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Abstract of the Dissertation 

Identification of Differential Gene Pathways in Microarray Data  

by 

Qiao Zhang 

Doctor of Philosophy 

in 

Department of Applied Mathematics and Statistics 

Stony Brook University 

2014 

A gene pathway typically refers to a group of genes and small molecules that work together to 

control one or more cell functions. In systems biology, pathway analysis is of paramount 

biological importance, and recent studies revealed that malfunction of gene pathways could 

induce disease manifestations, such as cancer. Usually, a gene pathway consists of two 

components: the upstream factors, which are signaling molecules transmitting stimulus from cell 

surface to nucleus, and the downstream factors, which respond to cell signaling through changes 

of their expression levels. Although several methods have been reported for analysis of gene 

pathways, almost all of them focus on the upstream factors of a pathway, ignoring the rich 

information from the downstream factors.  

In this thesis work, we first investigated and compared the existing gene pathway analysis 

methods, particularly on three most popular ones: Gene Set Enrichment Analysis (GSEA), 

Principal Component Analysis (PCA), and Canonical Discriminant Analysis (CDA). We then 

proposed an innovative method based on the concept of integrating the statistical information 

from both upstream and downstream factors to infer differential gene pathways. More 
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specifically, the Relax Intersection-Union Test (RIUT) framework was employed to combine 

evidences from upstream and downstream factors. 

We performed intensive simulation studies with GSEA, PCA and CDA. We found out both the 

limitations and strengths of these methods under various data structures, and we identified 

scenarios in which each method can outperform the others. Furthermore, we demonstrated that 

our proposed combining method outperforms the above existing methods in terms of both power 

and interpretability in biology. 

We applied the combining method to two real data sets: the p53 data set and Essential 

thrombocythaemia data set. The results suggest that in the combining method, GSEA is more 

appropriate for the upstream subgroup and CDA is more powerful for the downstream subgroup 

due to their distinct data structures. 
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Chapter 1 Biology Fundamentals 

 

Many diseases have complex genetic causes. While some are monogenic (caused by defects 

in only one gene, e.g. Huntington's disease), most common diseases are polygenic (under the 

influence of multiple genes, e.g. cancer, diabetes, and heart diseases, etc.). The reason is that in 

cells genes do not act by themselves, but rather interact with each other through their RNAs and 

protein expression products and assemble into functional networks. These networks of genes are 

so-called signal transduction pathways, which are working modules of a cell system regulated by 

development and environment stimuli. Malfunction of the signal transduction pathways may 

induce disease manifestations, such as cancers. In this chapter, we introduce essential concepts of 

gene expression, transcription factor, signal transduction pathway, and microarray. 

 

1.1 The Central Dogma 

The central dogma of molecular biology is a framework for understanding the relationship 

among DNA, RNA and proteins (Crick, 1970). In general, it can be summarized as DNA makes 

RNA that in turns makes proteins (Figure 1-1). 

 

Figure 1-1: The central dogma of molecular biology. Transcription is the first step of gene 

expression, and the consequent change in the concentration level of messenger RNA (mRNA) is 

detectable by modern biotechnology such as microarray. 
 

http://www.thefreedictionary.com/Huntington%27s+disease
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The process that the information contained in a section of DNA is transferred to messenger 

RNA (mRNA) is called transcription. In eukaryotes, transcription is performed by an enzyme 

called RNA polymerase in the assistant of promoter and transcription factors (details in 1.2 and 

1.4, respectively). The mRNA will encounter a series of modifications and splicing, and be 

translated into proteins. In most organisms, this process is irreversible; however, in retrovirus 

(e.g. HIV), mRNA can be reversely transcribed back to DNA, known as complementary DNA 

for it is complementary copy of mRNA, by reverse transcriptase. This technique is now widely 

used in expression microarray (details in 1.5).  

 

1.2 Gene Expression and Regulation 

A gene is a segment of DNA specifying production of a polypeptide chain (Lewin, 2004); it 

occupies a specific location on a chromosome and determines a particular characteristic in an 

organism. A typical eukaryotic protein-coding gene includes regions preceding and following the 

coding region (leader and trailer) as well as intervening sequences (introns) between individual 

coding segments (exons) (Figure 1-2). 

 

Figure 1-2: Structure of gene. This is the structure of typical Eukaryotic gene, including 

uncoding promoter region, and coding region with introns and exons. 

 



 

3 

 

In eukaryotes, the transcription process is very complicated, and it contains important 

protein-DNA binding procedures. One essential DNA element for initiating transcription is 

promoter. Eukaryotic promoters are regions of DNAs that are found typically at -30, -75, and -90 

base pairs upstream from the transcription start site and can facilitate the transcription of the 

gene. Promoters contain specific DNA sequences and response elements that provide a secure 

initial binding site for necessary proteins. For transcription to take place, the enzyme that 

synthesizes RNA, known as RNA polymerase, must attach to promoter. However, eukaryotic 

RNA polymerase does not directly recognize the core promoter sequences. Instead, a collection 

of proteins called transcription factors recruit RNA polymerase and mediate the initiation of 

transcription.            

Regulation of gene expression is essential for organisms as it increases the versatility and 

adaptability of an organism by controlling of the amount and timing of appearance of the 

functional product of a gene, such as proteins, RNAs and etc. Furthermore, in human beings and 

other multicellular organisms, gene regulation drives the processes of cell differentiation and 

morphogenesis. 

Gene expression can be regulated at several levels:  transcriptional regulation, post-

transcriptional regulation, translational regulation, and post-translational regulation. 

Transcriptional regulation is one of the most important and widely-used strategies, which is 

usually mediated through activation or inhibition of signal transduction pathway (details in 1.3). 

Change of activity in transcription factors is an essential mechanism in gene expression 

regulation (details in 1.4). Transcriptional regulation usually triggers dramatic change in gene 

expression level, which can be detected by modern biotechnology like microarray, RNA-Seq and 

etc. 
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1.3 Signal Transduction Pathway 

Signal transduction pathway describes a group of proteins and small molecules that work 

together to control one or more cell functions, such as cell division or cell death, when 

extracellular signaling molecules are present. After the first molecule in a pathway receives a 

signal, it activates another downstream molecule. This process is repeated until the last molecule 

is activated, which is usually a transcription factor. Then the transcription of target genes will be 

activated and the corresponding cell function is carried out. Abnormal activation of signal 

pathways can lead to various diseases including cancer. Therefore, identifying differentially 

expressed signal pathways in a certain disease helps understand the mechanism of the disease 

and provides potential targets for drug development. 

A signal transduction pathway typically consists of receptors, intermediate enzymes, and 

effectors (Figure 1-3). Receptors can be categorized into two types: extracellular receptors and 

intracellular receptors. Extracellular receptors are most common ones, and are transmembrane 

proteins embedded in the cell membrane with one part of the receptor on the outside of the cell 

and the other in the inside.  When stimulus occurs, certain messenger molecules called ligand 

will bind to the outside part of receptor and induce conformational change in the inside part. 

Different receptors only bind to their own specific ligands and stimulate particular signal 

pathways. A receptor typically is activated by forming a dimer upon ligand binding (Figure 1-3). 
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Figure 1-3: Signal transduction pathway (Gene VIII). This is a cascade of signal pathway, 

including receptors in the cell membrane, kinases, transcription factors, and target genes. 

 

Activated receptors will interact and in turn activate downstream proteins in the cytosol to 

carry on the signals. A common means to propagate the signal pathway through the cytosol is to 

activate a series of protein kinases. These enzymes are able to modify other proteins by adding 
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chemical groups, like phosphate. Ultimately a stimulus signal leads to the activation of effectors, 

either in cytosol or in the nucleus. The effectors that carry the signal into the nucleus have 

ultimate goal to activate transcription factors and thereby alter the target gene expression level. 

Transcription factors are a set of proteins that can bind to specific DNA sequence of certain 

genes, and regulate the transcription level of these genes (details in 1.4). In this way, a signal 

pathway is turned on. The reverse process can be fulfilled in any element of the pathway to turn 

off the signal pathway when signals are no longer enriched. For example, kinases will be 

inactivated by losing phosphate groups or pathway can be blocked by inhibitors. 

 

Figure 1-4: JAK/STAT pathway. The green components are in the JAK/STAT pathway. The 

orange components are in the PI3K/AKT/mTOR pathway. 

(http://docs.abcam.com/pdf/stemcells/JAK-STAT-pathway.pdf) 

 

Signal transduction pathways are essential for organisms to react to various stimuli by 

sensing environments at cellular levels. One principal signaling pathway that stimulates cell 

proliferation, cell differentiation, cell migration and apoptosis is the JAK/STAT signaling 

pathway. Abnormal constitutive activation of JAK/STAT pathways has been implicated in 

http://docs.abcam.com/pdf/stemcells/JAK-STAT-pathway.pdf
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various cancers and immune disorders. The core components of the pathway are receptor, JAK 

kinase, and STAT transcriptional factor (green components in Figure 1-4). JAK kinases bind to 

the receptor in the inside cell region; upon ligand binding, the receptor can be dimerized and 

bring JAKs close to each other. In this case, JAKs phosphorylates each other and thereby 

stimulates transcriptional factor STAT. The activated STAT will be transported into nucleus and 

activate or repress the transcription of several target genes: SOCS, Nmi, Bcl-XL, p21, MYC, 

NOS2, and etc. Although the mechanism of JAK/STAT signaling is relatively simple in theory, 

the biological consequences of pathway activation are complicated by interactions with other 

signaling pathways (Rawlings, 2004). For example, JAK/STAT is always cooperating with 

RTK/Ras/MAPK pathway and PI3K/AKT/mTOR pathway (orange components in Figure 1-4).  

Differentially expressed pathways refer to signal pathways that are specifically activated in 

particular types of cells or certain diseases, but not in normal controls. Activation of these 

pathways is usually accompanied by increased translational level and/or protein level 

modification. However, these modifications may not necessarily result from dramatic increase at 

mRNA level. For example, Nrf2 is a transcription factor that induces the expression of genes 

encoding for antioxidant enzymes. Under normal or unstressed conditions, Nrf2 is tethered by 

another protein and degraded in cytoplasm. Nrf2 has a half-life of only 20 minutes under normal 

conditions (Kobayashi, et al., 2004). Consequently, although Nrf2 is transcribed all the time, its 

protein remains at a low level. Upon stress, Nrf2 will be built-up due to block of degradation 

system. In this way, the Nrf2 pathway will be activated without obvious increase of NRF2 gene 

expression. 

Another scenario is that proteins are composed at certain levels but remain inactive. When 

signals are aggregated, proteins will receive modification and thereby activate the signal pathway 
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they are involved. As described earlier, receptors can be activated by dimerization, and kinases 

are stimulated by phosphorylation. All these modifications occur on the pre-existing proteins, 

and may not induce large quantity of de novo synthesis of proteins. 

Therefore, it is reasonable to separate a signal pathway into two parts. “Upstream factors” 

refer to the pathway factors from receptors to transcription factors, which may or may not result 

in significant change at transcription level of the corresponding genes. “Downstream factors” are 

meant for those target genes recognized and regulated by transcription factors, which should 

show evident alteration at mRNA level whenever activation or inhibition of transcription is 

initiated. For example, receptors, JAK kinases and STAT transcriptional factors would be 

considered as “upstream factors”, while target genes, such as SOCS, Nmi, Bcl-XL, p21, MYC, 

NOS2, would be considered as “downstream factors”. 

 

1.4 Transcriptional Factors 

A transcription factor is a protein that binds to specific DNA sequences (promoter), thereby 

controlling the transcription of genetic information from DNA to mRNA. One defining feature of 

transcription factors is that they contain one or more DNA-binding domains, which attach to the 

promoters of the genes they regulate (Mitchell & Tjian, 1989). These DNA-binding domains 

provide transcription factors with up to 106-fold higher affinity for their target sequences than for 

the remainder of the DNA strand. In fact, transcription factors are frequently classified on the 

basis of their DNA binding domains (Latchman, 1997).  

Transcription factors are able to influence the rate of transcription of target genes in two 

opposite ways: activation and repression. One type of important transcription factors are general 

transcription factors (e.g. TFIIB, TFIID), which interact with RNA polymerase directly and form 
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a basal transcriptional complex. This transcriptional complex is essential for transcription to 

occur. At the same time, many transcription factors, known as activators, contain specific 

regions which are necessary for the activation of transcription. These activators interact with the 

basal transcriptional complex through their specific regions, and stimulate transcription (Figure 

1-5). 

 

Figure 1-5: Activator stimulates basal transcriptional complex. TFIIB and TFIID are core 

transcription factors that form a complex with RNA polymerase to initiate transcription of target 

gene in the help of activators. 

 

Although most of the transcription factors act by stimulating transcription, a variety of 

factors act by inhibiting the transcription of specific genes. This can be achieved, for example, by 

occupying certain promoter regions and preventing binding of other activators. 

Hence, the balance between transcription activators and transcription repressors will 

determine the transcription rate of specific genes. Upon different stimuli or in various cell types, 

the balance changes to alter the transcription levels. The mechanism refers to regulation of 

transcription factor itself. 

It is common in biology that important process receives multiple layers of regulation. Not 

only do transcription factors regulate target genes, the factors themselves receive regulation. 

There are two levels of regulations: regulation of synthesis and regulation of activity. Regulation 
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of synthesis refers to transcription factors being synthesized in one particular tissue or cell type 

but not the others. This is an important and straightforward control mechanism. However, 

regulation of activity is more popular in response to a particular stimulus and is a more delicate 

method.  

Many transcription factors are synthesized to certain levels and remain inactive in 

unstipulated cells. Upon stimulus, these pre-existing transcription factors can be activated via a 

number of different ways, including ligand binding, protein-protein interaction and post-

translation modifications. In this mechanism, there may not be dramatic increase in the 

expression of these transcription factors since the major regulation is performed post-

transnationally. 

Transcription factor is always an important component in signal pathway. One transcription 

factor usually regulates several target genes. For example, in the JAK/STAT pathway, 

transcription factor STAT can recognize the promoters of many genes: SOCS, Nmi, Bcl-XL, 

p21, MYC, NOS2, and etc. A transcription factor may be able to regulate hundreds or thousands 

of target geens, however, it is not the case that transcriptions of all the target genes will be 

stimulated at the same time; instead, a transcription factor usually functions with other co-factors 

and selectively turns on certain targets based on various conditions. For example, the DNA 

strands are maintained in a complicated supercoiling structure so that promoters may be 

concealed and protected. Enzymes that remove the methyl group on the DNA and help reveal the 

promoter sequences are essential to activate transcription. Co-activators that form a scaffold to 

stabilize transcription factors are also critical in the initiation of transcription. Therefore, which 

target genes are to be transcribed are determined by both stimulus signals and also the cell 

context. 
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1.5 DNA Microarray 

DNA microarrays, also known as DNA chips, are tools that can simultaneously measure 

expression levels of a large number of genes, by the identifying and quantifying of 

corresponding mRNA transcripts in cells (Schena, Shalon, Davis, & Brown, 1995). Most popular 

microarrays include cDNA microarrays and oligonucleotide microarrays. The core principle 

behind microarrays is the hybridization between two DNA strands (Figure 1-6). 

 

Figure 1-6: Hybridization of the targets to probes in microarray. 

(http://en.wikipedia.org/wiki/DNA_microarray) 

 

A typical microarray application is to look for differentially expressed genes (DEGs) 

between two different conditions (e.g. cancer cells versus normal cells). For this purpose, mRNA 

from two different biological samples is reversely transcribed back to complimentary DNA 

(cDNA), and labeled with fluorescent dyes. There are two types of cDNA microarray: one-color 

and two-color. In the chip, there are thousands or tens of thousands of DNA spots. Each spot 

contains a short section of a gene, known as probe, which is fixed in the surface of the chip. Each 

probe represents one gene, and is complementary to cDNA. Upon hybridization, cDNAs will 

http://en.wikipedia.org/wiki/DNA_microarray
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bind to their specific probes on the same chip, by hydrogen bond between complementary 

nucleotide base pairs. In one-color microarray, each sample is hybridized to one chip; while in 

two-color microarray, cDNAs from two different conditions are hybridized to one chip and 

compete for probes. After washing off the non-specific bonding sequences, fluorescent signals 

will be collected and processed. More intense fluorescent signals typically represent higher 

expression level of a specific gene. Two-color microarray is measuring the ratio of expression 

levels between two conditions; while one-color microarray is measuring the absolute expression 

level. In this study, we would be focusing on single-channel microarray. Several popular single-

channel systems include:  Affymetrix "Gene Chip", Illumina "Bead Chip", Agilent single-

channel arrays, the Applied Microarrays "CodeLink" arrays, and the Eppendorf "DualChip & 

Silverquant" (DNA_microarray).  

While gene expression microarrays are powerful, variability arising the high-throughout 

measurement process can obscure biological signals of interest (Parmigiani, Garett, Irizarry, & 

Zeger, 2003). Variability may result from five different phases of data acquisition: microarray 

manufacturing, preparation of mRNA from biological samples, hybridization, scanning, and 

imaging. Therefore, a series of preprocessing are required before statisticians can perform any 

analysis. The pixel intensities obtained by the image scanning are thought of as the raw data. 

Image analysis is performed to summarize the pixel-level data, followed by quality control and 

normalization. For most visualization, background subtraction, logarithmic transformations, 

within-array normalization and across-array normalization will be applied to the data. 

Ultimately, the data will be stored in an expression matrix where each row represents one gene 

and each column represents one observation.  
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For DEG analysis, several statistical methods have been developed, such as t tests, 

Significance Analysis of Microarray (SAM) method (Tusher, Tibshirani, & Chu, 2001), 

empirical Bayesian method (Efron & Tibshirani, Empirical bayes methods and false discovery 

rates for microarrays., 2002), and etc. After obtaining a list of DEGs, further approaches are 

needed to group or classify samples and genes: hierarchical and K-means clustering, principal 

component analysis, self-organizing maps, and etc. 

However, there are several limitations for these approaches: 

(1) There can be thousands or tens of thousands of genes in one microarray, after correcting 

for multiple hypothesis testing, few genes can reach the statistical significance due to the modest 

change of gene expression relative to noise.  

(2) Even though there is a list of statistically significant genes, it is difficult to interpret the 

mechanism behind the change since there is no unifying biological theme. 

(3) Different statistical procedures produce lists of significant genes with little overlap. 

Instead of searching for individual gene, pathway analysis using microarray data is one 

promising approach to increase power and became popular in the past ten years. Further details 

will be introduced in Chapter 2. 

 

1.6 Database 

With accumulation of biological knowledge over the past decades, many databases about 

physiological pathways and transcription factor target genes have been developed to facilitate the 

research community. Here we will review some widely used ones that can be potentially used in 

this research: particularly, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology 

(GO), C2 databases for upstream factors; TRANSFAC and JASPAR for downstream factors. 
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KEGG database, the Kyoto Encyclopedia of Genes and Genomes, was initiated by the 

Japanese human genome program in 1995. It is a collection of online databases dealing with 

genomes, pathways, and biological chemicals (Kanehisa, Goto, Kawashima, Okuno, & Hattori, 

2004). There are nine main databases: KEGG Pathway, KEGG Genes, KEGG Ligands, KEGG 

Disease, KEGG Brite, KEGG Module, KEGG Drug, KEGG Orthology, and KEGG Genome. 

KEGG Pathway is a collection of manually drawn pathway maps, including Metabolism 

Pathways, Genetic Information Processing, Environmental Information Processing, Cellular 

Processes, Organismal Systems, Human Diseases, and Drug Development. KEGG map includes 

edge and node information for signaling pathway which is an essential source for network 

analysis on gene pathways emerging in the previous five years.  

GO database, Gene Ontology, is a bioinformatics aiming to unify the representation of gene 

and gene product attributes across all species (Consortium, 2008). There is no universal standard 

terminology in biology and related fields, and term usages may vary due to different species, 

research areas or even different research groups. This makes communication and sharing of data 

more difficult. The Gene Ontology project provides ontology of defined terms representing gene 

product properties.  

C2 database was released by the authors of the famous GSEA paper (Subramanian, et al., 

2005), and it was curated from various source of gene sets. In their 2005 publication, there were 

522 gene sets in C2 database, 472 sets containing genes in metabolic and signaling pathways 

while 50 sets containing genes involved in response to genetic and chemical perturbations 

(Subramanian, et al., 2005).  

http://www.genome.jp/kegg/pathway.html#environmental
http://www.genome.jp/kegg/pathway.html#cellular
http://www.genome.jp/kegg/pathway.html#cellular
http://www.genome.jp/kegg/pathway.html#organismal
http://www.genome.jp/kegg/pathway.html#disease
http://www.genome.jp/kegg/pathway.html#drug
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Figure 1-7: The database structure of TRANSFAC. (http://www.edgar-

wingender.de/TRANSFAC.html) 

 

TRANSFAC is a database about transcription factors and the specific DNA sequence which 

transcription factors bind to and regulate through in eukaryotes. This database was first compiled 

and released by Wingender et al (Wingender, 1988). After development over a decade, the 

database updated in 2012 contains information about 18,614 transcription factors (TRANSFAC 

Statistics). Important tables in TRANSFAC database are FACTOR, SITE, GENE, CELL, 

CLASS, MATRIX, and REFERECNE. FACTOR describes the transcription factors, while SITE 

gives information of transcription factor binding sites in eukaryotes. The central axis between 

FACTOR and SITE represents DNA-protein interaction (Figure 1-7). GENE gives a short 

explanation of the gene where a site belongs to. MATRIX gives nucleotide distribution matrices 

for binding sites of transcription factors. CELL gives information about the cellular source of 

proteins that have been shown to interact with the sites. CLASS contains some background 

information about the transcription factor classes. REFERENCE gives information about studies 

that have been done on the proteins. 

 

GENE MATRIX 

SITE 

FACTO

CELL 

CLAS REFERENC

http://www.edgar-wingender.de/TRANSFAC.html
http://www.edgar-wingender.de/TRANSFAC.html
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Table 1-1: Summary of the content and growth of the JASPAR database (E, et al., 2010). 

 

JASPAR is a popular open-access database for matrix models of transcription factors 

binding sites. In the earlier releases, the binding sites were determined by SELEX experiments 

(Pollock & Treisman, 1990), or by the data from experimentally confirmed binding regions of 

actual promoter regions (Sandelin, Alkema, Engström, Wasserman, & Lenhard, 2004). With the 

development of high-throughput techniques, the latest version of JASPAR database was 

expanded substantially in November 2013 (Mathelier, et al., 2013). Different collections and 

growth of JASPAR database is shown in Table 1-1, which was published in 2010. The most 

popular and essential module in JASPAR database is JASPAR CORE, where the matrix models 
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of binding sites are recorded. The summary of newest version of JASPAR CORE is shown in 

Table 1-2.  

 

Table 1-2: Summary of content of JASPAR CORE database updated in 2013 (Mathelier, et al., 

2013). 

 

Based on a set of known transcription factor binding sites (TFBSs) for a given transcription 

factor, a position frequency matrix (PFM) or a position weighted matrix (PWM) derived from 

PFM is used to represent the binding preference (Sandelin, Alkema, Engström, Wasserman, & 

Lenhard, 2004). Example is given in Figure 1-10, where the PFM for BRCA1 binding sites is 

shown.  A set of potential target genes could be identified by matching the promoter sequences 

to the PFM or PWM for each transcription factor in JASPAR CORE. Essential packages and 

instructions could be downloaded from Bioconductor 

(http://www.bioconductor.org/help/workflows/gene-regulation-tfbs/) for R environment. 

http://www.bioconductor.org/help/workflows/gene-regulation-tfbs/
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Figure 1-8: A summary of BRCA1 transcription factor in JASPAR CORE database. 

(http://jaspar.genereg.net/) 

 

These databases are very important, as gene set enrichment analyses, which will be 

described in the next chapter, were mainly based on pre-determined gene sets from them. Due to 

the rapid development of biotechnology, these databases are still growing every day. 

  

http://jaspar.genereg.net/
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Chapter 2 Review of Previous Studies on Gene Set Analysis 

 

Recent biomedical studies have suggested that diseases such as cancer are associated with 

differential expressions of multiple genes with coordinated biological functions, which are 

referred to “pathways”. Approaches to detect differential gene pathways have been developed 

and extensively investigated during the past ten years. There are 3 generations of gene set 

analysis methods: Over-Representation Analysis (ORA), Functional Class Scoring Approaches 

(FCS), and Pathway Topology (PT)-Based Approaches (Khatri, Sirota, & Butte, Ten Years of 

Pathway Analysis: Current Approaches and Outstanding Challenges, 2012). In this chapter, we 

will first briefly review existing gene set analysis methods in each generation, and then we will 

introduce three most popular FCS methods in details: Gene Set Enrichment Analysis 

(Subramanian, et al., 2005), Principal Component Analysis (Ma & Kosorok, 2009), and 

Canonical Discriminant Analysis (Tsai & James, 2009). 

2.1 Two Types of Hypotheses 

The overall objective for gene set analysis is to test if the genes in a given gene set have 

coordinated association with the phenotype. Not like the study of single differentially expressed 

genes that has a clear definition of null hypothesis, 2 different null hypotheses (𝑄1 and 𝑄2) were 

proposed and corresponding permutation methods were studied for gene pathway analysis, which 

are formulated as:  

𝑄1(𝑐𝑜𝑚𝑝𝑒𝑡𝑎𝑡𝑖𝑣𝑒): 𝐻0: 𝑇ℎ𝑒 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑎𝑟𝑒 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑎𝑠 𝑜𝑓𝑡𝑒𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑  

𝑎𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 

𝑄2(𝑆𝑒𝑙𝑓 − 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑): 𝐻0: 𝑁𝑜 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 
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In this section, we will compare these 2 null hypotheses according to the notable review 

paper published by Goeman and Buhlmann in 2007 (Goeman & Buhlmann, Analyzing gene 

expression data in terms of gene sets: methodological issues, 2007). 

The difference between these two hypotheses is quite obvious: a competitive test compares 

the gene expression pattern in a gene set to the background genes, while a self-contained test 

only focuses on the genes within a given gene set and its result would not be affected by the 

genes outside the gene set. Each method shows advantage in different scenarios. For example, if 

we have a gene set with majority of genes having minor change in expression level, as long as 

their expression pattern is different from that of the background genes, competitive tests is 

sensitive enough to detect this difference. This is the most popular type of tests in early studies of 

gene set expression data, e.g. the notable GSEA is designed based on this hypothesis (details in 

2.3). On the other hand, if there is only a small fraction of genes are differentially expressed in a 

gene set, self-contained tests would be more powerful. 

Different hypotheses lead to different method of calculating p values. In competitive tests, 

the permutation test is designed based on a gene sampling method, which indicates that the 

association between samples and the phenotypes is fixed and genes in a given gene set are 

randomly picked up from the whole list under null hypothesis. From here, we can easily see the 

issues behind competitive tests. Firstly, the fixed relationship between gene expression data and 

phenotypes is not how microarray experiment is designed. If a new experiment needs to be 

repeated, only new samples were recruited but not new genes. Secondly, competitive tests 

assume independency between genes in a gene set, which is not realistic. Therefore, gene 

sampling is likely to have inflated power due to the lack of consideration of correlation 

structurer.  Based on these, Goeman and Buhlmann strongly opposed to applying gene sampling 
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in gene set analysis (Goeman & Buhlmann, Analyzing gene expression data in terms of gene 

sets: methodological issues, 2007). 

On the other hand, self-contained tests use subject as permutation unit: subject sampling. 

This design compares the association between gene set and phenotype with that of random 

phenotype, which matches the design for microarray experiment. This method also indicates that 

the gene membership in a gene set is fixed, which makes more sense in the study of biologically 

pre-defined gene set.  

In the early age of gene set study, competitive tests are more popular, such as using 

hypergeometric test to compare the number of differentially expressed genes in each gene set. 

However, after a long-time development and discussion, newly proposed methods were more 

based on self-contained tests, including Globaltest (Goeman, van de Gee, de Kort, & van 

Houwelingen, 2003), GlobalAncova (Hummel, Meister, & Mansmann, 2008), Principal 

Component Analysis (Tomfohr, Lu, & Kepler, 2005), Hotelling’s T test (Kong, Pu, & Park, 

2006), MANOVA (Tsai & James, 2009), and etc. 

We well accepted the points stated by Goeman and Buhlmann about competitive tests, and 

agreed that gene sampling is not a reasonable method for gene set analysis. However, we also 

have concerns about self-contained test as it tends to reject any gene set that has some 

differentially expressed genes even the particular gene set does not show any ‘enrichment’ 

compared to other gene sets. In practice, self-contained methods always reject more gene sets 

than competitive methods (Goeman & Buhlmann, Analyzing gene expression data in terms of 

gene sets: methodological issues, 2007). The widely studied GSEA is a very special case of 

competitive tests. It was designed to identify the gene set with different expression patterns than 

the rest of the genes outside the gene set. However, the permutation test was based on subject 
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sampling (details in 2.5). Therefore, this method would lose some power due to the 

‘penalization’ for significant genes outside the gene set, and the discrepancy between the null 

hypothesis which method was built on and the null hypothesis the significance was accessed. But 

this method also shows some merit in certain conditions (details in 3.1) that will be introduced in 

details in 2.5. 

 

2.2 Overview of Existing Gene Set Analysis 

In this section, we would like to give a brief overview of existing gene set analysis methods. 

Regardless of the generation of methods, the common idea behind them is to seek a statistic that 

can well represent the change at expression level across the whole pathway, and can be used to 

compare among pathways to access significance. Figure 2-1 gives an overview of the three 

generations of gene set analysis by P. Khatri et al. 

 

Figure 2-1: Overview of 3 generations of gene set analysis: ORA, FCS and PT. The input is 

genes in pre-defined gene pathway based on existing pathway database. Each method uses 

different gene set statistic to access pathway significance. 

(Khatri, Sirota, & Butte, Ten Years of Pathway Analysis: Current Approaches and Outstanding 

Challenges, 2012) 
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2.2.1 Over-Representation Analysis 

Over-Representation Analysis (ORA) is the first generation of gene set analysis methods 

that emerged in early 21st century (Khatri, Draghici, Ostermeier, & Krawetz, 2002). This type of 

methods aims at identifying the pathways including such a large fraction of DEGs that can be 

distinguished from the pathways with randomly fallen-in DEGs. Among those published 

methods, common strategies were adopted: firstly, a list of DEGs are identified (either up-

regulated genes or down-regulated genes or both); secondly, for each given gene pathway, the 

number of DEGs is counted and recorded; next, each pathway is evaluated in terms of the 

number of DEGs in the set by Hypergeometric Test, Chi-square Test or Binomial Distribution 

(Khatri, Sirota, & Butte, Ten Years of Pathway Analysis: Current Approaches and Outstanding 

Challenges, 2012). The limitations for these methods are obvious. An arbitrary cutoff is required 

to define DEGs and different cutoff will lead to different results. For example, if 𝑝 𝑣𝑎𝑙𝑢𝑒 = 0.05 

is set as cutoff, then the genes with 𝑝 𝑣𝑎𝑙𝑢𝑒 = 0.051 would be missed out in the analysis but it 

could contain essential information for the gene pathway as well as those with 𝑝 𝑣𝑎𝑙𝑢𝑒 = 0.049. 

Furthermore, only the number of DEGs in the gene pathway is considered but no extent of 

regulation (e.g., fold-change) is made use of. Also the correlation structure between genes intra-

pathway or inter-pathway is not considered at all. This loss of information would reduce the 

power of the test. Lastly, the biggest problem of ORA methods is that the competitive null 

hypothesis which they are built on is not practical in gene set study as we described in section 

2.1. Therefore, this type of methods are rarely used independently nowadays. 

 

2.2.2 Functional Class Scoring (FCS) 
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Methods in this class are developing enormously in the last ten years. Various assumptions 

and statistical methods were proposed and tested in a large amount of publications. Here we 

review FCS based on a paper by Marit Ackermann1 et al. in 2009 (Ackermann & Strimmer, 

2009). Although this is not the most up-to-date review, the concept and framework in FCS study 

do not differ much from then.  

An overview of the strategies for FCS is given in Figure 2-2 (Ackermann & Strimmer, 

2009). The input of data is again grouped into gene sets according to gene set database. To 

summarize pathway level change in expression level, there are 2 types of methods: the “model-

based” one that takes all the genes in a gene set into consideration at the same time, and the 

“non- model-based” one that is more complicated, including gene-level statistics, transformation 

of gene-level statistics, and gene set level statistics. 
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Figure 2-2: Overview of the strategies for existing FCS approaches. Input is the gene expression 

data of a pre-defined gene set. One type of the tests is ‘model-based’, while the other type 

includes 3 levels of strategies. Three different null hypotheses are considered, resulted in 3 

different permutation methods. 
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2.2.2.1 Model-based Method 

For this group, most popular ones are Globaltest (Goeman, van de Gee, de Kort, & van 

Houwelingen, 2003), GlobalAncova Test (Mansmann & Meister, 2005) (Hummel, Meister, & 

Mansmann, 2008), Principal Component Analysis (Tomfohr, Lu, & Kepler, 2005) (Ma & 

Kosorok, 2009), and Multivariate Analysis (Canonical Discriminant Analysis) (Kong, Pu, & 

Park, 2006) (Tsai & James, 2009). 

Among these methods, Globaltest is constructed in a Bayesian framework. When the 

outcome is categorical such as disease vs. control, a logistic regression can be used to model the 

data in a gene set (Goeman, van de Gee, de Kort, & van Houwelingen, 2003). However, a 

common issue is the so-called “curse of dimensionality”, as we usually have more genes than 

sample size in a gene set, in which the traditional logistic regression is not appropriate. Goeman 

et al. assumed the parameters 𝛽1, … , 𝛽𝑘 are samples from some common distribution with 

expectation zero and variance 𝜏2. The null hypothesis then becomes 𝐻0: 𝜏2 = 0, and this solves 

the high-dimensionality problem. By using a logistic regression, Globaltest is virtually testing the 

predictive power of gene expression for a certain phenotype.  

In 2005, Mansmann and Meister developed an ANCOVA-based method and compared it to 

Globaltest (Mansmann & Meister, 2005). Later on, Hummel et al. extended this method to a 

more general framework (Hummel, Meister, & Mansmann, 2008). They showed that linear 

model can also be used for gene set analysis when the role of gene expression and phenotype are 

switched. The advantage of GlobalAncova method is that it allows adjustment for confounders 

such as age, gender, and etc. It also takes correlation between genes into consideration. It may 

outperform Globaltest when correlations are not negligible. 
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Principal Component Analysis (PCA) is a popular dimension reduction method and was 

widely used in many fields. It was firstly introduced into gene set analysis in 2005 by Tomfohr et 

al. The framework for this method is that PCA is applied on the gene expression data in a given 

gene set, then the first principal component is picked up to represent the original data and a t-test 

is performed when the phenotype is binary (Tomfohr, Lu, & Kepler, 2005). This method is 

computational efficient and understandable, however, it has several limitations. Firstly, no 

phenotype information is considered when the data is transformed, and it will lead to tremendous 

loss of power in certain situations (details in 2.3). Secondly, only the first principal component is 

considered while information in other PCs is ignored. To improve this method, Ma and his 

colleagues extended the method to different types of phenotypes and compared the power in 

choosing different numbers of principal components (details in 2.3). 

Multivariate Analysis (Canonical Discriminant Analysis) is another model-based method 

first adopted by Kong et al. in 2006. The framework they proposed is actually a combined 

method of principal component analysis and Hotelling’s T test. Due to the high-dimensionality 

issue and the consequent singular correlation matrix between genes, Hotelling’s T test is not 

applicable to gene set expression data. Therefore, Kong and his colleagues suggested firstly 

apply principal component analysis on the within class covariance matrix and choose the 

principal components corresponding to eigenvalues larger than a threshold (e.g. 10−4). Then the 

Hotelling’s T test is applied on the transformed data. Since the rank of within class covariance 

matrix is min (𝑝, 𝑛 − 𝑘) (𝑝 is number of genes, 𝑛 is sample size, 𝑘 is number of groups), the 

transformed data will no longer have singular within class covariance matrix. This method can 

successfully solve the singular matrix problem, but the power of the test is reduced at certain 

level due to PCA. Another multivariate model is proposed by Tsai et al. in 2009. They adopted 
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the framework of multivariate analysis of variance (MANOVA), which is the multivariate 

version of ANOVA. To solve the singular matrix problem, Tsai and his colleagues suggested use 

a shrinkage estimate of covariance matrix (details in 2.4). 

Canonical discriminant analysis (CDA) is another data-transformed method similar to PCA 

but it takes the class information into consideration. When the outcome is binary, CDA is 

essentially equivalent to MANOVA (details in 2.4). 

All the above methods use the ‘self-contained’ hypothesis, which means they are testing if 

there is any differentially expressed gene in the gene set. Therefore, this set of tests is more 

appropriate to detect the gene sets with at least a small fraction of genes of large change in 

expression level.  In both simulations and real data study, Tsai showed that MANOVA was 

outperforming Globaltest, GlobalAncova, PCA combined with Hotelling’s T test, and some other 

tests we will introduce in the next section. We suppose the authors did not compare PCA method 

and MANOVA method because they were published in the same volume of the same journal in 

2009. Therefore, we studied the PCA and MANOVA (or CDA) in more details and chose them 

to be candidate methods for our proposed combined method. 

 

2.2.2.2 Non-model-based Method 

More methods have been published as ‘non-model-based’ methods because of the flexibility 

of choosing different statistics at each level of the study. The framework for ‘non-model-based’ 

methods includes three steps. Firstly, we need to access the gene expression change at gene level. 

The possible statistic includes fold change, signal-to-noise ratio, t statistic, correlation 

coefficient, regression coefficient, log-likelihood ratio and any other statistics that can measure 

the association between single gene expression level and phenotype. Secondly, the gene level 
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statistics need to be transformed. Just as choosing an appropriate link function for generalized 

linear regression models, transformation is performed according to the property of methods to be 

applied on gene set level. The easiest way is to use the identity of gene level statistic, or we can 

use quadratic transformation, absolute value transformation, ranking, p value and etc. The last 

step is to summarize the gene set level statistic by various tests: sum, mean, median, 

Kolmogorov-Smirnov test, maxmean statistic, Wilcoxon rank test, and etc. 

Ackermann and Strimmer compared 261 combinations of the methods as well as gene 

sampling method vs. subject sampling method for significance assessment. Since we are 

concerned about the validity of gene sampling method, we only focus on the results from subject 

sampling method. The most popular methods published are GSEA (Subramanian, et al., 2005), 

PAGE (Parametric Analysis of Gene Set Enrichment) (Kim & Volsky, 2005), Maxmean (Efron 

& Tibshirani, On testing the significance of sets of genes, 2007), SAM-GS (Dinu, et al., 2007), 

and etc.  

All these methods differ at one of three 3 levels. For example, GSEA is using signal-to-noise 

statistic and a ranking transformation at gene level, and it adopts a weighted Kolmogorov-

Smirnov Test at gene set level. PAGE was developed on the basis of GSEA.  It proceeds by 

averaging over fold change or other gene level statistics, which is compared to a standard normal 

distribution. Maxmean statistic deals with positive scores and negative scores separately. The 

advantage of this method is that it facilitates the detection of gene sets with both up-regulated 

genes and down-regulated genes. Efron and Tibshirani also proposed a ‘restandardization’ 

process that combines both gene sampling and subject sampling. Dinu and his colleagues pointed 

out several problems of GSEA method and proposed an improved method call ‘SAM-GS’, which 
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is a sum up of quadratic transformed SAM statistic proposed by Tusher et al in 2001 (Tusher, 

Tibshirani, & Chu, 2001). 

All the above methods were developed based on self-contained hypothesis except for GSEA. 

Several groups have compared existing methods by both simulation and real data, and 

consistently found that Hotelling’s T test (or MANOVA) outperformed other methods (including 

GSEA, Maxmean, SAM-GS, Globaltest, GlobalAncova, and etc. but not including PCA) in most 

cases (Tsai & James, 2009) (Ackermann & Strimmer, 2009). Therefore, we pick out PCA and 

MANOVA to represent the self-contained tests. At the same time, GSEA is the most widely used 

competitive method, although there are many concerns about this type of method (details in 2.1 

and 3.1), it still outperforms the self-contained methods in some scenarios. We will keep it as a 

candidate for our proposed combined method. 

 

2.2.3 Pathway Topology-based Approaches 

The third generation of gene set analysis methods is Pathway Topology (PT)-based 

approaches, which tries to take into consideration of each gene according to their position in the 

gene set to design of the tests. For example, if we have a pathway as in Figure 2-3, the activation 

of protein A is weighted highest, the activation of protein B, E, and F is weighted next highest, 

and the activation of C and D is weighted least. The idea behind this design is that gene A has 

the ability to influence the activity of all the rest of the genes, which indicates a higher possibility 

of differentially expression of the whole pathway if gene A is differentially expressed. On the 

other hand, if genes C or gene D are differentially expressed, it is not guaranteed the pathway is 

indeed turned on because these two genes could be activated by the components from other real 

activated pathways. In the most popular PT-based method SPIA, this weight of position is 
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expressed by a gene perturbation factor, which is defined as an aggregation of the perturbation 

effects of all genes in the gene set (Tarca, et al., 2009), and only those genes declared as DEG by 

certain pre-set cutoff contribute to the perturbation. For example, if the gene A in Figure 2-3 is 

DEG, its effect would be aggregated into B, E and F. If gene B is also DEG, then the effect of A 

would further pass on to gene C and D. However, if gene B is not DEG, the effect of perturbation 

will not be aggregated to gene C and D. The total perturbation score is the sum of the individual 

perturbation score of all genes. 

 

Figure 2-3: A pathway with topology. Protein A activates protein B, E, and F. Protein B further 

activates protein C and D. 

 

Although all gene set analysis depends on existing database, PT-based method requires more 

information of the topology of the gene set. KEGG database provides topology data and is a 

good source for SPIA. Limited source on database is still an issue for this type of methods. 

Another problem we are concerned for SPIA is that it pre-selects genes before calculating 

perturbation score that different selection of cutoff would result in inconsistent results. 

 

2.3 Permutation Test 
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Traditional statistical test requires an explicit distribution function that can be used to 

compute p values. With the help of current computer technology, a permutation test is usually 

adopted to access significance which does not require any assumption of distribution. The idea of 

permutation test is to estimate an empirical null distribution for computing the p values. For 

example, in self-contained tests, the null hypothesis is: No gene in the gene set is differentially 

expressed. If this is true, we can permute the phenotype label to break the association between 

genes and phenotypes, therefore, we can estimate the null distribution of self-contained test by 

subject sampling (Figure 2-4). 

 

Figure 2-4: A schematic diagram for permutation test based on subject sampling. 

 

Suppose the statistic calculated based on the observed data is 𝑇*. Then we randomly 

permute the response 𝑌, refit the model and calculate the corresponding statistic 𝑇. If we repeat 

permutation for 𝐵 times, we could have statistic 𝑇1, 𝑇2, … , 𝑇𝐵, which can be used to estimate the 

empirical distribution of statistic 𝑇 under null distribution. The P-value is given by 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇 ≥ 𝑇∗

𝐵
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On the other hand, if we want to calculate p values for competitive tests where the 

association between gene and phenotype is fixed but the gene membership in a given gene set if 

random under null hypothesis, we need to resample genes instead of subject label. 

 

2.4 False Discovery Rate 

P value is a widely adopted method to summarize statistical significance. However, when 

there are multiple tests at the same time, the decision based on each 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 cannot 

guarantee to control the “family-wise error rate (FWER)” of 𝛼, which is the probability of 

rejecting at least one 𝐻0 given 𝐻0 is true for the whole family. In fact, to retain the FWER within 

𝛼, the error rate for each test must be more stringent than 𝛼. Many researchers proposed various 

adjustment for p value when multiple comparisons exist. For example, the notable Bonferroni 

correction is to use 𝛼/𝑘 as the decision criterion instead of 𝛼. By Boole’s inequality, it is easy to 

prove that Bonferroni correction can well-control FWER; however, when the large amount of 

comparisons are correlated , this method could be too conservative to identify any significance. 

This limitation is especially severe in microarray data where there are usually more than 10,000 

of genes, or more than 100 of gene sets. Therefore, the study of false discovery rate (FDR) 

became popular since 1995 (Multiple comparisons). 

Benjamini and Hochberg pointed out that not only the question of whether there is an error 

is important, but the number of erroneous rejections should be taken into consideration in 

multiple comparisons. They proposed the definition of false discovery rate to be the expected 

proportion of errors among the rejections (Benjamini & Hochberg, Controlling the False 

Discovery Rate: A Practical and Powerful Approach to Multiple Testing, 1995).  

 Rejection Not rejection Total 
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True null hypothesis 𝐹 𝑚0 − 𝐹 𝑚0 

True alternative hypothesis 𝑇 𝑚1 − 𝑇 𝑚1 

 𝑆 𝑚 − 𝑆 𝑚 

Table 2-1: Number of errors committed when testing 𝑚 hypothesis. m is the total number of 

hypotheses tested; m0 is the number of true null hypotheses; m1 is the number of true alternative 

hypotheses; F is the number of false positives (Type I error); T is the number of true positives; 

m0-F is the number of true negatives; m1-T is the number of false negatives (Type II error); S is 

the number of rejected null hypotheses; m-S is the number of not rejected null hypothesis. 

 

Table 2-1 gives the number of errors committed when testing 𝑚 hypotheses. It defines some 

random variables related to multiple hypotheses testing. 

From the definition of FDR, we can formulate it as follows: 

𝐹𝐷𝑅 = 𝐸(𝐹/𝑆) 

A simple Benjamini-Hochberg Procedure (Benjamini & Hochberg, Controlling the False 

Discovery Rate: A Practical and Powerful Approach to Multiple Testing, 1995) has been 

described to control FDR: let 𝑝(1) ≤ 𝑝(2) ≤ ⋯ ≤ 𝑝(𝑚) be the ordered observed p values. Define 

𝑘 = max {𝑖: 𝑝(𝑖) ≤
𝑖

𝑚
𝑞} 

and reject 𝐻(1)
0 , 𝐻(2)

0 , … , 𝐻(𝑘)
0 . Benjamini and Hochberg showed that when the test statistics are 

independent, the above procedure controls the FDR at level 𝑞 ∗
𝑚0

𝑚
≤ 𝑞, where 𝑞 is the pre-set 

false discovery rate. 

In 2001, Benjamini proposed another procedure that allows controlling FDR under 

dependency (Benjamini & Yekutieli, The control of the false discovery rate in multiple testing 

under dependency, 2001). The procedure became: let 𝑝(1) ≤ 𝑝(2) ≤ ⋯ ≤ 𝑝(𝑚), and set up an 

expected FDR value 𝑞. Then we will search for 𝑟 that satisfies 

𝑟 = max {𝑖: 𝑝(𝑖) ≤
𝑖

𝑁
×

𝑞

𝐶(𝑁)
}, 𝑤ℎ𝑒𝑟𝑒 𝐶(𝑁) = ∑

1

𝑖

𝑁

𝑖=1
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The tests corresponding to 𝑝(1)…𝑝(𝑟) are rejected. 

This FDR method is based on the assumption that p-values from 𝑁 tests are dependent, 

which is appropriate in pathway analysis since different pathways are likely to share common 

genes. However, the Benjamini-Hochberg Process requires pre-set criterion, and will need 

repeated calculation if the criterion changes. If we compare it to the significance assessment in 

univariate test, this criterion is just like the critical value. 

Storey and Tibshirani proposed a method to compute 𝑞 𝑣𝑎𝑙𝑢𝑒, which is analogue to 𝑝 𝑣𝑎𝑙𝑢𝑒 

in significance assessment. The difference between these two probabilities is that p value is the 

measure of significance in terms of false positive rate while q value is measuring false discovery 

rate (Storey & Tibshirani, 2003). In Table 2-1, we list all related variables where the number of 

rejection 𝑆 can be observed but the number of null distribution 𝑚0 and the number of false 

positives 𝐹 are not observable. If we choose a 𝑡 value where any 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤ 𝑡 indicates 

rejection, then the corresponding FDR is defined as 

𝐹𝐷𝑅(𝑡) = 𝐸(
𝐹(𝑡)

𝑆(𝑡)
) 

≈
𝐸(𝐹(𝑡))

𝐸(𝑆(𝑡))
 

where 𝐸(𝑆(𝑡)) can be simply estimated by 𝑆(𝑡) = #{𝑝𝑖 ≤ 𝑡; 𝑖 = 1,2, … , 𝑚}, which is the 

observed number of rejections. Given that p values follow a uniform distribution between 0 and 

1 under null distribution, 𝐸(𝐹(𝑡)) can also be estimated by 𝐹(𝑡) = 𝑚0 ∗ 𝑡. However, 𝑚0 is an 

unknown parameter that is not observable and needs to be estimated. Equivalently we can 

estimate the proportion of null distribution among all the tests: 𝜋0 =
𝑚0

𝑚
, where 𝑚 is the total 

number of tests and it is already known. 

In their publication, Storey and Tibshirani formulated the estimate of 𝜋0 as 
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𝜋0̂(𝜆) =
#{𝑝𝑖 > 𝜆; 𝑖 = 1, … , 𝑚}

𝑚(1 − 𝜆)
 

where 𝜆 is a tuning parameter with range of [0,1) to accommodate a position from which the 

distribution of p values is approximately uniform (Storey & Tibshirani, 2003). 

 

Figure 2-5: A density histogram of 3170 p values from Hedenfalk et al. data. The p values larger 

than 0.5 are approximately uniformly distributed. If 𝜆 = 0.5 is chosen, about 67% of the tests are 

under null distribution. (Storey & Tibshirani, 2003) 

 

One example is given in Figure 2-5, which is the density histogram of 3,170 p values from a 

data obtained from BRCA1- and BRCA2-mutation-positive tumors (Hedenfalk, Ringner, Trent, & 

Borg, 2001). We can see that some p values are cumulated near 0 which indicates the existence 

of differentially expressed genes. The histogram becomes approximately flat when p values 

larger than 0.5. Therefore, it is reasonable to estimate the proportion of null distribution using 

𝜆 = 0.5, which gives an estimate 𝜋0̂(0.5) ≈ 0.67. Storey and Tibshirani introduced an 

automated method to estimate 𝜋0̂ by using natural cubic spline to compute 𝑙𝑖𝑚𝑖𝑡𝜆→1𝜋0̂(𝜆) 

(Storey & Tibshirani, 2003). 

Finally, we have 
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𝐹𝐷�̂�(𝑡) =
𝜋0̂𝑚 ∗ 𝑡

#{𝑝𝑖 ≤ 𝑡}
 

If we order the p values, then the q value calculated correspondingly will be 

�̂�(𝑝𝑖) = min
𝑡≥𝑝𝑖

FDR̂(t) 

This process computes q value based on positive FDR (pFDR) = E(
F

S
|S > 0), which makes 

perfect sense because we only care about false discovery rate when there is a discovery. 

Furthermore, q value guarantees that a smaller p value shows the evidence of significance at least 

as strong as it is based on minimum possible pFDR. In certain sense, q value is very similar to p 

value as it measures the significance of the feature and helps making decision based on a chosen 

critical value. 
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Chapter 3 Existing Statistical Methods on Gene Set Analysis 

 

In the previous chapter, we gave a brief review of the existing gene set analysis methods 

(Khatri, Sirota, & Butte, Ten Years of Pathway Analysis: Current Approaches and Outstanding 

Challenges, 2012) (Ackermann & Strimmer, 2009). In this chapter, we will introduce three gene 

set analysis methods in details: Gene set enrichment analysis (GSEA), Principal Component 

Analysis (PCA), and Canonical Discriminant Analysis (CDA) (or equivalently MANOVA). We 

chose these three methods as candidates for our proposed combined method (Chapter 4), because 

these three are the representatives of non-model-based and model-based methods described in 

Chapter 2. 

 

3.1 Gene Set Enrichment Analysis 

3.1.1 Introduction 

GSEA is a method that evaluates microarray data at the level of gene sets. This method was 

first proposed by Mootha et al. (Mootha, et al., 2003), and was further developed by 

Subramanian et al. (Subramanian, et al., 2005). Instead of identifying individual differential 

genes, GSEA considers a set of functionally co-regulated genes. This method takes advantage of 

prior biological knowledge, and typically considers experiments with genomewide expression 

profiles from samples belonging to two classes (e.g. cancer versus normal). Given a priori 

defined set of genes 𝑆 (e.g. genes encoding products in a signal pathway), and a ranked list 𝐿 

with all genes ordered according to the strength of their association to a phenotype, we expect 

that the members of 𝑆 would be found at the top or bottom of 𝐿, instead of randomly distributed 
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throughout 𝐿, if the gene set 𝑆 is correlated with the phenotypic class. The statistic used in GSEA 

is called enrichment score (ES) that reflects how well the set is concentrated at the extremes.  

GSEA considers all genes in an experiment, not just focusing on those beyond an arbitrary 

cutoff. Since it uses a non-parametric statistic, there is less restriction for applying the method. 

Furthermore, GSEA can boost the signal-to-noise ratio and make it possible to detect modest 

changes in individual genes.  

3.1.2 Mathematical Description of GSEA 

Suppose we have an expression data set 𝐷 with 𝑚 genes and 𝑛 samples, and all these 

samples are from two phenotypes. Gene set 𝑆 is independently derived from existing database 

(e.g. GO, KEGG, etc.), and contains 𝑠 genes. The goal is to investigate if genes in the gene set 𝑆 

are differentially expressed between two groups of samples, e.g. disease and control. The general 

procedures of GSEA are described as follows. 

(1) Ranked list: First of all, we compute the gene level statistics which measures the 

correlation between gene expression profiles and phenotypes (e.g. t statistics, signal-to-noise 

ratio, Pearson’s correlation coefficient); then we transform these 𝑚 statistics for all genes into an 

ordered list 𝐿 = {𝑔(1), … , 𝑔(𝑚)}. 

(2) Enrichment score (ES): 

ES is a gene set level statistic for the gene set 𝑆, which is designed as a weighted 

Kolmogorov-Smirnov-like statistic: 

𝑃ℎ𝑖𝑡(𝑆, 𝑖) = ∑
|𝑟𝑗|

𝑝

𝑁𝑅𝑔𝑗∈𝑆

𝑗≤𝑖

, 𝑤ℎ𝑒𝑟𝑒 𝑁𝑅 = ∑ |𝑟𝑗|
𝑝

𝑔𝑗∈𝑆

 

𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖) = ∑
1

𝑚 − 𝑠
𝑔𝑗∉𝑆

𝑗≤𝑖
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𝐸𝑆(𝑆) = max
1≤𝑖≤𝑚

{𝑃ℎ𝑖𝑡(𝑆, 𝑖) − 𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖)} 

𝑃ℎ𝑖𝑡(𝑆, 𝑖) evaluates the cumulative probability of genes in set 𝑆, and 𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖) evaluates the 

cumulative probability of genes not present in 𝑆, up to a given location 𝑖 in 𝐿. Enrichment score 

is the maximum deviation from zero of 𝑃ℎ𝑖𝑡 − 𝑃𝑚𝑖𝑠𝑠(Figure 3-1). In the formula, 𝑟𝑗 is the statistic 

for gene 𝑗, which is present in 𝑆. When the power of  𝑟𝑗, 𝑝 = 0, 𝐸𝑆(𝑆) reduces to the standard 

Kolmogorov-Smirnov statistic; When 𝑝 = 1, the genes in 𝑆 were weighted by their gene level 

statistics, normalized by the sum of statistics over all the genes in 𝑆. Genes ranked before the 

maximum of running sum are called ‘leading-edge subset’, which are the members contributing 

most to 𝐸𝑆(𝑆). 

   

Figure 3-1: Enrichment score (Subramanian, et al., 2005). Genes in Leading-edge subset appear 

before the running sum reaches its maximum deviation from zero. 

 

Remark: ES statistic is a comparison of the distribution of genes in 𝑆 to that of the genes 

not in 𝑆. Since genes not in 𝑆 are expected to be uniformly distributed, 𝐸𝑆(𝑆) in fact tests the 

hypothesis of whether genes in 𝑆 are randomly distributed throughout the ranked list. 

The use of weighted steps can cause asymmetry in the distribution of observed ES scores. 

Therefore, when estimating the significance levels, we need to consider separately the positive 

and negative ES scores. Furthermore, as the size of a gene set does affect the enrichment score 

Leading-edge Subset 
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(intuitively, larger gene set size indicates bigger chance of containing highly ranked genes), a 

normalization by dividing the mean permutated ES is performed (Figure 3-2). 

(3) Estimating significance: 

Estimation of the significance level will be fulfilled by permutation tests. The original ES 

score is recorded as 𝐸𝑆(𝑆)*. Random permutation of the phenotype labels, reordering genes and 

recalculation of 𝐸𝑆(𝑆) for each permutation will be performed. For example, this procedure may 

be repeated for 1000 times, and p value will be given by counting how many permutations give 

𝐸𝑆(𝑆) ≥ 𝐸𝑆(𝑆)* if 𝐸𝑆(𝑆)* is a positive value; or how many 𝐸𝑆(𝑆) ≤ 𝐸𝑆(𝑆)* if 𝐸𝑆(𝑆)* is 

negative, divided by total number of permutations. 

Remark: By permuting the phenotype labels, the correlation structure between genes is 

reserved. Therefore, GSEA is more like a combination of self-contained t and competitive tests. 

 

Figure 3-2: Asymmetry of GSEA results due to unbalanced global phenotype expression and 

gene set collection bias. (Subramanian, et al., 2005) 

 

(4) Multiple hypothesis testing: 
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In practice we may be interested in several gene sets instead of one. In this case, we need to 

control the FDR as described in Chapter 2. For each gene set 𝑆 and a fixed permutation 𝜋, the 

corresponding 𝐸𝑆(𝑆, 𝜋) can be computed. Each 𝐸𝑆(𝑆, 𝜋) is normalized accounting for size of  . 

Since the distribution is bimodal, a standarization is performed by rescaling the positive and 

negative scores separately with their mean values, yielding 𝑁𝐸𝑆(𝑆, 𝜋) (Figure 3-2). A global null 

distribution can be obtained by pooling all the  𝑁𝐸𝑆(𝑆, 𝜋) over 𝑆 and 𝜋. Meanwhile, we denote 

the normalized score of the original observed data set as 𝑁𝐸𝑆(𝑆). Then for a given 𝑁𝐸𝑆∗ ≥ 0, 

the FDR 𝑞 value is calculated by  

𝑞 =
(# 𝑜𝑓 𝑁𝐸𝑆(𝑆, 𝜋) ≥ 𝑁𝐸𝑆∗)/(# 𝑜𝑓 𝑁𝐸𝑆(𝑆, 𝜋) ≥ 0)

(# 𝑜𝑓 𝑁𝐸𝑆(𝑆) ≥ 𝑁𝐸𝑆∗)/(# 𝑜𝑓 𝑁𝐸𝑆(𝑆) ≥ 0)
 

Remark: The numerator represents the proportion of gene sets exceeding 𝑁𝐸𝑆∗ among all 

permutated gene sets with positive 𝑁𝐸𝑆, and the denominator represents the proportion of gene 

sets exceeding 𝑁𝐸𝑆∗ among all gene sets with positive 𝑁𝐸𝑆 in the observed data. Similar 

calculation can be done for 𝑁𝐸𝑆∗ < 0. Significant gene sets can be identified according to these 

𝑞 values.  

3.1.3 Limitation 

Some limitations of GSEA are given below. 

(1) GSEA is a method based on competitive test, however, the permutation test to access 

significance is based on subject sampling. This discrepancy leads to a reduced power of this 

method.  

(2) GSEA is sensitive to the gene sets of genes with expression level change in consistent 

direction. If both up-regulated and down-regulated genes exist in a large number, GSEA perform 

poorly to detect this gene set. A quadratic transformation could be adopted to improve the 
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performance. However, it sacrifices the power when gene expression levels are changing in the 

same direction. 

(3) GSEA is designed to identify the gene sets with most consistent expression patterns that 

a gene set with a certain percent of differentially expressed genes may not reach significance 

because of the comparison to other gene sets. In other words, GSEA requires more extreme 

evidence to declare significance compared to self-contained tests. 

(4) The performance of GSEA is affected tremendously by covariance structure of the genes 

in a given gene set. 

All these limitations would be further demonstrated in our simulation studies in Chapter 4. 

 

3.2 Gene Pathway Analysis by Principal Component Analysis 

3.2.1 Introduction 

Testing for differential expression of many genes with small samples is problematic (Yang 

H, 2007). A rigorous approach to gene expression analysis must explore the characteristic 

structure of the data. In this case, principal component analysis (PCA) can be a valuable tool in 

obtaining such a characterization.  

PCA is a dimension reduction method to simplify complex data sets, identify patterns in 

data, and re-express the data such that the similarities and differences of the variables are 

highlighted (Pearson, 1901). This mathematical procedure is implemented by orthogonal 

transformation. A set of observations of possibly correlated variables are converted into a set of 

linearly uncorrelated variables, which are called principal components.  

Since patterns in gene expression data set can be hard to find due to high dimension and 

weak signals, dimension reduction is usually needed to extract a small number of representative 
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features for the effects of all genes, that is, to identify the most meaningful basis to re-express a 

data set. PCA can be done by eigenvalue decomposition of covariance or correlation matrix of a 

data or by singular value decomposition (SVD) of the data matrix.  

3.2.2 Eigenvalue Decomposition (Johnson & Wichern, 2007) 

Let ∑ be the covariance matrix associated with the random vector 𝑿′ = (𝑋1, 𝑋2, … , 𝑋𝑝). Let 

∑ have the eigenvalue-eigenvector pairs (𝜆1, 𝐞𝟏), (𝜆2, 𝐞𝟐), … , (𝜆𝑝, 𝐞𝒑) where 𝜆1 ≥ 𝜆2 ≥···≥

𝜆𝑝 ≥ 0, 𝐞𝒊
′𝐞𝒊 = 1 and 𝐞𝒊

′𝐞𝒋 = 0 for 𝑖 ≠ 𝑗. Then the ith principal component is given by  

𝑌𝑖 = 𝐞𝒊
′𝑿 = 𝑒𝑖1𝑋1 + 𝑒𝑖2𝑋2 +··· +𝑒𝑖𝑝𝑋𝑝,        𝑖 = 1,2, … , 𝑝 

With these choices, 

𝑉𝑎𝑟(𝑌𝑖) = 𝐞𝒊
′∑𝐞𝒊 = 𝐞𝒊

′𝜆𝑖𝐞𝒊 = 𝜆𝑖        𝑖 = 1,2, … , 𝑝 

𝐶𝑜𝑣(𝑌𝑖, 𝑌𝑗) = 𝐞𝒊
′∑𝐞𝒋 = 𝐞𝒊

′𝜆𝑗𝐞𝒋 = 0       𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1,2, … , 𝑝 

If some 𝜆𝑖 are equal, the choices of the corresponding coefficient vectors, 𝐞𝒊, and hence 𝑌𝑖, 

are not unique. 

Proof: 

First step: 

Goal: To find the first principal component, we want to maximize 𝑉𝑎𝑟(𝑌1) = 𝐚𝟏
′ ∑𝐚𝟏 subject 

to 𝐚𝟏
′ 𝐚𝟏 = 1. 

Method: By using Lagrange multipliers, we maximize the function 

𝐚𝟏
′ ∑𝐚𝟏 − 𝛾1(𝐚𝟏

′ 𝐚𝟏 − 1) 

With respect to 𝐚𝟏 by differentiating with respect to 𝐚𝟏. 

Result: 

𝑑

𝑑𝐚𝟏
(𝐚𝟏

′ ∑𝐚𝟏 − 𝛾1(𝐚𝟏
′ 𝐚𝟏 − 1)) = ∑𝐚𝟏 − 𝛾1𝐚𝟏 = 0 
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∑𝐚𝟏 = 𝛾1𝐚𝟏 

This should be recognized that 𝐚𝟏 is one of the eigenvectors of  ∑ corresponding to 

eigenvalue 𝛾1. But which eigenvector should be chosen? 

Let’s take a look at the variance of the first principal component: 

𝑉𝑎𝑟(𝑌1) = 𝐚𝟏
′ ∑𝐚𝟏 = 𝐚𝟏

′ 𝛾1𝐚𝟏 = 𝛾1𝐚𝟏
′ 𝐚𝟏 = 𝛾1 

This gives the answer to the question above. Since we want the variance of the first principal 

component to be as large as possible, the vector chosen to compute the first principal component 

is the eigenvector of covariance matrix ∑ corresponding to the maximum eigenvalue 𝜆1. 

Second step: 

Goal: To find the second principal component, which means we want to maximize 

𝑉𝑎𝑟(𝑌2) = 𝐚𝟐
′ ∑𝐚𝟐 subject to 𝐚𝟐

′ 𝐚𝟐 = 1 and 𝐚𝟏
′ 𝐚𝟐 = 0 

Method: By using Lagrange multipliers, we maximize the function 

𝐚𝟐
′ ∑𝐚𝟐 − 𝛾2(𝐚𝟐

′ 𝐚𝟐 − 1) − 𝜙𝐚𝟐
′ 𝐚𝟏 

With respect to 𝐚𝟐 by differentiating with respect to 𝐚𝟐. 

Result: 

𝑑

𝑑𝐚𝟐

(𝐚𝟐
′ ∑𝐚𝟐 − 𝛾2(𝐚𝟐

′ 𝐚𝟐 − 1) − 𝜙𝐚𝟐
′ 𝐚𝟏) = ∑𝐚𝟐 − 𝛾2𝐚𝟐 − 𝜙𝐚𝟏 = 0 

If we multiply 𝐚𝟏
′  to the both sides of the equation, we would have  

𝐚𝟏
′ ∑𝐚𝟐 − 𝐚𝟏

′ 𝛾2𝐚𝟐 − 𝐚𝟏
′ 𝜙𝐚𝟏 = 0 − 0 − 𝜙 = 0 

Then we need to solve 

∑𝐚𝟐 − 𝛾2𝐚𝟐 = 0 

Therefore, 𝐚𝟐 is also eigenvector of ∑ which is associated with the second largest eigenvalue 

𝜆2. 

Third step: 
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The process will be repeated for 𝑘 = 1,2, … , 𝑚 and yields 𝑚 principal components with 

variance corresponding to the ordered eigenvalues of ∑. 

We can see that principal components are weighted averages of the original variables. They 

are constructed to be uncorrelated with each other and capture as much of the original variability 

as possible. The first principal component represents the largest proportion of the total variance; 

the second PC represents the second largest, and so on. Therefore, we may select the most 

representative components based on the fraction of variability to reduce the dimension of 

variables and gain more power in the analysis.  

In practice, the microarray dataset is a 𝑚 × 𝑛 matrix with each row representing the 

transcriptional response of a gene and each column representing expression profile of an assay. 

Empirical covariance matrix 𝑆 of the 𝑚 genes can be used to perform eigenvalue decomposition 

and obtain the eigenvalue-eigenvector pairs (�̂�1, �̂�𝟏), … , (�̂�𝑚, �̂�𝒎). Therefore, the sample 

principal components are 

�̂�𝑘 = �̂�𝒌
′ 𝒙𝒍,           𝑘 = 1,2, … , 𝑚; 𝑙 = 1,2, … , 𝑛 

where 𝒙𝒍 is the 𝑙𝑡ℎ observation on gene 1, gene 2,…, gene m. Elements in vector �̂�𝑘 are called 

loadings, giving weights to be applied to each gene’s expression. A loading close to 0 implies 

that a gene does not have much variation across arrays.  Large loadings (positive or negative) 

imply considerable variation of a gene across arrays. Numbers of principal components depend 

on the rank of covariance matrix 𝑆; if 𝑟𝑎𝑛𝑘 = 𝑟 ≤ 𝑚 then there would be 𝑟 principal 

components. In a typical microarray dataset, 𝑟𝑎𝑛𝑘 𝑟 is much smaller than the number of genes, 

therefore, principal component analysis can effectively reduce the number of variables.  

3.2.3 Singular Value Decomposition (Berrar, Dubitzk, & Granzow, 2002) 
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Let 𝑿 denote an 𝑚 × 𝑛 matrix of real-valued data and rank 𝑟. In the case of microarray data, 

𝑋𝑖𝑗 is the expression level of the ith gene in the jth observation. Since a typical microarray data 

always consists of much more genes than observations, we will focus on the situation 𝑚 ≥ 𝑛, 

and therefore 𝑟 ≤ 𝑛.  

Before applying SVD to the data, we would like to center each row of the data by 

subtracting row means: 𝒙 = 𝑛−𝟏(𝒙(1) + 𝒙(2) + ⋯ + 𝒙(𝑛)), where 𝒙(𝑘) =

(𝑥1𝑘, 𝑥2𝑘, … , 𝑥𝑚𝑘)′,   𝑓𝑜𝑟 𝑘 = 1,2, . . . , 𝑛.  We replace the original data by the centered data: 𝑿 =

(𝒙𝟏 − �̅�, 𝒙𝟐 − 𝒙, … , 𝒙𝒏 − �̅�) 

The equation for singular value decomposition of 𝑿 is the following: 

𝑿 = 𝑼𝑫𝑽′ 

where 𝑼 is an 𝑚 × 𝑛 matrix with orthonormal columns (𝒖𝒊
′𝒖𝒊 = 1, 𝒖𝒊

′𝒖𝒋 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗), called 

the left singular vectors, while 𝑽 is an 𝑛 × 𝑛 orthonormal matrix (𝑽′𝑽 = 𝑰) with columns called 

the right singular vectors, and 𝑫 is an 𝑛 × 𝑛 diagonal matrix with positive or zero elements, 

called the singular values. Thus,𝑫 = 𝑑𝑖𝑎𝑔(𝑑1, … , 𝑑𝑛). Furthermore, 𝑑𝑘 > 0 for1 ≤ 𝑘 ≤ 𝑟, and  

𝑑𝑘 = 0 for (𝑟 + 1) ≤ 𝑘 ≤ 𝑛. 

From 𝑿 we can construct two positive-definite symmetric matrices, 𝑿𝑿′ and 𝑿′𝑿, each of 

which we can decompose 

𝑿𝑿′ = 𝑼𝑫𝟐𝑼′ 

𝑿′𝑿 = 𝑽𝑫𝟐𝑽′ 

Remember 𝑚 ≥ 𝑛, thus we can see that 

(1) The left singular vectors of 𝑿 are eigenvectors corresponding to the non-zero 

eigenvalues of 𝑿𝑿′; 

(2) The right singular vectors of 𝑿 are eigenvectors of 𝑿′𝑿; 
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(3) The non-zero singular values of 𝑿 are the square roots of the non-zero eigenvalues of 

both 𝑿𝑿′ and 𝑿′𝑿. 

We can transform the data as  

𝒀 = 𝑼′𝑿 =  𝑫𝑽′ 

where 𝒀 has a diagonal empirical covariance matrix: 

𝑪 =  𝒏−𝟏(𝒀𝒀′) = 𝒏−𝟏(𝑫𝑽′𝑽𝑫) = 𝒏−𝟏𝑫𝟐 

Each row of the transformed data 𝒀 represents 𝑛 observations of sample principal 

components, and each column vector in 𝑼 gives loadings for the corresponding principal 

component.  

It is obvious that SVD and eigenvalue decomposition are essentially equivalent if we use 

centered data for SVD and covariance matrix for eigenvalue decomposition. The two methods 

will give the same set of loadings for principal components; furthermore, it is obvious that 𝑑𝑘
2 is 

proportional to the variances of principal components.  

3.2.4 Application in Gene Pathway Analysis 

A gene pathway may contain a large number of genes (more than the number of 

observations); therefore, a straightforward regression fitting may result in saturated models (Ma 

& Kosorok, 2009). Variable selection methods can be used when there are a small number of 

genes with considerable variability. However, in gene pathway, a more common situation is that 

there exist a large number of genes with moderate changes. In this case, dimension reduction 

with PCA may perform. Tomfohr and his colleagues proposed to use PCA on gene set analysis 

(Tomfohr, Lu, & Kepler, 2005), but they only used the first PC and applied a t test on it. Later, 

Ma et al. extended the PCA method to a more general model that can include more PCs on gene 

set analysis (Ma & Kosorok, 2009). They also investigated the second-order non-linear effects 
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and claimed that non-linear effects may identify a small number of key pathways that could not 

be found by models merely including linear effects, and need to be considered in practice (Ma & 

Kosorok, 2009). 

 

Figure 3-3: Flowchart of gene pathway analysis by PCA. 

 

The following are details of gene pathway analysis with PCA proposed by Ma et al: 

Step 1: We first retrieve pathway information from priori biological knowledge, and group 

data into gene sets. The validity of the following analysis depends on the accuracy of the 

pathway information.  

Step 2: For each gene pathway, PCA is performed to compute a set of PCs. Ma et al. showed 

that including a few top PCs did improve the power. However, in practice, the number of PC to 

be included in the regression model is limited by sample size. For example, if there are only 40 

samples (20 for case, 20 for control), it is recommended not to incorporate more than 2 PCs into 

the regression model.  

Step 3: Regression models and statistics are selected based on the type of outcomes, that is: 

(1) Continuous outcomes → Linear regression model and mean squared error; 

(2) Categorical outcomes → Logisitc regression model and deviance; 

(3) Survival clinical outcomes → Cox proportional hazards model and the statistic of the 

score test. 

Step 4: The p value of the regression model is given by permutation test. 

Step 5: Repeat step 2 to step 4 for each pathway in the microarray data. 

Priori defined 

gene pathways  

Principal 

components  

Regression  Permutation  FDR  



 

50 

 

 Suppose there are 𝑁 pathways, then there will be 𝑁 p-values in total. Since all these 

pathways are test simultaneously, we also need to control false discovery rate (FDR).  

3.2.5 Limitation 

Although PCA can be easily incorporated and is a widely used method, there were two 

obvious limitations of applying it on gene pathway analysis.  

Firstly, PCA is an unsupervised method, which only depends on the data matrix. The first 

several principal components capture the majority of the data variation, however, no outcome 

information is taken into consideration during the data transformation. There is no guarantee that 

the first principal component should be the factor most correlated with the outcome, and the 

second PC be the second most correlated factor, and etc. Therefore, the PCA based 

transformation may completely fail for the goal of identifying factors that are significantly 

associated with outcome,.  

Secondly, standardization of the data matrix is usually performed before applying PCA. 

That is, 

𝑧𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥�̅�

𝑆𝑡𝑑(𝑥𝑖)
  

where 𝑥𝑖𝑗  is the observation for gene 𝑖 in sample 𝑗, 𝑥�̅� is the sample mean of gene 𝑖, 𝑆𝑡𝑑(𝑥𝑖) is 

the sample standard deviation of gene 𝑖. 

The empirical covariance matrix for the standardized data is identical with the empirical 

correlation matrix for the data before standardization. Therefore, the first principal component is 

essentially capturing the variables that are in large correlation clusters.  

For example, if we have three variables 𝑥1, 𝑥2, 𝑥3 and their empirical correlation matrix is 

like this 
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𝝆 = [

1 𝜌1 0
𝜌1 1 𝜌2

0 𝜌2 1
] , 𝑤ℎ𝑒𝑟𝑒 𝜌1 > 𝜌2 

The ordered eigenvalues for this matrix are: 𝜆1 = 1 + √𝜌1
2 + 𝜌2

2, 𝜆2 = 1, 𝜆3 = 1 −

√𝜌1
2 + 𝜌2

2. The corresponding eigenvector to the largest eigenvalue is (
1

√2
,

𝜌1

√2(𝜌1
2+𝜌2

2)
,

𝜌2

√2(𝜌1
2+𝜌2

2)
)′. 

Since 
1

√2
>

𝜌1

√2(𝜌1
2+𝜌2

2)
>

𝜌2

√2(𝜌1
2+𝜌2

2)
, we can easily see that in the first principal component, the 

largest weight is given to 𝑥1, which is involved in two correlation clusters, the second largest 

weight is given to 𝑥2, which is in the cluster with larger correlation, and the smallest weight is 

given to 𝑥3. We can make this example more extreme by setting 𝜌2 to 0. In this case, the 

eigenvector for the first principal component becomes (
1

√2
,

𝜌1

√2(𝜌1
2+𝜌2

2)
, 0)′. This means 𝑥3 does 

not contribute to the first principal component at all.  

Therefore, the first principal component is determined completely by the correlation clusters 

of the data matrix, which could be quite biased in gene pathway analysis.  

More details will be shown in our simulation study in Chapter 4.  

 

3.3 Canonical Discriminant Analysis/MANOVA 

3.3.1 Introduction 

Canonical Discriminant Analysis (CDA) is another PCA-related dimension-reduction 

technique. However, unlike PCA that only summarizes the total variation of data without 

including the outcome information, canonical discriminant analysis takes account the group 

information. Given a categorical variable (outcome) and a set of continuous variables 

(predictors), CDA derives a set of linear combinations of the predictors (canonical variables), 
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which maximize the ratio of between-group variation to within-group variation. The vector that 

generates the linear combination is canonical coordinate and the elements in the vector, which 

are the coefficients of the linear combination, are called canonical coefficient. 

The first canonical variable has the highest possible multiple correlation with groups. The 

second canonical variable is obtained by finding the linear combination uncorrelated to the first 

canonical variable, which has the second highest possible multiple correlation with groups. And 

the process goes on until the number of canonical variables equals the number of classes minus 

one. 

3.3.2 Mathematical Implementation 

In the following, we briefly show how to perform the general CDA. Let 𝑿 be the 𝑚 × 𝑛 data 

matrix with each row representing observations of a continuous variable from 𝑛 samples. Let 𝒂 

be a 𝑚 × 1 vector, and therefore, 𝒛 = 𝒂′𝑿 is also a 𝑚 × 1 vector. 

Suppose the data were from 𝑘 groups, and each group includes 𝑛𝑟 , 𝑟 = 1,2, … , 𝑘 samples. 

The ratio of between group variations to within group variation would be 

𝑟𝑎𝑡𝑖𝑜 =
∑ ∑ (𝑧.̅𝑟 − 𝑧.̅.)

2𝑛𝑟
𝑖=1

𝑘
𝑟=1

∑ ∑ (𝑧𝑖𝑟 − 𝑧.̅𝑟)2𝑛𝑟
𝑖=1

𝑘
𝑟=1

 

Where 𝑧.̅𝑟 =
∑ 𝑍𝑖𝑟

𝑛𝑟
𝑖=1

𝑛𝑟
 is the group mean for the 𝑟𝑡ℎ group, 𝑧.̅𝑟 =

∑ ∑ 𝑍𝑖𝑟
𝑛𝑟
𝑖=1

𝑘
𝑟=1

∑ 𝑛𝑟
𝑘
𝑟=1

 is the overall mean 

across 𝑘 groups. 

To find the canonical coordinate that maximizes the ratio, the ratio can be written in a matrix 

form: 

𝑟𝑎𝑡𝑖𝑜 =
𝒂′𝑿(𝑰𝒌 ⊗ 𝑱 −

𝑱𝒏

𝒏 )𝑿′𝒂

𝒂′𝑿(𝑰𝒏 − 𝑰𝒌 ⊗ 𝑱)𝑿′𝒂
=

𝒂′𝑩𝒂

𝒂′𝑾𝒂
 

𝑱 = (
𝑱𝒏𝟏

𝑛1
,
𝑱𝒏𝟐

𝑛2
, … ,

𝑱𝒏𝒌

𝑛𝑘
)

′

, 𝑩 = 𝑿 (𝑰𝒌 ⊗ 𝑱 −
𝑱𝒏

𝒏
) 𝑿′, 𝑾 = 𝑿(𝑰𝒏 − 𝑰𝒌 ⊗ 𝑱)𝑿′ 
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where 𝑱𝒏𝒓
 is a 𝑛𝑟 × 𝑛𝑟 matrix with all elements equal to 1. 

By Cholesky Decomposition, 

𝑾 = 𝑼′𝑼 

where 𝑼 is an upper triangular matrix with dimension of 𝑚 × 𝑚. Therefore, the ratio can be 

expressed as 

𝑟𝑎𝑡𝑖𝑜 =
𝒂′𝑩𝒂

𝒂′𝑾𝒂
=

𝒂′𝑩𝒂

𝒂′𝑼′𝑼𝒂
=

𝒃′(𝑼−𝟏)′𝑩𝑼−𝟏𝒃

𝒃′𝒃
=

𝒃′𝑫𝒃

𝒃′𝒃
 

where 𝒃 = 𝑼𝒂, 𝒂 = 𝑼−𝟏𝒃, 𝑫 = (𝑼−𝟏)′𝑩𝑼−𝟏. 

We want to maximize 𝑟𝑎𝑡𝑖𝑜 =
𝒃′𝑫𝒃

𝒃′𝒃
 with subject to 𝒃′𝒃 = 1. Then the question becomes 

maximization of 𝒃′𝑫𝒃  with subject to 𝒃′𝒃 = 1. Now the question became similar to compute 

principal components. The first canonical variable is given by the eigenvector of matrix 𝑫 

associated with the largest eigenvalue of 𝑫, the second canonical variable is computed by the 

eigenvector that is corresponding the second largest eigenvalue, and etc. 

3.3.3 Comparison with MANOVA/Hotelling’s T Test 

After we apply CDA on the original gene expression data and obtain the transformed data, 

an appropriate statistic and the corresponding test would be required to access the significance 

for each pathway. Since the CDA algorithm is designed to separate the original data by groups, 

the maximum possible ratio of between group variability to within group variability is an 

intuitive statistic to measure how well the data are apart. In other words, we choose the 

eigenvalue of matrix 𝑫 described above to represent how correlated the data are to the outcome. 

The larger of the eigenvalue is, the stronger correlation exists between gene expression levels 

and the outcome. This method is virtually equivalent to multivariate analysis of variance 

(MANOVA) as shown below.  
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There are four different MANOVA tests: Pillai's trace, Hotelling-Lawley's trace, Wilk's 

lambda and Roy's largest root (Mardia & J.T. Kent, 1979).  These methods are all based on the 

matrix 𝑾−𝟏𝑩, and they give identical results when there are only two groups. The tests are 

defined as follows: 

Pillai's trace = 𝑡𝑟𝑎𝑐𝑒(𝑩(𝑩 + 𝑾)−𝟏) = ∑
𝜆𝑖

1+𝜆𝑖

𝑚
𝑖=1  

Hotelling-Lawley's trace= 𝑡𝑟𝑎𝑐𝑒(𝑾−𝟏𝑩) = ∑ 𝜆𝑖
𝑚
𝑖=1  

Wilk's lambda=
|𝑾|

|𝑩+𝑾|
= ∏

1

1+𝜆𝑖

𝑚
𝑖=1  

Roy's largest root = max(𝜆𝑖) , 𝑖 = 1,2, … , 𝑚 

where 𝜆𝑖 is the ordered eigenvalue of 𝑾−𝟏𝑩. In certain circumstances, these four tests give an 

exact 𝐹 ratio and in other situations 𝐹 ratio is approximated. Some researchers consider the 

Pillai's trace to be the most powerful and robust method while Wilk’s lambda was the first 

derived MANOVA test and widely used. When there are only two groups, the rank of 𝑩 would 

be one and only one nonzero eigenvalue 𝜆 existing for 𝑾−𝟏𝑩.  

Pillai's trace =
𝜆

1+𝜆
 

Wilk’s lambda =
1

1+𝜆
 = 1- Pillai's trace 

Hotelling-Lawley's trace = Roy’s largest root = 𝜆 

Therefore, these four tests lead to identical result. 

Now let’s take Wilk’s lambda as an example to show that using the maximum ratio of 

between group variability to within group variability as statistic after application of CDA is 

essentially equivalent to MANOVA test in the case of two classes. In other words, this is to show 

the eigenvalue of matrix 𝑫 is equal to eigenvalue of 𝑾−𝟏𝑩. 

Proof: 
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𝑫 = (𝑼−𝟏)′𝑩𝑼−𝟏 

𝑾−𝟏𝑩 = (𝑼′𝑼)−𝟏𝑩 = (𝑼−𝟏)(𝑼−𝟏)′𝑩 

Therefore, 

𝑾−𝟏𝑩 = 𝑼−𝟏𝑫𝑼 

Say 𝜆 is the eigenvalue for 𝑾−𝟏𝑩 and 𝒙 is the corresponding eigenvector, then 

(𝑾−𝟏𝑩 − 𝜆𝑰)𝒙 = 𝟎 

That is  

(𝑼−𝟏𝑫𝑼 − 𝜆𝑰)𝒙 = 𝟎 

(𝑫 − 𝜆𝑰𝑼𝑼−𝟏)𝒙 = 𝟎 

(𝑫 − 𝜆𝑰)𝒙 = 𝟎 

Therefore, we have proved that 𝑾−𝟏𝑩 and 𝑫 share the same eigenvalue. 

In practical, either CDA algorithm or one of the four MANOVA tests could be adopted for 

gene pathway analysis in the case of binary outcome. 

3.3.4 Singular Matrix Problem 

In the algorithm described above for CDA, matrix 𝑾 represents the within-group variability 

with the dimension of 𝑚 × 𝑚. However, the number of genes in a pathway vary widely so that it 

is possible to have more variables than samples (𝑚 ≫ 𝑛), and this will lead to singularity of the 

𝑾 matrix. Consequently, the 𝑼 matrix obtained by Cholesky Decomposition of 𝑾 is not full-

ranked so it is not invertible, and matrix 𝑫 is not computable. When the dimension of variables is 

smaller than sample size (𝑚 < 𝑛 − 1), CDA can be applied in a straightforward way. When 

dimension of variables is larger than sample size (𝑚 ≥ 𝑛 − 1), the algorithm proposed above is 

not direcdtly applicable.  
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Several different approaches have been proposed to solve this problem. For example, 

Heydebreck et al. ignored the correlation between genes and made a simple modification to set 

the off-diagonal elements in 𝑾 to be zero (Heydebreck, Huber, Poustka, & Vingron, 2001). 

Kong and his group proposed to apply PCA on 𝑾 matrix, and pick up the first several principal 

components based on a threshold (e.g. 10−4) to form a new nonsingular 𝑾 matrix, and then 

Hotelling’s t test was adopted for significance test (Kong, Pu, & Park, 2006). For more 

sophisticated modification of  𝑾 matrix, different penalized methods were proposed, such as 

Regularized Discriminant Analysis (Friedman, 1989), Penalized Discriminant Analysis (Hastie, 

1995), and the method to keep the diagonal of 𝑾 but shrink centroid for each group (Tibshirani, 

Hastie, Narasimhan, & Chu, 2002). Most recently, Tsai and Chen chose the shrinkage covariance 

matrix estimator proposed by Schafer and Strimmer (Schafer & Strimmer, 2005) to make the 𝑾 

matrix well-conditioned (Tsai & James, 2009). The estimator is given as follows: 

𝑆𝑖𝑗
∗ =   {

𝑆𝑖𝑖                   𝑖𝑓 𝑖 = 𝑗

𝑟𝑖𝑗
∗

√𝑠𝑖𝑖𝑠𝑗𝑗         𝑖𝑓 𝑖 ≠ 𝑗 
 

and 

𝑟𝑖𝑗
∗ = 𝑟𝑖𝑗min {1, max(0,1 − �̂�∗)} 

where 𝑠𝑖𝑖 and 𝑟𝑖𝑗 denote the empirical sample variance and sample correlation, respectively. �̂�∗ is 

called optimal shrinkage intensity and is estimated by 

�̂�∗ =
∑ 𝑉𝑎�̂�(𝑟𝑖𝑗)𝑖≠𝑗

∑ 𝑟𝑖𝑗
2

𝑖≠𝑗

 

The function to estimate the shrinkage covariance matrix is embedded in an R package 

“corpor”. For the eigenvalue calculated based on the modified 𝑾 matrix, its distribution does not 

have a closed form. Therefore, the p value could be computed by permutation test as most of the 

gene set analyses do. 
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3.4 Intersection-Union Test and Union-Intersection Test 

In the previous sections, we introduced three popular gene set analysis methods in detailed. 

But our study did not focus on an individual method, but a combination of methods. Therefore, 

we would introduce two types of tests that can combine the results from various methods in this 

section. 

For a study including more than one test, a question naturally raised would be how to 

combine the results from different tests. It is intuitive to see that the answer depends on the 

purpose of the study. For example, if we have several microarray data sets and we are interested 

in finding consistently differentially expressed genes among all data to make the results more 

reliable and robust, we would like to identify genes with H0 rejected in tests for all data sets. 

This type of “reject all” test is called Intersection- Union Test (IUT). The complementary test to 

IUT is Union-Intersection Test (UIT) (Casella & Berger), which would reject the global null 

hypotheses as long as there is at least one null hypothesis is rejected. One possible scenario is 

that when we are testing the hazard of a new drug using different index, we would say the drug 

to be hazardous as long as one test shows hazardous. Definitions and details of IUT and UIT 

would be described in the following section. 

3.4.1 Definition 

Union-Intersection Test (UIT) is applicable when the null hypothesis can be conveniently 

expressed as an intersection of a set of null hypotheses: 

𝐻0 : ⋂ 𝐻0𝑖

𝑘

𝑖=1

 

While the alternative hypothesis is a union of a family of alternative hypotheses: 
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𝐻𝐴 : ⋃ 𝐻𝐴𝑖

𝑘

𝑖=1

 

If we suppose a suitable test for each hypothesis 𝐻0𝑖: 𝜃 ∈ 𝛩𝑖 versus 𝐻𝐴𝑖: 𝜃 ∈ 𝛩𝑖
𝑐, we can 

rewrite the global hypothesis as 

𝐻0: 𝜃 ∈ ⋂ 𝛩𝑖

𝑘

𝑖=1

 

Therefore, the reject region is 

𝐻𝐴: 𝜃 ∈ ⋃ 𝛩𝑖
𝑐

𝑘

𝑖=1

 

From this definition, we can see that if one of the null hypothesis is rejected, the global null 

hypothesis would also be rejected.  

On the other hand, Intersection- Union Test (IUT) is defined as follows: 

Suppose we wish to test the null hypothesis which is expressed as a union: 

𝐻0 : ⋃ 𝐻0𝑖

𝑘

𝑖=1

 

and the alternative hypothesis is: 

𝐻𝐴 : ⋂ 𝐻𝐴𝑖

𝑘

𝑖=1

 

Say the reject region for the test 𝐻0𝑖 is {𝑥: 𝑇𝑖(𝑥) ∈ 𝑅𝑖} (Hasler, 2007), the reject region for 

intersection-union test now become: 

⋂{𝑥: 𝑇𝑖(𝑥) ∈ 𝑅𝑖}

𝑘

𝑖=1
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The global null hypothesis would be rejected if and only if all local null hypotheses are 

rejected. 

3.4.2 Method 

There are various methods developed for both union-intersection test and intersection-union 

test, which are called Meta-analysis. In simple words, meta-analysis is to identify a common 

statistical measure that is shared by each study. For example, we can use effect size as the 

common measure if we expect to reject the global null hypothesis when {𝑥: 𝑇𝑖(𝑥) < 𝑐}, then the 

most straightforward statistic for UIT would be: 

𝑇(𝑥) = min
𝑖=1,…,𝑘

𝑇𝑖(𝑥)   

This indicates as long as there is one local null hypothesis rejected, the global null 

hypothesis gets rejected. 

On the other hand, the most intuitive statistic for IUT would be: 

𝑇(𝑥) = max
𝑖=1,…,𝑘

𝑇𝑖(𝑥) 

which means only when all the local null hypotheses get rejected, we have the confidence to 

reject the global null hypothesis. 

The above example was based on assumption that all the tests share the same rejection 

region. However, it is not always applicable in real data analysis where different endpoints could 

come from totally different measures that they do not share identical cutoff. Or we may apply 

different statistical tests on different endpoints which make the assumption even more 

unstandable. 

To overcome the problem raised by inconsistence of multiple tests, p value is another 

popular statistic used to combine results. P value is defined as the probability of obtaining a test 

statistic result at least as extreme as the actually observed one. No matter what specific test is 
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adopted, p value is measuring how strong the evidence is against the null hypothesis, and follows 

a uniform distribution between zero and one when the null hypothesis is true. With a known 

distribution under null hypothesis and consistent explanation among tests, p value combination 

was the basis of many published methods for meta-analysis. Here we introduce several most 

popular ones. 

3.4.2.1 Fisher’s Method 

Let 𝑝1, 𝑝2, … , 𝑝𝑘 be the p values obtained by 𝑘 independent tests, the global null hypothesis 

is 𝐻0 : ⋂ 𝐻0𝑖
𝑘
𝑖=1  versus 𝐻𝐴 : ⋃ 𝐻𝐴𝑖

𝑘
𝑖=1 . Ronald Fisher (Fisher, 1925) proposed a method to sum up 

log-transformed p values: 

𝑋2 = −2 ∑ ln(𝑝𝑖)

𝑘

𝑖=1

~𝜒2𝑘
2  

Under the global null hypothesis, the statistic 𝑋2 is following a chi-squared distribution with 

2𝑘 degree of freedom. 

Proof: 

Under local null hypothesis, 𝑃𝑖 follows distribution of 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). The negative natural 

logarithm of a uniformly distributed variable follows an exponential distribution with parameter 

of one. Multiplying a scale of two to the exponential distribution described above yields a chi-

squared distribution with 2 degree of freedom. Since all the tests are independent and the global 

hypothesis is an intersection of all local null hypotheses, 𝑋2 is now a sum of 𝑘 independent chi-

squared distribution; therefore, it also follows a chi-squared distribution and the degree of 

freedom is 2𝑘 under global null hypothesis.  

Fisher’s method essentially computes the distribution of ∏ 𝑃𝑖
𝑘
𝑖=1  where 𝑃𝑖 is a random 

variable of p value. Since we know the distribution for 𝑋2, for any observed ∏ 𝑝𝑖
𝑘
𝑖=1  we can 
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calculate the probability of observing a product of 𝑝𝑖′𝑠 at least as extreme as the current one, in 

other words, the p value based on 𝑋2 test. Fisher’s method has been used for a long time because 

of its explicit distribution and easy calculation. However, there are two assumptions we need to 

pay attention to. Firstly, this method requires independency between tests, which could be easily 

violated in biological studies because genes or gene pathways always function interactively. This 

limitation can be overcome by Satterwhite’s approximation which will be shown in the following 

section. Secondly, this method is appropriate for UIT only. Fisher’s method is essentially a 

multiple of p values and would encounter some problem when some of the p values are 

extremely small (Whitlock, 2005). More details will be shown in 3.4.4. 

3.4.3 Satterwhite’s Approximation for Dependent Hypotheses 

Satterwhite’s approximation is an extension for Fisher’s method when dependency between 

tests exists. Again, let 𝑝1, 𝑝2, … , 𝑝𝑘 be the p values obtained by 𝑘 individual tests, and these tests 

are not necessarily independent. The global null hypothesis is 𝐻0 : ⋂ 𝐻0𝑖
𝑘
𝑖=1  versus 𝐻𝐴 : ⋃ 𝐻𝐴𝑖

𝑘
𝑖=1 . 

We define 𝑧𝑖 = −2 ln(𝑝𝑖) , 𝑖 = 1,2, … , 𝑘, as we proved in the previous section, each 𝑧𝑖 is 

following a chi-squared distribution with 2 degree of freedom. In this case, since 𝑧𝑖’s are not 

necessarily independent the distribution of sum of all 𝑧𝑖’s is then unknown. 

To solve this problem, we can assume the sum of dependent chi-squared distribution follows 

a scaled chi-squared distribution under the global null hypothesis (Li S. , 2011): 

𝑇 = ∑ 𝑧𝑖

𝑘

𝑖=1

 ~̇ 𝑎𝜒𝑔
2 

The scale 𝑎 and the degree of freedom 𝑔 can be estimated by equating the first and second 

moments of ∑ 𝑧𝑖
𝑘
𝑖=1  to the first and second moments of 𝑎𝜒𝑔

2, respectively. 
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𝐸(𝑇) = 𝐸 (∑ 𝑧𝑖

𝑘

𝑖=1

) = 2𝑘 

𝑉𝑎𝑟(𝑇) = 𝑉𝑎𝑟 (∑ 𝑧𝑖

𝑘

𝑖=1

) = ∑ 𝑉𝑎𝑟(𝑧𝑖)

𝑘

𝑖=1

+ 2 ∑ 𝐶𝑜𝑣(𝑧𝑖, 𝑧𝑗)

𝑖<𝑗

= 4𝑘 + 8 ∑ 𝜌𝑖𝑗

𝑖<𝑗

 

where 𝜌𝑖𝑗 is the correlation between 𝑧𝑖 and 𝑧𝑗. 

On the other hand,  

𝐸(𝑎𝜒𝑔
2) = 𝑎𝑔 

𝑉𝑎𝑟(𝑎𝜒𝑔
2) = 2𝑎2𝑔 

Therefore, we have  

2𝑘 = 𝑎𝑔;   4𝑘 + 8 ∑ 𝜌𝑖𝑗

𝑖<𝑗

= 2𝑎2𝑔 

By some simple algebra, we can solve 𝑎 and 𝑔 as follows (Li S. , 2011): 

(1) �̂� =
4𝑘+8 ∑ 𝜌𝑖𝑗𝑖<𝑗

4𝑘
= 1 +

2 ∑ 𝜌𝑖𝑗𝑖<𝑗

𝑘
; 

(2) �̂� =
2𝑘

�̂�
=

2𝑘2

𝑘+2 ∑ 𝜌𝑖𝑗𝑖<𝑗
. 

When tests are independent, 𝜌𝑖𝑗 = 0 ∀𝑖 ≠ 𝑗. Then �̂� = 1, �̂� = 2𝑘, this is exactly identical to 

the resul obtained by Fisher’s method. When there exists dependency between tests, the question 

is how to estimate the correlation 𝜌𝑖𝑗. Li et al. again suggested a general method that is based on 

permutations (Li S. , 2011).  

The idea is to generate an empirical distribution of 𝑧 (natural logarithm of p value) under 

null hypothesis so that we can estimate the correlation by calculating sample correlation. For 

each permutation, we would have a vector of p values: 𝒑𝑏 = (𝑝1
𝑏 , 𝑝2

𝑏 , … , 𝑝𝑘
𝑏), 𝑏 = 1,2, … , 𝐵; 

consequently, we have a vector of 𝑧 as 𝒛𝑏 = (𝑧1
𝑏 , 𝑧2

𝑏 , … , 𝑧𝑘
𝑏). After finishing all permutations, we 
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could calculate the correlation for any pair of 𝑧 under global null hypothesis by the sample 

correlation of the permuted random sample.  

Since Satterwhite’s approximation is just an extension of Fisher’s method, again one 

limitation of this method is that it is only suitable for UIT. 

3.4.4 Z-transform Method 

Another widely used p value combination method is called Z-transform method or 

Stouffer’s method (Stouffer, 1949). The Z-transform method takes advantage of the one-to-one 

mapping of the cumulative distribution function of standard normal distribution to the p values 

under null hypothesis (Whitlock, 2005). The assumptions for Z-transform method are those used 

in Fisher’s method: Independency between tests, intersection of local null hypotheses. 

If we use Φ(𝑥) to denote the cumulative distribution function of standard normal 

distribution with mean of 0 and standard deviation of 1, then for each p value the transformed Z 

score is 

𝑍𝑖 = Φ−1(1 − 𝑃𝑖)~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

The statistic 𝑍𝑠 =
∑ 𝑍𝑖

𝑘
𝑖=1

√𝑘
 is also following a standard normal distribution, therefore, a p value 

corresponding to 𝑍𝑠 can be easily calculated given any set of observed p value from individual 

tests.  

The largest advantage of Z-transform method is the symmetric distribution of statistic 𝑍𝑠 

compared to Fisher’s method. It is not hard to show that 𝑋2 in Fisher’s method is skewed to the 

right, which indicates that Fisher’s method is asymmetrically sensitive to small p values 

compared to large p values (Whitlock, 2005). The problem can be elaborated with the following 

example. Suppose we want to combine the results of 2 tests: in the first scenario, 𝑝1 = 0.0001 

and 𝑝2 = 0.3, and in the second scenario, 𝑝1 = 0.01 and 𝑝2 = 0.01. If we just review these 
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numbers by eyes, we probably would think the results in the second scenario is more significant 

because both local tests show significance. However, after applying Fisher’s method, we end up 

with 𝑋1
2 = 20.82 in scenario 1, which is more extreme than the statistic 𝑋2

2 = 18.42 obtained in 

scenario 2. This asymmetry results in bias in combining multiple results, although the bias may 

not be as great as in the example described above (Whitlock, 2005). On the other hand, Z-

transform method is virtually a sum of variables with standard normal distribution under the 

global null hypothesis, which guarantees the symmetry of the combined statistic. 

Another advantage of Z-transform method is that weights could be introduced to the 

statistic. It is called weighted Z-method: 

𝑍𝑤 =
∑ 𝑤𝑖𝑍𝑖

𝑘
𝑖=1

√∑ 𝑤𝑖
2𝑘

𝑖=1

 

The statistic 𝑍𝑤 still follows a standard normal distribution. This is a very practical design, 

for some tests may provide more meaningful explanation or show more importance when 

comparing to others. A large number of criteria were proposed on how to choose weights. For 

example, if we want to combine results from different microarray data, we may use the sample 

size as weight. Or if all the studies are using t-tests, weight can be defined as the degree of 

freedom. More generally, weights could be the inverse of the squared standard error of the effect 

size (Whitlock, 2005).  More methods to choose weights in genomic study were studied in the 

work of Li et al. (Li & Ghosh, 2012) 

3.4.5 Minimum P Value and Maximum P Value 

Here we are going to introduce 2 more traditional meta-analysis methods: minimum p value 

(Tippett, 1931) and maximum p value (Wilkinson, 1951). 

𝑚𝑖𝑛𝑃 = min
𝑖=1,…,𝑘

𝑃𝑖 
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𝑚𝑎𝑥𝑃 = max
𝑖=1,…,𝑘

𝑃𝑖 

When we are considering union-intersection hypothesis, we want the reject region to be a 

union of local reject regions: 

⋃{𝑥: 𝑇𝑖(𝑥) ∈ 𝑅𝑖}

𝑘

𝑖=1

 

If p value is used to decide the rejection region, now the above formula becomes 

⋃{𝑝𝑖 < 𝛼}

𝑘

𝑖=1

= min
𝑖=1,…,𝑘

𝑃𝑖 < 𝛼 

where 𝛼 is the cutoff for rejection region. 

On the other hand, if what we care is the consistency of the local tests and will reject the 

global null hypothesis if and only if all local tests are rejected, the reject region is  

⋂{𝑥: 𝑇𝑖(𝑥) ∈ 𝑅𝑖}

𝑘

𝑖=1

= ⋂{𝑝𝑖 < 𝛼}

𝑘

𝑖=1

= max
𝑖=1,…,𝑘

𝑃𝑖 < 𝛼 

Therefore, minimum p value is suitable for UIT while maximum p value is appropriate for 

IUT. 

Now let’s take a look at the distribution of minimum p value under the global null 

hypothesis. If we assume the local tests are independent, it is straightforward to derive the 

distribution of minimum p value as follows 

𝑃 (𝑚𝑖𝑛𝑃 ≤ 𝛼| ⋂ 𝐻0𝑖

𝑘

𝑖=1

) = 1 − 𝑃 (𝑚𝑖𝑛𝑃 > 𝛼| ⋂ 𝐻0𝑖

𝑘

𝑖=1

) 

= 1 − 𝑃(𝑃1 > 𝛼, 𝑃2 > 𝛼, … , 𝑃𝑘 > 𝛼| ⋂ 𝐻0𝑖

𝑘

𝑖=1

) 

= 1 − 𝑃(𝑃1 > 𝛼|𝐻01)𝑃(𝑃2 > 𝛼|𝐻02) … 𝑃(𝑃𝑘 > 𝛼|𝐻0𝑘) 
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= 1 − (1 − 𝛼)𝑘 

Therefore, we can easily calculate the p value for each observed minimum p value according 

to the distribution function described above. If the dependency between tests is not negligible, a 

permutation test can be applied to incorporate this concern. For each permutation, we can obtain 

a list of p values and the corresponding minimal p value: 𝑚𝑖𝑛𝑃𝑏. Say we perform B 

permutations, then in the end we will have B permutated minimum p value 

(𝑚𝑖𝑛𝑃1, 𝑚𝑖𝑛𝑃2, … , 𝑚𝑖𝑛𝑃𝐵), which forms an empirical distribution under global null hypothesis 

for 𝑚𝑖𝑛𝑃. The p value for the observed 𝑚𝑖𝑛𝑃 can be calculated by computing the ratio of 

permuted minimum p value smaller than the observed minimum p value. 

The above methods are designed for UITs, however the study of IUT is usually more 

challenging. As we described in previous section that using maximum p value for IUT is very 

intuitive and understandable, however, the distribution of maximum p value under global null 

hypothesis is not derivable. 

𝑃(𝑚𝑎𝑥𝑃 < 𝛼| ⋃ 𝐻0𝑖
𝑘
𝑖=1 ) = 𝑃(𝑃1 < 𝛼, 𝑃2 < 𝛼, … , 𝑃𝑘 < 𝛼| ⋃ 𝐻0𝑖

𝑘

𝑖=1

) 

Even if all local tests are independent, there is no explicit formula for the distribution of 

maximum p value because the global null hypothesis is a union of local null hypothesis, which 

means that local alternative hypothesis is also allowed to be true for some of the tests.. 

3.4.5.1 Methods to Compute Maximum P Value 

In this section, three methods will be introduced which are normally employed to compute 

maximum p value: Berger’s method, Relaxed IUT (RIUT), and meta-analysis method. 

Roger. L. Berger first proved that if every local test has a size 𝛼, the IUT is also a level 𝛼 

test (Berger, 1982). In other words, if we use the observed maximum p value to represent the 
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global p value of the combined test, the size is well-controlled at the level of 𝛼, which is the size 

for each local test. 

Proof: 

𝑃(𝑚𝑎𝑥𝑃 ≤ 𝛼| ⋃ 𝐻0𝑖
𝑘
𝑖=1 ) = 𝑃(⋂ 𝑅𝑖

𝑘

𝑖=1

| ⋃ 𝐻0𝑖

𝑘

𝑖=1

) 

≤ 𝑃(𝑅𝑖| ⋃ 𝐻0𝑖

𝑘

𝑖=1

) 

≤ 𝛼 

This theorem built up a basis for using maximum p value as the global p value. When 

applying this method to data, we can just pick up the maximum of the observed p value and 

access significance from here. However, this method is way too conservative in practice. For 

example, from a simulation composed of 2 local null distribution, the empirical distribution of 

maximum p value based on 1000 simulations does not follow a uniform distribution but more 

concentrated on the large p value region as shown in Figure 3-4A. If we choose 𝛼 = 0.05 then 

the size of combined test is 0.005 based on the simulation result. Another example is if one of 

the local distributions is null (p value is 𝑝𝐻0
), another is alternative (𝑝𝐻𝐴

) as shown in Figure 3-

4B. The distribution of maximum p value depends on how large the effect size is under the local 

alternative distribution. If the effect size is extremely large and all the p values under alternative 

distribution is close to 0 (𝑝𝐻𝐴
= 0), the maximum p values would be equal to the p values from 

local null distribution (𝑚𝑎𝑥𝑝 = 𝑝𝐻𝐴
). In this case, the distribution of maximum p value would be 

approximately uniform. Otherwise, the distribution of the maximum p value still skews to the 

large value region. The size of the test in Figure 3-4B is 0.024 at a significance level of 0.05. 
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a         b 

Figure 3-4: Histogram of maximum p value based on 1000 simulations. a. In each simulation, 

there are 2 local tests and both are under null distribution. Maximum p value is too conservative 

as concentrated to the large p value region. b. In each simulation, one local test is under null 

distribution and another one is under alternative distribution. This is one of the situations for 

global null distribution of intersection-union test. The distribution of maximum p value is again 

cumulated more to the larger values. 

 

Deng et al. noticed this problem and proposed an adjusted version of maximum p value, 

which is called Relaxed IUT (RIUT) (Deng, Xu, & Wang, 2007). The key idea is to compute the 

true family wise error rate of the combined test and adjust the observed maximum p value to 

reduce the conservative behavior. They formulated the adjusted maximum p value expression 

under the condition with only two local tests and independency between these two tests were 

assumed (Deng, Xu, & Wang, 2007). 

𝐹𝑊𝐸𝑅 = 𝑃𝑟(𝑅𝑒𝑗𝑒𝑐𝑡 𝐻01 𝑎𝑛𝑑 𝐻02|𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝐻0𝑖  𝑖𝑠 𝑡𝑟𝑢𝑒) 

= 𝑃𝑟(𝑚𝑎𝑥(𝑃1, 𝑃2 ) ≤ 𝛼|𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝐻0𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒) 

= 𝑃𝑟(𝑃1 ≤ 𝛼,  𝑃2 ≤ 𝛼 |𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝐻0𝑖   𝑖𝑠 𝑡𝑟𝑢𝑒) 
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=
Pr (𝑃1 ≤ 𝛼,  𝑃2 ≤ 𝛼,  (𝐻01 𝑜𝑟 𝐻02))

Pr(𝐻01 𝑜𝑟 𝐻02)
 

=

Pr(𝑃1 ≤ 𝛼,  𝑃2 ≤ 𝛼, 𝐻01, 𝐻02)

+Pr(𝑃1 ≤ 𝛼,  𝑃2 ≤ 𝛼, 𝐻01, 𝐻𝐴2)

+Pr(𝑃1 ≤ 𝛼,  𝑃2 ≤ 𝛼, 𝐻𝐴1, 𝐻02)

(1 − Pr(𝐻𝐴1) Pr(𝐻𝐴2))⁄  

=

Pr(𝑃1 ≤ 𝛼|H01)Pr(𝑃2 ≤ 𝛼|H02) Pr(𝐻01) Pr(𝐻02)

+Pr(𝑃1 ≤ 𝛼|H01)Pr(𝑃2 ≤ 𝛼|HA2) Pr(𝐻01) Pr(𝐻𝐴2)

+Pr(𝑃1 ≤ 𝛼|HA1)Pr(𝑃2 ≤ 𝛼|H02) Pr(𝐻𝐴1) Pr(𝐻02)
(1 − Pr(𝐻𝐴1) Pr(𝐻𝐴2))⁄  

=
𝛼2𝜋1𝜋2 + 𝛼(1 − 𝛽2)𝜋1(1 − 𝜋2) + (1 − 𝛽1)𝛼(1 − 𝜋1)𝜋2

1 − (1 − 𝜋1)(1 − 𝜋2)
 

 

where 𝛼 is the size for each local test, 𝜋1 is the probability of null distribution in the first test, 𝜋2 

is the probability of null distribution in the second test, 𝛽1 is type II error rate for the first test, 𝛽2 

is type II error rate for the second test. This formula is to calculate the true family wise error rate 

based on the global null hypothesis in IUT. For example, if 𝛼 = 0.05, the probability of local 

null distribution for test 1 and test 2 are both equal to 0.5, type II error rate for test 1 and test 2 

are both  0 (must be a very sensitive test and extremely large effect size), then the true FWER is 

0.034. If we plug in the observed maximum p value from local tests into the formula, what we 

are estimating is the true family wise error rate defined based on using maximum p value as the 

global p value, which we call “adjusted maximum p value”. 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑚𝑎𝑥𝑝

=
𝑚𝑎𝑥𝑝𝑜𝑏𝑠

2 𝜋1𝜋2 + 𝑚𝑎𝑥𝑝𝑜𝑏𝑠(1 − 𝛽2)𝜋1(1 − 𝜋2) + (1 − 𝛽1)𝑚𝑎𝑥𝑝𝑜𝑏𝑠(1 − 𝜋1)𝜋2

1 − (1 − 𝜋1)(1 − 𝜋2)
 

Now we have 4 parameters to estimate: 𝜋1, 𝜋2, 𝛽1, 𝛽2. Deng et al. suggested to adopt a 

method in adjusting multiple comparisons to estimate the probability of null hypothesis, which 
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was proposed by Storey and Tibshirani in 2003 (Storey & Tibshirani, 2003). The formula to 

estimate 𝜋𝑖 is 

𝜋�̂� =
#{ 𝑝𝑖(𝑗) > 𝜆}

𝑚(1 − 𝜆)
, 𝑖 = 1,2, … , 𝑘; 𝑗 = 1,2, … , 𝑚 

Type II error rate, the probability of not rejecting the test when the alternative hypothesis is 

true, is very difficult to estimate without any information of the effect size in alternative 

distribution. Therefore, Deng et al. simply set 𝛽1 = 0 and 𝛽2 = 0 for both simulation study and 

real data study in their paper. 

Relaxed IUT (RIUT) is an effective method to drag those large p values to the smaller 

region and make maximum p value less conservative. More details will be shown in the 

simulation study in Chapter 4. 

The third method to deal with intersection-union test was proposed by Kui Shen and his 

colleagues in 2010 (Shen & Tseng, 2010). Their goal is to combine results of gene set analysis 

across different data sets from different tissues. Only those consistent results are reliable, 

therefore, they are dealing with IUT problem. Instead of adopting the maximum p value as a 

global p value, they treated it as a statistic and performed meta-analysis on it. However, the 

global hypothesis given in the paper is not the same as IUT: 

𝐻𝑆𝐴: {𝐻0: 𝜃1𝑔 = ⋯ = 𝜃𝐾𝑔 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: 𝜃𝑘𝑔 ≠ 0, ∀1 ≤ 𝑘 ≤ 𝐾} 

The global alternative hypothesis is an intersection of local alternative hypotheses. However, 

the global null hypothesis is not a union of local null hypotheses but instead is an intersection 

again. This hypothesis does not consist of the overall parameter space, and the test based on it 

cannot well control the type I error rate. For example, if we have two tests, and only one of them 

is significant, the p value of meta-analysis calculated based on the hypothesis described above 

would be very small and suggests rejection of the global null hypothesis. At the same time, we 



 

71 

 

want to declare significance only if both tests give evidence of rejection, therefore, the example 

given above becomes a false positive.  

In our study, we would like to define the gene pathways that show enough evidence of 

differentially expressed in both upstream factors and downstream factors. Therefore, IUT would 

be an appropriate test, and the Relaxed IUT proposed by Deng et al. can well control  the type I 

error and give reasonably good results. We will adopt it for our combined methods in the next 

chapter. 
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Chapter 4 The Combined Method 

 

4.1 Main Goal and Significance of the Study 

Various methods have been developed for gene set analysis in the past decade and we have 

reviewed three most popular and representative methods in Chapter 2 and Chapter 3. However, 

for both self-contained tests or competitive tests, these methods were designed based on existing 

gene set database including only upstream factors which are defined in Chapter 1. Upstream 

factors usually include receptors, enzymes, and transcriptional factors, which are very likely to 

have protein level modification instead of enormous transcription level alteration upon activation 

of the pathway. However, the target genes of this pathway, we call downstream factors, are the 

components expected to have dramatic gene expression level change in different phenotype if the 

pathway is really differentially expressed. Therefore, it is sound to add this critical information 

from downstream factors into gene set analysis. 

To include downstream factors, there are two possible choices:  

(1) Combine upstream factors and downstream factors into a whole gene set, and apply a 

gene set analysis method on this new defined larger gene set; 

(2) Apply gene set analysis methods on upstream factors and downstream factors separately; 

then combine the results from these two tests. 

We studied both, but found the second combined method works better. The main reasons 

may be as follows: 

(1) The data structures differ significantly between upstream factors and downstream 

factors.. For example, genes in the upstream gene sets are those functioning interactively, while 

target genes in the downstream gene sets are those sharing same transcription factor binding 
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sites. In a certain cellular context, one pathway may only regulate a limited number of target 

genes, even though it has a large number of potential target genes across the whole genome. 

Hence, in a differentially expressed gene pathway, upstream factors are supposed to have similar 

expression pattern while only a small percent of the downstream factors are really activated or 

inhibited. If we pool all the genes from both upstream and downstream together to form a new 

gene set, it would be a mixture of two types of data, which may lead to loss of power in 

statistical analysis. Instead, if we analyze these two subgroups individually, appropriate methods 

could be chosen according to divergent distributions, resulting in power improvement. 

(2) Gene pathways are very complicated and interconnected. For example, in Figure 4-1, 

both upstream factors 1 and upstream factors 2 can regulate one given downstream factors. In 

one situation, upstream factors 1 are activated while in another cell type, upstream factors 2 are 

turned on. In this case, if both upstream and downstream factors are grouped together to form a 

new gene set,if would be difficult to distinguish these two pathways. Therefore, we will have 

more confidence to declare that a gene pathway is differentially expressed only if we gather 

enough evidence of significance from both upstream factors and downstream factors. 

 



 

74 

 

Figure 4-1: Example of complex gene pathway. Both upstream factors 1 and upstream factors 2 

are regulating the given downstream factors but in different physiological environment. 

 

4.2 Method 

Our proposed gene set analysis method is a combined method. Given the different features 

in upstream factors and downstream factors, we propose applying GSEA on upstream factors, 

CDA on downstream factors, and using Relax IUT (RIUT) to combine the p values from these 

two tests to obtain a global p value for significance assessment (Figure 4-2). 

 

Figure 4-2: Flowchart of our proposed combined method of gene set analysis. 

 

We chose GSEA for upstream factors because this method is more designed to detect the 

concordant pattern of expression change in a given gene set. We would declare significance if 

more components from receptors to transcriptional factors show evidence of differentially 

expression. On the other hand, we assume a pathway might be turned on as long as a few target 

genes are differentially expressed. Therefore, a self-contained method is suitable for downstream 

factors, and CDA is the most powerful one in a variety of scenarios. 

In the following sections, we will first compare GSEA, PCA and CDA under different 

simulated data structures. Then we will compare the combining methods by using different 

combinations of existing methods. We will also show how our proposed combining method 
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outperforms the overall method which treats the upstream factors and downstream factors as a 

big gene set. 

 

4.3 Simulations 

4.3.1 Simulation for PCA 

We simulated two scenarios with all parameters set to be identical except for correlation 

structure (Table 4-1). In simulation 1, we set all the differentially expressed genes into a 

correlation cluster with correlation equal 0.5, while the correlation between differentially 

expressed genes and non-differentially expressed genes, and the correlation among non-

differentially expressed genes were set to be zero. In simulation 2, we set all the non-

differentially expressed genes into a correlation cluster, as opposite to the design of simulation 1. 

Each scenario was simulated 1000 times..  

Parameters Simulation 1 Simulation 2 

Sample size 20 20 

Number of pathway 1 1 

Number of genes in the 

pathway 
100 100 

Number of DEG in the 

pathway 
20 20 

Difference in group mean 1 1 

Variance uniform (0.1, 10) uniform (0.1, 10) 

Correlation 

  

Table 4-1: Parameters for simulations of illustrating the limitation of PCA. 
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Figure 4-3: Result of simulations comparing PCA under two different correlation structures. The 

blue line corresponds to simulation 1, where all differentially expressed genes are in a correlation 

cluster with correlation equal 0.5.The red line is from simulation 2, where all non-differentially 

expressed genes are in the correlation cluster. X axis is the cut-off p value to declare 

significance, while Y axis shows the corresponding power based on 1000 simulations. 

 

The result is shown in Figure 4-3, where the blue line corresponds to simulation 1 and the 

red line is from simulation 2. When all differentially expressed genes are in the correlation 

cluster with correlation equal to 0.5, PCA can identify the differentially expressed pathway with 

a power of 0.275 if we control the size to be 0.05. The power is not impressing because we only 

adopted the first PC in the regression. What is worse is that, if only the non-differentially 

expressed genes are in the correlation cluster, PCA has a power of 0.064 to identify the 

differentially expressed pathway at a level of 0.05, which is not much better than a random 

decision when there is no information of the gene expression level provided. Although the 
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scenarios are somehow extreme, we can still have a sense of how PCA could fail under certain 

circumstance. Therefore, we do not suggest using PCA in gene set analysis unless one can 

ascertain that there is no special correlation structure that may affect the result tremendously. 

This simulation also confirmed the two limitations of PCA we discussed in Chapter 2: no 

consideration of outcome and weights of each gene decided merely by correlation structure 

4.3.2 Simulation for GSEA 

The following settings were designed for both GSEA and CDA. We followed the designs 

from references (Tsai & James, 2009) (Ackermann & Strimmer, 2009), and added more 

combinations to study GSEA and CDA more thoroughly. 

Simulation settings: 

Each generated gene set consists of 𝑝 = 100 genes and 𝑛 = 40 samples (20 in control 

group, 20 in case group). Genes in control group were simulated with random means 

𝜇0~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,10), and random variance 𝜎0
2~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,10). Genes in case group were 

simulated with mean 𝜇1 = 𝜇0 + ∆𝜇, with a shift from 𝜇0, and variance  𝜎1
2. We considered 

various scenarios detailed as follows. 

 Background 1 (genes not in the gene set): 100 genes were simulated with ∆𝜇 = 0 and 

𝜎1
2 = 𝜎0

2, which indicates no differentially expressed gene exists. 

 Background 2 (genes not in the gene set): 10000 genes were simulated with ∆𝜇 = 0 and 

𝜎1
2 = 𝜎0

2, which indicates no differentially expressed gene exists. 

 Background 3 (genes not in the gene set): 10000 genes were simulated, the first 2500 

genes with ∆𝜇~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) , the rest of the genes with ∆𝜇 = 0, and 𝜎1
2 = 𝜎0

2.  This 

means 25% of the backgrounds genes were differentially expressed. 

Set 
Gene set 

size 

Percent of 

DEGs 

Number of  

DEGs 

Mean 

difference 
Correlation 

Identical 

Covariance 
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Matrix 

S1A 100 10% 10 0 0 Yes 

S2A 100 10% 10 0.2 0 Yes 

S3A 100 10% 10 0.5 0 Yes 

S4A 100 10% 10 1 0 Yes 

S5A 100 10% 10 0 0.25 Yes 

S6A 100 10% 10 0.2 0.25 Yes 

S7A 100 10% 10 0.5 0.25 Yes 

S8A 100 10% 10 1 0.25 Yes 

S9A 100 10% 10 0 Block 0.25* Yes 

S10A 100 10% 10 0.2 Block 0.25 Yes 

S11A 100 10% 10 0.5 Block 0.25 Yes 

S12A 100 10% 10 1 Block 0.25 Yes 

S13A 100 10% 10 0 0.5 Yes 

S14A 100 10% 10 0.2 0.5 Yes 

S15A 100 10% 10 0.5 0.5 Yes 

S16A 100 10% 10 1 0.5 Yes 

S17A 100 10% 10 0 Block 0.5* Yes 

S18A 100 10% 10 0.2 Block 0.5 Yes 

S19A 100 10% 10 0.5 Block 0.5 Yes 

S20A 100 10% 10 1 Block 0.5 Yes 

S21A 100 50% 50 0 0 Yes 

S22A 100 50% 50 0.2 0 Yes 

S23A 100 50% 50 0.5 0 Yes 

S24A 100 50% 50 1 0 Yes 

S25A 100 50% 50 0 0.25 Yes 

S26A 100 50% 50 0.2 0.25 Yes 

S27A 100 50% 50 0.5 0.25 Yes 

S28A 100 50% 50 1 0.25 Yes 

S29A 100 50% 50 0 Block 0.25 Yes 

S30A 100 50% 50 0.2 Block 0.25 Yes 

S31A 100 50% 50 0.5 Block 0.25 Yes 

S32A 100 50% 50 1 Block 0.25 Yes 

S33A 100 50% 50 0 0.5 Yes 

S34A 100 50% 50 0.2 0.5 Yes 

S35A 100 50% 50 0.5 0.5 Yes 

S36A 100 50% 50 1 0.5 Yes 

S37A 100 50% 50 0 Block 0.5 Yes 

S38A 100 50% 50 0.2 Block 0.5 Yes 

S39A 100 50% 50 0.5 Block 0.5 Yes 

S40A 100 50% 50 1 Block 0.5 Yes 

S41 100 25%, 25% 25, 25 0 0 Yes 

S42 100 25%, 25% 25, 25 0.2, -0.2 0 Yes 

S43 100 25%, 25% 25, 25 0.5, -0.5 0 Yes 
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S44 100 25%, 25% 25, 25 0.75, -0.75 0 Yes 

S45 100 25%, 25% 25, 25 1, -1 0 Yes 

S46 100 35%, 15% 35, 15 0 0 Yes 

S47 100 35%, 15% 35, 15 0.2, -0.2 0 Yes 

S48 100 35%, 15% 35, 15 0.5, -0.5 0 Yes 

S49 100 35%, 15% 35, 15 0.75, -0.75 0 Yes 

S50 100 35%, 15% 35, 15 1, -1 0 Yes 

S51 500 5%, 5% 25, 25 0 0 Yes 

S52 500 5%, 5% 25, 25 0.2, -0.2 0 Yes 

S53 500 5%, 5% 25, 25 0.5, -0.5 0 Yes 

S54 500 5%, 5% 25, 25 1, -1 0 Yes 

S55 500 5%, 5% 25, 25 2, -2 0 Yes 

S56 500 5%, 5% 25, 25 3, -3 0 Yes 

S57 500 5%, 5% 25, 25 5, -5 0 Yes 

Table 4-2: Parameters of simulations for GSEA and CDA. Block correlation is defined as that 

correlation 𝜌 = 0.25 𝑜𝑟 0.5 only exists between DEGs but not any other two genes. 

 

Set S1B ~ S40B shared the same parameters as their corresponding A sets except that the 

variance in control group was not identical to that in case group. These B sets were designed to 

study the effect of unequal covariance matrix on GSEA and CDA. 

As described in previous chapter, GSEA is designed based on competitive assumption but 

significance assessment is instead based on subject sampling, which makes it more conservative 

in detecting significance. In the following simulation study, we showed how the power of GSEA 

would be affected by fold change, percent of DEG in gene set, mixture of both up-regulated and 

down-regulated genes, correlation between genes, and percent of DEG in background genes. 

Results: 

(1) Correlation between genes in a given gene set reduces the power of GSEA, especially 

when the correlation between differentially expressed genes and non-differentially expressed 

genes is not negligible (Figure 4-4). All gene sets in the plot include 10% of DEGs and the mean 

difference increases from 0 to 1. Size was set to be 0.05. GSEA showed largest power when 
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there was no pairwise correlation between genes in the gene set (red solid line). Power decreased 

dramatically when correlation among all genes exist (blue and black dotted lines). This pattern is 

consistent when the percentage of DEG increases to 50% and background genes increases to 

10000 (Figure 4-5). 

 

Figure 4-4: Simulation results of GSEA on gene set with 10% of DEGs (a) and 50% of DEGs 

(b). Red solid line corresponds to gene set with no pairwise correlation; black solid line 

correponds to gene set with pairwise correlation of 0.25; black dotted line corresponds to gene 

set with pairwise correlation of 0.25 between DEGs but no correlation between any other 2 

genes; blue solid line represents gene set with 𝜌 = 0.5 while blue dotted line corresponds to gene 

set with block correlation structure of 𝜌 = 0.5. 100 background genes (background 1) were 

considered in the simulation. Results were based on 1000 simulations. 𝛼 = 0.05. 

 

(2) Higher percentage of differentially expressed genes corresponds to higher power of 

GSEA (Figure 4-4 and Figure 4-5). This is reasonable because more DEGs ranking higher in the 

rank list lead to stronger evidence of differentially expression of the gene set. 
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Figure 4-5: Simulation results of GSEA on gene set with 10% of DEGs (a, c) and 50% of DEGs 

(b, d). Red solid line corresponds to gene set with no pairwise correlation; black solid line 

correponds to gene set with pairwise correlation of 0.25; black dotted line corresponds to gene 

set with pairwise correlation of 0.25 between DEGs but no correlation between any other 2 

genes; blue solid line represents gene set with 𝜌 = 0.5 while blue dotted line corresponds to gene 

set with block correlation structure of 𝜌 = 0.5. 10000 background genes with no DEGs 

(background 2) were considered in a and b; while 10000 background genes with 2500 DEGs 

(background 3) were considered in c and d. Results were based on 1000 simulations. 𝛼 = 0.05. 

 

(3) Larger number of background genes improves the power of GSEA slightly. In Figure 4-
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4, both results were based on competition to 100 non-differentially expressed background genes, 

while in Figure 4-5 a and b, results were from a rank list of 10000 non-differentially expressed 

background genes. When the background list increased from 100 to 10000, power increased 

slightly from 0.257 to 0.326 in the gene set with 50% DEGs, ∆𝜇 = 0.2 and 𝜌 = 0. This 

improvement became negligible when ∆𝜇 increased to 1. We also tested the effect of DEGs in 

the background list to the given gene set. Figure 4-5 c and d gave results from simulations based 

on background genes with 25% of DEGs. If we compare results in c and d to those in a and b, 

respectively, we can see that power decreased when DEGs exist in background list. It is also as 

expected since GSEA compares the genes in the given gene set to those genes not in the gene set. 

If more DEGs exist in the background list, it requires more evidence of differentially expression 

for the genes in given gene set to be identified as significant by GSEA. 25% of DEGs in the 

background list is quite realistic as we will see in Chapter 5. 

(4) Mixture of up-regulated and down-regulated genes dramatically reduced the power of 

GSEA (Figure 4-6). This is an obvious limitation for GSEA because genes in a given gene set are 

not guaranteed to be regulated in a consistent direction in the real data. A quadratic 

transformation of the gene level scores (e.g. squared of 𝑡 score) seems to be a solution to 

improve GSEA (Ackermann & Strimmer, 2009). We compared the quadratic version and original 

version of GSEA under 3 scenarios: 1) 100 percent of the DEGs were up-regulated (Set 

21A~24A), 2) 70 percent of the DEGs were up-regulated and 30 percent were down-regulated 

(Set 46~50), 3) 50 percent of the DEGs are up-regulated and the rest 50 percent were down-

regulated (Set 41~45).  Original GSEA was most powerful when all the DEGs changed in the 

same direction but failed to identify the tested gene set when mixture of up- and down-regulated 

genes existed. Quadratic GSEA did save some power in the extreme case where half of the DEGs 
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were up-regulated and half were down-regulated. However, this method resulted in much lower 

true positive rates than original GSEA when majority of the genes were in concordance (red and 

blue lines). In general, the quadratic transformed GSEA was not a promising alternative to 

improve GSEA and we did not recommend it as an alternative in gene set analysis. 

 

Figure 4-6: Simulation results of GSEA and Quadratic GSEA on gene sets of both up- and down-

regulated genes. Dotted lines represented GSEA; solid lines corresponded to Quadratic 

transformed GSEA. Red was for gene set with up-regulated genes only; blue was for gene set 

with 70% up-regulated and 30% down regulated genes; black was for gene set with 50% up-

regulated and 50% down-regulated genes. 

 

In summary, GSEA is most powerful when  

(1) Large percent of genes in the gene set are differentially expressed; 

(2) Fold changes of the DEGs are at least moderate and in consistent direction; 

(4) Pairwise correlations between genes are small; 
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(5) No or small percent of DEGs exist in the background list. 

4.3.3 Study of CDA 

CDA was designed based on self-contained assumption, and the subject-sampling 

permutation suits the assumption perfectly, which promises high power of CDA in a variety of 

scenarios (Tsai & James, 2009). One key assumption for CDA, which is easily ignored by users, 

is the homogeneous within-group covariance matrices. Violation of this assumption may result in 

large bias if we adopt a parametric method to assess significance. An unequal covariance can be 

easily incorporated by permutation test in practice. In the following series of simulation studies, 

we showed how the unequal covariance affects the power of CDA (Figure 4-7). 

 

Figure 4-7: Simulation results of CDA on gene set with 10% of DEGs (a) and 50% of DEGs (b). 

Solid lines represented the gene sets with homogeneous covariance among groups; Dotted lines 

corresponded to gene sets with unequal covariance among groups. Different colors corresponded 

to different pairwise correlation. Red: No correlation; Black: 𝜌 = 0.25; Blue: 𝜌 = 𝑏𝑙𝑜𝑐𝑘 0.25; 

Green: 𝜌 = 0.5; Orange: 𝜌 = 𝑏𝑙𝑜𝑐𝑘 0.5. Results were based on 1000 simulations. 𝛼 = 0.05. 

 

We noticed several interesting observations from these simulation results: 

(1) CDA yielded larger power in gene sets with homogeneous within-group covariance, 
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which is as expected since the within-group covariance matrix is pooled across all groups. Two 

groups with more homogeneous covariance structure are better distinguished by CDA. 

(2) In general, stronger correlation reduced the power of CDA, if the calculation was 

calculated based on empirical sample covariance matrix. However, when the percentage of DEGs 

is small (10% in Figure 4-7 a,), CDA detected most true positives in the gene sets with pairwise 

correlation of 0.5. This is due to the shrinkage covariance estimator (Schafer & Strimmer, 2005) 

we chose for computing CDA. The block correlation structure reduced the power tremendously, 

especially when more DEGs existing in the gene set. In real data shown in previous section, 

pairwise correlations between genes are too weak to severely affect the power of CDA. 

4.3.4 Comparison of PCA, GSEA and CDA 

In this section, we will show the simulation results of comparisons among CDA, PCA and 

GSEA in different scenarios where we changed the mean difference, percentage of DEGs in gene 

set, and correlation structure between genes. In Figure 4-8 and Figure 4-9, gene sets contained 

up-regulated genes only while in Figure 4-10, both up-regulated and down-regulated genes exist. 

The background genes for GSEA were from the scenario of “background 2” (10000 genes, 2500 

of them are DEGs). We only showed results when within-group covariance matrices were 

homogeneous, but the pattern was similar if the within-group covariance were not equal (results 

not shown). 
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Figure 4-8: Simulation results of comparisons among CDA, GSEA, and PCA in gene sets with 

10% DEGs. a. No pairwise correlation; b. 𝜌 = 0.25; c. block correlation 𝜌 = 0.25; d. 𝜌 = 0.5; 

e. block correlation 𝜌 = 0.5. All DEGs were up-regulated. Red line represented CDA; Black line 

corresponded to GSEA; Green line was from PCA. Results were based on 1000 simulations. 𝛼 =
0.05. 
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When the percentage of DEGs was small (10% in Figure 4-8), CDA generally outperformed 

the other two methods, except for the scenario where moderate correlations only existed between 

DEGs (Figure 4-8 e), in which PCA gave slightly larger power than CDA. This is consistent with 

our illustration about PCA that it gives weights according to correlation structures. We expect 

that PCA would be more powerful when the correlation between DEGs increases. However, this 

is not realistic as we will see in real data analysis. 
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Figure 4-9: Simulation results of comparisons among CDA, GSEA, and PCA in gene sets with 

50% DEGs. a. No pairwise correlation; b. 𝜌 = 0.25; c. block correlation 𝜌 = 0.25; d. 𝜌 = 0.5; 

e. block correlation 𝜌 = 0.5. All DEGs were up-regulated. Red line represented CDA; Black line 

corresponded to GSEA; Green line was from PCA. Results were based on 1000 simulations. 𝛼 =
0.05. 
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When the percentage of DEGs was at least moderate (50% in Figure 4-9), GSEA 

outperforms the other two if there was minor pairwise correlation or only correlation between 

DEGs (Figure 4-9 a, c, e). However, if moderate pairwise correlation existed among all genes, 

GSEA lost power as we showed in the previous section. At the same time, CDA was least 

affected by correlation structure when half of the genes were DEGs.  

 

Figure 4-10: Simulation results of comparisons among CDA, GSEA, and PCA in gene sets with 

mixture of up-regulated and down-regulated DEGs. Solid lines were from gene sets with up-

regulated DEGs only; long-dash lines were from gene sets with 70% up-regulated DEGs and 

30% down-regulated DEGs; Dotted lines were from gene sets with 50% up-regulated DEGs and 

30% down-regulated DEGs. Red lines represented CDA; Black lines corresponded to GSEA; 

Green lines were from PCA. Results were based on 1000 simulations. 𝛼 = 0.05. 

 

Finally we compared CDA, GSEA and PCA when mixture of up- and down-regulated genes 

existed (Figure 4-10). We saw the poor performance of GSEA in previous section when the 
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DEGs were divided into two equal portions with opposite gene expression change directions. 

Now we can compare it to CDA and PCA in similar situations. Although the inconsistency of 

gene regulation direction reduced the power of both CDA and PCA slightly, these two methods 

still identified the true positives in a comparatively high rate. Out of these two methods, CDA 

gave larger power than PCA in all three scenarios. 

Generally speaking, CDA is more sensitive in majority of the situations due to the 

concordance of its assumption and the subject sampling method to assess significance. PCA is 

less trustable since it tends to capture the correlated gene clusters instead of the difference in 

group mean. GSEA gives weakest power because the discrepancy between the “competitive” 

assumption and the “self-contained” permutation test.  

4.3.5 Combining Upstream and Downstream Factors 

In this section, we will show the simulation results of combining upstream factors and 

downstream factors by Relax IUT (RIUT) (Deng, Xu, & Wang, 2007). We tested different 

combinations of simulation settings. In general, upstream factors were chosen from gene sets 

1A~40A, and downstream factors were from gene sets 51~57.  

Firstly, we showed the comparison between RIUT and the overall test, which treats 

upstream factors and downstream factors as a whole gene set. We tried different combinations of 

GSEA, CDA and PCA using Set 21A and 23A as upstream set and Set 51 and 55 as downstream 

set. In the scenarios with either 𝜇𝑢𝑝 = 0 or 𝜇𝑑𝑜𝑤𝑛 = 0, the whole pathway should not be treated 

as differentially expressed. RIUT correctly controlled the false positive rate while overall test 

failed to control type I error (Table 4-3). This is as expected since overall test treated upstream 

factors and downstream factors as a whole set, and it would declare significance as long as there 

was evidence of differential expression in either part. For example, both CDA and PCA gave 
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power of 1 when 𝜇𝑢𝑝 = 0 and 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝜇𝑑𝑜𝑤𝑛 = 2 because strong DEGs existed in downstream 

and were capture by CDA and PCA, ignoring the fact that upstream factors were not 

differentially expressed at all. 

𝜇𝑢𝑝 𝜇𝑑𝑜𝑤𝑛 

RIUT Overall 

GSEA/ 

CDA 

GSEA/ 

PCA 

GSEA/ 

GSEA 

PCA/ 

CDA 

PCA/ 

GSEA 

PCA/ 

PCA 

CDA/ 

PCA 

CDA/ 

GSEA 

CDA/ 

CDA 
GSEA CDA PCA 

0 0 0.024 0.026 0.006 0.043 0.009 0.043 0.05 0.006 0.051 0.007 0.044 0.046 

0 
2 

-2 
0.02 0.02 0.008 0.039 0.018 0.039 0.044 0.023 0.044 0.117 1 1 

0.5 0 0.056 0.052 0.005 0.042 0.007 0.034 0.038 0.004 0.042 0.116 0.242 0.119 

0.5 
2 

-2 
0.932 0.932 0.183 0.38 0.108 0.38 0.75 0.155 0.932 0.555 1 1 

Table 4-3: Simulation results of power in RIUT and overall test. 𝛼 = 0.05. Each estimate was 

based on 1000 simulations. 

 

Secondly, we showed the power of different combinations of methods on various upstream 

and downstream matches: the upstream factors of 100 genes with 10% DEGs or 50% DEGs and 

no pairwise correlation, the downstream factors of 500 genes with 10% DEGs, half of which 

were up-regulated while the other half were down-regulated. When the percent of DEGs was 

small (10%) in upstream set, the combination using CDA for upstream factors and CDA for 

downstream factors (CDA/CDA) gave slightly larger power than all other combinations (Table 

4-4). However, when the percent of DEGs increased to 50%, GSEA/CDA combination 

outperformed the other methods, especially when mean difference was moderate in upstream 

(𝜇𝑢𝑝 = 0.5) and moderate to large in downstream (𝜇𝑢𝑝 = 1) (Table 4-5). 

𝜇𝑢𝑝 𝜇𝑑𝑜𝑤𝑛 

RIUT 

GSEA/ 

CDA 

GSEA/ 

PCA 

GSEA/ 

GSEA 

PCA/ 

CDA 

PCA/ 

GSEA 

PCA/ 

PCA 

CDA/ 

PCA 

CDA/ 

GSEA 

CDA/ 

CDA 

0 0 0.019 0.023 0.004 0.039 0.011 0.048 0.041 0.009 0.04 

0 
0.2 

-0.2 
0.023 0.023 0.008 0.04 0.01 0.053 0.047 0.008 0.05 
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0 
0.5 

-0.5 
0.008 0.016 0.005 0.027 0.012 0.048 0.052 0.016 0.03 

0 
1 

-1 
0.013 0.013 0.012 0.049 0.034 0.041 0.046 0.025 0.055 

0 
2 

-2 
0.014 0.014 0.009 0.051 0.024 0.051 0.058 0.027 0.058 

0.2 0 0.028 0.029 0.005 0.056 0.011 0.055 0.059 0.01 0.046 

0.2 
0.2 

-0.2 
0.028 0.032 0.01 0.036 0.012 0.042 0.045 0.01 0.04 

0.2 
0.5 

-0.5 
0.017 0.032 0.01 0.04 0.013 0.039 0.041 0.014 0.034 

0.2 
1 

-1 
0.024 0.022 0.023 0.048 0.034 0.05 0.034 0.04 0.041 

0.2 
2 

-2 
0.025 0.025 0.011 0.05 0.02 0.05 0.045 0.022 0.045 

0.5 0 0.037 0.049 0.01 0.044 0.008 0.047 0.048 0.012 0.04 

0.5 
0.2 

-0.2 
0.035 0.049 0.012 0.041 0.008 0.045 0.043 0.006 0.048 

0.5 
0.5 

-0.5 
0.03 0.045 0.016 0.053 0.007 0.051 0.048 0.01 0.053 

0.5 
1 

-1 
0.04 0.037 0.036 0.089 0.028 0.066 0.078 0.031 0.096 

0.5 
2 

-2 
0.047 0.047 0.019 0.096 0.042 0.096 0.106 0.045 0.106 

1 0 0.044 0.044 0.008 0.045 0.006 0.054 0.035 0.005 0.032 

1 
0.2 

-0.2 
0.047 0.046 0.006 0.055 0.011 0.04 0.036 0.009 0.041 

1 
0.5 

-0.5 
0.076 0.061 0.008 0.072 0.007 0.067 0.077 0.007 0.114 

1 
1 

-1 
0.226 0.157 0.028 0.194 0.032 0.13 0.224 0.02 0.398 

1 
2 

-2 
0.246 0.246 0.086 0.211 0.067 0.211 0.426 0.111 0.426 

Table 4-4: Simulation results of power in RIUT in upstream factors with 10% DEGs. 𝛼 = 0.05. 

Each estimate was based on 1000 simulations. 

 

𝜇𝑢𝑝 𝜇𝑑𝑜𝑤𝑛 

RIUT 

GSEA/ 

CDA 

GSEA/ 

PCA 

GSEA/ 

GSEA 

PCA/ 

CDA 

PCA/ 

GSEA 

PCA/ 

PCA 

CDA/ 

PCA 

CDA/ 

GSEA 

CDA/ 

CDA 

0 0 0.024 0.026 0.006 0.043 0.009 0.043 0.05 0.006 0.051 

0 
0.2 

-0.2 
0.021 0.02 0.004 0.037 0.011 0.038 0.051 0.013 0.021 

0 
0.5 

-0.5 
0.018 0.019 0.011 0.035 0.009 0.046 0.046 0.018 0.019 

0 
1 

-1 
0.02 0.017 0.02 0.038 0.032 0.037 0.037 0.036 0.02 
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0 
2 

-2 
0.02 0.02 0.008 0.039 0.018 0.039 0.044 0.023 0.044 

0.2 0 0.043 0.04 0.005 0.035 0.008 0.049 0.044 0.008 0.042 

0.2 
0.2 

-0.2 
0.042 0.047 0.01 0.048 0.018 0.051 0.045 0.009 0.042 

0.2 
0.5 

-0.5 
0.083 0.055 0.012 0.05 0.013 0.046 0.047 0.011 0.065 

0.2 
1 

-1 
0.206 0.158 0.028 0.073 0.026 0.058 0.083 0.027 0.11 

0.2 
2 

-2 
0.215 0.215 0.072 0.077 0.035 0.077 0.115 0.056 0.115 

0.5 0 0.056 0.052 0.005 0.042 0.007 0.034 0.038 0.004 0.042 

0.5 
0.2 

-0.2 
0.063 0.053 0.009 0.043 0.005 0.043 0.047 0.009 0.057 

0.5 
0.5 

-0.5 
0.175 0.107 0.008 0.113 0.009 0.062 0.102 0.007 0.157 

0.5 
1 

-1 
0.849 0.432 0.035 0.347 0.029 0.211 0.356 0.027 0.682 

0.5 
2 

-2 
0.932 0.932 0.183 0.38 0.108 0.38 0.75 0.155 0.932 

1 0 0.056 0.052 0.006 0.057 0.006 0.054 0.052 0.006 0.056 

1 
0.2 

-0.2 
0.066 0.057 0.01 0.068 0.01 0.058 0.057 0.01 0.066 

1 
0.5 

-0.5 
0.184 0.111 0.008 0.188 0.008 0.114 0.111 0.008 0.184 

1 
1 

-1 
0.911 0.457 0.035 0.906 0.035 0.458 0.457 0.035 0.911 

1 
2 

-2 
1 1 0.2 0.995 0.196 0.995 1 0.2 1 

Table 4-5: Simulation results of power in RIUT in upstream factors with 50% DEGs. 𝛼 = 0.05. 

Each estimate was based on 1000 simulations. 

 

4.3.6 Summary of the Simulation Studies 

In conclusion, PCA gave weights to genes mainly according to their correlation structure 

instead of the mean difference between groups, therefore, it lost power to detect the real 

differentially expressed pathway in a large variety of scenarios, and we do not recommend it for 

gene set analysis. CDA showed highest power in majority of the simulation scenarios, and it is 

least affected by correlation between genes. The hypothesis of CDA is that there is no DEG in 

the gene set, hence CDA would declare significance even there is only one gene showing 
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significant change in expression level. Based on our understanding of the gene pathways, CDA is 

more appropriate for testing downstream factors.  GSEA seemed to have weakest power 

compared to the other two methods, but it could still outperform CDA and PCA when moderate 

or large percent of the genes in the gene set showed at least moderate change in expression level 

in the same direction. This is consistent with our expectation for the upstream factors. Therefore, 

we suggest GSEA for upstream factors and CDA for downstream factors. 

Relax IUT (RIUT) is essentially an adjusted version of maximum p value, which could well 

control the size in a less conservative range and therefore improved power than the original 

maximum p value. Compared to the overall test which treated upstream factors and downstream 

factors as a whole big gene set, RIUT could correctly control type I error when either upstream 

or downstream was differentially expressed. Therefore, we suggest apply RIUT for combining p 

values from upstream factors and downstream factors, and assess significance for each combined 

gene pathway. 
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Chapter 5 Real Data Analysis 

 

In this section, we will apply our proposed combining method on two distinct data: the p53 

and Essential thrombocythaemia (ET) data set. We will compare their results with those from the 

overall test treating upstream and downstream as one big gene set. 

5.1 Materials 

The p53 dataset and ET dataset used in our study were referred to the Oliver study (Olivier, 

et al., 2002) and Bahou study (Gnatenko, et al., 2005), respectively. The p53 dataset was based 

on NCI-60 collection of cancer cell lines, including samples from 17 wild-type cells with normal 

p53 status and 33 mutated cells with p53 mutants. The tumor suppressor gene p53 is a 

transcription factor involved in almost all human cancers.  The data was from HGU95Av2 chip, 

which includes 12,625 probe sets. For each sample, the expression value of a given gene is 

represented by taking the maximum value of all probe sets for that gene. After probe reduction, 

expression values of 10100 genes were obtained. P53 dataset can be downloaded from the 

Developmental Therapeutics Program web site (http://dtp.nci.nih.gov/mtargets/download.html). 

The goal of study is to identify functional gene sets correlated to p53 mutation. 

ET dataset from the Bahou study could be downloaded from GEO website (GSE2006): 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2006. ET is a rare chronic blood 

disorder that is recognized by the overproduction of platelets. This dataset used the HGU133A 

chip, which include 22277 probe sets. After probe to gene matching, 12495 genes are left. In the 

ET dataset, 6 platelet samples were from ET patients and 5 platelet samples were from normal 

people. The goal of this study is to identify gene pathways that are associated with ET. 

Dataset Sample size 
Number 

of probes 

Number 

of genes 
Platform 

Year of 

submission 
GSE ID Link 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2006
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p53 
33 mutants, 

17 wild type 
12625 10100 

Affymetrix  

Human Genome 

U95Av2 

2002 NA 

http://dtp.nci.nih

.gov/mtargets/do

wnload.html 

Essential 

thrombocy

thaemia 

6 ET, 8 

normal 
22277 12495 

Affymetrix 

Human Genome 

U133A Array 

2005 
GSE200

6 

http://www.ncbi

.nlm.nih.gov/ge

o/query/acc.cgi?

acc=GSE2006 

Table 5-1: Summary of p53 dataset and ET dataset. 

 

5.2 Database 

In our analyses, for the upstream factors, we would like to adopt the C2 database (Mootha, 

et al., 2003) (Subramanian, et al., 2005). There were 522 gene sets with an average gene set size 

of 33 (Table 5-2), 472 of which contain gene sets involved in specific metabolic and signaling 

pathways, while another 50 of which are involved in response to genetic and chemical 

perturbations. For the downstream factors, we chose the publicly available JASPAR database. 

By scanning promoter sequences of candidate target genes, we identified 125 downstream gene 

sets with mean size of 4627. Since these gene sets were predicted by sequencing matching, we 

expect that a certain proportion of genes in the gene set may not be true targets of the given 

transcription factor. 

Database 
Number 

gene sets 

Minimum 

gene set size 

Median gene 

set size 

Mean gene set 

size 

Maximum 

gene set size 

C2 522 2 19 33 447 

JASPAR 125 1 383 782 6181 

Table 5-2: Summary of gene set databases: C2 and JASPAR. 

 

5.3 Upstream Factors and Downstream Factors 

Next, we carefully studied the data structures of upstream factors defined by C2 database 

and downstream factors defined by JASPAR database. In order to compare with previous studies 

by Subramaniana in 2005 (Subramanian, et al., 2005), we set a minimum gene set size of 15 and 
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maximum gene set size of 500 for upstream factors. According to biological meaning and 

computation efficiency, we set a minimum of 1 and maximum of 1000 for downstream factors. 

We applied two sample t test on each gene in the data set, and identify DEGs based on an 

arbitrary criterion of 𝑝 < 0.1. This criterion was not strict since we only intended to explore the 

data structure and needed a cut-off to define genes with somewhat statistical significance. These 

DEGs were the ones affecting the power of GSEA or CDA, therefore, we were interested in their 

distribution.  We studied each gene set in terms of gene set size, mean pairwise correlation, mean 

absolute pairwise correlation, percentage of DEGs in the gene set, percentage of up-regulated 

genes out of DEGs, mean absolute difference of DEGs, maximum absolute difference of DEGs, 

mean absolute t score of DEGs and maximum absolute t score of DEGs (Table 5-3, Figure 5-1 to 

Figure 5-10). 

In p53 data set, about 12.7% of genes had significant difference in expression level between 

mutant and wild-type cells at cut-off of 0.1. ET data set had about 28.9% DEGs.  

Dataset 

Percent of 

DEGs in 

dataset (𝑝 <
0.1) 

Database 
Number 

gene sets 

Minimum 

gene set 

size 

Median 

gene set 

size 

Mean 

gene set 

size 

Maximum 

gene set 

size 

P53 12.7% 

C2 308 15 25 43 358 

JASPAR 115 1 114 208 795 

C2/JASPA

R 
472 20 256 343 1043 

ET 28.9% 

C2 297 15 25 42 373 

JASPAR 104 1 140 262 994 

C2/JASPA

R 
348 17 201 299 1142 

Table 5-3: Summary of upstream and downstream gene sets in p53 and ET. 
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Figure 5-1: A density histogram of the p values from p53 dataset (a) and ET dataset (b). 

 

From the comparisons between upstream factors and downstream factors, we noticed that  

(1) Pairwise correlation between genes in was weak in both upstream and downstream 

factors (Figure 5-3 and Figure 5-4).  

(2) The percentage of DEGs, defined as 
#{𝑝<0.1 𝑖𝑛 𝑔𝑖𝑣𝑒𝑛 𝑔𝑒𝑛𝑒 𝑠𝑒𝑡}

𝑔𝑒𝑛𝑒 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒
, did not differ significantly 

between upstream gene set and downstream gene set (Figure 5-5). Majority of the upstream gene 

sets in p53 data set had 5% ~ 20% DEGs while the majority of the downstream gene sets in p53 

data had 10% ~ 20% DEGs. Percentage of DEGs in ET data set ranged from 0% ~ 60% in 

upstream factors and 20% ~ 40% in downstream factors. 

(3) We studied the percentage of up-regulated genes in DEGs of each gene set. This 

percentage would affect the performance of GSEA as shown in previous chapter. More gene sets 

in downstream had 50% ~ 80% of up-regulated DEGs while upstream gene sets had a percent 

spreading out from 0% to 100% (Figure 5-6). GSEA will lose a lot of power due to the mixture 
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of up-regulated and down-regulated genes in downstream gene sets, therefore, we will not apply 

it to downstream factors. 

(4) The mean absolute group difference and mean absolute t score for each gene set did not 

differ too much between upstream factors and downstream factors (Figure 5-7 and Figure 5-9). 

However, when we considered the maximum absolute group difference and maximum absolute t 

score, we noticed that there are more large absolute mean difference or t score in downstream 

factors than in upstream factors (Figure 5-8 and Figure 5-10). This difference was more obvious 

in ET data set. If we recall the feature of CDA to capture at least one DEG, we can imagine that 

this large mean difference will benefit CDA trememdously. 

Real data is very complicated, and large variation exists among different data sets. But in 

general, upstream factors are more in concordance with relatively moderate mean difference in 

DEGs. The target genes in downstream sets do not necessarily have specific relationship between 

each other, and the mean difference tends to be large in DEGs. 
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Figure 5-2: Gene set size of p53 dataset and ET dataset. a. Upstream factors in p53 dataset based 

on C2 database. b. Downstream factors in p53 dataset based on JASPAR database. c. Upstream 

factors in ET dataset based on C2 database. d. Downstream factors in ET dataset based on 

JASPAR database. 
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Figure 5-3: Mean pairwise correlation for each gene set in p53 dataset and ET dataset. a. 

Upstream factors in p53 dataset based on C2 database. b. Downstream factors in p53 dataset 

based on JASPAR database. c. Upstream factors in ET dataset based on C2 database. d. 

Downstream factors in ET dataset based on JASPAR database. 
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Figure 5-4: Mean absolute pairwise correlation for each gene set in p53 dataset and ET dataset. a. 

Upstream factors in p53 dataset based on C2 database. b. Downstream factors in p53 dataset 

based on JASPAR database. c. Upstream factors in ET dataset based on C2 database. d. 

Downstream factors in ET dataset based on JASPAR database. 
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Figure 5-5: Percent of DEGs (𝑝 < 0.1) in p53 dataset and ET dataset. a. Upstream factors in p53 

dataset based on C2 database. b. Downstream factors in p53 dataset based on JASPAR database. 

c. Upstream factors in ET dataset based on C2 database. d. Downstream factors in ET dataset 

based on JASPAR database. 
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Figure 5-6: Percent of up-regulated genes out of DEGs in p53 dataset and ET dataset. a. 

Upstream factors in p53 dataset based on C2 database. b. Downstream factors in p53 dataset 

based on JASPAR database. c. Upstream factors in ET dataset based on C2 database. d. 

Downstream factors in ET dataset based on JASPAR database. 
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Figure 5-7: Mean absolute difference of DEGs in p53 dataset and ET dataset. a. Upstream factors 

in p53 dataset based on C2 database. b. Downstream factors in p53 dataset based on JASPAR 

database. c. Upstream factors in ET dataset based on C2 database. d. Downstream factors in ET 

dataset based on JASPAR database. 
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Figure 5-8: Maximum absolute difference of DEGs in p53 dataset and ET dataset. a. Upstream 

factors in p53 dataset based on C2 database. b. Downstream factors in p53 dataset based on 

JASPAR database. c. Upstream factors in ET dataset based on C2 database. d. Downstream 

factors in ET dataset based on JASPAR database. 
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Figure 5-9: Mean absolute t score of DEGs in p53 dataset and ET dataset. a. Upstream factors in 

p53 dataset based on C2 database. b. Downstream factors in p53 dataset based on JASPAR 

database. c. Upstream factors in ET dataset based on C2 database. d. Downstream factors in ET 

dataset based on JASPAR database. 
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Figure 5-10: Maximum absolute t score of DEGs in p53 dataset and ET dataset. a. Upstream 

factors in p53 dataset based on C2 database. b. Downstream factors in p53 dataset based on 

JASPAR database. c. Upstream factors in ET dataset based on C2 database. d. Downstream 

factors in ET dataset based on JASPAR database. 

 

5.4 Real Data Analysis 

5.4.1 P53 Data Set 
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Table 5-4 showed the number of gene sets with q value<0.25 in p53 data set from combining 

test GSEA/CDA, combining test CDA/CDA, overall test GSEA and overall test CDA. This q-

value criterion was considered in several publications (Subramanian, et al., 2005) (Tsai & James, 

2009). We also considered the criterion p value<0.01 and 0.05 since the combining method 

including GSEA was too conservative to identify any gene set with q value<0.25. The overall 

test using CDA gave the most significant gene sets, however, this method could not control the 

type I error as we saw in the simulation studies in Chapter 4. The combining method CDA/CDA 

identified 14 significant gene sets compared to 0 identified by GSEA/CDA.  

Combinations 

(472) 
p value < 0.01 p value < 0.05 q value < 0.25 

Combining test 

GSEA/CDA 
3 8 0 

Combining test 

CDA/CDA 
15 32 14 

Overall test GSEA 6 18 3 

Overall test CDA 30 65 43 

Table 5-4: The number of gene sets with p value <0.01, 0.05 and q value<0.25 in p53 data set. 

 

Top ten ranked gene sets based on GSEA/CDA method were given in Table 5-5, where the 

corresponding results from CDA/CDA, overall GSEA and overall CDA were also shown. Since 

GSEA/CDA was more conservative than the other three methods, the top ranked gene sets were 

also ranked high in results from all the other three methods. For example, although the top three 

gene sets: p53hypoxiaPathway, p53Pathway and radiation sensitivity genes were not significant 

in GSEA/CDA method, they were identified as differentially expressed pathways by CDA/CDA, 

overall GSEA and overall CDA. This finding provided more  evidence of differentially 

expression. Furthermore, these three gene sets were also reported in previous studies 

(Subramanian, et al., 2005) (Tsai & James, 2009). The downstream factors for all three gene sets 
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were related to TP53 transcription factor, which again supports the finding since the target genes 

for TP53 were expected to have dramatic change in expression level between wild-type cells and 

TP53 mutant cells.  

On the other hand, 43 gene sets were declared as significant by overall CDA test and the top 

10 gene sets were shown in Table 5-6. However, false positive rates could be very high due to 

the different assumption of the overall method. For example, p53Signalling pathway with ESR1 

transcription factor was identified by overall CDA test (q=0.0472). But if we considered the p 

values from upstream factors and downstream factors, respectively, we would noticed that there 

was no strong evidence of differential expression for downstream factors (p value for 

upstream<0.001, p value for downstream=0.277). This gene set was not identified by any of the 

other three methods. Therefore, the overall test required extra precaution for false positives. 

Table 5-5: Top ten ranked gene sets by GSEA/CDA method in p53 data set. 

 

Upstream Downstream Pup Pdown OVERALL P value q value 

Cell_Cycle E2F4 0.001 0.206 0 0 

DNA_DAMAGE_SIGNALLING TP53 0.001 0.004 0 0 

Up Down 

GSEA/CDA CDA/CDA GSEA OVERALL CDA OVERALL 

Pup Pdown Pcomb fdr Pup Pdown Pcomb fdr Pup Pdown Pcomb fdr Pup Pdown Pcomb fdr 

p53hypoxiaPat

hway 
TP53 0.001 0.004 0.002 0.372 0 0.004 0.003 0.110 0.001 0.015 0.000 0.000 0 0.004 0.000 0.000 

p53Pathway TP53 0.003 0.004 0.002 0.372 0 0.004 0.003 0.110 0.003 0.015 0.000 0.000 0 0.004 0.000 0.000 

radiation_sensi

tivity 
TP53 0.001 0.004 0.002 0.372 0 0.004 0.003 0.110 0.001 0.015 0.000 0.000 0 0.004 0.000 0.000 

chemicalPathw

ay 
TP53 0.029 0.004 0.017 0.495 0.013 0.004 0.008 0.263 0.029 0.015 0.006 0.514 0.013 0.004 0.002 0.059 

p53_signalling TP53 0.038 0.004 0.023 0.495 0 0.004 0.003 0.110 0.038 0.015 0.034 0.514 0 0.004 0.004 0.099 

p53_signalling E2F1 0.038 0.046 0.028 0.495 0 0.046 0.030 0.435 0.038 0.374 0.393 0.514 0 0.046 0.015 0.186 

p53Pathway E2F1 0.003 0.046 0.028 0.495 0 0.046 0.030 0.435 0.003 0.374 0.364 0.514 0 0.046 0.013 0.170 

HTERT_UP NFIL3 0.06 0.079 0.049 0.495 0.175 0.079 0.123 0.435 0.06 0.134 0.059 0.514 0.175 0.079 0.135 0.312 

ca_nf_at_signa

lling 
SP1 0.08 0.081 0.050 0.495 0.055 0.081 0.054 0.435 0.08 0.246 0.118 0.514 0.055 0.081 0.071 0.310 

p53_signalling SP1 0.038 0.081 0.050 0.495 0 0.081 0.054 0.435 0.038 0.246 0.234 0.514 0 0.081 0.026 0.267 
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p53hypoxiaPathway TP53 0 0.004 0 0 

p53Pathway TP53 0 0.004 0 0 

radiation_sensitivity TP53 0 0.004 0 0 

atmPathway TP53 0.001 0.004 0.001 0.0472 

atrbrcaPathway TP53 0.027 0.004 0.001 0.0472 

Cell_Cycle TP53 0.001 0.004 0.001 0.0472 

g2Pathway TP53 0.001 0.004 0.001 0.0472 

p53_signalling ESR1 0 0.277 0.001 0.0472 

cell_cycle_checkpoint TP53 0.047 0.004 0.002 0.059 

chemicalPathway TP53 0.013 0.004 0.002 0.059 

CR_DEATH FOSL2 0.003 0.412 0.002 0.059 

CR_DEATH TP53 0.003 0.004 0.002 0.059 

drug_resistance_and_metabolism FOS 0 0.427 0.002 0.059 

drug_resistance_and_metabolism ESR1 0 0.277 0.002 0.059 

Cell_Cycle E2F6 0.001 0.209 0.003 0.078666667 

RAP_UP TP53 0.006 0.004 0.003 0.078666667 

p53_signalling TP53 0 0.004 0.004 0.099368421 

drug_resistance_and_metabolism TP53 0 0.004 0.005 0.102608696 

Table 5-6: Top twenty ranked gene sets from overall CDA test in p53 data set. 

 

5.4.2 ET Data Set 

There were no reported studies on gene set analysis using ET data set yet. As we showed in 

section 5.3., larger percent of DEGs existed in ET data set than in p53 data set, which resulted in 

a more conservative performance for GSEA, that is, no significant pathway was found by 

combining method GSEA/CDA or overall GSEA test. Meanwhile, either combining test 

CDA/CDA or overall test CDA identified significance for almost all the gene sets. This 

performance was also understandable since CDA was very sensitive as long as there was at least 
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one differentially expressed gene existing in the given gene set. To gain some insight into 

biology, we would consider the top ranked gene sets by GSEA/CDA test, although they were not 

significant due to the specificity of GSEA method. 

The highest ranked gene set by GSEA/CDA test was il6Pathway with transcription factor 

ELK1. Il6Pathway, activated by a cytokine Interleukin-6, was reported to provoke a broad range 

of cellular and physiological responses, including immune response, inflammation, 

hematopoiesis and oncogenesis (QIAGEN). ET is a chronic blood disorder recognized by 

overproduction of platelets by megakaryocytes in the bone marrow. Although no publications 

discussed about the correlation between il6Pathway and ET, our finding gave a reasonable clue 

about it. 

Methods including CDA gave significance to almost all the gene sets, and it did not shred a 

light into the puzzle by knowing majority of the gene sets were differentially expressed. Again, if 

we took a look at the overall CDA, some false positives would be noticed.  

Combinations 

(348) 
p value < 0.01 p value < 0.05 q value < 0.25 

Combining test 

GSEA/CDA 
0 41 0 

Combining test 

CDA/CDA 
7 169 321 

Overall test GSEA 1 18 0 

Overall test CDA 113 308 346 

Table 5-7: The number of gene sets with p value <0.01, 0.05 and q value<0.25 in ET data set. 

 

Up Down 

GSEA/CDA CDA/CDA GSEA OVERALL CDA OVERALL 

Pup Pdown Pcomb fdr Pup Pdown Pcomb fdr Pup Pdown Pcomb fdr Pup Pdown Pcomb fdr 

il6Pathway ELK1 0.012 0.004 0.011 0.332 0.02 0.004 0.019 0.073 0.012 0.082 0.204 0.476 0.02 0.004 0.002 0.019 

erkPathway ELK1 0.018 0.004 0.017 0.332 0.012 0.004 0.012 0.073 0.018 0.082 0.094 0.476 0.012 0.004 0.004 0.019 

il6Pathway JUN 0.012 0.02 0.019 0.332 0.02 0.02 0.019 0.073 0.012 0.372 0.438 0.476 0.02 0.02 0.012 0.019 
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Table 5-8: Top ten ranked gene sets by GSEA/CDA method in ET data set. 

 

Upstream Downstream Pup Pdown 
OVERALL P 

value 
q value 

CR_TRANSCRIPTION_FACTORS TCF7L2 0.014 0.005 0 0 

gata3Pathway JUNB 0.008 0.373 0 0 

HUMAN_CD34_ENRICHED_TF_JP TCF7L2 0.01 0.005 0 0 

HUMAN_CD34_ENRICHED_TF_JP SREBF1 0.01 0.011 0 0 

HUMAN_CD34_ENRICHED_TF_JP ELK1 0.01 0.004 0 0 

HUMAN_CD34_ENRICHED_TF_JP REST 0.01 0.077 0 0 

biopeptidesPathway STAT1 0.034 0.006 0.002 0.019 

CR_PROTEIN_MOD ELK1 0.016 0.004 0.002 0.019 

CR_SIGNALLING STAT1 0.022 0.006 0.002 0.019 

CR_TRANSCRIPTION_FACTORS EGR1 0.014 0.037 0.002 0.019 

Table 5-9: Top ten ranked gene sets from overall CDA test in ET data set. 

 

5.5 Conclusion 

In this chapter, we applied our proposed combining method on p53 data set and ET data set. 

Real data structure is very complicated and difficult to summarize. Consequently, it is not likely 

to prioritize one method over all the other methods universally.  

From our findings, we noticed that methods including GSEA tended to be more 

conservative, which was consistent with our simulation results and was due to the competitive 

design of GSEA method. Combining method GSEA/CDA did not identify any significance in 

either data set under the criterion of q value < 0.25, however, the top ranked gene sets based on 

FETAL_LIVE

R_HS_ENRIC

HED_TF_JP 

NR2C2 0.024 0.009 0.022 0.332 0.01 0.009 0.010 0.073 0.024 0.002 0.010 0.476 0.01 0.009 0.002 0.019 

FETAL_LIVE

R_HS_ENRIC

HED_TF_JP 

ELF1 0.024 0.013 0.022 0.332 0.01 0.013 0.013 0.073 0.024 0.244 0.160 0.476 0.01 0.013 0.006 0.019 

FETAL_LIVE

R_HS_ENRIC

HED_TF_JP 

ETS1 0.024 0.003 0.022 0.332 0.01 0.003 0.010 0.073 0.024 0.092 0.014 0.476 0.01 0.003 0.004 0.019 

FETAL_LIVE

R_HS_ENRIC

HED_TF_JP 

NRF1 0.024 0.019 0.022 0.332 0.01 0.019 0.018 0.073 0.024 0.447 0.092 0.476 0.01 0.019 0.008 0.019 

FETAL_LIVE

R_HS_ENRIC

HED_TF_JP 

ELK4 0.024 0.011 0.022 0.332 0.01 0.011 0.011 0.073 0.024 0.417 0.366 0.476 0.01 0.011 0.006 0.019 

FETAL_LIVE

R_HS_ENRIC

HED_TF_JP 

GATA

2 
0.024 0.014 0.022 0.332 0.01 0.014 0.014 0.073 0.024 0.456 0.374 0.476 0.01 0.014 0.012 0.019 

FETAL_LIVE

R_HS_ENRIC

HED_TF_JP 

HLF 0.024 0.011 0.022 0.332 0.01 0.011 0.011 0.073 0.024 0.268 0.408 0.476 0.01 0.011 0.008 0.019 
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this method were illustratable and meaningful in practical sense. At the same time, methods 

including CDA had larger power than those including GSEA, which resulted from the nature of 

CDA that it can capture the change in gene expression distribution even though there existed 

only one differentially expressed gene. In the ET data set, the combining method CDA/CDA 

identified more than 90% of the gene sets as significant which is too sensitive to be helpful in 

real data explanation. 

At the same time, the overall method was to group upstream factors and downstream factors 

into a big gene set and apply an existing gene set analysis method on it. The real data results 

confirmed with the simulation studies on the incorrect size of the test. If there existed strong 

evidence in differential expression in either upstream factors or downstream factors, the overall 

method would capture the change and declare significance to the whole set. 

Therefore, the combining method GSEA/CDA is still on top of the method list because it 

showed better specificity and gave more reliable and explainable results to leave a clue into the 

mysterious truth. 
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Chapter 6 Discussion and Future Work 

 

Gene set analysis emerged dramatically in the last decade, and shed new light into the 

complex biological study of disease. There are many gene set analysis methods built on different 

assumptions or using a variety of statistics. However, all the existing studies were more from 

mathematical or statistical direction. They focused on the gene sets including receptors to 

transcription factors but did not draw any attention to the target genes of the transcription factors. 

Our proposed combining method was developed based on practical biological insight that we 

incorporated the important information from the target genes into gene set analysis. 

In the current work, we mainly adopted the gene set analysis methods in the category of 

functional class scoring (FCS), which made use of all the genes’ expression data in a given gene 

set and the covariance structure among genes. We performed a series of simulations on the 

comparison of two representative methods of competitive null hypothesis and self-contained null 

hypothesis: GSEA and CDA, and chose GSEA for upstream factors and CDA for downstream 

factors. This combining method showed some promising results and gave insightful view into 

biology studies. But one limitation of the FCS methods is that they ignore the topology of the 

gene set, in other words, they give each gene the same weight no matter it is a receptor or it is a 

transcription factor. One direction of the future gene set analysis is topology-based method, 

which is more meaningful for upstream factors that have network structure between genes. One 

of our future studies is to incorporate topology-based method into combining method. 

In this study, we used the Relax IUT method to combine p values from upstream and 

downstream. Although RIUT has shown improved power than the original version of maximum 

p value (Deng, Xu, & Wang, 2007), it has limited power due to the loss of information from the 
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more significant test, the one with smaller p value. We would like to improve the power by 

developing a new combining method that takes the smaller p value into consideration. The 

difficulty lies in the estimate of type II error when no clue of the alternative distribution is 

provided. 
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