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Abstract of the Dissertation

A Study on Two Optimal Planning Problems
in Smart Grid

by
Eting Yuan

Doctor of Philosophy

in
Applied Mathematics and Statistics

Stony Brook University

2013

Optimized planning of power devices and power generators is essential for saving energy

and reducing costs in smart grid. Many of these optimization problems share a common

characteristic and seek to optimize accumulated rewards or costs within a finite time planning

horizon. For this reason, some of those problems can be formulated as finite horizon optimal

planning problems. This dissertation performs detailed investigation on two representative

finite horizon optimal planning problems: the Unit Commitment problem (UCP) and the

Voltage and Reactive Power Control (VVC) Problem.

UCP is an important optimal power planning problems in electric grids. The purpose

of UCP is to determine when to start up and shut down power generator units and how to

dispatch committed units to meet electricity demands, ancillary services requirements, and

security constraints in order to minimize total operational costs. This dissertation improves

the traditional lagrangian relaxation (LR) approach and analyzes the effectiveness of using

parallel computing for solving large-scale unit commitment problems with wind power pen-

etration. Additionally, we investigate the potential of combining parallel computing with a

rolling horizon scheme to improve the solution quality when a large amount of wind power

is present.
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One of the objectives of VVC is to determine the proper status of capacitor banks and

transformer tap positions in a power distribution system to minimize daily power losses or the

daily power consumption. In this dissertation, we propose to use an approximate stochas-

tic annealing (ASA) algorithm for solving VVC problems. We also propose a lagrangian

relaxation-dynamic programming (LR-DP) algorithm for solving VVC problems with op-

eration limits on power devices to obtain upper and lower bounds on the performance of

the optimal solution. The performance of the ASA algorithm is illustrated on a well-known

PG&E 69-bus distribution network. Our testing results indicate that the ASA algorithm

may yield solutions very close to the optimum within a moderate amount of computational

time. This dissertation also discusses the convergence properties of the ASA algorithm for

VVC problems.
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Chapter 1

Introduction

An important area of smart grid is to use new technologies and equipments to improve

energy efficiency and reduce energy costs, which necessitates optimized planning of power

devices and power generators. Some of those problems target at the optimization of accumu-

lated, for example, operational costs or power consumption, over a finite time horizon, where

in each time slot, optimal planning or control of power devices or generators is computed. In

this dissertation, we categorize these optimization problems as finite horizon optimal plan-

ning problems. This dissertation focuses on two representative problems of this category:

the Unit Commitment Problem (UCP) and the Voltage and Reactive Power Control (VVC)

problem. We briefly describe these two problems in this chapter. Additionally, this chapter

reviews the general mathematical models for finite horizon optimal planning problems and

optimization algorithms for solving those problems.

1.1 Finite Horizon Optimal Planning Problems in Smart

Grid

Many optimization problems in smart grid can be categorized as finite horizon optimal

planning problems. A well-known example is the Unit Commitment Problem, which finds
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the optimal schedule of power generators to minimize the total operational cost over a certain

time horizon. Another example is the Voltage and Reactive Power Control problem, which

finds the optimal control schedule of transformer load tap changers and shunt capacitors

to minimize daily power losses or power consumption. We can also formulate the feeder

reconfiguration problem as a finite horizon optimal planning problems with the objective

of finding the optimal control schedule of line breakers in power distribution systems to

minimize power losses. The rest of this section provides a brief description of UCP and VVC

problems.

1.1.1 Unit Commitment Problem

Specifically, the purpose of UCP is to determine when to start up and shut down the

power generator units and how to dispatch committed units to meet electricity demands,

ancillary services requirements and security constraints. In power markets, UCPs are com-

monly solved by Independent System Operators (ISOs) such as NYISO [46, 48] on a daily

basis. Usually, the optimal commitment schedule of power generators should satisfy a se-

ries of security constraints, and the corresponding UCP is referred to Security Constrained

Unit Commitment (SCUC) Problem. The process of solving SCUC and publishing the com-

putational results is referred to the unit commitment process. The inputs and outputs of

SCUC are given in figure 1.1. ISOs receive generation and service bids from power gen-

eration companies, load bids from electricity retailers, and load and wind power forecasts

from some mathematical forecasting models. Security constraints usually include: 1) total

power generation should meet the total power consumption; 2) different levels of spinning

reserve requirements should be satisfied to avoid power outage in cases of unexpected failure

of one or more scheduled power generators and/or the sudden loss of wind power. 3) power

transmission networks should be able to transmit generated electricity power to different

areas of the electric grid without causing transmission congestion. With these inputs, ISOs

use some optimization algorithms to compute the optimal generation schedule and ancillary

2



Figure 1.1: Unit Commitment Process

service schedule, which are published along with the market clearing prices of generation

and ancillary services as the outputs of the unit commitment process.

Traditionally, UCPs are formulated as finite horizon deterministic optimization problems.

However, as the penetration level of renewable energy resources, especially wind power,

increases, stochastic UCP models are proposed for modeling the volatility of renewable energy

resources. Mixed-integer linear programming [10] and lagrangian relaxation [13] are widely

used for solving both deterministic and stochastic UCPs. In practice, a UCP usually has

thousands of discrete and continuous variables and a large number of constraints, so it is

very difficult to compute optimal solutions within an acceptable amount of time. Many

heuristics are introduced to simplify the problem and reduce the computational time, but

those heuristics , to a certain extent, sacrifice the optimality of the solution. In chapter 2,

we propose a parallel-computing scheme for the lagrangian relaxation algorithm to boost

the computational speed. Additionally, we propose a probabilistic UCP model and a rolling

horizon scheme to handle the stochastic wind power generation.
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1.1.2 Voltage and Reactive Power Control Problem

This dissertation studies VVC problems in power distribution systems. The VVC problem

initially arose from the voltage drop along the power distribution lines, which is illustrated

in figure 1.2. To comply with certain regulations, it is necessary to use some power devices

and control methods to maintain voltage levels in a specific range, for example , 120V ±5%.

The most widely used control devices are Transformer Load Tap Changers (LTCs) and Shunt

Capacitors (SCs). LTCs function as voltage transformers and are able to increase or decrease

output voltage levels by changing their tap positions. SCs inject reactive power into power

distribution systems to change the electricity flow in distribution lines, and thus, to change

the amount of voltage drops. Figure 1.3 illustrates the effectiveness of capacitors in reducing

voltage drops. Many control methods were proposed to control voltage levels, for example in

[2]. Some of these methods are based on a simple heuristic that, if the measured or estimated

voltage level is below the lower limit for a certain time span, capacitors are switched on and

tap positions of LTCs are increased to increase the voltage level; on the contrary, if the

measured or estimated voltage level is above the upper limit, capacitors are switched off and

tap positions are decreased to decrease the voltage level. The advantage of this heuristic is

that it is easy to implement and is effective in maintaining voltage levels within a proper

range. However, it may not be optimal.

Optimized VVC usually involves the optimal planning tap positions of LTCs and on/off

states of SCs to minimize daily power losses. Thus, we consider it as a finite horizon optimal

planning problem. This control scheme requires accurate day-ahead load forecast at the

secondary transformer level of a power distribution feeder, which is not possible without

modern smart grid technologies. In smart grid, this small-scaled load forecast is feasible

by using the high resolution historical data from smart meters. Many optimization models

have been proposed based on this VVC scheme [38, 40, 43, 75] during last two decades. In

addition to power losses, operation costs of power devices are also considered in some of

those models due to the fact that those devices such as LTCs and SCs are expensive and

4



Figure 1.2: Voltage drop in a power distribution system

Figure 1.3: Voltage drops in a power distribution system with capacitors
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have high maintenance costs, and that operations of those devices will result in disturbances

of distribution systems. Two methods are used for modeling the cost of operations: 1)

adding an operation cost term to the objective function; 2) imposing limits on the number

of operations on those devices. This dissertation adopts both methods in chapters 3 and 4

respectively.

Another VVC scheme is Conservation Voltage Reduction (CVR) [58, 59]. This is based

on load models that assume positive correlation between the power consumption and voltage

levels. Thus, reducing voltage levels may reduce the power consumption. The study in [59]

has shown the effectiveness of CVR in reducing the total power consumption; however, the

control algorithm is largely based on heuristics and operation costs are not considered. In

this dissertation, we develop mathematical models and optimization algorithms to minimize

the daily power consumption in power distribution systems.

1.2 Solution Algorithms for Finite Horizon Optimal

Planning Problems in Smart Grid

1.2.1 Dynamic Programming

Because we consider the accumulated cost over a finite horizon, we can formulate the

optimization problem as:

min
xt,at

E{
T
∑

t=1

C(xt, at) + Cf(xF )} (1.1)

subject to g(x1, x2, . . . xT , a1, a2, . . . aT ) ≤ 0,

where xt represents the state of a power system at time t, at represents the action we take

at time t, C(xt, at) represents the cost incurred at time t with state xt and action at, and

Cf(xf ) is the final cost. The objective is to find a sequence of state-action pairs to minimize

6



the objective function. A brute-force method for solving this optimization problem is to

enumerate all feasible sequences to find the optimal solution. The time complexity of this

method is O((|X||A|)T ), which makes this approach prohibitive even for some small-sized

problems. Instead, we use the dynamic programming method for solving this problem.

According to the mathematical formulation above, we can model a finite horizon optimal

planning problem as a finite horizon Markov Decision Process (MDP) (X,A, R, P, T ), where

• X is the set of all possible states, i.e., X = {x}.

• A is the set of all actions, i,e., A = {a}.

• R is the cost function, i.e, R = C.

• P is the transition probability from xt to xt+1 given an action at.

• T is the planning horizon.

The objective of the finite horizon MDP is to find an optimal policy π∗ in the policy space

{Π : X → A}, e.g. an optimal action a∗ ∈ A for each state x at time t. The standard

dynamic programming algorithm can solve this problem. Let V ∗
t (x) be the cost accumulated

from time t to T , then we have:

V ∗
t (x) =

T
∑

k=t

R(xk, π
∗(xk)) + Cf(xf ).

The optimality Equation (1.2) and Equation (1.3) compute values of all states and the

optimal policy π∗ recursively.

V ∗
t (xt) = min

a
E{R(xt, a) + V ∗

t+1(xt+1)}, (1.2)

π∗(xt) = a∗ = argmin
a

E{R(xt, a) + V ∗
t+1(xt+1)}. (1.3)

7



We apply the optimal policy at each time period, and an optimal sequence of state-action

pairs is obtained. The time and space complexities are both O(|X||A|T ), which is a big

improvement over the brute-force method with time complexity O((|X||A|)T ).

The dynamic programming algorithm has been widely used for solving some optimal

planning problems, including the unit commitment problem, the voltage and reactive power

control problem and the feeder reconfiguration problem. In UCP, the state x can be repre-

sented by a vector (s1, s2, . . .), where si denotes the state of power generator i; the action

a can be represented by another vector (b1,b2, . . .), where bj denotes the operation on power

generator j; the cost function can be formulated according to the operational cost function,

which may include fuel cost, startup cost, etc. We can build a similar model for the VVC

problem: the state x denotes the states of LTCs and SCs, action a denotes operations on

LTCs and SCs, and the cost function is the power loss function or the total energy consump-

tion function. In literature, the dynamic programming approach was proposed for solving

VVC problems in [62] for solving UCPs in [24].

However, in some cases, we can only use the dynamic programming algorithm for solving

small-scaled problems due to the large size of the state space X and action space A. In UCP,

the state x, as mentioned previously, is represented by a vector (s1, s2, . . .). If we have n

power generators, and each generator hasm states, then |X| = mn, which is exponential with

respect to the number of power generators n. There are usually hundreds, or even thousands

of power generators in an electric grid, so the dynamic programming approach is prohibitive

in those cases. A similar problem occurs when we apply the dynamic programming algorithm

for solving VVC problems. In literature, some heuristics and neural networks were used to

reduce the sizes of state and action spaces. However, those methods cannot assure the

optimality of solutions.
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1.2.2 Stochastic Search Algorithms

We can formulate the problem in Equation (1.1) with a simpler representation in Equation

(1.4) below:

min
x,y

f(x, y) (1.4)

subject to g(x, y) ≤ 0,

where x = (x1, x2, . . .) is a vector of integer or discrete variables, and y = (y1, y2, . . .) is a

vector of continuous variables. x denotes some discrete control variables in power systems,

which may include tap positions of transformers, on/off states of generators, etc. y denotes

continuous variables in power systems, which may include power output levels, voltage levels,

etc. Because of the non-convex nature of the objective function and constraints, we can not

directly apply convex programming algorithms on these problems. Instead, several well-

known stochastic search algorithms may solve those problems.

Genetic Algorithm

Genetic Algorithm (GA) is an optimization algorithm that mimics the process of natu-

ral evolution, and is based on the concepts of natural selection and natural genetics. The

basic structure of the algorithm is given in [22]. In GA, a number of initial candidate solu-

tions called “population” are randomly generated. Each candidate solution is encoded into

a string structure called “chromosome”. Usually, each chromosome is the concatenation of

binary representations of control variables, which can mutate or be altered. Chromosomes

are composed of genes, which represent the values of control variables. Candidate solutions

evolve towards better solutions when a sequence of genetic operators, such as parent selec-

tion, crossover and mutation, are applied, and eventually, may converge to global optimal

solutions. Typically, GA follows the following steps:

1. A population of candidate solutions is initialized.
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2. Fitness functions are evaluated for the population.

3. Genetic Operators are applied to generate the next generation of population.

4. If a termination condition is satisfied, then stop; otherwise, go to step 2.

In step 1, the candidate solutions are generated by random number generators. A sequence

of Bernoulli random variables are generated if chromosomes consist of binary bits. In step 2,

the fitness function is usually the objective function. For example, it could be the fuel cost

function in UCPs or the power loss function in VVC problems and feeder reconfiguration

problems. Since some candidate solutions may not satisfy all constraints, penalty terms are

added to the objective function, which becomes:

min
x,y

f(x, y) +

Nc
∑

j=1

ηjPenj, (1.5)

where Nc is the number of constraints, Penj is the penalty for the violation of the jth

constraint, and ηj is the weighting factor. In step 3, three different genetic operators are

usually applied: parent selection, crossover and mutation. These operators mimic the nat-

ural evolution and selection processes. The parent selection operator stochastically selects

parents for crossover from current population of candidate solutions. A candidate solution

with smaller fitness function value has higher probability of being selected to pass its genes

to the next generation of solutions. By applying the crossover operator, parent chromosomes

are combined to produce new chromosomes that inherit their segments of genes. Different

crossover schemes, such as one-point crossover, two-point crossover, uniform crossover and

half uniform crossover, have been proposed for solving different kinds of problems. The mu-

tation operator mimics the biological mutation process: one or more genes can mutate with

a very small probability. Different mutation schemes are applied for different chromosome

types. The genetic algorithm terminates when a termination condition is satisfied.
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GA has been widely used for solving optimal planning problems in smart grid. GA is

used for solving UCP in [31], the optimal power flow problem in [1], and the feeder reconfig-

uration problem in [61]. In UCP, the on/off status of power generators are coded into binary

strings (chromosomes); power output levels are computed after solving an optimal dispatch-

ing problem; penalties are added for the violation of minimum on/off time constraints and

reserve constraints. In optimal power flow problems and VVC problems, tap positions and

on/off states of capacitors are coded into binary strings, while voltage levels and power flows

are calculated using a set of power flow equations. Penalties are added for the violation

of security constraints such as voltage constraints. In feeder reconfiguration problems, the

on/off states of line breakers are coded into binary strings. To improve the performance

of GA, some other genetic operators such as elitism [15] are introduced for solving some

optimization problems, and better performance of GA is shown after adding those operators

[1].

Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is also popular for solving optimal plan-

ning problems in smart grid. PSO is a stochastic search algorithm introduced in [32]. PSO

mimics the movements of a bird flock searching for food. Similar to GA, PSO also randomly

initializes a number of candidate solutions named particles. The position of each particle is

evaluated by the fitness function (objective function). In the process of iteratively searching,

PSO moves particles in the multidimensional search space according to fitness function val-

ues over coordinates and velocities of those particles. For each particle, its coordinate and

velocity are dynamically adjusted according to its own flying experience and the experience

of its neighbors. The coordinate and velocity of a particle is updated by using its current co-

ordinate and velocity, its best recorded position, and the best recorded position of the flock.

Let x and v denote the coordinate and velocity of a particle. Let pBest be the best recorded

position of that particle, and gBest be the best recorded position among all particles. Let k
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be the iteration number. Values of x and v are updated according to the following equations:

vk+1 = k(w · vk + ψ1 · rand() · (pBest− xk) + ψ2 · rand() · (gBest− xk) (1.6)

xk+1 = xk + vk+1

where ψ1, ψ2, k, and w are parameters of PSO. Similar to genetic algorithm, some candidate

solutions generated in PSO may violate some constraints, so we should also add penalty

terms to the original objective function as in Equation (1.5). PSO is initially for solving some

optimal planning problems with only continuous variables; however, some control variables

in smart grid are discrete. A discrete binary PSO algorithm was proposed in [33] for solving

this problem, and that algorithm was applied on UCP in [20]. A similar technique was used

for solving VVC problems in [40, 75].

Simulated Annealing

Simulated Annealing (SA) [34] is a stochastic search algorithm inspired by the annealing

process in metallurgy. It works by emulating the physical process that a solid reaches a

“frozen structure” with a minimum energy configuration if it cools down at a very slow

schedule. SA has six basic elements: 1) a finite solution space, 2) an objective function, 3)

neighbors of a state, 4) a transition probability measure from a state to its neighbors, 5) a

cooling schedule, 6) an initial state. Let x denote a state (candidate solution) in the search

process, f(x) denote the objective function, S denote the solution space, S(x) denote the

set of neighbors of the state x, and P (j|i) be the transition probability from a state i to

another state j, j ∈ S(i). SA iteratively searches for the global optimal solution according

the following steps:

1. Initialize a state x0 and a cooling schedule {Tk}.

2. Generate a state x′ from S(xk) according to the transition probability P (x′|x).
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3. Evaluate the objective function values f(xk) and f(x
′).

4. If f(xk) > f(x′), xk+1 = x′. Else, with probability e(f(xk)−f(x′))/Tk , xk+1 = x′; with

probability 1− e(f(xk)−f(x′))/Tk , xk+1 = xk.

5. If a stopping condition is satisfied, stop; else, let k = k + 1, and go to step 2.

In step 3, even though a new state SA generates is worse than the old state, the new state

will still be accepted with a positive probability, which prevents the search process from

trapped in local optimal states.

SA is usually used for solving problems with discrete control variables. Unlike GA and

PSO, which may generate candidate solutions violating one or more constraints, SA always

generate feasible candidate solutions because it assigns zero transition probability to those

infeasible states. However, there are two disadvantages: 1) if the feasible regions are sepa-

rated from each other, SA may fail in obtaining the global optimal solution; 2) it may be

challenging to find an initial feasible solution for some problems. SA was used for solving

VVC problems in [39], UCPs in [74], feeder reconfiguration problems in [11], and optimal

power flow problems in [55].

Approximate Stochastic Annealing

In this dissertation, we propose a novel Approximate Stochastic Annealing (ASA) algo-

rithm for solving finite horizon optimization problems with discrete variables. The approxi-

mate stochastic annealing algorithm is inspired by the Boltzmann distribution in statistical

thermodynamics. By definition, the Boltzmann distribution for the fraction of the number

of particles at a state i with energy Ei is:

Ni

N
=

gie
−Ei/(kBT )

∑

i gie
−Ei/(kBT )

, (1.7)

where gi is the degeneracy of a state i, T is the temperature and kB is the Boltzmann constant.

Ni is the number of particles at state i, andN is the total number of particles. We can observe
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from Equation (1.7) that when temperature is high, particles are more evenly distributed

among all states with different energy levels. However, when T is low, these particles are

more concentrated on states with low energy levels. We can borrow this idea for solving

discrete optimization problems. Suppose a state of a particle can be represented by a vector

of discrete variables x, and the energy level can be represented by the objective function

value. Thus, the optimization problem becomes the problem of finding the state with the

lowest energy level. Because the number of states is very large in some problems, it may be

time consuming or even infeasible to calculate the energy level of each state. An alternative

is that we can assume those states are distributed according to a parameterized probability

distribution, and our objective is to estimate those parameters when the temperature is

low. In ASA, parameters of that probability distribution are iteratively estimated using a

simulation based method. At each iteration, a number of states (x’s) are sampled according

to the current distribution function. Then, ASA computes energy levels (objective function

values) of those states, which are used to update those parameters. We expect that as the

temperature slowly decreases to zero, we will have a good estimation of that probability

distribution, which assigns unit probability mass to the state with the lowest energy level.

This dissertation gives details of this algorithm in chapters 3 and 4. We give the convergence

analysis of ASA in chapter 5.

1.2.3 Mixed-Integer Programming

As noted in Equation (1.4), optimal planning problems in smart grid have two types

of variables: discrete variables (integer variables) and continuous variables. Thus, mixed-

integer programming (MIP) methods may solve those problems. The most widely used

algorithm is “branch and bound (B&B)”, a dynamic search algorithm that searches opti-

mal solutions through a search tree. Typically, three operations, branching, bounding and

pruning, are used in this algorithm. Let S be the solution space of integer variables. The

branching process divides S into smaller sets {S1, S2, . . .}, whose union covers S. Then,
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the optimal solution over S is the minimum of solutions over those subsets. The splitting

process is performed recursively until the solution space cannot be separated. The bounding

process calculates lower and upper bounds for each node in the search tree through convex

programming methods. The pruning operation reduces the size of the search tree: if the

lower bound of a node A is greater than the upper bound of node B, node A and its off-

spring can be safely discarded. In the worst case, the B&B algorithm enumerates all the

candidate solutions in the solution space of discrete variables, which leads to an exponen-

tial time complexity; however, good choices of splitting points and pruning operations can

significantly reduce the number of visited nodes.

One of the most important applications of mixed-integer programming is the unit com-

mitment problem due to the fact that UCP can be formulated as a mixed integer linear

programming (MILP) problem, and that linear programming problems can be solved very

quickly. Even in some cases, where quadratic objective functions are used, piecewise lin-

ear functions can approximate the quadratic objective functions very well. To improve the

performance of MILP, a new algorithm called “branch and cut” was proposed in [45]. The

branch and cut algorithm is implemented in the commercial optimization solver IBM ILOG

Cplex [29], which was used for solving UCPs with up to 100 power generators in [10]. For

some other optimal planning problem such as feeder reconfiguration and VVC, MIP is rarely

used because of the nonlinear or even non-convex nature of objective functions and con-

straints: it takes a large amount of time to calculate upper and lower bounds of a node

in the search tree. MIP was used for solving VVC problem in [40], but results were not

promising in terms of both optimality and computational time.

1.2.4 Interior Points Method and Lagrangian Relaxation Method

Interior points method (IPM) and Lagrangian Relaxation (LR) Methods are both convex

programming techniques. We can relax integer constraints and use these two methods for

solving the relaxed problem with just continuous variables. Integer variables in the solution
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of the relaxed problem are rounded to integers using some heuristics. Interior point method

was used in [40] for solving the VVC problem with very promising results. Note that even

integer constraints are relaxed, some problems may still be non-convex, and computational

results may be local optimal solutions.

Lagrangian Relaxation method is widely used for solving UCPs. A dual problem is

obtained by relaxing some constraints. The dual problem is decomposed into a number of

small subproblems solved by dynamic programing. We can use a simple example of UCP

below to illustrate this algorithm. A simple UCP can be formulated as:

min
x

N
∑

i=1

f(xi) (1.8)

subject to : xi ∈ Xi, ∀i (1.9)

N
∑

i=1

aixi ≤ b. (1.10)

By relaxing the constraint in (1.10), a dual problem is obtained below:

max
λ

q(λ),

where

q(λ) = min
x

N
∑

i=1

f(xi) + λ
N
∑

i=1

aixi − λb (1.11)

=

N
∑

i=1

min
xi

{f(xi) + λaixi)} − λb

subject to x ∈ Xi ∀i. (1.12)

To find the value of q(λ), we only need to solveN small independent sub-problems: minxi
f(xi)+

λaixi. In UCP, these small sub-problems can be solved by dynamic programming with very
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little computational time. Additionally, because these sub-problems are independent from

each other, we can use parallel computing to solve each of them simultaneously to save com-

putational time. This dissertation discusses details of the parallel computing scheme and

the scalability in chapter 2.

1.3 Overview of This Dissertation

The rest of this dissertation is organized as follows:

In chapter 2, we propose a parallel computing scheme for solving large-scale unit com-

mitment problem with complex security constraints and wind power penetration based on

the traditional lagrangian relaxation algorithm. The UCP in this work consists of hundreds

of power generators and a variety of reserve constraints and transmission constraints. We

use a probabilistic UCP model and a rolling horizon scheme to handle the volatile wind

power generation. We test the performance of our algorithm and the computing scheme

in a simulated unit commitment process in New York Control Area. The performance and

scalability of parallel computing are tested on an IBM blue gene supercomputer.

In chapter 3, we propose an Approximate Stochastic Annealing algorithm for solving

voltage and reactive power control problems for minimizing power losses in power distri-

bution systems. Voltage constraints and operations limits constraints on LTCs and SCs

are considered. We also propose an algorithm that combine lagrangian relaxation and dy-

namic programming for solving the same problem and to test the performance of the ASA

algorithm.

In chapter 3, we propose two additional VVC models. We consider operation costs of

LTCs and SCs and ZIP load models in these two VVC models. One of them minimizes power

losses and the other minimizes the total energy consumption. We use ASA for solving both

models. We use the computational results of the dynamic programming algorithm and the

simulated annealing algorithm to illustrate the performance of the ASA algorithm.
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In chapter 5, we discuss the convergence properties of the ASA algorithm.
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Chapter 2

Large-Scale Security Constrained

Unit Commitment Problem

Nomenclature

pm,im,t electricity output level of generator im in zone m at time

period t.

zm,im,t binary variable that is 1 if generator imin zone m is on

during time period t; 0 otherwise.

Fm,im,t fuel cost function of generator im in zone m at time period t.

Sm,im,t startup cost function of generator im in zone m at time

period t.

Rm,im,t reserve service cost function of generator im in zone m at

time period t.

r10sm,im,t 10-minute spinning reserve level of generator i in zone m at

time period t.

r10nsm,im,t 10-minute non-synchronous reserve service level of generator

im in zone m at time period t.
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r30sm,im,t 30-minute spinning reserve level of generator i in zone m at

time period t.

r30nsm,im,t 30-minute non-synchronous reserve service level of generator

i in zone m at time period t.

rm,im,t reserve service vector defined as

(r10sm,im,t, r10nsm,im,t, r30sm,im,t, r30nsm,im,t).

CRegm,im,t regulation cost function of generator im in zone m at time

period t.

regm,im,t regulation service level of generator im in zone m at time

period t.

dt,m prediction of electricity demand of time period t in zone m.

wt,m prediction of wind power of time period t in zone m.

Res10s 10-minute spinning reserve requirement for the whole ISO

control area.

Res10t 10-minute total reserve requirement for sub control area j at

time t.

Λj super-zone j or the jth collection of zones.

ResLBj,10s,t 10-minute spinning reserve requirement for sub control area

j at time t.

ResLBj,10t 10-minute total reserve requirement for sub control area j at

time t.

pm,im,max maximum output when generator im in zone m is on.

pm,im,min minimum output when generator im in zone m is on.

Γl,m line flow distribution factor for the transmission line l due to

the net power injection of zone m

Trani,max maximum transmission capacity of transmission line l in

designate direction.
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Msim,m maximum number of times that generator imin zone m is

allowed to be shut down.

2.1 Introduction

The goal of unit commitment problems is to find the optimal production schedule for

power generation units and the production level of each unit over a short term period in

order to minimize the operational cost of the power grid [12]. To maintain the security of

the electric grid, a variety of security constraints such as reserve constraints and transmission

constraints, are enforced, and the resulting problem is usually called Security Constrained

Unit Commitment (SCUC) problem. In New York State, UCP is solved by New York Inde-

pendent System Operator (NYISO) in the day-ahead power market based on the generation

and ancillary service bids, which give generation and ancillary service cost of each power

generator, from Independent Power Producers (IPP), Loads bid from Load Service Entities

(LSE) and Security Constraints set by NYISO and other power regulation authorities. Be-

cause of the importance of UCPs, it has been studied broadly and intensively, and many

methods have been proposed in literature and used in practice [53].

Depending on the system configuration of a power grid, different optimization objectives

and security constraints are considered. For the basic UCP formulation, the objective is

simply to minimize the power generation cost subject to the electricity demand. However,

as the liberalization of the electricity markets and advancement of optimization techniques,

more and more elements are introduced. In [60], a security constrained unit commitment

problem (SCUC) with transmission constraints was tackled using a lagrangian relaxation

approach, where the transmission and reserve constraints were relaxed to form a dual prob-

lem and subsequently solved using subgradient methods. The test result shows that the

proposed direct method can reduce the generation cost over the indirect method that does

not consider transmission constraint in the dual optimization process. The algorithm was
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improved in [65] to address the feasibility issue, and a unit de-commitment step was added

to achieve a better solution. The AC constraints were considered in [44], and Bender’s de-

composition technique was used for solving the problem. Furthermore, ancillary services

has been gradually introduced into the unit commitment process. In [37], Z. Li and M.

Shahidehpour used Lagrangian Relaxation technique to solve the security constrained UCP

with ancillary service constraints and costs; moreover, they also calculated the market clear-

ing price of both generation and ancillary costs. Their work is important because there is

a conflict between generation service and ancillary service when a generator is turned on.

Additionally, some environmental elements such as carbon tax were introduced to UCP in

the past two years [4]. Because of its complexity, it is unusual for ISOs to solve the problem

in a single step. Instead, a multi-step approach is often adopted. For example, in the New

York State, different constraints are added at different steps to decrease the complexity of

the problem [46]; however, this will decrease the solution quality. Therefore, how to solve a

SCUC problem in a single step with a certain time limit becomes a challenging issue.

The presence of renewable energy sources such as wind power can further increase the

complexity of UCP, and a common method to handle this is to use the scenario tree tech-

nique [64] to simulate uncertainties and dynamics of wind power. However, to make the

problem computationally tractable, only a very limited number of scenarios can be used.

Many research projects proposed to use a rolling horizon optimization scheme rather than

the traditional day-ahead scheme; see for example, the Wilmar project [73][67][68]. An al-

ternative method is to use a probability measure to set up a probability level to limit the

probability of power outage within the prescribed threshold [52]. To meet these probability

requirements, one needs to set the operation reserve based on the variability of wind power.

A rolling horizon approach can also be used to dynamically locate the operation reserve when

new wind forecast information is available. Note that the rolling horizon approach is more

computationally demanding than the traditional day-ahead scheduling process, as decisions

need to be made at each time slot in an online manner and every decision requires solving a
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nonlinear optimization problem involving both continuous and discrete decision variables.

In this chapter, an improved Lagrangian Relaxation (LR) method, which is adapted

for parallel computing, is proposed to solve a large scale SCUC problem. Because linear

generation cost functions are used, a greedy algorithm is proposed to optimize generation

and ancillary services when a generator is on. By using the proposed algorithm, we expect to

solve the large-scale SCUC in a single step and dramatically reduce the computational time.

A system based on the power system of the New York Control Area (NYCA) is simulated

to test the significance of our algorithm.

To address the variability of wind power, we follow the idea of [52] and use a probabilistic

reserve constraint to describe the uncertainty of wind power. Since the wind power forecast is

more accurate over shorter time periods [69][67], the probabilistic reserve constraints method

is combined with a rolling horizon scheme to dynamically update the reserve constraints when

more accurate wind forecast becomes available. the computational time issue is addressed by

implementing our proposed solver on a parallel computing facility, and research results show

that parallel computing has the potential to satisfy the computational speed requirement of

the Rolling Horizon Scheme.

The organization of this chapter is as follows. A security constrained unit commit model

is formulated in Section 2.2, and a solution algorithm is given in Section 2.3. Section 2.4

gives the probabilistic formulation of reserve constraints and the method used to handle

these constraints. In Section 2.5, we provide a case study to illustrate the performance of

our algorithms.

2.2 Formulation of the SCUC Model

This chapter formulates an SCUC model based on the realistic problem solved in New

York State. Both generation service and ancillary services, including reserve services and

regulations services, are optimized to minimize the total operational costs. Realistic secu-

23



rity constraints, including balance constraints, ancillary service requirement, load capacity

constraint, transmission constraints, etc, are considered in this research. Unlike some other

research, which is based on benchmark problems with up to 100 generators and limited se-

curity constraints, this work is trying to solve large-scale problem with more than 600 power

generators and realistic security constraints enforced in daily power planning process in New

York States. We provide the detailed formulation in the rest of this section below.

2.2.1 Objective Function

This dissertation optimizes the total operational cost, including both power supply cost

and ancillary services cost. The power supply cost includes power generation cost and start-

up cost. The ancillary service cost includes reserve service cost and regulation service cost.

Moreover, reserve service is divided into spinning service and non-synchronous service. The

formulation is given in (2.1).

cost =
M
∑

m=1

Im
∑

im=1

T
∑

t=1

(Fm,im,t(pm,im,t) + Sm,im,t(zm,im,t))

+

M
∑

m=1

Im
∑

im=1

T
∑

t=1

(Rm,im,t(rm,im,t)) (2.1)

+

M
∑

m=1

Im
∑

im=1

T
∑

t=1

(CRegm,im,t(regm,im,t)),

where

rm,im,t = (r10sm,im,t, r10nsm,im,t, r30sm,im,t, r30nsm,im,t).

The first line in Equation (2.1) includes power generation function, which is a piecewise

linear function, and a startup function, which is a stepwise linear function. The second line

includes the reserve cost function, which is a linear function with respect to the 10-minute
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and 30-minute spinning reserves and non-synchronous reserves. The third line is the linear

regulation cost function. Note that a generator can provide spinning reserve or regulation

services only when it is turned on, and provide non-synchronous reserve service only when

it is turned off.

2.2.2 Load Balance Constraints

In this dissertation, we assume that wind power can be generated and integrated at

no additional cost, and that there is no wind curtailment. Thus, wind power will always

be delivered to customers. Then, wind power can be considered as negative load in this

research. Here we define the term ”net load” as the difference between the electricity demand

and the predicted wind power, i.e., electricity load that needs to be supplied by traditional

generators, including steam generators, gas turbines and hydro power generators. In the

day-ahead planning, hydro and thermal plants should meet the sum of net loads of certain

control areas. The mathematical formulation is given in Equation (2.2).

M
∑

m=1

Im
∑

im=1

pi,im,t =

M
∑

m=1

(dm,t − wm,t), ∀t (2.2)

2.2.3 Ancillary Service Requirements

For the entire control area, there are three kinds of reserve requirements: 10-minute

spinning reserve, 10-minute total reserve, and 30-minute total reserve requirements. The

mathematical formulations are given in (2.3), (2.4), and (2.5), respectively.

M
∑

m=1

IM
∑

im=1

r10sm,im,t ≥ Res10spin, ∀t (2.3)

M
∑

m=1

IM
∑

im=1

(r10sm,im,t + r10nsm,im,t) ≥ Res10t, ∀t (2.4)
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M
∑

m=1

IM
∑

im=1

(r30sm,im,t + r30nsm,im,t) ≥ Res30t, ∀t (2.5)

In real power market, a control area is often divided into several individual areas, which

are usually called ”zones”. And for certain collection of zones, there are several location

based reserve constraints. Letting Λj be the jth collection of zones, the location based

reserve constraints are given by (2.6), (2.7), and (2.8).

∑

m∈Λj

IM
∑

im=1

r10sm,im,t ≥ ResLBj,10spin, ∀t (2.6)

M
∑

m∈Λj

IM
∑

im=1

(r10sm,im,t + r10nsm,im,t) ≥ ResLBj,10t, ∀t (2.7)

M
∑

m∈Λj

IM
∑

im=1

(r30sm,im,t + r30nsm,im,t) ≥ ResLBj,30t, ∀t (2.8)

In a control area operated by an ISO, those collection of zones are called ”super-zones”.

Equations (2.6), (2.7), and (2.8) should be satisfied for all those super-zones.

Additionally, due the fluctuation of power demand and wind power, ISOs has certain

requirements for regulation services, which are expressed in (2.9).

M
∑

m=1

IM
∑

im=1

r10sm,im,t ≥ Regt, ∀t (2.9)

2.2.4 Transmission Constraints

This dissertation also considers transmission constraints between different zones. The

modeling of transmission constraints follows the method used in [65], and is given in (2.10).

M
∑

m−1

Γl,m(
Im
∑

im=1

pm,im,t + wm,t − dm,t) ≤ Traml,max, ∀l, t (2.10)
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where Γl,m is the line flow distribution factor for the transmission line l due to the net power

injection of zone m.

2.2.5 Single Generator Capacity Constraints

A generator that has been turned on may provide generation and reserve simultaneously.

In practice, the sum of these services should be within the maximum power output limit.

These requirements are given in (2.11), (2.12), (2.13), and (2.14). When a generator is

off-line, it might provide non-synchronous reserve services, the sum of which should also be

within the maximum output limit. The formulations are given in (2.16), (2.17), and (2.18).

In addition, the amount of regulation service should also be within a certain limit, which is

given in Equation (2.15).

pm,im,t + r10sm,im,t + r30sm,im,t ≤ pm,im,maxzm,im,t, ∀m, im, t (2.11)

pm,im,minzm,im,t ≤ pm,im,t ≤ pm,im,maxzm,imt, ∀m, im, t (2.12)

r10sm,im,t ≤ r10sm,im,maxzm,im,t, ∀m, im, t (2.13)

r30sm,im,t ≤ r30sm,im,maxzm,im,t, ∀m, im, t (2.14)

regsm,im,t ≤ regsm,im,maxzm,im,t, ∀m, im, t (2.15)

r10nsm,im,t + r30nsm,im,t ≤ pm,im,max(1− zm,im,t), ∀m, im, t (2.16)
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r10sm,im,t ≤ r10sm,im,max(1− zm,im,t), ∀m, im, t (2.17)

r30sm,im,t ≤ r30sm,im,max(1− zm,im,t), ∀m, im, t (2.18)

2.2.6 Other Constraints

Some other constraints such as minimum up time and down time constraints are also

considered in our model. The detailed formulation was given in [7] and [10]. In addition, the

maximum number of stops will be considered in our model, which means that a generator

can only be turned off for a limited number of times on a single day. This constraint has

never be considered in previous studies.

2.3 Solution Algorithm

As proposed in [65], a direct method is used for solving the SCUC problem. Compared

with the work in [60], we introduce the ancillary service costs in the objective function,

and add additional single generator capacity constraints to the model. Moreover, a parallel

computing scheme is developed to enhance the computational speed.

2.3.1 Lagrangian Relaxation Algorithm

To solve this problem, Lagrangian Relaxation method is adopted to relax the demand,

reserve, transmission, and regulations constraints. A dual problem is thus obtained, and its

objective function is given in Equation (2.19).
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Dual Cost = Cost+

T
∑

t=1

{λd,t[
M
∑

m=1

Im
∑

im=1

pm,im,t −
M
∑

m=1

(dm,t − wm,t)]

+ λ10s,t[
M
∑

m=1

Im
∑

im=1

r10sm,im,t − Res10spin]

+ λ10t,t[
M
∑

m=1

Im
∑

im=1

(r10sm,im,t + r10nsm,im,t)−Res10t]

+ λ30t,t[

M
∑

m=1

Im
∑

im=1

(r30sm,im,t + r30nsm,im,t)−Res30t]

+
J

∑

j=1

{λj,10s,t[
M
∑

m=1

Im
∑

im=1

r10sm,im,tI(m ∈ Λj)−Resj,10spin]

+ λj,10t,t[

M
∑

m=1

Im
∑

im=1

(r10sm,im,t + r10nsm,im,t)I(m ∈ Λj)−Resj,10t]

+ λj,30t,t[
M
∑

m=1

Im
∑

im=1

(r30sm,im,t + r30nsm,im,t)I(m ∈ Λj)−Rest,10t]}

+ λreg,t[

M
∑

m=1

Im
∑

im=1

regs−Reg10spin]

+

T
∑

t=1

L
∑

l=1

{λtran,l,t[Tranl,max −
M
∑

m=1

Γl,m(

Im
∑

im=1

pm,im,t + wm,t − dm,t)]}(2.19)

where ”Cost” equals the cost function in Equation (2.1). The second line of Equation (2.19)

is due to the relaxation of demand constraints; lines 3 − 7 are due to the relaxation of

reserve constraints of the whole control area, while lines 8− 13 are due to the relaxation of

location reserve constraints, line 14 is due the relaxation or regulation constraints, and lines

15− 16 are the relaxation of transmission constraints. λd,t, λ10s,t, λ10t,t, λ30t,t,λj,10s,t, λj,10t,t,

λj,30t,t, λreg,t, and λtran,l,t are the corresponding lagrangian multipliers. For simplicity, we

define λt = {λd,t, λ10s,t, λ10t,t, λ30t,t, λj,10s,t, λj,10t,t, λj,30t,t, λreg,t}. The dual problem is to find

maxλt
[min(Dual Cost)]. A single generator problem is defined in Equation (2.20).
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DualCostm,im =

T
∑

t=1

{Fi,im,t(Pm,im,t) + Sm,im,t(zm,im,t)

+ Rm,im,t(rm,im,t) + CRegm,im,t(regm,im,t)− pm,im,t(λd,t +
L
∑

l=1

λtran,l,tΓl,m)

− r10sm,im,t[λ10s,t + λ10t,t +

J
∑

j=1

I(m ∈ Λj)(λj,10s,t + λj,10t,t)

− r10nsm,im,t[λ10t,t +
J

∑

j=1

I(m ∈ Λj)λj,10s,t]

− r30sm,im,t[λ30t,t +
J

∑

j=1

I(m ∈ Λj)λj,30t,t]

− r30nsm,im,t[λ30t,t +

J
∑

j=1

I(m ∈ Λj)λj,30t,t]

− regm,im,tλreg,t (2.20)

Then the dual cost can be express as follows.

Dual Cost =
M
∑

m=1

Im
∑

im=1

DualCostm,im + Extra (2.21)

where Extra is the difference between Equations (2.19) and (2.21). We observe that the

term Extra does not depend on the status of power generators, and is a constant if the

values of multipliers are given.

A subgradient method is used for solving the dual problem. The value of λt is initialized

first, and its value are used for the minimization of the dual cost function. Because the

term Extra is a constant, we just need to minimize the term DualCostm,im individually.

Dynamic programming is used for solving the single generator problem. To calculate the

one-step reward, we need to optimize the allocation of generation services and ancillary

services when a generator is on or off. When a generator is on, it could provide generation

services, spinning reserve services, and regulation services. The one-step cost optimization
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problem in (2.22) should be solved subject to constraints (2.11), (2.13), (2.14), and (2.15).

On the other hand, when a generator is off, it could provide non-synchronous reserve services.

Another one-step cost optimization problem in (2.23) should be solved subject to constraints

(2.17) and (2.18).

min{F (pm,im,t) +Rm,im,t(rm,im,t)

+ CRegm,im,t(regm,im,t)− pm,im,t(λd,t +
L
∑

l=1

λtran,l,tΓl,m)

− r10sm,im,t[λ10s,t + λ10t,t +

J
∑

j=1

I(m ∈ Λj)(λj,10s,t + λj,10t,t)]

− r30nsm,im,t[λ30t,t +
J

∑

j=1

I(m ∈ Λj)λj,30t,t]− regm,im,tλreg,t} (2.22)

min{Rm,im,t(rm,im,t)− r10nsm,im,t[λ10t,t +
J

∑

j=1

I(m ∈ Λj)λj,10s,t]

− r30nsm,im,t[λ30t,t +

J
∑

j=1

I(m ∈ Λj)λj,30t,t]} (2.23)

General linear programming techniques can be used for solving these two problems; however,

it is time consuming. Because this dissertation uses piecewise generation cost functions and

linear ancillary service cost functions, we propose to use a greedy algorithm for solving these

problems, which can significantly reduce the computational time. Let

F (p) = b0 +















































b1p a0 ≤ p < a1

(b1 − b2)a1 + b2p a1 ≤ p < a2

...

∑K
k=2(bk−1 − bK)ak−1 + bkp aK−1 ≤ p ≤ aK ,

,
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where we have b1 < b2 < ... < bk and 0 = a0 < a1 < ... < aK . We can transform it into

another formula

F (p) = G(x1, x2, ..., xK) = b0 +
K
∑

k=k

bkxk,

where p =
∑K

k=1 xk, 0 ≤ x1 ≤ a1−a0 and 0 ≤ xk ≤ (ak−ak−1)·I(xk−1 = ak−1−ak−2), k ≥ 2.

The ancillary service costs are formulated as below:

R(r) = rc10s · r10s+ rc10ns · r10ns

+rc30s · r30s+ rc30ns · r30ns,

CReg(reg) = creg · reg,

where rc10s, rc10ns, rc30s, rc30ns, and creg are constant cost coefficients. Then Equation

(2.22) can be equivalently written as follows:

minF ′
m,im,t(pm,im,t) +R′

m,im,t(rm,im,t) + CReg′m,im,t(regm,im,t), (2.24)

where

F ′
m,im,t ( pm,im,t) = G′(x1, x2, ..., xK)

= b0 +

K
∑

k=k

(bk − λd,t −
L
∑

l=1

λtran,l,tΓl,m)xk,

R′
m,im,t(rm,im,t) = [rc10sm,im,t − λ10s,t − λ10t,t −

J
∑

j=1

I(m ∈ Λj)(λj,10s,t + λj,10t,t)] · r10sm,im,t

+ [rc30sm,im,t − λ30t,t −
J
∑

j=1

I(m ∈ Λj)λj,30t,t)] · r30sm,im,t,
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CReg′m,im,t(regm,im,t) = (cregm,im,t − λreg,t) · regm,im,t,

and Equation (2.23) is equivalent to (2.25):

minR′
m,im,t(rm,im,t), (2.25)

where

R′
m,im,t(rm,im,t) = [rc10nsm,im,t − λ10t,t −

J
∑

j=1

I(m ∈ Λj)λj,10t,t] · r10nsm,im,t

+[rc30nsm,im,t − λ30t,t −
J

∑

j=1

I(m ∈ Λj)λj,30t,t)] · r30nsm,im,t

When a generator is ”on”, the greedy algorithm works as follows:

1. Initialize the power generation and ancillary service levels to 0.

2. Sort the linear cost coefficients, including those in generation cost function F ′ and

ancillary cost functions R′ and CReg′, in Equation (2.24), to form a non-decreasing

list {ch}, where h ∈ {1, 2, ..., K + 3}.

3. Let pm,im,t = pm,im,min.

4. From h = 1 to h = K + 3, consider the following cases:

(a) ch is a generation cost coefficient; if ch > 0, stop; else, ch should be the generation

cost coefficient of the kth segment and

ak + r10sm,im,t + r30sm,im,t ≤ pm,im,max,

then pm,im,t = max(ak, pm,im,min).

(b) ch is a 10-minute spinning reserve cost coefficient;
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if ch > 0, stop; else,

r10sm,im,t = min(r10sm,im,max, pm,im,max − pm,im,t − r30sm,im,t).

(c) ch is a 30-minute spinning reserve cost coefficient;

if ch > 0, stop; else

r30sm,im,t = min(r30sm,im,max, pm,im,max − pm,im,t − r10sm,im,t).

(d) ch is a regulation cost coefficient;

if ch > 0, stop; else, r30sm,im,t = regm,im,max.

When a generator is ”off”, a similar algorithm can be applied:

1. Initialize ancillary service levels to 0.

2. Sort the linear cost coefficients of ancillary cost function R′ to form a non-decreasing

list {c1, c2} .

3. For h = 1 or 2, consider the following cases:

(a) ch is a 10-minute non-synchronous reserve cost coefficient;

if ch > 0, stop;

else,

r10sm,im,t = min(r10nsm,im,max, pm,im,max − r30nsm,im,t).

(b) ch is a 30-minute non-synchronous reserve cost coefficient;

if ch > 0, stop;

else,

r30sm,im,t = min(r30nsm,im,max, pm,im,max − r10nsm,im,t).
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Figure 2.1: Parallel Computing Scheme to Solve UCP

2.3.2 A Parallel Computing Scheme

In the LR algorithm, the dual problem is decomposed into identical single generator prob-

lems. Therefore, it is natural to assign those problems to individual CPU’s and solve them

simultaneously. In every iteration, the root CPU will ”broadcast” the values of lagrangian

multipliers to the branch CPU’s, where the single generator sub-problems are solved, and

the solutions are ”collected” to the root CPU to update the value of the multipliers. The

computing scheme is illustrated in figure 2.3.2. Suppose there are N power generators, then

the computational time required to solve the dual problem can be estimated by Equation

(2.26) if the computational load is equally distributed to each branch CPU.

tdual ≈ (
N

# of CPUs
× tsingle + tupdate + tcomm)× niteration (2.26)

where tdual is the computational time needed to solve the dual problem, tsingle is the com-

putational time for solving a single generator problem, tcomm is the communication time

between the root CPU and branch CPU’s, and niteration is the number of iterations in the

subgradient search process.
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2.4 Probabilistic Unit Commitment Model and Rolling

Horizon (RH) Scheme

For simplicity, we only consider the probabilistic reserve constraints. Without loss of

generality, we can replace the reserve constraint in Section 2.2.3 with the following constraint

(2.27).

P{
M
∑

m=1

Im
∑

im=1

pm,im,t +

M
∑

m=1

Im
∑

im=1

resm,im,t ≥
M
∑

m=1

dm,t −
M
∑

m=1

wm, ∀t} ≥ 1 − α, (2.27)

where resm,im,t is the general reserve service level. Using Bonferroni’s inequality, we can

transform Equation (2.27) to another Equation (2.28).

P{
M
∑

m=1

Im
∑

im=1

pm,im,t +

M
∑

m=1

Im
∑

im=1

resm,im,t ≥
M
∑

m=1

dm −
M
∑

m=1

wm,t, } > 1 − α

T
(2.28)

Here, we assume that wm,t follows a normal distribution N(µw
m,t, (σ

w
m,t)

2). Thus, the above

Equation can be written as (2.29).

M
∑

m=1

Im
∑

im=1

pm,im,t +
M
∑

m=1

Im
∑

im=1

resm,im,t ≥
M
∑

m=1

dm −
M
∑

m=1

µw
m,t + z1− α

T

M
∑

m=1

σw
m,t (2.29)

Equation (2.29) may not accurately describe the reserve requirement, because the wind power

in different zones are in general correlated. Nevertheless, for simplicity we assume that they

are independent. This reserve constraints is very similar to the constraints in Section 2.2.3,

and a similar LR algorithm can be applied to solve the problem.

If we assume that wind power forecasts are updated every hour, we can update Equations

(2.2) and (2.29) and solve the corresponding UCP on a hourly basis. The RH scheme con-

siders the updated wind power information in both unit commitment and economic dispatch
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processes, while in traditional day-ahead scheme, the updated wind power information is

only considered in economic dispatch process. Thus, by involving more accurate information

in the optimization process, we expect to get better solutions with decreased operational

costs.

2.5 Case Studies

2.5.1 New York Control Area

To study the effectiveness of our approach on large-scale problems, we simulated a SCUC

problem based on the characteristics of New York State Control Area. NYCA is divided into

11 sub-zones with transmission interface between adjacent sub-zones. The detailed zone map

is given in figure 2.5.1. One feature of power grid in New York State is that most of the

electricity demand comes from the southeast area of New York state, i.e., Long Island and

New York City, while a large portion of the power resources are located in the west and

north parts of the state. Additionally, in the near future, most of the power farms will be

located in zones A−E [47], and will bring more burden to transmission lines. This uneven

distribution of power generation sources and power demand makes transmission constrained

unit commitment an important problem in NYCA. Moreover, locational reserve requirements

are enforced to maintain the safety operation of the power grid.

We follow the practice of NYISO and divide NYCA into two super-zones, where west

super-zones include load zones A−E and east super-zones include zones F −G. Additional

reserve requirements are enforced for east super-zones. In addition, similar reserve require-

ments are also enforced on zone K, which is Long Island. The reserve requirements can be

formulated in the forms of Equations (2.6), (2.7), and (2.8). The transmission constraints

are formulated in the form of Equation (2.10).

In accordance with the day-ahead power market in New York State [48], piecewise linear

generation cost functions and stepwise startup cost functions are used. Each generation cost
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Figure 2.2: New York State Control Area

function can have up to 12 pieces. A total of 641 power generators, including nuclear plants,

hydro plants, steam plants, and gas turbines, are simulated in this work. The net load for

each zone is calculated by subtracting the forecasted wind power from the forecasted elec-

tricity demands. Four different wind penetration level cases are used: 1275MW , 4250MW ,

6000MW , and 8000MW . According to the penetration level, the regulation requirement is

adjusted as proposed in [47]. A single day (24 hour period) in August is used for the study.

Because currently, the report [47] by NYISO indicates that the current reserve level is enough

for the 8000MW penetration of wind power, so we will not consider the probabilistic reserve

level management in this case.

The LR algorithm was coded in C++ and implemented on New York Blue Gene, a

distributed-memory supercomputing cluster. Up to 50 nodes were used, while each node

has two 700MHz PowerPC processors and 1G memory. Figure 2.3 shows the computational

time required to execute the algorithm v.s. the number of CPUs used. The minimum compu-
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Penetration Level (MW) Operation Costs
1275 −1.12× 107

4250 −1.23× 107

6000 −1.27× 107

8000 −1.30× 107

Table 2.1: Total Operation Costs for different penetration level of wind power

tational time is around 180 seconds, which is much less than the 1600 seconds computational

time when 1 CPU is used. The total operation costs, which is the sum of generation costs

and ancillary costs, are given in table 2.1. It is interesting to note that the costs are all

negative. This is reasonable because some IPPs want to assure that some plants will be

selected for generation, for example, nuclear plants and some coal steam plants. Because

whatever they bid for generation, they will be paid by the positive market clearing price.

Thus, they have the incentive too keep those cheap power sources online. From table 2.1, it is

obvious that high penetration of wind power will save money for the New York control area.

The plots for the marginal regulation cost are given in figure 2.4. Because the increment

in regulation requirements, the marginal cost for regulation generally increase. Because of

the location-based reserve services, different sub-zones might have different marginal reserve

cost services. Besides, we note that the lagrangian multiplier for transmission constraints

increases as the penetration level of wind energy grows. This is reasonable for New York

state because most of the wind power resources in NYCA are located in north parts while

most of electricity consumption are located in southeast regions. Thus, the increased power

penetration will bring more pressure on transmission lines in New York State.

2.5.2 Rolling Horizon Study

The proposed method is applied for solving large sized problems based on the ten-unit

system of [31], which has been repeated 100 times so that the problem comprises 1000 units.

The generator parameters are slightly perturbed because it is unrealistic to have so many

identical generators. The load profile is based on the System D in [51], which has been
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Figure 2.5: Relationship between computational time (in seconds) and number of CPU’s

multiplied by 100 accordingly. We assume 25% of wind penetration level, which is close

to the 8000MW case in NYCA. Figure 2.5 shows that the computational time decreases

dramatically when the number of processors increases from 1 to 20, and the minimum com-

putational time is about 20% of the sequential computational time. This result is not as

good as that for the NYCA case, which involves much more constraints. For NYCA case,

the computational time decreases from 1600 seconds (around 0.5 hours ) to 3 minutes, which

make it reasonable to restart the UCP solver every hour when new information is available.

We compare the result of rolling horizon approach with the traditional day-ahead plan-

ning method. In current market, the stochastic problem is solved once every day, and only

the dispatching problem is solved when the real data was available. The operation costs of

the next 24 hours of both approaches are compared. We use systems with different number

of generators to illustrate the performance of RH algorithm. The result is shown in figure

2.6. A significant reduction of cost is observed when applying rolling horizon approach. For

the stochastic problem with wind energy, the cost reduction (approximately 3%) is more

significant.
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Figure 2.6: Comparison between Rolling Horizon Approach and Day-ahead Approach

2.6 Conclusion

In this dissertation, we formulate a security constrained unit commitment problem by

incorporating complex ancillary services, security, and local reserve constraints, and apply

this model to the New York Control Area. We investigate the impact of the increasing

penetration of wind power on the New York state day-ahead power market. The test results

show that parallel computing can significantly reduce the computational time, which makes

it possible for rolling horizon implementation of the algorithm. Our testing results on a

standard test system show that the rolling horizon approach may lead to significant cost

reduction over the traditional day-ahead approach.
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Chapter 3

Voltage and Reactive Power Control

With Limited Operations On Power

Devices

Nomenclature

Nsc number of SCs in power distribution system.

Nltc number of LTCs in power distribution system.

xsc(i, t) binary variable that is 1 if the ith SC is connected at time t; 0 otherwise.

xsc an Nsc × T matrix with xsc(i, t) representing setting of theith SC at time t.

xltc(i, t) the tap position of the ith LTC at time t.

xltc an Nltc × T matrix with xltc(i, t) representing the setting of the ith SC at time t.

x the setting of SCs and LTCs of power distribution system, i.e. (xsc, xltc).

xt the setting of SCs and LTCs at time t

L the number of branches in power distribution system.

Nnode the numbers of buses in power distribution system.

PL(x) function to calculate power losses in power distribution system given a setting x
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V an Nnode × T matrix with V (i, t) representing the voltage of the ith load

position at time t

I an L× T matrix with I(l, t) representing the current of the lth branch at time t

∆̄ltc the operation limits of LTCs

∆̄sc the operation limits and the ith SC

V̄ the upper bound on the voltage of a bus in a distribution system

V the lower bound on the voltage of a load a distribution system

3.1 Introduction

Voltage and reactive power control (VVC) is an important practical problem in smart

grid, especially in power distribution systems. The current practice of VVC is focused on

maintaining voltage profiles from violating voltage constraints and pays little attention to the

minimization of power losses. Because of insufficient measurements of system parameters in

traditional distribution systems, it is not realistic to have accurate state estimations, making

the development of an efficient algorithm for minimizing power losses difficult. However,

with a large number of smart meters being installed, accurate state estimation or even state

forecasting now becomes feasible. Therefore, designing efficient VVC algorithms to minimize

power losses becomes an important issue. In smart grid, one of the objectives of VVC is

to determine transformer tap positions and the on/off states of capacitors over a certain

time period to reduce power losses in a power distribution system. Transformer load tap

changers (LTCs) and circuit breakers for shunt capacitors (SCs) are very expensive devices,

and cannot be operated frequently. To increase the life expectancy and save maintenance

costs, the number of operations on these devices are not allowed to exceed some pre-specified

operations limits within a single day. So optimal operations schedules and optimal settings

of LTCs and SCs need to be computed to minimize power losses within 24 hours given the

day-ahead load prediction.
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The VVC problem is usually formulated as a mixed-integer nonlinear programming prob-

lem (MINLP), where tap positions of LTCs and on/off states of SCs are modeled as discrete

variables, while other variables (e.g., voltages and power flows) are continuous. Many algo-

rithms have been proposed for solving VVC problems. Dynamic programming approaches

were proposed in [24–26, 38, 43]. A standard dynamic programming algorithm was used in

[24] for solving a problem with 4 capacitors. However, the complexity of the algorithm in-

creases exponentially with respect to the number of capacitors due to the well known “curse

of dimensionality”. To address this issue, a heuristic method was used to reduce the state

space and action spaces in [43] and [38], while in [25] and [26], artificial neural network was

used to play a similar role. In [42], the VVC problem was decomposed into two sub-problems

to compute the optimal setting of LTCs and SCs separately. These two sub-problems were

solved by dynamic programming and fuzzy control algorithms, where a coordination algo-

rithm between these two sub-problems was proposed and a heuristic procedure was used to

reduce the solution space.

Stochastic search algorithms are also popular for solving VVC problems. Genetic al-

gorithm was used in [1] and [28] and yielded promising results; however, operations limits

of transformers and capacitors were not considered. A simulated annealing algorithm was

proposed in [39]. The algorithm was tested on a distribution system with 1 LTC and 11

capacitors, and test results indicated improvement of simulated annealing over conventional

methods. Interior Point Method (IPM) was proposed in [40, 41]. In IPM, discrete variables

were relaxed, and the resulting problem was solved using the interior point method. New-

ton’s method was used for solving KKT conditions, and penalty terms were added to drive

the discrete variables to the nearest discrete positions. The IPM method is shown to be a

very efficient algorithm. However, rounding the variables to the nearest discrete positions

may compromise the optimality of the solution. Additionally, several heuristic methods were

introduced to reduce the complexity of the VVC problem. A time-interval based approach

was proposed in [28], where the genetic algorithm was used to partition the 24-hour schedul-
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ing horizon into several intervals, and switching operation was not allowed within a partition.

Similarly, the work in [16] used heuristics to build priority lists of operations hours, based on

which a simplified VVC problem was formulated and solved. These heuristics were effective

both in reducing the computational time and in obtaining acceptable results.

In this chapter, we present a simulation-based stochastic search algorithm called Approx-

imation Stochastic Annealing (ASA) for solving VVC problems. The ASA algorithm was

initially proposed in [27] for solving finite horizon Markov Decision Processes (MDPs). The

idea of using ASA in this work is motivated by the dynamic programming approach for solv-

ing VVC problems. Instead of using time-consuming backward induction algorithm, we try

to find the optimal solution by searching the randomized solution space associated with the

problem. At each iteration, ASA samples candidate solutions from a probability distribution

over the set of all admissible solutions, and then the distribution function is modified using

a Boltzmann selection scheme based on objective values of sampled solutions. The hope is

that the probability distribution will gradually converge to a degenerate distribution assign-

ing unit mass to the optimal solution. The ASA algorithm can be viewed as a stochastic

search algorithm and is shown to converge to the global optimal solution in [27]. Moreover,

as indicated in [27], ASA may have a faster convergence rate than the simulated annealing

algorithm.

In most of the previous work on VVC, the performance of proposed algorithms was either

compared with those of naive approaches ( pure heuristic ) or those of existing optimization

algorithm. There is little investigation on how close the result of proposed algorithm is to the

exact optimal solution. Because of the complexity of the VVC problem, it is very difficult to

get an exact optimal solution. In this work, we propose a Lagrangian relaxation approach,

which is called LR-DP algorithm, to get a lower bound on the performance of the VVC

problem. By relaxing operation limit constraints, we get a dual problem which can be solved

using the combination of the sub-gradient method and the dynamic programming approach.

The solution of the dual problem can be viewed as the lower bound to the primal problem,
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which can be compared with results from the ASA algorithm to measure the effectiveness of

ASA.

The rest of the chapter is organized as follows. We provide a detailed formulation of

the VVC problem in section 3.2. In section 3.3, we briefly describe the ASA algorithm and

discuss the adaptation of the ASA algorithm to the VVC problem. We describe the LR-DP

algorithm in section 3.4. We provide a numerical example to test the performances of ASA

and LR-DP in section 3.5.

3.2 Problem formulation

3.2.1 Objective Function

The objective of the VVC problem in this chapter is to find the optimal setting of LTCs

and SCs to minimize power losses in power distribution systems, and can be formulated as

follows:

min
x

T
∑

t=1

L
∑

l=1

Pt,l(xt), (3.1)

where PLt,l(xt) = |I(l, t)|2Rl. I(l, t) denotes the power flow on branch l at time t , and can

be calculated given a specific configuration xt using power flow equations.

3.2.2 Constraints

Power Flow Equations

Power flows, voltage levels, active power and reactive power should satisfy a set of power

flow equations, which can be represented abstractly in the form of Equation (3.2). In this

chapter, we assume that electricity loads are independent of voltage levels.

g(V, I, x) = 0 (3.2)
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Voltage Constraints

In a power distribution system, the voltage level of each node should be within a given

range to avoid damages to electric appliances. Theses constraints are modeled in Equation

(3.3) below.

V ≤ |V (i, t)| ≤ V̄ , ∀i ∈ {1, . . . , Nnode}, t ∈ {1, . . . T}. (3.3)

Operation Limits on LTCs and SCs

In this chapter, maximum numbers of operations are set for LTCs and SCs. The number

of switching operations of a LTC at time t is the difference between tap positions at time t

and t − 1, and the total number of switching operations is the sum of switching operations

of all time periods. Theses constraints are modeled by Equations (3.4) and (3.5) below.

T
∑

t=1

|xltc(i, t)− xltc(i, t− 1)| ≤ ∆̄ltc (3.4)

T
∑

t=1

|xsc(i, t)− xsc(i, t− 1)| ≤ ∆̄sc (3.5)

3.3 Solution Algorithm:Approximate Stochastic Anneal-

ing

3.3.1 The Approximate Stochastic Annealing algorithm

The ASA algorithm is a simulation-based optimization algorithm developed in [27], and

can be used for solving finite horizon MDPs to maximize total rewards. Given a finite state

MDP (S,A, P,R, T ) (S: state space; A: action space; P : transition probability function; R:

reward function; T : planning horizon), candidate policies are generated from the probability
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distribution over the policy space. An |S|-by-|A|-by-T stochastic matrix qk, whose (i, j, t)th

entry qk(i, j, t) specifies the probability that the ith state xi takes action aj at time t, is

constructed at each iteration k. The value qk(i, j, t) is updated based on the performance

of policies generated at iteration k. The general procedure of the ASA algorithm is given

below.

1. Specify a non-negative decreasing sequence {Tk} (i.e., annealing schedule), parameter

sequences {αk} and {βk} satisfying 0 ≤ αk, βk ≤ 1 ∀k. Select a sample size sequence

{Nk}. Set q0(i, j, t) = 1/|A| ∀i, j, t and iteration counter k = 1.

2. Sample Nk policies Λk := {π1, π2, . . . , πNk} as follows:

• with probability 1− βk, construct a policy πi using qk;

• with probability βk, construct π
i using q0.

Calculate a probability mass function over the policy space: Π:

φ̂(qk, π) = (1− βk)φ(qk, π) + βkφ(q0, π),

φ(q, φ) =
T
∏

t=1

|X|
∏

i=1

|A|
∏

j=1

[qk(i, j, t)]
I{π∈Πi,j(t)},

where I{·} is the indicator function and Πi,j(t) := {π : πt(si) = aj}.

3. Perform simulation for each π ∈ Λk to calculate V π
k =

∑T
t=1R(st, πt(st)).

4. Update matrix qk by

qk+1(i, j, t) =αk

∑

π∈Λk
eV

π
k
/Tk+1/φ̂−1(qk, π)I{π ∈ Πi,j(t)}

∑

π∈Λk
eV

π
k
/Tk+1/φ̂−1(qk, π)

+ (1− αk)qk+1(i, j, t).
(3.6)
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5. If a stopping rule is satisfied, then terminate; otherwise, set k = k + 1 and go to step

1.

It was proven in [27] that given

1. αk > 0 ∀k, ∑∞
k=0 αk = ∞, and

∑∞
k=0 α

2 <∞;

2. Tk → 0 as k → ∞;

3. Nkβk → ∞ as k → ∞,

V π
k converges to the optimal value as k → ∞ and the sequence of stochastic matrices

generated at successive iterations of ASA will converge to a limiting matrix that assigns unit

mass to the optimal policy π∗.

3.3.2 ASA for Voltage and Reactive Power Optimization

The original ASA algorithm is modified for solving the VVC problem. For each time

period t, we let qsc(i, t) denote the probability of switching the ith capacitor on, and qltc(i, j, t)

denote the probability of moving the transformer tap of the ith LTC to the jth position.

Thus, two stochastic matrices are constructed for SCs and LTCs respectively. The dimension

of matrix qsc for SCs isNSC×T , and we denote its (i, t)th element by qsc(i, t). The dimension

of matrix qltc for LTCs is NLTC×Ntap×T , and we denote its (i, j, t)th element by qltc(i, j, t).

In the ASA algorithm, a number of settings of LTCs and SCs are sampled according to these

two stochastic matrices and the objective function value for each setting is calculated. These

stochastic matrices are iteratively updated based on the performance of sampled settings.

Since some of these settings may not satisfy the constraints, penalty terms are added to the
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objective function. The augmented objective function thus becomes:

h(x) =
T
∑

t=1

L
∑

l=1

PLt,l(xt)

+ ηltc

Nltc
∑

i=1

max(
T
∑

t=1

|xltc(i, t)− xltc(i, t− 1)| − ∆̄ltc, 0)

+ ηltc

Nsc
∑

i=1

max(

T
∑

t=1

|xsc(i, t)− xsc(i, t− 1)| − ∆̄sc, 0)

+ ηv

Nnode
∑

i=1

T
∑

t=1

(max(V (i, t)− V̄ , 0) + max(V − V (i, t), 0)).

(3.7)

On the right hand side of Equation (3.7), the second term is the penalty for the violation of

operation limits on LTCs, the third term is the penalty for the violation of operation limits

on SCs, and the fourth term is the penalty for the violation of voltage constraints. ηltc, ηsc

and ηv are penalty coefficients. The modified ASA algorithm in this work is given below:

1. Specify a non-negative decreasing sequence {Tk} and a sequence {βk} satisfying 0 ≤

βk ≤ 1 ∀k. Specify two non-negative decreasing sequences {αltc
k } and {αsc

k } satisfying

0 ≤ αltc
k , α

sc
k ≤ 1 ∀k . Select a sample size sequence {Nk}. Initialize qsc,0(i, t) = 0.5,

qltc,0(i, j, t) = 1/Ntap.

2. Sample Nk settings of SCs and LTCs from matrices qsck and qltck with probability

1 − βk and from qsc0 and qltc0 with probability βk. These settings form a set Xk :=

{x1, x2, . . . , xNk}. Calculate the probability mass function φ̂(qsck , q
ltc
k , x) for each set-

ting x as follows:

φsc,t(qsc, x) =

Nsc
∏

i=1

qsc(isc, t)
xsc(i,t)(1− qsc(i, t))

1−xsc(i,t)

φltc,t(qltc, x) =

Nltc
∏

i=1

qltc(i, x
ltc(i, t), t)
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φ(qsc, qltc, x) =

T
∏

t=1

φsc,t(qsc, x)φltc,t(qltc, x)

φ̂(qsc,k, qltc,k, x) = (1− βk)φ(qsc,k, qltc,k, x) + βkφ(qsc,0, qltc,0, x)

3. For each setting x, calculate the value of the augmented objective function h(x) in

Equation (3.7).

4. Let

f(x) = e−h(x)/Tk φ̂−1(qsc,k, qltc,k, x).

Update the matrices qsck and qltck by

qsck+1(i, t) =α
sc
k

∑

x∈Xk
f(x)I{xsc(i, t) = 1}
∑

x∈xk
f(x)

+ (1− αsc
k )q

sc
k (i, t),

qltck+1(i, j, t) =α
ltc
k

∑

x∈Xk
f(x)I{xltc(i, t) = j}
∑

x∈xk
f(x)

+ (1− αltc
k )qltck (i, j, t).

5. If a stopping rule is satisfied, then terminate; otherwise, set k = k + 1 and go to step

1.

Note that the selection of parameters should satisfy the assumption of the original ASA

algorithm to guarantee the asymptotic convergence.
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3.4 Solution Algorithm: Lagrangian Relaxation-Dynamic

Programming

Dynamic programming has been used for solving the VVC problem in [24] and [38].

As noted in the previous work, the complexity of dynamic programming approach grows

exponentially with respect to the planning horizon and problem size. However, by relaxing

the operation limits constraints, we can, to some extent, mitigate the problem. By using

LR-DP, we can relax the operation limits constraints in equations (3.4) and (3.5) to get a

dual problem with objective function as follows:

D(µltc, λsc, x) =
T
∑

t=1

L
∑

l=1

PLt,l(xt)

+

Nltc
∑

i=1

µltc,i{
T
∑

t=1

|xltc(i, t)− xltc(i, t− 1)| − ∆̄ltc}

+
Nsc
∑

i=1

λsc{
T
∑

t=1

|xsc(i, t)− xsc(i, t− 1)| − ∆̄sc}, (3.8)

where µltc,i, λsc are non-negative lagrangian multipliers. Rearranging Equation (3.8), we get:

D(µltc, λsc, x) =

T
∑

t=1

{
L
∑

l=1

PLt,l(xt)

+

Nltc
∑

i=1

µltc,i|xltc(i, t)− xltc(i, t− 1)|

+
Nsc
∑

i=1

λsc|xsc(i, t)− xsc(i, t− 1)|}

−
Nltc
∑

t=1

µltc,i∆̄
ltc −

Nsc
∑

t=1

λsc,i∆̄
sc.

(3.9)

Then the dual problem becomes maxµltc,λsc
minxD(µltc, λsc, x) subject to constraints in equa-

tions (3.2) and (3.3). The dual problem is convex and can be solved by the sub-gradient
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method. We can iteratively update µltc and λsc by solving minxD(µltc, λsc, x) in each iter-

ation. The optimization problem minxD(µltc, λsc, x) can be formulated as a finite horizon

MDP (X,A,R, P, T ), where

• X = {xt} is the set of all possible settings of LTCs and SCs at time t;

• A = {a := (altc, asc)} is the set of all feasible operations on the LTCs and SCs;

• R =
∑L

l=1 P lt,l+
∑Nltc

i=1 µltc,i|xltc(iltc, t)−xltc(iltc, t−1)|+
∑Nsc

i=1 λsc|xsc(isc, t)−xsc(isc, t−

1)|);

• xt = xt−1 + a, i.e. P (xt + a/xt) = 1;

• T is a pre-defined study horizon, 24 hours in this case.

• Final reward is −∑Nltc

t=1 µltc,i∆̄iltc −
∑Nsc

t=1 λsc,i∆̄isc .

A standard dynamic programming method with complexity O(|X||A|T ) can be used for

solving the MDP. Note that an action a is feasible only if the setting xt = xt−1 + a is

feasible, i.e. the voltage constraints should be satisfied given the configuration xt. The

LR-DP algorithm for the VVC problem is given as follows:

1. Initialize µltc, λsc, and set iteration number k = 1

2. Solve the optimization problem minxD(µltc, λsc, x) and set x∗ = argminxD(µltc, λsc, x)

3. Calculate the primal value
∑T

t=1

∑L
l=1 P losst,l(x

∗) if x∗ satisfy the operation limits

constraints. Let yprimal be the best primal value obtained thus far.

4. Calculate the duality gap

ǫ =
yprimal −D(µltc, λsc, x

∗)

yprimal
.

If the duality gap is less than a given threshold, return the setting x with respect to

the best primal value; otherwise, got to step 5 .

54



5. update µltc, λsc as below:

δltci =
T
∑

t=1

|xltc(i, t)− xltc(i, t− 1)| − ∆̄ltc,

δsci =

T
∑

t=1

|xsc(i, t)− xsc(i, t− 1)| − ∆̄sc;

let δltc = {δltci }, δsc = {δsci } and δ = (δltc, δsc)

µltc(i) := max(µltc(i) + αk
δltci

||δ|| , 0),

µsc(i) := max(µsc(i) + αk
δsci
||δ|| , 0),

where {αk} is a sequence satisfying
∑∞

k=1 αk = ∞ and
∑∞

k=1 α
2
k <∞. Go to step 2.

We observe that the computational time in step 2 grows exponentially with respect to the

number of LTCs and SCs, and may become prohibitive when the system under study is very

large. However, in some realistic systems, numbers of SCs and LTCs are small, which makes

the LR-DP algorithm an effective method for solving the VVC problem. Moreover, unlike

some stochastic search algorithms such as genetic algorithm and particle swarm optimiza-

tion, which have difficulties in evaluating the accuracy of computational results, the LR-DP

algorithm provides a lower bound on the optimal value and a duality gap, which can be used

to evaluate the performance of the algorithm.

3.5 Numerical Results

The well known PG&E 69-bus distribution test network with 69 buses, 68 branches and

48 loads is used to illustrate the performance of both the ASA and LR-DP algorithms. The

base power and base voltage are set to 10MVA and 12.66 kV, respectively. The data of

branch impedance and maximum daily active and reactive powers for all loads can be found
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in [3]. The diagram of the system is given in Fig 3.1. We assume that there are 10 capacitors

installed on bus 9, 19, 31, 37, 40, 47, 52, 55, 57 and 65 as in [40] with size 0.3MVar, and

that a LTC with tap setting 1± 0.02× 3 is installed at bus 1. 7 representative load profiles

in figure 3.2 are randomly assigned to nodes in figure 3.1.

3.5.1 Implementation of the ASA algorithm

The ASA algorithm is implemented using MATLAB 7.10.0 on a computer with an Intel

Core2 CPU (2.40GHz), 2.0GB RAM and Ubuntu 12.04.1 OS. The step-size is set as follows:

αsc
k = 1/(k+100)0.51, αltc

k = 1/(k+100)0.6. The annealing schedule Tk = 0.001+ c/(k+1)0.5,

where c is the positive difference between the minimum value and median of all the objective

values calculated in the step 3 of the ASA algorithm. The penalty coefficient for the violation

of voltage constraints ηv = 0.05. The penalty coefficients for the violation of operation limits

are ηltc = 1 and ηsc = 3. The sample size Nk = max(50,
√
k). The algorithm stops when

either k = 10000 or the following equations are satisfied:

min(1− qsc,k(isc, t), qsc,k(isc, t)) < 0.001∀i, t

min(1− qltc,k(iltc, j, t), qsc,k(iltc, j, t)) < 0.001∀i, t,

which indicate that all elements in those two stochastic matrices getting close to 0 or 1.

3.5.2 Implementation of the LR-DP algorithm

The LR-DP algorithm is implemented using MATLAB 7.10.0 on the same platform as

that for ASA algorithm. The initial lagrangian multipliers are all set as 1. The step-size

αk = 1/(0.05 + 0.05k0.75). The algorithm stops when the iteration number k exceeds 100 or

when the duality gap ǫ < 0.01.

56



3.5.3 Result

The initial tap position is set to 0, and the initial shunt capacitor settings are 0, which

means that they are switched off at the beginning. From our calculation, we observe in the

results of both ASA and LR-DP algorithms that the transformer taps are at positions that

lead to high voltage profiles. This is consistent with our intuition that given constant loads,

higher voltage profile will bring lower electricity current, which will result in less power loss.

Our ongoing study shows that if the power load is not constant and depends on the voltage

profiles, the optimal tap positions in current work will not be optimal. The situation of SCs is

more complicated, and no obvious pattern is observed for their settings. In many distribution

systems in the United States, a portion of the capacitors are controlled by the clocks, and

a switch-on time and a switch-off time are set for each of those capacitors; this means that

only 2 operations are allowed for these capacitors. In this work, different operation limits

between 2 and 5 are set for SCs and LTCs.

The performance of the ASA algorithm is given in table 3.1. We can see the convergence

of the ASA algorithm in figure 3.3. The power losses and CPU times in table 3.1 are based

on 10 independent replication runs of the ASA algorithm, and the standard deviation of

power losses is also computed. The computational results of LR-DP algorithm are provided

in table 3.2. Unlike ASA algorithm, the LR-DP algorithm is deterministic, so only a single

run is performed.

From tables 3.1 and 3.2, we can see that, generally, power losses increase as operation

limits decreases. Through computation, we observe that if there’s no operation limits con-

straints, the maximum of operations on LTC and SC is 5. Therefore, when the operation

limits is 5, the operations limits constraints can be ignored. For operation limits less than

5, lagrangian relaxation technique is used to obtain the lower bound. From table 3.2, we

observe that the duality gap is less than 0.6%, which indicates that the computational result

of LR-DP algorithm is very close to the optimal value. Additionally, we can see that the

LR-DP algorithm is time consuming. If bad initial lagrangian values and step-sizes were
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Table 3.1: Computing result of ASA algorithm
Operation Power Losses Standard Deviation CPU time
Limits kWh kWh (s)

2 901.09 2.61 1003
3 899.29 0.90 1093
4 898.33 1.14 1206
5 898.01 0.58 1262

chosen, the computational time could have been much longer. The computational results of

ASA algorithm are compared with that of LR-DP algorithm to test the performance of the

ASA algorithm. The comparison between these two algorithms are given in table 3.3. We

observe that that the performance of ASA algorithm is not as good as LR-DP algorithm.

However, the differences between calculated power losses are less than 0.4%, which is very

small. Moreover, the ASA algorithm is significantly faster than the LR-DP algorithm: the

ASA algorithm takes much less time to compute the result with only little compromise on

the quality of the solution.

3.6 Conclusion

A novel Approximate Stochastic Annealing algorithm is proposed for solving the voltage

and reactive power control problem with operation limits on shunt capacitors and LTCs.

The proposed simulation-based algorithm samples configurations of SCs and LTCs according

to a probability distribution, and a Boltzmann scheme is used to updated the probability

distribution. A Lagrangian Relaxation-Dynamic Programming algorithm is also proposed for

solving the problem, and a lower bound of the optimal solution is obtained. Test results on a

well known PG&E 69 bus system indicate that the LR-DP algorithm can solve the problem

precisely, but is time consuming, and that the ASA algorithm can solve the problem very

quickly with a little compromise on the optimality of the solution. Therefore, it is concluded

from numerical results that the ASA algorithm is an effective method for solving the voltage

and reactive power control problem with operation limit constraints.
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Figure 3.1: Diagram of PG&E 69-bus System
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Figure 3.2: Normalized load profiles

Table 3.2: Computing result of LR-DP algorithm
Operation Power Loss Dual Problem CPU time Duality Gap
Limits (kWh) (kWh) (s)

2 897.83 896.45 36004 0.15%
3 897.09 896.82 18914 0.03%
4 897.09 896.52 18935 0.06%
5 896.82 896.82 9039 0%
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Figure 3.3: Trajectory of objective function value

Table 3.3: Comparison between ASA and LR-DP
Operation Power Loss CPU time Power Loss CPU time
Limits (ASA) (s) (LR-DP) (s)

2 901.09 1003 897.83 36004
3 899.29 1093 897.09 18914
4 898.33 1206 897.09 18935
5 898.01 1262 896.82 9039
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Chapter 4

Voltage and Reactive Power Control

with Switching Costs and ZIP Load

Model

Nomenclature

Some notations that do not appear in chapter 3 are explained below. Other notations

that appear before have the same meaning as those in chapter 3.

P an Nnode × T matrix with P (i, t) representing the active (real) power of the ith

Node at time t .

Q an Nnode × T matrix with Q(i, t) representing the reactive power of the ith node

at time t .

V0 standard voltage level. For example, 120V .

Si,0 load forecast of node i at V0.

Z% percentage of constant impedance load.

I% percentage of constant current load.

P% percentage of constant power load.

61



4.1 Introduction

Chapter 3 and most previous work regarding VVC assume that electricity loads are

independent of voltage profiles; however, this assumption may not be valid in realistic power

distribution systems. The study in [59] indicates that in some power distribution systems,

the electricity loads are correlated with voltage profiles. Several load models were proposed

to handle this issue. The optimal solution of VVC problems under constant load model,

which assumes independence between loads and voltage profiles, may not be optimal under

some other load models. Because of the correlation between electricity loads and voltage

profiles, conservation voltage reduction (CVR) was proposed in [35, 36] and [59], in which the

objective is to minimize the total power consumption through VVC. However, their control

algorithms are based on heuristics, and switching costs of LTCs and SCs are ignored. In

this chapter, we consider both the minimization of power losses and the minimization of

total energy consumption. This dissertation uses the well-known ZIP load model in [59] for

modeling the relationship between electricity loads and voltage profiles.

Chapter 3 uses limits on the number of operations of power devices to avoid frequent

operations of those devices. However, on one hand, it is difficult to determine the optimal

operations limits; on the other hand, it is relatively easy to evaluate operation costs, for

example, by calculating the average maintenance cost of one operation. Therefore, it might

be more useful to consider the switching costs rather than to place operation limits on those

devices. This chapter adds switching costs to our VVC models.

This dissertation proposes an ASA algorithm for solving the VVC models in this chapter.

We illustrate the effectiveness of ASA using the same test system as that in chapter 3. We

implement the dynamic programming algorithm to get an exact optimal solution although it

is extremely time-consuming. We show that the ASA algorithm generates solution very close

to the optimal solution within a moderate computational time. Additionally, we illustrate

the performance of ASA by comparing it with the simulated annealing (SA) algorithm.

The rest of the chapter is organized as follows. We provide detailed formulations of the
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VVC problems with ZIP model in section 4.2. In section 4.3, we briefly describe the ZIP

load model and a simple power flow computation algorithm when a ZIP model is involved.

In section 4.4, we briefly describe the ASA algorithm for VVC problems. We describe the

dynamic programming algorithm and the simulated annealing algorithm for VVC in section

4.5. We test the performance of the ASA algorithm in section 4.6.

4.2 Problem Formulation

4.2.1 Objective Functions

This chapter considers two different objective functions: the minimization of power losses

and the minimization of the total energy consumption. The problem of minimizing the sum

of power losses and switching costs can be formulated as:

min
x

T
∑

t=1

Floss(xt, t)

Floss(xt, t) =

L
∑

l=1

PLt,l(xt)

+ ηltc

Nltc
∑

i=1

|xltc(i, t)− xltc(i, t− 1)|

+ ηsc

Nsc
∑

i=1

|xsc(i, t)− xsc(i, t− 1)|,

where PLt,l(xt) = |I(t, l)|2Rl. I(t, l) denotes the power flow on branch l at time t , which

can be calculated using power flow equations and the value of x. ηltc
∑T

t=1

∑Nltc

i=1 |xltc(i, t)−

xltc(i, t − 1)| is the switching cost of LTCs, and ηltc is the cost of a unit step movement of

the transformer tap in an LTC. ηsc
∑T

t=1

∑Nsc

i=1 |xsc(i, t) − xsc(i, t − 1)| is the switching cost

of SCs, and ηsc is the cost of a single switching operation of an SC.
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The problem of minimizing the sum of the total energy consumption and switching costs

can be formulated as:

min
x

T
∑

t=1

Ftotal(xt, t)

Ftotal(xt, t) =

T
∑

t=1

L
∑

l=1

PLt,l(xt)

+

N
∑

i=1

|Si|

+ ηltc

T
∑

t=1

Nltc
∑

i=1

|xltc(i, t− 1)|

+ ηsc

T
∑

t=1

Nsc
∑

i=1

|xsc(i, t)− xsc(i, t− 1)|,

where the second term on the right hand side is the sum of the loads at all nodes. The total

energy consumption is the sum of power losses and the electricity consumption at all nodes.

4.2.2 Constraints

Power Flow Equations

The power flows, voltage levels, active power and reactive power should satisfy a set

of power flow equations, which can be represented abstractly in the form of the following

equation: g(V, I, x) = 0. This chapter uses the ZIP model to describe the relationship

between voltage levels and electricity loads. The power flow computation with the ZIP load

model is discussed in detail in section 4.3.

Voltage Constraints

In a power distribution system, the voltage level of each node should be within a given

range to avoid damages to electric devices and appliances. Theses constraints are modeled

in Equation (4.1) below.

64



V ≤ |V (i, t)| ≤ V̄ , ∀i ∈ {1, . . . , Nnode}, t ∈ {1, . . . , T} (4.1)

4.3 Power Flow Computation

4.3.1 Power Flow Computation Using a Matrix Form

In power distribution systems, the topology of an distribution network is usually radial,

and we can use the method in [66] to to compute the power flows. In [66], the voltage drop

at each node can be calculated in the matrix form:

[∆V ] = [DFL][I] = [BCBV ][BIBC][I], (4.2)

where [∆V ] is the voltage drop vector of length Nnode with its ith element being the difference

between the voltage levels at the substation and the ith node, [DFL] is a matrix that

transforms the current injection vector into the voltage drop vector, and [I] is the current

injection vector with its ith element being the current that the ith node injects into the

system, which can be calculated as Si

Vi
. [BIBC] is an L×Lmatrix representing the impedance

of branch lines, and [BIBC][I] is a vector that represents voltage drops between the two

ends of all branch lines. [BCBV ][BIBC]I adds the voltage drop of each branch line along

the paths between the substation and a node to get the voltage drop of each node. The

voltage level of each node can be represented as

[V ] = Vsub − [∆V ], (4.3)

where Vsub is the voltage at the substation, and [V ] is a vector representing the voltage levels

of all nodes. Equation (4.2) can be solved recursively as follows:
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Iki =
Si

Vi
, (4.4)

[∆V k+1] = [DFL][Ik], (4.5)

[V k+1] = Vsub − [∆V k+1], (4.6)

where k is the iteration number.

4.3.2 ZIP Load Model

In this chapter, we use the ZIP model in [58] and [59] to model the relationship between

electricity loads and voltage levels. The ZIP model can be formulated as

Pi =
V 2
i

V 2
0

· Si,0 · Z% · cos(Zθ) +
Vi

V0

· Si,0 · I% · cos(Iθ) + Si,0 · P% · cos(P θ), (4.7)

Qi =
V 2
i

V 2
0

· Si,o · Z% · sin(Zθ) +
Vi

V0

· Si,0 · I% · sin(Iθ) + Si,0 · P% · sin(P θ), (4.8)

where Vi is the voltage level at node i, V0 is the standard voltage, for example, 120V . Si,0

is the electricity load at V0 and can be estimated through load forecasting. The ZIP model

assumes that the electricity load is the sum of three parts: constant impedance component,

constant current component, and constant power component. Z% is the percentage of the

constant impedance load, I% is the percentage of the constant current load, and P% is the

percentage of the constant power load. Zθ, Iθ and P θ are the respective phase angles of

those three components. For simplicity, we assume that Zθ = Iθ = P θ = Sθ, where Sθ is the

phase angle of Si,0. Then, it follows that:

Pi =
V 2
i

V0
· Pi,0 · Z% +

Vi
V0

· Pi,0 · I% + Pi,0 · P%, (4.9)
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Qi =
V 2
i

V0
·Qi,o · Z% +

Vi
V0

·Qi,o · I% +Qi,0 · P%. (4.10)

In this work, we assume that the load forecast are voltage dependent. In traditional

electric grids, the load forecast is usually based on the historical load data at the feeder level

and the weather forecast [19]. Measurements of voltage levels and loads at the customer

level are usually not available. Thus, the load forecast is usually independent of voltage

profiles. However, as the installation of smart meters increases, we are able to obtain the

historical load and voltage data at the customer level, which makes the voltage dependent

load forecast feasible in smart grid. Actually, the ZIP load model has been implemented in

some widely used planning tools such as Cymdist [14].

4.3.3 Power Flow Computation with the ZIP Load Model

When the ZIP load model is used, the power flow computation method in section 4.3.1

is no longer applicable, because Si is not a constant but a variable depending on voltage

profiles. However, we can use Pi + jQi to replace Si in Equation (4.4). Pi and Qi can be

calculated according to Equations (4.9) and (4.10). Then, we can use the same recursive

algorithm in section 4.3.1 to compute power flows.

4.4 Solution Algorithm: Approximate Stochastic An-

nealing

This chapter uses the ASA algorithm in section 3.3 for solving the VVC problems with

switching costs and ZIP load model. Since some of the candidate solutions sampled by ASA

may not satisfy voltage constraints, we add penalty terms to the objective function. The

augmented objective function thus becomes:
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h(x) =

T
∑

t=1

F (x, t) + ηv

Nnode
∑

i=1

T
∑

t=1

(max(V (i, t)− V̄ , 0) + max(V − V (i, t), 0)), (4.11)

where F (xt, t) = Floss(xt, t) if the objective is to minimize power losses, or F (xt, t) =

Ftotal(xt, t) if the objective is to minimize the total power consumption. The second term

on the right hand side is the penalty for voltage violations. The implementation of the

ASA algorithm is quite similar to that we use in section 3.3. Nevertheless, there are several

differences:

1. This chapter adds the switching costs to our models.

2. We use the ZIP load model in this chapter, while in chapter 3, electricity loads are

constants.

3. In chapter 3, we only consider the VVC problem of minimizing power losses. This

chapter also solves the problem of minimizing the total power consumption.

4.5 Other Solution Algorithms

4.5.1 Dynamic Programming

Dynamic programming was used for solving VVC problems in [24] and [38]. A similar

method can solve VVC problems with switching costs and the ZIP load model. We formulate

the optimization problem minx

∑T
t=1 F (xt, t) as a finite horizon Markov Decision Process

(X,A,R, P, T ), where

• X = {xt} is the set of all possible settings of LTCs and SCs at time t;

• A = {a := (altc, asc)} is the set of all feasible operations on LTCs and SCs;

• xt = xt−1 + a, i.e. P (xt + a|xt) = 1;
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• R(xt, a) = F (xt, t), where F (xt, t) = Floss(xt, t) or F (xt, t) = Ftotal(xt, t)

• T is a pre-defined planning horizon, 24 hours in our case.

The standard dynamic programming method with complexity O(|X||A|T ) can be applied to

solve the MDP. Note that an action a is feasible only if the setting xt = xt−1 + a is feasible,

i.e. voltage constraints should be satisfied at state xt.

The computational time in step 2 grows exponentially with respect to the number of

LTCs and SCs, and may become prohibitive when the system under study is very large.

However, in some realistic systems, the numbers of SCs and LTCs are small. Thus, the

dynamic programming algorithm is an effective method for solving VVC problems in those

cases, and the optimality of the solution is guaranteed.

4.5.2 Simulated Annealing

We implement the simulated annealing algorithm similar to that in [39], but with different

objective functions and power flow equations. Let H(x) be the objective function. The SA

algorithm iteratively searches the optimal setting of LTCs and SCs following the steps below:

1. Initialize a feasible setting of LTCs and SCs, e.g., an initial feasible solution x0. Specify

an annealing schedule {Tk}.

2. Randomly perturb a value in xk to get a new solution x′.

3. Solve the power flow equations. If one or more constraints are violated, go to step 2;

otherwise, compute the objective function H(x′) and continue to step 4.

4. If H(x′) ≤ H(xk), let xk+1 = xk. Else, with probability e[H(xk)−H(x′)]/Tk , xk+1 = x′;

with probability 1− e[H(xk)−H(x′)]/Tk , xk+1 = xk.

5. If a stop condition is satisfied, stop; else, let k = k + 1 and go to step 2.
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Not that in step 3, we check whether the candidate solution x′ generated in step 2 is feasible:

if it is not feasible, we go back to step 2 and generate a new solution again. Thus, SA assures

that the candidate solution in each iteration is feasible. Therefore, we use the original objec-

tive function rather than the objective function with penalty terms. H(x′) =
∑T

t=1 Floss(x
′
t, t)

if the objective is to minimize power losses; H(x′) =
∑T

t=1 Ftotal(x
′
t, t) if the objective is to

minimize the total power consumption.

4.6 Experiments and Results

We still use the well known PG&E 69-bus power distribution system in chapter 3 to

illustrate the performance of the ASA algorithm for solving new VVC models. The basic

settings of the system is almost the same as those in chapter 3. The switching cost for a unit

step movement of transformer tap is set at the expense of 0.25kWh electricity energy, and the

switching cost of one operation of an SC is set at the expense of 0.5kWh electricity energy.

The parameters of the ZIP load model are given as: Z% = 0.5, I% = 0, and P% = 0.5.

4.6.1 Implementation of the ASA algorithm

The ASA algorithm is implemented using MATLAB on a computer with an Intel Core2

CPU (2.40GHz ), 2.0GB RAM and Windows 7 OS. The smoothing parameters are set

as follows: αsc
k = 1/(k + 100)0.51, αltc

k = 1/(k + 100)0.6. The annealing schedule Tk =

0.001 + 0.5c/(k + 1)0.5, where c is the difference between the minimum and the median of

all objective values calculated in step 3 of the ASA algorithm. The penalty coefficient for

violation of voltage constraints ηv = 1. The sample size Nk = max(50,
√
k). The algorithm

stops when either k = 10000 or the following equations are satisfied:

min(1− qsc,k(i, t), qsc,k(i, t)) < 0.001, ∀i, t,
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min(1− qltc,k(i, j, t), qsc,k(i, j, t)) < 0.001, ∀i, j, t,

which indicate that all elements in the two stochastic matrices getting close to either 0 or 1.

4.6.2 Implementation of the Dynamic Programming Algorithm

The dynamic programming algorithm is implemented using MATLAB on the same plat-

form as the ASA algorithm. Standard backward induction algorithm is implemented.

4.6.3 Implementation of the Simulated Annealing Algorithm

We compare the results generated by the ASA algorithm with those generated by the

simulated annealing algorithm in [39]. The annealing schedule Tk+1 = Tk · 0.9995, and

T1 = 1000. The search process ends when Tk < 0.001. At step 2 of the SA algorithm

in section 4.5.2, a control device, e.g. LTC or SC, is randomly selected, and its status is

perturbed to generate a new solution.

4.6.4 Results

To illustrate the significance of ZIP model in VVC, we perform experiments in two cases.

In case 1, the constant load model is used, and the correlation between electricity loads and

voltage profiles is ignored. In case 2, the ZIP load model is used.

Case 1: Constant Load Model

In this case, we assume that electricity loads are independent of voltage profiles. In this

case, the minimization of power losses is equivalent to the minimization of total power con-

sumption, because the electricity loads at all nodes are constants. The computational results

are given in table (4.1) and table (4.2). We observe that the results from the ASA algorithm

are almost the same as those from the dynamic programming algorithm, which generates
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the exact global optimal solution. But the computational time of the ASA algorithm is 80%

less.

Because the constant load model is used in this case, the optimal voltage at the feeder

is at the highest possible value (1.04p.u.) without violating voltage constraints: the trans-

former tap moves from neutral position to position +2, and stays at this position in the

next 24 hours. This is consistent with our intuition that, given constant electricity loads,

higher voltage level results in lower electricity current, and thus, yields less power loss. Ad-

ditionally, we observe fewer switching operations in table (4.2) than in table (4.1) , which

is consistent with our intuition that switching costs of LTCs and SCs will result in fewer

switching operations in optimal solutions.

Case 2: ZIP Load Model

First, we perform an experiment with the objective of minimizing power losses. The

computational results are given in tables 4.3 and 4.4. We observe that the computing result

in this case has more frequent LTC tap movements than case 1, which may be due to the fact

that an increase in voltage level under the ZIP model may not result in lower energy losses:

an increase in voltage level will result in more energy consumption, which may bring more

energy losses. Therefore, the optimal tap position may not be the highest feasible position,

and may change as hourly electricity loads vary in a planning period. Additionally, optimal

operation schedules of SCs in this case are also different from those in case 1. Thus, the

computational results support our conjecture that the optimal controlling schedules of SCs

and LTCs are different under different load models.

Similar to our observations in case 1, computational results from the ASA algorithm

are very close to those from the dynamic programming algorithm. Additionally, the ASA

algorithm also uses much less computational time than the dynamic programming approach

does in this case.

Second, we perform an experiment with the objective of minimizing the total energy con-
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sumption. The computational results are given in tables (4.5) and (4.6). In this experiment,

we observe different operations of LTCs and SCs from the previous problem of minimizing

power losses. This shows that the optimal solution for the minimization of power losses

may not be optimal for the minimization of the total power consumption. Additionally, we

observe lower tap positions during the day time, when the power consumption is high, than

during the midnight, when the power consumption is low, which indicates that the conserva-

tion voltage reduction is more effective for peak loads than for off-peak loads. Computational

results also indicate that although the objective function has changed, the ASA algorithm

still performs very well, and is able to generate solutions very close to the exact optimal

solution using much less computational time than dynamic programming.

Comparison Between ASA and SA

An advantage of ASA over SA is that ASA samples a number of candidate solutions over

the entire solutions space in each iteration, which may prevent the algorithm from getting

trapped in local optimal points, while SA samples a single candidate solution in each iteration

and is more likely to be trapped in local optimal points. Thus, ASA may generate better

solutions than SA does. The computational results in this chapter support our conjecture to

some extent. In all experiments in this work, we observe smaller objective values using the

ASA algorithm than using the SA algorithm. Although ASA evaluates much more solutions

in each iteration than SA does, it requires a much smaller number of iterations to yield a

good solution. Overall, ASA uses less computational time than SA does, which is consistent

with the computational results in [27].

4.7 Conclusion

An Approximate Stochastic Annealing algorithm is proposed for solving the voltage and

reactive power control problem with switching costs and the ZIP load model. The objectives
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ASA
Dynamic Simulated

Programming Annealing

Objective Values (kWh) 896.82 896.82 899.56
Computational Time (s) 1132 6015 1327

Tap Position Changes (LTCs) 2 2 2
Switching Operations (SCs) 14 14 49

Table 4.1: Computational results of power loss minimization: constant load model and zero
switching costs

ASA
Dynamic Simulated

Programming Annealing

Objective Values (kWh) 902.33 902.33 904.43
Computational Time (s) 831 6455 1245

Tap Position Changes (LTCs) 2 2 2
Switching Operations (SCs) 8 8 10

Table 4.2: Computational results of power loss minimization: constant load model and
none-zero switching costs

ASA
Dynamic Simulated

Programming Annealing

Objective Values (kWh) 910.10 909.83 912.55
Computational Time (s) 994 6195 1282

Tap Position Changes (LTCs) 8 8 8
Switching Operations (SCs) 19 15 43

Table 4.3: Computational results of power losses minimization: ZIP load model and zero
switching costs

ASA
Dynamic Simulated

Programming Annealing

Objective Values (kWh) 915.36 915.26 915.41
Computational Time (s) 976 6112 1212

Tap Position Changes (LTCs) 3 3 3
Switching Operations (SCs) 7 7 7

Table 4.4: Computational results of power losses minimization: ZIP model and none-zero
switching costs
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ASA
Dynamic Simulated

Programming Annealing

Objective Values (kWh) 56685.5 56685.5 56690.1
Computational Time (s) 1029 6180 1322

Tap Position Changes (LTCs) 12 12 10
Switching Operations (SCs) 9 9 47

Table 4.5: Computational results of total power consumption minimization: ZIP load model
and zero switching costs

ASA
Dynamic Simulated

Programming Annealing

Objective Values (kWh) 56691.5 56691.4 56698.4
Computational Time (s) 746 6093 1261

Tap Position Changes (LTCs) 10 10 10
Switching Operations (SCs) 5 5 13

Table 4.6: Computational results of total power consumption minimization: ZIP model and
none-zero switching costs

of both power loss minimization and total power consumption minimization are considered.

The proposed ASA algorithm is used for solving VVC problems with different objective func-

tions. This chapter also implements the dynamic programming algorithm and the simulated

annealing algorithm to test the performance of the ASA algorithm. The computational re-

sults on the PG&E 69-bus system indicate that the ASA algorithm can solve problems with

different objective functions and load models very quickly with very little compromise on the

optimality of the solutions. The computational results also illustrate the superiority of the

ASA algorithm over the SA algorithm for solving VVC problems in terms of both optimality

and computational time.
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Chapter 5

Convergence Analysis of the ASA

Algorithm

5.1 Introduction

The study in [27] shows that ASA generates policies that converge to the global optimal

policy for solving finite horizon MDPs. In this chapter, we show that under some assump-

tions, ASA generates solutions that converge to optimal solutions of VVC problems. We

make some minor modifications of the proof in [27] to prove the convergence of the ASA

algorithm for VVC problems.

This chapter is organized as follows. First, we give a generalized formulation of VVC

problems. Second, we give the ASA algorithm for that formulation. Finally, we provide the

proof of convergence of the ASA algorithm.
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5.2 A Generalized Formulation of VVC Problems

Without loss of generality, we can formulate the VVC problem as a mixed-integer non-

linear programming problem below:

min
x,y

f(x, y) (5.1)

subject to : g(x, y) = 0

h(x, y) ≤ 0,

where x represents integer variables, e.g, tap positions and states of capacitors, and y repre-

sents continuous variables, which include power flows, voltages, etc. g(x, y) = 0 represents

power flow equations. h(x, y) ≤ 0 represents other security constraints, for example, voltage

constraints. Because we can compute the value of y from x using power flow equations

g(x, y) = 0, we can rewrite the problem above as:

min
x
f1(x) (5.2)

subject to : h1(x) ≤ 0,

where functions f1 and h1 do not have closed forms, and are neither convex nor differentiable.

If penalty terms are added for the violation of constraints, we can rewrite the problem as an

unconstrained discrete optimization problem below:

min
x
H(x) (5.3)

H(x) = f1(x) + ηmax(h1(x), 0),

Note that if η is large enough, the optimal solution for the unconstrained optimization

problem is also optimal for the constrained optimization problem above.
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5.3 Approximate Stochastic Annealing for the Gener-

alized Formulation of VVC Problems

Assume that x is a vector of size n, and x(i) ∈ {0, 1, 2, . . . , m − 1}. Initialize a ma-

trix q with dimension n × m, and q(i, j) denotes the probability that x(i) = j. Set

q(i, j) = 1/m, ∀i, j. Specify a non-negative decreasing sequence {Tk} (i.e., annealing sched-

ule), parameter sequences {αk} and {βk} satisfying 0 ≤ αk, βk ≤ 1, ∀k. Select a sample size

sequence {Nk}. Set iteration number k = 0. The procedure of the ASA algorithm is given

below:

1. Sample Nk values of x, which form a set Xk, from qk with probability 1−βk, and from

q0 with probability βk.

2. For each x, calculate objective H(x).

3. Update q by:

qk+1(i, j) = αk

∑

x∈Xk
e−H(x)/Tk+1 φ̂−1(qk, x)I{x(i) = j}

∑

x∈Xk
e−H(x)/Tk+1φ̂−1(qx, x)

+ (1− αk)qk(i, j), (5.4)

where

φ̂(qk, x) = (1− βk)φk + βkφ0.

φk =
n
∏

i=1

qk(i, x(i))

4. If a stopping condition is satisfied, then stop; otherwise, set k = k + 1 and go to step

1.

5.4 Analysis of Convergence

This chapter proves that under certain conditions, the probability matrix qk converges to

a matrix that assigns probability 1 to the optimal solution x∗ with the minimum objective
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value H(x∗).

Let Fk be the σ-field generated by the sets of samples up to iteration k − 1, i.e.,

Fk = σ{X1, X2, . . . , Xk−1}. The conditional probability and expectation are with respect to

φ̂(qk, x) at the kth iteration. Let S denote the solution space of x. Define:

Yk =
∑

x∈S

e−H(x)/Tk+1I{x(i) = j},

Zk =
∑

x∈S

e−H(x)/Tk+1 ,

Ŷk = N−1
k

∑

x∈Xk

e−H(x)/Tk+1φ̂−1(qk,x)I{x(i) = j},

Ẑk = N−1
k

∑

x∈Xk

e−H(x)/Tk+1 φ̂−1(qk,x).

Let

gk+1(x) =
e−H(x)/Tk+1

∑

x∈S e
−H(x)/Tk+1

,

where gk+1(x) can be considered as a Boltzmann probability mass function of x. Let

ḡk+1(x) =
e−H(x)/Tk+1 φ̂−1(qk,x)

∑

x∈Xk
e−H(x)/Tk+1φ̂−1(qk,x)

,

where Xk is the set of samples generated at iteration k. Thus, we can consider ḡk+1(x) as

an empirical Boltzmann probability mass function that approximates gk+1(x) . The proof of

convergence follows the proof in [27]. However, we make some modifications to adapt it for

the optimization problem in this chapter.

Firstly, we show that the sequence of idealized Boltzmann distribution {gk} converges to

a limiting distribution that concentrates only on the optimal solution x∗.

Lemma 5.1. If Tk → 0 as k → ∞, then Egk [I{x(i) = j}] → I{x∗(i) = j}, ∀i, j as k → ∞.
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Proof. :

|Egk [I{x(i) = j}]− I{x∗(i) = j}|

≤ Egk [|I{x(i) = j} − I{x∗(i) = j}|] since |E[·]| < E[| · |]

=
∑

x 6=x∗

|I{x(i) = j} − I{x∗(i) = j}|gk(x) + |I{x∗(i) = j} − I{x∗(i) = j}|gk(x∗)

≤
∑

x 6=x∗

|I{x(i) = j} − I{x∗(i) = j}| e−H(x)/Tk

∑

x∈S e
−H(x)/Tk

=
∑

x 6=x∗

|I{x(i) = j} − I{x∗(i) = j}| e−H(x)/Tk

∑

x∈S e
−H(x)/Tk

≤
∑

x 6=x∗ e−H(x)/Tk

e−H(x∗)/Tk +
∑

x 6=x∗ e−H(x)/Tk

=

∑

x 6=x∗ e(H(x∗)−H(x))/Tk

1 +
∑

x 6=x∗ e(H(x∗)−H(x))/Tk

≤
∑

x 6=x∗

e(H(x∗)−H(x))/Tk

Since for x 6= x∗, H(x∗)−H(x) < 0, then, as Tk → 0, H(x∗)−H(x))/Tk → −∞. Therefore,
∑

x 6=x∗ e(H(x∗)−H(x))/Tk → 0, since |S| is finite.

Secondly, we show that the estimated Boltzmann mass function Ŷk

Ẑk

is an asymptotically

unbiased estimator of Yk

Zk
.

Lemma 5.2. If Nkβk → ∞ as k → ∞, then

E[
Ŷk

Ẑk

|Fk] →
Yk
Zk

as k → ∞ w.p. 1.
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Proof. :

Ŷk

Ẑk

− Yk
Zk

=
Ŷk

Ẑk

− Ŷk
Zk

+
Ŷk
Zk

− Yk
Zk

=
Ŷk(Zk − Ẑk)

ẐkZk

+
Ŷk − Yk
Zk

.

Taking the conditional probability with respect to Fk at both sides yield:

E[
Ŷk

Ẑk

|Fk]−
Yk
Zk

= E[
Ŷk(Zk − Ẑk)

ẐkZk

|Fk] + E[
Ŷk − Yk
Zk

|Fk]

= E[
Ŷk(Zk − Ẑk)

ẐkZk

|Fk]

≤ E[(Zk − Ẑk)|Fk]

|Zk|
since

Ŷk

Ẑk

≤ 1

≤ 1

|Zk|
E[(Zk − Ẑk)

2|Fk]
1/2 Hölder′s inequality

≤ 1

|Zk|
√
Nk

E[e−2H(x)/Tk+1 φ̂−2(qk, x)|Fk]
1/2

=
1

|Zk|
√
Nk

(
∑

x∈S

e−2H(x)/Tk+1 φ̂−1(qk, x))
1/2

=
1√
Nk

(
∑

x∈S

((1− β0)φ(qk, x) + β0φ(q0, x))
−1gk+1(x)

e−H(x)/Tk+1

Zk

)1/2

≤ 1√
Nk

(
∑

x∈S

(β0φ(q0, x))
−1gk+1(x))

1/2

≤ 1√
Nk

(
∑

x∈S

(β0φ(q0, x))
−1gk+1(x))

1/2

=
(
∑

x∈S φ(q0, x)
−1gk+1(x))

1/2

√
Nkβ0

.

Because φ(q0, x)
−1gk+1(x) is bounded and |S| is bounded, (

∑

x∈S φ(q0, x)
−1gk+1(x))

1/2 is

bounded. Therefore E[ Ŷk

Ẑk

|Fk]− Yk

Zk
→ 0 as Nkβ0 → ∞. Thus, the desired result holds.

Finally, we show that under some assumptions, the stochastic matrix q converges to the

matrix that assigns unit mass to the optimal solution x∗.

Theorem 5.1. Assume the following conditions hold:
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1. αk > 0, ∀k;
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k <∞;

2. Tk → 0 as k → ∞;

3. Nkβk → ∞ as k → ∞.

Then

qk(i, j) → I{x∗(i) = j}, ∀i, j as k → ∞w.p. 1.

Proof. :

Let ηk := qk(i, j)−I{x∗(i) = j}. We can rewrite the recursive Equation (5.4) in the form

below:

ηk+1 = ηk − ξk, (5.5)

where

ξk = αk(ηk + I{x∗(i) = j} − Ŷk

Ẑk

) (5.6)

Let Uk = E[ξk|Fk] and ∆k = ξk − Uk.

(i) Firstly, we show that P (|ηk| > ǫ, ηUk < 0 i.o.) = 0, ∀ǫ > 0.

Uk = E[ξk|Fk]

= αk(ηk + I{x∗(i) = j} − E[
Ŷk

Ẑk

|Fk]) (5.7)

= αk(ηk + I{x∗(i) = j} − Yk
Zk

+
Yk
Zk

− E[
Ŷk

Ẑk

|Fk]) (5.8)

Then,

ηkUk = αk(η
2
k + ηk(I{x∗(i) = j} − Yk

Zk

) + ηk(
Yk
Zk

−E[
Ŷk

Ẑk

|Fk]) (5.9)

Because ηk is bounded, ηk(I{x∗(i) = j} − Yk

Zk
) → 0 and ηk(

Yk

Zk
− E[ Ŷk

Ẑk

|Fk]) → 0 as k → ∞

(Lemma 5.1 and Lemma 5.2). Thus, If |ηk| > ǫ, we have ηkUk > 0 when k is sufficiently

large. Therefor, we have P (|ηk| > ǫ, ηUk = 0 i.o.) = 0.

(ii) Secondly, because ηk + I{x∗(i) = j} − E[ Ŷk

Ẑk
|Fk] is bounded and αk → 0 as k → ∞ ,

82



then |Uk|(1 + |ηk|)−1 → 0 as k → ∞.

(iii) Thirdly,we show that
∑∞

k=1E[|∆k|2] <∞.

By definition, we have

∆k = αk(E[
Ŷk

Ẑk

|Fk]−
Ŷk

Ẑk

)

∞
∑

k=1

E[|∆k|2] =
∞
∑

k=1

α2
kE[(

Ŷk

Ẑk

|Fk]−
Ŷk

Ẑk

)2]

Because E[( Ŷk

Ẑk

|Fk]− Ŷk

Ẑk

)2] is bounded and
∑∞

k=1 α
2
k <∞, then,

∑∞
k=1E[|∆k|2] <∞.

(iv) Finally, we show that

P (lim inf |ηk| > 0,
∞
∑

k=1

|Uk| <∞) = 0.

From (i), we have:

|Uk| ≥ |αk(ηk + I{x∗(i) = j} − Yk
Zk

+
Yk
Zk

− E[
Ŷk

Ẑk

|Fk])|

≥ αk(|ηk| − |(I{x∗(i) = j} − Yk
Zk

)| − |Yk
Zk

− E[
Ŷk

Ẑk

|Fk]|)

Let Ω be the set of paths generated by the ASA algorithm such that for each ω ∈ Ω,

lim inf |ηn| > 0. Then for each w ∈ Ω, there exists a positive integer N1 such that |ηk| >

δ, ∀k > N1. Because of Lemma 5.1 and Lemma 5.2, there exists a positive integer N2 such

that |(I{x∗(i) = j} − Yk

Zk
)| + | Yk

Zk
− E[ Ŷk

Ẑk

|Fk]| < αkδ/2, ∀k > N2. Let N = max(N1, N2), we

have
∞
∑

k=1

|Uk| =
N
∑

k=1

|Uk|+
∞
∑

k=N+1

|Uk| ≥
N
∑

k=1

|Uk|+
δ

2

∞
∑

k=N+1

αk = ∞. (5.10)

Therefore, we have P (lim inf |ηn| > 0,
∑∞

k=1 |Uk| <∞) = 0.

Since we have the results in (i)-(iv), the main theorem in [17] shows that ηk → 0 as k → 1

w.p.1.

83



Chapter 6

Summary and Conclusions

6.1 Summary

Finite horizon optimal planning problem is an important category of optimization prob-

lems in smart grid. Many well-known optimization problems in power systems fall into this

category. This dissertation investigates two of them: the unit commitment problem and the

voltage and reactive power control problem.

Unit commitment problem is a power generation planning problem for finding the optimal

generation and service schedule of power generators to minimize total operational costs. This

dissertation adapts the traditional lagrangian relaxation algorithm for parallel computing,

which significantly reduces the computational time of solving UCPs, and make it possible

for solving large scale security constrained unit commitment problems on-line within an

acceptable time limit. We use the rolling horizon scheme to handle the volatile wind power

generation. In the rolling horizon scheme, we solve UCP each hour using the updated wind

power forecasts and load forecasts in the next 24 hours. Our test results show that the rolling

horizon scheme yields solutions with smaller total operational costs than the traditional day-

ahead scheme does.

In this dissertation, we model the voltage and reactive power control problem as a finite

84



horizon planning problem that finds the optimal planning of LTCs and SCs over a 24-hour

horizon. Firstly, we use a VVC model to minimize energy losses with constant load model

and operation limits constraints on LTCs and SCs. A novel stochastic search algorithm

called Approximate Stochastic Annealing is proposed for solving the optimization model.

ASA samples candidate solutions from a probability distribution over the solution space.

The distribution function is then modified using a Boltzmann selection scheme. Asymptoti-

cally, the probability distribution converges to a degenerated distribution that assigns unit

mass to the optimal solution. This dissertation also proposes a lagrangian relaxation based

algorithm: operations limit constraints are relaxed to form a dual problem, which is solved

by a combination of the subgradient method and the dynamic programming algorithm. We

use the PG&E 69 power distribution system to illustrate the performance of both algorithms.

Secondly, this dissertation solves VVC problems with ZIP load model and switching costs.

We modify the existing matrix-form power flow computation method to accommodate ZIP

load model. We consider two objective functions: the minimization of power losses and

the minimization of total power consumption. We also use the ASA algorithm for solving

the VVC optimization problems. We compare the results from the ASA algorithm with

those from the dynamic programming algorithm and the simulated annealing algorithm to

illustrate its performance.

Thirdly, we discuss the convergence properties of the ASA algorithm for solving VVC

problems.

6.2 Conclusions

The following conclusions are obtained from this dissertation:

• The traditional Lagrangian-Relaxation method for solving UCPs can be adapted for a

parallel computing scheme, which greatly reduces the computational time for solving

unit commitment problems, especially for solving large-scale security constrained unit
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commitment problems.

• The rolling horizon scheme significantly reduces total operational costs when compared

with the traditional day-ahead computing scheme. The parallel computing method is

a good fit for the rolling horizon scheme, which requires solving UCPs within a short

time window.

• The ASA algorithm can solve VVC problems with a moderate computational time but

little compromise on the optimality of solutions.

• The Lagrangian Relaxation-Dynamic Programming is also effective for solving VVC

problems with operation limit constraints. It yields solutions with very small duality

gaps. However, the long computational time is a major disadvantage of this algorithm.

• We propose new formulations of VVC problems with switching costs, ZIP load model

and different objective functions. Our computing results indicate that the ASA al-

gorithm can effectively solve these new formulations in terms of both optimality and

computational time.

6.3 Limitations and Future Work

Despite of the contribution of this dissertation for solving two finite horizon optimal

planning problems, our work has some limitations, which are listed below. Meanwhile, we

suggest potential methods to overcome those limitations.

• Some finite horizon optimal planning problems including UCP and VVC problems

are mixed-integer programming problems, and they are NP-hard problems. Those

algorithms in this dissertation do not solve the problem of the “curse of dimensionality”,

because their worst case time complexities are still non-deterministic polynomial. A

potential method for overcoming the “curse of dimensionality” is the approximate

dynamic programming algorithm (ADP) [6, 54]. As we mentioned earlier, many of
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those optimal planning problems can be formulated as MDPs. Due to large state and

action spaces, traditional dynamic programming methods may not be applicable. The

approximate dynamic programming algorithm may be a good alternative for solving

those MDPs.

• The wind power model we used in chapter 2 is a simple Gaussian model, which is a

naive model for the wind power forecast. A more sophisticated wind power forecast

model is necessary to test the real performance of the rolling horizon scheme.

• We can only scale up to 30 CPUs in the parallel computing method for UCP. The

computational time does not decrease significantly when more CPUs are used, and the

communication time among CPUs becomes the dominant factor in the total computa-

tional time. A detailed study on the job assignment and the communication schedule

is needed to improve the scalability.

• The VVC problems in this dissertation are deterministic and assume accurate forecasts

of electricity loads. However, in load forecast models, they are usually stochastic.

Moreover, distributed renewable energy resources are increasingly involved in power

distribution systems, and they are volatile. Therefore, stochastic VVC models may be

better choices than deterministic models. And thus, stochastic control and planning

algorithms are needed for solving those stochastic VVC models.

• As indicated in [27], ASA can solve stochastic optimization problems. Similarly, we

may use ASA for solving stochastic VVC problems.
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