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Abstract of the Dissertation  

Design and Analysis of Parallel Algorithms for Multiscale Modeling of Platelets  

by 

Na Zhang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Computational Applied Mathematics) 

Stony Brook University 

2015 

This work presents multiscale models and efficient numerical algorithms for analyzing 

the activation mechanisms of platelets under blood flow conditions at disparate spatiotemporal 

scales on supercomputers, with applications in initial thrombogenicity study and medical device 

optimization. Modeling the multiscale structures of platelets and the dynamics of their motion in 

viscous blood plasma require multiple time stepping (MTS) algorithm to optimally utilize the 

computing resources. This MTS algorithm improves the computational efficiency while 

maintaining stability and prescribed precisions. Our study of the dynamic properties of flipping 

platelets adapts the hybridized dissipative particle dynamics and coarse-grained molecular 

dynamics methods, which resolve the appropriate spatial scales of the platelet and the blood flow, 

respectively. In addition to the algorithmic strategies, general-purpose graphics processing units 

are also introduced to speed up the computationally intensive force field evaluations. 

Examinations of the implementation of the double-punch speedup strategy, i.e., algorithmic MTS 

and hardware acceleration, reveal significant speedups over single time stepping algorithms and 

CPU-only solutions. Detailed performance analysis on three representative supercomputers 

affords the possibility of simulating the millisecond-scale hematology at resolutions of nanoscale 

platelet and mesoscale bio-flow using millions of particles, the state-of-the-art for the field at the 

present time.   



iv 

 

 

 

 

 

 

 

 

  

This dissertation is dedicated to my parents. 

  

 

 

 

 

 

 

 

 

  



v 

 

Table of Contents 

 
List of Figures .............................................................................................................................. vii 

List of Tables ................................................................................................................................. x 

Acknowledgments ........................................................................................................................ xi 

List of Publications and Major Presentations .......................................................................... xii 

Chapter 1 Introduction................................................................................................................. 1 

1.1 Motivation ............................................................................................................ 1 

1.2 Contributions ........................................................................................................ 3 

1.3 Organization ......................................................................................................... 5 

Chapter 2 Multiscale Modeling and Simulation Methods ........................................................ 7 

2.1 Introduction .......................................................................................................... 7 

2.2 Platelets Flipping in Viscous Flows ................................................................... 10 

2.2.1 Viscous Flow Model ....................................................................................... 10 

2.2.2 Deformable Platelet Model ............................................................................. 11 

2.2.3 Spatial Interfacing........................................................................................... 12 

2.3 Multiple Time Stepping Algorithm .................................................................... 14 

2.3.1 MTS for DPD ................................................................................................. 15 

2.3.2 MTS for CGMD ............................................................................................. 17 

2.3.3 Temporal Interfacing ...................................................................................... 19 

2.4 Accuracy versus Speed ....................................................................................... 22 

2.4.1 Measures of Accuracy .................................................................................... 23 

2.4.2 Measures of Speed .......................................................................................... 24 

2.5 Results and Analysis .......................................................................................... 25 

2.5.1 Analysis of Accuracy...................................................................................... 26 

2.5.2 Analysis of Speed ........................................................................................... 33 

2.6 Summary ............................................................................................................ 38 

Chapter 3 Discovery of Force Field ........................................................................................... 39 

3.1 Introduction ........................................................................................................ 39 

3.2 Simulation .......................................................................................................... 41 



vi 

 

3.3 Parameterization ................................................................................................. 43 

3.4 Results and Analysis .......................................................................................... 47 

3.4.1 Green Kubo Autocorrelation .......................................................................... 48 

3.4.2 Radial Distribution Function .......................................................................... 49 

3.4.3 Counter-Poiseuille and Couette flows ............................................................ 49 

3.4.4 The Impact of System Sizes ........................................................................... 52 

3.5 Application of Modified Morse Potential .......................................................... 55 

3.6 Summary ............................................................................................................ 56 

Chapter 4 Techniques for Accelerating Simulations ............................................................... 58 

4.1 Demand of Tasks ................................................................................................ 58 

4.2 Supply of Supercomputer Resources ................................................................. 60 

4.3 Mapping and GPGPU Acceleration ................................................................... 62 

4.4 Performance Examinations ................................................................................ 64 

4.4.1 The Impact of MTS and GPGPU Acceleration .............................................. 66 

4.4.2 The Impact of System Architectures .............................................................. 73 

4.5 Summary ............................................................................................................ 85 

Chapter 5 Conclusions and Future Work ................................................................................ 87 

Bibliography ................................................................................................................................ 89 

 

  



vii 

 

List of Figures 

Figure 2-1: The wall-driven Couette flow and the initial position of the platelet model ............. 12 

Figure 2-2: Multiple methods: DPD and CGMD in the multiscale approach. ............................. 14 

Figure 2-3: Multiple spatiotemporal scales in one model ............................................................. 15 

Figure 2-4: Multiple time step sizes in the MTS algorithm .......................................................... 20 

Figure 2-5: Normalized deviations for temperature 𝑇 of the system ɛ(T, t) over time t ............... 27 

Figure 2-6: Normalized deviations for pressure 𝑃 of the system ɛ(P, t) over time t .................... 27 

Figure 2-7: Normalized deviations for total energy of the system ɛ(Etot, t) over time t ............... 28 

Figure 2-8: Normalized deviations for kinetic energy of single platelet ɛ((kBT)platelet, t) over time t

....................................................................................................................................................... 28 

Figure 2-9: Normalized deviations for stress distribution on the membrane ɛ(𝜏, t) over time t ... 29 

Figure 2-10: Evolution of RMSD for stress distribution on the membrane over time t ............... 29 

Figure 2-11: The dynamic stress distributions on the surface membrane using STS and MTS ... 30 

Figure 2-12: Change of rotational angles of the platelet using MTS-L, comparing with the 

Jeffery’s orbit (analytical) ............................................................................................................. 30 

Figure 2-13: Parallel speeds 𝕊(P) vs. various processor cores 𝑝  for the non-MTS and MTS 

solvers (A base 10 logarithmic scale for the vertical axis) ........................................................... 33 

Figure 2-14: Speedups of MTS algorithms over the STS algorithm (A base 10 logarithmic scale 

for the vertical axis) ...................................................................................................................... 34 

Figure 2-15: The parallel efficiencies 𝔼(10, p2) versus various processor cores p2 for the non-

MTS and MTS solvers .................................................................................................................. 34 

Figure 2-16: Percentiles of computation (Compt.) and communication (Comm.) over the total 

running time vs. the number of cores for the STS and MTS-L integrators .................................. 35 

Figure 2-17: Percentile error and wallclock time (in days) for 1-ms simulation vs. different scales 

of step sizes for DPD in which the CGMD is integrated at 10
-7

 ................................................... 37 

Figure 2-18: Percentile error and wallclock time (in days) for 1-ms simulation vs. different scales 

of step sizes for CGMD in which the DPD is integrated at 10
-3

 ................................................... 37 

Figure 3-1: The relationship of the average distances over mass scales: MCG (amu) vs. 𝜇 (Å) 

where 𝑥-axis is in logarithm scale of base 10. .............................................................................. 41 



viii 

 

Figure 3-2: Impact of 𝜀  in classical Mores potential on normalized compressibility κT  and 

viscosity 𝜂 where 𝛼=10 and MCG = 72.06 𝑎𝑚𝑢 ........................................................................... 45 

Figure 3-3: Impact of 𝜀  in classical Morse potential on normalized compressibility κT  and 

viscosity 𝜂 where 𝛼=10 and MCG = 720.62 𝑎𝑚𝑢 ......................................................................... 45 

Figure 3-4: The form factor R()  in modified Morse potential for MCG  = 720.62 amu ............. 47 

Figure 3-5: Pressure 𝑃 (in bar) with the increase of 𝜇 (in Å) in modified Morse potential for MCG  

= 720.62 amu ................................................................................................................................ 47 

Figure 3-6: The form factor R() in modified Morse potential for MCG  = 7206.20 amu ............ 47 

Figure 3-7: Pressure 𝑃 (in bar) with the increase of 𝜇 (in Å) in modified Morse potential for MCG  

= 7206.20 amu .............................................................................................................................. 47 

Figure 3-8: Auto stress correlation functions Cαβ(t)  vs. time t (in ps) ......................................... 48 

Figure 3-9: Radial distribution functions of the Morse fluids 𝑔(𝑟) vs. 𝑟 ..................................... 49 

Figure 3-10: Schematic representation of the periodic Poiseuille flow ........................................ 51 

Figure 3-11: Schematic representation of the Couette flow ......................................................... 51 

Figure 3-12: Counter Poiseuille flows velocity profiles ............................................................... 51 

Figure 3-13: Couette flows velocity profiles ................................................................................ 52 

Figure 3-14: Multiscale model of human platelets: physical structures and constituents ............ 56 

Figure 4-1: Multiscale modeling framework for simulating platelets in blood flows .................. 60 

Figure 4-2: Parallel speeds of STS simulations ............................................................................ 66 

Figure 4-3: Parallel speeds of MTS cases for Exp-M ................................................................... 68 

Figure 4-4: Parallel speeds of MTS cases for Exp-L .................................................................... 68 

Figure 4-5: Speedups of MTS cases over STS case for Exp-M ................................................... 69 

Figure 4-6: Speedups of MTS cases over STS cases for Exp-L ................................................... 69 

Figure 4-7: The ratios of communication time over computation time for all MTS cases and STS 

for Exp-M...................................................................................................................................... 70 

Figure 4-8. The ratios of communication time over computation time for all MTS cases and STS 

for Exp-L ....................................................................................................................................... 70 

Figure 4-9: Parallel speeds of GPU-enabled MTS cases for Exp-M ............................................ 71 

Figure 4-10: Speedups GPU over CPU-only for different MTS cases for Exp-M ....................... 71 

Figure 4-11: Parallel speeds of no_mts/mts algorithms on Tianhe-2 ........................................... 74 

Figure 4-12: Perferformance improvement of mts over no_mts on Tianhe-2 .............................. 75 



ix 

 

Figure 4-13: Ratio of communication over computation on Tianhe2 ........................................... 75 

Figure 4-14: Parallel speeds of no_mts/mts algorithms on Stampede .......................................... 76 

Figure 4-15: Perfeformance improvement of mts over no_mts on Stampede .............................. 76 

Figure 4-16: Ratio of communication over computation on Stampede ........................................ 77 

Figure 4-17: Parlalel speeds of no_mts/mts algorithms on 8-K40m CS-Storm ........................... 77 

Figure 4-18: Perferformance improvement of mts over no_mts on 8-K40m CS-Storm .............. 78 

Figure 4-19: Ratio of communication over computation on 8-K40m CS-Storm ......................... 78 

Figure 4-20: Parallel speeds of no_mts/mts algorithms on 16-K80 CS-Storm ............................ 79 

Figure 4-21: Perferformance improvement of mts over no_mts on 16-K80 CS-Storm ............... 79 

Figure 4-22: Ratio of communication over computation on 16-K80 CS-Storm .......................... 80 

Figure 4-23: Parallel speeds of no_mts and mts algorithms for Exp-L on Tianhe-2 and Stampede

....................................................................................................................................................... 80 

Figure 4-24: Ratio of communication over computation for no_mts and mts algorithms for Exp-L 

on Tianhe-2 and Stampede............................................................................................................ 81 

 

  



x 

 

List of Tables 

Table 2-1: The multiple time-stepping algorithm within a 2-level integrator in DPD ................. 17 

Table 2-2: The multiple time-stepping algorithm within a 2-level integrator in CGMD ............. 19 

Table 2-3: Overview of the multiple time-stepping algorithms for the multiscale model ............ 21 

Table 2-4: The time steps and configurations for different test cases .......................................... 22 

Table 2-5: Accuracy and speedup comparisons for different MTS parameters ........................... 32 

Table 3-1: Mechanical properties of blood plasma fluid .............................................................. 42 

Table 3-2: Impact of model parameters on target properties ........................................................ 43 

Table 3-3: Parameters of the modified Morse potential for various mass scales ......................... 47 

Table 3-4: Characteristic time of different CG levels: MCG, 𝜇 (average distance, Å), 𝑑𝑡 (timestep, 

fs) and  𝜏 (characteristic time, ps) ................................................................................................. 48 

Table 3-5: Results and analyses of the same simulation box using three coarse graining levels . 53 

Table 3-6: Comparisons of physical properties using different simulation boxes for MCG =

72.06 𝑎𝑚𝑢 .................................................................................................................................... 54 

Table 3-7: Comparisons of physical properties using different simulation boxes for MCG =

720.62 𝑎𝑚𝑢 .................................................................................................................................. 54 

Table 4-1: Problem sizes and dimensions of multiscale benchmarks ........................................... 59 

Table 4-2: Nodal configurations and peak performance (GFlops) for Tianhe-2, Stampede and 

CS-Storm....................................................................................................................................... 62 

Table 4-3: Mappings of each system size ..................................................................................... 62 

Table 4-4: The timesteps and configurations for each MTS test case .......................................... 65 

Table 4-5: Best performances for STS and MTS algorithms on three supercomputers for Exp-S

....................................................................................................................................................... 81 

Table 4-6: Best performances for STS and MTS algorithms on three supercomputers for Exp-M

....................................................................................................................................................... 82 

Table 4-7: Best performances for STS and MTS algorithms on three supercomputers for Exp-L

....................................................................................................................................................... 82 

Table 4-8: Simulation speeds (μs/day) for multiscale model and MTS algorithm on Tianhe-2, 

Stampede and CS-Storm ............................................................................................................... 83 

 



xi 

 

Acknowledgments 

First of all, I would like to express my deepest gratitude to my advisor, Professor Yuefan 

Deng, for his four years’ guidance, support, encouragement and provision that benefited me 

much in the completion of this PhD study at Stony Brook University. Thank him so much for 

guiding me to this great high performance computing research field. I am also very thankful to 

him for providing me access to large amount of supercomputing resources and for excellent 

opportunities to visit scientific conferences.  

I would like to thank Professor Danny Bluestein for his guidance in developing 

multiscale application in biomedical engineering field and all the constructive comments to 

finish manuscripts and thank him for being on my dissertation committee. I am very grateful to 

Professor James Glimm and Professor Robert Harrison for being on my dissertation committee, 

especially Professor James Glimm, for being the chairman of my preliminary defense committee 

and dissertation defense committee. I thank them for reading through my research, and providing 

feedback and suggestions.  

I would like to thank all present and past members in multiscale modeling group, Dr. 

Peng Zhang, Dr. Seetha Pothapragada, Dr. Jawaad Sheriff, Chao Gao and Li Zhang for all 

scientific discussions and private helps. I would like to give my special thanks to Dr. Peng Zhang 

for sharing his high performance computing expertise, having numerous discussions, writing 

collaborative publications with me, without whom my research would never so smooth.  

I would like to express my love and thanks to my parents for their endless love and 

supports. 

The text of this dissertation in part is a reprint of materials as it appears in following 

publication page. The co-authors listed in the publication page directed and supervised the 

research that forms the basis for this dissertation.   

  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.ams.stonybrook.edu%2F~seethap%2F&ei=2dlkVcnTAaLasAT9kYKgDA&usg=AFQjCNEifMcoYwIZuRFJTczccnNeYWAvNw&sig2=kKRdl789G2r-betakuo9_w&bvm=bv.93990622,d.cWc


xii 

 

List of Publications and Major Presentations 

Peer-Reviewed Articles:  

(1) N. Zhang, P. Zhang, W. Kang, D. Bluestein, and Y. Deng, "Parameterizing the Morse 

potential for coarse-grained modeling of blood plasma," Journal of Computational 

Physics, vol. 257, pp. 726-736, 01/2014. 

(2) P. Zhang, C. Gao, N. Zhang, M. J. Slepian, Y. Deng, and D. Bluestein, "Multiscale 

particle-based modeling of flowing platelets in blood plasma using dissipative particle 

dynamics and coarse grained molecular dynamics," Cellular and Molecular 

Bioengineering, vol. 7  pp. 552-574, 12/2014. 

(3) P. Zhang, N. Zhang, Y. Deng, and D. Bluestein, “A multiple time stepping algorithm for 

efficient multiscale modeling of platelets flowing in blood plasma,” Journal of 

Computational Physics, vol. 284, pp. 668-686, 01/2015. 

(4) N. Zhang, P. Zhang, L. Zhang, X. Zhu, L. Huang, and Y. Deng, "Performance 

examinations of multiple time-stepping algorithms on Stampede supercomputer," 

Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by 

Enhanced Cyberinfrastructure, St. Louis, MO, 07/2015. 

Manuscript under Review:  

(1) P. Zhang, N. Zhang, Y. Deng, and D. Bluestein, “Scalability test of multiscale fluid-

platelet model for three top supercomputers,” Computer Physics Communications, 

09/2015. 

Conference Presentations:  

(1) The International Conference for High Performance Computing, Networking, Storage, 

and Analysis (SC15), “Efficient multiscale platelets modeling using supercomputers,” 

Austin, TX, 11/2015. 



xiii 

 

(2) 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced 

Cyberinfrastructure (XSEDE15), "Performance examinations of multiple time-stepping 

algorithms on Stampede supercomputer," St. Louis, MO, 07/2015. 

(3) The International Conference for High Performance Computing, Networking, Storage, 

and Analysis (SC14), “A multiple time stepping algorithm for efficient multiscale 

modeling of platelets flowing in blood plasma,” New Orleans, LA, 11/2014. 

(4) The International Conference for High Performance Computing, Networking, Storage, 

and Analysis (SC13), “Design and analysis parallel multiscale algorithms for modeling 

platelets,” Denver, CO, 11/2013.  

  



1 

 

Chapter 1 Introduction 

1.1 Motivation 

Large-scale computational modeling is widely accepted as a method of choice for solving 

complex problems due to its great values in reducing time and monetary costs for experimental 

design, implementation and analysis. Examples range from human brain project [1], bimolecular 

simulations [2], weather forecasting [3], to astrophysical N-body simulations [4]. Although 

Moore’s law together with new architectural and chip technological innovations boost the power 

of supercomputers, there is no foreseeable end to the need for ever larger and more powerful 

systems [5]. Demand for supercomputing resources greatly exceeds supply, and meanwhile, the 

gap between achieved performance from those resources and the raw performance of the fast 

systems is increasing. Essentially, how to efficiently utilize the resources for optimal 

performance becomes a serious challenge for algorithm and software design of large-scale 

simulations.  

The motivation of this work is the integration of multiscale models, efficient algorithms 

and heterogeneous supercomputing for efficiently simulating platelets and their functions in 

thrombosis formation. Advances in medical imaging techniques and computational methods 

have enabled accurate simulations of subject-specific blood flows at the level of blood cell and in 

complex arterial networks [6-8]. Those advances in studying blood flow dynamics have in turn 

improved cardiovascular devices design, a process relying heavily on numerical simulations in 

recent years [9, 10]. While the advent of these devices has provided life-saving solutions to 

millions of patients globally, thrombogenic risk potential of these devices remains an 

impediment [11-14]. Thrombosis formation on the surface of these implantable devices is 

initialized by chain reactions of platelets disorders. Aggregating platelets release factors that 

promote accumulation of circulating protein called fibrin. A blood clot is a meshwork of platelets 

and red blood cells woven together by fibrin. Thrombosis is an abnormal localized activation of 

platelets. Among all pathways completing such process, abnormal shear stress at various 

exposure times or a sudden increase will affect platelet activation [12, 15-19]. However, 

quantitative analysis of the platelet dynamics including the shape change is, at best, confined in 

the laboratory experiments [20]. Successfully computer-modeling such intricate phenomena and 
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analyzing stress field upon platelets activation will help design drugs and implantable blood 

recirculating devices for fighting vascular diseases [9]. Nevertheless, this task is full of 

physiological, physical, mathematical and computational challenges. 

First of all, physical insights are essential for developing accurate and predictive platelet-

fluid models with parameters matching laboratory mechanical and thermodynamic blood 

properties. Secondly, efficient simulation methods require modeling not just the flow dynamics 

but process pertinent to flow-induced platelet-mediated blood clotting. As such, multiple scales 

must be considered to characterize system behavior and the associated modeling tools must be 

developed for high-resolution low-cost studies of complex biological problems.  

Classical simulation methods are often limited in their applications to certain range of 

space and time scales. Four length and time scales of classical simulation methods are: (1) Scale 

of continuum models, such as computational fluid dynamics (CFD) in which conservations of 

mass, momentum and energy govern the fluid motion; (2) Scale of mesoscale models, such as 

dissipative particle dynamics (DPD) in which grouped particles are introduced to reduce 

computational complexity by integrating out the grouped particles’ internal degrees of freedom; 

or lattice Boltzmann method (LBM) in which fluid consists of fictive particles, and such particles 

perform consecutive propagation and collision processes over a discrete lattice mesh; (3) Scale 

of molecular dynamics models, the trajectories of actual atoms governed by Newton’s equations 

of motion are studied; (4) Scale of quantum mechanics models, quantum effects that produce 

averaged parameters are considered. For modeling platelet-related phenomena, one single scale 

will exhibit a serious dilemma: continuum models fail to capture small-scale molecular 

mechanisms of structure changes and interactions of key players in blood coagulation [21] while 

molecular dynamics that can capture the full dynamics at molecular scales, are too 

computationally intensive to be practical [22, 23]. Mesoscopic approaches provide a “coarse-

gained” description of a simulated system compared with a “fine-grained” atomic description 

and keep some of molecular details [24]. They significantly expand the space and time scale with 

respect to molecular dynamics but their spatiotemporal representations are limited by coarse-

graining levels [25]. A multiscale platelet modeling approach to uncouple macroscopic blood 

flow and finer features of platelet may offer a compromise for balancing computational accuracy 

and feasibility.  
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In addition to multiple scale algorithms, implementing them on a particular computing 

platform for high efficiency is another challenge. The large gap in the space and time scales and 

algorithm complexities are two major challenges in limiting computing speed. With the 

unprecedented advances in computer speeds, it’s still not practical to simulate one-millisecond 

hematology phenomena by straightforward porting to supercomputers without massive tuning. 

Porting simulations to, or developing a new programming model for, novel computer 

architectures for optimal performance is another aspect of the dissertation work.   

In summary, advances are needed to enable breakthroughs in multiscale modeling of 

platelets. These advances include:  

(1) Accurate mathematical models for each scale considered;  

(2) Stable spatial and temporal interfacing methods;  

(3) Robust algorithms capable of both extracting main features and of quantifying possible 

errors; and  

(4) Parallel solvers for each model and be scalable to tens of thousands of computer 

processors, and be portable to heterogeneous architectures.  

1.2 Contributions  

The main focus of this dissertation is development of computational methodology that 

will efficiently simulate the millisecond-scale hematology with heterogeneous supercomputing. 

The main contributions and major results of this work are as follows: 

(1) Modified Morse potential for coarse-grained modeling of blood plasma  

A coarse-grained (CG) particle model is developed for simulating blood flow by 

modifying the Morse potential, traditionally used for modeling vibrating structures. The 

modified Morse potential is parametrized with effective mass scales for reproducing blood 

viscous flow properties, including density, pressure viscosity, compressibility and characteristic 

flow dynamics. The parameterization follows a standard inverse-problem approach in which the 

optimal micro parameters are systematically searched, by gradually decoupling loosely 
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correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The 

predictions of this particle-based multiscale model compare favorably to classic viscous flow 

solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse-grained 

particle model can be applied to replicate the dynamics of viscous blood flow, with the 

advantage of bridging the gap between macroscopic flow scales and the cellular scales 

characterizing blood flow that continuum based models fail to handle adequately. One of its 

applications is it can be used as a simulation method for modeling of platelet cytoplasm, with 

corroborations with in-vitro results for cytoplasmic biorheology. The highlight of this work is to 

decouple the parameter space and map the parameters to physical properties. 

(2) Multiple time stepping algorithm for efficient multiscale modeling of dynamics of 

platelet flipping in blood flow   

A flexible multiple time stepping (MTS) algorithm with four-level integrators is 

developed. The four-level integrator can be adjusted via three loop factors to optimize precision 

and computing speed, resulting in huge performance improvement while maintaining stability 

and accuracy. The study of the dynamics of platelet flipping in blood flow employs multiscale 

modeling. In this multiscale model, three simulation domains are identified: platelet domain, 

blood flow domain and interfacing domain. For platelet domain, the microscopic method using 

coarse-grained molecular dynamics (CGMD) is employed to emulate components of platelet 

such as viscous cytoplasm, extensible cytoskeleton and bilayer elastic membrane. For blood flow 

domain, the mesoscopic method using dissipative particle dynamics (DPD) is employed to 

address the bulk transfer of viscous blood flows in arterials with adjustable flow Reynolds 

numbers. For interfacing domain, a hybrid force filed containing the stochastic and random terms 

from DPD and Lenard-Jones potential from MD is exploited to mimic friction between platelet 

surface membrane and surrounding blood flow. The highlight of this work is the multi-level 

integration scheme, allowing an optimization procedure for seeking a faster performer within 

certain error boundaries. 

(3) Parallel implementation on GPGPU/multi-GPGPU system and detained performance 

investigations on different system architectures  
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Efforts have been made to port multiscale simulations to systems with accelerators. 

Localizing computations and porting intensive computation workloads to accelerators such as 

GPGPU help reduce the inter-process communication costs on CPU-only systems. Detailed 

performance examinations have been carried out on three supercomputers-Tianhe-2, Stampede 

and CS-Storm (a high-density multi-accelerator system) in order to investigate (a) impacts of 

double-punch acceleration strategy (algorithmic MTS and hardware GPGPU acceleration) to see 

how much improvement can be achieved by the combining acceleration techniques; (b) impacts 

of system architectures to see how to map different problem characteristics to architectures. The 

optimized performance results manifest the possibility of simulating the millisecond-scale 

hematology at resolutions of nanoscale platelets and mesoscale bio-flows using millions of 

particles. 

1.3 Organization 

Chapter 2 describes multiscale modeling methodology and simulation methods for 

platelet and blood flow, focusing on:  

(1) The viscous flow model, deformable platelet model and the spatial interfacing method to 

study dynamics of platelet flipping in blood flow;  

(2) Multiple time stepping algorithm for speeding up above simulations; 

(3) Accuracy and computing speed analysis. 

Chapter 3 presents the novel modified Morse potential for modeling blood plasma at 

multiple coarse-grained levels, focusing on:  

(1) Simulation and analytics of particle-based fluid system;   

(2) Parameterization procedure for modified Morse potential for reproducing blood viscous 

flow properties;  

(3) Verification of characteristic flow dynamics including Green Kubo (GK) autocorrelation, 

radial distribution function (RDF),  velocity profiles of counter-Poiseuille and Couette 

flows; 

(4) Investigations of the impact of system sizes; 



6 

 

(5) Application of modified Morse potential for modeling platelet cytoplasm and its 

corroboration with cytoplasmic biorheology. 

Chapter 4 presents the detailed performance evaluations of running multiscale benchmark 

with CPU-only and GPGPU-accelerated solutions on three supercomputers, focusing on:  

(1) Description of supply of computing resources and demand of tasks; 

(2) Mapping and implementation of GPGPU-accelerated solutions;  

(3) Performance results regarding the double-punch speedup strategy, i.e., algorithmic MTS 

and GPGPU acceleration;  

(4) Performance results regarding different system architectures, i.e., Tianhe-2, Stampede, 

and Cray CS-Storm and guideline for mapping problem characteristics onto platform 

characteristics.   

Chapter 5 provides the conclusion and delineates the projection for future work.  
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Chapter 2 Multiscale Modeling and Simulation Methods  

2.1 Introduction  

The coagulation cascade of blood may be initiated by flow-induced platelet activation, 

which prompts clot formation in prosthetic cardiovascular devices and arterial disease processes 

[16, 26, 27]. While platelet activation may be induced by biochemical agonists, shear stresses 

arising from pathological flow patterns enhance the propensity of platelets to activate and initiate 

coagulation pathway, leading to thrombosis [17-19]. Quantitatively determining the illusive 

dynamics and mechanics of platelets in pathological cases can facilitate developing effective 

treatments [28] and elucidating the platelet initiate processes such as thrombus formation; 

platelets undergo complex biochemical and morphological transitions during activation, resulting 

in aggregation and adhesion to blood vessel to form thrombi. In addition to traditional laboratory 

experiments, numerical simulations augment investigation into understanding of the behavior of 

platelets at molecular scales [23]. Clearly, a useful model must encapsulate sufficient spatial and 

temporal details. Fedosov et al. [29] describe an elastic model for the membrane with an accurate 

representation of mechanic properties of red blood cells. Martinez et al. [30] conclude that total 

rigidity of cortex stiffening significantly influenced detachment forces of adherent platelets and 

cell-membrane internal stresses. These indicate that the membranous viscoelasticity may be a 

factor for modeling resulting in, unavoidably, more computational complexity.  

While a complete all-atom molecular dynamics simulation of a biological system can 

capture the dynamics of platelets at molecular scales [23, 31], this is not practical due to the 

prohibitive computational resources required [23, 31, 32] as evident by two recent ACM Gordon 

Bell supercomputing performance records. The first conducted a simulation using 13 trillion grid 

points in 2013 [33] and the second performed gravitational N-body simulations with one trillion 

particles in 2012 [34]. These are infinitesimal compared to the atomic modeling of platelets 

flowing in the viscous fluid flows. A typical platelet could consist of more than 0.7 trillion atoms, 

roughly estimated by an average mean platelet volume of ~7.1×10
-15

 L and the possible number 

of atoms contained in it as compared with a C12 atom with volume of 1.0×10
-26

 L [35]. 

Additionally, some atoms interact at diverse scales both in space and time. Thus, we must 
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develop algorithms to model the dynamics of these atoms at corresponding spatiotemporal scales 

[36-39]. 

A multiscale particle-based model is proposed to combine the DPD-CGMD methods for 

modeling the dynamics of platelets flowing in response to extracellular flow-induced stresses 

[38]. The model adapts the DPD method for describing macroscopic transport of blood plasma in 

vessels and the CGMD method for handling individual platelets. A hybrid force field is 

formulated for establishing a functional interface between the platelet membrane and the 

surrounding fluid, in which the microstructural changes of platelets may respond to extracellular 

flow-induced stresses transferred to them. The DPD and CGMD force fields are technically 

different particle-based coarse-graining methods: the coarse-graining stochastic dynamics and 

the coarse-graining molecular dynamics [40]. As DPD is the only CGSD method in the work, we 

use the DPD term for better clarity. First, CGMD forces are conservative [41] but DPD forces 

depend on relative velocities between particles [42, 43]. Second, the time scale of CGMD is of 

picoseconds to nanoseconds while that of high-frequency oscillations of covalent bonds is of 

femtoseconds. However, the time scale of DPD is of microseconds, much slower than those of 

the constituents in CGMD [44, 45]. Typically, standard time-stepping (STS) algorithms use a 

single step size which must be the smallest of all time scales involved [41, 46] to gain the needed 

accuracy at the expenses of significant loss of efficiency. 

Admittedly, the STS algorithm can solve the model accurately; however, ignoring the 

temporal scale differential in a variety of integrators would result in a massive number of 

redundant computations leading to inefficient use of computational resources. To remedy such 

deficiency, a variety of multiple time-stepping (MTS) algorithms have been developed for 

CGMD and for DPD independently. For example, the reversible reference system propagator 

algorithm (r-RESPA) [47] is widely adopted as the CGMD integrator and it greatly accelerates 

simulations of systems with multiple times scales and long-ranged forces [47-49]. Second, DPD 

integrators use the modified velocity Verlet integrator derived from stochastic Trotter formula 

[43, 50, 51], departing from usual CGMD integrators. Following the modified velocity Verlet 

integrator, Symeonidis et al. [45] integrated the MTS scheme to hybrid DPD models for 

simulating dilute polymer solutions. It introduced relaxation parameters for optimization with 

which it gained a 10 folds of efficiency while keeping the accuracy. Jakobsen el al. [52] studied 
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several MTS update schemes for a coarse-grained model of a lipid bilayer in water and it reduced 

considerably the simulation time by optimizing two time scales separately for lipid and solvent 

within error brackets. MTS algorithms are essential for improving efficiencies of CGMD and 

DPD [42, 53]. 

Although multiscale models of cell and tissue dynamics are prevailing [29, 36, 54] and 

MTS algorithms are established at various scales [45, 47], the temporal coupling is by no means 

a trivial task. For instance, in the triple decker scheme [54], the time progression in each 

subdomain is independent and communication of boundary conditions such as velocity averaging 

is performed every certain time steps. The same exchange of boundary information is widely 

applied to multiscale simulations. Even with rapid advances in raw computing speeds and 

algorithms, these simulations are still computational expansive [55] and it is necessary to 

construct models that leverage on accurate understanding of the underlying biomechanics, for 

maximum utilization of computing resources [42, 44, 53]. 

Extending our previous efforts on a multiscale model of platelets flowing in viscous 

blood plasma flows, we develop an integrated MTS algorithm for performing multiscale 

simulations. We present the force fields and describe the formulation and properties of MTS 

algorithms for coupling the DPD and CGMD. In this integrated MTS algorithm, various 

parameters are introduced to guide the selection of step sizes for achieving performance 

optimization. To estimate the quality of the MTS algorithms, we introduce the accuracy vs. 

speed relationships as functions of step sizes. Extensive numerical experiments were conducted 

using performance metrics, to measure the relative performances of standard single-scaled time-

stepping (STS) algorithm vs. ours.  

This study is an integral part to a full multiscale particle-based model that studies flow-

induced platelet-mediated thrombosis composed of: (i) the spatial interface of the top-scale and 

bottom-scale methods: DPD and CGMD, whereby the microscale model of platelets allows to 

continuously undergo microstructural changes in response to extracellular flow-induced stresses 

[38, 56] and (ii) the temporal interface of the top-scale and bottom-scale integrators in which the 

step sizes are appropriately specified as multiple scales in order to enhance the computational 

efficiency while keeping the solutions within predefined error boundaries. 
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2.2 Platelets Flipping in Viscous Flows  

In our multiscale model, we consider two scales: (i) the macroscopic/top-scale using 

DPD for describing viscous fluid flows; and (ii) the microscopic/bottom-scale using CGMD 

(classical molecular dynamics with reduced degrees of freedom) for describing deformable 

platelets with internal constituents including membrane, cytoskeleton and cytoplasm. A 

functional interface hybridizes DPD and CGMD for continued shape changes of flowing 

platelets in response to extracellular flow-induced stresses. 

2.2.1 Viscous Flow Model  

DPD is employed to simulating human blood flows, in which each DPD particle 

embodies a cluster of atoms or molecules and their collective motion is governed by [24, 57]:  

𝑑𝒗𝒊 =
1

𝑚𝑖
∑(𝑭𝐶𝑑𝑡 + 𝑭𝐷𝑑𝑡 + 𝑭𝑅√𝑑𝑡 + 𝑭𝐸𝑑𝑡)

𝑁

𝑗∈𝑖

 Equation 2-1 

where 𝑭𝐶 = 𝛼𝜔𝐶(𝑟𝑖𝑗)𝒆𝑖𝑗 𝑭𝐷 = −𝛾𝜔𝐷(𝑟𝑖𝑗)(𝒆𝑖𝑗 ∙ 𝒗𝑖𝑗)𝒆𝑖𝑗 𝑭𝑅 = 𝜎𝜔𝑅(𝑟𝑖𝑗)𝜁𝑖𝑗𝒆𝑖𝑗 

𝑭𝑪,  𝑭𝑫 and 𝑭𝑹 are the conservative, dissipative and random forces acting on the particle 

and 𝑭𝐸 is the external force exerted to each particle to lead the fluid flow. 𝑟𝑖𝑗 is the inter-particle 

distance, 𝒗𝒊𝒋 = 𝒗𝒊 − 𝒗𝒋 is the relative velocity and 𝒆𝒊𝒋 is a unit vector in the direction 𝑟𝑖 − 𝑟𝑗. 𝜁𝑖𝑗 

is a Gaussian random variable with zero mean and unit variance. The appearance of the factor 

√𝑑𝑡  in Equation 2-1 was discussed in [24]. 𝛼 is the maximum inter-particle repulsion given by 

𝛼 = 75𝑘𝐵𝑇/(𝜌𝑓𝑟𝑐) where ρf is the number of fluid particles. The weight function 𝜔𝐶 is set to 

zero beyond the cutoff length 𝑟𝑐 and is given by  

𝜔𝐶(𝑟𝑖𝑗) = {
(1 − 𝑟𝑖𝑗/𝑟𝑐), 𝑟𝑖𝑗 < 𝑟𝑐

0, 𝑟𝑖𝑗 ≥ 𝑟𝑐
 Equation 2-2 

Español et al. [57] established a relation between 𝛾 and 𝜎 and weight functions given by 

𝜎2 = 2𝛾𝑘𝐵𝑇  and 𝜔𝐷 = [𝜔𝑅]2 . We construct the wall-driven Couette flow (Figure 2-1) in a 

16×16×8 box (length×height×width in µm) = 2,048 µm
3
 in volume. The upper and lower vessel 

walls are moving in opposite directions at a rate of 30 cm/s. Periodic boundary condition [41] is 

imposed along the x-/z-dimension. The no-slip boundary condition between the flow and the 

vessel is imposed following the work [58]. This general no-slip condition consists of the 
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inclusion of fictitious particles beyond the vessel with reversed velocity to develop an 

equilibrated shear layer, naturally enforcing zero velocities at the wall plane [58, 59]. Following 

[43], we work with a number density of the fluid system 𝜌𝑓 = 3, i.e., 4,236 particles/𝜇𝑚3. For the 

flow domain, we have 8.73 million particles. 

2.2.2 Deformable Platelet Model 

CGMD is employed to model 3D deformable platelets [38] and structural details are 

shown in Figure 2-1. The platelet model comprises of microscale internal constituents including 

an elastic membrane, a supporting cytoskeleton structure and padding cytoplasm. The model 

contains 73,036 particles including 19,675 membrane particles (27%), 36,296 cytoskeleton 

particles (50%) and the remaining 17,065 cytoplasm particles (23%). The initial shape of platelet 

is an oblate spheroid with semi-major and semi-minor axes of 2.0 and 0.5 µm leading to a total 

volume of 8.37 𝜇𝑚3. Thus, the number density of the model is 8,722 particles/μm3 and it is 

roughly twice that of the fluid system. A reduced molecular-scale force field is developed and it 

includes the bonded interactions (bonds and angles) and the nonbonded interactions (Lennard-

Jones (L-J) potential) and given by: 

𝑉(𝑟) = ∑ 𝑘𝑏(𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑈𝐿𝐽(𝑟)
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

𝑝𝑎𝑖𝑟𝑠

 Equation 2-3 

where 𝑈𝐿𝐽 = 4𝜀 [(
𝜎

𝑟
)

6

− 2 (
𝜎

𝑟
)

12

]  

V is the total energy. The first two terms on the right-hand side are the bond and angle 

components where 𝑘𝑏 and 𝑘𝜃 are the force constants while 𝑟0 and 𝜃0 are the equilibrium distance 

and angle. The last term is the nonbonded L-J potential where ε is the depth of potential well and 

σ is the characteristic distance at which the inter-particle potential vanishes. The bonded terms 

exist in membrane and cytoskeleton, and the nonbonded terms are present between any particle 

pairs within a radius of interaction. Young’s modulus of the membrane model is (1.5 ± 0.6) ×

103 𝑑𝑦𝑛/𝑐𝑚2 [38]. Young’s modulus of human platelet membrane is reported as (1.7 ± 0.6)  ×

103 𝑑𝑦𝑛/𝑐𝑚2 in [60] (values are mean±standard deviation). For other functional structures, the 

force constants for cytoskeleton structure are selected strong enough to maintain rigidity and thus 

to provide support to the ellipsoidal shape of resting platelets. The L-J potential for cytoplasm is 
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selected to preserve the volume of the platelet. Advancing from previous rigid spheroid models 

[61-66], this model characterizes the proper deforming capability of the membrane and allows us 

to observe the responsive deformation of platelets and to investigate dynamic stress mapping on 

the surface membrane resulting from the fluid-platelet interaction. 

 

Figure 2-1: The wall-driven Couette flow and the initial position of the platelet model 

 

2.2.3 Spatial Interfacing  

The DPD-CGMD methods are interfaced on the surface membrane where a hybrid force 

field is established [38]. Figure 2-2 shows the schematics of the spatial-interfacing approach. The 

hybrid force field is defined as: 

𝑑𝒗𝑖 =
1

𝑚𝑖
∑(−∇𝑈𝐿𝐽(𝑟𝑖𝑗)𝑑𝑡 + 𝑭𝐷 𝑑𝑡 + 𝑭𝑅 √𝑑𝑡)

𝑁

𝑗≠𝑖

 Equation 2-4 

𝑈(𝑟𝑖𝑗) = 4𝜀 [(
𝜎

𝑟𝑖𝑗
)

6

− 2 (
𝜎

𝑟𝑖𝑗
)

12

] 𝑭𝐷 = −𝛾𝑝𝜔𝐷(𝑟𝑖𝑗)(𝒆𝑖𝑗 ∙ 𝒗𝑖𝑗)𝒆𝑖𝑗 𝑭𝒊𝒋
𝑹 = 𝜎𝑝𝜔𝑅(𝑟𝑖𝑗)𝜁𝑖𝑗𝒆𝒊𝒋 
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𝜀  and 𝜎  are the characteristic energy and distance parameters in CGMD. Other 

parameters including 𝛾𝑝 and 𝜎𝑝 retain the same definitions as in DPD. All forces are truncated 

beyond a cutoff radius which defines the length scale in the fluid-platelet contact region [54]. 

The L-J force ∇𝑈(𝑟𝑖𝑗)  helps the cytoskeleton-confined shapes and the incompressibility of 

platelets against the applied stress of circumfluent plasma flow. The dissipative and random 

force terms maintain the flow local thermodynamic and mechanical properties and exchange 

momentum to express interactions between the platelet and the surrounding flows. A no-slip 

boundary condition was applied at the fluid-membrane surface interface. A dissipative or drag 

force was added to enforce the no-slip boundary condition at the fluid and membrane interface, 

so the fluid particles are dragged by dissipative forces of membrane particles as they are getting 

closer to the membrane, mimicking boundary layer mechanism where one layer drags its 

adjacent layers. The hard-core L-J force simultaneously provides a bounce-back reflection of 

fluid particles on the membrane (to prevent fluid particles from penetrating through the platelet 

membrane) with the no-slip achieved by slowing down the fluid particles (by the same repulsive 

term) as the fluid particles are getting closer to the membrane surface. The magnitude of the L-J 

force increases to infinity as the distance decreases, guaranteeing that the L-J force be strong 

enough to slow down and bounce back fluid particles. The parameters for these forces were 

appropriately selected to preserve the dynamic properties of flowing platelets in shear viscous 

flows. This complex repulsive-drag force used to achieve the no-slip condition at the surface, 

was used to compute the values of the stresses on the surface of the membrane, following the 

force virial contribution using the algorithm in [41, 67].  
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Figure 2-2: Multiple methods: DPD and CGMD in the multiscale approach. 

 

2.3 Multiple Time Stepping Algorithm  

The disparity in the spatial and temporal scales between the CGMD-based platelet and 

the DPD-based fluid is depicted in Figure 2-3, where bonded forces 𝐹𝐵 and nonbonded force 𝐹𝑁 

cover molecular-scale interactions within the platelet. 𝐹𝐵  consists of bond and angle forces 

between cytoskeleton particles. 𝐹𝑁 is the L-J force between cytoplasm and other intra-platelet 

components including membrane and cytoskeleton. The macroscopic-scale interaction means the 

DPD force 𝐹𝑃 for describing the bulk transport of flowing plasma. The mesoscopic hybrid force 

field 𝐹𝑀  integrates the conservative force ∇𝑈𝐿𝐽  from the molecular level and the thermostatic 

forces 𝐹𝐷 + 𝐹𝑅  from the macroscopic level and this requires a median time integrator. The 

bottom-scale CGMD force field is conservative while the top-scale DPD, as a novel 

thermostatting method [43], considers the additive dissipative and random interactions. 𝐹𝑀 

follows such thermostatting method as a variant of the DPD force field in which the soft 

conservative potential is replaced with a hard one. 

The temporal scales for CGMD and DPD require nanoseconds and microseconds 

respectively [43, 68]. Standard time stepping (STS) algorithm requires a timestep small enough 

to resolve fastest motions [69]. Thus, the nanoscale integrator is applied to both top-scale and 
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bottom-scale methods for capturing the dynamics of platelets flowing in viscous blood plasma. 

However, this significantly increases the unnecessary computation for DPD with fine-grained 

integrators [43]. Moreover, even for the CGMD, a long-range and low-frequency force can be 

calculated with a larger time step than a short-range and high-frequency one [49]. To improve 

the computing efficiency within error boundaries, we must design MTS algorithms for handling 

the disparity in temporal scales between DPD and CGMD. 

 

Figure 2-3: Multiple spatiotemporal scales in one model 

 

2.3.1 MTS for DPD  

In DPD, the forces are stochastic and nonlinear as the dissipative force depends on 

velocity [43, 45, 57] and, particularly, the conservative force 𝐹𝐶(𝑟) in Equation 2-1 is similar to 

that in CGMD. The stochastic of this process disables the previous Euler-type algorithm used in 

the standard velocity Verlet integrator [70] that requires a velocity-independent force. Thus, a 

modified velocity Verlet integrator is derived from stochastic Trotter formula [43, 50, 51]: 
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 𝒓(Δ𝑡) = 𝒓(0) + Δ𝑡 ∙ 𝒗(0) +
Δ𝑡2

2𝑚
𝑭[𝒓(0), 𝒗(0)] 

Equation 2-5 

 𝒗̃(Δ𝑡) =  𝒗(0) + 𝜆 ∙
Δ𝑡

𝑚
∙ 𝑭[𝒓(0), 𝒗(0)] 

 compute 𝑭[𝒓(Δ𝑡), 𝒗̃(Δ𝑡)] 

 𝒗(Δ𝑡) = 𝒗(0) +
Δ𝑡

2
(𝑭[𝒓(0), 𝒗(0)] + 𝑭[𝒓(Δ𝑡), 𝒗̃(Δ𝑡)]) 

Starting from initial conditions {𝑟(0), 𝑣(0)}, one computes the position at full-step then a 

prediction for the new velocity, which is denoted by 𝑣̃, and then computes the force and corrects 

the velocity at the last step. This is a basic predictor-corrector approach in which the velocities, 

for each time step, are predicted while estimating the force and are corrected at the end. The 

provisional values of velocities are crucial as the dissipative force depends on relative velocities 

of particles. The empirical factor 𝜆 accounts for the additive effects of stochastic interactions 

[43]. If the force is conservative without either dissipative or random terms, 𝜆 = 0.5 restores the 

velocity Verlet integrator with 𝑂(𝛥𝑡2). 

Symeonidis el al [45] extend a MTS scheme to DPD to simulate a complex fluid with 

hard/soft potentials using two integrator scales: 𝛿𝑡 and 𝛥𝑡 =  𝑛𝛿𝑡 where n is a positive integer. 

Standard integrator in DPD is subdivided into a multi-rated dynamics of two matters with the 

hard and soft potentials described by the L-J potential and the soft-repulsive potential, 

respectively. The soft (or hard) matter employs the soft (or hard) potential so the dynamics is 

advanced with a larger (or smaller) time-step 𝛥𝑡  (or 𝛿𝑡 ). With extension of velocity Verlet 

integrator, MTS for DPD is summarized in Table 2-1. In the table, the subscripts ℎ  and 𝑠 

correspond to variables for hard and soft potentials. 𝐹ℎ and 𝐹𝑠 represent the forces derived for 

corresponding potentials and 𝜆ℎ and 𝜆𝑠 are relaxation parameters. 
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Table 2-1: The multiple time-stepping algorithm within a 2-level integrator in DPD 

►  𝑣̃𝑠(Δ𝑡) ← 𝑣𝑠(0) + 𝜆𝑠 ∙
Δ𝑡

𝑚
∙ 𝐹𝑠[𝑟𝑠(0), 𝑣𝑠(0)] Soft potential 

 ►       For 𝑙 = 0 … 𝑛 − 1 (𝛿𝑡 = Δ𝑡/𝑛) Hard potential 

 ►       set 𝑡0 = 𝑙 ∙ 𝛿𝑡, 𝑡1 = (𝑙 + 1) ∙ 𝛿𝑡 Hard potential 

 ►        𝑣̃ℎ(𝑡1) ← 𝑣ℎ(𝑡0) + 𝜆ℎ ∙
δ𝑡

𝑚
∙ 𝐹ℎ[𝑟ℎ(𝑡0), 𝑣ℎ(𝑡0)]  Hard potential 

 ►        𝑟(𝑡1) ← 𝑟(𝑡0) + δ𝑡 ∙ 𝑣̃(𝑡1)  
Soft/Hard 

potentials 

 ►       compute 𝐹ℎ[𝑟ℎ(𝑡1), 𝑣̃ℎ(𝑡1)] Hard potential 

 ►  𝑣ℎ(𝑡1) ← 𝑣ℎ(𝑡0) +
𝛿𝑡

2𝑚
∙ {𝐹ℎ[𝑟ℎ(𝑡0), 𝑣ℎ(𝑡0)] + 𝐹ℎ[𝑟ℎ(𝑡1), 𝑣̃ℎ(𝑡1)]} Hard potential 

►  compute 𝐹𝑠[𝑟𝑠(Δ𝑡), 𝑣̃𝑠(Δ𝑡)] Soft potential 

►  𝑣𝑠(Δ𝑡) ← 𝑣𝑠(0) +
Δ𝑡

2𝑚
∙ {𝐹𝑠[𝑟𝑠(0), 𝑣𝑠(0)] + 𝐹𝑠[𝑟𝑠(Δ𝑡), 𝑣̃𝑠(𝛥𝑡)]}  Soft potential 

 

2.3.2 MTS for CGMD 

In CGMD, the reversible reference system propagator algorithm (rRESPA) [47] is widely 

adopted. Standard integrators in molecular dynamics require evaluating forces at every time step 

regardless of interaction range, resulting in massive and, sometimes, unnecessary computation. A 

faster solution is to subdivide the pair forces 𝐹(𝑥) into short- and long-ranged components 𝐹𝑠 

and 𝐹𝑙. The short-ranged force determines the time step 𝛿𝑡 and the long-ranged uses step size Δt 

= n·δt where n is usually chosen as a positive integer. 𝐹𝑠 includes the bonded forces while 𝑭𝑙 the 

non-bonded forces such as Coulombic potential. rRESPA is based on Trotter expansion of 

classical Liouville operator [47-49] and the Liouville operator 𝐿 for a system of 𝑁 degrees of 

freedom in Cartesian coordinates is 𝑖𝐿 = {⋯ , 𝐻} = ∑ (𝑥̇𝑗
𝜕

𝜕𝑥𝑗
+ 𝐹𝑗

𝜕

𝜕𝑝𝑗
)

𝑓
𝑗=1  where 𝛤 = {𝑥𝑗 , 𝑝𝑗} are 

the position and conjugate momenta of the system, 𝐹𝑗  is the force on the 𝑗𝑡ℎ degree of freedom, 

and {⋯ , ⋯ } is Poisson bracket of the system. 𝐿 is a linear Hermitian operator on the space of 

square integrable functions of 𝛤 [47] so it can be decomposed as 𝑖𝐿 = 𝑖𝐿1 + 𝑖𝐿2 where 𝑖𝐿1 =

𝐹(𝑥)
𝜕

𝜕𝑝
 and 𝑖𝐿2 = 𝑥̇

𝜕

𝜕𝑥
. Classical time propagator is 𝑈(𝑡) = exp(𝑖𝐿𝑡) and the state of the system 
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at time 𝑡 is 𝛤(𝑡) = 𝑈(𝑡)𝛤(0) = 𝑒𝑖𝐿𝑡𝛤(0) where 𝛤(0) is the initial state. Trotter expansion yields 

the velocity Verlet integrator [47, 48]: 

 𝒗 (
Δ𝑡

2
) = 𝒗(0) +

Δ𝑡

2𝑚
∙ 𝑭[𝑟(0)] 

Equation 2-6  𝒓(Δ𝑡) = 𝒓(0) + Δ𝑡 ∙ 𝒗 (
Δ𝑡

2
) 

 𝒗(Δ𝑡) =  𝒗 (
Δ𝑡

2
) +

Δ𝑡

2𝑚
∙ 𝑭[𝑟(Δ𝑡)] 

Starting from initial conditions {𝒓(0), 𝒗(0)}, one computes the velocity at the half-step 

then the position at the full step, and completes calculation of the velocity at the second half-step. 

This velocity Verlet integrator performs better at small time steps than the position Verlet 

integrator [47] and is used in LAMMPS [71]. With rRESPA,, the MTS algorithm for CGMD [71] 

is summarized Table 2-2. In our platelet model, the bonded force is used in cytoskeleton 

structure (filamentous bundles) and the nonbonded L-J force is used between cytoplasm particles. 

These forces act at nanometer scales. The equilibrium bond length for filamentous bundles is 

21.3 nm and the equilibrium distance at which the L-J potential for cytoplasm is zero is 71.1 nm 

[38]. In this case, the bonded and nonbonded forces 𝐹𝐵 and 𝐹𝑁 are considered as the short and 

long range forces 𝐹𝑠  and 𝐹𝑙  (Table 2-2), respectively. This yields a separation of short-range 

bonded and long-range nonbonded forces in the CGMD-based platelet system. In the notation, 

we follow the traditional terminology for 𝐹𝑙 and 𝐹𝑠 in expressing MTS algorithms for molecular 

dynamics (Table 2-2) [47, 48]. When describing specific MTS schemes, we change to more 

specific terms 𝐹𝑁 (CGMD-NB) and 𝐹𝐵 (CGMD-BD). Recently, novel equations of motions are 

suggested such as in [72] that showed promising performance for molecular dynamics with large 

time step without resonant problems [73] and might be useful within CGMD when the 

framework needs remodeling for the future. This work followed standard Trotter expansion 

formulas as in [43, 47, 48, 50, 51]. 
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Table 2-2: The multiple time-stepping algorithm within a 2-level integrator in CGMD 

►  𝒗 (
Δ𝑡

2
) ← 𝑣(0) +

Δ𝑡

2𝑚
𝑭𝑙[𝑟(0)]  Long range force 

 ►        For 𝑙 = 0 … 𝑛 − 1 (𝛿𝑡 = Δ𝑡/𝑛) Short range force 

 ►        set 𝑡0 =
Δ𝑡

2
+ 𝑙 ∙ 𝛿𝑡 Short range force 

 ►        𝒗 (𝑡0 +
𝛿𝑡

2
) ← 𝒗(𝑡0) +

𝛿𝑡

2𝑚
𝑭𝒔[𝒓(𝑡0)] Short range force 

 ►        𝒓(𝑡0 + 𝛿𝑡) ← 𝒓(𝑡0) + 𝛿𝑡 ∙ 𝒗 (𝑡0 +
𝛿𝑡

2
) Long/Short range force 

 ►        compute 𝑭𝑠[𝒓(𝑡0 + 𝛿𝑡)] Short range force 

 ►        𝒗(𝑡0 + 𝛿𝑡) ← 𝒗 (𝑡0 +
𝛿𝑡

2
) +

𝛿𝑡

2𝑚
𝑭𝑠[𝒓(𝑡0 + 𝛿𝑡)] Short range force 

►  compute 𝑭𝒍[𝑟(Δ𝑡)] Long range force 

►  𝒗(Δ𝑡) ← 𝒗 (
Δ𝑡

2
) +

Δ𝑡

2𝑚
∙ 𝑭𝑙[𝒓(Δ𝑡)]  Long range force 

 

2.3.3 Temporal Interfacing 

MTS algorithms have been widely used in each of CGMD [47-49, 74] and DPD [43, 45, 

71] independently and have been extended with the velocity Verlet integrator. Therefore, in our 

proposed integration of MTS algorithms for the DPD-CGMD model, we decompose the whole 

integrator process into four levels (Figure 2-4). The topmost two levels use the scheme in Table 

2-1, referred as DPD-MTS, because both of them employ the DPD thermostatting method. The 

bottommost two levels use the scheme in Table 2-2, referred as CGMD-MTS, because both of 

them employ the conservative potentials. In each of DPD-MTS and CGMD-MTS, the integrator 

is subdivided into two time scales, one for the soft potential with a larger step size and the other 

for the hard potential with a smaller step size. Table 2-3 describes the 4-level integration 

procedure where communication and external forces are considered. In our multiscale model, 

“DPD” in the table implies the soft-repulsive, dissipative and random forces between the plasma 

particles, as well as the external forces applied to the plasma. It is advanced by the DPD-MTS 

integrator with Δ𝑡  as defined in Table 2-4. “DPD-CGMD” implies the deformable platelet 

membrane as the contact region between the platelet and the surrounding fluid and it combines 
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the hard-repulsive L-J potential with thermostatting variables, so that it is advanced by DPD-

MTS but with a smaller step 𝛿𝑡1 = Δ𝑡/𝐾1. Wrapped by the membrane are the CGMD-governing 

intra-platelet constituents and thus CGMD-MTS is used for cytoskeleton and cytoplasm. The 

cytoskeleton component is for describing the very molecular-scale events such as filopodia 

formation and the cytoplasm component is for emulating transport of intra-platelet biofluids. The 

latter structure is grainer than the former resulting in the appropriate integrator choice. The 

cytoplasmic flow is applied with 𝛿𝑡2 = 𝛿𝑡1/𝐾2  and the cytoskeleton with the smallest 𝛿𝑡3 =

𝛿𝑡2/𝐾3.𝐾1, 𝐾2 and 𝐾3 are all chosen to be integers. Following [43, 45], we use λp = λm = 0.5. The 

dimensionless and physical units rescaling adopts a dimensionless unit of time equal to 1.2 µs in 

physical units. Thus, the step size for the DPD integrator is performed at the scale of 10
-3

 in 

dimensionless units (i.e., 1.2 ns), and the step size for the CGMD integrator at the scale of 10
-7

 in 

dimensionless units (i.e., 120 fs). 

 

Figure 2-4: Multiple time step sizes in the MTS algorithm 
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Table 2-3: Overview of the multiple time-stepping algorithms for the multiscale model 

►    𝒗𝒑 ← 𝒗𝒑 + 𝜆𝑝 ∙ (𝛥𝑡/𝑚) ∙ 𝑭𝑃  DPD 

 ►         For 𝑙1 = 0 … 𝐾1 − 1 DPD-CGMD 

 ►         set 𝛿𝑡1 ≡ 𝛥𝑡/𝐾1 DPD-CGMD 

 ►         𝒗𝒎 ← 𝒗𝒎 + 𝜆𝑚 ∙ (𝛿𝑡1/𝑚) ∙ 𝑭𝑴 DPD-CGMD 

  ►               For 𝑙2 = 0 … 𝐾2 − 1 CGMD-NB 

  ►               set 𝛿𝑡2 ≡ 𝛿𝑡1/𝐾2  = 𝛥𝑡/(𝐾1 ∙ 𝐾2)  CGMD-NB 

  ►               𝒗𝒏 ← 𝒗𝑛 + (𝛿𝑡2/2𝑚) ∙ 𝑭𝑵 CGMD-NB 

   ►                   For 𝑙3 = 0 … 𝐾3 − 1 CGMD-BD 

   ►                   set 𝛿𝑡 ≡ 𝛿𝑡3 = 𝛿𝑡2/𝐾3 = 𝛥𝑡/(𝐾1 ∙ 𝐾2 ∙ 𝐾3)  CGMD-BD 

   ►                   𝒗𝒃 ← 𝒗𝒃 + (𝛿𝑡/2𝑚) ∙ 𝑭𝑩 CGMD-BD 

   ►                   𝒓 ← 𝒓 + 𝛿𝑡 ∙ 𝒗 All Particles 

   ►                   Communication of positions and velocities  

   ►                   Compute  𝑭𝑩(𝒓) CGMD-BD 

   ►                   Communication of forces  

   ►                   𝒗𝒃 ← 𝒗𝒃 + (𝛿𝑡/2𝑚) ∙ 𝑭𝑩 CGMD-BD 

  ►               compute 𝑭𝑵(𝒓) CGMD-NB 

  ►               Communication of forces.  

  ►               𝒗𝒏 ← 𝒗𝒏 + (δt2/2m) ∙ 𝑭𝑵 CGMD-NB 

 ►             compute 𝑭̃𝑴(𝒓, 𝒗) DPD-CGMD 

 ►             Communication of forces.  

 ►             𝒗𝒎 ← 𝒗𝒎 + (δt1/2m) ∙ (𝑭𝑴 + 𝑭̃𝑴) DPD-CGMD 

 ►             𝑭𝑴 ← 𝑭̃𝑴 DPD-CGMD 

►    compute 𝑭̃𝑷(𝒓, 𝒗) DPD 

►    Communication of forces.  

►    Add external forces to the viscous flow if any. 
Add Forces to 

flow 

►    𝒗𝒑 ← 𝒗𝒑 + (𝛥𝑡/2𝑚) ∙ (𝑭𝑷 + 𝑭̃𝑷)  DPD 

►    𝑭𝑷 ← 𝑭̃𝑷  DPD 
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2.4 Accuracy versus Speed 

MTS algorithm is usually a matter of trade-offs between speed and accuracy for efficient 

multiscale simulations. Energy conservation and maintenance of adequate precisions of other 

measures must be verified while accelerating the computations. We aim to investigate the 

microscopic shape changes of platelets in response to macroscopic flow-induced stresses. Thus, 

in measuring numerical solutions we focus on the accuracy of characterizing the hybrid system 

and the flowing platelets, as well as the accuracy of calculating the dynamic flow-induced 

stresses on the surface membrane.  

For comparative purposes we benchmark all algorithms against the standard time-

stepping (STS) algorithm at smallest Δt = 10
-7 

in its integrator. The largest step size for the DPD 

flow regime is 0.001 which is within critical step size [43, 75]. In theoretical accuracy study, 

“critical step size” is the step size beyond which the numerical method starts to show pronounced 

artifacts in [75]. By varying parameters𝐾1 , 𝐾2  and 𝐾3 , we produce four representative MTS 

configurations as shown in Table 2-4. MTS-L denotes the most liberal integrator in which all 

timescales are increased up to the top scale while MTS-S represents the most conservative in 

which the top scale is further fine grained. The other two cases, MTS-M1 and MTS-M2 are the 

middle levels in which only step sizes for the hybrid force field and nonbonded intra-platelet 

potentials are adjusted. Through numerical experimentation, the impacts of MTS parameters are 

examined against STS.  

Table 2-4: The time steps and configurations for different test cases 

Case 

Name 

Time steps for each scale Configurations* 

DPD 
DPD-

CGMD 

CGMD-

NB 

CGMD-

BD 
Δ𝑡 𝐾1 𝐾2 𝐾3 

MTS-L 10−3 2 × 10−4 2 × 10−4 2 × 10−4 10−3 5 1 1 

MTS-M1 10−3 10−5 10−6 10−7 10−3 100 10 10 

MTS-M2 10−3 10−4 10−5 10−7 10−3 10 10 100 

MTS-S 10−4 10−4 10−6 10−7 10−4 1 100 10 

STS 10−7 10−7 10−7 10−7 10−7 1 1 1 

*Note: The configurations used the same notations as in Figure 2-4 and Table 2-3. 
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2.4.1 Measures of Accuracy  

Most measurable variables for our simulations depend on time and they fluctuate around 

a “mean” value and the long-time average is often considered as a steady state normal value [41]. 

Time-dependent function 𝜀(𝜐; 𝑡)  measures the normalized deviation for variable 𝜐(𝑡)  from 

equilibrium over time (i.e., the time-averaged value 𝑣0) is 

𝜀(𝜐; 𝑡) =
‖𝜐(𝑡) − 𝑣0‖

‖𝑣0‖
 Equation 2-7 

where ‖∙‖ is an norm operator. In our model, we directly apply to temperature 𝑇, pressure 𝑃 and 

total energy 𝐸𝑡𝑜𝑡  of the hybrid system, as well as kinetic energy (𝑘𝐵𝑇)platelet  of the platelet 

where 𝑘𝐵 is Boltzmann’s constant. This indicator is for assessing the impacts of MTS parameters 

on the statistical stability of these measures. The dynamic stress distribution on the surface 

membrane also measures the accuracy of assessing the platelet activation factors. In this, we 

introduce a more rigorous per-particle comparison between MTS and STS, and design a 3-step 

procedure as follows: in Step I, the per-particle stress tensor 𝜏𝑖𝑗(𝑝, 𝑡) = [𝜏𝛼𝛽]
3×3

 where 𝛼 and 

𝛽 ∈ 𝑥, 𝑦, 𝑧 to generate the 6 time-varying components of symmetric tensor [46, 67]: 

𝜏𝛼𝛽 = − {𝑚𝑣𝛼𝑣𝛽 +
1

2
∑(𝑟1𝛼𝐹1𝛽 + 𝑟2𝛼𝐹2𝛽)

𝑁𝑝

𝑛=1

+
1

2
∑ (𝑟1𝛼𝐹1𝛽 + 𝑟2𝛼𝐹2𝛽)

𝑁𝑏

𝑚=1

} Equation 2-8 

where 𝑟1, 𝑟2 and 𝐹1 and 𝐹2 are the positions and resulting pairwise forces of two particles. The 

first term comes from kinetic energy and the rest computes a scalar virial produced by a group of 

interacting particles as defined in [67, 76]. Specifically, the second and third terms are from 

nonbonded and bonded pairwise energy, respectively, where 𝑛  loops over 𝑁𝑝  neighboring 

particles and 𝑚  loops over 𝑁𝑏  bonded particles. The virial theorem routinely computes the 

volume averaged tensors for a collection of particles and thus the per-particle stress needs to be 

divided by a per-particle volume to have the correct measure of stress [67, 76]. Equation 2-9 is 

an alternate formula of per-particle stress in CGMD [41, 76]. In Step II, the instantaneous stress 

tensor is rendered into a scalar 𝜏̂(𝑝, 𝑡) as defined in [18, 77]: 
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In Step III, the per-particle stress scalars are produced on the surface membrane and the 

root-mean-square-deviation (RMSD) is calculated to measure deviations of the per-particle stress 

scalars between the two systems: 

RMSD(𝜏̂, 𝑡) = √
1

𝑁𝑚
∑‖𝜏̂𝑚(𝑝, 𝑡) − 𝜏̂0 (𝑝, 𝑡)‖

2

𝑁𝑚

𝑝=1

 Equation 2-10 

where 𝑁𝑚 is the total number of the membrane particles. 𝜏̂𝑚(𝑝, 𝑡) is the stress scalar of particle 𝑝 

at time 𝑡 through using MTS. Similar to Equation 2-7, 𝜏̂0 (𝑝, 𝑡) is the averaged stress scalar of 

the same particle over a period of dynamic equilibrium through using STS. RMSD(𝜏̂, 𝑡) evolves 

with time and it is an indicator for stability of accurately assessing the dynamic stress 

distributions on the membrane and such an indicator for a MTS algorithm must be bounded 

when comparing with STS. Finally, integrating RMSD(𝜏̂, 𝑡) with 𝜀(𝜐; 𝑡) yields: 

𝜀(𝜏̂; 𝑡) =
√

1
𝑁𝑚

∑ ‖𝜏̂𝑚(𝑝, 𝑡) − 𝜏̂0 (𝑝, 𝑡)‖
2𝑁𝑚

𝑝=1

√
1

𝑁𝑚
∑ ‖𝜏̂0 (𝑝, 𝑡)‖

2𝑁𝑚
𝑝=1

 Equation 2-11 

The numerator is RMSD(𝜏̂, 𝑡) and the denominator is the spatial-averaged magnitude of the per-

particle stresses on the surface membrane. Collectively, 𝜀(𝜏̂; 𝑡) indicated the relative deviations 

of averaged stress 𝜏̂(𝑡) on the membrane. 

2.4.2 Measures of Speed 

The wallclock time of a simulation, 𝕋(𝑡𝑠, 𝑛𝑝) in which 𝑡𝑠 is the simulated time (for the 

physical problem) and 𝑛𝑝 is the number of processor cores allows us to define a normalized 

speed 𝕊(𝑛𝑝) as: 

𝕊(𝑛𝑝) =
𝑡𝑠

𝑛𝑝 ∙ 𝕋(𝑡𝑠, 𝑛𝑝)
 Equation 2-12 

𝜏̂(𝑝, 𝑡) =
1

√3
(𝜏𝑥𝑥

2 + 𝜏𝑦𝑦
2 + 𝜏𝑧𝑧

2 − 𝜏𝑥𝑥𝜏𝑦𝑦 − 𝜏𝑥𝑥𝜏𝑧𝑧 − 𝜏𝑦𝑦𝜏𝑧𝑧

+ 3(𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑥𝑧
2 ))

1
2
 

Equation 2-9 
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The unit of 𝕋(𝑡𝑠, 𝑛𝑝) is hours and the unit of 𝑡𝑠 is the dimensionless simulation time unit. 

Thus, 𝕊(𝑝) measures the length of simulated time per core-hour. A larger 𝕊(𝑝) means a faster 

simulation. Speedup of a MTS algorithm is defined as the ratio of the speed of a MTS algorithm 

over that of a STS algorithm so it refers to how much MTS is faster than STS using the same 

resources. Parallel efficiency of a parallel program is traditionally defined as: 

Efficiency(𝑡𝑠, 𝑛𝑝) =
𝕋(𝑡𝑠, 1)

𝑛𝑝 ∙ 𝕋(𝑡𝑠, 𝑛𝑝)
 Equation 2-13 

where 𝕋(𝑡𝑠, 1) is the wallclock time of a sequential program and 𝑡𝑠 defines the problem size. 

However, this efficiency measure is not conveniently applicable to our program of size far 

beyond the capability of any single node. To address this issue, we define the efficiency 

𝔼(𝑛𝑝1, 𝑛𝑝2) as: 

𝔼(𝑛𝑝1, 𝑛𝑝2) ≜
𝑛𝑝1 ∙ 𝕋(𝑡𝑠1, 𝑛𝑝1)/𝑡𝑠1

𝑛𝑝2 ∙ 𝕋(𝑡𝑠2, 𝑛𝑝2)/𝑡𝑠2
=

𝕊(𝑛𝑝2)

𝕊(𝑛𝑝1)
  for 𝑛𝑝1 < 𝑛𝑝2 Equation 2-14 

where 𝑛𝑝1  and 𝑛𝑝2  are the numbers of cores and 𝔼(𝑛𝑝1, 𝑛𝑝2)  uses the speed 𝕊(𝑛𝑝1)  as a 

baseline to measure the speed ratio due to core count difference Δ𝑝 = 𝑛𝑝2 − 𝑛𝑝1. 100% means 

the perfect efficiency for adding these Δ𝑝 cores. When 𝑛𝑝1 is small enough and the program has 

perfect parallelization on fairly small numbers of cores, then 𝔼(𝑛𝑝1, 𝑛𝑝2)  asymptotically 

approaches 𝔼(1, 𝑛𝑝2), i.e., conventional measures such as parallel efficiency in Equation 2-13 

and thus this efficiency measure measures scalability more accurately. 

2.5 Results and Analysis  

To measure the accuracy vs. speed described earlier, we have performed numerous 

experiments of platelets flowing in benchmark Couette flows. In our simulations, the base step 

size for STS is Δt = 10
-7

 (dimensionless unit). The various MTS parameters are listed in Table 

2-4. The simulations using MTS are compared with those using STS in terms of all selected 

measures described earlier. The spatial cutoff is set as rc = 1.8 for DPD, rc = 1.6 for DPD-CGMD 

and rc = 1.0 for CGMD. For our experiments, the system must go through a lengthy equilibration 

process before the plasma laminar flow is stably reproduced and results are collected. 

The empirical selection of the larger step size in MTS is up to a multiplier of 10 of the 

well-established step size in STS and limited by the simulation stability. Symeonidis et al. [45] 
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use a multiplier of 10 in the time-staggered DPD model and the multiplier is smaller in CGMD 

involving the short- and long-ranged forces [48, 69]. However, in our model, the disparity in 

temporal scales between CGMD and DPD intrinsically poses a great gap, clearly mandating to 

perform such multiscale simulation more efficiently in order to overcome the computational 

challenge. For a further analysis of computational feasibility within certain error boundaries, two 

groups of measures, chaotic (sensitive to MTS parameters) and non-chaotic (insensitive) 

measures [53] are examined.  

2.5.1 Analysis of Accuracy 

Figure 2-5 to Figure 2-7 show the evolution of normalized deviations for temperature T, 

the pressure P and total energy 𝐸𝑡𝑜𝑡 of the hybrid system, respectively. Figure 2-8 and Figure 2-9 

show the evolution of normalized deviations for kinetic energy of the platelet and dynamic stress 

distributions on the surface membrane, respectively. In all figures, 𝜀(𝜐; 𝑡)  (as defined in 

Equation 2-7) is plotted as a function of the dimensionless time 𝑡, where 𝑣 takes one of these 

measures. Mean values and standard deviations of these measures are present in Table 2-5 for 

comparisons. Furthermore, Figure 2-10 shows evolution of RMSD values for flow-induced 

stresses on the surface membrane by comparing with STS and Figure 2-11 illustrates 3D stress 

distributions in a color contour-magnitude diagram.  Figure 2-12 illustrates the trajectories of 

platelet flipping using MTS-L and compare with the Jeffery’s orbit that is often viewed as a 

reference point [58, 61, 78]. 
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Figure 2-5: Normalized deviations for temperature 𝑇 of the system ɛ(T, t) over time t 

 

 

Figure 2-6: Normalized deviations for pressure 𝑃 of the system ɛ(P, t) over time t 
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Figure 2-7: Normalized deviations for total energy of the system ɛ(Etot, t) over time t 

 

 

Figure 2-8: Normalized deviations for kinetic energy of single platelet ɛ((kBT)platelet, t) over time 

t 
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Figure 2-9: Normalized deviations for stress distribution on the membrane ɛ(𝜏̂, t) over time t 

 

 

Figure 2-10: Evolution of RMSD for stress distribution on the membrane over time t 
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Figure 2-11: The dynamic stress distributions on the surface membrane using STS and MTS 

 

 

Figure 2-12: Change of rotational angles of the platelet using MTS-L, comparing with the 

Jeffery’s orbit (analytical) 
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Among these measures, temperature and total energy of the hybrid system behave the 

most stable as their normalized deviations are consistently < 0.2%. This verifies that selected 

MTS parameters maintained energy conservation from the system point of view. Pressure is 

another non-chaotic measure since it has achieved > 95% in accuracy, though its normalized 

deviations are larger than those of T and Etot. Obviously, there is no a clear-cut distinction 

between chaotic and non-chaotic measures and the assignment depends on MTS parameters. 

Thus, within selected MTS parameters and simulation period, macroscopic measures including 

temperature, pressure and total energy could be viewed as non-chaotic. 

Comparatively, kinetic energy of the platelet is fairly sensitive to MTS parameters. The 

conservative scheme, MTS-S allowed a negligible deviation from STS but the aggressive scheme, 

MTS-L caused >25% loss of accuracy. Two middle schemes, MTS-M1 and MTS-M2 posed a 

similar loss of accuracy between 15% and 20%. An advantage of four MTS schemes is that they 

all appear a bounded error range, thus avoiding propagation of resultant errors. This advantage 

offers an alternative way towards a computationally feasible simulation for large-scale time-

consuming simulations, within certain error boundaries. Using MTS-L the trajectory of flipping 

platelets was consistent with Jeffery’s orbit (Figure 2-12). 

Finally, the dynamic stress distributions on the surface membrane are sensitive to MTS 

parameters but they are not as chaotic as the kinetic energy of the platelet. The loss of accuracy 

remains at ~15 % and it depends more on the choice of the DPD step size than the choice of 

other parameters. That is because: (a) MTS-L, MTS-M1 and MTS-M2 used the same step size Δt 

= 10
-3

 for DPD and they obtained a similar loss of accuracy. (b) Only MTS-S used Δt = 10
-4

 and 

increased the accuracy by >2% demonstrates that the propagation of resultant errors was 

prevented within 16%. Figure 2-10 clearly reaffirms the absolute error boundaries of RMSD 

values. In an intuitive perspective, the visual representation of the resultant stresses acting on the 

platelet surface membrane is depicted in Figure 2-11 for comparing the effect of the different 

integrators on the resultant stress distribution. 

We conclude that in MTS, the macroscopic measures such as T, P and Etot are non-

chaotic while the kinetic energy of the platelet and the dynamic stress distributions on the surface 

membranes are chaotic. These experiments demonstrated that (i) the microscopic measures for 
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single platelets are more sensitive to MTS parameters than the macroscopic measures for the 

hybrid system. Specifically, the bulk transport of viscous fluid flows can safely advance with a 

larger step size and the study of microstructural changes of flowing platelets requires a smaller 

step size. (ii) Within the simulated period and selected step sizes, the errors do not propagate. 

In addition to the simple scheme for integrating the DPD flow regime [43], there 

proposed many integrator variants [42, 75, 79] that allow larger time step sizes for accurate 

stochastic dynamics. Though the impact of CGMD MTS scheme dominates in this work with the 

goal of describing platelets dynamics in flowing blood plasma, one may extend other DPD MTS 

techniques in molecular modeling such as for complex fluids and polymers [72, 75]. 

Table 2-5: Accuracy and speedup comparisons for different MTS parameters 

Metrics for 

Accuracy and 

Speed 

MTS Test Cases 

MTS-L MTS-M1 MTS-M2 MTS-S 

Normalized 

deviation for 

temperature: 𝜀(𝑇, 𝑡) 

(0.136 ± 0.012) % (0.099 ± 0.013)% (0.088 ±0.012)% (0.012 ± 0.009)% 

Normalized 

deviation for 

pressure: 𝜀(𝑃, 𝑡) 

(0.245 ±0.183)% (0.247 ±0.187)% (0.247 ±0.175)% (0.706 ±0.552)% 

Normalized 

deviation for total 

energy: 𝜀(𝐸𝑡𝑜𝑡 , 𝑡) 

(0.144 ±0.001)% (0.142 ±0.001) (0.143 ±0.001)% (0.148 ±0.001)% 

Normalized 

deviation for kinetic 

energy of platelet: 

𝜀(𝑘𝐵𝑇, 𝑡) 

(25.15 ±2.12)% (16.96 ±2.60)% (15.36 ±2.34)% (0.303 ±0.177)% 

Normalized 

deviation for the 

stress distribution: 

𝜀(𝜏̂, 𝑡) 

(15.22 ±0.11)% (15.16 ±0.10)% (15.03 ±0.09)% (12.53 ±0.11)% 

Parallel speed 

(simulated time per 

core-hour) 

5.58 × 10
-5

 1.53 × 10
-7

 2.00  × 10
-7

 1.56 ×10
-7

 

Speedup (ratio of 

MTS speed over STS 

speed) 

2682.1 7.3 9.6 7.5 

Parallel efficiency  51% 47% 52% 45% 

Note: (i) The values for normalized deviations are represented as (mean±standard deviation); (ii) 

Parallel performance metrics are compared based on experiments using 600 cores. 
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2.5.2 Analysis of Speed 

There is a significant improvement in computing efficiency, though some measures 

showed somewhat chaotic behavior. Figure 2-13 presents absolute speeds of simulations using 

MTS and STS. Figure 2-14 shows speedups of MTS algorithms by comparing to STS. Figure 

2-15 demonstrates parallel efficiencies of MTS and STS. Table 2-5 presents the performance of 

these MTS algorithms. 

 

Figure 2-13: Parallel speeds 𝕊(P) vs. various processor cores 𝑝 for the non-MTS and MTS 

solvers (A base 10 logarithmic scale for the vertical axis)  
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Figure 2-14: Speedups of MTS algorithms over the STS algorithm (A base 10 logarithmic 

scale for the vertical axis) 

 

Figure 2-15: The parallel efficiencies 𝔼(10, p2) versus various processor cores p2 for the non-

MTS and MTS solvers 
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records presented in Figure 2-13, indicate that for the computational challenge of simulating one 

millisecond multiscale phenomena of platelets flowing in viscous fluid flow, STS requires 26 

years using 600 cores, where using the same resources MTS requires only ~3.5 days. MTS 

algorithms offered an opportunity of simulating the molecular-scale mechanisms of deformable 

platelets flowing in the viscous fluid flows within affordable computing demands. 

Figure 2-14 reiterates the constant effectiveness of MTS algorithms at a variety of 

computing system sizes. As the number of cores increases, communication is becoming a more 

dominant factor of limiting the scalability than computation. Thus, the speedups of MTS-L over 

STS decreased from >4000 to ~2000 while the parallel efficiencies decreased dramatically, as 

illustrated in Figure 2-15. Figure 2-16 compares the percentiles of communication and 

computation for MTS-L and STS. The results obviously demonstrate that MTS-L is effective at 

reducing the computation but it poses higher demands on communication than STS does. The 

performance analysis clearly indicated that a powerful communication system is quite important 

for improving the performance of multiscale modeling using MTS [32, 80]. 

 

Figure 2-16: Percentiles of computation (Compt.) and communication (Comm.) over the total 

running time vs. the number of cores for the STS and MTS-L integrators 
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Accuracy analysis indicated that, as a measure, the kinetic energy of the platelet system is 

most chaotic. Analyzing the speed, we realized that the step sizes for CGMD and DPD 

significantly impacted the computational performance. These observations inspired us to seek a 

balance between accuracy and speed. In our experiments, we use normalized deviations of 

kinetic energy of the single platelet as the criterion of accuracy, terming it as the percentile error. 

A smaller percentile error usually results from a more fine-grained integrator. Additionally, we 

use the wallclock time (in days) to complete a 1-ms simulated time as the criterion of speed. Our 

computer has 300 cores. We start with step size for CGMD at 10
-7

 and vary the step sizes for 

DPD as shown in Figure 2-17. We observed that: (a) when the step sizes for DPD increased from 

10
-7

 to 10
-5

, the speed considerably improved; (b) when the step size for DPD is between 10
-5

 and 

10
-3

, both the accuracy and speed curves reached a plateau. The percentile error was within 20%, 

though DPD advanced with a nanoscale step size (Δt = 10
-3

). Following that, we continued to use 

the step size 10
-3 

for DPD and then varied the step sizes for CGMD as shown in Figure 2-18. We 

observed that: (c) increasing the step sizes for CGMD caused an obvious performance gain. 

However, (d) there was a critical point for the accuracy: when the step size for CGMD was close 

to 10−3, the accuracy quickly deteriorated. These experiments suggest that a nanoscale integrator 

for coarse-grained stochastic dynamics (Δt ~ 1.2 ns) and a sub-nanoscale integrator for coarse-

grained molecular dynamics (Δt ~ 0.12 ns) constitute an optimal combination for accelerating the 

simulation speed while keeping the percentile error within 20%. These experiments 

demonstrated that appropriate choice of MTS parameters considerably improve the 

computational efficiency without a significant loss of accuracy, thus establishing a 

computationally feasible approach for solving a particle-based system at multiple scales for 

performing efficient multiscale simulations. The MTS optimization scheme developed and 

presented herein, tunes a multiple time stepping algorithm for combined DPD-CGMD 

simulations, which we have applied to the modeling of platelets dynamics in flowing blood 

plasma. This approach can be employed in any application using such a combined scheme. 

Generally, the top-scale method of such scheme could advance with much larger step sizes than 

the bottom-scale method and the spatial-interface between two scales should then adopt a 

corresponding middle step size. An optimal MTS scheme could be obtained for keeping accuracy 

of simulating bottom-scale within certain error boundaries.  
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Figure 2-17: Percentile error and wallclock time (in days) for 1-ms simulation vs. different 

scales of step sizes for DPD in which the CGMD is integrated at 10
-7 

 

 

Figure 2-18: Percentile error and wallclock time (in days) for 1-ms simulation vs. different 

scales of step sizes for CGMD in which the DPD is integrated at 10
-3
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2.6 Summary  

This chapter presents an integrated multiple time-stepping (MTS) algorithm to solve a 

multiscale model of the dynamics of platelets flowing in viscous blood flow. The MTS algorithm 

proposes a multi-level integration scheme, allowing an optimization procedure for seeking a 

faster performer within certain error boundaries. The results demonstrated that the microscopic 

measures for single platelets are more sensitive to the MTS parameters than the macroscopic 

measures for the hybrid system; and the error propagation prevented in all cases studied. The 

results reaffirms that a separation of temporal scales in MTS considerably improves the 

efficiency of utilizing parallel computing resources, as compared to conventional single-scale 

methods in which considerable time is wasted conducting massive unnecessary computations 

(for example, completing 1-ms multiscale simulation of a 10-million particle system is reduced 

from 2.6 years to 3.5 days only). This work establishes a computationally feasible approach for 

solving large-scale particle-based systems at multiple scales for performing efficient multiscale 

simulations. Integrated MTS algorithms such as the one presented in the current work are 

essential for achieving full multiscale particle-based modeling of complex physiological flows, 

e.g., flow-induced platelet-mediated thrombosis, etc. Using MTS, we have achieved a dramatic 

reduction of the modeling time for system sizes and simulation times that are relevant to 

multiscale phenomena such as thrombosis formation. By developing computationally feasible 

and efficient approaches, such challenging simulations of molecular biomechanics at multiple 

scales are brought within the reach of current high-performance computing resources. 
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Chapter 3 Discovery of Force Field 

3.1 Introduction  

Viscous blood flow dynamics play a major role in cardiovascular devices (CVS) design 

process which in recent years relies more heavily on numerical simulation [9, 10]. While the 

advent of these devices has provided life-saving solutions to millions of patients in the United 

States [81, 82], thromboembolism remains an impediment in which shear induced platelet 

activation stimulates blood clotting [12-14]. To reduce the thrombogenic risk potential of the 

devices, efficient numerical simulations of blood flow need to be able to model not just the flow 

dynamics but processes pertinent to flow induced blood clotting. 

Computational fluid dynamics (CFD) is a well-established and universal continuum 

approach to study complex fluid flows. However, CFD simulations, while able to capture the 

overall flow mechanisms, are too coarse to model the finer features of blood particulate flow and 

fully describe the interactions of key players in blood coagulation such as platelets and other 

cells those may involve [24, 83]. To address the limits of continuum approaches [84, 85], 

dissipative particle dynamics (DPD) approach is introduced [86] to model heterogeneous fluids 

and biophysical details that are difficult to achieve using continuum approaches because the 

molecular effects, e.g., adhesion and aggregation bonds of blood clotting occur at the nano to 

micro scales. The coupling of the disparate spatial and time scales inspires multiscale simulation 

studies using approaches which depart from the continuum approaches [21, 87, 88]. A potential 

approach for such studies presented here is by coarse graining the atomistic based molecular 

dynamics (MD) to tradeoff between physical details and modeling feasibility. 

In the past two to three decades, considerable efforts have been devoted to developing 

coarse-grained (CG) molecular models for studying polymers, bio membranes, surfactants and 

hemodynamics [89-97]. These CG models enable to focus on the particular scales of interactions 

by averaging the less essential degrees of freedom, resulting in a reduction of redundant 

computational loads. The selection of the degrees of freedom for coarse graining depends on the 

phenomena the simulation is trying to achieve. Therefore, some CG models encapsulate whole 

molecules while others treat several molecules as one effective CG particle. For example, one 

CG particle represents one water molecule in [89, 91, 93, 98], or three water molecules in [96, 
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97], or four in [99, 100], or even five in [95], according to the simulation scales that best 

represent the phenomenon the simulation is trying to achieve. These CG models, while losing 

some resolution of the physical properties, enable us to consider larger systems within reasonable 

computational costs. Typically, the target properties include the thermodynamic properties, e.g., 

enthalpy of vaporization, free energy of solvation and interfacial tension, and statistical 

properties, e.g., radial distribution function and mean square displacement. 

Developing a reliable CG model is challenging, in particular the effective force field with 

properly fitting parameters. Characteristically, a CG model simplifies the molecular description 

by smearing the interacting complexes, as save the computational cost of resolving the intricate 

details of physical properties. Deriving the effective potential analytically from statistical 

mechanics or other lower order principles may become limited to few simple cases [97]. A viable 

alternative for defining force field potential functions is to employ some simple and empirical 

models with a finite precision. Lennard-Jones (LJ) potential is the most popular pairwise non-

bonded interaction model for simple applications, with limited accuracy. However, for, e.g., the 

case of complex viscous fluids, it offers only limited predictive capabilities [21]. Morse potential 

may fill the void in the “model space” although in its original form it is also limited. In 1929, 

physicist P. M. Morse developed the potential to describe chemical bond formation and 

dissociation [101]. In 2003, a Morse-like potential was adapted and proven capable of 

reproducing phase transitions and liquid-vapor coexistence curves of real fluids [90]. In 2010, it 

was parameterized for CG modeling of water and the n-alkanes and achieved a good agreement 

of various properties, including the enthalpy of vaporization, bulk densities, interfacial tensions, 

free energies of transfer, diffusion coefficients and isothermal compressibility [99].  

We extended the Morse potential approach presented in [99] to a CG model which 

includes a modification of the Morse potential, in order to simulate the flow of a blood plasma 

fluid. The key contributions of our work include parameterizing the model under multiple scales 

for fitting commonly used hemodynamic properties: density, pressure, isothermal 

compressibility and viscosity. Our model also reproduces the Counter-Poiseuille and Couette 

flows in agreement with these analytical benchmark solutions. 



41 

 

3.2 Simulation 

We model the blood plasma fluid by using CG particles, each of which lumps the 

aggregate effect of an ensemble of molecules. The total mass 𝑀𝐶𝐺  of each CG particle is the sum 

of the masses of these molecules, measured in atomic mass unit (𝑎𝑚𝑢), and the position of a CG 

particle is the center of mass of this ensemble. The average distance 𝜇 is measured as the mean-

free-path of the CG particles: 

 𝜇 = 𝜌𝑝
−1/3

= (𝑀𝐶𝐺/𝜌𝑚 )1/3 Equation 3-1 

where 𝜌𝑚 and 𝜌𝑝 are the mass and particle density respectively. Obviously, for a system with 

fixed number of molecules, a larger 𝜇  implies a larger coarse-graining level, i.e., each CG 

particle contains more molecules. The growth of 𝜇  with the exponential increase of 𝑀𝐶𝐺  is 

shown in Figure 3-1, showing the relationship between 𝑀𝐶𝐺  and the graining level. 

 

Figure 3-1: The relationship of the average distances over mass scales: MCG (amu) vs. 𝜇 (Å) 

where 𝑥-axis is in logarithm scale of base 10. 

We use a single water molecule of 18.0154 𝑎𝑚𝑢 as the mass unit of a basic molecule 

since blood plasma, which constitutes 55% of blood fluid, consists mostly of water (92% by 

volume). The W4 model, developed recently [99] for coarse-graining water, lumps four water 

molecules of 72.062 𝑎𝑚𝑢 into one effective CG particle. In adapting the model to blood plasma 

we had to coarsen further the W4 model to include approximately 40 to 400 water molecules. 
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Specifically, we extend the W4 model by further increasing the CG levels: 𝑀𝐶𝐺=72, 720 and 

7206 𝑎𝑚𝑢  for blood plasma. However, the original form of the Morse potential previously 

applied for the W4 model fails to express the interactions of the coarser model we are 

considering. After carefully studying several alternatives, we introduce the following modified 

Morse potential: 

𝑈𝑖𝑗(𝑟) = 𝜀[exp(𝛼(1 − 𝑟𝑖𝑗/𝑅(𝜇)) − 2exp (𝛼(1 − 𝑟𝑖𝑗/𝑅(𝜇))/2)] Equation 3-2 

where 𝑅(𝜇) = 𝑎/(𝜇 − 𝑏) + 𝑐, 𝑈𝑖𝑗(𝑟) is a pairwise non-bonded potential energy and 𝑟𝑖𝑗  is the 

relative distance of a particle pair, 𝑅(𝜇)  is the distance of minimum energy 𝜀  and 𝛼  is a 

parameter that measures the curvature of the potential around 𝑅(𝜇). It contains three positive 

parameters 𝑎, 𝑏 and 𝑐 in units of Å
2
, Å and Å respectively. Parameter 𝑎 is related to the surface 

tension of the CG particle. It specifies the deviation of our modified Morse potential from the 

original Morse potential and it becomes 0 when our model reduces to the original. The 

parameters: 𝜀 , 𝛼  and 𝑅(𝜇)  in Equation 3-2 are obtained through the conventional inverse 

problem approach, i.e., the parameters are adjusted so that the simulation output best matches 

published blood plasma properties (summarized in Table 3-1). 

Table 3-1: Mechanical properties of blood plasma fluid 

Properties Symbol Values Units 

Mass density 𝜌𝑚,0 1.05 𝑔/𝑐𝑚3 

Fluid pressures 𝑃0 1.12 / 1.17 𝑏𝑎𝑟 

Isothermal compressibility [102] 𝜅𝑇,0 4.6 × 10−5 𝑏𝑎𝑟−1 

Shear viscosity [103] 𝜂0 1.10-1.30 𝑚𝑃𝑎 ⋅ 𝑠 

All simulations were performed at 310 Kelvin with NVT ensemble [104], using the 

LAMMPS (Large-scale of Atomic/Molecular Massively Parallel Simulator) code [46] (21-Dec-

2011 version). A cubic box with 27,000 CG particles and mass scales of 72, 720 and 7200 amu 

were tested. Specific side lengths with reference to the density were used together with periodic 

boundary conditions. The CG particles are treated as mathematical dots for which all internal 

rotational and vibrational degrees of freedom within each CG particle are smeared out. The 

Berendsen thermostat method [105], which is realized by coupling to external bath, is 

implemented for temperature control. The isothermal compressibility 𝜅𝑇 is calculated using the 

finite difference expression [106] and is expressed as: 
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𝜅𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇

= (
𝜕 ln(𝜌)

𝜕𝑝
)

𝑇

≈ (
ln (𝜌2/𝜌1)

𝑝2 − 𝑝1
)

𝑇

 Equation 3-3 

The shear viscosity 𝜂 is calculated using the Green Kubo (GK) method [107, 108]. In this 

method, 𝜂 is given by integral of an accurate time-correlation of the equilibrium fluctuations of 

the corresponding flux and is expressed as: 

𝜂 =
𝑉

3𝑘𝐵𝑇
∫ ∑ < 𝑃𝛼𝛽(0)𝑃𝛼𝛽(𝑡) >

∞

0

𝑑𝑡 Equation 3-4 

where 𝛼𝛽 ∈ {𝑥𝑦, 𝑦𝑧, 𝑥𝑧}. V is the volume of the system, 𝑘𝐵 is the Boltzmann constant and 𝑇 is 

the temperature. 𝑃𝛼𝛽 refers to off-diagonal component of the pressure tensor. The angle brackets 

around the summation refer to an average of a “sufficiently large” sample. Equation 3-4 can be 

re-written in the form: 

𝜂 = 𝜆 ∫ 𝐶𝛼𝛽(𝑡)
∞

0

𝑑𝑡 Equation 3-5 

where 𝐶𝛼𝛽(𝑡) is the stress tensor autocorrelation function and 𝜆 is a constant. Parameter 𝜏𝑣 is the 

characteristic time and is used for determining the number of samples to control the error 𝐸𝑣 at 

below 5%. 

3.3 Parameterization 

Determining the interacting potential of CG particles involves at least two steps: (1) 

constructing the mathematical structures of the modified Morse potential and (2) deciding the 

parameters in the formula. This second step is referred to as parameterization and is 

accomplished through numerical experiments, as described below. 

A series of numerical experiments on classical Morse potential allowed us to understand 

the dependencies of different target properties on various parameters, summarized in Table 3-2.  

Table 3-2: Impact of model parameters on target properties 

Impacts 
Target Properties 

𝑷 𝜿𝑻 𝜼 

Change of 

parameters 

Increase 𝛼 <->  <-> 

Increase 𝑅  <->  

Increase 𝜀    

Increase 𝜌    
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We notice that a series of models with 𝛼 = 7~10 are capable of reproducing desired 

properties, in particular,  𝛼 = 10 allows a longer timestep for dynamic simulations. 𝑅  greatly 

influences the pressure; both 𝜅𝑇 and 𝜂 are closely related with 𝜀; and, if 𝜀 is larger than some 

threshold, GK autocorrelation will diverge, resulting in a non-fluid behavior. With these 

observations, we exhaustively search the parameter space for the optimal set of parameters. 

Particularly, for a given 𝑀𝐶𝐺 , we decouple the parameters in individual stages: 

Stage 1: Given 𝛼 and 𝜀, search 𝑅 to approximate 𝑃0, resulting in a series of isothermal-

isobaric curves under equilibrium. This yields 𝑅 = 𝑅(𝛼, 𝜀). 

Stage 2: Given 𝛼, compute 𝜅𝑇 and 𝜂 under a series of 𝜀 and 𝑅(𝛼, 𝜀), to find the optimal 

combination. 

To measure the accuracy of the approximating parameters, we normalize 𝜅𝑇  and 𝜂 by 

dividing them by their target values. Obviously, the normalized 𝜅𝑇 or 𝜂 is expected to be “1” as 

its ideal value. 

Using the 2-stage approach, Figure 3-2 demonstrates that the classical Morse potential is 

parameterized well to express interactions of all CG particles at 𝑀𝐶𝐺 = 72.06  amu (W4). 

However, the 2-stage exhaustive search approach fails to parameterize the classical Morse 

potential for the CG level of 𝑀𝐶𝐺 = 720.62 amu. This is depicted in Figure 3-3: when desired 𝜂 

is obtained, 𝜅𝑇 is still far from its target value. On the other hand, when we continue increasing 𝜀 

for improving 𝜅𝑇, GK autocorrelation diverges, driving the system out of its liquid phase range. 

This demonstrates that the classical Morse potential is inadequate for expressing the interactions 

of the larger CG particles needed for simulating blood plasma fluid. 
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Figure 3-2: Impact of 𝜀 in classical Mores potential on normalized compressibility κT  and 

viscosity 𝜂 where 𝛼=10 and MCG = 72.06 𝑎𝑚𝑢 

 

Figure 3-3: Impact of 𝜀 in classical Morse potential on normalized compressibility κT  and 

viscosity 𝜂 where 𝛼=10 and MCG = 720.62 𝑎𝑚𝑢 

To address the limitation of the classical Morse potential we introduce a form factor 𝑅 as 

a function of average distance 𝜇. Accordingly, we modify the exhaustive search approach as 

follows: 

Stage 1: Given 𝛼 and 𝜀, search 𝑅 to approximate 𝑃0, resulting in a series of isothermal-

isobaric curves under equilibrium. This yields 𝑅 = 𝑅(𝛼, 𝜀). 

Stage 2: Given 𝛼 , compute 𝜂  under a series of 𝜀  and 𝑅(𝛼, 𝜀) , to find the optimal 
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Stage 3: Given (𝛼𝑐 , 𝜀𝑐 , 𝑅𝑐), the system is compressed in a certain range to get a series of 

{𝜇𝑖}𝑖=0
𝑛 . The compression ratio is no more than 5%. The distance 𝜇0  measures the average 

distance of the uncompressed system and 𝑅𝑐  is associated with 𝜇0 . For  {𝜇𝑖}𝑖=1
𝑛 , {𝑅𝑖}𝑖=1

𝑛  is 

adjusted to obtain the desired pressure increment as calculated in Equation 3-3. Lastly, the form 

𝑅(𝜇) = 𝑎/(𝜇 − 𝑏)  + 𝑐  is adopted by applying a non-linear least square fit of the data 

points (𝜇𝑖 , 𝑅𝑖).  

Using this 3-stage approach, the modified Morse potential can be conveniently 

parameterized to express interactions of CG particles at the range of 𝑀𝐶𝐺 =720.62 through 

7206.20 𝑎𝑚𝑢 effective mass scales. Figure 3-5 and Figure 3-7 depict the pressure variation when 

the system is compressed, where the ideal values are computed through Eq. (3) and the 

experimental values are obtained through simulations. The corresponding functions 𝑅(𝜇) are 

present in Figure 3-4 and Figure 3-6 respectively. The parameters for all tested CG levels are 

present in Table 3-3. In the table, we can see that a more coarsening level would lose some 

resolution of physical properties than a less coarsening level. For example, experimenting with 

various MCG  values indicates that the viscosity cannot reach the desired value for 𝑀𝐶𝐺 =

7206.20 𝑎𝑚𝑢 at normal pressure but the characteristic viscosity could be maintained at a higher 

pressure. Therefore, we selected the parameters in Table 3-3 to enable our fit to most of the 

physical characteristics including the viscosity and the pressure. Although the high level of 

coarsening does increase the inaccuracies of the physical properties, these inaccuracies are under 

control and we are able to consider larger systems without adding too much computational cost. 
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Figure 3-4: The form factor R()  in modified 

Morse potential for MCG  = 720.62 amu 

Figure 3-5: Pressure 𝑃 (in bar) with the increase 

of 𝜇 (in Å) in modified Morse potential for MCG  

= 720.62 amu 

  

Figure 3-6: The form factor R() in modified 

Morse potential for MCG  = 7206.20 amu 

Figure 3-7: Pressure 𝑃 (in bar) with the increase 

of 𝜇 (in Å) in modified Morse potential for MCG  

= 7206.20 amu 

 

Table 3-3: Parameters of the modified Morse potential for various mass scales 

𝑴𝑪𝑮 𝝁 𝝆𝒎 𝝆𝒑 𝜶 𝜺 
𝑹 = 𝒂/(𝝁 − 𝒃) + 𝒄 

𝒓𝒄𝒖𝒕 𝑷 𝜿𝑻 𝜼 
𝒂 𝒃 𝒄 

72.06 4.85 

1.05 

8.776 

10 

1.3 0.00 - 5.49 12 1.5 5.44 0.97 

720.62 10.44 0.8778 1.4 0.12 10.53 13.23 27 1.2 4.66 0.96 

7206.20 22.50 0.0878 1.6 2.64 22.70 36.87 27 18.4 4.90 0.57 

Note: MCG (mass of an effective CG particle, 𝑎𝑚𝑢), µ (average distance, Å), ρm (mass density, 

𝑔/𝑐𝑚3), ρp (particle density, 10
-3∙ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/Å

3
), 𝛼 (curvature control parameter, a number), 𝜀 

(minimum energy, 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 ), 𝑅 = 𝑎/(𝜇 − 𝑏)  + 𝑐  (equilibrium distance, Å), 𝑎  (Å
2
), 𝑏  (Å), 𝑐 

(Å), rcut (cut-off distance of potential, Å),  𝑃 (pressure, 𝑏𝑎𝑟), kT (isothermal compressibility, 10
-

5∙bar
-1),

 𝜂 (shear viscosity, 𝑚𝑃𝑎 ⋅ 𝑠).  

3.4 Results and Analysis 

We tested and analyzed the model and parameters under three effective mass scales 72, 

720 and 7200 𝑎𝑚𝑢 , for determining the transport coefficients through Green Kubo 

autocorrelation. We show structural properties by using the radial distribution functions, and 

validate two classic viscous flows scenarios- representing the behavior of our CG model for 
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blood plasma flow under various shear stress conditions: Counter-Poiseuille flow and Couette 

flow.  

3.4.1 Green Kubo Autocorrelation 

We calculate the GK autocorrelation in a system of 27,000 CG particles. In the 

simulation, the sample interval is Δ𝑠 = 5 and the time step 𝑑𝑡 =15, 50 and 100 𝑓𝑠 for 𝑀𝐶𝐺 = 72, 

720, 7206 𝑎𝑚𝑢  respectively. We test and select a proper correlation length long enough to 

capture the decaying behavior but not too long to add noise. Parameter 𝜂  is the integral of 

correlation function as in Equation 3-4 and is presented  

Figure 3-8 shows a normalized autocorrelation function. Table 3-4 summarizes the 

characteristic time 𝜏𝑣 of the model under various CG levels. 

𝑴𝑪𝑮 = 𝟕𝟐. 𝟎𝟔 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎. 𝟔𝟐 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎𝟔. 𝟐𝟎 𝒂𝒎𝒖 

   

Figure 3-8: Auto stress correlation functions Cαβ(t)  vs. time t (in ps)  

 

Table 3-4: Characteristic time of different CG levels: MCG, 𝜇 (average distance, Å), 𝑑𝑡 (timestep, 

fs) and  𝜏 (characteristic time, ps) 

𝑴𝑪𝑮 𝝁 𝒅𝒕 𝝉𝒗 

72.06 4.85 15 0.35 

720.62 10.44 50 2.25 

7206.20 22.50 100 5.00 
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3.4.2 Radial Distribution Function 

We calculate the radial distribution functions (RDF) for a system of 27,000 CG particles 

to validate the structural properties of our model at various CG levels as shown in Figure 3-9. 

𝑴𝑪𝑮 = 𝟕𝟐. 𝟎𝟔 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎. 𝟔𝟐 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎𝟔. 𝟐𝟎 𝒂𝒎𝒖 

   

Figure 3-9: Radial distribution functions of the Morse fluids 𝑔(𝑟) vs. 𝑟   

3.4.3 Counter-Poiseuille and Couette flows  

We test our model and parameters of different CG levels to reproduce two typical viscous 

flows: the Counter-Poiseuille and Couette flows, and compare the simulation results with the 

analytical solutions.  

The Counter-Poiseuille flow is tested with three effective mass scales: 𝑀𝐶𝐺 = 72, 720, 

7206 𝑎𝑚𝑢 respectively. Figure 3-10 illustrates the simulation domain for the Counter-Poiseuille 

flow. This domain is divided into a left region and a right region in which two opposing forces 

are applied on all fluid particles with magnitudes 0.05 𝑘𝑎𝑙 𝑚𝑜𝑙/𝐴 ⁄  in 𝑦 direction. A system size 

of 40× 20 × 20 CG particles with periodic boundary conditions is utilized. We have run the 

simulation for 200,000 simulation steps in total. After 50,000 simulation steps, we observe that 

the Counter-Poiseuille flow is fully developed as the velocity profile no longer changes with time. 

The velocity profiles of fully developed Counter-Poiseuille flows for three mass scales are 

shown in Figure 3-12. 

Additionally, we test our model to reproduce the Couette flow with the same effective 

mass scales, system size and the total number of simulation steps as above.  
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Figure 3-11 illustrates the simulation domain for the Couette flow. This domain is 

divided into three regions: lower wall region, flow region and upper wall region. We apply two 

opposing forces with velocity magnitude of −3.5, −1.1, and 0.35 Å 𝑝𝑠⁄  respectively on all the 

upper and lower wall CG particles. We impose the periodic boundary conditions along the 𝑥- and 

𝑧-directions and use virtual wall particles reflection method at the inner layer of 𝑦-direction 

walls to achieve a characteristic no-slip boundary condition at the interface of the fluid and the 

wall [104, 109]. Briefly, wall reflection is applied such that if a particle moves outside the wall 

on a certain time step by a distance delta, the particle is dragged back by the same delta, and the 

sign of the corresponding component of its velocity is flipped [46, 104]. After 10,000 simulation 

steps, we observe that the Couette flow is fully developed as the velocity profile no longer 

changes with time. The velocity profiles of fully developed Couette flows for three mass scales 

are shown in Figure 3-13.  

The velocity profiles of fully developed Counter-Poiseuille and Couette flows are 

compared with the analytical solutions for all cases in Figs. 12 and 13. The analytical solution of 

Counter-Poiseuille is described by [110]: 

𝑣𝑦(𝑥) =
𝜌𝑔𝑦

2𝜂
(𝑥𝐷 − 𝑥2) Equation 3-6 

Here, 𝑣𝑦 is the velocity distribution, 𝜂 is the dynamic viscosity, 𝜌 is the mass density, and 

𝑔𝑦 is the force.  

These comparisons in Figure 3-12 and Figure 3-13 show that the velocity profiles of fully 

developed Counter-Poiseuille and Couette flows almost overlap with expected analytical 

solutions. Additionally, we observe no density fluctuations across the flow domains. This 

demonstrates the validity of our methodology for imposing no-slip boundary conditions and 

obtaining the characteristic velocity distribution in both Counter-Poiseuille flow and Couette 

flow benchmark solutions for a broad range of spatiotemporal scales. 
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Figure 3-10: Schematic representation of the periodic Poiseuille flow 

 

 

Figure 3-11: Schematic representation of the Couette flow 

 

𝑴𝑪𝑮 = 𝟕𝟐. 𝟎𝟔 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎. 𝟔𝟐 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎𝟔. 𝟐𝟎 𝒂𝒎𝒖 

   

Figure 3-12: Counter Poiseuille flows velocity profiles 
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𝑴𝑪𝑮 = 𝟕𝟐. 𝟎𝟔 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎. 𝟔𝟐 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎𝟔. 𝟐𝟎 𝒂𝒎𝒖 

   

Figure 3-13: Couette flows velocity profiles 

3.4.4 The Impact of System Sizes 

We build the identical system of size 675Å × 675Å × 675Å  for three coarse-graining 

approaches. We perform the analysis by using a radial distribution functions (RDF) and then 

compute the flow properties for both Couette and Counter-Poiseuille flows (as illustrated in 

Figure 3-9, Figure 3-12 and Figure 3-13). 

Table 3-5 presents the results and analyses of the same simulation box using three 

different coarsening levels. These results demonstrate that the physical properties vary slightly at 

different coarsening levels but the characteristics of the viscous flows stay unchanged. Table 3-6 

and Table 3-7 compare the results of different simulation boxes using the same coarsening level. 

These results demonstrate that the impact of the simulation box changes on the results including 

the pressure, viscosity, compressibility and radial distribution function profile is negligible. 
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Table 3-5: Results and analyses of the same simulation box using three coarse graining levels 

 𝑴𝑪𝑮 = 𝟕𝟐. 𝟎𝟔 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎. 𝟔𝟐 𝒂𝒎𝒖 𝑴𝑪𝑮 = 𝟕𝟐𝟎𝟔. 𝟐𝟎 𝒂𝒎𝒖 

Illustration of 

coarse graining 

levels 

   

Number of 

particles 
2,744,000 262,144 27,000 

Compressibility 

(10−5 ∙ 𝑏𝑎𝑟−1) 
5.52 4.38 4.90 

Viscosity 

(𝑚𝑃𝑎 ⋅ 𝑠) 
0.93 0.98 0.57 

Radial 

Distribution 

Function 

   

Poiseuille flows 

velocity profiles 

(x-axis: velocity 

in Å/ps; y-axis: 

position in Å) 

   

Couette flows 

velocity profiles 

(x-axis: velocity 

𝑣𝑦 in Å/ps; y-

axis: position in 

Å)    
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Table 3-6: Comparisons of physical properties using different simulation boxes for MCG =
72.06 𝑎𝑚𝑢 

Box dimensions (Å3) 145 × 145 × 145 675 × 675 × 675 Target values* 
 

Number of particles 27,000 2,744,000  

Compressibility 

(10−5 ∙ 𝑏𝑎𝑟−1) 
5.44 5.52 4.6 

Viscosity (𝑚𝑃𝑎 ⋅ 𝑠) 0.97 0.93 1.1 ~ 1.3 

Pressure (𝑏𝑎𝑟) 1.5 1.1 1.12 / 1.17 

Radial  Distribution 

Function 

  

- 

 

 

Table 3-7: Comparisons of physical properties using different simulation boxes for MCG =
720.62 𝑎𝑚𝑢 

Box dimensions (Å3) 314 × 314 × 314 675 × 675 × 675 Target values*
 

Number of particles 27,000 262,144  

Compressibility 

(10−5 ∙ 𝑏𝑎𝑟−1) 
4.66 4.38 4.6 

Viscosity (𝑚𝑃𝑎 ⋅ 𝑠) 0.96 0.98 1.1 ~ 1.3 

Pressure (𝑏𝑎𝑟) 1.2 1.2 1.12 / 1.17 

Radial  Distribution 

Function 

 

 

 

 

- 

*Note: target physical properties are present in Table 3-1.   
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3.5 Application of Modified Morse Potential  

We proposed an advanced multiscale platelet model for describing molecular-level 

mechanical properties of platelet intracellular constituents, including viscous cytoplasm, 

extensible cytoskeleton and bilayer elastic membrane [111]. The model is coarse grained at 

nanometer scales and is tested by correlating with in-vitro experiments, including biorheology of 

cytoplasm, the stiffness of actin filaments and the deformability of membrane. Figure 3-14 

demonstrates structural constituents of the platelet model. 

One of applications for modified Morse potential is used as a simulation method for 

modeling of platelet cytoplasm, with corroborations with in-vitro results for cytoplasmic 

biorheology. Cytoplasm is the main liquid-formed component of the platelet interior and it has 

crucial impact on platelet kinetics and mechanisms under flow stresses [34]. The viscosity of 

cytoplasm falls in the range of 4.1~23.9 𝑚𝑃𝑎 · 𝑠 [4, 6]. Modified Morse with aforementioned 

properties can cover this range neatly and thus can be adopted for modeling the cytoplasm [39, 

90]. These rheological properties of viscous cytoplasm results as shown in [111] demonstrate 

that Morse potential fluid favorably predicts the rheological properties of cytoplasm, offering an 

intracellular viscous flow condition. Moreover, Morse potential has a computational superiority 

over the traditional inter-atomic method by leveraging less essential degrees of freedom, 

resulting in an efficient method of modeling viscous biofluids at the coarser grained levels.  
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Figure 3-14: Multiscale model of human platelets: physical structures and constituents  

(This figure was adoped with permission from ref [111]) 

 

3.6 Summary  

We modified the classical Morse potential to express the interactions of coarse-grained 

all-particle hemodynamics. The key contributions include the introduction of the form factor 

𝑅(𝜇) to the classical Morse potential, in order to enable it to cover spatiotemporal scales ranging 

from atomistic scales to nanoscales and to adapt it to capture the hallmarks of viscous flows 

dynamics. This facilitates studying complex flow mechanics such as of human blood plasma 

whose force field is approximated for the first time by this modified form of the Morse potential. 

Through extensive numerical experimentation, we obtained the parameters for three CG levels 

by multiple-staged methods as to parameterize the classical and modified Morse potentials. We 

have further studied the accuracy of our model by analyzing its transport coefficients and 

structural properties and validated it by reproducing two benchmark viscous flows solutions: 

counter-Poiseuille and Couette flows. 

Future work includes further verification of our model and parameters with more 

complex biological fluids such as blood constituents suspended in plasma, flowing in three-
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dimensional vasculature in patient specific geometries. Analyzing such complex fluids pushes 

the limit of continuum based numerical approaches as it requires an efficient multiscale 

methodology and fast parameterization scheme. Our model and methodology provides the means 

to realize such simulations at an appropriate CG level. 
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Chapter 4 Techniques for Accelerating Simulations   

4.1 Demand of Tasks  

Supercomputer powers are widely used to model simulations, carry out brute force 

calculations or perform large data processing [112]. For example, molecular dynamics 

simulations by tracing atom motions of biological molecules enable studies of molecular 

mechanisms that are unobservable or immeasurable in practical laboratory settings [2, 113-116]. 

Bio and life sciences, such as genomics, proteomics, pharmacology, etc., are the third-largest 

market segment for HPC usage [117]. However, such simulations exhibit major challenges, e.g., 

inefficiency of parallelization, dramatic rise in volume and availability of data, diverse 

spatiotemporal scales of mechanisms happen and so on. Yet multiscale simulations are emerging 

as powerful tools for high-resolution low-cost modeling of clinical problems. Examples include 

the multiscale models for systems with elementary particles and biomolecules [118, 119] and 

various studies of vascular diseases [120-122].  

As for our demands, we seek to study flow-induced platelet activation which may initiate 

coagulation cascade of blood and prompt blood clotting formation in prosthetic cardiovascular 

devices and in arterial diseases processes. Our simulation needs include millions of particles, 

milliseconds or longer multiscale phenomena, complex particle-particle or cell-cell interactions 

as well as thermodynamic control and analysis. 

In order to understand a priori scalability and time-to-solution, we extend our previous 

efforts for modeling platelets under viscous shear flow conditions at multiple spatial-temporal 

scales [56, 111, 123-126] and develop this multiscale model as a benchmark test for predicting 

the problem-specific capability of supercomputers for solving multiscale phenomena of multi-

component biological systems. 

Figure 4-1 shows the scheme of this multiscale benchmark. The diversified force fields at 

different scales escalate computational complexities. The nanoscale platelet model is described 

in section 3.5 and mesoscopic flow is described in section 2.2.1. The wall-driven Couette 

benchmark flow is yielded to flip the deformable platelets. The velocity field of Couette flow is 

reproduced by applying two opposing momenta with velocity magnitude of 1.5 (dimensionless) 
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to the upper and lower walls in 𝑦 dimension, which causes a uniform shear stress with magnitude 

of 8.57 𝑃𝑎 in real units. This is designed to emulate the shear stress range of stenotic vessels 

where thrombogenicity is most likely to happen [127]. In this model, the microstructure of 

flowing platelets changes in response to the extracellular hemodynamic stresses and in the 

meantime the complex intracellular components including cytoplasm and cytoskeleton are 

coarsened to describe the intra-platelet microenvironment at the nanoscale. Through correlating 

with in-vitro observations, the phenomena of spontaneous filopodia formation could be 

mimicked [128]. This numerical model could be extended to simulate the processes involving in 

platelet activation leading to thrombosis, offering a practical numerical solution.  

Three problem sizes of our multiscale simulations are selected as benchmarks 

(summarized in Table 4-1):  

(1) The smallest system contains 680,718 particles, forming a single platelet that flows in a 

viscous flow. In the system, the platelet and flow sub-models contain 140,015 (21%) and 

540,703 (79%) particles, respectively. This system is used for parameterization and 

observation of micro morphological changes for platelet; 

(2) The middle system contains 2,722,872 particles forming 4 platelets. This system is 

suitable for validating the inter-platelet and platelet-vessel interactions;  

(3) The largest system contains 10,891,488 particles forming 16 platelets. This system helps 

study the initial stage of blood clotting processes involving multiple platelets.  

Table 4-1: Problem sizes and dimensions of multiscale benchmarks   

Experiments # of Platelets # of Particles Dimensions 

Exp-S 1 680,718 45×90×45 

Exp-M 4 2,722,872 90×90×90 

Exp-L 16 10,891,488 180×90×180 
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Figure 4-1: Multiscale modeling framework for simulating platelets in blood flows  

 

4.2 Supply of Supercomputer Resources  

Nowadays, the top four systems, i.e., Tianhe-2 (MilkyWay-2), Titan, Sequoia, and K 

computer on the Top500 release list (Nov 2015), demonstrate higher than 10 Petaflops sustained 

performance. As the era of increasing computer performance simply by increasing CPU clock 

speeds or packing more dense processors into small space as much as possible ends, the HPC 

community is exploring development efforts for breaking the Exaflop barrier [112, 129, 130]. 

Interconnection networks are developed to support much larger number of processors at the 

expense of increased engineering complexities and programming difficulties [32, 80, 131, 132]. 

Accelerators are used for boosting floating-point performance, though it further escalates the 

difficulty of programming [133-135]. Another dimension of performance supply is driven by 

cloud platforms [136]. HPC cloud services can component exitsing solutions, with advantages of 

higher utilization of resouces, economy of scales, and operational efficiency. The availibility of 

HPC cloud services allow researchers to have access to computing resources immediatedly when 

they need without waiting in queue, which can greatly improve the time-to-result effciency.  
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We implemented our multiscale benchmarks on three platforms: Tianhe-2 (No. 1 in 

TOP500 from Jun 2013 until now), Stampede (No. 7 in TOP500 from Nov 2012 through Nov 

2014) and Cray CS-Storm, a high-density multi-accelerator system. The CS-Storm system is 

used in the No. 10 computer of the Nov 2014 release of TOP500 with NVIDIA K40. In this work, 

we tested the CS-Storm system with K40 and K80, which is the latest NVIDIA GPU generation 

so far. Table 4-2 summaries the nodal configurations and peak performance (GFlops) of the 

three systems. 

(1) Tianhe-2 supercomputer, first released in 2013, is powered by 3.12 million cores from 

16,000 compute nodes. Each node has two Intel Ivy Bridge processors (Xeon E5-2692 v2 

12C 2.2GHz) with 64GB of memory, providing 422.4 GFlops per dual socket node. Each 

node also has three Intel Phi coprocessors, providing 3 TFlops per node. The processing 

nodes are connected by the TH Express-2 customized interconnect networks [137]. 

 

(2) Stampede supercomputer, first released in 2012, is powered by 0.46 million cores from 

6,400 compute nodes. Each node has two Intel Sandy Bridge processors (Xeon E5-2680 

8C 2.7GHz) with 32GB of memory, providing 345.6 GFlops per dual socket node. Each 

node also has one Intel Phi coprocessor, providing 1 TFlops per node. These nodes use 

the FDR InfiniBand network in a 2-level fat-tree topology. The Tianhe-2 single-node 

peak-performance is 2.54 times that of Stampede. 

 

(3) CS-Storm is a high-density multi-accelerator system and it can integrate up to eight GPU 

cards, e.g., incorporate 8 K40m or 16 K80 where K80 is a dual GPU accelerator. A single 

CS-Storm 8-K40m/16-K80 server provides the double-precision (single-precision) peak 

performance of 11.4 / 15 (34.3 / 44.8) TFlops respectively. The memory is 12 GB per 

K40/K80 GPU. Quite obviously, the CS-Storm node is much more powerful than those 

of Tianhe-2 and Stampede. We tested two configurations of the CS-Storm node: one with 

8 NVIDIA K40m GPUs and 2 Intel Xeon E5-2670 v2 2.5GHz CPUs (264GB memory) 

and the other with 16 K80 GPUs and 2 Intel Xeon E5-2680 v3 2.5 GHz CPUs (132GB 

memory). 
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 Table 4-2: Nodal configurations and peak performance (GFlops) for Tianhe-2, Stampede and 

CS-Storm 

Systems Nodal Configuration* Nodal Perf. (GFlops) 

Tianhe-2 24 cores 422.4 

Stampede 16 cores 345.6 

Stampede (K20) 16 cores + K20 1,515.6 

CS-Storm (K40) 20 cores + 8 K40 11,840.0 

CS-Storm (K80) 24 cores + 16 K80 15,440.0 

*Note: We only consider CPUs and GPUs here. 

4.3 Mapping and GPGPU Acceleration  

The parallelism in our simulations follows spatial decomposition, i.e., each processor is 

assigned a portion of physical domain [46]. Each processor computes the forces on atoms in its 

sub-domain. Each process exchanges atoms with its neighboring processes as atoms on the 

boundary are likely to move from one sub-domain to another. The spatial decomposition 

mappings for each system size are presented in Table 4-3. Boundary conditions in (x, y, z) 

directions are (p s p). For the non-periodic y direction, we referenced non-slip boundary 

condition for the DPD fluid [25].  

Table 4-3: Mappings of each system size 

Exp-S Exp-M Exp-L 

Number of 

Processes 

Parallel 

Partition 

Number of 

Processes 

Parallel 

Partition 

Number of 

Processes 

Parallel 

Partition 

32 2×4×4 32 4×2×4 32 N/A 

64 4×4×4 64 4×4×4 64 4×4×4 

128 4×8×4 128 4×4×8 128 8×2×8 

256 4×8×8 256 4×8×8 256 4×8×8 

512 8×8×8 512 8×8×8 512 8×4×16 

The performance of simulations in general can be fueled up by two thrusts. The first is to 

develop new algorithms. The second is to utilize accelerators with the rapidly growing 

performance. The MTS algorithm reduces computational costs but without lowering the 

communication costs proportionally. The basic idea of a multiple time stepping scheme is to 



63 

 

compute the more costly non-bonded and long-range forces only once per long time step. In each 

step, there are two kinds of inter-processor communication: (1) the atom coordinates exchange 

after they are updated and (2) the forces exchange after every force evaluation. The latter is 

reduced at the same rate at which the force evaluation is reduced by the MTS algorithm and this 

communication can be eliminated if Newton’s 3rd law is ignored among neighbor bin. 

Unfortunately, the former cannot be reduced because the updated atom coordinates must be 

exchanged in the innermost loop in order to update velocities for the next step. When 

computation time is reduced, the unchanged communication costs, resulting in a higher 

communication-to-computation ratio, start to ruin scalability. A way out of this dilemma is the 

increased computational workloads for local computation and utilization of accelerators to 

alleviate local computation.  

In order to successfully simulate the minimum requirement of 1- 𝑚𝑠  multiscale 

phenomena, we exploited the double-punch speedup strategy, i.e., combination of algorithmic 

MTS and hardware GPU acceleration. MTS (section 2.3) that help improve the efficiency of 

integrations while maintaining stability and accuracy (section 2.4). GPGPU acceleration can help 

calculate the computation intensive kernels thus over-take enormous computation loads from 

CPU.  

Numerically, all our simulations were performed with LAMMPS [46] and LAMMPS 

GPU package[138-140]. In LAMMPS GPU package implementation, for each time step, it 

moves particle data back-and-forth between GPU and CPU. It enables neighbor lists building and 

force calculations to be accelerated on GPU. It allows force computations to be performed on 

GPU in three precisions: single or double or mixed, where pairwise forces are computed in single 

precision, but accumulated at double-precision. Performance benefits depend on the hardware 

configurations and simulations. Additionally, we implemented tailored modifications (based on 

LAMMPS version Oct 2014), including:  

(1) No-slip boundary condition between the flows and blood vessels (for CPUs) [58]; 

(2) Multiple time stepping algorithm (for CPUs and GPUs) [124]; 

(3) DPD-CGMD hybrid force field (for CPUs and GPUs) [123].  
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It should be note that though LAMMPS starts to support some functions on Intel Xeon 

Phi coprocessors recently, the code is still unavailable to support all of necessary functions on 

the co-processors for our multiscale simulation, such as DPD pair style.  

4.4 Performance Examinations  

We performed our detailed performance examinations by two stages:  

Stage 1: Test the impact of double-punch acceleration strategy, i.e., the algorithmic MTS 

and hardware GPGPU acceleration to see how much improvement can be achieved by 

combining the acceleration techniques.  

Stage 2: Test the impact of different supercomputer architectures to investigate the 

mapping strategies.  

For stage 1, we examined different MTS configurations as shown in Table 4-4. Similar to 

section 2.3, there are four-level integrators: Δ𝑡1  for the molecular bonded level, Δ𝑡2  for the 

molecular non-bonded level, Δ𝑡3 for the spatial interface level, and Δ𝑡4 for the DPD fluid level. 

The only difference here is that MTS is applied to advanced platelet model (section 3.5) based on 

modified Morse potential. The four-level integrators can be adjusted via three loop factors (𝐾1 

𝐾2  𝐾3). Adjusting the step sizes will impact computational performance but also simulation 

precision. The balance of precision and speed must be considered in terms of specific interested 

properties. As discussed earlier in section 2.4, for multiscale platelets modeling, there are two 

kinds of properties considered: non-chaotic and chaotic properties. Non-chaotic properties, such 

as temperature, pressure and total energy of whole system, are not sensitive to choices of step 

sizes. While chaotic properties, such as the kinetic energy of platelet and stress distribution on 

the platelet membrane mapped from fluid can be susceptible to aggressive step sizes. Here, the 

percentile errors in terms of most chaotic property (kinetic energy of platelets) are well prevented 

and converged in all MTS cases in Table 4-4. Besides the algorithmic MTS, we also examined 

the impacts of incorporating GPGPU accelerations. The stage-1 study is only performed on 

Stampede supercomputer for two problem sizes: Exp-M and Exp-L. 
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Table 4-4: The timesteps and configurations for each MTS test case 

Case 

Time Steps For Each Scale* Configurations 

CGMD-BD 

𝚫𝒕𝟏 × 𝟏𝟎−𝟔 

CGMD-NB 

𝚫𝐭𝟐 × 𝟏𝟎−𝟔 

DPD-CGMD 

𝚫𝐭𝟑 × 𝟏𝟎−𝟔 

DPD 

𝚫𝐭𝟒 × 𝟏𝟎−𝟔 
𝑲𝟏 𝑲𝟐 𝑲𝟑 

Case A 2.5 2.5 25.0 500.0 1 10 20 

Case B 5.0 5.0 50.0 1000.0 1 10 20 

Case C 5.0 5.0 50.0 500.0 1 10 10 

Case D 10.0 10.0 100.0 500.0 1 10 5 

Case E 10.0 10.0 100.0 1000.0 1 10 10 

STS 1.0 1.0 1.0 1.0 1 1 1 

*Note: please note the time step values are in dimensionless units. The coherent physical units 

for scaling dimensionless quantities refer to [111]. By unit conversion, 1 dimensionless time unit 

represents 2.08 𝜇𝑠 physical time.  

Stage 2 tests were performed on all three aforementioned architectures. We reduced one 

dimension by fixing MTS configuration with Case C, which the step sizes for the flow regime 

(DPD) and platelet-flow interface (DPD-CGMD) in MTS are 5 × 10−4 and 5 × 10−5, and the 

smallest step size for intra-platelet force fields is 5 × 10−6. Here case C and STS are labeled as 

mts and no_mts for clarity.  

The timing output from the LAMMPS code is used as the final timing results. Using 

these timing results, we compute the simulation speed in units of: (1) 𝑑𝑎𝑦𝑠/𝜇𝑠, i.e., the number 

of wallclock days it takes to complete 1-μs multiscale phenomena, for showing the days-per-

microsecond performance rate; (2)𝜇𝑠/𝑑𝑎𝑦, i.e., the number of microseconds one physical day’s 

simulation can achieve, for demonstrating the microseconds-per-day rate. Then we compute the 

performance improvement percentage of mts over no_mts using the formula:  

 𝑃(𝑡𝑚𝑡𝑠, 𝑡𝑛𝑜_𝑚𝑡𝑠) = (𝑡𝑛𝑜_𝑚𝑡𝑠 − 𝑡𝑚𝑡𝑠)/𝑡𝑛𝑜_𝑚𝑡𝑠 Equation 4-1 

where 𝑡𝑚𝑡𝑠 and 𝑡𝑛𝑜_𝑚𝑡𝑠 are the timing results in 𝑑𝑎𝑦𝑠/𝜇𝑠 for mts and no_mts algorithms. For 

detailed analysis, we present the communication-to-computation ratio. The communication uses 

the comm timing and the computation is the sum of the pair and bond timing. In all tests, we 

notice that the output timing is almost zero since most outputs are disabled and the neigh timing 

is relatively small, less than 5%. 
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4.4.1 The Impact of MTS and GPGPU Acceleration  

For Single Time Stepping Algorithm   

The simulation speeds for STS ranging from 32 to 512 MPI processes are shown in 

Figure 4-2. For Exp-M, due to memory limitation of processor on Stampede, minimum number 

of processes to start the simulation is 64. As shown in Figure 4-2, the speeds are 0.85 𝑑𝑎𝑦/𝜇𝑠 

and 1.29 𝑑𝑎𝑦/𝜇𝑠  with optimal 256 MPI processes for Exp-M and Exp-L respectively. The 

multiscale phenomena we aim to simulate such as platelet-related reactions including platelet 

activation and platelet aggregation usually happen at millisecond scale. In order to complete 1-

ms simulation, Exp-M needs 848 days and Exp-L needs 1290 days with 256 MPI processes, 

which are obviously impractical using merely the STS algorithm. 

 

Figure 4-2: Parallel speeds of STS simulations 

 

For Multiple Time Stepping Algorithm 

The absolute parallel speeds using MTS algorithm with different jump configurations are 

shown in Figure 4-3 (Exp-M) and Figure 4-4 (Exp-L). Speedups of different MTS cases over 

STS are shown in Figure 4-5 and Figure 4-6. These results reveal significant performance gains 

for all MTS cases. For 64 MPI processes, the most aggressive case (Case E) has 73 and 60 folds 

of computing time reduction for Exp-M and Exp-L and the most conservative case (Case A) has 
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18 and 15 folds of computing time reduction for Exp-M and Exp-L. Case E in general is four 

times faster than Case A because all time steps in Case E doubles those of Case A. In additional 

to the time steps chosen, the improvements of MTS algorithm are also sensitive to scalability of 

this problem. As the number of processes increases, the relative speedups of MTS over STS 

decrease. For 256 MPI processes, Case E only has 11 and 15 times reduction over STS for Exp-

M and Exp-L and Case A only has 3 and 4 times reduction for Exp-M and Exp-L. The timing 

ratios of communication over computation are shown in Figure 4-7 (Exp-M) and Figure 4-8 

(Exp-L). All MTS cases and STS case show a general trend: the communication time dominates 

as the number of processes increases. But compared with STS, the ratios of communication are 

much higher for MTS. For MTS, compared with Exp-L, the ratios of communication are much 

higher for Exp-M. The computation costs including pair, bond, angle, and dihedral force filed 

evaluation were greatly reduced by MTS. As such, the ratios of communication to computation 

elevate.  

For GPGPU Acceleration  

The GPU-enabled performance tests were conducted only for Exp-M with 16 and 32 

GPU nodes, due to the memory limitation of K20 on Stampede supercomputer. NVIDIA K40 

and K80 GPU cards with larger memory can remedy this problem. Figure 4-9 and Figure 4-10 

show the speeds of GPU and their comparisons with the same number of nodes using CPU-only. 

Using 16 GPU nodes (each node has two 8-core Xeon E5 processors and 1 GPU K20 card), we 

obtain a total speedup of 23 over STS.  The MTS algorithm is around 11.5 times faster than the 

STS algorithm with 16 nodes (256 MPI processes); the GPU-enabled system help gain the 

remaining speedup of 2 over the CPU-only system. In total, simulation of 1-𝑚𝑠  multiscale 

phenomena of flowing platelets in blood vessels can be completed within approximate 37 days 

instead of 848 days, allowing practical modeling of millisecond-scale biological phenomena with 

spatial resolutions at the nanoscales. 
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Figure 4-3: Parallel speeds of MTS cases for Exp-M 

 

 
 

Figure 4-4: Parallel speeds of MTS cases for Exp-L 
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Figure 4-5: Speedups of MTS cases over STS case for Exp-M 

 

 
Figure 4-6: Speedups of MTS cases over STS cases for Exp-L 

np32 np64 np128 np256 np512

CaseA 35.04 18.46 8.94 2.96 2.55

CaseB 69.68 37.54 17.47 5.67 5.24

CaseC 68.48 36.75 18.30 5.92 5.05

CaseD 133.86 72.45 35.42 11.54 8.19

CaseE 137.90 73.39 35.48 11.67 10.34

0

20

40

60

80

100

120

140

160

S
p
ee

d
u
p
s 

o
v
er

 n
o
n

-m
ts

 

np64 np128 np256 np512

CaseA 15.06 11.62 3.91 3.20

CaseB 30.72 22.67 7.80 6.47

CaseC 30.93 23.06 7.80 6.38

CaseD 59.26 45.29 15.37 12.59

CaseE 60.93 45.70 15.57 12.71

0

10

20

30

40

50

60

70

80

S
p
ee

d
u
p
s 

o
v
er

 n
o
n

-m
ts

 



70 

 

 

Figure 4-7: The ratios of communication time over computation time for all MTS cases and STS 

for Exp-M 

 

 
Figure 4-8. The ratios of communication time over computation time for all MTS cases and STS 

for Exp-L 
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Figure 4-9: Parallel speeds of GPU-enabled MTS cases for Exp-M 

 

 
Figure 4-10: Speedups GPU over CPU-only for different MTS cases for Exp-M 
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Analysis  

The double-punch acceleration strategy, i.e., the algorithmic MTS and hardware GPU 

acceleration, can significantly improve the overall performance of multiscale simulations. 

Simulating 1-𝜇𝑠 multiscale phenomena can be reduced to 0.037 day by MTS from 0.848 day 

using STS, as shown by Case E configuration with 16 GPU nodes. Thus simulating 1-𝑚𝑠 

multiscale phenomena can be achieved within 37 days from 848 days. 

MTS algorithms, naturally, reduce computational costs without lowering the 

communication costs proportionally. For ten-million-particle level system (Exp-L), even higher 

speedups of MTS cases over STS due to lower communication-to-computation ratios can be 

achieved. As the number of particles per process reduces, a critical point will be reached where it 

is more efficient to run on few cores due to the escalating communication costs. Compared 

absolute speeds, MTS moves faster to that critical point than STS. For example, the critical point 

for STS is 256 MPI processes while for MTS CaseE shows poor scalability at early 32 for Exp-

M and 128 for Exp-L. The basic idea of a multiple time-stepping scheme is to compute the more 

costly non-bond and long-range forces only once per long time step. In each MD step, there are 

two kinds of inter-processor communication [46]. The first is the atom coordinates exchanges 

after they are updated and the second is the force exchanges after every force evaluation. The 

second communication is reduced at the same rate at which the force computation is reduced by 

the MTS algorithms. Unfortunately, the first communication cannot be reduced because the 

updated atom coordinates must be exchanged in the innermost loop in order to update velocities 

for the next step. When computation time has been saved, the unchanged communication costs 

start to ruin scalability. The second communication can be eliminated if Newton’s 3
rd

 law is 

ignored among neighbor bin. In that case, force evaluation will require more computing that the 

MTS algorithms can afford to bear. In this multiscale platelets modeling simulation, Newton’s 

3
rd

 law has to be applied because the DPD pair style needs the Newton pair for momentum 

conservation thus the second communication cannot be further reduced.  

The mechanism of GPU computing for molecular dynamics by the implementation of 

LAMMPS GPU is to port force calculations to accelerators and build neighbor lists optionally at 

CPU-host or GPU-device. Thus, it also suffers the communication bottleneck since the first 

communication issue has not been addressed. However, GPU can over-take enormous 
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computation loads from CPU and the emerging high-density multi-GPU supercomputers will 

definitely lead the way for modeling larger-particle systems [141]. 

4.4.2 The Impact of System Architectures  

For System Architectures  

Performance results are presented in Figure 4-11 through Figure 4-22. Every three 

successive figures present the performance metrics of one supercomputer, which are the 

simulation speed in days/μs, the performance improvement for MTS over STS and the 

communication-to-computation ratio. The supercomputers are presented at the order: Tianhe-2, 

Stampede, CS-Storm 8-K40m and 16-K80. For Tianhe-2 and Stampede, the horizontal axis is the 

number of processor cores (referred to as Number of CPUs) in Figure 4-11 through Figure 4-16. 

For CS-Storm systems, the horizontal axis is the number of accelerators (referred to as Number 

of GPUs) in Figure 4-17 through Figure 4-22. These results for speeds vs. number of 

CPUs/GPUs show the strong scaling of multiscale simulations, in which the problem size is 

fixed while the number of processing elements (CPU/GPU) is increased. The weak scaling is not 

applicable since the problem size has to be determined by the biological nature (i.e., number of 

platelet and platelet density) so it is hardly tailored to offer the fixed workload per processing 

element.  

Constrained by limited memory per compute node, the multiscale simulations failed to 

run on a small group of nodes. This is common for million-scale complex simulations. Thus, we 

begin our tests with 16 cores for Exp-S/Exp-M and 64 cores for Exp-L on Tianhe-2 and 

Stampede. Since the improvement of simulation speeds diminish with the rapid increase of nodes 

(Figure 4-2), we stop the tests until 512 cores are tested. 

For the CS-Storm tests, we use 16 CPU cores and vary the number of GPUs. Similarly, 

constrained by the limited memory of accelerators, the Exp-M failed to run on single GPU and 

the minimum numbers for K40m/K80 for the Exp-L with no_mts are eight. However, the 

minimum requirements for the Exp-L with mts are 8 K40m and 16 K80 GPUs since the mts 

needs more memory to store multi-level force vectors than the no_mts. 
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Upon these results, the simulation speeds and the communication-to-computation ratios 

for Exp-L are compared between Tianhe-2 and Stampede in Figure 4-23 and Figure 4-24, 

respectively. The best performances in days/μs and μs/day are presented in Table 4-5 Table 4-6 

and Table 4-7 for the Exp-S, Exp-M and Exp-L. Moreover, we extend the tests for Exp-S on 

Stampede K20-enabled nodes. Together with Exp-M results from section 4.4.1, we present the 

results in Table 4-5 and Table 4-6 respectively. Exp-L failed to run on K20-enabled nodes due to 

the memory deficiency. Table 4-8 is a summary of simulation speed of on three architectures for 

three problem sizes.  

 

Figure 4-11: Parallel speeds of no_mts/mts algorithms on Tianhe-2 
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Figure 4-12: Perferformance improvement of mts over no_mts on Tianhe-2 

 

 

Figure 4-13: Ratio of communication over computation on Tianhe2 
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Figure 4-14: Parallel speeds of no_mts/mts algorithms on Stampede 

  

 

Figure 4-15: Perfeformance improvement of mts over no_mts on Stampede 
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Figure 4-16: Ratio of communication over computation on Stampede 

 

 

Figure 4-17: Parlalel speeds of no_mts/mts algorithms on 8-K40m CS-Storm 
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Figure 4-18: Perferformance improvement of mts over no_mts on 8-K40m CS-Storm 

 

Figure 4-19: Ratio of communication over computation on 8-K40m CS-Storm 
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Figure 4-20: Parallel speeds of no_mts/mts algorithms on 16-K80 CS-Storm 

 

 
Figure 4-21: Perferformance improvement of mts over no_mts on 16-K80 CS-Storm 
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Figure 4-22: Ratio of communication over computation on 16-K80 CS-Storm 

 

 

Figure 4-23: Parallel speeds of no_mts and mts algorithms for Exp-L on Tianhe-2 and 

Stampede 
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Figure 4-24: Ratio of communication over computation for no_mts and mts algorithms 

for Exp-L on Tianhe-2 and Stampede 
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Systems 

Resources Speed (days/μs) Speed (μs/day) Speedup for 

MTS vs. 

STS 
# of 

GPUs 

# of 

Cores 
STS MTS STS MTS 

K40m 8 16 0.14 0.06 7.14 16.67 2.33 

K80 16 16 0.13 0.04 7.69 25.00 3.25 

Tianhe-2  256 0.61 0.13 1.64 7.69 4.69 

Tianhe-2  512 0.36 0.08 2.78 12.50 4.50 

Stampede  256 0.57 0.12 1.75 8.33 4.75 

Stampede  512 0.34 0.08 2.94 12.50 4.25 

Stampede/K20 16 256 0.14 0.04 7.14 25.00 3.50 

Stampede/K20 32 512 0.62 0.03 1.61 35.50 20.67 

 

 

 

 

 

0

1

2

3

4

5

0 64 128 192 256 320 384 448 512

co
m

m
 /

 (
p
ai

r 
+

 b
o
n
d
) 

Number of CPUs 

no_mts (Tianhe2)

mts (Tianhe2)

no_mts (Stampede)

mts (Stampede)



82 

 

Table 4-6: Best performances for STS and MTS algorithms on three supercomputers for Exp-M 

Systems 

Resources Speed (days/μs) Speed (μs/day) Speedup for 

MTS vs. 

STS 
# of 

GPUs 

# of 

Cores 
STS MTS STS MTS 

K40m 8 16 0.45 0.17 2.22 5.88 2.65 

K80 16 16 0.34 0.11 2.94 9.09 3.09 

Tianhe-2  256 0.90 0.16 1.11 6.25 5.63 

Tianhe-2  512 0.85 0.16 1.18 6.25 5.31 

Stampede  256 0.85 0.15 1.18 6.67 5.67 

Stampede  512 0.74 0.14 1.35 7.14 5.29 

Stampede/K20 16 256 0.15 0.07 6.67 14.29 2.14 

Stampede/K20 32 512 0.14 0.08 7.14 12.50 1.75 

 

Table 4-7: Best performances for STS and MTS algorithms on three supercomputers for Exp-L 

Systems 

Resources Speed (days/μs) Speed (μs/day) Speedup for 

MTS vs. 

STS 
# of 

GPUs 

# of 

Cores 
STS MTS STS MTS 

K40m 8 16 1.63 0.90 0.61 1.11 1.81 

K80 16 16 1.27 0.43 0.79 2.33 2.95 

Tianhe-2  256 1.42 0.19 0.70 5.26 7.47 

Tianhe-2  512 1.09 0.17 0.92 5.88 6.41 

Stampede  256 1.29 0.18 0.78 5.56 7.17 

Stampede  512 0.98 0.16 1.02 6.25 6.13 

Stampede/K20 32 512 0.29 - 3.45 - - 
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Table 4-8: Simulation speeds (μs/day) for multiscale model and MTS algorithm on Tianhe-2, 

Stampede and CS-Storm 

Systems 
Tianhe-2 

(512 cores) 

Stampede 

(512 cores) 

Stampede 

(512 cores 

+ 32 K20) 

CS-Storm 

(20 cores 

+ 8 K40) 

CS-Storm 

(24 cores 

+ 16 K80) 

Problems 

single 

platelet 

680,718 

particles 

12.50 12.50 35.50 16.67 25.00 

4 platelets 

2,722,872 

particles 

6.25 7.14 12.50 5.88 9.09 

16 platelets 

10,891,488 

particles 

5.88 6.25 - 1.11 2.33 

 

Analysis  

Based on performance examinations for three multiscale benchmarks on three 

supercomputers, MTS proves to be an efficient algorithm that achieves the desired performance 

of multiscale simulations, developing the problem-specific MTS algorithms may enable the 

solutions of a class of multiple spatial-temporal problems. The results in Figure 4-12, Figure 

4-15, Figure 4-18 and Figure 4-21 show that MTS is consistently superior over STS in all tests 

on all supercomputers in terms of simulation speeds. The improvement for MTS over STS is 

larger on Tianhe-2/Stampede than that on CS-Storm. For example, for the Exp-L, the 

improvement is 84% on Tianhe-2/Stampede and it is 66% and 45% on CS-Storm 16-K80/8-

K40m.  

MTS excels at reducing the computation while without altering the communication 

pattern so the communication-to-computation ratio varies across diversified supercomputers. In 

general, MTS has the higher ratios on Tianhe-2/Stampede (Figure 4-13 and Figure 4-16) and the 

lower ratios on CS-Storm 8-K40m/16-K80 (Figure 4-19 and Figure 4-22), in comparison with 

STS. These phenomena could be the result of widely different communication schemes: in the 

code, the inter-process communication employs the intra-node wires in CS-Storm and the inter-

node cables in Tianhe-2 and Stampede. The intra-node wires are usually faster and more reliable 

connections than the inter-node cables. 
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Comparing speeds in Figure 4-23, we can see that for Exp-L, Tianhe-2 is faster than 

Stampede for up to 128 cores and then Stampede is faster for 256 and 512 cores than Tianhe-2. 

This could be the result of nodal configurations. Tianhe-2 and Stampede have 24 and 16 cores 

per node, respectively. To provide the run with 128 cores, Stampede and Tianhe-2 needs 8 and 5 

nodes respectively and thus Tianhe-2 would need less inter-node data transfers than Stampede. In 

addition, Tianhe-2 has more host memory (64GB per node) than Stampede (32GB per node), 

further boosting the nodal performance. Thus, when using a small group of cores, Tianhe-2 is 

better than Stampede. With the increase of cores, communication becomes more stressful than 

computation (Figure 4-24) then the performance gap between Stampede and Tianhe-2 appears to 

diminish: 0.16~0.17 𝑑𝑎𝑦𝑠/𝜇𝑠 (MTS) and 0.98~1.09 𝑑𝑎𝑦𝑠/𝜇𝑠  (STS) for Stampede/Tianhe-2 

using 512 cores. 

Multiscale simulation can provide nanoscale details of biomedical problems with 

affordable computing resources. The results demonstrate that the simulation rate of multiple 

microseconds of physical time per day for systems with multiple platelets and 10-million 

particles is achieved on supercomputers. Our multiscale approach offers nanoscale details for 

intracellular details while modeling the bulk transport of blood flows at the microscale [123]. 

The multiscale nature helps improve the scale of stepping sizes from femtosecond to nanosecond 

[124] for the deforming platelets. In addition, the MTS allows the viscous flow particles at the 

scale of 100-nanosecond stepping sizes. This improved the simulation speeds. For example 

within one day, the CS-Storm 16-K80 server can simulate 25 microseconds for a single-platelet 

system (Table 4-5). The 512-cores in Tianhe-2 and Stampede can simulate 5.88~6.25 

microseconds for a 16-platelet system (Table 4-7) within one day. Accordingly, the 1-

millisecond nano/micro-composite simulation for a 10-million-particle system can be completed 

in 160 wallclock days. 

The accelerator could further boost the performance of large scale computer systems. For 

example, the K20-enabled nodes improve the performance of CPU-only nodes by a factor of 2~3 

for the Exp-M on Stampede. In other words, the time it takes for 1-millisecond simulation of a 

2.7-million-particle system can be reduced from 140 days (32 CPU-only nodes) to 70 days (16 

K20-enabled nodes) on Stampede. These results demonstrated that the millisecond-scale 

nano/micro-composite simulations for million-particle systems are computationally affordable on 
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supercomputers. To compare, Anton 2 (the recipient of the 2014 ACM Gordon Bell Prize for 

best performance of a high performance application), a special-purpose molecular dynamics 

supercomputer demonstrated the achievement of 2.2-million-atom ribosome system at a rate of 

3.6 𝜇𝑠/𝑑𝑎𝑦 [142]. Our results demonstrated the achievement of multiscale 10-million-particle 

16-platelet system at a rate of 6.25 and 5.88 𝜇𝑠/𝑑𝑎𝑦 on Stampede and Tianhe-2 (Table 4-7); and 

the achievement of multiscale 2.7-million-particle 4-platelet system at a rate of 14.29 and 6.25 

𝜇𝑠/𝑑𝑎𝑦 on Stampede/K20 and Tianhe-2.  

As the supercomputer architectures are becoming more diversified, there is a need for a 

match of the architectural supply and application demand for optimal performance. The match 

can be established through discovering the characteristics of supercomputers and models. For 

example, the simulation for parameterizing the multiscale models could be handled by a high-

density multi-accelerator computer (Table 4-5). The simulation for validating the inter-platelet 

interactions could be handled by using a small group of computer nodes (Table 4-6). The 

simulation for studying large-scale multi-platelet and multi-component interactions in arteriole 

need use the large scale supercomputers with high performance interconnects (Table 4-7). 

Though novel supercomputers are emerging as dominant tools for computer simulations, it has to 

wisely match the state-of-the-art supercomputer supply and state-of-the-practical application 

demand for efficient use of invaluable computing resources. 

4.5 Summary  

We examined the performance for multiscale simulations with flexible MTS algorithms 

on Stampede supercomputer with multiple CPUs and GPUs solutions.  The MTS algorithm 

consistently outperforms STS algorithm and the GPU system is 2~3 times faster than the CPU-

only system. Due to communication overheads, 2-million particle systems accelerate less than 

the 10-million particle systems. The results show: (a) for medium size system (2.72 million 

particles, 4 platelets), simulating 1-𝑚𝑠 phenomena can be reduced from 848 days (STS + 256 

cores) to 37 days (MTS + 16 GPU nodes); (b) for large size system (10.89 million particles, 16 

platelets), simulating 1-𝑚𝑠  phenomena can be reduced from 976 days (STS + 512 cores) to 77 

days (MTS + 512 cores).  



86 

 

We used the multiscale models to benchmark three top supercomputers. The results 

demonstrate that (1) the MTS algorithm is superior over classical STS algorithm at improving 

the computation on all three supercomputers. The improvement percentages are 84% for Tianhe-

2/Stampede and 66% and 45% for CS-Storm 16-K80 and 8-K40m for the 10-million-particle 

system. (2) The high-density multi-accelerator computer, CS-Storm is capable for support of a 

single-platelet multiscale simulation. In this, completion of 1-ms multiscale simulation for the 

single-platelet system needs 40 days with nanoscale stepping sizes. (3) Tianhe-2 and Stampede 

are capable for very support of multiscale multi-platelet simulations. In this, completion of 1-ms 

simulation for 16-platelet system (10.9 million particles) needs 160 days. If without MTS or 

supercomputers, completion of 1-ms multiscale simulation of the 16-platelet system needs 

15,293 days (i.e., 42 years) using 16 cores. Thus our multiple spatial-temporal model could 

enable the millisecond-scale simulations of platelet-mediated processes at the junction of 

mathematics, bioengineering and computer science.  

These performance examinations support the assertion that the triple alliance of models, 

algorithms and powerful computers can be formed to drive the forefront of high performance 

computing for domain-specific applications. The computational approaches using multiscale 

models and efficient algorithms on supercomputers will enable these predictive simulations for 

thrombogenicity and address the challenges in clinical problems. 
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Chapter 5 Conclusions and Future Work  

Multiscale models, numerical algorithms, and advanced hardware provide an orchestrated 

effort for solving new classes of problems in science, engineering, and medicine. This research is 

at the heart of such development.  

The design and implementation of multiscale model for solving the multi-component 

biological problem, specifically, dynamics of platelets flipping in viscous blood flow, as 

presented in Chapter 2. In this model, CGMD models the molecular effects of platelets at the nm 

to µm scales while the DPD simulates the macroscale pathological blood flows at the upper µm 

scales. To integrate them, a hybrid CGMD-DPD force field is proposed at overlaying region for 

facilitating rheological information sharing over the spatial scales. In order to accommodate the 

multiple spatial scales and accelerate simulations, an adaptive MTS algorithm with four-level 

integrators is developed. The four-level integrator can be adjusted via three loop factors to 

optimize accuracy and computing speed, resulting in huge speedup of computation while 

maintaining stability and accuracy.  

The parameterization and design of a modified Morse potential for coarse-grained 

modeling of blood plasma is presented in Chapter 3. Through supercomputing and numerical 

variational separation technologies, we parameterize modified Morse potential and 

systematically analyze the impacts of model parameters on the accuracy for representing the 

physical observables, biomedical phenomena and computational loads. One of its suitable 

applications is in modeling the biorheology of platelet cytoplasm and this helps design an 

advanced molecular-level platelet model with accurate mechanics. 

The MTS algorithm helps reduce computational costs but without lowering the 

communication costs proportionally.  In order to reduce communication, GPGPU acceleration 

solutions are implemented. Chapter 4 presents detailed performance analysis of the double-punch 

speedup strategy, i.e., the algorithmic MTS algorithm and GPGPU acceleration, on three 

representative supercomputers: Tianhe-2, Stampede and CS-Storm. The performance results 

manifest the possibility of simulating the millisecond-scale hematology at resolutions of 

nanoscale platelets and mesoscale bio-flows using millions of particles.  
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All of those multiscale schemes and speedup strategies are integral steps to enable 

efficient predictive simulations for initial thrombogenicity study and may provide a useful guide 

for exploring mechanisms of other complex biomedical problems at disparate spatiotemporal 

scales. With the advent of novel algorithms and the advance of computer engineering, the era of 

solving biological system with nanoscale details to a time scale of seconds is starting. It is not 

difficult to project that more sophisticated biological systems can be simulated using millions of 

computer processors, in the near future. 

Despite all simulation results in this dissertation, further improvements and developments 

are required in order to study larger systems for longer time, resulting in understanding of 

physical importance and of practical usage in medicine and biology. Those improvement aspects 

include all of the following:  

The study of multiscale platelet-flow modeling is spatial-temporally limited by top-scale 

DPD simulation method. An advanced multiscale model couples atomistic-mesoscopic-

continuum approaches is required in order to expand the upper limit. This hybrid multiscale 

modeling may compose of three levels: atomistic level, where atomic interactions of platelets are 

computed; mesoscopic level, where finer features of blood particulate flow are simulated; and 

continuum level, where the Navier-Stokes equations are solved for coarsening blood flows. 

Sophisticated boundary conditions are required to couple all domains.   

Although the performance results manifest the possibility of simulating the millisecond-

scale hematology phenomena, numerous biological details, such as red blood cell white blood 

cell, vessel walls were not considered. A larger platelet aggregation simulation system, among 

others, is required for predicting blood clotting mechanics, rheology, and dynamics, to better 

understand thrombosis pathologies.  

Cost-optimized computing algorithms are in need of deployment to ensure these demands. 

The great reduction of computing time by our MTS scheme is achieved and GPGPU-enabled 

acceleration offers a balanced solution for the communication bottleneck imposed by MTS. 

However, the MPI communications on conventional cluster bulk large amount of time. A new 

asynchronous communication strategy may help reduce communication cost and achieve greater 

scalability.   
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