,
thus the information distance from white noise in terms of the power series of
the logarithm of the transfer function is the norm of the Hardy space of the
disc H2 (D) . Information geometry is an outcome of the investigation of the
differential geometric structure on manifolds of probablity distributions, with
the Riemannian metric defined by Fisher information matrix.
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3 Triangular Input Balanced Form (SISO case)

3.1 The Representation

The TIB representation of systems was introduced by A.Mullhaupt and
K.Riedel [13, 14]. Consider a state space system with innovation form

zt+1 = Azt +Bxt, (62)

yt = Czt + xt, (63)

the TIB (Triangular Input Balanced Form) means A is lower triangular and
(A,B) is a input balanced pair, i.e.

AA∗ +BB∗ = I. (64)

In section 2.2, we mentioned for any non-singular transformation T, the coordi-
nate change

A → TAT−1, (65)

B → TB, (66)

C → CT−1, (67)

preserves impulse response. We claim that starting from any state space real-
ization of a LTI system, we are able to find the equivalent TIB representation.
Let P be the grammian matrix of the semi-infinite Krylov matrix,

P =
(
B AB A2B · · ·

)


B∗

B∗A∗

B∗A2∗

...

 (68)

=

∞∑
k=0

BAkAk∗B∗, (69)

then we have the Stein equation,

APA∗ +BB∗ = P, (70)
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where P is positive definite. The Schur decomposition of A is

A = QSQ∗, (71)

where Q is unitary and S is lower triangular. Thus,

S (Q∗PQ)S∗ +Q∗BB∗Q = Q∗PQ, (72)

where Q∗PQ is also positive definite. We then take the Cholesky decomposition
of Q∗PQ = LL∗,

SLL∗S∗ +Q∗BB∗Q = LL∗ (73)

which can also be written as

(
L−1SL

) (
L−1SL

)∗
+
(
L−1Q∗B

) (
L−1Q∗B

)∗
= I. (74)

Therefore, if we choose the coordinate transformation T as T = L−1Q∗, in which
case

Ã = L−1SL, (75)

B̃ = L−1Q∗B, (76)

such that
(
Ã, B̃

)
is an input balanced pair and Ã is a product of three lower

triangular matrices which is lower triangular. The poles of the linear system are
the eigenvalues of A, notice that they are preserved by coordinate change. When
A is triangular, the eigenvalues of A are just the diagonal elements. Actually, in
the TIB case, given the poles of the system the TIB pair is uniquely determined.
Here is heuristic explanation, consider the partial isometry,

(
B A

)
=


b1 a11

b2 a21 a22
...

...
. . .

bk ak1 ak2 · · · akk

 . (77)

The rows are perpendicular to each other, thus where are k(k+1)
2 equations

constraining k(k+1)
2 +k unknown elements. If we know the poles (k elements on

the diagonal), then the remaining elements are determined.

18



Also in the input balanced case, we know something about the singular
values of A. Suppose that B is a k × 1 vector, then there are k − 1 vectors
v1, v2, . . . , vk−1 that are perpendicular to B, so

AA∗vj +BB∗vj = AA∗vj = vj , (78)

for j = 1, 2, . . . , k − 1, and

AA∗B +BB∗B = B (79)

⇒ AA∗B = (1−B∗B)B. (80)

Therefore, A has singular values

σ1 (A) = σ2 (A) = · · · = σk−1 (A) = 1, (81)

and
σk (A) = 1−B∗B. (82)

Immediately, we have
||Au|| < ||u||,∀u (83)

which says A is a contraction.
For a real rational transfer function, it’s possible that the system has complex

conjugate pairs of poles. To avoid a complex representation in TIB form, , we
could rotate the feedback matrix A to make it real. Consider the following
decomposition,

A1

∗ A2

...
. . . . . .

∗ · · · ∗ An

 =


L1

∗ L2

...
. . . . . .

∗ · · · ∗ Ln



Q1

∗ Q2

...
. . . . . .

∗ · · · ∗ Qn

 (84)

where Ak are 2×2 matrices with real elements and conjugate pairs of eigenvalues,
Qk are 2 × 2 unitary matrices also with real elements, and Lk are 2 × 2 lower
triangular matrices with real elements. Let Lk have the magnitude of the poles
|λk| on its diagonal, the properties of Meixner functions in [14] indicates that
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the only choice for other elements are
(
1− |λk|2

)
, or actually

(
|λk|2 − 1

)
. Thus

Ak =

(
|λk|

1− |λk|2 |λk|

)
Qk. (85)

When

Qk =

(
cos θk sin θk

− sin θk cos θk

)
, (86)

since post-multiplying an unitary matrix preserves the determinant, we would
only need to consider the trace,

tr (LkQk) (87)

= 2|λk| cos θk + sin θk − |λk|2 sin θk (88)

= 2

(
|λk| cos

θk
2

+ sin
θk
2

)(
cos

θk
2

− |λk| sin
θk
2

)
. (89)

Now let’s apply the transformation

|λk| = tan
φk

2
, (90)

then

|λk|√
1 + |λk|2

cos
θk
2

+
1√

1 + |λk|2
sin

θk
2

(91)

= sin
φk

2
cos

θk
2

+ cos
φk

2
sin

θk
2

(92)

= sin
φk + θk

2
, (93)

and

1√
1 + |λk|2

cos
θk
2

− |λk|√
1 + |λk|2

sin
θk
2

(94)

= cos
φk

2
cos

θk
2

− sin
φk

2
sin

θk
2

(95)

= cos
φk + θk

2
, (96)
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therefore

tr (LkQk) = 2
(
1 + |λk|2

)
sin

φk + θk
2

cos
φk + θk

2
(97)

=
(
1 + |λk|2

)
sin (φk + θk) (98)

= 2Re (λk) (99)

gives us the angle

θk = arccos

(
2Re (λk)

1 + |λk|2

)
− 2 arctan (|λk|) , (100)

which determines the transformation from complex form to real form.

3.2 Orthogonal Function Point of View

[19] provides an interesting brief history of ideas of rational orthonomal bases
related to system identification. It says:

The first mention of rational orthonormal bases seems to have
occurred in 1925-1928 with the independent work of Takenaka and
Malmquist. The particular bases considered were those that will be
denoted as ’generalized orthonormal basis functions’.

Mullhaupt and Riedel [12] gave credit to Ninness and Gustafsson, however
Ninness-Gustaffson bases and Takenaka-Malmquist functions are the same thing.
Given the prior knowledge of the poles {λ1, λ2, . . . , λn} of the discrete-time
linear system, Ninness and Gustafsson[18] derived a set of orthonormal bases
functions in H2(T):

Bn(q) =

(√
1− |λn|2
q − λn

)
n−1∏
k=0

(
1− λ∗

kq

q − λk

)
(101)

satisfies
〈Bn,Bm〉 = 1

2πi

ˆ
T
Bn(z)Bm(z)

dz

z
= δmn. (102)

The bases can be obtained from
{

1
q−λ1

, 1
q−λ2

, . . . , 1
q−λn

}
by Gram-Schmidt or-

thogonalization. If we pick poles at 0, we will get FIR filter, the one pole and two
poles case correspond to Laguerre and Kautz filters. It is also worth pointing
out that the bases are closely related to the HAMBO trasformation [19], which
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maps the transfer function from z-domain to λ-domain in such a way that the
poles of the transformed systems are faster (closer to the origin) than those for
the original system while stability and orthogonality are preserved.

3.3 Schur Algorithm Point of View and Lattice Filter

The lattice filter is a well-known recursive filter structure. Most of the
properties find their origins in the fist half of the 20th centrury, thanks to
the prominent work done by Schur and Szego, i.e. Schur recursion and Szego
polynomial. Regalia [5] is good reference for tapped state lattice filter. The idea
of lattice filter is to write the rational transfer function H (z) as

H (z) =

M∑
k=0

νk
D̂k (z)

DM (z)
(103)

where D̂k (z) are polynomials of degree k − 1.

Starting from the denominator of H (z) , a natural idea is using a similar
polynomial Dk (z) which has the same coefficients in reverse order, i.e.

D̂k (z) = zkDk

(
z−1
)
. (104)

For k = M,M − 1, . . . , 1, if DM (z) is a minimum phase polynomial, which
means that all roots lie strictly outside the unit circle, then Rouche’s theorem
indicates that all Dk (z) are minimum phase, therefore | D̂k(0)

Dk(0)
| < 1. Suppose

DM (z) is minimum phase, then we can set

sin θk =
D̂k (0)

Dk (0)
(105)

and take positive cos θk. Also we denote sk = sin θk and ck = cos θk, D̂k−1 (z)

and Dk−1 (z) of the degree k − 2 can be obtained from D̂k (z) and Dk (z) by
Schur recursion, (

Dk−1 (z)

zD̂k−1 (z)

)
=

1

ck

(
1 −sk

−sk 1

)(
Dk (z)

D̂k (z)

)
, (106)
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which can be rearranged in the form(
Dk−1 (z)

D̂k (z)

)
=

(
−sk ck

ck sk

)(
zD̂k−1 (z)

Dk (z)

)
. (107)

Recall the state space representation,(
zt+1

wt+1

)
= Q

(
zt

xt

)
(108)

yt =
(
ν0 ν1 · · · νM

)(zt

wt

)
, (109)

where

Q =

(
A B

∗ ∗

)
. (110)

Immediately we have


D̂0(z)
DM (z)
D̂1(z)
DM (z)

...
D̂M (z)
DM (z)

xt = Q



z D̂0(z)
DM (z)

z D̂1(z)
DM (z)

...

z D̂M−1(z)
DM (z)

1


xt, (111)

which is 
D̂0 (z)

D̂1 (z)
...

D̂M (z)

 = Q



zD̂0 (z)

zD̂1 (z)
...

zD̂M−1 (z)

DM (z)


. (112)

Denote

Qk =


Ik−1

−sk ck

ck sk

IM−k

 , (113)
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and from the rearranged Schur recursion,

Q1Q2 · · ·QM



zD̂0 (z)

zD̂1 (z)
...

zD̂M−1 (z)

DM (z)


(114)

= Q1Q2 · · ·QM−1



zD̂0 (z)

zD̂1 (z)
...

DM−1 (z)

D̂M (z)


(115)

= · · · (116)

= Q1Q2 · · ·Qk



zD̂0 (z)
...

zD̂k (z)

Dk−1 (z)

D̂k (z)
...

D̂M (z)


(117)

= · · · (118)

=


D̂0 (z)

D̂1 (z)
...

D̂M (z)

 . (119)

Finally we know Q can be represented as the product of the sequence of Qk,

Q = Q1Q2 · · ·QM , (120)

which is a consecutive subblock product with c1, c2, . . . , cM on the subdiagonal.
Because each Qi is unitary, Q is unitary. If we partition

Q =

(
A B

g ν0

)
(121)
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where A is the M ×M feedback matrix of the lattice filter, then

AA∗ +BB∗ = IM (122)

which indicates that the lattice filter has input balanced form. The other thing
we want to verify is that

det (I − zA) = c0DM (z) , (123)

where c0 is some constant. Denote

Pk =

k∏
i=1


Ii−1

−si ci

ci si

Ik−i

 (124)

and

Ak = Pk−1

(
Ik−1

−sk

)
. (125)

Then we have the recursive updating formula,

Pk =

(
Ak ckPk−1ek

cke
T
k sk

)
(126)

and

Ak+1 =

(
Ak −sk+1ckPk−1ek

cke
T
k −sksk+1

)
. (127)

We will prove the following by induction.

Proposition 14. Using the notation above, we have

det (zI −Ak) =

1/

M∏
j=k+1

cj

 D̂k (z) (128)

and

det

((
zIk

0

)
− Pk

)
= −

1/

M∏
j=k+1

cj

Dk (z) . (129)
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Proof. When k = 1,

A1 = −s1, (130)

P1 =

(
−s1 c1

c1 s1

)
, (131)

and

det (z −A1) = z + s1, (132)

det

(
z + s1 −c1

−c1 −s1

)
= − (s1z + 1) , (133)

gives us the initial condition of induction. At every step of the induction, we
have two stages,

det (zIk+1 −Ak+1) (134)

= det

(
zIk −Ak sk+1ckPk−1ek

−cke
T
k z + sksk+1

)
(135)

= det

(
zIk −Ak sk+1ckPk−1ek

0 z

)
(136)

+det

(
zIk −Ak sk+1ckPk−1ek

−cke
T
k sksk+1

)
(137)

= z det (zIk −Ak)− sk+1 det

((
zIk

0

)
− Pk

)
(138)

=

1/

M∏
j=k+1

cj

(zD̂k (z) + sk+1Dk (z)
)

(139)

=

1/
M∏

j=k+1

cj

 ck+1D̂k+1 (z) (140)

=

1/

M∏
j=k+2

cj

 D̂k+1 (z) , (141)
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and

det

((
zIk+1

0

)
− Pk+1

)
(142)

= det

(
zIk+1 −Ak+1 ck+1Pkek+1

−ck+1e
T
k+1 −sk+1

)
(143)

= sk+1 det (zIk+1 −Ak+1)− c2k+1 det

((
zIk

0

)
− Pk

)
(144)

= sk+1

1/

M∏
j=k+2

cj

 D̂k+1 (z) + c2k+1

1/

M∏
j=k+1

cj

Dk (z) (145)

= −

1/

M∏
j=k+2

cj

Dk+1 (z) (146)

= −

1/

M∏
j=k+2

cj

Dk+1 (z) (147)

Starting from a TIB system, we can obtain the lattice representation by
writing down the rational transfer function first. It is also possible to go from
TIB to lattice form directly. The bulge chasing technique can be used for this
purpose, suppose we have a unitary matrix

U =

(
A b

g δ

)
(148)

where A is upper triangular, so U has the form

U =


∗ · · · ∗ ∗

. . .
...

...
∗ ∗

∗ · · · ∗ ∗

 . (149)
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We want to apply a similarity transformation to U to make it take the form

Q =


∗ · · · ∗ ∗
∗ · · · ∗ ∗

. . .
...

...
∗ ∗

 . (150)

Then the upper left part of Q is the desired feedback matrix of a lattice system.
To better demostrate our “bulge chasing” algorithm, we show a 4 × 4 example
here. Now

U =


∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗

 , (151)

let’s rotate the first two rows and columns to introduce a zero on the last row
from the bottom, 

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗

→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 ∗ ∗ ∗ ∗

 . (152)

Then rotate the second and third rows and columns to introduce another zero
on the last row, 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 ∗ ∗ ∗ ∗

→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗

 . (153)

The next step is to rotate the first two rows and columns again to introduce a

28



zero on the third row,
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗

→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗

 . (154)

Then it’s the turn of the third and fourth rows and columns to introduce another
zero on the last row,

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 ∗ ∗ ∗

→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗

 . (155)

And the second and third rows and columns,
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗

→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 . (156)

At last, let’s rotate the first and second rows and columns,
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 . (157)

Thus the lattice form are obtained by a sequence of rotaions based from TIB.
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4 MIMO TIB Form

4.1 Hanzon-Olivi-Peeters parametrization

For every pair of matrices U, V ∈ C(p+1)×(p+1), we associate a map acting
on a proper rational p× p matrix function G (z) as follows:

FU,V : G (z) → F1 (z) +
F2 (z)F3 (z)

z − F4 (z)
, (158)

with F1 (z) of size p × p, F2 (z) of size p × 1, F3 (z) of size 1 × p and F4 (z) a
scalar, where each is specified by the partitioning of

V

(
1

G (z)

)
U∗ = F (z) (159)

=

(
F1 (z) F2 (z)

F3 (z) F4 (z)

)
. (160)

Proposition 16 builds up a direct connection between the state space realization
of G (z) and FU,V (G (z))[22]. We give a simpler, alternative proof of Proposition
16, using the Crabtree-Haynsworth quotient formula [32] :

Lemma 15. The composition of Schur complement is the same as the direct
Schur complement for the same partition.

Proof. Suppose we have a matrix parition where J and

(
E F

H J

)
are invertible,

X =

A B C

D E F

G H J

 (161)

then the larger Schur complement of X is

Y =

(
A B

D E

)
−

(
C

F

)
J−1

(
G H

)
(162)

=

(
A− CJ−1G B − CJ−1H

D − FJ−1G E − FJ−1H

)
, (163)
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its complement is

Yc = A− CJ−1G−
(
B − CJ−1H

) (
E − FJ−1H

)−1 (
D − FJ−1G

)
, (164)

whereas the smaller Schur complement of X is

Z (165)

= A−
(
B C

)(E F

H J

)−1(
D

G

)
(166)

= A−
(
B C

)( I 0

−J−1H I

)((
E − FJ−1H

)−1
0

0 J−1

)(
I −FJ−1

0 I

)(
D

G

)
(167)

= A−
(
B − CJ−1H C

)((E − FJ−1H
)−1

0

0 J−1

)(
D − FJ−1G

G

)
(168)

= A− CJ−1G−
(
B − CJ−1H

) (
E − FJ−1H

)−1 (
D − FJ−1G

)
(169)

= Yc (170)

Proposition 16. Let G (z) be a proper rational transfer function and (U, V ) be
a pair of (p+ 1)× (p+ 1) matrices, then

G̃ (z) = FU,V (G (z)) (171)

is well-defined. Let (A,B,C,D) be a state space realization of G (z) with n-dimensional
space. Then a state space realization

(
Ã, B̃, C̃, D̃

)
of G̃ (z) with (n+ 1)-dimensional

state space is given by:

(
D̃ C̃

B̃ Ã

)
=

(
V

In

)1

D C

B A

(U∗

In

)
. (172)

Proof. First since G (z) is proper, F4 (z) is proper as well and therefore z−F4 (z)

does not vanish identically so that FU,V (G (z)) is well-defined. Now observe the
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realization of F (z) is given by

(
DF CF

BF AF

)
=

(
V

In

)1

D C

B A

(U∗

In

)
(173)

According to lemma 15, the p×p Schur complement of

(
DF CF

BF AF

)
−

(
0 0

0 zIn+1

)
is the p × p Schur complement of the (p+ 1) × (p+ 1) Schur complement

F (z)−

(
0 0

0 z

)
which is F1(z) +

F2(z)F3(z)
z−F4(z)

.

The main result that connects state space realizations and the tangential
Schur algorithm can now be stated as follows.

Theorem 17. Let G be a p× p-all-pass function of degree n. Such a function
admits a balanced realization

G(z) = D + C(zIn −A)−1B (174)

such that the associated realization matrix

R =

(
D C

B A

)
(175)

is unitary. Let Rn−1 be a (n+p)×(n+p)-unitary realization matrix of Gn−1(z),
then a unitary realization matrix Rn of G(z) is given by

Rn =

(
Vn

In

)(
1

Rn−1

)(
U∗
n

In

)
, (176)

where U and V are unitary (p+1)× (p+1) complex matrices depending on u, v

of size p and scalar w as follows

U =

(
ξu Ip − (1 + wη)uu∗

w̄η ξu∗

)
, (177)

V =

(
ξv Ip − (1− η) vv∗

||v||2

η −ξv∗

)
, (178)
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with

ξ =

√
1− |w|2√

1− |w|2||v||2
, (179)

η =

√
1− ||v||2√

1− |w|2||v||2
. (180)

The tangential Schur algorithm consists of repeating this process, thus providing
a sequence of all-pass functions Gk(z) of degree k, satisfying the interpolation
condition

Gk(1/w̄k)uk = vk, ||vk|| < 1. (181)

Proof. See [22].

4.2 Unified Framework

In this subsection, the recursive matrix factorization of Olivi, Hanzon and
Peeters [22] of all-pass transfer functions is interpreted as a unified framework for
orthogonal filters, including the well-known lattice filters, and as we determine
here, TIB filters of both SISO and MIMO cases. We will first address several
observations and remarks on the generic form and then restrict it to some special
cases by choosing different w and v.

From equation (176),

Rn = Φ

(
In+1

R0

)
Ψ, (182)

where

Φ =

(
Vn

In

)1

Vn−1

In−1

 · · ·

In−2

V2

I2


In−1

V1

1

 ,(183)

Ψ =

In−1

U∗
1

1


In−2

U∗
2

I2

 · · ·

1

U∗
n−1

In−1

(U∗
n

In

)
.(184)

Here R0 is unitary, Φ and Ψ are unitary consecutive subblock products [4],
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moreover Φ is upper p-Hessenberg while Ψ is lower p-Hessenberg.
Now we will discuss several special cases:

Case 1. SISO, w = 0;

Case 2. SISO, v = 0;

Case 3. MIMO, w = 0;

Case 4. MIMO, v = 0.

In Case 1, since u has unit length, without loss of generality we can assume
u = 1, then we have ξ = 1 and η =

√
1− |v|2. Therefore

U = I2 (185)

and

V =

(
v

√
1− |v|2√

1− |v|2 −v̄

)
. (186)

In addition Ψ is the identity matrix and Φ is a consecutive subblock product of
elementary unitary matrices. Also we know that R is a unitary upper Hessen-
berg matrix with

{√
1− |v1|2,

√
1− |v2|2, . . . ,

√
1− |vn|2

}
on the subdiagonal.

Then A is upper Hessenberg, immediately we recognize that this is the lattice fil-
ter form with the reflection coefficients

{√
1− |v1|2,

√
1− |v2|2, . . . ,

√
1− |vn|2

}
.

In other words, lattice filter form can be obtained by scalar tangential Schur
interpolation interpolated at 0.

In Case 2, since G(1/w̄)u = 0, |u| = 1, we know G(1/w̄) has to be zero
which implies that w is the pole of the all-pass function. Now ξ =

√
1− |w|2

and η = 1, then

U =

(√
1− |w|2u −w

w̄
√

1− |w|2ū

)
, (187)

and

V =

(
0 1

1 0

)
, (188)

which gives

Φ =

 1

In

1

 . (189)
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Suppose

R0 =

(
D0 C0

B0 A0

)
(190)

and let’s denote U0 such that

U∗
0 =

(
B0 A0

D0 C0

)
(191)

accordingly, then(
B A

D C

)
=

(
In+1

1

)(
B A

D C

)
(192)

=


In

1

1

Φ−1

[Φ(In
R0

)
Ψ

]
(193)

=

(
In

U∗
0

)
Ψ (194)

which is a unitary lower Hessenberg matrix with superdiagonal {w1, w2, . . . , wn} .
So A is lower triangular and (A,B) is a TIB pair. The TIB form is the scalar
tangential Schur interpolation at the poles of the system.

Case 3 seems to be MIMO lattice filter, though we are not able to find related
literature yet.

We claim Case 4 is the MIMO TIB form. When the Schur vectors v are zero
vectors, we know that the interpolation points w have to be poles and we call
the interpolation vectors u the “null vectors”. In this case, ξ =

√
1− |w|2 and

η = 1, again we have

U =

(√
1− |w|2u Ip − (1 + w)uu∗

w̄
√

1− |w|2ū

)
,

and

V =

(
Ip

1

)
. (195)
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Similar to the SISO TIB case,

Φ =

 Ip

In

1

 , (196)

suppose

R0 =

(
D0 C0

B0 A0

)
(197)

and let’s denote U0 such that

U∗
0 =

(
B0 A0

D0 C0

)
(198)

accordingly, then(
B A

D C

)
=

(
In+1

Ip

)(
B A

D C

)
(199)

=


In

1

Ip

Φ−1

[Φ(In
R0

)
Ψ

]
(200)

=

(
In

U∗
0

)
Ψ (201)

which is an unitary lower p-Hessenberg matrix with p-superdiagonal {w1, w2, . . . , wn} .
So A is lower triangular and (A,B) is a TIB pair. The MIMO TIB form is the
matricial tangential Schur interpolation at the poles of the system. The TIB
pair (A,B) can be parametrized by poles and “null vectors”.

4.3 Relation to Potapov factorization

It was shown by Potapov (section (2.3)) that any lossless matrix valued
function of McMillan degree n can be decomposed into a product of n Blaschke-
Potapov factors of McMillan degree 1, where the Blaschke-Potapov factor is
defined as

Bω,u (z) = I +

(
1− ω̄z

z − ω
− 1

)
uu∗, (202)
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with u a unit vector [13] such that

Bω,u (1/ω̄)u = 0. (203)

Therefore, given a set of poles (ω1,ω2, . . . , ωn) and null vectors (u1, u2, . . . , un) ,

the product of the Blaschke-Potapov factor Bωi,ui
,

Gk (z) = Bω1,u1
(z)Bω2,u2

(z) · · · Bωk,uk
(z) (204)

is lossless, and it satisfies the interpolation condition,

Gk (1/ω̄k)uk = 0. (205)

From Case 4 in Section 4.2, we know the parameters of the Blaschke-Potapov
factors are exact the tangential Schur data, in particular, the poles and null
vectors in the TIB case, therefore, the lossless balanced transfer function can be
obtained by poles and null vectors. In addition, any lossless balanced transfer
function has a TIB realization.

4.4 From the MIMO TIB pair to tangential Schur data

Hanzon-Olivi-Peeters (HOP) recursion provides a way of obtaining the real-
ization matrix from the tangential Schur data. Given the tangential Schur data,
we are always able to find a coordinate change such that the rotated system
has TIB form. In this subsection, we provide the map from the TIB form to
poles and null vectors, which can be used to construct the transfer function
corresponding to the original tangential Schur data.

Let’s suppose

Rn =

(
Dn Cn

Bn An

)
(206)

and

Rn−1 =

(
Dn−1 Cn−1

Bn−1 An−1

)
(207)

are the realization matrices of lossless tranfer function satisfies the tangential
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Schur algorithm in the TIB sense, then recursively,(
Dn Cn

Bn An

)
(208)

=

 Ip

1

In


1

Dn−1 Cn−1

Bn−1 An−1

 (209)

×


√
1− |ωn|2u∗

n ω

Ip − (1 + ω̄n)unu
∗
n

√
1− |ω|2u

In

 (210)

=

 Dn−1 Cn−1

1

Bn−1 An−1




√
1− |ωn|2u∗

n ωn

Ip − (1 + ω̄n)unu
∗
n

√
1− |ωn|2un

In

(211)

=

Dn−1 − (1 + ω̄n)Dn−1unu
∗
n

√
1− |ωn|2Dn−1un Cn−1√

1− |ωn|2u∗
n ωn

Bn−1 (Ip − (1 + ω̄n)unu
∗
n)

√
1− |ωn|2Bn−1un An−1

 (212)

which leads to the updating formulae,

Dn = Dn−1 − (1 + ω̄n)Dn−1unu
∗
n (213)

Cn =
(√

1− |ωn|2Dn−1un Cn−1

)
(214)

Bn =

( √
1− |ωn|2u∗

n

Bn−1 (Ip − (1 + ω̄n)unu
∗
n)

)
(215)

An =

(
ωn√

1− |ωn|2Bn−1un An−1

)
(216)

Since the realization matrix Rn is unitary, we have AA∗+BB∗ = I, and (A,B)

is a input balanced pair. Moreover equation (216) indicates that A is triangular.
We observed that under the TIB form, the tangential Schur interpolation

data (poles and null vectors) can be obtained from the realization matrix.

Theorem 18. Given a TIB pair (A,B) from the realization matrix of a lossless
system of McMillan degree n, the poles {ω1, . . . , ωn} and null vectors {u1, . . . , un}
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can be recursively computed as follows:

ωn+1−i = Aii, (217)

un+1−i =
B∗

1,1:end

‖B1,1:end‖
, (218)

B = B2:end,1:end −
(
1 +

1

w̄n+1−i

)
B2:end,1;endun+1−iu

∗
n+1−i (219)

Proof. It is a direct computation from recursive formula (216).

Theorem 18 is an ’inverse’ version of the Hanzon-Olivi-Peeters formula which
allows us to construct efficient algorithms for model identification and reduction
in Section 6. By ’inverse’ we mean that the Hanzon-Olivi-Peeters formula gives
the realization matrix of a lossless transfer function from the tangential Schur
interpolation data, while Theorem 18 computes the tangential Schur interpola-
tion data from the realization matrix.

5 Matrix Structures of the MIMO TIB form

5.1 Consecutive Subblock Product Structure

We studied the structures such as the consecutive subblock product and the
band fraction of the MIMO TIB form which are the consequences of the low
grade feature of TIB.

Theorem 19. If (A,B) is a TIB pair with lower triangular A ∈ Rn×n and
B ∈ Rn×p, then A has low-grade p.

Proof. see [3].

From equation (176),

Rn = Φ

(
In+1

R0

)
Ψ, (220)

39



where

Φ =

(
Vn

In

)1

Vn−1

In−1

 · · ·

In−2

V2

I2


In−1

V1

1

 ,(221)

Ψ =

In−1

U∗
1

1


In−2

U∗
2

I2

 · · ·

1

U∗
n−1

In−1

(U∗
n

In

)
.(222)

We already know that Φ and Ψ are unitary consecutive subblock products [4],
and Φ is upper p-Hessenberg while Ψ is lower p-Hessenberg.

Proposition 20. lwidth Φ ≤ p, ugrade Φ ≤ p; uwidth Ψ ≤ p, lgrade Ψ ≤ p.

Proof. It’s a direct consequence of theorem 4.2 in [4].

Moreover, the inverse of Ψ can be written as

Ψ−1 = Ψ∗ (223)

=

(
Un

In

)1

Un−1

In−1

 · · ·

In−2

U2

I2


In−1

U1

1

 .(224)

This expression has the same form as Φ, then Rn can be recognized as a ratio
of two consecutive subblock products that have the same direction.

5.2 Band Fraction and Hessenberg Unitary Matrices

In this subsection, we study the band fraction structrue of Hessenberg uni-
tray matrices, which derives the band fraction form for both the lattice filter
and the TIB filter in the SISO case.

For a sequence of complex numbers, which have modulus smaller than 1,
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ρ = {ρ0, ρ1, . . .}, define band matrices pair (M(ρ), N(ρ)):

M =



c1

s∗1 c2

s∗2 c3
. . . . . .

s∗n−1 cn


, (225)

N =



s1

c1 s2

c2 s3
. . . . . .

cn−1 sn


, (226)

where ck = 1√
1−|ρk|2

, sk = ρk√
1−|ρk|2

. First we know that for a nonzero sequence

ρ, A = (M(ρ))
−1

N(ρ) and B = (M(ρ))
−1

e1 is a TIB pair.
Lemma 21 and Proposition 22 are results of Mullhaupt and Riedel [12]. We

start from Lemma 21 and derive more band fraction structures for lattice.
Lemma 21. For any nonzero sequence ρ inside the unit disk, by adding zeros
to both front and end, then getting the corresponding band matrices M(0, ρ, 0)

and N(0, ρ, 0), the band ratio (M(0, ρ, 0))
−1

N(0, ρ, 0) has the form of

(
0 0

U 0

)
,

where U is lower unitary Hessenberg matrix with ρ on superdiagonal.

Proof.

(M(0, ρ, 0))
−1

N(0, ρ, 0) (227)

=

(
1

M(ρ, 0)

)−1(
0

e1 N(ρ, 0)

)
(228)

=

(
1

M(ρ, 0)−1

)(
0

e1 N(ρ, 0)

)
(229)

=

(
0

M(ρ, 0)−1e1 M(ρ, 0)−1N(ρ, 0)

)
(230)
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also

(M(ρ, 0))
−1

N(ρ, 0) (231)

=

(
M(ρ)

sne
T
n 1

)−1(
N(ρ)

cne
T
n 0

)
(232)

=

(
M(ρ)−1

−sne
T
nM(ρ)−1 1

)(
N(ρ)

cne
T
n 0

)
(233)

=

(
M(ρ)−1N(ρ)

0

)
. (234)

From equation (230) and equation (234) we see (M(0, ρ, 0))
−1

N(0, ρ, 0) has the

form

[
0 0

U 0

]
. Since M(ρ)−1N(ρ) is lower triangular with ρ on diagonal, U

is Henssenberg with ρ on superdiagonal.
(
M(ρ, 0)−1e1,M(ρ, 0)−1N(ρ, 0)

)
is a

TIB pair, with M(ρ, 0)−1N(ρ, 0) which has a zero last column, thus U is unitary.

Proposition 22. U defined above can be represented as a ratio of a lower band
matrix and an upper band matrix with bandwidth 2.

Proof. Actually,

U = M(ρ, 0)−1

(
e1 N(ρ)

cne
T
n

)
(235)

is the band ratio representation.
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Remark 23. If we write down the full version of the band matrices

P = M(ρ, 0) (236)

=



c1

s∗1 c2

s∗2
. . .
. . . cn

s∗n 1


, (237)

Q =

(
e1 N(ρ)

cne
T
n

)
(238)

=



1 s1

c1 s2

c2
. . .
. . . sn

cn


, (239)

Q can be obtained by taking Hermitian of P then shifting the diagonal. Also
PP ∗ = QQ∗, thus A = P−1Q = P ∗Q−∗ can also be represented as product of
an upper band matrix and the inverse of a lower band matrix.

In state space representations, a unitary realization matrix corresponds to an

all-pass filter. If we partition U as U =

(
B A

D C

)
, this is the TIB representation.

On the other hand, a partition U =

(
D C

B A

)
is related to the lattice filter

representation. In this case, A is lower Hessenberg with reflection coeffients
κ = {κ1, κ2, . . . , κn} , also C = ce1. We claim that A also has a band ratio
structure.

Proposition 24. If A is the advance matrix from lattice filter with reflection
coefficients κ = {κ1, κ2, . . . , κn}, then A can be written as A = P−1Q, where P

is a lower band matrix and Q is an upper band matrix with bandwidth 2.
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Proof. By (22),

A =

(
M(c, κ, 0)−1

(
e1 N(c, κ)

cne
T
n+1

))
2:n+2,2:n+2

(240)

=


 1√

1−|c|2
c∗√
1−|c|2 e1 M(κ, 0)

−1


2:n+2,:

[
N(c, κ)

cne
T
n+1

]
(241)

=
(
−c∗M(κ, 0)−1e1 M(κ, 0)−1

)
c√

1−|c|2
1√

1−|c|2 e1 N(κ)

1√
1−|κn|2

eTn

 (242)

= M(κ, 0)−1

− |c|2√
1− |c|2

e1e
T
1 +

 1√
1−|c|2 e1 N(κ)

1√
1−|κn|2

eTn

(243)

= M(κ, 0)−1

(√
1− |c|2e1 N(κ)

1√
1−|κn|2

eTn

)
(244)

Let
P = M(κ, 0) (245)

and

Q =

(√
1− |c|2e1 N(κ)

1√
1−|κn|2

eTn

)
, (246)

and obeserve that P is a lower band matrix and Q is an upper band matrix
with bandwidth 2.

Remark 25. There is a free parameter c here, A is unitary if and only if c = 0.

Also
QQ∗ + |c|2e1eT1 = PP ∗ (247)

With the band ratio representation of the advance matrix, many computa-
tions related to the lattice filter can be accelerated. Now let us take a look
at the reachability matrix R =

(
B AB A2B · · ·

)
of the lattice filter with
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reflection coefficient κ = {κ1, κ2, . . . , κn}, from equation (24),

R:,k+1 = AR:,k (248)

⇒ PR:,k+1 = QR:,k (249)

Defining κ0 = c and κn+1 = 0. For 1 ≤ m ≤ n+ 1, we have

Rm,k√
1− |κm−1|2

+
Rm+1,kκ

∗
m√

1− |κm|2
=

Rm−1,k+1κm−1√
1− |κm−1|2

+
Rm,k+1√
1− |κm|

. (250)

We denote corresponding orthonormal bases denote

fj(z) =

∞∑
i=0

Rj,iz
i, j = 1, 2, . . . , n. (251)

Thus the recursive formula, equation (250) above is equivalent to

zfm(z)√
1− |κm−1|2

+
κ∗
mzfm+1(z)√
1− |κm|2

=
κm−1fm−1(z)√
1− |κm−1|2

+
fm(z)√
1− |κm|2

, (252)

which leads to the three term recursive formula

fm+1(z) =

(
1

zκ∗
m

−
√
1− |κm|2

κ∗
m

√
1− |κm−1|2

)
fm(z) +

κm−1

√
1− |κm|2

zκ∗
m

√
1− |κm−1|2

fm−1(z).

(253)
On the other hand, the lattice/Schur bases come with the natural recursive
formula

fm+1(z) =
fm(z)− fm(0)

z
(
1− fm(0)fm(z)

) (254)

where fm(0) =
√
1− |κm|2.

5.3 Band Fraction Stucture of MIMO TIB form

Mullhaupt and Riedel [3] pointed out there are band fraction representation
of TIB form for both SISO and MIMO case, in this section, we first introduce
a novel algebraic expression for TIB pair and then explicitly construct a band
ratio representation of TIB pair in terms of the poles and null vectors. In
the algebraic expression we propose, the poles and null vectors appear quite
separately, and we use it to derive the band fraction formula as follows:
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For every TIB pair (A,B) where A ∈ Rn×n and B ∈ Rn×p(n > p), we will
constructively prove that under the satisfaction of some singularity conditions,
there exist two lower triangular band matrices M,N ∈ Rn×n with bandwidth
p, such that

A = M−1N, (255)

and

B = M−1

(
U

0

)
(256)

for some unitary U.

In the state updating procedure, there is a multiplication of A, which costs
O
(
n2
)

flops if A is triangular. With the band ratio representation of A, the
multiplication can be accelerated to O (np) flops. The SISO case of the band
fraction representation has been discussed in [3], where the authors also point
out the representation may be derived from the Takenaka-Malmquist functions.
We extend the results to the multivariate case.

Theorem 26. Suppose (A,B) is the TIB pair constructed from poles ω and
null vectors u, and let

Ω = tril(


u∗
n

u∗
n−1

...
u∗
0


(
un un−1 · · · u0

)
), (257)

D(1) =


ω̄n

1+ω̄n

. . .
ω̄0

1+ω̄0

 , (258)

D(2) =


|1+ωn|2
1−|ωn|2

. . .
|1+ω0|2
1−|ω0|2

 , (259)

D(3) =


√

1−|ωn|2
1+ω̄n

. . . √
1−|ω0|2
1+ω̄0

 , (260)
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then

A = D(3)

(
D(2) −

(
Ω−D(1)

)−1
)
D(3), (261)

B = D(3)
(
Ω−D(1)

)−1


u∗
n

u∗
n−1

...
u∗
0

 . (262)

Proof. First we observe√
1− |ω0|2
1 + ω̄0

(
|1 + ω0|2

1− |ω0|2
−
(
1− ω̄0

1 + ω̄0

)−1
) √

1− |ω0|2
1 + ω̄0

(263)

=
1− |ω0|2

(1 + ω̄0)
2

(
|1 + ω0|2

1− |ω0|2
− (1 + ω̄0)

)
(264)

=
1 + ω0

1 + ω̄0
− 1− |ω0|2

1 + ω̄0
(265)

= ω0 (266)

= A0, (267)

and √
1− |ω0|2
1 + ω̄0

(
1− ω̄0

1 + ω̄0

)−1

u∗
0 (268)

=
√
1− |ω0|2u∗

0 (269)

= B0. (270)

Now assume that An−1 and Bn−1 satisfy the formulae above, denote

µn =


u∗
n

u∗
n−1

...
u∗
0

 , (271)
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then

D(3)
n

(
Ωn −D(1)

n

)−1

µn (272)

=

(√
1−|ωn|2
1+ω̄n

D
(3)
n−1

)(
1− ω̄n

1+ω̄n

µn−1un Ωn−1 −D
(1)
n−1

)−1(
u∗
n

µn−1

)
(273)

=

(√
1−|ωn|2
1+ω̄n

D
(3)
n−1

)
(274)

×

 1 + ω̄n

− (1 + ω̄n)
(
Ωn−1 −D

(1)
n−1

)−1

µn−1un

(
Ωn−1 −D

(1)
n−1

)−1

(275)

×

(
u∗
n

µn−1

)
(276)

=

 √
1− |ωn|2

− (1 + ω̄n)Bn−1un D
(3)
n−1

(
Ωn−1 −D

(1)
n−1

)−1

( u∗
n

µn−1

)
(277)

=

( √
1− |ωn|2u∗

n

Bn−1 (Ip − (1 + ω̄n)unu
∗
n)

)
, (278)
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and Bn satisfies the updating formula. In addition,

D(3)
n

(
D(2)

n −
(
Ωn −D(1)

n

)−1
)
D(3)

n (279)

= D(3)
n D(2)

n D(3)
n −D(3)

n

(
Ωn −D(1)

n

)−1

D(3)
n (280)

=

(
1+ωn

1+ω̄n

D
(3)
n−1D

(2)
n−1D

(3)
n−1

)
−

(√
1−|ωn|2
1+ω̄n

D
(3)
n−1

)
(281)

×

 1 + ω̄n

− (1 + ω̄n)
(
Ωn−1 −D

(1)
n−1

)−1

µn−1un

(
Ωn−1 −D

(1)
n−1

)−1

(282)

×

(√
1−|ωn|2
1+ω̄n

D
(3)
n−1

)
(283)

=

(
1+ωn

1+ω̄n

D
(3)
n−1D

(2)
n−1D

(3)
n−1

)
(284)

−

 √
1− |ωn|2

− (1 + ω̄n)Bn−1un D
(3)
n−1

(
Ωn−1 −D

(1)
n−1

)−1

 (285)

×

(√
1−|ωn|2
1+ω̄n

D
(3)
n−1

)
(286)

=

(
1+ωn

1+ω̄n

D
(3)
n−1D

(2)
n−1D

(3)
n−1

)
(287)

−

 1−|ωn|2
1+ω̄n

−
√
1− |ωn|2Bn−1un D

(3)
n−1

(
Ωn−1 −D

(1)
n−1

)−1

D
(3)
n−1

 (288)

=

(
ωn√

1− |ωn|2Bn−1un An−1

)
, (289)

which implies that An satisfies the updating formula, and therefore established
the validity of the formula.

Moreover, Ω has low grade which implies a band fraction representation, we
explicitly construct the band matrices in the following lemma and then make
use of them to construct band matrices for the TIB pair (A,B) .

Lemma 27. Suppose we have unit length vectors u0, u1, . . . , un ∈ Cp×1, p < n,
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then there exist two band matrices Mu and Nu such that

Nu = MuΩ, (290)

where Ω has the form

Ω = tril(


u∗
n

u∗
n−1

...
u∗
0


(
un un−1 · · · u0

)
), (291)

Proof. For i = 0, 1, . . . , n− p, we know that(
up+i up−1+i · · · ui+1 ui

)
∈ Cp×(p+1) (292)

is singular, so we can find



vp,i

vp−1,i

...
v1,i

v0,i


∈ C(p+1)×1 such that

(
up+i up−1+i · · · ui+1 ui

)


vp,i

vp−1,i

...
v1,i

v0,i


= 0. (293)
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Let

Mu =



1

0 1
...

. . . 1

0 · · · 0 1

v∗p,n−p−1 · · · · · · v∗1,n−p−1 v∗0,n−p−1

. . . . . . . . .

v∗p,1 v∗1,1 v∗0,1

v∗p,0 · · · · · · v∗1,0 v∗0,0


(294)

then
Nu = MuΩ (295)

is a lower triangular matrix with bandwidth p.

Remark 28. For the vectors



vp,i

vp−1,i

...
v1,i

v0,i


in the proof above, it’s entirely possible

that the last element v0,j is zero, in which case Mu is singular. If all the
v0,0, v0,1, . . . , v0,n−p−1 are not zero, Mu is nonsingular. Also we know the lower
triangular matrix Ω has ones on its diagonal so it’s non-singular, therefore Ω

can be written as band ratio,

Ω = M−1
u Nu. (296)

Theorem 29. There exist band matrices M and N, such that for any TIB
pair (A,B) satisfying the non-singularity condition described in remark (28),

we have A = M−1N, and B = M−1

[
U

0

]
with some unitary matrix U.

Proof. Using the notation above, if we furthur assume Mu in lemma (27) is
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nonsingular, by theorem (26) we have

A = D(3)

(
D(2) −

(
M−1

u Nu −D(1)
)−1

)
D(3) (297)

= D(3)

(
D(2) −

(
Nu −MuD

(1)
)−1

Mu

)
D(3) (298)

= D(3)
(
Nu −MuD

(1)
)−1 (

NuD
(2) −MuD

(1)D(2) −Mu

)
D(3)(299)

=
[(

Nu −MuD
(1)
)
D(3)−1

]−1

(300)

×
[(

NuD
(2) −MuD

(1)D(2) −Mu

)
D(3)

]
(301)

and

B = D(3)
(
M−1

u Nu −D(1)
)−1


u∗
n

u∗
n−1

...
u∗
0

 (302)

=
[(

Nu −MuD
(1)
)
D(3)−1

]−1

Mu


u∗
n

u∗
n−1

...
u∗
0


 (303)

=
[(

Nu −MuD
(1)
)
D(3)−1

]−1



u∗
n

...
u∗
n−p+1

0
...
0


. (304)
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Finally let

M =
(
Nu −MuD

(1)
)
D(3)−1 (305)

= Nu


1+w̄n√
1−|wn|2

. . .
1+w̄0√
1−|w0|2

 (306)

−Mu


w̄n√

1−|wn|2

. . .
w̄0√

1−|w0|2

 (307)

= (Nu + (Nu −Mu) diag(w̄)) diag(
1√

1− |w|2
), (308)

and

N =
(
NuD

(2) −MuD
(1)D(2) −Mu

)
D(3) (309)

= Nu


1+wn√
1−|wn|2

. . .
1+w0√
1−|w0|2

 (310)

−Mu


1√

1−|wn|2

. . .
1√

1−|w0|2

 (311)

= (Nudiag(w) + (Nu −Mu)) diag(
1√

1− |w|2
). (312)

Then clearly M and N are band matrices, and we have

A = M−1N, (313)

B = M−1



u∗
n

...
u∗
n−p+1

0
...
0


, (314)
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and


u∗
n

...
u∗
n−p+1

 is unitary.

Remark 30. The SISO case band fraction is the special case of the MIMO case.
In the SISO case, the unit length null vectors all become scalar 1,(

un un−1 · · · u0

)
=
(
1 1 · · · 1

)
, (315)

then

Ω = tril



1

1
...
1


(
1 1 · · · 1

)
 (316)

=


1

1 1

. . . 1

1 1


−1

1

1

. . .

1

 (317)

gives

Mu =


1

1 1

. . . 1

1 1

 (318)

and

Nu =


1

1

. . .

1

 . (319)

Therefore A is a band fraction with bandwidth 1 and B is the first column of
the inverse of band matrix with bandwidth 1.

The real system feedback matrix A can have complex conjugate pairs of
eigenvalues, in which case, the band fraction representation just described would

54



be complex. Computationally, this may not be desirable, thus we give a real
band fraction form for the complex conjugate poles case. Suppose that we have
an input balanced pair (A,B) , where A,B have real values. Let’s apply the
real Schur decomposition introduced in section 2.5 to A,

A = QTQ∗, (320)

where T is a lower quasi-triangular matrix and Q is unitary, both T and Q only
have real elements . Without loss of generality suppose that T has k 2×2 blocks
on the left upper side of the diagonal,

T =


T1

∗
. . .

...
. . . Tk

∗ · · · ∗ Tr

 (321)

where T1, T2, . . . , Tk are 2×2 real blocks and Tr is strictly lower triangular. For
Tk, k = 1, 2, . . . k, it’s trivial to find its LQ decomposition,

Tk = LkGk, (322)

where Lk are 2× 2 lower triangular matrices and Gk are 2× 2 unitary matrices.
Denote

G =


G1

. . .

Gk

I

 , (323)

then we have
T = LG, (324)

where L is strictly lower triangular and G is a unitary matrix with 2×2 unitary
blocks and identity on its diagonal. The input balance condition yields

AA∗ +BB∗ = I, (325)

which is
QLGQ∗QG∗L∗Q∗ +BB∗ = I, (326)
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and therefore
LL∗ + (Q∗B) (Q∗B)

∗
= I. (327)

Now we have a real TIB pair (L,Q∗B) , according to theorem (29), there exists
a real band fraction representation of the new TIB pair. All we need to do is
post multiply by the unitary matrix G.
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6 Model Identification and Reduction

6.1 Model Reduction Technique Review

Balanced realizations are well-known to have numerical advantages and are
useful for model reduction purposes in conjunction with balance-and-truncate
type procedures.

A balanced canonical form for SISO stable all-pass systems in discrete time
has a positive upper triangular reachability matrix. In the multivariable case,
Kronecker indices and nice selections are used to arrive at balanced overlapping
canonical forms for lossless systems. For discrete-time stable all-pass systems,
canonical forms can be obtained from the results in continuous-time by appli-
cation of bilinear transformation. However, this destroys certain nice properties
of the canonical form; e.g., truncation of state components no longer leads to
reduced order systems that are balanced and in canonical form.

Let Σ be the SISO discrete time model. Two discrete-time Lyapunov equa-
tions are closely related to this system:

APA∗ +BB∗ = P, (328)

and
A∗QA+ C∗C = Q. (329)

Under the assumptions that Σ is asympototically stable and minimal, it is well
known that the above equations have unique symmetric positive definite solu-
tions P,Q ∈ Rn×n, called the reachability and obserbility Grammians, respec-
tively. The square roots of the eigenvalues of the product PQ are the singular
values of the Hankel operator associated with Σ and are called Hankel Singular
values σi(Σ) of the system Σ:

σi(Σ) =
√

λi(PQ). (330)

The minimal and asymptotically stable system Σ is called balanced if P and Q

are identical and diagonal with the largest Hankel singular values. The balanced
system has the property that the states which are difficult to reach, i.e. require
a large input energy to reach, are simultaneously difficult to observe, i.e. yield
small observation energy. The states which have this property correspond to
small Hankel singular values. Hence a reduced model is simply obtained by
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truncating these states from the balanced system. The reduced system Σr

defined by balanced truncation is asymptotically stable, and the error system
satisfies the following H∞ error bound:

‖Σ− Σr‖H∞ ≤ 2 (σk+1 + · · ·+ σq) . (331)

Reduced-order models obtained by balanced truncation have certain guaranteed
properties. However these properties are slightly different for discrete-time and
continuous-time systems. For discrete-time systems, the reduced systems are
not balanced in general. D.Hinrichsen and A.J.Pritchard [33] presented a di-
rect proof of the stricter estimate for the discrete-time case under substantially
weaker conditions. The authors proposed that “the reduced order model Σr

will be constructed by projection”. For continuous-time case, suppose that the
positive definite matrices P and Q have the decompositions

P = UUT (332)

and
Q = LLT . (333)

Let
UTL = ZSY T (334)

be the singular value decomposition. Define

W1 = LY1Σ
−1/2
1 (335)

and
V1 = UZ1Σ

−1/2
1 , (336)

where Z1 and Y1 are composed of the leading r columns of Z and Y , respectively.
It is easy to check that

WT
1 V1 = Ir (337)

and hence that V1W
T
1 is an oblique projector. We obtain a reduced model Σr
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of order r by projection as follows:

Ar = WT
1 AV1, (338)

Br = WT
1 B, (339)

Cr = CV1. (340)

Noting that PW1 = V1Σ1 and QV1 = W1Σ1 gives

WT
1 (AP + PAT +BBT )W1 = ArΣ1 +Σ1A

T
r +BrB

T
r , (341)

and
V T
1 (ATQ+QA+ CTC)V1 = AT

r Σ1 +Σ1Ar + CT
r Cr. (342)

Thus, the reduced model is balanced and asympototically stable(due to the Lya-
punov inertia theorem) for any k ≤ q. However, in contrast to the continuous-
time case, the reduced order models are not necessarily balanced.

Theorem 31. From [5], if deg Ĥ(z) = M, then Ĥ(z) is a stationary point of
the functional ‖H(z)− Ĥ(z)‖2 if and only if

H(z)− Ĥ(z) = z[V (z)]2Q(z), for some Q(z) ∈ H2, (343)

where V (z) is the all-pass function whose poles coincide with those of Ĥ(z).

This result was first obtained by Walsh, and hence is known in some circles
as Walsh’s theorem [5]. The essence of this theorem is best intepreted as an
interpolation condition. If z1, . . . , zM are the poles of Ĥ(z), and if the poles are
distinct, this interpolation constraint reads as

H(
1

zk
) = Ĥ(

1

zk
), (344)

and
∂H(z)

∂z
|z= 1

zk

=
∂Ĥ(z)

∂z
|z= 1

zk

, (345)

for k = 1, 2, . . . ,M. The result above is revisited by Regalia [5].
A.Bunse-Gerstner et al. [34] derived the first order necessary H2-optimality

conditions (Theorem 32) for asymptotically stable MIMO systems. The mirror
images of the eigenvalues of the state matrix Â are crucial quantities herein.
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Theorem 32. From [34], given the large order system with transfer function
H(s). Let Ĥ(s) be the transfer function of the reduced order system given in an
eigenvector basis

Â = diag(λ̂1, . . . , λ̂n), (346)

B̂ =
(
b̂∗1, . . . , b̂

∗
n

)
, (347)

Ĉ = (ĉ1, . . . , ĉn) . (348)

If Ĥ(s) solves the H2-optimal problem, then the following conditions are satisfied

ĉ∗kH

(
1

λ̂∗
k

)
= ĉ∗kĤ

(
1

λ̂∗
k

)
, (349)

H

(
1

λ̂∗
k

)
b̂∗k = Ĥ

(
1

λ̂∗
k

)
b̂∗k, (350)

ĉ∗kH
′

(
1

λ̂∗
k

)
b̂∗k = ĉ∗kĤ

(
1

λ̂∗
k

)
b̂∗k. (351)

In Antoine Vandendorpe’s thesis [26] a generalization of existing interpola-
tion techniques for MIMO systems is developed. Instead of imposing interpola-
tion conditions of the type

T (λi) = T̂ (λi), (352)

more general tangential interpolation conditions can be imposed between the
original and the reduced order systems:

xiT (λi) = xiT̂ (λi), (353)

T (λi+k)yi = T̂ (λi+k)yi. (354)

Such interpolation conditions appear naturally for MIMO systems when pro-
jecting via Sylvester equations.

In A.Bunse-Gerstner’s paper [34] , they introduced a special case of much
more general results of A.Vandendorpe.

Lemma 33. From [34], let Vn ∈ CN×n and Wn ∈ CN×n be matrices of full
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rank n such that
W ∗

nVn = In. (355)

Let σk ∈ C, lk ∈ C1×p and rk ∈ Cm×1 for k = 1, . . . , n be given sets of interpo-
lation points and left and right tangential directions, respectively. Assume that
the points σk are chosen such that all matrices A − σkIN are invertible. If for
all k ∈ 1, . . . , n,

(σkIN −A)
−1

Brk ∈ columnspace (Vn) , (356)

(σ∗
kIN −A∗)C∗l∗k ∈ columnspace (Wn) , (357)

then the reduced order system Σ̂ =
(
Â, B̂, Ĉ

)
= (W ∗

nAVn,W
∗
nB,CVn) has a

transfer function which satisfies the following tangential interpolation condi-
tions:

H(σk)rk = Ĥ(σk)rk, (358)

lkH(σk) = lkĤ(σk), (359)

lkH
′(σk)rk = lkĤ

′(σk)rk. (360)

From Lemma 32 and Lemma 33, A-Bunse-Gerstner introduced MIRIAm(MIMO
Iterative Rational Interpolation Algorithm), a proof of the convergence is not
provided.

Gugencin [43] proposed a two-sided projection combining features of the sin-
gular value decomposition (SVD)-based and the Krylov-based model reduction
technique. While the SVD-side of the projection depends on the observability
Grammian, the Krylov-side is obtained via iterative rational Krylov steps.

Beattie and Gugercin [41] presented a trust-region approach for optimal H2

model reduction of MIMO linear dynamical systems. They generated a sequence
of reduced order models producing monotone improving H2 error norms and is
globally convergent to a reduced order model guaranteed to satisfy first-order
optimality conditions with respect to H2 error criteria without solving any Lya-
punov equations. The method also appeared to be the first descent approach
that uses Hessian information.

In [44], the problem of medium-scale MIMO linear time invariant (LTI)
systems is studied. The author also presented a MATLAB-based toolbox for
approximation of medium and large-scale LTI dynamical models, called MORE

61



(MOdel REduction), which implements a collection of very recent advanced
algorithms for LTI dynamical model reduction purpose.

The celebrated theorem of Adamjov, Arov, and Krein (AAK), provides a
construction of the optimal approximations to a Hankel operator bounded in
Hankel norm. [36] is a good reference instructing how to implement AAK algo-
rithm. [24] first found a parametrization for inner functions, then they tackled
the reduction problem by using a gradient algorithm through the manifold as a
whole, using the coordinate maps to describe the manifold locally and changing
from one coordinate map to another when required. Our reduction algorithm
is based on their parametrization.

6.2 Fast Partial Block Hankel SVD

We introduce a hybrid model reduction algorithm based on the TIB repre-
sentation: first we obtain the bases of the lossless function factor from the H∞

approximation, then the remaining unstable factor is obtained by H2 approxi-
mation. To find the H∞ approximation, we need to compute the partial SVD
of a block Hankel matrix multiplied by its transpose, which can be accelerated
by the FFT as follows.

Given a Hankel matrix

H =


h1 h2 · · · hn

h2 hn+1

...
...

hn hn+1 · · · h2n−1

 , (361)

we know that the fast multiplication of H by vector x = (x1,x2, . . . , xn)
T can be

achieved using fast Fourier transformation in O (n log n) operations. Suppose
y = Hx, actually

ŷ = IFFT
(
FFT

(
ĥ
)
∗ FFT (x̂)

)
, (362)

where

ĥ = (hn, hn+1, . . . , h2n−1, h1, . . . , hn−1)
T
, (363)

x̂ = (xn, xn−1, . . . , x1, 0, . . . , 0)
T
, (364)
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and
ŷ = (y1, y2, . . . , yn, . . .)

T
. (365)

For a block Hankel matrix multiplication, suppose that we have block Hankel
matrix,

H =


H1 H2 · · · Hn

H2

...
... Hn+1

Hn Hn+1 · · · H2n−1

 , (366)

where Hi ∈ Rp×q for i = 1, 2, . . . , 2n− 1. For the following, we adopt the index
notation of Matlab. Note that Hi:p:end,j:q:end are Hankel matrices for every
i = 1, 2, . . . , p and j = 1, 2, . . . , q. For vector x ∈ Rnq, and y = Hx, y ∈ Rnp,

yi:p:end =

q∑
j=1

Hi:p:end,j:q:endxj:q:end (367)

which is the sum of q Hankel multiplication. Notice that in the block Hankel
case, H does not have to be symmetric. However, H∗H is Hermitian and
semi-positive-definite, so its singular values are the same as its eigenvalues.
Utilizing the fast multiplication of H∗H, we can use the Lanczos algorithm
to compute the partial-decomposition with the largest eigenvalues in terms of
magnitude. Suppose that we have a partial SVD of H of rank γ,

H ≈ H̃ = Ũ S̃Ṽ ∗ (368)

where S̃ ∈ Rγ×γ
+ . Then H∗H ≈ Ṽ S̃2Ṽ ∗ and HH∗ ≈ Ũ S̃2Ũ∗, by applying

Lanczos algorithm to H∗H and HH∗, we will the SVD approximation of H.

6.3 Hybrid Model Reduction with TIB

Model reduction of linear time-invariant systems is an active research area,
and traditional methods include balanced truncation and moment matching; the
AAK algorithm will find the optimal solution in the H∞ sense [8]. More recent
model reduction algorithms include oblique projection combining the aspects of
the SVD and Krylov based reduction methods [10, 11], and gradient algorithms
based on Schur analysis [7, 12]. The algorithm we propose is based on the latter,
however, in place of optimization over local manifolds with changing coordinate
maps, we find the optimal inner part of the transfer function in the H∞ sense,
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and then compute the rest part with nice geometry. Advantages of the algorithm
include that it is fast, it is guaranteed to converge, and it is stable. For transfer
functions in VMOA (Space of analytic functions of Vanishing Mean Oscillation)
[62], it is an accurate approximation.

Since transfer functions in VMOA are approximated in Hankel norm by their
truncations, without loss of generality we assume the transfer function is of finite
(but possibly very long) length k. Transfer functions in VMOA have compact
Hankel operators. The Hankel operator is approximated in Hankel norm by the
finite rank partial SVDs. For the rank γ partial SVD of H ≈ H̃ = Ũ S̃Ṽ ∗, there
exists a state space realization pair (A,B) such that,

Ṽ ∗ ≈
(
B AB · · · Ak−1B

)
(369)

and for k large,

Ṽ ∗
1:end,q+1:endṼ1:end,1:end−p (370)

=
(
AB A2B · · · Ak−1B

)


B∗

B∗A∗

...
B∗A(k−2)∗

 (371)

= A
(
BB∗ +ABB∗A+ · · ·Ak−2BB∗A(k−2)∗

)
(372)

≈ A (373)

and B = Ṽ1:end,1:q. As the impulse response is preserved under a linear trans-
formation of the representation,

A → TAT−1 (374)

B → TB (375)

C → CT−1, (376)

we may consider the Schur triangularization of A,

A = QA1Q
T , (377)

where A1 is lower triangular, and observe that
(
A1, Q

TB
)

is an equivalent re-
alization pair. However,

(
A1, Q

TB
)

is not in general a TIB pair, so we will find
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a TIB approximation by tangential Schur updating formula. The reduced poles
can be taken as the diagonal elements of A1, which we denote as ω, and the null
vectors u can be recursively computed as

ui = B∗
1,1:end/‖B1,1:end‖, (378)

newB = B2:end,1:end −
(
1 +

1

w̄i

)
B2:end,1;enduiu

∗
i . (379)

Finally we can use ω and u to reconstruct a strict TIB pair, which determine
the inner function and provide the orthonormal reduced basis for the matrix-
valued transfer function. In this reduced basis H2 approximation of C is a well
conditioned least square problem. We compute the TIB pair

(
Ã, B̃

)
from ω

and u and the Krylov matrix:

K =
(
B AB · · · Ak−1B

)
, (380)

and find
C =

(
H1 H2 · · · Hk

)
K∗. (381)

To summarize the reduction algorithm, we have the following 4 steps:

1. Partial SVD approximation of Hankel matrix H ≈ H̃ = Ũ S̃Ṽ ∗.

2. Get almost input balanced pair from Ṽ ∗ ≈
(
B AB · · · Ak−1B

)
and

apply coordinate change to get almost TIB pair.

3. Compute poles and null vectors from the almost TIB pair by recursive
tangential Schur algorithm.

4. Reconstruct strict TIB pair from estimated poles and null vectors, then
conduct least square method to obtain C.

For impulse responses in VMOA, the truncation and partial SVD are guaranteed
to be close in the Hankel norm. In this case, the approximation minimizes the H2

error of the impulse response subject to minimal Hankel norm error of the inner
part. Since the Hankel norm dominates the H2 norm the process guarantees a
small H2 norm, but not necessarily minimal H2 norm for the given γ. Numerical
tests of this algorithm on synthetic data, are given in section 6.5.
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It is appealing to conduct the reduction in the information space. From the
information geometric point of view, in the SISO case, we know that if we choose
the model parameters to be the coefficients of the logarithm of the transfer
function, the Fisher information matrix is an identity matrix indicating a nice
Euclidean statistical manifold. Denoting log f (z) = a0+a1z+a2z

2+ · · · , since
f and log f have the same singularity, we can apply our reduction algorithm on
the alternative Hankel matrix

Aij = ai+j−1, i, j = 0, 1, . . . (382)

and then recover the impulse responses from {ai}. Mullhaupt and Choi [61]
proved in the SISO case, the information of prediction only comes from the
unstable part of the transfer function, thus we have reason to believe that the
Douglas-Shapiro-Shields factorization plays a similar role in matricial informa-
tion geometry.

6.4 Model Idenfication with TIB

We consider adaptive identification of the impulse response of an innovation
filter,

z (t+ 1) = Az (t) +Bx (t) (383)

y (t) = Cz (t) + x (t) . (384)

Innovation models use the prediction fit errors as the stochastic input into the
state space evolution. We assume that the system is minimal and stable, in
addition we will choose the TIB representation for the state space system. The
innovations are independent and identically distributed with zero mean and
variance σ2. From equation (383) we have

z (t) =
(
B AB A2B · · ·

)

x (t− 1)

x (t− 2)

x (t− 3)
...

 , (385)

all the historical information can be encoded in the state z (t) . The auto-
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covariance of z (t) is

E
[
z (t) z (t)

∗] (386)

= E

(B AB · · ·
)

x (t− 1)

x (t− 2)
...

(x (t− 1) x (t− 2) · · ·
)

B∗

B∗A∗

...


(387)

=
(
B AB · · ·

)
E



x (t− 1)

x (t− 2)
...

(x (t− 1) x (t− 2) · · ·
)


B∗

B∗A∗

...

(388)

=
(
B AB · · ·

)
σ2I


B∗

B∗A∗

...

 (389)

= σ2I, (390)

when (A,B) is input balanced. By multiplying equation (384) by z (t)
∗ and

taking expecation on both sides,

E
[
y (t) z (t)

∗]
= E

[
Cz (t) z (t)

∗]
+ E

[
x (t) z (t)

∗]
, (391)

since E
[
x (t) z (t)

∗]
= 0,

E
[
y (t) z (t)

∗]
= CE

[
z (t) z (t)

∗]
, (392)

which gives us the estimation of C,

C =
1

σ2
E
[
y (t) z (t)

∗] (393)

The TIB pair (A,B) gives an orthogonal basis for the linear system, in
practice, we assume that it changes infrequently and put all the adaptiveness
into C. Adaptive filtering is gaining favor in numerous applications to help cope
with time-variations of system parameters, and to compensate for the lack of
a prior knowledge of the statistical properties of the input data. Over the last
several years, a wide range of algorithms has been developed. These fall into
four main groups [2, 5, 13, 40]: recursive least squares (RLS) algorithms and
the corresponding fast versions; QR- and Inverse QR-least squares algorithms;
least-squares lattice (LSL) and QR decomposition-based least squares lattice
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(QRD-LSL) algorithms; and gradient-based algorithms such as the least-mean
square (LMS) algorithm.

At time t, we have

Ct =
1

σ2
E
[
y (t) z (t)

∗] (394)

which can be used for prediction at time t+ 1,

E [y (t+ 1)] = Ctz (t) . (395)

How to choose a “good” basis for the system becomes very import. In SISO case,
practically we can choose some non-informative poles, for example Chebyshev
poles that have the property to mitigate the Runge’s phenomenon, to construct
a basis for learning the underlying impulse response, then apply a model re-
duction algorithm to find a set of reduced poles that can span the space the
impulse reponse lies onto. The reduction also serves as noise reduction duty,
after getting the reduced poles, we can re-learn the impulse reponse from the
reduced TIB pair. In MIMO case, a selection of non-informative null vectors
must be additionally made. One example of a method for selecting such null
vectors can be found in [63]. With a prior knowledge of the basis, or the poles
and null vectors, we are able to identify the underlying system.

6.5 Numerical Examples

We present four numerical examples here: the first one is reducing Gilbert
realization of all-pass system, our algorithm verses Matlab; the second one is
finding known poles, and finding realization that approximates known impulse
response; the third one takes the challenge of 1/f noise model reduction; the
fourth one tries to approximate 2 × 2 maxflat impulse response and attempts
to conduct model identification with reduced basis assuming we know the “real”
system. We have matlab code for the algorithm proposed which takes the im-
pulse response and number of dimension of the reduced system, and returns
reduced poles, null vectors and C (C in the state space representation). With
the poles and null vectors we are able to reconstruct TIB pair (A,B), and
therefore the entile state space representation.

Example 34. We randomly generated 200 poles and null vectors of size 2,
which will give us 200 all-pass transfer functions respectively. We choose the
Gilbert realizations of these all-pass transfer functions which have diagonal A,
four built-in Matlab algorithms in the Robust Control Toolbox are used to
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Figure 2: four Matlab algorithms vs. ours

reduce the system from the Gilbert realizations. We also compute the length 700
impulse responses from those realizations and reduce the system by our hybrid
algorithm. For all five algorithms, we reduce the systems from dimension 20 to
dimension 10. Figure 2 is a boxplot of the log10 relative H2 difference of the five
reduction algorithms. Figure 3 is the comparison between the winner of Matlab
algorithms and ours, by examinating the magnitude we see Matlab algorithms
completely fail to solve the problem while our hybrid algorithm provides reliable
solutions.

Example 35. Let’s consider a 8× 8 matrix-valued transfer function

f (z) =


1

1−λ1z
1

1−λ2z
· · · 1

1−λ8z
1

1−λ9z
1

1−λ10z
· · · 1

1−λ16z
...

...
...

1
1−λ57z

1
1−λ58z

· · · 1
1−λ64z

 , (396)

with random generated poles λ1, λ2, . . . , λ64 inside the unit circle, the impulse
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Figure 3: Matlab winner vs. ours
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Figure 4: reduce to 64 poles

response is

fi =


λi
1 λi

2 · · · λi
8

λi
9 λi

10 · · · λi
16

...
...

...
λ57 λ58 · · · λ64

 , i = 0, 1, 2, . . . (397)

We pick a length 1000 trunctation of the infinitely long impulse response and
apply the model reduction algorithm we proposed. If we set the reduced dimen-
sion as 64, which is the exact McMillan degree of the transfer function, we find
all the poles: We also reduce the systems to McMillan degree 20, 40, 80, 100.

The poles plots are as follows:
Table 1 is a summary of relative H2 differences for different choices of the

number of reduced poles.
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Figure 5: reduce to 20 poles

Table 1: recover poles
# of poles real error complex error

64 3.499833934943571e-13 3.499833934943571e-13
20 0.042523944732722 0.042523944732722
40 0.005145109028320 0.005145109028320
80 6.298718299991078e-07 6.298718299991078e-07
100 3.219230742073192e-06 3.219230742073192e-06
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Figure 6: reduce to 40 poles
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Figure 7: reduce to 80 poles
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Figure 8: reduce to 100 poles
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Table 2: 1/f noise approximation with different number of poles
# of poles real error complex error

5 0.337585415016762 0.337766019039639
10 0.125066724338163 0.125124943081321
20 0.075328146807122 0.075332050790121
30 0.058173803969318 0.058225734720307
40 0.039122621363868 0.039097241428703
50 0.027364072484523 0.027428305461233

Example 36. (1/f noise) We choose the true impulse response to be

f (z) =

∞∑
i=0

(
i−0.5 i−1

i−1.5 i−2

)
zi, (398)

all of the four entries are pink noises, which decay slowly. We pick a length
1000 trunctation of the infinitely long impulse response and apply the model
reduction algorithm we proposed. We reduce the system to various dimensions,
i.e. 5, 10, 20, 30, 40, 50. The results are summarized in the Table 2, “real error”
means the relative H2 difference between true system and reduced system from
real form of reduction algorithm while “complex error” means the relative H2

difference between true system and reduced system from complex form of reduc-
tion algorithm . Here is a plot of the first 100 length of the impulse responses
of 20 poles, the red plus sign is from our reduced model (Figure 9). Since the
relative errors are small, other reductions look similar.

Example 37. Given a 2 × 2 maxflat impulse response, we compute the ap-
proximation of McMillan degree 7 obtained by our algorithm. Now 50000 sets
of synthetic realizations of the impluse response are generated, namely, we take
convolution of the impulse response and Gaussian distributed innovations. The
data length is set as 10000, we then learn the system with the prescribed poles
and null vectors reduced from true impluse reponse. Figure 10 shows the result,
the blue line is the true impulse response, the green line is the reduction ap-
proximation, and the red one is the learned impulse response from the synthetic
data.
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Figure 9: 1/f noise approximation first 100 impulse response
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Figure 10: System identification with prescribed basis
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A Appendix

A.1 An Extension of Schur-Horn Theorem

The original Schur-Horn theorem discusses the relationship between ma-
jorization and doubly stochastic matrix. Before we introduce our extension to
it, we will provide the definition of majorization, doubly stochastic, biunitary
and some simple properties of them.

For two vectors a, b ∈ Rd written in non-decreasing order, we say a majorizes
b written as a � b, if and only if

k∑
i=1

ai ≥
k∑

i=1

bi, i = 1, . . . , d− 1, (399)

d∑
i=1

ai =

d∑
i=1

bi. (400)

A square matrix is B is said to be doubly stochastic if its matrix elements satisfy

Bij ≥ 0, (401)∑
i

Bij = 1, (402)∑
j

Bij = 1. (403)

Also a square matrix B is biunitary if the elements of B are modulus of elements
of a unitary matrix U,

Bij| = |Uij |2. (404)

Some mathematicians use bistochastic rather than doubly stochastic, or uni-
tochastic instead of biunitary. All biunitary matrices are doubly stochastic.
For 2 × 2 case, doubly stochastic matrices are biunitary, but not for higher
dimensional cases. For example the matrix

A =
1

2

1 1 0

0 1 1

1 0 1

 (405)

is doubly stochastic. A is biunitary if and only if there exists a unitary matrix
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U, such that

U =
1√
2

eia eib 0

0 eic eid

eif 0 eig

 . (406)

However,

UU∗ =
1

2

eia eib 0

0 eic eid

eif 0 eig


e−ia 0 e−if

e−ib e−ic 0

0 e−id e−ig

 (407)

=
1

2

 2 ei(b−c) ei(a−f)

ei(c−b) 2 ei(d−g)

ei(f−a) ei(g−d) 2

 (408)

can not be identity matrix.
The set of all doubly stochastic N × N matrices is a convex set known

as Birkhoff’s polytope. A principal fact related to the Birkhoff-von Neumann
Theorem, it states the extreme points of the Birkhoff’s polytope are exactly
the set of permuation matrices. The set of biunitary matrices is a subset of
Birkhoff’s polytope. The product of two doubly stochastic matrices is doubly
stochastic, for biunitary matrices, it is not generally true that the product of
two biunitary matrices is biunitary. Actually, the product of two 2× 2 or 3× 3

biunitary matrices is biunitary, for 4 × 4 or higher dimensional case, this is
not necessarily true. However, if we increase the number of the factors in the
product, the product appears to converge to a biunitary matrix. We study a
special class of biunitary matrices which is generated by consecutive subblock
product of elementary biunitary matrices.

Let

ci = cos θi, (409)

si = sin θi, (410)

consider the consecutive subblock product

Ak =

n∏
i=k


Ii−k

si −ci

ci si

In−i

 , (411)
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it is a (n− k + 2)× (n− k + 2) upper Hessenberg unitary matrix with subdiag-
onal {ck, . . . , cn} . Correspondingly, let

Bk =

n∏
i=k


Ii−k

s2i c2i
c2i s2i

In−i

 , (412)

which is the product of a sequence of elementary biunitary matrices generated
by the factors of Ak. By induction, we can prove the value of the elements of
Bk equals the square modulus of elemetns of Ak.

Lemma 38. Ak and Bk are defined as above, then

(Bk)ij = | (Ak)ij |
2, (413)

immediately Bk is a biunitary upper Hessenberg matrix.

Now we present the orginal Schur-Horn theorem and our extension.

Theorem 39. (Schur-Horn) Let d = {di}ni=1 and λ = {λi}ni=1 be real vectors
in non-increasing order, then there exists a Hermitian matrix with diagonal
elements d and eigenvalues λ if and only if λ � d.

The equivalent form of Schur-Horn theorem is characterized by biunitary
matrix. Since Hermitian matrix A has decomposition

A = UΛU∗, (414)

where A is with diagonal values d, U is a unitary matrix, and Λ is a diagonal
matrix with λ on the diagonal. Then

di =
n∑

k=1

|uik|2λk, i = 1, . . . , n. (415)

Now denote B =
{
|uij |2

}n
i.j=1

, the relationship between d and λ above becomes

d = Bλ. (416)
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We claim that the biunitary matrix can be made stronger to a permuated biu-
nitary upper Hessenberg matrix.

If λ � d, then we can find a permuation matrix P and a biunitary upper
Hessenberg matrix B, such that

d = BPλ. (417)

We present an algorithm to construct such permuation matrix and biunitary
upper Hessenberg matrix. Before the constructive proof, we first introduce
stochastic complementation to give a heuristic explanation.

Let P be an N ×N stochastic matrix with partition

P =

(
P11 P12

P21 P22

)
, (418)

then the stochastic complement of P11 in P is defined as

S11 = P11 + P12 (I − P22)
−1

P21. (419)

Suppose we have two vectors

(
a

x

)
and

(
a

y

)
, where a is a scalar,

(
D11 D12

D21 D22

)
is doubly stochastic matrix and(

D11 D12

D21 D22

)(
a

x

)
=

(
a

y

)
, (420)

so that

(
a

x

)
majorizes

(
a

y

)
. Because

[
D22 +D21 (I −D11)

−1
D12

]
x (421)

= D22x+D21 (I −D11)
−1

(D12x) (422)

= D22x+D21 (I −D11)
−1

(I −D11) a (423)

= D22x+D21a (424)

= y, (425)

pick a = 1, x = y = e here, we know that

(
D11 D12

D21 D22

)
is doubly stochastic im-

plies the stochastic complement D22+D21 (I −D11)
−1

D12 is doubly stochastic,
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therefore x majorizes y. Multiplying a consecutive subblock product of elemen-
tary biunitary matrices to a vector acts as changing two elements in the vector
once a time. If after every operation, we still have a majorization and we can
continuing doing this without stop, then we will have a constructive proof of
our extension.

Using the notation we have introduced, λ � d tells us that λ1 ≥ d1, and
λn ≤ dn. We pick γ to be a permutation of λ and let γn = λn. At the first step,
we choose

γn−1 = min {λk ∈ λ : λ ≥ dn} , (426)

then we can find cn and sn, such that

dn = eT2 Bn

(
γn−1

γn

)
. (427)

For next n− 1 steps, if

dj > eT1 Bj+1


γj
...
γn

 , (428)

we choose
γj−1 = min {λk ∈ λ− {γj , . . . , γn} : λk ≥ dj} ; (429)

if

dj ≤ eT1 Bj+1


γj
...
γn

 , (430)

then we choose
γj−1 = min {λk ∈ λ− {γj , . . . , γn}} . (431)

Thus we can find Bj such that


∗
dj
...
dn

 = Bj


γj−1

γj
...
γn

 , (432)
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continue the process, finally we have
∗
d2
...
dn

 = B1


γ1

γ2
...
γn

 . (433)

Since d1 + · · ·+ dn = λ1 + · · ·+ λn = γ1 + · · ·+ γn, and B1is biunitary, the first
elemet in the left vector must be d1. Therefore, B = B1 and P is obtained from
γ = Pλ. We need to show that the process doesn’t stop. For it to stop there
must be either of the two cases.

Case 1. There exists λp ≤ dk ≤ λp−1, such that


∗
dk
...
dn

 = Bk


γk−1

γk
...
γn

 , (434)

where {λ1, . . . , λp−1} ⊂ {γk−1, . . . , γn} , and dk−1 > eT1 Bk


γk−1

γk
...
γn

 .

But then

n∑
i=1

di =

k−2∑
i=1

di +

n∑
i=k−1

di (435)

> (k − 2)λp +

n∑
i=k−1

γi (436)

≥
n∑

i=1

λi, (437)

which contradicts the majorization.
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Case 2. There exists λp ≤ dk ≤ λp−1, such that


∗
dk
...
dn

 = Bk


γk−1

γk
...
γn

 (438)

where {λ1, . . . , λp−1} ⊂ {γk−1, . . . , γn} , and dk−1 < eT1 Bk


γk−1

γk
...
γn

 .

Since we always choose the smallest possible component of λ, we know
that {λk−1, . . . , λn} = {γk−1, . . . , γn} and therefore

∑n
i=k−1 di <∑n

i=k−1 γi, which controdicts the majorization.

So the algorithm does not fail to continue.

A.2 Multi-period Quadratic Programming Solver with l1

term

Let first solve the single period problem and then we will extend it to the
multi-period case.

In the single period case, we are interested in the follwing optimization
problem:

min
w

1

2
wTC2w − rTw + cT |w − w0| (439)

which is a quadratic plus positive L1 term utility. The superscript T means
“transpose” in linear algebra. For vectors a, b have the same length, aT b is
defined as the inner product in the Euclidean space. To clarify, all vectors are
column vectors instead of row vectors. You can also think C2 as the covariance
matrix whereas r as the vectors representing the direction to be pursued, we use
C2 to represent the covariance matrix because covariance matrices are positive
definite, thus it would have a Cholesky decomposition. We say a matrix C2

is positive definite if for any non-zero vector x, xTC2x > 0. Factor model for
the covariance matrix is also needed here, so C2 has a diagonal plus low rank
structure.
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There would be two phases transformation to find an equivalent form of the
optimization problem which is easier to solve. In phase 1, denote w∗ = w − w0

which could be regarded as the change of portfolio, plug it into (439),

minw
1
2w

TC2w − rTw + cT |w − w0| (440)

⇔ minw∗
1
2 (w0 + w∗)

TC2(w0 + w∗)− rT (w0 + w∗) + cT |w∗| (441)

⇔ minw∗
1
2w

T
∗ C

2w∗ + (C2w0 − r)Tw∗ + cT |w∗|+
(
1
2w

T
0 C

2w0 − rTw0

)
(442)

⇔ minw∗
1
2w

T
∗ C

2w∗ + (C2w0 − r)Tw∗ + cT |w∗| (443)

Let take a look at the L1 term cT |w∗|, suppose

c =


c1

c2
...
cn

 and w∗ =


w∗,1

w∗,2
...

w∗,n

 (444)

then

cT |w∗| (445)

=
n∑

i=1

cisign(w∗,i)w∗,i (446)

=

n∑
i=1

max
ti=ci or −ci

tiw∗,i (447)

= max
ti=ci or −ci

tTw∗,i (448)

= max
−c≤t≤c

tTw∗ (449)

The trick is plugging (449) in (443) and interchanging the min max order.

minw∗
1
2w

T
∗ C

2w∗ + (C2w0 − r)Tw∗ + cT |w∗| (450)

⇔ minw∗

(
max−c≤t≤c

1
2w

T
∗ C

2w∗ + (C2w0 − r)Tw∗ + tTw∗
)

(451)

⇔ max−c≤t≤c

(
minw∗

1
2w

T
∗ C

2w∗ + (C2w0 − r + t)Tw∗
)

(452)

Solving minw∗
1
2w

T
∗ C

2w∗+(C2w0−r+t)Tw∗ is trivial by taking derivative with
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respect to w∗, immediately we have optimal w∗ = C−2
(
r − C2w0 − t

)
and

minw∗
1
2w

T
∗ C

2w∗ + (C2w0 − r + t)Tw∗ (453)

= − 1
2

(
r − C2w0 − t

)T
C−2

(
r − C2w0 − t

)
(454)

Here C−2 stands for the inverse of C2. Now we are only step to the phase one
transformation, the orginal optimization problem is reduced to

max−c≤t≤c

(
minw∗

1
2w

T
∗ C

2w∗ + (C2w0 − r + t)Tw∗
)

(455)

⇔ max−c≤t≤c

(
− 1

2

(
r − C2w0 − t

)T
C−2

(
r − C2w0 − t

))
(456)

⇔ min−c≤t≤c
1
2 t

TC−2t−
(
C−2r − w0

)T
t+
[(
r − C2w0

)T
C−2

(
r − C2w0

)]
(457)

⇔ min−c≤t≤c
1
2 t

TC−2t−
(
C−2r − w0

)T
t (458)

finally let us denote
f = −

(
C−2r − w0

)
(459)

then our problem is equivalent to

min
−c≤t≤c

1

2
tTC−2t+ fT t (460)

The formula above is called the dual problem, thus we have successfully proved
that the dual problem of a quadratic plus L1 term utility is a box contraint
quadratic problem. (Noticed that −c ≤ t ≤ c is a box)

Before moving to phase 2, let briefly introduce the factor model, which has
low rank structure of covariance matrix and is very commonly used [64, 65],

r = V f + ε (461)

Suppose the return r (already demeaned) can be decomposed into a factor part
V f and idiosyncratic part ε, where V is called facor loading and f is called
factor score. The assumption is f and ε are independent, f is mean zero with
identity covariance(E(ffT ) = I), ε is mean zero with diagonal covariance D
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with posititive diagonal elements. (D = E(εεT )) Then covariance for r is

E(rrT ) (462)

= E(V ffTV ) + E(V fεT ) + E(efTV T ) + E(εεT ) (463)

= V E(ffT )V T + E(εεT ) (464)

= V V T +D (465)

A very important point everybody should keep in mind here is V is a tall and
thin matrix, which means you only need a small amount of factors to explain the
whole market. If r ∈ Rn×1 and V ∈ Rn×p, then n � p. Let’s say we have 3, 000

stocks, we may only need 20 factors. Since rank(V V T ) = rank(V ) ≤ p and D is
a diagonal matrix, now we have a diagonal plus low rank covariance matrix. For
high dimensional covariance estimation, a legitimate thing to do is shrinkage,
classical shrinkage estimator is just adding a contant times identity matrix to the
sample covariance matrix, so it won’t change our covariance structure because
positive diagonal matrix plus mutiple of identity is still positive diagonal.

The other important point is the inverse of diagonal plus low rank matrix is
diagonal minus low rank. Let start with one of the most commonly used matrix
analysis formula Woodbury matrix identity :

(A+ UCV )
−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1 (466)

see wikipedia for more detail. By applying the formula,

(
D + V V T

)−1 (467)

= D−1 −D−1V
(
I + V TD−1V

)−1
V TD−1 (468)

apparently I + V TD−1V is positive definite and its Cholesky decomposition is
I + V TD−1V = LLT where L ∈ Rp×p is lower triangular. You may oberserved
a simple fact: inverse of positive definite matrix is also positive definite. Now
let

Di = D−1 (469)

Vi = D−1V L−T ∈ Rn×p (470)

then (
D + V V T

)−1
= Di − ViV

T
i (471)
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Let’s go back to (460), first let y = t+ C−2f,

min−c≤t≤c
1
2 t

TC−2t+ fT t (472)

⇔ min−c≤y−C2f≤c
1
2y

TC−2y + 1
2f

TC2f (473)

⇔ minC2f−c≤y≤C2f+c
1
2y

TC−2y (474)

⇔ minC2f−c≤y≤C2f+c
1
2y

T
(
Di − ViV

T
i

)
y (475)

then let x = D
1
2
i y, since D has positive elements, D

1
2
i

(
C2f − c

)
≤ x ≤ D

1
2
i

(
C2f + c

)
is equivalent to C2f − c ≤ y ≤ C2f + c, we have to be careful this is not true if
D has negative element. Also let

l = D
1
2
i

(
C2f − c

)
(476)

u = D
1
2
i

(
C2f + c

)
(477)

V1 = D
− 1

2
i Vi (478)

finally the original optimization problem becomes

minC2f−c≤y≤C2f+c
1
2y

T
(
Di − ViV

T
i

)
y (479)

⇔ min
D

1
2
i (C2f−c)≤D

1
2
i y≤D

1
2
i (C2f+c)

1
2y

TD
1
2
i

(
I −D

− 1
2

i ViV
T
i D

− 1
2

i

)
D

1
2
i y (480)

⇔ minl≤x≤u
1
2x

T
(
I − V1V

T
1

)
x (481)

which is an incredible simple form, where V1 is still a tall and thin matrix, V1 ∈
Rn×p. Because of the positive definiteness of Di−ViV

T
i , V1V

T
1 is a contraction,

meaning for any x ∈ Rn, ‖ViV
T
i x‖ < ‖x‖, I − V1V

T
1 is a contraction as well.

l ≤ x ≤ u is a box contraint, the reason it’s called box contraint is considering

a two dimensional case, for example l =

(
−1

3

)
and u =

(
2

4

)
, then the region

l ≤ x ≤ u is literally a box.
It turns out our algorithm for solving (481) is extremely simple:

x(0) = min (max (0, l) , u) (482)

x(k+1) = min
(
max

(
V1V

T
1 x(k), l

)
, u
)

(483)

Every iteration takes merely O(np) operations and it always converges in less
than 10 iterations among all the numerical simulation we conducted.

Now we provide the convergence analysis. In 1964, A.A.Goldstein published
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a very interesting two-page paper [35].

Lemma 40. In what follows P will denote the “projection” operator for the
convex set C. This operator, which is well defined and Lipschitzian, assigns
to given point in H its closest point in C. Take x ∈ H and y ∈ C. Then
〈x− y, P (x)− y〉 ≥ ‖P (x)− y‖2.

The inequality above is equivalent to 〈P (x)− x, P (x)− y〉 ≤ 0, 〈 , 〉 stands
for inner product. In our case it’s just (P (x)− x)

T
(P (x)− y) ≤ 0. The lemma

is quite intuitive, think C as an disk, then P (x) is the tangential point, which
implies the angle between P (x)−x and any other vector P (x)−y is larger than
90 degree.

A box is a convex set, define Pbox(x) = min (max (x, l) , u) , then obviously
Pbox is the “projection” will find the closest point onto the box. Denote the
utility

u(x) =
1

2
xT
(
I − V1V

T
1

)
x (484)

then

u
(
Pbox

(
V1V

T
1 x
))

− u (x) (485)

=
1

2
Pbox

(
V1V

T
1 x
)T (

I − V1V
T
1

)
Pbox

(
V1V

T
1 x
)
− 1

2
xT
(
I − V1V

T
1

)
x(486)

= xT
(
I − V1V

T
1

) (
Pbox

(
V1V

T
1 x
)
− x
)

(487)

+
1

2

(
Pbox

(
V1V

T
1

)
− x
)T (

I − V1V
T
1

) (
Pbox

(
V1V

T
1 x
)
− x
)

(488)

= −
((
V1V

T
1 x
)
− x
)T (

Pbox

(
V1V

T
1 x
)
− x
)

(489)

+
1

2

(
Pbox

(
V1V

T
1

)
− x
)T (

I − V1V
T
1

) (
Pbox

(
V1V

T
1 x
)
− x
)

(490)

≤ −
(
Pbox

(
V1V

T
1 x
)
− x
)T (

Pbox

(
V1V

T
1 x
)
− x
)

(491)

+
1

2

(
Pbox

(
V1V

T
1

)
− x
)T (

I − V1V
T
1

) (
Pbox

(
V1V

T
1 x
)
− x
)

(492)

= −1

2

(
Pbox

(
V1V

T
1

)
− x
)T (

I + V1V
T
1

) (
Pbox

(
V1V

T
1 x
)
− x
)

(493)

since V1V
T
1 is contraction, 1

2

(
I + V1V

T
1

)
is contraction as well, then there exists

c0 ∈ (0, 1) such that u
(
Pbox

(
V1V

T
1 x
))

− u (x) ≤ c0‖Pbox

(
V1V

T
1 x
)
− x‖2. For

the sequence getting from our algorithm,

u
(
x(k+1)

)
− u

(
x(k)

)
≤ −c‖x(k+1) − x(k)‖2 (494)
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the utility decreases very fast, also u is continuous and has a lower bound 0, the
algorithm has to converge.

Now let’s extend the box quadratic programming algorithm to the multi-
period case, we are interested in the problem,

min
x

n∑
i=1

(
1

2
xT
i Hixi − qTi xi + cTi |xi − xi−1|

)
, (495)

where Hi ∈ Rp×p, which is equivalent to

min
x

min
b

n∑
i=1

(
1

2
xT
i Hixi − qTi xi + bTi (xi − xi−1)

)
(496)

subject to −ci ≤ bi ≤ ci, i = 1, 2, . . . , n. Let’s define block shift matrix

Z =


0 I

. . . . . .
. . . I

0

 , (497)

and block unit vector

E1 =


I

0
...
0

 . (498)

Then the optimization problem becomes

min
x

max
b

1

2
xTHx− qTx+ bTx− bT

(
ZTx

)
−
(
ET

1 b
)T

x0, (499)

subject to −c ≤ b ≤ c. Because matrix multiplications are associative, we further
have the optimization problem as

min
x

min
b

1

2
xTHx− (q − b+ Zb)

T
x− bT (E1x0) , (500)

now let’s switch the minimum and maximum sign, then

xopt = H−1 (q − b+ Zb) . (501)

91



By pluging xopt back we obtain the dual optimization problem

min
b

1

2
bT
[
(I − Z)

T
H−1 (I − Z)

]
b+ bT

[
E1x0 − (I − Z)

T
H−1q

]
(502)

subject to −c ≤ b ≤ c. Consider the structure of the new covariance matrix
(I − Z)

T
H−1 (I − Z) , first of all we have

H−1 = diag
(
H−1

k

)
= diag

(
Dk − VkV

T
k

)
, (503)

then

(I − Z)
T
H−1 (I − Z) (504)

=

n−1∑
i=1


0p(i−1)

Di − ViV
T
i −Di + ViV

T
i

−Di + ViV
T
i Di − ViV

T
i

0p(n−1−i)

 (505)

+

(
0p(n−1)

Dn − VnV
T
n

)
(506)

=

n∑
i=1


0p(i−1)

2Di

2Di

0p(n−1−i)

 (507)

+

(
0p(n−1)

2Dn

)
(508)

−
n−1∑
i=1


0p(i−1)

Di Di

Di Di

0p(n−1−i)

 (509)

−
n−1∑
i=1


0p(i−1)

ViV
T
i −ViV

T
i

−ViV
T
i ViV

T
i

0p(n−1−i)

 (510)

−

(
0p(n−1)

Dn + VnV
T
n

)
. (511)

The way we write down the formula makes it easy to see that (I − Z)
T
H−1 (I − Z)
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has the diagonal minus semi-positive definite structure, also the semi-positive
definite part has low rank structure which makes the compuation very fast.
Denote

f = E1x0 − (I − Z)
T
H−1q (512)

=


x0 −H−1

1 q1

H−1
1 q1 −H−1

2 q2
...

H−1
n−1qn−1 −H−1

n qn

 , (513)

similar to the single period case, we have the recursive algorithm,

bk+1
i (514)

= min(ci,max(−ci, (2Di−1 + 2Di)
−1

[ (515)

H−1
i−1b

k
i−1 +H−1

i bki+1 − fi (516)

+
(
Di +Di−1 + Vi−1V

T
i−1 + ViV

T
i

)
bki ])) (517)

= min(ci,max(−ci, (2Di + 2Di)
−1

[ (518)

Vi−1V
T
i−1

(
bki − bki−1

)
+ ViV

T
i

(
bki − bki+1

)
(519)

+Di−1

(
bki + bki−1

)
+Di

(
bki + bki+1

)
− fi])), (520)

for 1 < i < p. For the pivot case, we have

bk+1
1 (521)

= min(c1,max(−c1, (2D1)
−1

[ (522)

V1V
T
1

(
bk1 − bk2

)
+D1

(
bk1 + bk2

)
− f1])), (523)

and

bk+1
p (524)

= min(cp,max(−cp, (2Dp)
−1

[ (525)

Vp−1V
T
p−1

(
bkp − bkp−1

)
+ VpV

T
p bkp (526)

+Dp−1

(
bkp + bkp−1

)
+Dpb

k
p − fp])). (527)
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