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Abstract of the Dissertation 

Dystroglycan is a Novel Regulator of Stem Cell Niche Structure and Function  

in the Developing Postnatal Subventricular Zone 

by 

Freyja Kirsten McClenahan 

Doctor of Philosophy 

in 

Neuroscience 

 

Stony Brook University 

2014 

The extracellular matrix (ECM) has emerged as a potential regulator of neural stem cell 

quiescence and neurogenesis in the adult subventricular zone (SVZ). However, the nature and 

role of ECM in the developing SVZ has not been determined. During the first postnatal week, 

radial glia differentiate into ependymal cells and adult neural stem cells, which together organize 

into adult niche pinwheel structures at the ventricular surface. Using genetic and antibody 

blocking approaches in vitro and in vivo, we found that these events coincide with a unique 

developmental restructuring of ECM in the early postnatal SVZ and that this process is regulated 

by the ECM receptor dystroglycan. We found that dystroglycan is upregulated in maturing 

ependymal cells and required for their differentiation and assembly into niche pinwheel 

structures. Dystroglycan furthermore mediates the association of radial glia with ventricle 

surface-associated laminins, and genetic deletion of dystroglycan delayed their transition into 

intermediate gliogenic progenitors and led to abnormal progenitor distribution and proliferation. 
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Dystroglycan loss-of-function also had a dramatic impact on niche output; oligodendrogenesis 

was increased in dystroglycan-deficient mice and a single injection of dystroglycan blocking 

antibody into the ventricle of perinatal rats was sufficient to induce oligodendroglial fate in SVZ 

progenitors.  However, the differentiation of dystroglycan-deficient oligodendrocytes was 

delayed, with the early postnatal corpus callosum containing more oligodendrocyte progenitor 

cells, and a higher proportion of progenitors with an immature phenotype, resulting in delayed 

myelination.  These findings reveal, for the first time, dystroglycan’s role as a master regulator, 

orchestrating both the assembly and function of the SVZ neural stem cell niche during postnatal 

gliogenesis. 
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CHAPTER I: GENERAL INTRODUCTION 

 

During late embryonic brain development, radial glia serve as the neural stem cells of the 

mammalian cerebral cortex, dividing asymmetrically to produce immature neurons (neuroblasts). 

Radial glial neural stem cells exhibit an extreme bipolar morphology, with processes that span 

the developing cortical plate, terminating apically at the surface of the lateral ventricle and 

basally at the pial basement membrane. Shortly after birth, radial glia detach from the pial 

surface and transform into adult neural stem cells (B cells) and multiciliated ependymal cells, 

which then arrange into “pinwheels”, rings of ependymal cells that surround B cell apical 

processes10. Stem- and ependymal cell pinwheels, together with transit amplifying neural 

progenitors (C cells) and neuroblasts (A cells), comprise the adult ventricular/subventricular 

zone (VZ/SVZ), a specialized microenvironment that supports stem cell quiescence and the 

controlled production of neurons and glia. Intriguingly, neural stem and progenitor cells undergo 

the principal wave of dorsal gliogenesis during this postnatal transitional period. The process of 

VZ/SVZ postnatal niche construction and its correct coupling with early postnatal gliogenesis are 

likely critical to proper brain development, yet the factors regulating these processes remain 

poorly understood. 

The extracellular matrix (ECM) has recently been identified as a potential regulator of 

cell proliferation in the adult SVZ niche.  Actively dividing neural stem- and progenitor cells 

(NSCs/NPCs) remain associated with ECM through adhesion to the basal lamina surrounding 
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binding motifs for extracellular signal-related kinase (ERK), ezrin-radixin-moesin (ERM), and 

receptor-associated protein of the synapse (rapsyn) and consensus sequences for Src homology 2 

(SH2) and  Src homology 3 (SH3). Along with ERK, MEK2 43 and rapsyn 44, known binding 

partners of β-dystroglycan include growth factor receptor 2 (Grb2) 45, caveolin-3 46 and dynamin-

147. Furthermore, it has recently been shown that the juxtamembrane domain of β-dystroglycan 

also contains a functional nuclear localization sequence. A cleaved form of the β-dystroglycan 

intracellular domain is capable of nuclear translocation and acts as a nuclear scaffold protein 

48,49. 

 To date, there are only two reports of mutations in the dag1 gene in human patients, both 

resulting in amino acid substitutions; a homozygous missense mutation affecting the 

extracellular portion of β-dystroglycan, predicted to interfere with its association with the α 

subunit 50 and a distinct homozygous mutation corresponding to the N-terminus of α–

dystroglycan, preventing its proper glycosylation and therefore greatly reducing its ability to 

bind ECM ligands 51. The scarcity of human dag1 mutations likely reflects the necessity of 

dystroglycan function in development. Constitutive deletion of dag1 in mice is embryonic lethal 

52, resulting from the malformation of Reichert’s membrane, one of the first BMs to form during 

rodent development, which acts as a barrier between the embryo and the maternal circulation and 

uterine environment, and may play a role in materno- embryonic exchange. Rather, the known 

conditions associated with dystroglycan loss-of-function manifest as “secondary 

dystroglycanopathies”, congenital muscular dystrophies in which mutations in genes encoding 

glycosyltransferases lead to hypoglycosylation.of α–dystroglycan. As mentioned above, the 

proper glycosylation of α-dystroglycan is required for ECM ligand binding.  Dystroglycan-



7 
 

associated glycosyltransferases known to be affected, and their associated conditions, are 

detailed in Table I-1.  

 

   

Protein (encoding gene) Associated conditions Reference 

Protein-O-mannosyltransferase 1 
(POMT1) 

Walker–Warburg 
syndrome (WWS) 

53 

Limb girdle muscular 
dystrophy (LGMD) 

54 

Protein-O-mannosyltransferase 2 
(POMT2) 

Walker–Warburg 
syndrome (WWS) 

55 

Protein-O-linked mannose beta 
1,2-N-

acetylglucosaminyltransferase 
(POMGnT1) 

Muscle-eye-brain disease 
(MEB) 

56 

Like-glycosyltransferase 
(LARGE) 

MDC1D 57 

Fukutin (FKTN) 

Fukuyama congenital 
muscular dystrophy 

(FCMD) 

58 

WWS 59 

LGMD 60 

Fukutin-related protein (FKRP) 

MDC1C 61 

LGMD 62 

WWS-like 63 

MEB-like 64 

Table I-1. Glycosyltransferases implicated in the secondary dystroglycanopathies 
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dystroglycan to bind and cluster its ligands is dependent on the proper glycosylation of its α 

subunit, as cell surface laminin binding and BM formation were similarly impaired in neural 

stem cells isolated from protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) KO 

mice 79. Defective laminin binding and aggregation have knock-on effects; it has been shown 

that laminin assembly is required for the binding and BM incorporation of other integral ECM 

proteins, including collagen IV, nidogen-1 and perlecan 80 79. Furthermore, dystroglycan-

mediated laminin aggregation is required for the establishment of cell polarity, and therefore 

proper tissue morphogenesis and function, in a number of epithelia, including those of the 

kidney, mammary gland, lung, salivary gland, and Drosophila ovary follicle and disc 81-86. These 

findings raise the possibility that dystroglycan may have a similar function in neuroepithelial 

cells and their descendants, radial glial- and ependymal cells, which could have important 

implications for cortical development. 

Epithelial cell polarization 

The establishment of apical-basal polarity is a necessary prerequisite to epithelial 

morphogenesis and, in turn, to the generation of distinct tissues and organs. Intracellular 

asymmetry is achieved by the recruitment of lipids and cell-surface proteins, such as 

transporters, ion channels and pumps, to discrete membrane domains. The polarization of 

epithelial cells is initiated in response to spatial cues provided by the formation of adhesive 

contacts, both with other cells and between cells and the extracellular matrix. Upon cell contact, 

nascent adhesions are formed through interaction between the extracellular domains of nectins in 

adjacent epithelial cells. The nectin intracellular domain contains a binding site for activators of 

Rap1 or cdc42 (cell division control protein 42) GTPases, and recruits aPKC, PAR (partitioning 

defective) complex and Afadin adaptor proteins to the apical cell surface87-90. Together, this 
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complex forms a scaffold for the activation of Rap1, which results in the further recruitment of 

either cadherins or JAMs (junctional adhesion molecules) to form adherens- (AJs) or tight 

junctions (TJs), respectively 91-95.  

Rap1 activation also results in the recruitment of cdc42 GEF to the apical membrane, 

resulting in cdc42 GTPase activation 96,97. In this manner, the aPKC-cdc42-PAR-3-PAR-6 

complex specifies and stabilizes the apical domain and triggers actin cytoskeleton-dependent 

domain maturation 98-103). Downstream of PAR-3 and PAR-6, the threonine kinase PAR-1 

(EMK1/MARK2) is excluded from the apical membrane by aPKC phosphorylation and regulates 

basolateral membrane domain maturation 104 105,106.  In a canine kidney epithelial cell line this 

process was shown to be mediated by the PAR-1b-dependent assembly and targeting of the 

dystroglycan complex,  resulting in laminin binding at the basal cell surface and initial formation 

of the apical domain 81,107. Indeed, many studies have found that dystroglycan mediates laminin 

binding at the basal surface of epithelial cells and contributes significantly to basement 

membrane assembly and, therefore, to epithelial polarization108-111,71,72. In contrast, β1-integrin is 

required for the expression of the laminin α1 subunit 112,113,22,114 but is less essential for basement 

membrane assembly and initial cell-surface laminin binding. Evidence from several cell lines 

suggests that epithelial cells further contribute to tissue morphogenesis through the dynamic 

regulation of extracellular laminin following initial dystroglycan-mediated basal surface ECM 

assembly 115,85,82. The subsequent reorganization of laminin into more complex structures is 

generally integrin-dependent and is thought to be achieved by Rac1 acting downstream of PAR-

1b to regulate cytoplasmic F-actin networks 107,116. As the proper epithelial polarization is crucial 

for a number of processes relevant to cortical development and adult neurogenesis, so, too are 

functional interactions between neuroepithelial cells and the extracellular matrix.  
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SUN1/2122,128,129. During mitosis, the apical process is retracted but the basal process remains 

attached to the pial BL and is split evenly between daughter cells 130,131; 132; 133. In contrast, 

apical-to-basal INM requires actomyosin contractility, with nuclear transport mediated by 

directional myosin-II-dependent constriction 134. 

The exact function that INM serves is unclear; INM is not required for cell cycle 

progression in NE cells, as interrupting INM through treatment with cytochalasin (to inhibit F-

actin polymerization)135-137 or blebbistatin (myosin II inhibitor) 134 leads to mislocalized  mitosis 

but not cell cycle arrest. On the other hand, cell cycle progression is required for nuclear 

migration; pharmacological agents that cause S phase arrest block basal-to-apical INM, while 

those that block G2/M transition prevent apical-to-basal INM 117 138. There is some evidence to 

suggest that INM may serve a more practical purpose in preventing the overcrowding of NE cell 

bodies at the ventricular surface 139. 

At approximately E13 in the mouse, NECs transform into radial glial cells (RGCs), 

signaling the onset of embryonic cortical neurogenesis. During this transition RGCs acquire 

characteristics generally associated with the astrocytic lineage, such as the expression of Nestin 

140, BLBP (brain lipid-binding protein)141, GLAST (glutamatergic astrocyte-specific transporter) 

142and Vimentin 143.  A series of genetic fate mapping experiments have led to the widespread 

acceptance that RGCs act as neural stem cells in the embryonic and early postnatal 

telencephalon, capable of producing all neuronal and glial subtypes 144,141,145-147,132,148. Like their 

neuroepithelial predecessors, RGCs undergo INM, though the basal migration of RGC nuclei is 

restricted to the dorsal boundary of the subventricular zone (Figure I-3). RGCs display two 

modes of division: symmetric (proliferative) divisions produce two RGCs and serve to maintain 

the neural stem cell pool, while asymmetric (neurogenic) divisions produce one RGCs and one 
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intermediate progenitor cell. As the developing cortical plate expands, newly produced 

neuroblasts remain associated with the mother RGC, using the basal process as a scaffold to 

assist in their dorsal migration. 

The precise manner in which the balance between symmetric and asymmetric divisions is 

maintained is not fully understood, but several important factors have been identified. Generally 

speaking, in polarized cells the plane of cell division dictates the inheritance of fate determinants 

by daughter cells; division planes perpendicular (vertical) to the apical (ventricular) surface 

result in the equal segregation of fate determinants (symmetric division) while oblique or parallel 

planes (horizontal) result in the inheritance of fate determinants by only one daughter cell 

(asymmetric division) 
149-151. Although there is a strong correlation between absolute division 

angle and daughter cell fate in Drosophila, this is not always the case in the developing 

mammalian cortex, where fate is also influenced by progenitor cell type and developmental 

stage. For example, RGCs typically exhibit a vertical cleavage plane, yet undergo both 

symmetric and asymmetric divisions 152. A more reliable metric appears to be the differential 

partitioning of adherens junction domains. NECs are separated by tight junctions that prevent 

interactions between the apical domains of neighboring cells. As NECs transition into RGCs, 

apical tight junctions are replaced by adherens junctions, which anchor RGC apical endfeet to 

the ventricular surface and each other 153,154. The formation of adherens junctions then triggers 

the recruitment of aPKC and Par-complex proteins to the junctional domain (as described 

above). In addition to their polarizing functions, aPKC-Par-3-Par-6 and adherens junctional 

complexes may also have a role in cell fate determination. They have been shown to consistently 

partition with the apical membrane during RGC division such that symmetric RGC divisions 

partition AJ and Par complexes equally, while asymmetric divisions result in their acquisition by 
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RGC morphology. Mitotic spindle orientation in Lis1-Nde1-deficient RGCs was randomized, 

leading to an increase in asymmetric divisions. Both Lis1-Nde1 and dystroglycan-deficient 

mouse models recapitulate many aspects of human cortical lissencephaly (discussed in greater 

detail below), suggesting that the defects in cortical development observed in dystroglycan-

deficient mouse models and patients with dystroglycanopathies are not restricted to those 

resulting from the loss of RGC attachment to the pial basement membrane.   

Dystroglycan expression during cortical development 

From E10, dystroglycan is found at the basal endfeet of embryonic radial glia, where it 

mediates their attachment to the pial basement membrane 160-162. The loss of radial glial 

attachments is thought to underlie neuronal migration defects often observed in the 

“dystroglycanopathies”, a subset of congenital muscular dystrophies arising from defective 

dystroglycan glycosylation (more below) 160,41. Mouse models in which dystroglycan is 

conditionally deleted from neural cells recapitulate many aspects of the developmental brain 

defects observed in the dystroglycanopathies, including severe neuronal migration defects 160,41. 

This phenotype has been shown to be a result of the loss of dystroglycan in glial cells, as cortical 

lamination defects were not observed in mice with neuron-specific deletion of dystroglycan 41. 

During early corticogenesis, when the majority of cell divisions are symmetric (from 

approximately E10.5 to E13.5), dystroglycan is expressed along the entire basolateral surface of 

both NECs and RGCs, as well as in their apical processes and the apically retracted cell bodies of 

metaphase progenitors 162,161,124,41. Reports differ regarding the expression of dystroglycan in 

RGCs as neurogenesis peaks (approximately E13.5- late embryonic period). Lathia et al. (2007) 

observed continued high expression of α-dystroglycan (clone VIA4-1) in the VZ throughout late 

embryonic development.  Another group found that α-dystroglycan (clone IIH6C4) levels 
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dropped in the VZ at the onset of neurogenesis, becoming largely restricted to RGC basal endfeet 

by E15.5 124.  Myshrall et al. (2012) also found β-dystroglycan protein expression limited to pial 

endfeet at E15.5, despite high levels of Dag1 mRNA expression in the VZ at the same timepoint.  

These conflicting results are likely due to differences in immunohistochemical protocol but could 

reflect real phenomena, such as the differential glycosylation of α-dystroglycan in different 

cortical regions. Immunohistochemical evidence suggests that dystroglycan may also play a role 

in embryonic neurogenesis; at E12, dystroglycan is upregulated in the ventricular zone (VZ), 

particularly concentrated in the apical processes of NSCs, where it remains highly expressed 

throughout late embryonic development.  At E15, dystroglycan is also found at high levels in the 

neuron-containing region of the cortical plate 160,162,161. 

In the adult cortex, dystroglycan continues to be expressed in neurons, particularly 

pyramidal cells in layers II-VI 163. However, the best understood function of dystroglycan in the 

adult brain is in the maintenance of the blood-brain barrier. Dystroglycan is expressed in 

vascular endothelial cells and the perivascular endfeet of cortical astrocytes, where it mediates 

their adhesion to blood vessel basal lamina and regulates the polarized expression of Kir 4.1 and 

aquaporin-4 41,164-167.  Preliminary evidence suggests that, through similar mechanisms, 

dystroglycan also contributes to the establishment of the blood-brain-barrier during postnatal 

development (Michael Menezes, unpublished data). In the adult SVZ, β-dystroglycan ‘globules’ 

have been observed at the basal surface of ependymal cells, where it was suggested that these 

structures may serve to tether fractones to the ependymal layer 168. These and other studies have 

established dystroglycan as a critical regulator of cortical histogenesis. However, despite its 

observed expression and temporal regulation within the VZ/SVZ, it remains unknown whether 

dystroglycan has further roles in cortical development. 
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neurogenic potential. One possibility is the reciprocal modulation of BMP (bone morphogenic 

protein) signaling amongst ependymal niche cells.  B- and C cells express BMP2 and BMP4, as 

well as their receptors 177; Peretto 2004). The addition of exogenous BMP4 to brain tumor stem 

cells resulted in increased differentiation at the expense of self-renewal and neurosphere 

production (Piccirello 2006). Ependymal cells participate in the local regulation of BMP 

signaling by secreting the BMP inhibitor Noggin, which has been shown to reduce neurogenesis 

and promote oligogliogenesis in the adult SVZ 178. As B cells also express Noggin (Peretto 

2004), it appears that the fine regulation of BMP signaling in the ependymal niche may support 

the balance between the maintenance of stem cell characteristics and the continued neurogenic 

potential of adult VZ progenitors. Additional support for this theory is provided by the discovery 

that upregulation of the adapter protein Ankyrin-3 by developing ependymal cells, downstream 

of the ependymal cell-specific transcription factor Foxj1, is required for the assembly of a 

structurally intact ependymal niche through NSC/ependymal lateral adhesion 179. Deletion of this 

pathway in the established niche resulted in greatly reduced the neurogenic capacity of SVZ 

progenitors. As Ank3 is required for the appropriate localization of dystroglycan in skeletal 

muscle 180 and the mislocalization of dystroglycan led to disrupted RGC lateral contacts 124, it is 

possible that dystroglycan may play a similar role in the structural development of the 

ependymal niche. 

Although ependymal cell fate is specified in RGCs between E14 and E16, their 

maturation is delayed until early in the first postnatal week 172. In earlier studies of SVZ cell 

lineage relationships, the lack of cell type-specific markers led to the belief that ependymal cells 

retained neurogenic potential after differentiation 181-184. However, modern lineage-tracing 

experiments and improved imaging techniques have established that mature ependymal cells are 
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post-mitotic under normal circumstances 185-188,172,170,189. Ependymal cell motile cilia exhibit 

planar cell polarity (PCP), a quality that is established in the primary cilium of their RGC 

precursors. Ependymal cell cilia also express PDGFRα and EGFR 176, though the source of their 

endogenous ligands is not clear.  

The extracellular matrix (ECM) has recently been identified as a potential regulator of 

cell proliferation in the adult SVZ niche.  The SVZ is highly vascularized relative to other 

cortical regions and contains extra-vascular extracellular matrix structures unique to the SVZ. In 

particular, spindle-like highly branched “fractones” emanate from blood vessels to contact all 

SVZ cell types, although actively dividing NSCs/NPCs exhibit a particularly close association 

with these structures 175,174. Fractones contain the heparan sulfate proteoglycan perlecan, which 

can trap and activate FGF-2, enhancing FGF-2-mediated stimulation of SVZ cell proliferation 

190-192. The laminin receptor α6β1 integrin has been found to mediate the adhesion of mitotically 

active B and C cells to the vasculature, an interaction that has been implicated in maintaining the 

balance between proliferation and quiescence. It was demonstrated that transiently disrupting the 

laminin binding capability of α6β1 integrin caused B/C cells to detach from blood vessels, 

leading to aberrant proliferation and, ultimately, precocious neuronal differentiation 175. A recent 

study from the same group 193 clarified that the expression of α6β1 integrin precedes the mitotic 

activation of SVZ progenitors downstream of the SDF-1 (stromal-derived factor 1)/CXCR-4 

(CXC chemokine receptor 4) signaling pathway. B and C cells home to blood vessels in response 

to SDF-1 secreted by vascular endothelial cells. SDF-1 upregulates EGFR and α6β1 integrin in 

SVZ progenitors, resulting in heightened mitotic activation and increased laminin-binding 

capability. Laminin-containing ECM aggregates observed near the ventricle surface, on the other 

hand, remain of unknown function 175. Despite the recent attention the specialized ECM of the 
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adult VZ/SVZ has garnered, it remains entirely unknown whether ECM acts during postnatal 

development to regulate either the assembly of the adult SVZ niche structure or the concurrent 

process of SVZ gliogenesis. It is also not clear if extracellular matrix ligand/receptor interactions 

have any direct role on the regulation of SVZ niche cell behavior or if their function is purely 

adhesive, holding niche cells in place to optimize their exposure to other regulatory factors. 

Postnatal subventricular zone oligogliogenesis 

In the embryonic forebrain, the lateral and medial ganglionic eminences produce two 

waves of oligodendrocyte progenitor cells (OPCs), commencing at approximately E11.5 in the 

mouse 194. These early OPCs migrate into all areas of the forebrain, including the developing 

cortex. However, most of these cells die prior to the first postnatal week and thus do not 

contribute substantially to the adult glial pool or to cortical myelination. During the perinatal 

period, the neurogenic capacity of SVZ progenitors declines and they begin to produce 

intermediate progenitors that are largely restricted to the astrocyte and oligodendrocyte (OL) 

lineages.  

Two families of transcription factors are particularly important for oligodendroglial 

development; bHLH proteins Olig1 and Olig2 195-200 and SoxE proteins (Sox8-10) 201-207. Olig2 is 

a master regulator of all stages of oligodendrocyte lineage progression and is necessary and 

sufficient for oIPC specification. Olig1 is dispensable for fate induction but has a minor role in 

oligodendrocyte (OL) maturation and myelination 208. Newly produced oIPCs downregulate 

Sox1-3 and begin to express Sox8-10. All SoxE proteins promote OL specification and 

differentiation 201-204,206 but Sox10 has an additional role, in conjunction with Olig1, in 

promoting MBP expression in mature OLs 205. Sox 10 expression inhibits the transcription of 

Sufu (Suppressor of Fused) 206, which regulates several morphogenic signaling pathways 209-211 
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and may also activate PDGFRα 212. Other transcription factors like Mash1/Ascl1 and Dlx1 and 2 

contribute to, respectively, the enhancement and inhibition of oligogliogenesis 200,213. Newly 

produced oligodendrogenic progenitor cells (oIPCs) can be identified by the expression of OL 

lineage-specific markers such as Olig2, Sox10 and PDGFRα in combination with the residual 

expression of the stem/progenitor cell marker Sox2 (Figure I-10). Shortly after exiting the SVZ, 

oligodendrocyte progenitor cells (OPCs) begin to express the chondroitin sulfate proteoglycan 

NG2.  

The Wnt signaling pathway is a major extrinsic regulator of the neurogenic-gliogenic 

switch in the postnatal SVZ. Wnts are secreted glycoproteins with known roles in the regulation 

of progenitor cell proliferation and differentiation 214 215 and, more specifically, in the repression 

of oligodendroglial fate 216-218 and differentiation 219,220. Wnt signaling is very high in SVZ 

progenitors during late embryonic neurogenesis but decreases during the perinatal and early 

postnatal period, coinciding with the onset of gliogenesis. Inhibition of Wnt signaling in the 

embryonic SVZ results in the premature production of OPCs, suggesting that the Wnt pathway 

regulates the timing of early postnatal oligodendrogenesis 218, perhaps through transcriptional 

regulation of Olig2 217. Shh also contributes to the initial stages of oligogliogenesis by increasing 

the expression of Olig2 and PDGFRα 221. Notch signaling has been shown to promote 

oligodendroglial fate during gliogenic periods 222,223, with constitutive activation leading to the 

overproduction of OPCs 224. Importantly, though Notch signaling promotes gliogenesis, it 

simultaneously acts to inhibit OL terminal differentiation and myelination 225. PDGF 226,227, FGF 

228,229 and EGF 230,231 signaling pathways all have potent morphogenic effects on 

oligodendroglial specification and proliferation. However, like Notch, FGF and PDGF have 
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Dystroglycan in oligodendrocyte development 

Unlike Schwann cells, the myelinating glia of the peripheral nervous system, 

oligodendrocytes lack a basal lamina235. Nevertheless, OLs express the laminin receptors α6β1 

integrin and dystroglycan236-238, and interactions with the ECM have been found to influence 

various aspects of oligodendrocyte maturation.  In some white matter tracts in the CNS, axon-

associated laminin a2 expression increases just before the start of myelination239 and the use of 

laminin as a substrate in vitro has been shown to support OL survival and myelin membrane 

production239,237,240. While integrin supports OL survival241,238, its loss does not impact the 

myelination of CNS axons242. Dystroglycan, however, has been shown to promote laminin-

mediated OL differentiation and the production of myelin components by potentiating IGF-1 

signaling 238,243. Dystroglycan also supports OL maturation by localizing to focal adhesions in 

OL filopodia, where it modulates cytoskeletal remodeling to promote filopodial outgrowth and 

the extension of elaborate processes 244, elements that are critical for successful axon contact and 

myelination. It remains unknown, however, if dystroglycan functions to promote earlier events in 

the oligodendrocyte lineage, a question that I seek to address in this dissertation. 

Potential roles for dystroglycan in the early postnatal gliogenic SVZ 

A common thread running through various aspects of the regulation of neural stem cell 

proliferation and the fate of resulting progenitors is the establishment and maintenance of 

apicobasal polarity. For example, if interkinetic nuclear migration, and therefore neural stem cell 

division, is to proceed correctly there are two main (and overlapping) requirements: radial 

morphology and a polarized cytoskeleton. The concept of polarity is relative; it requires a 

landmark. That cue is provided by the extracellular matrix. Dystroglycan is known to be 

responsible for the proper aggregation and membrane localization of ECM proteins in a variety 
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of epithelial cell types and is involved in orchestrating the cellular response to changes in the 

ECM, including apical domain remodeling and the re-establishment of apico-basal polarity.  

Intracellularly, dystroglycan loss has been shown to result in mislocalization of key polarity 

proteins and the subsequent loss of adherens junctions. As the segregation of the apical domain 

during asymmetric cell divisions dictates the fate of daughter cells, improper localization of 

apical proteins could result in alterations to the cellular output of the niche. Therefore, it seems 

reasonable to hypothesize that in the postnatal SVZ, where ECM is both ubiquitous and 

undergoing remodeling to produce complex adult SVZ ECM structures, dystroglycan may play 

an important role in ECM assembly, establishing niche cell-ECM interactions, repolarizing cells 

relative to ECM contacts and regulating the production of oligogliogenic progenitors.   

In its role as a regulator of actin cytoskeleton and microtubule dynamics, dystroglycan is 

necessary for the cytoskeletal modifications required for formation of filipodia and microvilli, 

which could impact intercellular communication between transitional postnatal radial glia and 

other niche cell types. Furthermore, defective filopodia formation as a result of dystroglycan loss 

could also impact the ability of postnatal radial glial cells and their progeny to reorganize into the 

adult SVZ niche configuration. As the cytoarchitecture of the adult SVZ is thought to be 

important for regulating the proliferation and neuro-/gliogenic capacity of niche cells, structural 

disturbances could have further implications for the functional integrity of the niche and for the 

subsequent development of oligodendroglial cells produced during the early postnatal period. 

In conclusion, over the course of my dissertation research I have sought to address the 

hypothesis that dystroglycan acts in the developing postnatal SVZ to regulate  1. the structural 

and functional development of the neural stem cell niche and 2.  the production of appropriate 
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numbers of oligodendrogenic progenitor cells and their maturation into mature, myelinating 

oligodendrocytes. 
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CHAPTER II: DYSTROGLYCAN REGULATES LAMININ REMODELING AND 

PROMOTES EPENDYMAL NICHE MATURATION IN THE EARLY 

POSTNATAL VZ/SVZ 

 

 

INTRODUCTION 

 

Radial glial neural stem cells exhibit an extreme bipolar morphology, with processes that 

span the developing cortical plate, terminating apically at the surface of the lateral ventricle and 

basally at the pial basement membrane. Shortly after birth, radial glia detach from the pial 

surface and transform into adult neural stem cells (B cells) and multiciliated ependymal cells, 

which then arrange into “pinwheels”, rings of ependymal cells that surround B cell apical 

processes 10. Stem- and ependymal cell pinwheels, together with transit amplifying neural 

progenitors (C cells) and neuroblasts (A cells), comprise the adult ventricular/subventricular 

zone (VZ/SVZ), a specialized microenvironment that supports stem cell quiescence and the 

controlled production of neurons and glia. Intriguingly, neural stem and progenitor cells undergo 

the principal wave of dorsal gliogenesis during this postnatal transitional period. The process of 

VZ/SVZ postnatal niche construction and its correct coupling with early postnatal gliogenesis are 

likely critical to proper brain development, yet the factors regulating these processes remain 

poorly understood. 

The extracellular matrix (ECM) has recently been identified as a regulator of cell 

proliferation in the adult SVZ niche.  Like their radial glial predecessors, adult B cell basal 

processes remain associated with ECM through adhesion to the laminin-rich basal lamina of the 

SVZ vascular network 10,175,174. Activated B cells and transit-amplifying neural progenitors 
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express higher levels of the laminin receptor α6β1 integrin than more lineage-restricted cells, and 

blocking this integrin impairs the adhesion of B/C cells to the vasculature, resulting in aberrant 

proliferation 245,175. In addition to the vascular basal lamina, the adult SVZ has a unique extra-

vascular ECM organization, featuring ECM aggregates at or near the ventricular surface as well 

as “fractones”; thin, highly-branched ECM structures that appear to emanate from the vascular 

basal lamina.   Actively proliferating stem cells have been observed in contact with fractone 

ECM, where the heparan sulfate proteoglycan perlecan can trap and activate FGF-2, enhancing 

FGF-2-mediated stimulation of SVZ cell proliferation 190,191. Laminin-containing ECM 

aggregates near the ventricle surface, on the other hand, remain of unknown function. Despite 

the recent attention the specialized ECM of the adult VZ/SVZ has garnered, it remains entirely 

unknown whether ECM acts during postnatal development to regulate either the assembly of the 

adult SVZ niche structure. 

Dystroglycan is a transmembrane ECM receptor known to mediate cell interactions with 

a variety of ECM ligands, including laminins. Dystroglycan is best known as a member of the 

dystrophin-glycoprotein complex (DGC), linking ECM with the actin cytoskeleton of skeletal 

myocytes. However, dystroglycan also participates in intracellular signal transduction through its 

interactions with a variety of signaling effectors 43. In the developing brain, dystroglycan is 

found on the basal endfeet of embryonic radial glia, and is required for their attachment to the 

pial basement membrane 246. Thus the loss of radial glial attachments is thought to underlie 

neuronal migration defects observed in the “dystroglycanopathies”; a subset of congenital 

muscular dystrophies arising from defective dystroglycan glycosylation 160. In the adult brain, 

dystroglycan found on the perivascular endfeet of astrocytes, where it mediates their adhesion to 

the vascular basal lamina at the blood-brain barrier and regulates the polarized expression of Kir 
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4.1 and aquaporin-4 164-167. However, whether dystroglycan regulates postnatal brain 

development or participates in the development or function of the postnatal VZ/SVZ neural stem 

cell niche remains unknown.   

Here, we identified the ECM receptor dystroglycan as a novel and critical regulator of 

adult SVZ niche development. Using genetic and antibody blocking approaches in vitro and in 

vivo, we demonstrate that dystroglycan regulates neural stem and progenitor cell proliferation, 

promotes radial glial and ependymal cell maturation, and is required for ependymal niche 

pinwheel formation in the early postnatal VZ/SVZ.   

RESULTS 

Laminin organizes into niche hubs and tethers during early postnatal VZ/SVZ niche assembly 

Three-dimensional imaging of VZ/SVZ architecture, facilitated by confocal microscopy 

of lateral wall whole mount preparations, has illuminated the complex spatial arrangement of 

extracellular matrix proteins in the adult neural stem cell niche, both in the basal lamina 

ensheathing the dense SVZ vascular network and in extra-vascular ECM structures unique to the 

SVZ 175,174. However, the spatiotemporal expression and role of ECM in the developing postnatal 

VZ/SVZ is unknown. To similarly visualize ECM structures in the early postnatal VZ/SVZ, I 

performed IHC to detect laminin in whole mounts from wild type mice. At P0, a complex SVZ 

vascular plexus was already in place, denser but otherwise largely resembling that seen in adult 

mice (Figure II-1A).  Fractones, previously described in the adult SVZ as spindle-like ECM 

structures that project from the vascular basal lamina 190, were also clearly visible from birth 

(Figure II-1B). Between P3 and P8, laminin-rich aggregates began to appear at the ventricular 

surface (z-plane inset, bottom panels Figure II-1B).  
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To more carefully assess the spatiotemporal organization of laminin in the VZ, I 

performed IHC against laminin and β-catenin (to visualize adherens junctions) in whole mounts 

from wild type mice. At P3, en face views revealed ventricular surface laminin concentrated 

around putative immature ependymal cells, which have a ventricle surface area that is several-

fold larger than radial glia or type B stem cells (Figure II-1C). At P8, large laminin aggregates, 

or “hubs” appeared to coalesce on the ventricular surface of these laminin-positive cells, 

concurrent with an overall decrease in more generalized ependymal cell-associated laminin 

(Figure II-1C, arrowheads). By P21, general cell-associated laminin expression was greatly 

diminished, leaving ventricular surface laminin largely restricted to hubs. Most laminin hubs 

remained associated with ependymal cells (Figure II-1C, arrowheads) and some were found at 

the center of pinwheels at the interface between ependymal cells and type B stem cells (Figure 

II-1C, arrows). Three-dimensional reconstructions of confocal stacks helped to clarify the spatial 

relationships amongst extra-vascular ECM structures and between those structures and the 

underlying vascular basal lamina (Figure II-1D).  At P3, I found that ventricular surface cell-

associated laminin was contiguous with the vascular basal lamina, either directly (Figure II-1D, 

arrowheads) or via “tethers” (Figure II-1D, arrows). 3D reconstruction of VZ/SVZ laminin 

structures at P8 allowed me to discern two classes of laminin aggregates; laminin hubs visible at 

the ventricular surface, generally localized toward the center of laminin-positive cells (Figure II-

1E, arrowheads) and “bulbs” found beneath the developing ependymal cell layer, often 

associated with fractone termini (Figure II-1E, arrow).  

To confirm that the laminin-positive cells we observed were, indeed, ependymal cells, I 

performed IHC to detect laminin and GFP in whole mounts from FoxJ1-GFP mice.  FoxJ1 is a 

transcription factor involved in ciliogenesis that is expressed early in ependymal cell 
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development.  En face views and 3D reconstructions of GFP and laminin at postnatal days 3 and 

8 (Figure II-1F) confirmed that (i) cell-associated laminin was almost exclusively restricted to 

immature ependymal cells, and that (ii) laminin tethers served as a bridge, connecting immature 

ependymal cells to the vascular basal lamina during niche cellular reorganization. At postnatal 

day 21, when pinwheel arrangement was nearly complete, most laminin hubs remained central to 

ependymal cells (Figure II-1G, arrow), whereas some had relocated to the center of pinwheels 

(Figure II-1G, closed arrowhead) and others appeared to be in transit, protruding into the center 

of a pinwheel while retaining attachment to an ependymal cell (Figure II-1G, open arrowhead). 

To determine the final positioning of laminin hubs relative to adult B cells in pinwheels, I 

performed IHC against laminin, GFAP and GFP in whole mounts from adult FoxJ1-GFP mice.  I 

found that virtually all pinwheels contained one or more laminin hubs, which were localized to 

the interface between ependymal cells and B cell apical processes (Figure II-1H). Taken 

together, these observations suggest that extra-vascular ECM is developmentally regulated 

during SVZ niche construction and displays a high level of structural diversity.  I found that in 

the developing VZ/SVZ, laminin was concentrated around immature ependymal cells and 

became more restricted with niche maturation to achieve a final configuration of discrete laminin 

hubs at the interfaces between type B stem cells and ependymal cells.  

Dystroglycan regulates laminin restructuring in the developing ependymal niche 

The association between laminin and immature ependymal cells during niche 

development (Figure II-1C, F), as well as the association among laminin hubs, ependymal cells, 

and type B stem cells in mature niche pinwheels (Figure II-1H), suggests that laminin-receptor 

interactions may regulate the transformation of RGCs into adult NSCs and ependymal cells or 

other aspects of niche construction. While α6β1 integrin has been found to mediate laminin 
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interactions in the embryonic cortex and adult SVZ niche 245,175,247, it is dystroglycan, another 

laminin receptor expressed in the brain, that is required for initial laminin clustering in response 

to changes in the extracellular environment in a variety of cell types 71,72,75,116,248,82. To 

investigate the role of dystroglycan in ependymal cell development and niche construction, I 

deleted dystroglycan from neural cells using nestin-cre;DAGFlox/Flox  (DAG cKO) mice (Figure II-

2A) and compared them to nestin-cre-/-;DAGFlox/Flox (WT) littermates. Previous characterization 

of nestin-cre;DAGFlox/Flox  mice determined that DAG1 recombination occurs between E9.5 and 

E18.5, with β-dystroglycan immunoreactivity absent in the brain from E13.5 onward249. I 

confirmed appropriate removal of dystroglycan protein in DAG cKOs by evaluating western 

blots of protein lysates generated using either neurospheres or cerebral cortex, as well as 

dystroglycan IHC (Figure II-2B, C). The DAG cKO cortex recapitulates many aspects of the 

cortical abnormalities in human disorders related to dystroglycan hypoglycosylation (Figure II-

2D,E), including disordered cortical layering, neuronal overmigration and ectopias (arrowhead in 

D) and hydrocephaly (E).  

First, to determine if loss of dystroglycan impacted laminin levels in the early postnatal 

SVZ, I performed IHC to detect laminin and nestin in coronal sections from P0 mice (Figure II-

3A). In WT mice, the apical processes of nestin+ radial glia (RGCs) made contact with laminin-

positive puncta at the ventricular surface. However, it appeared that there were fewer laminin 

puncta in the VZ of DAG cKO mice, with those present appearing smaller than in WT 

littermates.  As a result, the association of RGC apical processes with laminin puncta was largely 

diminished in the dystroglycan-deficient SVZ. IHC analysis of BLBP+ RGCs in coronal sections 

from WT and DAG cKO mice revealed no change in RGC density or signs of apical detachment 

(45.1 ± 4.21 x105 cells/mm3 vs. 44.6 ± 2.28 x105 in WT) (Figure II-3B,C) at birth,  suggesting 
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that apical interaction with ventricular surface laminin aggregates is not required for the retention 

of RGCs in the perinatal niche. In contrast, laminin expression in the vascular basal lamina 

appeared normal and contacts between RGC basal processes and blood vessels did not appear to 

be impacted by dystroglycan loss.  

To more closely examine the relationship between laminin and dystroglycan in the VZ, I 

next assessed laminin and dystroglycan expression in en face views of the ventricular surface 

from SVZ whole mounts at various stages of early postnatal development. In the newborn (P0) 

wildtype VZ, laminin and dystroglycan were localized mainly to radial glial adherens junctions 

(Figure II-4A).  By postnatal day 3, emerging ependymal cells, identified by their large apical 

surface areas, had increased levels of cell surface-associated laminin and dystroglycan.  By 

postnatal day 8, cell-associated laminin was restricted to a subset of cells and dystroglycan 

immunoreactivity was even more limited, with laminin- and dystroglycan-positive hubs now 

found at the ventricular surface.  

The conditional removal of dystroglycan expression from neural cells led to the delayed 

recruitment of VZ cell-associated laminin (Figure II-4B). From an en face perspective, at 

postnatal day 0 the morphology and density of radial glial cell apical surfaces appeared normal in 

DAG cKO mice, though laminin immunoreactivity appeared diminished from that in wild type. 

By P3, developing ependymal cells were now readily apparent in en face views from SVZ whole 

mounts from both WT and DAG cKO mice, but here the dystroglycan-deficient VZ had a 

marked decrease in pericellular laminin associated with developing ependymal cells. However, 

by P8, cells at the ventricular surface of DAG cKO mice exhibited a massive increase in cell-

associated laminin, surpassing levels seen in the VZ of wildtype littermates.  These data indicate 
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that laminin recruitment and/or retention at ependymal cell surfaces is abnormal in the absence 

of dystroglycan. 

 I next turned to an ependymal cell culture approach to more carefully examine 

dystroglycan and laminin during ependymal cell maturation. I isolated SVZ cells from newborn 

FoxJ1-GFP mice (wild type for dystroglycan) and plated them on PDL, ensuring that the only 

ECM in the system would be that produced by the cells in culture (Figure II-5A). Following 7 

days of ependymal cell differentiation, dystroglycan IHC was performed in conjunction with 

CD24 (to visualize ependymal cells) and acetylated α-tubulin IHC (to visualize cilia in mature 

ependymal cells) (Figure II-5B). Recapitulating my in vivo observations, I found that 

dystroglycan expression was tightly correlated to ependymal cell maturation and was highest in 

mature, multiciliated ependymal cells relative to non-ependymal cells or immature ependymal 

cells that were not yet multiciliated (Figure II-5C). In a separate set of cultures, radial glial cells 

were allowed to proliferate normally for 5 days, with dystroglycan blocking or IgM control 

antibodies added during the differentiation stage (7 days).  The neonatal SVZ cultures produced 

thin, fibrillary laminin- and perlecan-containing structures, which appeared less abundant and 

disorganized in the presence of dystroglycan-blocking antibodies (Figure II-5D,E). 

Dystroglycan is required for ependymal cell maturation and niche assembly 

An early step in SVZ stem cell niche construction is the transformation of radial glia into 

adult NSCs and ependymal cells.  As extracellular matrix interactions have been implicated in 

the regulation of NPC proliferation and differentiation in the adult niche 174,175,250,192, I wondered 

if extracellular matrix interactions might also regulate the controlled maturation of RGCs into 

ependymal cells. As mentioned above, DAG cKO mice had normal numbers of radial glia at 

birth (Figure II-3C). However, at P3, DAG cKO mice had fewer CD24+ ependymal cells than 
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their wildtype littermates (3.01 ± 0.23 x103 cells/mm2 vs. 4.82 ± 0.34 x103 in WT) (Figures II-

6A,B).  At the same time, DAG cKO mice had more BLBP+ radial glia than did WT littermates 

(44.2 ± 2.16 x105 cells/mm3 vs. 38.2 ± 2.05 x105 in WT) (Figure II-6C,D) and, indeed, the levels 

of BLBP+ cells in DAG cKO mice had not changed from birth, whereas they had decreased in 

WT mice (Figures II-3C and 6D). Together, my findings of decreased ependymal cell densities 

concurrent with elevated radial glial cell densities are indicative of a delayed transformation of 

radial glia into ependymal cells. I also observed delayed ependymal cell maturation through the 

third postnatal week, with significantly lower densities of multiciliated ependymal cells observed 

both at P8 (39.8% ± 2.3% of total area vs. 62.0% ± 3.1% in WT) (Figure II-7B) and P21 (41.5% 

± 3.0% of total area vs. 61.8% ± 5.0% in WT) (Figure II-7E). Dystroglycan loss further impacted 

the ability of ependymal cells to arrange into pinwheels.  At P8 (Figure II-7C) and P21 (Figure 

II-7F), dystroglycan-null ependymal-NSC clusters were smaller and had a disorganized 

appearance (P8: 6.2 ± 0.6 x102 µm2 vs. 10.8 ± 1.2 x102 in WT; P21: 8.7 ± 1.5 x102 µm2 vs. 12.2 

± 1.7 x102 in WT).  Furthermore, at P21, the polarity of ependymal cell cilia appeared abnormal, 

with lateral clustering frequently observed (Figure II-7D).   

To explore the possibility that the observed ependymal phenotype stemmed from an 

existing defect in radial glial cells, I again turned to a cell culture approach where I applied 

dystroglycan-blocking or control antibodies to SVZ cultures prepared from FoxJ1-GFP (WT for 

dystroglycan) newborn mice (as in Figure II-5A). For this purpose I used the antibody IIH6, 

which recognizes a unique O-linked glycoepitope on α-dystroglycan, competitively inhibiting the 

binding of LG domain-containing ligands 251. In agreement with the ependymal phenotype seen 

in DAG cKO mice, the addition of dystroglycan blocking antibodies resulted in a significant 

reduction in GFP+ ependymal cells (49.4% ± 5.5% of total cells vs. 71.5% ± 5.1% in controls) 
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(Figures II-8A,B), as well as a significant reduction in the proportion of GFP+ cells that achieved 

a multiciliated phenotype (17.5% ± 2.2% vs. 31.8% ± 3.1% in controls) (Figures II-8C,D).  

Additionally, dystroglycan block reduced the ability of GFP+ cells to arrange themselves into 

pinwheel-like clusters, with cluster area reduced by over 50% (2.48 ± 0.08 x103 µm2 vs. 5.62 ± 

0.75 x103 in controls) (Figure II-8E).  Together these results indicate that laminin-dystroglycan 

interactions play a crucial role in ependymal cell maturation and niche construction. 

Furthermore, my in vitro findings suggest that dystroglycan regulates ependymal cell 

development independent of any potential undetected defect in RGCs, as wild type RGC cultures 

exposed to dystroglycan blocking antibodies were unable to produce appropriate numbers of 

mature ependymal cells or to assemble them into pinwheel-like polarized clusters encircling 

neural stem cells. 

DISCUSSION 

I found that the ECM receptor dystroglycan is necessary for niche development, i.e. 

ependymal cell maturation and organization into niche pinwheels, during this critical gliogenic 

period. Moreover, I describe for the first time the extensive dystroglycan-dependent 

reorganization of ECM that occurs concurrent with niche building, and suggest that this unique 

and dynamic postnatal ECM is central to the establishment of proper supracellular organization 

of niche cells and provides important cues for ependymal cell development. 

The neonatal SVZ vascular plexus, with its associated vascular basal lamina, is denser 

but morphologically similar to that observed in adult mice. Additionally, I observed that extra-

vascular ECM structures thought to have regulatory roles in the adult niche, such as fractones 

and fractone bulbs 190,191,175,250,192, are present in the neonatal SVZ during niche construction and 

gliogenesis. Focusing on the developing ependymal niche, I probed niche ECM dynamics during 
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this developmental window and found that laminin and its receptor, dystroglycan, were 

upregulated on the cell surface of differentiating ependymal cells. I furthermore identified novel 

extra-vascular ECM structures; transient laminin-rich “tethers” that link ependymal cell-

associated laminin to the vascular basal lamina during SVZ niche construction. As immature 

ependymal cells emerge, they lose their long radial glial basal process and, therefore, their 

connection to basement membrane ECM. Laminin tethers may serve as an ECM contact point 

that promotes ependymal cell maturation and pinwheel formation, perhaps by reinforcing intra- 

or supracellular polarity during this transitional period,. The observed delay in ependymal cell 

maturation and pinwheel organization in the absence of dystroglycan supports this interpretation. 

Finally, analysis of SVZ whole mounts from FoxJ1-GFP mice shed new light on the origins and 

spatial plasticity of laminin/dystroglycan-positive “hubs”, a class of extra-vascular ECM 

structures found at the ventricular surface from approximately P8 onward. These ECM 

aggregates have previously been observed in association with GFAP+ apical processes in the 

adult niche and referred to as “specks” 175. I propose that the term “hub” better describes their 

location at the interface between ependymal cells and type B cells within mature pinwheels. 

However, the cellular association of ECM hubs appears to be more varied during early 

development, first appearing toward the center of ependymal cell apical surfaces of and later 

transposed to the center of pinwheels. As they were previously found to be nidogen-positive, it 

was proposed that ECM pinwheel hubs originated from the endothelial basal lamina 175.  

However, unlike fractones and fractone bulbs, I did not observe any contact between the vascular 

basal lamina and ECM pinwheel hubs during development or in the adult SVZ. In light of the 

abundant laminin deposition I witnessed in ependymal niche cultures and the localization of 

ECM pinwheel hubs relative to developing ependymal cells in vivo, it seems likely that hubs are 
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produced, or at least assembled, by ependymal cells. These results suggest that ependymal niche 

cells may therefore play a key role in adult VZ niche construction, participating in the 

establishment of their own regulatory environment via the expression of both ECM ligands and 

receptors. Taken together, my observations indicate that the ECM organization of the early 

postnatal VZ/SVZ is considerably more complex than that in the adult niche. And, while the 

early postnatal niche is “under construction”, it houses distinct ependymal and vascular niche 

ECM elements, with the immature ependymal niche particularly enriched in laminin and 

dystroglycan. 

As cortical neurogenesis subsides perinatally, most radial glial cells (RGCs) undergo 

terminal division, giving rise to transit amplifying progenitors. Others transform directly into 

relatively quiescent adult neural stem cells or post-mitotic ependymal cells 172. Intermediate 

RGC progenitors simultaneously withdraw their basal processes, exchanging endfoot attachment 

to the pial basement membrane for contact with the basal lamina surrounding SVZ blood vessels. 

Laminin-dystroglycan interactions are known to mediate RGC contact with the pial basal lamina, 

as the loss of brain dystroglycan or its laminin binding domain lead to basal endfoot detachment 

and aberrant neuronal migration 160,41,246. Given that laminin-dystroglycan signaling is required 

for basement membrane integrity and RGC attachment at the cortical surface, I hypothesized that 

it might also mediate cellular interactions with laminin-rich ECM in the neonatal SVZ. I found 

that WT RGCs associate with laminin-positive aggregates at the ventricular surface at birth. 

Although deletion of brain dystroglycan virtually eliminated these laminin aggregates I did not 

observe any evidence of RGC apical detachment, suggesting that the functional significance of 

perinatal RGC contact with VZ laminin extends beyond that of simple adhesion. This is not 

surprising, as the apical endfeet of RGCs are attached to each other through adherens junctions, 



39 
 

which have been demonstrated to mediate the retention of RGCs in the niche 252,253. As such, it 

appears that while dystroglycan may facilitate laminin aggregation at the ventricular surface, a) 

these aggregates are not necessary for RGC apical attachment and b) dystroglycan does not 

contribute substantially to the formation or maintenance of adherens junctions between perinatal 

RGCs.  

When I analyzed the numbers and proliferation of BLBP+ cells in the perinatal DAG 

cKO SVZ, I found that the proliferative capacity of P0 RGCs was greatly reduced. However, I 

found no correlation between reduced RGC proliferation and RGC density, which may indicate 

that dystroglycan supports the production of progenitors through asymmetric cell division and 

that these divisions were specifically reduced in DAG cKO mice. The decreased numbers of 

oIPCs in the DAG cKO SVZ at P0 (see Chapter III) would support this interpretation. The 

maturation of dystroglycan-deficient RGCs also appeared to be delayed. While BLBP expression 

and proliferation decreased in WT RGCs between P0 and P3, RGC transition to ependymal cells 

was stalled in the DAG cKO SVZ. Although dystroglycan loss is known to cause RGC 

detachment from the pial basement membrane, studies of other mouse models in which RGC 

attachment is impaired (α6 integrin-/-, perlecan-/-, laminin γ1 nidogen-binding site mutation) 

found no disruption in embryonic RGC polarity, proliferation or fate 254.  

Although the cellular architecture of the adult VZ/SVZ has been extensively 

characterized, much less is known about cellular reorganization during niche construction. 

Furthermore, to my knowledge, no information exists regarding the role of ECM interactions in 

driving this process. Here I reveal that maturing ependymal cells, but not FoxJ1-negative 

postnatal RGC progenitors, upregulate laminin and dystroglycan at their apical surfaces. Laminin 

assembly was delayed in the absence of dystroglycan but later rebounded, with cell surface 
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laminin binding surpassing that seen in WT mice, suggesting a profound dysregulation of ECM 

dynamics. I furthermore demonstrated that upregulation of dystroglycan in developing 

ependymal cells is required for both their timely differentiation and the cellular reorganization 

necessary to produce adult niche pinwheel structures. Analysis of WT ependymal cell 

development in vitro, with dystroglycan ligand binding blocked only during RGC differentiation, 

revealed that this effect was niche-independent and was not predicated on an existing RGC 

phenotype. 

These results reveal a novel and distinct function of dystroglycan within the developing 

SVZ, regulating both radial glial cell division and their ability to mature into adult SVZ niche 

cells. The systematic study of dystroglycan interactions in the developing SVZ will be an 

important next step, but the current investigation indicates that the pial detachment of RGCs is 

only one of many defects underlying the widespread dysfunction seen in the cortices of both 

mice and human patients as a result of dystroglycan loss-of-function.  
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Figure II-1. Laminin-rich extracellular matrix structures in the early postnatal SVZ  

 
(A) IHC staining of an SVZ whole mount from a WT P0 mouse, showing laminin 
immunoreactivity in the vascular basal lamina. The distinctive SVZ vascular plexus is clearly 
visible at birth. Box denotes area of further whole mount analysis.  (B) Projections of confocal 
stacks from P0, P3 and P8 WT whole mounts highlighting blood vessel-associated- and extra-
vascular laminin. Extensive blood vessel-fractone networks were observed throughout the early 
postnatal period, with laminin anchors appearing around P8.   Bottom panels: XZ projections of 
above panels.  (C) IHC staining against laminin and b-catenin on whole mounts taken from WT 
mice at P3, P8 and P21. Ventricular surface cell-associated laminin was localized to developing 
ependymal cells at P3. At P8, generalized cell surface laminin decreased as laminin aggregated 
into “anchors” on the apical surfaces of ependymal cells.  (D) 3D reconstruction of a confocal 
stack showing laminin expression in the VZ/SVZ of a P3 WT mouse. Ventricular surface cell-
associated laminin was contiguous with the blood vessel basal lamina either directly 
(arrowheads) or via “tethers” (arrows).  (E) 3D reconstruction of laminin expression in a P8 WT 
mouse. At P8, two types of globular laminin structures were observed; ventricular surface 
“anchors”, typically associated with laminin-positive cells (arrowheads) and “bulbs”, found at 
fractone termini deeper in the SVZ (arrows).  (F) IHC staining against laminin in whole mounts 
from P3 and P8 FoxJ1-GFP mice.  Left panels: en face view of cell-associated laminin in 
developing ependymal cells.  Top right: 3D reconstructions of confocal stacks, showing laminin-
containing ECM tethering young ependymal cells to the underlying vasculature.  Bottom right: 
2D orthogonal view of top panel.  (G) IHC staining in a wholemount from a P21 FoxJ1-GFP 
mouse. Left panel: en face views of the ventricular surface. Right panel: 3D reconstructions of 
confocal stacks taken from the same field. At P21, VZ laminin was largely restricted to pinwheel 
anchors. Most anchors remained associated with ependymal cell surfaces (arrow), but many had 
relocated to the center of pinwheels (closed arrowhead) or were in the process of relocating 
(open arrowhead).  (H) IHC against laminin and GFAP in a whole mount from an adult FoxJ1-
GFP mouse. Left panel: En face view. Right panel: 3D reconstruction. In adult mice, one or more 
laminin anchors were found at the center of pinwheels, in contact with GFAP+ B cell apical 
processes.  Scale bars: 50 μm (B), 25 μm (C), 20 μm (F, G, H).   



 

Figure III-1. Laminin-rich exttracellular m

42 

matrix strucctures in thhe early posttnatal SVZ



 

Figure II

 

I-1. Laminin-rich ext

 

tracellular m

43 

matrix strucctures in thhe early posttnatal SVZ  



 

 

Figure II

(A) Sche
(B)  IHC
Scale bar
taken fro
cortices f
and (E) P

I-2.  Genera

ematic of bre
C against β-d
r: 25 µm.  L
om i) second
from P5 WT
P8 WT and D

ation of nest

eeding schem
dystroglycan

LV: lateral v
d passage ne

T and DAG c
DAG cKO m

tin-cre+/- ; D

me used to 
n in coronal

ventricle. (C)
eurospheres 
cKO mice. (

mice.  

44 

DAGFlox/Flox (

obtain nesti
l sections ta
) Western bl
isolated fro

(D-E) DAPI 

(DAG cKO)

in-cre+/- ; DA
aken from P
lotting again

om P0 WT 
staining in c

) mice 

AGFlox/Flox (D
0 WT and D
nst β-dystrog
and DAG c
coronal sect

DAG cKO) m
DAG cKO m
glycan on ly

cKO mice an
tions from (D

mice.  
mice.  

ysates 
nd ii) 
D) P3 



 

 

Figure II

IHC stain
processes
(dashed l
radial gli
basal pro
Perinatal
Quantific
Scale bar

I-3. Ventric

ning of coro
s of nestin+
lines, bottom
ial associatio
ocesses with
l WT and 
cation of BL
rs: 25 µm. 

cular surfac

onal sections
+ radial glia
m panels). In
on with the 

h SVZ blood
DAG cKO 

LBP+ cell de

ce laminin a

s from P0 W
a make cont
n DAG cKO

remaining p
d vessels did

mice had 
ensity at P0 

45 

ggregates a

WT and DAG
tact with lam

O mice there 
puncta was 
d not appear

similar BL
in WT and D

are lost in th

G cKO mice
minin punct
were fewer
reduced. Th

r to be alter
LBP+ radial
DAG cKO m

he perinatal 

. (A) In WT
ta at the ve

r laminin-po
he associatio
red in DAG
l glial cell 
mice.  Error 

DAG cKO 

T mice, the a
entricular su
sitive puncta
on of radial 
 cKO mice.

densities.
bars, SEM;

SVZ 

apical 
urface 
a and 
glial 

  (B) 
 (C) 
 n=3.  



 

 
Figure II
niche 

(A) IHC
Maturing
laminin- 
IHC stai
dystrogly
upregulat
 

I-4. Dystrog

C staining o
g ependyma

and dystrog
ning of DA

ycan show a
tion, exceed

glycan regu

f lateral ven
l cells upre

glycan-positi
AG cKO wh
an initial de
ding that of W

 

lates lamini

ntricular wa
egulate lami
ive anchors 

hole mounts 
lay in acqui

WT ependym

46 

in restructu

all whole m
nin and dys
appear at th
at the sam

isition of ce
mal cells by P

uring in the 

mounts from
stroglycan a
he ventricula

me timepoint
ell-associated
P8. Scale ba

developing 

m P0, P3 an
at the cell s
ar surface (a
s.  Ependym
d laminin fo

ars: 25 μm (A

ependymal

nd P8 WT m
surface.  By
arrowheads).
mal cells lac
ollowed by 
A,B). 

 

l 

mice.  
y P8, 
.  (B) 
cking 
rapid 



47 
 

Figure II-5. Blocking dystroglycan ligand binding disrupts ECM structure in ependymal 
niche cell cultures  

(A)  Schematic of ependymal cell culture protocol.  SVZ cells were isolated from P0 FoxJ1-GFP 
mice, plated on PDL in high serum media and allowed to proliferate for 3-4 days.  Cells were 
then switched to low serum media with control or DG-blocking antibodies and allowed to 
differentiate for 7 days.  For measurement purposes, clusters were defined as 3 or more directly 
adjacent GFP+ cells also in contact with at least one primary-ciliated GFP- cell.  (B) IHC 
staining of differentiated ependymal cell cultures.  Dystroglycan expression increases as radial 
glia transition into ependymal cells, with the highest expression levels in fully mature, 
multiciliated ependymal cells.  (C) Quantification of DG IHC pixel intensity in CD24-, CD24+ 
and CD24+ multi-ciliated cells.  Error bars, SEM; n=3.  (D)  IHC staining of cultures with 
control or DG-blocking antibodies added during the differentiation phase.  Ependymal cell 
cultures produce thin, fractone-like laminin-containing ECM structures, which appear fractured 
and disorganized following DG block.  (E) Laminin-positive ECM structures also contain 
perlecan. Scale bars: 25 μm (B), 50 μm (D,E). 
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Figure II-7. Dystroglycan is required for ependymal cell maturation and niche assembly 

(A) IHC staining of whole mounts from P8 WT and DAG cKO mice.  Fewer DAG cKO 
ependymal cells have attained a multi-ciliated phenotype and clusters are smaller than in WT 
littermates, with a disorganized appearance.  Right panels show examples of measured clusters.  
(B)  Quantification of relative surface area coverage of multi-ciliated cells in P8 WT and DAG 
cKO whole mounts. *p < 0.05, Student’s t-test; error bars, SEM; n=3.  (C) Quantification of 
average cluster area in P8 WT and DAG cKO whole mounts. *p < 0.05, Student’s t-test; error 
bars, SEM; n=3.  (D) IHC staining of whole mounts from P21 WT and DAG cKO mice.  
Pinwheel formation in the DAG cKO VZ has begun to normalize, though polarization of cilia 
appears abnormal.  (E)  Quantification of relative surface area coverage of multi-ciliated cells in 
P21 WT and DAG cKO whole mounts. **p < 0.01, Student’s t-test; error bars, SEM; n=5.  (F) 
Quantification of average cluster area in P21 WT and DAG cKO whole mounts. *p < 0.05, 
Student’s t-test; error bars, SEM; n=5.  Scale bars: 25µm.  
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CHAPTER III: DYSTROGLYCAN REGULATES POSTNATAL 

OLIGOGLIOGENESIS AND OLIGODENDROCYTE MATURATION 

 

 

INTRODUCTION 

In the embryonic VZ and adult SVZ, extracellular matrix interactions have been proposed 

to regulate the timing and placement of neural stem cell division and, in so doing, help to 

maintain the balance between self-renewal and the controlled production of neural progenitors. 

Furthermore, though laminin and dystroglycan are known promoters of oligodendroglial 

survival, differentiation and myelination 255,238,256,243,257,244, the role of ECM in oligodendroglial 

fate determination remains unknown. In this chapter I examine the role of ECM in the postnatal 

SVZ, as the developing niche shifts from neurogenesis to the production of large numbers of 

oligodendrogenic progenitors that will go on to populate the adult cortical grey matter and 

myelinate forebrain axon tracts. 

RESULTS 

Gliogenesis is dysregulated in the dystroglycan-deficient SVZ stem cell niche 

The principal wave of dorsal oligodendrogenesis begins perinatally and extends into the 

second postnatal week.  During this time, oligodendrogenic intermediate progenitor cells (oIPCs) 

are produced by asymmetric divisions of neural stem- and transit amplifying cells. oIPCs, as they 

transition into oligodendrocyte progenitor cells (OPCs), proliferate and migrate out of the SVZ 

into the overlying white matter.  As I found that perinatal DAG cKO radial glial cells (RGCs) 

were defective in their ability to transform into ependymal cells and establish a normal SVZ stem 

cell niche, I wanted to determine if these disturbances impacted the niche’s ability to produce 
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lineage-specific progenitors.  First, to investigate both the production of oIPCs and subsequent 

oIPC/OPC proliferation, I performed IHC to detect the oIPC/OPC marker PDGFαR and PCNA 

on sections obtained from DAG cKO mice and their wild type littermates at P0 and P3 (Figure 

III-1A).  At P0, oligodendrogenesis had begun in DAG cKO mice, albeit to a lesser extent than 

their WT littermates, with slightly fewer PDGFαR+ oIPC/OPCs found in the dystroglycan-null 

SVZ (10.6 ± 1.76 x105 cells/mm3 vs. 15.1 ± 3.58 x 105 in WT) (Figure III-1B).  By P3, however, 

DAG cKO animals had caught up and far surpassed WT in terms of oligodendrogenesis, with an 

SVZ oIPC/OPC density of more than double that of their WT littermates (30.6 ± 3.07 x105 

cells/mm3 vs. 14.0 ± 1 x105 in WT).  oIPC/OPC production by the DAG cKO SVZ remained 

elevated over WT levels until the beginning of the second postnatal week.  

Given that I observed increased numbers of oIPC/OPCs in the DAG cKO SVZ I next 

sought to determine if inappropriate proliferation contributed to this phenotype. IHC was used to 

detect the proliferation marker PCNA on coronal sections from newborn mice, revealing that 

DAG cKO mice exhibited significantly decreased SVZ cell proliferation relative to their WT 

littermates (38.8 ± 3.61 x105 cells/mm3 vs. 63.1 ± 2.06 x105 in WT) (Figure III-2B). And, while 

proliferation sharply declined in the WT SVZ between P0 and P3, proliferation in the DG-null 

SVZ remained relatively constant between P0 and P3, resulting in a slight elevation over WT 

levels at P3 (44.2 ± 8.38 x105 cells/mm3 vs. 28.7 ± 4.19 x105 in WT) (Figure III-2B). 

Additionally, while WT NSC/NPC proliferation was concentrated mainly in the VZ, proliferative 

Sox2+ cells were mislocalized throughout the DAG cKO SVZ (Figure III-2C).  

To determine which cell types contributed to altered proliferation, I next performed IHC 

to detect the radial glial marker BLBP in conjunction with PCNA on coronal sections from P0 

and P3 mice (Figure III-1C).  At P0 I found that the percentage of BLBP+ RGCs that were 
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PCNA+ was significantly lower in DAG cKO mice, mirroring the phenotype observed in the 

general PCNA+ population (36.1% ± 3.5% vs. 64.8% ± 1.9% in WT) (Figure III-2B). However, 

while WT animals underwent the typical marked decrease in RGC proliferation between P0 and 

P3, RGC proliferation levels remained constant in DAG cKO mice between P0 and P3, again 

leaving RGC proliferation levels slightly higher than those in WT littermates at P3 (34.4% ± 

1.9% vs. 27.8% ± 1.8% in WT) (Figure III-1C).  Dystroglycan loss had additional effects on the 

newborn oIPC/OPC population, significantly increasing oIPC/OPC proliferation at P3 (57.7% ± 

2.8% vs. 39.3% ± 5.3% in WT), although not at P0 (65.6% ± 8.6% vs. 67.6% ± 5.7% in WT) 

(Figure III-1D). I further analyzed the proliferation data at P3 to assess the relative contribution 

of each cell type and determined that while radial glia contribute to the overall increase in SVZ 

proliferation seen in P3 DAG cKO mice, OPCs are the primary drivers of hyperproliferation in 

the dystroglycan-deficient SVZ (Figure III-1E).   

These results led me to question whether the observed increase in oIPC/OPC density was 

due to increased generation of these cells from RGCs or solely due to increased oIPC/OPC 

proliferation. To address this issue, I performed single injections into the lateral ventricles of P2 

rats of either control antibodies or antibodies that blocked dystroglycan-ligand interactions 

(Figure III-3A).  The rats were sacrificed either 6 or 24 hours post-injection to assess acute 

changes in SVZ cell phenotypes. I first performed IHC to detect laminin and β-catenin at the 

ventricular surface of whole mounts from control- and dystroglycan blocking antibody-injected 

rats. 6 hours post-injection, ventricular surface laminin in control rats was found mainly in 

aggregates at the apical surface of immature ependymal cells (Figure III-3B). However, the 

injection of dystroglycan-blocking antibodies led to the loss of laminin aggregates, with laminin 

immunoreactivity appearing more diffuse with only minor puncta apparent. At 24 hours after the 
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injection of dystroglycan-blocking antibodies I observed multiple, larger laminin puncta on the 

apical surfaces of VZ cells, suggesting that laminin aggregation was recovering.  

I next performed IHC on coronal sections to detect PDGFαR (to label oIPC/OPCs), 

PCNA (to label proliferating cells) and Sox2 (to label NSC/IPCs) within the SVZ.  I found that 

dystroglycan-blocking antibodies produced a robust increase in PDGFαR+ cells that was 

apparent at just 6 hours post-injection (Figure III-3C) and resulted in a twofold increase in 

oIPC/OPC density relative to control antibody-injected littermates (14.3 ± 2.33 x105 cells/mm3 

vs. 6.96 ± 1.94 x 105 in controls) (Figure III-3D).  However, this increase in OPC numbers was 

not explained by increased proliferation within the oIPC/OPC population, as PCNA 

immunoreactivity within PDGFαR+ cells was similar in control and dystroglycan-blocking 

conditions at the same timepoint (25.5% ± 11.7% vs.  36.3% ± 9.7% in controls) (Figure III-3E).  

To further confirm that these OPCs were indeed the result of de novo gliogenesis, I also assessed 

PDGFαR expression within the Sox2+ NSC/IPC population.  Six hours after the injection of 

dystroglycan-blocking antibodies, I found that the proportion of Sox2+ cells co-expressing 

PDGFαR was nearly fourfold that of controls (38.2% ± 8.3% vs. 9.6% ± 4.4% in controls), a 

result consistent with an acute induction of gliogenesis by neural stem- and/or uncommitted 

progenitor cells (Figure III-3F).  Increased PDGFαR expression within the SVZ subsided by 24 

hours post-injection, returning to levels in line with control antibody-injected littermates and 

suggesting that the population of newly-formed oligodendrogenic progenitor cells had exited the 

SVZ.  To further confirm the oligodendrocyte lineage identity of the PDGFαR+ cells, I 

performed IHC against the oligodendroglial transcription factor Olig2 and found greater numbers 

of Olig2+ cells 6 hours following the injection of dystroglycan-blocking antibodies (6.15 ± 2.15 

x105 cells/mm3 vs. 4.33 ± 3.03 x105 in controls) (Figure III-3G).  In contrast, dystroglycan block 



58 
 

had no effect on the number of cells expressing Pax6 (26.3 ± 2.87 x 105 cells/mm3 vs. 25.2 ± 

2.44 x 105 in controls) (Figure III-3H,I), a transcription factor that represses olig2 to promote 

neuronal fate in postnatal SVZ progenitors 258,259. In addition to increased gliogenesis, the 

dystroglycan block also led to a twofold increase in Sox2+ cell proliferation, relative to controls 

(32.6% ± 2.0% vs. 15.7% ± 1.7% in controls) (Figure III-3J,K).  Intriguingly, this effect was not 

observed until 24 hours post-injection, well after the induced NSC/IPC gliogenesis had 

concluded. These findings suggest that detachment from dystroglycan ligands deregulates the 

proliferation and maturation of RGCs and drives oligodendroglial fate specification in SVZ 

progenitors without an intermediate transit amplifying step. Overall, these results indicate that 

dystroglycan has multiple roles within the neonatal gliogenic SVZ, regulating both the 

development and structural integrity of the niche and the functional production of progenitors 

from the niche.  

Dystroglycan loss delays the maturation of oligodendrocyte lineage cells 

Newly produced OPCs migrate dorsally and tangentially out of the SVZ into the 

overlying corpus callosum, where they differentiate into oligodendrocytes (OLs), make contact 

with axons and begin to myelinate.  To determine if the niche defects observed in the DAG cKO 

mice affected the development of oligodendroglial cells after exiting the SVZ, I performed IHC 

to detect PDGFαR, Sox2 and CC1 (a marker for mature oligodendrocyte cell bodies) on sections 

from DAG cKO and WT mice at P3 and P8 (Figures III-4A,D).  At P3, although WT and DAG 

cKO mice had similar numbers of PDGFαR+ OPCs in the corpus callosum (Figure III-4B), 

OPCs derived from the DAG cKO SVZ displayed a less mature phenotype, with a significantly 

higher proportion of DG-deficient OPCs co-expressing the NSC/IPC marker Sox2 relative to 



59 
 

those in WT littermates (36.0% ± 3.9% vs. 22.1% ± 5.4% in WT) (Figure III-4C).  These data 

suggested that OPCs in the DAG cKO corpus callosum at P3 were less mature. By P8, DAG 

cKO callosa contained more OPCs and OLs than those of WT littermates (39.6 ± 1.21 x 104 

PDGFαR+ and 30.5 ± 1.24 x 104 CC1+ cells/mm2 vs. 22.1 ± 4.20 x104 PDGFαR+ and 15.2 ± 

0.75 x 104 CC1+ in WT) (Figure III-4E), though the OPC:OL ratio did not differ significantly 

(not shown).  Furthermore, WT and DAG cKO OPC proliferation in the corpus callosum was 

similar (29.9% ± 5.7% vs. 34.7% ± 3.4% in WT) (Figure III-4F), indicating that the progenitor 

surplus in DAG cKO white matter is the product of SVZ glial overproduction. These data 

furthermore suggest that OPCs produced in the DAG cKO SVZ are not defective in their ability 

to migrate to the overlying corpus callosum, as OPC densities in the callosum were actually 

higher than those in WT littermates, i.e. OPCs were able to reach their target. 

To assess the myelination capacity of OLs in DAG cKO white matter, I performed IHC 

to detect MBP in coronal sections taken from WT and DAG cKO mice at P8 and P21 (Figure III-

4G).  At P8, MBP expression was greatly reduced in the corpus callosa of DAG cKO mice 

relative to that in WT, despite the presence of higher numbers of mature OLs (Figure III-4E).  

Similarly, although the DAG cKO corpus callosum contained normal numbers of mature OLs at 

P21 (not shown), MBP immunofluorescence remained at lower levels than in WT littermates 

(Figure III-4G).  Western blotting analysis of lysates taken from WT and DAG cKO cerebral 

cortices at P21 and 3 months reveal lower levels of MBP protein in the DAG cKO cortex at P21 

(Figure III-4H).  By 3 months, however, MBP expression in DAG cKO animals had normalized, 

indicating that dystroglycan loss delays, but does not prevent, the production of myelin 

components by DAG cKO OLs.   
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To further monitor the effects of dystroglycan loss on oligodendrogenesis and 

oligodendrocyte lineage progression, I isolated SVZ cells from WT and DAG cKO mice at P0 

and cultured them as neurospheres.  Second passage neurospheres were dissociated into single 

cells, plated on PDL and allowed to differentiate for 3 or 7 days.  I then performed IHC to detect 

Sox2 (NSC/IPCs), PDGFαR (oIPC/OPCs), NG2 (OPCs), CNPase (mature OLs)and MBP 

(myelin) (Figures III-5A,D).  In line with my in vivo observations, 3 days after growth factor 

removal, PDGFαR+ oIPC/OPCs originating from DAG cKO neurospheres retained Sox2 

expression at a higher level than those from WT neurospheres (59.6% ± 6.1% vs. 25.0% ± 3.5% 

in WT) (Figure III-5B), indicative of the presence of more oIPCs relative to OPCs.  

Dystroglycan-deficient cultures also contained higher percentages of NG2+ OPCs (56.1% ± 

4.5% vs. 39.7% ± 2.7% in WT) and, although a small percentage of CNP+ OLs had begun to 

differentiate from WT OPCs, almost no mature OLs were observed in DAG cKO cultures (1.1% 

± 0.3% vs. 4.5%±1.4% in WT) (Figure III-5C).  After 7 days of differentiation, a significantly 

higher percentage of DAG cKO cells persisted in the OPC stage (43.2% ± 5.1% vs. 25.1% ± 

2.6% in WT), while of the percentage of mature CNP+ OLs was significantly lower than in WT 

cultures (5.2% ± 1.8% vs. 12.3% ± 3.2% in WT) (Figure III-5E).  These results suggest that 

dystroglycan can promote the timely differentiation of oligodendrocyte lineage cells in a niche-

independent manner.  I did not, however, observe any significant proliferative changes in OPCs 

derived from DG-deficient neurospheres (not shown), indicating that increased OPC 

proliferation in the DAG cKO SVZ may be a direct result of the structural disruption of the 

niche.  
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DISCUSSION 

 Recent reports have demonstrated that the temporal and spatial regulation of integrin 

receptors is essential to SVZ niche maintenance and controlled neurogenesis. In the adult SVZ, 

mitotically active NSC/NPCs upregulate α6β1 integrin, which mediates adhesion to the vascular 

basal lamina. Blocking integrins causes cell detachment from SVZ blood vessels, leading to 

increased proliferation and precocious neuronal differentiation 175,193,245. In contrast, the 

regulation of ECM signaling and its significance in postnatal gliogenesis are not understood. 

Thus, while laminin and dystroglycan are known promoters of oligodendroglial survival, 

differentiation and myelination 255,238,256,243,257,244, the role of ECM in oligodendroglial fate 

determination remains unknown.  

I analyzed oligodendrocyte progenitor types (oIPC and OPCs) in the early postnatal SVZ 

and corpus callosum of WT and DAG cKO mice, finding that an initial delay in gliogenesis was 

followed by overproduction of oIPC/OPCs in the P3 dystroglycan-deficient SVZ. Enhanced 

oligodendrogenesis was accompanied by a significant increase in oIPC/OPC proliferation within 

the SVZ of DAG cKO mice, leading to higher numbers of OPCs in the P8 corpus callosum. 

Although dystroglycan-deficient OPCs were able to differentiate, the resulting oligodendrocytes 

did not myelinate collosal axons in the correct developmental window.  

As was the case in ependymal cell development, I found that the ability of dystroglycan 

to promote the production and differentiation of oligodendrocyte lineage cells is niche-

independent, as neurospheres isolated from P0 DAG cKO mice and differentiated on the non-

physiological substrate PDL also gave rise to higher numbers of OPCs that appeared to be stalled 

at the point of differentiation.  Thus, while DAG cKO oligodendrocyte densities were higher 

than normal in vivo, they were lower than normal using the neurosphere assay. The observed 
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disconnect in dystroglycan-dependent oligodendrocyte differentiation in vitro and in vivo may 

result from the absence of proliferative abnormalities in cultured DAG cKO OPCs (not shown) 

or the contribution of other factors present in vivo.  

In antibody injection experiments, I found that even the transient block of dystroglycan 

ligand binding was sufficient to induce rapid oligodendroglial fate specification in early postnatal 

SVZ progenitors. The short timeframe in which this event occurred, coupled with the lack of 

concomitant SVZ proliferation, suggests that dystroglycan loss drove the direct acquisition of 

OPC identity by SVZ niche cells. Together, these results demonstrate that dystroglycan is a 

critical regulator of fate specification in postnatal neural progenitors, both within the developing 

SVZ and in the absence of niche ECM structures or other extrinsic cues. The increased 

production of OPCs by the dystroglycan-deficient SVZ may result from the increased 

responsiveness of postnatal RGCs to gliogenic mitogens such as PDGF 226,227, FGF 228, EGF 

230,231 or IGF 260,243,261 . The PDGF and FGF signaling pathways are particularly attractive 

candidates, as both have also been shown to inhibit oligodendrocyte differentiation and 

myelination separately and by FGF-dependent maintenance of PDGFαR expression in OPCs 232-

234. Alternatively, the results of several studies suggest that increased Notch signaling could 

contribute to the phenotypes reported here following dystroglycan loss-of-function. Firstly, 

constitutive Notch signaling was shown to increase BLBP+ expression while inhibiting RGC 

proliferation in the late embryonic VZ 262, a result similar to our finding of delayed maturation 

and decreased proliferation in P0 DAG cKO radial glia. Notch has also been shown to promote 

oligodendroglial fate during gliogenic periods 222,223, with constitutive activation leading to the 

overproduction of OPCs 224. Importantly, though Notch signaling promotes gliogenesis, it 

simultaneously acts to inhibit oligodendrocyte terminal differentiation and myelination 225. This 
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could help to explain why dystroglycan loss results in delayed oligodendrocyte differentiation in 

vitro but not in vivo, as cultured OPCs remain in closer proximity to potential sources of Notch 

ligands. 

Together, these results suggest that dystroglycan continues to regulate oligodendrocyte 

lineage progression outside of a structured, ECM-rich niche.  From gliogenesis to the 

myelination of axons, dystroglycan function is critical to the production of a competent 

oligodendrocyte pool. 
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Figure III-3. Gliogenesis is increased following ventricular injection of dystroglycan 
blocking antibodies 
 
(A) Schematic of antibody injection protocol.  P2 rat pups were given single injections of control 
or DG-blocking antibody into the lateral ventricle and sacrificed 6 or 24 hours later.  (B) IHC 
staining of whole mounts taken from rats 6 and 24 hours after the injection of control or DG-
blocking antibodies. DG block led to the dispersal of ventricular surface laminin anchors 6 hours 
post-injection. At 24 hours following DG block, small laminin clusters reappeared on the apical 
surfaces of ependymal cells.  (C) IHC staining of the dorsal SVZ in coronal sections taken from 
control or blocking antibody-injected rats 6 hours post-injection.  DG block led to a rapid 
increase in gliogenesis, with higher numbers of OPCs observed in the SVZ and increased 
expression of OPC markers by Sox2+ NSCs/NPCs.  This increase in OPC numbers was not 
linked to altered OPC proliferation and had subsided by 24 hours post-injection. (D) 
Quantification of OPC density in the SVZ 6 hours after the injection of control or DG-blocking 
antibodies. *p < 0.05, Student’s t-test; error bars, SEM; n=3.  (E) Quantification of PDGFαR+ 
OPC proliferation in control and DG-blocking antibody-injected rats 6 hours post-injection.  
Error bars, SEM; n=3.  (F) Quantification of PDGFαR expression by Sox2+ NSC/NPCs 6 and 24 
hours after control or DG-blocking antibody injection.  *p < 0.05, Student’s t-test; error bars, 
SEM; n=3. (G) Quantification of Olig2+ cell density in the SVZ 6 hours after the injection of 
control or DG-blocking antibodies. **p < 0.01, Student’s t-test; error bars, SEM; n=3. (H) IHC 
staining of the dorsal SVZ in coronal sections taken from control or blocking antibody-injected 
rats 6 hours post-injection. DG block had no effect on the number of Pax6+ neuronal progenitor 
cells. (I) Quantification of Pax6+ cell density 6 hours after the injection of control or DG-
blocking antibodies. Error bars, SEM; n=3.  (J) IHC staining of coronal sections from rats 
injected with control or DG-blocking antibodies at P2 and sacrificed 24 hours later.  DG block 
led to increased NSC/NPC proliferation 24 hours post-injection, after NSC/NPC gliogenesis had 
ceased. (K) Quantification of Sox2+ cell proliferation 24 hours after injection of control or DG-
blocking antibodies. *p < 0.05, Student’s t-test; error bars, SEM; n=3. Scale bars: 25µm (B), 
50µm (C,G,I). 

 

 

 

 

 

 

  



 

Figure II
blocking

 

 

II-3. Gliog
g antibodies

genesis is inc
 

 

creased follo

67 

owing ventrricular injecction of dysttroglycan 

 



68 
 

 

Figure III-4. Dystroglycan promotes timely oligodendrocyte lineage progression 

(A) IHC staining of the corpus callosum in coronal sections from P3 WT and DAG cKO mice.  
Although similar numbers of OPCs were present in the corpus callosa of DAG cKO mice, more 
OPCs retained Sox2 expression, indicative of a less mature phenotype.  (B) Quantification of 
PDGFαR+ OPC density in the corpus callosum of P3 WT and DAG cKO mice.  Error bars, 
SEM; n=3.  (C) Quantification of Sox2 expression in PDGFαR+ OPCs in the corpus callosum of 
P3 WT and DAG cKO mice.  *p < 0.05, Student’s t-test; error bars, SEM; n=3.  (D) IHC staining 
of the corpus callosum in coronal sections from P8 WT and DAG cKO mice.  At P8, the corpus 
callosa of DAG cKO mice contained more OPCs and mature oligodendrocytes, without an 
associated decrease in OPC:OL ratio (not shown).  There was no significant difference in OPC 
proliferation between WT and DAG cKO mice, indicating that the increased OPC numbers in the 
DAG cKO corpus callosum are the result of earlier OPC overproduction.  (E) Quantification of 
PDGFαR+ and CC1+ cell density in the corpus callosum of P8 WT and DAG cKO mice.  *p < 
0.05, **p < 0.01, Student’s t-test; error bars, SEM; n=3.  (F) Quantification of PDGFαR+ OPC 
proliferation in the corpus callosa of P8 WT and DAG cKO mice.  Error bars, SEM; n=3.  (G) 
IHC staining of the corpus callosum in coronal sections from WT and DAG cKO mice at P8 and 
P21. Myelination is delayed in DAG cKO mice, with reduced MBP immunofluorescence 
apparent at both P8 and P21.  (H) Western blot analyses of MBP protein levels in cortical lysates 
from WT and DAG cKO mice at P21 and 3 months. Scale bars: 50 µm (A,D), 100 µm (G). 
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CHAPTER IV: CONCLUSIONS AND FUTURE CONSIDERATIONS  

 

In this work, the developmental regulation of laminin expression and localization in the 

early postnatal SVZ was examined, as was the contribution of the ECM receptor dystroglycan to 

ependymal niche maturation and postnatal SVZ oligogliogenesis. I found that laminin is highly 

expressed in the neonatal SVZ and is closely associated with the apicolateral surfaces of 

developing ependymal cells, as well as in complex extra-vascular ECM structures unique to the 

early postnatal niche. Using transgenic and antibody-blocking approaches, I have shown that 

ECM-dystroglycan interactions are critical for the timely differentiation of ependymal cells from 

postnatal RGCs and to the proper organization of neural stem- and ependymal cells into niche 

pinwheel structures. Furthermore, I have demonstrated that dystroglycan function is necessary 

for the controlled production of oligodendrocyte lineage cells from SVZ progenitors and to the 

timely maturation of OPCs into myelin-competent mature oligodendrocytes.  

Putative roles of cell-ECM interactions in the developing and adult VZ/SVZ niche are 

often described in terms of adhesion. That is to say, ECM ligands and receptors serve to anchor 

NSCs/NPCs in a configuration that supports niche structure and function, without being directly 

involved in the regulation of cellular proliferation or fate decisions. For example, the loss of 

RGC attachment to the pial basal lamina, and the associated disruption of the neuronal migratory 

scaffold the RGC basal process provides, is thought to produce the severe brain abnormalities 

observed in patients with secondary dystroglycanopathies and in dystroglycan-deficient mouse 

models160,41,246. The results of the current study, however, suggest that the consequences of 

dystroglycan loss-of-function during cortical development are far more pervasive than previously 

assumed. Pial basement membrane discontinuity and radial glial detachment have been observed 
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in multiple mouse models in which ECM ligand-receptor interactions are abrogated (α6 integrin-

/-, perlecan-/-, laminin γ1 nidogen-binding site mutation), yet none of these mutations have been 

found to impact embryonic RGC polarity, proliferation or fate 254. Here I have shown that brain-

specific deletion of dystroglycan results in profoundly dysregulated RGC proliferation, with rates 

well below WT levels at birth. While WT RGCs began to mature between P0 and P3, as 

evidenced by reduced BLBP expression and decreased proliferation, DAG cKO RGC numbers 

and proliferation rates remained constant. As the loss of dystroglycan also led to reduced 

numbers of iOPCs in the SVZ at P0, together these results could reflect a delay in a 

developmental program in which RGC proliferation increases at the onset of gliogenesis. 

However, while RGC proliferation did not decrease between P0 and P3 in DAG cKO mice, 

neither did it increase with the surge of oIPC production witnessed at P3.  

In contrast to the RGC proliferative changes I observed, a study in chick retinal 

neuroepithelial cells showed that RNAi knockdown of dystroglycan by in ovo electroporation 

resulted in hyperproliferation and increased neurogenesis. However, expression of a non-

cleavable form of dystroglycan (permanent α-β subunit interaction) led to decreased proliferation 

and neurogenesis. In this condition, neuroepithelial cell nuclei were found to be concentrated at 

the basal side, suggestive of disrupted INM 263. Although these sets of data are somewhat 

conflicting, it is likely that, like the expression patterns of dystroglycan, the niche response to 

dystroglycan signaling varies with developmental stage, mode of cell division, local ECM 

composition and receptor complement, etc.  It has been shown that dystroglycan mRNA and 

protein expression in mammary epithelial cells is cell cycle-dependent and that dystroglycan 

depletion led to an accumulation of cells in S-phase and decreased differentiation 264. I found that 
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Sox2+PCNA+ cells in the P0 DAG cKO SVZ were located more basally than those in the WT, 

which could suggest a cell cycle stall at S-phase and a subsequent disruption of INM.  

There is also some in vivo support for a more complex role in the mitotic machinery: 

dystroglycan has been shown to interact with the Lis1-Nde complex in embryonic RGCs, linking 

microtubule structures to the actin cytoskeleton and ECM to stabilize the RGC lateral membrane 

and anchor the mitotic spindle to the cell cortex 124. Lis1-Nde deficient RGCs had mislocalized 

and decreased levels of dystroglycan, leading to the randomization of mitotic spindle orientation 

and an increase in asymmetric divisions. A previous characterization of RGC defects in the Lis1-

Nde deficient mouse also reported defects in centrosome duplication 158, a phenotype also 

observed following dystroglycan depletion in myoblasts 49. In that system, the β-dystroglycan 

ICD acts as a nuclear scaffold, interacting with lamin B1 and emerin to regulate their localization 

and stability at the nuclear envelope. Dystroglycan knockdown resulted in abnormal nuclear 

morphology, disrupted centrosome-nucleus linkage and the overproduction of centrosomes. 

Centrosomes are asymmetrically segregated in neurogenic divisions, with the RGC retaining the 

mother centrosome and the differentiating daughter cell inheriting the daughter centrosome 265. 

Centrosomal abnormalities are associated with the loss of cell polarity, defective cell division, 

and abnormal chromosome segregation (reviewed in 266. Experiments assessing embryonic/ early 

postnatal RGC behavior following electroporation with dystroglycan siRNA in combination with 

live imaging of transfected cells would provide a much clearer picture of the proliferative 

abnormalities seen in DAG cKO mice.  Detailed cell cycle analysis using transgenic constructs 

that modify, for example, extra- and intracellular cleavage sites, specific ICD interaction sites or 

the nuclear localization sequence may give additional insight into the functional contribution of 

different intracellular binding partners. 
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In an attempt to uncouple the RGC proliferation defects from the increased 

oligogliogenesis I observed in the DAG cKO SVZ, I performed a single intraventricular injection 

of antibodies that competitively inhibit dystroglycan-ligand interaction into P2 rats. I found that 

transient dystroglycan block led to a rapid increase (6 hours post-injection) in the number of 

oIPCs within the SVZ, with no increase in iOPC proliferation. Dystroglycan block also led to a 

significant increase in Sox2+ progenitor proliferation, but not until 24 hours post-injection, well 

after the oIPC numbers had returned to normal. This result indicates that dystroglycan loss-of-

function can drive oligodendroglial fate specification in SVZ progenitors without an additional 

proliferation step and in the absence of previous developmental abnormalities. Several studies 

have demonstrated that protracted cell cycle progression itself is often sufficient to induce 

neurogenic divisions and/or cell cycle exit in NECs and RGCs 267,268. In addition to the 

aforementioned study, dystroglycan has also been found to localize to the mitotic spindle, 

cleavage furrow and midbody in a variety of cell types, with depletion resulting in stalled G2/M 

(REF52, HeLa, Swiss 3T3 cells) or G0/G1 (PC12 cells) transition 269,270.  Given the short time 

frame in which large numbers of oIPCs were produced, an abrupt exit of SVZ progenitors from 

the cell cycle and acquisition of the “default” oligodendroglial fate may be the most plausible 

explanation. Another possibility would a large increase in oligodendrogenic growth factor 

signaling, such as that of PDGF or EGF. Dystroglycan has been shown to recruit the adaptor 

protein Grb2 to the cell membrane 45. Grb2 and dystroglycan have been found to complex with 

focal adhesion kinase (FAK)  271 in oligodendrocytes 244 and dynamin in CNS cell membrane 

ruffles, an interaction that has been implicated in the regulation endocytosis 47. As Grb2 and 

dynamin are known to participate in the endocytosis of EGFR 272-275 and PDGFaR 276 it would be 



75 
 

interesting to determine if dystroglycan loss-of-function amplified receptor tyrosine kinase 

signaling via reduced endocytosis of these receptors. 

Dystroglycan is also thought to modulate the MEK/ERK pathway, which regulates 

proliferation, differentiation and cell survival.  In different systems it has been proposed to act by 

competitive inhibition of integrin-mediated ERK activation277 and by sequestering MEK, 

preventing it from phosphorylating ERK43.  Additionally, an ERK binding motif has been 

identified within the β-dystroglycan ICD itself (ELM prediction) 42. ERK signaling has been 

shown to promote the proliferation of NSCs/NPCs in vivo and in vitro (Li et al., 2001) (Campos 

et al., 2004) (Matsumoto et al., 2006; Shioda et al., 2008; Staquicini et al., 2009). Preliminary 

data suggest that neurospheres isolated from perinatal DAG cKO mice may have increased levels 

of ERK phosphorylation that persists during neural stem and progenitor cell differentiation (not 

shown). Research from our group has demonstrated that dystroglycan promotes IGF-1-dependent 

MAPK activation in oligodendrocytes and that loss of dystroglycan prevented MAPK activation 

and oligodendrocyte differentiation243. 

It is unclear why the lack of dystroglycan during development results in decreased RGC 

proliferation while the transient block of DG ligand binding leads to an increase. I did not 

observe proliferative changes in DAG cKO neurosphere cultures or in ependymal cultures 

following dystroglycan block, suggesting that this phenotype may be niche specific. It has been 

reported that the the half-life for turnover of cell-surface-expressed dystroglycan is 

approximately 12 hours264. I found that increased Sox2+ cell proliferation was detectable from 

approximately 12 hours following dystroglycan block and increased significantly by 24 hours 

post-injection, which could potentially correlate to the timeline of dystroglycan turnover and 



 

Figu
com

A) N
B) A
hype
neur
Coro
the e
roset

restored 

could res

 

A

polarizin

ECM, an

particular

produce 

ure IV-2. Pot
plex proteins

NECs and RG
Abnormal exp
erproliferation
o(/glio)blastic

onal sections 
early postnat
tte-like structu

function. It 

scue the decr

Apico-basal 

ng factors to 

nd is integral

r importance

progenitors.

tential outco
s 

GCs interact v
pression or loc
n, alterations 
c rosettes. A
from P3 WT 

tal DAG cKO
ures. 

would be i

reased RGC 

polarity in 

extracellula

l to proper R

e for maintai

 One result 

omes of alter

via adherens j
calization of A

in basal (in
Actively divid

and DAG cK
O SVZ, inclu

important to

proliferation

RGCs is e

ar cues, such

RGC function

ining the bal

of cell-cell 

76 

red expressio

unctions (AJs
AJ or polarity
ntermediate) 
ding cells are
KO mice. Sev
uding occasio

o determine 

n seen in neo

stablished l

h as apical ce

n. The correc

lance betwee

contact is th

on or localiza

s) and divide
y proteins can
progenitor fa
e shown in 

veral of these 
onal clusterin

if exogeno

onatal DAG

argely by t

ell-cell adhe

ct organizati

en self-renew

he specificat

ation of AJ 

e at the ventri
n result in ect

fate and the 
grey. Adapte
features wer

ng of BLBP+

ously expres

G cKO mice. 

the response

esion and int

ion of the ap

wing divisio

tion of apica

and polarity

cular surface
topic mitosis
formation of
ed from7. C)
re observed in
+ RGCs into

sed dystrog

e of intrace

teraction wit

pical domain

ons and those

al and basola

y

.
,
f
)
n 
o

lycan 

ellular 

th the 

n is of 

e that 

ateral 



77 
 

domains by, respectively, the aPKC-PAR-3-PAR-6 complex and the threonine kinase Par-1 98; 

99. During neurogenic RGC divisions, the asymmetric inheritance of Par3 supports the 

maintenance of stem cell characteristics through its persistent activation of Notch signaling 278. 

Conversely, Par-1 has been found to promote epithelial differentiation by both driving 

asymmetric mitotic spindle orientation 279 and repressing Notch signaling in basal progenitors 

280,281. Par-1 also enables interphase epithelial cells to play a more active role in multicellular 

niche polarity, through regulating the extracellular assembly of laminin. Importantly, this process 

is mediated through the stabilization and localized targeting of dystroglycan, and is required for 

apical domain reconstruction in response to changes in ECM 81. This finding raises the 

possibility that dystroglycan contributes to the dynamic regulation of niche polarity and 

maturation in response to the extensive ECM remodeling we have observed during ependymal 

niche development (Figure IV-2). Indeed, the expression and proper localization of dystroglycan 

is required for laminin clustering in a variety of cell types 71,72,75,116,248,82. In skeletal muscle, 

where dystroglycan function is best described, the adaptor protein ankyrin3 (ankyrinG) has been 

identified as one β-dystroglycan binding partner required for its targeted localization 180. Ank3 is 

one of few known organizers of ependymal niche construction; its upregulation in the lateral 

membrane of ependymal-specified RGCs is required for ependymal cell maturation and the 

formation of niche pinwheel structures 179. The ependymal niche phenotype resulting from loss 

of Ank3 is reminiscent of the disturbances I observed following dystroglycan loss-of-function, 

suggesting that a failure of dystroglycan localization downstream of Ank3 might mediate some 

of these effects. However, in contrast to the results presented here, Ank3 loss did not impact 

SVZ proliferation or the downregulation of RGC markers, possibly due to dystroglycan’s wider 

expression patterns and mechanistic diversity. These results do, however, further support the 



78 
 

assertion that the delayed ependymal differentiation and niche construction phenotypes observed 

in DAG cKO mice are likely not responsible for the proliferation and maturation defects in 

dystroglycan-deficient RGCs. In concert with my finding that the in vivo ependymal maturation 

defects could be recapitulated in vitro by blocking DG-ligand interactions solely during 

ependymal cell differentiation, the results of the Ank3 study suggest that the RGC and 

ependymal cell phenotypes I observed are the result of independent mechanistic disturbances. 

Extracellular matrix regulation of gap junctional proteins is another potential avenue of 

interest.  Laminin has been shown to modulate the transcription and protein expression of several 

connexins in a variety of cell types, including neural progenitors and OPCs 282-285. Upon 

oligodendroglial specification, oIPCs downregulate neural progenitor-associated connexins and 

begin to express those associated with mature OL (Cx29, Cx32, Cx47) 286. Of these, Cx32 has 

been shown to actively promote OL differentiation, as its loss results in delayed OPC 

differentiation 287. When oIPCs derived from postnatal hippocampal neurosphere cultures were 

grown in the absence of laminin, they expressed Cx32 mRNA but not protein. Exposure to 

laminin induced Cx32 protein expression and an increase in OL differentiation 282. On the other 

hand, Cx36 mRNA is present in NSCs during early neurogenesis but becomes restricted to 

neuroblasts toward the end of the neurogenic period 288,289. Intriguingly, exposure to laminin in 

the same postnatal culture system induced Cx36 protein expression in mature neurons, 

suggesting that laminin-induced changes in connexin expression patterns may regulate 

neural/glial fate decisions 282. Furthermore, the adhesive functions of Cx26 and Cx43 are 

required for neuronal migration along RGCs during cortical development, where they interact 

with cytoskeletal elements to stabilize the leading process of the neuroblast and adhere the 

centrosome to the cell cortex to facilitate nuclear translocation 290, roles that overlap significantly 
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with those attributed to dystroglycan in the same and similar contexts. In the adult SVZ, gap 

junctions link type B- and ependymal cells which, like their RGC precursors, express Cx26 and 

Cx43 291. Although the precise function of gap junction adhesion/signaling in ependymal niche 

cells is not known, it may well play a role in niche assembly and/or the regulation of adult NSC 

behavior. Given that laminin hubs are found at type B-ependymal cell interfaces in mature 

pinwheels and that their assembly and relocation occur concurrent with niche building, perhaps 

laminin interactions contribute to gap junction formation or maintenance mediated, directly or 

indirectly, by dystroglycan.  

In conclusion, we have identified the extracellular matrix receptor dystroglycan as a 

critical regulator of niche structure and function in the early postnatal VZ/SVZ. It is becoming 

clear that the spatial and temporal regulation of ECM receptor expression is an important 

mechanism by which niche cells can modify their relationship to the extracellular environment. 

However, to our knowledge, this study represents the first time an ECM receptor has been shown 

to regulate both niche construction and output. Further investigation of dystroglycan function has 

the potential to reveal novel downstream targets, which could be harnessed to manipulate niche 

output to aid in tissue repair.   
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MATERIALS AND METHODS 

 

Generation of Nestin-cre; DAGFlox/Flox  mice 

The generation of Nestin-cre; DAGFlox/Flox  mice was previously described 249.  

SVZ Wholemount Dissection and Immunohistochemistry 

SVZ wholemounts were dissected as described 170.  Briefly, the striatal wall of the lateral 

ventricle was dissected from Nestin-Cre/DAG-flox mice, their wild-type littermates or FoxJ1-

GFP mice, fixed with cold 4% paraformaldehyde in 0.1 M PBS for 12 hours at 4°C and washed 

with PBS prior to staining. 

To visualize antigens at the ventricular surface, wholemounts were blocked in 10% donkey 

serum with 0.2% Triton-X100 and incubated with primary and secondary antibodies for 24 hours 

at 4°C.  For deeper structures, wholemounts were blocked with 10% donkey serum with 2% 

Triton-X100 and incubated in primary and secondary antibodies for 48 hours.   

Frozen Tissue Processing and Immunohistochemistry 

Animals were intra-cardially perfused and brains post-fixed with 4% Paraformaldehyde in 0.1M 

PBS.  Brains from mice younger than P14 were immersion-fixed in 4% PFA.  Tissue was cryo-

protected with 30% sucrose in PBS, embedded in OCT medium and frozen in dry ice cooled 

with isopentane.  18 µm sections were prepared on a cryostat.  Sections were blocked in 10% 

donkey serum with 0.1% Triton X-100, incubated with primary antibodies diluted in blocking 

solution overnight at 4°C and incubated with appropriate fluorophore-conjugated secondary 

antibodies (Jackson) in blocking solution at room temperature for 2 hours. 
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Antibodies 

The following primary antibodies were used:   

Rabbit anti- γ-tubulin (Sigma-Aldrich T5192,  1:500), mouse anti-β-catenin (BD Transduction 

610153, 1:500), mouse IgM anti-α-Dystroglycan, clone IIH6C4 (Upstate Cell Signaling 05-593,  

1:50- 1:100), mouse anti-PCNA (Cell Signaling Technology, 1:200), rabbit anti-Sox2 (Millipore 

AB5603, 1:100), chicken anti-Nestin (Aves Labs NES, 1:500), mouse anti-Nestin 

(Developmental Studies Hybridoma Bank  Rat-401,  1:5), rat anti-MBP (Serotec MCA409S,   

1:100), mouse anti-CNPase (Sigma C5922,  1:100), rabbit anti-NG2 (Chemicon International  

AB5320, 1:200), mouse anti-APC (CC-1) (Calbiochem OP80, 1:100), rabbit anti-GFAP 

(DakoCytomation Z0334, 1:500), rat anti-PDGFRα (CD140a) (BD Pharmingen 558774, 1:100), 

rabbit anti-PDGFRα (Santa Cruz SC-338, 1:150), rabbit anti-Laminin (Sigma L9393, 1:100), 

chicken anti-GFP(Aves GFP, 1:500), rat anti-CD24 (BD Biosciences 557436, 1:100-1:200).  

Cell Culture 

For neurosphere and ependymal cell culture experiments, the lateral ventricular wall was 

dissected from P0-1 mice and mechanically dissociated in MEM with 25mM HEPES (Lonza) 

with 1% Pen/Strep (Mediatech). 

For neurosphere differentiation assays, cells isolated from Nestin-cre/DAG flox mice and their 

wild-type littermates were grown in suspension in DMEM/F12 (Thermo) with B27 (GIBCO) and 

20 ng/mL EGF and FGF (Peprotech).  Neurospheres were passaged at 5 and 10 days in vitro.  

Following the second passage, cells were resuspended in the same media without growth factors, 

plated at 15,000 cells/cm2 on Poly-D-Lysine-coated chamber slides and allowed to differentiate 

for 3 or 10 days.  Cells were fixed with 4% paraformaldehyde in PBS for 15 minutes at room 

temperature and washed with PBS prior to staining. 
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Ependymal cell cultures were performed as previously described 179. Briefly, cells isolated from 

FoxJ1-GFP mice were resuspended in DMEM-High Glucose (Mediatech) with 10% FBS and 1% 

Pen/Strep and plated at 100,000 cells/cm2 on PDL-coated chamber slides.  Cells were incubated 

under normal cell culture conditions until confluent (3-4 days), then media was switched to 2% 

FBS and cells were incubated for a further 7 days.  Dystroglycan-blocking (IIH6C4, Millipore) 

or IgM control antibodies (Biolegend) were added to culture media at 10 µg/ml and refreshed 

every 3 days.  Cells were fixed with 4% paraformaldehyde in PBS. 

In Vivo Antibody Injections 

Postnatal day 2 Sprague-Dawley rats were anaesthetized on ice, positioned in a stereotaxic 

device and given a single 2.5 µL injection of IIH6 antibody or mouse IgM control at 1 mg/mL 

into the lateral ventricle (1.4 lateral, 2.2 ventral to bregma). 

Image Acquisition and Analysis 

Coronal sections and SVZ whole mounts were imaged with a Zeiss LSM 510 confocal laser 

scanning microscope.  SVZ whole mount fields were selected at random from anterior dorsal 

areas of sufficient tissue and staining quality.  Images from cell culture preparations were 

acquired on a Zeiss Axiovert 200M epifluorescent microscope. All images were processed and 

quantified using ImageJ software.  For in vivo ependymal cell pinwheel analysis and in vitro 

cluster analysis, pinwheels/clusters were defined as 3 or more ependymal cells immediately 

adjacent to i. each other and ii. one or more monociliated cells. 

Statistics 
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Sox2+ PCNA+ nuclear distance from ventricle data (Figure III-2.) are presented as box plots +/- 

90th and 10th percentiles, respectively. All other data are expressed as mean +/- SEM.  Student's 

t-tests and Wilcoxon rank sum tests were performed using SigmaPlot software.   
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