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Abstract of the Dissertation

Multiple Change-points Estimation in GARCH Models

by

Sichen Zhou

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

The generalized conditional heteroscedastic (GARCH) models are often used to esti-

mate volatility in financial markets as they mimic the patterns in real world with volatility

clustering as well as high excess kurtosis. However, in applications to asset return series,

they usually possess undesired persistence in volatility, which can be explained by struc-

ture changes in parameters associated with significant economic events such as financial

crises. From this motivation, we provide an estimation procedure for multiple parameter

changes in GARCH models. By introducing the specified forward and backward filtra-

tion and combining them with Bayes’ theorem, our estimation procedure has attractive

statistical and computational properties and yields explicit recursive formulas to provide

semi-parametric estimates for the piecewise constant parameters. Based on the estimates

given above with the quasi-likelihood of our model and the modified Bayesian information

criterion (MBIC), we also develop a segmentation procedure to give inference on the num-

ber and locations of the change-points that partition the unknown parameter sequence

into segments of equal values. Furthermore, we propose an expectation-maximization

(EM) algorithm to estimate the change-points probability p in our model. Simulation

studies are used to compare our performance to the existing procedure and the “oracle”
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estimates, which assume that the change-points are already known. The mean Euclidean

error (EE), the Kullback–Leibler divergence (KL), the goodness of fit and the accuracy

rate of the numbers of change-points detected are given. Finally, illustrative applications

to the S&P 500 index and the IBM stock returns are shown to give an insight how our

estimation results coincide with the real financial crises.
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Chapter 1

Introduction

The generalized conditional heteroscedastic (GARCH) models were proposed by

Bollerslev(1986)[1] to characterize observed time series by modeling the error terms,

yt = σtεt, σ2
t = ω +

s∑
i=1

αiy
2
t−i +

r∑
j=1

βjσ
2
t−j (1.1)

where εt is symmetric i.i.d. with mean equal to zero and variance equal to one and have

finite kurtosis. GARCH models are often used to fit financial time series since they are

consistent with the volatility clustering as well as the high excess kurtosis. However, most

asset return series cannot be adequately described by GARCH models, where undesired

persistence in volatility shows up. Many researchers attribute this to structure changes

in parameters associated with significant economic events such as financial crises. In

this dissertation research, we introduce an estimation procedure for multiple parameter

changes in GARCH-type volatility models, where change-points take place with constant

parameters in between, corresponding to the sudden shocks caused by extraordinary

economic events.

In this chapter, first we review some classic works on change-points problems, where

difficulty increases dramatically from single change-point problems to multiple ones. Then

previous applications to financial time series are listed in the second section. The Markov
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regime-switching models, the cumulative-sums (CUSUM) type statistics, and the existing

segmentation procedures are introduced to solve problems in ARCH or GARCH settings.

After discussing the limitation of existing methods, we introduce the motivation of our

study in the fourth section. Finally, the outline of this dissertation is given.

1.1 Literature on Change-points Problems

The initial change-point problem was proposed by Page(1955)[2], where the parameters

can have at most one change and partial solution was given only when initial parameters

are known. Quandt(1960)[3] and Hinkley(1970)[4] first provided frequentist solutions to

this problem by using likelihood ratio statistic for testing the hypotheses related to the

position of the change-point. Both methods can be applied to detect structure changes

in linear regression. Andrews(1993)[5] further provided Wald test, Lagrange multiplier

(LM) test, and likelihood-ratio(LR)-like test based on generalized method of moments

(GMM) estimators, where asymptotic critical values are provided from a Bessel process

of order q corresponding to the number of shifting parameters. Meanwhile, Bayesian

approach dates back to Shiryaev(1963)[6], in which concepts of “mean delay time” and

“false alarm” were introduced. Later on, Carlin, Gelfand and Smith(1992)[7] proposed

a hierarchical Bayesian change-point model and utilized an associated Gibbs sampler to

obtain the desired marginal posterior densities.

Problems of multiple change-points are difficult due to computational complexity.

One frequentist approach, proposed by Bai and Perron(1998)[8], is to compute the least

squares estimates of piecewise constant regression parameters by dynamic programming.

Later, Qu and Perron(2007)[9] generalized the procedure to multivariate regression with

arbitrary restrictions using restricted quasi-likelihood maximization. As for Bayesian

approach, the successive developments are in works of Liu and Lawrence(1999)[10], Wang

and Zivot(2000)[11], both of which specify priors for parameter distributions and use the

Gibbs sampler with a Metropolis-Hastings procedure. Another approach, based on the
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binary segmentation procedure introduced by Sen and Srivastava(1975)[12], is the circular

binary segmentation (CBS) method proposed by Olshen, et al.(2004)[13], which makes

computation more conveniently.

1.2 Previous Applications to Financial Time Series

Researchers have shown great interest in modelling financial time series with time-

varying parameters. Inclan and Tiao(1994)[14] considered a simple variance-change model

and then introduced the iterated cumulative sums of squares (ICSS) algorithm which can

detect multiple changes. Later, Chen and Gupta(1997)[15] provided similar results using

unbiased Schwarz information criterion (SIC) with an application to stock prices. Chib,

Nardari and Shephard(2002)[16], making use of the reversible jump Markov chain Monte

Carlo (MCMC) introduced by Green(1995)[17], which can simulate posterior distributions

even with unknown number of parameters, developed a procedure to detect structural

changes in stochastic volatility (SV) models. Meanwhile, Bai and Perron(2003)[18] in

their paper provided an illustrative example to determine the break dates of US ex-post

real interest rate. Recently, Xing, Sun and Chen(2012)[19] modeled credit rating with

piecewise homogeneous Markov chains, which is proved to provide better forecasts than

the corresponding time-homogeneous model.

Specific to GARCH-type volatility models, change-points problems are even harder

to solve because volatility cannot be directly observed from the series and there exists

non-linear dependence of the conditional variance on the past observations. Hamilton

and Susmel(1994)[20], Cai(1994)[21] proposed the Markov regime-switching models to

analyze the volatility in ARCH models. In these models, parameters are allowed to

change within several different regimes, where the transitions are governed by a hidden

Markov chain. Gray(1996)[22], Dueker(1997)[23] further extended the regime-switching

models to GARCH settings. Kokoszka and Leipus(2000)[24] considered ARCH models

and derived a cumulative-sums (CUSUM) type statistic to detect a single change point.
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It was generalized to GARCH settings by Berkes, et al.(2004)[25], using a statistic based

on the approximate likelihood scores. On reviewing the previous developments, Andreou

and Ghysels(2002)[26] evaluated the performance of several tests for structural breaks in

the conditional variance dynamics of asset returns. Recently, Galeano and Tsay(2010)[27]

studied the case in which multiple changes occur in individual parameters of the GARCH

(1,1) model and provided an binary segmentation algorithm.

1.3 Introduction of Existing Procedures

1.3.1 Markov Regime-switching Models

Let st denote an unobservable state variable with value taken from 1 to N . A Markov

regime-switching model in the GARCH (1,1) setting can be presented as follows,

yt = σtεt, σ2
t = ωst + αsty

2
t−1 + βstσ̂

2
t−1 (1.2)

where

σ̂2
t−1 =

N∑
n=1

P (st−1 = n|Y1,t−1)(ωn + αny
2
t−2 + βnσ̂

2
t−2)

Another way to establish the model is to assume N separate GARCH processes and

σst,t is chosen from the corresponding process given st for any time t,

yt = σst,tεt, σ2
n,t = ωn,t + αn,ty

2
t−1 + βn,tσ

2
n,t−1 (1.3)

Both models promise that σst,t only depends on {st,Y1,t} rather than {s1, . . . , st−1},

and therefore the embedded process {st} satisfies the Markov property. A modified

Kalman filter was proposed by Kim(1994)[28], which is followed by recent numerical

methods to provide solutions.
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1.3.2 Cumulative-sums (CUSUM) Type Statistics

The concept of CUSUM was first mentioned in Page(1955)[2] to detect changes in

statistical quality control. For a sequence {x1, . . . , xn}, a parameter change is detected

when the cumulative sum S exceeds a certain threshold, which is defined as follows,

S0 = 0, St+1 = max (0, St + xt − x̂t)

where x̂t is an estimate of xt provided that no parameter changes would take place.

Later on, more complex CUSUM type statistics are introduced to solve different

types of change-points problems. One example is the Lagrange multiplier (LM) test

developed by Andrews(1993)[5]. It uses the cumulative sum of score functions
∑t

i=1 Si(x)

as the essence of the test statistic and determine there exists a structure change when

max
16t6n

LM(
∑t

i=1 Si(x)) exceeds the critical value. If so, choose t as the change-point with

the largest LM(
∑t

i=1 Si(x)).

1.3.3 Existing Segmentation Procedures

Numerous segmentation procedures are proposed to generalize single change-point

detection methods to solve multiple change-points problems. One example is the binary

segmentation algorithm proposed by Galeano and Tsay(2010)[27]. They usually consist

of three steps,

1. Determine whether there exists a single change-point and if so, choose that with

the largest test statistic from the single detection method as the change-point.

2. Repeating the single detection method in each segment divided by the detected

structure changes until there are no extra change-points to be detected.

3. Refine the segmentation results in each segment by certain pairs of the detected

structure changes, and repeat until the number and locations of all possible change-

points remain unchanged.
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1.4 Motivation

One of our motivation to develop a multiple change-points estimation procedure for

GARCH models is the increasing importance to determine structure changes in financial

time series. In real world, the economic environment shifted dramatically during 2008

Global Financial Crisis, where the fundamentals of global markets are impractical to

remain unchanged. Meanwhile, recent research studies have shown time series models

with homogeneous parameters would often lead to doubtful results, which is illustrated

in the following example.

Figure 1.1: S&P 500: daily log return series from 1999 to 2014

Figure 1.1 shows the daily log return series of the S&P 500 index from 1999 to 2014.

The data come from Yahoo! Finance. We apply the time-homogeneous GARCH(1,1)

model to fit the series, which results in µ = 2.07×10−4, ω = 2.69×10−7, α = 0.905, β =

0.086. Figure 1.2 shows the estimated volatility with the time-homogeneous GARCH(1,1)

model. We can tell the volatility is much higher during the crisis. Notice that α +

β = 0.991 is close to 1, suggesting high volatility persistence. This both provides an
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evidence to question the stationarity of the volatility and leads to poor estimation of

the unconditional variance. One possible explanation is that the parameters are shifted

during financial crises. In comparison, we simulate ten sequences of equal length of 300

from the time-homogeneous GARCH(1,1) model with different parameters and combine

them together. The exact setting will be given in Section 4.1. The estimated parameters

of the new series are α = 0.694, β = 0.305, which presents the same pattern as the daily

log return series, where α + β = 0.999.

Figure 1.2: S&P 500: estimated volatility with the GARCH(1,1) model

The other reason for our interest is the limitations of existing methods in detecting

change-points in GARCH settings. Markov chain Monte Carlo (MCMC) and the use

of Gibbs samplers are computationally expensive, which are not good choices to solve

multiple change-points problems. Markov regime-switching models have limited regimes,

which cannot well reflect the impact of different extraordinary events. Moreover, though

we can define the markets as “bull” and “bear”, parameters can vary for different periods

even in the same state. Cumulative-sums (CUSUM) type statistics are generally fast

to compute and the critical values can be determined either theoretically under the null
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hypnosis of absence of change-points or empirically using simulation studies to compare

the power of the tests. However, the effectiveness of such approaches are greatly affected

by the locations of the true structural changes and the estimation errors. Lastly, results

of segmentation procedures are often sub-optimal, leading to underestimate the number

of structural changes.

Thus, we would like to develop a procedure effectively in computation, of which the

time cost should grow linearly corresponding to the length of the time series. Rather

than implementing segmentations directly, we would first provide an overall estimation

of the piecewise parameters, and then segment the sequence given our estimate results

so as to provide inference on the number and locations of the structure changes. Though

it is well understood that structure changes at the beginning and the end of the series

are impossible to detect, we hope to develop a consistent procedure for the rest of the

sequence however the change-points are distributed.

1.5 Outline

In this dissertation, for simplicity, we focus on the GARCH (1,1) model, which is the

most commonly used GARCH model in financial time series analysis. Further extensions

to general GARCH-type volatility models, e.g. exponential GARCH, would be made

possible by modifying the corresponding likelihood functions.

In Chapter 2, we set up a model of multiple change-points in the GARCH (1,1) setting.

After presenting the forward and the backward filtration, we provide explicit recursive

formulas for the semi-parametric estimates of the piecewise constant parameters. Then,

the bounded complexity mixture (BCMIX) approximation and the use of blocks are

introduced to achieve higher computational speed. Later, an expectation-maximization

(EM) algorithm is developed to provide estimation of the change-points probability p.

Chapter 3 presents a segmentation procedure based on a function ∆t in regard to

the impact of our estimates over the unconditional variance, where we use a modified

8



Bayesian information criterion (MBIC) inspired from Zhang and Siegmund(2007)[29] to

determine the number and positions of structure changes. We further apply a top down

approach to improve the results. After we summarize our segmentation procedure, the

binary segmentation algorithm by Galeano and Tsay(2010)[27] is introduced, where we

implement their procedure to the case in which parameters change simultaneously so as

to compare with our own procedure.

Chapter 4 first presents an illustrative example of a series which consists of ten time-

homogeneous GARCH(1,1) sequences, where we apply our estimation and segmentation

procedure and also study the choices of the minimum possible distance m and the change-

points probablity p. Then simulation studies of our proposed estimates are given, where

the estimation errors are evaluated by the mean Euclidean error (EE), the Kullback-

Leibler (KL) divergence and the goodness of fit comparing to the “oracle” estimates,

which assume that the structure changes are already known. We also list the accuracy

rate of the numbers of change-points detected from our own procedure, in comparison with

the results from the binary segmentation algorithm (BSA) by Galeano and Tsay(2010)[27]

and our modification for simultaneous changes. Later we compare with their procedure

under the circumstances of individual parameter shifting.

In Chapter 5, we apply our procedure to the daily and weekly log return series of

the S&P 500 index and the IBM stock returns, where estimated change-points are shown

to be coincide with the major economic events. Further discussion and some concluding

remarks are given in Chapter 6.
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Chapter 2

Modeling Change-points in GARCH

and Semi-parametric Estimation

Procedure

2.1 Modeling Multiple Change-points in GARCH (1,1)

We consider a GARCH (1,1) model,

yt = σtεt, σ2
t = ωt + αty

2
t−1 + βtσ

2
t−1 (2.1)

where εt is independent and identically distributed with E(εt) = 0 and V ar(εt) = 1 and

have finite kurtosis. Here we assume εt follows standard normal distribution, which can

be generalized to elliptically symmetric distributions to fit heavy tails. Instead of being

time-homogeneous, the parameter vector θt = (ωt, αt, βt)
′ is supposed to have occasional

changes such that for t > 1, the indicator variables,

It = 1{θt 6=θt−1}
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are i.i.d. Bernoulli random variables with the change-points probability p, which describes

how often structure changes would take place. The piecewise constant parameter θt is

assumed to take a value under the regularity condition of (2.1), i.e. αt + βt < 1 and

(αt + βt)
2 + 2α2

t < 1. Such constraints promise that the series is piecewise stationary,

where θt can be estimated piecewisely by quasi-maximum likelihood estimation (QMLE)

introduced by Bollerslev and Wooldridge(1992)[30].

2.2 Local Likelihood Mixture

Our target is to develop an estimation procedure for the parameter vector θt to

help detecting multiple change-points in the previous time-varying GARCH(1,1) model,

i.e. find time t such that It = 1. Since θt remains constant between adjacent structure

changes, we consider the closest structure changes that happen before and after time t.

Define Kt = max {s : Is = 1, s 6 t} and K̃t = min {s : Is = 1, s > t}, i.e. Kt and K̃t are

the most recent change time before (including the same as) and after time t. We further

denote by Cij the event that there is no change from i + 1 to j but changes do occur at

time i and j+1, i.e. Cij = {Ii = Ij+1 = 1, Ii+1 = . . . = Ij = 0}. Both i and j take values

from 1 to n, where i = 1 and j = n suggest there exists no change-point before and after

time t respectively.

As introduced by Lai and Xing(2011)[31], in light of the law of total probability, the

overall likelihood of θt can be written as the weighted average of the local likelihood

given any combinations of the most recent changes. By denoting the partial sequence

(yi, . . . , yj) with Yij for all i 6 j, we consider the local likelihood mixture (LLM) for θt

given Y1,n,

L(θt;Y1,n) =
∑

16i6t6j6n

wijtL(θt;Yij) (2.2)

where wijt = P (Cij|Y1,n) is the probability that the closest change-points before and after

time t are i and j + 1. We will develop a recursive formula for computing wijt in the

following sections.
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L(θt;Yij) is the likelihood function of θt given Yij, which can be further written as

the quasi-likelihood function of the time-homogeneous GARCH(1,1) model under the

assumption of no changes,

L(θt;Yij) = exp {−1

2

j∑
t=i

(log(2π) + log σ2
t +

y2t
σ2
t

)} (2.3)

2.3 Forward Filtration

To derive a recursive formula for wijt, we need to compute the conditional probabilities

given any recent changes before and after time t respectively and then combine them

together. Therefore, first we introduce the following forward filtration to calculate the

conditional probabilities based on the last change-point before time t. To start with, we

denote fij = L(θt;Yij, Cij) the likelihood for Yij given Cij of a constant θt from time i to

j and pit = P (Kt = i|Y1,t) the probability that the most recent change time before and

including time t is i given Y1,t.

To compute the probability pit, we decompose the likelihood L(θt;Y1,t) into conditional

probabilities given each possible change time before and including time t,

L(θt;Y1,t) = f(θt|Y1,t) =
t∑
i=1

pitf(θt|Yi,t, Kt = i) (2.4)

and then we break down the conditional probability f(θt, yt|Y1,t−1) based on whether

structure change takes place at time t or not, i.e. It = 0 or 1,

f(θt, yt|Y1,t−1) = pf(θt, yt|Y1,t−1, It = 1) + (1− p)f(θt, yt|Y1,t−1, It = 0) (2.5)

Note that the first term on the right-hand side of (2.5) can be expressed as,

pf(θt, yt|Y1,t−1, It = 1) = pft,tf(θt|Y1,t, It = 1) = pft,tf(θt|Yt,t, Kt = t)
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and we can further expand the second term by conditioning on each possible change time

before time t,

(1− p)f(θt, yt|Y1,t−1, It = 0)

= (1− p)
t−1∑
i=1

P (Kt−1 = i|Y1,t−1, It = 0)f(θt, yt|Y1,t−1, It = 0, Kt−1 = i)

= (1− p)
t−1∑
i=1

pi,t−1f(yt|Y1,t−1, It = 0, Kt−1 = i)f(θt|Y1,t, It = 0, Kt−1 = i)

= (1− p)
t−1∑
i=1

pi,t−1
f(Yi,t, Kt = i)

f(Yi,t−1, Kt−1 = i)
f(θt|Yi,t, Kt = i)

= (1− p)
t−1∑
i=1

pi,t−1
fi,t
fi,t−1

f(θt|Yi,t, Kt = i)

Since f(θt|Y1,t) ∝ f(θt, yt|Y1,t−1), we compare the coefficients of f(θt|Yi,t, Kt = i)

between (2.4) and (2.5) for 1 6 i 6 t. Noting that
∑t

i=1 pit = 1, the recursive formula

for probability pit is given by pit = p∗it/
∑t

k=1 p
∗
kt, where

p∗it =


pft,t if i = t,

(1− p)pi,t−1fi,t/fi,t−1 if i < t,

(2.6)

2.4 Backward Filtration

As for the backward filtration, we denote qt,j = P (K̃t = j+1|Yt+1,n) the probability that

the most recent change time after t is j + 1 given Yt+1,n. By decomposing the likelihood

L(θt;Yt+1,n) into conditional probabilities given each possible change time after time t,

L(θt;Yt,n) = f(θt|Yt,n) =
n∑
j=t

qt,jf(θt|Yt,j, K̃t = j + 1) (2.7)

We break down the conditional probability f(θt, yt|Yt+1,n) as follows,

f(θt, yt|Yt+1,n) = pf(θt, yt|Yt+1,n, It+1 = 1) + (1− p)f(θt, yt|Yt+1,n, It+1 = 0) (2.8)
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where the first term on the right-hand side can be expressed as,

pf(θt, yt|Yt+1,n, It+1 = 1) = pft,tf(θt|Yt,n, It+1 = 1) = pft,tf(θt|Yt,t, K̃t = t+ 1)

and the second term can be expanded as,

(1− p)f(θt, yt|Yt+1,n, It+1 = 0)

= (1− p)
n∑

j=t+1

P (K̃t+1 = j + 1|Yt+1,n, It+1 = 0)f(θt, yt|Yt+1,n, It+1 = 0, K̃t+1 = j + 1)

= (1− p)
n∑

j=t+1

qt+1,jf(yt|Yt+1,n, It+1 = 0, K̃t+1 = j + 1)f(θt|Yt,n, It+1 = 0, K̃t+1 = j + 1)

= (1− p)
n∑

j=t+1

qt+1,j
f(Yt,j, K̃t = j + 1)

f(Yt+1,j, K̃t+1 = j + 1))
f(θt|Yt,j, K̃t = j + 1)

= (1− p)
n∑

j=t+1

qt+1,j
ft,j
ft+1,j

f(θt|Yt,j, K̃t = j + 1)

Similarly to the previous section, we compare the coefficients of f(θt|Yt,n, K̃t = j + 1)

in (2.7) and (2.8) for t 6 j 6 n, as f(θt|Yt,n) ∝ f(θt, yt|Yt+1,n). Since
∑n

j=t qt,j = 1,

probability qt,j can be computed recursively by qt,j = q∗t,j/
∑n−1

k=t q
∗
t,k, where

q∗t,j =


pft,t if j = t,

(1− p)qt+1,jft,j/ft+1,j if j > t,

(2.9)

2.5 Semi-parametric Estimation

By the Bayes’ theorem,

f(θt|Y1,n) ∝ f(θt|Y1,t)f(θt|Yt+1,n)/f(θt) (2.10)

where f(θt) is the uninformative prior of θt. There is no need to specify f(θt) as it will

be cancelled out when we derive the recursive formula for wijt.
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An alternative way to break down L(θt;Yt+1,n) is to condition the likelihood on

whether structure change takes place at time t + 1 and if not, further decompose the

likelihood based on the next possible change-point after time t + 1. Thus the likelihood

L(θt;Yt+1,n) can be written as,

L(θt;Yt+1,n) = f(θt|Yt+1,n) = pf(θt|Yt+1,n, It+1 = 1) + (1− p)f(θt|Yt+1,n, It+1 = 0)

= pf(θt) + (1− p)
n∑

j=t+1

qt+1,jf(θt|Yt+1,j, K̃t+1 = j + 1) (2.11)

Replacing f(θt|Y1,t) and f(θt|Yt,n) in (2.10) with (2.4) and (2.11),

L(θt;Y1,n) ∝
∑

16i6t=j6n

ppitf(θt|Yi,t, Kt = i)

+
∑

16i6t<j6n

(1− p)pitqt,j+1f(θt|Yi,t, Kt = i)f(θt|Yt+1,j, K̃t = j)/f(θt)

= . . .+
∑

16i6t<j6n

(1− p)pitqt,j+1
fijf(θt, Yi,t, Kt = i)f(θt, Yt+1,j, K̃t = j)

fi,tft+1,jf(θt, Yij, Cij)f(θt)
L(θt;Yij)

=
∑

16i6t=j6n

ppitL(θt;Yij) +
∑

16i6t<j6n

(1− p)pitqt,j+1
fij

fi,tft+1,j

L(θt;Yij)

By comparing the coefficients of the likelihood L(θt;Yij) in the equation above with

those in (2.2) and making use of
∑t

i=1 pit = 1 and
∑

16i6t6j6nwijt = 1, the conditional

probabilities wijt can be determined by the following equations,

wijt ∝ w∗ijt =


ppit if i 6 t = j,

(1− p)pitqt+1,jfij/fitft+1,j if i 6 t < j,

(2.12)

where wijt = w∗ijt/Pt and Pt = p+
∑

16i6t<j6nw
∗
ijt.

As for the local likelihood mixture (2.2), we can maximize L(θt;Y1,n) by maximizing

L(θt;Yij) for 1 6 i 6 t and t 6 j 6 n. Since L(θt;Yij) is the likelihood with constant

θt, classic likelihood maximization procedure can be used. We denote θ̃ij the maximum

likelihood estimate of θt from L(θt;Yij).
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In light of Lai and Xing(2011)[31], we propose the semi-parametric estimates θ̂t, which

provide estimation to the parameter vector θt by the following mixture,

θ̂t =
∑

16i6t6j6n

wijtθ̃ij (2.13)

Since the evaluation of pit,qt+1,j and wijt involves the likelihood fij for Yij given Cij

of which θt is an unknown constant, we replace fij with the maximized local likelihood

L(Yij; θ̃ij). Denote the probabilities pit, qt,j and wijt after such replacement by p̃it,q̃t,j and

w̃ijt, respectively. We can approximate (2.13) by,

θ̂t =
∑

16i6t6j6n

w̃ijtθ̃ij (2.14)

2.6 BCMIX Approximation

To reduce the computational complexity, we use the bounded complexity mixture

(BCMIX) approximation introduced by Lai and Xing(2011)[31], which includes M(p)

components and keeps the most recent m(p) weights pkn with n − m(p) < k 6 n and

m(p) < M(p), to obtain the conditional probability pit in (2.6). Values of M(p) and

m(p) are presets in regard to the change-points probability p. In this dissertation, we

consider to use M(p) = 15 and m(p) = 10. Let Kt−1(p) be the set of indices i for which

pi,t−1 is kept at stage t − 1, we have Kt−1(p) ⊃ {t− 1, . . . , t−m(p)}. At stage t, define

p∗it as in (2.6) for i ∈ {t}
⋃
Kt−1(p) and we only consider the index it not belonging to

{t, . . . , t−m(p) + 1} such that,

p∗it,t = min {p∗it : i ∈ Kt−1(p) and i 6 t−m(p)}

where we choose it to be the smallest if there exist two or more minimizers. Define

Kt(p) = {t}
⋃

(Kt−1(p) − {it}) and let pit = p∗it/
∑t

k∈Kt(p)
p∗kt for i ∈ Kt(p), which yields

a BCMIX approximation to pit.
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Similarly, we can obtain a BCMIX approximation to qt,j, i.e. qt,j = q∗t,j/
∑t

k∈K̃t(p)
q∗t,k,

with a corresponding set K̃t(p). Let K̃t+1(p) be the set of indices j for which qt+1,j is

kept at stage t + 1, we have K̃t+1(p) ⊃ {t+ 1, . . . , t+m(p)}. At stage t, define q∗t,j

as in (2.9), for j ∈ {t}
⋃
K̃t+1(p) and we only consider the index jt not belonging to

{t, . . . , t+m(p)− 1} such that,

q∗t,jt = min {q∗t,j : j ∈ K̃t+1(p) and j > t+m(p)}

where jt is chosen to be the largest when there exist two or more minimizers. Define

K̃t(p) = {t}
⋃

(K̃t+1(p)− {jt}), which provides a BCMIX approximation to qt,j.

Thus, the BCMIX approximation to (2.14) can be obtained by replacing 1 6 i 6 t 6

j 6 n with i ∈ Kt(p), j ∈ K̃t+1(p), i.e.

θ̂t =
∑

i∈Kt(p),j∈K̃t+1(p)

w̃ijtθ̃ij (2.15)

By implementing the BCMIX approximation, we make sure there are at most M(p)

components for each iteration of pit and qt,j given time t. Therefore, our semi-parametric

estimation procedure achieves linear complexity.

2.7 Use of Blocks

To further improve the computational efficiency, we consider to use blocks in our

estimation procedure. Using a block of b represents that we only consider i, j and t

that are multipliers of b when computing pit, qt,j and wijt, therefore greatly reduces the

computational time. Specially, using a block of 1 indicates no use of blocks. Suppose

Kb,t(p) and K̃b,t+1(p) are the sets in (2.15) corresponding to the block of b, the parameter

vector θt can be estimated by,
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θ̂t =


θ̂bdt/be if b - t,∑

b|t,i∈Kb,t(p)

j∈K̃b,t+1(p)

w̃ijtθ̃ij if b | t,
(2.16)

By using the block of b, we reduce the computational time to 1/b at the cost of the

ability to locate the exact positions of the structure changes as we treat every consecutive

b points to be identical. The illustrative example in Section 4.1 compares the result with a

block of 4 and that with no blocks, where it shows that, with a small b, such simplification

will not deteriorate the estimation results too much. However, in consideration of the

further segmentation based on our semi-parametric estimates, the result with a block of

4 slightly differs from that with no blocks. Thus, we use a block of 4 in our simulation

studies to reduce the computational time and use no blocks in the real data analysis for

accuracy in segmentations.

2.8 Estimation of Change-points Probability p

The semi-parametric estimate given in (2.14) involves the hyperparameter, change-

points probability p for the change-time process {It}, which is usually not provided by

the data set. Therefore, we can either choose to set an arbitrary p in our estimation

procedure or estimate the change-points probability p through the following empirical

Bayes approach. By the definition of p∗it in (2.6), the conditional probability of yt given

Y1,t−1 can be written as,

f(yt|Y1,t−1) =
t∑
i=1

p∗it

where p∗it are functions of the change-points probability p. Thus the log-likelihood function

given the overall series Y1,n of θt can also be expressed as a function of p,

l(p;Y1,n) =
n∑
t=1

log f(yt|Y1,t−1) =
n∑
t=1

log {
t∑
i=1

p∗it} (2.17)
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Since p∗it have to be computed recursively for 1 6 i 6 t, direct maximization of (2.17)

would be computationally expensive. Instead, we can use the expectation–maximization

(EM) algorithm which provides a much simpler structure of the log-likelihood lc(p) with

the complete data {yt, It, θt, 1 6 t 6 n},

lc(p) =
n∑
t=1

{log f(θt|yt) + 1{θt 6=θt−1} log p(It = 0) + 1{θt 6=θt−1} log p(It = 1)}

= −1

2

n∑
t=1

(log(2π) + log σ2
t +

y2t
σ2
t

) +
n∑
t=1

{1{θt 6=θt−1} log p+ 1{θt 6=θt−1} log (1− p)}

The E-step of the EM algorithm involves computing E(log σ2
t |Yij) and E(

y2t
σ2
t
|Yij) where

it stands that Cij = {Ii = Ij+1 = 1, Ii+1 = . . . = Ij = 0} for time t. Neither of them can

be easily formulated. However, since both terms are conditioned on the last update p̂old

in the EM algorithm, the M-step of the EM algorithm only involves the maximization of

the second term in (2.18), which results in the following update formula,

p̂new =
1

n

n∑
t=1

P (It = 1|Y1,n) =
1

n

n∑
t=1

n∑
i=1

P (Cit|Y1,n) =
1

n

n∑
t=1

n∑
i=1

witt

=
1

n

n∑
t=1

n∑
i=1

w∗itt/Pt =
1

n

n∑
t=1

n∑
i=1

p̂oldpit/Pt =
1

n

n∑
t=1

p̂old/Pt (2.18)

where Pt is a function of p̂old given by (2.12). However, it is very time consuming for

p̂ to converge as we need to repeat our procedure for every update. The illustrative

example in Section 4.1 shows that p̂ does converge but converges slowly for our EM

algorithm, which also has an undesired upward bias. Moreover, as long as our preset p0

does not deviate from the true change-points probability p too much, similar results can

be obtained with or without the estimation of p. Simulation studies in Section 4.2 present

that the estimation results given p̂ with one update from (2.18) are even worse than those

given the initial value p0 = 0.001 when the length of the series n is small , since a larger

change-points probability p we use in our semi-parametric estimation would lead to more

fluctuations in the estimates.
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Therefore, the bottom line is that we use a preset p0 = 0.001 and p̂ with only one

update to acquire some knowledge of the true change-points probablity p, and then

compare the estimation and segmentation results to choose which one to apply, as shown

in both the simulation studies and the real data analysis. Further discussion will be made

in Chapter 6.
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Chapter 3

Unconditional Variance Based

Segmentation Procedure

3.1 Intuition

In order to provide inference on the number and locations of the structure changes,

we would like to develop a segmentation procedure given the estimated parameter vector

θ̂t = (ω̂t, α̂t, β̂t)
′. One simple point to start with is to consider the Euclidean distance

between θ̂t and θ̂t+1 for 1 6 t < n, i.e.

‖θ̂t − θ̂t+1‖2 = [(ω̂t − ω̂t+1)
2 + (α̂t − α̂t+1)

2 + (β̂t − β̂t+1)
2]1/2 (3.1)

However, it does not work well as ω̂t varies greatly in scale with different data inputs,

e.g., ω̂t of the S&P 500 weekly log return series is about 5 times that of the S&P 500

daily log return series in the same period. Therefore, applying the Euclidean distance to

structure change detection would only lead to using partial information of either ω̂t or

α̂t and β̂t. Thus we need to find another function to detect multiple structure changes,

which is affected by ω̂t, α̂t and β̂t at the same time.

21



3.2 Unconditional Variance

For a time-homogeneous GARCH model, the unconditional variance E(σ2
t ) is a constant

value to which the square of volatility would revert in the long term. Therefore, we can

use the unconditional variance as a signal to divide the series into segments with constant

parameters. E(σ2
t ) can be written as a function of θt,

E(σ2
t ) = ωt/(1− αt − βt) (3.2)

Since we pay more attention to the relative changes of the unconditional variances

rather than the absolute changes, we would take log(E(σ2
t+1)/E(σ2

t )) into consideration,

which can be approximated by the first order Taylor expansion as follows,

log(E(σ2
t+1)/E(σ2

t ))

= log(E(σ2
t+1))− log(E(σ2

t ))

=
1

E(σ2
t )
{∂E(σ2

t )

∂ωt
(ωt+1 − ωt) +

∂E(σ2
t )

∂αt
(αt+1 − αt) +

∂E(σ2
t )

∂βt
(βt+1 − βt)}

=
1− αt − βt

ωt
{ 1

1− αt − βt
(ωt+1 − ωt) +

ωt
(1− αt − βt)2

[(αt+1 − αt) + (βt+1 − βt)]}

= (ωt+1 − ωt)/ωt − [(αt+1 − αt) + (βt+1 − βt)]/(1− αt − βt) (3.3)

If we further replace the parameters in (3.3) with our estimated parameter vector θ̂t,

we can estimate log(E(σ2
t+1)/E(σ2

t )) by,

log(E(σ2
t+1)/E(σ2

t )) = (ω̂t+1 − ω̂t)/ω̂t + [(α̂t+1 − α̂t) + (β̂t+1 − β̂t)]/(1− α̂t − β̂t) (3.4)

3.3 ∆t for Detecting Multiple Change-points

Before we propose a function ∆t for detecting multiple change-points, two notations

are introduced for our segmentation procedure, which are the minimum possible distance
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between change-points m and the maximum possible number of change-points M . The

minimum possible distance m is a preset value which reflects how separately we believe the

structure changes would take place or the least interval we need to separate two adjacent

change-points given the specified model. It is easily understood that we cannot separate

two adjacent change-points if they are too close to each other. In the extreme case, if

two change-points are exactly next to each other, we do not even have the subsequence in

between to provide inference. The numbers of points before the first structure change and

after the last structure change are also governed by m. Our simulation studies and real

data analysis suggest that we may consider to leave an even large space before the first

structure change and after the last structure change. Further discussion will be made

in Chapter 6. Hwang and Pereira(2006)[32] advises that at least 500 observations are

required for GARCH(1,1) models in consideration of the size of biases and convergence

errors. In this dissertation, we use m = 100 or 200 as we focus more on the structure

change detection than the parameter estimation. Later, we will show that m can also

be chosen by the length of the series n given our modified Bayesian information criterion

(MBIC). Meanwhile, the maximum possible number M provides a limit for the number

of change-points, which is given by,

M = bn/mc − 1 (3.5)

As we focus on the individual impact of ω̂t, α̂t and β̂t over log(E(σ2
t+1)/E(σ2

t )) without

neglecting each other, we propose the following function ∆t for detecting multiple change-

points in our segmentation procedure,

∆t = |ω̂t+1 − ω̂t|/ω̂t + (|α̂t+1 − α̂t|+ |β̂t+1 − β̂t|)/(1− α̂t − β̂t) (3.6)

where we take absolute values of each term in the right-hand side of (3.4) so as to make

sure each individual impact to be positive.
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Lai and Xing(2011)[31] suggests the use of ”bandwidth” d by replacing the estimated

parameters by their local average within a width of d in order to make ∆t smooth. For

instance, we replace ω̂t in the denominator in (3.6) by
∑t+d

i=t−d+1 ω̂i/2d and ω̂t+1 and ω̂t

in the numerator by
∑t+d

i=t+1 ω̂i/d and
∑t

i=t−d+1 ω̂i/d respectively. Such replacement can

mitigate the impact of extreme values in ω̂t, α̂t and β̂t over ∆t. The d we choose should

be smaller than m/2, which promises that there exists at most one change-point within

the width. In this dissertation, we use d = 40.

Thus, for m < t 6 n−m, ∆t after smoothing can be written as,

∆t =
2|(

∑t+d
i=t+1−

∑t
i=t−d+1)ω̂i|∑t+d

i=t−d+1 ω̂i
+

2|(
∑t+d

i=t+1−
∑t

i=t−d+1)α̂i|+ 2|(
∑t+d

i=t+1−
∑t

i=t−d+1)β̂i|
2d−

∑t+d
i=t−d+1 α̂i −

∑t+d
i=t−d+1 β̂i

(3.7)

We can locate the first possible change-point by choosing t with the largest ∆t, which

is denoted by l1. As for the second possible change-point, noting that it should be at least

m points away from l1, we can find it by maximizing ∆t excluding the local region of l1

with a width of m, i.e. l2 = arg max
m<t6n−m

{∆t : t /∈ {l1 −m < t < l1 +m}}. Similarly, the

ith possible change-point can be determined by,

li = arg max
m<t6n−m

{∆t : t /∈
i−1⋃
j=1

{lj −m < t < lj +m}} (3.8)

We keep the process above running until the number of possible change-points reaches

K, such that {m < t 6 n − m}/
⋃K
j=1 {lj −m < t < lj +m} = ∅, which indicates we

cannot find more possible change-points after that. Such K is smaller or equal to the

maximum maximum possible number M . Thus, we have obtained K possible change-

points {l1, . . . , lK}, which can be used to establish K time-varying models each with a

different number of structure changes from 1 to K, i.e. we choose the first k possible

change-points {l1, . . . , lk} as the change-points for the kth model for 1 6 k 6 K. By

applying model selection to these K models and the time-homogeneous model, which is

corresponding to choose the number of change-points, we can determine the number and
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locations of the structure changes. In the following section, we will develop a modified

Bayesian information criterion (MBIC) to choose from the (K + 1) models, which would

be further improved by a top down approach.

Figure 3.1: Illustration: detecting possible change-points by ∆t with m = 100

Figure 3.1 shows the 22 possible change-points detected by ∆t with m = 100 in the

illustration example in Section 4.1. The solid lines represent the first 11 possible change-

points while the dash lines represent the rest 11 possible change-points. We can see that

possible change-points are detected in succession according to their scale in ∆t with the

minimum possible distance m in between.

3.4 Modified Bayesian Information Criterion

A Bayesian information criterion (BIC) for model selection among a finite set of models

is given by,

BIC = −2l(θ̂t) + r log(n) (3.9)
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where l(θ̂t) is the maximized value of the log-likelihood function of the model, r is the

number of free parameters to be estimated and n is the number of data points in the

observed data. In our case, r = 4k, where k is the number of structure changes. The

intuition behind this is that for each change-point added, we introduce a parameter for

the location of the new change-point as well as a parameter vector θt for the additional

segment which contains three individual parameters ωt, αt and βt shifting simultaneously.

Lavielle(2005)[33] proposed to replace the penalty term in (3.9) by δr log(n) for

change-points problems, where δ is a shrinkage parameter chosen by the user. In our case,

we choose δ = 1
2
, since the change-points are mostly determined by the local estimates

and the piecewise constant parameter vector θt can be estimated by the subsequences

between adjacent structure changes. Thus, the Bayesian information criterion (BIC) for

our model selection can be written as,

BIC = −2l(θ̂t) + 2k log(n) (3.10)

Zhang and Siegmund(2007)[29] proposed a modified Bayesian information criterion

(MBIC) for Gaussian change-point models, of which the penalty term is in the form

of 3k log(n) +
∑k+1

i=1 log(li − li−1), where l0 = 0, lk+1 = n and {l1, . . . , lk} are the total k

change-points. Since log(·) is a concave function, the penalty term is maximized when the

change-points are evenly distributed and minimized when the distances between adjacent

change-points reach the minimum possible distance m. Such property well responses

to the fact that the maximum log-likelihood is much improved when a change-point is

detected in the middle of a subsequence than close to the edges.

In light of this, we propose our modified Bayesian information criterion (MBIC),

MBIC = −2l(θ̂t) + 2k log(n) +
2k

k + 2
log(m)(

k+1∑
i=1

log(li − li−1)− (k + 1) log(n/(k + 1)))

(3.11)
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In our MBIC, we consider the following adjustment to the penalty term in (3.10),

k+1∑
i=1

log(li − li−1)− (k + 1) log(n/(k + 1)) (3.12)

which reaches its maximum 0 when the change-points are evenly distributed. Thus the

new penalty term is separated into 2k log(n), which is solely based on the number of

change-points, and 2k
k+2

log(m)(
∑k+1

i=1 log(li − li−1)−(k+1) log(n/(k+1))), which is mainly

based on where these structure changes take place. The reason why we put a coefficient

2k
k+2

log(m) before (3.12) is that structure changes tend to spread evenly with a large

minimum possible distance m. Also, extreme values of (3.12) are more frequently reached

with a small number of change-points k.

So as to make our MBIC work, we need to make sure that the extra penalty for

an additional change-point is always positive. In the extreme case, (3.12) reaches its

minimum k log(m) + log(n− km)− (k+ 1) log(n/(k+ 1)) when the change-points are as

close together as possible with the minimum possible distance m in between.

n=1000 n=3000 n=5000 n=7000 n=9000

k min max min max min max min max min max

1 10.68 13.82 9.72 16.01 9.22 17.03 8.88 17.71 8.62 18.21

2 20.57 27.63 15.56 32.03 13.03 34.07 11.33 35.42 10.05 36.42

3 31.95 41.45 21.71 48.04 16.55 51.10 13.09 53.12 10.49 54.63

4 44.98 55.26 29.05 64.05 20.95 68.14 15.53 70.83 11.45 72.84

5 59.50 69.08 37.71 80.06 26.52 85.17 19.03 88.54 13.38 91.05

6 75.22 82.89 47.66 96.08 33.28 102.21 23.63 106.24 16.38 109.26

7 91.79 96.71 58.80 112.09 41.16 119.24 29.33 123.95 20.42 127.47

8 108.64 110.52 71.04 128.10 50.10 136.28 36.04 141.66 25.46 145.68

9 124.34 124.34 84.27 144.11 60.01 153.31 43.71 159.37 31.43 163.89

Table 3.1: MBIC: range of penalty given the number of change-points k and the length
of the series n with m = 100
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Table 3.2: MBIC: range of penalty given the number of change-points k and the length
of the series n with m = 200

n=2000 n=4000 n=6000 n=8000 n=10000

k min max min max min max min max min max

1 11.59 15.20 10.72 16.59 10.16 17.40 9.75 17.97 9.43 18.42

2 22.28 30.40 18.34 33.18 15.85 34.80 14.05 35.95 12.63 36.84

3 34.67 45.61 26.85 49.76 21.91 52.20 18.32 53.92 15.51 55.26

4 48.98 60.81 36.97 66.35 29.32 69.60 23.76 71.90 19.40 73.68

5 64.99 76.01 48.76 82.94 38.27 87.00 30.63 89.87 24.63 92.10

6 82.39 91.21 62.10 99.53 48.69 104.39 38.91 107.85 31.22 110.52

7 100.75 106.41 76.84 116.12 60.49 121.79 48.52 125.82 39.11 128.94

8 119.45 121.61 92.85 132.70 73.54 139.19 59.37 143.80 48.22 147.37

9 136.82 136.82 109.99 149.29 87.74 156.59 71.35 161.77 58.45 165.79

Table 3.1 and 3.2 give the ranges of the penalties with m = 100 and 200 respectively.

In both tables, the minimum and the maximum of the penalties increase with the number

of change-points k with different lengths of series n, which indicates that our MBIC works

in these scenarios. This also provides us an idea to choose m for a given series with length

n, since a table like these can always be created for a specific m to check whether it is

suitable for the corresponding n and different levels of k. Moreover, we can even modify

the coefficients in the penalty term of our MBIC and make the penalties best satisfy our

interest. Further discussion will be made in Chapter 6.

Given our MBIC, model selection is made among the (K + 1) models in the previous

section. If the time-homogeneous model is selected, we claim that there exist no structure

changes. Otherwise, suppose the kth model is selected with the minimum MBIC, which

contains k possible change-points {l1, . . . , lk}, we can perform the following top down

approach to determine the number and locations of the structure changes.

28



3.5 Top Down Approach

The k possible change-points {l1, . . . , lk} might involve some misleading points which

does not improve the overall log-likelihood as much as it is supposed to by dividing the

series into segments. This is due to the estimation errors of our estimate θ̂t as well as

the function ∆t and our previous rules for determine change-points may not perfectly

match the characteristic of the true structure changes. Therefore, we consider to use

the conventional top down approach in model selection to eliminate these misleading

points, which helps to improve our segmentation result. Given the k possible change-

points {l1, . . . , lk}, we compute the MBIC for the rest possible change-points without li

for 1 6 i 6 k and choose li with the smallest MBIC. If the result improves the MBIC for

{l1, . . . , lk} by at least log(n), i.e. ∆MBIC > log(n), we remove li and the rest k − 1

points make up the new set of all possible change-points. The reason why we set up

a threshold log(n) for ∆MBIC is that we still have some faith for our initial order of

possible change-points and the penalty term of the MBIC is roughly proportion to log(n)

for each change-point added. Also, Kass and Raftery (1995)[34] suggests the strength

of the evidence against the model with the higher BIC value is strong when ∆BIC = 6

and very strong when ∆BIC = 10, where our threshold usually falls in between as

log(1000) = 6.9 and log(10000) = 9.2. Thus, as we continue the top down approach

until it stops, we can obtain k? points from {l1, . . . , lk}, which are the structure changes

detected by our procedure.

3.6 Segmentation Procedure

In this section, we summarize our unconditional variance based (UVB) segmentation

procedure in the previous sections, which include a function ∆t for detecting possible

change-points, the modified Bayesian information criterion (MBIC) for model selection

and a top down approach for improvement. Given the semi-parametric estimate θ̂t, we

can determine the number and locations of structure changes in the following steps,
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Unconditional variance based segmentation procedure

1. Compute ∆t in (3.7) and choose t with the largest ∆t as the first possible change-

point. By maximizing ∆t at least m points away from the selected change-points,

the rest possible change-points can be determined sequentially by (3.8). Establish

K time-varying models each with the first k possible change-points {l1, . . . , lk} for

1 6 k 6 K and combine them with the time-homogeneous model.

2. Compute the modified Bayesian information criterion (MBIC) in (3.11) for each of

the (K + 1) models given by step 1 and choose the model with the smallest MBIC.

There are three possibilities,

(a) If the time-homogeneous model is selected, then there are no structure changes

and the segmentation process is terminated.

(b) If the model selected has only one change-point, then there exists a unique

structure change as presented in the model and the segmentation process is

terminated.

(c) If the model selected has multiple change-points, suppose it has k structure

changes, then {l1, . . . , lk} are our possible change-points, which can be further

improved by step 3.

3. Compute the MBIC for the rest possible change-points in {l1, . . . , lk} without li for

1 6 i 6 k and choose li with the smallest MBIC, where {l1, . . . , li−1, li+1, . . . , lk} are

the structure changes in the new model. Compute ∆MBIC as the difference of our

MBIC between the old model, which is initially given by step 2 and the new model.

if ∆MBIC > log(n), update the old model with the new model and then repeat

this step. Otherwise, terminate the process and label the change-points in the old

model as the structure changes detected. Suppose there exist k? change-points,

then {l?1, . . . , l?k?} are our structure changes.
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3.7 Comparing to Binary Segmentation Algorithm

The parameter estimation of the time-homogeneous GARCH(1,1) model can be

achieved by maximizing the quasi-loglikelihood function,

l(θ) =
n∑
t=1

lt(θ) = −1

2

n∑
t=1

(log(2π) + log σ2
t +

y2t
σ2
t

) (3.13)

Let St(θ̂) and Ht(θ̂) be the score function and the Hessian matrix of lt(θ) evaluated

at θ̂, which is the quasi-maximum likelihood estimate of the true parameter vector θ.

Though Ht(θ̂) has a more complicated form, E(Ht(θ̂)) can be easily written as,

E(Ht(θ̂)) = E(St(θ̂)St(θ̂)
′)

= E((
y2t − σ2

t

2σ4
t

)2 · [1, y2t−1, σ2
t−1]

′ · [1, y2t−1, σ2
t−1])

=
1

4σ4
t

E(
y2t
σ2
t

− 1)2 · [1, y2t−1, σ2
t−1]

′ · [1, y2t−1, σ2
t−1]

=
1

2σ4
t

· [1, y2t−1, σ2
t−1]

′ · [1, y2t−1, σ2
t−1]

where
y2t
σ2
t

follows the chi-square distribution with degree of freedom 1.

Galeano and Tsay(2010)[27] proposed an binary segmentation algorithm in the case

where structure changes take place in individual parameters of a GARCH model. It

makes use of the LM test statistics introduced by Andrews(1993)[5],

LM(ν) =
n

ν(1− ν)
l̄ν(θ̂)

′B−1n An(A′nB
−1
n An)−1A′nB

−1
n l̄ν(θ̂) (3.14)

where ν is the relative position of the structure change to be tested, which is govern by

νmin and νmax = 1− νmin ∈ (0, 1) to avoid the situation where the LM test for detecting

single change point is made too close to the edges of the series. l̄ν(θ̂), An and Bn are

denoted by the following equations,
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Table 3.3: LM: asymptotic critical values from Andrew(1993)

q=1 q=2 q=3

νmin 10% 5% 1% 10% 5% 1% 10% 5% 1%

.50 2.71 3.84 6.63 4.61 5.99 9.21 6.25 7.81 11.34

.45 4.38 5.91 9.00 6.60 8.11 11.77 8.50 10.15 14.23

.40 5.10 6.57 9.82 7.45 9.02 12.91 9.46 11.17 14.88

.35 5.59 7.05 10.53 8.06 9.67 13.53 10.16 12.05 15.71

.30 6.05 7.51 10.91 8.57 10.19 14.16 10.76 12.58 16.24

.25 6.46 7.93 11.48 9.10 10.75 14.47 11.29 13.16 16.60

.20 6.80 8.45 11.69 9.59 11.26 15.09 11.80 13.69 17.28

.15 7.17 8.85 12.35 10.01 11.79 15.51 12.27 14.15 17.68

.10 7.63 9.31 12.69 10.50 12.27 16.04 12.81 14.62 18.28

.05 8.19 9.84 13.01 11.20 12.93 16.44 13.47 15.15 19.06

l̄ν(θ̂) =
1

n

[νn]∑
t=1

St(θ̂) =
1

n

[νn]∑
t=1

y2t − σ2
t

2σ4
t

· [1, y2t−1, σ2
t−1]

′

An = − 1

n

n∑
t=1

E[Ht(θ̂)] = − 1

n

n∑
t=1

1

2σ4
t

· [1, y2t−1, σ2
t−1]

′ · [1, y2t−1, σ2
t−1]

Bn =
1

n

n∑
t=1

St(θ̂)St(θ̂)
′ = − 1

n

n∑
t=1

(
y2t − σ2

t

2σ4
t

)2 · [1, y2t−1, σ2
t−1]

′ · [1, y2t−1, σ2
t−1]

In their paper, as they focus on the shifts in individual parameters where only one

parameter ω, α or β can change at a time, they build the following LM test statistics for

i = ω, α and β,

LMi(ν) =
n

ν(1− ν)

(l̄ν(θ̂)
′B−1n Ai,n)2

A′i,nB
−1
n Ai,n

(3.15)

where νmin 6 ν 6 νmax and Ai,n is the first, second and third colomn of the matrix An in

regard to ω, α and β.

Andrew(1993)[5] provided asymptotic critical values for the LM tests with the upper

and lower bounds νmin and νmax for ν, which is given by the square of a Bessel process of

order q corresponding to the number of shifting parameters.

32



Table 3.3 shows a part of the asymptotic critical values for the LM tests demonstrated

in Andrew(1993)[5]. It requires a certain minimum value νmin, otherwise we fail to obtain

the asymptotic critical values as the limiting distributions of the Bessel processes would

not converge. When in comparison with our segmentation procedures, we use q = 3 for

simultaneous changes in all parameters and q = 1 for individual parameter shifts, which

is based on the definition of order q.

Thus, we modify the binary segmentation algorithm from Galeano and Tsay(2010)[27]

by simplifying the procedure with the test statistics LM(ν) for simultaneous changes so

as to compare with our unconditional variance based segmentation procedure. The exact

steps of the modified procedure are listed as follows,

Binary segmentation algorithm modified from Galeano and Tsay(2010)

1. Compute LM(ν) in (3.14) for νmin 6 ν 6 νmax and choose ν with the largest LM(ν).

If the test statistics LM(ν) is insignificant, then there are no structure changes and

the segmentation process is terminated. Otherwise, if the test statistics LM(ν) is

significant, take ν as the first possible change-point.

2. Segment the series by ν into two subsequences {y1, . . . , ybνnc} and {ybνnc+1, . . . , yn}.

We take step 1 in each of the two subsequences, and repeat both steps until no

extra possible change-points can be detected.

3. Suppose we have detected k possible change-points, {ν1, . . . , νk} and set ν0 = 0

and νk+1 = 0, we can check each possible change-point νi by computing the test

statistics LM(ν) in the interval νi−1 < ν 6 νi+1 for 1 6 i 6 k. If the test statistics

LM(ν) is significant for some ν, update the ith possible change-point νi with ν.

Otherwise, eliminate the ith possible change-point νi from the list. Repeat this

step until the number and locations of the possible change-points remain changed,

which results in the detected structure changes.
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Comparing to our procedure, the binary segmentation algorithm (BSA) is particular

easy to compute as the only maximum likelihood estimate θ̂ required for each step is that

of the overall subsequence. Therefore, the computational complexity only grows with the

number of change-points, whereas ours is proportion to the length of the series n, which

has been explained in Section 2.6. However, such procedure is likely to underestimate

the number of structure changes as each single change-point is less significant and thus

harder to detect among multiple change-points. Also, it is very tricky to choose the critical

values for the LM test statistics, since νmin keeps increasing whenever the length of the

subsequence shrinks in regard to a certain minimum possible distance m. Galeano and

Tsay(2010)[27] suggests to use a fixed νmin = 0.1. In our practice, we select the minimum

νmin that satisfies both the minimum possible distance m and νmin > 0.1 in each step.

A corresponding critical value from Table 3.3 is used with the significance level 10%, as

we want to have more power in detecting structure changes. In the following simulation

studies and the real data analysis, we will compare the results of our unconditional

variance based (UVB) segmentation procedure with those of the binary segmentation

algorithm (BSA).
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Chapter 4

Simulation Studies

4.1 Illustrative Example

We present an illustrative example of a series which consists of ten time-homogeneous

GARCH(1,1) sequences with equal length of 300. The exact settings of the sequences are

listed as follows,

1. θt = {0.4, 0.2, 0.7} for 1 6 t 6 300;

2. θt = {0.2, 0.6, 0.2} for 301 6 t 6 600;

3. θt = {0.8, 0.3, 0.6} for 601 6 t 6 900;

4. θt = {0.6, 0.5, 0.3} for 901 6 t 6 1200;

5. θt = {0.4, 0.2, 0.7} for 1201 6 t 6 1500;

6. θt = {0.2, 0.6, 0.2} for 1501 6 t 6 1800;

7. θt = {0.8, 0.3, 0.6} for 1801 6 t 6 2100;

8. θt = {0.6, 0.5, 0.3} for 2101 6 t 6 2400;

9. θt = {0.4, 0.2, 0.7} for 2401 6 t 6 2700;

10. θt = {0.2, 0.6, 0.2} for 2701 6 t 6 3000.
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4.1.1 Semi-parametric Estimates

We fit the series with the time-homogeneous GARCH(1,1) model, which results in

µ = 2.63 × 10−2, ω = 8.29 × 10−2, α = 0.694, β = 0.305, suggesting high volatility

persistence. Therefore, we perform our semi-parametric estimation over the series given

a preset p0 = 0.001 as the change-points probability p. In order to study the impact

of the use of blocks, we also provide the estimation with a block of 4. We compare our

estimation results with the ”oracle” estimates, which assume the structure changes are

already known.

Figure 4.1: Illustration: semi-parametric estimates with no blocks and a block of 4

In Figure 4.1, the solid line represents the semi-parametric estimates with no blocks

and the dash line represents those with a block of 4, where the dot line represents the

”oracle” estimates. We can see both our estimates are close to the ”oracle” estimates

with a slight delay in shifting. However, the estimates with a block of 4 are less stable

compared to the estimates with no blocks, disturbing greatly before and after the true

structure changes. This is lead by simplifying the indexes i, j and t in (2.15) with only

multipliers of 4, which reduces the numbers of the terms to be summed up to compute
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the estimated θ̂. Therefore, we only use the block of 4 in the following simulation studies

to reduce the computational time but adopt no blocks for the real data analysis so as to

provide better estimation.

4.1.2 Segmentation Results

Given the estimated parameters above with no blocks, we can compute ∆t with

m = 100 as shown in Figure 3.1 to obtain possible change-points, where we have located

22 structure changes in succession. Then, we apply the modified Bayesian information

criterion to select from the corresponding models and use the top down approach to

eliminate the misleading points. Our segmentation procedure results in the following

structure changes, where we compare to those from the estimated parameters with a

block of 4.

Figure 4.2: Illustration: segmentation results with no blocks and a block of 4

In Figure 4.2, the solid lines represent the structure changes detected in both settings,

where the dash lines represent the rest change-points detected with no blocks and the dot

lines represent those with a block of 4 only. Here we assume change-points are identical
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within the range of 4. Both results fail to detect the change-points located at t = 900 and

2100, which is partially lead by using a small p0 = 0.001 whereas the true change-points

probability p = 0.003. Later, we will show that the number of detected structure changes

is positively related to the change-points probability we use. Also, such scenario makes

our MBIC not so useful as the true structure changes are evenly located.

In comparison, we implement the binary segmentation algorithm (BSA) modified

from Galeano and Tsay(2010)[27] for simultaneous changes. The result is impressive as it

detects 8 change-points located at t = {289, 595, 924, 1238, 1500, 1795, 2443, 2668}, which

suggests our implementation is successful. However, for each change-point detected, the

result from BSA deviates more from the corresponding true change-point than that from

our procedure. Moreover, in the following simulation studies, we will show BSA results in

much worse segmentations when the length of the series n is small and the true structure

changes are more separate, where none of them are located in the middle of the sequence.

Figure 4.3: Illustration: segmentation results with m = 100 and 200
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4.1.3 Choice of Minimum Possible Distance m

In this section, we compare the segmentation results given the different minimum

possible distance m, i.e. m = 100 and 200. In Figure 4.3, the solid lines represent the

structure changes detected in both settings, while the dash line represents the additional

change-point detected with m = 100. In most cases, a large m would only lead to omission

of the structure changes within the width m of others, as our MBIC does not change much

in response to m. However, we should choose m carefully in regard to our interest and

the estimation errors, especially when it turns out some of the detected structure changes

are barely m points away from each other as shown in the case of m = 100. This is either

a signal that we overestimate the number of change-points as the penalty term in our

MBIC is close to its minimum in such circumstances, or suggesting that we can locate

the structure changes more accurately with a smaller m.

4.1.4 Choice of Change-points Probability p

An expectation-maximization (EM) algorithm is introduced to estimate the change-

points probability p in Section 2.8. In this scenario, we will perform the estimation of p

with a block of 4. We are also interested in how the choice of p would affect the number

of the detected structure changes.

Table 4.1: Illustration: convergence of change-points probability p and corresponding
numbers of change-points k

# 1 2 3 4 5 6 7 8 9 10

p(×10−3) 1.0 2.9 3.6 4.1 4.4 4.6 4.7 4.8 4.9 4.9

k(m = 100) 8 10 9 10 10 14 14 14 14 14

k(m = 200) 10 8 8 8 9 9 9 9 8 8

Table 4.1 shows ten iterations of the estimated change-points probability p̂ and the

corresponding numbers of change-points k with m = 100 and 200. The estimated p̂

does converge but converges slowly as the difference between that of the ninth iteration
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and the tenth iteration is smaller than 10−4. However, the estimated p̂ has a upward

bias as the true parameter p = 0.003. The reason behind is that the persistence within

each time-homogeneous GARCH(1,1) sequence can also be considered as if there exist

additional structure changes.

As for m = 100, the number of change-points k generally increase with the change-

points probability p. However, this is not true for m = 200, as k is close to the maximum

number of possible change-points M. Under such circumstance, the number of change-

points k is very sensitive to the choice of m, which may eliminate the key structure

changes in the segmentation process. It is very suspicious to see a smaller k for m = 100

than for m = 200 as shown in Table 4.1 when p = 0.001. Therefore, we should make sure

k is at most bM/2c, which allows the detected structure changes to have a chance to be

evenly distributed.

Figure 4.4: Illustration: semi-parametric estimates given different p with a block of 4

In Figure 4.4, the solid lines represent the semi-parametric estimates from the first

five iterations of the estimated change-points probability p̂ and the dash lines represent

those from the last five iterations, where the dot line represents the ”oracle” estimates.
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From the figure above, with the estimated p̂ increasing above the true change-points

probability p, our semi-parametric estimates are more volatile, and thus deviate more

from the piecewise constant ”oracle” estimates. Therefore, choice of the change-points

probability p does affect the segmentation results and structure changes are best detected

when p is known. However, p is usually not given by the data set and it is time consuming

to estimate p with the EM algorithm as we need to repeat our estimation procedure until

p slowly converges. Moreover, the estimated p̂ from our EM algorithm has a upward bias,

especially when then length of the series n is small. In light of this, we only consider

the initial value p0 = 0.001 and p̂ with one update in our simulation studies as well as

the real data analysis. The reason we choose a small initial value p0 = 0.001 is due

to the competitive advantage of underestimating p over overestimating p in regard to

the number of structure changes detected, as an underestimated p would only smooth

the semi-parametric estimates so as to omit some insignificant change-points during the

process, whereas an overestimated p would make the estimates so volatile as to involve

too many misleading points in the segmentation procedure, as shown in Table 4.1. We

will compare the estimation and segmentation results of the initial value p0 = 0.001 and

those of p̂ with one update in the following simulation studies.

4.2 Simulation Studies with Simultaneous Changes

We study six scenarios each including 500 series with equal length n = 1000, where

the parameters ωt, αt and βt change simultaneously. In our semi-parametric estimation,

we consider the initial value p0 = 0.001 and also perform the estimation for p̂ with

one update, where a block of 4 is used in both procedures. Later in our segmentation

procedure, we choose m = 100. The first three scenarios have fixed change-points, while

structure changes take place randomly as in the time-varying GARCH(1,1) model for the

last three scenarios. In the setup, we require that the ”oracle” estimates θ̂oracle do not

deviate from the true parameter vector θt too much, such that ‖θ̂oracle − θ̂t‖∞ 6 0.2, i.e.

41



|ω̂oracle − ω̂t| 6 0.2, |α̂oracle − α̂t| 6 0.2 and |β̂oracle − β̂t| 6 0.2 for 1 6 t 6 n. Otherwise,

our estimation and segmentation results would be pointless, since the ”oracle” estimates

are provided by the true structure changes and should be close to the true parameter

vector θt. Moreover, without such restrictions, the sequences generated from the time-

homogeneous GARCH(1,1) model might not even be stationary when the length of the

sequences are small. The exact settings of the six scenarios are listed as follows,

Scenario 1. The series are generated from three time-homogeneous GARCH(1,1)

models piecewisely and there exist two structure changes at t = 301

and 701, where θt = {0.4, 0.2, 0.7} for 1 6 t 6 300, θt = {0.2, 0.6, 0.2}

for 301 6 t 6 700, and θt = {0.8, 0.3, 0.6} for 701 6 t 6 1000.

Scenario 2. The series are generated from four time-homogeneous GARCH(1,1)

models piecewisely and there exist three structure changes at t =

201, 501 and 701, where θt = {0.4, 0.2, 0.7} for 1 6 t 6 200, θt =

{0.2, 0.6, 0.2} for 201 6 t 6 500, θt = {0.8, 0.3, 0.6} for 501 6 t 6 700,

and θt = {0.6, 0.5, 0.3} for 701 6 t 6 1000.

Scenario 3. The series are generated from one time-homogeneous GARCH(1,1)

model, where θt = {0.4, 0.2, 0.7} for 1 6 t 6 1000.

Scenario 4. The series are generated from the time-varying GARCH(1,1) model

specified by (2.1) and (2.2), where the true change-points probability

p = 0.001. A minimum possible distance m = 100 is required for the

structure changes to stay away from each other. Also, a minimum

jump size of 0.2 is required for each parameter ωt, αt and βt to shift

at the change-points.

Scenario 5. Same as Scenario 4, except that p = 0.002.

Scenario 6. Same as Scenario 4, except that p = 0.005.
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4.2.1 Semi-parametric Estimates

In this section, we compare the semi-parametric estimates using the initial value

p0 = 0.001 and p̂ with one update in our estimation procedure to the ”oracle” estimates,

which assume the structure changes are already known. We also apply the bounded

complexity mixture (BCMIX) approximation and use a block of 4 in the simulation

studies to reduce the computational time. The typical estimates in the six scenarios are

shown in the following figures.

Figure 4.5: Simulation I: typical estimates in Scenario 1

Figure 4.5 shows the typical estimates in Scenario 1 with two fixed change-points at

t = 301 and 701. The solid line represents the semi-parametric estimates using p̂ with one

update and the dash line represents those with p0 = 0.001, where the dot line represents

the ”oracle” estimates.

We can see both our estimates are close to the ”oracle” estimates, where the estimates

using p̂ with one update deviate more from the the ”oracle” estimates. One possible

explanation is that the estimated p̂ from our expectation-maximization (EM) algorithm

tends to overestimate the true change-points probability p when the length of the series
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n is small. With the initial value p0 = 0.001 to start with, which is equal to the true

change-points probability p, our p̂ with one update is already larger than p, resulting in

more fluctuations in the estimates. As long as such fluctuations are smaller in scale than

the true structure changes and located in the middle of the series, they will not affect

our segmentation results. However, if such fluctuations are large and close to the edges

of the series, they would result in misleading change-points to be detected, which will be

discussed later when we analyze the segmentation results.

Figure 4.6: Simulation I: typical estimates in Scenario 2

Figure 4.6 shows typical estimates in Scenario 2 with three fixed change-points at

t = 201, 501 and 701. The solid line represents the semi-parametric estimates using p̂

with one update and the dash line represents those with p0 = 0.001, where the dot line

represents the ”oracle” estimates.

We can see both our estimates are close to the ”oracle” estimates, where the differences

are maximized at the start of the sequence. This is often true as the estimation errors

are large at the beginning and the ending of the series as when we consider the local

likelihood, the sample size is quite small when it is limited to both edges. Therefore we
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have introduced the minimum possible distance m to also govern the interval in which the

first and the last change-points are allowed when detecting structure changes. Meanwhile,

our estimated parameters ω̂t, α̂t and β̂t do not always shift at the same pace at the true

structure changes, where some changes abruptly and others changes more smoothly. This

is why we need to consider the impact of ω̂t, α̂t and β̂t simultaneously, otherwise it would

be difficult for us to locate the true structure changes if we only consider the estimates

that shift smoothly.

Figure 4.7: Simulation I: typical estimates in Scenario 3

Figure 4.7 shows typical estimates in Scenario 3 with no change-points at all, i.e.

the series are generated from a time-homogeneous GARCH(1,1) model. The solid line

represents the semi-parametric estimates using p̂ with one update and the dash line

represents those with p0 = 0.001, where the dot line represents the ”oracle” estimates.

We can see both our estimates are close to the ”oracle” estimates, except that there

exist a large fluctuation in the middle of the sequence, which is due to the estimation

errors. However, as we later apply the modified Bayesian information criterion (MBIC) to

choose from the possible change-points, it is unlikely to offset the penalty to be selected
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as a change-point. Even it does, it is more likely to be an outlier from the generator

rather than indicating the failure of our procedure. In fact, from Table 4.3, it is very

rare for our procedure to reject the true time-homogeneous model. Therefore, though we

consider the MBIC in replace of the conventional BIC to detect more structure changes

which are either at the edges or close to each other, the compensation paid for detecting

additional structure changes is minimum.

Figure 4.8: Simulation I: typical estimates in Scenario 4

Figure 4.8 shows typical estimates in Scenario 4 with random change-points which

correspond to a change-points probability p = 0.001. The solid line represents the semi-

parametric estimates using p̂ with one update and the dash line represents those with

p0 = 0.001, where the dot line represents the ”oracle” estimates.

The figure presents in specific the case of single change-point, where our estimates

well fit the ”oracle” estimates, which indicates our procedure has enough power to detect

single change-point. Though it is easily understood that our procedure must be inferior

to the Wald test, the Lagrange multiplier (LM) test, and the likelihood-ratio(LR)-like

test provided by Andrews(1993)[5] in detecting single change-point, as ours rely on both
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the estimation and the segmentation procedures to work well. Moreover, our focus is to

discover the structure changes jointly rather than making individual tests. Therefore,

in the segmentation procedure, we first apply the MBIC to discover as many structure

changes as possible and then use a top down approach to eliminate the misleading change-

points. It is strongly recommended that not use our procedure for single change-point

detection only.

Figure 4.9: Simulation I: typical estimates in Scenario 5

Figure 4.9 shows typical estimates in Scenario 5 with random change-points which

correspond to a change-points probability p = 0.002. The solid line represents the semi-

parametric estimates using p̂ with one update and the dash line represents those with

p0 = 0.001, where the dot line represents the ”oracle” estimates.

The figure presents in specific the case of two change-points, where our estimates well

fit the ”oracle” estimates, indicating good performance of our estimation procedure. As

shown in Table 4.3, the binary segmentation algorithm (BSA) is not good enough for

detecting paired structure changes, especially when they are distributed symmetrically.

This is because BSA requires that either change-point to be significant to continue the
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detection process but usually they are both significant or insignificant at the same time. It

is never a problem for us as we can always discover the possible change-points sequentially

by using a function ∆t, which is based on the semi-parametric estimates. The only concern

would be applying a proper modified Bayesian information criterion (MBIC) for choosing

from the possible change-points. Further discussion will be made in Chapter 6.

Figure 4.10: Simulation I: typical estimates in Scenario 6

Figure 4.10 shows typical estimates in Scenario 6 with random change-points which

correspond to a change-points probability p = 0.005. The solid line represents the semi-

parametric estimates using p̂ with one update and the dash line represents those with

p0 = 0.001, where the dot line represents the ”oracle” estimates.

The figure presents in specific the case of three change-points, where our estimates

well fit the ”oracle” estimates, indicating good performance of our estimation procedure.

The case is quite extreme, with one change-point located near the start of the series

and the other two structure changes are barely the minimum possible distance m away.

Nevertheless, our estimates are still impressive, indicating that our estimation procedure

can cover most cases, no matter the structure changes are evenly distributed or extremely
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separate. However, we can see there also exist a large fluctuation near the end of the

sequence. Therefore, it is very difficult for us to tell whether there exist change-points

close to both edges of the series. We should be very careful for this, as the penalty in our

MBIC is small in such cases. Further discussion will be made in Chapter 6.

In order to compare our semi-parametric estimates with the ”oracle” estimates, we

evaluate the estimation errors by the mean Euclidean error (EE), the Kullback-Leibler

(KL) divergence and the goodness of fit (GOF). Each of them will be introduced in the

following before we reach our conclusions.

The mean Euclidean error (EE) is simply the average Euclidean distance between our

semi-parametric estimates θ̂t and the true parameter vector θt for 1 6 t 6 n, i.e.

EE =
1

n

n∑
t=1

‖θ̂t − θt‖2 =
1

n

n∑
t=1

[(ω̂t − ωt)2 + (α̂t − αt)2 + (β̂t − βt)2]1/2 (4.1)

In our simulation study, the mean Euclidean error properly describes how close the

estimates θ̂t are to the true parameter vector θt as ωt, αt and βt are of the same scale,

where all of them are within the range between 0.1 and 1.0.

The Kullback-Leibler (KL) divergence, or the relative entropy, measures the difference

of the probability distributions given the estimates θ̂t from the probability distributions

given the true parameter vector θt, which describes the information lost when θ̂t is used

to approximate θt. It is written as,

KL = Eθt(log
f(θ̂t)

f(θt)
) (4.2)

Since log(·) is a concave function, the Kullback-Leibler divergence is always non-

negative and reaches its minimum zero only when the two probability distributions are

the same almost everywhere,

KL = Eθt(log
f(θ̂t)

f(θt)
) > logEθt(

f(θ̂t)

f(θt)
) = 0 (4.3)
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Given the log-likelihood function of the time-homogeneous GARCH(1,1) model in

(3.13), we can compute the Kullback-Leibler divergence as follows,

KL = Eθt(log f(θ̂t))− E(log f(θt))

= E[−1

2

n∑
t=1

(log(2π) + log σ̂2
t +

y2t
σ̂2
t

)]− E[−1

2

n∑
t=1

(log(2π) + log σ2
t +

y2t
σ2
t

)]

= E[−1

2

n∑
t=1

(log
σ2
t

σ̂2
t

+
y2t
σ2
t

− y2t
σ̂2
t

)] (4.4)

where the expectation in (4.4) can be replaced by the mean value of all simulations in each

scenario and σ2
t and σ̂2

t are given by the true parameter vector θt and the corresponding

estimates θ̂t according to (2.1),


σ2
1 = y21, σ

2
t = ωt + αty

2
t−1 + βtσ

2
t−1 for 1 < t 6 n,

σ̂2
1 = y21, σ̂

2
t = ω̂t + α̂ty

2
t−1 + β̂tσ̂

2
t−1 for 1 < t 6 n,

(4.5)

Lastly, the goodness of fit (GOF) describes how well the estimates θ̂t fit the simulated

observations. We consider the following test statistic,

GOF =
1

n

n∑
t=1

y2t
σ̂2
t

(4.6)

Given the true parameter vector θt, it stands that
y2t
σ2
t

follows the chi-square distribution

with degree of freedom 1, where yt = σtεt and εt follows the standard normal distribution.

Therefore, since εt is independent and identically distributed,
∑n

t=1
y2t
σ2
t

follows the chi-

square distribution with degree of freedom n with mean equal to n and variance equal

to 2n. Thus, should our estimates be good enough, the goodness of fit and its standard

deviation of the mean will be close to 1 and
√

1/500 ·
√

2/1000 = 0.002 respectively.

Table 4.2 compares our estimates given p̂ with one update and p0 = 0.001 with the

”oracle” estimates in the six scenarios in regard to the mean Euclidean error (EE), the

Kullback-Leibler (KL) divergence and the goodness of fit (GOF).
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Table 4.2: Simulation I: comparing semi-parametric estimates with ”oracle” estimates

EE KL GOF

p̂ 0.4801 (0.0075) 0.0240 (4.21E-04) 1.0025 (0.0019)

Scenario 1 p0 0.3445 (0.0061) 0.0176 (3.29E-04) 1.0051 (0.0018)

oracle 0.0998 (0.0006) 0.0028 (1.29E-04) 1.0194 (0.0015)

p̂ 0.4225 (0.0060) 0.0247 (3.52E-04) 0.9981 (0.0014)

Scenario 2 p0 0.3062 (0.0050) 0.0177 (2.76E-04) 1.0018 (0.0014)

oracle 0.1014 (0.0005) 0.0027 (1.10E-04) 1.0185 (0.0014)

p̂ 0.5557 (0.0107) 0.0226 (3.72E-04) 0.9943 (0.0007)

Scenario 3 p0 0.4098 (0.0085) 0.0172 (2.53E-04) 0.9948 (0.0006)

oracle 0.0645 (0.0013) 0.0010 (4.26E-05) 1.0031 (0.0003)

p̂ 0.2275 (0.0049) 0.0142 (3.41E-04) 0.9854 (0.0006)

Scenario 4 p0 0.1961 (0.0039) 0.0112 (2.36E-04) 0.9867 (0.0006)

oracle 0.0746 (0.0012) 0.0013 (5.90E-05) 1.0020 (0.0003)

p̂ 0.2614 (0.0051) 0.0156 (3.63E-04) 0.9873 (0.0009)

Scenario 5 p0 0.2196 (0.0041) 0.0121 (2.63E-04) 0.9888 (0.0008)

oracle 0.0778 (0.0010) 0.0016 (7.56E-05) 1.0048 (0.0007)

p̂ 0.4533 (0.0167) 0.0186 (5.20E-04) 0.9908 (0.0019)

Scenario 6 p0 0.2615 (0.0047) 0.0137 (4.23E-04) 0.9931 (0.0017)

oracle 0.0822 (0.0008) 0.0022 (9.68E-05) 1.0116 (0.0012)

For each item listed above, the table presents the mean values and the corresponding

standard deviations of the means, which are shown in the parentheses. In all six scenarios,

the performance of our estimates given p̂ with one update is worse than that from p0 =

0.001. The reason behind is that the estimated p̂ is larger than p0 in each scenario as

shown is Table 4.5. Since p0 is close to the true change-points probability p, the larger

p̂ would incur more fluctuations in the estimates, resulting in further deviation from the

”oracle” estimates. Though the results of our estimates are significantly large than those

of the oracle estimates in regard to the mean Euclidean error (EE) and the Kullback-
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Leibler (KL) divergence, which is lead by the estimation errors and huge fluctuations of

our estimates at the beginning and the ending of the series, the goodness of fit (GOF)

of both our estimates and the ”oracle” estimates is quite similar, where the differences

between them and the theoretical mean value 1 are at the same scale. This is because

our semi-parametric estimates are provided by the local likelihood mixture, where
y2t
σ2
t

is

estimated by quasi-maximum likelihood estimation (QMLE) in each local likelihood for

1 6 t 6 n. However, the standard deviations of the means of the goodness of fit (GOF)

are all larger than the theoretical value 0.002, only reaching minimum value 0.003 with

the ”oracle” estimates in Scenario 3 and 4, which indicates high estimation errors of all

estimates. The differences in the mean Euclidean error (EE) and the Kullback-Leibler

(KL) divergence between our estimates and the ”oracle” estimates reach maximum in

Scenario 3, due to p̂ and p0 are both larger than the corresponding true change-points

probability p = 0. Such differences reach minimum in Scenario 4, when p0 is equal to the

true change-points probability p = 0.001, indicating good performance of our estimates

in the case of single change-point. In the table, we do not have the post-segmentation

estimates provided by the binary segmentation procedure (BSA) in comparison, since

such estimates are extremely volatile and sensitive to the detected structure changes

when the length of the series n is small. Therefore, we have only got a slight idea of how

good our estimates are, which will be further clarified by the segmentation results in the

following section.

4.2.2 Segmentation Results

In this section, we compare the segmentation results of our unconditional variance

based (UVB) segmentation procedure with those of the binary segmentation algorithm

(BSA). We denote our procedure given p̂ with one update and the initial value p0 =

0.001 by UVB(p̂) and UVB(p0). Also, we denote the binary segmentation algorithm for

simultaneous changes modified from Galeano and Tsay(2010)[27] by BSA(S), and their

own procedure for shifts in individual parameters by BSA(I). The reason why we include
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BSA(I) is that, in their paper, they suggests simultaneous changes in parameters of a

time-varying GARCH model can be explained by individual parameter shifts where only

one parameter ω, α or β can change at a time. Moreover, we would like to compare the

segmentation results between BSA(I) and our modification BSA(S) so as to select one as

reference in the real data analysis. In our study, we choose a significance level 10% for

BSA(S) as discussed in Section 3.7 so as to detect more structure changes. Meanwhile,

we choose a significance level 5% for BSA(I) since it leads to a similar Type II error

as for BSA(S) to reject the true time-homogeneous model, which will be presented in

Table 4.3. The reason behind is that BSA(I) considers the maximum of the three test

statistics LMi(ν), where i = ω, α and β, leading to higher significance level in the setting

of simultaneous changes. The typical segmentation results in the six scenarios are shown

in the following figures.

Figure 4.11: Simulation I: typical segmentation results in Scenario 1
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Figure 4.12: Simulation I: typical segmentation results in Scenario 2

Figure 4.13: Simulation I: typical segmentation results in Scenario 3
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Figure 4.14: Simulation I: typical segmentation results in Scenario 4

Figure 4.15: Simulation I: typical segmentation results in Scenario 5

55



Figure 4.16: Simulation I: typical segmentation results in Scenario 6

Figure 4.11 to 4.16 demonstrate the typical segmentation results in all six scenarios of

our unconditional variance based segmentation procedure (UVB) given p̂ with one update.

The solid lines represent the detected structure changes which perfectly match the true

structure changes, where the dash lines represent the rest change-points detected with our

procedure and the dot lines represent the true structure changes not being detected. Here

we assume change-points are identical within the range of 4. From the first five figures, our

segmentations have the same number of change-points as in the actual settings, where the

detected structure changes either perfectly match the true structure changes or take place

extremely close to them, indicating great performance of our segmentation procedure. In

Figure 4.16, we obtain an additional misleading point from our segmentation procedure,

which is partially lead by a small penalty in MBIC when the misleading point is close

to other detected change-points. However, it is inevitable to have certain possibility to

select misleading points when the true structure changes are evenly distributed, otherwise

it would be very difficult for us to detect all the true structure changes when they take

place separately, which is often true for the existing methods.
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Table 4.3: Simulation I: comparing segmentation results between UVB and BSA

∆ = k̂ − k |∆| = 0 |∆| = 1 |∆| = 2

UVB(p̂) 0.392 (0.030) 0.686 0.244 0.054

Scenario 1 UVB(p0) 0.210 (0.022) 0.812 0.162 0.022

(k = 2) BSA(S) -1.336 (0.045) 0.252 0.060 0.688

BSA(I) -1.264 (0.048) 0.260 0.068 0.672

UVB(p̂) -0.004 (0.032) 0.600 0.370 0.028

Scenario 2 UVB(p0) -0.036 (0.026) 0.722 0.262 0.014

(k = 3) BSA(S) -1.248 (0.059) 0.320 0.242 0.176

BSA(I) -0.638 (0.056) 0.558 0.206 0.068

UVB(p̂) 0.044 (0.011) 0.964 0.028 0.008

Scenario 3 UVB(p0) 0.056 (0.012) 0.952 0.040 0.008

(k = 0) BSA(S) 0.116 (0.015) 0.890 0.104 0.006

BSA(I) 0.122 (0.016) 0.890 0.098 0.012

UVB(p̂) -0.100 (0.028) 0.786 0.158 0.054

Scenario 4 UVB(p0) -0.094 (0.027) 0.802 0.152 0.042

(p = 0.001) BSA(S) -0.110 (0.029) 0.754 0.194 0.048

BSA(I) -0.126 (0.029) 0.764 0.178 0.054

UVB(p̂) -0.286 (0.040) 0.604 0.276 0.096

Scenario 5 UVB(p0) -0.268 (0.036) 0.662 0.236 0.090

(p = 0.002) BSA(S) -0.454 (0.045) 0.570 0.262 0.122

BSA(I) -0.506 (0.045) 0.546 0.290 0.118

UVB(p̂) -0.648 (0.053) 0.436 0.310 0.178

Scenario 6 UVB(p0) -0.700 (0.050) 0.474 0.300 0.148

(p = 0.005) BSA(S) -1.498 (0.062) 0.252 0.270 0.234

BSA(I) -1.400 (0.059) 0.262 0.306 0.220
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Table 4.3 compares the segmentation results between our unconditional variance based

segmentation procedure (UVB) and the binary segmentation algorithm (BSA) given the

difference between the number of the detected structure changes and that of the true

structure changes. In all six scenarios, our UVB is superior to BSA in terms of accuracy

rate of the numbers of change-points detected. The difference of accuracy rates between

UVB and BSA reaches maximum in Scenario 1, due to ineffectiveness of BSA to detect

paired structure changes, especially when they are distributed symmetrically. The reason

behind is that BSA may fail to detect either of the paired structure changes even though

both of them are significant in the local subsequences. Such difference reaches minimum

in Scenario 4, since BSA should perform at least as good as our UVB in detecting single

change-point, where it degenerates to the Lagrange multiplier (LM) test. If we consider

the average number of change-points detected, BSA, like other existing methods, always

underestimate the number except the case there exist no structure changes, whereas UVB

overestimate the number when the true structure changes are evenly distributed as in the

scenarios with fixed change-points, underestimate the number when the true structure

changes are more separate as in the scenarios with random change-points. Such trade-off

has been made possible though the penalty term of our MBIC. As for the comparison

between UVB(p̂) and UVB(p0), UVB(p0) is generally superior to UVB(p̂) since our semi-

parametric estimates are more smooth with p0. However, the difference between UVB(p̂)

and UVB(p0) are more subtle in the scenarios with random change-points. Meanwhile,

BSA(I) is generally superior to BSA(S) though they have a similar type II error as

shown in Scenario 3. This is lead by the use of multiple LM tests in BSA(I), which is

more versatile than applying one single LM test. The difference of the accuracy rates

between BSA(I) and BSA(S) reaches maximum in Scenario 2, where the single threshold

in BSA(S) is less likely to exceed, therefore terminating the segmentation process too

early. Such difference reaches minimum in the scenarios with random change-points,

indicating similar performances of BSA(I) and BSA(S) generally. Thus, we would use

BSA(I) with a significant level 5% as the reference in the real data analysis.
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Table 4.4: Simulation I: comparing ∆MBIC between UVB and BSA

∆ = ∆MBIC ∆ < − log(n) ∆ > log(n)

UVB(p̂) 5.172 (0.653) 0.332 0.100

Scenario 1 UVB(p0) 1.636 (0.572) 0.148 0.132

(k = 2) BSA(S) 46.101 (1.259) 0.920 0.008

BSA(I) 43.214 (1.364) 0.852 0.022

UVB(p̂) 3.731 (0.452) 0.340 0.156

Scenario 2 UVB(p0) -0.577 (0.333) 0.130 0.250

(k = 3) BSA(S) 26.479 (1.069) 0.824 0.052

BSA(I) 17.911 (1.093) 0.638 0.092

UVB(p̂) -0.069 (0.022) 0.000 0.004

Scenario 3 UVB(p0) -0.113 (0.029) 0.000 0.006

(k = 0) BSA(S) 0.279 (0.084) 0.028 0.006

BSA(I) 0.170 (0.069) 0.026 0.008

UVB(p̂) -0.517 (0.266) 0.076 0.146

Scenario 4 UVB(p0) -1.249 (0.191) 0.036 0.158

(p = 0.001) BSA(S) 1.503 (0.532) 0.116 0.152

BSA(I) 1.064 (0.452) 0.112 0.150

UVB(p̂) -1.312 (0.377) 0.116 0.254

Scenario 5 UVB(p0) -2.341 (0.344) 0.050 0.282

(p = 0.002) BSA(S) 4.275 (0.795) 0.248 0.256

BSA(I) 4.131 (0.818) 0.224 0.252

UVB(p̂) -4.030 (0.473) 0.144 0.420

Scenario 6 UVB(p0) -5.804 (0.409) 0.072 0.484

(p = 0.005) BSA(S) 8.540 (1.229) 0.406 0.368

BSA(I) 6.381 (1.150) 0.350 0.404
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Table 4.4 compares the segmentation results between our unconditional variance based

segmentation procedure (UVB) and the binary segmentation (BSA) given the difference

between the modified Bayesian information criterion (MBIC) of the detected structure

changes and that of the true structure changes. It demonstrates how close the detected

structure changes are to the true structure changes, and provides us some thoughts about

whether our MBIC is appropriate. The results are consistent with those in the previous

table, where ∆MBIC between the detected structure changes and the true structure

changes of our UVB is significantly smaller than BSA, indicating greater performance of

our procedure. ∆MBIC reaches maximum for BSA in Scenario 1, where BSA usually

successfully detects both the change-points or fail to detect either of them, the latter

leading to a large ∆MBIC comparing to the true structure changes. Meanwhile, ∆MBIC

reaches minimum for BSA in Scenario 4, where no structure changes take place. As

for our segmentation procedure UVB, ∆MBIC reaches maximum in Scenario 1 whereas

it reaches minimum in Scenario 6, since the penalty term in our MBIC is maximized

when the structure changes are evenly distributed and minimized when the structure

changes are extremely separate. The average ∆MBIC of our UVB is in the range of

− log(n) and log(n), where log(1000) = 6.9, indicating harmony between our procedure

and the modified Bayesian information criterion (MBIC), as no strong evidence exists

to tell apart our detected structure changes and the true structure changes in the eye

of MBIC. However, in Scenario 6, ∆MBIC has a substantial chance to be greater than

log(n), which is close to the accuracy rate of our UVB in the previous table, indicating we

overestimate the number of structure changes due to the use of our MBIC in certain cases.

However, this is a trade-off need to be made as the conventional BIC would certainly

underestimate the number of structure changes as in the existing methods. Therefore,

the modified Bayesian information criterion (MBIC) is appropriate for our segmentation

procedure, though we wish the true structure changes would always have the smallest

MBIC, which can be approached by modifying the coefficients in the penalty term of our

MBIC. Further discussion will be made in Chapter 6.
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4.2.3 Choice of Change-points Probability p

In this section, we study the estimated p̂ with one update from our expectation-

maximization (EM) algorithm to have some thoughts about how they are related to the

true change-points probability p.

Table 4.5: Simulation I: comparing p̂ with one update between different scenarios

Scenario 1 2 3 4 5 6

p̂
0.0018 0.0020 0.0015 0.0014 0.0015 0.0018

(1.19E-05) (1.10E-05) (1.48E-05) (1.69E-05) (1.64E-05) (1.47E-05)

p 0.002 0.003 0 0.001∗ 0.002∗ 0.005∗

Table 4.5 provides the estimated p̂ with one update in our simulation studies. Note

that the actual numbers of structure changes are smaller than those according to the true

change-points probability p we set in the scenarios with random change-points, due to

the required minimum distance m = 100. We can see the estimated p̂ in all six scenarios

are greater than the initial value p0 = 0.001, which causes more fluctuations in our semi-

parametric estimates, therefore leading to inferior estimation and segmentation results.

The estimated p̂ increases with true change-points probability p both in the scenarios

with fixed change-points and those with random change-points, as shown in Scenario 1 to

3 and 4 to 6 respectively. However, the estimated p̂ reaches its minimum not in Scenario

3, where no structure changes take place, but in Scenario 4. The reason behind is that, in

our settings with fixed change-points, each time-homogeneous GARCH(1,1) subsequence

has somewhat high persistence, where α+β = 0.8 or 0.9, which can be further explained

by additional structure changes within the subsequence. Therefore, our estimated p̂ from

the EM algorithm tends to overestimate the true change-points p. This causes a problem

to choose the change-points probability p in our segmentation procedure. One solution is

to consider all the estimated p̂ in the EM algorithm and the initial value p0, and choose

the best estimation and segmentation results among them. In our real data analysis, we

only consider the estimated p̂ with one update and the initial value p0 for simplicity.
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4.3 Simulation Studies with Individual Parameter Shifts

We also study the case where only one parameter ω, α or β can change at a time

so as to compare with the binary segmentation algorithm (BSA) introduced by Galeano

and Tsay(2010)[27] for individual parameters shifts. In this study, we have six scenarios

each including 500 series with equal length n = 1000. We only consider the initial value

p0 = 0.001 in our semi-parametric estimation, where a block of 4 is used. This is because,

in the previous study, our estimates with the initial value p0 outperform those with p̂

with one update when the length of the series n is small and p0 is close to the true

change-points probability p. In all six scenarios, the structure changes take place at the

fixed locations. The first three scenarios have single change-point for each of ω, α and

β , while structure changes take place twice for individual parameters in the last three

scenarios. In the setup, we have the same constraints for the ”oracle” estimates θ̂oracle

as in the previous study, such that ‖θ̂oracle − θ̂t‖∞ 6 0.2. The exact settings of the six

scenarios are listed as follows,

Scenario 1. The series are generated from two time-homogeneous GARCH(1,1)

models piecewisely and there exist one structure change for ω at t =

501 and 701, where θt = {0.8, 0.3, 0.5} for 1 6 t 6 500 and θt =

{1.0, 0.3, 0.5} for 501 6 t 6 1000.

Scenario 2. The series are generated from two time-homogeneous GARCH(1,1)

models piecewisely and there exist one structure change for α at t =

501 and 701, where θt = {0.8, 0.3, 0.3} for 1 6 t 6 500 and θt =

{0.8, 0.5, 0.3} for 501 6 t 6 1000.

Scenario 3. The series are generated from two time-homogeneous GARCH(1,1)

models piecewisely and there exist one structure change for β at t =

501 and 701, where θt = {0.8, 0.1, 0.3} for 1 6 t 6 500 and θt =

{0.8, 0.1, 0.5} for 501 6 t 6 1000.
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Scenario 4. The series are generated from three GARCH(1,1) models piecewisely

and there exist two structure changes for ω at t = 301 and 701,

where θt = {0.8, 0.3, 0.3} for 1 6 t 6 300, θt = {1.0, 0.3, 0.3} for

301 6 t 6 700, and θt = {1.2, 0.3, 0.3} for 701 6 t 6 1000.

Scenario 5. The series are generated from three GARCH(1,1) models piecewisely

and there exist two structure changes for α at t = 301 and 701,

where θt = {1.0, 0.1, 0.3} for 1 6 t 6 300, θt = {1.0, 0.3, 0.3} for

301 6 t 6 700, and θt = {1.0, 0.5, 0.3} for 701 6 t 6 1000.

Scenario 6. The series are generated from three GARCH(1,1) models piecewisely

and there exist two structure changes for β at t = 301 and 701,

where θt = {1.0, 0.3, 0.1} for 1 6 t 6 300, θt = {1.0, 0.3, 0.3} for

301 6 t 6 700, and θt = {1.0, 0.3, 0.5} for 701 6 t 6 1000.

4.3.1 Semi-parametric Estimates

In this section, we compare the semi-parametric estimates with the initial value p0 =

0.001 in our estimation procedure to the ”oracle” estimates. We also apply the bounded

complexity mixture (BCMIX) approximation and use a block of 4 in the simulation

studies to reduce the computational time. The typical estimates in the six scenarios are

shown in Figure 4.17 to 4.22. The solid lines represent the semi-parametric estimates

with p0 = 0.001, where the dash lines represent the ”oracle” estimates and the dot

lines represent the true parameter vector θt. We can see our estimates are very close to

the ”oracle” estimates, where they are most apart from each other either near the true

structure changes or at the edges of the series. However, it is very difficult to locate the

structure changes as the scale of individual parameter shifting is considerably small in

our settings. With the length of the series n = 1000, the jump size of each shift 0.2 is

often offset by the estimation errors, where it is still possible for our ”oracle” estimates

to ignore such shifts given our constraints.
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Figure 4.17: Simulation II: typical estimates in Scenario 1

Figure 4.18: Simulation II: typical estimates in Scenario 2
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Figure 4.19: Simulation II: typical estimates in Scenario 3

Figure 4.20: Simulation II: typical estimates in Scenario 4
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Figure 4.21: Simulation II: typical estimates in Scenario 5

Figure 4.22: Simulation II: typical estimates in Scenario 6
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Table 4.6: Simulation II: comparing semi-parametric estimates with ”oracle” estimates

EE KL GOF

Scenario 1
p0 0.3114 (0.0061) 0.0129 (2.25E-04) 0.9906 (0.0004)

oracle 0.0833 (0.0009) 0.0015 (4.32E-05) 1.0019 (0.0002)

Scenario 2
p0 0.2083 (0.0029) 0.0118 (2.48E-04) 0.9870 (0.0005)

oracle 0.0905 (0.0008) 0.0015 (3.99E-05) 1.0014 (0.0001)

Scenario 3
p0 0.2010 (0.0040) 0.0087 (1.61E-04) 0.9911 (0.0004)

oracle 0.0825 (0.0009) 0.0015 (4.55E-05) 1.0011 (0.0001)

Scenario 4
p0 0.1851 (0.0023) 0.0096 (1.71E-04) 0.9879 (0.0004)

oracle 0.0886 (0.0007) 0.0017 (4.33E-05) 1.0015 (0.0001)

Scenario 5
p0 0.2010 (0.0027) 0.0098 (1.63E-04) 0.9868 (0.0004)

oracle 0.0912 (0.0007) 0.0019 (4.52E-05) 1.0020 (0.0002)

Scenario 6
p0 0.2405 (0.0037) 0.0117 (1.76E-04) 0.9889 (0.0004)

oracle 0.0880 (0.0007) 0.0017 (4.16E-05) 1.0029 (0.0002)

Table 4.6 compares our estimates given p0 = 0.001 with the ”oracle” estimates in

the six scenarios in regard to the mean Euclidean error (EE), the Kullback-Leibler (KL)

divergence and the goodness of fit (GOF). For each item listed above, the table presents

the mean values and the corresponding standard deviations of the means, which are

shown in the parentheses. The differences of the mean Euclidean error (EE) and the the

Kullback-Leibler (KL) divergence between our estimates and the ”oracle” estimates are

close to those of the scenarios with random change-points in the previous study, as shown

in Table 4.2. Therefore, the estimation errors of our procedure is mostly determined by

the persistence of the GARCH(1,1) subsequences in the setup, which is leveraged by our

choice of change-points probability p. As for our semi-parametric estimates, both the

mean values and the standard deviations of the means of the goodness of fit (GOF) are

close to the theoretical values 1 and 0.002, indicating great performance in fitting the

volatility. Therefore, though the structure changes are difficult to be detected in these

scenarios as the scale of the shifts is small compared to the estimation errors, our estimates
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are very close to the ”oracle” estimates, providing certain inference on the number and

locations of the change-points. Thus we can still use the function ∆t given our estimates

to detect the structure changes.

4.3.2 Segmentation Results

In this section, we apply our segmentation procedure to the case where only one

parameter ω, α or β can change at a time. Remember that the first part of the penalty

term in the modified Bayesian information criterion (MBIC), 2k log(n), is solely based on

the number of free parameters to be estimated, as shown in (3.11). Therefore, we should

reduce such penalty into half in our application to individual parameter shifting, since for

each change-point added, we introduce a parameter for the location of the new change-

point and only one parameter that corresponds to the type of the structure change, i.e.

ω, α or β, rather than totally four parameters as in the case of simultaneous changes. Our

modified Bayesian information criterion (MBIC) for shifts in the individual parameters

of a GARCH(1,1) model can be written as,

MBIC∗ = −2l(θ̂t) + k log(n) +
2k

k + 2
log(m)(

k+1∑
i=1

log(li − li−1)− (k + 1) log(n/(k + 1)))

(4.7)

Table 4.7 compares the segmentation results between our unconditional variance based

segmentation procedure (UVB) and the binary segmentation algorithm (BSA) introduced

by Galeano and Tsay(2010)[27]. In our BSA, we replace MBIC by MBIC∗ and also use

a minimum possible distance m = 100. Meanwhile, we consider both the significant

levels of 5% and 10% for BSA, where the critical values are listed in Table 3.3 with a

corresponding νmin. Here νmin is made to satisfy the minimum possible distance m. The

table shows the numbers of change-points detected in each of the six scenarios.

We can see our UVB is superior to BSA in terms of accuracy rate of the numbers of

change-points detected in all six scenarios except Scenario 3. This is because BSA works

best when detecting single change-point, where it degenerates to the Lagrange multiplier
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Table 4.7: Simulation II: comparing segmentation results between UVB and BSA

k̂ = 0 k̂ = 1 k̂ = 2 k̂ = 3 k̂

UVB(p0) 0.316 0.312 0.200 0.110 1.302 (0.055)

Scenario 1 BSA(5%) 0.800 0.184 0.016 0.000 0.216 (0.020)

(ω, k = 1) BSA(10%) 0.682 0.266 0.044 0.006 0.380 (0.028)

UVB(p0) 0.262 0.330 0.222 0.122 1.410 (0.054)

Scenario 2 BSA(5%) 0.768 0.210 0.020 0.002 0.256 (0.022)

(α, k = 1) BSA(10%) 0.598 0.318 0.076 0.008 0.494 (0.030)

UVB(p0) 0.050 0.564 0.276 0.092 1.468 (0.037)

Scenario 3 BSA(5%) 0.216 0.732 0.052 0.000 0.836 (0.022)

(β, k = 1) BSA(10%) 0.126 0.726 0.130 0.016 1.042 (0.026)

UVB(p0) 0.210 0.466 0.192 0.090 1.296 (0.047)

Scenario 4 BSA(5%) 0.546 0.422 0.030 0.000 0.490 (0.026)

(ω, k = 2) BSA(10%) 0.342 0.582 0.066 0.004 0.750 (0.029)

UVB(p0) 0.034 0.576 0.242 0.106 1.550 (0.040)

Scenario 5 BSA(5%) 0.212 0.718 0.066 0.004 0.862 (0.023)

(α, k = 2) BSA(10%) 0.090 0.758 0.128 0.024 1.086 (0.025)

UVB(p0) 0.000 0.320 0.376 0.180 2.134 (0.047)

Scenario 6 BSA(5%) 0.004 0.746 0.220 0.030 1.276 (0.023)

(β, k = 2) BSA(10%) 0.000 0.518 0.354 0.114 1.626 (0.033)

(LM) test. The numbers of detected structure changes are mostly accurate in the scenarios

when only β changes, indicating the shifts in the autocorrelation are easier to detect. As

in the previous study, our UVB tends to overestimate the number of change-points when

the true structure changes are evenly distributed, due to the penalty term in our MBIC∗.

Meanwhile, BSA always underestimates the number of change-points, especially when

the scale of the size of each jump is small compared to the estimation errors compared

to the estimation errors as in these scenarios. There are two reasons: first, the structure

changes that are significant locally may fail to be detected in the overall series; second, the
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detected structure changes may deviate from the location of the true structure changes

or even include some misleading change-points, which can result in the elimination of the

true structure changes being detected, as BSA involves the further refinement in the local

subsequences. The latter is really a curse for the change-points estimation problems in

the GARCH settings, as the estimation errors are huge. During the refinement process

of BSA, a significant change-point can be easily eliminated in the subinterval of two less

significant change-points, which will be further eliminated as of their lower significance.

Thus BSA may often end up detecting only one single change-point, as shown in the

following real data analysis.
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Chapter 5

Real Data Analysis

5.1 Daily Log Return Series

5.1.1 S&P 500 Index

For the first example, we analyze the daily log return series of the S&P500 index

from January 4, 1999 to December 31, 2014 as shown in Figure 1.1, which consists

of n = 4024 data points. The data come from Yahoo! Finance. The sample mean,

variance, skewness, and excess kurtosis of the return series are 5.58× 10−5, 3.07× 10−5,

−0.1754, and 7.73, respectively. Thus, the data presents negative skewness and high

excess kurtosis, the latter of which can be well fit by GARCH models. The estimated

coefficients by fitting the return series with the GARCH (1,1) model are which results in

µ = 2.07× 10−4, ω = 2.69× 10−7, α = 0.905, β = 0.086, with the corresponding errors

6.11 × 10−5, 3.72 × 10−8, 0.0071 and 0.0066, respectively. Note that α̂ + β̂ = 0.991, the

return series shows high persistence in volatility.

Since we are more interested in the patterns of the volatility, the error terms of the

return series are studied by simply removing the drift term µ = 5.58× 10−5. We provide

our semi-parameter estimates with p̂ with one update and the initial value p0 = 0.001, the

latter of which are shown in Figure 5.1. No blocks are used in our estimation procedure,

where p̂ = 0.0034 is given after the first iteration.
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Figure 5.1: S&P 500: semi-parametric estimates of daily log return series with p0

Figure 5.1 shows our semi-parameter estimates of the S&P 500 index daily log return

series from 1999 to 2014 with p0 = 0.001, where the labels under the horizontal axis

represent the start of the corresponding year. We can see there exist a huge shift for ω

and β prior to 2009, while the parameters are quite stable between 2001 to 2006. Also,

α increases dramatically after 2013.

In Figure 5.2, we compare the function ∆t given p̂ with one update and that given

p0 = 0.001, which are computed from our semi-parameter estimates as in (3.7). The

solid line represents ∆t given p̂ with one update, while the dash line represents that

given p0 = 0.001. From the figure, we can see, though these two functions are similar

in shape, the local maxima of them are not necessarily the same. For instance, the

function ∆t given p̂ with one update reaches its maximum between 2008 and 2009 while

∆t given p0 reaches its maximum between 2011 and 2012. Therefore, ∆t given different

change-points probability p would probably result in different possible change-points in

order, which may further leads to different structure changes being detected. The reason

behind is that there exist no clear boundaries to separate the structure changes and

72



others in the real data analysis, where the order of significance for each data point may

slightly differ given our estimates with different change-points probability p. Therefore,

we need to choose from p̂ with one update and p0 to determine which sets of change-

points as our detected structure changes. We provide a solution to this by considering

the overall maximized log-likelihood and the Bayesian information criterion (BIC) as

shown in (3.10) in regard to the post-segmentation piecewise GARCH(1,1) sequences

given our unconditional variance based (UVB) segmentation procedure. We also compare

the results from the binary segmentation algorithm (BSA) introduced by Galeano and

Tsay(2010)[27], with a significant level 5%, and the time-homogeneous GARCH(1,1)

model. Here, we choose the minimum distance m = 200 in our segmentation procedure.

Figure 5.2: S&P 500: ∆t of daily log return series given p̂ with one update and p0

Figure 5.3 shows our segmentation results of the S&P 500 daily log return series with

p̂ with one update and p0 = 0.001. The solid line represents the structure change detected

in both settings, where the dash lines represent the rest change-points detected with p̂

with one update. Here we assume change-points given p̂ and p0 = 0.001 are identical

within the range of 4.
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Figure 5.3: S&P 500: segmentation results of daily log return series

From the figure, we can see there exist four detected structure changes from our

procedure with p̂ with one update, where t = 359, 2431, 3162 and 3495, while only

one change-point is detected with p0 = 0.001, where t = 2431. Therefore, choice of the

change-points probability p would greatly affect the number of detected structure changes.

However, in both cases, it appears that the detected change-points are reasonable by

comparing to the time plot of the return series.

UVB(p̂) UVB(p0) BSA N/A

LLM 16112 16083 16085 16074

BIC -32279 -32180 -32184 -32148

Table 5.1: S&P 500: comparing post-segmentation maximized log-likelihood and BIC of
daily log return series

Table 5.1 compares the post-segmentation maximized log-likelihood and BIC from

different segmentation procedures. Here, ”LLM” stands for the maximized log-likelihood

and ”N/A” stands for no segmentation procedure is applicable, i.e. the results come from

the time-homogeneous GARCH(1,1) model.
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In the table, the binary segmentation algorithm (BSA) results in only one change-

point at t = 403, which provides an even smaller BIC than our procedure with p0 =

0.001. This is because the Lagrange multiplier (LM) test is superior for detectind single

change-point in regard of the maximized log-likelihood as it is based on an overall test

statistic. However, the detected change-points from our procedure, which are based on

the local relative changes of the unconditional variances, seem to be more reasonable.

One possible explanation is that the unconditional variances are more stable than the

corresponding estimated parameters. Therefore, our procedure has superiority over the

binary segmentation algorithm (BSA) to detect multiple structure changes when the

estimation errors are large, which is often true in the GARCH settings. In this case, we

choose our procedure given p̂ with one update, as it provides the smallest BIC among all

the segmentation results.

Table 5.2: S&P 500: comparing pre- and post-segmentation piecewise estimates

Period ω α β

[1, 358] 2.00E-07 (6.63E-07) 0.9748 (0.0310) 0.0207 (0.0122)

[359, 2430] 2.00E-07 (4.14E-08) 0.9258 (0.0096) 0.0653 (0.0086)

[2431, 3161] 3.63E-07 (1.36E-07) 0.8972 (0.0169) 0.0939 (0.0170)

[3162, 3494] 5.30E-07 (2.77E-07) 0.8757 (0.0329) 0.1020 (0.0253)

[3495, 4024] 1.99E-06 (7.10E-07) 0.5775 (0.1135) 0.2189 (0.0590)

[1, 4024] 2.82E-07 (3.91E-08) 0.9034 (0.0072) 0.0861 (0.0066)

Table 5.2 compares the pre- and post-segmentation piecewise estimates of the S&P 500

daily log return series. We can see considerably higher autocorrelation of the volatility in

the last period of our segmentation, therefore the recent movements of the volatility are

more predictable. However, in other periods, there still exists high persistence, due to the

additional possible structure changes within each period as well as the huge estimation

errors given a smaller sample size in each period. Thus, as previously mentioned, we are

more interested in the segmentation results.

75



Table 5.3: S&P 500: detected structure changes of daily log return series

Change-point Date Event Stage

359 June 5, 2000 internet bubble mid

2431 September 2, 2008 global financial crisis of 2008 mid

3162 July 27, 2011 United States debt-ceiling crisis of 2011 start

3495 November 21, 2012 United States debt-ceiling crisis of 2011 end

Table 5.3 presents the detected structure changes of the S&P 500 daily log return

series from our procedure with corresponding dates in real world. We also list the related

extraordinary economic events, which are supported by the following facts,

May 16, 2000 Federal funds rate raised to the highest level 6.5% since 1991.

September 7, 2008 The U.S. government took over Fannie Mae and Freddie Mac.

August 5, 2011 S&P downgraded U.S. credit rating.

January 1, 2013 Congress approved a budget deal to avoiding the “fiscal cliff.”

The facts listed are from California Department of Finance at the webpage http :

//www.dof.ca.gov/HTML/FS DATA/LatestEconData/Chronology/chronology.htm.

Though these ex-post economic interpretations are very speculative, our estimation and

segmentation procedures successfully identify the parameter changes that coincide with

the external events affecting the US financial market.

Figure 5.4 shows the post-segmentation estimated volatility of the S&P 500 daily log

return series. We can see our detected structure changes well response to the estimated

volatility. The estimated volatility reaches its maximum prior to 2009, where it is less

volatile at a low value between 2003 and 2007, which presents the similar patterns as our

semi-parametric estimates.

76



Figure 5.4: S&P 500: post-segmentation estimated volatility of daily log return series

5.1.2 IBM Stock Return

In the second example, we illustrate the performance of our proposed procedure by

analyzing the daily log return series of the IBM stock from January 4, 1999 to December

31, 2014 as shown in Figure 5.5, which consists of n = 4024 data points. The data come

from Yahoo! Finance. The sample mean, variance, skewness, and excess kurtosis of the

return series are 8.29×10−5, 5.98×10−5, −0.1453, and 8.56, respectively. Thus, the data

presents negative skewness and high excess kurtosis, the latter of which can be well fit by

GARCH models. The estimated coefficients by fitting the return series with the GARCH

(1,1) model are which results in µ = 2.41×10−4, ω = 8.19×10−7, α = 0.891, β = 0.099,

with the corresponding errors 7.95 × 10−5, 6.23 × 10−8, 0.0051 and 0.0054, respectively.

Note that α̂ + β̂ = 0.990, the return series shows high persistence in volatility.

The error terms of the return series are studied by simply removing the drift term

µ = 8.29× 10−5. We provide our semi-parameter estimates with p̂ with one update and

the initial value p0 = 0.001, the latter of which are shown in Figure 5.6. No blocks are

used in our estimation procedure, where p̂ = 0.0042 is given after the first iteration.
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Figure 5.5: IBM: daily log return series from 1999 to 2014

Figure 5.6: IBM: semi-parametric estimates of daily log return series with p0
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Figure 5.6 shows our semi-parameter estimates of the IBM stock daily log return series

from 1999 to 2014 with p0 = 0.001, where the labels under the horizontal axis represent

the start of the corresponding year.

Figure 5.7: IBM: ∆t of daily log return series given p̂ with one update and p0

In Figure 5.7, we compare the function ∆t given p̂ with one update and that given

p0 = 0.001, which are computed from our semi-parameter estimates as in (3.7). The

solid line represents ∆t given p̂ with one update, while the dash line represents that given

p0 = 0.001. From the figure, we can see, though these two functions are similar in shape,

the local maxima of them are not necessarily the same. Here, we choose the minimum

distance m = 200 in our segmentation procedure.

Figure 5.8 shows our segmentation results of the IBM stock daily log return series with

p̂ with one update and p0 = 0.001. The solid lines represent the structure changes detected

in both settings, where the dash lines represent the rest change-points detected with p̂

with one update and the dot lines represent those with p0 = 0.001 only. Here we assume

change-points given p̂ and p0 = 0.001 are identical within the range of 4. We can see there

exist four detected structure changes from our procedure with p̂ with one update, where
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Figure 5.8: IBM: segmentation results of daily log return series

t = 587, 814, 1454 and 2733, while five change-points are detected with p0 = 0.001, where

t = 588, 815, 1205, 1574 and 2591. Therefore, choice of the change-points probability p

would greatly affect the number of detected structure changes. However, in both cases,

it appears that the detected change-points are reasonable by comparing to the time plot

of the return series.

Table 5.4 compares the post-segmentation maximized log-likelihood and BIC from

different segmentation procedures. Here, ”LLM” stands for the maximized log-likelihood

and ”N/A” stands for no segmentation procedure is applicable, i.e. the results come from

the time-homogeneous GARCH(1,1) model. In this case, we choose our procedure given

p0 = 0.001, as it provides the smallest BIC among all the segmentation results.

In Table 5.5, we compares the pre- and post-segmentation piecewise estimates of the

IBM stock daily log return series. Table 5.6 presents the detected structure changes

of the IBM stock daily log return series from our procedure with corresponding dates

in real world. Though these ex-post economic interpretations are very speculative, we

successfully identify the parameter changes that coincide with the external events.
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Table 5.4: IBM: comparing post-segmentation maximized log-likelihood and BIC of daily
log return series

UVB(p̂) UVB(p0) BSA N/A

LLM 14646 14684 14618 14576

BIC -29347 -29437 -29250 -29152

Table 5.5: IBM: comparing pre- and post-segmentation piecewise estimates

Period ω α β

[1, 587] 9.56E-06 (5.92E-06) 0.9215 (0.0442) 0.0194 (0.0091)

[588, 814] 7.41E-06 (6.01E-06) 0.7972 (0.1442) 0.0678 (0.0571)

[815, 1204] 3.77E-06 (1.41E-06) 0.8574 (0.0339) 0.0995 (0.0250)

[1205, 1573] 3.67E-06 (1.91E-06) 0.6188 (0.1729) 0.1295 (0.0574)

[1574, 2590] 2.90E-07 (8.94E-08) 0.9440 (0.0075) 0.0487 (0.0075)

[2591, 4024] 4.38E-06 (4.30E-06) 0.7409 (0.1806) 0.1216 (0.0823)

[1, 4024] 8.20E-07 (6.09E-08) 0.8921 (0.0050) 0.0976 (0.0053)

Table 5.6: IBM: detected structure changes of daily log return series

Change-point Date Event Stage

588 May 2, 2001 internet bubble end

815 April 3, 2002 stock market downturn start

1205 October 17, 2003 stock market downturn end

1574 April 7, 2005 bull market start

2591 April 22, 2009 global financial crisis end
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Figure 5.9 shows the post-segmentation estimated volatility of the IBM stock daily log

return series. We can see our detected structure changes well response to the estimated

volatility as it reaches local maxima close to 2003 and 2009.

Figure 5.9: IBM: post-segmentation estimated volatility of daily log return series

5.2 Weekly Log Return Series

5.2.1 S&P 500 Index

We are also interested in whether our procedure can be applied to the financial time

series where more fluctuations exist in the volatility. Therefore, for the third example,

we analyze the weekly log return series of the S&P500 index from January 4, 1971 to

December 29, 2014 as shown in Figure 5.10, which consists of n = 2294 data points.

The data come from Yahoo! Finance. The sample mean, variance, skewness, and excess

kurtosis of the return series are 5.88× 10−4, 9.73× 10−5, −0.5628, and 5.50, respectively.

Thus, the data presents negative skewness and high excess kurtosis, the latter of which

can be well fit by GARCH models. The estimated coefficients by fitting the return series

with the GARCH (1,1) model are which results in µ = 8.97×10−4, ω = 4.04×10−6, α =
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0.820, β = 0.086, with the corresponding errors 1.62×10−4, 7.70×10−7, 0.141 and 0.0113,

respectively. Note that α̂ + β̂ = 0.961, the return series also shows high persistence in

volatility as compared to the daily log return series.

Figure 5.10: S&P 500: weekly log return series from 1999 to 2014

The error terms of the return series are studied by simply removing the drift term

µ = 5.88× 10−4. We provide our semi-parameter estimates with p̂ with one update and

the initial value p0 = 0.001, the latter of which are shown in Figure 5.11. No blocks are

used in our estimation procedure, where p̂ = 0.0045 is given after the first iteration.

Figure 5.11 shows our semi-parameter estimates of the S&P 500 weekly log return

series from 1971 to 2014 with p0 = 0.001, where the labels under the horizontal axis

represent the start of the corresponding year and Figure 5.12 shows our segmentation

results of the S&P 500 weekly log return series with p̂ with one update and p0 = 0.001.

The solid line represent the structure change detected in both settings, where the dot lines

represent those with p0 = 0.001 only. Here we choose the minimum distance m = 100

in our segmentation procedure and assume change-points given p̂ and p0 = 0.001 are

identical within the range of 4.
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Figure 5.11: S&P 500: semi-parametric estimates of weekly log return series with p0

Figure 5.12: S&P 500: segmentation results of weekly log return series

84



We can see there exist only one detected structure change from our procedure with p̂

with one update, where t = 1965, while nine change-points are detected with p0 = 0.001,

where t = 114, 215, 817, 1112, 1223, 1361, 1690, 1967 and 2160. Therefore, choice of the

change-points probability p would greatly affect the number of detected structure changes.

However, in both cases, it appears that the detected change-points are reasonable by

comparing to the time plot of the return series.

Table 5.7 compares the post-segmentation maximized log-likelihood and BIC from

different segmentation procedures. Here, ”LLM” stands for the maximized log-likelihood

and ”N/A” stands for no segmentation procedure is applicable, i.e. the results come from

the time-homogeneous GARCH(1,1) model. In this case, we choose our procedure given

p0 = 0.001, as it provides the smallest BIC among all the segmentation results.

Table 5.7: S&P 500: comparing post-segmentation maximized log-likelihood and BIC of
weekly log return series

UVB(p̂) UVB(p0) BSA N/A

LLM 7595 7655 7609 7584

BIC -15203 -15435 -15260 -15168

Change-point Date Event Stage

114 March 5, 1973 oil crisis start

215 February 10, 1975 oil crisis end

817 August 25, 1986 black Monday start

1112 April 20, 1992 black Wednesday start

1223 June 6, 1994 economic crisis in Mexico start

1361 January 27, 1997 Asian Financial Crisis start

1690 May 27, 2003 stock market downturn end

1967 September 15, 2008 global financial crisis mid

2160 May 29, 2012 global financial crisis end

Table 5.8: S&P: detected structure changes of weekly log return series
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Table 5.8 presents the detected structure changes of the S&P 500 weekly log return

series from our procedure with corresponding dates in real world. Though these ex-

post economic interpretations are very speculative, we successfully identify the parameter

changes that coincide with the external events.

Figure 5.13 shows the post-segmentation estimated volatility of the S&P 500 weekly

log return series. We can see our detected structure changes well response to the estimated

volatility as it reaches local maxima close to 1975, 1987 and 2009.

Figure 5.13: S&P 500: post-segmentation estimated volatility of weekly log return series

5.2.2 IBM Stock Return

In the last example, we illustrate the performance of our proposed procedure by

analyzing the weekly log return series of the IBM stock from January 4, 1971 to December

29, 2014 as shown in Figure 5.14, which consists of n = 2294 data points. The data come

from Yahoo! Finance. The sample mean, variance, skewness, and excess kurtosis of the

return series are 6.50×10−4, 2.27×10−4, −0.1621, and 3.22, respectively. Thus, the data

presents negative skewness and high excess kurtosis, the latter of which can be well fit by
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GARCH models. The estimated coefficients by fitting the return series with the GARCH

(1,1) model are which results in µ = 7.31×10−4, ω = 4.45×10−6, α = 0.924, β = 0.057,

with the corresponding errors 2.81 × 10−4, 7.58 × 10−7, 0.0085 and 0.0063, respectively.

Note that α̂ + β̂ = 0.981, the return series shows high persistence in volatility.

Figure 5.14: IBM: weekly log return series from 1999 to 2014

Since we are more interested in the patterns of the volatility, the error terms of the

return series are studied by simply removing the drift term µ = 5.88× 10−4. We provide

our semi-parameter estimates with p̂ with one update and the initial value p0 = 0.001, the

latter of which are shown in Figure 5.15. No blocks are used in our estimation procedure,

where p̂ = 0.0043 is given after the first iteration.

Figure 5.15 shows our semi-parameter estimates of the IBM stock weekly log return

series from 1971 to 2014 with p0 = 0.001, where the labels under the horizontal axis

represent the start of the corresponding year and Figure 5.16 shows our segmentation

results of the IBM stock weekly log return series with p̂ with one update and p0 = 0.001.

The solid lines represent the structure changes detected in both settings, where the dash

lines represent the rest change-points detected with p̂ with one update and the dot lines
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represent those with p0 = 0.001 only. Here we choose the minimum distance m = 100

in our segmentation procedure and assume change-points given p̂ and p0 = 0.001 are

identical within the range of 4.

Figure 5.15: IBM: semi-parametric estimates of weekly log return series with p0

We can see there exist eight detected structure changes from our procedure with p̂ with

one update, where t = 215, 919, 1069, 1582, 1692, 1908, 2009 and 2110, while six change-

points are detected with p0 = 0.001, where t = 214, 1148, 1302, 1421, 2009, and 2160.

Therefore, choice of the change-points probability p would greatly affect the number of

detected structure changes. However, in both cases, it appears that the detected change-

points are reasonable by comparing to the time plot of the return series.

Table 5.9 compares the post-segmentation maximized log-likelihood and BIC from

different segmentation procedures. Here, ”LLM” stands for the maximized log-likelihood

and ”N/A” stands for no segmentation procedure is applicable, i.e. the results come from

the time-homogeneous GARCH(1,1) model. The binary segmentation algorithm (BSA)

results in only one change-point at t = 230. In this case, we choose our procedure given

p̂ with one update, as it provides the smallest BIC among all the segmentation results.
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Figure 5.16: IBM: segmentation results of weekly log return series

Table 5.9: IBM: comparing post-segmentation maximized log-likelihood and BIC of week-
ly log return series

UVB(p̂) UVB(p0) BSA N/A

LLM 6594 6572 6534 6527

BIC -13298 -13226 -13082 -13053

Change-point Date Event Stage

215 February 10, 1975 oil crisis end

919 August 8, 1988 black Monday end

1069 June 24, 1991 early 1990s recession mid

1582 April 23, 2001 internet bubble end

1692 June 9, 2003 stock market downturn end

1908 July 30, 2007 global financial crisis start

2009 July 6, 2009 global financial crisis end

2110 June 13, 2011 United States debt-ceiling crisis start

Table 5.10: IBM: detected structure changes of weekly log return series
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Table 5.10 presents the detected structure changes of the IBM stock weekly log return

series from our procedure with corresponding dates in real world. Though these ex-

post economic interpretations are very speculative, we successfully identify the parameter

changes that coincide with the external events.

Figure 5.17 shows the post-segmentation estimated volatility of the IBM stock weekly

log return series. We can see our detected structure changes well response to the estimated

volatility as it reaches local maxima close to 1975, 2003 and 2009.

Figure 5.17: IBM: post-segmentation estimated volatility of weekly log return series
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Chapter 6

Conclusion and Future Work

In the analysis of asset return series, we modeled change-points in the GARCH(1,1)

setting and provided an estimation procedure for multiple parameter changes in GARCH

models. By introducing the forward and backward filtration and combining them with

Bayes’ theorem, our estimation procedure has attractive statistical and computational

properties and yields explicit recursive formulas to provide semi-parametric estimates for

the piecewise constant parameters. Moreover, we proposed an expectation-maximization

(EM) algorithm to estimate the change-points probability p in our model. Later, we

also developed a segmentation procedure based on our semi-parametric estimates, where

we first consider the individual impact of the estimated parameters to the unconditional

variance to choose possible change-points, then applied the modified Bayesian information

criterion (MBIC) and the conventional top down approach for model selection. Simulation

studies were used to compare our performance to the binary segmentation algorithm

(BSA) introduced by Galeano and Tsay(2010)[27] and the “oracle” estimates. The mean

Euclidean error (EE), the Kullback–Leibler divergence (KL), the goodness of fit and the

accuracy rate of the numbers of change-points detected are given. We implement our

estimation and segmentation procedures to the daily and weekly log returns of the S&P

500 index and the IBM stock to give an insight how our estimation results coincide with

the real financial crises.
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In the end, we would like to discuss the following improvements, which can be made

in the future work.

From our simulation studies and real data analysis, we can see the choice of the change-

points probability p has a small impact on the semi-parametric estimates, but well affect

the number of detected structure changes. Though we have proposed an expectation-

maximization (EM) algorithm for the change-points probability p, the estimated p̂ has an

upward bias due to the estimation errors and the persistence in the piecewise GARCH(1,1)

subsequences. Also, in real practice, the definition of the true change-points probability p

is quite vague as we cannot simply set the boundaries for determining structure changes.

Therefore, we consider to use a trial and error procedure to choose from different p given

a Bayesian information criterion (BIC). In future work, we would like to study a better

way to choose the change-points probability p.

In our study, we have shown the minimum possible distance m can be determined by

our interest and the length of the series n. However, if some of the detected structure

changes are exactly m points away from each other, it either shows we overestimate the

number of structure changes, or we can improve the accuracy of the locations by choosing

a smaller m. In future work, we would like to study a better way to choose the minimum

possible distance. Also, we may consider to leave more space without structure changes at

the beginning and the ending of the series as simulation studies have shown the estimates

are more volatile at the edges of the series.

We have proposed a modified Bayesian information criterion (MBIC) to uniformly

determine the number and locations of structure changes. However, given certain range

of the numbers of structure changes we expect and the length of the series n, we can

modify the coefficients in the penalty term of our MBIC. Moreover, though we would like

to have increasing power to detect structure changes at the edges of the subsequences, we

are reluctant to see multiple structure changes detected close to each other. Therefore,

we may even modify the penalty term itself in future work.
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