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Abstract of the Dissertation

Asset Pricing in Intraday Trading

by

Yuzhong Zhang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

The dissertation consists of three parts. In first part, a general equilibrium
for asset pricing is proposed which incorporates asymmetric information as
the key element determining security prices. The concepts of completeness,
arbitrage, state price deflator and equivalent martingale measure are extended.
It is shown in the model that in a so-called quasi-complete market, agents with
differential information can reach an agreement on a universal equilibrium
price. And as a consequence, information asymmetry can lead to mispricing
as well. Second part investigates the market intrinsic time, such as volume
clock and transaction clock. The normality of asset returns are shown to be
recovered when time is measured by volume or transactions. A multivariate
subordinated Brownian motion model is used to estimate dependency structure
with market intrinsic time as subordinator. Third part considers a multivariate
mean-reverting Lévy model on asset price and volatility together. The model
assumes common jump factor among prices and volatilities. Empirical analysis
on estimation and option pricing are conducted.
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Chapter 1

Multi-period Equilibrium Model with Asymmetric Information

1.1 Introduction and Motivation

General equilibrium theory deals with an economy consisting of multiple
agents in a market endowed with initial resources and willing to exchange
commodities with others. It considers the behavior of the economy as a closed
and inter-related system. In a general equilibrium perspective, each agent
in the market optimizes his/her behavior to achieve maximum consumption
utility. Agents’ optimal behavior represents the behavior of the economy.
Equilibrium prices are determined endogenously. The existence of such an
equilibrium is based on the assumption of perfect competition among agents.
In other words, the model assumes all individuals are price-takers, i.e. that
they have zero price impact. This type of model is often called Walrasian
equilibrium, from the Walras (1898) theory of markets. The modern version
of general equilibrium theory was formalized by Arrow and Debreu (1954,
1956) and McKenzie (1954). In the Arrow-Debreu model, the market is static
and deterministic. Radner (1968, 1972, 1979) and Jordan and Rander (1982)
explores the competitive equilibrium in the case of uncertainty. In a Radner-
type economy, different market agents are allowed to have different information.
Agents in such an economy maximize their expected utility with respect to
the their own information. The work opens the possibility of applying general
equilibrium to financial markets to explain the prices of financial assets.
Breeden (1979) develops the Consumption-Based Capital Asset Pricing Model
(CCAPM) that connects continuous-time general equilibrium to characteristics
of returns on securities. Cox, Ingersoll and Ross (1985) also examine the price
behavior in a general equilibrium. Duffie and Zame (1989) further study and
extend the approach.

Demarzo and Skiadas (1998) further investigate asset pricing in economies
with asymmetric information, although not in a dynamic setting. The concept
of quasi-completeness is introduced to describe the feasibility of consumption
conditioned on the agents individual information. Also, in Yannelis (1991)
and Glycopantis and Yannelis (2006), the core of an economy and its related
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concepts are introduced and discussed to study information asymmetry. In
Lengwiler (2009), Heer and Maussner (2009), Black and Glaser (2010), Starr
(2011), and Ludvigson (2011), the modern general equilibrium pricing theory
are elaborated and reviewed. Recently, Biais, Bossaerts and Spatt (2004, 2010)
develop a two-date equilibrium with differential information and demonstrates
that information is partially revealed by the price. Fama and French (2007)
investigate the effects of disagreement and preference differences on asset
prices in a CAPM setting. Ostrovsky (2012) uses an extended sequential
auction model based on market scoring rules to study information aggregation
with partially informed trades. Iyer, Johari and Moallemi (2014) develop a
market with heterogeneous traders and a market maker to give a condition
for information aggregation. Equilibrium under information asymmetry has
also been studied in many other papers, including Bernardo, Antonio and
Judd (2000), Cao and Ou-yang (2009), Breon-Drish (2010), Gao, and Song
and Wang (2013), among others. Meanwhile there also exist many litera-
ture investigate in the extensions of CAPM theory, including Campbell and
Cochrane (1995), Dionne (2011), Breeden and Litzenberger (2015), Barberis
and Greenwood (2015), among others.

Our work is in line with the formalization of the Consumption-based
Capital Pricing Models in Duffie (2010) and the Demarzo and Skiadas (1998)
model with differential information among agents. We model asset price
formation in a multi-period general equilibrium framework. The concept of
equivalent martingale measure under quasi-completeness as in Demarzo and
Skiadas (1998) and related concepts will be rephrased in a CCAPM context.
In our framework, the state-price can be extended to a broader sense, so that
it stays universal while difference agent views it asymmetrically. It provides
a convenient tool for asset valuation. Also, the similar result that agents will
come to asymmetric betas in their beta form asset pricing, as the CAPM
in Demarzo and Skiadas (1998). The difference is that our beta is based on
consumption, thus not requiring the strict mean-variance utility.

1.1.1 Efficiency

It is nature to ask the question that what properties the equilibria has if it
exists. Efficiency is one of the important aspect. How efficient is the market
if the market is on a equilibria? To answer this question, I define efficiency
in two different concepts: (i) Informational efficiency, and (ii) allocative

2



efficiency.

Informational Efficiency addresses the information revealed by price. The
more information price is revealing, the more informationally efficient market
is. Efficient Market Hypothesis asserts that price reflects public/all informa-
tion. In our equilibrium, the information revealed by price is represented by
the filtration generated by equilibrium price. The informational efficiency is
about how large the filtration is.

Allocative Efficiency addresses how optimal the equilibrium allocation is.
An allocation is (Pareto) efficient if there does not exist an redistribution
which can benefit at least one without making any other worse off.

1.1.2 Factoring Private Information into Price

From Capital Asset Pricing Model (CAPM) to Fama-French three factor
model, then to Arbitrage Price Theory (APT), the bridge is built by applying
cross-sectional test to show the factors are actually risk factors, in supporting
the Market Efficient Hypothesis. Although CAPM has already been explained
in general equilibrium with symmetric information, fator model is stil lacking
an explanation on how the factors are incorporated into price.

We assert that the factors is coming from private information. Intuitively,
consider that if a equilibrium price is more informative than dividend, it
is also revealing some private information. Suppose the additional private
information is generated by some signal process, then the equilibrium price
must incorporate the signal as risk factor.

Our goal is to develop a general equilibrium pricing model in which market
efficiency (both informational and allocative) can be investigated, and risk
factors can be priced into equilibrium price. We will start with basic concept
and model structure. And then I will provide the relation between the key
concepts: arbitrage, state-price deflator, martingale measure. From there, I
will represent security prices. Finally I will discuss the unfinished work and
potential extension.
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1.2 The Model

In this section, We formulate a general equilibrium model with information
asymmetry in discrete time. In our setting, there are finite number of agents
in economy. As in other general equilibrium models, the agents are assumed
to be price takers. Agents make their consumption plans based on not only
their own private information but also the information generated by the
price process. An agent prices a consumption process by her own pricing
function, which is obtained from maximizing her utility. That means, for some
consumption process, the prices as seen by different agents are allowed to be
different. However since agents are price takers and the market must clear, it
is shown that there exists a so-called quasi pricing kernel such that the pricing
function of each agent is the optimal projection of the quasi pricing kernel
onto her own information filtration. Equivalently, there exists a probability
measure, a so-called quasi equivalent martingale measure, under which a
security price is viewed as a martingale for each agent (i.e., conditioned on
individual information filtration).

1.2.1 Uncertainty

There are T +1 dates: 0, 1, ..., T . Denote by T = {0, 1, ..., T} the time horizon.
Then uncertainty is modeled by the probability space (Ω,F ,P) equipped with
filtration F = {F0,F1, ...,FT}. Ft denotes the information up to time t and
FT = F . Ω denotes the state space. P is the physical probability measure.
Let L be the space of all F-adapted processes.

1.2.2 Economy

In our economy, there are n agents. Denote by I = {1, ..., n} the set of agents.
Each agent i ∈ I is characterized by individual belief (represented by proba-
bility measure P(i)), utility function U (i), endowment e(i), and information

flow, represented by the filtration F(i) = {F (i)
t }t∈T .

Each individual filtration satisfies F (i)
t ⊆ Ft. It means each agent can

access some subset of the total information, which allows that information
available to agents is not symmetric. Denote the common information by
F t =

⋂
i∈I F

(i)
t , and the largest information that can be accessed by all
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agents as whole by F t =
∨
i∈I F

(i)
t which is the smallest σ-algebra contains

all F (i)
t . Each agent knows her endowment process very well. In another

word, e(i) is F(i)-adapted for each i ∈ I. Denote the aggregated endowment
by e(t) =

∑
i∈I e

(i)(t).
There exist m assets; denote by J = {1, ...,m} the set of assets. Each

asset j ∈ J is associated with its dividend process δj = (δj(t)). δ =
(δ1(t), δ2(t), ..., δm(t)) denotes dividend process, which is adapted to F. As-
sume that all agents can observe dividends, that is, σ(δu : u ≤ t) ⊆ F t for all
t ∈ T .

Definition 1 (Economy). The economy is defined as a collection

E = {(Ω,F ,F,P), (P(i), U (i),F(i), e(i))i∈I , δ}.

For simplicity, we also assume all agents share the same (physical) proba-
bility measure, that is, P(i) = P for all i ∈ I.

1.2.3 Security Prices

The security price at time t is denoted by S(t) = (S1(t), ..., Sm(t)). (S(t)) is
adapted to F. Security price is public information, thus given price process
S, each agent i observes the information generated by S as well as private
information F (i). Denote by Gt = σ(Su : u ≤ t) for t ∈ T the filtration
generated by prices. Assume that all agents are price-takers, thus the securities’
prices S is the exact price at which agents trade.

1.2.4 Trading Strategies and Consumption

Agents in the economy will choose their trading strategies to optimize their
satisfaction (which will be represented by utility later). However, the trading
strategies each agent can access are restricted by the information she can
access. More information will give more choice of trading strategies. This
means that an agent’s trading strategies are adapted to the information
available to her.

Definition 2 (Feasible trading strategies). A trading strategy θ(i) = (θ(i)(t))t∈T

is feasible for agent i given price S if θ(i)(t) is Gt ∨ F (i)
t -measurable, and the

5



consumption process c(t; θ, S) ∈ R++ which is given by the budget constraint:

θ(i)(t) · S(t) =
t−1∑
τ=0

θ(i)(τ) ·
(
S(τ + 1)− S(τ) + δ(τ + 1)

)
+

t∑
τ=0

e(i)(t)−
t∑

τ=0

c(t; θ, S) a.s.

or equivalently,

c(t; θ, S) = e(t) + θ(t− 1) ·
(
S(t) + δ(t)

)
− θ(t) · S(t), for t = 1, ..., T, and

c(0; θ, S) = e(0)− θ(0) · S(0).

The budget constraint makes sure that the consumption cannot exceed the
sum of endowment, dividends and trading profit. Additionally, for convenience,
we can define a strategy-generated dividend process as follows.

Definition 3. Let θ(−1) = 0, then define the dividend process generated by

trading strategy θ as

δθ(t) = θ(t− 1) ·
(
S(t) + δ(t)

)
− θ(t) · S(t). t ∈ T

The dividend generated by trading strategy θ can be interpreted as the
trading profit generated from price changes and dividends. Then the feasible
consumption set for agent i and a given price process S can be written as

X(i),S =
{
e(i) + δθ ∈ L+ : θ ∈ L(i),S

}
.

1.3 Arbitrage, State Price Deflator, Martingale

Definition 4 (Arbitrage). We call a trading strategy an arbitrage for given

(δ, S) if δθ > 0.

Recall L denotes the space of all F-adapted processes and similarly denote
by L(i),S the space of process adapted to the filtration generated by {F (i)

t ∨
Gt}t∈T . Then M (i),S = {δθ : θ ∈ L(i),S} and M = {δθ : θ ∈ L} are linear
subspaces of the space of L.
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Proposition 1. There is no arbitrage strategy in L′ if and only if there is

a strictly increasing linear function F : L→ R such that F (δθ) = 0 for any

θ ∈ L′. Here L′ can be L or L(i),S for some i ∈ I.

Corollary 1. If there is no arbitrage in L the space of all processes adapted

to the filtration generated by {F t ∨ Gt}t∈T for a given S, then there is no

arbitrage in L(i),S for all i ∈ I.

Remark. When (δ, S) admits arbitrage in the trading strategy space L, it

is not necessary that there exists an arbitrage in a smaller space L′ ⊂ L.

That means an agent could not be able to find arbitrage due to the lack of

information. See the following example.

Example 1 (Arbitrage in case of information asymmetry). Let time T =

0, 1, 2, 3, and let there be one risky asset which pays dividend δ(t), t = 0, 1, 2,

where δ(t) satisfies

δ(t) = f(t) + εD(t),

where f(t) is the fundamental value satisfying

f(t) = f(t− 1) + εf (t), t = 1, 2, 3 and f(0) = 1,

and εD(t) is pure noise with εD(0) = 0, and εD(t), t = 1, 2, 3 are i.i.d Bernoulli

distributed

εD(t) =

 0, with probability p

1, with probability q

and εf(t) is the pure noise with εf(0) = 0 and εf(t), t = 1, 2, 3 are i.i.d

Bernoulli distributed

εf (t) =

 0, with probability µ

1, with probability ν

7



Then this example can be illustrated by the tree with (δ(t), f(t), εD(t)) as

nodes, as shown in Figure 1.1.

Figure 1.1: Example. Arbitrage opportunity in case of information asymmetry.

Now suppose there two agents. One is uninformed and can only observe

dividends, and the other is an insider who knows the true fundamental. Thus

the uninformed agent cannot distinguish the two nodes A,B as shown in the

red boxes, and the insider can distinguish between the two nodes. Let price

given by probability measure p = 0.2, q = 0.8, µ = 0.5, ν = 0.5, then the

prices for the non-informed agent for state A and B are the same, S = 2.9.

However, the insider can easily obtain an arbitrage opportunity by making a

strategy as (i) Buy if state A happens, (ii) Sell if state B happens, (iii) No

trade if none of them happens.
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Classic Case

Lemma 1. For each linear function F : L→ R, there exists a unique π in L

such that for any x ∈ L

F (x) = EP

[
T∑
t=0

π(t)x(t)

]
.

π is called the Riesz representation of F . If F is strictly increasing, then π is

strictly positive.

Proof. Apply Riesz representation theorem to the Hilbert space L, where

inner product is defined as 〈x, y〉 = EP
[∑T

t=0 x(t)y(t)
]
, x, y ∈ L.

We call a strictly positive process π, which is adapted to F, a state-price
deflator if, for all t ∈ T ,

S(t) =
1

π(t)
EP

[
T∑

j=t+1

π(j)δ(j)
∣∣Ft] .

Proposition 2. A strict positive process π ∈ L is a state-price deflator if

and only if, for any trading strategy θ ∈ L,

θ(t) · S(t) =
1

π(t)
EP

[
T∑

j=t+1

π(j)δθ(j)
∣∣Ft] , t < T.

Suppose there exists a risk-free short-rate process rf = (rf (t))t∈T , define
the discount factor

R(s, t) =
t−1∏
j=s

(1 + rf (j)).

Definition 5 (Equivalent Martingale Measure). We call a probability measure

Q an equivalent martingale measure (EMM) if, Q is equivalent to P and

S(t) = EQ

[
T∑

j=t+1

1

R(t, j)
δ(j)

∣∣Ft] , t < T.
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Theorem 1. π is a state-price deflator if and only if there exists an equivalent

martingale measure Q with the density process ξ such that

ξ(t) =
R(0, t)π(t)

π(0)
,

where the density process ξ is defined by

ξ(t) = EP

[
dQ

dP

∣∣Ft] .
Proof. See Duffie (2001) page 30.

Case of Asymmetric Information

In the classic case of symmetric information, a security’s price equals the
expectation of aggregated future discounted dividend flow under the equivalent
martingale measure, and also equals the expectation of aggregated discounted
future dividend flows under the physical probability measure. To extend the
analysis to asymmetric information, we allow each agent to have her own
state-price deflator, which is the optimal projection of the universal state-price
deflator to her own information.

Let us first investigate some process X ∈ L for a smaller filtration H =
{Ht}t∈T , where Ht ⊆ Ft for all t. Denote by XH the optimal projection of X
onto H, that is,

XH(t) = EP [X(t) |Ht] .

Some simple facts:

Fact 1. XH = X ⇐⇒ X is adapted to H.

Fact 2. XH is H-martingale if X is F-martingale under same probability

measure.

Fact 3. If X is a F-martingale, and adapted to H, then X is a H-martingale.

10



For an equivalent probability measure Q, we define its density process ξH

on some smaller filtration H as the optimal projection of ξ onto H, that is

ξH(t) = EP

[
dQ

dP

∣∣Ht

]
= EP

[
ξ(t)

∣∣Ht

]
.

Claim. If Q is an equivalent martingale measure, and π is the corresponding
state-price deflator as in Theorem 1, and R(s, t) is Ht-measurable for all
0 ≤ s < t ≤ T , then

ξH(t) =
R(0, t)πH(t)

πH(0)
.

If there exists no arbitrage in L, and let π be the state-price deflator, then
the price viewed by the partially informed agent at time t can be represented
by

S(t) = E[S(t) |Ht] = EP

[
1

π(t)

T∑
j=t+1

π(j)δ(j)
∣∣Ht

]
,

where Ht is the information set can be accessed at time t, and S(t) is Ht-
measurable, which means security prices are public information. Moreover,
for any strategy in LH, the space of H-adapted processes,

θ(t) · S(t) = EP

[
1

π(t)

T∑
j=t+1

π(j)δθ(j)
∣∣Ht

]
.

Now, bearing in mind that all agents are price takers, we can start to
construct the martingale measure and state-price deflator for asymmetric
information. Assume that the risk-free rate is known to all agents.

Assumption. R(s, t), s ≤ t ≤ T , is F (i)
t -measurable for all i ∈ I.

Definition 6 (Quasi Equivalent Martingale Measure). We call an equivalent

probability measure Q a quasi equivalent martingale measure (Quasi-EMM)

if, for all i ∈ I,

S(t) = EQ

[
T∑

j=t+1

1

R(t, j)
δ(j)

∣∣F (i)
t ∨ Gt

]
, t < T.
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Denote the density processes of Q respect to P for the filtrations F (i)∨Gt, i ∈ I

by

ξ(i)(t) = EP

[
dQ

dP

∣∣F (i)
t ∨ Gt

]
.

Under a Quasi-EMM, a security’s price equals the expectation of dis-
counted future dividends conditioned on individual information for every
agent. All agents in our economy agree on the same (fair) prices of securities,
which are exactly consistent with the assumption that all agents are price
takers. Correspondingly, we can define a quasi state-price deflator as follows.

Definition 7. (Quasi State-price Deflator) A strictly positive process π is

called a quasi state-price deflator if, for all i ∈ I,

S(t) =
1

π(i)(t)
EP

[
T∑

j=t+1

π(i)(j)δ(j)
∣∣F (i)

t ∨ Gt

]
,

where π(i) is the optimal projection of π onto {F (i)
t ∨ Gt}t∈T .

Proposition 3. If π is a quasi state-price deflator, then for any trading

strategy θ(i) ∈ L(i),S, i ∈ I,

θ(i)(t) · S(t) =
1

π(i)(t)
EP

[
T∑

j=t+1

π(i)(j)δθ
(i)

(j)
∣∣F (i)

t ∨ Gt

]
, t < T.

The following theorem shows the relationship between a quasi-EMM and
a quasi state-price deflator, which is similar to the classic case of symmetric
information.

Theorem 2. π is a quasi state-price deflator if and only if there exists an

quasi equivalent martingale measure Q with the density process ξ such that

ξ(i)(t) =
R(0, t)π(i)(t)

π(i)(0)
, for all i ∈ I,
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where the density process ξ is defined by

ξ(i)(t) = EP

[
dQ

dP

∣∣F (i)
t ∨ Gt

]
, i ∈ I.

The following proposition gives a strong condition for the existence of
a quasi state-price deflator, which is actually for the case of symmetric
information.

Proposition 4. If there exists a quasi state-price deflator, then there is no

arbitrage in L(i),S for all i ∈ I. If there is no arbitrage in L, then there exists

a quasi state-price deflator.

Pricing Consumption Process
The use of quasi state-price deflator π is to price any consumption

process, that is, the price of a consumption process c in L+ is given by

EP
[∑T

t=0 c(t)π(t)
]
. Thus π will be also called a pricing kernel.

If c ∈ X(i),S for some i, then the price for this particular agent i is given
by

EP

[
T∑
t=0

c(t)π(t)

]
= EP

[
T∑
t=0

c(t)π(i)(t)

]
.

But for some other agent j in whose information c is not accessible, then the
price will be

EP

[
T∑
t=0

c(t)π(j)(t)

]
,

which does not necessarily coincide with Π(c). The difference between them
comes from asymmetry of information, thus for agent j to access this con-
sumption c, she will have to pay a fee to obtain more information. This, fee,
which we call an information fee η, should be

η = EP

[
T∑
t=0

c(t)π(t)

]
− EP

[
T∑
t=0

c(t)π(i)(t)

]
> 0.
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This argument can be extended to any consumption c ∈ L+. The price of any
consumption c ∈ L+ for an agent i is

EP

[
T∑
t=0

c(t)π(i)(t)

]
.

And the information fee η is

η = EP

[
T∑
t=0

c(t)π(t)

]
− EP

[
T∑
t=0

c(t)π(i)(t)

]
≥ 0.

Thus, η = 0 when c ∈ X(i),S.

1.4 Individual Agent Optimality

The objective of each agent is to maximize her individual utility by choosing
the optimal feasible trading strategy. Then the optimization problem for
agent i can be written as

max
c∈X(i),S

U (i)(c). (1.1)

The following claims show the relation between arbitrage and individual
optimization problem.

Proposition 5. The optimization problem (1.1) for agent i and given S has

a solution ⇒ there exists no arbitrage in L(i),S.

Corollary 2. There exists no arbitrage in L(i),S and U (i) is continuous ⇒

Optimization problem for agent i given S has a solution.

First-Order Condition. If the individual optimization (1.1) has a strictly
positive solution c∗, and U (i) is continuously differentiable at c∗, then

∇U (i)(c∗; δθ) = 0, ∀θ ∈ L(i),S,

where ∇U(x; y) denotes the ∇U(x) at y, i.e.

∇U(x; y) ≡ lim
α→0

U (i)(x+ αy)− U (i)(x)

α
.
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Note that ∇U (i)(c∗; ·) : L→ R is a linear function. The following proposition
shows that this linear function gives the pricing kernel for the individual
agent.

Proposition 6. Suppose the individual optimization problem (1.1) has a

strict positive solution c∗ and U has a strictly positive continuous derivatives

at c∗. Then the Riesz representation π of ∇U (i)(c∗; ·) satisfies that

S(t) =
1

π(i)(t)
EP

[
T∑

j=t+1

π(i)(j)δ(j)
∣∣F (i)

t ∨ Gt

]
.

If we restrict utility satisfying additive form, then we can have the following.
Suppose U (i), for each i ∈ I, has the additive form:

U (i)(c) = EP

[
T∑
t=0

u
(i)
t (c(t))

]
.

Then for any t ≤ τ ,

S(t) =
1

u′t(c
∗(t))

EP

[
S(τ)u′τ (c

∗(τ)) +
τ∑

j=t+1

δ(j)u′j(c
∗(j))

∣∣F (i) ∨ Gt

]
.

1.5 Equilibrium Asset Pricing

Definition 8. A security-spot market equilibrium (SSE) is a collection{
(θ(i))i∈I , S

}
, such that, for each i, θ(i) solves individual optimization

max
c∈X(i),S

U (i)(c), (1.2)

under market clearing condition∑
i∈I

θ(i) = 0. (1.3)
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If a SSE equilibrium exists, that means the equilibrium consumption

c∗ = (c(1)∗, c(2)∗, ..., c(n)∗)

solves all individual optimization problems. From last section, we have
the result that there is no arbitrage opportunity for each individual agent.
Also, each ∇U (i)(c(i)∗; ·) gives this agent i a pricing kernel π(i), which is
adapted to individual information filtration, up to a positive multiplier. In
order to construct a universal pricing kernel π, such that π(i) equals to the
optimal project of π on individual information. If this universal pricing kernel
π exists, then π is a quasi state-price deflator, and Π(c) ≤ Π(e) implies

Π(i)(c) ≤ Π(i)(e(i)) for all c ∈ L(i),S
+ , where Π(·) = 〈π, ·〉, Π(i)(·) = 〈π(i), ·〉.

Proposition 7. Suppose that there exist an equilibrium satisfying (1.2)(1.3),

then (π(1), ..., π(n)) obtained from Proposition 6 admits a quasi state-price

deflator.

Definition 9. We say the market is quasi-complete if for each i ∈ I,

L(i),S =
{

(θ(t) · δ(t)) : θ ∈ L(i),S
}
.

When the market is quasi-complete, the existence of the universal π will
reduce the individual optimization to the following form:

max
c∈L(i),S

+

U (i)(c) subject to Π(c) ≤ Π(e(i)). (1.4)

Since U (i) is strictly increasing, there is a Lagrange multiplier λ(i) such
that the optimization above is equivalent to

max
c∈L(i),S

+

λ(i)U (i)(c)−
(
Π(c)− Π(e(i))

)
.

Define the utility function Uλ : L+ → R by

Uλ(x) = max
c(i)∈L(i),S

+ ,i∈I

∑
i∈I

λ(i)U (i)(c(i)) subject to
∑
i∈I

c(i) ≤ x.
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Proposition 8. Suppose that there exists an equilibrium satisfying (1.2)(1.3)

for a quasi-complete market, then the equilibrium consumption solves

max
c(i)∈L(i),S

+ ,i∈I

∑
i∈I

λ(i)U (i)(c(i)) subject to
∑
i∈I

c(i) ≤
∑
i∈I

e(i).

Corollary 3. Moreover, if for each i that U (i) is of additive form

U (i)(c) = EP

[
T∑
t=0

u
(i)
t (c(t))

]
,

then Uλ is also of additive form

Uλ(c) = EP

[
T∑
t=0

uλt(c(t))

]
.

where

uλt(x) = max
c(i)∈L(i),S

+ ,i∈I

∑
i∈I

λ(i)u(i)(c(i)) subject to
∑
i∈I

c(i) ≤ x.

for any t ≤ τ ,

S(t) =
1

u′t(c
∗(t))

EP

[
S(τ)u′τ (c

∗(τ)) +
τ∑

j=t+1

δ(j)u′j(c
∗(j))

∣∣F (i) ∨ Gt

]
.

1.6 State-Price Beta Model

Denote by Ei,t the expectation conditioned on F (i)
t ∨Gt, by Vari,t the variance

conditioned on F (i)
t ∨Gt, and by Covi,t the covariance conditioned on F (i)

t ∨Gt.
Now, let us define the capital returns generated by a trading strategy θ by

rθ(t) =
θ(t− 1) · (S(t) + δ(t))

θ(t− 1) · S(t− 1)
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Denote by r(i),0(t) the risk-free return for agent i. Thus r(i),0 is the return
of a strategy θ0, such that,

θ0 ∈ L(i),S, and corrPi,t−1(r(i),0, π(t)) = 0,

where corri,t is the correlation conditioned on F (i)
t ∨ Gt.

Each agent also believes in her own market portfolio. That is, for each
agent i, she constructs the optimal market portfolio from L(i),S by maximizing
the the correlation with π conditioned on their own information. That is , at
time t, the market portfolio is given by

max
θ∈L(i),S

corrPi,t−1

(
rθ(t), π(t)

)
.

Let r(i),M(t) denote the market return. Then the maximization implies

π(t) = r(i),M(t) + ε(t),

where CovP
i,t−1

(
ε(t), rθ(t)

)
= 0 for all θ ∈ L(i),S. Note that

CovP
i,t−1

(
rθ(t), π(t)

)
= π(i)(t− 1)

(
1−

EP
i,t−1

[
rθ(t)

]
EP
i,t−1 [r(i),0(t)]

)
.

Then we can obtain the beta form of the CAPM:

EP
i,t−1

[
rθ(t)− r(i),0(t)

]
= βθi,t−1EP

i,t−1

[
r(i),M(t)− r(i),0(t)

]
where

βθi,t−1 =
CovP

i,t−1

(
rθ(t), r(i),M(t)

)
VarPi,t−1 (r(i),M(t))

.

1.7 Examples and Discussion

1.7.1 Examples

Example 2 (Quasi-EMM and Price in Case of No Private Information).

Let time T = 0, 1, 2, and there is one risky asset which pays dividend δ(t)

satisfying

δ(t) = f(t) + εD(t), t = 0, 1, 2,
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where f(t) is the fundamental value satisfying

f(t) = f(t− 1) + εf (t), t = 1, 2, and f(0) = 1,

and εD(t) is noise with εD(0) = 0, and εf(t) is noise with ε(0) = 0. Assume

that εD(1), εD(2), εf (1), εf (2) are jointly normally distributed.

Now suppose no agents has private information, i.e., the only information

agents can access are generated by dividend and price.

Let (Quasi-)EMM be the probability measure under which εD(1), εD(2),

εf (1), εf (2) are independent standard normally distributed N(0, 1). Then the

price given by the following is valid,

S(1) = EQ [δ2| δ(1), S(1)] =
1

3
δ(1) +

2

3

S(0) = EQ[δ(1) + δ(2)] = 2

In this case, price reveals no additional information beyond dividends.

Example 3 (Quasi-EMM and Price in Case of Symmetric Private Informa-

tion). Within the framework as in Example 2, we additionally introduce one

signal process y(t) satisfying

y(t) = f(t) + εy(t), t = 1, 2, and y(0) = 1,

where εy(t) is noise. All agents can access signal y as their private information.

Case 1. Let Quasi-EMM be the probability measure under which εD(1),

εD(2), εf(1), εf(2), εy(1) are independent standard normally distributed

N(0, 1). Then the price given by the following is valid,

S(1) = EQ [δ2| δ(1), S(1), y(1)] =
1

3
δ(1) +

1

3
y(1) +

1

3
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S(0) = EQ[δ(1) + δ(2)] = 2

Case 2. Let Quasi-EMM be the probability measure under which εf(1),

εD(1), εy(1), εf(2), εD(2) are jointly normally distributed with mean 0 and

covariance matrix 

1 3
4

1
2

0 0

3
4

1 1
4

0 0

1
2

1
4

1 0 0

0 0 0 1 0

0 0 0 0 1


.

Then the price given by the following is valid,

S(1) = EQ [δ2| δ(1), S(1), y(1)] =
1

2
δ(1) +

1

2

S(0) = EQ[δ(1) + δ(2)] = 2

In this example, we can see when there exists private information, either

case can happen: (i) the signal is incorporated into price as factor, and (ii)

price is very inefficient and reveals no private information.

Example 4 (Quasi-EMM and Price in Case of Asymmetric Private Informa-

tion). As in Example 3, we introduce not one but two signal processes y1(t)

and y2(t) satisfying

y1(t) = f(t) + ε1(t), t = 1, 2, and y1(0) = 1,

y2(t) = f(t) + ε2(t), t = 1, 2, and y2(0) = 1,

where εy(t) is noise. There are two agents in economy, agent 1 can access

signal y1, and agent 2 can access signal y2.
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Let Quasi-EMM be the probability measure under which εD(1), εD(2),

εf (1), εf (2), ε1(1), ε2(1) are independent standard normally distributedN(0, 1).

Then the price given by the following is valid,

S(1) = EQ [δ2| δ(1), S(1), y1(1)]

= EQ [δ2| δ(1), S(1), y2(1)]

=
1

4
δ(1) +

1

4
y1(1) +

1

4
y2(1) +

1

4

S(0) = EQ[δ(1) + δ(2)] = 2

In this example, price reflects aggregated private information.

1.7.2 Mis-pricing

Suppose we have a pricing kernel π and that its optimal projections on
individual information filtration are π(i)’s. Consider a derivative written by
agent w and it is traded at time 0. This derivative pays dividend δθ, where θ
is a trading strategy in L(w),S. That means the writer, agent w, can replicate
this derivative and that the value of this derivative is 0. Agent w want to sell
this derivative to other agents. The question is what would be the fair price
of this derivative for some agent i.

If θ ∈ L(i),S, agent i can replicate this derivative easily, and also the
consumption process c = e(i) + δθ cannot increase the utility of this agent i.
Thus agent i will not pay any positive price for this derivative.

If θ 6∈ L(i),S, agent i cannot reach this dividend with a trading strategy
based on her own information. Thus agent i will buy this derivative if the
consumption process c = e(i) + δθ can increase her maximum utility, that is,
U (i)(c) > U (i)(c(i)∗). The maximum price at which agent i will to pay will be
Π(i)(c)−Π(i)(c(i)∗). In this case, agent w is just taking advantage of better
information than agent i. The true value of this derivative is in fact 0, since
some agent can get this dividend without any cost. This mis-pricing can
be regarded as a bubble, since agents still want to buy this derivative even
though they know the price of this derivative is higher than its true value.

Example 5 (Mis-pricing due to Information Asymmetry). Let us consider a
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imprecise but illustrative example. Suppose there is one stock and its price

follows a geometric Brownian motion with the drive B(t). There is a bank

account with risk-free rate 1. Say there is a European option with maturity

time T and payoff (S(T )−K)+.

One agent w in market can observe {B(s) : s ≤ t} at any time t, then

agent A can perfect hedge this option, and the value is given by pw =

EQ[(S(T )−K)+]. Equivalently, the value of the derivative V paying dividend

pw − (S(T )−K)+ at time T is 0 for agent A.

However, another agent b can only observe {B̃(s) : s ≤ t} at time

t, where B̃(t) = B(t)1{a<B(t)<b}. Then at any time t, the volatility of S(T )

conditioned on σ(B̃(u) : u ≤ t) is larger that the volatility of S(T ) conditioned

on σ(B(u) : u ≤ t). Thus the value of the option for agent b, pb, is greater

than pw.

A trade may occur if agent w writes an option sell to be agent b at price

pw. In this case, although the price of the option is higher than its real value

pw for the writer, a trade can still be made.
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Chapter 2

Market Time Changes: Lévy Subornadition and Empirical Facts

2.1 Introduction

The asset price returns in financial market generally do not admit the normality
assumption as in many classic theory, such as Black-Scholes model. The
heavy-tailness of financial returns have been documented in many empirical
literature. As pioneered by Clark (1973), the relation between the trading
volume and the normality are studied in the subordinated process framework.
The normality as claimed by Clark (1973) can be recovered by view the
price process in the stochastic volume time. The stochastic time-changed
model is closely link to the concept of stochastic volatility model. The asset
price volatility exhibits time-varying and clustering effects. In discrete-time
model, the volatility clustering is modeled by Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) process. In continuous-time setting,
the stochastic volatility models are used. Here, one is prone to ask that
whether the non-Gaussian tail and clustering volatility is the consequence of
stochastic market trading activity.

These days the availability of high-frequency data makes it possible to
analyze the relation between the market events and the asset returns. It is
the fact that the asset price is driven by the trades made by every market
participants. The decision of the trades is triggered not by the chronological
timing but by the market events, i.e., the incremental of price reaching a
threshold or the bid-ask spread being small at some level. The asset price
is not chronological driven but event-driven. It implies that a better way to
measure time is to use to some market intrinsic measurement.

In this chapter, we first examine the one-dimensional asset return by using
a subordinated Brownian motion process with the market intrinsic time as
the subordinator. Note that these processes are pure jump processes. Then
we move to model the multivariate asset returns by assuming the dependency
among the marginal subordinators. In a continuous time model, roughly
speaking, the two pure jump process can only be dependent if they can
possibly jump together. Therefore, we adopt the factor-based multivariate

23



subordinator model as introduced in Luciano and Semeraro (2010). The
common jump is factorized in to contribute the dependency among marginal
asset returns. Unlike Luciano and Semeraro (2010), the explicit sample
subordinator processes are used to conduct empirical analysis.

2.2 Univariate stochastic time change

2.2.1 Preliminaries

Let (X(t))t≥0 be a Rd-valued Lévy process. The characteristic function of a
Lévy process can be expressed by its so-called Lévy triplet (A, ν, γ).

Theorem 3 (Lévy -Khinchin representation). Let (X(t)) be a Lévy process

on Rd with Lévy triplet (A, ν, γ). Then the characteristic function of X can

be written as

E
[
e〈u,X(t)〉] = etΨX(u), u ∈ Rd

with the characteristic exponent

Ψ(u) = −1

2
〈u,Au〉+ i〈γ, u〉+

∫
Rd

(ei〈u, x〉 − 1− i〈z, x〉1|x|≤1)ν(dx). (2.1)

A Lévy process is called a subordinator if it is a almost surely non-
decreasing.

Theorem 4 (Subordination of a Lévy Process). Given a fixed probability

space (Ω,F ,P). Let (X(t))t≥0 be a Lévy process on Rd with characteristic

exponent Ψ(u) and Lévy triplet (A, ν, γ). And let (G(t))t≥0 be a subordinator

with Laplace exponent l(u) and triplet (0, ρ, b). Then the process (Y (t))t≥0

defined for each w ∈ Ω by Y (t, ω) = X(G(t, ω), ω) is a Lévy process. And its

characteristic function is

E
[
eiuYt

]
= etl(Ψ(u)). (2.2)
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The triplet (AY , νY , γY ) of Y is given by

AY = bA, (2.3)

νY (B) = bν(B) +

∫ ∞
0

pXs (B)ρ(ds), ∀B ∈ B(Rd) (2.4)

γY = bγ +

∫ ∞
0

ρ(ds)

∫
|x|≤1

xpXs (dx), (2.5)

where pXt is the probability distribution of X(t).

The following thoerem shows that under some very general technical
conditions, a Lévy process can be expressed as a subordinated Brownian
motion process.

Theorem 5. let ν be a Lévy measure on R and µ ∈ R. There exist a Lévy

process (Y (t))t≥0 with Lévy measure ν such that Y (t) = B(G(t)) + µG(t) for

some subordinator (G(t))t≥0 and some Brownian motion (B(t))t≥0 independent

from G if and only if the following conditions are satisfied:

1. ν is absolutely continuous with density ν(x).

2. ν(x)e−µx = ν(−x)eµx for all x.

3. µ(
√
u)e−µ

√
u is a complete monotonic function on (0,∞).

2.2.2 Examples

Here are several commonly-used examples of subordinators.

Tempered stable subordinator

Let us consider a class of subordinator called tempered stable subordinator.
The Lévy measure of tempered stable subordinator, ρ, can be written by

ρ(x) =
c−λx

xα+1
1x>0, (2.6)
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where c and λ are positive constants and 0 ≤ α < 1. The Laplace exponent
of tempered stable subordinator in general case (0 < α < 1) is

l(u) = cΓ(−α) [(λ− u)α − λα] , (2.7)

and for α = 0

l(u) = −c log
(

1− u

λ

)
. (2.8)

Two special cases commonly used are

1. Gamma subordinator when α = 0.

2. Inverse Gaussian subordinator when α = 1/2.

Gamma subordinator

A Gamma subordinator G with parameter (λ, c) can characterized by its
Laplace transform

E
[
euG(t)

]
=
(

1− u

λ

)−ct
. (2.9)

The Lévy density is

ρ(x) =
ce−λx

x
1x>0. (2.10)

The value of G at time 1, G(1), follows a Gamma distribution. The probability
density function of G(1) is given by

fG(1)(x) =
λc

Γ(c)
xc−1e−λx. (2.11)

Let us denote W a Brownian motion independent of G. Then the sub-
ordinated Brownian motion Y = (W (G(t))) by the Gamma subordinator is
called Variance Gamma (VG) process. By letting the mean rate the Gamma
subordinator to be unit, the Variance Gamma process has three parameters:

• σ, the volatility of Brownian motion,

• θ, the drift of Brownian motion,
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• κ, the variance of the Gamma subordinator.

The characteristic exponent Ψ of a VG process Y with parameters (σ, θ, κ) is
given by

Ψ(z) = −1

κ
log

(
1 +

1

2
z2σ2κ− iθκz

)
. (2.12)

And the probability density function of Y (t) is given by

fY (t)(x) = C|x|
t
κ
− 1

2 eθx/σ
2

K t
κ
− 1

2
(B|x|), (2.13)

where K is the modified Bessel function of the second kind, and

B =
θ2 + σ2/κ

σ2
, C =

√
σ2κ

2π

(θ2κ+ 2σ2)
1
4
− θ

2κ

Γ(t/κ)
(2.14)

Inverse Gaussian subordinator

A Inverse Gaussian subordinator G with parameter (λ, c) can characterized
by its Laplace transform

E
[
euG(t)

]
= exp

(
−2ct

√
π(
√
λ− u−

√
λ)
)
. (2.15)

The Lévy density is

ρ(x) =
ce−λx

x3/2
1x>0. (2.16)

The value of G at time 1, G(1), follows a Gamma distribution. The probability
density function of G(1) is given by

fG(1)(x) =
ct

x3/2
e2ct
√
πλe−λx−πc

2t2/x. (2.17)

Let us denote W a Brownian motion independent of G. Then the subordi-
nated Brownian motion Y = (W (G(t))) by the Inverse Gaussian subordinator
is called Normal Inverse Gaussian (NIG) process. By letting the mean rate
the Inverse Gaussian subordinator to be unit, the NIG process has three
parameters as in VG case: (i) σ, the volatility of Brownian motion, (ii) θ, the
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drift of Brownian motion, and (iii) κ, the variance of the Inverse Gaussian
subordinator.

The characteristic exponent Ψ of a NIG process Y with parameters (σ, θ, κ)
is given by

Ψ(z) =
1

κ
− 1

κ

√
1 + z2σ2κ− 2iθκz. (2.18)

And the probability density function of Y (t) is given by

fY (t)(x) = Ceθx/σ
2K1(B

√
x2 + t2σ2/κ)√

x2 + t2σ2/κ
, (2.19)

where K is the modified Bessel function of the second kind, and

B =
θ2 + σ2/κ

σ2
, C =

t

π
et/κ
√

θ2

κσ2
+

1

κ2
(2.20)

Generalized Inverse Gaussian subordinator

A Generalized Inverse Gaussian (GIG) distribution is obtained by introducing
an additional parameter to inverse Gaussian distribution. The probability
density function of a GIG distribution with three parameters (λ, a, b) is given
by

f(x) =
(a/b)λ/2

2Kλ(
√
ab)

xλ−1e−
1
2

(ax+ b
x

)1x>0, (2.21)

where Kλ is modified Bessel function of the second kind with index λ.
The characteristic function of GIG distribution is

Ψ(u) =
1

Kλ(ab)

(
1− 2iu

b2

)−λ
2

Kλ

(
ab
√

1− 21ub−2
)
, (2.22)

where Kλ denotes the modified Bessel function of the third kind with index
λ.

Although GIG distribution is infinitely divisible, it is not closed under
convolution. As a static analog of Brownian subordination, generalized
hyperbolic (GH) model can be obtained by mixing the mean and variance of
a normal distribution. That is, GH distribution is a normal mean-variance
mixture of GIG laws,

µG+
√
GW, (2.23)

where W is a standard normal distribution. GH law is also infinite divisible.
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2.2.3 Market Intrinsic Time

Although physical time is the most nature measure for us to understand the
scheduling of dynamics or evolving, the market itself, as the complex system
which aggregates all the activities of human tradings and algorithmic tradings,
has its own internal clock. Market is driven by tradings. And tradings,
thinking as the activities in the exchanges and other platforms, is scheduled
not in a chronological manner, but event-based. Many trade activities react
not only to the physical time schedules but also events. Therefore it is nature
to consider to analyze the market behavior in a event-based time.

The market intrinsic time has been discussed for a long time. Mandelbrot
and Taylor (1967) and Clark (1970; 1973) started to investigate financial
series using a different time clock. Jones, Kaul and Lipson (1994) studied
the relation between asset price volatility and number of trades. And Ané
and Geman (2000) also provided a empirical analysis of the normality of the
asset returns under transaction time. Easley et al. (2012) discussed the use
of volume time, and further argued that the information contained in volume
can be used to identify informed trades. Transaction time and volume time
will be the two time measures for viewing financial series here.

The financial returns generally exhibit several stylish characteristics which
coincide with the properties of stochastic time changes (by transaction or
volume). The asset returns exhibit heavy-tailness and volatility clustering
when it is sampled by physical time. Also, the volatility are relatively higher
at the beginning and ending of the market hours in each day. This can be
caused by the event-based driver of the asset price. The price is driven by
trades, which is crowded at some time period. Also transactions and volumes
exhibits a seasonality pattern daily. They are more concentrated at the
beginning and ending hours every day.

2.2.4 Empirical Analysis

Data description

In this section we conduct the empirical tests against Lobster high frequency
data1. We select 5 stocks tick-by-tick data starting from 10/01/2013 to
09/20/2014, that is 252 trading days. The stocks include PFE, MSFT, GE,

1https://lobsterdata.com/
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GIS and C. The data include both visible trade and invisible trades. Therefore
time-changing by both visible volumes and invisible volumes are considered.

Basic characteristics and normality

The main statements are: when returns are sampled in market intrinsic time,

1. Do returns recover normal?

2. Can the volatility clustering effect be removed?

3. Do empirical variances of returns scale linearly?

Intraday Pattern

The five stocks generally exhibits the similar intraday seasonality pattern
of the market intrinsic time. As shown in Figure 2.1, during the beginning
and the ending of the market open hours, the speed of the market intrinsic
time is faster than physical one. And during the mid-day, market intrinsic
times eclipse slower. Figure 2.2 shows the intraday pattern of volatility. The
volatility in the first two market hours is significantly higher than the rest of
the day.

Normality

The asset returns are much more close to normal distribution when it
is sampled in market intrinsic time. Figure 2.3 and Figure 2.4 shows the
empirical distribution of the asset returns sampled in different time measures.
The qq-plots are shown in Figure 2.5. We can see that asset returns in physical
time exhibits more heavy-tailness than the ones in volume and transaction
time. However market intrinsic times do not fully recover the normality.

The discrepancy among the distribution of returns in volume time, visible-
volume time and transaction time are quite small. Including invisible traded
volume into time measurement does not recover extra normality in asset
returns.

The distance to the closest normal distribution of the asset returns are
shown in Table 2.1 and Table 2.2. From the Hellinger distance and total
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Figure 2.1: Intraday market intrinsic time seasonality pattern.

Physical Time (Half-hour)
1 2 3 4 5 6 7 8 9 10 11 12 13

V
ol

at
ili

ty

×10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
MSFT

Physical Time (Half-hour)
1 2 3 4 5 6 7 8 9 10 11 12 13

V
ol

at
ili

ty

×10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
C
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Figure 2.3: Empirical probability density of asset returns in different time

measures.
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Figure 2.4: Empirical CDF of asset returns in different time measures.
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Figure 2.5: QQ Plots of asset returns in different time measures.
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variance distance, we can clearly see that returns in the market intrinsic time
are much more closer to normality. The visible-volume time and all-volume
time have the similar distance to normal distribution. The transaction time
recovers the most normality.

Table 2.1: Distances to normal distribution, MSFT

Hellinger Total Variance K-S Statistic

Visible-Volume Time 0.068819 0.074262 0.496369

All Volume Time 0.069555 0.074938 0.496526

Transaction Time 0.055198 0.054044 0.496328

Physical Time 0.131942 0.144132 0.495722

Table 2.2: Distances to normal distribution, C

Hellinger Total Variance K-S Statistic

Visible-Volume Time 0.042037 0.033756 0.496283

All-Volume Time 0.045214 0.033718 0.496369

Transaction Time 0.044115 0.035834 0.496225

Physical Time 0.128710 0.139106 0.495373

GARCH Effect

Here we focus on the question how much the volatility clustering effects
add to the heavy-tailness of the asset returns. First likelihood ratio test are
conducted to check whether the returns in different time clock admit GARCH
model. The results are summerized in Table 2.3 and Table 2.4. For MSFT,
the asset returns in every time clock all admit GARCH model. For C, asset
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returns admit GARCH model except in all-volume time clock. More details
on the results from other stocks can be found in appendix.

Table 2.3: Likelihood-Ratio Test for GARCH(1,1) model, MSFT

H p-value Statistic

Visible-Volume 1 0.000 194.03

All-Volume 1 0.000 171.44

Transaction 1 0.000 123.68

Physical 1 0.000 415.33

Table 2.4: Likelihood-Ratio Test for GARCH(1,1) model, C

H p-value Statistic

Visible-Volume 1 0.000 46.67

All-Volume 0 0.161 3.65

Transaction 1 0.000 16.93

Physical 1 0.000 278.64

To obtain more idea on the contribution of GARCH effect to non-normality,
we also calculate the distance to normal distribution from the innovations
filtered by GARCH model. The results are shown in Table 2.5 and Table 2.6.
For the physical time case, the asset returns can achieve a better normality
by filtering from GARCH model. But for the market intrinsic time clock, the
normality is hardly improved by filtering returns from GARCH model. Also,
in term of normality recovery, filtering with GARCH model cannot recover as
same as change-of-time. It is not confirmed that time-changing by volume
or transaction clock removes volatility clustering effect. However it is clear
that the volatility clustering does not contribute no-Gaussian tails as much
as market time variation.

35



Table 2.5: Distances to closest distribution after GARCH(1,1) filtering, MSFT.

The number is parentheses are the improvement comparing to the distances

before GARCH filtering as in Table 2.1.

Hellinger Total Variance

Visible Volume 0.063059 (.005760) 0.064093 (.010169)

All Volume 0.065452 (.004103) 0.066555 (.008383)

Transaction 0.054010 (.001188) 0.048464 (.005580)

Physical Time 0.122227 (.009715) 0.129129 (.015003)

Table 2.6: Distances to normal distribution after GARCH(1,1) filtering, C.

The number is parentheses are the improvement comparing to the distances

before GARCH filtering as in Table 2.2.

Hellinger Total Variance

Visible Volume 0.044119 (-.002082) 0.032082 (-.008281)

All Volume 0.049152 (-.003938) 0.035807 (-.011496)

Transaction 0.044404 (-.000289) 0.034796 (-.008281)

Physical Time 0.123426 ( .005284) 0.129516 ( .010396)
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Table 2.7: Estimated parameters of Gamma subordinator.

MSFT C

λ c λ c

Volume 2.1099 0.4740 1.8009 0.5553

Visible-Volume 2.1225 0.4711 1.8258 0.5477

Transaction 2.3801 0.4202 2.0804 0.4807

Distribution of market time clock

The market intrinsic time subordinators are fitted into the parametric distri-
butions described in Section 2.2. We adopt maximum likelihood estimation
(MLE) method. All subordinators are normalized to unit expectation. That
is, for each subordinator G, E(G(1)) = 1. Table 2.7, 2.8 and 2.9 respectively
show the estimated parameters for Gamma, inverse Gaussian and generalized
inverse Gaussian subordinators. For the cases in fitting into GIG subordi-
nator that the parameter b is very close to 0 (< 10−6), GIG is practically
degenerated to the Gamma distribution.

The survival functions are shown in Figure 2.6, of which the zoomed-in
plots are shown in Fgireu 2.7 . The empirical distributions of market intrinsic
time start from Gamma law when t is near 0. And for very large t, it move
towards inverse Gaussian (IG) law.

2.3 Factor-based Multivariate Subordinator

2.3.1 Preliminaries

Theorem 6. Let G = (G1(t), G2(t), ..., Gn(t))t≥0 be a multivariate subordi-

nator with Lévy triplet (0, νG, γG). Let (X(t))t≥0 = (X1, ..., Xn) be a Lévy

process on Rn with independent marginal components and triplet (γX ,ΣX , νX),
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Table 2.8: Estimated parameters of Inverse Gaussian subordinator. The mean

parameter µ are normalized to be unit.

MSFT C

λ λ

Volume 0.1255 0.48270

Visible-Volume 0.1645 0.51181

Transaction 0.6824 0.75822

Table 2.9: Estimated parameters of Generalized Inverse Gaussian subordina-

tor.

MSFT C

λ a b λ a b

Volume 2.1103 4.2210 < 10−6 1.8009 3.6018 < 10−6

Visible-Volume 2.1229 4.2466 < 10−6 1.8262 3.6527 < 10−6

Transaction 2.3800 4.7601 < 10−6 2.0804 4.1609 < 10−6

38



t (in 15min)
0 5 10 15 20

lo
g(

1-
C

D
F

(t
))

-25

-20

-15

-10

-5

0
Volume Time

Empirical
Gamma
IG
GIG

t (in 15min)
0 5 10 15 20 25

lo
g(

1-
C

D
F

(t
))

-25

-20

-15

-10

-5

0
Volume Time

Empirical
Gamma
IG
GIG

t (in 15min)
0 5 10 15 20

lo
g(

1-
C

D
F

(t
))

-25

-20

-15

-10

-5

0
Visible Volume Time

Empirical
Gamma
IG
GIG

t (in 15min)
0 5 10 15 20

lo
g(

1-
C

D
F

(t
))

-35

-30

-25

-20

-15

-10

-5

0
Visible Volume Time

Empirical
Gamma
IG
GIG

t (in 15min)
0 2 4 6 8 10 12 14 16 18

lo
g(

1-
C

D
F

(t
))

-40

-35

-30

-25

-20

-15

-10

-5

0
Transaction Time

Empirical
Gamma
IG
GIG

(a) MSFT

t (in 15min)
0 2 4 6 8 10 12 14 16

lo
g(

1-
C

D
F

(t
))

-30

-25

-20

-15

-10

-5

0
Transaction Time

Empirical
Gamma
IG
GIG

(b) C

Figure 2.6: Survival functions of the distributions of the subordinators. The

left column is for MSFT. The right column is for C. The curves for Gamma

subordinator are overlapped with GIG ones.
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Figure 2.7: Survival functions of the distributions of the subordinators

(Zoomed-in). The left column is for MSFT. The right column is for C.

The curves for Gamma subordinator are overlapped with GIG ones.
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where ΣX = diag(σ1, ..., σn) and denote by ΨXi the characteristic function

of Xi. Let ρs be the distribution of X(s). Define the subordinated process

Y = (Y (t))t≥0 by

Y (t) = (X1(Gt(t)), X2(G2(t)), ..., Xn(Gn(t))), t ≥ 0. (2.24)

Then the process Y is a Lévy process and the characteristic function of Y is

E
[
ei〈u,Y (t)〉] = exp

(
tΨG(Log Ψ̂X(u))

)
, (2.25)

where ΨG is the characteristic exponent of G, and

Log Ψ̂X(u) = (log ΨX1(u), ..., log ΨXn(u)) .

Moreover, the Lévy triplet (ΣY , νG, γG) is given by

ΣY = diag(γG1 σ1, ..., γ
G
n σn), (2.26)

νY (B) = v(1)(B) + ν(2)(B), ∀B ∈ B(Rn\0), (2.27)

γY =

∫
Rn+
νG(ds)

∫
|x|≤1

xρs(dx) + (γG1 γ
X
1 , ..., γ

G
n γ

X
n )>, (2.28)

where γG = (γG1 , ..., γ
G
n ), γG = (γX1 , ..., γ

X
n ), and ν(1), ν(2) are defined by

ν(1)(0) = 0, ν(2)(0) = 0 and for B ∈ B(Rn\0) by

ν(1)(B) =

∫
Rn+
ρs(B)νG(ds), (2.29)

ν(1)(B) =

∫
B

γGi 1A1(x)νX1(dx) + ...+ γGi 1An(x)νXn(dx), (2.30)

where x ∈ R, νXj , j = 1, ..., n are the Lévy measures of the independent

marginal process of X and for j = 1, ..., n,

Aj =
{
x = (x1, ..., xn)> ∈ Rn : xk = 0 for k 6= j, k = 1, ..., n

}
.
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2.3.2 Subordination of Brownian Motions

One-factor multivariate subordinator

Let Xj, j = 1, ..., n and Z be independent subordinators. Xj, j = 1, ..., n are
individual subordinators, and Z is the common subordinator factor. Then
multivariate subordinator G = (G(t))t≥0 is defined by

G(t) = (X1(t) + α1Z(t), ..., Xn(t) + αnZ(t)) , (2.31)

where αj > 0, j = 1, ..., n. Let Ψj and ΨZ respectively denote the char-
acteristic exponents of the processes Xj and Z, namely, for u ∈ C and
<u ≤ 0,

Ψj(u) = ibjx+

∫
R+

(eiux − 1)νj(dx), (2.32)

ΨZ(u) = ibZx+

∫
R+

(eiux − 1)νZ(dx). (2.33)

Then the characteristic exponent ΨG of G is given by

ΨG(u) =
n∑
j=1

Ψj(uj) + ΨZ

(
n∑
j=1

αjuj

)
, u ∈ Cn with <u ≤ 0. (2.34)

From now on, we will only consider the subordinator processes Xj and Z
of zero drift term.

Marginal Specification

Gamma subordinator

Let Xj, for j = 1, ..., n, and Z all have Gamma subordinator, as follows,

Xj(1) ∼ Gamma

(
1

αj − a
, αj

)
, (2.35)

Z(1) ∼ Gamma (a, 1) , (2.36)

where the parameters should satisify

1

a
> αj > 0, j = 1, ..., n. (2.37)
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Then the marginal subordinators Gj = Xj + αjZ are also Gamma, with
distribution

Gj(1) ∼ Gamma(
1

αj
, αj), , j = 1, ..., n. (2.38)

Inverse Gaussian subordinator

Let Xj, for j = 1, ..., n, and Z all have IG subordinator, as follows,

Xj(1) ∼ IG
(
1− a√αj, αj

)
, (2.39)

Z(1) ∼ IG (a, 1) , (2.40)

where the parameters should satisfy

1
√
αj

> a > 0, j = 1, ..., n. (2.41)

Then the marginal subordinators Gj = Xj + αjZ are also IG, with
distribution

Gj(1) ∼ IG

(
1,

1
√
αj

)
, , j = 1, ..., n. (2.42)

Generalized Inverse Gaussian subordinator

In GIG case, it is impossible to have both Xj and Z distributed according
to GIG laws since GIG distribution family is note cosed under convolution.
Therefor we will assume Z is Gamma subordinator as

Z(1) ∼ Gamma

(
a,

1

2

)
, (2.43)

and Xj follows the form Xj(1) = Rj + Vj with

Rj ∼ GIG

(
−λ, a, 1

√
αj

)
, and, (2.44)

Vj ∼ Gamma

(
λ− a, 1

2αj

)
, (2.45)
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where Rj and Vj are independent. The parameters should satisfy

λ > a > 0, and αj > 0, j = 1, ..., n. (2.46)

Then the marginal subordinators Gj = Xj + αjZ are also IG, with
distribution

Gj(1) ∼ GIG

(
λ, δj,

1
√
αj

)
, j = 1, ..., n. (2.47)

Independent Brownian motion

Let Wj = (Wj(t))t≥0, j = 1, ..., n be n independent standard Brownian
motions, and let (W (t))t≥0 be

W (t) = (µ1t+ σ1W1(t), ..., µnt+ σnWn(t), µj ∈ R, σj > 0. (2.48)

Then the Lévy triplet of W is (µ,Σ, 0), where µ = (µ1, ..., µn) and Σ =
diag(σ1, ..., σn).

Now we consider the multivariate process Y generated by subordinating
W with G,

Y (t) =
(
µ1G1(t) + σ1W1(G1(t)), ..., µnGn(t) + σnWn(Gn(t))

)>
, (2.49)

with the subordinator G is independent of the Brownian motion W .
Then we can have that the characteristic function of the Lévy process Y

is

E
[
ei〈z,Y (t)〉] = exp (tΨG(logψW (z))) , (2.50)

where ψW is the characteristic function of W , and ΨG is the characteristic
exponent of G. The Lévy triplet (γY ,ΣY , νY ) of Y is given by

γY =

∫
Rn+
νG(ds)

∫
|x|≤1

xρs(ds), (2.51)

ΣY = 0, (2.52)

νY =

∫
Rn+
ρs(B)νG(ds), B ∈ B(Rn\0). (2.53)
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Dependent Brownian motion

In this section, we generalize the on-factor model from Section 3.2.1 by
allowing the Brownian motion W having dependent marginals. Denote by
W ρ the Brownian motion with correlation matrix ρ = (ρjk)j,k=1,...,n. Then
the Lévy triplet (µρ,Σρ, 0) is

µ = (µ1, ..., µn) (2.54)

Σρ = (σjσkρjk)j,k=1,...,n . (2.55)

Now we assume that the process Y ρ is combined with two components:
the individual movement and the common jumps with correlated jump size.
That is,

Y ρ(t) =

W1(X1(t)) +W ρ
1 (α1Z(t))

...
Wn(Xn(t)) +W ρ

n(αnZ(t)),

 (2.56)

Denote by Y ⊥(t) = (W1(X1(t)), ...,Wn(Xn(t))) the individual part, and
Y ‖(t) = (W ρ

1 (µ1Z(t)), ...,W ρ
n(µnZ(t)) the common jump part.

Then, we can have the characteristic function of Y ρ is given by

ψY ρ(t)(z) = ψY ⊥(t)(z)ψY ‖(t)(z). (2.57)

2.3.3 Linear Correlation

The correlation between subordinator margins can be given by the following
relation,

Cov(Gj(t), Gk(t)) = αjαk Var(Z(t)), (2.58)

Var(Gj(t)) = Var(Xj(t)) + α2
j Var(Z(t)). (2.59)

The correlation is simply

ρG(t)(j, k) =
αjαk Var(Z(t))√(

Var(Xj(t)) + α2
j Var(Z)

)
(Var(Xk(t)) + α2

k Var(Z))
. (2.60)

Then the variance and covariance between margins of the subordinated
process Y can be written by

Cov (Yj(t), Yk(t)) = µjµk Cov (Gj(t), Gk(t)) = µjµkαjαk Var(Z(t)), (2.61)
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and

Var(Yj(t)) = E [Var(Yj(t)|Gj(t))] + Var(E [Yj(t)|Gj(t)]) (2.62)

= σ2
jE[Gj(t)] + µ2

j Var(Gj(t)). (2.63)

Therefore, the correlations of Y are given by

ρY (t)(k, j) =
µjµkαjαk Var(Z(t))√
Var(Yj(t)) Var(Yk(t))

. (2.64)

Similarly, for the general case Y ρ, the linear correlation coefficients of Y ρ

can be written by

ρY ρ(t)(k, j) =
µjµkαjαk Var(Z(t)) + ρjkσjσj

√
αjαkE[Z(t)]√

Var(Y ρ
j (t)) Var(Y ρ

k (t))
. (2.65)

Since it is sufficient to characterize any Lévy process L by its law at time
1, hereafter we shall also use L denote the random variable L(1) when there
is no confusion. For example, Y ρ can denote either the process Y ρ or the
process at time 1, Y ρ ≡ Y ρ(1), depending on the context.

In this one-factor model, Y ρ, the linear correlation is provided from
two sources: (i) the common jumps Z in in subordinator G, and (ii) the
correlation of the jump size given by W ρ. With known distribution of
marginal subordinators, the parameter a serves as the level of common shock,
indicating the the common variance contributed to the variance of each
marginal. Therefore the range of a is limited by the minimal variance among
all marginal subordinator. For the case of independent Brownian motion,
Y (t), the linear dependency is only introduced by the common jumps. Thus
ρY (t) cannot reach 1 when the marginal subordinators have different variance.

Comparing to model the asset return by multivariate distributions, such
as multivariate general hyperbolic distribution, the advantages here are: First,
each marginal are allowed to have its own parameters. Second, it is able to
model independence.

The linear correlations for the specific marginal are given as follows.

Gamma marginal
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For the case of Gamma marginal subordinator, the correlation is given by

ρY ρ(j, k) = a ·
µjµkαjαk + ρjkσjσk

√
αjαk√

(σ2
j + µ2

jαj)(σ
2
k + µ2

kαk)
, (2.66)

with the constraint

0 < a < αj, j = 1, ..., n. (2.67)

Inverse Gaussian marginal

For the case of Inverse Gaussian marginal subordinator, the correlation is
given by

ρY ρ(j, k) = a ·
µjµkαjαk + ρjkσjσk

√
αjαk√(

σ2
j +

µ2j√
αj

)(
σ2
k +

µ2k√
αk

) , (2.68)

with the constraint

1
√
αj

> a > 0, j = 1, ..., n. (2.69)

2.3.4 Empirical Analysis

In this section, we mainly exhibit the empirical results on transaction market
clock since it recovers the most normality of asset returns. The more results
for other market times (volume and visible-volume) can be found in appendix.

The data used here are the same as in Section 2.4.1.

Summary statistics

The basic statistics and sample correlation coefficients of asset returns are
reported in Table 2.10 and Table 2.11. Similarly , for the time-changed returns
the sample moments are correlations are reported in Table 2.12 and Table
2.13.
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Table 2.10: Sample moments of original asset returns.

Mean (10−4) Std. Dev. Skewness Kurtosis

MSFT 0.2069 0.0020 -0.0861 11.1120

C -0.0172 0.0020 0.0882 9.1638

PFE -0.1640 0.0018 -0.0675 9.2125

GE -0.2062 0.0016 -0.4057 9.7757

GIS 0.1792 0.0018 0.0329 8.8859

Table 2.11: Sample correlation coefficients of original asset returns.

MSFT C PFE GE GIS

MSFT 1.0000

C 0.1876 1.0000

PFE 0.0362 0.0507 1.0000

GE 0.0469 0.0935 0.0439 1.0000

GIS 0.0452 0.0870 0.0691 0.0566 1.0000

Table 2.12: Sample moments of time-changed asset returns.

Mean (10−4) Std. Dev. Skewness Kurtosis

MSFT 0.2057 0.0020 -0.0944 4.5846

C -0.0318 0.0020 0.1061 4.2108

PFE -0.2715 0.0018 -0.1529 4.7207

GE -0.2197 0.0016 -0.0539 4.1403

GIS 0.0564 0.0018 -0.0702 6.6587
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Table 2.13: Sample correlation coefficients of time-changed asset returns.

MSFT C PFE GE GIS

MSFT 1.0000

C -0.0011 1.0000

PFE 0.0110 0.0041 1.0000

GE -0.0102 0.0182 -0.0121 1.0000

GIS 0.0139 -0.0120 0.0147 0.0152 1.0000

Estimation of dependency

Since the common jump is one contributor for the dependency, the marginal
subordinator processes are shown in Figure 2.8 in order to have a visual
impression of how the jumps cluster cross-sectionally.

In Table 2.14, we report the estimated parameters, αj’s, for the cases of
Gamma and IG marginal subordinators. The maximal possible value of the
common jump parameter a is dominated by the parameters of subordinators,
as shown in Table 2.15.

Table 2.14: The estimated parameters, αj’s, for specific distribution of

marginal subordinators.

MSFT C PFE GE GIS

Gamma 0.4202 0.4807 0.4704 0.5571 0.3072

IG 2.1474 1.7394 1.2923 6.9194 0.4870

To get the optimal value of a, we minimize the following error function
between sample correlation and the model correlation

J(a, ρ) = ‖ρ̂Y ρ − ρY ρ(a, ρ; µ̂, σ̂, α̂)‖F , (2.70)
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Figure 2.8: Sample marginal subordinator processes.

Table 2.15: The estimated parameters, αj’s, for specific distribution of

marginal subordinators.

maximal a

Gamma 0.3072

IG 0.4870
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where ‖ · ‖F is the Frobenius norm, ρ̂Y ρ is the sample correlation matrix
of the original asset returns, ρY ρ is the model correlation matrix, µ̂ and σ̂
respectively are the estimated mean and standard deviation of time-changed
asset returns, and α̂ are the estimated parameters of marginal subordinators.

The estimated model correlations are provided in Table 2.16 and Table
2.17. The errors are reported in Table 2.19 for each specifications. The
estimated correlations of W ρ is reported in Table 2.20 and Table 2.21.

The differences between sample and model correlation for the Gamma
case are reported in Table 2.18. And the differences for the IG case in every
entry are all very small (< 10−4).

Both Gamma marginal and IG marginal model fit the sample correlation
matrix very well. In the Gamma case, the common jump parameter a almost
reaches the it maximal possible value, which means common jump component
contributes the linear dependency almost as much as the maximum. But still
there is a relatively large difference between the sample correlation of (MSFT,
C) and the model correlation of the pair.

Note that the model correlation matrix has a as a common multiplier at
off-diagonal entries. And the maximal value of a is given by the vairances of
marginal subordinator. In some sense, a serves as a shrinkage parameter of
the correlation matrix.

Table 2.16: Estimated correlation matrix of the asset returns, Gamma case.

MSFT C PFE GE GIS

MSFT 1.0000

C 0.1378 1.0000

PFE 0.0362 0.0507 1.0000

GE 0.0469 0.0934 0.0439 1.0000

GIS 0.0452 0.0868 0.0690 0.0565 1.0000
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Table 2.17: Estimated correlation matrix of the asset returns, IG case.

MSFT C PFE GE GIS

MSFT 1.0000

C 0.1876 1.0000

PFE 0.0362 0.0507 1.0000

GE 0.0469 0.0935 0.0439 1.0000

GIS 0.0452 0.0870 0.0691 0.0566 1.0000

Table 2.18: Difference between sample and model correlation matrix of the

asset returns. Gamma Case.

MSFT C PFE GE GIS

MSFT 0

C -0.0498 0

PFE -0.0000 -0.0000 0

GE -0.0000 -0.0001 -0.0000 0

GIS -0.0000 -0.0002 -0.0001 -0.0001 0

Table 2.19: Estimated value of a, and the error.

a Error

Gamma 0.3069 0.0705

IG 0.2562 < 10−4
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Table 2.20: Estimated correlation of the underlying Brownian motion W ρ.

MSFT C PFE GE GIS

MSFT 1.0000

C 0.9990 1.0000

PFE 0.2651 0.3471 1.0000

GE 0.3157 0.5883 0.2792 1.0000

GIS 0.4096 0.7360 0.5917 0.4454 1.0000

Table 2.21: Estimated correlation of the underlying Brownian motion W ρ.

MSFT C PFE GE GIS

MSFT 1.0000

C 0.3789 1.0000

PFE 0.0851 0.1319 1.0000

GE 0.0480 0.1051 0.0567 1.0000

GIS 0.1724 0.3689 0.3399 0.1204 1.0000
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Chapter 3

Multivariate Log-Price-Volatility Model

3.1 Preliminary

3.1.1 Stationary Processes with Long-Range Dependence within

Semi-martingale Framework

In this section, we will give the construction of univariate semimartingales
with long-range dependence following the results in Barndorff-Nielsen and
Stelzer (2009) and Barndorff-Nielsen and Basse-O’Connor (2011).

A Quasi Ornstein-Uhlenbeck (QOU) processes (X(t)) is a process driven
by a measurable process (N(t)),

X(t) = X(0)− λ
∫ t

0

X(s)ds+N(t), t ∈ R, (3.1)

where λ is some positive real number. Thus the process X is a stationary
solution to the Langevin equation

dX(t) = −λX(t)dt+ dN(t). (3.2)

For a process Z with finite second moments, that is, Z is L2-process.
Denote by V (Z, t) = Var(Z(t)) the variance function of Z. In addition, if Z is
stationary, let R(Z, t) = Cov(Z(t), Z(0))) denote the autocovariance function
and let R̄(Z, t) = R(Z, 0) − R(Z, t) be the complementary autocovariance
function.

If Y is a L2-process and its autocovariance function R(Y, t) is regularly
varying at ∞ of order −α, 0 < α < 1, then Y is said to have long-range
dependence of order α. Recall that a function f : R→ R is regularly varying
at ∞ of index β ∈ R if, for t→∞,

f(t) ∼ tβl(t),

where l is slowly varying, i.e., for all a > 0,

lim
t→∞

l(at)/l(t) = 1.
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Let Z be a mean zero Lévy process with Lévy measure ν and Gaussian
component σ2. Then denote by I(ν, σ) the space of all g : R→ R, integrable
with respect to the Lebesgue measure on R and satisfying:∫ ∞

−∞

(
g2(s)σ2 +

∫ ∞
−∞

(|ug(s)|2 ∧ |ug(s)|)ν(du)

)
ds <∞. (3.3)

Let f : R → R be measurable on R, and f(x) = for x < 0. Suppose that
gt,f(x) := f(t− x)− f(−x), t ∈ R, is a function in I(ν, σ) for all t in R. A
QOU process X is constructed by the Langevin equation

dX(t) = λX(t)dt+ dNZ,f (t), (3.4)

where λ > 0, and (Nz,f (t)) is given by

NZ,f (t) =

∫ ∞
−∞

gt,f (s)dZ(s) =

∫ ∞
∞

(f(t− s)− f(−s))dZ(s). (3.5)

That is,

X(t) = X(0)− λ
∫ t

0

X(s)ds+NZ,f (t). (3.6)

Assume that for some η ∈ (−1,−1
2
),

1. f ′(t) exists for large t, and f ′(t) ∼ ctη for some c 6= 0, and

2. |f(t)| ≤ rtη for all t > 0 and some r > 0.

Then for t → ∞, R(X, t) = Cov(X(t), X(0)) ∼ D(c, η, λ)t2η+1 for some
positive constant D(c, α, λ). By setting α := −2η − 1, X(t) has a long-range
dependence of order α, 0 < α < 1.

Definition 10 (Semimartingale with long-range dependence (SLRD)). Let

Z be a Lévy process with zero mean, and

f(t) = fδ,H(t) := (δ ∧ t)H−
1
2 ,

for some δ > 0 and 1
2
< H < 1. Then

X(t) = X(0)− λ
∫ t

0

X(s)ds+

∫ ∞
−∞

[fδ,H(t− s)− fδ,H(−s)] dZ(s) (3.7)

is a semimartingale with long-range dependence of order α = 2− 2H.
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3.1.2 Multivariate Variance Gamma Model

In Equation 3.7, the driving process Z is a zero-mean Lévy process. In the
multivariate case of N dimension, we assume that

Z(t) = (Z1(t), ..., ZN(t))> (3.8)

is an N -dimensional zero-mean Lévy process. In order to capture the tail
dependencies in financial prices while keeping a relatively simple structure,
here we choose Z to be zero-mean Multivariate Variance Gamma (MVG) pro-
cess. Recall first Univariate Variance Gamma (VG) Process with parameters
(θ, σ, v) is given by the representation

Z(t) = θG(t) + σB(G(t)), (3.9)

where B = (B(t))t≥0 is standard Brownian motion, (G(t))t≥0 is Gamma
subordinator process independent of B with E(G(1)) = 1 and Var(G(1)) = v.
By letting a = θv, b = σ2v and c = v, we re reparametrize the univariate VG
process by (a, b, c), denoting as Z := V G(a, b, c). The characteristic funtion
of Z is now given by

ψV G(a,b,c)(t)(u) =

(
1

1− iau+ 1
2
bu2

)tc
.

Under the new parametrization, Z(t) = aG̃(t)+bB(G̃(t)), where B is standard

Brownian motion and G̃ is Gamma process with E(G(1)) = Var(G(1)) = c.
Note that for N independent VG processes Zj = V G(a, b, cj), j = 1, ..., N ,
we have

Z1(t) + ...+ ZN(t)
d
=V G(a, b, c1 + ...+ cN)(t).

N-dimensional VG process

Given N univariate VG processes Z̃i = V G(θi, σi, vi), i = 1, ..., N , a
multivariate VG (MVG) process Z = (Z1, ..., ZN) can be constructed with
the same marginals

Zi
d
= Z̃i, i = 1, ..., N,

and having the dependence structure given by

Zi = Ai + Yi, i = 1, ..., N. (3.10)
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where A = (Ai, ..., AN) is a N -dimensional process with dependent com-
ponents:

Ai(t) = θi
vi
v0

Gv0(t) + σi

√
vi
v0

Bi(Gv0(t)) (3.11)

d
=V G

(
θ
vi
v0

, σi

√
vi
v0

, v0

)
(t), i = 1, .., N, (3.12)

where B(t) = (B1(t), ..., BN (t)), t ≥ 0 is the standard N -dimensional Brown-
ian motion with dBi(t)dBj(t) = ρijdt, and Gv0 is Gamma process independent
of B with mean-variance parameters (1, v0), v0 ≥ ∨Ni=1vi; And Y = (Y1, ..., YN )
is a N -dimensional process with independent univariate VG marginal compo-
nents

Yi = V G

(
θi

(
1− vi

v0

)
, σi

√
1− vi

v0
,
viv0

v0 − vi

)
, i = 1, ..., N. (3.13)

Y is also independent from A. A is viewed as the common factor, while Y as
idiosyncratic terms.

The distributional tail dependence between Zi and Zj is relatively limited
as v0 ≥ ∨Ni=1vi. That is the maximal tail correlation will obtained when
v0 = ∨Ni=1vi. When vo → ∞, Zi and Zj become independent. The centeral
distributional dependence will be governed by the correlation coefficients ρij.

Most importantly, Z = (Z1, ..., ZN) is a a N -dimensional Lévy process,
with joint characteristic function given by, for u = (u1, .., uN) ∈ RN ,

ψZ(t)(u) =E
[
ei〈u,Z(t)〉] (3.14)

=

(
1− i

N∑
n=1

unθnvn +
1

2
uΣu>

)− 1
v0 N∏

n=1

(
1− iunθnvn +

1

2
σ2vnu

2
n

) 1
v0
− 1
vn

,

(3.15)

where Σ = (Σij)i,j=1,...,N is N ×N matrix with entries

Σii = σ2
i vi, (3.16)

Σij = σiσjρij
√
vivj for i 6= j. (3.17)

The correlation for Zi(t) and Zj(t) is given by

corr(Zi(t), Zj(t)) =
θiθjvivj + σiσjρij

√
vivj

v0

√
(θ2vi + σ2

i )(θ
2vj + σ2

j )
. (3.18)
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Now we can use MVG process Z̃ to generate the multivariate semitmartin-
gale with different order of long-range dependence for the marginal processes.
Let

fi(t) = fδ,Hi(t) = (δ ∧ t)Hi−
1
2 , i, ..., N, (3.19)

for some δ > 0 and 1
2
< Hi < 1. For each i = 1, ..., N , the processes Ri,

defined by

Ri(t) = Ri(0)− λi
∫ t

0

Ri(s)ds+

∫ ∞
−∞

(fi(t− s)− fi−s) dZi(s), (3.20)

is a semimartingale with long range dependence of order αi = 2− 2Hi. Then
the multivariate process R = (R1, ..., RN) is a N -dimensional semimartin-
gale, so-called Multivariate Roger Process. The increments R(t+ h)−R(t)
could have heavy-tailed and skewed distributions, with heavy-tailed copula
dependence.

3.1.3 Multivariate Lévy Processes with Long-Range Dependence

In section, we will further generalize the model following the results in
Barndorff-Nielsen and Stelzer (2013). The general model for Multivariate
Roger Process will be so-called Barndorff-Nielsen-Stelzer (BNS) process. A
BNS process R is generated by the following stochstic differential equation

dR(t) = a(t)dt+ b(ε(t−))dB(t) + ψ(dL(t)), R(0) = 0, (3.21)

where B = (B1, ..., BN) is standard N -dimensional Brownian motion, (L(t))
is N -dimensional Lévy process, ε is multivariate volatility process, and a, b, ψ
are some deterministic operators.

The goal here is to describe important cases when R(t) is multivariate
semimartingale with possibly different long-range dependence order in each
marginal. We start with some notations:

• RN,M , the space of real N,M matrices

• CN,M , the space of complex N,M matrices

• SN , the space of symmetric matrices in RN,N

• SN+ , the cone of positive definite matrices in RN,N
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• S̄N+ , the cone of positive semidefinite matrices in RN,N

• IN,N , the identity matrix in RN,N

• IN , the group of invertible matrices in RN,N

• LN , the space of linear operators from RN,N to RN

• LSN , the space of linear operators from SN to RN

• ς(A), the set of all eigenvalues of A ∈ CN,N

• 〈A,B〉RN,N = tr(A>B), the scalar product on RN,N

• 〈A,B〉CN,N = tr(A>B), the scalar product on CN,N

• vec : RN,N → RN2
, the bijective linear operator that stacks the columns

of a matrix below on other

• vech(A), for A ∈ SN , the vector consisting of the upper diagonal part
including the diagonal

• If L is a RM,N -valued Lévy process, A is a RK,M -valued Lévy pro-
cess, and A is a RN,L-valued Lévy process , then the matrix integral∫ t

0
A(s)dL(s)B(s) stands for an K × L matrix with (i, j) entry

M∑
p=1

N∑
q=1

∫ t

0

Aip(s)dLp,q(s)Bqj(s).

We next give the definition of multivariate stochastic volatility (MSV)
Ornsterin-Uhlenbeck (OU) process. Let

• (a(t)) be a predictable RN -valued process;

• L be a matrix subordinator, independent of the N -dimensional Brownian
motion (B(t)). That is, L is a RN,N -valued Lévy process which incre-
ments are positive semidefinite and let E (max (log ‖L(1)‖, 0)) <∞;

• A ∈ RN,N
− , the subspace of RN,N with elements Ã having ς(Ã) ⊂

(−∞, 0) + i(−∞,∞);
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• b : SN+ → RN,N be the continuous function , wich that b(x)b(x)> = x
for all x ∈ SN (A nature choice for B is the positive definite square
root);

• ψ ∈ LN .

Then R(t) = (R1(t), ..., RN(t))>, t ≥ 0, is said to be SVOU process with
parameters (a, b, ψ,A, L), or an SV OU(a, b, ψ,A, L)-process if

dR(t) = a(t)dt+ b(ε(t−))dB(t) + ψ(dL(t)), R(0) = 0, (3.22)

where ε is SN+ -valued OU process, that is, it is the unique stationary solution
to

dε(t) =
(
Aε(t−) + ε(t−)A>

)
dt+ dL(t). (3.23)

The solution of Equation 3.23 is

ε(t) =

∫ t

−∞
eA(t−s)dL(s)eA

>(t−s), t ≥ 0. (3.24)

The process ε is a mean reverting stochastic volatility positive definite ma-
trix process introducing stochastic dependence between marginals. ε increases
only with the jumps which represents random shocks to the volatilities and
the correlations. The leverage term ψ(dL(t)) correlated those volatility jumps
with the price jumps which constitutes the leverage effect.

Next we will give the definition of infinitely divisible independently scat-
tered random measure, shortly called, Lévy bases.1. Let BB(RN,N

− × R) be

the space of bounded Borel sets on the product space RN,N
− × R.

Definition 11 (Lévy basis). λ is a Lévy basis if

1. λ : RN,N
− ×R→ SN with λ(B) being a Borel set of SN for all B ∈ BB =

BB(RN,N
− × R);

2. for every B ∈ BB, λ(B) is infinitely divisible random matrix;

1See Barndorff-Nielsen, Shephard, Neil (2012)
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3. for every disjoint setsB1, ..., Bk in BB, the random mappings λ(B1), ..., λ(Bk)

are independent, k = 2, .3, ...;

4. for every sequence of disjoint sets B1, B2, ... in BB, such that its union

is also in BB then
∑∞

k=1 λ(Bk) exists almost surely and

∞∑
k=1

λ(Bk) = λ

(
∞∑
k=1

Bk

)

almost surely.

The Lévy basis λ is called Homogeneous (in time) and Factorizable (into
one underlying infinitely divisible distribution and one probability distribution
on RN,N

− ), if its characterisitc function has the form

E
(
ei〈u,λ(B)〉) = exp (φ(u)Π(B)) , (3.25)

for all u ∈ RN , B ∈ BB, where

1. Π = π × Leb, π is a probability measure on RN,N
− , and Leb is the

Lebeseque measure on R;

2. φ(u) is the log-characteristic function of an infinitely divisible distri-
bution on RN with Lévy triplet (g, S, ν), g ∈ RN , S ∈ SN+ , ν is a
Lévy measure, that is, a Borel measure on RN with ν({0}) = 0 and∫
RN (‖x‖2 ∧ 1)ν(dx) <∞. Thus φ(u) has the form:

φ(u) = iu>g − 1

2
u>Su+

∫
RN

(
exp(iu>x)− 1− iu>x1‖x‖≤1

)
ν(dx);

(3.26)

3. (g, S, ν, π) is the generating quadruple for the Lévy basis λ.

Now we introduce vector-valued Barndorff-Nielsen-Stelzer (BNS) processes,
knows as supOU processes as random mixture of OU processes where mixing
is over various mean reverting coefficients.
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Theorem 7 (BNS). Let λ be a RN -valued Lévy basis on RN,N
− × R with

generating quadruple (g, S, ν, π) satisfying∫
‖x‖>1

log(‖x‖)ν(dx) <∞, (3.27)

and assume there exist measurable functions ρ : RN,N
− → (0,∞) and κ :

RN,N
− → [1,∞) such that

‖As‖ ≤ κ(A)e−ρ(A)s ∀s ∈ R+, π-almost surely, (3.28)

and ∫
RN,N−

κ(A)2

ρ(A)
π(dA) <∞. (3.29)

Then the process (X(t))t∈R given by

X(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λ(dA, ds) (3.30)

is well defined for all t ∈ R and stationary. The distribution of Xt is infinitely

divisible with characteristic triplet (gX , SX , νX) given by

gX =

∫
RN,N−

∫
R+

(
eAsg +

∫
RN
x(1‖eAsx‖≤1 − 1‖x‖≤1)ν(dx)

)
ds π(dA), (3.31)

SX =

∫
RN,N−

∫
R+

eAsSeA
∗sds π(dA), (3.32)

νX(B) =

∫
RN,N−

∫
R+

∫
RN

1eAsx∈Bν(dx)ds π(dA) for all B ∈ B(RN). (3.33)

Specials Cases
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Let RN,N
−,Normal be the space of Gaussian distributed matrices A ∈ RN,N

with ς(A) ⊂ (−∞) + i(−∞,∞).

Case 1. Suppose π(RN,N
−,Normal) = 1, then (3.28)(3.29) are satisfied with

κ(A) = 1,

and
ρ(A) = −max(<(ς(A))).

Case 2. Suppose there are diagonalizable Ak, k = 1, ..., K in RN,N
− , such that

π({λAk, k = 1, ..., K, λ 6= 0}) = 1, (3.28)(3.29) are satisfied with

κ(A) ≡ c ≥ 1,

and
ρ(A) = −max(<(ς(A))).

We are ready now to give some examples of BNS process with long-range
dependence (LRD). Here by long-range dependence, it is understood as at
least for one i = 1, ..., N ,

∞∑
h=1

|Cov(Xi(h), Xi(0))| =∞. (3.34)

BNS Example 1.

Let λ be a Lévy basis with generating quadruple (g, S, ν, π) with ν satis-
fying ∫

RN
‖x‖2ν(dx) <∞,

and
π

d
=G(α, β)B,
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whereB is a fixed diagonalizable matrix in RN,N
− , andG(α, β) is aGamma(α, β)

distributed random variable with α > 1 and β > 0. That is, the density of
G(α, β) is given by

fG(α,β)(x) =
βα

Γ(α)
xα−1eβx, x ≥ 0.

Then the process X, given by

X(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λ(dA)ds, t ∈ R (3.35)

is a BNS process (and thus stationary and infinite divisible).
Furthermore,

Cov(X(h), X(0)) = − βα

α− 1
(βIN −Bh)1−αB−1(S) +

∫
RN
xx>ν(dx), (3.36)

where B : RN,N → RN,N given by

B(A) = BA+ AB>.

Thus for α ∈ (1, 2), X exhibits LRD.

BNS Example 2.

This is an extension of BNS Example 1, when π is concentrated on
several rays: let wi, i = 1, ...,m be positive weights, with total sum 1 and fix

diagonalizable Bi ∈ RN,N
− , i = 1, ...,m. Let πi

d
=G(αi, βi)Bi where G(αi, βi)

is a Gamma(αi, βi)-distributed random variable with αi > 1 and βi > 0. Let
ν be as Example 1 with ∫

RN
‖x‖2ν(dx) <∞,

and let

π =
m∑
i=1

wiπi.

Then the process

X(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λ(dA)ds, t ∈ R (3.37)
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is a BNS process with

Cov(X(h), X(0)) = −
m∑
i=1

wiβ
αi
i

αi − 1
(βiIN −Bih)1−αiB−1

i

(
S +

∫
RN
xx>ν(dx)

)
,

(3.38)

where B : RN,N → RN,N given by

Bi(A) = BiA+ AB>i .

Thus if for at least one i, αi ∈ (1, 2), X exhibits LRD.

BNS Example 3.

Let λ be a Lévy basis with generating quadruple (g, S, ν, π) with ν satis-
fying

∫
RN ‖x‖

2ν(dx) <∞. Let π be a measure on the space DN,N− of N ×N
diagonal matrices with strictly negative entries on the diagonal, thus identi-
fied as a measure on (−∞, 0)N . And let π have a probability density with
independent marginals

π(da1, ..., daN) =
N∏
i=1

πi(dai), ai < 0, i = 1, ..., N,

with (−πi)
d
=G(αi, βi)Bi andG(αi, βi) is aGamma(αi, βi)-distributed random

variable with αi > 1 and βi > 0, i = 1, ..., N .
Then the process

X(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λ(dA)ds, t ∈ R (3.39)

is a BNS process. It is stationary and infinitely divisible. The autocovariance
function of the i-th component can be written as

Cov(Xi(h), Xi(0)) =
βαii

2(αi − 1)
(βi + h)1−αi

(
Sii +

∫
R
x2
i νi(dxi)

)
, (3.40)

and thus we have LRD in i-th components if αi ∈ (1, 2).
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3.1.4 Matrix-valued Lévy Processes

In this section, we give the definition of a matrix-valued Lévy basis and
matrix-valued BNS process, which will be stationary and infinitely divisible.

Let BB(RN,N
− × R) be the space of bounded Borel sets on the product

space RN,N
− × R. The the space

LBM = LBM
(
RN,N
− × R,SN

)
of all random mappings from RN,N

− × R to SN .
Lévy basis will be defined as follows.

Definition 12 (Matrix-valued Lévy basis). λM ∈ LBM is a matrix-valued

Lévy basis if

1. λM(B) is a Borel set of SN for all B ∈ BB;

2. λM(B) is an infinitely divisible random matrix for every B ∈ BB;

3. for every set of disjoint sets B1, ..., Bk in BB, the random mappings

λM(B1), ..., λM(Bk) are independent, k = 2, 3, 4...;

4. for every sequence of disjoint sets B1, B2, ... in BB, such that its union

is also in BB, then
∑∞

k=1 λM(Bk) exists almost surely and

∞∑
k=1

λM(Bk) = λM

(
∞∑
k=1

Bk

)
almost surely.

The Lévy basis λM ∈ LB is called Homogeneous (in time) and Factoriz-
able (into one underlying infinitely divisible distribution and one probability
distribution on RN,N

− ), if its characteristic function has the form

E(exp(i tr(uMλM(B)))) = exp(φM(uM)Π(B)), for all uM ∈ SN , B ∈ BB.
(3.41)

where
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1. Π = π × Leb, π is a probability measure on RN,N
− , and Leb is the

Lebesgue measure on R;

2. φM(uM) is the log-characteristic function of an infinitely divisible dis-
tribution on SN with Lévy triplet (gM, 0, νM), gM ∈ SN , νM is a Lévy
measure on SN , that is a Borel measure on SN with νM(0) = 0 and∫

SN
(‖x‖2 ∧ 1)νM(dx) <∞,

and thus ψM(uM) has the form

ψM(uM) = i tr(uMgM) +

∫
SN

(
ei tr(uMgM) − 1

)
νM(dx); (3.42)

3. (gM, νM, π) is the generating triplet for the matrix-value Lévy basis λM.

For a given λM ∈ LBM, we can define a matrix-valued Lévy process LM(t),
t ∈ R, as follows

1. LM(0) = 0;

2. LM(t, AM) = λM(AM × (0, t]), t > 0, for any measure rectangle AM ×
(0, t) ∈ BB with AM being a Borel set in RN

− ;

3. LM(t, AM) = λM(AM × (t, 0]), t < 0, for any measure rectangle AM ×
(t, 0] ∈ BB with AM being a Borel set in RN

− .

Thus LM has a Lévy triplet (gM, 0, νM) and will be called λM Lévy process.
We next construct a BNS stochastic volatility model. To this end, we

shall reformulate Theorem 7 (construction of BNS process) for matrix-valued
BNS process.

A N ×N matrix-valued Lévy basis λM ∈ LBM will be identified by the
vec(λM), which is a RN2

-valued Lévy basis given by vec(λM)(B) = vec(λM(B))
for every Borel set on RN,N . Recall that vec is a Hilbert space isometry
between RN,N (equipped with the scalar product) and RN2

(equipped with
the Euclidean scalar product).

Matrix-valued Barndorff-Nielsen-Stelzer (BNS) processes can be con-
structed by the following theorem.
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Theorem 8 (BNS matrix-value process). Let λM ∈ LBM be Lévy basis with

generating triplet (gM, νM, π), where νM takes non-zeros values only on the

space of positive definite matrices SN+ and∫
‖x‖>1

log(‖x‖)νM(dx) <∞. (3.43)

Let ρ : RN,N
− → (0,∞) and κ : RN,N

− → [1,∞) be measurable functions such

that

‖As‖ ≤ κ(A) exp(−ρ(A)s), ∀s ∈ R+, π − almost surely, (3.44)

and ∫
RN,N−

κ(A)2

ρ(A)
π(dA) <∞. (3.45)

Then the process Y = (Y(t))t∈R, given by

Y(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λM(dA, ds)eA

>(t−s), (3.46)

is well-defined for all t ∈ R. Furthermore, Y is stationary infinitely divisible

matrix process with log-characteristic function

log
(
E
(
ei tr(uMY(1))

))
= i tr(uMgY) +

∫
RN,N−

(exp(i tr(uMx)− 1)νY(dx)) , uM ∈ RN,N
−

(3.47)

where

gY =

∫
RN,N−

∫ ∞
0

eAsgMe
A>sds π(dA), (3.48)

νY(B) =

∫
RN,N−

∫ ∞
0

∫
SN+

1exp(As+A>s)∈BνM(dx)ds π(dA), ∀B ∈ B(SN).

(3.49)

We call Y λM-underlying BNS Lévy process.
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Specials Cases

Let RN,N
−,Normal be the space of Gaussian distributed matrices A ∈ RN,N

with ς(A) ⊂ (−∞) + i(−∞,∞).

Case 1. Suppose π(RN,N
−,Normal) = 1, then (3.44)(3.45) are satisfied with

κ(A) = 1,

and
ρ(A) = −max(<(ς(A))).

Case 2. Suppose there are diagonalizable Ak, k = 1, ..., K in RN,N
− , such that

π({λAk, k = 1, ..., K, λ 6= 0}) = 1, (3.44)(3.45) are satisfied with

κ(A) ≡ c ≥ 1,

and
ρ(A) = −max(<(ς(A))).

We are ready now to give some examples of BNS process with long-range
dependence (LRD). Here by long-range dependence, it is understood as at
least for one i = 1, ..., N ,

∞∑
h=1

|Cov(Yii(h),Yii(0))| =∞. (3.50)

Matrix-valued BNS Example 1.

Let λM ∈ LB be a Lévy basis with generating triplet (gM, νM, π), where
νM takes non-zeros values only on the space of positive definite matrices and∫

‖x‖≥1

log(‖x‖)νM(dx) <∞,
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and π
d
=G(α, β)B for a fixed diagonalizable B ∈ RN,N

− , and G(α, β) is a
Gamma(α, β)-distributed random variable with α > 1, β > 0. Then the
process

Y(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λM(dA, ds)eA

>(t−s), t ∈ R, (3.51)

is a BNS matrix-valued process. Furthermore, the auto-covariance function is

Cov(vec(Y(h)), vec(Y(0))) =− βα

α− 1

[
βIN2 − (B ⊗ IN + IN ⊗B)h

]1−α
B−1

(∫
SN
vec(x)vec(x)>νM(dx)

)
,

(3.52)
where B : RN2,N2 → RN2,N2

defined by

B(A) = (B ⊗ IN + IN ⊗B)A+ A(B> ⊗ IN + IN ⊗B>).

Thus, for α ∈ (1, 2), Y exhibits long-range dependence.

Matrix-valued BNS Example 2.

This is an extension of Matrix-valued BNS Example 1, when π is concen-
trated on several rays: let wi, i = 1, ...,m be positive weights, with total sum

1 and fix diagonalizable Bi ∈ RN,N
− , i = 1, ...,m. Let πi

d
=G(αi, βi)Bi where

G(αi, βi) is a Gamma(αi, βi)-distributed random variable with αi > 1 and
βi > 0. Let νM be as Example 1 with∫

RN
‖x‖2νM(dx) <∞,

and let

π =
m∑
i=1

wiπi.

Then the process

Y(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λM(dA, ds)eA

>(t−s), t ∈ R (3.53)
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is a BNS matrix-valued process with

Cov(vec(Y(h)), vec(Y(0))) =−
m∑
i=1

wiβ
αi
i

αi − 1
(βiIN2 − (Bi ⊗ IN + IN ⊗Bi)h)1−αi

B−1
i

(∫
SN
vec(x)vec(x)>ν(dx)

)
,

(3.54)
where B : RN2,N2 → RN2,N2

defined by

B(A) = (B ⊗ IN + IN ⊗B)A+ A(B> ⊗ IN + IN ⊗B>).

Thus if for at least one i, αi ∈ (1, 2), X exhibits LRD.

Matrix-valued BNS Example 3.

Let λM ∈ LBM be a Lévy basis with generating triplet (gM, νM, π) with
νMM satisfying

∫
‖x‖≥1

log(‖x‖)ν(dx) <∞. Let π be a measure on the space

DN,N− of N×N diagonal matrices with strictly negative entries on the diagonal,
thus identified as a measure on (−∞, 0)N . And let π have a probability density
with independent marginals

π(da1, ..., daN) =
N∏
i=1

πi(dai), ai < 0, i = 1, ..., N,

with (−πi)
d
=G(αi, βi)Bi andG(αi, βi) is aGamma(αi, βi)-distributed random

variable with αi > 1 and βi > 0, i = 1, ..., N .
Then the process

Y(t) =

∫
RN,N−

∫ t

−∞
eA(t−s)λ(dA)ds, t ∈ R (3.55)

is a BNS process. It is stationary and infinitely divisible. The autocovariance
function of the i-th component can be written as

Cov(Yii(h),Yii(0)) =

(
βi
2

)αi
2(αi − 1)

(
βi
2

+ h

)1−αi ∫
R
x2
i νi(dxi), (3.56)

and thus we have LRD in i-th components if αi ∈ (1, 2).
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3.2 Multivariate LPV Model

Denote the price process of n securities S = (S(t)) by

S(t) = (S1(t), ..., S(n, t)), t ≥ 0. (3.57)

Let the dynamics of S be determined by a N = 2n dimensional mean reverting
BNR process

R(t) = (R1(t), ..., RN(t)), t ≥ 0, (3.58)

with the first n components denote the log-price process, that is,

Ri(t) = log(Si(t)), t ≥ 0, i = 1, ..., n, (3.59)

and the second n components describe the dynamics of the price log-volatility,

Ri+n(t) = Vi(t), t ≥ 0, i = 1, ..., n. (3.60)

Thus R(t) = (logS1(t), ..., logSn(t), V1(t), ..., Vn(t)) is called log-price log-
volatility (LPV) process. The joint dynamics of log-price and price volatility
is determined by the N -dimensional mean reverting BNS process on R

dR(t) = a(t)dt+ b(ε(t−))dB(t) + ψ(dL(t)), R(0) = 0, (3.61)

where

1. B(t) = (B1(t), ..., BN(t)) is standard N -dimensional Brownian motion;

2. a(t) is a predictable RN -valued process;

3. λM ∈ LBM is Lévy basis with generating triplet (gM, νM, π), independent
of (B(t)), satisfying the conditions in Theorem 8;

4. L(t) is the underlying BNS Lévy process defined as in Theorem 8;

5. ψ : SN → RN is a linear operator from SN to RN .;

6. b : SN+ → RN,N is a continuous mapping, such that x = b(x)b(x)>;

7. ε is mean reverting stochastic volatility matrix process, given by,

ε(t) =

∫
RN,N−

∫ t

−∞
exp(A(t− s))λM(dA, ds) exp(A>(t− s)), t ≥ 0.

(3.62)

Then R(t) follows a BNS stochastic volatility model with leverage with
parameters (a, b, ψ, gM, νM, π).
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3.2.1 Stochastic Volatility Model with Leverage Effect

In this section we give an example of mean reverting joint log-price and price
volatility stochastic volatility model with leverage effect.

Let k ∈ N, Σ ∈ SN,N+ and let M be a k × N random matrix with i.i.d.
standard normal entries. Then the matrix

WN =
√

ΣMM>
√

Σ

is said to be Wishart distributed with parameters k,N and Σ, denoted by

WN
d
= WishartN(k,Σ).

We next define a compound Poisson Matrix Subordinator (PMS) with
intensity Λ > 0 and i.i.d. WishartN(k,Σ) distributed jumps, denoted by
PMSΛ,WN (t). The resulting multivariate stochastic volatility model is called
OU-Wishart (OUW) model, introduced in Karbe, Pfaffel, and Stelzer (2012).

The multivariate LPV model is constructed by

dR(t) = a(t)dt+ b(ε(t−))dB(t) + ψ(dL(t)), t ≥ 0, R(0) = 0, (3.63)

with the specifications

1. B is standard N -dimensional Brownian motion;

2. a(t) = ã+ b̃(ε(t)) with ã ∈ RN , b̃ ∈ LSN ;

3. ψ ∈ LSN ;

4. b(ε(t)) =
√
ε(t);

5. (L(t)) is the independent of B matrix Lévy OUW subordinator, that is,

L(t)
d
= PMSΛ,WN (t).

Thus

dR(t) = (ã+ b̃(ε(t−)))dt+
√
ε(t−)dB(t) + ψ(dL(t)), (3.64)

dε(t) = (Aε(t) + ε(t)A>)dt+ dL(t), (3.65)

where A ∈ RN,N is a real matrix.
Note that the covariance matrix process ε(t) provides a stochastic correla-

tions among the log-price and price volatilities in R. ε(t) is mean reverting
and increases only with jumps, representing the arrivals of new information,
resulting in positive or negative shocks in correlations. The leverage effect is
obtained since the shocks ψ(dL(t) is correlated with the jumps in ε(t).
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3.2.2 Multivariate LPV with Leverage Effect and Heavy-tailed

Distribution

We will further introduce heavy-tailedness in each component of the LPV
process R(t) by replacing the Gaussian random matrix with Variance Gamma
(VG) matrix with independent but not identically distributed entries.

Recall the definition of univariate Variance Gamma (VG) random variable:
Z is a VG random variable with parameters θ, σ, v, denoted by (V G)(θ, σ, v),
if Z has the normal mean-variance mixture representation

Z = θG+ σ
√
GW,

where W is standard normal random variable, G is independent of W Gamma
random variable E(G) = 1 and Var(G) = v. By letting a = θv, b = σ2v and
c = v, we re reparametrize the univariate VG process by (a, b, c), denoting as
Z := V G(a, b, c). The characteristic funtion of Z is now given by

ψV G(a,b,c)(t)(u) =

(
1

1− iau+ 1
2
bu2

)tc
.

Under the new parametrization, Z(t) = aG̃(t) + bW (G̃(t)), where W is stan-

dard Brownian motion and G̃ is Gamma process with E(G(1)) = Var(G(1)) =
c. Note that for N independent VG processes Zj = V G(a, b, cj), j = 1, ..., N ,
we have

Z1(t) + ...+ ZN(t)
d
=V G(a, b, c1 + ...+ cN)(t).

Let k ∈ N, Σ ∈ SN,N+ and let M be a k × N random matrix with
independent Variance Gamma (VG) entries

Mij = Zij
d
=V G(Aij, Bij, Cij) (3.66)

where A,B and C be the k ×N matrices with entries (Aij), (Bij) and (Cij)
respectively, i = 1, ..., k, j = 1, ..., N . Then the matrix

WVG =
√

ΣMM>
√

Σ

is said to be Wishart distributed with parameters k,N,Σ, A,B,C, denoted
by

WVG
d
= WishartVG(k,N,Σ, A,B,C). (3.67)
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We next define a compound Poisson matrix Subordinator (PMS) with
intensity Λ > 0 and i.i.d. WishartVG(k,N,Σ, A,B,C) distributed jumps,
denoted by

PMSΛ,WVG
(t), t ≥ 0. (3.68)

The resulting multivariate LPV model is given by

dR(t) = (ã+ b̃(ε(t)))dt+
√
ε(t)dB(t) + ψ(dL(t)), (3.69)

with ε(t) is the covariance process of OU-type with values in SN satisfying

dε(t) = (Aε(t) + ε(t)A>)dt+ dL(t), (3.70)

where (L(t)) is the independent of (B(t)) Matrix-valued Lévy subordinator,
and in this case

L
d
= PMSΛ,WVG

. (3.71)

The subordinator L is called a OU-type Wishart-VG (OUW-VG) subordinator.
And this stochastic volatility model will be called OU-Wishart-VG (OUW-VG)
model.

3.2.3 Multivariate LPV with Leverage Effect, Heavy-tailedness

and LRD

We start with the multivariate volatility model as in the previous example:

dR(t) = (ã+ b̃(ε(t)))dt+
√
ε(t)dB(t) + ψ(dL(t)), (3.72)

dε(t) = (Aε(t) + ε(t)A>)dt+ dL(t), (3.73)

L
d
= PMSΛ,WVG

. (3.74)

Then we borrow the LRD construction in Matrix-valued BNS Example 2.
Let wi, i = 1, ...,m be positive weights with total sum 1, and fix diago-

nalizable Ai ∈ RN,N
− , i = 1, ...,m, and let πi

d
=G(αi, βi)Ai with G(α, βi) a

Gamma(αi, βi) distributed random variable with αi > 1 and βi > 0. Let
π =

∑m
i=1 πiwi. Then ε(t), t ≥ 0, is a BNS matrix-valued process, and thus
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stationary and infinitely divisible. Furthermore, the auto-covariance function
is

Cov(vec(ε(h)), vec(ε(0))) = −
m∑
i=1

C(i)
wiβ

αi
i

αi − 1
(βiIN2 − (Bi ⊗ IN + IN ⊗Bi)h)1−αi ,

(3.75)

with some constants C(i), i = 1, ...,m. Thus, long-range dependence is
modeled in

1. the log-price covariances,

2. the covariances among log-prices and price volatilities,

3. the covariances between price volatilities.

3.2.4 Multivariate LPV with Extended LRD in Leverage Effect

In this model, we will extend the LRD to the leverage effect from previous
model. We start with the multivariate stochastic volatility model given in
previous section

dR(t) = (ã+ b̃(ε(t)))dt+
√
ε(t)dB(t) + ψ(dL(t)), (3.76)

dε(t) = (Aε(t) + ε(t)A>)dt+ dL(t), (3.77)

L
d
= PMSΛ,WVG

. (3.78)

Next we will impose LRD structure on the OUW-VG subordinator L.
Let Z = L − E(L) be the zero-mean centralized subordinator, that is,

Z(t) = (Zij(t))i,j=1,...,N with

Zij(t) = Lij(t)− E(Lij(t)). (3.79)

For each (i, j), let

fij(t) := (δ∧)Hij−
1
2 ,

for some δ > 0 and 1
2
< Hij < 1. Then

Xij(t) = Xij(0)−
∫ t

0

Xij(s)ds+ |int∞−∞ (fij(t− s)− fij(−s)) dZij(s),

(3.80)
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is a semimartingale with long range dependence of order 2− 2Hij.
Now by replacing L = E(L) + Z with

L̂ = E(L) +X, (3.81)

we have L̂ is a matrix semimartingale with entries L̂ij exhibiting long-range
dependence of order 2− 2Hij. The LPV process now has the LRD dynamics

dR(t) = (ã+ b̃(ε(t)))dt+
√
ε(t)dB(t) + ψ(dL̂(t)), (3.82)

with ε(t) is the covariance process of OU-type with values in SN+ satisfying

dε(t) = (Aε(t) + ε(t)A>)dt+ dL̂(t). (3.83)

Due to the leverage term ψ(dL̂(t)), we have introduced in R(t) long-range
dependence in leverage effect. If ψ = 0, our model will have LRD in covariance
process ε(t).

3.3 Estimation of Multivariate LPV process

3.3.1 Specification

We start with parameters estimation in Section 3.2.1, mean reverting joint
log-price and price volatility (LPV) model with leverage effect. Recall that in
our multivariate LPV model, the LVP process is given by

R(t) =

(
log

S1(t)

S1(0)
, ..., log

Sn(t)

Sn(0)
, V1(t), ..., Vn(t)

)
, (3.84)

with S(t) = (S1(t), ..., Sn(t)) denotes the price process, and V (t) = (V1(t), ..., Vn(t))
denotes the price-log-volatility, that is,

Vi(t) = log Vi(t), (3.85)

where Vi(t) is the integrated volatility process. Namely, dVi(t) is the standard
deviation of the i-th stock return d(logSi(t)) in (t, t+dt]. The joint dynamics
of LPV is determined by N -dimensional mean-reverting process R satisfying

dR(t) = (a+ b(ε(t)))dt+
√
ε(t)dB(t) + ψ(dL(t)), (3.86)
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where ε(t) is the covariance process of OU type with valued in SN+ with
dynamics given by

dε(t) = (Aε(t) + ε(t)A>)dt+ dL(t). (3.87)

In Equation (3.86)(3.87),

1. B is standard N -dimensional Brownian motion;

2. a ∈ RN , b ∈ LSN ;

3. ψ ∈ LSN ;

4. (L(t)) is the independent of B matrix Lévy subordinator, that is a SN -
valued Lévy process such that all the process increments L(t)−L(s), t >
s ≥ 0 have values in the space SN+ . The log-characteristic function of
the subordinator L(t), t ≥ 0 is given by, for M ∈ SN+ ,

log ΦL(M) = logE
(
ei tr(ML(t))

)
= i tr(gLML(t)) +

∫
SN+

(exp(i tr(MA))− 1) ν(dA)
(3.88)

where gL ∈ SN+ , and νL is a Lévy measure on SN which is non-zero only on
SN+ , and ∫

‖A‖≤1,A∈SN
(‖A‖)νL(dA) <∞. (3.89)

Given the matrix subordinator L and the matrix A ∈ RN,N , the covariance
process ε(t), t ≥ 0 is defined as the strong unique solution of the SDE (3.87),
given by

ε(t) = eAtε(0)eA
>t +

∫ t

0

eAtdL(s)eA
>(t−s). (3.90)

We now borrow few definitions and results from [KMS]. By use of (3.90),
we can obtain a close form expression for the realized volatility

εrealized(t) :=

∫ t

0

ε(s)ds (3.91)
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= P−1
(
ε(t)− ε(0)− L(t)

)
, (3.92)

where P : SN+ → SN+ is a invertible operator given by

P(M) = AM +M>A. (3.93)

Consider now that the risk premium parameter b and the leverage operate
ψ in (3.86) have a special diagonal form: for M ∈ SN , M = (Mij)i,j=1,...,N ,

b(M) = (b(M)1, ..., b(M)N)> = (b1M1,1, ..., bNMNN)> (3.94)

for some (b1, ..., bN)> ∈ RN , and

ψ(M) = (ψ(M)1, ..., ψ(M)N)> = (ψ1M1,1, ..., ψNMNN)> (3.95)

for some (ψ1, ..., ψN )> ∈ RN . Then the marginal dynamics of R(t) is given by(
Ri(tj), 0 ≤ tj, j = 1, ..., J

) d
=(

aitj + biεrealized(tj) +

∫ tj

0

√
εii(s)dBi(s) + ψi(L(tj)), 0 ≤ tj, j = 1, ..., J

)
.

(3.96)
Now let us consider the special case when A is diagonal. Then the i-th

marginal of R(t) has finite distribution given by(
Ri(tj), 0 ≤ tj, j = 1, ..., J

) d
=(

aitj + biεrealized(tj) +

∫ tj

0

√
εii(s)dBi(s) + ψi(L(tj)), 0 ≤ tj, j = 1, ..., J

)
,

(3.97)
where εii is given by

dεii(t) = (2Aiiεii(t))dt+ dLii(t). (3.98)

The parameters in the model (3.97)(3.98) can be estimated by using
the multivariate characteristic method by fitting the sample characteristic
function to the theoretical one

Φ(R(t),ε(t))(r, ε) := E
(
exp(r>R(t) + tr

(
ε>ε(t))

))
, t ≥ 0 (3.99)

for r ∈ RN , ε ∈ RN,N . Then the parameters can be determined by minimizing
the error

∆(Φ̂,Φ) := sup
|(r,ε)|≤1

∣∣∣Φ̂(R(t),ε(t))(r, ε)− Φ(R(t),ε(t))(r, ε)
∣∣∣ (3.100)
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Note that the closeness of ∆(Φ̂,Φ) to zeros will guarantee the closeness of
sample mixed moments (of nay order) to the corresponding theoretical mixed
moments.

The characteristic function Φ in Equation (3.99) have a explicit form

log Φ(R(t),ε(t))(r, ε) =i
[
r>(R(0) + at) + tr

(
R(0)U(t,P , ε)

)
+ tr

(
R(0)M(t,P , r)

)]
+

∫ 1

0

log ΦL

(
U(s,P , ε) + Ψ(r) +M(s,P , r)

)
ds,

(3.101)
where

1. P is the invertible operator from SN+ to SN+ , given by P(M) = AM +
M>A;

2. P∗ is the invertible adjoint to P operator, P∗ : SN+ → SN+ ,

P∗(M) = A>M +MA;

3. U(t, A, ε) := exp(tA>)ε exp(tA);

4.

M(t, A,P , r) := etA
>P−∗

(
b∗(r) +

i

2
rr>
)
etA − P−∗

(
b∗(r) +

i

2
rr>
)
,

(3.102)

where b∗ is the adjoint operator of b.

5. Ψ(r) = (Ψ(r)ij)i,j=1,...,N , with entries

Ψ(r)ij = 0, for i 6= j, and (3.103)

Ψ(r)ii = ψirii. (3.104)

One-Asset Log-Price-Volatility (LPV) Example.

In the case of one asset, that is n = 1, N = 2, and

R1(t) = log S(t) := X(t), the log-price process, (3.105)
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R2(t) = V (t), the log-cumulative volatility. (3.106)

The LPV process R = (X, V ) is assumed to follow the bivariate stochastic
volatility model

dR(t) =

(
dX(t)
dV (t)

)
=

((
aX
aV

)
−
(
bXεXX(t)
bV εV V (t)

))
dt

+

√(
εXX(t) εXV (t)
εXV (t) εV V (t)

)(
dBX(t)
dBV (t)

)
+

(
ΨXXdLXX(t) ΨXV dLXV (t)
ΨXV dLXV (t) ΨV V dLV V (t)

)
,

(3.107)

where

d

(
εXX(t) εXV (t)
εXV (t) εV V (t)

)
=

(
2AXεXX(t) (AX + AV )εXV (t)

(AX + AV )εXV (t) 2AV εV V (t)

)
dt

+

(
dLXX(t) dLXV (t)
dLXV (t) dLV V (t)

)
.

(3.108)

We will use, however, an equivalent to (3.107)(3.108), slightly re-parameterized
model

dR(t) =

(
dX(t)
dV (t)

)
=

((
aX
aV

)
− 1

2

(
bXεXX(t)
bV εV V (t)

))
dt

+

√(
εXX(t) εXV (t)
εXV (t) εV V (t)

)(
dBX(t)
dBV (t)

)
+

(
ΨXXdLXX(t) ΨXV dLXV (t)
ΨXV dLXV (t) ΨV V dLV V (t)

)
,

(3.109)

where

d

(
εXX(t) εXV (t)
εXV (t) εV V (t)

)
=

[(
cX 0
0 cV

)
+

(
2AXεXX(t) (AX + AV )εXV (t)

(AX + AV )εXV (t) 2AV εV V (t)

)]
dt

+

(
dLXX(t) dLXV (t)
dLXV (t) dLV V (t)

)
.

(3.110)
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The initial values of the above model (3.109)(3.110) are

R(0) =

(
X(0)
V (0)

)
=

(
0
0

)
, (3.111)

ε(0) =

(
εXX(0) εXV (0)
εXV (0) εV V (0)

)
=

(
εXX,0 εXV,0
εXV,0 εV V,0

)
:= ε0, (3.112)

where ε0 is a 2 × 2 positive definite matrix. Then the constraints on the
parameters of model (3.109)(3.110) are

cX ≥ 0, cV ≥ 0, AX < 0, AZ < 0, and ,(
ΨXX ΨXV

ΨXV ΨV V

)
∈ R2,2.

We will then follow the model in Section 3.2.1: mean-reverting joint LPV
stochastic vlarility model with leverage effect. Let

Σ =

(
ΣXX ΣXV

ΣXV ΣV V

)
(3.113)

is a 2 × 2 positive definite matrix, and let M be a 2 × 2 matrix with i.i.d.
standard mornal entries. Then the matrix

WN :=
√

ΣMM>
√

Σ (3.114)

is Wishart distributed WN
d
= Wishart2(2,Σ).

The density function of WN =

(
WXX WV X

WV X WV V

)
is given by

fWN (w) =
1

4|Σ|π
|w|−

1
2 2−

1
2
tr(Σ−1w), (3.115)

where |Σ| is the deteminant of Σ. The mean and variance of WN are given
by

E(WN ) = 2Σ, (3.116)

Var(WN ) = 2

(
2Σ2

XX ΣXV + ΣXXΣV V

ΣXV + ΣXXΣV V 2Σ2
V V

)
. (3.117)
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And the characteristic function of WN is, for ∀Θ ∈ S̄2
+,

E
(
ei tr(Θ

>WN )
)

= |I − 2iΘΣ| . (3.118)

Then we can define the compound Poisson Matrix Subordinator (PMS)

L(t) =

(
LXX(t) LXV (t)
LXV (t) LV V (t)

)
(3.119)

with intensity Λ > 0 and i.i.d Wishart2(2,Σ)-distributed jumps, denoted by
PMSΛ,WN (t), t ≥ 0.

The closed form of the moment generating function (m.g.f) of the bivariate
LPV process R(t), as in (3.107)(3.108) with specific subordinator (3.119), is
given as follows. For t ≥ 0, the m.g.f of R(t) is

MR(t)(z) = E
(
ez
>R(t)

)
, for z =

(
zX
zV

)
∈ C2,

when the expectation exists,

logMR(t)(z) =tz>a+ tr
(
ε(0)M(t, A,P , z)

)
+

∫ t

0

tr
(
cM(s, A,P , z)

)
ds

+ Λ

∫ t

0

1∣∣I − 2M(t, A,P , z) + Ψ̃(z)Σ
∣∣ds− Λt,

(3.120)
where

a =

(
aX(t)
aV (t)

)
, c =

(
cX(t) 0

0 cV (t)

)
, Ψ̃(z) =

(
ΨXXzX ΨXV zX
ΨXV zV ΨV V zV

)
.

We further simplify the model by letting A be a diagonal matrix

A =

(
AX 0
0 AV

)
=

(
κ 0
0 κ

)
. (3.121)

Then we can obtain the closed-form m.g.f MR(t)(z). Set

B := B(z,Σ) =
1

4κ

(
z2
X − zX zXzV
zXzV z2

V − zV

)
Σ, (3.122)

C := C(Ψ, z,Σ) =

(
ΨXXzX ΨXV zX
ΨXV zV ΨV V zV

)
Σ, (3.123)
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b0 := 1 + 4|B − C|+ 2tr(B − C), (3.124)

b1 := −8|B|+ 4tr(B)tr(C)− 4tr(BC)− 2tr(B), (3.125)

b2 := 4tr(B), (3.126)

D :=
√

4b0b2 − b2
1. (3.127)

Consider two cases D 6= 0 and D = 0. For D 6= 0, we have

logMR(t)(z) =tz>a+
(
e2κt − 1

)
tr

(
ε(0)

1

4κ

(
z2
X − zX zXzV
zXzV z2

V − zV

))
+

1

4κ

(
cX(z2

X − zX) + cV (z2
V − zV )

)( 1

2κ

(
e2κt − 1

)
− t
)

+
Λ

2κb0

{
b1

D

[
arctan

(
2b2 + b1

D

)
− arctan

(
2b2e

2κt + b1

D

)]
+

1

2
log

(
b0 + b1 + b2

b0 + b1e2κt + b2e4κt

)}
+ Λt

(
1

2b0

− 1

)
.

(3.128)
For D = 0, we have

logMR(t)(z) =tz>a+
(
e2κt − 1

)
tr

(
ε(0)

1

4κ

(
z2
X − zX zXzV
zXzV z2

V − zV

))
+

1

4κ

(
cX(z2

X − zX) + cV (z2
V − zV )

)( 1

2κ

(
e2at − 1

)
− t
)

+
Λ

2κb0

[
b1

2b2e2κt + b1

− b1

2b2 + b1

+
1

2
log

(
b0 + b1 + b2

b0 + b1e2κt + b2e4κt

)]
+ Λt

(
1

2b0

− 1

)
.

(3.129)
To sum up, this model (3.107)(3.108)(3.119)(3.121) has 12 parameters

P :=

{(
aX
aV

)
,

(
ΨXX ΨXV

ΨXV ΨV V

)
,

(
cX 0
0 cV

)
, κ,Λ,

(
ΣXX ΣXV

ΣXV ΣV V

)}
, (3.130)

where
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1. a =

(
aX
aV

)
is the logterm instantaneous mean return for R(t) =

(
X(t)
V (t)

)
;

2. Ψ =

(
ΨXX ΨXV

ΨXV ΨV V

)
is the mixing leverage effects;

3. c =

(
cX 0
0 cV

)
is the logterm mean of the instantaneous change dε(t)

in the covariance matrix ε(t) =

(
εXX(t) εXV (t)
εXV (t) εV V (t)

)
;

4. κ is the mean-reverting parameter of the covariance matrix;

5. Λ and Σ =

(
ΣXX ΣXV

ΣXV ΣV V

)
are the parameters of L(t), the PMSΛ,WN

subordinator with intensity Λ > 0 and i.i.d Wishart2(2,Σ)-distributed
jumps.

3.3.2 Estimation

Sample Integrated Volatility

Given sample price process S(t), t ≥ 0, the integrated volatility over the
period [t− 1, t] is estimated by the sample realized volatility

σ̂h(t) =
h∑
s=1

r2

(
t− 1 +

s− 1

h
, t− 1 +

s

h

)
, (3.131)

where r(t− δ, t) is the log return of the price S(t) over the period (t− δ, t],

r(t− δ, t) = log(S(t))− log(S(t− δ)).

For notation simplicity, let r(t) := r(t− 1, t).

Estimation Procedure

The sample values of the LPV process R(t) = (X(t), V (t))>, t = 0, ..., T
is given by

R̂h(t) =

(
X̂(t)

V̂h(t)

)
:=

( ∑t
s=0 r(s)

log
∑t

s=0 σ̂h(s).

)
(3.132)
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Now we consider a mesh on the upper-left part of unit disk,

zk,j =

(
zX,k,j
zV,k,j

)
=

(
1
k

cos(j π
2J

)
1
k

sin(j π
2J

)

)
, k = 1, ..., K, j = 0, ..., J (3.133)

Then the sample log-m.g.f is given by, for every fixed k = 1, .., K, j = 1, ..., J ,

M̂R̂τ ,T
(zk,j) = log

(
1

T

T∑
t=1

exp
(
δX̂(t)zX,k,j + δV̂h(t)zV,k,j

))
, (3.134)

where δ is the difference operator δX(t) = X(t)−X(t− 1).
For a parameter set P =

{
a,Ψ, c, κ,Λ,Σ

}
, and fixed k = 1, ..., K, j =

1, ..., J , the theoretical log-m.g.f. is

MR(zk,j;P) := log
(
MR(1)(zk,j)

)
, (3.135)

where MR(t)(z) is defined as in (3.128)(3.129).

The goal of estimation is to find the optimal P̂ =
{
â, Ψ̂, ĉ, κ̂, Λ̂, Σ̂

}
such

that the error function

K∑
k=1

J∑
j=0

(
M̂R̂τ ,T

(zk,j)−MR(zk,j;P)
)2

(3.136)

is minimized.

3.3.3 Results

We select 5 stocks Lobster high-frequency data starting from 10/01/2013 to
09/20/2014, that is 252 trading days. The stocks include PFE, MSFT, GE,
GIS and C. The prices of the stock is given by the mid price instead of the
transaction price in order to avoid microstructure noises.

The sampling time interval is chosen to be 1 minute, and h = 30. The
sample process R̂h(t) as in (3.132) is shown in Figure 3.1. We fit each stock
price process to the one-asset LPV model as described in previous section.
The estimated parameter are shown in Table 3.1.
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Figure 3.1: Sample LPV processes.

87



T
ab

le
3.

1:
E

st
im

at
ed

P
ar

am
et

er
s

of
on

e-
as

se
t

L
P

V
p
ro

ce
ss

.
τ

=
30

m
in

,
an

d
th

e
sa

m
p
li
n
g

in
te

rv
al

is
1m

in
.

a
Ψ

c
κ

Λ
Σ

M
S
F

T

 0.
00

21

0.
00

29

 
 0.

14
59

−
0.

25
93

−
0.

25
93

0.
87

31

 
 0.

05
13

0

0
0.

05
94

 
-4

.2
32

8
1.

57
26

e-
04

 0.
77

70
0.

04
69

0.
04

69
0.

59
91

 

C

 0.
00

10

0.
00

17

 
 0.

14
12

−
0.

24
04

−
0.

24
04

0.
88

36

 
 0.

02
34

0

0
0.

03
21

 
-4

.2
42

0
7.

52
52

e-
05

 0.
78

08
0.

04
36

0.
04

36
0.

60
87

 

P
F

E

 0.
00

21

0.
00

35

 
 0.

14
96

−
0.

23
47

−
0.

23
47

0.
87

84

 
 0.

05
22

0

0
0.

06
80

 
-4

.2
41

0
1.

65
46

e-
04

 0.
76

62
0.

04
43

0.
04

43
0.

61
03

 

G
E

 0.
00

10

0.
00

34

 
 0.

00
36

−
0.

11
97

−
0.

11
97

0.
86

00

 
 0.

02
43

0

0
0.

05
92

 
-4

.2
44

2
8.

87
04

e-
05

 0.
77

97
0.

00
10

0.
00

10
0.

69
6

 

G
IS

 0.
00

02

0.
00

10

 
 0.

60
69

−
0.

48
08

−
0.

48
08

0.
51

37

 
 0.

00
59

0

0
0.

01
48

 
-3

.9
17

0
2.

28
20

e-
05

 0.
80

92
0.

01
70

0.
01

70
0.

00
78

 

88



3.4 Option Pricing and Calibration

3.4.1 Equivalent Martingale Measure

For a price process S(t) = (S1(t), ..., Sn(t)), 0 ≤ t ≤ T , and the log integrated
volatility process V (t) = (V1(t), ..., Vn(t)), 0 ≤ t ≤ T , consider the LPV model
as in (3.84)(3.86)(3.87)

R(t) =

(
log

S1(t)

S1(0)
, ..., log

Sn(t)

Sn(0)
, V1(t), ..., Vn(t)

)
,

dR(t) = (a+ b(ε(t)))dt+
√
ε(t)dB(t) + ψ(dL(t)),

dε(t) = (c+ Aε(t) + ε(t)A>)dt+ dL(t).

Denote the discounted price process by e−rtS(t), t ≥ 0 for a given constant
interest rate r. Then as in Karbe, Pfaffel, and Stelzer (2012) (Theorem 2.10),
we have

Theorem 9 (Martingale Conditions). The discounted price process e−rtS(t), 0 ≤

t ≤ T is a martingale if and only if, for all i = 1, ..., n,∫
‖X‖>1,X∈SN+

eψi(X)νL(X) <∞, (3.137)

(3.138)

and

bi(X) =
1

2
Xii, ∀X ∈ SN+ , (3.139)

ai = r −
∫
SN+

(
eψi(X) − 1

)
νL(dX). (3.140)

The existence of Equivalent Martingale Measure (EMM) is given by the
following theorem as in Karbe, Pfaffel, and Stelzer (2012) (Theorem 2.11).

Theorem 10 (Structure Preserving EMM). Let y : Sn+ → (0,∞) such that∫
Sn+

(√
y(X)− 1

)2

νL(dX) <∞, and, (3.141)
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∫
‖X‖>1,X∈SN+

eψi(X)νyL(dX) <∞, (3.142)

where

νyL(B) :=

∫
B

y(X)νL(dX), for B ∈ B(Sn+).

Define the RN -valued process Θt, 0 ≤ t ≤ T by

Θt = −ε(t)−
1
2

a+ b(ε(t)) +
1

2


ε11(t)

...

εnn(t)

 +


∫
Sn+(eψ1(X)−1)νyL(dX)

...∫
Sn+(eψn(X)−1)νyL(dX)

− 1r

 ,

(3.143)

where 1 = (1, ..., 1)> ∈ Rn. Then we have

Z = E

(∫ ·
0

Θ(s)dW (s) + (y − 1) ∗ (µL − ρL)

)
(3.144)

is a density process, and the probability measure Q defined by dQ
dP = ZT is

an equivalent martingale measure. Moreover, WQ := W −
∫ ·

0
Θ(s)ds is a

Q-standard Brownian motion, and L is an independent driftless Q-matrix

subordinator with Lévy measure νyL. The dynamics of R under Q is given by

dRi(t) =

(
r −

∫
Sn+

(
eψ1(X) − 1

)
νyL(dX)− 1

2
εii(t)

)
dt+

(√
ε(t)dB(t)

)
i
+ ψi(dL(t)),

(3.145)

dε(t) = (c+ Aε(t) + ε(t)A>)dt+ dL(t). (3.146)

3.4.2 Specification and Pricing

One-Asset European Option Pricing
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The price of an option with payoff f(R(T )− s) is given by the following
theorem.

Theorem 11. For a fixed α ∈ RN , let g(x) := e〈α,x〉f(x) for x ∈ RN . Assume

that

g ∈ L1 ∩ L∞, ΦR(T )(α) <∞,

and

w 7→ ΦR(T )(α + iw), w ∈ L1,

where Φ is the characteristic funtion. Then

EQ [e−rTf(R(T )− s)
]

=
e−〈α,s〉−rT

(2π)N

∫
RN
e−i〈u,s〉ΦR(T )(α + iu)f̃(iα− u)du,

(3.147)

where f̃ is the Fourier transform of f .

Now consider the one-asset case of LPV model as in Section 3.3.1, and an
European option with payoff f(S(T )) = (S(T )−K)+. The Fourier transform
of f is

f̃(z) =
K1+iz

iz(1 + iz)
, (3.148)

for z ∈ C with =(z) > 1. Then we only need the transforms of the marginal
model. That is,

logE[ezXX(t)] =tzXaX +
e2κt − 1

4κ

(
z2
X − zX

)
εXX(0) (3.149)

+
1

4κ
cX(z2

X − zX)

(
1

2κ

(
e2at − 1

)
− t
)

(3.150)

+
Λ

2κb0

log

(
b0 + b1

b0 + b1e2κt

)
(3.151)

+ Λt

(
1

2b0

− 1

)
, (3.152)
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where

b0 = 1 +

(
1

2a1

(z2
X − zX)− 2ΨXXzX

)
ΣZZ − 2ΨXV zV ΣXV , (3.153)

b1 = − 1

2κ
(z2
X − zX)ΣXX . (3.154)

3.4.3 Calibration and Results

We will use prices of S&P500 index call options at 2015-09-04, in total
179 options. We calibrate the on-asset LPV model as in Section 3.3.1 by
minimizing the root mean of squared error (RMSE) between Black-Scholes
implied volatility by market prices and model prices. That is,

RMSE =

√√√√ 1

N

N∑
i=1

[
σBS(Ci)− σBS(Ĉi(P))

]2
, (3.155)

where N is the number of options, Ci, i = 1, ..., N are the prices of the options,
σBS(C) denotes the Black-Schole implied volatility by price C, and Ĉi(P)
denote the model calculated option price given parameters P .

The calibrated parameters are provided in Table 3.2. The corresponding
RMSE is 0.0013. The comparison of market price implied volatilities and
model price implied volatilities are shown in Figure 3.2.

Table 3.2: Calibrated Parameters of one-asset LPV process.

ΨXX σXV cX κ Λ ΣXX ΣXV

-4.9749 1.4390 0.7279 -20.0825 0.9444 0.0002 0.0053
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Appendix A

Proofs

A.1 Proposition 1

Proof. By use of Hyperplane Separating Theorem.

A.2 Corollary 1

Proof. M (i),S is a subspace of M for any i ∈ I.

A.3 Theorem 2

Proof. Let π be a quasi state-price deflator, then we define the equivalent

probability measure Q by

dQ

dP
:= ξ(T ) =

R(0, T )π(T )

π(0)
,

Considering a trading strategy θ that invests one unit at time t in risk-

free account and then hold it until time T . That is, θ(t) · S(t) = 1, and

δθ(T ) = R(0, T ). Note that θ ∈ L(i),S for all i ∈ I. Thus, we have, for any

i ∈ I,

π(i)(t) = EP
[
π(i)(T )R(t, T )

∣∣F (i)
t ∨ Gt

]
= EP

[
π(T )R(t, T )

∣∣F (i)
t ∨ Gt

]
= EP

[
π(0)ξ(T )

R(0, T )
R(t, T )

∣∣F (i)
t ∨ Gt

]
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=
π(0)

R(0, t)
EP
[
ξ(T )

∣∣F (i)
t ∨ Gt

]
=

π(0)

R(0, t)
EP
[
EP [ξ(T ) |Ft]

∣∣F (i)
t ∨ Gt

]
=

π(0)

R(0, t)
EP
[
ξ(t)

∣∣F (i)
t ∨ Gt

]
=

π(0)

R(0, t)
ξ(i)(t).

Then we have,

S(t) =
1

π(i)(t)
EP

[
T∑

j=t+1

π(i)(j)δ(j)
∣∣F (i)

t ∨ Gt

]

=
R(0, t)

ξ(i)(t)
EP

[
T∑

j=t+1

ξ(i)(j)

R(0, j)
δ(j)

∣∣F (i)
t ∨ Gt

]

=
1

ξ(i)(t)
EP

[
T∑

j=t+1

ξ(i)(j)

R(t, j)
δ(j)

∣∣F (i)
t ∨ Gt

]

=
1

EP
[
ξ(T )

∣∣F (i)
t ∨ Gt

]EP

[
T∑

j=t+1

ξ(T )

R(t, j)
δ(j)

∣∣F (i)
t ∨ Gt

]

= EQ

[
T∑

j=t+1

1

R(t, j)
δ(j)

∣∣F (i)
t ∨ Gt

]
.

Therefore, Q is a quasi-EMM. Note that all of the derivations above are

two-way, it completes the proof.

A.4 Proposition 5

Proof. Suppose there exists an arbitrage strategy θ ∈ L(i),S, that is δθ > 0.

And denote by c∗ the the solution of the optimization problem (1.1) for agent

i given S. Let θ∗ be one of the optimal strategies, that is, c∗ = e + δθ
∗
.
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Then construct another strategy by θ′ = θ∗ + θ. We have c′ = e + δθ
′

=

e+ δθ
∗

+ δθ = c∗ + δθ > c∗. Since U is strictly increasing, U (i)(c′) > U (i)(c∗).

Contradiction.

A.5 Corollary 2

Proof. Since there is no arbitrage, X(i),S is bounded, that is, 0 ≤ c ≤ e for all

c ∈ X(i),S. Continuous utility function can reach the maximum on X(i),S.

A.6 Proposition 6

Proof. First-Order Condition implies that

0 = EP

[
T∑
t=0

π(t)δθ(t)

]

= EP

[
T∑
t=0

EP
[
π(t)δθ(t)

∣∣F (i) ∨ Gt
]]

= EP

[
T∑
t=0

π(i)(t)δθ(t)

]
.

Let τ be an arbitrary stopping time such that τ ≤ T and {τ ≤ t} is F (i)
t ∨Gt-

measurable. Define the trading strategy θ by, for some asset l, θk(t) = 0 for

all k 6= l, t ∈ T , and

θl(t) =

 1, for t < τ,

0, for t ≥ τ,

where θk denotes the weight invested in asset k. Note that θ ∈ L(i),S. Now

we can have

EP

[
−Sl(0)π(i)(0) +

τ∑
t=1

π(i)(t)δl(t) + π(i)(τ)Sl(τ)

]
= 0.
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That means the deflated gain process of asset l defined by

Gl(t; π) = π(i)(t)Sl(t) +
t∑

j=1

π(i)(j)δl(j)

is a martingale with respect to the filtration {F (i) ∨ Gt}.

A.7 Proposition 7

Proof. Let π(i) be the state-price deflator obtained by Proposition 6, i ∈ I,

and let

A =
{
π :∃α(2) > 0, ..., α(n) > 0, such that, for i = 2, ..., n,

the optimal projection of π onto {F (i)
t ∨ Gt}t∈T is α(i)π(i)

}
.

Suppose ∀π ∈ A, ∀α(1) > 0, the optimal projection of π onto {F (i)
t ∨ Gt}t∈T

is not α(1)π(1).

Now if there exists an equilibrium satisfying (1.2)(1.3), that is, ∃θ(1), ..., θ(n)

such that θ(1) + ...+ θ(n) = 0 and θ(i) maximizes the individual utility. The

First-Order Condition implies for all i ∈ I,

〈α(i)π(i), δθ
(i)〉 = α(i)〈π(i), δθ

(i)〉 = 0.

Then we have 〈π, δθ(i)〉 = 〈α(i)π(i), δθ
(i)〉 = 0 for i = 2, ..., n, however 〈π, δθ(1)〉 6=

〈α(1)π(i), δθ
(1)〉 = 0. By summing up, we have a contradiction

0 = 〈π, δ
∑
i θ

(i)〉 = 〈π,
∑
i

δθ
(i)〉 = 〈π, δθ(1)〉 6= 0.

The above shows non-existence of quasi state-price deflator implies non-

existence of equilibrium.
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A.8 Proposition 8

Proof. For any feasible allocation (x(1), ..., x(n)), we have∑
i∈I

λ(i)U (i)(c(i)∗) =
∑
i∈I

[
λ(i)U (i)(c(i)∗)− (Π(c(i)∗)− Π(e(i)))

]
≥
∑
i∈I

[
λ(i)U (i)(x(i))− (Π(x(i))− Π(e(i)))

]
=
∑
i∈I

λ(i)U (i)(x(i))−
∑
i∈I

Π(x(i) − e(i))

=
∑
i∈I

λ(i)U (i)(x(i))− Π

(∑
i∈I

x(i) − e

)
≥
∑
i∈I

λ(i)U (i)(x(i))
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