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Abstract of the Dissertation

Two Essays in Financial Econometrics

by

Yang YU

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2013

This dissertation research explores two interesting problems in financial econometrics. In

part one, we considers the problem of pricing European options in the presence of proportion-

al transaction costs when the underlying stock price follows a jump-diffusion process. Based

on utility maximization approach, the option pricing and hedging can be reformulated as a

singular stochastic control problem. And furthermore, the value functions of the problem are

the solutions of a free boundary problem, in particular, a partial integro-differential equa-

tion, under different boundary conditions. And we develop a coupled backward induction

algorithm which is based on the connection between the free boundary problem and optimal

stopping problem. And numerical examples are also provided. In part two, we focus on the

dynamics of default risk with stochastic covariates in the presence of structural breaks. We

consider a Cox type intensity model which is a classic model in survival analysis to deal with

the counting process. Since it is widely used to to analyze the dynamics of default of firms to
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the effect of possible stochastic covariate processes. We assume there are multiple unknown

structural breaks in the regression coefficients and we develop an estimation procedure for

the regression coefficients and structural break points, which combines recent developments

in estimating equations for counting process and inference on multiple structural breaks.
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Chapter 1

Introduction

1.1 Stochastic Process

In probability theory, a stochastic process is a random process evolving with time. More

precisely, a stochastic process is a collection of random variables Xt indexed by time. This

is the probabilistic counterpart to a deterministic process (or deterministic system). The

process could be in discrete time or continuous time. The random variables Xt will take

values in a set which is called state space. The state space for a stochastic process can be

discrete, i.e., a finite or countably infinite set, and be continuous, e.g., the real numbers R

or d-dimensional space Rd.

Definition 1.1.1. Given a probability space (Ω,F , P ) and a measurable space (S,Σ), an

S-valued stochastic process is a collection of S-valued random variables on Ω, indexed by a

totally ordered set T (“time”). That is, a stochastic process X is a collection: {Xt : t ∈ T}

where each Xt is an S-valued random variable on Ω. The space S is then called the state

space of the process.
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1.1.1 Brownian Motion

In finance, stochastic processes are used to model asset price fluctuations. Among them,

the brightest star and the most fundamental process is Brownian Motion, which is a random

process Wt with independent, stationary increments that follow a Gaussian distribution.

Brownian Motion is the most widely and intensively studied stochastic process in finance

and has been tied together with financial modelling from the very beginning of the latter,

when Bachelier (1900) proposed to model the price St of an asset at the Paris Bourse as:

St = S0 + σWt

The multiplicative version of Bachelier’s model led to the commonly used Black-Scholes-

Merton Model (see Merton 1973 and Black and Scholes 1973), where the log-price lnSt

follows a Brownian motion:

St = S0exp[µt+ σWt]

or, in local form:

dSt
St

= σdWt + (µ+
σ2

2
)dt

The stock price process St is called geometric Brownian motion. Figure 1.1 shows two paths:

the logarithm of the stock price for 3M Company between January 2005 and January 2010

(blue) and a sample path of Brownian motion, with the same average return and volatility

as the stock over the five-year period considered (red). It may be difficult to tell which is

which: the evolution of the stock does look like a Brownian motion process and that’s why

quantitative finance use Brownian motion to model price movements. However, for some

trained eye, the difference between the two path is significant.

A very important property of Brownian motion is the continuity of its sample paths: a

3



typical path t 7→ Bt is a continuous function of time. This property make us tell the two

curves seen on Figure 1.1: unlike the Brownian motion, the 3M stock price underwent several

abrupt upward and downward jumps during the period which appear as discontinuities in

the price trajectory. Actually, even more striking than the comparison of price trajectories

2005 2006 2007 2008 2009 2010
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Figure 1.1: Log price for 3M from 2005 to 2010, compared with a sample path of Brownian
motion with same annualized return (-0.0322) and volatility (25.69%). Can you tell which
is which? (The red line plots the log price from simulation while the blue line plots the real
log price of 3M.)

to those of Brownian path is the comparison of returns, i.e., increments of the log-price or

called stock’s log-return. Figure 1.2 compares the fifteen-year stock log-return on Microsoft

to a Brownian motion with the same average return and volatility. While both the returns

have the same variance, the returns from Brownian motion always have roughly the same

4



amplitude whereas the real Microsoft Stock returns are widely dispersed in their amplitude

and manifest frequent large peaks corresponding to “jumps” in the price. And this kind of

high variability is a constantly observed feature of financial asset returns. In statistics, this

results feature is called heavy tails : the tail of the distribution decays slowly at infinity and

very large moves have a significant probability of occurring. However, Brownian motion or

Gaussian model does not have this property. For example, for a normal distribution random

variable, the probability of occurrence of a value six times the standard deviation is less

than 10−8. In a Gaussian model, a daily return of such magnitude occurs less than once

in a million years! The Brownian motion model underestimates the risk in the market in a

polite understatement. Even though we can generate diffusion process with arbitrary heavy

tails by using some nonlinear diffusion process such as local volatility function proposed by

Dupire (1994) and Derman and Kani (1994) and stochastic volatility models presented by

Hull and White (1987) and Heston (1993) as follow:

dSt
St

= σ(t, St)dWt + µdt

we should know that they are not Gaussian processes. Furthermore, these heavy tails are

produced at the price of obtaining highly varying (nonstationary) diffusion coefficients in

local volatility function or unrealistically high values of “volatility of volatility” in diffusion-

based stochastic volatility models. And even we can use the nonlinear diffusion process to

generate heavy tails in returns, they cannot generate abrupt, large and discontinuous moves

in prices. In a quest to incorporate the stylized properties of asset prices, we consider the

jump process models.
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Figure 1.2: Log-return for stock of Microsoft from 1995 to 2010 (right), compared with a
sample path of Brownian motion with same annualized return and volatility (left).

1.1.2 Jump Process

From the seminal paper Merton (1976) to the present date, various aspects of jump-

diffusion models have been studied in the academic finance community (see Cont and Tankov,

2004, for a list of almost 400 references on the subject). In the last decade, more and more

research departments of major banks started to accept jump-diffusion as a valuable tool in

their day-to-day modeling. From the Table 1.1, we can clearly see the comparison between

the diffusion models and the jump process models, which is coming from more than three

decades research on financial modelling and risk management. And the brief comparison

showed us that, beside having various empirical, computational and statistical features that

have motivated their use in the first place, discontinuous models can provide qualitatively

different information about the key issues of hedging, replication and risk.

In jump-diffusion model, Brownian motion is used to modulate the diffusion part, and for

jump part, we always use Poisson process to build. Some statement about Poisson process

is introduced below, and the proof can be found in Cont and Tankov (2004, Chapter 2)

Poisson process Take a sequence {τi}, i ≥ 1 of independent exponential random vari-

6



Table 1.1: Modelling market moves: diffusion models vs. models with jumps. See Cont. and
Tankov (2004, Chapter 1)

Empirical facts Diffusion models Models with jumps
Large, sudden movements
in prices.

Difficult: need very large
volatilities.

Generic property.

Heavy tails. Possible by choosing nonlin-
ear volatility structure.

Generic property.

Options are risky invest-
ment.

Options can be hedged in a
risk-free manner.

Perfect hedges do not exist:
options are risky investmen-
t.

Markets are incomplete;
some risks cannot be
hedged.

Markets are complete. Markets are incomplete .

Concentration: losses are
concentrated in a few large
downward moves.

Continuity: price move-
ments are conditionally
Gaussian; large sudden
moves do not occur.

Discontinuity: jump / dis-
continuities in prices can
give rise to large losses.

Some hedging strategies are
better than others.

All hedging strategies lead
to the zero residual risk, re-
gardless of the risk measure
used.

Hedging strategy is ob-
tained by solving portfolio
optimization problems.

Exotic options are hedged
using vanilla (call/put) op-
tions.

Options are redundant: any
payoff can be replicated by
dynamic hedging with the
underlying.

Options are not redundant:
using vanilla options can al-
low to reduce hedging error.
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ables with parameter λ, that is, with cumulative distribution function P [τi ≥ y] = e−λy and

let Tn =
∑n

i=1 τi. The process

Nt =
∑
n≥1

1{t≥Tn}

is called the Poisson process with parameter λ. For example, if the waiting times between

buses at a bus stop are exponentially distributed, the total number of buses arrived up to

time t is a Poisson process. The trajectories of a Poisson process are piecewise constant

(right-continuous with left limits or RCLL) and, as the same as Brownian motion, Poisson

process has stationary and independent increment. That is, for every t > s the increment

Nt − Ns is independent from the history of the process up to time s and has the same law

as Nt−s.

Compound Poisson process In financial applications, it is of little interest to have a

process with a single possible jump size. The compound Poisson process is a generalization

where the waiting times between jumps are exponential but the jump size can have an

arbitrary distribution: let N be a Poisson process with parameter λ and {Yi}, i ≥ 1 be a

sequence of independent random variable with law f . The process

Xt =
Nt∑
i=1

Yi

is called compound Poisson process. Its trajectories are RCLL and piecewise constant but

the jump size are now random with law f . And it also has independent and stationary

increment.

Jump-diffusions and Lévy processes Combining a Brownian motion with drift and a

compound Poisson Poisson process, we can build up the simplest case of a jump-diffusion:

a process which sometimes jumos and has a continuous but random evolution between the

8



jump times:

Xt = µt+ σBt +
Nt∑
i=1

Yi (1.1)

The well known model of this type in finance is the Merton model(see Merton, 1976). The

process 1.1 is a Lévy process which is after the French mathematician Paul Lévy and the

process has independent and stationary increments. In general, it consist three components:

a deterministic and linear drift, a multiple of a Brownian motion and a pure jump process

(see Rachev et al., 2005, Chapter 10). However, the class of Lévy process is not limited

to jump-diffusion of the form 1.1. Lévy process could have infinitely many jumps in finite

intervals which is called “infinite activity” (See the example provided by Madan and Seneta,

1990).

1.2 Stochastic Control

Stochastic control or optimal stochastic control is a subfield of control theory that deals

with the existence of uncertainty either in observations of the data or in the things that drive

the evolution of the data. It aims at predicting and minimizing the magnitudes and limits of

the random deviations of a control system through optimizing the design of the controller.

Such deviations occur when random noise and disturbance processes are present in a control

system, so that the system does not follow its prescribed course but deviates from the latter

by a randomly varying amount. The context may be either discrete time or continuous time.

In contrast to deterministic signals, random signals cannot be described as given functions

of time such as a step, a ramp, or a sine wave. The exact function is unknown to the system

designer; only some of its average properties are known. A random signal may be generated

by one of nature’s processes, for instance, radar noise and wave-induced forces and moments

on a radar antenna or a ship. Alternatively, it may be generated by human intelligence, for
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instance, the bearing of a zigzagging aircraft. Related research starts from 1950’s and early

1960’s. Some pioneers’ works include Chernoff (1961), Bather and Chernoff (1966), Shiryaev

(1961), Karatzas (1983) and Karatzas and Shreve (1985).

In very general terms, an optimal control problem consists of the following elements:

• State process Z(·). This process must capture of the minimal necessary information

needed to describe the problem. For example, Z(t) ∈ Rd is influenced by the control

and given the control process it has a Markovian structure. Usually its time dynamics

is prescribed through an equation.

• Control process ν(·) We need to describe the control set, U , in which ν(t) takes values in

for every t. Applications dictate the choice of U . In addition to this simple restriction

ν(t) ∈ U , there could be additional constraints placed on control process. For instance,

in the stochastic setting, we will require ν to be adapted to a certain filtration, to model

the flow of information. Also we may require the state process to take values in a certain

region (i.e., state constraint). This also places restrictions on the process ν(·).

• Admissible controls AA control process satisfying the constraints is called an admissible

control. The set of all admissible controls will be denoted by A and it may depend on

the initial value of the state process.

• Objective functional J(Z(·), ν(·)) This is the functional to be maximized (or mini-

mized). Usually, J is given as an integral over time.

Then, the goal is to minimize (or maximize) the objective functional J over all admissible

controls. The minimum value plays an important role in the analysis:

V aluefunction := V = inf
ν∈A

J
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The main problem in optimal control is to find the minimizing control process.

In finance context, the state variable in the stochastic differential equation is usually

wealth or net worth, and the controls are the shares placed at each time in the various

assets. Given the asset allocation chosen at any time, the determinants of the change in

wealth are usually the stochastic returns to assets and the interest rate on the risk-free

asset. The field of stochastic control has developed greatly since the 1970’s, particularly in

its applications to finance. Merton used stochastic control to study optimal portfolios of

safe and risky assets. His work and that of Black-Scholes changed the nature of the finance

literature.

1.3 Option Pricing Problem without Transaction Costs

Option pricing problem has been a popular and intensively discussed topic in finance

since the publication of the Black and Scholes (1973) and Merton (1973). They gave a

valuation for a European call option, a contract that confers on the buyer the right to buy

at the exercise time T one share of a specified stock at an agreed price K (known as the

strike price). Let St denote the stock price at time t. Apparently, the option is worthless

if ST ≤ K, but it has positive value to the buyer and will be exercised if ST > K. The

writer (“seller”) of the option has the obligation to deliver one share at time T for a cash

payment of K if ST > K. The pricing problem is to determine how much the writer should

charge for issuing it at time t. It seems at first that the answer to this question must depend

on the writer’s attitude to risk and therefore that there can not be a “universal” pricing

formula. However, Black and Scholes (1973) and Merton (1973) showed that, in certain

circumstances, such a universal formula is indeed possible. Specifically, they assumed that

the the price of risky asset (“stock”), St, is driven by a geometric Brownian motion, that

a risk-free asset (“bond”) with constant rate of return r, is available, and that funds may
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be transferred from bank to stock and vice versa without restrictions and transaction costs.

There are no arbitrage opportunities in markets and security trading is continuous. Then it

turns out that perfect hedging is possible and the value of an option equals the amount fo

initial capital required for setting up the replicating portfolio.

1.3.1 Black-Scholes-Merton Model

In 1973, the Black-Scholes or Black-Scholes-Merton model was first published by Fischer

Black and Myron Scholes in their paper, “The Pricing of Options and Corporate Liabilities”,

published in the Journal of Political Economy. They derived a stochastic partial differential

equation, now called the Black-Scholes equation, which estimates the price of the option

over time. The key idea behind the model is to hedge the option by buying and selling

the underlying asset in just the right way, and consequently “eliminate risk”. This hedge is

called delta hedging and is the basis of more complicated hedging strategies such as those

engaged in by investment banks and hedge funds. The hedge implies that there is a unique

price for the option which does not depend on investor’s preference and this is given by the

Black-Scholes formula. Robert C. Merton was the first to publish a paper expanding the

mathematical understanding of the options pricing model, and coined the term Black-Scholes

options pricing model. Merton and Scholes received the 1997 Nobel Prize in Economics for

their work.

The Black-Scholes-Merton model assumes the market consists of one risky asset, usually

called the “stock”, and one riskless asset, usually called the money market, cash, or bond.

Assumptions on the assets:

• The rate of return on the riskless asset is constant and thus called the risk-free interest

rate.
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• The instantaneous log returns of the stock price is an infinitesimal random walk with

drift; more precisely, it is a geometric Brownian motion, and we will assume its drift

and volatility is constant:

dS = µSdt+ σSdWt (1.2)

• The stock does not pay a dividend.

Assumptions on the market:

• There is no arbitrage opportunity (i.e., there is no way to make a riskless profit).

• It is possible to borrow and lend any amount, even fractional, of cash at the riskless

rate.

• It is possible to buy and sell any amount, even fractional, of the stock.

• The above transactions do not incur any fees or costs.

There are many different ways to deriving the Black-Scholes formula that follow use

different types of mathematics, with different amounts of complexity and mathematical

baggage. And even in the quantitative finance interview, the derivation of Black-Scholes

formula has become an appetizer. Wilmott (2009) provided 12 different methods to derive

the formula in his popular book. However, the original derivation of the Black-Scholes partial

differential equation was via stochastic calculus, Ito’s lemma and a simple hedging argument.

(See Black and Scholes, 1973):

Assume that the underlying follows a geometry Brownian motion as 1.2. Use Π to denote

the value of a portfolio of one long option position and a short position in some quantity ∆

of the underlying:

Π = V (S, t)−∆S
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The first term on the right is the option and the second term is the short asset position. The

change in the portfolio value is due partly to the change in the option value and partly to

the change in the underlying:

dΠ = dV −∆dS

From Ito’s lemma, we can get:

dΠ =
∂V

∂t
dt+

∂V

∂s
dS +

1

2
σ2S2∂

2V

∂S2
dt−∆dS

The right-hand side of this contains two types of terms, the deterministic and the random.

The deterministic terms are those with the dt, and the random terms are those with the dS.

Pretending for the moment that we know V and its derivatives then we know everything

about the right-hand side except for the value of dS, because this is random. But, these

random terms can be eliminated by choosing

∆ =
∂V

∂S

After choosing the quantity ∆, we hold a portfolio whose value changes by the amount

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt

This change is completely riskless. If we have a completely risk-free change dΠ in the portfolio

value Π then it must be the same as the growth we would get if we put the equivalent amount

of cash in a risk-free interest cash account:

dΠ = rΠdt
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Putting all of the above together to eliminate Π and ∆ in favor of partial derivatives of V

gives the Black-Scholes equation:

dΠ =
∂V

∂t
+ rS

∂V

∂s
+

1

2
σ2S2∂

2V

∂S2
− rV = 0

Solve this quite simple linear diffusion equation with the final condition

V (S, T ) = max(S −K, 0)

we will get the Black-Scholes call option formula:

C(S, t) = StN(d1)−Ke−r(T−t)N(d2)

where

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

This derivation of the Black-Scholes equation is perhaps the most useful since it is readily

generalizable (if not necessarily still analytically tractable) to different underlyings, more

complicated models, and exotic contracts.

1.3.2 Kou’s Double Exponential Jump-Diffusion Model

As we discussed in Section 1.1.2, more and more attention was paid to jump-diffusion

model from 1970’s, starting from seminal paper Merton (1976). In that work, Merton ar-

gued that the asset price fluctuations can be decomposed as the sum of “normal” vibrations,

caused by temporary imbalance of supply and demand and other new information that caus-
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es marginal changes in the stock value, and “abnormal” vibrations, caused by the arrival

of important new information which generates occasional and large impact on price. Fur-

thermore, he modulated the normal and abnormal variations(jump) by a standard geometric

Brownian motion and a Poisson process, respectively, and derived an option pricing formula.

To capture asymmetric leptokurtic features in the underlying asset return distributions and

volatility smiles in the option markets, Ait-Sahalia (2002), Carr and Wu (2003), Eraker et al

(2003), Broadie et al (2007) developed models and methods that incorporate the occurrence

of rare jumps in a price process that would otherwise follow a diffusion. Subsequent work

has been moving towards considering other or more general Lévy process. For instance,

Chan (1999) considered the problem of pricing contingent claims on a stock whose price

process follows a geometric Lévy process, and Kou (2002) proposed a double exponential

jump-diffusion model which can not only explain the two empirical phenomena but also

provide rational expectations equilibrium framework and a psychological interpretation. An

analytic solution was also obtained by the model. This double exponential jump-diffusion

model successfully capture the leptokurtic feature of the return distribution and the “volatil-

ity smile” observed in option prices (see section 3 and section 5.3 in Kou, 2002). Andersen

et al. (2002) demonstrate empirically that, for the S&P 500 data from 1980-1996, the nor-

mal jump-diffusion model has a much higher p-value (0.0152) than those of the stochastic

volatility model (0.0008) and the Black-Scholes model (< 105). And in addition, the em-

pirical tests performed in Ramezani and Zeng (1999) suggest that the double exponential

jump-diffusion model fits stock data better than the normal jump-diffusion model. There-

fore, the combination of the results in the two papers above gives us some empirical support

of the double exponential jump-diffusion model. Therefore, we will use this model in our

numerical studies(see Section 4.1), a short introduction be showed in this subsection, see

Kou (2002) for more details.
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The price of the underlying St is assumed to follow a double exponential jump-diffusion

process:

dSt = αSt−dt+ σSt−dWt + St−d

(
Nt∑
i=1

(Qi − 1)

)
, (1.3)

under the physical probability measure P , where α > 0 and σ > 0 are the expected return

and diffusion volatility of the underlying asset, {Wt; t > 0} is a standard Brownian motion

with W0 = 0, {Nt; t ≥ 0} is a Poisson process with rate λ, Qi is a sequence of independent

and identically distributed positive random variables such that the jump Y = logQ has

asymmetric double exponential distribution with density:

fY (y) =

 pη1 e
−η1y if y ≥ 0,

(1− p)η2 eη2y if y < 0.

Here 0 ≤ p ≤ 1, and p and 1 − p represent the probability of positive and negative jumps,

respectively. The parameters η1 and η2 are assumed to satisfy η1 > 1 and η2 > 0.

Alternatively, under the risk-neutral measure P∗,

dSt
St−

= (r − λψ)dt+ σdWt + d

(
Nt∑
i=1

(Qi − 1)

)
, (1.4)

where ψ = E(Q− 1). We can get the unique solution of the equation above:

St = S0exp

[(
r − σ2

2
− λψ

)
t+ σWt

] Nt∏
i=1

Qi

To price a European option in the jump-diffusion model, it remains to compute the expec-

tation, under the measure P∗, of the discounted final payoff of the option. In particular, the
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price of a European call option at time t is given by

Ct = E∗[e−r(T−t)(ST −K)+]

= E∗

[
e−r(T−t)

(
Stexp[(r −

σ2

2
− λψ)(T − t) + σ

√
T − tε]

NT∏
i=1

Qi −K

)
+

]

where T is the expiration time, (T − t) is the time to expiration measure in years, K is

the strike price, (x)+ = max(0, x) and ε is a standard normal random variable. Kou (2002)

showed that ct is analytically tractable as

Ct =
∞∑
n=1

n∑
j=1

e−λ(T−t)
λn(T − t)n

n!

2j

22n−1

(
2n− j − 1

n− 1

)
(A1,n,j + A2,n,j + A3,n,j) (1.5)

+e−λ(T−t)[Ste
−λψ(T−t)Φ(h+)−Ke−r(T−t)Φ(h−)]
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where Φ(·) is the CDF of the standard normal random variable,

A1,n,j = Ste
−λψ(T−t)+nκ1

2

(
1

(1− η)j
+

1

(1 + η)j

)
Φ(b+)− e−r(T−t)KΦ(b−),

A2,n,j =
1

2
e−r(T−t)−ω/η+σ

2(T−t)/(2η2)K

×
j−1∑
i=0

(
1

(1− η)j−i
− 1

)(
σ
√
T − t
η

)i
1√
2π
Hhi(c−),

A3,n,j =
1

2
e−r(T−t)+ω/η+σ

2(T−t)/(2η2)K

×
j−1∑
i=0

(
1− 1

(1 + η)j−i

)(
σ
√
T − t
η

)i
1√
2π
Hhi(c+),

b± =
ln(St/K) + (r ± σ2/2− λψ)(T − t) + nκ

σ
√
T − t

,

h± =
ln(St/K) + (r ± σ2/2− λψ)(T − t)

σ
√
T − t

,

c± =
σ
√
T − t
η

± ω

σ
√
T − t

ω = ln(K/St) + λψ(T − t)− (r − σ2/2)(T − t)− nκ,

ψ =
eκ

1− η2
− 1,

κ = E(log(Q))

and the Hh(·) function are defined as

Hhn(x) =
1

n!

∫ ∞
x

(s− x)ne−s
2/2ds, n = 0, 1, . . . ,
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and Hh−1(x) = exp(−x2/2), which is
√

2πf(x) with f(x) being the probability density

function of a standard normal random variable. The Hhn(x) function satisfy the recursion:

nHhn(x) = Hhn−2(x)− xHhn−1(x), n ≥ 1,

with initial values Hh−1 = e−x
2/2 and Hh0(x) =

√
2πΦ(−x).

This pricing formula involves an infinite series, but its numerical value can be approx-

imated quickly and accurately through truncation (e.g. the first 10 terms). Also, if λ = 0

which means there is no jumps, then it is easily seen that Ct in 1.5 reduces to the Black-

Scholes formula for a call option discussed in last subsection. And through Put-Call Parity,

we can get the put option price as:

Pt = Ct +Ke−r(T−t) − St

1.4 Option Pricing Problem with Transaction Costs for Diffusion

Process

No transaction costs in the replicating is an important assumption in Black-Scholes-

Merton model. However, We do not live in a Black-Scholes world. In real world, there

are, of course, costs in trading. Especially in the presence of transaction costs proportional

to the amount of trading, such a continuous trading strategy which is required by Black-

Scholes “delta-hedging” portfolio becomes impractical and prohibitively expensive. Hence

it is impossible to perfectly replicate the option in this setting when there are transaction

costs.

To deal with the problem of option pricing and hedging with transaction costs, several

approaches had been proposed for the case that the underlying stock price follows a geometric
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Brownian motion. One approach is based on super-replication in a discrete-time setting and

tries to find trading strategies which produce payoffs at expiration that are larger than

or equal to the option payoff. In these works, Leland (1985) proposed an adjustment in

volatility which is used in the Black-Scholes delta to get the option payoff at expiration

inclusive of transaction costs. However, this modified strategy is not self-financing. After

that, Bole and Vorst (1992) still worked in discrete-time setting (binomial tree)and construct

a self-financing replicating strategy. Explicit portfolio weights at each node of the binomial

tree can be computed by a backward induction procedure. However, the method need the

user to specify a revision interval and how to do so optimally is not clear. Soner et al.

(1995) proved that when the width of the revision interval approaches 0, the cost of the

option approaches the price of a single share of underlying stock. So the trivial strategy of

buying one share of underlying stock and holding to maturity is the least expensive way of

super-replicating the option in a continuous-time model with transaction costs. Bensaid et al

(1992), through the binomial tree model, derived bounds on the option value by minimizing

the initial cost of the self-financing strategy used to yield a super-replicating portfolio of

stock and bond at expiration. And they pointed out that, by rebalancing only in the earlier

periods, it is possible to have a super-replicating portfolio that is less expensive than the

corresponding replicating portfolio. In general, the optimal discrete-time super-replicating

strategy is such that the investor with an option position does not transact at a trading date

if the inherited amount of stock is in a certain range (which depends on the past history

of the stock price); otherwise he adjusts his portfolio back to this range. However, the

cost minimization problem associated with super-replication is path dependent and that the

dynamic programming algorithm is computationally expensive if the number of periods is

not sufficiently small. Edirisinghe et al. (1993) developed a linear programming algorithm

and a two-stage dynamic programming method to approximate the optimal solution. More

recently, Primbs (2009) provided an alternative formulation of super-replication in terms of
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the first two moments of the replication error.

Another approach examines the difference between the desired payoff at maturity and

the realized cash flow from a hedging strategy, and tries to achieve the best possible trade

off between the cost of payoff and the risk. A pioneer work along this line is Hodges and

Neuberger (1989), who formulated the problem of option pricing and hedging by maximizing

the investor’s expected utility of terminal wealth. Using an indifference argument, the selling

or buying price of an option is defined as the amount of money that would make an investor

indifferent, in terms of expected utility, between trading in the market with and without a

position in the option. They interpreted the “hedging” of the option as the difference in

the two trading strategies, with and without the option. This approach involves the value

functions of singular stochastic control problems. The nature of optimal hedging is that an

investor with an option position rebalances his portfolio only when the number of the stock

shares falls out the lines (“too much” line and “too few” line). Davis et al. (1993) modi-

fied certain settings of Hodges and Neuberger (1989) and developed rigorously the model of

Hodges and Neuberger (1989) for a market with proportional transaction costs. In particu-

lar, Davis et al. (1993), Clewlow and Hodges (1997 )and Zakamouline (2006) showed that

the option pricing problem with transaction costs involves solving two singular stochastic

control problems formulated by Davis and Norman (1990), and developed, for the negative

exponential utility function, numerical algorithms to compute the optimal hedge and option

price by making use of discrete-time dynamic programming for an approximating binomial

tree for the stock price. Further contributions to the study of the utility based option pric-

ing approach and numerical methods with proportional transaction costs include Whalley

and Wilmott (1997) which developed asymptotic approximations for these hedging strategies

and option prices as the transaction costs approach 0, Constantinides and Zariphopoulou

(1999,2001) which provided option price bounds under general utility functions rather than
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the negative exponential utility function commonly adopted for numerical studies, and An-

dersen and Damgaard (1999) consider more than one risky security, and some others. In

this subsection, we will briefly introduce model of Davis et al. (1993). Even though the

computational method presented by Davis et al. (1993) can not efficiently and accurately

solve the problem involving the jump-diffusion model, the utility maximization is still the

key idea and basic frame in our whole work.

In the model of Davis et al. (1993), the price of European option is defined in terms of a

utility maximization problem. In short, the option price, which is to the writer, is obtained

by a comparison of the maximum utilities of trading with and without the obligation of

fulfilling the option contract at expiry. The asset price St is assumed to follow the geometry

Brownian motion:

dS = µSdt+ σSdW

where µ and σ are constant and W si a Brownian motion.

When the utility function takes the special form U(x) = 1− exp(−γx) in which γ is the

risk aversion parameter, Davis et al. (1993) found that the option price V (S, t) is given by

V (S, t) =
δ(T, t)

γ
log

(
Qω(S, 0, t)

Q1(S, 0, t)

)

where T is te expiry date, δ(T − t) = e−r(T−t), and Q1(S, x, t) and Qω(S, x, t) both satisfy

the following equation

min

(
∂Q

∂x
+
γ(1 + ε)SQ

δ
,−∂Q

x
− γ(1− ε)SQ

δ
,
∂Q

t
+ µS

∂Q

∂S
+
σ2S2

2

∂2Q

∂S2

)
= 0

Here ε is the transaction costs: A trade of N shares will result in a loss of εNS. This

cost structure represents bid-off spread, or more generally commissions and costs that are

proportional to the value of the assets traded. In Davis et al. (1993), they consider the
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slightly more general case in which there are different levels of cost for buying and selling.

The independent variable x measures the number of shares held in the portfolio and maybe

changed according to optimally hedging transaction. The two functions Q1 and Qω must

satisfy certain final conditions, analogous to the payoff profile of the option; for example, for

a European call option

Q1(S, x, T ) = exp(−γc(S, x))

and

Qω(S, x, T ) =

 exp(−γc(S, x)) S ≤ K

exp(−γ(c(S, x) +K − S)) S > K

where

c(S, x) =

 (1 + ε)yS y < 0

(1− ε)yS y ≥ 0

So the final condition for the second problem (Qω) is equal to that of the first problem

(Q1) modified by the effects of the potential liability at expiry of the European call (after

transaction costs). Note we are assuming here that the option is cash settled. For options

with delivery of the asset on exercise the below remains the same and the final condition

merely alter.

Then this stochastic control problem can be expressed as a free boundary problem. And

they explained that the (S, x) space divided into three regions, shown schematically in Figure

1.3. The writer, or issuer, of the option must always maintain the portfolio in the region

of the (S, x) space bounded by the two outer curves, while inside this region he does not

transact. If the number of shares of his portfolio hits the top boundary, he must sell shares;

if the number of shares of his portfolio hits the bottom boundary, he must buy shares. That

means when the portfolio goes to the edge of this no-transaction region, he must trade so as

to just stay inside. And the simple analytical expressions for all three of these curves is not
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No−Transaction Region
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Figure 1.3: A schematic diagram of (S, x) space showing the buy, sell and no-transaction
regions

hard to derived.

In the buy region we have

∂Q

∂x
+
γ(1 + ε)SQ

δ
= 0

In the sell region we have

∂Q

x
+
γ(1− ε)SQ

δ
= 0

In the no-transaction region we have

∂Q

t
+ µS

∂Q

∂S
+
σ2S2

2

∂2Q

∂S2
= 0

To solve the option pricing problem under diffusions, Kushner and Dupuis (1992), Davis

et al. (1993) and Zakamouline (2006) have developed a numerical scheme that involves a

consistent Markov chain approximation of continuous-time price processes and then solved

an appropriate optimization problem by discrete time dynamic programming. In particular,
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their scheme is based on weak convergence of probability measures and uses Markov chain

approximation and discrete time dynamic programming algorithm. In their scheme, the

discrete state is X(t, S, x, y), whose elements denote time, stock price, number of shares and

amount in the bank in a discrete space. The value functions Q1 and Qw are given a value at

the final time by using the boundary conditions for the continuous value functions over the

discrete subspace (S, x, y), and then they are estimated by proceeding backward in time by

using the discrete time algorithm. As in the continuous time case, this algorithm is the same

for both value functions and is derived below for a value function denoted by Qρ(t, S, x, y),

where ρ is a discretization parameter, which depends on the discrete time interval δt. If δt

and the resolution of the η axis δη are sent to zero, then the above discrete value function

converges to a viscosity subsolution and a viscosity supersolution of the PDE. Therefore,

all the discrete value functions converge to their continuous counterparts; this is due to the

uniqueness of the viscosity solution. Though the extension of the scheme from diffusion-only

to jump diffusion processes is possible, it is computationally expensive as the solutions of the

singular stochastic control problem (2.22) require the determination of both when to apply

control and how much control to apply. So we design new method called coupled backward

induction algorithm that can substantially reduce computational complexities. The key idea

of the proposed algorithm is recently introduced by Lai and Lim (2009), and makes use of

the connection of (2.22) to an optimal stopping problem. Some details will be showed in

Section 3.3

1.5 Outline

This dissertation research is motivated by the concerns mentioned above. In real financial

market, there is, of course, cost in each buying or selling transaction. The assumption of no

transaction cost in Black-Scholes-Merton Model is impractical and when we want to consider
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the option pricing problem in real world, the first assumption we want to break is on the

transaction cost. In another way, many research work have show the disadvantage of diffusion

process setting for the underlying asset price process. Based on empirical study in the last

decade, we think the jump-diffusion model is a much better framework setting for the price

process compared to the diffusion process. So, to sum it up, in this work, we relax both

of the two impractical assumptions to studies the problem of option pricing under general

jump-diffusion processes with proportional transaction costs by generalizing the utility-based

approach developed by Davis et al. (1993) and proposing a coupled backward induction

algorithm to compute the solutions. Specially, under the assumption that the underlying

stock price follows a geometric Lévy process, we formulate the problem of option pricing

with proportional transaction costs as the maximization of the investor’s expected utility

of terminal wealth, and demonstrate that the implied singular stochastic control problem

can be reduced to a free boundary problem for a partial integro-differential equation. We

then develop a numerical algorithms, which is called coupled backward induction algorithm,

to solve the equations for the negative exponential utility function and compute the buy-

sell boundaries and value functions of the maximization problem simultaneously, which is

different from Davis et al. (1993), Clewlow and Hodges (1997) and Zakamouline (2006) who

used discrete-time dynamic programming for an approximating binomial tree for the stock

price.

The singular stochastic control problem is introduced in Chapter 2: Section 2.1 in-

troduces option pricing problem under utility maximization; Section 2.2 PIDE by HJB E-

quation. Section 2.3 Solutions for the negative exponential utility function. In Chapter 3,

we provide a numerical method which is called “coupled-backward induction algorithm” to

solve the PIDE. Chapter 4 provides intensive simulation studies that investigate the impact

of jump component in the stock price process and transaction costs on option price and the

27



implied hedging costs. Some concluding remarks are given in Chapter 5.
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Chapter 2

A Singular Stochastic Control Problem

Options contracts have been known for many centuries and the trading activity increased

since 1973 when options were issued with standardized terms and traded through a guar-

anteed clearing house at the Chicago Board Options Exchange. Today many options are

created in a standardized form and traded through clearing houses on regulated options ex-

changes, while other over-the-counter options are written as bilateral, customized contracts

between a single buyer and seller, one or both of which may be a dealer or market-maker.

Options are part of a larger class of financial instruments known as derivative products, or

simply, derivatives. In definition, an European option is a contract which gives the buyer

(the owner) the right, but not the obligation, to buy or sell an underlying asset or instrument

at a specified price(called “strike price K”) on a specified date(called “expiration date T”).

The option seller or writer incurs a corresponding obligation to fulfill the transaction which

is to sell or to buy, if the owner elects to “exercise” the option prior to expiration. The buyer

pays a premium to the seller for this right. An option which conveys to the owner the right

to buy something at a specific price is referred to as a call; an option which conveys the right

of the owner to sell something at a specific price is referred to as a put. Both are commonly

traded, but for clarity, we only discussed the call option.
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For a European call option, a contract that confers on the buyer the right to buy at the

expiration date T one share of a specified stock at strike price K, let St denote the stock price

at time t. Apparently, the option is worthless if ST ≤ K, but it has positive value to the

buyer and will be exercised if ST > K. The writer (“seller”) of the option has the obligation

to deliver one share at time T for a cash payment of K if ST > K. The pricing problem is

to determine how much the writer should charge for issuing it at time t.

2.1 Option Pricing Problem based on Utility Maximization

Suppose that an investor is provided with an opportunity to enter into a position in a

European call option written on a stock with expiration date T and strike price K. The

price of the stock is assumed to follow a geometric Lévy process

dSt = αSt−dt+ σSt−dWt + St−

∫ ∞
−1

ηÑ(dt, dη). (2.1)

Here the mean rate of the stock return α > 0 and the volatility σ > 0 are constants, and

Wt, t ≥ 0 is a standard Brownian motion on a filtered probability space (Ω,F ,Ft, P ) with

W0 = 0. The Poisson random measure Ñ is Ft-centered, that is,

Ñ(t, A) = N(t, A)− E[N(t, A)] = N(t, A)− tν(A),

in which Poisson random measure N(t, A) measures the number of jumps with amplitude in

A ⊂ (−1,∞) up to and including time t, N has a time-homogeneous intensity, E[N(t, A)] =

tν(A), and ν is the Lévy measure associated to N . Note that to remain the price process

St > 0 for all t ≥ 0, we only allow jump sizes η > −1. We also assume that, for technical
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convenience, ∫ ∞
−1

1 ∨ η2dν(η) <∞.

In the presence of proportional transaction costs, the investor pays 0 < ζ < 1 and

0 < µ < 1 of the dollar value transacted on purchase and sale of the underlying stock,

respectively. Let xt denote the number of shares held in stock and yt the dollar value of the

investment in bond which pays a fixed risk-free rate r. The investor’s position (xt, yt) in

stock and bond is driven by:

dxt = dLt − dMt, (2.2)

dyt = rytdt− aStdLt + bStdMt, (2.3)

with a = 1 + ζ and b = 1 − µ, where Lt and Mt are nondecreasing and non-anticipating

processes and represent the cumulative number of shares of stock bought or sold, respectively,

within the time interval [0, t], 0 ≤ t ≤ T . Equations (2.1), (2.2) and (2.3) composes the

market model in the time interval [0, T ], which describes a degenerate jump diffusion process

in R3.

Consider a class of trading strategies such that Lt and Mt are absolutely continuous

processes, given by

Lt =

∫ t

0

ludu and Mt =

∫ t

0

mudu, (2.4)

where lu and mu are positive and uniformly bounded by ξ < ∞. Then equations (2.2) and

(2.3) can be rewritten as:

dxt = ltdt−mtdt (2.5)

dyt = rytdt− aStltdt+ bStmtdt (2.6)
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As a special case, consider trading strategies which make an instantaneous change in

the amount of shares of stock whenever the stock position at time t moves outside some

allowable range [Xb(t, St), Xs(t, St)]:

dLt = (Xb(t, St)− xt−)+ and dMt = (Xs(t, St)− xt−)+

The corresponding stock position is given by

xt =


Xb(t, St) if xt− < Xb(t, St),

Xs(t, St) if xt− > Xs(t, St),

xt− if Xb(t, St) 6 xt 6 Xs(t, St).

Denote the terminal settlement value of the stock and option by Zi(ST , xT ), where i = 0,

s and b indicates the investor’s position in the option: no call option, short call, and long

call, respectively. When there is no option position, or i = 0, the liquidated value of stock is

given by

Z0(S, x) = xS(aI{x<0} + bI{x>0}). (2.7)

Since when you have short position in stock(x < 0), you need to buy the shares back from

market and pay ζ of dollar value transacted on purchase. In contrast, when you have long

position in stock(x > 0), you need to liquidated all shares and pay µ of dollar value transacted

on sale.

If the option is cash settled, the option writer delivers (ST −K)+ in cash at T , so

Zi(S, x) = Z0(S, x)− (S −K)∆i(S), i = s, b, (2.8)

where ∆s(S) = I{S>K} (short call) and ∆b(S) = −I{S>K} (long call). If the option is asset
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settled, then the writer delivers one share of stock in return for a payment of K when the

buyer exercises the option at maturity T , so

Zi(S, x) = Z0(S, x−∆i(S)) +K∆i(S), i = s, b. (2.9)

Note that the cases of (2.8)-(2.9) implies the trade of 0 share of stock for i = s, and b with

cash settlement, and the trade of ∆i(ST ) share of stock for i = s and b with asset settlement.

Using the self-financing argument of Bensaid et al. (1992) and assuming that the investor

can choose any time in [t, T ] to trade and the first trade after time t occurs at time τ , we

then have xu = xt for all u ∈ [t, τ), and the dollar value of the investment at time τ is given

by

yτ = yt e
r(τ−t) − Sτ (adLτ − bdMτ ),

in which Sτ (adLτ − bdMτ ) is the cost of the first trade. In general, suppose trades after time

τ0 := t occur at times τ1 < τ2 < · · · < τn, we have

yT = yt e
r(T−t) −

n∑
i=0

er(T−τi)Sτi(adLτi − bdMτi).

Extending the argument to continuous time and continuous states yields

yT = yt e
r(T−t) −Ψ(L,M ; t, T ) (2.10)

where

Ψ(L,M ; t, T ) = a

∫
[t,T )

er(T−u)SudLu − b
∫
[t,T )

er(T−u)SudMu (2.11)

is the total trading cost incurred over [t, T ). In the mean while, the total hedging cost
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incurred in [t, T ] is expressed as

Ci(L,M ; t, T ) = Ψ(L,M ; t, T )− Zi(ST , xT ), i = 0, s, b. (2.12)

Therefore, combining (2.10)-(2.12) yields the investor’s terminal wealth in terms of the total

hedging cost

yT + Zi(ST , xT ) = yt e
r(T−t) − Ci(L,M ; t, T ), i = 0, s, b,

Suppose that the writer’s utility U : R → R is a concave and increasing function with

U(0) = 0. We assume that the investor’s goal is to maximize the expected utility of terminal

wealth under the market model (2.1)-(2.3)

V i(t, S, x, y) = sup
L,M

E[U(yT + Zi(ST , xT ))|St = S, xt = x, yt = y], (2.13)

which corresponds to no call option (i = 0), short call (i = s) and long call (i = b).

With the given utility function (2.13), the option price can be derived from the indifference

argument which is similar to utility equivalence pricing principle in economics. In particular,

the writing price of an option is defined as the amount of money that makes the investor

indifferent, in terms of expected utility, between entering into the market with and without

writing the option. At this reservation price, the investor is indifferent between selling (or

buying) an option and doing nothing. Denote the reservation price of selling (or buying) an

option as the amount of cash P s (or P b) required initially to provided the same expected

utility as not enter into this position to the investor, P s and P b satisfy the following equations:

V s(0, S, x, y + P s(S, x)) = V 0(0, S, x, y) = V b(0, S, x, y − P b(S, x)). (2.14)
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2.2 Partial Intergro Differential Equation through HJB Equation

Now, taking equations (2.1)-(2.3) as a vector stochastic differential equation with con-

trolled drift, we consider a class of trading strategies as absolutely continuous process, as

given by (2.4) and the stochastic control problems for the utility maximization problem

(2.13). Now, we can derive the Hamilton-Jacobi-Bellman equations for the value function

V i as follow:

V (t, St, xt, yt) = sup
(lt,mt)

E (V (t+ dt, St+dt, xt+dt, yt+dt)|Ft)

= sup
(lt,mt)

E
(
V (t, St, xt, yt) +

∂V

∂t
dt+

∂V

∂y
dy +

∂V

∂x
dx

+
∂V

∂S
dS +

1

2

∂2V

∂S2
(dS)2|Ft

)
Distract V (t, St, xt, yt) from both sides, we can get

0 = sup
(lt,mt)

E
(
∂V

∂t
dt+

∂V

∂y
(ryt − aStlt + bStmt)dt+

∂V

∂x
(lt −mt)dt

+
∂V

∂S
S(rdt+ σdWt +

∫ ∞
−1

ηÑ(dt, dη)) +
1

2
σ2S2∂

2V

∂S2
dt

)
And then,

⇒ 0 = max
lt,mt

(
(
∂V

∂x
− aSt

∂V

∂y
)lt − (

∂V

∂x
− bSt

∂V

∂y
)mt

)
+
∂V

∂t
+ ry

∂V

∂y

+αS
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

+

∫ ∞
−1

[
V (t, S(1 + η), x, y)− V (t, S, x, y)− ηSt

∂V

∂S

]
dν(η).
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From the equation above, we can get:

I II III IV

∂V
∂x
− aSt ∂V∂y > 0 < 0 6 0 > 0

∂V
∂x
− bSt ∂V∂y > 0 6 0 > 0 6 0

For situation I: mt = 0 and lt = c, which means it is in Buy region

For situation II: mt = c and lt = 0, which means it is in Sell region

For situation III: mt = 0 and lt = 0, which means it is in No transaction region

Situation IV is impossible because the value function are increasing functions of x and y.

(I) In the buy region, the value function remains constant along the path of the state, dictated

by the optimal trading strategy, and therefore,

V (t, S, x, y) = V (t, S, x+ dx, y − aSdx)

= V (t, S, x, y) +
∂V

∂x
dx− ∂V

∂y
aSdx

And then,

⇒ ∂V

∂x
− aS∂V

∂y
= 0 Buy region boundary

(II) In the sell region, similarly, the value function obeys the following equation:

V (t, S, x, y) = V (t, S, x− dx, y + bSdx)

= V (t, S, x, y)− ∂V

∂x
dx+

∂V

∂y
bSdx
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becomes,

⇒ ∂V

∂x
− bS ∂V

∂y
= 0 Sell region boundary

(III) In the no transaction region, the value function obeys the same set of equations obtained

for the class of absolutely continuous trading strategies, and therefore the Hamilton-Jacobi-

Bellman is given by:

max
lt,mt

{(∂V i

∂x
− aSt

∂V i

∂y

)
lt −

(
∂V i

∂x
− bSt

∂V i

∂y

)
mt

}
+ L1V

i = 0, (2.15)

for (t, St, xt, yt) ∈ [0, T ]× R× R× R+, in which the operator L1 is defined as

L1φ :=
∂φ

∂t
+ ry

∂φ

∂y
+ αS

∂φ

∂S
+

1

2
σ2S2 ∂

2φ

∂S2

+

∫ ∞
−1

[
φ(t, S(1 + η), x, y)− φ(t, S, x, y)− ηSt

∂φ

∂S

]
dν(η).

To sum it up, our optimal trading strategy is showed in the following cases

(i) buying stock at the maximum possible rate lt = ξ and mt = 0 when

∂V

∂x
− aSt

∂V

∂y
≥ 0 and

∂V

∂x
− bSt

∂V

∂y
> 0; (2.16)

(ii) selling stock at the maximum possible rate mt = ξ and lt = 0 when

∂V

∂x
− aSt

∂V

∂y
< 0 and

∂V

∂x
− bSt

∂V

∂y
≤ 0; (2.17)

(iii) doing nothing, that is mt = lt = 0 when

∂V

∂x
− aSt

∂V

∂y
≤ 0 and

∂V

∂x
− bSt

∂V

∂y
≥ 0. (2.18)
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The above argument shows that the optimization problem (2.13) is a free boundary problem.

Besides, the state space [0, T ]×R×R×R+ is partitioned into buy, sell and no-transaction

regions, which are characterized by inequalities (2.16), (2.17), and (2.18), respectively. For

sufficiently large ξ, the state space remains divided into a buy region B, a sell region S, and a

no-transaction region N , and the optimal trading strategy requires an immediate transaction

to the boundary of the buy region, ∂B or that of the sell region ∂S, if the state is in region

B or S. Hence the value function V i(t, S, x, y) satisfy

V i(t, S, x, y) = V i(t, S, x+ εx, y − aSεx) in B,

V i(t, S, x, y) = V i(t, S, x− εx, y + bSεx) in S,

in which εx (the number of shares bought or sold by the investor) can take any positive value

up to the number required to take the state to ∂B or ∂S. Instantaneous transaction from

the interior of the buy (or sell) region to the buy (or sell) boundary takes place by letting

ξ → ∞. In the no-transaction region N , the value function follows equation (2.15) for the

trading strategies lt = mt = 0 and satisfy inequalities (2.18). Therefore, the above discussion

yields the following free boundary problem for the singular stochastic control value function

V i:



L1V
i = 0 in N

∂V i

∂x
− aS∂V

i

∂y
= 0 in B

∂V i

∂x
− bS ∂V

i

∂y
= 0 in S

V i(T, S, x, y) = U(y + Zi(S, x)).

(2.19)
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2.3 Solutions for the Negative Exponential Utility Function

We further assume that the investor has the negative exponential utility function

U(z) = 1− e−γz, (2.20)

in which γ is the constant absolute risk aversion (CARA) parameter. For the equations

(2.19), this utility function can reduce much of computational effort and is simple to in-

terpret. Furthermore, the option price based on the exponential utility function is a good

approximation to the price implied by any hyperbolic absolute risk aversion utility function

with the same level of absolute risk aversion; see Andersen and Damgaard (1999). Davis et

al. (1993) show that for the utility function (2.20), the definition of the value function (2.13)

can be written as

V i(t, S, x, y) = 1− exp{−γyer(T−t)}H i(t, S, x), (2.21)

where

H i(t, S, x) := inf
L,M

E
{

exp[−γ(yT + Zi(ST , xT )− yter(T − t))]
∣∣St = S, xt = x

}
= 1− V i(t, S, x, 0).

Plugging (2.21) into (2.19) and defining the operator L2 as

L2φ :=
∂φ

∂t
+ αS

∂φ

∂S
+

1

2
σ2S2 ∂

2φ

∂S2
+

∫ ∞
−1

[
φ(t, S(1 + η), x)− φ(t, S, x)− ηS ∂φ

∂S

]
dν(η),
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we obtain the following free boundary problem for H i(t, S, x),



L2H
i(t, S, x) = 0 x ∈ [Xb(t, S), Xs(t, S)],

∂H i

∂x
(t, S, x) = −aγSer(T−t)H i(t, S, x) x ≤ Xb(t, S),

∂H i

∂x
(t, S, x) = −bγSer(T−t)H i(t, S, x) x ≥ Xs(t, S),

H i(T, S, x) = exp{−γZi(S, x)},

(2.22)

in which Xb(t, S) and Xs(t, S) are the buy and sell boundaries, respectively; see Davis et

al. (1993). Moreover, combining (2.21) with (2.14) yields the reservation buying and selling

prices

P b(S, x) = −γ−1 e−rT log
[
Hb(0, S, x)/H0(0, S, x)

]
, (2.23)

P s(S, x) = γ−1 e−rT log
[
Hs(0, S, x)/H0(0, S, x)

]
. (2.24)

In the limit as γ → ∞, Bouchard et al. (2001) have shown that the reservation price con-

verges to the sum of the liquidation value of the initial endowment and the super-replication

price of the option. The proof of existence and uniqueness of the solutions of the PIDE is

very similar with section 5 in Davis et al. (1993). and Lai and Lim (2002).

2.4 Cost-Constrained Minimization of Pathwise Risk

Grinold and Kahn (2000) pointed that “risk is an abstract concept” and other risk

measures that depend on the specific investment applications may be more appropriate than

variance. Based on this, Lai and Wong (2004) present a new risk measure called “Pathwise

Risk” Similarly, we can derive that, under jump-diffusion process framework, the pathwise

40



risk can be expressed as following:

R(L,M ; t, T ) = σ2

∫ T

t

S2
u[xu −∆(u, Su)]

2du+
T∑
t

θλ[xS(V − 1)− P (SV, t) + P (S, t)]2

Based on the hedging cost we defined in (2.12), the value functions V i(t, S, x)(i = s, b) in

formula (23) in Lai and Lim (2009) will have the following form under our model.

V (t, S, x) = inf
L,M

E{
∫ T

t

F (u, Su, xu)du+
T∑
t

C(u, Su, xu)∆u+ Ψ(L,M ; t, T ) (2.25)

+g(ST , xT )|St = S, xt = x}

with F (u, S, x) = θσ2S2[x−∆(u, S)]2 and C(u, S, x) = θλ[xS(V −1)−P (SV, t)+P (S, t)]2 for

a short call (i = s) or θσ2S2[x+∆(u, S)]2 and C(u, S, x) = θλ[xS(V −1)+P (SV, t)−P (S, t)]2

for a long call(i = b), and g(S, x) = −Zs(S, x) or −Zb(S, x), respectively. And the same as

that in utility maximization model, the value function of the cost-constrained minimization

problem, both for short and long position, is in the state space [0, T ] × (0,∞) × R which

is partitioned into (i) a “buy stock” region B, (ii) a “sell stock” region S and (iii) a “no-

transaction” region N, respectively.
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Chapter 3

Computational Algorithm

3.1 Lai and Lim’s (2009) Algorithm for Diffusion Case

The singular stochastic control problem, whose no-action region is the no-transaction

band, is equivalent to an optimal stopping problem. This relationship was the first pointed

out by Bather and Chernoff (1966). After that, Karatzas (1983) and Karatzas and Shreve

(1984,1985)gave special cases of the connection between singular control and optimal stop-

ping in an analytical way. Peskir and Shiryaev (2006) did a lot of basic research on optimal

stopping theory and free-boundary problems, and gave the proofs that the former one can

be transferred to the later one under some conditions. And Peskir and Shiryaev (2006)

also discussed some mathematical finance problem that can be reformulated as problems

of optimal stopping of stochastic processed and solved by reduction to free-boundary prob-

lems. As we discussed in Section (1.4), Davis et al. (1993) designed a numerical method

based on Markov chain approximation and solved the singular stochastic control problem

via solving an appropriate free boundary problem using discrete time dynamic programming

algorithm. However, it’s computational expensive since it requires the determination of both

when to apply control and how much control to apply. Boetius (2005) showed that the se-

quential stopping problem, which is called as an entry-exit problem, can be transferred to
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free-boundary problem via Dynkin Game. Based on this connection, Lai and Lim (2009)

designed a new algorithm which is called Coupled Backward Induction Algorithm to reduce

the computational complexities. After using utility maximization approach and transform-

ing it from stochastic control to free-boundary problem via Dynkin Game, the algorithm

computes the option price and the optimal hedging. We will introduce the Coupled Back-

ward Induction Algorithm in the section because our algorithm is based on it and extended

to jump-diffusion case.

With the diffusion only case, the free boundary problem in 2.22 changes to:



∂H i

∂t
+ αS

∂H i

∂S
+
σ2S2

2

∂2H i

∂S2
= 0, x ∈ [Xb(t, S), Xs(t, S)],

∂H i

∂x
(t, S, x) = −aγSer(T−t)H i(t, S, x), x ≤ Xb(t, S),

∂H i

∂x
(t, S, x) = −bγSer(T−t)H i(t, S, x), x ≥ Xs(t, S),

H i(T, S, x) = exp{−γZi(S, x)}.

Apply the change of vairiable:

ρ =
r

σ2
, s = σ2(t− T ), z = log(S/K)− (θ − 1

2
)s, θ =

α

σ2
(3.1)

And then define hi(s, z, x) = H i(t, S, x), this free boundary problem can be rewritten as:



∂hi

∂s
+

1

2

∂2hi

∂z2
= 0 x ∈ [Xb(s, z), Xs(s, z)]

∂hi

∂x
(s, z, x) = −aγK ez+(θ−ρ−0.5)shi(s, z, x) x 6 Xb(s, z)

∂hi

∂x
(s, z, x) = −bγK ez(θ−ρ−0.5)shi(s, z, x) x > Xs(s, z)

hi(0, z, x) = exp{−γKAi(z, x)},

(3.2)
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Note that ∂
∂s

+ +1
2
∂2

∂z2 is the infinitesimal generator of space-time Brownian motion which

means when (s, Zs) is in the no-transaction region, the dynamic of hi(s, Zs, xs) is driven by

the standard Brownian motion (Zs, s ≤ 0). In the buy and sell region, it follows from the

second and third equation of 3.2 that

hi(s, z, x) = exp{−aγK ez+(θ−ρ−0.5)s[x−Xb(s, z)]}hi(s, z,Xb(s, z)), x ≤ Xb(s, z),

hi(s, z, x) = exp{−bγK ez+(θ−ρ−0.5)s[x−Xs(s, z)]}hi(s, z,Xs(s, z)), x ≥ Xs(s, z).

And then, take wi = ∂hi/∂x, we can get free boundary problem for wi:



∂wi

∂s
+

1

2

∂2hi

∂z2
= 0 x ∈ [Xb(s, z), Xs(s, z)]

wi(s, z, x) = −aγK ez+(θ−ρ−0.5)shi(s, z, x) x ≤ Xb(s, z)

wi(s, z, x) = −bγK ez+(θ−ρ−0.5)shi(s, z, x) x ≥ Xs(s, z)

wi(0, z, x) = −γKBi(z, x)hi(0, z, x),

(3.3)

And they also define the second and third equation above as wb(s, z, x) and ws(s, z, x) re-

spectively, and define h(s, z, x) and h̃(s, z, x) on the 3-dimension grid (Sδ, Zδ, Xε). Then, to

solve the PDE 3.2 and 3.3, Lai and Lim (2009) considered a Coupled Backward Induction

Algorithm. We will discuss more detain about it in our computational algorithm. Here, we

just provide the algorithm briefly.

Algorithm. For i = 1, 2, . . . , N and z ∈ Zδ:

(i) Starting at x0 ∈ Xε with w̃(si, z, x0) < w̃b(si, z, x0), search for the first m ∈

{1, 2, . . . , } (denoted by m∗ for which w̃(si, z, x0 +m∗ε) ≥ w̃b(si, z, x0 +mε)

and set Xb(si, z) = xi +m∗ε.
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(ii) Using similar steps to find Xs(si, z).

(iii) For x ∈ Xε outside the interval compute h(si, z, x) and w(si, z, x)

3.2 Algorithm for Our Model

Using the algorithm in previous section, Lai and Lim (2009) successfully solve the PDE

for the free boundary problem and compute the option price and option hedging simultane-

ously. However, when we consider the jump-diffusion case, we are facing to solve PIDE but

PDE.

Similar to the variable change in 3.1, we do the change for the variable in 2.22 as

ρ =
r

σ2
, s = σ2(t− T ), z = log(S/K)− (θ − β − 1

2
)s,

θ =
α

σ2
, β =

1

σ2

∫ ∞
−1

ηdν(η),
(3.4)

and follow the Lai and Lim (2009) step and let hi(s, z, x) = H i(t, S, x). Then equation (2.22)

can be rewritten as



L3h
i(s, z, x) = 0 x ∈ [Xb(s, z), Xs(s, z)]

∂hi

∂x
(s, z, x) = −aγK ez+(θ−ρ−β−0.5)shi(s, z, x) x 6 Xb(s, z)

∂hi

∂x
(s, z, x) = −bγK ez(θ−ρ−β−0.5)shi(s, z, x) x > Xs(s, z)

hi(0, z, x) = exp{−γKAi(z, x)},

(3.5)

where the operator L3 is defined as

L3φ :=
∂φ

∂s
+

1

2

∂2φ

∂z2
+

1

σ2

∫ ∞
−1

[
φ(s, z + log(1 + η), x)− φ(s, z, x)

]
dν(η), (3.6)
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and, corresponding to definitions (2.7)-(2.9) of terminal wealth, we can derive that

A0(z, x) = x ez(a I{x<0} + b I{x>0}),

Ai(z, x) = A0(z, x−Di(z)) +Di(z), for asset settlement i = s, b,

Ai(z, x) = A0(z, x)− (ez − 1)Di(z), for cash settlement i = s, b,

with Ds(z) = I{z>0} and Db(z) = −I{z>0}. Note that the operator L3 can be viewed as the

infinitesimal generator of a jump diffusion process defined through the stochastic differential

equation,

dzs = dW̃s + dÑs,

where W̃s is a standard Brownian motion and Ñs is a jump process with jump size scaled

by 1/σ2. This implies that while (s, z) is inside the no-transaction region, the dynamics of

hi(s, z, xs) is driven by the jump diffusion process {zs, s ≤ 0}. Furthermore, it follows from

(3.5) that, in the buy and sell regions,

hi(s, z, x) = exp{−aγK ez+(θ−ρ−β−0.5)s[x−Xb(s, z)]}hi(s, z,Xb(s, z)), x ≤ Xb(s, z),

hi(s, z, x) = exp{−bγK ez+(θ−ρ−β−0.5)s[x−Xs(s, z)]}hi(s, z,Xs(s, z)), x ≥ Xs(s, z).

(3.7)

As we discussed before, we can solve the ?? directly which is based on the consistent Markov

chain approximation. However, the computational complexities make us choose to follow Lai

and Lim’s (2009) Coupled Backward Induction Algorithm, since this numerical scheme can

substantially reduce the work load. Follow the the steps of Lai and Lim (2009), instead of

solving (3.5) directly, we consider solving two partial integro-differential equations that are

much easier than the original problem (3.5). The first partial integro-differential equation

has the same form as (3.5) but the boundaries are assumed to be known. The second partial
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integro-differential equation is a free boundary problem with differential equations in the buy

or sell regions are completely specified. Specifically, the second partial integro-differential

equation is constructed as follows. Let wi = ∂hi/∂x, then wi satisfies the free boundary

problem:



L3w
i(s, z, x) = 0 x ∈ [Xb(s, z), Xs(s, z)]

wi(s, z, x) = −aγK ez+(θ−ρ−β−0.5)shi(s, z, x) x ≤ Xb(s, z)

wi(s, z, x) = −bγK ez+(θ−ρ−β−0.5)shi(s, z, x) x ≥ Xs(s, z)

wi(0, z, x) = −γKBi(z, x)hi(0, z, x),

(3.8)

where L3 is defined by (3.6) and Bi(z, x) = ∂Ai(z, x)/∂x is given by

B0(z, x) = A0(z, x)/x,

Bi(z, x) = B0(z, x−Di(z)), for asset settlement i = s, b,

Bi(z, x) = B0(z, x), for cash settlement i = s, b.

In the sequel, we fix i = 0, s, b and drop the superscript i in wi and hi for notational

simplicity. The purpose of introducing problem (3.8) is that, when the function hi(s, z, x) is

known, (3.8) becomes an optimal stopping problem associated with a Dynkin game (see Lai

and Lim, 2009, Section 3), which can be easily solved by backward induction and random

walk approximation (see Chernoff and Petkau, 1986, AitSahalia and Lai, 2007 and Lai et

al., 2007).

Now, we introduce our coupled backward induction algorithm that solves (3.5) and (3.8)

to obtain the buy and sell boundaries Xb(s, z) and Xs(s, z) and the value function h(s, z, x)

simultaneously. Note that the algorithm provided by Lai and Lim (2009) is used to deal
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with the diffusion only case, or with partial differential equation. However, (3.5) and (3.8)

are partial integro-differential equations (PIDE), we need to consider a numerical scheme to

calculate the jump part or integral part in the equations. Aitsahlia and Runnemo (2007)

talked about the American option pricing under the jump-diffusion model, and in that work,

they provided a grid search numerical method based on Bernoulli walk to solve PIDE. We

combine this recipe with the couple backward induction algorithm, then we obtain our nu-

merical approach to solve the PIDEs (3.5) and (3.8) and we also finish the computation

simultaneously. We present our algorithm below:

Given a small δ > 0, we discretize time and space as follows. Let s0 = 0 and sj = sj−1−δ

for j ≥ 1 and set

Sδ = {sn, sn − δ, . . . , δ, 0},

Zδ = {
√
δj : j is an integer } = {0,±

√
δ,±2

√
δ, . . . }.

Note that the possibility of jump in an interval of length δ can be approximated by βδ and

hence the possibility of no jump in the interval is 1− βδ. Let Sδj be the position of the ap-

proximating discrete process after the nth transition. On the grid Zδ, a jump occurs at the

(j+1) transition if Sδj+1−Sδj = ±l
√
δ for l ≥ 2. We then approximate the jump distribution

by partitioning the entire real line into intervals of length
√
δ, whose probability measure is

assigned as the probability mass on the midpoints of the intervals. In particular, let F be

the cumulative probability distribution function of the jump size Y , we set

dF (l) =

 F [(l + 1
2
)
√
δ]− F [(l − 1

2
)
√
δ], |l| ≥ 2,

F [(l + 1
2
)
√
δ]− F [(−l − 1

2
)
√
δ], l = 0.

(3.9)
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We then assign the following probabilities

P{Sδj+1 − Sδj = ±l
√
δ} =


1
2
(1− βδ) if l = 1,

βδdF (l) if l 6= 1.

In practice, we need to truncate the set of l to a finite subset {lmin, lmin + 1, . . . , lmax}. In

such case, we set dF (lmin) and dF (lmax) as

dF (lmin) = P{Y 6 (lmin + 0.5)
√
δ},

dF (lmax) = P{Y > (lmax − 0.5)
√
δ}.

Specifically, let Tmax denote the largest expiration date of interest and take δ and ε > 0

such that N := σ2Tmax/δ is an integer. The problem (3.8) with known h(s, z, x) can be

solved by the following backward induction:

Let Xε = {0,±ε,±2ε, . . . }. For i = 1, 2, . . . , N ,

w(si, z, x) =


wb(si, z, x) if w̃(si, z, x) < wb(si, z, x),

ws(si, z, x) if w̃(si, z, x) > ws(si, z, x),

w̃(si, z, x) otherwise,

where x ∈ Xε and
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wb(s, z, x) = −aγKez+(θ−ρ−β−1/2)h(s, z, x), (3.10)

ws(s, z, x) = −bγKez+(θ−ρ−β−1/2)h(s, z, x), (3.11)

w̃(si, zj, xm) =
1

2
(1− βδ)

[
w(si−1, zj+1, xm) + w(si−1, zj−1, xm)

]
+βδ

lmax∑
l=lmin,l 6=±1

dF (l) · w(si−1, zj+l, xm). (3.12)

The boundaries in (3.8) is determined as follows: Xb(si, z) is the largest x for which w̃(si, z, x) ≤

wb(si, z, x) and Xs(si, z) is the smallest x for which w̃(si, z, x) ≥ ws(si, z, x).

We then solve the problem (3.5) numerically, provided the boundaries Xb(s, z) and

Xs(s, z) are given. In such case, the value function in (3.5) with provided boundaries

can also be solved by backward induction. In particular, for z ∈ Zδ, define h(si, z, x) by

(3.7) (with s replaced by si) if x ∈ Xε is outside the interval [Xb(si, z), Xs(si, z)], and let

h(si, z, x) = h̃(si, z, x) with

h̃(si, zj, xq) =
1

2
(1− βδ)

[
h(si−1, zj+1, xq) + h(si−1, zj−1, xq)

]
+ βδ

lmax∑
l=lmin,l 6=±1

dF (l) · h(si−1, zj+l, xq),
(3.13)

if x ∈ Xε ∩ [Xb(si, z), Xs(si, z)]. Defining w̃b and w̃s as in (3.10) and (3.11) but with

h replaced by h̃, it suggests our coupled backward induction algorithm described below

to solve for Xb(si, z) and Xs(si, z), as well as to compute values of h(si, z, x) for x ∈

Xε ∩ [Xb(si, z), Xs(si, z)].
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Algorithm. For i = 1, 2, . . . , N and z ∈ Zδ:

(i) Starting at x0 ∈ Xε with w̃(si, z, x0) < w̃b(si, z, x0), search for the first m ∈

{1, 2, . . . , } (denoted by m∗ for which w̃(si, z, x0 +m∗ε) ≥ w̃b(si, z, x0 +mε)

and set Xb(si, z) = xi +m∗ε.

(ii) Let xm = Xb(si, z) + mε for m ∈ {1, 2, . . . }. Compute, and store for use

at si+1, w(si, z, xm) = w̃(si, z, xm) as defined by (3.12) and h(si, z, xm) =

h̃(si, z, xm) by (3.13). Search for the first m (denoted by m∗) for which

w̃(si, z, xm) ≥ w̃s(si, z, xm) and set Xs(si, z) = Xb(si, z) +m∗ε.

(iii) For x ∈ Xε outside the interval [Xb(si, z), Xs(si, z)], compute h(si, z, x) by

(3.7) and set w(si, z, x) = wb(si, z, x) or ws(si, z, x) as defined by (3.10) and

(3.11) according to whether x ≤ Xb(si, z) or x ≥ Xs(si, z).

Now it’s much clearer to notice the advantage of the coupled backward induction algorithm.

Comparing to the discrete-time dynamic programming algorithms of Davis et al. (1993),

Clewlow and Hodges (1997), and Zakamouline (2006) that need to perform an additional

nonlinear optimization to identify the optimal trade size at each time step, the above algo-

rithm avoids such optimization by solving the coupled problem for (w, h) instead of just for

h and hence is much easier to implement. The convergence of the algorithm can be shown

by using an argument in Lai and Lim (2009).

3.3 Algorithm for Cost-Constrained Minimization Problem

We present the value function V (t, S, x) for cost-constrained minimization problem in

the presence of transaction costs in Section 2.4. Now we discuss the how to solve it in the

jump-diffusion framework.
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First, we apply the change of variable on 2.25 as this:

s = σ2(t− T ), z = log(S/K)− (ρ− βk − 1

2
)s, ρ = r/σ2, β = λ/σ2 (3.14)

we find that v(s, z, x) = V (t, S, x)/K is the value function of following singular stochastic

control problem for the Brownian motion {Zu, u 6 0}:

v(s, z, x) = inf
L,M

E{
∫ 0

s

f(u, Zu, xu)du+
0∑
s

c(u, Zu, xu)∆u+ ψ(L,M ; s) (3.15)

+g̃(Z0, x0)|Zs = z, xs = x}

where f(s, z, x) = F (t, S, x)/Kσ2, c(s, z, x) = C(t, S, x)/Kσ2, ψ(L,M ; s) =∫
[s,0)

eZu+(−βk− 1
2
)u(adLu − bdMu) and g̃(z, x) = g(Kez, x)/K. As shown in Lai and Lim

(2009), the function

w(s, z, x) =
∂v

∂x
(s, z, x), (s, z, x) ∈ [−σ2T, 0]× R× R, (3.16)

is the value function of the optimal stopping problem associated with the following Dynkin

game:

w(s, z, x) = w(s, z, x) := sup
τL∈F (s,0)

inf
τM∈F (s,0)

I(τL, τM ; s, z, x)

= w(s, z, x) := inf
τM∈F (s,0)

sup
τL∈F (s,0)

I(τL, τM ; s, z, x) (3.17)

where F (a, b) denotes the set of sopping times taking values between a and b (> a), fx(s, z, x) =

∂f(s, z, x)/∂x cx(s, z, x) = ∂c(s, z, x)/∂x and (̃g)x(z, x) = ∂g̃(z, x)/∂x are non-decreasing in
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x (see(3.23)and (3.24)), and

I(τ1, τ2; s, z, x)

= E{
∫ τ1∧τ2

s

fx(u, Zu, xu)du+

τ1∧τ2∑
s

cx(u, Zu, xu)∆u+G(τ1, τ2, Zτ1 , Zτ2)

+g̃x(Z0, x0)I{[}1]{τ1=τ2=0}|Zs = z, xs = x},

G(s1, s2, z1, z2) =


−aez1+(−βk− 1

2
)s1 if s1 < s2 < 0,

−bez2+(−βk− 1
2
)s2 if s2 < s1 < 0,

(3.18)

In addition to relationship (3.16) between the value functions v and w, the optimal continua-

tion region of the Dynkin game (3.17) coincides with the no-transaction region of the singular

stochastic control problem (3.15) in the following sense: If (L∗,M∗) is the optimal control of

(3.15) and τ ∗L = inf{u ∈ [s, 0) : L∗u > 0} τ ∗M = inf{u ∈ [s, 0) : M∗
u > 0} (inf ∅ = 0) then

w(s, z, x) = I(τ ∗L, τ
∗
M ; s, z, x) Moreover, letting

wb(s, z, x) = −aez+(−βk− 1
2
)s and ws(s, z, x) = −bez+(−βk− 1

2
)s (3.19)

w solves the free boundary problem associated with optimal stopping in the Dynkin game:

∂w

∂s
+

1

2

∂2w

∂z2
+ fx + cx = 0 in N, (3.20a)

w(s, z, x) = wb(s, z, x) in B, (3.20b)

w(s, z, x) = ws(s, z, x) in S, (3.20c)

w(0, z, x) = g̃x(z, x). (3.20d)

Since w(s, z, x) is non-decreasing in x, the region B in (3.20b) has an upper boundary Xb(s, z)

which is the largest x for which w(s, z, x) = wb(s, z, x); this is the buy boundary. Similarly,
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the region S in (3.20c) has an lower boundary Xs(s, z) which is the smallest x for which

w(s, z, x) = ws(s, z, x); this is the sell boundary. Recall that a > 1 > b > 0.

In view of the functional central limit theorem, we can approximate standard Brownian

motion by a symmetric Bernoulli random walk. Since the horizon for problem (3.17) is

always 0, only one numerical program for each set of parameters (β, ρ) need be implemented

for all expiration dates T . Also, from (3.14), s = −σ2T at time t = 0. Therefore, letting

Tmax denotes the largest expiration date of interest and taking small positive δ and ε such

that N := σ2Tmax/δ is an integer, we can also use backward induction to solve the optimal

stopping problems of the type (3.17). For i = 1, 2, . . . , N.

w(si, z, x) =


wb(si, z, x) if w̃(si, z, x) < wb(si, z, x),

ws(si, z, x) if w̃(si, z, x) > ws(si, z, x),

w̃(si, z, x) otherwise,

(3.21)

where s0 = 0, si = si−1 − δ, z ∈ Zδ = {0,±
√
δ,±2

√
δ, . . . }, x ∈ Xε = {0,±ε,±2ε, . . . } and

w̃(s, z, x) = δ(fx(s, z, x) + cx(s, z, x)) + [w(s+ δ, z +
√
δ, x) +w(s+ δ, z −

√
δ, x)]/2. (3.22)

This suggests the backward induction algorithm described below to solve for Xb(si, z) as

the largest x for which w̃(si, z, x) 6 wb(si, z, x) and for Xs(si, z) as the smallest x for which

w̃(si, z, x) > wb(si, z, x)

Algorithm 1. Backward induction Algorithm 1.

For i = 1, 2, . . . , N and z ∈ Zδ:
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1. Starting at x0 ∈ Xε with w̃(si, z, x) < wb(si, z, x), search for the first

j ∈ {1, 2, . . . } (denoted by j∗) for which w̃(si, z, x0 + jε) > wb(si, z, x0 + jε)

and set Xb(si, z) = x0 + j∗ε.

2. For j ∈ {1, 2, . . . } let xj = Xb(si, z) + jε. Compute, and store for use at

si+1, w(si, z, xj) = w̃(si, z, xj) as defined by (3.22). Search for the first j

(denoted by j∗) for which w̃(si, z, xj) > ws(si, z, xj) and set Xs(si, z) =

Xb(si, z) + j∗ε.

3. For x ∈ Xε outside the interval [Xb(si, z), Xs(si, z)], set w(si, z, x) = wb(si, z, x)

or ws(si, z, x) as defined by (3.19) according to whether x 6 Xb(si, z) or

x > Xs(si, z).

For the cost-constrained risk minimization problem, the transformations (3.14) lead to (3.15)

with

f(s, z, x) =


θKe2z+(2β−1)s[x−D(s, z)]2 for short call (i = s),

θKe2z+(2β−1)s[x+D(s, z)]2 for long call (i = b),

c(s, z, x) =



θβ[xKez+(ρ−βk− 1
2
)s(V − 1)− p(s, z + log V ) + p(s, z)]2/K

for short call (i = s),

θβ[xKez+(ρ−βk− 1
2
)s(V − 1) + p(s, z + log V )− p(s, z)]2/K

for short call (i = b),

v(0, z, x) = −Ai(z, x), i = s, b,

where D(s, z) = ∆(t, S), p(s, z) = P (t, S) and, corresponding to definitions (??)-(??) of
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terminal settlement value,

A0(z, x) = x ez(a I{x<0} + b I{x>0})

Ai(z, x) = A0(z, x−Di(z)) +Di(z) for asset settlement i = s, b

Ai(z, x) = A0(z, x)− (ez − 1)Di(z) for cash settlement i = s, b

with Ds(z) = I{z>0} (short call) and Db(z) = −I{z>0} (long call). Thus, Algorithm 1 uses

fx(s, z, x) =


2θKe2z+(2β−1)s[x−D(s, z)] for short call (i = s),

2θKe2z+(2β−1)s[x+D(s, z)] for long call (i = b),

(3.23)

cx(s, z, x) =



2θβez+(ρ−βk− 1
2
)s(V − 1)[xKez+(ρ−βk− 1

2
)s(V − 1)− p(s, z + log V ) + p(s, z)]

for short call (i = s),

2θβez+(ρ−βk− 1
2
)s(V − 1)[xKez+(ρ−βk− 1

2
)s(V − 1) + p(s, z + log V )− p(s, z)]

for short call (i = s),

(3.24)

w(0, z, x) = −Bi(z, x), i = s, b,

where Bi(z, x) := ∂Ai(z, x)/∂x is given by B0(z, x) = A0(z, x)/x and, for i = s, b, Bi(z, x) =

B0(z, x−Di(z)) under asset settlement and Bi(z, x) = B0(z, x) under cash settlement. Note

that θK can be treated as single parameter which controls the width of the no-transaction

region.

Note that, from (3.22) and (3.23), the algorithm need to know D(z, s) which is the “theo-

retical delta” in each step. In Lai’s diffusion frame work, they just use Black-Scholes formula

with adjusted volatility to get this D(z, s). In our model with jump-diffusion framework, we

can calculate this “theoretical delta” by Kou’s “double-exponential jump-diffusion” option

pricing model.

56



Chapter 4

Numerical Examples and Results

4.1 Discretization of Kou’s Model (2002): Double Exponential

Jump Diffusion Model

We now perform a numerical study using the proposed algorithm. For illustration pur-

pose, the price process of the underlying is assumed to follow a double exponential jump-

diffusion process which was presented by (Kou, 2002). With mean rate of return α > 0 and

volatility σ > 0 as we introduce in 1.3:

dSt = αSt−dt+ σSt−dWt + St−d

(
Nt∑
i=1

(Qi − 1)

)
, (4.1)

where α and σ are the expected return and diffusion volatility of the underlying asset,

{Wt; t > 0} is a standard Brownian motion with W0 = 0, {Nt; t ≥ 0} is a Poisson process

with rate λ, Qi is a sequence of independent and identically distributed positive random

variables such that the jump Y = logQ has asymmetric double exponential distribution

with density
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fY (y) =

 pη1 e
−η1y if y ≥ 0,

(1− p)η2 eη2y if y < 0.

Here 0 ≤ p ≤ 1, and p and 1 − p represent the probability of positive and negative jumps,

respectively. The parameters η1 and η2 are assumed to satisfy η1 > 1 and η2 > 0.

As we discussed in Section (1.3.2), this double exponential jump-diffusion model suc-

cessfully capture the asymmetric leptokurtic feature of the returns’ distribution and the

“volatility smile” observed in option prices (see Section 3 and Section 5.3 in Kou, 2002).

Moreover, from the empirical tests performed in Ramezani and Zeng (1999), we know that

the double exponential jump-diffusion model fits stock data even better than the normal

jump-diffusion model. Therefore, we choose this specific jump diffusion model provided by

Kou (2002) in our numerical studies.

Note that under this specification, (3.9) becomes

dF (l) =


(1− p)(eη2(l+0.5)

√
δ − eη2(l−0.5)

√
δ) if l ≤ −2,

p(e−η1(l−0.5)
√
δ − e−η1(l+0.5)

√
δ) if l ≥ 2,

(1− p)e1.5η2

√
δ − pe−1.5η1

√
δ if l = 0,

and the boundaries of the jump distribution is set as follows:

dF (lmin) = (1− p) eη2(lmin+0.5)
√
δ,

dF (lmax) = p e−η1(lmax−0.5)
√
δ.

We then study the reservation price of a short call option with K = 100 and T = 0.5 under
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the process (4.1). To illustrate the algorithm, we choose α = r, which let us characterize

the optimal hedging strategy for the utility-maximization approach by a pair (rather than

two pairs) of buy-sell boundaries. We further assume that α = r = 0 and σ = 0.3 for the

diffusion part of (4.1), which are same as the parameter configuration used by Clewlow and

Hodges (1997). For the discretization of time, space and number of shares of stock, we use

δ = ε = 10−4 in the following study.

4.2 Impact of Jump Component

We first investigate the impact of jump components on the price of the call option and

buy and sell boundaries. In this experiment, we assume the CARA parameter γ = 1 and

transaction cost ζ = µ = 0.01. To discuss the impact of different rates and directions of

jumps, we let η1 = η2 = 25 and consider different values of Poisson rate λ and the probability

p of positive jumps.

Figures 4.1 and 4.2 show the optimal buy (lower) and sell (upper) boundaries Xb(t, S) and

Xs(t, S) for the short call with p = 0.5, S0 = 90, 100, 110, and λ with asset settlement

and cash settlement, respectively. For each pair of boundaries, the buy-region is below the

buy boundary and the sell-region is above the sell boundary. The region between the two

boundaries is the no-transaction. Note that the case of λ = 0 corresponds to the case of

having no jumps (or diffusion only). The no-transaction regions in the diffusion only case

(the top left panels in Figures 4.1 and 4.2) are wider than those in the jump-diffusion case

(the bottom right panel in Figures 4.1 and 4.2). In fact, when the jump rate λ increases, the

no-transaction region become narrower, especially when it is close to the expiration date.

This fact shows that large price movement narrows down the no-transaction region. In the
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Figure 4.1: Optimal buy (lower) and sell (upper) boundaries Xb(t, S) and Xs(t, S) from
CARA utility function for a short call with ζ = µ = 0.01, K = 100, S = 90, 100, 110
(dashed, solid and dot-dash lines, respectively) and asset settlement. The Poisson rates in
the panels are λ = 0 (upper left), 1 (upper right), 5 (lower left) and 10 (lower right) and the
probability of positive jumps is p = 0.5.
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Figure 4.2: Optimal buy (lower) and sell (upper) boundaries Xb(t, S) and Xs(t, S) from
CARA utility function for a short call with ζ = µ = 0.01, K = 100, S = 90, 100, 110
(dashed, solid and dot-dash lines, respectively) and cash settlement. The Poisson rates in
the panels are λ = 0 (upper left), 1 (upper right), 5 (lower left) and 10 (lower right) and the
probability of positive jumps is p = 0.5.
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Figure 4.3: Optimal buy (lower) and sell (upper) boundaries Xb(t, S) and Xs(t, S) from
CARA utility function for a short call with ζ = µ = 0.01, K = 100, S = 90, 100, 110
(dashed, solid and dot-dash lines, respectively) and asset settlement. The probability of
positive jumps in the panels are p = 0.1 (upper left), 0.3 (upper right), 0.5 (lower left) and
0.9 (lower right) and the rate of jumps is λ = 4.

asset settlement or Figure 4.1, the boundaries of the out-of-money call option tends to 0,

and the boundaries of the in-the-money call option are closer to 1; in the cash settlement

or Figure 4.2, the boundaries for call option are tending to 0 before expiration because

liquidating any excess position as soon as possible is optimal for the option writer. This

phenomenon agrees with the one discussed in Davis et al. (1993).

Figures 4.3 and 4.4 show the optimal buy (lower) and sell (upper) boundaries Xb(t, S)

and Xs(t, S) for the short call with S0 = 90, 100, 110, and p = 0.1, 0.3, 0.5, 0.9 with asset
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Figure 4.4: Optimal buy (lower) and sell (upper) boundaries Xb(t, S) and Xs(t, S) from
CARA utility function for a short call with ζ = µ = 0.01, K = 100, S = 90, 100, 110
(dashed, solid and dot-dash lines, respectively) and cash settlement. The probability of
positive jumps in the panels are p = 0.1 (upper left), 0.3 (upper right), 0.5 (lower left) and
0.9 (lower right) and the rate of jumps is λ = 4.
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Table 4.1: Prices of the short call option under jump-diffusion (4.1).

p = 0.5 λ = 0 λ = 1 λ = 5 λ = 10
Price for Asset Settlement option 5.98 6.13 6.58 7.05
Price for Cash Settlement option 6.31 6.46 6.92 7.39

λ = 4 p = 0.1 p = 0.3 p = 0.5 p = 0.9
Price for Asset Settlement option 9.16 7.75 6.48 4.33
Price for Cash Settlement option 9.59 8.13 6.82 4.59

settlement and cash settlement, respectively. We notice that, as the probability p of positive

jumps changes from 0.1 to 0.9, the no-transaction region moves from downward to upward

when the time to maturity is closer to 0. Furthermore, when the probability p of positive

jumps increases, the stock price St has more tendency to move upward, which pushes up the

buy and sell boundaries.

Besides the buy and sell boundaries, we also consider the impact of jumps on the prices of

the short call options. Table 4.1 shows the prices of the short call option in Figures 4.1-4.4

with S0 = 100. We notice three facts from the table. First, when other conditions are same,

the call option price with cash settlement is more expensive than that with asset settlement,

this is because the strategy in the cash settlement involves higher hedging cost and hence

yields higher option price. Second, more frequent jumps in price (i.e., larger λ) leads to

higher option price, as more frequent jumps in price narrow down the no-transaction region

and imply higher hedging cost and higher option price. Third, higher probability of positive

jumps leads to lower option price, as more frequent positive jumps decreases the number of

St hitting buying boundaries and hence reduce the hedging cost and option price. To have

a better intuition on the impact of jump intensity λ and positive probability p on option

price, we show in Figure 4.5 the reservation price for the short call option with ζ = µ = 0.01,

S = K = 100, T = 0.5 under asset settlement.
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Figure 4.5: Reservation price for short call option with ζ = µ = 0.01, S = K = 100,
T = 0.5 and asset settlement. The probability of positive p = 0, . . . , l and the rate of jumps
λ = 0, . . . , 10.
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4.3 Impact of Transaction Cost

We further study the impact of transaction cost on the buy and sell boundaries by con-

sidering the following parameter configuration:

K = 100, S = 100, γ = 1, λ = 5, p = 0.5, η1 = 25, η2 = 25

in asset and cash settlements, and compute the optimal buy and sell boundaries with the

transaction cost ζ = µ = 0, 0.01, . . . , 0.1. Figure 4.6 shows the optimal buy and sell bound-

aries for a short call option with asset and cash settlements. We find that the impact of

transaction cost is always monotone for the sell boundary in both asset and cash settlements,

while such impact for the buy boundary is monotone in cash settlement but not in asset set-

tlement. Furthermore, when transaction costs converge to 0, the buy and sell boundaries

converge to the curve of hedging delta.

4.4 Simulation on Hedging Cost

We now study the total hedging cost of the optimal trading strategies based on the buy

and sell boundaries in Section 2. In particular, we consider a short call option with strike

K = 100 and time to maturity T = 0.5. We also assume that the true stock price process

is given by the double exponential jump diffusion processes (4.1) with parameters S0 = 100,

η1 = η2 = 25, and λ = 1, 3, 5, 10, 12, respectively. The transaction costs are specified by

ζ = µ = 0.01. We then consider trading boundaries computed from a “correctly-” and

an “incorrectly-” specified pricing models. The “correctly” specified model uses the jump
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Figure 4.6: Optimal buy (left panels) and sell (right panels) boundaries for a short cal-
l with asset (upper panels) and cash (lower panels) settlement. The transaction cost is
ζ = µ = 0, 0.01, . . . , 0.1.
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Table 4.2: Summary statistics of simulation on total hedging cost with p = 0.5.

Correctly-specified model Incorrectly-specified model
λ 1 3 5 10 12 1 3 5 10 12

(a) Asset settlement

Ĉ 10.255 10.551 10.838 11.517 11.774 10.262 10.558 10.851 11.544 11.801
(0.004) (0.005) (0.005) (0.007) (0.007) (0.004) (0.005) (0.005) (0.006) (0.007)

κ̂ 88.24 89.81 91.12 93.70 94.75 85.90 85.95 86.13 86.52 86.57
(0.04) (0.04) (0.04) (0.05) (0.05) (0.04) (0.04) (0.04) (0.05) (0.05)

(b) Cash settlement

Ĉ 10.734 11.026 11.306 12.000 12.257 10.742 11.049 11.329 12.030 12.302
(0.004) (0.005) (0.006) (0.007) (0.007) (0.004) (0.005) (0.005) (0.006) (0.007)

κ̂ 86.13 87.72 89.16 91.85 92.83 84.00 84.14 84.22 84.51 84.66
(0.05) (0.05) (0.05) (0.05) (0.05) (0.04) (0.05) (0.05) (0.05) (0.05)

diffusion process (4.1) with given parameters and is solved by the procedures in Sections 2

and 3; the “incorrectly” specified model assumes no jump in the price process or the price

process follow a geometric Brownian motion, dSt = αStdt + σStdWt, and is solved by the

procedures in Davis et al. (1993). Then for each trading boundaries generated from both

models, we simulate 105 price paths according to the double exponential jump diffusion

processes (4.1), and compute the total hedging cost Ĉ according to (2.12) and the total

number of trades κ̂. We summarize the statistic on Ĉ and κ̂ from the “correctly-” and the

“incorrectly-” specified models in the second and the third columns of Table 4.2, respectively.

Note that the correctly specified models always give larger total number of trades but lower

total hedging cost, comparing with those of the incorrectly specified models.

4.5 Simulation on Hedging Error

In the presence of transaction costs, we consider to use the mean and standard deviation

of the hedging cost (Cs or Cb). Clewlow and Hodges (1997) and Zakamouline (2006) have
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introduced a similar measure called ‘hedging error’ which is a linear transformation of the

hedging cost defined by:

err =

 e−rTCs − P (0, S0) for a short call

e−rTCb + P (0, S0) for a long call

Like Lai and Lim (2009), we combine the mean and the standard deviation of err into

a single summary statistics

η :=
√

E{err2}

The table shows the simulation result of mean and standard deviation of hedging error and

η under different γ (risk aversion parameter). We consider hedging a short call option with

S = K = 100, r = 0, σ = 0.3, T − t = 0.5 and ζ = µ = 0.01. In Lai and Lim’s (2009)

work, they use Black-Scholes formula to compute the market price of option. However, in

our jump-diffusion model, we need to use the analytic solution provided by Kou (2002) to

get the “market price” P (t, S). The detail of the analytic solution for the option price can

be found in Section (1.3.2)

CARA utility maximization:
γ 0.02 0.06 0.2 0.6
Mean 1.40785 1.35393 1.48412 1.7251
SD 6.44691 3.42748 2.62054 2.36339
η 6.59884 3.68521 3.01162 2.92602
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Chapter 5

Concluding Remarks

In this dissertation research work, we consider the problem of European option pricing in

the presence of proportional transaction cost when the stock price process of the underlying

follows a jump diffusion process. Using an approach that is based on maximization of the

expected utility of terminal wealth, we transform the option pricing into stochastic optimal

control problems, and argue that the value functions of these problems are the solutions of a

free boundary problem which consists of a partial integro-differential equation (PIDE) and

different boundary conditions.

Since Markov chain approximation method is too complicated involving the jump-

diffusion process, we develop a new coupled backward induction algorithm to solve the

singular stochastic control problems associated with utility maximization. The algorithm

was originally presented by Lai and Lim (2009) which is for the diffusion process framework.

We modify this method to make it capable of solving the PIDE we derive, and solving it

efficiently by the coupled structure. With the algorithm, we compute the value function and

transaction boundaries of the stochastic control problems simultaneously and hence greatly

reduces the computational cost, thereby to obtain the option reservation price and hedg-

ing boundary which divides the transactions into buy region, sell region and no-transaction
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region.

In numerical study, we do intensive Monte Carlo simulation on a double-exponential

jump diffusion model which was presented by Kou (2002). From the numerical result, we

explore the impact of transaction cost and jump on the European option price and hedging

strategy. From the comparing of total hedging cost between the diffusion only and jump

diffusion process, we see the evidence of advantage of jump-diffusion model.
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Part II

Default Risk with Stochastic Covariates in the

Presence of Structural Breaks
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Chapter 6

Introduction

Default risk, or credit risk, refers to the risk of the event in which companies or indi-

viduals will be unable to make the required payments on their debt obligations. And this

type of risk is omnipresent in the portfolio of a typical financial institution. For example,

the lending and corporate bond portfolios are obviously affected by default risk. Perhaps

less obviously, any credit derivative transactions, including OTC(over-the-counter, i.e. non-

exchange-guaranteed), such as a swap may substantially affected by the default of one of the

parties through the actual pay-off of the transaction. Recently, the research on default risk

is getting more and more attention in risk management of the modern finance industrial and

academia, especially after the financial crisis.

6.1 Structure Models for Credit Risk

From early 1970s, academia began to consider default risk by using structural models

of default timing in which it assumes that a corporation or a firm defaults when its assets

drop to a sufficiently low level relative to its liabilities. And the classic structural models for

credit risk include Merton (1974), Fisher et al. (1989), and Leland (1994). The idea of this

kind of models is proposed by Merton (1974) in which Merton derived the value of option for
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a defaultable company. In the classical Black-Scholes-Merton model of company debt and

equity value, it is assumed that there is a latent firm asset value V determined by the firm’s

future cash flows, where V follows geometric Brownian motion. Its value at time t, given by

Vt, satisfies

dVt
Vt

= rtdt+ σtdWt,

where rt and σt denote asset return rate and volatility of asset value, respectively. Wt, is a

standard Wiener process. In Merton (1974)’s work, rt and σt are constants and deterministic.

And, he assumes the firm’s capital structure just relate to two things: pure equity (that

means preference stocks are not considered) and a single zero-coupon debt maturing at time

T , of face value B. The default event only occurs when VT , the asset value at maturity is

less than B. Then we have the following payment equations

 Receives of debt holders = min(VT , B)

Receives of equity holders = max(VT −B, 0)

Therefore, the equity holder can be considered as a buyer of European call option in Merton’s

(1974) work. By assuming there are no dividends, we can use standard Black-Scholes option

pricing formula to get the equity market value and the conditional default probability of a

firm.

However, Merton (1974)’s model is based on simplified assumptions, and this disadvan-

tage restricts the empirical value of the model. Thus, its subsequent researches mainly focus

on relaxing these assumptions. For example, Geske (1977) extends the original single debt

maturity assumption to various debt maturities by using compound option modeling. In

Leland and Toft (1996)’s work, firms can continuously issue debts which have infinite time

to maturity. Comparing with Merton (1974)’s assumption that the default occurs only at

the maturity date, another group of structural models (i.e. Black and Cox, 1976) are often
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referred as first-passage-time model. In this class of models, default event can happen not

only at the debt’s maturity, but also can be prior to that date, as long as the firm’s asset

value Vt falls below the “barrier Bt” (default trigger value). Thus, the model not only allows

valuation of debt with an infinite maturity, but also, more importantly, allows for the default

to arrive during the entire life-time of the reference debt or entity. To relaxing the deter-

ministic property of risk-free rate rt, Longstaff and Schwartz (1995) treat the short-term

risk-free interest rate as a stochastic process which converges to long-term risk-free interest

rate and is negatively correlated to asset value process, so that the effect of monetary policy

to macro economy are considered.

Additionally, the default barrier Bt is also treated dynamically in various papers. For

instance, Hui et al. (2003) propose that default barrier should decrease when time goes, since

they observe that there is high default risk at time close to maturity. With the observation

that firms tend to issue more debt when their asset value increases, Collin-Dufresne and

Goldstein (2001) argue that the default trigger value Bt, which was considered as a fixed

face value of debt in Merton’s (1974) model, should follow a process converging to a fraction

of asset value Vt. Actually, this model implied a widespread strategy that firms tend to

maintain a constant leverage ratio. Hui et al. (2006) develop this stationary-leverage-ratio

model to “incorporate a time-depending target leverage ratio”. In the work, they argue that

firm’s leverage ratio varies across time, because of the movement of initial short-term ratio

to long-term target ratio as described in Collin-Dufresne and Goldstein (2001). The most

recent Black-Scholes-Merton structural model is proposed by Shibata and Yamada (2009).

In their work, they model bank’s recovery process for a firm in danger of bankruptcy. When

obligor bankrupts, the bank’s choice whether the firm should be run or be liquidated affects

the losses of the loan.

The most popular practical structural model for default risk is Moody’s KMV which set
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the default trigger value as the risk factor distance to default which is the number of standard

deviations of annual asset growth by which the asset level (or expected asset level at a given

time horizon) exceeds the firm’s liabilities. (See Crosbie and Bohn, 2002; Kealhofer, 2003.).

From the KMV model, the probability of finishing below “barrier B”(distance to default

DD) at time T is given as

N

(
−

log(Vt/DD) + (r − 1
2
σ2)T

σ
√
T

)
,

This default covariate is a volatility-corrected leverage measure and is built up with market

equity data and accounting data for liabilities. We also use the distance to default as one

of our risk covariate. The detail of construction method for it will be discussed in Section

9.1.2.

There is another classification of the family of structural models. The models can be

divided into exogenous default group and endogenous default group. And the grouping only

depends on the definitions of default. All the above mentioned works belong to the former

group, in which default is defined as when the asset value fall below a trigger value. While

the endogenous default models allow obligors choose the time of default strategically. For

example, the latter group of models contains Anderson and Sundaresan’s (1996) in which

the model allows firm to renegotiate the terms of debt contract. When default trigger value

is touched, a firm can either bankrupt or give a new but higher interest rate debt contract

to debt holder to make the firm continue to run. Tarashev (2005) present an empirical

comparison of these two groups of model.
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6.2 Intensity Modeling for Credit Risk

In some extent, all models not structural models belong to reduced-form models which

is a different type of credit risk model. And it also includes many different type of forms.

Empirical firm default analysis can date back at least to Beaver (1966, 1968), and Altman

(1968). They are the first to estimate reduced-form statistical models of the likelihood of

default on a firm within one accounting period, by identifying accounting data that have

statistical explanatory power in differentiating defaulting firms from non-defaulting firms,

and they use linear or binomial (such as logit or probit) models to regress the defaults.

Among the covariates, Altaian’s Z-score is a measure of leverage, defined as the market

value of equity divided by the book value of total debt. Once the coefficients of model are

estimated, loan applicants are assigned a Z-score to classify they are good or bad. After

that, from early 1980s, the empirical work began to focus on qualitative-response models,

such as logit model and probit model. Among these, Ohlson (1980) used an O-score method

in his year-ahead default prediction model. Then, the most recent generation of reduced-

form model for credit risk is dominated by duration analysis, or survival analysis from the

viewpoint of statistics. Early in this literature is the work of Lane et al. (1986) on bank

default prediction, using time-independent risk factor as covariates. From 1995 when Jarrow

and Turnbull began to consider the intensity model (Cox proportional hazard model.), the

Cox type counting process model get more and more attention in academia.

In the option-based models we introduced in last subsection, the default event of firms

is triggered when firm’s assets, or some function thereof, hit or fall below some barrier, or

boundary. In contrast of this class of models, the intensity models, which model factors

influencing the default event but typically (but not necessarily) leave aside the question of

what exactly triggers the default event. Lando (2009) point that there are two main reasons

why intensity models are important in the study of default risk. First, the intensity models
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clearly seem to be the most elegant way of bridging the gap between the models for pricing

default risk and credit scoring models or default prediction models (we will introduce in next

subsection). Since we can understand the dynamic evolution of the risk covariates and how

they influence default probabilities through the intensity-based models which link hazard

regressions with standard pricing machinery. And then we can bring the relevant covariates

into the pricing models to get the default prediction models. Second, due to the similar

mathematical machinery of intensity models and default-free term-structure modeling, the

econometric specifications from term-structure modeling and tricks for pricing derivatives

can be transferred to defaultable claims, such as basket default swaps, whose equivalent

is not readily found in ordinary term-structure modeling, also turn out to be conveniently

handled in this setting.

The intensity models are almost exclusively referred to the “Double Stochastic Poisson

Process”, “Cox Process” or “Counting Process”, and were the first presented by Jarrow

and Turnbull (1995). In their work, the default process is modeled as a Poisson process Nt

with constant intensity λ, the default time τ is exponentially distributed as consequence.

Apparently, in this setting, the assumption that the intensity λ is constant over time and

across the loan clusters (e.g. across different credit ratings or industries) is very impractical

and the following work mainly focus on the concerns to modify the assumption.

Madan and Unal (1998) assume that the intensity λt is a nonnegative measurable func-

tion of Xt, the excess return on the issuer’s equity. And in the setting, the default time τ

is

τ = inf

{
t :

∫ t

0

λ(Xu)du ≥ E

}
where E is an exponential random variable. Intuitively, the intensity should change over time

and differ across the loans’ properties. So, in practice, it is a natural idea to allow default

intensities to depend on some observable variables which can affect probability of default.
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These variables can include firm’s accounting information such as EBIT/Asset, market data

such as market equity price, macroeconomic variables such as CPI index, and other quantities

such as duration of its loan. Based on this consideration, Carling et al. (2007)’s model uses

all these kinds of variables, by assuming a linear relationship is held between the selected

variables and the log value of intensities. And they found that accounting variables and

macroeconomic variables are most powerful to explain the credit risk.

The other kind of thinking is to modify constant intensity to a stochastic process. Lando

(1998) denote the time-dependent stochastic intensity λt as

dλt = µdt+ σdWt

This equation shows that λt follows Brown motion process. µ and σ are the mean and

volatility of the intensity; Wt is a standard Wiener process. Furthermore, extending this

models by incorporate the dependence between interest rate rt (modulated by term-structure

model) and default intensity λt, the following research work illustrates the different structures

of affine model. For example, the correlation is through the noise term,

 drt = κr(rt − θr)dt+ σrdW
1
t ,

dλt = κr(λt − θλ)dt+ σλ(ρdW 1
t +

√
1− ρ2dW 2

t ),

or correlation is through affine dependence,

 drt = κr(rt − θr)dt+ σrdW
1
t ,

λt = α + βrt

For more on the structure of affine models, see Dai and Singleton (2000). Duffie and Liu

(2001) consider negative correlation in the quadratic setting. For links to Heath-Jarrow-
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Morton (HJM) modeling, see Schhönbucher (1998), Duffie and Singleton (1999), and Bielecki

and Rutkowski (2002). The other intensity models which involve more technical, such as

Kusuoka (1999) who consider the risk premium in intensity models and Duffie and Lando

(2009) discuss the role of incomplete information. Lee and Urrutia (1996) used a duration

model based on a Weibull distribution of default time and they compare duration model

and logit models in forecasting insurer insolvency, finding that, for their data, an intensity

model identifies more significant variables than does a logit model. Intensity models based

on time-varying covariates include those of McDonald and Van de Gucht (1999), in a model

of the timing of high yield bond defaults and call exercises.

From a modeling perspective, maybe the analytical tractability of intensity models comes

at too high a price, because they can not provide explicit description of default as the first

hitting time of a film’s asset value. However, in fact, the intensity models arise naturally in

a structural model if we notice that the asset value or the distance to default may not be

observed perfectly.

6.3 Correlated Default Models and Unobservable Covariates

There is, as pointed by Lando (2009), some loss of generality using defaults modeled as

doubly stochastic Poisson processes or Cox processes, and this loss of generality is mainly

apparent when modeling multiple defaults by the same firms or defaults of strongly inter-

linked companies. Since a simultaneous strong change in a common state variable controlling

default intensities of several firms can induce high levels of interdependence even while pre-

serving the structure of Cox processes, modeling dependence among default events is one of

the biggest challenges of credit risk models. In financial industry, this problem is also a big

concern in the credit risk management, because dependence among the default event affects

the distribution of loan portfolio losses and is therefore critical in determining quantiles or
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other risk measures used for allocating capital for solvency purposes, especially facing the

emerged market for asset securitization production such as CDOs. So the default correlation

which is often used as a general name for dependence has recently received some attention.

Lando (2009) summarizes three mechanism for obtaining the dependence:

• Default probabilities are influenced by common background variables which are ob-

servable. As in all factor models, we then need to specify the joint movement of the

factors and how default probabilities depend on the factors.

• Default probabilities depend on unobserved background variables, and the occurrence

of an event causes an updating of the latent variables, which in turn causes a reassess-

ment of the default probability of the remaining events.

• Direct contagion in which the actual default event causes a direct default of another

firm or a deterioration of credit quality as a consequence of the default event.

Vasicek (1991) use the mixed binomial model the modulated the correlation of default

in dealing with the portfolio losses. And this statistical tool plays a large role in the Basel II

process. In the argument of Vasicek (1991), he assumes there is a collection of n firms. The

default indicator of firm i is denoted as Xi and it is equal to 1 if firm i defaults before some

given time horizon and 0 otherwise. Assume that p̃ ∈ [0, 1] is a random variable which is

independent of all the Xi. Assume that the random variable X1, X2, . . . , Xn are independent

and each have default probability p̃ and denote the density of p̃ by f and E(p̃) by p. Then

we can derive that

E(Xi) = p and V ar(Xi) = p(1− p),

and

Cov(Xi, Xj) = E(p̃2)− p2, i 6= j
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Now if we define the total number of defaults Dn =
∑n

i=1Xi for the n firms, then E(Dn) = np

and

V ar(Dn) = np(1− p) + n(n− 1)(E(p̃2)− p2)

Based on this mixed binomial model, Davis and Lo (2001) describe a model which incorpo-

rates contagion. In binomial-type model, the background variable p̃ induces the correlation

in the default events and it requires assumption of large fluctuations in p̃ to obtain significant

correlation. However, a more direct way to do that is to have direct contagion. Under this

model, the default events are divided to two type: direct defaults and defaults triggered

through a contagion event. Contagion means that once firm defaults, it may bring down

other firms with it. Denote Yij is an “infection” variable. Yij = 1 means default of firm i

immediately triggers default of firm j. Assume all Xi, Yij are independent Bernoulli variable

with E(Xi = 1) = p and E(Yij = 1) = q. Then the default indicator of firm i is given as

Zi = Xi + (1−Xi)

(
1−

∏
j 6=i

(1−XjYji)

)
.

If we denote total number of defaults Dn =
∑n

i=1 Zi for the n firms, then we can derive that

 E(Dn) = n(1− (1− p)(1− pq)n−1)

V ar(Dn) = n(n− 1)βpqn − (V ar(Dn))2

where βpqn = p2+2p(1−p)[1−(1−q)(1−pq)n−2]+(1−p)2[1−2(1−pq)n−2+(1−2pq+pq2)n−2].

Other work which emphasizes mixed binomials and common dependence on factor variables

include Frey and McNeil (2003), Gordy (2000), and Wilson (1997a,b).

Another very important tool for dealing with default correlation is Copula function

which is a multivariate probability distribution for which the marginal probability of each

variable is uniformly distributed. Copulas are popular since they allow us to easily model
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and estimate the distribution of defaults of a basket of firms by estimating marginals and

copula separately. Consider a random vector (X1, X2, . . . , Xn). Suppose all margins are

continuous, i.e. the marginal CDFs Fi(x) = P[Xi ≤ x] are continuous functions. We know

that Fi(x) follows uniform distribution, that is

(U1, U2, . . . , Un) = (F1(X1), F2(X2), . . . , Fn(Xn))

has uniform margins. The copula of (X1, X2, . . . , Xn) is defined as the joint cumulative

distribution function of (U1, U2, . . . , Un):

C(u1, u2, . . . , un) = P[U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un].

Copulas are very popular for simulating correlating default times. Assume that the default

time of n firms have marginal distribution function (F1, F2, . . . , Fn), which for simplicity we

can assume to have an inverse function. Then the simulation of n correlated default times is

done by first simulating an outcome (u1, u2, . . . , un) on the n-dimensional unit cube following

the distribution specified by the preferred copula function, and let the default time be given

as τ1 = F−11 (u1), . . . , τn = F−1n (un). Some important research work on Copula includes Li

(2000), Schubert and Schönbucher (2001) and Rogge and Schönbucher (2003)

Considering correlation in intensity model is another obvious way of handling correlation

among a large number of firms. This type of model impose a factor structure on the default

intensities. Note that, the goal of factor model is to reduce the parameter specification so

as to specify a marginal intensity for each firm and to quantify the part of the marginal

intensity which comes from a set of common factors. For example, Duffie and Gârleanu

(2001) consider a factor structure model in which the intensity of an individual firm i is

decomposed into the two independent components, one coming from a common factor and
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one being idiosyncratic or firm-specific:

λi(t) = νc(t) + νfi (t)

Now we only consider affine specifications to facilitate the computations. From the basic

intensity modeling in Cox process, we can get the survival probability of an individual firm

i is

P(τ i > T ) = E(exp
(∫ T

0
λi(s)ds

)
)

= E(exp
(∫ T

0
νfi (s)ds

)
)E(exp

(∫ T
0
νc(s)ds

)
)

The correlation between firms arises from the common intensity component νc. In the work

of Lancaster (1990) and Kalbfleisch and Prentice (2002), they treat the common factor as

“external” and firm-specific factor as “internal”, that is, cease to be generated once a firm

has failed.

So far, all the factors no matter common or firm-specific in the model we discussed are

observable covariates. However, the topic of hidden sources of default correlation are getting

more attention recently. Collin-Dufresne et al. (2010) and Zhang and Jorion(2007) find

that a major credit event at one firm associating with the credit spreads of other firms is

consistent with existence of a frailty effect for actual or risk-neutral default probabilities.

Collin-Dufresne et al. (2004), Giesecke (2004), and Schönbucher (2003) explore learning

from default interpretations, based on the expected effect of unobservable covariates. Das et

al. (2007), finds empirical evidence defaults are significantly more correlated than would be

suggested by the assumption that default risk is captured by the observable covariates. Duffie

et al. (2007) offers an econometric method for estimating term structures of corporate default

probabilities over multiple future periods, conditional on firm-specific and macroeconomic

covariates. In their model which is without frailty, the observable covariates give substantially

better out-of-sample default prediction than does prediction based on credit ratings. After
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that, Duffie et al. (2009) incorporate the effect of additional unincluded sources of default

correlation and show that they have statistically and economically significant implications

for the tails of portfolio default loss distributions. The basic idea of the methodology is an

application of Bayes’s Rule to update the posterior distribution of unobserved risk factors

whenever default arrive with a timing that is more or less clustered than would be expected

based on the observable risk factors alone. And therefore, this model provides a more realistic

assessment of the risk of default.

6.4 Markov Chain Models and Structure Breaks

Jarrow et al. (1997) consider Markov chain in modeling the default events. They

treat default event as an absorbing state and default time as the first time when a Markov

Chain hits this absorbing state. Extending this model to credit transition model, Nickell

et al. (2000) and Feng et al. (2008) fit an ordered probit model and the rating transition

probabilities are viewed as functions of latent variables. However, the difference between

them is that the former work assumes latent variables derived by observable factors such as

industry, residence of the obligor and variables related to business cycle, while Feng et al.

(2008) introduce unobservable factors and argue that there’s better performance when using

unobservable factors. In addition, the ordered probit model can also be applied in sovereign

credit migration estimating, as Fuertes and Kalotychou (2007) do.

The estimates of credit rating transition matrices published by rating agencies usually

use a discrete-time setting. However, Jarrow et al. (1997) argue that Markov Chain pro-

cesses can be improved if we adopt the continues-time ones. After that, lot of study was

involved in the continuous-time framework such as the the contributions made by Fuertes

and Kalotychou (2007), Frydman and Schuermann (2008) and Kadam and Lenk (2008).

Monteiro et al. (2006) suggest using“finite non-homogeneous continuous-time semi-Markov
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process” to model time-dependent matrices. They apply a random transformation on time

scale to get a semi-Markov process and show that the nonparametric estimators of the haz-

ard rate functions can be used for consistently estimating these time-dependent transition

matrices. Lucas and Klaassen (2006) apply both discrete-time and continuous-time Markov

chain model in empirical studies. Frydman and Schuermann (2008) apply Markov mixture

model to their analysis, extending it from the original Markov chain model to a mixture of

two Markov chains, where the mixing is on the speed of movement among credit ratings.

They analyze corporate credit rating history from Standard & Poor’s spanning 1981-2002.

Hidden Markov Models (HMM) is a statistical model in which the system being modeled

is assumed to be a Markov process with unobserved state. Giampieri et al.(2005) model

the occurrence of defaults within a bond portfolio as a simple hidden Markov process. The

hidden variable represents the risk state. After obtaining estimates for the model parameters

they reconstruct the most likely sequence of the risk state. Banachewicz and Lucas (2008)

do a further study on this area, and test the sensitivities of the forecasted quantiles if the

underlying Hidden Markov Models is mis-specified.

Different from Giampieri et al. (2005), Xing et al. (2012), in their model, assume

that the generators of the rating transition matrices are constant between two adjacent

structural change in the economy. And they also assume the generators follow a continuous

sate and continuous time nonhomogeneous hidden Markov process since the economy may

have infinite regimes. The piecewise constant generators have unobserved, unknown time

and unknown number structure breaks which are be modeled as a compounded Poisson

process. In detail, the times of structural breaks follow a Poisson process with a constant

rate η, hence the duration between two adjacent structural breaks follows an exponential

distribution with mean 1/η. The generator matrices between tow adjacent structural breaks

are constant and the generator matrix at time t is characterized as Λ(t) = QNΛ(t), where
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Q1, Q2, ... are independent and identically distributed random generator matrices such that

the off-diagonal elements λ(i,j) follow independently a Gamma (αij, βi) prior distribution

with the density function

g(λ(i,j)) =
β
αij

i

Γ(αij)
[λ(i,j)]αij−1 exp(−λ(i,j)βi), (i, j) ∈ K

in which K = (i, j)|i 6= j, 1 ≤ i ≤ K − 1, 1 ≤ j ≤ K. These assumptions allow the model

to derive the distributions of the time-varying generators of rating migration matrices and

the probability of structural breaks at each time period, given firms’ transition history.

The derived distribution of generator matrices at a given period is a mixture of Gamma

distributions, and the weights of mixture components can be computed explicitly using

historical observations. As the number of mixture components changes over time, the model

is allowed to incorporate various non-Markovian behaviors in empirical studies. From this

perspective, this model extends the mixture model of two independent continuous time

homogeneous Markov chains in Frydman and Schuermann (2008).

6.5 Outline

This dissertation research is motivated by the model and ideas mentioned above. In our

work, we use an advanced Cox type semiparametric model in survival analysis to modulate

default intensity with these two default risk covariates distance to default and firm’s trailing

stock return. For firm l and at time t, the model is:

dµl(t) = exp{β(t)TZl(t)}dµ0(t),

Based on this theoretical foundation and industry practice, it seems natural to consider

distance to default as a default risk factor or covariate. However, a firm’s financial health
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may have multiple influences over time. For example, firm-specific, sector-wide, and macroe-

conomic state variables may all influence the evolution of corporate earnings and leverage.

As pointed out by Duffie and Lando (2001), if the distance to default cannot be accurately

measured, then a filtering problem arises, and the default intensity depends on the measured

distance to default and also on other covariates that may reveal additional information about

the firm’s conditional default probability. Shumway (2001) bring time-dependent covariates

into a discrete duration model and this is computationally equivalent to a multi-period logit

model with an adjusted standard-error structure. In predicting one-year default, Hillegeist et

al. (2004) also use a discrete duration model. Hillegeist et al. (2004) find, by taking distance

to default, the theoretical probability of default implied by the Black-Scholes-Merton model,

at least in this model setting, can not be entirely explained by distance to default And this

is supported by Bharath and Shumway (2008) and Campbell et al. (2008), who find that in

the presence of market leverage and volatility information, among other covariates, distance

to default adds relatively little information. Given the consideration on this empirical study,

the usual benefits of parsimony, and especially given the need to model the joint time-series

behavior of all default risk covariates chosen, the model of default probabilities estimated in

this dissertation work adopts a relatively small set of firm-specific and macroeconomic co-

variates: distance to default and firm’s trailing stock return which is an important auxiliary

covariate suggested by Shumway (2001). Although, like Shumway, we also don’t have partic-

ular structural interpretation for this covariate, the related research shows that the covariate

offers significant incremental explanatory power, perhaps as a proxy for some unobserved

risk factor that has an influence on default risk beyond that of the firm’s measured distance

to default. The detail of the two covariates construction will be discussed in Section 9.1.2

We consider the frailty in the model level to consider both observed and unobserved

default risk covariates. However, different from the previous models, in our model, we
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consider the time-varying risk factor coefficients β(t). We assume the β(t) is piecewise

constant and have unknown number and unknown time change-point. And we also construct

an estimation procedure for the β(t) and hyperparameters which is based on Xing et al.

(2012)’s work. This dissertation work is organized as follow. An multiplicative intensity

model with unknown structural breaks is introduced in Chapter 7: Section 7.1 introduce the

Cox type intensity model; Section 7.2 review the estimation method for the constant β in

previous models. And then, we construct an estimation procedure for the time-varying β(t) in

Section 7.3. Section 7.4 and 7.5 will provide an approximation algorithm and hyperparameter

estimation in the time-varying β(t) estimation procedure, respectively. In Chapter 8, as

a comparison, we introduce smoothing time-varying coefficient model and its estimation

procedure. We will provide a real data analysis in Chapter 9: Section 9.1 introduce the

real data and covariate we use in the model, including the source, cleaning the construction

method. In Section 9.2, we will show the numerical result for the time-varying β(t) and

other related quantity under structure break setting as Chapter 7. To compared with it, we

will show the numerical result for the smoothly time-varying β(t) as we talked in Chapter

8. Then a conclusion remarks will be presented in Chapter 10.
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Chapter 7

An Multiplicative Intensity Model with Unknown

Structural Breaks

7.1 Model Specification

Suppose there are n firms in the study. Let N?
l (t) be the number of default event

that happened on the lth firm (l = 1, . . . , n) over the time window [0, t] and Zl(·) be a

p-dimensional risk covariate process of the lth firm. Due to the fact that the firm is followed

for a limited amount of time, we denote Cl as censoring time for the lth firm. And we also

assume that the censoring mechanism is independent with the counting process. So we have

E{dN?
l (t)|Zl(t), Cl ≥ t} = E{dN?

l (t)|Zl(t)}, t ≥ 0

where dN?
l (t) = N?

l {(t+dt)−}−N?
l (t−), the increment of N?

l over the small interval [t, t+dt).

Define:

Nl(t) = N?
l (t ∧ Cl) and Yl(t) = I(Cl ≥ t),

where a ∧ b = min(a, b), and I(·) is the indicator function.

For any firm over the period [0, C], the observed data consist of {Nl(·), Yl(·), Zl(·)}
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(l = 1, . . . , n). And it’s reasonable to assume that {Nl(·), Yl(·), Zl(·)}, (l = 1, . . . , n) are

independent and identically distributed. Then we denote

E{dN?
l (t)|Zl(t)} = dµl(t) (7.1)

and consider the marginal regression model:

dµl(t) = exp{β(t)TZl(t)}dµ0(t), (7.2)

or

µl(t) =

∫ t

0

exp{β(u)TZl(u)}dµ0(u) (7.3)

where µ0(t) is an unknown continuous function and the time-varying coefficients β(t) ∈ Rd

are piecewise constant and have unknown time and unknown number of abrupt change-

points. And in detail, to develop an estimation procedure which can incorporate the such

feature, we assume that the number of the change-points in β(t) follows a Poisson process

{J(t); t ≥ 0} with the rate λ and are independent of Zl(t) and Cl, (l = 1, . . . , n). From this

assumption, we can derive that duration between two adjacent change-points β(t) follows an

exponential distribution and 1/λ is its mean. Between two adjacent change-points of β(t) are

constant. In our model, the coefficients β(t) deliver the impact of risk or default factors to the

real default event and from the view of modern credit management, the assumption about

β(t) we proposed above is reasonable. Since the regression coefficients for the default risk

factors shouldn’t change often and being characterized by a Poisson process is appropriate.

And secondly, coefficients between two consecutive structural change is usually stable which

mean there is a stationary relationship between the risk factors and default. Furthermore,

we assume that, if a change-point occurs at time t, then the regression coefficient β(t) will

shift to a new level that is independent of its pre-change values. Specifically, we assume that
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β(t) = βJ(t), where β1, β2, . . . are independent and identically distributed (i.i.d.) normal

random vector with mean ν and Σ (can to be estimated from history data.). Note that such

assumptions for β(t) allows us to consider the case of unknown time and unknown number

of change-points, analogous to nonparametric Bayes method using Gamma process prior.

And we also note that the model (7.2) specifies how the risk factors or covariates affect the

instantaneous rate of the counting process in the presence of structural breaks, and it can

degenerates to the case in Lin et al. (2000) when β is constant and there is no change-point

during the sample period.

In financial markets, it’s very likely that some companies are more prone to the risk coef-

ficients’ changes or breaks than others and this kind of heterogeneity is usually characterized

by the random-effect model, such as

λZ(t|η) = η exp{β(t)TZ(t)}λ0(t) (7.4)

where η is an unobserved unit-mean positive random variable that is independent of Z.

The model (7.2) incorporate this concern (7.4) and integrate out this type of heterogeneity

through expectations.

7.2 Estimating Equations For Constant β

To estimate the time-varying coefficients β(t), we need to consider a degenerate case

first in which β(t) is constant and doesn’t involve the structural breaks. In particular, we

consider an estimating equation for the degenerate case that β(t) is a constant random vector

with prior distribution N(µ,Σ) given the observations in time window (t?, t
?), which means,

β(t) ≡ β0 for t ∈ (t?, t
?) and β0 ∼ N(µ,Σ). Under this setting, the model (7.2) degenerates
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to

µl(t) =

∫ t

t?

exp{βT0 Zl(u)}dµ0(u) (7.5)

We know that the model (7.5) is similar to the semiparametric regression models discussed

by Pepe and Cai (1993), Lawless and Nadeau (1995), Lawless et al. (1997), and Lin et al.

(2000). The difference from their models to model (7.5) is that the latter one only consider

a specified time period or segmented time window, while the regression models discussed by

Pepe and Cai (1993) and other are for the entire time period (0, T ). Due to this reason, we

expect that the inference procedures and many others properties developed before can be

naturally extended here. Specially, we consider the following counting process argument to

construct an estimating procedure of β for the time period t ∈ (t?, t
?). We let

S(k)(β, t) = n−1
n∑
l=1

Yl(t)Zl(t)
⊗k exp{βTZl(t)}, (k = 0, 1, 2)

where a⊗0 = 1, a⊗1 = a and a⊗2 = aaT . And let Z(β, t) = S(1)(β, t)/S(0)(β, t), and z(β, t)

be the limit of Z(β, t).

We note that, with model (7.5), the partial likelihood score function for β is U(β, τ),

where

Ut?,t?(β, t) = Σ−1(µ− β) +
n∑
l=1

∫ t

t?

[Zl(u)− Z(β, u)]dNl(u). (7.6)

Denote the solution to U(β, τ) = 0 by β = β̂(t?, t
?) and we then estimate β of model (7.5)

by β̂(t?, t
?). To establish the asymptotic distribution of β̂(t?, t

?) under model (7.5), we need

to derive the corresponding distribution of U(β, τ). We note that

Ut?,t?(β0, t) = Σ−1(µ− β0) +
n∑
l=1

∫ t

t?

[Zl(u)− Z(β0, u)]dMt?,t?;l(u), (7.7)
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where

Mt?,t?;l(t) =

∫ t

t?

dNl(u)−
∫ t

t?

Yl(u) exp{βT0 Zl(t)}dµt?,t?;0(u)

Note that for counting process specified via model (7.5), Mt?,t?;l(t) are not martingales, so

the martingales central limit theorem is not applicable. However, since

dMt?,t?;l(t) = I(Cl ≥ t ≥ t?)[dN
?
l (t)− exp{βT0 Zl(t)}dµ0(t)],

We have E[dMt?,t?;l(t)|Zl(t)] = 0. Then, using modern empirical process theory, we can show

that the process n−1/2Ut?,t?(β, t) (t? ≤ t ≤ t?) converges weakly to a continuous zero-mean

Gaussian process with covariance function

Σt?,t?(s, t) = E[

∫ s

t?

{Z(u)− z(β0, u)}dMt?,t?(u)

∫ t

t?

{Z(v)− z(β0, v)}dMt?,t?(v)] (7.8)

where t? ≤ s, t ≤ t?, and the that n−1/2(β̂(t?,t?) − β0) is asymptotically zero mean normal

vector with covariance matrix

Γt?,t? = A−1t?,t?Σt?,t?(t?, t
?)A−1t?,t? (7.9)

in which

At?,t? = E[

∫ t?

t?

{Z(t)− z(β0, t)}⊗2Y (t) exp{βT0 Z(t)}dµ0(t)]

Please notice that the proof of the argument is essentially the same as the one in Lin et al.

(2000) who provided for the whole time period instead of the segmented time period (t?, t
?)

here.

To build the covariance matrix Γt?,t? which is the covariance function of β̂(t?,t?), we need

to calculate the baseline intensity function µt?,t?;0(·). Note that the Aalen-Breslow type
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estimator is natural estimator here:

µ̂t?,t?;0(t) =

∫ t

t?

dN̄(u)

nS(0)(β̂(t?,t?), u)
, t ∈ (t?, t

?], (7.10)

where dN̄(u) =
∑n

l=1Nl(u). Then applying the strong law of large numbers (Pollard, 1990,

page 41) for N̄(t) and the strong consistency of β̂(t?,t?), we can show that µ̂t?,t?;0(·) converge

almost surely to µ0(·) an that the covariance matrix Γ can be consistently estimated by 7.9

in which

Ât?,t? = −n−1∂Ut?,t?(β, t?)/∂βT |β=β̂(t?,t?)

= −Σ−1 − n−1
n∑
l=1

∫ t?

t?

{Zl(u)− Z(β̂(t?,t?), u)}⊗2Yl(u) exp{β̂T(t?,t?)Zl(u)}dµ̂t?,t?;0(u)

Σ̂t?,t? = n−1
n∑
l=1

∫ t?

t?

{Zl(u)− Z(β̂(t?,t?), u)}dM̂t?,t?;l(u)

∫ t?

t?

{Zl(v)− Z(β̂(t?,t?), v)}dM̂t?,t?;l(v),

M̂t?,t?;l(t) =

∫ t

t?

dNl(u)−
∫ t

t?

Yl(u) exp{β̂T(t?,t?)Zl(t)}dµ̂t?,t?;0(u).

Note that the marginal regression model (7.5), together with E{dN?(t)|Ft−} = E{dN?(t)|Z(t)},

where Ft− represents the σ-field generated by {N?(s), Z(s)|0 ≤ s ≤ t}, provides a counting

process model that is essentially the same as the one in Anderson and Gill (1982). And in

their work, they also discuss the asymptotic properties of n−1/2U(β0, τ) and n1/2(β̂(t?,t?)−β0).

In section 7.3, the likelihood function of model (7.5) will be used for the inference procedure,

so we approximate it here by the partial likelihood in this Anderson-Gill type model. In

particular, let tt?,t?;(1) < · · · < tt?,t?;(w) denote the w unique ordered default event times in

(t?, t
?] and let Gk denote the set of individuals with an default events at tt?,t?;(k) The number

of individuals in Gk is denoted as Nk. Then the partial likelihood of risk factors coefficients
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given observations in (t?, t
?] can be expressed as

Lt?,t?(β) =
w∏
k=1

{
exp(

∑
l∈Gk β

TZl(tt?,t?;(k)))

[
∑n

l=1 Yl(tt?,t?;(k)) exp(βTZl(tt?,t?;(k)))]
Nk

}
; (7.11)

In section (7.3), we approximate likelihood function ψ(·) by this partial likelihood (7.11) at

β = β̂tm−1,th , i.e.,

ψtm,th ≈ Ltm−1,th(β̂tm−1,th) (7.12)

7.3 An Estimation Procedure for Time-Varying β(t)

Now, we develop an estimation procedure for the time-varying coefficients β(t). In a

discrete time sample period: 0 < t1 < · · · < tH = C where C = max(C1, . . . , Cn). For

convenience, we scale the all Cl to make C = 1. And let th = h/H, (h = 1, . . . , H) and H ∼

O(nε) for some ε ∈ (0, 1). We assume that the abrupt change only happen at time t1, . . . , tH .

We define the variable J1 = 1 and Jh = J(th−) − J(th−1−) for h = 2, . . . , H to denote

whether β(t) are the same in the period (th−2, th−1) and (th−1, th). Then {Jh} is a sequence

of independent Bernoulli random variables with success probability ph = 1− exp(−λ/H).

Define Bmhk as the event that the most recent change-points of β(t) happen before and

after th are at tm−1 and tk, respectively, and F(tm−1,tk) as the information set consisting of

events and covariate history in (tm−1, tk). That is

F(tm−1,tk) = {N?
l (t), Zl(t); l = 1, . . . , n, t ∈ (tm−1, tk)}

According the definition of Bmhk, the regression coefficients in the intensity model of

firms’ default is constant, we denote it as β(tm,tk). Let U(β(th)|F(0,tH)) be the partial like-

lihood score function for β(th) given all the observations during (0, tH). Considering the
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multiple change-points during the whole sample period, we note that U(β(th)|F(0,tH)) can

be expressed as

U(β(th)|F(0,tH)) =
∑

0≤m≤h≤k≤H

πmhkU(β(tm−1,tk)|F(tm−1,tk), Bmhk) (7.13)

in which πmhk = P(Bmhk|F(0,tH)) and it represents the probability of Bmhk given all the obser-

vation. Equation (7.13) decomposed U(β(th)|F(0,tH)) into a mixture of localized estimating

equations in which no change-points are involved. This shows us the big picture on the issue

of constructing an estimate of β(th) give the all observed information F(0,tH).

First, we need to calculate the mixture probability πmhk, and then conditional on

F(tm−1,tk) and Bmhk, we solve the localized estimating equation for β(tm−1,tk) which satisfies

U(β(tm−1,tk)|F(tm−1,tk), Bmhk) = 0 (7.14)

We denote β(tm−1,tk) which is the solution of (7.14) as β̂(tm−1,tk). From the structure uncovered

by equation (7.13), we can construct the following estimate of β(th) given F(0,tH):

β̂(th) =
∑

0≤m≤h≤k≤H

πmhkβ̂(tm−1,tk) (7.15)

Finally, we extend (7.15) to obtain an estimate for β(t), i.e., β̂(t) = β̂(th) for t ∈ (th−1, th]

Now, we focus on some details of these steps. To compute πmhk, we use the hidden

Markov filtering approach to multiple change-points developed by Lai and Xing (2011). In

particular, let Rh = max{tm−1|Jm = 1,m ≤ h} and it denote the time of the most recent

change-point up to time th−1. Let ηm,h = P(Rh = tm−1|F(0,th)). Then the distribution of
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β(th) conditional on F(0,th) or the forward filter is expressed as

f(β(th)|F(0,th)) ∼
l∑

m=1

ηm,hf(β(tm−1,th)|F(tm−1,th)) (7.16)

where f(β(tm−1,th)|F(tm−1,th)) is the posterior distribution of β(th) given Rh = tm−1 and

F(tm−1,th), and the mixture probability are expressed as ηm,h = η?m,h/
∑h

m=1 η
?
m,h in which

η?m,h =

 phψth,th m = h,

(1− ph)ηm,h−1ψtm,th/ψtm,th−1
m < h.

(7.17)

Proof. First, we derive the posterior distribution of β(th) given F(0,th] (7.16). Note that

conditional on Jh = 1 or 0, we have

f(β(th)|F(0,th]) ∝ f(β(th),F(th−1,th]|F(0,th−1])

= phf(β(th),F(th−1,th]|F(0,th−1], Jh = 1) + (1− ph)f(β(th),F(th−1,th]|F(0,th−1], Jh = 0)

(7.18)

Note the first term that

phf(β(th),F(th−1,th]|F(0,th−1], Jh = 1)

= η?h,hf(β(th)|F(0,th], Jh = 1)

= η?h,hN(β̂th−1,th ,Σth−1,th)

in which

η?h,h = phf(F(th−1,th]|F(0,th−1], Jh = 1) = ph

∫
f(F(th−1,th]|β(th))f(β(th))dβ(th) = phψth,th

where the likelihood function ψ(·) is approximated by the partial likelihood function defined
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in (7.10). The second term in (7.18) can be expanded as

(1− ph)f(β(th),F(th−1,th]|F(0,th−1], Jh = 0)

= (1− ph)
h−1∑
m=1

P(Rh−1 = tm−1|F(0,th−1], Jh = 0)f(β(th),F(th−1,th]|Rh−1 = tm−1,F(0,th−1], Jh = 0)

=
h−1∑
m=1

η?m,h−1f(β(th)|Rh−1 = tm−1,F(0,th], Jh = 0)

=
h−1∑
m=1

η?m,h−1N(β̂tm−1,th ,Σtm−1,th)

in which

η?m,h−1 = (1− ph)ηm,h−1f(F(th−1,th]|Rh−1 = tm−1,F(0,th−1], Jh = 0)

= (1− ph)ηm,h−1
f(F(tm−1,th], Rh = tm−1)

f(F(tm−1,th−1], Rh−1 = tm−1)

= (1− ph)ηm,h−1ψtm,th/ψtm,th−1

Hence combining above equations yields the posterior distribution (7.16) and (7.17).

From our assumption, we know that the multiple change-point process (restricted on

the grid t0, . . . , sH) is a hidden Markov chain with a stationary distribution. Then we can

reverse time and obtain the corresponding backward filter which is analogous to the forward

filter. In detail, let R̃h+1 = min(tk|Jk = 1, k > h) and η̃k,h+1 = P(R̃h+1 = tk|Fth+1,tH ). The

distribution of β(th) conditional on F(th,tH) or the backward filter is given by

f(β(th)|F(th,tH)) ∼ phf(β(th)|F0) + (1− ph)
H∑

k=h+1

η̃k,h+1f(β(th,tk)|F(th,tk)), (7.19)

in which f(β(th)|F0) represents the density of β(th) without any observations (the prior dis-
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tribution of post-change value of β(t)), and the mixture probability η̃k,h+1 = η̃?k,h+1/
∑H

k=h+1 η̃
?
k,h+1

and

η̃?k,h+1 =

 ph+1ψth+1,th+1
k = h+ 1,

(1− ph+1)η̃k,h+2ψth+1,tk/ψth+2,tk k > h+ 1.
(7.20)

Proof. First, we reverse time and note that J̃h = JH−h+1 are still i.i.d. Bernoulli and that

the time-reversed Markov chain β̃(th) = β(tH−h+1) has the same transition probabilities as

the Markov chain β(th). In other words, {β(th)} is a reversible Markov chain. Moreover,

its stationary distribution is N(µ,Σ). Using the similar argument as the proof for (7.16)

and (7.17), we can prove the posterior distribution of β(th) given F(th,tH) is obtained by the

(7.19) and (7.20).

Then we use the Bayes Theorem to combine function (7.16) and (7.19) to get the dis-

tribution of β(th) conditional on F(0,tH),

f(β(th)|F(0,tH)) ∼
∑

1≤m≤h≤k≤H

πmhkf(β(tm−1,tk)|F(tm−1,tk)), (7.21)

and the mixture weight πmhk,

πmhk = π?mhk/
∑

1≤i≤h≤j≤H

π?ihj, (7.22)

where

π?mhk =

 phηm,h m ≤ h = k,

(1− ph)ηm,hη̃k,h+1ψtm,tk/(ψtm,thψth+1,tk) m ≤ h < k.
(7.23)

Proof. Let f(·|F(th,tH)) and f(·|F(0,tH)) denote the density function of β(th) given F(th,tH)

and F(0,tH), respectively. And let f denote the stationary density function of β(th) which is

the same as the prior Normal random vector N(µ,Σ).
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Note the assumption that outcomes are conditionally independent in the time period

(th−1, th)) given covariates and β(th) and we can obtain that

f(β(th)|F(0,tH)) ∝ f(β(th))f(F(0,tH)|β(th))

∝ f(β(th))f(F(0,th)|β(th))f(F(th−1,th)|β(th))

∝ f(F(0,th), β(th))f(F(th−1,th), β(th))/f(β(th))

∝ f(β(th)|F(0,th))f(β(th)|Fth,tH))/f(β(th))

in which f(β(th)|F(0,th)) and f(β(th)|F(th,tH)) are the posterior distributions of β(th) given

F(0,th) and F(th,tH), respectively. We put (7.16) and (7.19) and Normal prior into the above

equation and notice the following fact

N(β̂tm−1,th ,Σtm−1,th) ·N(β̂th,tk ,Σth,tk)/N(µ,Σ)

=
ψtm,tk

ψtm,thψth+1,tk

N(β̂tm−1,tk ,Σtm−1,tk)

then we can arrive at (7.21) and (7.23).

Now, combining with the localized estimation procedure we discussed in Section 7.2 for

period (tm−1, tk), we can compute the time-varying risk factors’ coefficients β(t).

7.4 A Bounded Complexity Mixture Algorithm

In our study, one of the purposes is to estimate the times of change points happened

in the coefficients. we prefer a fine grid or a large H in practical analysis. However, this

grid structure makes the number of mixtures in (7.15) increase with H, resulting unbounded

computational complexity and memory requirements in estimating β(th) as h changes from 1

toH. To address this issue, we follow Lai & Xing (2011) and we consider a bounded complexity
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mixture(BCMIX) approximation algorithm which has linear computational complexity by

keeping only a fixed number of mixtures.

Now we discuss this approximation algorithm BCMIX in detail. At each th, we keep

only the most recent b (1 < b < B) weights ηm,h (with h − b < m ≤ h ) and the largest

B − b of the h − b remaining weights in (7.16). Denote Kh−1 the set of indices j for which

ηj,h−1 in (7.16) is kept at time th−1; then Kh−1 ∈ {h − 1, . . . , h − b}. At time th, calculate

η?m,h by (7.17) for h ∈ {h}∪Kh−1 and let jh be the index not belonging to {h, . . . , h− b+ 1}

such that η?jh,h = min{η?j,h : j ∈ Kh−1 and j ≤ h − b}. Choosing jh to be the minimizer

farthest from h if the above set has two or more minimizers. Define Kh = {h}∪(Kh−1−{jh})

calculate ηm,h by

ηm,h = (η?m,h/
∑
i∈Kh

η?i,h), for m ∈ Kh

We then get an approximation to (7.16). Similarly, for the backward filter, let K̃h+1 denote

the set of indices j̃ for which η̃j̃,h+1 in (7.19) is kept at time th+1; then K̃h+1 ∈ {h+1, . . . , h+b}.

At time th, calculate η̃?k,h by (7.20) for h ∈ {h} ∪ K̃h+1 and let j̃h be the index not belonging

to {h, . . . , h + b − 1} such that η̃?
j̃h,h

= min{η̃?
j̃,h

: j̃ ∈ K̃h+1 and j̃ ≥ h + b}. Choosing

j̃h to be the minimizer farthest from h if the above set has two or more minimizers. Define

K̃h = {h} ∪ (K̃h+1 − {j̃h}) calculate η̃k,h by

η̃k,h = (η̃?k,h/
∑
i∈K̃h

η̃?i,h), for k ∈ K̃h

We then get an approximation to (7.19). The approximation to (7.21) can be obtained

by combining the above approximation to (7.16) and (7.19) using the argument in the last

section.,

f(β(th)|F(0,tH)) ∼
∑

m∈Kh,k∈K̃h+1

πmhkf(β(tm−1,tk)|F(tm−1,tk)), (7.24)
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in which πmhk = π?mhk/
∑

i∈Kh,j∈K̃h+1
π?ihj and π?mhk can be obtained by (7.23) for m ∈ Kh, k ∈

K̃h+1. Therefore, the time-varying coefficients defined in (7.15) can be approximated by

β̂(th) ≈
∑

m∈Kh,k∈K̃h+1

πmhkβ̂(tm−1,tk) (7.25)

Naturally, how to choose B and b is becoming our next concern of using the above

algorithm. Since the asymptotic properties holds for any fixed pair (b, B), (b < B). Specifi-

cally, in the preparation of numerical study, we have tested and compared the performance

of (b, B) = (10, 20), (15, 25) and (25, 50) via simulation, and the result for estimated values

don’t show much difference. To balance the computation time cost and performance, we

decide to use (b, B) = (15, 25) in our numerical study which will be presented in Section 9.2.

7.5 Estimation of Hyperparameters

The estimation procedures in Sections 7.2-7.4 contains hyperparameters Φ = {λ, µ,Σ}.

In practical analysis, Φ is unknown and need to estimated from the real data. From the

definition (7.17) of η?m,h, it follows that the conditional likelihood of F(th−1,th) given F(0,th−1)

is

f(F(th−1,th)|F(0,th−1)) =
h∑

m=1

η?m,h

in which η?m,h are functions of the hyperparameter Φ. Given Φ and the observed data F(0,tH),

the log-likelihood function is expressed as

l(Φ) =
H∑
h=1

log f(F(th−1,th)|F(0,th−1)) =
H∑
h=1

log{
h∑

m=1

η?m,h} (7.26)
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Notice the semiparametric feature in our model, we cannot compute this likelihood exactly.

Therefore, we compute η?m,h via approximation of ψtm,th as stated in the equation (7.12).

Besides this estimation method, we can also use Expectation−Maximization(EM) algo-

rithm to iteratively estimate the hyperparameters, see Xing and Yu (2013).
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Chapter 8

An Multiplicative Intensity Model with Smoothly

Time-Varying Coefficients

8.1 Model Specification

In Section 2, we focus on the intensity model with unknown structure breaks which

assume that the time-varying coefficients are piecewise constant. In other words, the coef-

ficients β(t) undergo abrupt change at some time and between the adjacent change-point,

β(t) is fixed as a constant coefficient. In this section, we will introduce another time-varying

setting for the coefficient which assumes that β(t) doesn’t have abrupt change in the sample

period but changes smoothly since we want to compare this two models in the real data

analysis. The inference procedures based on smoothing techniques have been developed by

Chiang and Wang (2009).

The model is similar with that in last section, we also consider n firms in the study. Let

N?
l (t) count the total the number of default event that happened on the lth firm (l = 1, . . . , n)

over the time window [0, t] and the risk factors Zl(·) be a p-dimensional risk covariate process
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of the lth firm. Denoting Cl as censoring time for the lth firm, and we have

E{dN?
l (t)|Zl(t), Cl ≥ t} = E{dN?

l (t)|Zl(t)}, t ≥ 0

where dN?
l (t) = dN?

l {(t + dt)−} − dN?
l (t−), the increment of dN?

l over the small interval

[t, t+dt). For any firm over the period [0, C], the observed data consist of {Nl(·), Yl(·), Zl(·)}

(l = 1, . . . , n) which is assumed as independent identically distributed. Then we also denote

E{dN?
l (t)|Zl(t)} = dµl(t) (8.1)

and consider the marginal regression model:

dµl(t) = exp{β(t)TZl(t)}dµ0(t), (8.2)

where µ0(t) is still an unknown continuous function. However, different from the setting in

section (7.1), the time-varying coefficients β(t) ∈ Rd are assumed to be a smoothly function

which doesn’t have abrupt change-point.

8.2 An Estimation Procedure for Smoothly Time-Varying Coeffi-

cients β(t)

The estimation procedure for smoothly time-varying β(t) is also based on the estimation

equation as we introduced in Section (7.2). As we know that the key idea in smoothing

techniques is using the weighted function or kernel Kd(x0, xi) to achieve localization. The

kernel function Kd(x0, xi) assigns a weight to Xi based on its distance from the target x0.

And the kernels Kd are typically indexed by a parameter d that dictates the width of the
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neighborhood. In our model, we consider one-dimensional Gaussian kernel smoother, that is

Kd(t, ti) = exp(−(ti − t)2

2d2
)

in which t is the target time spot, and ti is the neighborhood around the target. Under this

setting, the model (7.2) becomes to

µl(t) =

∫ T

0

exp{θT0 Zl(u)Kd(t, u)}dµ0(u) (8.3)

And as the same as we do in Section (7.2), denote

S(k)(θ, t) = n−1
n∑
l=1

Yl(t)Zl(t)
⊗k exp{θTZl(t)}, (k = 0, 1, 2)

where t ∈ (0, T ). a⊗0 = 1, a⊗1 = a and a⊗2 = aaT . And let Z(θ, t) = S(1)(θ, t)/S(0)(θ, t), and

z(θ, t) be the limit of Z(θ, t). And note that, under the smoothly coefficients assumption,

we will obtain the partial likelihood score function for θ is U sm(θ, τ), where

U sm
0,T (θ, t) = Σ−1(µ− θ) +

n∑
l=1

∫ t

0

[Zl(u)− Z(θ, u)]Kd(t, u)dNl(u). (8.4)

Denote the solution to U sm(θ, τ) = 0 by θ = β̂(τ). To establish the asymptotic distribution

of β̂(τ) under model (8.3), we need to derive the corresponding distribution of U sm(θ, τ).

Similar with the procedure described in Section (7.2), we note that

U sm
0,T (θ0, t) = Σ−1(µ− θ0) +

n∑
l=1

∫ t

0

[Zl(u)− Z(θ0, u)]Kd(t, u)dM0,T ;l(u), (8.5)

where

M0,T ;l(t) =

∫ t

0

dNl(u)−
∫ t

0

Yl(u) exp{θT0 Zl(t)}dµ0,T ;0(u)
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Similarly, we get derive that the process n−1/2U sm
0,T (θ, t) (0 ≤ t ≤ T ) converges weakly to a

continuous zero-mean Gaussian process with covariance function

Σ0,T (s, t) = E[

∫ s

0

{Z(u)− z(θ0, u)}Kd(s, u)dM0,T (u)

∫ t

0

{Z(v)− z(θ0, v)}Kd(t, u)dM0,T (v)]

(8.6)

where 0 ≤ s, t ≤ T , and the that n−1/2(β̂(0,T )−θ0) is asymptotically zero mean normal vector

with covariance matrix

Γ0,T = A−10,TΣ0,T (0, T )A−10,T (8.7)

in which

A0,T = E[

∫ T

0

{Z(t)− z(θ0, t)}⊗2Y (t) exp{θT0 Z(t)}dµ0(t)]
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Chapter 9

Real Data Analysis

9.1 Data Description

9.1.1 Firms’ Default and Accounting Data

In this study, our data set contains 1818 firms, and the sample period is from January

1986 to March 2013, 327 months, yielding 594486 firms-months of data in total. For each

firm, we collect credit rating (default information), accounting information include debt,

liability and stock. The detail is presented below:

• Default A default is defined as bankruptcy. It’s the event in our counting process

model. The default happens when the firm involves in distressed exchange, dividend

omission, grace-period default, indenture modified, missed interest payment, missed

principal and interest payments, missed principal payment, payment moratorium or

suspension of payments. Our firms’ credit rating data is from WRDS. Since the credit

rating data is categorized as different rating levels such as “AAA”, “BB+” and“CCC”.

First, we ignore the plus(+) and minus(-) which bring subgroups and combine “CCC”,

“CC” and “C” as one group since the last two rating categories are relatively few. And

then we remove rating records of two invalid ratings “N.M” and “Suspended”. After
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Figure 9.1: Number of survival firms (Upper panel) in each year 1986-2012; Number of
default event happened (Middle panel) in each year 1986-2012; The default ratio or default
probability during the same period (Bottom panel)
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that, we reorganize all ratings into eight groups, that is “AAA”, “AA”, “A”, “BBB”,

“BB”, “B”, “C”, “D”. Secondly, find all the transitions from the first 7 categories to

the last “D” category and treat them as default events. When the multiple defaults

happens on the same firm, we just write down the last one and ignore all the formers.

Then, we truncate default data to fit window 1986-2013. Finally, we get 160 firm

default events in this 27-year sample period. As showed in Figure (9.1), the upper bar

plot is to display the number of survival firms in each year, while the middle plot is

the number of default events happened in each year. In the bottom, we plot the ratio

of the two former numbers which represents the default probability during this period.

Note that, we also find another 200 companies which exit sometime during this 27-year

sample period. The reason for the exit could be acquisitions, mergers, “now a private

company” or others. We don’t treat these exits event as default.

• Current Liabilities A company’s debts or obligations that are due within one year.

We get Debt in current Liabilities(quarterly data) and Total current Liabilities(yearly

data) from Compustat. Following Moody’s KMV (Crosbie and Bohn, 2002), we use

build up Short-term Debt as the larger one between the two data.

• Long-term Debt Long-term debt for a company would include any financing or

leasing obligations that are to come due in a greater than 12-month period. Such

obligations would include company bond issues or long-term leases that have been

capitalized on a firm’s balance sheet. This quarterly data is also from Compustat.

• Equity The firm’s ownership interest which is represented by stock in our study. We

collect Stock price(monthly, closed price) and Common Shares Outstanding(quarterly)

from Compustat. Combining them together, we can compute the value of the total

equity for the firm. And stock price is also important in the constructing of the risk

factor Firm’s trailing one-year stock return.
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• 1-year CMT Year Rate The Constant Maturity Treasury rate is interpolated one-

year yield of the most recently auctioned 4-, 13- and 26-week U.S. Treasury bills, plus

the most recently auctioned 2-, 3-, 5- and 10-year U.S. Treasury notes as well as the

most recently auctioned U.S. Treasury 30-year bond, plus the off-the-runs in the 20-

year maturity range. This monthly data is obtained from Federal Reserve Bank of St.

Louis.

• CRSP NYSE/AMEX index return It’s CRSP Value-weighted index returns which

combine NYSE and AMEX. The monthly data is from WRDS. It’s important and like

a benchmark in constructing the Firm’s trailing one-year stock return.

9.1.2 Covariates

The default risk factors or covariates used in our study are the same as that used to

estimates the models of Duffie et al.(2007), Das et al.(2007) and Duffie et al.(2009). Before

building up the covariates, we first transfer all the quarterly and yearly data to month-

ly data by using linear interpolation, which is the preparation for the monthly covariates

construction.

• Distance to Default The firm’s distance to default is the number of standard devia-

tions of asset growth by which assets exceed a standardized measure of liabilities. It’s

a volatility-adjusted measure of leverage. The construction method we adopted here

is that used by Vassalou and Xing (2004), Crosbie and Bohn (2002), and Hillegeist

et al. (2004). Although the conventional approach to measure distance to default

involves some rough approximations, Bharath and Shumway (2008) provide evidence

that default prediction is relatively robust to varying the proposed measure with some

relatively simple alternatives. Let talk about the construction method in detail.
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The distance to default Dt can be expressed and calculated by

Dt =
ln(Vt/Lt) + (µA − 1

2
σ2
A)T

σA
√
T

, (9.1)

in which

Vt: Market value of the firm’s assets at time t.

Lt: Liability.

µA: Firm’s mean rate of asset growth.

σA: Firm’s asset volatility.

Computation Steps:

Lt: By Moodys KMV (Crosbie & Bohn, 2002), Lt, the Liability, equals to “short term

debt + 0.5 × long term debt” where short term debt is max of Debt in current Liability

and Total current Liability.

σA and Vt: By Merton(1974) and Black and Scholes(1973), we can calculate Vt and σA

by iteratively applying the equations:

 Wt = VtΦ(d1)− Lte−rtTΦ(d2)

σA = std(ln(Vt)− ln(Vt − 1))

where Φ(·) is the standard normal cumulative distribution function and

d1 =
ln(Vt/Lt) + (r − 1

2
σ2
A)T

σA
√
T

d2 = d1 − σA
√
T
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Wt = stock price × number of shares outstanding + total debt (short term debt + long

term debt). Taking the initial asset value Vt to be the sum of Wt and risk-free return

rt to be the 1-year CMT Year Rate. The iteration stops when the σA converges.

µA: Following Vasslou & Xing (2004), we calculate µt vector by

µt = max(
Vt − Vt−1
Vt−1

, rt)

in which rt is the 1-year CMT Year Rate. And then we can obtain µA as

mean(max(log Vt
Vt−1

, rt)) when Vt is known.

Plug all the results into (9.1), then we build up the distance to default.

• Trailing 1-year stock return The firm’s trailing 1-year stock return or firm’s past ex-

cess stock return is an important default risk factor suggested by Shumway (2001). We

do not have a particular structural interpretation for this covariate, however, Shumway

(2001) and Duffie et al. (2009) have found that this covariate offers significant incre-

mental explanatory power, perhaps as a proxy for some unobserved factor that has an

influence on default risk beyond that of the firm’s measured distance of default. We

follow Shumway (2001) to calculate it by the difference of firm’s 1-year stock return

and CRSP NYSE/AMEX index return.

9.2 Model Estimation under Structure Breaks Assumption

9.2.1 Time-varying β(t)

In this dissertation research, our interest is to analyze and understand the relationship

of risk factors and default events under market structural break. As we introduce in last
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section, to link the intensity of the counting process N?(t) with firm’s risk factors, we consider

two covariates in the study: firm’s distance to default and firm’s trailing 1-year stock return.

In the 1818 firms, there are 160 defaults happened in the sample period from January

1986 to March 2013. Applying the time-varying β(t) estimation procedure we present in Sec-

tion (7.4)-(7.6) with the two covariates which are constructed from firm’s specific accounting

information and macroeconomic data, we can calculate calculate the time-varying β1(t) and

β2(t)(see Figure 9.2 and Figure 9.3) which are the coefficients for distance to default and

trailing stock return, respectively.
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Figure 9.2: Time-varying β1(t). The middle black line is the β̂1(t) and two blue line confine
the pointwise 95% confidence interval for the estimation.
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Figure 9.3: Time-varying β2(t). The middle black line is the β̂2(t) and two blue line confine
the pointwise 95% confidence interval for the estimation.
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As shown in Figure (9.2) and (9.3), the distance to default and trailing stock return have

negative coefficients for the default intensity which matches the the information represented

by the two risk factors. The company which has longer or larger distance to default and

higher trailing stock return will be unlike to default or have a lower default intensity.

From the plot (9.2) and (9.3), we can find the coefficients went through a stable or

constant period from 1986 to 1999. However, we know the fact that in October 1987, US

stock market economy crashed, shedding a huge value in a very short time. And from 1990-

1991, a recession hit the economy but after March 1991, the economy began to recovery

(Announced by NBER). We think the coefficients kept stable in the changing economy

environment because the stock market crisis and short term recession didn’t have large

impact on the firms’ default. There’s less than 5 default events happened averagely in the

period which can also support our judgment.

Between May 1999 and October 2002, the coefficients have an abrupt change. The

coefficient of distance to default went up first then went down, in contrast, the coefficient

of trailing stock return went down first then went up. The same abrupt change in time

but different in style is very interesting. First, we know that from the second half of 1998,

a series of devastating events happened to give large impact to the economy not just to

stock market, including Russia’s default, Brazil’s currency crisis and sever disruption of

LTCM(Long-Term Capital Management L.P.). On March 10, 2000, NASDAQ composite

index peaked at 5,048.62, more than double its value just a year before, however, the Dot-

com bubble began to burst. On March 20, 2000, NASDAQ has lost more than 10% from its

peak. By 2001 the bubble was deflating at full speed. The series of events bring a storm to

U.S. company which make a lot of firm default and the risk factors’ coefficients change a lot

in short time. The different movement direction of β1 and β2 may have such a reason: when

the bad economy time come, the performance in stock market becomes more important (β2
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increases in absolute value)as a default risk factor, while the distance to default has weaker

(β1 decreases in absolute value) influence. And vice versa when economy began to recover.

The second abrupt change in coefficients happened between November 2003 and October

2005. To stimulate economy, Fed lowered the federal funds rate after the Dot-com bubble

burst, till May, 2003, the federal funds rate was down to the 40-year lowest point, turning

the US economy from recovery to healthy expansion.

The last notable unstable period for the coefficients is from June 2008 to September

2010. It’s not surprise to find that the financial crisis happened from 2008 makes the default

risk factors’ coefficient break constant situation and go through a turmoil. Both β1 and

β2 become larger in this period, or decrease in their absolute value. That mean, the risk

factors has weaker impact to the default event. We guess the reason for the phenomenon is

the firms’ or investors’ tolerance to bad financial position becomes stronger when facing the

worst financial crisis since the Great Depression of the 1930s .

9.2.2 Baseline Intensity

Recall our model 7.3

µl(t) =

∫ t

0

exp{β(u)TZl(u)}dµ0(u)

where µ0(t) is the baseline hazard function or baseline intensity which is assumed as an

unknown and unspecified continuous function. This baseline function represents the com-

mon macroeconomic risk factor. After we obtain the time-varying coefficients β(t), we can

calculate µ̂0(t)the baseline function by the Aalen-Breslow type estimator which is showed in

formula (7.10). To explore it, we plot the baseline µ0(t) in Figure (9.4). From the plot, we

can find that the baseline function stay almost constant from 1986 to 1999. There are only
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Figure 9.4: The baseline function µ0(t). The middle black line is the µ̂0(t) and two blue line
confine the pointwise 95% confidence interval for the estimation.
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two months which manifest fast increase: January 1988 and June 1992. However, after May

1999, the baseline function enters into a “non-stable” track. Between these abrupt increases,

the periods from December 2001 to August 2003 and from September 2008 to October 2009

is the fastest. That means the macroeconomic risk factors become more hazardous to the

companies in our sample. Look at these two periods, one is just in the full speed deflation of

Dot-com bubble and the other is in the worst time of the financial crisis. A more interesting

finding is that the fastest increase in baseline function in a single month happens in May

2006 and this month is considered as the start point of US housing prices rise before financial

crisis and finally leads to it.

9.2.3 Firm’s Default Intensity

Now, let’s take a look at the company’s intensity function µl(t). In this analysis, we

pick AMR Corpoaration as our individual firm sample. AMR Corporation is a commercial

aviation business and airline holding company based in Fort Worth, Texas. And it’s best

known for being the parent company of American Airlines. The company also owns AMR

Eagle Holdings Corporation, which operates the regional airlines American Eagle Airlines

and Executive Airlines. We can easily calculate AMR’s intensity function when we have

the time-varying coefficients and baseline function as showed as formula (7.3) and plot it in

Figure (9.5).

µAMR(t) =

∫ t

0

exp{β(u)TZAMR(u)}dµ0(u)

From the plot, we can notice that the first large increase in the intensity function happens in

the period from 2002 to 2003. Check the company’s business record, we know that in response

to decreased demand following the events of September 11, 2001, the company reduced its

operating schedule by approximately 20 percent and reduced its workforce by approximately

20,000 jobs. And in August 2002, the company was cutting another 7,000 jobs. First-class
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Figure 9.5: The AMR Corp. Intensity function µAMR(t). The middle black line is the
µ̂AMR(t) and two blue line confine the pointwise 95% confidence interval for the estimation.
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service was removed on most flights, with the exception of major international routes. Even

the company reduced its annual costs by $2 billion in 2002, it still incurred net losses of

$3.5 billion, the worst year in the company’s history. However, after second quarter of 2003,

in conjunction with the improvement of US economy, the company’s revenue environment

began to improve. In the plot, we can see the intensity enters into a relatively stable period

after 2003.

In financial crisis period, the company also encountered the operating difficulties. From

the Figure (9.5), it’s obvious that find the fast increase in intensity function µAMR(t) in the

period. The most recent event happens on AMR is in November 2011. The company filed for

Chapter 11 reorganization bankruptcy with $4 billion of cash. The worse is in February 2012,

the company announced that in order to cut operating costs and boost revenue, it would

eliminate 13,000 jobs, which amounted to 18 percent (including 15 percent management

positions) of American Airline’s 73,800 employees. And in 2012, AMR began to consider

merge with US Airways. In the plot, we can also find this large intensity function increase

period starting from Nov, 2011. At the same time, the estimates variance for the intensity

function also becomes much larger than before which may reveal the uncertainty of business

situation of the company.

9.3 Model Estimation under Smoothly Time-Varying Coefficients

Assumption

As a comparison with the model which is under the smoothly time-varying coefficients

assumption, we plug the real data into the model described in Chapter (8). We calculate the

smoothly time-varying β1(t) and β2(t), and with estimated coefficients, we then to compute

the baseline function µ0(t). They’re showed in Figure (9.6), Figure (9.7) and Figure (9.8),
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respectively. Meantime all the 95% confidence intervals will also be provided.
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Figure 9.6: Smoothly time-varying β1(t). The middle black line is the β̂1(t) and two blue
line confine the pointwise 95% confidence interval for the estimation.

From the Figure (9.6) and Figure (9.7), we can clearly find two common features which

are very different from the results based on our model. First, the estimation of the two risk

factors’ coefficients is relatively stable and rarely has abrupt up or downs. Even this result

fits the assumption of smoothing function setting, it fails to capture any sudden changes

in the coefficients. Second, for the early period, the estimation provided by smoothing

model incurs large variance, leading the 95% confidence interval to contain 0 in it. From

the plots, we can tell that such large confidence interval actually make the estimation very

weak in explanatory power. And the same feature can also be found from the Figure (9.8):
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Figure 9.7: Smoothly time-varying β2(t). The middle black line is the β̂2(t) and two blue
line confine the pointwise 95% confidence interval for the estimation.
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Figure 9.8: The baseline function µ0(t). The middle black line is the µ̂0(t) and two blue line
confine the pointwise 95% confidence interval for the estimation
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this estimation fails to show the fast increase of baseline function in short time and the

much worse thing is that the variance of the estimation coming from smoothing model is

too large compared to our model’s. From this comparison, we have seen the incompetent

of the smoothing time-varying coefficients model on dealing with the abrupt change-points

environment.
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Chapter 10

Concluding Remarks

This dissertation research is focused on the dynamics of firms’ default risk when the risk

factors’ coefficients have structure changes. We consider an advanced Cox type semipara-

metric model in survival analysis to modulate firm’s default intensity with two default risk

factors or covariates distance to default and firm’s trailing stock return. For firm l and at

time t, the model is:

dµl(t) = exp{β(t)TZl(t)}dµ0(t),

We assume the β(t) is piecewise constant and have unknown number and unknown time

change-point. And we also construct an estimation procedure for the β(t) and its asymptot-

ic covariance based on the the estimating equation for the constant β in previous model. This

estimation procedure outputs the posterior distribution of the coefficients as a mixture dis-

tribution of the segmented constant coefficients with explicit weights which can be calculated

recursively using a Bayesian method. In addition, to lower the computational complexity,

a Bounded Complexity Mixture Approximation (BCMIX) is presented. Compared to the

Bayes estimates, the BCMIX has higher efficiency. To prepare the real data analysis, we also

introduced a previous model which assumes the smoothly time-varying coefficients, including

this model’s estimation procedure.
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In the real data analysis, we collect the default and accounting data of 1818 firms from

January 1986 to March 2013, 327 months, yielding 594486 firms-months of data in total.

Then we calculate the time-varying coefficients with structural breaks and baseline intensity

function and we discuss how the results capture the real events happened in history. We

pick AMR Corporate as the individual firm in the analysis and compute its default intensity

as an example. We also plot and talk about the results from the model which has smoothly

time-varying coefficients.

With our model, we successfully solve the problem of estimating the time-varying default

risk factors’ coefficients in the presence of structural breaks. We can derive analytical filtering

formulas for the posterior distributions of the parameters and the approximation algorithm

BCMIX lower the computational complexity and improve the statistical efficiency.
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