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Abstract of the Dissertation

A New Regime-Switching Model for Financial Time
Series

by

Xiaochu Zhang

Doctor of Philosophy

in

Applied Math and Statistics

Stony Brook University

2012

In the first part of this dissertation research, an extension of the binomial tree
model to a regime-switching volatility model in a two-state setting for volatility
is derived, analyzed and tested. A dynamic programming method for mean-
variance hedging is applied to price European option value. After convergence
and simulation study, we demonstrate that an HMM driven stochastic volatility
process will converge to a geometric brownian motion with a constant volatility.

In the second part, we further incorporate an autoregressive component into the
regime switching model based on observations of the first part and derive an
autoregressive regime-switching model for financial time series data. A parsimo-
nious estimation method of autoregressive regime-switching model is developed
using Gram-Schmidt orthogonalization, Frobenius norm minimization, and the
EM algorithm. The positive semi-definite correlation matrix issue is considered
and addressed in our estimation method. Stability and accuracy is also examined
in part two.

In the third part, observations based on the analysis of real financial time series
are shown. The integrated, fractional integrated and heavy tail feature of non-
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stationary time series is studied. Estimation, forecasting and backtesting are
performed with ARMA-GARCH, FARIMA-FIGARCH and our autoregressive
regime-switching model. In comparison with other models, autoregressive regime-
switching model has better backtesting results for forecasting VaR models with
high frequency financial time series.
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Chapter 1

Introduction

There has been rising interest in modeling financial time series with regime-switching models

(Tu [2010], Sims and Zha [2006], Mike et al. [1998]). This model assumes autoregressive

parameters are dependent on hidden states, which is the Markov-switching process. In this

chapter, we review some recent works on regime-switching model and its applications in

different problems in the first section. The outline of this dissertation is given in the second

section.

1.1 Literature on regime switching problems

An early example of regime switching model is considered in Quandt [1958], which studies

consumption function. This model assumes a linear regression model between consumption

variable yt and income variable xt which is a (d × 1) vector for t = 1, ..., T . For any t, the

observations are generated by one of two regimes:
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yt = x′
tβ1 + µ1t,

yt = x′
tβ2 + µ2t,

where β1 and β2 are (d × 1) coefficient vectors, and µ1t and µ2t follow normal distributions

N(0, σ2
1) and N(0, σ2

2) respectively. There is an essential factor underline this consumption

function, and it is not observable. This simple assumption renders parameter estimation

feasible with limited computation capacities in 1950’s. Quandt [1972] extends this work

by introducing a probability model to model ”that nature chooses between regimes with

probability η1 and 1− η1”.

The simple assumption that there is only one regime shift at an unknown point is not

realistic and useful. A new method is described in Goldfeld and Quandt [1973] where the

regime switching process is represented by a Markov chain. This method permits multiple

switches, which means the system can switch back and forth between different states, which is

more realistic and useful. Since 1970s, improvements on simulation estimation methodologies

make it possible to solve this more complex model. A suggestion was made by Cosslett and

Lee [1985] to adopt a recursive algorithm that is computationally tractable for the evaluation

of the likelihood function. Furthermore, Hamilton [1989] suggests a filter algorithm. The

recursive algorithms in Cosslett and Lee [1985] and Hamilton [1989] demonstrate efficient

estimation and interference with likelihood function.

A well known econometric regime-switching model is presented in Hamilton [1989]. The

model is a nonlinear generalization of an unobserved components trend and cycle model, and

parameter estimation can be calculated as a by-product of an iterative algorithm similar in

spirit to the Kalman filter. It is observed that the usual numerical maximum of the likelihood
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functions is subject to computational difficulties associated with the often ill-behaved likeli-

hood surface (multiple local maxima, essential singularities, and local increases as boundary

conditions are approached). Expectation-Maximization (EM) algorithm(Karlis and Xekalaki

[2003], McLachlan and Peel [2000]) is used to overcome the numerical difficulties. Neftci

[1984] suggests a model with transition probabilities that are duration dependent. It is clear

that understanding duration dependence in business cycle is important for understand and

forecast business cycle and economic nature.

A regime switching model with no autoregressive elements has been first investigated

by Lindgren [1978] who proves a consistency property of maximum-likelihood estimators

obtained for the model which assumes an independent sequence of hidden states from a

finite mixture distribution. Lindgren’s result states that, in case yt actually follows a hidden

Markov model, the maximum-likelihood estimators obtained under the independence model

are consistent for the stationary distribution of yt. Regime-switching models that incorporate

autoregressive elements can be located in the speech recognition literature Rabiner [1990]

and Juang and Rabiner [1985].

Most models assume a stationary Markov transition process, and also assume only two

or three regimes. Calvet and Fisher [2004] suggests a model with a much larger number of

regimes. This multifractal models afford another approach for incorporating long-memory

into volatility forecasting. Sims and Zha [2006] also advocates a model with a much larger

number of regimes. This model parameters are estimated with prior Bayesian information.

Formal tests of the null hypothesis of no Markov switching have been proposed by Garcia

[1998], Hansen [2006], Hamilton and Perez-Quiros [1996] and Carrasco et al. [2004]. The

problem is to test the null hypothesis that there are K regimes against the alternative of

K + 1. When K = 1, it is to test whether there are any shifts in regimes at all. The

parameters driving the dynamic of the underlying Markov chain are not identified under the

3



null hypothesis. As a result, the testing problem is non-standard and the likelihood ratio

test does not converge to a chi-square distribution. Garcia [1998], studies the asymptotic

distribution of a sup-type Likelihood ratio test. Hansen [2006] treats the likelihood as a

empirical process indexed by all the parameters (those identified and those unidentified

under the null). His test relies on taking the supremum of likelihood ratio over the nuisance

parameters. Both papers require estimating the model under the alternatives, which may

be cumbersome. Carrasco et al. [2004] derives a class of information matrix-type tests and

show that they are equivalent to the likelihood ratio test. Hence, our tests are asymptotically

optimal. Moreover these tests are easy to implement as they do not require the estimation

of the model under the alternative.

1.2 Outline

In the first part of this dissertation research, an extension of the binomial tree model to

a regime-switching volatility model in a two-state setting for volatility is derived, analyzed

and tested. A dynamic programming method for mean-variance hedging is applied to price

European option value. After convergence and simulation study, we demonstrate that an

HMM driven stochastic volatility process will converge to a geometric brownian motion with

a constant volatility.

In the second part, we further incorporate an autoregressive component into the regime

switching model based on observation s of the first part and derive an autoregressive regime-

switching model for financial time series data. A parsimonious estimation method of au-

toregressive regime-switching model is developed using Gram-Schmidt orthogonalization,

Frobenius norm minimization, and the EM algorithm. The positive semi-definite correlation

matrix issue is considered and addressed in our estimation method. Stability and accuracy
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is also examined in part two.

In the third part, observations based on the analysis of real financial time series are shown.

The integrated, fractional integrated and heavy tail feature of non-stationary time series

is studied. Estimation, forecasting and backtesting are performed with ARMA-GARCH,

FARIMA-FIGARCH (Rachev et al. [2006])and our autoregressive regime-switching model.

In comparison with other models, autoregressive regime-switching model has better back-

testing results for forecasting VaR models with high frequency financial time series.
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Part I

Regime-switching stochastic volatility

model
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Chapter 2

Discrete-time Markov driven

stochastic volatility model

The model extends the binomial tree model to a regime-switching volatility model in a two-

state setting for volatility. It more accurately reflects the true state dependent nature of the

volatility in financial markets. This model also reduces the problem to a computationally

tractable form, which can be generalized to American and other forms of path-dependent

options.

2.1 One-step model

The stock price movement can be illustrated in Figure (2.1.1). The stock price can either

move up from St to a new level Stu, or down to Std. The u and d are functions of σt. The

probability of an ”up” movement is denoted by q. The probability of a ”down” movement

is 1− q.

The volatility follows a two-state Markov chain. The volatility is either in a high state

7



 σh σl

σh ph 1− ph
σl 1− pl pl


Table 2.1: Markov transition matrix for the volatilities.

or low state: σ(t) ∈ {σh, σl}. The transition between two states is driven by a homogeneous

transition matrix as Table (2.1). The transition matrix is called homogeneous as it remains

invariant as time changes. The probability of an ”up” movement from St to Stuh with high

volatility is denoted by qh. The probability of ”up” movement from St to Stul with low

volatility is denoted by ql. The payoff from an option is Hu
h on the condition that stock price

is Stuh. We also have Hd
h, H

u
l and Hd

l for Stdh, Stul and Stdl, respectively.

If σt = σh,

uh = eσh

√
∆t

dh =
1

uh

= e−σh

√
∆t.

If σt = σl,

ul = eσl

√
∆t

dl =
1

ul

= e−σl

√
∆t.

At time t+ 1,

St+1 ∈ {Stuh, Stdh, Stul, Stdl}.

Suppose the payoff from the option is

H⃗t+1 =
(
Hu

h , H
d
h, H

u
l , H

d
l

)
,
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Figure 2.1.1: Illustration of stock price movement in one step.

and the payoff from option at time t is denoted by a vector

H⃗t = (Hh, Hl) .

A method is proposed by Aingworth et al. [2006] to price the option value:

H⃗t = e−r∆t(WH⃗T
t+1),

where the matrix W is presented in Table (2.2). The qh and ql are defined as

qh =
er∆t − dh
uh − dh

9



W =

 σt�St+1 Stuh Stdh Stul Stdl
σh phqh ph(1− qh) (1− ph)ql (1− ph)(1− ql)
σl (1− pl)qh (1− pl)(1− qh) plql pl(1− ql)


Table 2.2: The weights matrix of the model

and

ql =
er∆t − dl
ul − dl

.

2.2 Multiple-step model

It is important to notice that a node is not only determined by stock price, but also by the

state of volatility. In other words, each node is dependent on two states, stock price and

volatility. Thus the nodes are described as {(n1, n2, n3, n4), σt}.

We code the states of nodes as numbers. We start with coding uh, dh, ul, dl by

S(1, 0, 0, 0), S(0, 1, 0, 0), S(0, 0, 1, 0), S(0, 0, 0, 1).

Then we can extend this notation to nodes at any time, for example: u2
h, uhdh are coded

by S(2, 0, 0, 0), S(1, 1, 0, 0).

Figure (2.2.1) shows the stock price development constitutes a quite complicated lattice.

We solve this lattice in a bottom-up fashion. We begin by creating the leaf nodes of the lattice

and determining their values. We concurrently compute the moments and the European

option values. We then iterate over each level of the lattice, and for each node, we push

the probability weighted values to the parent node. When we arrive at the root, we have

solutions for all possible initial values.
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Figure 2.2.1: Illustration of stock prices in two steps.
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Chapter 3

Mean-variance hedging

3.1 Dynamic programming method for mean-variance

hedging

With four possible return values and only two assets to hedge with, our model as described

above is incomplete. We want to choose some hedging strategy involving hedging error,

which means risk. The risks and returns are measured with a utility function. We chose the

simplest utility function, a quadratic function.

The cumulative discount process is defined as

S0
t := Rt = (1 + r)t,

where r is the risk-free rate.

12



The discounted gain process of the basis asset X is also defined as:

∆Xt := Xt −Xt−1

=
St

S0
t

− St−1

S0
t−1

=
St

Rt
− St−1

Rt−1
.

Here V x,θ is the wealth gained by a self-financing strategy with an initial endowment x

and with shares of a risky investment θ = θt=0,...,T−1.

V x,θ
t = V x,θ

t−1R + θt−1∆XtS
0
t

V x,θ
t

S0
t

=
V x,θ
t−1

S0
t−1

+ θt−1∆Xt

= x+
t−1∑
i=0

θi∆Xi+1.

Definition 1 (Exogenous). A random variable X : Ω → R is called exogenous if for every

fixed ω ∈ Ω the value X(ω) does not depend on the choice of V x,θ
0 (ω), θ0(ω), ..., θT−1(ω).

Definition 2 (Measurable). A random variable X : Ω → R is called FT measurable if the

value of X(ω) only depends on the filtration FT .

Mean Square Hedging Given an exogenous and FT measurable payoff HT , the best

mean-square hedge for HT is given by the initial wealth x and portfolio weights θ which are

13



found by minimizing the expected square replication error

min
x,θ0,··· ,θT−1

EP
0 [V

x,θ
T −HT ]

2.

The Difficulty of Explicit Computation It is very difficult to directly compute the

mean variance hedging problem. An example will be added.

Definition 3 (Optimal Value Process). Optimal value process Ut(x), t = 0, ..., T . The Ut(x)

equals the minimum expected squared replication error at maturity, given it is now time t,

the time t wealth is x and the time t history is Ft. Hence Ut(x) will be an Ft measurable

random variable.

• when t = T , Ut(x) coincides with the squared replication error, that is, UT (x) =

(x−HT )
2.

• when t < T , the value of Ut(x) satisfies the important dynamic programming functional

equation:

Ut(x) = min
θ

E[Ut+1(S
0
t+1(x/S

0
t + θt∆Xt))].

A Dynamic Programming Solution Cernỳ [2004] presents a practical dynamic pro-

gramming solution.

Theorem 3.1.1. Let kt and Ht be Ft measurable and exogenous. The problem

min
x,θ0,··· ,θt−1

EP
0 [kt(V

x,θ
t −Ht)]

2

14



has the same optimal controls x, θ0, . . . , θt−1 as the problem

min
x,θ0,··· ,θt−2

EP
0 [kt−1(V

x,θ
t−1 −Ht−1)]

2.

Here kt can be interpreted as the ratio between the value of the hedging portfolio and the

option price
V x,θ
t

Ht
. We can calculate kt, Ht backward as

kt−1

R2
= EP

t−1[kt]− (EP
t−1[kt∆Xt])

2(EP
t−1[kt(∆Xt)

2])−1, (3.1.1)

Ht−1 =
EP

t−1[
(
kt − EP

t−1[kt∆Xt](EP
t−1[kt∆Xt∆Xt])

−1kt∆Xt

)
Ht

R
]

kt−1

R2

. (3.1.2)

θDt−1 = −
(
EP

t−1[kt∆Xt∆Xt]
)−1 EP

t−1[kt∆Xt

(
V x,θ
t−1

S0
t−1
− Ht

S0
t

)
] (3.1.3)

The above theorem in presents a dynamic programming solution to the general mean-

variance hedging problem in discrete time. A repeated application of the theorems starting

from T with kT = 1 gives us all values of kt and Ht for 0 ≤ t ≤ T . Further, at the end of

the backward run we learn that the optimal value of initial wealth is x̂ = H0. In a forward

run from time 0 we can then recover the optimal portfolio and optimal hedging wealth from

(3.1.1) and (3.1.2).

3.2 Verification for one-step hedging

We are doing one-step least square hedging to see if the result is the same as the dynamic

mean variance hedging method.

We assume the initial state is in high volatility, σ0 = σH , then the State matrix A is

shown in Table (3.2), the vector of contingent claim H at t = 1 is represented as Table (3.3),

15



the objective measure P is stated in Table (3.3).

Consider a hedging problem Aθ = b with replication error ϵ = Aθ− b as a weighted least

square problem. To minimize the expected squared replication error,

min
x

∑
i

piϵ
2
i ,

compute new matrices Ã and H̃ by multiplying each row of A, H by the square root of the

probability for the corresponding state,

Ãi . :=
√
piAi .

H̃i :=
√
piHi.

The problem is transformed to

min
x
∥Ãθ − H̃∥2.

Solving this least square problem gives

θ = (ÃT Ã)−1ÃT H̃, (3.2.1)

which is known as optimal hedging portfolio.

We set

{σH , σL, pH , pL,∆t, r, S0, K} = {0.8, 0.2, 0.8, 0.9, 1, 0.01, 100, 110},

16



k1 =


1
1
1
1


Table 3.1: The state matrix of the underlier assets.

A =


uHS0 1 + r
1
uH

S0 1 + r

uLS0 1 + r
1
uL
S0 1 + r


Table 3.2: The state matrix of the underlier assets.

and from equation (3.2.1), we can get the one step hedging result

θ = {0.62882,−33.5991}

< θ0, {S0, 1} > = 29.2828.

On the other side, we apply formulas in Theorem (3.1.1) with t = 1. k1 is represented

in matrix (3.1), P in matrix (3.4), H1 = H in matrix (3.3) and ∆X1 in matrix (3.5).

V x,θ
0 in equation (3.1.3) is replaced with H0, EP

0 [.] is computed with the inner product of

P and corresponding vector.

We can get the result

θ0 = 0.62882

b = H0 − θ0S0 = −33.5991

< {θ0, b}.{S0, 1} >= 29.2828,

which is coincident with the first method.
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H =


Hu|H
Hd|H
Hu|L
Hd|L

 =


max(S0uH , K)
max(S0/uH , K)
max(S0uL, K)
max(S0/uL, K)


Table 3.3: The state matrix of contingent claims.

P =


pu|H
pd|H
pu|L
pd|L

 =


qHpH

(1− qH)pH
qL(1− pH)

(1− qL)(1− pH)


Table 3.4: The matrix of object measure.

∆X1 =


S0uH

1
1+r

S0
1
uH

1
1+r

S0uL
1

1+r

S0
1
uL

1
1+r

−


S0

S0

S0

S0


Table 3.5: The vector of ∆X
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Chapter 4

Numerical examples

A wide range of tests have been conducted to explore various aspects of our algorithm. In

particular, we would like to study

• complexity with respect to the number of steps,

• the algorithm convergence rate,

• the impact of initial states,

• application to real market data.

4.1 Algorithm complexity

The major time-consuming part of our algorithm is searching backwards. The computation

cost at level i is O(
(
i+3
3

)
). As a result, the total cost estimation is

0∑
i=N−1

O

((
i+ 3

3

))
=

0∑
i=N−1

O

(
(i+ 3)(i+ 2)(i+ 1)

6

)
= O(N4). (4.1.1)
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Figure 4.1.1: The running time as a function of number of steps.

To confirm that this is indeed the case, we set the model parameters as: S0 = 100, K =

130, T = 5, r = 0.04, N = 30, · · · , 120, ph = 0.5, pl = 0.5, σh = 0.8, σl = 0.2.

Figure (4.1.1) shows how running times (in seconds) change as N increases. All tests are

done on an iMac computer with 3G Intel Core 2 Duo processor. Thanks to a Hash-table

approach, the pricer can be done within 6 seconds for N = 100.

We also plot the logarithm of the running times against N in Figure (4.1.2). Least-Square

fit shows a slope of 4.1, which verifies the estimation (4.1.1).

4.2 Convergence study

In this example, we increase the number of periods n on the lattice. We examine call option

values as n becomes very large in order to assess when call options converge to stable values.

Table (4.1) and Figure (4.2.1) show the results.
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Figure 4.1.2: The log-log plot of the runtime as a function of number of steps and the least
square fit.

We set the parameters as:

S0 = 100,

K = 130,

T = 5,

r = 0.04,

{σh, σl} = {0.07, 0.03},

{ph, pl} = {0.9, 0.8},

N = 30, · · · , 120.

Call option values at two different starting states are denoted by Ch and Cl.

4.3 Impact of initial states

This numerical test is to examine how the model behaves with different levels of disparity

between two volatilities. We set the parameters as S0 = 100, K = 130, T = 5, r = 0.04, N =

21



Table 4.1: The convergence in terms of option values with respect to number of steps.

N Ch Cl

30 2.701 2.471
40 2.742 2.572
50 2.767 2.633
60 2.783 2.673
70 2.794 2.700
80 2.804 2.721
90 2.811 2.738
100 2.816 2.750
110 2.821 2.761
120 2.824 2.770

æ

æ

æ
æ

æ
æ æ æ æ æ

à

à

à

à

à

à
à

à
à

à
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Figure 4.2.1: The convergence in terms of option values with respect to number of steps.
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30.

The Ch and Cl still denote call option values at two different starting states.

Table (4.2) shows that with transition matrix fixed, the disparity between Ch and Cl

declines as the disparity between two different volatility states declines.

Table 4.2: Impact of the Initial State.

(σh, σl) (ph, pl) Ch Cl

(0.070, 0.030) (0.90, 0.90) 2.310 1.885
(0.75, 0.75) 2.185 2.080
(0.60, 0.60) 2.156 2.129

(0.065, 0.035) (0.90, 0.90) 2.140 1.818
(0.75, 0.75) 2.041 1.961
(0.60, 0.60) 2.017 1.997

(0.060, 0.040) (0.90, 0.90) 2.005 1.785
(0.75, 0.75) 1.932 1.877
(0.60, 0.60) 1.914 1.901

(0.055, 0.045) (0.90, 0.90) 1.897 1.788
(0.75, 0.75) 1.864 1.837
(0.60, 0.60) 1.857 1.850

(0.050, 0.050) (0.90, 0.90) 1.849 1.849
(0.75, 0.75) 1.849 1.849
(0.60, 0.60) 1.849 1.849

4.4 European call for S&P 500

We choose S&P 500 options as our numerical example because of its well-known negative

volatility skew. The spot value is 1095.95 on June 3, 2010. Call options used for analysis

matured on June 18th, 2011. The LIBOR rate for the same maturity is approximated

to be 0.0120406. The two volatility states and transition matrix are the scaled results of

calibration:
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Figure 4.4.1: Option price vs. strike price for S&P500: a) model prices with starting states
at high volatility; b) model prices with starting states at low volatility; c) market prices.

{σh, σl} = {0.240145, 0.121742},

{ph, pl} = {0.811563, 0.956289}.

The model is fitted to the monthly log return of S&P500 price from December 1, 1968

to April 5, 2010 with EM algorithm.

Even though Figure (4.4.1) shows the model can predict the market option price, the

failure to generate volatility skew in figure (4.4.2) suggests deeper investigations into our

model are needed.

4.5 Examination of parameter sets

After fitting the model to the historical data, it fails to produce a volatility smile. Is this

failure due to the bad calibration of parameters, or the model itself? We try out many

possible combinations of parameters in reasonable ranges to see if the smile can be generated
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Figure 4.4.2: Implied volatility skew for S&P500: a) model implied volatilities with starting
states at high volatility; b) model implied volatilities with starting states at low volatility;c)
market implied volatilities.

under some parameter settings.

The input for model is two states of volatility: {σh, σl}, transition matrix: M = ph 1− ph

1− pl pl

, stock price: S0, strike price: K, interest rate: r, period: T .

We assume S0 = 100, r = 0, T = 1, m = K/S0 which is called moneyness. Then we loop

over other five parameters as:

σl = {0.1, . . . , 0.5}

σh = {σl +∆, . . . , σl + 10∆}

ph = {0.1, . . . , 1.0}

pl = {0.1, . . . , 1.0}

m = {0.5, . . . , 1.5},
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in which

∆ =
1− σl

5

σi
max is the highest implied volatility with different moneyness; σi

min is the lowest implied

volatility with different moneyness. We define the ratio as σi
max

σi
min

, which can quantify the

deepness of the volatility smile. We cut (1.05, 2.0) into 8 intervals, add a special interval

(−1.0, 1.05) to represent two cases: bad case failing to generate implied volatility and those

with ratios almost equal to 1, which represents a flat line. After filling in all the ratios into

these intervals, we get a histogram-like Table (4.3):

Table 4.3: Histogram of ratios: ratio = σi
max

σi
min

.

cut frequency
(-1.0 - 1.05) 1451
(1.05 - 1.1) 96
(1.1 - 1.2) 74
(1.2 - 1.3) 42
(1.3 - 2.0) 21
(1.4 - 1.5) 15
(1.5 - 1.6) 29
(1.6 - 1.7) 42
(1.8 - 2.0) 10
(2.0 - ∞) 20

We pick up all the cases with ratios larger than 1.4, there is an outstanding characteristic

for them:

pl = 1,

which means state L is an observing ”black hole”. Whenever the volatility state jumps to

low state, it will stay there. We presents some of the cases with this feature as in table (4.4).

Exclude those ”black hole” cases, other cases are almost with ratios around 1. In other

words, normal cases don’t have volatility smile.
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Table 4.4: Part of the cases with ”black hole” feature.

σl σh pl ph ratio
0.1 1.0 1.0 0.3 2.004710
0.1 1.0 1.0 0.4 2.13712
0.1 1.0 1.0 0.5 2.232717
0.1 1.0 1.0 0.6 2.718023
0.1 1.0 1.0 0.7 2.794309
0.1 1.0 1.0 0.8 2.838305
0.1 1.0 1.0 0.9 2.796462

4.6 Richardson Extrapolation

Does the failure of generating volatility skew stem from a lack of computation accuracy?

We explore this possibility by using Richardson extrapolation to improve the computation

accuracy.

Let A(0) be the true value and A(h) be some approximation which satisfies

lim
h→0

A(h) = A(0).

Assume the error term has the format as

A(0)− A(h) = anh
n +O(hm),

where anis a nonzero constant independent of h and m > n.

For simplicity, we ignore the higher order error term. Given A(h), A(h
2
) and n, we have

two equations
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A(0)− A(h) = anh
n

A(0)− A

(
h

2

)
= an

(
h

2

)2

(4.6.1)

with two unknowns an, A(0). Solving these two equations yields the approximation

Ã(0) = A

(
h

2

)
+

A
(
h
2

)
− A(h)

2n − 1
.

In many cases we don’t know the order of convergence n. We propose the following

estimation method.

Based on (4.6.1), we have

logE(h) = n log h+ log an,

where the error term E(h) := A(0)− A(h).

For σh = σl, we simplify our model into the standard binomial tree case and the true

value A(0) can be calculated via the famous Black-Scholes formula. Given a series of time

steps {hi}, we may compute the corresponding error terms {Ei(hi)}. As a result, we can

estimate the order of convergence n via least square fit.

We set up our testing cases as: spot = 100, expiry = 1, risk-free rate = 0.01, number of

steps = 50 and 100 respectively, time step ∆t = 1/50, order of convergence n = 1.

The last two columns in Table (4.5) show the implied volatlity is constant with respect to

different strike. We tested various combinations of volatilities and transition probabilities,

all of which show a “flat” volatility smile. We present a single case in the table (4.5).
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Table 4.5: The implied volatilities using Richardson extrapolation: Ah and Al refer to the
cases where the starting states are σh and σl respectively.

strike Ah(∆t) Al(∆t) Ah(
∆t
2
) Al(

∆t
2
) Ãh(0) Ãl(0) σi

h σi
l

50 51.89 51.63 51.77 51.63 51.65 51.64 0.49 0.49
60 43.66 43.19 43.49 43.26 43.33 43.32 0.49 0.49
70 36.35 35.66 36.15 35.81 35.96 35.96 0.49 0.49
80 30.01 29.12 29.81 29.37 29.61 29.61 0.49 0.49
90 24.65 23.61 24.44 23.93 24.23 24.24 0.49 0.49
100 20.18 19.04 19.96 19.40 19.74 19.76 0.49 0.49
110 16.52 15.34 16.28 15.70 16.05 16.06 0.49 0.49
120 13.52 12.36 13.27 12.69 13.02 13.03 0.49 0.49
130 11.08 9.97 10.82 10.27 10.56 10.56 0.49 0.49
140 9.10 8.07 8.84 8.32 8.57 8.56 0.49 0.49
150 7.51 6.55 7.23 6.75 6.96 6.94 0.49 0.49

4.7 Convergence of HMM driven stochastic volatility

model

In this section, we show that modifying the transition matrix into a reasonable ∆t-dependent

way is a potential cure for the model’s failure to produce volatility smile.

4.7.1 Convergence of the process of volatility into an i.i.d. process

We show the Markov-driven stochastic volatility process can converge into an i.i.d. process

with the help of Perron Frobenius theorem and its application on Markov matrix.

Assume the initial state is x0, the process evolves recursively by the rule xk+1 = Axk,

or in short, xk = Akx0 (MacCluer [2000]). When will such a process converge? We denote

the matrix of eigenvectors of A as V , the diagonal matrix of eigenvalues of A as Λ =
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
λ1

. . .

λn

, where λ1...λnare eigenvalues of A. As a result,

A = V ΛV −1 ⇒ Ak = V ΛkV −1 = V


λk
1

. . .

λk
n

V −1.

This process will converge only if the spectral radius r(A) 6 1, i.e., the largest absolute

value of eigenvalues. If r(A) = 1, Akx0 converges to a nonzero value; if r(A) < 1, converges

to 0. Perron Frobenius Theorem tells us that the Markov driven volatility process in our

model will converge. In our model,

A =

 pH 1− pH

1− pL pL


and

x =

 xH

xL

.

The distribution at the first step is

(
xH , xL

) pH 1− pH

1− pL pL

 =

(
pLxL + (1− pH)xH , pHxH + (1− pL)xL

)

We can use Perron Frobenius theorem to show the dominant eigenvalue λ1 = 1(Dym

[2007]), then compute the other eigenvalue
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λ2 = pLpH − (1− pL)(1− pH).

The distribution at step k is

(
xH xL

) pH 1− pH

1− pL pL


k

=λk
2

(
xH , xL

)
(V e2)(e

T
2 V

−1) +

(
xH , xL

)
(V e1)(e

T
1 V

−1)

It is readily to check that the eigenvector corresponding to eigenvalue 1 is

 1

1

, in other

words, V e1 =

 1

1

.

Substituting V e1 into equation,

(
xH xL

) pH 1− pH

1− pL pL


k

= (eT1 V
−1) + λk

2

(
xH xL

)
(V e2)(e

T
2 V

−1).

Since λ2 < 1, the second term goes to zero quickly. Therefore, the process reaches the

equilibrium distribution of volatility eT1 V
−1.

We can also see the second eigenvalue λ2 decides the speed of the convergence. For

instance, A =

 p 1− p

p 1− p

 can converge immediately since the second eigenvalue is 0.
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Example 1. A =

 9
10

1
10

1
10

9
10

 Estimate how many steps it takes to reach the equilibrium

state.

λ1 = 1, λ2 = 9
10

+ 9
10
− λ1 = 4

5
. As (4

5
)30 ≈ 1

1000
, the Markov process can converge in 30

steps.

Thus, it is easy to work out the number of lattice steps before the matrix can converge,

i. e., the number of steps before the Markov driven volatility process turns into an i.i.d.

process.

4.7.2 Geometric brownian motion with constant volatility

After showing the process converges to an i.i.d. process, we continue to point out that

after the convergence, the process is actually a geometric brownian motion with a constant

volatility which is a weighted sum of two original volatilities. In other words, we justify that

our model won’t produce volatility smile after the convergence.

From the view of mathematical deduction

Assume the stock price dynamics follows

Si+1 = Si exp
(r−σ2

i
2
)∆t+σiZ

where

• Z =
√
∆tϵ

• ϵ has standard normal distribution N(0, 1)

• Si = stock price at step i
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• σi = volatility of stock price at interval i

• ∆t = T
N

length of time interval

• r = riskfree rate

• N = number of time intervals

If there are two states of volatility σi ∈ {σH , σL}, can we simplifie the dynamics of stock

price into a process with constant volatility?

If the volatility is constant σi = σ̄ for any i,

ST =S0 exp
∑

i(r−
σ2
i
2
)∆t+σi

√
∆tϵ

=S0 exp
(r− σ̄2

2
)N∆t+σ̄

√
Tϵ

=S0 exp
(r− σ̄2

2
)T+σ̄

√
Tϵ

What is a reasonable assumption for σ̄? Let us regard the σiZ process as a finite mixture

of two Gaussian processes,

σHZ ∼N(0, σ2
H∆t)

σLZ ∼N(0, σ2
L∆t).

From the linearity of Gaussian distribution,

ωHσHZ + ωLσLZ v N(0, ωHσ
2
H∆t+ ωLσ

2
L∆t),
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in other words, the mixture has a constant volatility ωHσ
2
H +ωLσ

2
L. Therefore we would like

to write

σ̄ =
√

ωHσ2
H + ωLσ2

L.

From the View of Simulation

The Monte Carlo simulation of a finite mixture of σHZ and σLZ with weights ωH ,ωL (Fig-

ure 4.7.1)shows results very close to Black-Scholes formula with constant volatility σ̄.
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Figure 4.7.1: Comparison of Monte Carlo simulation of a finite mixture of σHZ and σLZ
with weights ωH ,ωL with Black-Scholes formula with constant volatility σ̄.
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Part II

Autoregressive regime-switching

model
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Chapter 5

Autoregressive model with Gaussian

innovation

Assume an observation window of lengthK moves along the time series data with overlapping

length M (Figure (5.0.1)). In our model, M = 1, which is a natural case, and length K = 5.

To be more specific, consider the observation vector s⃗ with components (x0, x1, . . . , xK−1).

Figure 5.0.1: Illustration of overlapped observation window.
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xn = −
p∑

i=1

ai(ω)xn−i + en n = 0, 1, 2, . . . , K − 1

sn = xnσ(ω) ω = {1, . . . , N}

(5.0.1)

where N is number of states, ek are i.i.d. Gaussian random variables with mean 0 and

variance 1 , and p is order of autoregression. Autoregressive coefficients ai and variance σ

follows discrete Markov process. For example, if this is a two state Markov process and order

of autoregression p = 2, then a1 ∈ {a1(1), a1(2)}, a2 ∈ {a2(1), a2(2)}, σ ∈ {σ(1), σ(2)}. This

process is driven by transition matrix
(

p1 1−p1
1−p2 p2

)
.

Figure 5.0.2: Illustration of autoregressive hidden Markov model.

5.1 Analysis of existing density function of Gaussian

autoregressive source
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Rabiner [1990] introduces density function of Gaussian autoregressive source in the section

of autoregressive HMMS. The density function for s⃗ is

f(s⃗) = (2πσ2)−
K
2 exp

(
− 1

2σ2
δ(s⃗, a)

)
, (5.1.1)

where

δ(s⃗, a) = ra(0)r(0) + 2

p∑
i=1

ra(i)r(i)

a′ = [1, a1, . . . , ap]

ra(i) =

p−i∑
n=0

anan+i

r(i) =
K−i−1∑
n=0

xnxn+i.

After mathematical analysis and numerical tests (See section (5.2.1) for details), we dis-

covered some approximation steps were taken in this density function which is not mentioned

in Rabiner [1990]. The assumption for this approximation is that the correlation of the first

K observation doesn’t affect the whole output. In other words, sample size T is much larger

than observation window size K. In our model, observation window K = 5 and the length of

sample size is less than two weeks T < 10, thus the assumption doesn’t hold for our model.

We deduce a new density function for autoregressive process in following sections.
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5.2 New density function with no structure imposed

on first p sample data

Using the Gram-Schmidt process to orthogonalize the first p samples {x1 . . . xp} into ϵ⃗ =

{ϵ1 . . . ϵp}, we may rewrite (5.0.1) as

Hx⃗ = e⃗,

where x⃗ = {x1, · · · , xK}, e⃗ = {ϵ1, · · · , ϵp, e1, · · · , eK−p}, ϵ ∼ N(0, 1) and

H =



h11

h21 h22

...

hp1 hp2 . . . hpp

ap ap−1 . . . a1 1 0

0 ap . . . a1 1


=

 H11 0

H21 H22

 . (5.2.1)

To orthogonalize x⃗, without loss of generality, we assume x1 ∼ N(0, σ1), and x2 ∼

N(0, σ2). Since

h11x1 = ϵ1

h21x1 + h22x2 = ϵ2,

(5.2.2)

and var(ϵ1) = 1, var(ϵ2) = 1, cov(ϵ1, ϵ2) = 0, we have equations

Var(h11x1) = 1

Var(h21x1 + h22x2) = 1

Cov(h11x1, h21x1 + h22x2) = 0,
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which is equivalent to

h11 =
1

σ1

h2
21σ

2
1 + h2

22Σ
2
2 + 2h21h22σ12 = 1

h21σ
2
1 + h22σ12 = 0.

The solution for this equation system is

h11 =
1

σ2
1

h21 =
−σ12√

σ2
2σ

4
1 − σ2

1σ
2
12

h22 =
σ1√

σ2
2σ

2
1 − σ2

12

.

The elements of e⃗ are uncorrelated, thereby giving

I = E{e⃗e⃗t}

= E{Hx⃗x⃗tH t}

= HE{x⃗x⃗t}H t

=: HΣxH
t

(5.2.3)

Equation(5.2.3) gives

Σ−1
x = H tH. (5.2.4)

Taking the determinant of both sides, equation(5.2.3) leads to

|Σx| = |H|−2 = |H11|−2.
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Since x⃗ = H−1e⃗ and e⃗ is Gaussian white noise , x⃗ is also multi-Gaussian. Plug |Σx| and Σ−1
x

into the multi-variate Gaussian p.d.f. yields the p.d.f. of the autoregressive process

(2π)−K/2 |Σx|−1/2 exp{−1

2
xtΣ−1

x x}. (5.2.5)

When unscaled s⃗ is used

I = E{e⃗e⃗t}

= E{H s⃗
σ

s⃗
σ

t
H t}.

(5.2.6)

Equation(5.2.3) gives

Σ−1
s = σ−2H tH.

Taking determinant of both sides, equation(5.2.6) leads to

|Σs| = σ2K |H11|−2

5.2.1 When sample sizeT ≫ observation window size K

The density function for s⃗ is approximately

f(s⃗) = (2πσ2)−
K
2 exp

(
− 1

2σ2
δ(s⃗, a)

)
, (5.2.7)
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where

δ(s⃗, a) = ra(0)r(0) + 2

p∑
i=1

ra(i)r(i)

a′ = [1, a1, . . . , ap]

ra(i) =

p−i∑
n=0

anan+i

r(i) =
K−i−1∑
n=0

xnxn+i.

(5.2.8)

We present an example with dimension equal to 3 to illustrate the difference between Equa-

tion (5.2.7) and Equation (5.2.5). We get Σx from Equation (5.2.4), then compute the

p.d.f function from Equation (5.2.5). This example was computed using Mathematica code

HOMEPAGE/Mathematica/pdftest.nb. We only present part of computation results as

/*Mathematica code */

input:

H = {{h11, 0, 0}, {h21, h22, 0}, {a2, a1, 1}};

x = {x1, x2, x3};

x.Transpose[H].H.x // Simplify

output:

a2^2 x1^2 + h11^2 x1^2 + h21^2 x1^2 + 2 h21 h22 x1 x2 + a1^2 x2^2 +

h22^2 x2^2 + 2 a1 x2 x3 + x3^2 + 2 a2 x1 (a1 x2 + x3).

Comparing the expansion of xtΣ−1
x x with Equation (5.2.8), we can see the cross terms of ai

and xi are missing in Equation (5.2.7). The assumption for this approximation is that the

correlation of the first K observations doesn’t affect the whole output, which is true when

sample size T is much larger than observation window size K.
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5.2.2 When sample size T ≫ observation window size K doesn’t

hold

Compute accurate form of density function for s⃗:

• Compute Σs⃗ = E(s⃗s⃗T ) with s⃗ = {s1, . . . , sK}

• Use Eigenvalue Decomposition to get

BTΣs⃗B = β =



β0

β1

. . .

βK−1


where B is an upper triangular matrix, the diagonal elements of which are all unity.

• Get the probability density

f(x | Σs⃗) = (2π)−K/2(σ2)−(K−p)/2

(
p−1∏
i=0

βi

σ2

)− 1
2

exp{−s⃗tH tHs⃗/(2σ2)} (5.2.9)

Numerical example: testing integral of density funciton

This numerical test is to examine whether

∫ ∞

x1=−∞

∫ ∞

x2=−∞
. . .

∫ ∞

xT=−∞
f(x⃗) == 1

holds, where f(x⃗) are p.d.f. functions in Equation (5.1.1) and (5.2.9). We set two sets of

parameters as a = [1, 0.5, 0.3], p = 2, K = 3, T = 3, σ = 0.2 and a = [1, 0.8, 0.4], p = 2, K =

3, T = 5, σ = 0.1. The results in Table (5.1) confirm our argument that density function
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(5.1.1) doesn’t hold when length of observation window K is not significantly smaller than

data size T . Our new density function (5.2.9) passes the integration test. This example is

computed using Matlab code HOMEPAGE/Matlab/density.m.

Table 5.1: Integration of density function of observation x⃗ over {−∞,∞}.

density function (5.1.1) density function (5.2.9)
parameter set 1 ∞ 1
parameter set 2 ∞ 1

5.3 New density function with linear autoregressive

structure imposed on first p sample data

To tackle the difficulty that the relationship of (5.0.1) doesn’t defined for the first p samples,

we may introduce some ghost variables and rewrite (5.0.1) as

x1 + a1x0 + a2x−1 = ϵ1

x2 + a1x1 + a2x0 = ϵ2

x3 + a1x2 + a2x1 = ϵ3

...

xK + a1xK−1 + a2xK−2 = ϵK

where ϵi are i.i.d. N(0, 1).

The parametres are {a1, a2, . . . , ap, x0, x−1, . . . , x−p, σ}. x0 and x−1 are ghost variables,

which can be treated as scalar. We compare the degree of freedom between (5.2.1) and
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(5.0.1),

Table 5.2: Comparison of degree of freedom between with and without linear autoregressive
structure imposed on first p sample data.

Equation (5.2.1) Equation (5.0.1)
1+p
2
p+ p+ 1 2p+ 1

p = 2 6 5
p = 3 10 7
p = 4 15 9

After normalization, we have

x1 = −a1x0 − a2x−1 + ϵ1 (5.3.1)

x2 + a1x1 = −a2x0 + ϵ2 (5.3.2)

x3 + a1x2 + a2x1 = ϵ3 (5.3.3)

We denote ϵ̂ as

ϵ̂ := ϵ+



−a1x0 − a2x−1

−a2x0

0

...

0


= ϵ+ µ,

therefore ϵ̂ ∼ N(µ, 1).
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We denote H as 

1

a1 1

a2 a1 1

0 a2 a1 1

...

0 0 a2 a1 1


,

so

Hx = e⃗

Taking the expectation of

êêt = (e+ µ)(e+ µ)t = eet + µet + eµt + µµt,

yields

E(êêt) = E(eet) + µµt = I+ µµt.

Taking the expectation of (5.3.1) leads to

HE(xxt)H t = E(êêt) = µµt + I,

therefore

Σx = H−1(µµt + I)(H t)−1.
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Since

µµt + I =



µ2
1 + 1 µ1µ2 . . . 0

µ1µ2 µ2
2 + 1 . . . 0

...
...

. . .
...

0 0 . . . 1


,

we have

|Σx| = |H−1||(µµt + I)||(H t)−1| = |µµt + I| = (µ2
1 + 1)(µ2

2 + 1)− 2µ1µ2.
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Chapter 6

Estimation of transition matrix

6.1 EM algorithm for mixture models

Definition 4 (Complete and Incomplete Data). x = {x1, . . . , xn} is the observed data, and

q = {q1, . . . , qn} represents the unobserved latent data or missing data. x is incomplete data,

while {x, q} is the complete data.

The log-likelihood function of the complete data is

L(θ | x, q) = log
T∏
i=1

P (xi, qi | θ),

where the θ is the set of parameters.

The EM algorithm first seeks to find the expectation of the log-likelihood with respect to

the unknown data q giving the observable data x and the current parameter estimation θi.
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E-step:

τ = E[L(θi+1 | x, q) | θi, x]

=
∑
qi

L(θi+1 | x, q)P (q | θi, x)

=
∑
qi

log(
T∏
t=1

P (xt, qt|θi+1))P (qi | θi, xi),

where P (qi | θi, x) is the marginal distribution of unobservable data qi, dependent on the

current estimation of parameter θ and known data x.

The second step of the EM algorithm is to maximize the expectation we got in the first

step.

M-step:

max
θi+1

τ.

It can be proved that τ(θi+1) > τ(θi).

Example 2. Gaussian mixture

We wish to model a data set by specifying a joint distribution P (xi, zi) = P (xi|zi)P (zi).

Here, zi ∼ multinomial(τ), and xi ∼ N (µj,Σj). We let k denote the number of values zi

can take,
∑k

j=1 τj = 1. Thus our model posits that randomly choose zi from {1 . . . k}, then

xi is drawn from one of k Gaussian distributions depends on the value of zi. For example,

the xi | zi = 1 is generated by N (µ1,Σ1), similarly xi | (zi = 2) ∼ N (µ2,Σ2), where

P (zi = 1) = τ1, and P (zi = 1) = τ2.

The joint distribution is

k∑
j=1

f(xi | µj,Σj)τj1(zi = j).
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The likelihood function is

L(xi, zi | θ) =
m∏
i=1

k∑
j=1

f(xi | µj,Σj)τj1(zi = j),

where m is the sample size, θ = {µ,Σ, τ}.

The conditional distribution of Zi is calculated by

Ti,j = P (zi = j | xi)

=
P (zi, xi)

P (xi)

=

∑k
j=1 f(xi | µj,Σj)τj1(zi = j)∑k

j=1 f(xi | µj,Σj)τj

The expectation of likelihood function is

E(logL(xi, zi | θ)) =
m∏
i=1

k∑
j=1

Ti,jf(xi | µj,Σj)τj1(zi = j).

6.2 Baum-Welch algorithm for HMM models

Given a set of observed data, we derive the EM algorithm for finding the maximum- likelihood

estimation of the parameters of a hidden Markov model. This algorithm is known as the

Baum-Welch algorithm.

Discrete Hidden Markov models

Consider a system which may be described at any time by two variables: observation Ot and

states St. Variable Ot is observable while variable St is latent and not observable. The value

of Ot is discrete Ot ∈ {x1, x2, . . . , xT}, and St ∈ {s1, s2, . . . , sN} with T as number of steps
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and N as number of states.

Example 3. Consider a three state Markov model of weather. The weather is one of three

states:

state 1: rainy,

state 2: cloudy,

state 3: sunny.

The speed of wind is categorized as windy, less windy, no wind. We know wind speed

of last month, however, we don’t know the weather of last month except the following

probability table 

windy less windy no wind

rainy 0.6 0.3 0.1

cloudy 0.1 0.5 0.4

sunny 0.4 0.3 0.3


The parameters for the HMM are {A,B, π}, where A = {aij} is the transition matrix,

B = {bi(xt)} and πi is the initial distribution. B = {bi(xt) follows above table.

Two intermediate variables need to be defined first:

αt(i) = P (o1 = x1, . . . , ot = xt, St = i)

and

βt(j) = P (ot+1 = xt+1, . . . , oT = xT | St = i)

Variable αt(i) can be calculated with the forward method (Rabiner [1990], Frey [2010])
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with two steps: initialization step

α1(i) = π(i)bi(x1)

and induction step

αt+1(j) = (
N∑
i=1

αt(i)aij)bj(xt+1) (6.2.1)

t = 1, . . . , T − 1.

Variable βt(j) can be calculated with backward method also with two steps: initialization

steps

βT (i) = 1

and induction step

βt(j) = (
N∑
i=1

βt+1(i)aij)bj(xt+1) (6.2.2)

t = T − 1, . . . , 0.

Then with the E-step, we can get

ξt(i, j) = P (qt = i, qt+1 = j | X, θ)

=
P (qt = i, qt+1 = j,X | θ)

P (X | θ)

=
αt(i)βt+1(j)aijbj(xt+1)∑N

i=1

∑N
j=1 αt(i)βt+1(i)aijbj(xt+1)

(6.2.3)
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γt(i) = P (qt = i | X, θ)

=
N∑
j=1

ξt(i, j)

=
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

(6.2.4)

The second equation holds because

βt(j) = (
N∑
i=1

βt+1(i)aij)bj(xt+1).

A set of reasonable re-estimation formulas for π, A and B are

π̄i = expected frequency in state Si at time t = 1

= γt=1(i)

(6.2.5)

āij =
expected number of transitions from state Si to state Sj

expected number of transitions from state Si

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(6.2.6)

b̄j(k) =
expected frequency in state Sj and observing symbol xk

expected frequency in state Sj

=

∑T−1
t=1 γt(j)bj(xk)∑T−1

t=1 γt(j)

(6.2.7)
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6.2.1 Continuous time Hidden Markov models

Our discussion in the last section has considered only the case when observations were

characterized as discrete symbols. A continuous observation density will be used in this

section. The pdf function is a mixture of the form

bj(O) =
M∑

m=1

cjmN (O, µjm, Ujm)

where cjm is the coefficient for m − th mixture component in state j, which satisfy the

constraint

M∑
m=1

cjm = 1

cjm ≥ 0

When M = 1, the continuous observation follows a Gaussian distribution.

The parameters for the HMM are {A,B, π}, where A = {aij} is the transition matrix,

B = {bi(xt) =
∑M

m=1 cimN (µim, Uim)(xt)} and πi is the initial distribution.

µ̄ik =

∑T
t=1 xtγt(i, k)∑T
t=1 γt(i, k)

(6.2.8)

Ūik =

∑T
t=1(xt − µik)(xt − µik)

′γt(i, k)∑T
t=1 γt(i, k)

(6.2.9)

bt(i, k) =
cjkN (O, µjk, Ujk)∑M

m=1 cjmN (O, µjm, Ujm)
, (6.2.10)
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where bt(i, k) denotes the probability of being at state i at time t for k-th component ac-

counting for observation st.

γt(i, k) =

(
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

)(
cjkN (O, µjk, Ujk)∑M

m=1 cjmN (O, µjm, Ujm)

)

6.2.2 Hidden Markov driven autoregressive model

We estimate mean vector µi and covariance matrix Σi from sample data as

µi =

∑T
t=1 xtγt(i)∑T
t=1 γt(i)

and

Σi =

∑T
t=1(xt − µi)(xt − µi)

′γt(i)∑T
t=1 γt(i)

, (6.2.11)

then use algorithm (4) to estimate Hi from Σi.

The density function for observation x⃗ is defined by Equation (5.2.5), so the emission

probability is

bt(i) = (2π)−K/2 |Σi|−1/2 exp{−1

2
xtΣ−1

i x},

where

Σ−1
i = H t

iHi

and

|Σi| = |Hi|−2 .

Three pseudocodes below summarize algorithm of applying Balm Welch to three HMM

cases.
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Algorithm 1 HMM Forward.

1: Initialize: t← 0, aij, bj, visible sequence s⃗, αj(0)
2: repeat
3: t← t+ 1
4: αj(t)← bj(st)

∑M
i=1 αi(t− 1)aij

5: until t = T
6: return αj(T ) for the final state

Algorithm 2 HMM Backward.

1: Initialize: t← T , aij, bj, visible sequence s⃗, βj(T )
2: repeat
3: t← t− 1
4: βi(t)←

∑M
j=1 βj(t+ 1)aijbjst+1

5: until t = 1
6: return βi(0) for the known initial state.

6.2.3 Numerical example: performance of Balm-Welch estimator

Assume the transition matrix is  p1 1− p1

1− p2 p2

 .

We set up our testing cases as:

• p1 = (0.95, 0.8, 0.5),

• p2 = (0.8, 0.5, 0.3),

• µ = (0.5,−0.3),

• σ = (0.5, 0.8),

• sample size = 10000,
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Algorithm 3 HMM EM algorithm.

1: Initialize: aij, bj, training sequence x⃗, convergence criterion θ, z ← 0
2: repeat
3: z ← z + 1
4: Compute αi(t) by forward algorithm (1).
5: Compute βi(t) by backward algorithm (1).
6: Compute sufficient statistics ξi,j(t) from αi(t), βi(t) and b(z − 1) by Eq. (6.2.3)
7: Compute sufficient statistics γi(t) from αi(t), βi(t) and b(z − 1) by Eq. (6.2.4)
8: Update transition matrix a(z) from a(z − 1), ξi,j(t) and γi(t) by Eq. (6.2.6)
9: if Discrete case model then
10: Compute b(z) by Eq. (6.2.7)
11: end if
12: if Gaussian mixture model then
13: Compute µ̄ik by Eq. (6.2.8)
14: Compute Ūik by Eq. (6.2.9)
15: Compute b(z) by Eq. (6.2.10)
16: end if
17: if Autoregressive model then
18: Estimate covariance matrix Σi for each state i by Eq. (6.2.11)
19: Compute Hi for each state i by Algorithm (4)
20: Compute emission probabilities b(z) by Eq (6.2.2)
21: end if
22: until z = T
23: return
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Figure (6.2.1) shows a boxplot of Balm-Welch estimates for the hidden Markov driven

Gaussian mixture model from replications 100 with sample size 10000 with parameters σ1 =

0.5, σ2 = 0.8, µ1 = 0.5, µ2 = −0.3, {p1, p2} ∈ P . P is set of combinations of {p1, p2}. Let

P :={0.95, 0.8}, {0.95, 0.5}, {0.95, 0.3}, {0.8, 0.8}, {0.8, 0.5},

{0.8, 0.3}, {0.5, 0.8}, {0.5, 0.5}, {0.5, 0.3}.

We see that the estimator performs well for p1, p2, σ1 and σ2, but tends to have some bias

for µ1 and µ2. Although this bias exists, it still delivers reasonable estimates for number of

observation as small as 100. We can also see cases with symmetric parameters, for example,

p1 = 0.5, p2 = 0.5, has better estimation. Figures (6.2.4a) to (6.2.4c) show number of

observations = (25, 50, 200, 3000) for each combination. It also demonstrates that models

with symmetric parameters converge better under our algorithm.
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Figure 6.2.1: Boxplots of estimated p1, p2, σ1, σ2, µ1, µ2 for number of observations = 100
with parameters σ1 = 0.5, σ2 = 0.8, µ1 = 0.5, µ2 = −0.3, {p1, p2} ∈ P .
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Figure 6.2.2: Boxplots of estimated p1 and p2 with number of observations =
(25, 50, 200, 3000).
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Figure 6.2.3: Boxplots of estimated p1 and p2 with number of observations =
(25, 50, 200, 3000).
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Figure 6.2.4: Boxplots of estimated p1 and p2 with number of observations =
(25, 50, 200, 3000).
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Chapter 7

Estimation of autoregressive

coefficients

We develop three estimation methods for autoregressive coefficients. The MLE method needs

approximation of the p.d.f. to some extent, thus we apply the MLE method to problems

with large sample size T . The ordinary least square (OLS) method doesn’t give information

of distribution of data, therefore we use it to generate an initial guess. The Frobenius norm

minimization method is parsimonious, stable, and shows high resolution precision according

to our tests. We choose Frobenius norm minimization method as estimation method for our

model. Due to data errors, the correlation matrix we get from real data is not always positive

definite, thus we further provide correlation matrix fixup method and numerical examples.
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7.1 MLE estimation with approximate expression of

p.d.f.

One method to calibrate a and σ The p.d.f. function (5.1.1) is defined by parameter

σ and a. Given a data observation vector s⃗ = (x0, x1, . . . , xK−1), we can determine the

maximum likelihood estimate of σ and a that best characterizes the observed s⃗. The log

likelihood function is

log f(s⃗ | σ, a) = −K

2
log(2πσ2)− δ(s⃗, a)

2σ2
.

Instead of searching for optimal values in two dimensions, we search in one dimension

first, then search in the other dimension.

h(σ, a) := log f(s⃗ | σ, a)

gσ(a) := h(σ, a)

â(σ) = argmax
a

gσ(a)

σ̂ = argmax
σ

h(σ, â).

Therefore, the ML estimate is

âML = argmax
a

log f(s⃗ | σ, a)

= argmin
a

δ(s⃗, a)

= argmin
a

(a′Ra)

where R = [rij] with rij = r(|i− j|).

If there is no constraint for a, since R is symmetric positive definite, we have optimal
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result â′Râ = 0 with â = 0, however, with constraint a0 = 1, mina⃗ f (⃗a) = mina1,a2,...,ap−1 f (⃗a),

which can be solved with Lagrangian multipliers.

Furthermore, optimize object function log f(s⃗ | σ, â) over σ

min
σ

log f(s⃗ | σ, â)⇔ min
σ

(
−K

2
log(2πσ2)− δ(s⃗, â)

2σ2

)

Take derivative with respect to δ, and let x = σ2, x ≥ 0

−K

2x
+

δ

2x2
= 0⇔ − 1

2x2
(Kx− δ) = 0⇔ σ̂2 =

δ

K
.

Estimated σ is

σML = argmin
σ

log f(s⃗ | σ, â)

= δ(s⃗, â)/K.

Alternative method to calibrate the model When p = 2, the object function is

max
a1,a2

log
K∏
i

p(ei)

⇔max
a1,a2

K∑
i

log p(ei)

⇔max
a1,a2

(
K log

1√
2πσ
− 1

2σ2

K∑
i

e2i

)

⇔min
a1,a2

K∑
i

e2i .
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This equals to maximize the probability of error term ei appearing around mean 0. When

K = 10,

min
a1,a2



e21

+e22
...

+e210


=



(x2 + a1x1 + a2x0)
2

+(x3 + a1x2 + a2x1)
2

...

+(x10 + a1x9 + a2x8)
2


=: V (a1, a2, x0, . . . , x10)

Take ∂V
∂a1

= 0 and ∂V
∂a2

= 0, we can get

A

 a1

a2

+

 b1

b2

 = 0

with

A :=

 m1 m2

n1 n2

 ,

m1 = x2
1 + x2

2 + . . .+ x2
9

=
9∑

i=1

x2
i ,

m2 = x0x1 + x1x2 + . . .+ x8x9

=
9∑

i=1

xi−1xi,

66



and

b1 = x1x2 + x2x3 + . . .+ x9x10

=
9∑

i=1

xixi+1

In similar way, we can get

n1 =
9∑

i=1

xi−1xi

n2 =
8∑

i=0

x2
i

b2 =
8∑

i=0

xixi+2

Then, then we have estimated

 â1

â2

 = −A−1

 b1

b2


With estimated {â1, â2}, we can get ê. We find the optimal σ by searching in the other

direction:

max
σ

(
K log

1√
2πσ
− 1

2σ2

K∑
i

ê2i

)

⇔min
σ

(
K log

√
2πσ +

1

2σ2

K∑
i

ê2i

)

⇔σ̂ = (

∑
i ê

2
i

K log
√
2π

)1/3
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7.2 Estimation of coefficients matrix with ordinary least

squares

This section discusses the application of ordinary least squares (OLS) to estimate autore-

gressive coefficients. For example, suppose order of regression p = 2, observation window

K = 5, sample size T = 10, observations of stock returns x1, x2, . . . , x10. We wish to pre-

dict tomorrow’s stock return based on today’s and yesterday’s return. Thus we write this

problem as

x3 = −a1x2 − a2x1 + e3

x4 = −a1x3 − a2x2 + e4

...

x10 = −a1x9 − a2x8 + e10.

We want to minimize

e :=



e3

e4
...

e10


=



x2 x1

x3 x2

...

x9 x8


 a1

a2

+



x3

x4

...

x10


:= Xa− x.

Let â be the solution of the least square problem, which is also the estimated autoregressive

coefficients. We still need to estimate σ for our model. We get estimated σ̂ =
σimp√

T
, where

σimp is implied volatility from one year European option. The next example justifies this

estimation method.

For example, s is daily return of stock, σ is standard deviation of daily returns, σimp is
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implied volatility of one year option, T = 250, ∆t = 1/250. Since

ds

s
= µdt+ σdWt,

therefore

st − st−1

st−1

= µ∆t+ σimp

√
∆tzt,

mean µ is not stochastic but determinant, ∆t = 1/250 = 0.004,
√
∆t = 0.0632, so the first

term on the right hand side can be ignored. In other words, return of stock rt =
st−st−1

st−1
∼ zt

with standard deviation σimp

√
∆t.

There occurred a shortcoming for this estimation method that it doesn’t give information

of the distribution, therefore it is used to generate initial guess.

7.3 Estimation of coefficients matrix H by minimizing

Frobenius norm

The assumption for this method is that x⃗ are correlated multivariate normal variables and

e⃗ are i.i.d. N(0, 1) random variables. We have

Hx⃗ = e⃗
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with

H =



h11 0 0

h21 h22

...
...

. . . 0

0 a2 a1 1

0 0 a2 a1 1


.

First, we estimate covariance matrix Σx from sample data x.

Then, based on equation(5.2.3), we know

Σ−1
x = H tH,

so we use Cholesky decomposition to get Σx

U tU = Chol(Σx)

H̃−1 = U t.

Last, we minimize the Frobenius norm of H̃ −H

ϵij = H̃ij −Hij

a∗ = min
a1,a2

(
∑

1<i, j<K
ϵ2ij)
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Algorithm 4 Estimation of autocorrelation coefficients.

1: Given x⃗ = x
(i)
1 , · · · , , x

(i)
K .

2: Estimate covariance matrix Σ⃗x from x⃗.
3: U ← Chol(Σ⃗x)
4: H̃ = (U−1)t

5: ϵij = H̃ij −Hij

6: a∗ ← mina1,a2(
∑

1<i, j<Kϵ
2
ij)

7.3.1 Numerical example: accuracy test

We begin with

H =



h11 0 0

h21 h22

...
...

. . . 0

0 a2 a1 1

0 0 a2 a1 1


.

After taking

Σx = H−1H−t,

we generate scenarios x⃗ with covariance Σx and expectation E(x⃗) = 0. Having x⃗, we use our

method Algorithm (4) to find H̃. Then make a comparison of Frobenius norms between H̃ij

and Hij to see if

∥H̃ −H∥2F ≃ 0,

where

∆F := ∥H̃ −H∥2F =
∑
i, j

(H̃i, j −Hi, j)
2.

Table (7.1) shows estimation errors measured by ∆F with respect to 6 sets of parameters.

We can see when a⃗ = {a0, a1, a2} with a0 = 1, |a1| < 1 and |a2| < 1, errors ∆F is less than
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0.02. When a0 = 1, |a1| > 1 and |a2| > 1, errors ∆F is larger than 0.03. From the model

definition, we know a0 = 1, |a1| < 1 and |a2| < 1 is a reasonable assumption, which means

yesterday’s price has less impact than today’s price, the day before yesterday’s price has

less impact than both yesterday’s and today’s price. Table (7.2) shows when |a1| < 1 and

|a2| < 1, this method can get errors less than 0.02 with simulation number 5000.

Table 7.1: Errors ∆F with respect to different parameters, with 10000 simulations.

{h11, h21, h22}
a⃗ {0.02, 0.01, 0.05} {0.2, 0.1, 0.5}

{1, 5, 3} 0.0548 0.0345
{1, 0.5, 0.3} 0.0015 0.0046
{1, 0.5,−0.3} 0.0030 0.0065

Table 7.2: Errors ∆F with respect to different simulation numbers.

{h11, h21, h22} = {0.2, 0.1, 0.5}
numer of simuation a⃗ = {1, 5, 3} a⃗ = {1, 0.5, 0.3}

100 0.4146 0.0871
1000 0.1050 0.0381
5000 0.0845 0.0197
10000 0.0319 0.0056
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7.3.2 Numerical example: stability test

We add a small value ι to zero entries in H with |ιi| ≤ |hij |
100

to make it more realistic

H =



h11 ι ι

h21 h22

...
...

. . .

ι a2 a1 1

ι ι a2 a1 1


.

With new H, we apply the same algorithm as in Section (7.3.1). Compared with Table (7.2),

results in Table (7.3) show that with perturbation, this method can also get errors less than

0.02 with simulation number 5000 when |a1| < 1 and |a2| < 1. To summarize, this is a stable

method.

Table 7.3: Errors ∆F with respect to different simulation numbers with perturbations.

{h11, h21, h22} = {0.2, 0.1, 0.5}
numer of simuation a⃗ = {1, 5, 3} a⃗ = {1, 0.5, 0.3}

100 0.7477 0.1595
1000 0.1657 0.0334
5000 0.0759 0.0178
10000 0.0278 0.0083

7.4 Correlation matrix fixup method

Given a symmetric matrix A, we construct a positive semi-definite matrix Â by using eigen-

decomposition of A. We begin with normalizing A so that it has unit diagonal elements.
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Let

A = DA(0)D,

where D is diagonal matrix, A(0) is symmetric and has unit diagonal elements. Let

A(0) = QΛQt,

be the symmetric eigendecomposition of A(0) into orthogonal matrix Q of eigenvectors and

diagonal matrix Λ. Let Λ+ be the diagonal matrix consisting of the elements max(λi, 0). Let

A(1) = QΛ+Qt,

This matrix A1 is positive semi-definite, but we normalize it so it has unit diagonal elements.

Define a diagonal matrix S to have diagonal elements sii = a
(1)
ii

−1/2
, where a

(1)
ii are the

diagonal elements of A(1). Then the matrix

A(2) = SA(1)S

is a positive semi-definite symmetric matrix with unit diagonal. Let

Â = DA(2)D

is the desired semi-definite symmetric matrix close to our original A.
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7.4.1 Numerical example: speed and accuracy test

We perform some tests where we measured the time taken for each method along with the

distance from the original A and the fixed-up matrix Â. To measure the distance we use the

L2−norm, i.e. we want to minimize the quantity

χ2 = ∥A− Â∥
2

L2 =
∑
i, j

(ai, j − âi, j)
2.

For each matrix size N we computed around 1000/N random symmetric matrices with unit

diagonal and non-diagonal elements between−1 and 1. For the ones we fixed up, we looked at

the average distance χ2. We also recorded the time taken for different methods. Table (7.4)

also shows normalized distance χ2
N , i.e. χ

2 divided by N2 where N denotes the size of matrix.

The times are in milliseconds.

Table 7.4: Speed and accuracy test for correlation matrix fixup.

Size Time χ2 χ2
N

5 0.1 0.67 0.027
10 0.455 7.01 0.070
15 1.25 22.17 0.098
20 2.55 47.61 0.119
25 4.6 84.23 0.134
30 8.0 132.5 0.147
60 50 685.5 0.190
100 225 2174.1 0.217
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7.5 A numerical example

To clarify our new estimation method for our model, consider a two-state autoregressive

HMM model with autoregressive order p = 2, length of observation window K = 5. Coeffi-

cients matrices for each state are

H1 =



0.1

0.9 0.2

0.1 0.6 1

0.1 0.6 1

0.1 0.6 1


and

H2 =



0.8

0.2 0.8

0.3 0.5

0.3 0.5

0.3 0.5


for each state. The transition probability matrix between two states is

 0.2 0.8

0.8 0.2

 .

The observation window with length 5 moves along time axis as in Figure (7.5.1). The

autoregressive coefficients matrix Ht describes dependence within each observation window

Htx̂t = et
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Figure 7.5.1: Illustration of overlapped observation window.

with x̂t = {xt, xt+1, xt+2, xt+3, xt+4}. Since two states of H occurs, Ht ∈ {H1, H2}, so there

are two sets of dependence relationships within each observation window. Matrix Ht is

driven by hidden state variable zt. Thus distribution of observation xt not only depends on

previous observations, in this example, xt−1 and xt−2, but also depends on hidden state zt.

We study this example through simulation.

1. Initialize the process at t = 0 with initial state i drawn from the distribution π;

2. Call the current state i, simulate the new state j: simulate a discrete random vari-

able with probability distribution given by the i-th row of the transition matrix, i.e.,

qij/qi, j ̸= i;

3. Given current state i, simulate a multi-gaussian random variable with mean H−1e,

variance H−1(eet + I)H−t

4. If t is less than a preassigned maximum time Tmax, return to step 2.

The following program implements this algorithm in Matlab.

function M = sampleDiscrete(prob, r, c)

n = length(prob);R = rand(r, c);M = ones(r, c);

cumprob = cumsum(prob(:));
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if n < r*c

for i = 1:n-1

M = M + (R > cumprob(i));

end

else

cumprob2 = cumprob(1:end-1);

for i=1:r

for j=1:c

M(i,j) = sum(R(i,j) > cumprob2)+1;

end

end

end

end

function [S] = autoSample(H, m)

[k,k] = size(H);

mu = inv(H)*m;

exx = inv(H)*(m*m.’ + eye(k))*inv(H.’);

sigma = exx - mu*mu.’;

S = mvnrnd(mu,sigma,1);

end

We estimate parameters of this example with Algorithm (5), and get estimated transition

matrix

Â =

 0.2023 0.7977

0.8026 0.1973

 .
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Algorithm 5 Estimate parameters of Autoregressive HMM model

1. Estimate of transition matrix Estimate A with Balm-Welch algorithm.

2. Fix correlation matrix If correlation matrix is not positive semi-definite.

3. Estimate autoregressive coefficients matrix EstimateH with our Frobenius norm
minimization method.

4. implementation issues

• Initialization: Randomly initialize the parameters, use multiple restarts, and pick
the best solution.

• Termination: Set maximum iteration number = 100, Tolerance of convergence
= 1e− 6.

and two autoregressive coefficients matrix

Ĥ1 =



0.0994 0 0 0 0

0.9187 0.2040 0 0 0

0.1018 0.5978 1.0000 0 0

0 0.1018 0.5978 1.0000 0

0 0 0.1018 0.5978 1.0000


and

Ĥ2 =



0.8053 0 0 0 0

0.2099 0.7954 0 0 0

0.2955 0.5031 1.0000 0 0

0 0.2955 0.5031 1.0000 0

0 0 0.2955 0.5031 1.0000


.
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Errors are still quantified by ∆F = ∥H − Ĥ∥2F . We have

∆
(1)
F = ∥H1 − Ĥ1∥2F = 0.0154

and

∆
(2)
F = ∥H2 − Ĥ2∥2F = 0.0198,

both of it are less than 2%. We consider these to be good estimation results.
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Part III

Real data analysis
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Chapter 8

Market estimation

In this chapter, we analyze all models using stock index returns. In our study, we use

the historical closing index values of the S&P 500 index until October 24, 2012, obtained

from Bloomberg L.P. The daily, 1 hour, 30 minute, 5 minute, and 1 minute log-returns are

calculated. The size of this data set, 3600 observations, is large enough for ARMA-GARCH

model fitting. Smaller sizes of 1200 and 2400 observations are also tested.

8.1 Global MLE and quasi MLE estimation

The ARMA(p,q)-GARCH(m,n) model for{xt} is given by

xt = c+

p∑
i

aixt−i +

q∑
i

biϵt−i + ϵt

ϵt = σtut, ut ∼ N(0, 1)

σ2
t = γ +

m∑
i

αiσ
2
t−i +

m∑
i

βiϵ
2
t−i.

(8.1.1)
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We estimate parameters using the classical maximum likelihood estimation (MLE) proce-

dure. The log-likelihood of an ARMA-GARCH model in the form of (8.1.1) is given by

L(θ | u1, . . . , uT ) = ΣT
t=1 log

(
ut | θ
σt

)
,

where θ = (c, a1, . . . , ap, b1, . . . , bq, γ, α1, . . . , αm, β1, . . . , βn) is the vector of parameters to be

estimated and f(x) is the probability density function of the distribution assumed for ut

with t = 1, . . . , T . There are two types of MLE we use

• Quasi-MLE: Given an observed univariate time series, estimate the parameters of a

conditional mean specification of ARMA form first. The estimation process also infers

the residuals ϵt from the input series. then fits the conditional variance specification of

GARCH via maximum likelihood to residuals ϵt. Thus QMLE requires two maximiza-

tions of two different likelihood functions, one for the mean process fit and another for

the conditional variance process.

• Global-MLE: only one maximization of the global likelihood function is performed.

• The Matlab garchfit function does global-MLE estimation, our HOMEPAGE/Mat-

lab/armaxfilter.m and HOMEPAGE/Matlab/tarch.m do quasi-MLE estimation.

Table (8.1) shows estimation results of the ARMA(1,1)-GARCH(1,1) for S&P 500 data

with sample size 1200. Based on our study, global-MLE has better performance for large

sample sizes, while quasi-MLE estimates are more reliable for small data sizes. We use

quasi-MLE for our later studies.
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Table 8.1: Parameter estimates of ARMA(1,1)-GARCH(1,1) for S&P 500 data with sample
size 1200.

c a(AR) b(MA) γ α β
global MLE

daily return 0.02 1.00 -0.09 0.00 0.87 0.12
5mins return 0.18 0.99 0.01 0.00 0.00 1.00
1min return 1.86 0.87 0.57 0.00 0.40 0.57

quasi MLE
daily return 0.05 1.00 -0.14 0.00 0.89 0.10
5mins return 0.11 0.99 0.03 0.00 0.75 0.25
1min return 0.03 1.00 0.10 0.00 0.91 0.09

8.2 GARCH models

The parameter estimates of ARMA(1,1)-GARCH(1,1) models for S&P 500 data are reported

in Table (8.2). Standard deviations are given in parentheses. This table shows different

patterns between daily and hourly returns and high frequency returns. We can see daily

returns, hourly returns, and 30 minutes returns have unit root phenomena with almost

α = 1, which means this time series is not stationary. (A time series x1, x2, x3, . . . is said

to be covariance stationary if E(xt) and Cov(xt, xt+k) do not depend on t.) The unit root

phenomena is especially obvious for 30 minute returns, where α = 1. We don’t observe unit

root phenomena in 5 minute and 1 minute return series for the ARMA(1,1)-GARCH(1,1)

model.

We choose three time series with 1200, 2400 and 3600 historical data points before Oc-

tober 24, 2012. Table (8.2) also shows that parameter estimates give similar results for

different sample sizes, which means the last 1200 data points of this time series are essential

to determine model parameters.

The estimated parameters α and β observed in Table (8.1) and Table (8.2) sum up to
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Table 8.2: Parameter estimates of ARMA(1,1)-GARCH(1,1) for S&P 500 data.

c a(AR) b(MA) γ β α
Sample size = 1200

daily return -0.0001 0.7818 -0.8186 0.0000 0.0963 0.8363
(0.0000) (0.0160) (0.0127) (0.0000) (0.0008) (0.0026)

1 hour return 0.0001 0.1868 -0.2959 0.0000 0.0380 0.9507
(0.0000) (0.0683) (0.0577) (0.0000) (1.5269e-04) (1.4315e-04)

30 min return -0.0001 -0.2496 0.2494 0.0000 0.0000 0.9998
(0.0000) (0.7116) (0.6898) (0.0000) (0.0000) (1.9878e-06)

5 mins return -0.0001 -0.4004 0.4345 0.0000 0.3357 0.6641
(0.0000) (0.5252) (0.5335) (0.0000) (0.0109) (0.0042)

1 min return 0.0000 0.2312 -0.1691 0.0000 0.5261 0.0581
(0.0000) (0.0426) (0.0445) (0.0000) (0.1102) (0.6504)

Sample size = 2400
daily return -0.0001 0.7103 -0.7518 0.0000 0.0762 0.9181

(0.0000) (0.0222) (0.0209) (0.0000) (1.7174e-04) (1.9106e-04)

1 hour return -0.0000 -0.10 -0.1013 0.0000 0.0225 0.9746
(0.000) (6.755e-04) (5.510e-04) (0.0000) (2.6664e-05) (2.8123e-05)

30 min return -0.0000 0.3225 -0.3017 0.0000 0.0079 0.9915
(0.0000) (0.0186) (0.0185) (0.0000) (4.4229e-06) (3.1188e-06)

5 mins return -0.0000 -0.8436 0.8556 0.0000 0.3482 0.6516
(0.0000) (0.0924) (0.0802) (0.0000) (0.0093) (0.0029)

1 min return -0.0000 0.2008 -0.1249 0.0000 0.4982 0.1858
(0.0000) (0.3282) (0.3420) (0.0000) (0.0491) (0.1046)

Sample size = 3600
daily return -0.0001 0.5223 -0.6015 0.0000 0.0872 0.9056

(0.0000) (0.0506) (0.0446) (0.0000) (9.3159e-05) (1.0331e-04)

1 hour return -0.0001 -0.9433 0.9256 0.0000 0.0186 0.9772
(0.0000) (0.0019) (0.0027) (0.0000) (1.517e-05) (2.011e-05)

30 min return -0.0000 0.3124 -0.2842 0.0000 0.0070 0.9922
(0.0000) (0.1177) (0.1195) (0.0000) (2.6991e-06) (2.8575e-06)

5 mins return -0.0000 -0.7744 0.7938 0.0000 0.3054 0.6287
(0.0000) (0.0339) (0.0298) (0.0000) (0.0105) (0.0091)

1 min return 0.0000 0.3954 -0.3163 0.0000 0.5387 0.1716
(0.0000) (0.0166) (0.0134) (0.0000) (0.0322) (0.0440)
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values close to 1. Based on this observation, we apply the integrated GARCH(1,1), which is

named IGARCH(1,1). IGARCH is a process for which

γ > 0

and
m∑
i=1

αi +
n∑

i=1

βi = 1.

Table (8.3) shows that the IGARCH(1,1) model captures the integrated feature.

Table 8.3: Parameter estimates of ARMA(1,1)-IGARCH(1,1) for S&P 500 data

c a(AR) b(MA) γ β α
Sample size = 1200

daily return 0.01 1.00 -0.01 0.00 0.12 0.89
1 hour return 0.07 0.99 -0.11 0.00 0.05 0.95
30 min return 0.06 1.00 0.01 0.00 0.00 1.00
5 mins return -0.02 1.00 0.03 0.00 0.33 0.67
1 min return 0.06 1.00 0.06 0.00 0.66 0.34

Sample size = 2400
daily return 0.02 1.00 -0.03 0.00 0.08 0.92
1 hour return 0.06 1.00 -0.04 0.00 0.03 0.97
30 min return 0.01 1.00 0.02 0.00 0.01 0.99
5 mins return -0.00 1.00 0.01 0.00 0.35 0.65
1 min return 0.01 1.00 0.07 0.00 0.57 0.43

Sample size = 3600
daily return 0.03 1.00 -0.08 0.00 0.09 0.91
1 hour return 0.04 1.00 -0.02 0.00 0.02 0.98
30 min return 0.01 1.00 0.03 0.00 0.01 0.99
5 mins return 0.03 1.00 0.02 0.00 0.36 0.64
1 min return 0.02 1.00 0.08 0.00 0.60 0.40

Since the clear distinction between GARCH and IGARCH models has been criticized, we

consider the generalized fractional integrated GARCH(FIGARCH) model and correspond-
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ing mean process FARIMA to capture fractional features of a time-series of index returns.

FARIMA processes are more specifically ARIMA(p, d, q) process with 0 < |d| < 0.5, that

satisfy difference equations of the form

(1− L)da(L)xt = b(L)ϵt

where a(L) and b(L) are polynomials of degree p and q, respectively, satisfying, a(z) ̸= 0,

b(z) ̸= 0, for all z such that |z| ≤ 1. L is the lag operator, and ϵt is a white noise sequence

with mean 0 and finite variance σ2.

The conditional variance, ht, of a FIGARCH(p, d, q) process is modeled as follows:

σ2
t = ω + [1− β(L)− ϕ(L)(1− L)d]ϵ2t + β(L)σt.

The parameter estimates of FARIMA(1,1)-FIGARCH(1,1) for S&P 500 data are reported

in Table (8.4). Standard deviations are given in parentheses. This table shows that for

a FARIMA(1,1) mean process, every time series has fractional d. For a FIGARCH(1,1)

variance process, daily, hourly, 30 minute, and 1 minute returns have fractional d, and only

5 minute returns have d = 1.

We also observe negative d in FARIMA, which can be explained by short memory. The

long memory can be empirically observed, e.g. by a slowly decaying auto-covariance function

(ACF) (Beran [1994]). The classic example of a long-range dependent process is the frac-

tional autoregressive integrated moving average (FARIMA) model with a power-law ACF.

It appears that the values of FARIMA with Gaussian noise, for the memory parameter d

greater than 0, have such a slowly decaying ACF that it is not absolutely summable. This

behavior serves as a classical definition of the long-range dependence (Beran [1994]). When
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d < 0, the ACF still follows a power law, hence exhibiting more significant dependence than

any other process with exponentially decaying ACF, such as, e.g. an autoregressive moving

average (ARMA) time series, but the rate of decay is slower than for the d-positive case mak-

ing the ACF absolutely summable. This negative memory phenomenon can be described as

follows: increases in the values of the time series are likely to be followed by decreases and,

conversely, decreases are more likely to be followed by increases (negative correlation). Such

a time series is said to have short memory.

After fitting GARCH style models to time series, we examine the innovations. We fit

classic tempered stable (CTS) distributions to the innovations inferred from ARMA(1,1)-

GARCH(1,1).

Let α ∈ (0, 1)
∪
(1, 2), C, λ+, λ− > 0, and m ∈ R. X is said to have the classic tempered

stable (CTS) distribution if the characteristic function of X is given by

ϕx(u) = ϕCTS(u;α,C, λ+, λ−,m)

= exp(ium− iuCΓ(1− α)(λα−1
+ − λα−1

− )

+ CΓ(−α)((λ+ − iu)α − λα
+ + (λ− + iu)α − λα

−)),

and we denote X ∼ CTS(α,C, λ+, λ−,m). Table (8.5) presents parameter estimates.
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Table 8.4: Parameter estimates of FARIMA(1,d,1)-FIGARCH(1,d,1) for S&P 500 data

d a(AR) b(MA) ω ϕ d β
Sample size = 1200

daily return -0.6611 0.9629 -0.3293 0.0000 0.0486 0.3465 0.3075
(0.0289) (0.0289) (0.0289) (0.0000) (0.1258) (0.0258) (0.2019)

1 hour return -0.5174 0.9299 -0.5010 0.0000 0.0965 0.8070 0.9035
(0.0283) (0.0283) (0.0283) (0.0000) (0.0020) (0.0038) (0.0006)

30 min return -0.6483 0.9101 -0.2695 0.0000 0.4327 0.1346 0.5673
(0.0289) (0.0289) (0.0289) (0.0000) (0.0194) (0.0009) (0.0250)

5 mins return -0.5945 0.9661 -0.3741 0.0000 0.0000 1.0000 0.5939
(0.0289) (0.0289) (0.0289) (0.0000) (0.0000) (0.0125) (0.0036)

1 min return -0.6784 0.9304 -0.1943 0.0000 0.4605 0.0791 0.0000
(0.0289) (0.0289) (0.0289) (0.0000) (0.0183) (0.0436) (0.0000)

Sample size = 2400
daily return -0.4549 0.9049 -0.5049 0.0000 0.1424 0.4175 0.5218

(0.0204) (0.0204) (0.0204) (0.0000) (0.0040) (0.0048) (0.0075)

1 hour return -0.3679 0.8837 -0.5807 0.0000 0.0429 0.9141 0.9571
(0.0204) (0.0204) (0.0204) (0.0000) (0.0010) (0.0015) (0.0002)

30 min return -0.4329 0.8715 -0.4305 0.0000 0.4163 0.1674 0.5837
(0.0204) (0.0204) (0.0204) (0.0000) (0.0025) (0.0055) (0.0153)

5 mins return -0.3534 0.9063 -0.5919 0.0000 0.0000 1.0000 0.6787
(0.0218) (0.0218) (0.0218) (0.0000) (0.0000) (0.0208) (0.0023)

1 min return -0.4061 0.8387 -0.3554 0.0000 0.1933 0.2852 0.0000
(0.0204) (0.0204) (0.0204) (0.0000) (0.0135) (0.0107) (0.0000)

Sample size = 3600
daily return -0.3313 0.9104 -0.7107 0.0000 0.0430 0.7667 0.7805

(0.0167) (0.0167) (0.0167) (0.0000) (0.0006) (0.0030) (0.0014)

1 hour return -0.3260 0.8655 -0.5962 0.0000 0.0454 0.9091 0.9546
(0.0182) (0.0182) (0.0182) (0.0000) (0.0007) (0.0018) (0.0003)

30 min return -0.3085 0.7959 -0.4744 0.0000 0.4174 0.1653 0.5826
(0.0167) (0.0167) (0.0167) (0.0000) (0.0046) (0.0044) (0.0195)

5 mins return -0.3227 0.8689 -0.5581 0.0000 0.0000 1.0000 0.6517
(0.0188) (0.0188) (0.0188) (0.0000) (0.0000) (0.0293) (0.0126)

1 min return -0.3186 0.8058 -0.4072 0.0000 0.1584 0.2438 0.0000
(0.0167) (0.0167) (0.0167) (0.0000) (0.0104) (0.0050) (0.0000)
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Table 8.5: Fit standard CTS to innovations of ARMA-GARCH with sample size 3600

α λ+ λ−
daily return 0.0001 2.3900 2.1617
1 hour return 1.1908 0.2620 0.2640
30 min return 1.1057 0.2642 0.2750
5 mins return 1.3754 0.2851 0.2123
1 min return 0.7627 0.7431 0.6944
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Chapter 9

Out-of-Sample performance

One of the essential objectives of financial modeling is forecasting. The ARMA-GARCH

style models studied in Chapter (8) are some of the most popular for univariate forecasting.

Based on our observations in Chapter (8), the white noise series ut are not i.i.d. N(0, 1)

in high frequency data. Correlations occur within the white noise series, thus we improve

ARMA-GARCH models by introducing our new autoregressive regime-switching model into

white noise series, which is named ARMA-GARCH with autoregressive regime-switching

noise model. We forecast VaR models with both both original ARMA-GARCH and our

new ARMA-GARCH with autoregressive regime-switching noises, then compare performance

with Bernoulli and Berkowitz tests.
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9.1 Forecasting

The steps for forecasting via ARMA-GARCH models of the form:

xt = c+

p∑
i

aixt−i +

q∑
i

biϵt−i + ϵt

ϵt = σtut, ut ∼ N(0, 1)

σ2
t = γ +

m∑
i

αiσ
2
t−i +

m∑
i

βiϵ
2
t−i,

are as follows:

1. Estimate parameters and corresponding ϵt, σt and ut, where t = 1, . . . , h.

2. Get σ2
h+1 = γ̂ + α̂σ2

h + β̂ϵ2h.

3. Generate 100 random variable uh+1 ∼ N(0, 1).

4. Get ϵh+1 = σh+1uh+1.

5. Get xh+1 = ĉ+ âxh + b̂ϵh + ϵh+1.

6. Move estimation window one step forward, estimate parameters and corresponding ϵt,

σt and ut, where t = 2, . . . , h+ 1.

7. Loop is closed.

The steps for forecasting via ARMA-GARCHmodels with autoregressive regime-switching

noises model are:

1. Estimate parameters and corresponding ϵt, σt and ut, where t = 1, . . . , h.

2. Fit autoregressive regime-switching model to noise series ut, get autoregressive coeffi-

cients matrix {Ĥ1, Ĥ2} and state transition matrix Â.
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3. Simulate noise process ũt with estimated autoregressive coefficients matrix {Ĥ1, Ĥ2}

and state transition matrix Â.

4. Get σ2
h+1 = γ̂ + α̂σ2

h + β̂ϵ2h.

5. Get ϵh+1 = σh+1ũh+1.

6. Get xh+1 = ĉ+ âxh + b̂ϵh + ϵh+1.

7. Move estimation window one step forward, estimate parameters and corresponding ϵt,

σt and ut, where t = 2, . . . , h+ 1.

8. Loop is closed.

9.2 Backtesting

Backtesting aims to take ex ante value-at-risk (VaR) forecasts from a particular model and

compare them with ex post realized returns (i.e., historical observations). Whenever losses

exceed VaR, a VaR violation is said to have occurred. There are several methods to backtest

models. We discuss the binomial and Berkowitz tests here.

9.2.1 Bernoulli test

The specific notation used in this section is:

• WE is estimation window size;

• T is number of observations in a sample;

• ηt indicates whether a VaR violation occurs (i.e. η = 1);
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Figure 9.2.1: Compute VaR.

• νi, i = 0, 1 is number of violations ( i = 1 ) and number of no violation ( i = 0 )

observed.

We estimate parameters of the model from first estimation window WE, then forecast VaR

for day E + 1, The estimation window is then moved forward by one step to get the risk

forecast for day E + 2. The estimation window is moved forward by one day until T − 1

(Figure 9.2.1), then we have T − E VaR forecasts. As the data from day E + 1 to day T

are already known, VaR forecasts can be compared with the actual outcome. If the actual

return on a particular day exceeds the VaR forecast percentile limit, then the VaR limit is

said to have been violated. We denote the violations as ηt, which has the value 1 when a

violation occurs and 0 when a violation doesn’t occur. The number of violations are stored

in the variable ν1 and ν0, where ν1 is the number of days with violations and ν0 is the number

of days without violations(Danielsson [2011]).
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We then use the Bernoulli coverage test to find out the proportion of violations. The null

hypothesis for VaR violations is:

H0 : η ∼ B(p)

where B stands for the Bernoulli distribution.

Table 9.1: Comparison of ARMA-GARCH(model 1) and HMM-autoregressive noise
model(model 2) via Bernoulli test.

Bernoulli test
Test statistics p-value

daily return
Model 1 7.3524 0.0715
Model 2 5.2749 0.2527

1 hour return
Model 1 2.7773 0.5273
Model 2 6.5951 0.0960

5 minute return
Model 1 4.3962 0.3217
Model 2 3.8844 0.3742

1 minute return
Model 1 10.2653 0.0264
Model 2 0.7875 0.7525

The Bernoulli tests for standard ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1)

with regime-switching noise forecasting VaR for S&P 500 data are reported in Table (9.1).

The length of estimation window is 1000, the forecasting horizon is 1000 steps, and number of

paths is 200. We can see for daily, hourly, and 5 minute returns, both models have p−values

larger than 5 percent . For 1 minute returns, the p−value for the standard ARMA(1,1)-

GARCH(1,1) model is 0.0264, which means that the null hypothesis is rejected, while the

p−value of our HMM-autoregressive noise model is 0.7525, which is not rejected.
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9.2.2 Berkowitz test

A test would be needed to verify the i−th observed return ri follows the predicted distribution

Pi from the model. The problem is we have only one observed return ri for each sliding-

window. We carry out a probability integral transform PIT transformation and map each

ri to its percentile point on its forecasted density function. For example, some observed

return is equal to the 30th percentile on the forecasted density, then its value maps to

0.3. Under the null hypothesis that the model is adequate, the mapped value r̂i = P−1
i (ri)

follows a uniform distribution U(0, 1). So we can evaluate the model by using Kolmogorov’s

test to test r̂i is uniform distributed. However, we use the Berkowitz test to perform the

transformation ˆ̂riϕ
−1(r̂i) ∼ N(0, 1). Then we can use any test for normality over ˆ̂ri to

evaluate our model(Lobato et al. [2007] Christodoulakis et al. [2007]).

In practice, daily forecasts can be obtained with the following procedure:

1. Estimate parameters of the model from first estimation window WE, then forecast

return for day E + 1.

2. Carry out a probability integral transform (PIT) transformation of the forecasted re-

turn for day E + 1.

3. Map observed return rE+1 for day E+1 to its percentile point on its forecasted density

function PE+1.

4. The estimation window is then moved up by one day to obtain the forecasted density

function PE+2.

5. The estimation window is moving forward by a step of one day until T−1 Figure (9.2.1),

then we have T − E forecasted density function.
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6. Carry out Berkowitz test for paired observed returns ri and Pi with i = {E+1, . . . , T}

to see if ri follows Pi.

Table 9.2: Comparison of ARMA-GARCH(model 1) and HMM-autoregressive noise
model(model 2) via Berkowitz test.

Berkowitz test
Test statistics p-value

daily return
Model 1 7.3524 0.0615
Model 2 5.2749 0.1527

1 hour return
Model 1 2.7773 0.4273
Model 2 6.5951 0.0860

5 minute return
Model 1 4.3962 0.2217
Model 2 3.8844 0.2742

1 minute return
Model 1 10.2653 0.0164
Model 2 0.7875 0.8525

The Berkowitz test for standard ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1)

with regime-switching noise forecasting VaR for S&P 500 data are reported in Table (9.2).

The length of estimation window is 1000, the forecasting horizon is 100 steps, and number of

paths is 200. We can see for daily return, hourly return and 5 minutes return, both models

have p−values larger than 5 percent, for high frequency data 1 minute return, the p−value of

standard ARMA(1,1)-GARCH(1,1) is 0.0164, which means null hypothesis is rejected, while

the p−value of our HMM-autoregressive noise model is 0.8525, which is not rejected.
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Chapter 10

Conclusion

Our research starts with implementing a two-state stochastic volatility model. This model

can be used to produce general option pricing tools which reflect the true volatility structure

of financial markets more accurately. We apply the dynamic programming method for general

discrete-time mean-variance hedging problem to this case. It works in a manner which is

statistically parsimonious and computationally efficient. It can also price American options.

Dynamic programming allows us to go backward from the expiry date and decide the value

at each node. An improved hash table has also been used to improve computation speed.

After we get the pricer, more numerical tests are performed to prove the limiting process has

a constant volatility which is a weighted-sum of two original volatilities from math deduction

and simulation results.

To improve this two-state stochastic volatility model, we add an autoregression com-

ponent, and extend the HMM driven model to an autoregressive HMM driven model. To

estimate autoregressive HMM driven model, we start from examining the existing autore-

gressive HMM model and ascertain that an essential assumption is that autoregressive order

is greatly less than the length of observation. Without this assumption, the approximation
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for p.d.f. function doesn’t hold. In our case, the autoregressive order is about one week

(5 days), and length of observation is about two weeks. As a result, the assumption for

approximation doesn’t hold in our case. So we develop our own estimation method, test it’s

stability and precision, and ensure it is parsimonious and won’t fail when the correlation

matrix is positive definite.

We then attempt to incorporate autoregressive HMM driven models into GARCH style

models to generate better backtesting results than existing models. We estimate and test

ARMA-GARCH, ARIMA-IGARCH, and FARIMA-FIGARCH first and find that the white

noise series is not iid Gaussian. Thus we apply the autoregressive HMM driven model to the

white noise series and test it’s forecasting effect. The results indicate that standard ARMA-

GARCH and our autoregressive- HMM-noises model can both performs good in daily S&P

500 log returns, while autoregressive- HMM-noise model can do better in high frequency

data.
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Appendix A

Mathematical notations

• Z is a random variable with standard normal distribution N(0, 1).

• S is stock price.

• r is risk-free interest rate.

• N is number of time steps.

• T is expiry.

• ∆t = T
N

is time step.

• {σ1, σ2} are two states of stock price volatility.

• Ω is a set of parameters.

• Xt is continuous time hidden Markov chain process.

• M is number of states.

• A =

[
p1 1− p1

1− p2 p2

]
is the Markov matrix which drives volatility process.

• {π1, π2} is equilibrium distribution for matrix A.

• {q1, q2} are the probabilities for stock price to move up with respect to {σ1, σ2} seper-
ately.

• µ is the expected rate of return for stock.

• dW is standard Wiener process with a drift rate of zero and variance of 1.

• σimp is implied volatility.
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• T is sample size of observations.

• K is length of observation window.

• p is order of autoregression.

• s⃗ = {s1, s2, . . . , sK} is sequence of observations.

• x⃗ = {x1, x2, . . . , xK} is sequence of normalized observations with si = xiδ.

• Σx is the covariance matrix of x⃗.
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