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Abstract of the Dissertation

Regime switching and long memory in High Frequency financial data

by

Xiao Zhang

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Concentration - Quantitative Finance)

Stony Brook University

2015

This thesis is to incorporate Markov Regime Switching model with Fraction-
ally Integrated process in order to capture abrupt change and regime persistence
simultaneously in long memory dynamic volatility process. We adapt truncated
ARCH∞ to estimation scheme of our model. We carry out standard back testing
procedure to validate Regime Switching FIGARCH VaR based forecasts, on S&P
500 and SHSZ 300 data in 1 minute and 5 minute frequencies.

In the Chapter 1, Regime Switching model , and parameter estimation steps
based on truncated ARCH infinite and Hamilton filter will be given. Topics like
stationary conditions of RS-FIGARCH and standard Normal Tempered Stable dis-
tributions as fat-tailed innovations of time series are also covered.

In Chapter 2, Fractionally Integrated GARCH is reviewed, and incorporated
with Regime switching model. Modified likelihood ratio based test proposed by
(Kasahara, 2013) is introduced as test against multiple regimes.

Chapter 3 is to discuss VaR-based back testing procedure, using China’s Shang-
haiShenzhen 300 Index log return series and S&P 500 log return series, both in 1
minute and 5 minute frequencies. Backtesing results are given, 99%, 99.5% and
99.9% VaRs are compared with log returns illustratively and violations of Kupiec

iii



test at 0.01 and 0.05 significance levels are present as well. We claim that Regime
switching FIGARCH not only can be used in risk management but has potential
to be used in portfolio optimization.
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Chapter 1

1 Introduction

Regime switching model has been widely used in modeling financial time se-

ries, especially volatility process, see (Hamilton, 1994), (Gray, 1996), (Klaassen,

2002), (Marcucci, 2005). In this paper, we introduce Markov regime switching

Fractionally Integrated Generalized AutoRegressive Conditional Heteroskedastic-

ity (RS-FIGARCH henthforce) model for volatility process, to capture both long

memory effect and multiple regimes.

The remaining parts of this thesis are arranged as follows: Section 2 re-

views literatures in regime switching models and fractional integrated GARCH

(FIGARCH). stationary condition on regime switching model, especially regime

switching GARCH and the moments. Section 5 shows empirical results. Section

6 presents VaR based backtesting.
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2 Markov Regime Switching review

Markov regimes switching class of models are first introduced by (Hamilton,

1989). Regime switching models assume that a process switches among differ-

ent regimes, and the switching behavior is driven by an unobserved first order

Markov chain with finite state space S = 1, . . . , k and transition matrix Pk∗k,

P =


p11 p12 . . . p1k

p21 p22 . . . p2k

...
... . . . ...

pk1 pk2 . . . pkk

 (1)

where the entries of P represent the transition probabilities pij = p(St =

j|St−1 = i), i, j = 1, . . . , k.

Matrix 1 should primaryly satisfy both 0 < pij < 1 and
∑k

j=1 pij = 1,. And if

any diagonal entry pii is close to 1, then we can say state i of the regime switching

model is quite persistent, and if all the diagonal entries are close to 1, then every

state is persistent. To mathematically describe the overall persistence level of a

regime switching model, we can approach either from steady state distribution of

the Markov Chain or from the second largest eigenvalue of the transition probabil-

ity matrix. For the second approach, see (Francq et al., 2001), (Haas et al., 2004).

The steady state distribution is defined as follows. Let πt = (π1t, . . . , πkt)
′ denote

the distribution of the Markov chain at time t. For j = 1, . . . , k,

πj,t+1 = p(St+1 = j) =
k∑
i=1

p(St = i)p(St+1 = j|St = i) =
k∑
i=1

πijpij,

or

πt+1 = Pπt, πt+τ = P τπτ , τ ≤ 1,
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in matrix form where

P τ is the transition matrix after τ−step. Moreover, under general conditions

(P is irreducible and aperiodic (Hamilton, 1994), there exists a stationary distri-

bution π = (π1, ..., πk)
′ independent of πt, such that

π = Pπ = lim
τ→∞

P τπt.

If regimes are persistent, this will be reflected in rather large diagonal ele-

ments of P, and the steady state probabilities are corresponding to the non-diagonal

elements. For example, given a model with two regimes, δ := p11 + p22 − 1

measures the persistence of the regimes, and the unconditional probabilities that

process is in regime 1 and 2 are: π1 = (1 − p22)/(2 − p11 − p22) and π2 =

(1− p11)/(2− p11 − p22), respectively. When p11 + p22 = 1, the regime switch-

ing process turns into mixture models with independent components, where at any

given time, the transition probabilities no longer depend on previous state but only

determined by deterministic weights identical to diagnal transition probabilities.

In other word, P = P∞ = (π, ...,π), there is no persistence in {St} and we have

an i.i.d. mixture model with constant weights (πjt = πj for all t, j = 1, ..., k.).

Thus, the quantity of p11 + p22 should be bounded away from 1 in practical use to

prevent degenerate cases where regime transition is irrelavent to regime itself.

Another quantity of interest is the expected regime duration, which has the

properties of geometric distribution. Once we are in regime j, we expect it to last

for
∑∞

d=1 dp
d−1
ij (1− pij) = (1− pij)−1. Detailed proof can be found in (Bauwens

et al., 2012).
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2.1 Regime switching GARCH model

In quantitative finance, modeling volatility process is always a primary task for

option pricing, dynamic hedging, etc. When a quantitative analyst or time se-

ries researchers attempt to explain the changes in conditional variance, condi-

tional heteroscedastic models are generally considered. The basic genre of mod-

els that has been extensively used is Autoregressive Conditional heteroscedastic

(ARCH) model of Engle (1982), and it is extended to Generalized Autoregressive

Conditional Heteroscedastic (GARCH) model by (Bollerslev, 1986a), Integrated

GARCH (IGARCH) model by Engle and Bollerslev (1986) and Fractionally Inte-

grated GARCH (FIGARCH) model by (Baillie et al., 1996), etc. Under the frame-

work of ARCH, large shocks tend to follow large shocks and the small shocks tend

to follow small shocks, which is a stylized fact known as volatility clustering. Al-

though the ARCH model is simple, it often requires many parameters to describe

the volatility process of an asset return. As a result, several alternative models

were introduced to accommodate the shortages of ARCH models. (Bollerslev,

1986a) proposes a very useful extension of ARCH model, known as GARCH

model. GARCH(p,q) process is described as follows,

εt = σtηt, σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j, (2)

.

To incorporate regime switching with GARCH, we are going to briefly review

different specifications of RS-GARCH models in literature. First of all, to model

the error term of time series, εt, we have

εt = σSt,tηt, (3)
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where ηt follows standard Gaussian distribution, and the regime-specific condi-

tional variances for RS-GARCH are

σ2
jt = ωj + αjε

2
t−1 + βjσ

2
j,t−1, ωj > 0, αj, βj ≥ 0, j = 1, . . . , k. (4)

We can derive the full sample log-likelhood function as follows. We start from

the quantity

f(εt|It−1) =
k∑
i=1

f(εt, St = i|It−1) =
k∑
i=1

f(εt|St = i, It−1)p(St = i|It−1) (5)

where It is the information up to time t, and k stands for the number of regimes of

the process. Conditional densities f(εt|St = i, It−1 are summed up over all possi-

ble regimes, weighted by the ex-ante probabilities p(St = i|It−1), i = 1, ..., k.

p(St = i|It−1) =
∑k

j=1
p(St = i|St−1 = j, It−1)p(St−1 = j|It−1),

for i, j = 1, ..., k. Since St follows first-order Markov property,

p(St = i|St−1 = j, It−1) = p(St = i|St−1 = j) = pji.

Because the error terms follow Gaussian distribution in Equation 3, then the

conditional density function is given by

f(εt, St = i|It−1) =
1√

2πhi,t
exp

{−ε2
i,t

2hi,t

}
(6)

The quantity p(St−1 = j|It−1) of Equation 5 is of much use not only in estimation

of RS-GARCH but also forecasting steps, it can be derived following Hamilton

filter (Hamilton, 1994):

p(St−1 = j|It−1 = p(St−1|εt−1, It−2) =
p(εt−1|St−1, It−2)p(St−1|It−2)

p(εt−1|It−2)

5



=
p(εt−1|St−1, It−2)

∑k
St−2=i p(St−2|It−2)p(St−1|St−2)

p(εt−1|It−2)
(7)

Note that in the Equation 7, the term matters is p(St−2|It−2). The other terms

are either conditional densities or deterministic part based on the constant transi-

tion probability assumption. Starting from unconditional probabilities estimated

based on pre-sample, the filtered probability p(St−2|It−2) can be calculated with

first-order recursive steps.

Thus, we can build up the likelihood function as

L =
T∑
f(εt|St)p(St|It−1) (8)

.

In order to calculate Quasi maximum likelihood estimator (QMLE henthforce)

of Equation 8, we implement with constrained optimization of Equation 8 primar-

ily through ’fmincon’ function in optimization toolbox of MATLAB. The interior

point algorithm is used as hill-climbing algorithm, and Broyden Fletcher Goldfarb

Shanno (BFGS) algorithm is chosen to calculate Hessian updates in each step. To

ensure the convergence of the optimization steps, we set maximum function eval-

uations as 4000, and if it still does not converge, we switch our search algorithm

as ’steepest’ and optimize the likelihood function again. Sequential estimation is

used in order to obtain robust estimation results, especially for regime switching

model that has many parameters. Although, global QMLE of Likelihood function

8 is also favored in this thesis, since we can perform a grid random selection for

starting points and choose the maximum value among each optimization evalua-

tion. Optimization toolbox and Statistics toolbox are required to implement the

6



model and backtesing results.

Cai (1994) and Hamilton and Susmel (1994) first incorporate Regime switch-

ing with ARCH, and they also claim that the maximum likelihood (ML) estima-

tion of this specification is intractable because of the path dependence of condi-

tional variances in equation (4), and as a result they employed RS-ARCH instead

of RS-GARCH. The path dependence the problem comes from the fact that St−1

and subsequent σ2
St−1,t−1 in Equation 4 is not observable, and depend on the pre-

vious regime or state St−2, and thus depend on the entire regime history. Thus,

the evaluation of the likelihood for a sample of T observations requires the in-

tegration over all kT possible regime paths, implying its calculation infeasibility.

Nonetheless, there are some approaches since (Hamilton, 1994). (Bauwens et al.,

2012) brings up a Gibbs sampling algorithm with Bayesian estimation to calcu-

late sample state variables, and (Henneke et al., 2011) show how an RS-GARCH

model built on model 3 can be estimated via Bayesian Markov chain Monte Carlo

(MCMC) methods. However, both implementation options rely on ultra fast ma-

chine to deal with large-scale resampling method, and for now they are only for

scientific purpose but not practical approachable.

There are another two approaches used more frequently in the literature. The

first approach used to circumvent path dependence problem is given by (Gray,

1996). He replaces σ2
St−1,t−1 in equation 4 with the conditional variance of εt−1

given the observable information up to time t − 2. With this information, the

conditional distribution of εt−1 is thus a k-component mixture with conditional

variance:

ht−1 := V art−2(εt−1) =
k∑
j=1

pt−2(St−1 = j)σ2
j,t−1, (9)

where pt−2(St−1 = j) represents the conditional regime probabilities prob(St−1 =

7



j|t − 2), j = 1, ..., k, calculated under specified residual distribution for regime-

specific process. Quantity 9 is then used instead of σ2
St−1,t−1 in the regime-specific

GARCH equations. Similar solutions have also been proposed by Dueker (1997)

and (Klaassen, 2002). Ane and Ureche-Rangau (2006) extend the model to allow

for asymmetric volatility dynamics, and Chen and Hung (2010) consider its use in

option pricing. Even though this approach reduced a lot of complex computation

issues, it is a tweaked version of GARCH, which introduces bias into the model

and also has poor forecast results. In (Marcucci, 2005), he compares volatil-

ity forecasting of (Klaassen, 2002) model with various models such as GARCH

with student-T innovation, GARCH-Gaussian, etc. He applies both statistical loss

functions and VaR-based backtesting, and it turns out (Klaassen, 2002) does not

have favorable results.

A second approach to RS-GARCH models, proposed by (Haas et al., 2004),

can be viewed as a direct generalization of the single-regime GARCH model. In

this specification, each regime-specific conditional variance depends only on its

own lag. To see the analogy between Equations 4 and 2, recall that a GARCH(1,1)

process σ2
t = ω + αε2t−1 + βσ2

t−1 with β < 1 can be written as ARCH(∞),

σ2
t =

ω

1− β
+ α

∞∑
i=1

βi−1ε2t−i, (10)

where α can be described as the reaction parameter reflecting the magnitude

of a unit shock immediate impact on the next period variance and β measures the

memory in the volatility process. The total impact of a unit shock on future vari-

ances is α
1−β . Adopting equation 10 implies an ARCH(∞) representation for each

regime, so that this specification allows a clear-cut interpretation of the regime-

specific volatility processes. That is, the parameters αj and βj measure the imme-

8



diate responsiveness to a shock and the memory of the volatility process in regime

j, respectively. To rule out explosive volatility processes, an intuitive requirement

is therefore α + β < 1, but in Regime Switching-GARCH (RS-GARCH henth-

force), both weakly stationary and covariance stationary conditions required in

Equations 4 are broader necessary according to(Bauwens et al., 2007). Bayesian

estimation of this specification has been developed by (Bauwens et al., 2007)

and (Ardia, 2009), with the latter extending the model to allow for asymmetric

volatility dynamics as well as Student-t innovations. When incorparated with

GARCH structure for the component-specific volatility dynamics and Gaussian

innovations, this process reduces to the mixture normal GARCH process ((Haas

et al., 2004)). (Gray, 1996) and (Haas et al., 2004) approaches differ with the

lagged variance terms in which the regime-specific GARCH recursions is speci-

fied.

2.2 Smoothed probability

According to (Hamilton, 1989), and being applied in (Gray, 1996), (Klaassen,

2002), (Marcucci, 2005), (Piplack et al., 2009), to deliver the inference about

regimes at each time of the full sample, the ex post probability p(St|IT ) is gener-

ated by:

p(St|ΦT ) = p(St|εT ,ΦT−1) =
p(εT |St,ΦT−1)p(St|ΦT−1)∑K
St=1 p(εT |St,ΦT−1)p(St|ΦT−1)

. (11)

With smoothed regime probabilities we can do ex post analysis and (Hamilton,

1989) proposes a selection criteria of what is the state at given time within the

sample. He claims that whenever p(St = 1|ΦT ) < 0.5 it means at time t, the

state is considered as 2, and vice versa. However, (Xie, 2009) argues sometimes

9



Figure 1: smoothed probabilities, ShanghaiShenzhen 300 index daily, from

1/7/2002 to 4/8/2010

there is significant ’intermediate’ regime in which we can hardly discriminate

among states from smoothed probabilities, and he also suggests to choose state 1

when p(St = 1|ΦT ) > 0.8 and state 2 when p(St = 1|ΦT ) < 0.2 and otherwise

an intermediate regime. To illustrate this idea, we can compare the smoothed

regime graph estimated from a sample in daily frequency with that estimated from

a sample in high frequency data. We show smoothed regimes in Figure 1 and

Figure 2. We can see in Figure 1, none of two regimes are not quite dominant

compared to the smoothed regime depicted in blue line from Figure 2.

To solve Equation eq:smoothprob mathematically, we need to first consider

when t = T . Then term p(St|ΦT−1) of the above equation turns to p(St|Φt−1), in

the meantime, p(εt|St,Φt−1) is simply the result from estimation step of Equation

7, and the calculation of Equation 11 can thus be calculated in a first order forward

10



smoothed probabilities

Figure 2: smoothed probabilities, ShanghaiShenzhen 300 index with 1 minute

frequency, from 2015-05-28 to 2015-06-09

11



manner for times t + 1, t + 2, ...T . When t < T , we have more diligent steps to

fulfill. To solve the ingredient p(εT |St,ΦT−1)

p(ST |εt,ΦT−1) =
∑K

ST−1=1
p(ST |ST−1,ΦT−1)p(ST−1|St,ΦT−1),

the second ingredient of the right hand side of the above equation can be sim-

ply derived by the transition probabilities matrix directly, while the first ingredient

can be calculated as:

p(ST |St,ΦT−1) =
∑K

ST−1=1
p(ST |ST−1,ΦT−1)p(ST−1|St,ΦT−1)

=
∑K

ST−1=1
pijp(ST−1|St,ΦT−1),

the term p(ST−1|St,ΦT−1) is given by:

p(ST−1|St,ΦT−1) = p(ST−1|St, εt−1,ΦT−2)

=
p(εT−1|ST−1,ΦT−2)p(ST−1|St,ΦT−2)∑K

ST−1=1 p(εT−1|ST−1,ΦT−2)p(ST−1|St,ΦT−2)
,

and thus follows the iteration manner.

Using the notations from (Hamilton, 1989), with filtered regime probability

P [st = i|εt, ..., ε0], i = 1, 2, . . . , k. Then it can be calculated by following the

algorithm provided by Hamilton(1989) iteratively as well.

2.3 Regime switching stationary conditions

To see the mild regularity conditions of geometrically ergodicity for Markov Chain,

see (Meyn and Tweedie, 1993). Following assumptions of RS-GARCH come

from (Bauwens et al., 2010):

12



1 The error termd εt is i.i.d. with a continuous density on the whole real line

which is centered on zero. Furthermore, E(|ε2t |δ) <∞ for some σ > 0.

2 αi > 0, βj > 0, and the Markov chain is homogeneous.

3 ∑n

i=1
πiE[log(αiε

2
t + βi)] < 0

.

The first assumption is satisfied for a wide range of distributions for the error

term, e.g. the normal and the Student t distributions. For σ = 1, we set the

variance to unity and if σ < 1, the parameters of the conditional scaling factor of

the data are estimated. The second assumption is slightly stronger than the non-

negativity conditions of (Bollerslev, 1986b) for the GARCH(1,1) model. Under

this assumption all the regimes are accessible and the discrete Markov chain is

ergodic. The third assumption implies that at least one of the regimes is stable.

Without loss of generality, we assume that in the first regime St = 1) the process

is strictly stationary, so thatE[log(α1ε
2
t +β1)] < 0]. In order to discover the higher

order moments of RS-GARCH model, we can define the n by n matrix as below,

following the work of (Bauwens et al., 2010),

Ω =


E(α1u

2
t + β1)

m
p11 · · · E(αnu

2
t + βn)

m
pk1

...
...

E(α1u
2
t + β1)

m
p1k · · · E(αnu

2
t + βn)

m
pnn


.

Let ρ(•) denote the spectral radium of a matrix, in another word, its largest

eigenvalue in modulus. With assumptions as below:
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E(|u2
t |m) <∞ for some integer m ≤ 1.

ρ(Ω) < 1.

(Francq et al., 2001) proves that the maximum likelihood procedure for RS-

ARCH process is consistent. (Francq et al., 2001) also discusses necessary and

sufficient stationarity conditions for strictly stationary solution and brings up mis-

specification situation using simulation experiments.

(Francq et al., 2001) claims fit a standard GARCH model to simulated data sets

with at least two very different regimes, typically estimates close to the nonsta-

tionary region might be obtained(i.e.
∑

i αi + βi ' 1). Such parameter estimates

have been observed for many financial time series by earlier researchers. Without

the linear constraint
∑

i αi + βi ≤ 1, the parameter estimates are generally out-

side the stationary region. This leads us to think that GARCH parameter estimates

close to the nonstationary region could indicate that an alternative model, such as

RS-GARCH and structural break process. Consequently it should be carefully

considered if GARCH parameters close to non-stationary region. Note that due

to the constraints out of stationary conditions, practically parameter estimates of

turbulent regime are quite often insignificant or even 0. Another interesting state-

ment is that, some estimated GARCH regimes are exactly the same, which can be

a implication that an overparameterization occurs. although, which does not affect

the forecasting performance of the model. More details can be found in (Francq

and Roussignol, 1997) and (Francq et al., 2001).
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2.4 Test with null as single regime against multiple regimes

The test against multiple regimes under certain model (or without specified model).

Even though there has been a lot of research covering this topic, it still stands out

as a quite difficult problem out of regime switching literature.

The major difficulty of regime test lies in the fact that the likelihood function

of regime switching model can be substantially flat, the nuisance parameters arise

when the true parameters in the dynamics of single regime is not identified in null,

see (Hansen, 1996) for more details. Second, the information matrix is also sin-

gular under the null (Carrasco et al., 2014), as the transition probabilities p and

q is unobserved. As a consequence, regular model specification test like standard

likelihood ratio test is not applicable under regime switching test. To solve the

nuisance parameters problem, (Hansen, 1996) presents a supureme LR test statis-

tic combined with grid search technique, but the steps can be quite cumbersome.

(Cho and White, 2007) provides quasi-likelihood ratio(QLR) test. Following pe-

nalized quasi likelihood function from Chen et al.(2001), (Kasahara et al., 2014)

propose a modified quasi-likelihood function by introducing a penalty term to the

original QLR statistics from (Cho and White, 2007). The asymptotic distribution

of the quasi-likelihood ratio(QLR) test is Gaussian, proved by (Cho and White,

2007).

To statistically describe the regime test, we start from a broad regime switch-

ing model specification:

εt|Ft−1 ∼

 F (|−−→εt−1; θ∗0, θ
∗
1), if St = 1

F (|−−→εt−1; θ∗0, θ
∗
2), if St = 2

where St follows first order Markov Chain, same as the assumptions in section 2.
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And if we denote

π∗ = Pr ob(St = 1)

as the stationary or steady distribution of St, then the quasi-likelihood function

can be written as:

L∗n(π, θ) =
n∑
t=1

lt(π, θ), lt(π, θ) = log(πft(θ
1) + (1− π)ft(θ

2)), (12)

with the conditional density term ft(θ
i), as

ft(θ
i) = f(Xt|

−−→
Xt−1;

−→
θi ),

−→
θi = (θ0, θi), i = 1, 2.

Take
−→
θ∗i , i = 1, 2 as true value of

−→
θi under null of a single regime, following the

notations from Cho and White(2007) and Kasahara et al.(2008), the null hypoth-

esis can be described as follows:

H0 : {π∗ = 0 ∩
−→
θ1 =

−→
θ∗} ∪ {

−→
θ1 =

−→
θ2 =

−→
θ∗} ∪ {π∗ = 1 ∩

−→
θ2 =

−→
θ∗}.

It is obvious any of the three cases above violates assumptions of null as a

single regime. In order to derive the asymptotic distribution of Equation 12, we

can consider the first two partitions together and the last one individually (it is

symmetrical the other way around), and the limiting distribution of both can be

found in (Cho and White, 2007). The QLR statistic is model-dependent and one

has to calculate critical values for each alternative, which is quite burdensome.

Even though Cho and White provide lower bound on the tail distribution of QLR,

it is still not quite practical. citeKasahara2013 propose the new test statistic based

on penalized likelihood function as below:

Ln(π, θ) = L∗n(π, θ)+ncn log(π(1−π)) =
n∑
t=1

lt(π, θ)+ncn log(π(1−π)) (13)
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where cn is a non-random sequence that goes to 0 as n→∞. And since log(π(1−

π)) = −∞ while π = 0, 1, the penalty term always bounds away from both 0 and

1.

In addition, (Hu and Shin, 2008) and (Carrasco et al., 2014) give an Infor-

mation matrix approach in which they prove the test statistic is asymptotically

optimal, and meanwhile the testing procedure does not require a full specification

of the coefficients in alternatives but only covariance structure.

2.5 Autocorrelation function of regime switching model

Several criterions have been defined to detect the existence of long memory be-

havior inside real data. Here we adopt asymptotic decay of the autocorrelation

function to define the long memory behavior of a process. Furthermore, this ACF

definition is consistent with what we are going to take into consideration in Chap-

ter 2.

The moments and autocovariance function of regime switching models are dis-

cussed in (Timmermann, 2000) and (Francq et al., 2001). (Guegan and Stéphanie,

2005) shows how to generate a long memory process generated only by a regime

switching model. From (Guegan and Stéphanie, 2005), we can see how regime

switching effect generates slower decay in autocorrelation function. Let Xt de-

fines a mean-switching model:

Xt =

 u1 + εt St = 1

u2 + εt St = 2
(14)

The process Xt is composed of a switching deterministic part plus a white

noise process. The process switching with respect to the unobserved ergodic
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Markov chain characterized as Equation 1 with k = 2, which is independent of

the white noise process.

According to (Guegan and Stéphanie, 2005), the autocorrelation function of

Equation 14 is defined by:

Γ(h) = Cui,piiδ
h, i = 1, 2 (15)

where δ := p11 + p22 − 1, and

Cui,pii =
(u1 − u2)2(1− p11)(1− p22)

(1− δ)2[π1u1
2 + π2u2

2 + 1− (π1u1 + π2u2)2]
,

π1 = (1− p22)/(2− p11 − p22) and π2 = (1− p11)/(2− p11 − p22),.

The autocorrelation function Eq. 15 convergence rate depends on δ ∈ [−1, 1].

When δ is close to 1, both regime has high persistence level, the decay of autocor-

relation function (Equation 15) would be rather slow. However, as δ approaches

to 0, the decay of Equation 15 gets quicker.
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3 Normal Tempered Stable distribution introduction

As stylized facts in financial time series suggest, since the distribution of innova-

tions of financial time series often appears fat-tailed behavior, the general stable

class of distribution is introduced. Stable distributions are a class of distributions

that is able to describe both skewness and fat tails. The stable family of distribu-

tions was first characterized by Levy (1924) in his study of normalized sums of

i.i.d. terms. The stable distributions play an important role not only because they

exhibit closure properties under convolution, but also that a stable distribution can

be the limiting distribution of sums of i.i.d. variables (DuMouchel, 1973). The

general stable distribution is described by four parameters: an index of tailness or

stability α ∈ (0, 2), a skewness parameter β ∈ [−1, 1], a scale parameter γ and

a location parameter σ. There is no general closed form for the class of stable

distributions. Here we provide the definition of stable distribution given by Levy

(1924). If X ∼ S1(α, β, γ, δ1), then the characteristic function of X is as follows:

E[exp(iuX)] =

 exp(−γα|u|α[1− iβsgn(u)(tanπα
2

)] + iδ1u), α 6= 1

exp(−γ|u|[1 + iβ 2
π
sign(u)ln|u|] + iδ1u), α = 1

 ,

(16)

where σ1 ∈ R and sign(u) stands for sign function of u. When α = 2, the

distribution is Gaussian distribution, but for α < 2 the variance of stable distribu-

tion does not exist, and mean of stable distribution does not converge for α < 1.

We don’t have a parameter represents standard deviation for stable distribution,

either. In addition, this representation of stable distribution does not continue at

α = 1.

An alternative parametrization from (Zolotarev, 1986) overcomes discontinu-
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ity at α = 1, if X ∼ S2(α, β, γ, δ1):

E[exp(iuX)] =

 exp(−γα|u|α[1 + iβsgn(u)(tanπα2 )(|γu|1−α − 1)] + iδ2u), α 6= 1

exp(−γ|u|[1 + iβ 2
πsign(u)ln|u|] + iδ2u), α = 1


(17)

The new formulation of characteristic function has less intuitive meaning yet

much more useful for statistical purposes. The substitution of δ2 is:

δ2 =

 δ1 + βγtanπα
2
if α 6= 1

δ1 + β 2
π
γlnγif α = 1

 (18)

Beside the stable distributions which have infinite moments of all orders, (Ko-

ponen, 1995) introduced the idea of tempered Stable distribution applying an ex-

ponentially decreasing term times the original density function on each half of real

axis. Because of the exponential tempering, the tempered stable distributions are

bounded to have finite moments. Furthermore, a wide range of different types of

Tempered Stable distributions and generalize the tempered class of distributions,

see more about the class of tempered stable distributions in (Kim et al., 2008),

(Kim et al., 2009) and (Rachev et al., 2011).

The Normal Tempered Stable (NTS) distribution is defined with parameters

(α, λ, γ, σ2, µ), where a ∈ (0, 2), λ, σ2 > 0 and γ, µ ∈ R.

The subordination scheme can be used to simplify the representation of this

distribution by:

Xt = µt+ β(Tt − t) + γBTt (19)

where BTt is standard Brownian motion, and the characteristic function of Xt is

given by:

phiXt(u) = eiu(µ−β)tφTt(ψN(β,γ2))
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= exp(iu(µ− β)t− 2θ1−α
2

α
((θ − iβu+

γ2u2

2
)
α
2 − θ

α
2 )t).

Thus we can define a univariate NTS random variable: X1 follows a Normal

Tempered Stable distribution if and only if Xt is a NTS process with parameters

(α, λ, γ, σ2, µ), where α ∈ (0, 2), θ, γ > 0 and β, µ ∈ R.

An equivalent representation from (Rachev et al., 2011):

φNTS(u; α̃, C, λ, b,m) =

exp(ium− iu2−
α̃−1
2
√
πCΓ(1− α̃

2
)b(λ2 − b2)

α̃
2
−1...

...+ 2−
α̃+1
2
√
πCΓ(− α̃

2
)((λ2 − (b+ iu)2)

α̃
2 − (λ2 − b2)

α̃
2 )),

with α̃ ∈ (0, 2), C, λ > 0, |b| < λ, and m ∈ R. This representation is

equivalent to Equation 19

The representation accommodates the equalities as below:

cα̃ = αλ =

√
2θ

γ2
+ b2 (20)

b =
β

γ2
(21)

C =

√
2γα

√
πΓ(1− α

2
)θ

α
2
−1

(22)

m = µ (23)

We apply (Rachev et al., 2011) representation in this thesis: given two inde-

pendent random variablesX ∼ NTS(α̃, λ, b, C1,m1) and Y ∼ NTS(α̃, λ, b, C2,m2),

then their sum will follow the NTS distribution with the following parameters:

X + Y ∼ NTS(α̃, λ, b, C1 + C2,m1 +m2). (24)
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We then obtain the standardized NTS distribution after a few parameter manipu-

lation steps in order to have zero mean and unit variance by setting m = 0, and

via linear transformation:

C = 21− α̃
2 (
√
πCΓ(− α̃

2
)α̃(λ2 − b2)

α̃
2
−2(α̃b2 − λ2 − b2))−1.

Thus, the standard NTS can be defined as:

stdNTS(α, θ, β) ≡ NTS(α, θ, β, 1− β2(
2− α

2θ
), 0), (25)

with characteristic function:

φX(u) = exp(−βui− 2θ1−α
2

α
((θ − iβu+ (1− β2(

2− α
2θ

))
u2

2
)
α
2 − θ

α
2 )) (26)

Within standard NTS distribution, α stands for tail index as the same in origi-

nal stable distributions, θ captures scale, while β is the skewness parameter. Fig-

ure 3 shows illustratively how the three parameters would character the stdNTS

distribution.
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Figure 3: Illustration of stdNTS under different parameters

23



Chapter 2

4 FIGARCH introduction

If the AR polynomial of the GARCH representation has a unit root, then we have

an Integrated GARCH model (IGARCH), which was first introduced by (Engle

and Bollerslev, 1986). A key feature of IGARCH model is that the impact of

the past squared shock is persistent and the pricing of risky securities, includ-

ing long-term options and future contracts, may show extreme dependence on the

initial conditions. Several studies report the presence of apparent long-memory

in the autocorrelations of squared or absolute returns of various financial assets.

Motivated by these observations, (Baillie et al., 1996) introduced the Fractionally

Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH)

process. The primary purpose of introducing FIGARCH model was to develop a

more flexible class of processes for the conditional variance, that are capable of

explaining and representing the observed temporal dependencies in financial mar-

ket volatility. In particular, the FIGARCH model allows only a slow hyperbolic

rate of decay for the lagged squared or absolute innovations in the autocorrelation

function, while weakly stationary process like EGARCH has short memory and

its autocorrelation function (ACF) is geometrically bounded. This model can ac-

commodate the time dependence of the variance and a leptokurtic unconditional

distribution for the returns with a long memory behaviour for the conditional vari-

ances.

Let εt denote a real-valued discrete-time stochastic process, and ψt be the

information set of all information up to time t, i.e., Φt = σ{..., εt−2, εt−1, εt},
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where εt follows ARCH(q) process, when

εt = h
1/2
t zt,

with

ht = α0 +

q∑
i=1

αiε
2
t−i, zt ∼ N(0, 1)

and αi ≥ 0, i = 1, ...q. The conditional variance can be generally expressed as

ht = h(εt−1, εt−2, ..., εt−q,
−→α ),

where h(·) is a nonnegative function of its arguments and −→α = (α0, α1, ..., αq)
′

is a vector of unknown parameters. An alternative expression of ARCH model

is shown below:

E(εt|Φt−1) = 0 and var(εt|Φt−1) = ht

According to (Caporin, 2002), and GARCH process cannot fully capture long

memory effect even with particular characteristics such as asymmetric behavior,

regime switching effect. Here we refer long memory to slow decaying of autocor-

relation function (abbv. ACF) of a time series: in long memory process, the ACF

is hyperbolically decaying, while in regular GARCH model it is exponentially

decaying. The difference is illustrated as below:

Suppose dynamic process xt has spectral density f(λ) at frequency λ. Then

the process has long memory can be formally constructed if:

f(λ) ' Cλ−2d,

as λ → 0+ with d ∈ (−0.5, 0.5) and G ∈ (0,∞), and C is a positive con-

stant term. Granger and Joyeux(1980) and Hosking (1981) first introduce the

25



FARIMA(p,d,q) processes as:

A(L)(1− L)dxt = B(L)εt, (27)

where A(L) and B(L) are lag operators such that

A(L) = 1− a1L− a2L
2 − ...− apLp, B(L) = 1 + b1L+ b2L

2 − ...+ bqL
p,

and εt here is a white noise process.

For −0.5 < d < 0, xt is characterized as a stationary short memory series

and addressed as anti-persistent. For 0.5 < d < 1, the series is nonstationary

long memory but mean reverting. For d = 0, we have an I(0) series and when

d = 1, we have an I(1) series. To familiarize the transformation steps applied in

FIGARCH, the GARCH(p, q) process can be expressed similar as FARIMA(p,d,q)

in Equation 27:

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j

= α0 + α(L)ε2t + β(L)ht,

where p > 0, q > 0, αi ≥ 0, i = 1, ..., q, βj ≥ 0, j = 1, ..., p, and α(L) =

α1L+ αL2 + ...+ αqL
q, β(L) = β1L+ β2L

2 + ...+ βpL
p, and in order to have a

stationary GARCH process,
∑
αi +

∑
βj < 1. For p = 0, the process reduces to

an ARCH(q) and for p = q = 0, εt turns to a white noise process.

(Baillie et al., 1996) proposes FIGARCH first using FARIMA(p,d,q) repre-

sentation 27, yet (Chung, 1999) argues that the method of parameterization of

the FIGARCH model of (Baillie et al., 1996) may have a specification problem,

and points out some drawbacks in the (Baillie et al., 1996) model. A structural

problem in the (Baillie et al., 1996) specification with respect to the FARIMA
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framework of the conditional mean equation, thereby leading to difficult interpre-

tations of the estimated parameters. Indeed, the fractional differencing operator

applies to the constant term in the mean equation of representation 27, while it

is not satisfied in the variance equation of FIGARCH. Therefore, (Chung, 1999)

redefines the FIGARCH model.

Denote vt = ε2t − ht, then the fractionally integrated GARCH or FIGARCH

class of model can be obtained by using similar technique, with (1− L) replaced

by (1 − L)d, whered is fractional integration index with 0 < d < 1. Thus, the

FIGARCH class of models can be obtained by considering

[1− α(L)− β(L)](1− L)dε2t = α0 + [1− β(L)]vt

The fractional differencing operator (1−L)d can be written in terms of hyper-

geometric function,

(1− L)d =
∞∑
k=0

Γ(k − d)Γ(k + 1)−1Γ(−d)−1Lk.

Rearranging the terms in the last equation, an alternative representation for the

FIGARCH(p, d, q) model may be obtained as

[1− β(L)]ht = α0 + [1− β(L)− φ(L)(1− L)d]ε2t .

From the above, the conditional variance ht is given by

ht = α0[1−β(1)]−1+{1−[1−β(L)]−1φ(L)(1−L)d}ε2t = α0[1−β(1)]−1+λ(L)ε2t ,

(28)

where λ(L) = λ1L + λ2L
2 + .... To define the FIGARCH(p, d, q) of 28

properly, the conditional variance in the ARCH(∞) representation must be non-

negative, i.e., λk ≥ 0 for k = 1, 2, .....
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The condition for the nonnegativity of the conditional variance of the FI-

GARCH (1, d, 1) model is covered in (Baillie et al., 1996). Following the dis-

cussion above,

ht = α0[1− β(1)]−1 + [1− [1− β1L]−1φ1L(1− L)d]ε2t ,

and

λ(L) = λ1L+ λ2L
2 + ... = 1− [1− β1L]−1φ1L(1− L)d.

Then from Taylor expansion we have the equations for the coefficients

λ1 = φ1 − β1 + d

,

λ2 = (d− β1)(β1 − φ1) +
d(1− d)

2

,

λ3 = β1[dβ1 − dφ1 − β2
1 + β1φ1 +

d(1− d)

2
] + d

1− d
2

(
2− d

2
(
2− d

3
− φ1)

,

λk = β1λk−1 + (
k − 1− d

k
− φ1)δd,k−1, k = 2, 3, ...,

,

where δd,k = δd,k−1(k− 1− d)k−1 refer to the coefficients in the series expan-

sion of (1− L)d for k = 2, 3, ... That is,

δd(L) =
∞∑
k=1

δd,kL
k,

with δd,0 = 1. Using the non-negativity of λk’s, it is possible to derive inequal-

ities which are sufficient for all conditional variances ht to be non-negative:

β1 − d ≤ φ1 ≤
2− d

3
and d(φ1 −

1− d
2

) ≤ β1(d− β1 + φ1).
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Practically FIGARCH(1, d, 1) is enough to analyze financial volatility process,

however, it is necessary to mention that non-negativity restriction conditions of

conditional variances for higher order models cannot be derived easily (Caporin,

2002), so as to stationary conditions.

4.1 Estimation of FIGARCH

The estimation of parameters of FIGARCH model is generally carried out using

the maximum likelihood method (which is most efficient) with normality assump-

tion for zt . But as the same to GARCH, the normality assumption can be ques-

tioned with some empirical evidence and therefore the use of quasi-maximum

likelihood estimator is preferred. The likelihood of a FIGARCH(p, d, q) process

based on the sample {ε1, ε2, ..., εT} may be written as

logL(θ, ε1, ε2, ..., εT ) ' −0.5T log(2π)− 0.5
∑
t=1

T [log(ht) + ε2th
−1
t ],

where θ′ ≡ (α0, d, β1, ..., βp, φ1, ..., φq).. The likelihood function is maxi-

mized conditional on pre-sample values of ε2t for t = 0,−1,−2, ... in the truncated

ARCH∞ representation at the unconditional sample variance.

(Baillie et al., 1996) claimed the asymptotic normality of the quasi-maximum

likelihood estimator θ̂T , when (ε1, ..., εT ) form a sample from FIGARCH(1, d, 0)

through extending a similar result available for IGARCH(1, 1). (Baillie et al.,

1996) used an upper bound for the infinite sequence of coefficients of the ARCH(infty)

representation of an IGARCH model. A similar argument was also used in claim-

ing the asymptotic properties of the QMLE for the FIGARCH. (Mikosch and

Starica, 2003) cast doubts on BaillieâĂŹs claims by pointing out it is not pos-

sible to bound a hyperbolically decaying sequence (the ARCH(∞) coefficients of
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any FIGARCH process) by an exponentially decaying sequence, which deficits

the proof of the claim from (Caporin, 2002), too. However, the reported Monte

Carlo experiment result in (Baillie et al., 1996) and (Bollerslev and Mikkelsen,

1996) is still valid and can be used to conclude the consistency and asymptotic

normality of the QMLE estimators empirically for FIGARCH(1, d, 0). However,

the proofs of consistency and asymptotic normality of the QMLE estimator for

the general FIGARCH(p, d, q) model are still open to be resolved. The estimation

of FIGARCH parameters using QMLE can be implemented in MFE toolbox of

MATLAB (Sheppard, 2009).

To estimate the parameters a FIGARCH model individually, we can employ

the methods listed as below. For fractionally integrated index d, we can use GPH

estimator proposed in (Geweke and Porter-Hudak, 1983). To obtain the estimation

of other parameters see (Härdle and Mungo, 2008). There are several ways to

estimate fractionally integrated index and (Robinson, 1995) is some of them.

When it comes down to forecasting, the one-step ahead forecast of ht can be

given by

ht(1) = α0[1− β(1)]−1 + λ1ε
2
t + λ2ε

2
t−1 + ...

And the l-step ahead forecast is

ht(l) = α0[1−β(1)]−1+λ1ht(l−1)+λ2ht(l−2)+...+λl−1ht(1)+λlε
2
t+λl+1ε

2
t−1+...

When applying FIGARCH to forecast volatility, we can see from Figure ??

and ?? that FIGARCH introduces oscillations in volatility forecasts, also implies

it may be over-sensitive to one point replacement or outliers. Thus, to include per-

sistence effect into volatility forecasting results, we are going to introduce regime

switching into FIGARCH model.
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4.2 regime switching FIGARCH

Even though regime switching has been applied in a lot long memory processes,

there are quite few discussing the incorporation between regime switching and

long memory in volatility processes except some recent research from (Dark, ),

(Xie, 2009). Even though FIGARCH has not been well developed in terms of

stationary conditions in higher order cases, FIGARCH(1,d,1) is somehow enough

to capture the stylized fact that squared returns of financial time series exhibit

some long memory behavior. and for parsimonious purpose, we do not consider

more than 2 regimes in RS-FIGARCH. The estimation scheme directly follows

what we discussed in RS-GARCH given Hamilton filter and QMLE of FIGARCH

introduced in last section.

For RS-FIGARCH model, the specification is defined as: residual terms εt can

be defined as

εt =
√
htηt,

where conditional variance depends on regime at time t

ht,St = α0,St [1− β1,St ]
−1 + λSt(L)ε2t ,

where λSt is the sequence derived using regime specific FIGARCH(1,d,1) param-

eters βi, φi, di for St = i.

To present a general feeling of the estimation performance, we include a sam-

ple of histograms of estimation results from RS-FIGARCH DGP, see Figure 4.2.

The number of data points simulated is 3000, and the step is replicated 100 times.

QMLE optimization method is usually starting from randomly grid search of dif-

ferent starting points, and then seek optimization for each starting point individ-

ually, then aggregate to find semi-global QMLE. We might that this estimation
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Figure 4: box plot of estimation results for RS-FIGARCH
100 replications, 3000 data points used for estimation.

results do not seem to be robust, especially for the turbulent regime (see Figure

4.2). One reason is that the likelihood function of RS-FIGARCH is rather flat

since there are ten parameters need to be estimated in a row, the second reason is

that the turbulent or high volatility regime has small unconditional probabilities

compared to the stable regime, thus acquires very little information compared to

stable regime. Thus we can give another approach to the estimation step based

on the empirical finding. It is safe to say that the stable regime has more robust

estimation, and we can constrain the parameters in the regime for the constrained

optimization step (can be adjusted in fmincon linear constraints) and then we can

proceed our estimation so forth. Typically, we can start with d1 and φ1 first, and

bounded β1 based on the restriction conditions, then shrink the likelihood func-

tion. Same as what we discussed in RS-GARCH, RS-FIGARCH can also have

intrigue turbulent regime, but not the same as in RS-GARCH the second regime

of RS-FIGARCH usually estimated as IGARCH instead of GARCH with param-

eters equal to 0.
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Figure 5: box plot of estimation results for RS-FIGARCH
100 replications, 3000 data points used for estimation, parameters used for simulation are

(0.0295,0.1255,0.2000,0.1669,0.0055,0.0309,0.4000,0.0510,0.9900,0.9500).

Figure 6: box plot of estimation results for RS-FIGARCH
100 replications, 3000 data points used for estimation, parameters used for simulation are

(0.0295,0.1255,0.2000,0.1669,0.0055,0.0309,0.4000,0.0510,0.9900,0.9500).
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Figure 7: box plot of estimation results for RS-FIGARCH
100 replications, 3000 data points used for estimation, parameters used for simulation are

(0.0295,0.1255,0.2000,0.1669,0.0055,0.0309,0.4000,0.0510,0.9900,0.9500).
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Chapter 3

5 Backtesting

On a practical perspective, to test model validity risk management plays an im-

portant role. While there are many aspects of risks, we would concentrate on

market risk in this thesis, and the highly standard risk measure that has been used

in market risk modeling is Value-at-risk(VaR). The regulators nowadays released

a whole package of VaR-based criterions to the requirements in terms of regula-

tion and supervision of Banking system to evaluate their risks. VaR can be also

used to evaluate the risks of individual assets and a portfolio as well. Technically

VaR for significance level α can be defined as:

V aRα(X) = −inf(x ∈ R|P (X ≤ x)) > α (29)

where α ∈ (0, 1) and usally taken as 95% or 99% in practical use, and F−1(α)

stands for the inverse function of cumulative probability density of log returns.

We are going to focus on VaR backtests in this section. Some knowledge regard-

ing both Unconditional Coverage tests and Independence Tests will be covered

and performed to test VaR performance of our RS-GARCH and RS-FIGARCH

models.

Backtesting aims to take ex ante var forecasts from a particular model and

compare them with ex post realized returns. whenever losses exceed var, a VaR

violation is said to have occurred. There are a few methods to backtest models.

We basicly will discuss binomial and berkowitz tests here. (At each time point, we

use previous historical data to fit model, and make forecasts for the next period(in
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the context of one-step forecast). The first statistical test is kupiec test (Kupiec,

1995), also named as unconditional coverage test. Roughly speaking it tests if the

violation of sequence occurs with probablity p or not. We can give a 0/1 indicator

sequence by following the criteria: 0 if V aRα(rt) > −rt,

1 if V aRα(rt) ≤ −rt
(30)

where rt denotes realized return series. Given independence of sequence of It, the

null of hypothesis is E(It) = p while the alternative is E(It) 6= p. The likelihood

under the null hypothesis is :

L(p; I1, . . . , IT ) = (1− p)n0pn1 , (31)

where n1 is the number of violations, i.e.
∑T

0 It, and n0 + n1 = T . Under the

alternative

L(π; I1, . . . , IT ) = (1− π)n0πn1 (32)

Then the likelihood ratio test statistic can be calculated as:

LRuc = −2log
L(π; I1, . . . , IT )

L(π̂; I1, . . . , IT )
(33)

where π̂ is maximum likelihood estimator of π from Equation 32, and π̂ = n1

n0+n1
.

To evaluate the non-reject regions for Kupiec test we propose a table with

different number of forecasts as Table 1 and 2 with significance level of 0.05 and

0.01 respectively.

(Christoffersen, 1998) also gives a test with respect to both independence and

unconditional coverage simultaneously, whose test statistic is simply the summa-

tion of Equation 33 and likelihood ratio test statistic of Christoffersen indepen-

dence test, and its asymptotically distributed as chi-square distribution with de-

gree of freedom as 2. See details in (Christoffersen, 1998). Both Kupiec test and
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Table 1: Non-rejection region for Kupiec test of different condfidence levels, sig-

nificance level of the test is 0.05
VaR confidence levels T=100 T=200 T=400

99.9% x = 1 x = 1 0 < x < 3

99.5% 0 < x < 3 0 < x < 4 0 < x < 6

99% 0 < x < 4 0 < x < 6 0 < x < 9

This table shows non-rejection regions of 99%, 99.5%, 99.9% VaR in 100, 200,

400 forecast regions, significance level of test is 0.01.

Table 2: Non-rejection region for Kupiec test of different condfidence levels, sig-

nificance level of the test is 0.01
VaR confidence levels T=100 T=200 T=400

99.9% x = 1 0 < x < 3 0 < x < 3

99.5% 0 < x < 4 0 < x < 5 0 < x < 7

99% 0 < x < 5 0 < x < 7 0 < x < 12

This table shows non-rejection regions of 99%, 99.5%, 99.9% VaR in 100, 200,

400 forecast regions, significance level of test is 0.01.
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Christoffersen tests are corresponding to violation indicator sequence in Equation

30, which does not acquire much information out of return series. To obtain a test

with great power compared with the tests above, Berkowitz(2001) propose a den-

sity evaluation method to be able to extract more information from sample data.

To begin with, the return series rt is transformed to uniform random variable with:

xt =

∫ rt

−∞
f(u)du,

where f(u) is the probability density function of rt determined by arbitrary model

specification. In our backtesting part of the thesis, we do it both in the context of

standard NTS distribution and normal distribution. After xt being transformed to

standard normal random variable as zt = F−1(xt), we perform the test against the

alternative that a first order autoregressive mechanism by:

zt − µ = ρ(zt−1 − µ) + εt

Then the log-likelihood function can be written as:

L(µ, σ2, ρ) = −0.5 log 2π − 0.5 log(
σ2

1− σ2
)− (zt − µ/(1− ρ))2

2σ2/(1− ρ2)

= −T − 1

2
log 2π − T − 1

2
log(σ2)−

∑T

t=2

(zt − µ− ρzt−1)2

2σ2
,

where σ2 is the variance of εt. The test statistic of null as independence is:

LRind = −2(L(µ̂, σ̂2, 0)− L(µ̂, σ̂2, ρ̂)) ∼ χ2(1), (34)

where in practice µ̂, σ̂2 can be approximated by mean and variance of return

series repsectively, and ρ̂ can be calculated by sample autocorrelation with lag

1. Check out Berkowitz(2001) to see details of the test statistic, With the use of

38



the transformed zt, Berkowitz also gives a tail test with respect to large losses in

returns. The new variable z∗
t

is defined:

z∗
t

=

 Φ−1(α) if zt ≥ Φ−1(α)

zt if zt < Φ−1(α)

Then the conditional likelihood function is:

L(µ, σ2|z∗) =
∑

z∗<Φ−1(α)

(−0.5 log(2πσ2)− 1

2σ
(z∗ − µ)2)...

..+
∑

z∗=Φ−1(α)

log(1− Φ(
Φ−1(α)− µ

σ
))

Similarly, the asymptotic distribution of the test statistic −2(L(0, 1) − L(µ̂, σ̂2))

follows chi-square with degree of freedom as 2. To perform standard backtesting

procedure, we are going to perform all these five likelihood-ratio based tests in

the empirical exhibition section.
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6 Empirical results in high frequency

Data used in the thesis is extracted from tick-by-tick archive through trade and

quote (TAQ) database of New York Stock Exchange. Data is aggregated for 1

minute, 5minute respectively and cleaned as well. Missing values are mid-point

interpolated already, and data sets used in the thesis are close price for each ag-

gregation period. Dates of each data set are adjusted corresponding to Eastern

Standard Time Zone, especially for data of Shanghai Shenzhen 300 Index data.

To give an overview of this section, we are going to introduce the steps in

model estimation and forecasting steps. First of all, the models used in this sec-

tion include ARMA(1,1)-GARCH(1,1) with standard Normal Tempered Stable

innovations (GARCH-stdNTS henceforth), ARMA(1,1)-GARCH(1,1)-Gaussian,

ARMA(1,1)-FIGARCH(1,d,1)-Gaussian, ARMA(1,1)-FIGARCH(1,d,1)-stdNTS,

ARMA(1,1)-2-regime switching-GARCH(1,1)-Gaussian, ARMA(1,1)-2-regime

switching-FIGARCH. To get results as robust as possible, we filter residuals from

ARMA(1,1) first, and then estimate parameters of dynamic volatility processes

accordingly. Sometimes this sequential estimation method is called back-out

method. It is worth mentioning here, to obtain better fit results of three parameters

of standard NTS distribution, we apply the steps following (Mittnik et al., 1999).

We need to first estimate QMLE under GARCH or FIGARCH with student-T

innovation, and then apply MLE-FFT method to fit standard NTS parameters us-

ing extracted residuals. QQ plots of residuals fits for both GARCH-stdNTS and

FIGARCH-stdNTS are shown in Figure 13. QQ plot of GARCH-Gaussian resid-

uals versus fitted Gaussian distribution is shown in Figure 10, and this result is

consistent with the stylized fact that GARCH innovation is fat-tailed, especially

for high frequency data.
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All backtesting procedure in this section are performed with sliding window

size as 2000 and forecasting horizon as 400, one step forecast is used in models

of interest.

6.1 Goodness of fit test

To find out how the specified model is fit to the data, it is critical to verify the

model’s descriptive power. Statistically a goodness of fit (Gof) examination for

the employed distribution of the innovation is used. Several statistical tests can do

the work, and within each test p-value has to be compared to some predetermined

confidence level, usually chosen as 95% or 99%, and if the resulting p-value falls

below some arbitrary values, 0.05 and 0.01 respectively, null hypothesis should

be rejected in favor of alternative hypothesis.

One most frequently used goodness of fit test is Kolmogorov-Smirnov test. It

aims to asses if two cumulative probability density functions come from the same

distributions with some predetermined confidence. Given two distributions F1(x)

and F2(x), the test statistics is constructed as:

KS =
√
nsup

xi

|F1(xi)− F2(xi)|

, and furthermore, this test is also applicable to the cases where either of F1(x) or

F2(x) can be empirical distribution of sample data, or some theoretical cumulative

density distribution.

Another test often refered to as goodness of fit test is Anderson-Darling test

(AD test), which is carried out in very similar procedure but has accentuates

more decrepancies in tails of desired distributions, and empirically relatively good

41



power. The A-D test is computed by:

AD = sup
x∈R

|F1(xi)− F2(xi)|√
F1(xi)(1− F2(xi))

.

Specially for Gof of Gaussian distribution, (Shapiro and Wilk, 1965) test and

J(Jarque and Bera, 1980) test are also frequently used.

Residuals goodness of fit tests of both ARMA(1,1)-GARCH(1,d,1)-NTS and

ARMA(1,1)-FIGARCH(1,d,1)-NTS versus estimated distributions are performed

in Table 3 and Table 4. It is evident that RS-GARCH, even RS-FIGARCH can-

not fully capture the fat-tailed behavior of residuals, indicating that we might still

require further incorporation between RS-FIGARCH and standard NTS innova-

tions.

6.2 Some VaR forecasts versus log return series

In this subsection we will show standard backtesing results under both signifi-

cance level 0.01, 0.05 and also using different frequency data for both S&P 500

data and ShanghaiShenzhen 300 Index(SHSZ 300) data. Before doing backtest-

ing formally, the S&P 500 price from 2008-09-02 to 2008-09-15 is shown as Fig-

ure 6.2: After filtering the residual terms, we use them to forecast next period

(2008-09-12 to early hour of 2008-09-15). First we take forecasts of volatilities

into consideration to illustratively describe how long memory effect and regime

switching effect together impact the forecast performance. The characteristics of

GARCH, FIGARCH and RS-FIGARCH forecasting results during financial crisis

are depicted in Figure 16: GARCH model barely moves when the hugh plunge

occurs, and FIGARCH have lots of small spike, while RS-FIGARCH only have
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Figure 8: Data is between 2008-09-02 and 2008-09-15, in the middle of Lehmann

Brother bankrupcy event (at time index 350)

very few but larger spikes than FIGARCH. Mostly RS-FIGARCH is smoothing

and stable, but it is sensitive to large events. It reacts earlier than FIGARCH

forecasts, also. For 99% VaR here, we can see GARCH has flat results as usual,

and FIGARCH has lots of small spikes. All models but GARCH-Gaussian and

stdNTS-RS-GARCH are able to capture that huge spike. The violation numbers

for different forecasting regions are in 6

Now we compare the results among all candidates, which are already intro-

duced at the beginning of the section. Figures in this subsection are all shown in

Appendix. Figure 18, 19, 20 show VaR forecasts of the same recent data. At the

very beginning of the whole period, 99% VaR of RS-FIGARCH stays at the very

bottom among all the models, and after a while, market somehow turns into calm

state and the forecasts of RS-FIGARCH elevated slowly, which is consistent with
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our assumption that RS-FIGARCH tends to be less conservative during tranquil

period. For 99.5% and 99.9% VaRs, the candidate models except for GARCH-

NTS exhibit bandwidth and do not drop very much, but since GARCH-NTS has

fatter tail index in distribution of innovations, the forecasts drops dramastically,

no matter at the first peak or in a general sense.

The data of the second group do not have very huge spikes but overall its scale

is also large compared to last group of data. We can observe that RS-FIGARCH,

under this case, have largest VaR values most of the time, but when spikes of

log returns occur, it still responds very quickly. All candidates exhibit the same

behavior except GARCH-Gaussian. And there is no surprise that GARCH-NTS is

again very conservative at 99.9% VaR. In both second and third group GARCH-

NTS has quite close 99.5%VaR values while in first group it does not have. And

in 99.9% VaR it just dominates.

Since Christoffersen independence test are not rejected in any data sets out

of this thesis, we would perform the first three tests in an easier way. For that

we already have the non-rejection region table of Kupiec test in both significance

levels, we are going to simply display violation numbers. The violation numbers

of Kupiec test (significance level is 0.01) for 99% VaR in different horizons are

shown in Table 6. More violation results combined with descriptions and explana-

tions from different data and horizons are shown in Appendix. Table 8, 9, 10 are

results for 99% VaR violations in 100, 200 and 400 forecasting regions, and Table

11, 12, 13 are results for 99% VaR violations. From these tables we can see our

model RS-FIGARCH has relatively low rejection rates and thus can be helpful in

risk management.
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7 Conclusion

Regime switching model is well known as a model able to capture both persistence

and abrupt changes, and is widely used in economics and financial time series. We

incorporate regime switching model with Fractionally Integrated GARCH (FI-

GARCH) and observe that it has very impressing performance as shown in Table

8-13. If we take closer view at its forecasts in Figure 13-24, RS-FIGARCH also

tends to have conservative volatility forecasts compared to alternative models in

long term, but in short term, RS-FIGARCH is able to capture volatility spikes

and can react fast to large spikes compared to FIGARCH alone which is consis-

tent with the properties: persistence and flexibility. We also find that FIGARCH

without regimes has forecasting results more oscillated and meanwhile sensitive

to outliers.

We introduce standard Normal Tempered stable distribution, and model fat-

tailed and skewed innovations in this thesis too. Even though FIGARCH, RS-

GARCH and RS-FIGARCH can be quite flexible, none of them is able to fully

interchange fat-tailed innovations according to normality test results. However

when performing Goodness of fit test on Standard NTS with GARCH, FIGARCH,

RS-GARCH and RS-FIGARCH residuals, and none of them were rejected. Intro-

ducing Standard NTS also improves backtesing results of GARCH, FIGARCH,

and RS-GARCH, as suggested in 6. In this thesis We include insights in strength

and weakness of semi-global QMLE estimation method and propose the outline

of an alternative sequential estimation method.

According to violation results in the context of Kupiec test, RS-FIGARCH

overall has RS-FIGARCH also has potential to predict if we have entered into

high volatility market, determined by whether cross-over between RS-FIGARCH
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forecasts and forecasts of other model, especially RS-GARCH. And the validation

of this indicator will be included in my future research. In future work, I am

also going to apply RS-FIGARCH and GARCH-stdNTS in option pricing and

portfolio optimization. I will discover a broad extension to this model, such as

time varying regime switching model, and multifractal regime switching model,

etc.
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8 Appendix

Table 3: normality test of residuals extracted from RS-GARCH

KS test AD test Jarque-Bera test Shapiro-Wilk test

0.0784 0 0 3.83e-06

Notes: AD, JB, SW tests are rejected at significance level 0.05

and 0.01, while only KS test is not rejected, at both significance

levels.

Table 4: normality test of residuals extracted from RS-FIGARCH

KS test AD test JB test Shapiro-Wilk test

0.0735 0 0 8.4040e-07

Notes: AD, JB, SW tests are rejected at significance

level 0.05 and 0.01, while only KS test is not rejected,

at both significance levels. Same conclusion as in RS-

FIGARCH
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Table 5: Goodness of fit test statistics
Models/statistics p-value of KS test p-value of AD test

GARCH-stdNTS 0.1969 0.06

FIGARCH-stdNTS 0.2378 0.12
The data is S&P 500 with 5 minute frequency, extracted from TAQ databse, ranged from

2015-4-20 9:35 to 2015-6-1 13:25. Residuals from both ARMA-GARCH and ARMA-FIGARCH

are not rejected by KS test and AD test of null as Gof of standard NTS, thus we can not reject Gof

of standardized residuals to standard NTS of both models. The qq plots are shown in Figure ??.

Table 6: violation numbers for 99% VaR in different horizons, significance level

is 0.01
Forecasting Horizon 100 200 400

GARCH-Gaussian 0 0 1

FIGARCH-Gaussian 1 1 3

GARCH-stdNTS 1 1 5

stdNTS-RS-GARCH 0 0 1

FIGARCH-stdNTS 0 0 4

RS-FIGARCH-Gaussian 0 0 1
The table presents violation numbers of 99% VaRs in all models. Data is from 2008-09-02 to

2008-09-12. The notorious event ’lehman brothers filed bankruptcy’ happens approximately at

350 index of forecasting horizon.
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Table 7: Backtesting results (p-values) of SP 1min with 200 forecasting horizon,

significance level is 0.05

data KupUc ChInd ChCc BerkInd BerkTail

GARCH-Gaussian 0.1622 0.1545 0.1366 0.3447 0.0276

FIGARCH-Gaussian 0.0737 0.6117 0.1766 0.8084 0.1357

GARCH-stdNTS 0.7493 0.6228 0.8420 0.4466 0.8858

stdNTS-RS-GARCH 0.1622 0.5413 0.3124 0.4317 0.2669

FIGARCH-stdNTS 0.5020 0.3083 0.4750 0.3051 0.7994

RS-FIGARCH 0.0080 0.7619 0.0284 0.3382 0.0183
Note: This table shows p values of the tests: Kupiec coverage test (KupUc),

Christofferesen independence test (ChInd) and combined test (ChCc). Berkowitz

independence test (BerkInd) and tail teset (BerkTail). Performed under 2000

sliding window size. Data still comes from pre-crisis period. RS-FIGARCH is

rejected by both Kupiec test and Berkowitz Tail test at 0.05.
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Table 8: violation numbers for 99% VaR in 100 forecasting horizon, significance

level is 0.05
data SP1min SP5min SHSZ1min SHSZ5min

GARCH-Gaussian 3 1 1 0

FIGARCH-Gaussian 5 1 3 0

GARCH-stdNTS 2 1 0 1

RS-GARCH 2 2 1 0

RS-FIGARCH 2 1 1 2
SP1min: 2015-05-08 to 2015-06-03 , SP5min: 2015-4-20 to 2015-6-1, and SHSZ1min:

2015-05-28 to 2015-06-09, SHSZ5min: 2014-12-19 to 2015-03-03. Looking up Table 1,

none of these models is rejected by Kupiec test at 0.05 significance level, yet

FIGARCH-Gaussian in SP1min, and all VaRs in SHSZ5min except RS-GARCH are

rejected at 0.01 significance level.

Table 9: violation numbers for 99% VaR in 200 forecasting horizon, significance

level is 0.05
data SP1min SP5min SHSZ1min SHSZ5min

GARCH-Gaussian 6 3 3 2

FIGARCH-Gaussian 8 3 3 2

GARCH-stdNTS 4 2 1 6

RS-GARCH 3 2 1 0

RS-FIGARCH 5 3 1 1
Data range: SP1min is 2015-05-08 to 2015-06-03 , SP5min is 2015-4-20 to 2015-6-1,

and SHSZ1min is 2015-05-28 to 2015-06-09, SHSZ5min is 2014-12-19 to 2015-03-03.

In the column of SP1min, both GARCH-Gaussian and FIGARCH are rejected, and in

other panels of data, every violation is in the range of 1 to 5, except GARCH-stdNTS and

RS-GARCH in SHSZ5min.
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Table 10: violation numbers for 99% VaR in 400 forecasting horizon, significance

level is 0.05
data SP1min SP5min SHSZ1min SHSZ5min

GARCH-Gaussian 7 8 3 1

FIGARCH-Gaussian 9 8 3 1

GARCH-stdNTS 5 5 1 9

RS-GARCH 3 5 1 0

RS-FIGARCH 8 7 1 5
SP1min: 2015-05-08 to 2015-06-03 , SP5min: 2015-4-20 to 2015-6-1, and

SHSZ1min: 2015-05-28 to 2015-06-09, SHSZ5min: 2014-12-19 to 2015-03-03.

These models are not rejected by Kupiec test at 0.05 significance level overall

except FIGARCH-Gaussian in SP1min, and reasonable violations from Table 1

are in the range of 1 to 8.

Table 11: violation numbers for 99.5% VaR in 100 forecasting horizon, signifi-

cance level is 0.01
data SP1min SP5min SHSZ1min SHSZ5min

GARCH-Gaussian 3 1 1 1

FIGARCH-Gaussian 4 1 3 3

GARCH-stdNTS 2 1 1 5

RS-GARCH 2 2 0 1

RS-FIGARCH 2 1 3 3
SP1min: 2015-05-08 to 2015-06-03 , SP5min: 2015-4-20 to 2015-6-1, and

SHSZ1min: 2015-05-28 to 2015-06-09, SHSZ5min: 2014-12-19 to 2015-03-03.

FIGARCH-Gaussian, GARCH-stdNTS are jected according to Table 2.
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Table 12: violation numbers for 99.5% VaR in 200 forecasting horizon, signifi-

cance level is 0.01
data SP1min SP5min SHSZ1min SHSZ5min

GARCH-Gaussian 6 2 0 1

FIGARCH-Gaussian 7 3 2 1

GARCH-stdNTS 3 1 0 6

RS-GARCH 3 2 0 1

RS-FIGARCH 5 2 1 3
SP1min: 2015-05-08 to 2015-06-03 , SP5min: 2015-4-20 to 2015-6-1, and

SHSZ1min: 2015-05-28 to 2015-06-09, SHSZ5min: 2014-12-19 to 2015-03-03.

FIGARCH, GARCH and RS-FIGARCH are rejected in SP1min, while

GARCH-stdNTS are rejected in SHSZ 5min.

Table 13: violation numbers for 99.5% VaR in 400 forecasting horizon, signifi-

cance level is 0.01
data SP1min SP5min SHSZ1min SHSZ5min

GARCH-Gaussian 7 4 1 1

FIGARCH-Gaussian 8 7 3 1

GARCH-stdNTS 3 1 0 10

RS-GARCH 3 3 1 0

RS-FIGARCH 6 6 1 3
SP1min: 2015-05-08 to 2015-06-03 , SP5min: 2015-4-20 to 2015-6-1, and

SHSZ1min: 2015-05-28 to 2015-06-09, SHSZ5min: 2014-12-19 to 2015-03-03.

GARCH-Gaussian is rejected in SP1min FIGARCH-Gaussian is rejected in SP

1min and 5min, GARCH-stdNTS is rejected in SHSZ 5min. RS-GARCH and

RS-FIGARCH are not rejected by in any data sets according to Table 2.
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(a) ACF of long memory process (b) ACF of short memory process

Figure 9: ACF of long memory process and short memory process
The data from left panel is absolute values generated from IGARCH(1,1), and the right panel is

generated from regular GARCH(1,1) model.
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Figure 10: QQ plot of residuals versus Gaussian distribution
The residuals is filtered from ARMA(1,1)-GARCH(1,1) model, and then compared versus the

Gaussian distribution in terms of quantiles.
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Figure 11: QQ plot of residuals versus Gaussian distribution
The residuals is filtered from ARMA(1,1)-RS-GARCH(1,1) model, and then compared versus

the Gaussian distribution in terms of quantiles.
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Figure 12: Standardized residuals extracted from RS-GARCH versus fitted std-

NTS
The residuals is filtered from ARMA(1,1)-RS-GARCH(1,1) model, and then compared versus

the Gaussian distribution in terms of quantiles.
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(a) GARCH-stdNTS

(b) FIGARCH-stdNTS

Figure 13: Standardized residuals versus fitted stdNTS
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(a) RS-GARCH-stdNTS

(b) RS-FIGARCH-stdNTS

Figure 14: QQ plots of residuals versus stdNTS, estimate SHSZ 1minute data,

from 2015-5-28 to 2015-6-9
The left panel is QQ plots of innovations of ARMA(1,1)-RS-GARCH(1,1) model versus fitted

standard NTS, and the right panel is for QQ plot of ARMA(1,1)-RS-FIGARCH(1,1) innovations.
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Figure 15: VaR forecasting results of RS-FIGARCH and FIGARCH
This figure shows the comparison result between RS-FIGARCH forecasts and FIGARCH

forecasts. It is noteworthy that in long terms FIGARCH alone can be a good tool in risk

management compared to RS-FIGARCH, yet RS-FIGARCH performs much better as a portfolio

optimization tool of short terms.
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Figure 16: volatility forecasting results of GARCH, FIGARCH and RS-

FIGARCH
This figure shows the comparison of volatility forecasts among three models, GARCH,

FIGARCH and RS-FIGARCH. GARCH has flat results in the whole region, and FIGARCH has

lots of small spikes. However, RS-FIGARCH forecasts stay stable mostly and much less but

larger spikes are featured.

60



Figure 17: 99% VaR forecasting results of GARCH, FIGARCH, RS-FIGARCH,

GARCH-NTS, FIGARCH-NTS, stdNTS-RS-GARCH
This figure shows the comparison of 99% VaR forecasts among all candidate models. Data is

from 2008-09-02 to 2008-09-15

Figure 18: 99% VaRs of different models versus realized returns
The data used for initial estimation is S&P 500 with 1 minute frequency, from 2015-05-28 to

2015-06-03.
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Figure 19: 99.5% VaRs of different models versus realized returns
The data used for initial estimation is S&P 500 with 1 minute frequency, from 2015-05-28 to

2015-06-03.

Figure 20: 99.9% VaRs of different models versus realized returns
The data used for initial estimation is S&P 500 with 1 minute frequency, from 2015-05-28 to

2015-06-03.
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Figure 21: 99% VaRs of different models versus realized returns
The data used for initial estimation is S&P 500 with 5 minute frequency, from 2015-04-20 to

2015-05-20, forecasting horizon: 2015-5-20 9:35 to 2015-6-1 13:25.
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Figure 22: 99.5% VaRs of different models versus realized returns
The data used for initial estimation is S&P 500 with 5 minute frequency, from 2015-04-20 to

2015-05-20, forecasting horizon: 2015-5-20 9:35 to 2015-6-1 13:25.
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Figure 23: 99.9% VaRs of different models versus realized returns
The data used for initial estimation is S&P 500 with 5 minute frequency, from 2015-04-20 to

2015-05-20, forecasting horizon: 2015-5-20 9:35 to 2015-6-1 13:25.
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Figure 24: 99% VaRs of different models versus realized returns
The data used for initial estimation is SHSZ 300 with 1 minute frequency, from 2015-06-01 to

2015-06-09, forecasting horizon: 2015-6-9 21:00 to 2015-6-11 3:00.
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Figure 25: 99.5% VaRs of different models versus realized returns
The data used for initial estimation is SHSZ 300 with 1 minute frequency, from 2015-06-01 to

2015-06-09, forecasting horizon: 2015-6-9 21:00 to 2015-6-11 3:00.
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Figure 26: 99.9% VaRs of different models versus realized returns
The data used for initial estimation is SHSZ 300 with 1 minute frequency, from 2015-06-01 to

2015-06-09, forecasting horizon: 2015-6-9 21:00 to 2015-6-11 3:00.
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