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Abstract of the Dissertation 

High-Throughput Single-Cell Copy Number Profiling for Cancer Heterogeneity 

Analysis 

by 

Taimour Baslan 

Doctor of Philosophy 

in 

Molecular & Cellular Biology 

Stony Brook University 

2014 

Intra-tumoral genetic heterogeneity has long been recognized, yet remains poorly 

understood. This has primarily been due to the lack of sensitive technologies to measure 

it. Genome wide analysis at the level of single cells has recently emerged as a powerful 

tool to dissect cancer genome heterogeneity. However, to be truly transformative, single 

cell approaches must accommodate the analysis of large numbers of single cells. Here, 

using integrative informatics and molecular biology approaches this study presents a 

robust, low-cost, and high-throughput method to retrieve the genome-wide copy number 

landscape of hundreds of single cancer cells. Application of the method to human cancer 

cell lines and clinical cancer tissue illustrates the underlying genetic heterogeneity 

present in both and further reveals mosaicism of chromosomal amplifications in clinical 

cancer samples. The capacity of the method to facilitate the rapid profiling of hundreds 

and thousands of single cell genomes is bound to illuminate the biology of intra-tumoral 

heterogeneity. 
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1. INTRODUCTION 

 

1.1. COPY NUMBER VARIATION IN ORGANISMAL GENETICS AND 

BIOLOGY 

 

 Copy number variation (CNV) is an important source of genetic variation in 

organismal biology and is known to influences phenotypic traits1. From simple 

eukaryotic organisms such as yeast to more complex ones such as cattle, copy number 

variants have been linked to variable phenotypes. For example, in yeast, copy number 

gains of the FLO11D locus have been shown to confer adaptation to environmental 

conditions such as osmostress2. In maize, genome wide surveys of cohort lines has 

demonstrated extensive copy number variation in inbred populations3 with more detailed 

analysis linking copy number variants to traits such as aluminum tolerance4. In cattle, 

copy number variants have been associated with breeding specific traits involving health 

and reproduction5. Importantly in humans, ever since the initial description of large-scale 

variation in copy number polymorphisms6,7, human genome copy number investigations 

have proliferated at an fast rate. Many studies have found associations between copy 

number variants and normal phenotypes such as human olfactory receptors and smell8 

and the amylase gene and diet9. In addition, copy number variation has also been linked 

with a wide range of deleterious phenotypes and disorders, ranging from the congenital to 

the developmental. Copy number variants have been associated with congenital heart 

disease10-12 as well as congenital kidney disease13,14. In developmental disorders such as 
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obesity and autism, where initial copy number variation studies provided compelling 

evidence for association15,16, large scale investigations have resulted in catalogues of 

associated mutations illuminating the underlying genetics of these disorders17-20. Thus, 

copy number variation plays an important part in the underlying functional genetics of 

genomes and contributes significantly to phenotypic expressivity. 

 

1.2. CANCER GENETICS AND COPY NUMBER VARIATION 

 

 Cancer is a genetic disease of an evolutionary nature where the interplay between 

germline and somatic mutations selects for an unrestrained proliferative phenotype21. Of 

the myriad of genetic alterations cancer genomes carry, copy number variants in the form 

of chromosomal deletions and duplications/amplifications, both in somatic and germline 

contexts, occupy a central role. Initially observed and studied using chromosome banding 

techniques and cytogenetics at the gross scale and later thru microsatellite analysis, copy 

number alterations have been found to be non-random and recurrent across many 

different tumor types22-26. Subsequently, technological improvements gave way for Array 

Comparative Genomic Hybridization (aCGH)27,28 and Single Nucleotide Polymorphism 

(SNP) arrays (SNP-arrays)29,30 (based on differential labeling of tumor DNA samples 

with fluorophores, hybridization to arrays containing oligonucleotide probes, and analysis 

of fluorometric signal ratios) which allowed for the analysis of copy number variation at 

a genome-wide level and at higher resolution. The availability of these technologies and 

the realization of the commonality of copy number alterations in tumor genomes led to 

intense investigations of genome-wide copy number profiles across many cancer types 
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and in some cases thousands of tumor samples31-35. These analysis have (1) linked copy 

number variants to genetic predisposition to cancer development across many tumor 

types36-38, (2) led to the identification of cancer driver oncogenes and tumor suppressor 

genes39-42, (3) guided therapeutic decisions (for example Herceptin in ERBB2 amplified 

breast cancers)43,44, (4) helped predict drug sensitivity of tumors45,46, and (5) assisted in 

the prognostication of cancer patients47-51. Together, these studies offered strong evidence 

for the importance of copy number variation in cancer biology and the need to further the 

understanding of its occurrence. 

 

1.3. INTRA-TUMORAL GENETIC HETEROGENEITY IN CANCER AND NEXT 

GENERATION SEQUENCING ANALYSIS 

 

 Implicit in the description of cancer as a genetic disease subject to the principles 

of natural selection is the argument that along the tumor’s evolutionary trajectory, 

different genetically distinct sub-populations are likely to evolve and dynamically interact 

with each other52-55. Indeed, the occurrence of intra-tumoral genome heterogeneity has 

long been hypothesized56 and researchers did embark upon its characterization57-60. 

However, most studies were limited in scope, primarily due to the inadequacies of the 

existing technologies. This, however, has changed with advent of Next Generation 

Sequencing (NGS) technologies61,62. The highly quantitative and qualitative nature of the 

sequencing data, along with the ever increasing output of next generation sequencing 

machines have led to the adoption of sequencing technologies in all facets of genomic 

research, from the identification of single nucleotide polymorphisms63,64 to the 
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delineation of copy number variants65,66, at a genome-wide scale. Importantly, the depth 

of sequencing data that has be generated in some studies has also facilitated the 

identification of sub-clonal variants67,68, and consequently re-kindled the cancer 

community’s interest in intra-tumoral heterogeneity. Many reports based on deep 

sequencing of whole genomes or targeted regions such as protein coding genes (i.e. 

exome) have provided quantitative descriptions of genetic intra-tumoral heterogeneity69-71 

and in many cases have linked it to disease progression72,73, metastasis74,75, as well as 

therapeutic resistance to targeted therapies76-78. Nonetheless, our knowledge of cancer 

genome heterogeneity is still lacking and therefore, new technologies are urgently needed 

to facilitate the dissection of intra-tumoral heterogeneity. 

 

1.4. SINGLE CELL SEQUENCING APPROACHES FOR THE STUDY OF 

INTRA-TUMORAL GENETIC HETEROGENEITY 

 

Recently, by coupling the power of Next Generation Sequencing (NGS) 

technologies to Whole Genome Amplification (WGA) approaches, single cell genomic 

analysis have emerged as a powerful approach to dissect cancer genetic 

heterogeneity79,80. Single cell sequencing approaches have been developed to query, at a 

genome-wide level, single nucleotide variants (SNVs)81,82, structural variants (SVs)83, 

epigenetics states84 as well as copy number variation79,80. Investigation utilizing single 

cell sequencing methods have begun to illuminate valuable and novel aspects of cancer 

biology and promise to deliver more85-87. However, to realize the potential of single cell 

sequencing in understanding the biology of heterogeneity, methods are needed that allow 
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the investigation of hundreds of single cell genomes at reasonable cost in time, effort and 

reagents.  Sequencing hundreds of single cells to the nucleotide level is simply not 

affordable even with the remarkable NGS platforms that are available. Fortunately, copy 

number analysis requires only sparse sequence coverage, yet it can distinguish 

subpopulations and provides deep insights into genetic heterogeneity. Thus, in theory, 

coupling sparse sequencing with molecular barcoding approaches offers a mean to profile 

many cells together. 

 

1.5. CHALLENGES IN HIGH LEVEL MULTIPLEXING OF SINGLE CELLS 

 

The feasibility of multiplex single cell analysis has been demonstrated by 

combining up to eight barcoded single cells on a single sequencing lane88,89. However the 

potential for higher level multiplexing has not been explored at either the bioinformatic 

or operational levels. To accomplish this, informatic analysis aimed at identifying 

minimal sequence read requirements for robust copy number identification are required. 

Furthermore, while technically feasible, amplifying and creating barcoded sequencing 

libraries from many single cells using traditional library preparation protocols involving 

sonication, end repair, A-tailing, and adaptor ligation is time consuming and expensive. 

Hence, an optimized multiplexing process that informs the minimum number of reads 

that can be used to determine genome-wide copy number profiles at specific levels of 

resolution and a simplified preparative method that is faster and cheaper and yet 

maximizes the amount of information that can be extracted from each sequencing read 
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from a single sequencing lane of the Illumina HiSeq machine would represent a key step 

in developing technologies suited to address intra-tumoral genetic heterogeneity. 

Here, a robust and affordable, high-throughput method is described that employs 

a modified version of Degenerate Oligo-nucleotide Priming-PCR (DOP-PCR) 

amplification, simplified library preparation, and multiplex sequencing that facilitates the 

retrieval of the genome-wide copy number landscape of hundreds of individual cancer 

cells. The method drastically lowers the cost of profiling single cell genomes (down to ~ 

$30 per single cell), significantly cuts sequence library preparation time, and maximizes 

the amount of information extracted from each single cell sequencing data set. The 

approach is applied to human cancer cell lines and clinical cancer biopsies to demonstrate 

its power to reveal population heterogeneity. 
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2. MATERIALS AND METHODS 
 
 
2.1. Cell culture and clinical samples 
 
 
315A lymphoblastoid cells were cultured as suspension cultures in RPMI 1640 (Gibco-

Invitrogen) supplemented with 10%FBS (HyClone), 100 U ml-1 penicillin and 100ug ml-1 

streptomycin (Gibco-Invitrogen). SK-BR-3 and MDA-MB-231 were cultured as adherent 

cultures in DMEM (Gibco-Invitrogen) supplemented with 10% FBS, 100 U ml-1 

penicillin and 100ug ml-1 streptomycin. All lines were cultured at 37°C and 5%CO2. Core 

biopsies, obtained prior to treatment, were processed by formalin fixation and paraffin 

embedding (FFPE) or frozen down and stored in OCT compound (2 cores each per 

biopsy event). Both specimen types were subjected to sectioning, hematoxylin and eosin 

staining, and histologic evaluation by the study pathologist.  Frozen cores were processed 

for single nuclei isolation as described below.  FPPE sections were used for tumor 

histology and immunohistochemistry. 

 

2.2. NST-DAPI nuclei isolation buffer 

 

NST buffer was prepared by mixing the following components in ddH2O for a final 

volume of 800 ml; 146 nM NaCl, 10mM Tris Base pH7.8, 1mM CaCl2, 21mM MgCl2, 

0.05% BSA, and 0.2% NP40. NST-DAPI buffer was prepared by adding 200 mL of 

MgCl2 at a concentration of 106mM to the 800 ml of NST buffer followed by dissolving 

10mg of DAPI and storing at 4 °C protected from light. 
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2.3. Nuclei isolation, DNA staining and single cell flow cytometry 

 

For cell lines (both adherent and suspension) nuclei were prepared by collecting 

suspension cells (following trypsinization in the case of adherent cells) in PBS to a 15 ml 

conical centrifuge tube and gently centrifuging at 105 xg for 4 min followed by medium 

aspiration. Cells were subsequently re-suspended in 5 ml of PBS and counted using a 

hemacytometer.  0.5-1.0 x 106 cells were centrifuged again at 105xg for 4 mins. 

Following centrifugation, media was aspirated without disturbing cellular pellets. Cells 

were dispersed by gentling flicking the 15 ml canonical tube several times. This was 

followed by addition of 1 ml of NST-DAPI buffer and holding on wet ice. For frozen 

core biopsies,  nuclei were prepared by finely mincing tissue in a 60mm TC plate with 

0.5ml NST-DAPI buffer using two fine-point disposable scalpels until pieces are very 

fine. Prior to sorting, NST-DAPI suspended nuclei (from both cell lines and human 

tissue) were run thru a 5 ml Falcon round-bottom tube with cell-strainer cap to select 

against cellular debris and clumps that might clog the flow sorting machine. Single-cell 

sorting was performed using a FACS AriaIIU SORP (BD Biosciences, San Jose, CA) 

with the ACDU option (Automated Cell Deposition Unit).  The sorter was run inside a 

BioProtect IV Safety Cabinet (Baker Company, Sanford, ME) to maintain BSL2 

biosafety standards. The DAPI signal was detected by a 355 nM  UV Laser (450/50 

bandpass filter).  Gains were set for the UV photomultiplier based on the DNA content 

equivalent to human diploid lymphoblast cells (315A cells).  Single nuclei were 

determined by doublet discrimination using dot plots with DAPI area of the y-axis and 

DAPI pulse height on the x-axis as described by Wersto et.al90. From the single cell gate, 
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a histogram was derived that plots DNA content on a linear scale on the x-axis. Single 

nuclei were sorted according to DNA content. Single cells were deposited in 96 well 

plate format containing 9 µl of cell lysis buffer (800 µl H2O, 6 µl Proteinase K, and 96 µl 

10X Singe Cell Lysis and Fragmentation Buffer, SIGMA WGA4).  

 

2.4. Single Cell Whole genome amplification 

 

Single cells were lysed by incubating 96 well plates for 1 hour at 50 °C followed by 4 

min at 99 °C using a thermocycler. Single cell whole genome amplification was then 

carried out using the SeqPlex Enhanced DNA Amplification Kit (SEQXE, SIGMA) as 

described below. Following single cell lysis and DNA fragmentation, DNA was 

denatured and primed for initial library synthesis by adding 2 ul of Library Preparation 

Buffer to each well and incubating in a thermocycler at 95 °C for 2 minutes followed by 

cooling at 4 °C. Library pre-amplification synthesis was performed by adding 1ul of 

Library Preparation Enzyme and incubating in a thermocycler in a temperature ramping 

scheme as follows: 16 °C for 20 mins, 24 °C for 20 mins , 37 °C for 20 mins, and 75 °C 

for 5 mins. Reactions were subsequently cooled on ice. Pre-amplification library DNA 

molecules containing universal sequences on the ends of the molecules are then amplified 

using single primer PCR by adding 15 µl 5X Amplification Mix, 1.5 µl DNA Polymerase 

for SeqPlex, and 42.5 µl of Water, incubating in a thermocycler, and using 24 cycles for 

amplification according to the following parameters: Initial denaturation: 94 °C for 2 

minutes, 94 °C for 15 mins for subsequent denaturation steps and 70 °C for 5 mins to 

anneal/extend. After cycling, DNA molecules are incubated for 30 mins at 70 °C to 
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ensure filling of the DNA ends to facilitate subsequent reaction steps (i.e. restriction 

digestion of universal WGA sequences).  Single cell amplification products were purified 

using QIAquick 96 well plates according to manufacturers instructions and DNA eluted 

in 50 µl EB solution.  

 

2.5. Illumina library generation of single cell amplified DNA 

 

All subsequent reactions were carried out in 96-well plate format using multi-channel 

pipetting. Restriction digestion of WGA universal sequences was performed 

interchangeably using SeqPlex supplied Primer Removal reagents (SIGMA) and Eco57I 

(Thermo Scientific). 1 µg of WGA DNA products in total volume of 20 µl containing 2.4 

µl 10X Primer Removal Buffer/Buffer G, 0.4 µl Primer Removal Solution/SAM, and 0.5 

Primer Removal Enzyme/Eco57I enzyme (Thermo Scientific). Reactions were incubated 

at 37 °C for 30 min followed by incubation at 65 °C for 15 min for enzyme deactivation. 

Reactions were subsequently cooled on ice. Following restriction digestion, 24 µl of EB 

and 26 µl of 2X Quick Ligase Reaction Buffer (NEB) were added to each reaction to 

bring the volume up to 70 µl. The addition of 26 µl of 2X Quick Ligase Reaction Buffer 

is critical since it facilitates selection of higher molecular weight DNA (between 200-

600bps). Digested DNA was subsequently purified using Agencourt AMPure XP beads 

(Beckman Coulter) according to the following protocol. 30 µl of warmed beads were 

added to each digestion reaction. Beads and reaction products were mixed by vortexing 

for 7s. Mixed reactions were then incubated off-magnet for 10 min at RT after which they 

were transferred to DynaMagTM-96 Side magnet (Life Technologies) and left to stand for 
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5 min. 90 µl of supernatant was withdrawn and discarded. Beads were washed with 180 

µl of freshly made 80% EtOH. After a second round of EtOH washing, beads were 

allowed to dry on the magnet for 15 min. Dried beads were then re-suspended off-magnet 

in 48 µl of EB and allowed to incubate for 10 min followed by 5 min incubation on-

magnet. 44 µl of the elutant was then mixed with 26 µl of 2X Quick Ligase Reaction 

Buffer and purified again using AMPure XP beads according to the steps described 

above. The final elution volume was 44 µl of EB of which 41 µl was transfer to another 

96-well plate for ligation. 2 µl of HPLC purified custom barcoded Illumina adaptors 

(PE5/7) were added to each bead purified digested WGA DNA. Ligation reactions were 

carried in total volume of 70 µl with 1 µl of ligase and 26 µl of ligase buffer. Ligation 

reactions were incubated as follows: 20 °C for 30 min, 65 °C for 15 min, and 4 °C 

forever. After adaptor ligation, 2.3 µl of each 96 adaptor ligated library was pooled and 

distributed equally into 3 fresh tubes (~70 µl). Pools were purified 1X using 30 µl beads 

as described above and eluted in 30 µl of buffer EB. Following bead purification of the 

pools, PCR enrichment was performed in total volume of 62.5 µl containing 2.5 µl of 10 

µM PE5/7 primers and 30 µl of Phusion® High-Fidelity PCR Master Mix (NEB) 

according to the following parameters: (1) 98 °C for 30 s, (2) 98 °C for 10 s, (3) 65 °C for 

30 s, (4) 72 °C for 30 s, (5) return to (2) for a total 10X, (6) 72 °C for 5 min, (7) Hold at 4 

°C. Samples were then quantified using the Bioanalyzer and qPCR, and subsequently run 

on HiSeq machines.  

 
 
 

 



 12 

2.6. DNA purification of bulk samples and Illumina library generation 

 

For bulk extraction of genomic DNA from cell lines as well as clinical tissue, leftover 

nuclei suspensions (from which single cells were retrieved) were mixed with equal 

volume of 2X lysis buffer (1 ml 1M Tris-HCl pH 8.0, 200 µl 0.5M EDTA pH 8.0, 200 µl 

5M NaCl, 500 µl 10% SDS, 1ml 1M DTT, 1.1ml H2O). Lysis nuclei mixtures were then 

treated with 50 µl Proteinase K (20mg/ml) and incubated for 16 hrs at 55 °C. Digestion 

mixture was allowed to cool to room temperature followed by RNase A treatment using 5 

µl of 20mg/ml RNase A. RNase A treatment was performed at 37 °C for 1 hr. Genomic 

DNA was then purified from Proteinase K and RNase A treated nuclei using phenol-

chloroform extraction as follows: Equal volume of Phenol was added to nuclei digestion 

mixtures and allowed to mix gently in a rotator for 10 min. Mixtures were then spun at 

13,000g at 4 °C. Aqueous phase material was carefully retrieved (avoiding interface 

material) and saved in a fresh tube. Phenol extraction was repeated 2X. Phenol extracted 

material was further purified by adding equal volume of Phenol:Chloroform:Isoamyl 

alcohol. Mixing, centrifugation and aqeous phase extraction were performed as described 

above. Phenol:Chrloroform:Isoamyl alcohol extraction was repeated 1X. DNA was then 

further extracted using Chloroform:Isoamyl alcohol following the steps as described 

above. Chloroform extraction was also repeated 1X. Chloroform extracted DNA was 

subsequently precipitated by adding 1/10 volume of 3M NaOAc pH 5.2, with gentle 

mixing, followed by the addition of equal volume Isopropanol, mixing by inverting the 

tube ~40X and centifigation at 13,000g for 30 min at 4 °C. Supernatent was removed by 

pipetting carefully as not to disturb the pellet. DNA pellets were washed with 300 µl ice-
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cold 70% EtOH (1X) followed by an additional wash using 300 µl ice-cold 100% EtOH 

(1X). DNA pellets were allowed to dry at room temp for ~ 15 min and re-suspended in 

H2O at 4 °C overnight. 0.25 – 1 ug of high molecular weight genome DNA was then 

sonicated using the Covaris machine at 300+/- using the following parameters: duty cycle 

– 10%, Intensity – 4, cycles/burst – 200, and time 80 s. Sonicated genomic DNA was 

then prepared for Illumina library generation using custom built barcoded adaptors as 

described previously in Iossifov et al91, with the exception that bead purification was 

performed 2X. 

 

2.7. RNA purification and Illumina library generation 

 

Core biopsies were removed from the OCT and homogenized in lysis buffer using Hard 

Tissue Omni Tip Homogenizing Probes. DNA and RNA were extracted from the lysate 

using the Qiagen AllPrep DNA/RNA Mini Kit (Qiagen). RNA concentrations and 

260/280 ratios were determined using a NanoDrop. RNA integrity was assessed using a 

Bioanalyzer (Agilent). Fifty to 100 ng of total RNA were reverse-transcribed and 

amplified using the Ovation RNA-Seq System (NuGEN). Amplified cDNA was purified 

using the Qiagen MinElute Reaction Cleanup Kit (Qiagen) and quantified using a 

NanoDrop. RNA-Sequencing was performed on the amplified cDNA at the Yale Center 

for Genome Analysis (West Haven, CT) or Expression Analysis, Inc. (Durham, NC). 

Paired-end sequencing was performed on the Illumina GAII platform using amplified 

total RNA with 74bp read length, yielding data on transcript abundance for a total of 

22,160 genes and 34,449 transcripts, yielding about 50M reads per sample.  
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2.8 RNA-Seq analysis 

 

Raw sequencing data were analyzed using RNA-SEQ Version 2 pipeline. Reads were 

aligned to human reference genome hg19 with Mapsplice292 and gene expression was 

quantitated using RSEM93 (RNA-SEQ by Expectation Maximization). Each gene 

expression profile (Pt31 and Pt41) was normalized in the same manner as the TCGA 

breast cancer cohort, by setting the upper quartile value to 1000. To perform subtyping, a 

nearest centroid classifier was implemented using TCGA level-3 gene expression profiles 

along with study samples. Out of 1100 TCGA breast cancer (BRCA) samples with 

available gene expression data, 542 samples were mapped out with subtype information 

from the published study94, including 96 Basal-like, 58 Her2-Enriched, 231 LumA, 128 

LumB and 29 Normal-like samples. With the log2 transformed gene expression data 

aligned on PAM50 list95, centroids for samples from each subtype were estimated and 

further used to subtype study samples based on ‘nearest distance’ criteria. Pt31 and Pt41 

gene expression profiles were pre-processed in the same manner prior to the the 

prediction. For visualization purpose, a principal component analysis was conducted to 

identify the top principal components (PCs) based on pre-processed 542 TCGA breast 

cancer samples. Using the top 2 principal components (PC), the samples were projected 

onto the PC subspace. In the PCA analysis, the top 2 principal components were capable 

in explaining 37.7% and 25.6% of the variance of the TCGA sample matrix respectively. 
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2.9. Variable bin (varbin) method 

 

In dividing the genome into bins for copy number estimation, a method is utilized that 

partitions the genome into bins of variable sizes based on the unique mappability of 

sequences across the human genome, with each bin containing the same number of 

mappable positions (Varbin). This is accomplished by taking 50 base pair sequences 

starting at each position in the reference genome, mapping them back to the reference, 

eliminating reads that map to multiple places in the genome (multimappers), and then 

setting bin boundaries such that each bin contains roughly the same number of uniquely 

mappable positions. This was done to compute bin boundaries when dividing the genome 

to 50K, 20K, and 5K bins. Importantly, because single end reads were extracted from 

hg19 and mapped using bowtie to define the variable bins, only Illumina single end 

sequencing data that are mapped with Bowtie are useful for determining the copy number 

profile with the boundaries computed. If BWA is preferred to Bowtie, then the 

simulations will have to be repeated to define a new set of bin boundaries. The same 

applies to paired-end sequencing data or sequence data obtained using a different 

platform (ABI SOLiD for example). The output file of the Varbin algorithm contains 

sequence counts in the assigned genomic bins. This data is further normalized and 

processed to yield integer copy number values (see section 2.10). Additionally, for a 

number of regions in the genome, very high read depth compared to the expected norm 

occurs. These regions are found to consistently display the high read depth in both bulk 

as well as single cell sequencing data and many are found in bins surrounding 

centromeres. Using data from 54 normal diploid single cells, these bins (designated as 
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“bad bins”) were determined as follows.  Bincounts were divided by the mean for each 

cell to normalize for differences in total read count between each cell.  For each 

chromosome, the mean of the bins over all cells is subsequently subtracted from each 

normalized bin count to normalize for differences between chromosomes.  The mean and 

standard deviation of the autosomes was then used to compute an outlier threshold 

corresponding to a p-value of 1/N, where N is the number of bins used.  This was done 

for the 5K, 20K and 50K bin data sets. These bins are masked from down-stream copy 

number analysis. 

 

2.10. Sequence alignment and single cell copy number analysis 

 

Multiplexed single cell sequencing libraries were split according to their unique barcode 

identifiers specified by the first 8 bases of the sequencing reads. Single cell sequencing 

data were aligned to the human reference genome hg19 using bowtie96. Reads were 

sorted, PCR duplicates removed, and then indexed using SAMtools97. Uniquely mapping 

reads were counted for each bin and normalized for GC bias using lowess smoothing. 

Normalized read count data were then segmented using circular binary segmentation 

(CBS)98. For copy number estimation in single cells, an approach based on least-squares 

fit is utilized as follows: When analyzing data from a single cell, the copy number at any 

point in the genome must be an integer. Thus, if the data were accurate, then after 

segmentation, segmented mean values should have a clear multimodal distribution with a 

peak representing each copy number present in the genome.  The data at this point in the 

analysis is centered around 1, meaning that the mean value across the bins (5000, 20000, 
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or 50,000) of the segmented value is close to 1.  In a diploid genome this would represent 

a copy number of 2, with regions of copy number 1 having a segmented value near 0.5 

and regions of copy number 3 having a segmented value near 1.5.  These could easily be 

converted to copy number estimates by multiplying the segmented value for each bin by 

2 and rounding to the nearest integer.  This is the basic idea used to estimate copy number 

in single cell data. In rearranged cancer cells where the copy number of genomic 

segments is unknown, in order to find the best multiplier, the segmented profile is 

multiplied by 1.5, 1.55, 1.6, 1.65, ... 5.5 (81 different values) to compute what is known 

as quantal error for each multiplier.  This is the sum of the squared difference between 

the multiplied segmented profile and the multiplied segmented profile rounded to the 

nearest integer.  The multiplier that gives the smallest quantal error is deemed the best fit 

and used to estimate copy number.  This quantal error can also be used as a quality 

control parameter.  Cells with a large quantal error can really be multiple cells, parts of 

cells, or have degraded DNA. For Heatmap plots, single cells were hierarchically 

clustered based on their genome-wide copy number profiles using Manhattan distance 

function and clustered according to Ward method. 

 

2.11 CORE (Cores of Recurrent Events ) 

 

Core analysis was performed as described in Krasnitz et al99. Briefly, segments with 

integer copy number values above/below the reference were considered 

amplified/deleted. Copy-number events in each cell were derived by slicing, and cores, 

i.e., regions of significantly recurrent (p<0.05) gains and losses, were determined by 
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applying the CORE method to the entire set of single cell genomes. Finally, the incidence 

table was computed, with rows and columns corresponding respectively to cells and cores 

and with values in the [0,1] interval quantifying the best match between an event in the 

cell and the core. Single cells that contained statistically significant cores were judged to 

be part of the cancer phylogeny and used for downstream analysis while cells lacking 

cores (mostly cells with the vast majority of the genome at copy number 2) were judged 

to be normal cells. 
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3. CHAPTER 1: Optimizing coverage in a multiplexing 

strategy 

Work done in collaboration with Jude Kendall and Anthony Leotta 

 

3.1. Down-sampling analysis reveals minimal data requirements for copy number 

determination at a resolution of 50K bins 

 

 CNV analysis by sequencing typically counts the number of reads that uniquely 

map to bioinformatically computed segments or ‘bins’ of genomic sequence65,66. 

Recently it has been shown, from sequencing data of uniformly amplified single cell 

genomic DNA, that the copy number of a particular bin is directly proportional to the 

number of sequencing reads that map within it79,80. 50 thousand bins were used to divide 

the genome (50K bins), with an average bin length of 60 kb. The profiles produced have 

clean breakpoints and segments with quantal values, as one expects from single cell data. 

At the published coverage, this averaged 160 maps per bin, clearly an excess. But how 

much data (measured as the number of sequencing reads) is required to produce a clean, 

quantal, genome-wide copy number profile from a single cell at 50K bin resolution? 

Although the answer can be approached mathematically on assumptions about binomial 

sampling distributions, the confident detection of minimum features, and expectations of 

quantal values, an empirical approach using the same cancer cells previously analyzed 

was utilized. Single cell sequencing data79 for a rearranged cancer cell (DNA 

content=2.95N) for which 8 million uniquely mapped reads were available was retrieved 

and correlation and copy number analysis on down-sampled data sets was performed. 
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Normalized read counts of data down-sampled to 4, 2, 1, 0.5, and 0.25 million reads 

plotted against the original 8 million reads data set demonstrate strong correlations down 

to 1 million reads (R2 = 0.939) (Figure 1). The 2 million read copy number profile 

(about 40 reads per bin) was highly similar to the profile generated from the original 8 

million read single cell data set using 50K bins (Figure 2). Using fewer reads than this 

retained features of the breakpoint profile, but the quantal nature of the copy number 

segments became less clear (Figure 3). Two million uniquely mapped reads were also 

sufficient to recapitulate the copy number landscape of tumor cells with different DNA 

contents (Figure 4). Thus, irrespective of DNA content, 2 million uniquely mapped reads 

are sufficient to retrieve the genome-wide copy number profile of a single cell when 

dividing the genome in 50K bins. 

 

3.2. Adjusting bin lengths lowers minimal read requirements and 

maintains genome-wide copy number profile 

 

 Are 50K bins needed? Given that the majority of copy number alterations found 

in bulk analysis of tumor genomes are on the order of mega bases (Mb) or greater31, 

decreasing the number of bins (i.e. increasing bin lengths) should decrease sequencing 

read requirements while retaining the majority of copy number alterations in the cancer 

genome. Reanalyzing the down-sampled data using 20K and 5K bins (calculated using 

the variable bin method – see Methods) revealed that strong correlations were maintained 

with the original 8 million data set down to 1 million and 0.25 million uniquely mapped 

reads for 20K and 5K bins, respectively (Figures 5). Importantly, the copy number 
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profiles at 20K and 5K bins were largely similar to the profiles at 50K bins while 

maintaining the quantal nature of the copy number segments (Figure 6). 96% and 75% of 

the breakpoints, detected at a resolution of 50K bins, were called at bin resolutions of 

20K and 5K, respectively, with the down-sampled data. Naturally, at lower resolutions of 

20K and 5K bins, some focal alterations were missed (Figure 6, red arrows). 

Furthermore, 1 and 0.25 million sequencing reads for 20K and 5K bins respectively were 

also sufficient to retrieve genome-wide CNV information in cancer cells with different 

DNA contents (Figure 7). The data together, when taking into account current average 

HiSeq output of 200 million reads per lane, indicate that up to 500 single cell genomes 

can be multiplexed and analyzed on a single HiSeq lane. Table 1 lists the multiplexing 

capacity and the genomic bin resolution given different # of bins. 
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Figure 1: Down-sampled data reveal strong correlations at 50K down to 1 million reads.

Original 8 million read data set was down-sampled to 4, 2, 1, 0.5, and 0.25 million reads. Normalized 

data from down-sampled data sets using 50K bins was correlated to original data and plotted as scatter

density correlation plots. Pearson R2 correlation coefficients are shown.
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Figure 2: 2 million uniquely mapped reads are sufficient to reproduce a quantal genome-wide copy 

number profile when using 50K bins.

Genome-wide CNV profile at 50K bins of 2 million read down sampled data (lower panel) was 

plotted with the original profile 8 million read profile (top panel). 
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Figure 3: Down-sampling below 2 million reads when using 50K bins allows observation of some

 features of the breakpoint profile but results in loss of the quantal nature of the CNV profile.

Copy number profiles of data down-sampled to 2, 1, 0.5, and 0.25 million using 50K bins are plotted

genome-wide. Some loss of quantal behavior is evident at 1 million reads with progressive deterioration

with further down sampling. 
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Figure 4: 2 million uniquely mapped reads is sufficient to reproduce genome-wide CNV profile of

cancer cells with differing DNA content using 50K bins.

Copy number profiles from 2 million read down-sampled data of single cancer cells of different DNA

content (Panel a=1.6N, panel b=2.65N) are plotted genome-wide. Box plots next to CNV figures 

illustrate scatter density correlations of normalized read counts between original and down-sampled 

data. Pearson R2 correlations are shown.
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Figure 5: Dividing the genome into 20K and 5K bins allows for better correlations of down 

sampled data down to 1 million and 0.25 million reads respectively.

Normalized read counts of down sampled data at 4,2,1,0.5, and 0.25 million reads at 20K and 5K bins 

are plotted as density scatter correlation plots. Pearson R2 correlation values are shown.
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Figure 6: 1 million and 0.25 million reads are sufficient to recapitulate genome-wide copy 

number profiles at 20K and 5K respectively. 

CNV profiles of calculated minimal read requirements (2 million, 1 million, and 0.25 million

sequencing reads) per number of bins (50K, 20K, and 5K) respectively are plotted. Red arrows point to

copy number variants that are lost with lower resolutions (i.e. small number of bins/larger bin lengths). 
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Figure 7: Down-sampled data at 1 million and 0.25 million reads reproduces quantal

genome-wide copy number profiles at 20K and 5K bins respectively of cells with different DNA 

content.

CNV profiles were plotted for each caculated minimal read requirement/# of bins (2 million/50K, 

1 million/20K, and 0.25 million/5K). Scatter density correlation plots of down-sampled data sets

correlated to original 8 million read data are illustrated.
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Number of 
bins

Bin Size * # of reads 
required
(in millions)

MiSeq

50K 60 Kb 2 5 70

20K 150 Kb 1 10 140

5K 600 Kb 0.25 42 560

Approximate
multiplexing 
capacity

HiSeq ***

Approximate
multiplexing
capacity

MiSeq **

Table 1: Multiplex capacity and bin parameters for copy number determination of single cells

using different # of bins.

Approximate multiplexing capacity is calculated assuming equal distributions of multiplexed single cell

libraries in final pool.

* Bin size calculated using the varbin algorithm. 

** Calculated with the presumed output of 12 million sequencing reads per MiSeq lane for single end 

sequencing.

*** Calculated with the presumed output of 200 million sequencing reads per HiSeq lane for single end

sequencing. 
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4. CHAPTER 2: An optimized DOP-PCR molecular approach 

for high level multiplexing; C-DOP-L 

Work done in collaboration with Brian Ward 

 

DOP-PCR methodology is employed for WGA because it amplifies more 

uniformly across the genome than other methods, and when the goal is CNV analysis 

more reproducible results with lower noise are obtained79,80. 

Maximizing the efficiency of sequencing by identifying minimal read 

requirements to facilitate multiplexing is not the only problem that needs to be addressed 

to optimize the efficiency of highly multiplex single cell CNV profiling. Performing the 

steps of WGA and library preparation protocols, involving sonication, end repair, A-

tailing, and ligation for each cell individually takes a great deal of benchwork and can 

cost as much as $50 per cell in reagents alone, making the procedure itself a target for 

optimization. Moreover, the resulting DNA molecules following DOP-PCR carry 

universal 30bp sequences at the ends and even when sonicated, the universal DOP primer 

sequences remain on a substantial fraction of the DNA molecules, that when sequenced, 

cause decreased complexity (Figure 8), lower quality data and decreased mappability for 

some reads. 

 To circumvent the above-mentioned issues, a method was devised, termed 

Cleavable DOP-PCR Ligation (C-DOP-L), that incorporates restriction enzyme digestion 

of the universal sequences at the ends of WGA DNA via the SEQXE kit (Sigma-

Aldrich), with an “NN-mediated” DNA ligation of barcoded Illumina adaptors (Figure 

9). In the C-DOP-L method, single cell genomes are amplified using DOP-PCR similar to 



	   31	  

what have been reported before79,80. However, the degenerate oligo-nucleotide differs in 

that it incorporates a recognition site for a type IIS restriction enzyme (isoschizomers 

AcuI and Eco57I, (CTGAAG 16/14). When added to the WGA DNA, the enzyme 

recognizes its binding site, cleaves 16/14 (top/bottom strand) bases away from its 

recognition sequence, effectively removing the entire universal sequence found at the 

ends of the DNA molecules. Furthermore and importantly, the digestion leaves 3’-NN 

overhangs (where N is any base). These overhangs are subsequently used in the ligation 

of barcoded Illumina adaptors designed to carry 3’-NN overhangs on the P5 adaptor. To 

test the method, 96 modified Illumina adaptors carrying custom barcoded adaptors with 

sufficient complexity (equal distributions of A, T, C and G base pairs) in the first 4 bases 

were designed, synthesized and used in subsequent experiments (Figure 10). 

 

	  



 egat necr eP

Read Position

0

25

50

75

100

1 10 20 30 40 50 60 70 76

A
G
C
T

WGA - Sonication - Normal Library Prep

Base

a

Figure 8: Sonication of WGA DNA using DOP-PCR does not remove universal sequences at the

ends of the DNA molecules.

Nucleotide frequencies at sequenced read positions of the output sequencing data are plotted. First 

8 bases denote the custom barcodes utilized in sequencing. Nucleotide percentages from position 9 thru

38 illustrate features of the universal sequences that are still present even after DNA sonication of the 

WGA DNA.
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In brief, WGA DNA is digestion with a type IIS restrcition enzyme to cleave the universal sequences 

found at the ends of WGA DNA. The digestion reaction leaves 5’-NN overhangs   (where N is any base: 
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Figure 10: Custom Illumina barcodes used in the C-DOP-L method.

Barcode nucleotide distributions of all 96 barcodes plotted in WebLogo format (a) and chat plots (b). 
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5. CHAPTER 3: Validation of C-DOP-L with cell lines 
 

Work done in collaboration with Hilary Cox, Sean D’Italia, Linda Rodgers and Anthony 

Leota 

 

5.1. C-DOP-L provides uniform whole genome amplification and does 

not introduce biases 

 

To ensure that the modification of the degenerate oligo-nucleotide primer does 

not affect the uniformity of the WGA reaction or introduce distortions to the genome 

normal non-genomically rearranged cells were examined. Approximately 100 genomes 

per HiSeq Illumina lane was chosen, a convenient number for microplate processing.  

 Single nuclei from a diploid EBV immortalized lymphoblastoid cell line (315A) 

derived from a normal male were sorted, selecting for diploid nuclei,  deposited into a 96-

well plate and amplified. Of the 96 sorted single nuclei, 95 were successfully amplified 

(i.e. yielding a minimum of 2 µg of total WGA DNA), processed using the C-DOP-L 

method, and sequenced on a single lane of HiSeq2000. Sequencing reads for single cells 

were deconvoluted, mapped to the human genome, and processed using the variable bin 

algorithm for copy number determination79,80 (See Methods). Sequence reads displayed 

normal nucleotide complexity as expected (Figure 11). For all single cells processed an 

average of 1.5 million uniquely mapped reads with a range of 0.25 to 3.6 million, with all 

cells having minimum of 0.25 million (Figure 12). Sequenced single cell DNA displayed 

GC amplification bias that was comparable in magnitude to previous work using DOP-

PCR and was easily corrected using lowess smoothing (Figure 13). Importantly, the C-
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DOP-L method maintained the minimal sequence bias exhibited in previous work using 

the DOP-PCR approach. The uniformity of the amplification reaction was maintained as 

demonstrated by the tight histogram distributions of the normalized read count data as 

well as the genome-wide copy number profiles, revealing the vast majority of the genome 

at copy number 2 (Figure 14). Furthermore, multidimensional scaling of the 315A single 

cell copy number profiles showed tight clustering for the majority of single cells (88 

single cells out of 96 sequenced single cells) (Figure 15). All of these 88 cells displayed 

consistent normal genome-wide copy number profiles with all of the autosomes at copy 

number 2 and the sex chromosomes at copy number 1 attesting to the reproducibility of 

the method (Figure 14). Two cells were distant in the multi-dimensional scaling graph 

from the cluster (Figure 15, red arrows) with one cell displaying a chromosome wide 

duplication of chromosome 2 and another cell displaying heterozygous focal deletions on 

chromosome 4 (Figure 16 a and b). Another 5 cells (outside of the black circle in figure 

3b) displayed deviations from discrete integer copy number profiles and more spread 

distributions of normalized read count data (Figure 16 c, d, and e). These profiles could 

be the result of an error in the WGA amplification process, or cells caught early in S 

phase of the cell cycle. Occasionally non-recurrent focal deletions or duplications are 

observed (Figure 15, red arrows) in otherwise normal cells. The nature of these events 

is currently unknown and likely represent somatic events. 
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5.2. C-DOP-L provides accurate determination of rearranged copy 

number profiles of single cancer cells in a highly multiplex manner 

Work	  done	  in	  collaboration	  with	  Linda	  Rodgers,	  Sean	  D’Italia,	  Michael	  Riggs,	  and	  

Anthony	  Leotta	  

	  

 To further validate the approach, single nuclei from a rearranged human breast 

cancer cell line were profiled. Flow sorting 96 single nuclei from the pseudo triploid 

(apparent DNA content 3.65N by FACS) breast cancer cell line, SK-BR-3, followed by 

WGA and C-DOP-L library preparation resulted in 94 successfully amplified and ligated 

products (97.9%). These were loaded on a single HiSeq 2000 lane and after informatic 

processing produced genome-wide copy number profiles (20K bins) that very closely 

recapitulated that of the corresponding SK-BR-3 bulk DNA (R2 Pearson correlation = 

0.963) (Figure 17). Importantly, smoothing kernel density plots of the normalized 

sequencing data revealed the quantized nature of the single cell data with densities 

corresponding to discrete copy number integer values (Figure 18). In addition, presumed 

driver genomic alterations observed in the bulk copy number profile, such as high level 

amplification of the MYC locus on chromosome 8, the heterozygous deletion of DCC on 

chromosome 18 and the homozygous deletion of a cluster of zinc finger proteins on 

chromosome 18, were observed in 100% of the single cells sequenced (Figure 19). 

Interestingly, multidimensional scaling of all 94 integer copy number profiles resolved 

two distinct clusters corresponding to a major subpopulation (sub-population 1) and a 

minor sub-population (sub-population 2) (Figure 20). Hierarchal clustering of the single 

cell profiles plotted in the form of a copy number heatmap clearly illustrates that the two 
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sub-populations are derived from the same lineage with the vast majority of the genome 

present at the same copy number in almost all single cells, for example chromosomes 2, 

7, and 11 (Figure 21, black arrows). Importantly, the two sub-populations differed 

significantly with different copy number states on chromosomes 5, 14, and 19, among 

others (Figure 21, red arrows and Figure 22). Some of these events are also evident in 

the bulk SK-BR-3 copy number profile as segments with non-integer copy number values 

(Figure 23). This genomic heterogeneity of a cancer cell line is not restricted to SK-BR-3 

as another breast cancer cell line (MDA-MB-231) also revealed substantial heterogeneity 

were three distinct subpopulations were observed (Figure 24). Thus, the data 

demonstrate the robustness and accuracy of the C-DOP-L highly multiplex single cell 

sequencing approach in profiling cancer genomic heterogeneity.	  
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Figure 11: C-DOP-L approach facilitates removal of universal sequences and re-introduces

nucleotide complexity to sequenced DNA.

Nucleotide frequencies at sequenced read positions of the sequencing data are plotted. First 8 bases 

denote the custom barcodes utilized in sequencing. Compared to Figure 8, data illustrates the effecive

removal of WGA universal nucleotide sequences at the ends of DNA molecules.
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Figure 12: Sequencing 96 single nuclei on a single HiSeq lane results in sufficient number of reads

for analysis of all cells processed.

Histogram distribution of uniquely mapped reads for all 95 single nuclei of the 315A cell line sequenced

using the C-DOP-L approach were plotted.
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Read count data were plotted as a function of bin GC content before and after lowess normalization
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Figure 15: Multi-dimensional scaling illustrates tight clustering of the 315A CNV profiles

315A single cell data was scaled according to their genome-wide copy number profiles and plotted.

Black circle denotes the tight clustering of the majority of the profiles displaying normal copy

number profiles (i.e. autosomes at copy number 2 and sex chromosomes at copy number 1).

Red arrows point to outlier cells that carry large somatic genomic rearrangements.
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Figure 16: A minority of cells display large somatic rearrangements or non-quantal copy number

values.

Outlier cells from the multi-dimensional graph (Figure 14) were plotted genome wide. CNV profiles

illustrate a whole chromosome gain of chromosome 2 (a) and a cluster of deletions of chromsome 4 (b).

Cells displaying non-quantal copy number values plotted genome wide (c and d). 

(e) Quantal and non-quantal histogram distributions of normalized bin read counts illustrate more 

spread distributions in non-quantal cells.
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Figure 17: C-DOP-L provides accurate copy number determination of rearranged cancer

genomes from the SK-BR-3 breast cancer cell line.

Representative genome-wide single cell copy number profile  produced using the C-DOP-L approach 

compared to bulk profile produce via the sequencing of million cell DNA. Pearson correlation of

the copy number values across the genome between single cell and bulk profile ( R2 ) = 0.963.
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Smoothened kernel density plots of the segmented read count data are plotted to display the discrete 
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single cell profile as well as the bulk profile.
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Figure 19: C-DOP-L displays robust sensetivity in detection of copy number alterations.

(a) Representative view of bulk SK-BR-3 copy number profile. (b) Snap-shots of copy number variants 

(b-amplification , c-homozygous deletions, and d-heterozygous deletions) across bulk and 10 

representative single cells illustrating the detection of the variants in 100% of single cells sequenced.
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Figure 20: High level multiplexing of single cells from the SK-BR-3 breast cancer cell line

identifies distinct sub-populations.

Sequenced SK-BR-3 genomes were plotted based on multi-dimensional scalling of their genome-wide

copy number profiles. Ellipses denotes the  two sub-clonal populations identified (Sub-population 1 and 

Sub-population 2).
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Figure 21: The 2 SK-BR-3 sub-populations are derived from the same lineage, share the vast

majority of copy number alterations, and differ significantly.

SK-BR-3 single cell genomes were clustered using manhattan distance and Ward method  in 

heatmap format. Black arrows point to represntative examples of copy number alterations shared 

between the vast majority of cells. Red arrows point to representative examples of copy number

variants that distinguish each sub-population.
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Figure 22: Single cells from the 2 SK-BR-3 sub-populations differ significantly in copy number

alterations.

Representative single cell genomes from each SK-BR-3 sub-population are plotted genome-wide.

Chromosomes where heterogenous copy number variants exit are highlighted in gray in background.

Arrows point to specific regions on the chromosomes that are altered.
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Figure 24: Sub-clonal heterogeneity is also observed in the MDA-MB-231 breast cancer cell line.

(a) Multi-dimensional scaling of 45 single MDA-MB-231 genomes based on genome-wide copy is 

plotted. Ellipses denote the 3 distinct sub-populatios. (b) Hierarchal clustering heatmap tree illustrates 

genomic regions that display heterogeneity between the different sub-populations (black arrows). 
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6. CHAPTER 4: Application of C-DOP-L to clinical breast 

cancer biopsies. 

Work done in collaboration with Hilary Cox, Linda Rodger, Sean D’Italia, Mao Yong, 
Hannah Gilmore, Guoli Sun, Kristy Miskimen, Anthony Leota, and Jude Kendall. 

 
 

6.1 Highly multiplex single-cell sequencing of clinical breast cancer tissue reveals 

genetic heterogeneity and sub-clonal populations. 

 

 To determine the feasibility of high level multiplexing for actual clinical samples, 

two estrogen receptor (ER) positive breast cancer cases (Pt31 and Pt41) were analyzed. 

Both were determined to be diploid in DNA content, with similar histopathology, and 

from the same gene expression sub-type (luminal B) as determined by RNA sequencing 

and PAM50 analysis (Figure 25 and 26). Bulk copy number analysis revealed 

characteristic ER positive copy number alterations, such as gains of chromosome 1q and 

8q and deletion of chromosome 11q 32,48 (Figure 27) in both cases. To allow comparison 

with a previous single cell CNV approach (WGA4 amplification (Sigma-Aldrich) 

followed by Standard Illumina library prep), core needle biopsies from both cases  (8mm 

in length) were cut evenly into two sections for processing using WGA4  and C-DOP-L 

(Figure 28). For each section, 96 nuclei were sorted and the plates were processed with 

either WGA4 or C-DOP-L. Each 96 multiplexed pool was sequenced on a single lane of 

Illumina HiSeq instrument.  Cells yielding at least 0.25 million uniquely mapped reads 

were considered successful for the complete process. Compared with the cell lines the 

clinical samples were somewhat more variable. The number of successfully profiled cells 
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for Pt41 was 86/96 using WGA4 and 89/96 using C-DOP-L, while Pt31 yielded 88/96 

and 69/96 respectively.  

 Single tumor cells from both cases where then plotted and clustered in a heatmap 

format based on their genome-wide copy number profile (Figure 29). Cells with normal 

profiles were omitted from the figure and CORE99 (Cores of Recurrent Events) (see 

methods) was used to select the cancer cells that are part of a clonal lineage. This way 

tumor cellularity for each biopsy was approximated (~60% tumor for Pt31 and ~90% 

tumor for Pt41). Chromosome 1q and 8q duplications as well as loss of 11q were found 

in virtually all single cells from both tumors using both approaches, consistent with these 

events occurring very early in the evolution of the tumor genome and further attesting to 

the sensitivity and specificity of the approach (Figure 29, black arrows). Interestingly, 

whereas Pt41 tumor profile contained more copy number alterations than Pt31 (measured 

as % of genome altered), single cell copy number profiles from Pt41 displayed 

homogeneity, with almost all cells sharing all chromosomal alterations. By contrast, Pt31 

had 3 sub-populations that differed in their copy number status at multiple chromosomes, 

for example chromosomes 5, 7, 11, and 13 (Figure 29, red arrows). These populations 

were also found to differ in proportion between the two adjacent sections. Phylogenetic 

analysis of the sub-populations based on their genomic alterations revealed that the two 

divergent populations, 2 and 3, arose from the earlier ancestral population 1 via the 

acquisition of additional genomic alterations (Figure 30), yet, interestingly, population 1 

also persisted. 
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6.2 Highly multiplex single-cell sequencing of clinical breast cancer tissue reveals 

mosaicism in chromosomal amplifications. 

 

 Upon further examination of the single cell copy number profiles of the tumor 

(Pt31), additional heterogeneity in the form of mosaic copy number amplifications was 

noted (Figure 31). Some occurred at genes with established clinical significance in breast 

cancer such as the amplification of Cyclin D1100 (CCND1) on chromosome 11 and 

TOP2A101 on chromosome 17, while others occurred at genes for which experimental 

evidence exists for involvement in cancer, such as the homeobox protein SIX6102 on 

chromosome 14 and  PREX1103 on chromosome 20. Together, these data provide strong 

evidence of the power of highly multiplex single cell sequencing in resolving sub-clonal 

structure and illustrating genomic heterogeneity present within the genomes of human 

tumors.	  

	  



a

Pt41
Pt31

b

Pt41 Pt31

2N

Figure 25: Pt31 and Pt41 are similar in terms of DNA content and histopathology.

(a) DNA content was determined to be diploid for both cases based on flow cytometry by DAPI staining. 

(b) Both tumors were judged to be similar histopathological based on hematoxylin and eosin (H&E) 

staining with both showing invasive ductal carcinoma with moderate differentiation and complex 

glandular growth pattern.

56



−25 −20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

25

Principal Component 1

Pr
in

ci
p

al
 C

o
m

p
o

n
en

t 2

 

 
Basal
Her2
LumA
LumB
Normal
P31
P41

Figure 26: Pt31 and Pt41 belong to the Luminal B breast cancer gene expression subtype.

542 TCGA samples were projected on the PCA plot with the top 2 principal components and given subtype 

information obtained from TCGA data sets (see methods). It included 96, 58, 231, 128 and 29 samples 

respectively for Basal, Her2, LumA, LumB and Normal-like subtypes. P31 and P41 were projected on the 

background within the LumB cluster marked as a pentagram and a hexagon.
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Figure 27: Bulk copy number profiles of Pt31 and Pt41 reveal genetic alterations characteristic

of ER positive breast cancer disease.

Copy number alterations of bulk Pt31 and Pt41 were plotted genome-wide. Red arrows point to

genetic alterations that have been found to be characteristic for ER positive breast cancer disease.
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Figure 28: Schema of biopsy dissection and single cell processing.

In brief, each tumor biopsy, measuring 8 mm in diameter, was cut evenly into two sections for 

processing using the C-DOP-L approach as well as WGA4 (previous method).
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Figure 29: Hierarchal clustering heatmap of the clinical cases profiled using single cell

sequencing methods reveals genetic heterogeneity and sub-clonal populations.

Single cell genomes from Pt31 and Pt41 were clustered using manhattan distance function and

according to the Ward method. Black arrows point to copy number alterations characteristic of ER 

positive breast cancers and found in nearly all single cells. Red arrows point to copy number 

alterations that are found to be sub-clonal in Pt31 single cells.
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Figure 30: Schematic representation of the phylogenetic tree of Pt31 sub-populations.

Pt31 sub-populations were analyzed according to their sub-clonal alterations to reconstruct

the phylogenetic evolutionary tree. Colors denoting each sub-population are as in Figue 28.

Sub-clonal genetic alterations for Populations 2 and 3 and indicated.
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7. DISCUSSION 

 

7.1. C-DOP-L offers an affordable, robust, and high-throughput platform for highly 

multiplex genome-wide single cell copy number profiling 

 

 The potential of single cell genome profiling in understanding cancer 

heterogeneity lies in the ability to profile hundreds and even thousands of single cell 

genomes. The C-DOP-L approach extends on the burgeoning field of single cell 

genomics by offering a robust high-throughput method to examine the genome-wide 

copy number profile of hundreds of single cancer cells. The down-sampling simulation 

analysis facilitated the benchmarking of the minimal data requirements necessary to 

reproduce genome-wide copy number variation of cancer cells and guided the 

multiplexing strategy. By coupling the restriction enzyme digestion of the WGA DNA 

universal sequences with NN-mediated adaptor ligation the approach allows for (1) 

maximizing the amount of information extracted from each sequencing read via the 

elimination of the WGA universal sequences, (2) enhancing the quality of the sequencing 

output, and (3) significant reduction in the cost and effort required to generate highly 

multiplexed single cell sequencing libraries. In previous reports80, single cell was 

sequenced on a single lane of the Illumina platform at a cost of approximately $1,000. 

Using the methods described here, with the multiplexing of 96 single cells on a single 

HiSeq lane, the cost of sequencing a single cell is reduced to approximately $30 per cell 

in reagents and sequencing costs. Undoubtedly, with the decreasing cost per base from 

NGS, this figure is likely to drop even further and facilitate the profiling of thousands of 
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single cells in a single lane. At that stage, microfluidics will be needed to reduce 

preparation costs and reduce manual labor104,105. In addition, C-DOP-L can easily 

accommodate different multiplexing platforms such as the Illumina third read TruSeq 

indexing system. 

	  

7.2.	  Limitation	  of	  the	  C-‐DOP-‐L	  method	  and	  possible	  solution	  

	  

 While the approach focuses on robustly identifying an important class of somatic 

mutations in copy number variants it does not focus on the identification of other sources 

of somatic mutations such as single nucleotides variants (SNVs) and structural variants. 

However, it is important to point out that with current sequencing output of NGS 

platforms it is still prohibitively expensive to sequence the exomes of hundreds of single 

cells. Furthermore, even though DOP-PCR does not cover the entire genome when 

sequenced at high depths, there is evidence to suggest that up to a third of the whole 

genome can be covered in a single cell WGA product84 and the data indicate that genome 

coverage increases with more single cells sequenced (Figure 32). Thus an approach 

based on initially resolving clonal population structure via genome-wide copy number 

variation followed by pooling of single cell libraries and targeted capture of particular 

sub-populations (for example the 3 subpopulations in Pt31) may provide exome-wide 

views of these sub-populations. A similar strategy has recently proven effective in 

illustrating the clonal architecture of secondary acute myeloid leukemia106. 
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7.3.	  Emerging	  Next	  Generation	  Sequencing	  technologies	  and	  their	  potential	  

impact	  on	  single	  cell	  sequencing	  

	  

Given	   the	   rapidly	   changing	   landscape	   of	   Next	   Generation	   sequencing	  

technologies,	  the	  approaches	  for	  single	  cell	  profiling	  presented	  here	  are	  very	  likely	  

to	  change	  radically	  as	  technologies	  evolve.	  Two	  of	  the	  most	  obvious	  changes	  could	  

involve	   (1)	   a	   significant	   increase	   in	   the	   numbers	   of	   cells	   that	   can	   be	  multiplexed	  

using	  the	  ‘short-‐read’	  (Illumina)	  technology;	  and	  (2)	  the	  continued	  advancement	  of	  

‘long	  read’	  sequencing	  using	   the	  Pacific	  Biosciences	  RSII	   Instrument	  or	   the	  Oxford	  

Nanopore	  technology107.	  	  

To date, most single cell studies have utilized short read sequencing obtained	  

using	  the	  highly	  parallel	  ‘short	  read’	  method	  dominated	  by	  the	  Illumina	  technology 

platforms. Illumina sequencing relies on mapping millions of short reads (approximately 

100 nucleotides in length) to yield an extremely high total output of sequencing data. 

This method is ideal for copy number determination since CNV states are determined via 

molecular counting of sequenced DNA molecules in pre-defined genome segments or 

‘bins’80. Increasing	   the	   numbers	   of	   cells	   to	   be	   sequenced	   is,	   to	   a	   large	   extent,	   a	  

matter	   of	   how	  many	   independent	  DNA	   fragments	   or	   ‘reads’	   that	   can	  be	   extracted	  

from	   one	   lane	   of	   a	   sequencing	   chip.	   	   The	   capacity	   to	   perform	   multiplexing	   of	  

thousands	   of	   single	   cell	   genomes	   is	   already	   theoretically	   possible	   given	   that	   the	  

newest	  version	  of	  the	  Illumina	  HiSeq	  instruments	  (HiSeq	  X)	  provides	  a	  total	  yield	  of	  

3	   billion	   sequencing	   reads	   per	   lane.	   Thus,	   using	   5K	   binning	   for	   copy	   number	  

determination,	   up	   to	   12,000	   single	   cell	   genomes	   can	   be	   multiplexed	   on	   a	   single	  
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HiSeq	  X	  lane.	  At	  that stage the limiting factor is no longer the actual sequencing capacity, 

but the ability to process individual cells. It is clear that significant breakthroughs in 

microfluidic technology will be needed to reduce preparation costs and manual labor. 

Additionally, to realize that level of multiplexing, the barcoding strategies implemented 

here are also likely to require modification. In the work presented here, each single cell 

was uniquely barcoded using a specifically modified Illumina adaptor oligonucleotide. 

Thus, 96 different oligonucleotides were synthesized and purchased separately. It is clear 

that one cannot utilize this approach for the multiplexing of thousands of single cells (i.e. 

design and synthesis of 1000 barcoded Illumina adaptors would become a bottleneck both 

in cost and time). As an alternative, it would be feasible to implement a combinatorial 

multiplexing strategy. Such a system already exists in the form of TruSeq indexing, 

available from Illumina.. Illumina sequencing is generally carried out through two sets of 

synthetic sequencing reactions (the ‘first’ and ‘second’ reads) that are initiated, one at 

each end of the target DNA molecule, from adaptor sequences added during library 

preparation. The TruSeq technology embeds separate short sequences of 8 base pairs 

coded in the adaptors (the “third” and “fourth” sequencing reads). The system uses 8 (or 

more) adaptors carrying different ‘third’ read sequences and 12 (or more) carrying 

different ‘fourth’ read sequences. When combined in a matrix, that yields a minimum of 

96 distinguishable barcodes combining the ‘third’ and ‘fourth’ reads. Although the 

TruSeq matrix method as currently implemented uses only enough barcodes to create 96 

separate barcodes, we have shown, using the work presented here, that it is possible to 

create at least 96 barcodes from each embedded 8 basepair coding read. Thus, barcoded 

Illumina adaptors can be designed to provide a unique set of 96 indexes via the “third” 
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read as well as a separate unique set of further 96 indexes via the “fourth” read. In this 

fashion, matching the unique barcodes of both reads (third and fourth) would result in 

9216 barcodes (i.e. 962 = 9216). This approach can easily be accommodated using the C-

DOP-L method via further modification of the NN Illumina adaptors described in the 

materials and methods section.  

Another direction that may impact future single cell sequencing approaches is the 

evolution of sequencing methods that achieve much longer read lengths than possible 

with the Illumina methodology. Longer read lengths, up to tens of thousands of base pairs 

are highly desirable for genome mapping and assembly of complete genomes from 

contiguous sequence, so-called ‘contigs’. Such long read lengths and potentially lower 

cost per base pair of actual sequence, are the characteristic property of ‘single molecule’ 

sequencing via Pacific Biosciences RSII (PacBio) and Oxford Nanopore technologies. By 

providing sequencing reads up to fifty kilobases in length, it is conceivable to imagine 

that information regarding single nucleotide polymorphisms as well as structural variants 

can be retrieved in a high-throughput manner for single cell genomes. For that to be 

realized however, single molecule sequencing platforms would have to provide higher 

output of sequencing data. For example, currently, a single run on the PacBio instrument 

yields orders of magnitude less sequencing data than a HiSeq Illumina sequencing run.  

Nonetheless, it is possible to contrive innovative molecular approaches that 

maximize the utility of longer read lengths even with the current low sequence read 

output afforded by the current single molecule platforms. One conceivable strategy would 

be to adopt an approach similar to the SAGE (Serial Analysis of Gene Expression) 

method for mRNA profiling108. The key element of SAGE is that thousands of very short 
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segments of the actual mRNA or cDNA (called ‘tags’) are ligated together and resulting 

concatamer cloned into a recombinant vector for amplification as DNA in bacteria or 

bacteriophage. This cloned DNA can then be sequenced and the individual tags identified 

from the bulk sequence by bioinformatic algorithms, yielding a snapshot of the mRNA 

profile. For copy number profiling, it would similarly be possible to create very short 

individual DNA molecules by restriction enzyme digestion (the equivalent of tags in the 

SAGE approach), ligate them to one another to yield  much larger DNA concatamers (i.e. 

ligating molecules of 30 base pair nucleotide length to yield a 10 kilobase DNA 

molecule) that may be sequenced directly through one of the single molecule sequencing 

methods (most probably the Oxford Nanopore technology, since fewer actual molecules 

are required for this method). The large DNA molecules are then informatically de-

convoluted to give a list of the shorter segments that are subsequently counted in genomic 

bins to yield copy number estimates. For example, given that any 30 base pair nucleotide 

sequence is sufficiently unique across the entire human genome, then sequencing a 10 

kilobase DNA molecule constructed from the ligation of much smaller 30 nucleotide 

DNA molecules would effectively yield approximately 333 DNA molecules instead of 

one (10,000/30).  

Although such methodology is feasible to carry out even with the current long-

read instruments, it is limited by the significantly higher error rates of the ‘long read’ 

technologies. The ‘long read’ methods depend on the extreme length of the continuous 

reads for accurate mapping and the accumulation of multiple redundant reads covering 

the same sequence for accurate calling of individual bases. Thus, for such a SAGE-like 
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method to actually yield useful copy number data, the base calling accuracy of the single 

molecule sequencing platforms will have to be improved significantly.  

	  

7.4.	  Biological	  insights	  gleaned	  via	  highly	  multiplex	  single	  cell	  sequencing	  

	  

 The robustness of the C-DOP-L approach has allowed for the profiling of 

hundreds of single cell genomes from cancer cell lines and human tissue.  Even within 

the results of the example studies presented here biological insights with important 

implications for tumor biology were deduced. First, the observation of sub-clonal 

variation in human cancer cell lines, generally presumed to be monoclonal, implies that 

the evolutionary process that underlies cancer development is still operative in cell 

culture. Second, the sub-clonal heterogeneity for genome-wide copy number in culture 

raises the question of how divergent a cancer cell line might be across different 

laboratories and how to compare different studies utilizing what are supposed to be the 

same cells, but which might differ significantly109. Third, the striking differences in sub-

clonal heterogeneity between the two clinical samples, Pt41 and Pt31 is intriguing, given 

that Pt41 genome is more highly rearranged than Pt31. This might suggest that factors 

other than genomic instability might modulate intra-tumoral heterogeneity and/or 

diversification is dynamic throughout the history of a tumor. And fourth, the mosaicism 

of genomic amplifications observed in Pt31 highlights the remarkable heterogeneity that 

can be obtained by cancer genomes and presents the question of how these varied 

alterations might modulate responses in the face of selective pressures such as therapeutic 

intervention. 
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 The insights gleaned via the single cell analysis also raise important biological 

and genetic questions, particularly with regards to sub-population identification. In the 

cases presented, the resolution of the analysis (i.e. sequencing approximately one hundred 

cells per case) generally yielded two to three sub-populations found at a minimal 

frequency of 10% (i.e. a particular genomic pattern is observed in 10 out of the 100 single 

cells sequenced). While it is almost certain that single cell analysis of a cohort of patients 

will provide a more dynamic view of cancer cell sub-populations in different tumors, a 

question relating to the relative depth, measured in the number of single cells sequenced, 

can be posed: How many single cells are needed to accurately ascertain the number of 

sub-populations present within a tumor? For example, assuming a thousand single cells 

were sequenced, what cutoff point marks a transition from sub-populations to individual 

single cells? Could clonal sub-populations exist at relative frequencies of 1%, 0.1% or 

lower? The answer to this question would yield valuable insights into the genetics of 

tumor evolution and help address clinically relevant phenomena such as late recurrences, 

therapeutic resistance and existence/nature of cancer stem cells, thought to contribute in 

some cases to therapeutic failure/resistance110. 

 Additionally, the observation of the underlying genetic heterogeneity implies that 

there also exists phenotypic heterogeneity in the cancer sub-populations. The resolution 

afforded by single cell sequencing thus could allow direct associations between 

phenotype and genotype. Indeed, this has recently been explored via the analysis of 

circulating tumor cells (CTCs) during therapeutic intervention88. In the work, single cells 

from prostate cancer patients undergoing therapy were selected using an imaging 

modality based on the expression of protein markers (i.e. phenotype). Circulating tumor 
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cells were stained and selected for the expression of the androgen receptor (AR) at 

multiple time points following treatment with abiraterone, an inhibitor of androgen 

synthesis. Single CTCs where subsequently analyzed using methods similar to the ones 

described here. Interestingly a subset of single cells was found to have gain a unique set 

of somatic alterations, including MYC amplification, an event experimentally linked with 

hormone therapy resistance. Thus, in this case, the monitoring of circulating tumor cells 

during treatment facilitated the identification of genomic markers that could be of 

potential utility. It is likely that further studies like the one described above will provide a 

compendium of genetic alterations that link resistance phenotypes to somatic copy 

number alterations. 

 

7.5. Foreseeable clinical applications of single cell copy number profiling 

 

 The utilization of single cell copy number profiling in studying cancer 

experimentally, in settings such as cancer cell lines and tumor mouse models is likely to 

yield valuable insights into the dynamics of the evolutionary process. But, what of the 

utility of single cell analysis in the clinical setting? While realizing any applicability of 

single cells in the clinical management of patients will require more rigorous validation 

of the developed methodologies as well as the automation of these methods, it is still 

tempting to speculate about the translational opportunities that might exit. 

 

 As described in the previous section on biological implications, one area that 

holds a great deal of promise in the clinic is the genomic profiling of circulating tumor 
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cells. The ability to non-invasively capture and genetically profile single circulating 

tumor cells via a “fluid biopsy” to guide targeted therapeutic modalities is distinctly 

appealing. This is particularly true in the setting of metastatic disease where acquiring 

biopsies from different metastatic sites (for example bone metastasis in breast and 

prostate cancer) is often not feasible. In addition, the minimal invasiveness of this 

approach makes it possible to perform genetic analysis of single circulating tumor cells 

on serially collected samples in real time during therapeutic intervention. This has the 

potential to facilitate rapid response from the side of clinic to any insights that might be 

gleaned from the cancer genome copy number profile. For example, investigations of 

targeted therapy in lung adenocarcinomas have revealed pronounced sensitivity of EFGR 

mutant Non Small Cell Lung Cancer (NSCLC) to EGFR inhibitors such as gefitinib111. 

Unfortunately, in most cases, responses are not durable and treatment resistant clones 

emerge. Genomic investigations at the bulk analysis level of relapse cases have shown 

that focal amplification of the MET proto-oncogene confers resistance to EGFR mutant 

cancers112. These amplifications are robustly detected at the single cell level using the 

methods described here. In addition, there is evidence that circulating tumor cells are 

abundant in lung cancer patients. Thus, it is conceivable to imagine a setting where the 

detection of increasing numbers of circulating tumor cells containing a MET amplicon 

during targeted gefitinib treatment signals the emergence of a clonal population that is 

resistant to gefitinib treatment and informs the clinician of the possible value of adding a 

MET specific inhibitor to the therapeutic modality.  

 Furthermore, in the setting of primary disease, it is also possible to envision 

utilizing single cell analysis on biopsies serially collected in real time during the course 
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of disease treatment with the purpose of monitoring the shifts in the dynamics of the sub-

populations identified via their genome-wide copy number patterns. In this case, the 

emergence/disappearance of identified sub-populations could be construed as evidence 

for resistance/sensitivity towards the therapeutic agent being used. This may inform the 

use of an additional therapeutic agent if a particular genetic biomarker for which a 

therapeutic agent is known was observed in the single cell sequencing data. While the 

analysis of single cell data during the course of treatment from repeated biopsies could be 

confounded by geographic heterogeneity, certain approaches could be utilized to address 

this confounding variable. For example, the observation of the emergence of a sub-clonal 

population following treatment in two distinct sets of biopsies acquired before and after 

treatment could be interpreted as sufficient proof of the resistance of this population to 

the therapeutic agent. Furthermore, given the resolution of data, single cell genome 

analysis can facilitate the utilization of minimally invasive approaches, such as Fine 

Needle Aspirates (FNA), that yield lower material in terms of numbers of cells than 

traditional biopsies. The advantage of the utility of FNA for single cell genomic 

interrogation lies in relative safety of sample retrieval coupled with the capacity to 

perform comprehensive exploration of the single cell genomes. 

  In addition, an often overlooked area where single cell analysis could potentially 

contribute is in predisposition risk assessment in individuals with germline mutations of 

unknown pathogenicity. Given the single cell resolution of the data and the fact that 

genetic instability is the driving force for cancer genome evolution, measurement of the 

level of genetic instability via genome-wide copy number profiling in seemingly normal 

cells could potentially provide a metric for pre-disposition to cancer. For example, the 
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observation of random non-recurrent, genomic rearrangements in normal single cells 

from an individual with a germline BRCA1 mutation of unknown pathogenicity might 

indicate that the actual mutation is pathogenic. This is in a fashion similar to the DEB 

(diepoxybutane) test used to infer the pathogenicity of Fanconi Anemia (FA) alleles via 

the measurement of chromosomal breakage and radial formation of FA cells in response 

to treatment with DEB. Consistent with the feasibility of such an approach is the 

observation of single cells carrying random non-recurrent genomic alterations in 

otherwise normal genomes using our methods of single cell copy number profiling 79.  

 

7.6.	  Applications	  of	  C-‐DOP-‐L	  outside	  of	  cancer	  biology	  and	  Future	  directions	  

	  

 Finally, while the approach was devised for the purpose of studying cancer 

heterogeneity and evolution, it is clear that its applications are not limited to cancer 

biology. The robustness of the method coupled with its high-throughput nature makes it 

an attractive approach to examine the CNV patterns underlying aneuploidy in human 

gametes113 as well as human neurons114. In addition, biological phenomena such as the 

ploidy conveyor in hepatocytes115 could very well be carefully dissected using the 

methods described here. With regards to cancer biology, the application of our high-

throughput single cell genome sequencing approach to many tumors types and ultimately 

hundreds of cancers samples is bound to illuminate the underlying biology behind tumor 

heterogeneity and help in our struggle to better understand and tackle this disease. 
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8. SUMMARY AND CONCLUSION 

 

 To summarize, high-throughput highly multiplex single cell sequencing provides 

a powerful approach to dissect the underlying genomic heterogeneity present in cancer 

genomes at the level of genomic copy number variation. The down-sampling analysis 

presented represents an important benchmark for single cell whole-genome copy number 

variation analysis upon which further investigations could build. The introduction of 

concepts regarding varying levels of resolution in the analysis via different number of 

bins also provides a good foundation for future study. The optimization of the molecular 

approach in generating single-cell sequencing libraries offers a resource that facilitates 

low-cost and high-throughput analysis of single cell genomes. In addition, the 

malleability of the approach gives it the capacity to adapt to the evolving Next 

Generation Sequencing landscape.  Importantly, the robustness and accuracy of the 

method facilitated in-depth investigations of intra-tumoral genetic heterogeneity in the 

context of cancer cell lines and clinical biopsies. These investigations unraveled 

important biological insights in illustrating substantial genomic heterogeneity in tumor 

genomes, both in terms of sub-populations structure as well as somatic mosaicism of 

chromosomal amplifications. With the ever decreasing cost, increasing output, and 

continual technical evolution of Next Generation Sequencing platforms it is likely that 

the concepts presented here (minimal read requirements/high level multiplexing) will be 

further expanded to facilitate the profiling of thousands of single cancer cells and further 

facilitate the retrieval of additional pieces of genetic information in the form of single 

nucleotide variants as well as structural variants. This will enable expansive studies 
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across many tumor samples and will allow for a better comprehension of cancer genome 

heterogeneity and facilitate in-depth understanding of its contribution to disease 

progression, therapeutic resistance and cancer metastasis. Clinically, it is tempting to 

envision a role for single cell sequencing in the monitoring of therapeutic response of 

patients to therapy, especially within the context of circulating tumor cells. The ability to 

genetically profile, at a genome-wide level, the cancer genomes of single circulating 

tumor cells via a minimally invasive fluid biopsy over the course of treatment could offer 

clinicians valuable information in tackling the evolving nature of cancer. The methods 

described here represent a significant step towards the realization of these applications 

and offer a solid foundation upon which further studies will expand. 
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