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Abstract of the Dissertation

Studies of Hydrodynamic Processes in
Alternative Magneto-Inertial Fusion Devices

by

Lina Zhang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2014

The main goal of the research is evaluation of the plasma jet driven

magneto-inertial fusion (PJMIF) concept via simulations. To achieve this goal,

the development of mathematical models and numerical algorithms for PJMIF

has been performed, and large-scale simulation studies have been conducted.

In the PJMIF concept, a plasma liner, formed by the merger of a large

number of radial, highly supersonic plasma jets, implodes on a magnetized

plasma target and compresses it to conditions of the fusion ignition. 1- (spher-

ically symmetric), 2- and 3-dimensional simulations of the implosion of plasma

liners and compression of plasma targets have been performed using the Fron-
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Tier code based on the method of front tracking. Scaling laws and related

fusion theories have been investigated and their conclusions compared with

our results.

Compared with previous theoretical and numerical studies of PJMIF,

our numerical models and algorithms implement several new physics models

important to PJMIF. One of them is a numerical model for atomic physics

processes. The influence of atomic physics processes on the plasma liners for

magneto-inertial nuclear fusion has been studied based on equation of state

models with dissociation and ionization. These atomic processes in imploding

liners reduce the temperature and increase the Mach number of liners, result

in higher stagnation pressure and the fusion energy gain. Other factors influ-

encing liner implosion are the residual vacuum gas and heat conduction. By

replacing the idealized vacuum region with realistic residual gas and adding

the Spitzer electronic thermal conductivity, we quantified their effects in the

low-energy simulation regime.

We have demonstrated that the internal structure of argon plasma liners,

formed by the merger of plasma jets is strongly influenced by a cascade of

oblique shock waves generated by colliding jets. Corresponding studies have

been performed using 2- and 3-dimensional simulations. 10 times reduction

of the stagnation pressure was found compared with spherically symmetric

liner with the same pressure and density profiles at the merging radius, due

to the influence of oblique shock waves and adiabatic compression heating.

The experiment results of single argon plasma jet propagation and two argon

plasma jets merger reported by Plasma Liner Experiment group in Los Alamos
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National Lab have also been compared with our simulations.

A multi-stage computational approach for simulations of the liner-target

interaction and the compression of plasma targets has been developed to min-

imize computing time. Simulations revealed important features of the target

implosion process, including instability and disintegration of targets. The non-

uniformity of the leading edge of the liner caused by the oblique shock waves

between jets leads to instabilities during target compression. By using front

tracking, the evolution of targets has been studied in 2- and 3-dimensional sim-

ulations. Optimization studies of target compression with different number of

jets have also been performed.

Key Words: simulation, front tracking, interface, plasma jet/liner/target,

PJMIF, EOS, fusion energy, pressure, instabilities
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Chapter 1

Introduction

1.1 Overview of Plasma Jet Driven Magneto-Inertial

Fusion and Goals

In the PJMIF concept, a plasma liner, formed by the merger of a large

number of radial, highly supersonic plasma jets, implodes on a magnetized

plasma target and compresses it to conditions of the fusion ignition. One of

the concerns about solid liner driven fusion is called stand-off problem which

says that the target-related hardware should be located sufficiently far from

the hot spot and another concern is about liner manufacturing cost. Thio et

al. [1] then suggested the plasma liner method, that is, a spherical array of

supersonic plasma jets, launched from the periphery of the implosion chamber,

can be used to create a spherically symmetric plasma liner to implode on the

central magnetized target. Such a plasma liner is assembled when the jets

intersect and merge with each other at an intermediate radius rm, as shown

schematically in Fig. 1.1 [2].
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Several theoretical and numerical works [2, 3, 4, 5, 6, 7, 8, 9] have ad-

dressed the dynamics of spherically symmetric liners imploding on deuterium

plasma targets or undergoing the self-implosion process and properties of

plasma liner/target achieved after the implosion. 3-dimensional simulation fo-

cusing on the internal fine structure of plasma liners has been studied carefully

[10]. The Plasma Liner Experiment group in Los Alamos National Lab has con-

tributed a lot in this area. They proposed a collaborative project to explore the

feasibility of plasma liner formation to reach a desirable stagnation pressure.

They studied related theories such as the concept-level overview of plasma

liner MIF with analysis on the efficiency of conversion [11] and estimates of

confinement time to assess the fusion energy yield using exact solution to a self-

similar converging shock model [12]. One-dimensional radiation-hydrodynamic

simulations were then presented to provide insight into the scaling of stagna-

tion pressure with initial conditions using the RAVEN and HELIOS codes [8].

Three-dimensional simulations were also performed to study the effects of dis-

crete plasma jets on the processes of plasma liner formation and self-implosion

using smoothed particle hydrodynamics (SPH) [6]. Finally, experiment re-

sults of single argon plasma jet propagation [5] and two argon plasma jets

merger [13] were reported recently using a pulsed-power-driven plasma railgun

by HyperV Technologies Corp.

The main goal of this research is the evaluation of the plasma jet driven

magneto-inertial fusion (PJMIF) concept via simulations studies, which in-

cludes: a) Spherically-symmetric simulation studies including scaling laws and

new physics models important to PJMIF. One of the most important issues we
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need to solve is how to improve the fusion energy gain. According to the scal-

ing law derived from Parks’ formulas [2], the gain increases with the reduction

of the liner thickness provided that such a liner is still capable of compressing

the target. A thin liner with less initial kinetic energy increases the fusion

energy gain while it has the same ability to compress the target to the fusion

condition. Keeping the liner unchanged, there is also an optimal choice for the

target radius based on the initial conditions in order to get the maximum fusion

energy gain. Heavy liner material such as argon is also proposed to yield better

results. One of the new physics models implemented in our code is a numerical

model for atomic physics processes. The influence of atomic physics processes

on the plasma liners for magneto-inertial nuclear fusion has been studied based

on equation of state models with dissociation and ionization. These atomic

processes in imploding liners reduce the temperature and increase the Mach

number of liners, result in higher stagnation pressure and the fusion energy

gain. Other factors influencing the liner implosion are the residual vacuum gas

and heat conduction. By replacing some unrealistic values in the idealized vac-

uum region with realistic residual gas states and adding the Spitzer electronic

thermal conductivity, we quantified their effects in the low-energy simulation

regime. b) 3-dimensional studies of plasma liners, including propagation of

single jet, merger of jets and self-implosion of liner. Based on oblique shock

waves and other factors, the internal fine structure of plasma liners obtained

by the merger of plasma jets, the decrease of self-implosion pressure comparing

to the uniform liner and the final potential implications to the target compres-

sion have been explained precisely. The experiment program Plasma Liner
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Experiment (PLX) at LANL aims on experiments on plasma jet propaga-

tion/merging, and liner formation/implosion. We obtained available relevant

data from them and compared the results. c) Multi-dimensional studies of im-

plosion with target including evolution of liner, compression of plasma target

with instabilities and comparison in different dimensional cases. We studied

the scaling laws and related theories using 1-dimensional spherically symmet-

ric liner based on its uniform structure. But due to the oblique shock waves

and other factors, the internal structure of plasma liners is not uniform. We

then performed 2-dimensional simulations to show the Rayleigh-Taylor (RT)

instabilities on the interface in detail and the influence of the surface behavior

on the fusion energy and stagnation pressure. RT instability is an instability

of an interface between two fluids of different densities that occurs when one of

the fluids is accelerated into the other [21]. The instability in our simulations is

not in the traditional sense since there is no random perturbation and it is also

combined with RichtmyerMeshkov (RM) instability which is open to discuss

[22]. After bubbles and spikes growing into certain heights, we observed that

the target broke into fragments. We performed different numbers of jets to

form the liners and compared the results. 3-dimensional simulations were also

performed to obtain further investigation. In the 3-dimensional simulations,

the interface structure is much more complicated than it is in a 2-dimensional

space. A multi-stage computational approach has been developed to minimize

computational time. We used a coarse mesh before the liner reaches the target

and refined mesh afterwards. Similar target behaviors were observed compared

with the 2-dimensional simulation. The MHD processes in the target prevent
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target diffusion. To simulate this effect without including MHD in the code,

we set the velocity of the target to be zero before the liner-target interaction.

Simulation results were also compared with 1-dimensional uniform cases to

obtain better understanding. My work includes: a) EOS model validation,

discussion of functions implemented in FronTier, studies of influence of vac-

uum and heat conduction, and related simulation studies (joint work with H.

Kim and Prof. Roman Samulyak); b) discussion of functions implemented

in FronTier, comparison studies with oblique shock theory and experimental

results, and related simulation studies (joint work with H. Kim and Prof. Ro-

man Samulyak); c) Multi-dimensional studies of implosion with target (joint

work with Prof. Roman Samulyak). The plasma EOS model mentioned in our

papers is first implemented in this area. Multi-dimensional studies of implo-

sion with target, especially the 3-dimensional space, shed some light on the

PJMIF project.

Figure 1.1: Schematic of plasma jet induced magnetized target fusion: (a)
Plasma gun shoot supersonic jets; (b) Plasma liner is formed at the merging
radius; (c) Plasma liner implodes on the target.
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1.2 Methods and Tools

First, all of our simulations are performed using FronTier code. There are

two approaches to deal with fluid dynamics, Eulerian method and Lagrangian

method (see Fig. 1.2). In Eulerian method, flow moves with respect to the

coordinate frame (or computational mesh), which is fixed to laboratory frame.

With Eulerian method, the evaluation of fluid states is relatively easy to be

extended to higher dimension but it is difficult to capture dynamic interfaces.

In Lagrangian method, the substance represented by material parcels moves

together with the flow. With Lagrangian method, it is easy to deal with the

resolution of the interface but the material parcels are severely distorted by

the flow especially in high dimension. A hybrid Lagrangian-Eulerian code

based on the front tracking method [14] called FronTier code [15] is then used

in our simulations. Front tracking is a numerical method in which surfaces

of discontinuity are given explicit computational degrees of freedom together

with continuous solutions at regular grid points. Thus the code has special

ability to track dynamically moving fronts (often interfaces between materials)

which are Lagrangian meshes moving through a volume filling Eulerian grid.

Fig. 1.3 and Fig. 1.3 [14] show the schematic of this idea in 2-dimensional and

3-dimensional spaces. We observe that the front (or interface) is presented

with a lower dimensional structure in regular Eulerian grid, that is, curve in

rectangle and surface in cuboid. With this description and its own data struc-

tures, we obtain the first essential idea to the front tracking method. Fig. 1.4

also shows the representation in detail in 3-dimension. The CURVE consists of

BONDs with the linking order of BONDs corresponding to the natural order

6



along the CURVE. Each BOND is a pair of POINTs with the straight-line seg-

ment joining them. SURFACE is composed of TRIANGLEs while the linking

order has no intrinsic relation to SURFACE. NODEs correspond to bound-

aries of CURVE and CURVEs correspond to the boundaries of SURFACE.

COMPONENTs are equivalence class separated by the HYPERSURFACEs

(SURFACEs in 3-dimension). The second critical idea is to define the dynam-

ics of the front derived from corresponding differential equation with Riemann

solvers and a finite difference algorithm to couple the interior cells to the front

with ghost cell extrapolation [16]. The propagation of points on the front

(dynamics of the front) is operated in two directions: normal and tangential

to the interface (see Fig. 1.5 [16]). The operation projects the flow state into

either along the normal ray or the tangent plane from the point being prop-

agated. A Riemann problem with the two states at either side of the front is

solved to find the front speed and updated states. The method of characteris-

tics tracing back linearly from the new front position with Rankine-Hugoniot

conditions across the front is used to obtain the time updated states at the

front. By averaging the wave speed computed from initial Riemann problem

and the value obtained from method of characteristics, the final front speed is

solved. For cells with a regular stencil, a standard scheme, such as Monotonic

Upstream-centered Scheme for Conservation Laws (MUSCL) [17] is used. For

cells with an irregular stencil, some cells are cut by the front. But then it

may cause an error because of finite differences in the level set function. The

ghost cell method is used to solve this error recently. A Riemann solver is used

for interior-front coupling. The solver enters into the front propagation and

7



(a) (b)

Figure 1.2: Mesh of Eulerian and Lagrangian method

the setting of the front states. Based on solved front states, extrapolation as

constant is performed for the ghost cell. Local states near the front are then

given by extrapolating states for each side of the front. With ghost cell states,

the regular states including the irregular one has a full stencil of states from

a single side of the interface. A normal finite difference solver is then used to

compute the states including regular ones and extrapolated ghost ones.

The code is ideal when discontinuities are an important feature such as

complex shocks and wave front interactions. Based on the elimination (or

large reduction) of numerical diffusion across interfaces, front tracking im-

proves the accuracy of multiphase simulations. Explicit geometrical interfaces

also improve the simulation of processes occurring at material interfaces (for

instant, phase transition), and enable the use of different numerical models in

regions separated by interfaces (for example, electrically conducting and non-

conducting fluids). That is one of the most important reasons why we use this

8



Figure 1.3: Schematic of front tracking method in 2-dimensional space, so-
lution is composed of finite difference grid and a dynamic grid following the
front.

Figure 1.4: Schematic of front tracking method in 3-dimensional space, so-
lution is composed of finite difference grid and a dynamic grid following the
front.
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Figure 1.5: Schematic of point propagating in 2-dimensional space: (a) normal
and (b) tangential directions.

code for all our simulations, especially for simulations of targets compressed

by liners. The FronTier code has been used on various supercomputers for

the simulations [18] of fundamental (turbulent fluid mixing) and applied prob-

lems (liquid accelerator targets, fuel jets, pellet fueling of tokamaks, etc.). It

supports compressible and incompressible Navier-Stokes equations with phase

transitions, MHD equations in the low magnetic Reynolds number approxi-

mation [19], and oil reservoir equations.

Second, compared with previous theoretical and numerical studies of

PJMIF, our numerical models and algorithms implement several new physics

models important to PJMIF. One of them is a numerical model for atomic

physics dynamics. In addition to conservation laws, the thermodynamic rela-

tion between state variables under a given set of physical conditions referred

as an equation of state (EOS) is also required to completely specify the prob-

lem (close the system of equations). It connects two or more state functions

associated with the matter, such as temperature, pressure, volume, or internal

energy. It is useful to describe intrinsic properties of gas, fluid and solid. For a
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given system, the temperature, volume, and pressure are dependent with the

general form as

f(p, V, T ) = 0

where p is pressure, V is volume, T is absolute temperature (Kelvin (K)).

Most previous works have used polytropic ideal gas EOS for the plasma liner

material, which can be expressed as

p = ρ(γ − 1)e

where p is pressure, ρ is density, γ = Cp/Cv is adiabatic index (ratio of spe-

cific heats), e = CvT is the internal energy per unit mass (specific internal

energy), Cp is specific heat at constant pressure and Cv is the specific heat

at constant volume. But as the increase of the liner temperature reported in

previous studies is large enough to cause dissociation and ionization, we need

to consider the influence of atomic processes. In order to solve this problem,

we implemented the equation of state model for deuterium [20] and developed

a numerical equation of state model for high-Z gases that resolves multiple ion-

ization based on local thermodynamic equilibrium. These EOS models have

been implemented in the FronTier code [15] and used for all of our plasma

simulations. Other factors influencing liner implosion are the residual vacuum

gas and heat conduction. We replace the idealized vacuum region with re-

alistic residual gas and analyze the results. Heat conduction can also cause

important changes during the implosion process. We investigate this factor by

applying the Spitzer electronic thermal conductivity in our simulations.
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Finally, we introduce our visualization tools for data analysis. For 1-

dimensional simulation, MATLAB is enough for plotting. But for 2-dimensional

and 3-dimensional simulations, we always obtain a huge amount of output files

which are not easy to be visualized. FronTier solves this problem by produc-

ing vtk files which contain the state information such as density, temperature

and pressure at each position and are visualized by VisIt. VisIt was originally

developed by the Department of Energy (DOE) Advanced Simulation and

Computing Initiative (ASCI) to analyze the results of terascale simulations.

It contains plugin architecture for custom readers, data operators, plots and

many different user interfaces. Users can produce visualizations, animate the

evolution, manipulate with multiple operators and mathematical expressions,

do qualitative and quantitative analysis and finally save the images or anima-

tions. Because of its rich set of visualization features, a wide variety of data

including scalar and vector fields defined on 2- and 3-dimensional structured,

adaptive and unstructured meshes can be visualized. Sometimes MATLAB is

also used for specific analysis for 2- and 3-dimensional simulations.

1.3 Dissertation Organization

In Chapter 2, we introduce the scaling Laws, EOS model with atomic

process based on Saha Equations and influence of residual vacuum gas and

heat conduction in detail with simulations results. Chapter 3 presents the 3-

dimensional studies of plasma liner including propagation of single jet, merger

of jets and self-implosion of liner. Simulation results are explained with oblique

shock wave theories. The experiment results by Plasma Liner Experiment
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group are also presented. Chapter 4 discusses liner-target interaction in multi-

dimensional regimes. Because of the non-uniformity of the plasma liner merged

by jets, Rayleigh-Taylor instabilities are introduced to explain the evolution

of target surface in 2-dimension and 3-dimension. The influence on the fusion

energy and stagnation pressure is also presented with different number of jets.

Finally, Chapter 5 reports some of the on-going work and plans for the future

direction.
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Chapter 2

Spherically-symmetric Simulation of Plasma

Liner and Target Compression

We start with spherically symmetric simulations for this thesis. Spheri-

cally symmetric simulations of the implosion of plasma liners and compression

of plasma targets in the concept of the plasma jet driven magneto-inertial

fusion have been performed using FronTier code. Scaling laws and related

fusion theories have been investigated to compare with our results. Several

new physics models are also implemented in the code [7].

2.1 Scaling Laws and Comparison with Theory

Fusion energy gain in our simulations is obtained by the following ap-

proach. At each time step, the production of fusion neutrons is calculated for

each computational cell of the target based on the thermodynamic state of the
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target and the fusion reactivity [23]:

< σv >= c1θ(T )

√
[BG2/(4θ(T ))]1/3

DT 3
exp

[
−3
[
BG3/(4θ(T ))

]1/3]
, (2.1)

where

θ(T ) =
T

1− T (c2+T (c4+Tc6))
1+T (c3+T (c5+Tc7))

.

Here the temperature T is in keV units, the dimension of the fusion reactivity

is cm3/s, and c1 = 1.17302 × 10−9, c2 = 0.0151361, c3 = 0.0751886, c4 =

0.00460643, c5 = 0.0135, c6 = −1.0675 × 10−4, c7 = 1.366 × 10−5, BG =

34.3827, D = 1.124656 × 106. The neutron production is integrated in the

target volume and time to obtain the total fusion energy

Efusion = (eneutron + eα)

∫ ∞
t0

∫ ∫ ∫
Vtarget(t)

< σv >
n2

4
dV dt, (2.2)

where n is the target number density, eneutron = 14.1 MeV is the neutron

energy and eα = 3.5 MeV is the alpha particle energy released in the process

of fusion. Finally, the fusion gain is obtained as

Gsimulation = Efusion/Eliner, (2.3)

where Eliner = Ekinetic + Einternal ' Ekinetic is the total initial energy of

the plasma liner.

The scaling law, which shows the theoretical predictions of the fusion
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gain dependence on parameters, is derived from Parks’ formulas [2].

G = 10−4
〈σv〉DT
T 3/2

R2

Ljet
(n0nL)1/2

(mjet

2.5

)1/2
CLC

3/2
T

ηE
0.25

= 10−4
〈σv〉DT
T 3/2

RmR0√
RLjet

(n0nL)1/2
(mjet

2.5

)1/2 ηE
0.25

(2.4)

where T and R are the target temperature and radius at stagnation (cm), n0

is the initial target density (cm−3), Ljet is the length of jets forming the liner

(cm), nL is the initial liner density (cm−3), mjet is the jet ion mass (amu),

CL = Rm/R is the radial convergence of the liner, CT = R0/R is the radial

convergence of the target, and ηE is the electric gun efficiency which is equal

to one throughout this paper.

According to Eq.2.4, the fusion energy gain increases with reduction of

initial liner thickness since the liner with smaller thickness contains smaller

initial energy while produces identical fusion energy [3]. Further reduction of

thickness is not practical since the propagation of very short plasma jets prior

to their merger results in the spreading of their density. Another way is the

inclusion of alpha particles heating. It assumes that alpha particles produced

in the nuclear fusion process escape the target without interaction. In [3],

a very simplified model was proposed: Some fractions of alpha particles are

absorbed locally and deposit their energy of 3.5 MeV per alpha particle in

order to evaluate the effect on fusion gain. Alpha heating had small effect

on fusion gain of deuterium liner with increment of 4.3% using absorption

coefficient of 0.35. Fusion gain with larger targets compressed by heavy xenon

liners and double layer deuterium-xenon liners were also simulated. With
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inclusion of alpha heating, the fusion energy gain was improved significantly

with xenon liner. The use of composite deuterium-xenon liner, which had been

expected to provide extra fuel for thermonuclear reaction, reduced the fusion

gain because of the compression of deuterium liner layer and can’t achieve

ignition without alpha heating. Keeping the liner unchanged, 20 cm target

was the most optimal for the given liner [3]. To evaluate the effect of alpha

heating for targets producing significant energy gains, the same simulations

with alpha heating turned off were also performed. With alpha heating turned

off, the fusion gain of 15 cm target was reduced to 5.6 while the fusion gain

of 20 cm target was reduced to 6.0. The conclusion is that with inclusion of

alpha particles heating, the fusion gain reached 10 in the most optimal setup

as follows: target with 20 cm radius compressed by a single layer xenon liner

(see Fig. 2.1 [3]).

In [7], we proposed a further explanation of the scaling law using ar-

gon liner and plasma EOS. Here we use the code features of solving Riemann

problem, front tracking and applying plasma EOS model. The initial simula-

tion parameters for a deuterium liner are consistent with [3]: The liner is 5

cm thick with density ρ = 3.8 × 10−5 g/cm3 = 9.2 × 1018 1/cm3, temperature

T = 0.0358 eV = 415.4 K, pressure P = 0.65 bar, velocity v = 100 km/s, and

the Mach number M = 60. The plasma target is initially 5 cm in radius

with uniform density ρ = 8.3 × 10−6 g/cm3 = 2 × 1018 1/cm3, temperature

T = 100 eV and pressure P = 640.3 bar. The mesh size is 0.2 mm with flow

through boundary condition for right side and reflecting boundary for left side.

Fig. 2.2 shows the Mach number evolution and Fig. 2.3 depicts the evolution of
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Figure 2.1: Influence of alpha heating on the fusion gain of targets compressed
by 5 cm thick single layer xenon liner. Solid lines show the fusion gain in the
presence of alpha heating and dashed lines show the fusion gain when alpha
heating was turned off. Initial target radii are: 20 cm (1a,b) and 15 cm (2a,b).

fusion energy gain in the target after interaction with the liner. In agreement

with previous theoretical and numerical estimates of scaling laws, the increase

of Mach number for the plasma EOS model leads to larger compression of the

target with higher fusion energy gain.

The next simulations show the compression of plasma targets by heavy

argon liners. Here we use the code features of solving Riemann problem,

front tracking and applying plasma EOS model. Based on the liner infor-

mation in [3], we proposed the following initial conditions of the argon liner

with comparable particle number density: density ρ = 4.0 × 10−4 g/cm3 =

6.03 × 1018 1/cm3, temperature T = 0.7269 eV = 8435.15 K, and pressure

P = 9.35 bar. The mesh size is 0.2 mm with flow through boundary condition

for right side and reflecting boundary for left side. According to [3], more
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Figure 2.2: (Joint work with H. Kim) Evolution of mean Mach number of the
liner before the interaction with the target by the plasma (blue solid line) and
polytropic (red dashed line) EOS models.
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Figure 2.3: (Joint work with H. Kim) Evolution of the fusion energy gain
of the plasma target compressed by the deuterium liner at given time with
polytropic EOS (red dashed line) and plasma EOS (blue solid line).
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Figure 2.4: (Joint work with H. Kim) Comparison of fusion gains with different
target radius using same argon liner and polytropic EOS (target radius: 15
cm (1), 20cm (2), 10 cm (3), 5 cm (4)).

fusion energy gain for argon liner (heavy material) compared with deuterium

line is obtained. Keep liner unchanged, [3] found that the most optimal target

radius for the given xenon liner was 20 cm. Similarly, Fig. 2.4 shows that the

target with radius of 15 cm is the most optimal for argon liner by showing dy-

namics of the corresponding fusion gain. This target size is then used for the

investigation of the influence of ionization on the target stagnation pressure

and fusion energy gain later.

2.2 EOS Models and Influence of Ionization

The thermodynamic relation between state variables under a given set of

physical conditions is referred as an equation of state (EOS). It connects two or

more state functions associated with the matter, such as temperature, pressure,
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volume, or internal energy. A particular relation of the form p = ρ(γ − 1)e is

called polytropic ideal gas EOS, where p is pressure, ρ is density, γ = Cp/Cv

is adiabatic index (ratio of specific heats), e = CvT is the internal energy per

unit mass (specific internal energy), Cp is specific heat at constant pressure

and Cv is the specific heat at constant volume. Most previous works have used

this model for the plasma liner material. However, in order to describe the

simulation more precisely, as the increase of the liner temperature reported

in previous studies is large enough to cause dissociation and ionization with

energy sinks, our group used the EOS model for deuterium [20] and developed

a numerical EOS model for high-Z gases (argon) for multiple ionization instead

of polytropic ideal gas EOS. Both EOS models assume local thermodynamic

equilibrium.

[7] and [20] describe a deuterium EOS model: Specific internal energy and

pressure of a partially dissociated and ionized diatomic gas can be expressed

as

E =

(
1− fd

2(γm − 1)
+
fd + fi
γ − 1

)
kT

ma

+
1

2
fd
kεd
ma

+ fi
kεi
ma

, (2.5)

P =

(
1

2
+

1

2
fd + fi

)
ρkT

ma

(2.6)

where k is the Boltzmann constant, ma is the atom(ion) mass , γm is specific

heat ratio for molecules and γ = 5/3 is specific heat ratio for atoms. The
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definitions of dissociation fd(ρ, T ) and ionization fi(ρ, T ) fractions are

fd = (na + ni)/n,

fi = ni/n,

where n ≡ 2ng + na + ni = ρ/ma is the total number density of nuclei, and

ng, na, and ni stand for the number densities of gas D2 molecules, D atoms,

and D+ ions, respectively. The dissociation energy and ionization energy for

deuterium are εd = 4.48 eV, and εi = 13.6 eV, respectively. The dissociation

and ionization fractions can be solved from Saha equations [24]. The equations

for deuterium (in eV units) can be expressed as

f 2
d

1− fd
= 1.55× 1024T

αd

n
exp

(
−εd
T

)
, (2.7)

f 2
i

1− fi
= 3.0× 1021T

αi

n
exp

(
−εi
T

)
, (2.8)

where αi = 3/2 and αd = 0.327. These values are the best approximation of

deuterium thermodynamic data [25]. For hydrodynamic code solvers we need

to get pressure as a function of density and specific internal energy. Then we

have to solve the quadratic equations (2.8) - (2.7) for fi and fd respectively.

A nonlinear equation Φ(ρ, E, T ) = 0 is then obtained to get T for given values

of ρ and E by substituting fi and fd into the energy equation (2.5). Finally

we obtain dissociation and ionization fractions and the pressure based on the

temperature.

Suppose multiply ionized state with ionization energies I1, I2, . . . , IZ can
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be obtained for high-Z monatomic gas EOS model (see details in our paper

[7]). Similar to previous discussion, specific internal energy and pressure can

be expressed as

E =
3

2
(1 + fe)

kT

ma

+
1

ma

∑
Qmfm +

1

ma

∑
Wmfm, (2.9)

P = (1 + fe)
ρkT

ma

(2.10)

where fe is fraction of electrons and fm is fraction of ions with m as the

ionization degree, Qm = I1 + I2 + . . . + Im is defined as the energy needed to

remove m electrons, with m-th ionization potential Im, and Wm denotes the

electronic excitation function. The fractions of electrons and ions satisfy the

following equations ∑
m

mfm = fe,
∑
m

fm = 1

and also the system of Saha equations based on the assumption of local ther-

modynamic equilibrium

fm+1fe
fm

=
2m

ρ

um+1

um

(
2πmekT

h2

)3/2

exp

(
−Im+1

kT

)
, m = 1, . . . , Z, (2.11)

where um, m = 1, . . . , Z are electron partition functions that are already

known and h is the Planck constant. In order to solve the system of Saha

equations in an EOS library more efficiently as it is a coupled system of Z

nonlinear equations, we introduce the continuum approximation of the particle
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number densities, ionization energy function and ionization fractions as in [24],

nm → n(m), Im → I(m), fm → f(m),

with the integral form of conservation laws

∫
mn(m)dm = ne,

∫
n(m)dm = n,

By applying these to (2.11), the coupled system of Saha equations is reduced

to a single ordinary differential equation

(
1 +

d log n

dm

)
ne = CT 3/2 exp−I(m+ 1)

kT
. (2.12)

The function of argon ionization energies is shown with continuum rep-

resentation in Fig. 2.5 by a third order piece-wise polynomial approximation

[7].

Based on [24], the distribution of ionized states n(m) at given temperature

and density resembles a sharp, Gaussian-type curve centered at the average

ionization m̄ defined as

m̄ =

∫
mn(m)dm∫
n(m)dm

=
ne
n

= m| dn
dm

=0 .
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Figure 2.5: (Joint work with H. Kim) Ionization energies of argon atom (cir-
cles) and their continuum representation by function I(m) (solid line).

By applying it to (2.12), the average ionization value becomes

m̄ =
CT 3/2

n
exp− Ī

kT
. (2.13)

Then we have internal energy and pressure for average ionization modeling

E =
3

2
(1 + m̄)

kT

ma

+
1

ma

Q(m̄), (2.14)

P = n (1 + m̄) kT (2.15)

Substitute (2.15) or (2.14) into the Saha equation(2.13) with the continuum

approximation for discrete functions Im and Qm, we obtain a nonlinear equa-

tion to solve m̄ at given pressure or specific internal energy with value of

density. We then obtain other quantities such as sound speed required by the
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Figure 2.6: (Joint work with H. Kim) Comparison of the average ionization
calculated using the Zeldovich model (solid lines) and the full system of coupled
Saha equations (dashed lines) at given temperature and three density values,
5 × 10−3 g/cm3 (red bottom lines), 5 × 10−5 g/cm3 (green middle lines), and
5× 10−7 g/cm3 (blue top lines) is shown.

Riemann solver based on the expression for entropy from [24] and the local

gamma-law fit.

The coupled system of Saha equations is compared with average ion-

ization EOS model as follows: Fig. 2.6 shows the relation between the av-

erage ionization level and temperature of argon gas for three density values:

5×10−7 g/cm3, 5×10−5 g/cm3, and 5×10−3 g/cm3. Fig. 2.7 presents the cor-

responding pressure curves obtained by the coupled system of Saha equations

and the average ionization EOS model. Only negligibly small discrepancies

near non-smooth sections of the curve appear which also gives us the valida-

tion of the average model [7] .

However, in order to implement this EOS model in FronTier code [26]
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Figure 2.7: (Joint work with H. Kim) Comparison of pressure values calculated
using the Zeldovich model (solid lines) and the full system of coupled Saha
equations (dashed lines). Temperature dependence of the argon gas pressure
at three density values, 5 × 10−3 g/cm3 (top lines), 5 × 10−5 g/cm3 (middle
lines), and 5× 10−7 g/cm3, (bottom lines) is shown.
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with second order MUSCL type schemes and interface propagation algorithms,

we need to solve numerically a Riemann problem which requires an ability to

calculate the sound speed and integrals of Riemann invariant type expressions

along characteristics. Explicit expressions are then needed for the entropy,

sound speed, and other thermodynamic properties of the system (2.6) - (2.7)

[20]. Precomputed tabulated data sets are often used to reduce calculation

time of Riemann-type invariants [7].

To show the influence of the ionization with EOS models, we present the

simulation results using deuterium and argon gas liner [7] . For the same sim-

ulation in section 2.1 explaining the scaling law, Fig. 2.8a shows the evolution

of mean dissociation and ionization fractions of deuterium by averaging values

across the liner at each time step during liner implosion before the interac-

tion with the target. The fractions increase as the temperature increases with

time. Here the mean dissociation fraction is 0.02 while the ionization frac-

tion remains negligible small at the late stage because of small changes of the

temperature in the liner. Fig. 2.8b presents the evolution of dissociation and

ionization energy ratios defined as the dissociation (ionization) energy divided

by the specific internal at given time. The dissociation energy remains a signif-

icant fraction of the liner energy while the ionization energy is negligible. The

dissociation energy sink causes liner temperature around 3 times smaller com-

pared with the simulation with polytropic EOS and the corresponding Mach

number increases approximately by the factor of two (see Fig. 2.2).

The ionization process becomes significant when the interaction between

the liner and target starts. The front layer of the liner is almost completely
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Figure 2.8: (Joint work with H. Kim) Evolution of atomic processes in the liner
before the interaction with the target at given time. (a) Mean dissociation
fraction (blue solid line) and ionization fraction (red dashed line) of the liner
(b) Mean dissociation energy ratio (blue solid line) and mean ionization energy
ratio (red dashed line) of the liner.

dissociated and ionized at stagnation time with more ionization energy ratio

than dissociation energy ratio (see Fig. 2.9). The profiles of temperature and

Mach number are also compared with the corresponding polytropic EOS model

simulation (see Fig. 2.10). It is known that the increase of the Mach number

leads to much larger compression of the target, we then obtain higher fusion

energy gain and maximum pressure in the target (see Fig. 2.3 and Fig. 2.11).

We also notice that atomic processes had no effect on the target deconfinement

time defined in [20], that is, the time during which the pressure in the target

decreases by the factor of two compared with the fully compressed state.

Next is the compression of plasma target by the heavy argon liner. We

use the same simulation in section 2.1. The target stagnation pressure of

polytropic EOS is 61 Mbar, compared with 110 Mbar when the argon EOS

with ionization is used (see Fig. 2.12). And the fusion energy gain are 1.9 and
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Figure 2.9: (Joint work with H. Kim) Values of dissociation and ionization
fractions, and the corresponding energy ratios across the liner around the
stagnation time. (a) Dissociation (blue solid line) and ionization (red dashed
line) fractions, (b) Dissociation (blue solid line) and ionization (red dashed
line) energy ratios.
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Figure 2.10: (Joint work with H. Kim) Temperature (a) and Mach number
(b) across the liner around the stagnation time by plasma (blue solid line) and
polytropic (red dashed line) EOS models.
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Figure 2.11: (Joint work with H. Kim) Evolution of maximum pressure with
polytropic EOS (red dashed line) and plasma EOS (blue solid line) of deu-
terium liner at given time.

3.7 correspondingly (Fig. 2.13) [7] .

We also perform argon liner self-collapse simulations to show the ioniza-

tion effect. Fig. 2.14 shows simulation results using the parameters of case

6 of Table II in [4] from Plasma Liner Experiment group in Los Alamos Na-

tional Lab. The mesh size is 0.2 mm with flow through boundary condition

for right side and Neumann boundary for left side. We also compare the re-

sults with other codes (see Figures 5 and 12 in [4]). For the polytropic EOS,

the maximum pressure using the FronTier code is between the results using

the RAVEN and HELIOS codes. For the plasma EOS, maximum pressure

using the FronTier code is similar to the HELIOS code result obtained with

PROPACEOS non-LTE EOS [4].
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Figure 2.12: (Joint work with H. Kim) Evolution of maximum pressure with
polytropic EOS (red dashed line) and plasma EOS (blue solid line) of argon
liner at given time.
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Figure 2.13: (Joint work with H. Kim) Evolution of the fusion energy of the
plasma target compressed by the argon liner at given time with polytropic
EOS (red dashed line) and plasma EOS (blue solid line).
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Figure 2.14: (Joint work with H. Kim) Evolution of maximum pressure of case
6 of Table II in [4] by using plasma EOS (red solid line) and polytropic EOS
(blue dashed line).

2.3 Influence of Vacuum and Heat Conduction

During the evolution of the self-collapse liner by solving the hyperbolic

equations in FronTier code, the solver produces some unrealistic values because

of the shock produced in the idealized vacuum region around the origin (see

Fig. 2.15). These unphysical states can affect the final results after interaction

with the liner. In order to clarify this influence, we replace this region with

realistic residual gas: at each time step, we replace the layer between the origin

and liner with realistic residual gas, density ρ = 10−12 g/cm3, and pressure

p = 10−9 bar. Here we use the code features of solving Riemann problem and

front tracking. The mesh size is 0.2 mm with flow through boundary condition

for right side and Neumann boundary for left side. When the interface between

the liner and vacuum reaches the origin, we delete the interface to make the
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code run correctly.

Fig. 2.15 shows density and pressure distributions at the time just be-

fore final step with realistic residual gas simulation compared with regular

simulation (without replacing). The unrealistic high values around the origin

are removed. Fig. 2.16 shows density and pressure distributions at the time

just after final step with realistic residual gas simulation compared with reg-

ular simulation (without replacing). There is a sharp increase of density (or

pressure) around the origin. The reason is that after solving the hyperbolic

equations, a sharp discontinuity in the simulation profile appears because of

a huge jump from previous value replacing. Fig. 2.17 shows the comparison

of maximum pressure with and without realistic gas replacing. The maximum

pressure values are both around 470 bar. We conclude that the unrealistic

values have a negligibly small effect in the low-energy PLX regime. Note that

in Fig. 2.17, there is also a sharp increase of maximum pressure as in Fig. 2.16.

The unrealistic value around the origin in regular simulation acts as a smooth

factor. For this evaluation we ignore the conservation laws since the material

and energy in this idealized vacuum region are very small compared with the

whole system. And the final results also show that this effect is negligibly

small, otherwise our method is questionable.

Next we evaluate the importance of the heat conduction on the argon liner

self-implosion. Heat conduction is the transfer of internal energy because of

temperature gradient. In gases it can take place by microscopic diffusion and

collisions of particles such as ions and electrons during their random motion

from a hotter to a colder region and approach thermal equilibrium. All the
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Figure 2.15: (a) Density and (b) Pressure distributions just before final step
with realistic residual gas replacing simuation (blue solid line) compared with
regular simulation (without replacing, red dashed line) at the same time.
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Figure 2.16: (a) Density and (b) Pressure distributions just after final step
with realistic residual gas replacing simuation (blue solid line) compared with
regular simulation (without replacing, red dashed line) at the same time.
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Figure 2.17: Evolution of maximum pressure around stagnation with (blue
solid line) and without (red dashed line) realistic gas replacing.

previous simulations are preformed without heat conduction. In this section

we evaluate this factor by adding the thermal conductivity. Here we use the

code features of solving Riemann problem and applying heat conduction effect.

The heat conduction equation in 1-dimensional space is expressed as fol-

lows:

∂T

∂t
=

∂

∂x
(α
∂T

∂x
)

where α is the thermal diffusivity and α = k/(cpρ) with thermal conductivitty

k, mass density ρ and specific heat capacity cp, T is the temperature. Thermal

conductivity k is a material-specific quantity. We use the Spitzer electronic

thermal conductivity for our plasma gas

k = k0T
5/2,
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where the electron temperature is in eV units and the constant

k0 =
3.10275× 104

lnΛ

(
δ

Z̄

)

has the units of J/(s ·m · eV7/2), then the heat flux has the units of J/(s ·m2).

Here Z̄ is the average charge state of the ions, the Spitzer-Harm coefficient δ

depends on Z̄: δ = 1, 1.582, 2.28, 3.515, and 4.444, for Z̄ = 1, 2, 4, 16, and

∞, respectively, and lnΛ ∼ 10.

We apply this equation at each time step in our code and Fig. 2.18 shows

the average pressure of the PLX 1 liner (setup is from [4]) with and without

the thermal conduction. The mesh size is 0.2 mm with flow through boundary

condition for right side and Neumann boundary for left side. We conclude

that the thermal conduction has negligibly small effect in the low-energy PLX

regime.
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Figure 2.18: (Joint work with H. Kim) Distribution of average pressure of
the PLX1 liner without thermal conduction (blue solid line) and with thermal
conduction (red dashed line) at the moment of stagnation.
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Chapter 3

Plasma jet Merger and Formation of Plasma

Liners

In this chapter we focus on the internal structure and self-collapse of

3-dimensional argon liner formed by the merger of high Mach number argon

plasma jets using FronTier code. By including 3-dimensional factors con-

tributing to the degradation of liners, we obtain more accurate results instead

of only the upper limit values, such as maximum pressure. In order to describe

the process more precisely, we apply the plasma EOS for argon with multiple

ionization levels [10].

3.1 Propagation of High Mach Number Plasma Jets

The PLX experiment planned to merge 30 high-density argon jets in the

Mach number range of 10 - 35 and demonstrate the liner formation and its self-

implosion. All the following initial data are based on this experiment. Here

we use the code features of solving the Riemann problem in 3-dimensional
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space and applying plasma EOS model. First, we perform the simulation of

the propagation of a single detached argon jet from the nozzle of the plasma

gun to the merging radius. The main purpose is to find the distribution

of density, pressure and velocity in the plasma jet before the merger as the

input data for 3-dimensional jet-merger simulations to save time. We use

the following initial conditions for our simulations: velocity 50 km/s, density

ρ = 5.747 × 10−6 g/cm3, and temperature T = 1 eV (see PLX case 6 of

Table 2 in [4]). The ambient vacuum is modeled as rarefied gas with density

ρ0 ∼ 10−9 g/cm3 and pressure ∼ 10−6 bar. The mesh size is 4 mm with

reflecting boundary for left side and flow through boundary conditions for

other sides. We assume that the jet remains axially symmetric (2-dimensional

cylindrically symmetric) during the expansion which is another way to save

time.

Fig. 3.1 presents the distribution of the initial density and the density at

t = 18.5 µs or at 0.925 m distance from the plasma gun nozzle in the single

jet. Fig. 3.2 shows the profiles of density, pressure, temperature and average

ionization in the transverse direction through the jet center at different times

(ms). From the profiles, we find that all quantities decrease in time and the

jet boundary becomes diffuse very quickly.

The jet expansion can also be estimated analytically. Here we define the

jet radius as the location of points with the density of 0.1ρ0 to make the result

more reasonable. The liner expansion model with constant initial sound speed

shows the jet radius d as d(rm) = d0 + c0(rc− rm)/uj. Here d0 is the initial jet

radius, c0 is the initial sound speed, rc is the chamber radius, and rm is the
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(a) t = 0.0 ms (b) t = 0.0185 ms

Figure 3.1: (Joint work with H. Kim) Density (1/cm3) of the detached jet. (a)
initial density; (b) density before merging radius.

merging radius [2].

Assume that the jet expands adiabatically with the decrease of the sound

speed during the expansion, we obtain an improved model (see details in our

paper [10]):

c(t) =

√
γ
P (t)

ρ(t)
=
√
γAρ(t)γ−1,

where P = Aργ is the adiabatic relation with A as a constant. We then obtain

two kinds of models as follows: For the jet length that is much larger than the

diameter, we obtain long jet

b(t) = b0 + c0

(
b0
b(t)

)(γ−1)

t

And for the jet length that is similar to the diameter, we obtain short jet with
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Figure 3.2: (Joint work with H. Kim) Density, pressure, temperature and
average ionization across the center of the detached argon jet.
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spherical expansion

b(t) = b0 + c0

(
b0
b(t)

) 3
2
(γ−1)

t

Suppose γ = 5/3, the nonlinear equation for a long cylindrical jet is

[b(t)]2/3 (b(t)− b0) = c0b
2/3
0 t (3.1)

and the equation for a short spherical jet is

[b(t)]2 − b0b(t)− c0b0t = 0 (3.2)

In order to compare this theory with our results, we use local gamma

γ = 1.14 for simulations using argon plasma EOS. Then we obtain numerical

solution for jet radius based on the nonlinear equations. Fig. 3.3 depicts the

evolution of the expanding jet radius from simulation and analytic model with

good fitting.

As we mentioned in the scaling law section, Mach number plays an im-

portant role in the self-implosion pressures or target compression rates. The

higher value of the Mach number, the higher pressures we obtain. Therefore

we pay attention to the Mach number change during the jet expansion, which

is adiabatic cooling process. Before showing the result, need to justify our

method of data selection We know that during expansion, a very strong rar-

efaction wave exists at the tail of the detached jet. But if we include the jet

tail data to find the average Mach number, large values of the Mach num-

ber caused by rarefaction wave in vacuum behind the jet tail will significantly

affect the average Mach number. Therefore we decide to only take care of
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Figure 3.3: (Joint work with H. Kim) Jet expansion comparison of numerical
simulation result (blue solid line), analytic model of long jet (green dash-
dotted), and analytic model of short jet (red dashed line).
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Figure 3.4: (Joint work with H. Kim) Average values of pressure, temperature,
m (average ionization) and Mach number of a detached argon jet.

the front half of the jet body when we calculate the average Mach number.

Fig. 3.4 depicts the jet cooling process during expansion. The average Mach

number increases as time goes by with the maximum value of 26 while at the

mean time the average temperature decreases with time. Besides of that, the

increase of the jet length slightly increases the average Mach number after the

expansion.
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3.2 Plasma Jet Merger and Oblique Shock Waves

After obtaining the profiles for the single jet before the merger, we first

find directions for 30 jets uniformly distributed in space and then initialize

states around each direction based on pressure, density, and velocity profiles

from single jet simulation. The mesh size is 4 mm with flow through bound-

ary conditions. We use Spherical Centroidal Voronoi Tessellation (SCVT) to

find the uniform distribution of 30 points on a unit sphere, which finds the

directions for 30 jets. This problem can be solved using the software by John

Burkardt [27] based on Qiang Du’s algorithm [28]. We perform transformation

from 2-dimensional cylindrical coordinate into 3-dimensional Cartesian coor-

dinate together with bi-linear interpolation, which initializes the states around

each jet direction.

Before showing the plasma jet merger with oblique shock waves, we first

justify the fluid dynamics process. We argue that the jets cannot interpene-

trate each other and change their direction via the oblique shock waves when

they merge together. We evaluate the mean free path of ions (The angle

between each pair of argon jets is approximately 36◦) [29] as:

λi = vT i/νi, (3.3)

where the ion thermal velocity vT i = 9.79 × 105µ−1/2T
1/2
i cm/s, and the ion

collision rate νi = 4.80 × 10−8Z4µ−1/2niT
−3/2
i ln Λ 1/s. By applying the fol-

lowing states of the jet edge from the simulation: µ = mi/mp = 40, Z ∼ 1,

ln Λ ∼ 10, ni = 1.5 × 1016 1/cm3, Ti = 0.86 eV, we obtain vT i = 1.44 × 105
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cm/s, νi = 1.43× 109 1/s, and thus λi ∼ 1× 10−4 cm. Then the conclusion is

the edge of the jet is fully collisional and the mean free path in the jet center

is even shorter [10]. For the jet merger, we apply the slowing down rate in

[29].

dvα
dt

= −να\βs vα (3.4)

where ν
α\β
s = (1 + mα/mβ)φ(xα\β)ν

α\β
0 , ν

α\β
0 = 4πnβe

2
αe

2
βλαβ/m

2
αv

3
α, xα\β =

mβv
2
α/2kTβ, and φ(x) = 2√

π

∫ x
0
t1/2e−tdt. By applying the parameters in the

jet edge and λαβ ∼ 10, integrating numerically the equation, we find that after

around 0.5 cm, the ion’s initial penetrating velocity 3.1 × 106 cm/s is slowed

down to thermal velocity. Based on the analysis, electrons are indeed highly

collisional with the electrostatic interaction reducing the ion penetration, we

justify what we argued (see details in our paper [10]).

We believe that the jets merger process is accomplished through a cascade

of oblique shock waves which heat the liner, reduce Mach number and cause

the non-uniformity of the liner. Fig. 3.5, Fig. 3.6 and Fig. 3.7 depict density,

pressure and average ionization contours before and after merger. Fig. 3.8a

shows the distribution of density states on a plane slicing containing the origin

and axes of the neighboring three jets to give a better overall picture. Due

to oblique shock waves, we observe that the highest pressure appears along

the plane of interaction of the neighboring jets while at the initial merge stage

the highest density is in the main body of jet and shifts to middle between

jet axes at later stages. There is also an interesting phenomenon observed

in [30], that is, the formation of high pressure contours having shapes of the

pentagon and hexagon, determined by the number of jet closest neighbors.
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Fig. 3.9 shows the distribution of density and pressure on a 10 cm radius

spherical slice through the leading edge of the 3-dimensional liner. This plot

shows the post-shock regions formed by three-jet interactions. It also gives us

the shapes of the pentagon and hexagon as we mentioned before. Fig. 3.8b

presents the schematic of oblique shocks. Here δ means the angle between

the plasma jet and the plane of reflection (the median line between two jets),

and α is the angle of the oblique shock wave. As we mentioned, the angle

between each pair of argon jets is approximately 36◦, the collision of jets is

equivalent to the collision of a jet with a solid wall at 18◦ angle. We then

apply the standard theory of oblique shock waves for states in the after-shock

region. The states are calculated by following equations [31]: Here we assume

non-expanding flow (with parallel stream lines) has polytropic gas properties

initially, γ = 5/3, and α, P , ρ, T , M stand for oblique shock wave’s angle,

pressure, density, temperature, Mach number respectively.

tan(α− δ)
tanα

=
2 + (γ − 1)M2

1 sin2 α

(γ + 1)M2
1 sin2 α

(3.5)

P2

P1

=
2γM2

1 sin2 α− (γ − 1)

γ + 1
(3.6)

ρ2
ρ1

=
(γ + 1)M2

1 sin2 α

(γ − 1)M2
1 sin2 α + 2

(3.7)

T2
T1

=
[2γM2

1 sin2 α− (γ − 1)][(γ − 1)M2
1 sin2 α + 2]

(γ + 1)2M2
1 sin2 α

(3.8)
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(a) t = 0.0203 ms (b) t = 0.0223 ms

(c) t = 0.0243 ms (d) t = 0.0263 ms

Figure 3.5: (Joint work with H. Kim) Density (1/cm3) contours before merger
(a, b) and after merger (c, d) of 30 argon plasma jets.

M2
2 sin2(α− δ) =

(γ − 1)M2
1 sin2 α + 2

2γM2
1 sin2 α− (γ − 1)

(3.9)

where quantities with the index 1 describe the pre-shock state and the corre-

sponding quantities with index 2 describe the post-shock state.

Here we apply a 2-dimensional simulation to show the merger of poly-

tropic gas jets and compare the results with the oblique shock theory to obtain
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(a) t = 0.0203 ms (b) t = 0.0223 ms

(c) t = 0.0243 ms (d) t = 0.0263 ms

Figure 3.6: (Joint work with H. Kim) Pressure (bar) contours before merger
(a, b) and after merger (c, d) of 30 argon plasma jets.
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(a) t = 0.0203 ms (b) t = 0.0223 ms

(c) t = 0.0243 ms (d) t = 0.0263 ms

Figure 3.7: (Joint work with H. Kim) Average ionization contours before
merger (a, b) and after merger (c, d) of 30 argon plasma jets.
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Figure 3.8: (Joint work with H. Kim) (a) Density distribution on a slice of
3-dimensional data at stagnation and (b) schematic of oblique shocks in the
jets merger process.

(a) Number density, 1/cm3 (b) Pressure, bar

Figure 3.9: (Joint work with H. Kim) Distribution of density and pressure on
a 10 cm radius spherical slice of 3-dimensional liner data when t = 0.0253 ms.
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a better understanding [10] since 3-dimensional merger is too complicated by

(a) secondary shocks due to three-jet interactions, (b) spreading out of free

jets in all directions, (c) change of the ionization fraction across the oblique

shock wave, and (d) heating associated with the adiabatic compression. We

use the code feature of solving the Riemann problem. The initial pressure and

density are uniformly distributed with sharp boundaries (non-expanding jets

before the merger) in these idealized 2-dimensional simulations. The angle

between two jets is set according to the angle in the 3-dimensional jets array.

The mesh size is 4 mm with flow through boundary conditions. The process is

shown in Fig. 3.10 describing the initialization and density distribution with

first and second cascades of oblique shock waves at later time. Fig. 3.11 de-

picts profiles of pressure, density, and Mach number after the first oblique

shock waves. Based on the results from Table 3.1, a good agreement between

simulated values of pressure, density, Mach number and other quantities in

the first post-shock region and related theory with solutions to the nonlinear

system of oblique shock equations is obtained. Since the theory talks about

steady-state oblique shock while the simulation didn’t reach the steady state

before the second oblique shock followed, there is small discrepancy between

these two.

α M2 ρ2/ρ1 T2/T1 P2/P1

Theory 24.8 3.9 3.9 35 137
Simulation 23.5 4.0 3.5 35 135

Table 3.1: (Joint work with H. Kim) Comparison of simulations and theory of
states in the first oblique shock wave.
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(a) (b)

Figure 3.10: (Joint work with H. Kim) (a) Initial density of the 2-dimensional
jet merger simulation and (b) density distribution showing the first and second
cascades of oblique shocks (1/cm2).

Next we analyze the second oblique shock wave. The angle between

converging flow remains 36◦ since the flow velocity is parallel to the mid-plane

after first shock wave. The collision of flows generates the secondary oblique

shock wave which is again equivalent to collision of a jet with a solid wall at 18◦

angle. Fig. 3.12 shows the distribution of states in the post-shock region and

similar comparison of theory and simulation is shown in Table 3.2. We believe

that the cascades of oblique shock waves would continue until the chamber

center is reached with a hammer-shock (a shock acting like a hammer hits the

wall). But the third one was almost invisible due to the residual vacuum gas

and the expansion of the jets. In general terms, we achieved a good agreement

with theory on post-shock states after the first and second oblique shocks.
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(a) Number density, 1/cm2 (b) Pressure, bar

(c) Mach number

Figure 3.11: (Joint work with H. Kim) First cascade of oblique shock waves
in 2-dimensional jet merger simulation.
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(a) Number density, 1/cm2 (b) Pressure, bar

(c) Mach number

Figure 3.12: (Joint work with H. Kim) Second cascade of oblique shock waves
in 2-dimensional jet merger simulation.

56



α M2 ρ2/ρ1 T2/T1 P2/P1

Theory 33 2.3 2.4 2.3 5.6
Simulation 30 2.4 2.5 2.3 5.3

Table 3.2: (Joint work with H. Kim) Comparison of simulations and theory of
states in the second oblique shock wave.

3.3 Simulation of LANL Plasma Liner Experiments

In this section we first analyze the 3-dimensional simulation results com-

pared with 1-dimensional spherical simulations and simulations in [4] and [6].

We average the 3-dimensional properties in radial coordinates at the merging

radius and compare with the corresponding 1-dimensional simulations with

same amount of mass, pressure and density [10]. Fig. 3.13 presents the evo-

lution of the averaged Mach number in the 3-dimensional and 1-dimensional

space. Because of the expansion of the detached jets, we obtain higher initial

value of the average Mach number of 3-dimensional liner. After the merger

process, the Mach number of the 3-dimensional liner decreases faster compared

with the 1-dimensional liner, reaching values of 14.4 (3-dimensional) and 19.5

(1-dimensional).

Fig. 3.14 shows the average density and pressure of the 3-dimensional

liner at stagnation in radial direction, those of the 1-dimensional liner with

the same profile as the 3-dimensional liner at the merging radius, and those of

the 1-dimensional liner with the same mass but sharp profile at the merging

radius. We find that the self-collapse pressure of the 3-dimensional liner is 6.4

kbar, the pressure of the equivalent 1-dimensional liner is 64 kbar (10 times
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Figure 3.13: (Joint work with H. Kim) Evolution of average Mach numbers of
1-dimensional and 3-dimensional liners.
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smaller), while the pressure of 1-dimensional liner with the sharp profile at

the merging radius is 320 kb (50 times smaller). We believe that the oblique

shock waves reduce the liner Mach number and the self-implosion pressures.

As a result of this and other factors, the self-collapse pressures of uniform

liners (1-dimensional) significantly exceed pressure values achievable in liners

formed by the jet merger (3-dimensional). The result contradicts [6] which

says that the self-collapse pressure of the 3-dimensional liner formed by the

merger of 30 jets are same as that of 1-dimensional spherically symmetric

liner. Here in our simulations we apply plasma EOS in the vacuum region

with energy sinks to mitigation the effect caused by liner compressing residual

vacuum gas with eliminating artificially high pressure in the vacuum region.

By using plasma EOS for the residual gas with initial pressure of 1 mTorr and

liner with parameters of PLX Table 2, case 6 of [4], we obtain 30 times higher

self-implosion pressure compared with using polytropic gas EOS.

Since we perform 3-dimensional simulation with the domain size as (160 cm)3

and the mesh size as (400)3, we would like to comment on the numerical res-

olution and convergence to ensure accuracy. Fig. 3.15 shows the convergence

of the averaged Mach number on meshes with different resolution using poly-

tropic EOS. The result also shows that the mesh size of 0.4 cm is enough for

3-dimensional self-collapse simulations.

Finally note that the number of jets (30) used in our simulations is due

to the current experimental equipment instead of optimization considerations.

If we use more jets, the effect of oblique shock waves will be reduced while the

merging radius and the convergence time of the merged liner will be increased.
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Figure 3.14: (Joint work with H. Kim) Distribution of density (a) and pressure
(b) during stagnation of the 3-dimensional liner averaged in radial coordinates
(solid blue line), the 1-dimensional liner initialized with sharp profile at the
merging radius (green dash-dotted line) and the 1-dimensional liner initialized
with same profile as the 3-dimensional liner at the merging radius (red dashed
line).

In recent time, PLX group in Los Alamos National Lab (LANL) reported

experiment results of single argon plasma jet propagation and two jets merger.

[5, 32, 33]. We perform these simulations using FronTier code and compare

the results. The initialization of propagation of a 2-dimensional cylindrically

symmetric simulation for a single argon jet is based on Table II in [5]. The

initial conditions are ρ = 1.327 × 10−6 g/cm3 = 2 × 1016 1/cm3, velocity

V = 30 km/s and temperature T = 1.4 eV . The mesh size is 4 mm with

reflecting boundary for left side and flow through boundary conditions for

other sides. Fig. 3.16a and Fig. 3.16b present the initial density profile and

profile after 0.0125ms which is used for initialization of two jets merge later.

Fig. 3.17a shows the average density profile over radial direction on the jet’s
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Figure 3.15: (Joint work with H. Kim) Mesh convergence studies of 3-
dimensional liner formation and implosion simulation. Evolution of average
Mach number using three different mesh sizes is shown.
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(a) t = 0.0 ms (b) t = 0.0125 ms

Figure 3.16: (Joint work with H. Kim) Density (1/cm3) of the detached jet.
(a) initial density; (b) density before merging radius.

axial direction which is comparable with Figure 11 in [5]. Fig. 3.17b presents

density profile on radial direction which is also consistent with the experiment

results in [5].

For two plasma jets merger simulation, we perform both 2-dimensional

and 3-dimensional simulations with domain x × y as [−20 cm, 100 cm] ×

[−35 cm, 35 cm] and x × y × z as [−10 cm, 90 cm] × [−30 cm, 30 cm] ×

[−30 cm, 30 cm] respectively and the mesh size of 0.4 cm in each direction

based on the subspace of experiment chamber and jet merger angle of 24◦ in

[5] with flow through boundary conditions. Fig. 3.18b and Fig. 3.19b show

the merger after around 90 cm propagation from the chamber wall. We ob-

serve the two layers structure as in [32, 33] with the distance around 3.5 cm.
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Figure 3.17: (Joint work with H. Kim) Density of the detached jet. (a) average
number density (1/cm3) over raial direction on the jet’s axial direction; (b)
density profile (1/cm3) on the radial direction of jet.

Fig. 3.20 shows argon atom density and free electron density along the line of

x = 17 cm and y from -15 cm to 15 cm for 2-dimensional case and x = 17 cm,

y = 0 cm and z from -15 cm to 15 cm for 3-dimensional case and we choose the

positions of ∼ 12 cm and ∼ 18 cm as each jet’s center without passing oblique

shock waves. The density difference across the oblique shock wave is around

one order of magnitude which is consistent with the theoretical values and

the experimental observation in [32, 33]. The results are not consistent with

contents in their recent published paper [13], we will investigate this further in

our future study. The absolute density values in the 3-dimensional simulation

is approximately 3 times lower than those of 2-dimensional simulation which is

caused by the expansion in 3-dimensional space. Table 3.3 shows comparison

between simulation works and the oblique shock wave theory (see details in

[10]). Here we use γ ∼ 1.1 based on γ-law fit in the plasma LTE EOS, initial

Mach number (M1 ∼ 14) and corner angle (δ = 12◦). As 2-dimensional and
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3-dimensional simulations share local gamma value, initial Mach number, and

the interaction angle, the overall dynamics of oblique shock waves is very sim-

ilar with discrepancy because of additional dimension. The difference between

simulation results and theory is caused by non-uniform states.

α M2 ρ2/ρ1 T2/T1 P2/P1

Theory 14 11 7.6 1.6 12
2-dimensional 15.5 8.7 7.4 1.8 17
3-dimensional 15.5 9.3 8.8 1.8 22

Table 3.3: (Joint work with H. Kim) Comparison of results from the oblique
shock wave theory and simulations of 2-dimensional and 3-dimensional.

Finally, to justify this simulation study, the ion-ion mean free path esti-

mates are calculated for the jet inside and jets merger cases. (3.3) shows the

mean free path for single jet. By applying the plasma jet edge’s parameters

Z ∼ 1, ln Λ ∼ 10, Ti = 0.8 eV, ni = 2.4×1014 1/cm3, we obtain vT i = 1.83×105

cm/s, νi = 2.5 × 107 1/s, and thus λi = 5.5 × 10−3 cm. This mean free path

justifies our single plasma jet propagation study. For the jets merger case,

the slowing down of a penetrating ion is calculated in (3.4). By applying the

plasma jet edge’s states and λαβ ∼ 10, the ion’s initial penetrating velocity

1.2 × 106 cm/s is slowed down to thermal velocity with distance around 0.7

cm. With highly collisional electrons and electrostatic interaction, we justify

two jets merger simulation study.
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Figure 3.18: (Joint work with H. Kim) (a) 2-dimensional two jets merger sim-
ulation initial density profile (1/cm3) using single jet result; (b) 2-dimensional
two jets merger density profile (1/cm3) after ∼ 90 cm propagation from the
chamber wall.
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Figure 3.19: (Joint work with H. Kim) (a) 3-dimensional two jets merger
simulation initial contour density profile (1/cm3) using single jet result; (b)
3-dimensional two jets merger contour density profile (1/cm3) after ∼ 90 cm
propagation from the chamber wall.
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Figure 3.20: (Joint work with H. Kim) 2-dimensional two jets merger trans-
verse argon atom density (a) and electron density (b) profile; 3-dimensional
two jets merger transverse argon atom density (c) and electron density (d)
profile at the position of ∼ 90 cm from the chamber wall.
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Chapter 4

Implosion of Plasma Targets

The final goal of this research area is to reach satisfactory states in the

target to achieve ignition conditions using efficient driver power. We have

studied the imploding liner (driver power) in detail based on Thio et al. [1]

suggestion, that is, a spherical array of supersonic plasma jets launched from

the periphery of the implosion chamber can be used to create a spherically

symmetric plasma liner. In this chapter, we focus on plasma target simulation

in higher dimensional spaces.

4.1 Modeling of Liner - Target Interaction

We have discussed 1-dimensional spherical liner-target simulations in

chapter 2, especially in section 2.1 about scaling laws. All the liners are spher-

ical symmetric, which means that they are uniform. Uniform liners present

an upper limit of maximum pressure and fusion energy. But liners formed by

a spherical array of supersonic plasma jets are not uniform anymore. Fig. 3.9

shows the distribution of density and pressure on a 10 cm radius spherical slice
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through the leading edge of the 3-dimensional liner. This plot demonstrates

non-uniformities of density and pressure in the liner. The effects caused by

the non-uniformities are investigated in this chapter.

First we introduce our multi-stage scheme for the simulations in this

chapter. Here we take 2-dimensional simulation as an example, steps for 3-

dimensional simulation are similar. As in the previous 3-dimensional simula-

tion, we perform the simulation of the propagation of a single detached argon

jet from the nozzle of the plasma gun first in order to find the distribution

of density, pressure and velocity in the plasma jet before the merger as the

input data for 2-dimensional jet-merger simulations to save time. Here we use

the code features of solving the Riemann problem, front tracking and apply-

ing plasma EOS model. We use 16 jets with following initial conditions: The

same initial inner radius and outer radius as in previous simulations, that is,

137.2 cm and 162.7 cm and the same target initial states as in section 2.1,

that is density ρ = 8.3 × 10−6 g/cm2, pressure P = 640.3 bar to obtain rea-

sonable fusion energy. For the jet, the density ρ = 3.58×10−4 g/cm2, pressure

P = 8.37 bar, velocity v = 100 km/s, and the Mach number M = 60. The

ambient vacuum is modeled as rarefied gas with density ρ ∼ 10−9 g/cm2 and

pressure ∼ 10−6 bar. The mesh size is 2 mm with reflecting boundary for left

side and flow through boundary conditions for other sides. As with Fig. 2.4,

we performed simulations with different target sizes and found that 10 cm gave

the most optimal fusion energy gain. We then chose the target radius as 10

cm. Fig. 4.1 presents the distribution of the initial density and the density at

t = 18.5 µs or at 85 cm distance from the plasma gun nozzle in the single jet.
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Note that we place the jet at 92.5 cm instead of 137.2 cm, but let the jet move

same distance (85 cm from the nozzle with final position as 7.5 cm instead of

52 cm) to shrink the computational domain.

After obtaining the profiles for the single jet before the merger, we first

find directions for 16 jets uniformly distributed in space and then initialize

states around each direction based on pressure, density, and velocity profiles

from single jet simulation (see Fig. 4.1c). Fig. 4.2 shows density, pressure,

Mach number distributions of 16 jets before interacting with the target. The

mesh size is 2 mm with flow through boundary conditions.

For 2-dimensional simulation, the final results of compression of the

plasma target can be achieved after the previous steps. Here we also per-

form another simulation with 2 mm based on 5 mm mesh size. It is designed

as follows: We take the data of the center area from simulation iwth the 5 mm

mesh size when the liner is still not reaching the target and then do the mesh

refinement (2 mm) run. This strategy is applied to 3-dimensional simulation

to save computational time and processors to be used. Fig. 4.3 shows the

density, pressure and Mach number profiles for simulations with 5 mm mesh

size and with 2 mm based on 5 mm mesh size at the time around liner-target

interaction. This approach is validated in next part.

Next we present the quantities to analyze our final results. First is the

average pressure in the target since the target condition is the most important

part and average value makes more sense because of non-uniform states. We

summarize all the pressure values in the target and then divide it by the total

number to obtain the average value. Second is the fusion energy. The nuclear
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(a) t = 0.0 ms (b) t = 0.0085 ms

(c)

Figure 4.1: Density (g/cm3) of the detached jet (a) initial density; (b) density
before merging radius. (c) Density distribution of 16 jets.
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(a) (b)

(c)

Figure 4.2: Distributions of (a) density (g/cm3); (b) pressure (bar); (c) Mach
number of the 16 jets before interacting with the target.
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(a) Denisty, g/cm3 (b) Denisty, g/cm3

(c) Pressure, bar (d) Pressure, bar

Figure 4.3
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(e) Mach number (f) Mach number

Figure 4.3: Distributions of density, pressure and Mach number for simulations
with 5 mm mesh size (left column) and 2 mm based on 5 mm mesh size (right
column).

fusion energy obtained in simulations is using similar approach as in section

2.1 [23] with some modifications. We accumulate neutrons at each time step

for each computational cell and then convert to fusion energy. Here we choose

average pressure to validate our previous idea since fusion energy is quite

sensitive. Fig. 4.4 shows the evolution of average pressure in the target for

different cases around the time when target breaks into fragments. The reason

why we choose this time range is that after breaking up, the behavior of the

target becomes quite unstable, which is described in detail later. The average

pressure in the target of simulation with 2 mm based on 5 mm mesh size is

almost same with the one using 2 mm mesh size directly since compression of

target is mainly based on the leading edge of the liner, the main body mainly

contributes to the deconfinement time [3]. Now we have validated our modeling

of liner-target interaction and we apply it to our later 3-dimensional simulation.
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Figure 4.4: Mesh convergence study of average pressure in the target of sim-
ulations with mesh size as (1) 5 mm (2) 3 mm (3) 2 mm (4) 1 mm and (5) 2
mm based on 5mm

Besides of that, we also show the convergence study of the 2-dimensional

simulations. From Fig. 4.4, average pressure shows good convergence from

simulations with 5 mm mesh size to 1 mm mesh size and the simulations with

1 mm and 2 mm mesh size almost coincide with each other.

4.2 2D Studies of Rayleigh-Taylor Instabilities in Plasma

Targets

In this section we use only 16 jets case for our study. Because of the non-

uniform of the liner formed by an array of plasma jets due to oblique shock with

higher density and pressure in the shock region, we expect the instabilities in
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plasma target after interaction with the liner. Fig. 4.5 shows the evolution of

instabilities in the target with density (left) and pressure (right) distributions.

The target exhibits bubbles and spikes until it breaks into fragments. After

this target breaking, the behaviors of the fragments seem chaotic. We focus

on the stage around target breaking in the following analysis.

Fig. 4.5 shows Rayleigh-Taylor (RT) instabilities in this special regime.

RT instability is a fingering instability of an interface between two different

materials. The traditional formation is due to gravity, when the fluid is slightly

perturbed, the light and heavy fluids inter-penetrate to form bubbles in light

fluid and spikes in heavy fluid moving in opposite direction with accelerated

speed. This acceleration then decreases because of a balance between buoy-

ancy and form drag forces, resulting in a constant terminal velocity [21]. Our

regime is different since the liner is quite nonuniform and there is no random

perturbation at the beginning. Here spikes are inward pointing the target and

bubbles are outward pointing the liner. The spike and bubble heights mea-

sure the radial distance from the origin to the tip of the spike and bubble

on the interface respectively. The spike and bubble velocities are in radial

direction. Positive and negative velocity means the object moves outwards

and inwards respectively. From Fig. 4.6, we find that the bubble and spikes

heights keep decreasing and the terminal bubble velocity is constant around

12.6 µs → 13.1 µs before target starting to break, which are properties of

RT instability [21]. After this, the bubble velocity decreases (absolute value).

Note that the position calculation, especially for the spikes, is very sensitive.

From the pressure evolution (see Fig. 4.5d and Fig. 4.5f), the wave which
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moves toward the origin is reflected outward, then it interacts with the in-

terface which is known as reshock. It then causes Richtmyer-Meshkov (RM)

instabilities. The general feature of RM instabilities is described in [22]. As

an incident shock collides with the interface, it bifurcates into a transmitted

shock and reflected wave detaching from the interface. The incident shock

accelerates the growth of bubbles and spikes. The wave moving into the ori-

gin causes a pressure singularity and is reflected outward. Then the reflected

wave interacts with the interface again as it moves outward (see Fig. 4.5d and

Fig. 4.5f). Wave bifurcation can occur again and repeat the previous cycle

(see Fig. 4.5f and Fig. 4.5h). If we define amplitude A and the growth rate R

as:

A =
1

2
(lbb − lsp)

R =
1

2
(vbb − vsp)

where hbb and hsp are bubble and spike heights; vbb and vsp are the bubble and

spike velocities. The amplitude and growth rate are plotted in Fig. 4.7. The

amplitude keeps increasing and growth rate is changing. It can be explained

as follows: At first the growth rate decays which is caused by the resistance

to penetration by liner. Then it oscillates a little bit which is a balance result

between the resistance and instabilities. At last the instabilities dominate,

resulting in the rate increasing.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5
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(g) (h)

(i) (j)

(k) (l)

Figure 4.5
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(m) (n)

Figure 4.5: Interface evolution with density (left) and pressure (right) distri-
butions at same time step for each row.
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Figure 4.6: (a) Bubble (blue solid line) and spike (red dashed-dotted line)
heights (b) Bubble (blue solid line) and spike (red dashed-dotted line) veloc-
ities evolution from starting of interaction until around target breaking into
fragments for 16 jets with mesh size as 1 mm.

80



12.4 12.6 12.8 13 13.2 13.4
0

0.5

1

1.5

2

Time, µs

A
m

p
lit

u
d

e
, 

c
m

(a)

12.4 12.6 12.8 13 13.2 13.4
0

5

10

15

20

Time, µs

G
ro

w
th

 R
a

te
, 

k
m

/s
(b)

Figure 4.7: (a) Amplitude and (b) Growth rate evolution from starting of
interaction until around target breaking into fragments for 16 jets with mesh
size as 1 mm.

4.3 Optimization Studies of Target Compression and

Fusion Energy

In this section, we study the influence on the target such as fusion energy

and stagnation pressure using different numbers of jets (8 jets, 16jets and

32 jets) together with uniform 1-dimension case. Based on same total mass

with 16 jets initial conditions, we obtain all the necessary initial conditions for

other cases. For 8 jets, density ρ = 4.6 × 10−3 g/cm2, pressure P = 104 bar,

velocity v = 100 km/s, and Mach number M = 60. For 32 jets, density

ρ = 1.15 × 10−3 g/cm2, pressure P = 26.5 bar, velocity v = 100 km/s, and

Mach number M = 60. The mesh size is 2 mm with flow through boundary

conditions. Fig. 4.8 shows the density distributions of 8 jets and 32 jets before

merging into liner.

Fig. 4.9a shows the total fusion energy in the target for different cases,
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(a) (b)

Figure 4.8: Density distribution(g/cm2) of (a) 8 jets and (b) 32 jets

where the time t is around 14 µs. The uniform case (cylindrical symmetry)

gives us the largest value, 4.62×1012 ergs. The second one is 32 jets case with

fusion energy as 8.19× 1011 ergs, around 5.6 times higher than that of 16 jets

(1.46 × 1011 ergs) and around 9 times higher than that of 8 jets (9.07 × 1010

ergs). Fig. 4.9b shows the largest pressure of the uniform case is around 5.5

mbar. For the jet cases we focus on average pressure since it makes more sense.

Here 32 jets case gives us the second largest average pressure as 1.32 mbar,

around 2 times higher than that of 16 jets (0.632 bar) and around 2.5 times

higher than that of 8 jets (0.531 mbar) from Fig. 4.9b. As we have mentioned

in section 4.2, states after target breaking are very unstable and the maximum

values of fusion energy and average pressure in the target are very sensitive.

From the above statement, we know that the uniform case always gives

the upper bound of total fusion energy and pressure. This is obvious from

what we have mentioned in chapter 3. The oblique shock waves caused by

the neighboring jets reduce the Mach number of the liner and the ability to
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Figure 4.9: (a) Total fusion energy comparison of (1) uniform case, (2) 32 jets,
(3) 16 jets and (4) 8 jets; (b) Average pressure of the target (1) uniform case,
(2) 32 jets, (3) 16 jets and (4) 8 jets

compress the target. As a result of this and other factors, the maximum

pressure and fusion energy in the target of uniform liner significantly exceed

values achievable in liner formed by the merger of jets. And the more numbers

of the jets, the larger value it is. This can be explained in the following

two ways. First is the increase of the liner uniformity with the increase of the

number of jets. A 1-dimensional uniform liner can be regarded as the merger of

infinite number of jets. Second is the merging radius. Similar to the deduction

in [2], we determine the merging radius by equating the circumference 2πrm

with the sum of the cross-sectional length of each jet in 2D.

2πrm = 2Nb(rm) (4.1)

Because of the finite temperature within the jet, the jet pulse expands on its
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way to the merging radius. The liner expansion model with constant initial

sound speed predicts the increase of the jet radius b as b(rm) = b0 + c0(rc −

rm)/uj. Here b0 is the initial jet radius, uj is the initial jet speed, Mj is

the initial jet Mach number, c0 = uj/Mj is the initial sound speed, rc is the

chamber radius and rm is the merging radius. By substituting this into Eq.4.1,

we obtain the merging radius

rm =
r0 + rc/Mj

π/N + 1/Mj

(4.2)

From the scaling laws, 32 jets case gives us the largest radius ( 63 cm), which

then shows more ability to compress the target.

Fig. 4.10 depicts the evolution of the normalized average pressure in the

target, the normalized total fusion energy and the normalized fusion energy

at each time step (the rate) in the vicinity of the stagnation point for each

case, where the time t is around 14 µs. The normalized average pressure in

the target and the normalized fusion energy at each time step show similar

shapes because of the definition of fusion energy. Recall the definition of

deconfinement time: the fusion energy is more than 90% complete after the

pressure in the target is reduced by the factor of 2. From Fig. 4.10, the

deconfinement time for each case is observed. It’s around 1.13 µs for 8 jets,

0.95 µs for 16 jets, 1.1 µs for 32 jets and 0.52 µs for uniform case. As we know,

the maximum pressure is very unstable due to the instabilities in the target

(see section 4.2), we allow certain deviations of deconfinement time. Here the

uniform case gives the smallest deconfinement time, the possible reasons are:
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it is the ideal case with ideal target compression and quick deconfinement; the

target in the jet case breaks into fragments, whose evolution is much slower

because of non-uniform motion; the jet case is using average pressure, which

does not show the pressure evolution quite accurately.

4.4 3D Simulation of Plasma Targets

We have discussed 2-dimensional spherical liner-target simulations in pre-

vious section, now we focus on 3-dimenstional simulations with multi-stage

scheme mentioned in section 4.1. The scheme is described as follows: First we

perform the simulation of the propagation of a single detached argon jet from

the nozzle of the plasma gun. Here we use the code features of solving the

Riemann problem, front tracking and applying plasma EOS model. We use

jet with following initial conditions: initial inner radius and outer radiuses are

137.2 cm and 162.7 cm, density ρ = 8.04×10−4 g/cm3, pressure P = 18.59 bar,

velocity v = 100 km/s, and Mach number M = 60. The ambient vacuum is

modeled as rarefied gas with density ρ0 ∼ 10−9 g/cm3 and pressure ∼ 10−6

bar. The mesh size is 2 mm with reflecting boundary for left side and flow

through boundary conditions for other sides. Second after we obtain the pro-

files for the single jet before the merger, we first find directions for 90 jets

uniformly distributed in space using Spherical Centroidal Voronoi Tessellation

(SCVT) as in chapter 3 and then initialize states around each direction based

on pressure, density, and velocity profiles from single jet simulation. In order

to be in accordance with 16 jets in 2-dimensional space, we use 90 jets in 3-

dimensional simulation since the angle between the nearest two jets are both
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Figure 4.10: Evolution of normalized average pressure of the target (blue solid
line), normalized total fusion energy (red dash-dotted line), normalized fusion
energy at each time step (green dashed line) during target deconfinement with
(a) 8 jets, (b) 16 jets and (c) 32 jets (d) uniform case
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around 0.39. The mesh size is 5 mm with flow through boundary conditions

and we use this coarse mesh simulation later for our refinement run (2 mm).

The target is not included in this coarse simulation since we only need the

liner information before liner-target interaction. Fig. 4.11 and Fig. 4.12 de-

pict density and pressure contours before and after merger. Due to oblique

shock waves, we observe same phenomenon as in chapter 3. At the later stage,

the highest pressure and density appear along the plane of interaction of the

neighboring jets. This non-uniform distribution causes the instabilities on the

target. We also observe the contours with shapes of pentagon and hexagon.

Finally, we take the data of the center area from the previous simulation

with 5 mm mesh size when the liner is still not reaching the target and then do

the mesh refinement (2 mm) run to save computational time and processors to

be used. The target condition is same as before: density ρ = 8.3×10−6 g/cm3,

pressure P = 640.3 bar. In order to prevent target diffusion, we set the velocity

of the target to be zero before the liner-target interaction. As we have men-

tioned in 2-dimensional simulation, the target breaks into fragments because

of the non-uniform pressure and density distributions in the liner. The target

behavior is unstable and complicated after this stage and in this section we

only focus on the properties before this stage. Fig. 4.13 and Fig. 4.14 depict

density and pressure contours evolution in the center region including liner

and target. Fig. 4.14 shows the interaction between the liner and target with

formation of bubbles and spikes on the target at later stage. Here spikes are

inward pointing toward the target and bubbles are outward pointing toward

the liner. Similar instabilies as we have discussed the details in section 4.3
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(a) (b)

(c) (d)

Figure 4.11: Density contour evolution of the liner formed by 90 jets before
interaction with the target.
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(a) (b)

(c) (d)

Figure 4.12: Pressure contour evolution of the liner formed by 90 jets before
interaction with the target.
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are observed. The region with higher density and pressure along the plane

of interaction of the neighboring jet compresses the target with higher ability

and bubbles and spikes are obtained. The instabilities are amplified as time

goes by. In order to inspect the evolution of the target more clearly, we present

the evolution of target together with pressure distribution on the interface in

Fig. 4.15. The maximum appears on the spikes, in the region of interaction

of the neighboring jets which is also the region of the maximum pressure for

the liner due to oblique shock waves. The target finally breaks because of this

uneven pressure distribution. Using the same definitions of bubble and spike

heights and amplitude as in section 4.3, Fig. 4.16 and Fig. 4.17 show similar

patterns as in Fig. 4.6 and Fig. 4.7. The bubble and spike heights keep decreas-

ing and the terminal bubble velocity is constant around 12.6 µs → 13.1 µs

before target starting to break while the amplitude keeps increasing.

At last, we perform 1-dimensioal spherical symmetric (3-dimensional uni-

form liner) simulation to do the comparison study. The initial condition is

proposed as follows with inner and outer radiuses as 137.2 cm and 162.7 cm

respectively: density ρ = 1.744 × 10−5 g/cm3, pressure P = 0.421 bar, veloc-

ity v = 100 km/s, and Mach number M = 60. The mesh size is 2 mm with

flow through boundary condition for right side and reflecting boundary for left

side. Fig. 4.18 shows the average pressure in the target for different cases. Note

that we only focus on the time range around the time when target breaks into

fragments for stable results. The pressures of 3-dimensinal (90 jets) case and

2-dimensional (16 jets) case are very close to each, around P = 7.5e4 bar and

P = 7.1e4 bar respectively at the end of this time range. The pressure of uni-
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form cases is always higher as expected because of the impact of oblique shock

waves for jet case. The 3-dimensinal uniform case (1-dimenstional spherical

geometry) is around P = 6.3×106 bar while the 2-dimensinal uniform case (1-

dimenstional cylindrical geometry) is around P = 1.3× 106 bar. The pressure

of 3-dimensinal uniform case is almost 80 times higher than that of the 90 jets

case. Note what we have mentioned in chapter 3, the difference of stagnation

pressure between 3 dimensional simulation and 1 dimensional uniform case is

around 50 times for self-collapse simulations.
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(a) (b)

(c) (d)

Figure 4.13: Density contour evolution of the liner and the target after inter-
action.
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(a) (b)

(c) (d)

Figure 4.14: Pressure contour evolution of the liner and the target after inter-
action.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Target evolution together with pressure distributions on the in-
terface. 94
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Figure 4.16: (a) Bubble (blue solid line) and spike (red dashed-dotted line)
heights and (b) Bubble (blue solid line) and spike (red dashed-dotted line)
velocities evolution from starting of interaction until around target breaking
into fragments for 3-dimensional simulation with mesh size as 2 mm based on
5 mm.
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Figure 4.17: Amplitude evolution from starting of interaction until around
target breaking into fragments for 3-dimensional simulation with mesh size as
2 mm based on 5 mm.
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Chapter 5

Conclusions and Future Directions

In this thesis, one of the most important issues we focus is to improve the

fusion energy gain. According to the scaling law, the gain increases with the

reduction of the liner thickness provided that such a liner is still capable of

compressing the target. Keeping the liner unchanged, there is also an optimal

choice for the target radius using the initial conditions to get the maximum

fusion energy gain. We also use heavy material such as argon for liner to

generate better results. Another way is to describe the process more accurately

in our simulations. Compared with previous theoretical and numerical studies

of PJMIF, our numerical models and algorithms implement several new physics

models important to PJMIF. We have investigated the influence of atomic

physics processes on the implosion of deuterium and argon liners for magneto-

inertial fusion via numerical simulations in spherically symmetric geometry.

The EOS models for deuterium and argon, valid in the approximation of local

thermodynamic equilibrium, present processes of dissociation (for molecular

deuterium) and ionization. The numerical EOS for argon, built upon ideas of
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the average ionization model proposed by Zeldovich, is verified using accurate

solutions of the coupled system of Saha equations. These EOS models have

been implemented in the FronTier code [15] and used for all the included

plasma simulations. With plasma EOS, we obtained more fusion energy and

stagnation pressure. Another factors influencing liner implosion are residual

vacuum gas and heat conduction. For the cases of self-collapse, as the liner

goes inward, the condition in the center of the simulation is not realistic. We

replace the idealized vacuum region with realistic residual gas and check the

results. There is no heat conduction in our previous implosion processes. By

applying the Spitzer electronic thermal conductivity, we have a more accurate

description for our simulations.

A study of the self-implosion and the internal structure of a plasma liner

formed by the merger of 30 argon plasma jets relevant to the PLX experi-

ment have been performed via 3-dimensional numerical simulations using the

FronTier code. To reduce the computational cost, a cylindrically symmetric

2-dimensional simulation of detached jet from plasma gun was obtained first

and simulation results were embedded in a 3-dimensional simulation which

had an optimized computational domain. We applied a numerical model for

the argon equation of state [7] which captures the ionization of argon atom.

Our study demonstrates that the jet merger process is accomplished via a

cascade of oblique shock waves that heat the liner, reduce its Mach number,

and lower the self-collapse pressure. To demonstrate the formation of cas-

cades of oblique shock waves in simpler geometry, a 2-dimensional simulation

of the merger of polytropic gas jets was performed and results were compared
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with the oblique shock theory. We achieved a good agreement with theory

on after-shock states of gas after the first and second oblique shocks. The

3-dimensional jets merger process is complicated by (1) secondary shocks due

to three-jet interactions, (2) spreading out of free jets in the longitudinal and

transverse directions, (3) change of the ionization fraction across the oblique

shock wave, and (4) heating associated with the adiabatic compression. We

compared the self-implosion density and pressure of the 3-dimensional liner

with the pressure and density of 1-dimensional liners with the sharp profile

at the merging radius and with profile identical to the average profile of the

3-dimensional liner. We observed that the self-implosion pressure of the 3-

dimensional liner, 6.4 kbar, is 10 times smaller compared with the pressure of

the equivalent 1-dimensional liner (64 kbar), and 50 times smaller compared

with the 1-dimensional liner with the sharp profile at the merging radius (320

kbar). Mesh convergence studies have been performed for all simulations to

ensure that results are not affected by the numerical resolution. The number

of jets used in this study was dictated by the current experimental equipment

and not the liner optimization considerations.

For spherically symmetric 1-dimensional liner, we study the scaling laws

and related theories based on its uniform structure. But due to the oblique

shock waves and other factors, the internal structure of plasma liners formed

by jets is not uniform. We then performed 2-dimensional simulations with 16

jets to show this effect on the target. A multi-stage scheme was proposed to

save computational time and we observed good convergence for this scheme.

The Rayleigh-Taylor (RT) instabilities on the interface were also investigated
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in detail. RT instability is an instability of an interface between two fluids of

different densities that occurs when one of the fluids is accelerated into the

other [21]. The instability in our simulations is not in traditional sense since

the liner is moving because of its own energy instead of gravity and there is no

random perturbation at the beginning and it is also combined with Richtmyer-

Meshkov instability [22]. The target breaks into fragments at the end. The

growth rate showed a balance result between the resistance to penetration by

liner and instabilities. We also performed different numbers of jets (8 jets and

32 jets) to form the liners and compared the results. The more numbers of

the jets, the larger value it is. This can be explained by the increase of the

liner uniformity with the increase of the number of jets. 1-dimentional uniform

liner can be regarded as the merger of infinite number of jets. 3-dimentional

simulations were also performed to get further investigation. In order to be in

accordance with 16 jets in 2-dimentional space, we use 90 jets in 3-dimensional

simulation since the angle between the nearest two jets are both around 0.39.

In 3-dimentional simulation, the interface structure is much more complicated

as it is a surface. Based on multi-stage scheme, the coarse mesh size is 5mm

and we use this coarse simulation later for our refinement run (2 mm). Spikes

were observed on the target and similar analysis was drawn as in 2-dimensional

simulations. Since 3-dimensional simulation is very complicated and the states

in the target are unstable after target breaking into fragments, we just focused

on the stage before breaking. The average pressure for 3-dimensional uniform

case is almost 80 times higher than that of the 90 jets simulation at the end

of this time range.
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Multiphase MHD in the low magnetic Reynolds number approximation

based on front tracking has already been developed in FronTier and used for

the simulation of mercury targets for Neutrino Factory / Muon collider [19, 34]

and cryogenic pellets for tokamak fueling [35, 36]. Since the low magnetic

Reynolds number approximation is not quite suitable for the description of

MHD processes in the imploding liner and magnetized target, we propose to

make theoretical analysis of a new MHD with more accurate description of the

target physics model within the method of front tracking in the future. We

will use this new model to describe the motion of the target - vacuum interface

as the electrical conductivity changes from zero in the vacuum to infinity in

the target.
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