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Abstract of the Dissertation

Front Tracking Method with High-Order
Enhancement and Its Application in

Two-Phase Micromixing of Incompressible
Viscous Fluids

by

Yijie Zhou

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2014

We develop a front tracking method based on the hydrodynamic library

FronTier for the solution of the governing equations of motion for two-phase

micromixing of incompressible, viscous, liquid-liquid solvent extraction pro-

cesses. The method is used for accurate simulation of the turbulent micromix-

ing dynamics of an aqueous and an organic phase exposed to intense centrifugal

force and shearing stress. The onset of mixing is the result of the combina-

tion of the classical Rayleigh-Taylor and Kelvin-Helmholtz instabilities. We

demonstrate verification and convergence results for one-phase and unmixed,
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two-phase flows. For mixed, two-phase flow a mixing environment that em-

ulates a sector of the annular mixing zone of a centrifugal contactor is used

with the mathematical domain small enough to allow for resolution of the indi-

vidual interfacial structures and large enough to allow for an analysis of their

statistical distribution of sizes and shapes. Such a statistical picture provides

the information needed for building a consistent coarsened model applicable to

the entire mixing device. We reach a stable two phase configuration as a sta-

tistically steady state in late time after going through a fully mixed transient

chaotic flow regime with a high surface area. To handle problems introduced

by the extreme complexity of interfaces, a new parallel triangular mesh li-

brary called HiProp is implemented which serves as the basis for high-order

mesh algorithms. The new library keeps a full list of parallel information for

each point and triangle so that each element has a unique master processor

and global ID. No floating point comparison is needed after the parallel in-

formation is built. The utilities for building ghost triangles while keeping the

parallel information updated based on either connectivity or domain decompo-

sition are implemented for applying different high-order mesh algorithms. We

develop parallel high-order mesh smoothing, parallel high-order normal and

curvature calculation and point propagation based on the new structure. A

novel high-order functional mesh propagation algorithm is also developed for

propagating local polynomial patches instead of separate points to get high-

order results not only for point positions but also for higher order differential

quantities such as normals and curvatures. To have a complete mesh propa-

gation package, we also implement a tangle detection algorithm and with the
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I/O interface between FronTier and Hiprop we only go back to FronTier for

untangling the self-intersection. It minimizes the time for transfering data

between two libraries. In the future a more accurate untangling algorithm

would be developed based on the new structure and the data transfer could

be entirely eliminated.

Key Words: front tracking, Taylor-Couette flow, turbulent fluid flow mix-

ing, parallel triangular mesh, high-order algorithms.
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Chapter 1

Introduction

1.1 Overview and Motivation

Mixing of multiple phases, as a problem in computational continuum

physics, has both practical and basic scientific interest. We consider here

two-phase mixtures of immiscible, incompressible, viscous liquids with non-

vanishing interfacial tension. A variety of methods have been proposed for

solving the equations of motion for two-phase incompressible flow, all of which

include a numerical description of the interface between two fluids and a nu-

merical scheme for solving multiphase incompressible Navier-Stokes equations

with interface. A high-order description of a discrete mesh is also critical for

getting a high-order interface method especially when interfacial tension plays

an important rule in the application. After a brief overview of all three major

parts for an accurate interface method, we present in the following chapters

our computational framework which has high-order in some if not all aspects

of the front tracking method we used for our simulation of the micromixing

problem in a high-speed rotating centrifugal contactor. In addition, for compli-
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cated fluid dynamics problems, parallel computing with domain decomposition

is needed even with high-order methods. Thus a robust and efficient parallel

mesh structure based on message passing is also implemented serving as the

basis for parallel high-order mesh algorithms.

1.1.1 Interface methods

Many methods have been proposed to represent and evolve an interface

between two immiscible fluids. Of these, the volume of fluid (VOF), the level

set, and front-tracking methods are the most popular. For a complete review of

these methods, readers are referred to the papers of [26], [64], [22], [24], [73],

[61]. When compared to the front capturing methods (VOF and level set),

front tracking preserves a more accurate interface representation with less nu-

merical dissipation. In addition, the implicit methods suffer from the drawback

that they are unable to capture interface details near or below the resolution of

the underlying grid. Even for recently developed gradient-augmented level-set

method [53], which is based on a Hermite interpolation for reconstruction of

subgrid meshes, non negligible volume loss is still observed in the benchmark

tests. For those physics problems such as fluid mixing which needs an accurate

representation of the interface, front tracking is a better choice in our opinion.

A comparison of these three methods [17] concluded that the front tracking to

be more accurate and faster to converge for a number of benchmark problems.

We use front tracking methods to simulate multiphase flows, based on

the front tracking code FronTier. This is a hydrodynamic library for the

geometrical manipulation of a mathematical surface coupled with multiple

2



partial differential equations. It has been employed in a variety of multiphase

simulations [23, 24, 17] for problems dominated by a geometrically complex

dynamic interface. For example, extensive simulation studies of the Rayleigh-

Taylor instability [45, 46, 43] delivered agreement with experiments in the

overall growth rate as defined by the mixing growth parameter.

The FronTier package provides algorithms for geometric construction and

reconstruction of a surface embedded in the surrounding three-dimensional

space. Surface normal, curvature, area, enclosed volume, and statistical infor-

mation of disconnected surfaces are calculated robustly and accurately. These

geometric operations are necessary for enabling the evolution of fluid interfaces

in practical simulations.

Topological bifurcations of an interface occur frequently in many applica-

tions and require special front tracking methods. Our FronTier package uses a

triangular representation of a surface. That is, a three-dimensional triangular

surface mesh is used. Triangles on the interface must be allowed to reconnect

with each other after crossing when dynamically convected by the surrounding

fluid flow. Three methods are implemented in FronTier to handle topological

transitions. The grid free method (GF) [23] is accurate but is prone to logical

errors. A grid based method (GB) [24] is robust but suffers from excessive in-

terpolation and smoothing errors. The most advanced, the locally grid-based

(LGB) method [17], combines the advantages of the GF and GB methods. It

identifies degenerated triangles on the propagated surface, isolates them, and

preserves the intersections of the surface with the grid cell edges to allow for

a GB reconstruction locally near the defective region. Triangles neighboring

3



this region are removed giving rise to a gap between the pristine interface and

the reconstructed part. The major geometry task is to re-seal this gap.

In [7] the LGB reconstruction is improved by reducing the size of the

GB region, which previously was the smallest rectangular solid containing a

tangled set; and in the case of overlaps, the smallest rectangular solid contain-

ing the overlap, etc. In order to keep the triangular mesh topologically valid,

two constraints on the triangular mesh are imposed: (1) an edge of a triangle

connects with at most one triangle; (2) an non-boundary vertex has only one

associated list of triangles formed by linking successively adjacent triangles.

To parallelize the improved LGB algorithm we construct ghost cells, typi-

cally a few layers thick, so that after ghost cell communications, each processor

utilizes only local information to reconstruct the interface contained within its

local cells. If the span of the tangling is too large for the ghost cells, we collect

the cells containing the tangled region onto one processor for resolution. Be-

cause such situations occur very rarely, this fall back strategy does not affect

the efficiency.

1.1.2 Numerical methods for fluid flows with interfaces

In recent decades, a large effort has been devoted to interface-resolving

methods for the solution of the multiphase, incompressible Navier-Stokes equa-

tions. The Immersed Boundary Method (IB), Immersed Interface Method

(IIM), Embedded Boundary Method (EBM) and the Ghost Fluid Method

(GFM) are the most popular methods for solving this class of fluid flow prob-

lems.
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The IB method, introduced by [54] to model blood flow in a human heart,

uses a discrete delta function to spread the singular force on the interface to

a Cartesian grid by means of a numerical width multiple of the grid spac-

ing. This approach was extended [74] to treat three-dimensional, multi-phase

incompressible fluid flows including complex topological changes. In [68] the

front tracking description of the interface [74] was replaced by a level set de-

scription [55, 52].

The IB method has been successfully applied to many fluid and biological

problems. It is first-order due to the smoothing of the interface. The numerical

solution is continuous at the interface even if the actual interface conditions

imply that the solution should be discontinuous.

The IIM, introduced by [39], uses a regular Cartesian grid with an inter-

face represented by marker points. Instead of using a discrete delta functions

and/or Heaviside functions, the velocity and pressure jump conditions at the

interface are preserved and coupled into the finite difference scheme resulting

in a high-order numerical method. This method was initially implemented

in one-dimensional and two-dimensional elliptic equations with discontinuous

coefficients and singular source terms. The IIM was then generalized to many

types of equations with jump conditions at the interface, and a review of this

body of work is found elsewhere [41, 40].

In [69, 70] the IIM was generalized to apply to the incompressible Navier-

Stokes equation with discontinuous viscosity, using the jump conditions of

[27, 38]. However, the method does not allow discontinuities in the density

for the Navier-Stokes solutions. It is second-order accurate in the absence of
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density discontinuities. With density discontinuities, which must be smeared

over some length scale, as in the IB method, the method is first-order accurate.

The IIM relies on a local coordinate system, which is quite complicated and

whose generalization to three or more fluid phases appears to be difficult.

The GFM is a sharp interface method which preserves the jump condi-

tions and uses them to construct ghost fluid states for updating each phase

independently. As with the IB method, it is a first-order method but it dif-

fers from the IB in its treatment of the interface. It was used for a Poisson’s

equation [44] and for a multi-phase incompressible flow [34].

The GFM could be used to treat three-dimensional, multi-phase incom-

pressible fluid flow, including the effect of viscosity, surface tension and gravity,

eliminating the numerical smearing prevalent in the discrete delta function for-

mulation of the IBM. The GFM is relatively simple to implement. The sharp

interface allows complete physics including a discontinuous density. Unlike the

IIM, it involves linear systems with symmetric matrices of coefficients which

can be solved by many fast solvers. The GFM is only first-order accurate

because of a simplification used in the jump conditions when constructing the

ghost states [73, 72, 20].

The EBM uses a Cartesian grid as the computational domain with the

irregular boundary embedded in the grid. The states are calculated at grid cell

centers even if they are outside of the boundary. It is proved both theoretically

and numerically that this method is second-order accurate. The EBM was

first introduced for a Poisson’s equation on an irregular domain in [32]. It

was generalized to parabolic equations with a moving boundary [49], three-
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dimensional elliptic and parabolic equations [62], hyperbolic conservation laws

[14], and compressible [37] and incompressible [3] single-phase, Navier-Stokes

equations on irregular domains.

The EBM was extended to a two-sided interface, as opposed to a one-sided

boundary [77], with application to two-phase flows. The EBM incorporates

the jump conditions for elliptic and parabolic equations with additional states

defined not only at the cell center, but also at the interface patch center, to

yield a second-order accurate algorithm for both the interface problem and

for the irregular boundary problem in a unified framework. It is also easily

generalized to three or more phases through additional jump conditions and

states. The difficulty in obtaining second-order accuracy, especially in the

case of a large density discontinuity at the interface, is associated with the

projection step.

1.1.3 High-order surface reconstruction

To obtain high-order approximation for a discrete mesh, a continuous

method based on polynomial fittings was proposed in [50] for calculating nor-

mals and curvature. A unified and robust weighted least squares based lo-

cal polynomial fitting technique for computing high-order accurate approxi-

mations to both geometry and differential quantities was first given in [31].

The technique was generalized from height functions to parametric surfaces

in [76] with a full theoretical and experimental comparison for a number of

polynomial-fitting based methods using different parameterizations and nu-

merical solvers for least squares problem was given. In [76] it was proved that
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the methods based on local orthogonal projection with a safeguard against

folding delivers the best result in terms of both accuracy and robustness. To

overcome the discontinuity caused by local polynomial fitting, two methods

called WALF (Weighted Averaging of Local Fittings) and CMF (Continuous

Moving Frames) [30] was proposed to obtain continuous support for geometry.

Both methods guarantee C0 continuity while keeping high-order accuracy for

the reconstructed surface. A number of applications based on this framework

for high-order surface reconstruction have been presented. A high-order sur-

face re-meshing method was introduced in [13] and a more robust version with

geometrical limiter was given in [58]. Both the optimization and adaptivity

operations used in this re-meshing method preserve the geometry to high-

order. An untangling process for mildly folded triangles is also used in the

method for generating a smooth output surface. Other applications include a

high-order numerical integration method [59] based on the same framework of

local polynomial fitting.

1.2 Principal Results

We build an incompressible fluid solver with sharp interface tracking

based on the front tracking method referred in Sec. 1.1.1 and Immersed Bound-

ary Method (IBM) referenced in Sec. 1.1.2. It also uses the high-order surface

reconstruction referenced in Sec. 1.1.3 to obtain high-order normals and cur-

vatures for accurately calculating the interfacial force. Through a series of

verification studies for one-phase flows and unmixed, laminar two-phase flows,

we demonstrate our method to be second order accurate for one-phase flows
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and first order accurate with interface. For one-phase Taylor-Couette flows

in various flow regimes with different Reynold’s numbers, we present numeri-

cal results consistent with both experimental pictures for Taylor vortices and

consistent with linear stability analysis for transition from laminar Couette

flow to Taylor vortices. Also a comparison against both experimental and

direct numerical simulation (DNS) results for turbulent Taylor-Couette flow

with Reynold’s number 8000 shows that with our subgrid scale model we have

slightly improved convergence and the results agree with both experiment and

DNS under mesh refinement.

For our two-phase mixing simulation with a mixing environment emu-

lating a sector of the annular mixing zone of a centrifugal contactor, our pri-

mary discovery is the existence two distinct, and weakly communicating, flow

regimes, with the heavy fluid predominantly on the outside and the light fluid

predominantly on the inside in late time. We call the regime the centrifuge

regime. This is not consistent with the experimental picture for the late time

flow with microstructure consisting of droplets of some 60 microns in size and

a single connected phase. Honeycomb structure with thin lubricating walls of

some 10 microns in thickness of droplets are observed. We believe the primary

difference of simulation with experiment is due to the treatment of subgrid

fluctuations, which in the present simulation call for merging of droplets when

they come in contact. These merged droplets give rise to the two distinct con-

tinuous flow regimes we observe in the simulations. Larger simulation domain

sizes, three phase flow with air and further simulation to later time may also

play a role in the difference.
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To handle problems introduced by the extreme complexity of interfaces,

especially arise in fluid mixing problems such as the contactor problem, we de-

sign a new parallel triangular mesh library called HiProp. The new library is

more robust by maintaining a full parallel information list for identifying each

point and triangle globally. Any global mesh operation would have a unique

result without any floating point comparison. In this way the new library

is more robust and efficient comparing with the old communication model in

FronTier. A parallel ghost exchange algorithm is implemented for building

ghost triangles necessary for various high-order parallel mesh algorithms and

parallel fluid solvers based on domain decomposition. We implement paral-

lel mesh smoothing, normal and curvature calculation and point propagation

based on the new structure and more parallel mesh algorithms could be de-

signed base on this library.

Based on the local polynomial fitting technique, we also present a new

functional propagating algorithm which propagates the points positions and

normals at the same time by propagating local polynomial patches at each

point. The algorithm is parallelized under the framework of the new parallel

library and we present high-order results for both point positions and high-

order differential quantities such as normals and curvatures for benchmark

problems.

1.3 Dissertation Organization

In Chapter 2, we will introduce the mathematical model and the nu-

merical methods we used for contactor simulation including Front Tracking

10



and its coupling with an incompressible fluid solver using Immersed Bound-

ary Method for two-phase flow. In Chapter 3, the mathematical description

for local polynomial fitting, which serves as the foundation for the high-order

normal and curvature calculation used in the contactor problem is introduced.

Using the same technique, we also present a new high-order functional mesh

propagation method, which propagates polynomial patches by solving a PDE

instead of solving ODEs for separate points. Using high-order polynomial fit-

ting, we achieve both high-order results for point positions and higher order

differential quantities such as normals and curvatures. In Chapter 4, conver-

gence and order of accuracy for our method are demonstrated for one-phase

flows in both Cartesian and Cylindrical coordinates. We also present a vali-

dation test on one-phase Taylor-Couette flow in a high speed, turbulent flow

regime. Accuracy and convergence specific to this flow is considered by way

of calculations of the transition from laminar flow to Taylor-Couette vortices.

Growth rates of perturbations slightly above the critical Taylor number are

presented. Chapter 5 first demonstrates verification of solutions for laminar

two-phase flows. Then under the mixing environment that emulates a sec-

tor of the annular mixing zone of a centrifugal contactor, we investigate the

mixing and dispersion of organic/aqueous phases and present the existence

of two separate continuous phase regions in steady state at late time. By

phase visualization and statistical analysis of interfacial area and droplet size,

we demonstrate that the stable segregated two phase configuration is reached

after going through a complicated, fully mixed transient chaotic flow regime

with a high surface area. We also discuss the difference between simulation
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and experiment related to the subgrid scale modeling of thin lubrication films

existing between droplets in continuous phase. In Chapter 6, we introduce

a new parallel triangular mesh library called HiProp maintaining full list of

parallel information i.e., processor domain location for each point and triangle

which serves as the basis for various high-order parallel mesh algorithms. We

discuss the data structure, the message communication model and the algo-

rithms for building the parallel information and for updating it during various

ghost exchange procedures based on connectivity and domain decomposition.

Examples of two parallel mesh algorithms implemented based on HiProp are

given demonstrating the use of the new mesh library. The numerical results

for the high-order functional propagation algorithm introduced in Chapter 3

is also presented under the same framework of the new libraray. At the end of

this chapter a full mesh propagating package is presented by coupling HiProp

and FronTier with an exact tangle detection algorithm added. Chapter 7

will discuss some of the on-going work for front tracking method and parallel

high-order mesh algorithms based on the HiProp library.
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Chapter 2

Mathematical Model and Numerical Methods

2.1 Equations of Motion

The incompressible Navier-Stokes equations (NSE) for a homogeneous,

Newtonian fluid phase (α) describe a relationship between the velocity vα(xα, t)

and the hydrodynamic pressure pα(xα, t) fields at any spatial point xα in the

bulk of a three-dimensional, bounded domain Ωα(t) occupied by the fluid phase

at the instant t, namely

ρα∂tvα + ραdivx(vα ⊗ vα) = divxT α + bα in Ωα(t), and (2.1a)

divxvα = 0 in Ωα(t), (2.1b)

where T α(xα, t) is the Cauchy stress tensor and bα(xα, t) is the body force

on the fluid evaluated at xα ∈ Ωα(t). A fluid with homogeneous Newtonian

behavior is characterized by its constitutive equation for the stress T α(xα, t) :=

−pαI+µα
(
∇xvα+∇xv

T
α

)
. Equation (2.1b) is the reduced form of the principle

of mass conservation for an isochoric flow. Equation (2.1a) is the momentum
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balance for the fluid when incompressibility holds. In a two-phase system,

another set of equations similar to (2.1) are needed for the β phase. The

immiscibility condition state Ωα ∩ Ωβ = ∅.

The mass density ρα and the dynamic viscosity µα are constants provided

by experimental measurements. The typical body force is the result of the

gravitational acceleration on the mass of the phase.

When two immiscible fluid phases (α and β) are put into contact, an

inhomogeneous, three-dimensional, interfacial region between the two fluids is

formed. A classical continuum approximation of this region is made by the

Gibbs’ dividing surface, i.e., the region is approximated by a mathematical

surface S(t) = Clo Ωα ∩ Clo Ωβ, that is, the intersection of the closure of the

domains occupied by the fluid phases.

The equations (2.1) hold for each fluid phase up to the interfacial surface,

where a discontinuity in mass density ρ and dynamic viscosity µ may exist

(ρα 6= ρβ and µα 6= µβ). The intrinsic motion of the interface is governed

by a momentum and mass balance on S, also referred to as pointwise jump

conditions, respectively

divST + JT · nK = 0 on S(t), and (2.2a)

J(v − ẋ) · nK = 0 on S(t), (2.2b)

where these equations hold for the particular case of no mass transport be-

tween phases, and in the absence of any mass density excess associated to the

interface. If these two conditions do not hold, then (2.2) are incomplete. The
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tangential surface stress tensor, T, defines the interfacial state of stress while

the interface velocity is denoted by ẋ. The notation J·K represents the jump

across the interface of the quantity inside the brackets, that is, J·K := (·)α−(·)β
with n denoting the local unit normal vector on S pointing into α, that is,

n := n−→
βα

.

Therefore, these bracket terms couple the intrinsic motion of the interface

with the neighboring phases. An interface with no intrinsic viscosity can be

described by a constitutive stress of the form T := σI, with a constant inter-

facial tension σ. Therefore in (2.2a), the surface divergence of the interfacial

stress tensor for an inviscid interface results in the familiar surface curvature

term

divS(σI) = 2Hσn,

where H is the local mean curvature of S.

Modulo initial and boundary conditions, the governing equations (2.1)

as applied within each continuous, homogeneous phase, coupled with the in-

terfacial balances (2.2), describe the motion of immiscible, viscous phases in

intimate contact by virtue of their interfaces. The rigorous derivation of the

governing equations for the motion of fluid phases in contact through a New-

tonian interface was first made by [63] in the so called Eulerian form.

A comment on (2.2b) is in order. Only the jump in the normal com-

ponent of the velocity of the fluid relative to the interface surface velocity

must vanish. This enforces no mass transfer between the phases and allows

for slip of one phase past another, that is, the tangential component of the

relative velocity is not constrained. This may be of significance when the fluids
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are non-Newtonian, high-molecular-weight polymers. For our simulation we

assume that no slip exists and (2.2b) should be replaced by

J(v − ẋ)K = 0 on S(t),

which incorporates the continuity of the phase velocities vα and vβ on S.

Calculation of the three-dimensional time evolution of S and the ac-

companying fields, vα,vβ, pα, pβ, and ẋ, is a formidable computational task

in systems involving vigorous mixing. The topological changes subjected by

S, lead to a dispersion of the phases with many filaments, drops, and other

disconnected surface elements as it is typically visualized in flow mixing ex-

periments. Hence S could be highly disconnected. A central computational

difficulty is how to apply the interfacial momentum balance (2.2a) on S, while

resolving topological transitions which often lead to the formation of contact

points, lines, surfaces, and cusps. This difficulty is exacerbated when three-

dimensional vigorous mixing is present.

In order to make (2.1)–(2.2) tractable computationally, an equivalent set

of equations is first introduced and an approximation is made by considering

the mass density and dynamic viscosity as varying in time and space across the

union of the domains occupied by the phases, while the divergence of the inter-

facial stress term is incorporated in the momentum balance as a source term

in a distribution sense. The reformulation and approximation are elaborated

next and comments are made on the associated adverse effects.
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2.1.1 Reformulated equations of motion

The interfacial equations (2.2) can be absorbed into (2.1) to obtain equa-

tions defined over an entire fixed domain, Ω := Ωα(t)∪Ωβ(t), by prescribing a

variable mass density and dynamic viscosity in space and time so that a fluid

phase is identified by the value of these quantities on each side of the surface

S(t). Hence

ρ∂tv + ρdivx(v ⊗ v) = divxT + b+ f in Ω, and (2.3a)

divxv = 0 in Ω, (2.3b)

where

ρ(x, t) :=


ρα ∀ x ∈ Ωα(t),

ρβ ∀ x ∈ Ωβ(t),

v(x, t) :=


vα ∀ x ∈ Clo Ωα(t),

vβ ∀ x ∈ Clo Ωβ(t),

ẋ = vα = vβ ∀ x ∈ S(t),

(2.4a)

T (x, t) :=


T α ∀ x ∈ Ωα(t),

T β ∀ x ∈ Ωβ(t),

b(x, t) :=


bα ∀ x ∈ Ωα(t),

bβ ∀ x ∈ Ωβ(t),

(2.4b)

and

f(x, t) :=

∫
Ω(t)

divS(σI) δ(x− xS) ds. (2.5)

The apparent appeal of this reformulation is that the equations of change,

specified on Ω, are reduced in number. In addition, it provides a easier way

17



to reason regarding develop approximate solution strategies based on classical

partial differential equations defined on a fixed domain. Therefore conventional

solution methods based on the partition of fixed domains (meshing) can be

designed, in principle. The basic idea is to solve the problem on a fixed domain

with an embedded, moving surface S(t) wherein the source force f is applied.

This can be accomplished in two different ways, namely, the interface can be

either explicitly tracked or implicitly captured (Sec. 1.1.1).

The proof that (2.3)–(2.5) is a valid mathematical statement of equiva-

lence to (2.1)–(2.2) hinges in the definition of the continuous velocity field in

(2.4), and the source force (2.5). In the latter, the convolution of the inter-

facial stress divergence with a delta function centered on S, applies a force

impulse on the interface which reproduces the jump condition (2.2a). Hence,

f(x, t) = 0 ∀ x /∈ S(t). Note that the traction jump in (2.2a), that is, JT ·nK,

is taken into account via the definition of the discontinuous Cauchy stress

tensor in (2.4) and (2.3a) and in a weak sense.

In summary, problem (2.3)–(2.5) is an equivalent statement of the discon-

tinuous equations of motion presented in the previous section. However, there

exists an obvious difficulty when building numerical solution scheme based

on the above equations, namely, evaluating (2.5) with sufficient accuracy. In

practical computations, a variety of ways exist for approximating this integral

and for defining S. The particular case wherein a fixed domain is swept by

S, produces numerical artifacts called spurious currents, which are artificial

flow recirculations near the interface due to insufficient accuracy when balanc-

ing pressure gradients and interfacial tension [56, 61, 28]. The adverse effects
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range from uncontrollable instabilities to difficulties in accurately computing

gradients near the interface. In dispersed mixing flows, this can be a signifi-

cant drawback since it limits the calculation of volume fraction and interfacial

area in the long-time regimes.

2.1.2 Continuous approximation of the equations of mo-

tion

The Immersed Boundary Method, which will be discussed in detail in

Sec. 2.2.2, assumes a continuous approximation for the original discontinuous

interface model. This entails proposing a particular form of continuous fields

for ρ, µ, b, and a volume integral approximate for the source force f area

integral. To achieve this objective, the balance equations become

ρ ∂tv + ρdivx(v ⊗ v) = divxT + b+ f in Ω, and (2.6a)

divxv = 0 in Ω, (2.6b)

where

ρ(x, t) :=


ρα ∀ x ∈ Ωα(t) | (x− xS) · n > ε,

ρβ ∀ x ∈ Ωβ(t) | (x− xS) · n < ε,

ϕρ(ρα, ρβ,x) ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε,

(2.7a)
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µ(x, t) :=


µα ∀ x ∈ Ωα(t) | (x− xS) · n > ε,

µβ ∀ x ∈ Ωβ(t) | (x− xS) · n < ε,

ϕµ(µα, µβ,x) ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε,

(2.7b)

b(x, t) :=


bα ∀ x ∈ Ωα(t) | (x− xS) · n > ε,

bβ ∀ x ∈ Ωβ(t) | (x− xS) · n < ε,

ϕb(bα, bβ,x) ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε.

(2.7c)

v(x, t) :=


vα ∀ x ∈ Clo Ωα(t),

vβ ∀ x ∈ Clo Ωβ(t),

ẋ = vα = vβ ∀ x ∈ S(t).

(2.7d)

All continuous fields in (2.7), with the exception of the velocity field,

interpolate the value of the field in the bulk of the β phase to the α phase

within a thin region of thickness ε > 0. If x is a point near S, xS is the point

on S colinear to x along n(xS), thus (x − xS) · n =
∥∥x− xS∥∥ ∀ x. The

interpolants ϕρ, ϕµ, and ϕb are constructed from an analytical function within

the interpolation region around S, which dynamically changes with time.

The accuracy of this continuum approximation depends on the preser-

vation of the incompressibility of the fluid and its dynamical viscosity in the

region of thickness ε. From mass conservation in the thin region around the
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interface one obtains

divxv = −Dtϕρ
ϕρ

∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε, (2.8)

where Dt(·) is the material time derivative. Therefore in view of (2.6b) a

sufficient condition for maintaining incompressibility in the thin region around

the interface is to build the interpolant ϕρ(·) such that Dtϕρ = 0 on all points

in the interpolation region, that is,

∂tϕρ +∇xϕρ · v = 0 ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε (2.9)

for all times.

Note that the flow is isochoric everywhere but it does not imply incom-

pressibility of the fluid in the thin region near the interface unless the inter-

polant ϕρ is compatible through (2.9). An argument similar to (2.9) must

hold for the dynamic viscosity field wherein the material derivative must van-

ish to recover the original constant value. That is, ϕµ should be build with the

condition that Dtϕµ = 0 for all points in the interpolation interfacial region,

hence

∂tϕµ +∇xϕµ · v = 0 ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε. (2.10)

The interpolant for the body force ϕb can be obtained from ϕρ for the typical

gravitational force.

The interpolants ϕρ and ϕµ are called compatible if they satisfy (2.9) and
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(2.10) for all times.

The continuous approximation (2.6)–(2.7) induces a segregated solution

approach for evolving the explicit representation of the interface S(t0) given

at a particular instant in time, t0. The equations are solved for v(x, t0) and

p(x, t0) using a previous value for the mass density, dynamic viscosity, body

force, interfacial force, and velocity fields; in addition to boundary conditions.

Once the new velocity and pressure fields are computed, the interface is up-

dated according to

dtxS = v
(
xS , t0

)
∀ xS ∈ S(t0). (2.11)

The new locus of S(t1) produces the fields ρ(x, t1), µ(x, t1), b(x, t1), and

f(x, t1) by virtue of (2.7) and (2.5) which can be used, in the next iteration,

to solve for the new velocity and pressure fields at the new time instant t1.

2.2 Numerical Methods

This section elaborates on some details of the numerical algorithms and

underlying mathematical approximation used in our method to solve the equa-

tions described in Sec. 2.1. The approach consists of a loop over two main

tasks:

• Update of the position of the interface with the newly computed inter-

facial velocity field.

• Calculation of the velocity and pressure fields in a fixed domain with
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given mass density, viscosity, interfacial position and momentum source.

The first task consists of an explicit time-step for advancing the position

of the interface. We use the front-tracking method discussed in Sec. 1.1.1 to

represent and evolve a mathematical surface. An updated locally grid based

algorithm in [7] is used for resolving complicated topological changes in the

contactor simulation.

We choose the Immersed Boundary Method (IBM) referenced in Sec. 1.1.2

for numerically discretizing the continuous approximated equations of motion

given in Sec. 2.1.2. Then by applying the Projection Method for the solution

of the one-phase Navier-Stokes equations with variable mass density, dynamic

viscosity, interfacial force and body force fields we resolve the second task.

2.2.1 LGB front-tracking method

As mentioned at the beginning of Sec. 2.2, we use the locally grid based

front-tracking method (LGB) referred in Sec. 1.1.1 to update the surface which

undergoes topological changes. Our goal is to get a topological valid surface at

the end of each time step. Using T to denote the set of triangles on a surface

S, we have the following assumptions for a topological valid surface S:

(A) For any t ∈ T , there is one and only one neighboring triangle on each

edge of t.

(B) For any t ∈ T and vertex p ∈ t, the triangle set {t̂|t̂ ∈ T,p ∈ t̂} forms

only one triangle list around p.

(C) The surface constructed by T is on orientable surface.
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The surface S represents a 2D-manifold under the first two assumptions

and the orientation of each triangle could be defined under the third assump-

tion. Fig. 2.1 shows two examples of the invalid cases. In the left figure,

assumption (A) fails while in the right figure, assumption (B) is violated.

Figure 2.1: Example of non-manifold surfaces

For each time step of the surface propagation, three major steps are

included:

1. Interface point propagation with parallel communication.

2. Surface redistribution for better mesh quality.

3. Locally Grid Based untangling for resolving self intersection.

Given the velocity field, the first step is to advance interface through the

propagation of the discretized interface points via the simple ordinary equation

(2.11) solved by a first order Euler forward scheme. After the point propa-

gation, we use a key routine scatter front() to point-to-point communicate

interface between different processors which is described in detail later in this

section.
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With a user-specified frequency, the second step of the algorithm would

redistribute the surface to maintain the quality of triangles. Two major compo-

nents of surface redistribution are splitting long edges (Fig. 2.2) in the middle

and contracting small edges to the middle (Fig. 2.3). We note that when con-

tracting edges, a non-manifold surface could be generated and a fix of topology

would be called. Details for the topology fixes are given in [6]. The interface

communication is also called after this step to ensure consistency of interface

on each processor.

t t̂

Edge splitting t1 t2

t3 t4

p2

p1

pmid

Figure 2.2: Edge splitting operation
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For the third step we identify some bad regions of the propagated surface,

isolate these, and preserve the intersections of the surface with the grid cell

edges to allow a Grid Based reconstruction locally near the bad region. Trian-

gles neighboring the bad region are removed, and so there is a gap, separating

the good part of the interface from the reconstruction of the bad part of the

interface. We re-seal this gap by adding triangles in a way that keeps the

mesh topologically valid. The intersection detection algorithm is approximate

in that it will miss bifurcations totally internal to a single mesh cell. In Chap-

ter 6 we improve the algorithm by replacing it with an exact triangle-triangle

intersection detection algorithm. Readers are referred to [6] for details of the

LGB reconstruction. Fig. 2.4 shows the entire algorithm for our interface

propagation.

p1

p2

pmid

Edge contraction

t
t̂

Figure 2.3: Edge contraction operation
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Figure 2.4: Flow chart for the LGB interface propagation algorithm

27



At the end of this section we give a brief description of the key routine that

we use for interface communication. For processor 1 and processor 2, which are

neighboring processors in direction k, we denote the surface on processor 1 to

be S1 with triangle set T1, the computational domain for processor 1 to be D1,

the surface on processor 2 to be S2 with triangle set T2 and the computational

domain for processor 2 to be D2. Let the computational boundary between

processor 1 and processor 2 be B12 = D1 ∩D2 and set T̂1 and T̂2 to be:

T̂1 = {t|t ∈ T1, t ∩B12 6= φ}, T̂2 = {t|t ∈ T2, t ∩B12 6= φ}.

When T̂1 = T̂2 scatter front() sends T̃1 from processor 1 to processor 2 and

send T̃2 from processor 2 to processor 1 where T̃1 and T̃2 are interior triangles

with in certain distance with B12:

T̃1 = {t|t ∈ T1,∃pi ∈ t,pi ∈ D1, |pi −B12| ≤ 4∆h},

T̃2 = {t|t ∈ T2,∃pi ∈ t,pi ∈ D2, |pi −B12| ≤ 4∆h},

where ∆h is the cell length in direction k. Otherwise scatter front() would

report an error and print triangles T̂1 and T̂2 as diagnostics. The implementa-

tion assumes a distributed memory computer. The low level communications

use the message passing interface (MPI) standard.
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2.2.2 Immersed Boundary method

In this section we describe some numerical details for using front tracking

method combined with the IB method which is similar to [74]. With the inter-

face represented by a topologically valid triangular mesh defined in Sec. 2.2.1,

the interpolant (2.7) for mass density and viscosity is built with the aid of a

Heaviside function [44]

H(φ) =



0, φ < −ε,
1

2
+
φ

2ε
+

1

2π
sin

(
πφ

ε

)
, −ε ≤ φ ≤ ε,

1, φ > ε ,

(2.12)

where φ := (x−xS) ·n−→
βα

is the distance to the interface in the direction of the

surface normal. We compute the density and viscosity close to the interface

as

ρ(φ) = ρβ + (ρα − ρβ)H(φ), (2.13)

µ(φ) = µβ + (µα − µβ)H(φ). (2.14)

For approximating the evaluation of the volume interfacial force (2.5) we

use a discrete delta function formulation defined in [36]. That is, for each grid

cell in Ω, Iijk, the interfacial force per unit of volume given by the IB method

at the cell center equals to

F ijk =
∑
l

D(xijk − x(l))f (l), (2.15)
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where xijk and x(l) are the position of the grid cell center and the centroid

of the front triangular element with index l, respectively. The discrete delta

function in (2.5) is approximated by D(·), above, and

f (l) := 2H(l)σn(l)∆s(l) (2.16)

is the interfacial force on the lth interface triangle, H(l) is the mean curvature

of the interface at the centroid of the corresponding triangle, n(l) is the unit

normal of the triangle, and ∆s(l) is the surface area of the associated triangle.

Here the mean curvature for each triangle H(l) is the average of the mean

curvatures on the three vertices which are calculated by a polynomial fitting

given by [31] with a second-order accuracy. The polynomial fitting will be

discussed seperately in detail in Sec. 3.1 as it also serves as the basis for the

high-order parallel mesh algorithms that will be introduced in later chapters.

In this work the particular discrete delta function used to compute the

volumetric interfacial force (2.15) has the form

D(xijk − x(l)) =
δh
(xijk1 −x

(l)
1

h1

)
δh
(xijk2 −x

(l)
2

h2

)
δh
(xijk3 −x

(l)
3

h3

)
V (Iijk)

, (2.17)

where V (Iijk) is the volume of cell Iijk and the function δh is given by [36]:

δh(r) =



3− 2|r|+
√

1 + 4|r| − 4r2

8
, if |r| < 1,

5− 2|r| −
√
−7 + 12|r| − 4r2

8
, if 1 6 |r| < 2,

0, if 2 6 |r|.

(2.18)
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When implementing formula (2.15), we select a triangle on the interface,

choose the cells within a radius of three cell diameters around the triangle, and

distribute the interfacial force onto the cells using the discrete delta function

(2.17). In this way the interfacial force is approximated by a volume integral

∫
Ω

2Hσn δ(x− xS) dv =

∫
S

2Hσn ds =

∫
Ω

F ijk dv. (2.19)

The Courant-Friedrichs-Lewy (CFL) condition related to interfacial ten-

sion from [8] is implemented as a requirement of stability

∆t1 <

[〈ρ〉(∆`)3

2πσ

]1/2

, (2.20)

where 〈ρ〉 is the average density, ∆` is the smallest cell edge and σ is the in-

terfacial tension coefficient. Together with the convective time step restriction

∆t2 ≤
1

|u|max

∆x
+ |v|max

∆y
+ |w|max

∆z

, (2.21)

where |u|max, |v|max and |w|max are the maximum Cartesian velocity compo-

nents magnitude, the final time step follows

∆t = CCFL ×min{∆t1,∆t2},

where CCFL is the CFL number (less than 1).
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2.2.3 Projection method

The IB method smoothes the density and viscosity and spreads the sin-

gular force into a strip. Thus at each step, the incompressible Navier-Stokes

equations with variable density and viscosity need to be solved. In rectangular

coordinate, these equations become

∂u

∂x
+
∂v

∂y
= 0, (2.22)

ut + u
∂u

∂x
+ v

∂u

∂y
= −px

ρ
+

(2µux)x + (µ(uy + vx))y
ρ

+ Fx +Gx, (2.23)

vt + u
∂v

∂x
+ v

∂v

∂y
= −py

ρ
+

(µ(uy + vx))x + (2µvy)y
ρ

+ Fy +Gy. (2.24)

In 2D and in 3D they take the form

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.25)

ut + u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

= −px
ρ

+
(2µux)x + (µ(uy + vx))y + (µ(uz + wx))z

ρ
+ Fx +Gx, (2.26)

vt + u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

= −py
ρ

+
(µ(uy + vx))x + (2µvy)y + (µ(vz + wy))z

ρ
+ Fy +Gy, (2.27)

wt + u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

= −pz
ρ

+
(µ(uz + wx))x + (µ(vz + wy))y + (2µwz)z

ρ
+ Fz +Gz. (2.28)

32



Transforming into cylindrical coordinates, we have

∂uz
∂z

+
∂ur
∂r

+
1

r

∂uθ
∂θ

+
ur
r

= 0, (2.29)

∂uθ
∂t

+
∂(uzuθ)

∂z
+
∂(uruθ)

∂r
+

1

r

∂(uθuθ)

∂θ
+ 2

uruθ
r

=
1

ρ

[
−1

r

∂p

∂θ
+
∂dzθ
∂z

+
∂drθ
∂r

+
1

r

∂dθθ
∂θ

+ 2
drθ
r

]
+ Fθ +Gθ, (2.30)

∂uz
∂t

+
∂(uzuz)

∂z
+
∂(uruz)

∂r
+

1

r

∂(uθuz)

∂θ
+
uruz
r

=
1

ρ

[
−∂p
∂z

+
∂dzz
∂z

+
∂drz
∂r

+
1

r

∂dθz
∂θ

+
drz
r

]
+ Fz +Gz, (2.31)

∂ur
∂t

+
∂(uzur)

∂z
+
∂(urur)

∂r
+

1

r

∂(uθur)

∂θ
+

(urur − uθuθ)
r

=
1

ρ

[
−∂p
∂r

+
∂dzr
∂z

+
∂drr
∂r

+
1

r

∂dθr
∂θ

+
(drr − dθθ)

r

]
+ Fr +Gr, (2.32)

where the components of the viscous tensor, dij(i, j = θ, z, r) are given by:

dzz = 2µ

(
∂uz
∂z

)
, drr = 2µ

(
∂ur
∂r

)
, dθθ = 2µ

(
1

r

∂uθ
∂θ

+
ur
r

)
,

dzr = drz = µ

(
∂ur
∂z

+
∂uz
∂r

)
,

dzθ = dθz = µ(

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
,

drθ = dθr = µ

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
,

with µ as the dynamic viscosity. Note that the continuous approximation of

the governing equations of motion (2.6)–(2.7) calls for a continuously varying

dynamical viscosity. Thus the above equations for different directions are
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coupled together for two-phase simulations and divergence of the deviatoric

part of the stress tensor, ∇·µ(x, t)
(
∇xv +∇xv

T
)

degenerates to µ∆xv when

µ is a constant.

The projection method, which is a fractional step method using some

intermediate velocity is the mostly well known method for solving these equa-

tions. Since the pioneering work of Chorin [11, 12], many high-order projection

methods were derived by Bell et.al [4, 5], Kim and Moin [35], and Van Kan

[33]. All the projection methods have three steps: First we obtain an interme-

diate velocity field u∗ by solving a convection-diffusion equation with proper

boundary conditions. Then we perform the projection to enforce the velocity

field to satisfy the divergence free condition for incompressible flow. This step

requires the solution of an elliptic equation. Lastly we update the pressure.

More details can be found in [9].

We follow the projection method advanced in [4, 5], which is second-

order accurate in velocity for single-phase incompressible fluid flow and known

as PMI [9]. This method is only first-order accurate in pressure, however

the alternate method used here, PMII, is second-order accurate in pressure

provided appropriate boundary conditions are used.

We use a second-order Godunov scheme to solve the nonlinear advection

term. This algorithm generates a source term in the diffusion equation. These

two steps are solved in a coupled manner to achieve higher order time accuracy.

The implicit second-order time integration Crank-Nicholson scheme is used to

solve the diffusion equation. The Laplacian equation in the projection step is

solved by a standard five-point discretization. Both the linear systems formed
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in the diffusion and projection step are sparse matrices, solved in parallel using

PETSc [2].

We use the GMRES linear solver for the diffusion step and the BiCGSL

linear solver for the projection step to obtain a faster convergence rate. How-

ever, the BiCGSL algorithm is not theoretically stable and occasionally it does

not converge, in which case we use GMRES instead after a large residual has

been observed for the iterative linear solver.

35



Chapter 3

High-Order Surface Reconstruction and

Propagation

3.1 Local Polynomial Fitting

For calculating the mean curvature and normal for each point used in

(2.16), the high-order local polynomial fitting with local orthogonal projection

parameterization given by [31] is used. This polynomial fitting also serves

as the foundation for both the high-order mesh propagation algorithm which

will be introduced in the next section, and the high-order mesh optimization

algorithm discussed in later chapters.

Specifically, in a rectangular Cartesian coordinate system, for each surface

point x0 on S, a local parameterization for the neighboring points is established

based on the approximated unit normal m̂0. The polynomial fitting may

be defined either over a local uvw coordinate system, where the uv-plane is

approximately parallel with the tangent plane of the surface at x0 and the

neighboring points transformed into the form [u, v, h(u, v)], or more generally,
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overthe global xyz coordinate system with any parameterization. h(u, v) is

known as the local height function.

For either local height function or the coordinate function for a parametric

surface, given a set of points {xi} with parameterizations {ui = (ui, vi)} and

function values {fi} for i = 1, . . . ,m−1 sampled from the neighboring points of

x0, a set of approximate equations are generated from a Taylor series expansion

with degree of fitting d:

fi ≈
d∑
p=0

j+k=p∑
j,k≥0

cjk
uji v

k
i

j!k!
, i = 0, . . . ,m− 1. (3.1)

We write the equations in compact form

Vc ≈ f , (3.2)

where V is a m× n matrix and n = (d+ 1)(d+ 2)/2.

Equation (3.2) can be solved using weighted linear least squares to min-

imize a weighted norm:

min
c
||Vc− f ||W = min

c
||W(Vc− f)||2, (3.3)

which is equivalent to a new linear least squares problem:

Ṽc ≈ b, where Ṽ = WV and b = Wf . (3.4)

W is a m × m diagonal weighting matrix. Let m̂i denote the approximate
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unit normal on point xi. We choose the weight at ith vertex as

wi =
γ+
i

(||ui||2/h+ ε)d/2
, (3.5)

where γ+
i = max(0, m̂i

Tm̂0), h =
∑m

i=1 ||ui||2/m, and ε ≈ 0.01. The numer-

ator of this weight serves as a safeguard for non-smooth areas where normals

change dramatically. The denominator prevents the weights from becoming

too large at points too close to x0.

For Ṽ with large condition numbers, a diagonal scaling matrix S with ith

element Sii = 1/||ṽi||2 is applied to improve the conditioning of the system.

With a rescaled weighted system, a QR factorization

WVS = QR

is used to solve for c. The major benefit for using QR factorization is that

we can reduce the degree of fitting by simply removing the last few columns

in Q and corresponding rows and columns in R depending on the condition

number of the upper-triangular matrix R. Let Q̃ and R̃ denote the reduced

matrices of Q and R, the final solution of c is given by

c = SR̃−1Q̃Tb, (3.6)

where R̃−1 denotes a back substitution step.

Returning to the normal and curvature calculation involved in (2.16), the
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local coordinate system prompts the orthogonal transformation matrix

Q :=
[
t1 t2 m

]
,

where t1 and t2 are the unit vectors, in the global coordinate system x, y, z,

along the positive direction of the u and v axes while m := t1 × t2 is the

unit vector along the positive w direction. With the local polynomial fitting

coefficients cjk calculated for height function, the local unit normal n̂ and

mean curvature H can be computed [31]. The normal unit vector in the global

rectangular Cartesian coordinate system is computed by the transformation

n = Q · n̂ while the mean curvature H is an invariant of the curvature tensor

therefore independent of the coordinate system.

For the cylindrical coordinate system used in the contactor simulation,

a set of points
{

(ri, θi, zi)
}

is selected around the point x0 := (r0, θ0, z0), and

transformed into the x, y, z coordinate system

xi = ri cos θi, yi = ri sin θi, zi = zi,

which are used as the input points for the polynomial fitting. Hence, by trans-

forming the normal vector (nx, ny, nz), obtained from the method described

above, in cylindrical coordinates (nr, nθ, nz) via

nθ = −nx sin θ0 + ny cos θ0, nr = nx cos θ0 + ny sin θ0, nz = nz,

the accuracy of the surface normal and mean curvature calculation is preserved.
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3.2 High-Order Functional Interface Propagation

The classical front tracking formulation has been based on a point prop-

agation, where each point is propagated by solving an ODE separately. No

high-order differential quantity is used or preserved in the point propagation

thus we need to calculate the normals and curvatures using the technique

introduced in Sec. 3.1 after point propatation in each time step. In this sec-

tion, we propose a new framework for functional interface propagation, which

can deliver higher-order accuracy for both point positions and higher-order

differential quantities such as normal and curvature.

3.2.1 Mathematical description

In a point propagation, each point on the interface is propagated by

solving an ODE

dx

dt
= ψ(x, t), (3.7)

where ψ is the velocity and may depend on surface normal, curvatures, etc.

The disadvantage of point propagation is that it omits the interaction of dif-

ferent points on the interface. As a result, it does not consider discontinuities

in its formulation. The face offsetting method [29] considers the interactions

of interface but only at a discrete level, so it was limited to only second-order

accuracy.

We propose a functional propagation formulation for front tracking. In

particular, in the case of surface propagation, consider a local parameterization
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of the surface

x(u; t) : U × R→ R3,

where U ⊂ R2. In other words, interface propagation is the evolution of the

function x(u) over time. This leads to a differential equation

∂x(u; t)

∂t
= ψ(x(u, t); t), (3.8)

where the velocity is a function of the geometry and potentially other time-

dependent variables. As we will show in the following, this formulation is more

general and will allow more accurate approximations.

3.2.2 Semi-discrete form of functional propagation

Let us derive a semi-discrete form of functional propagation, which dis-

cretizes the equation in space but not yet in time. At a point x0(t) ≡ x(u0, t)

on the interface, suppose we have a stencil X(t) = {xk ≡ x(uk, t)} around x0

on the interface. In general, x0 is a point in X, so we number the points in

X from 0 to |X|−1. We also refer to the set {uk} as the stencil around u0 in

the parametric space. Using uk is more convenient than xk for computational

purpose, because uk is not a function of time, in the sense that uk does not

change within a single time step from tj to tj+1 in the fully discrete setting

(although one can use a different local parameterizations from time step tj+1

to tj+2).
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Substituting uk into (3.8), we obtain an equation

∂x(uk; t)

∂t
= ψ(x(uk, t); t) (3.9)

for each point uk in the stencil of u0. Our goal now is to use these |X|

equations to obtain a local approximation to x(u, t) around u0. Consider the

Taylor series expansion of x about a point u0,

x(u; t) = x(u0; t) + (∇ux(u0; t)) δu+
1

2
(δu)T (Hux(u0; t)) δu+O(‖δu‖3),

(3.10)

where ∇ux =


xu xv

yu yv

zu zv

 and Hux denote a rank-3 tensor containing the

Hessian of x with respect to u. We can construct fourth-order accurate semi-

discrete form by taking into account third-order derivatives. LetM(u) denote

the monomial basis of u = [u, v]T , i.e.,

M(u) = [1, u, v, u2, uv, v2]T .

We can then express (3.10) as a

x(u; t) = KT (t)M(δu),

where K(t) ∈ R6×3 corresponds to the coefficients in the Taylor series expan-

sion of the three components of x(u; t), respectively. In particular, the first
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columns is

K :,1(t) =

[
x0,

∂x(u0)

∂u
,
∂x(u0)

∂v
,
1

2

∂2x(u0)

∂u2
,
∂2x(u0)

∂u∂v
,
1

2

∂2x(u0)

∂v2

]T
,

and the second and third columns correspond to y and z, correspondingly. If

the velocity ψ is smooth, we obtain an approximation to (3.9) with third-order

truncation error

dKT (t)

dt
M(δuk) = ψ

(
KT (t)M(δuk); t

)
+O(‖δu‖3). (3.11)

This gives three equations per point in the stencil, and we obtain a system

of m = 3|X| ODEs for 18 unknowns in K(t). If |X| ≥ 6, we then obtain a

rectangular system for K(t), which can then be solved as a (weighted) least

squares problem. Note that in point propagation, we solve this equation for

only the first row of K with x0 as the stencil.

3.2.3 More compact stencil

In (3.11), we need at least six points in the stencil and the number of

points required to be used is normally larger than six. This is because we are

using only (3.8) for the propagation of x(t) (which corresponds to the first

row of K(t)) to determine all the coefficients in K(t). In the following, we

derive an additional equation to propagate the coefficients corresponding to

the first-derivatives ∂x/∂u, which are calculated directly from the result of

functional propagation so that we will have more equations per point in the

stencil and in turn reduce the required size of the stencil. A compact stencil
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is more robust for polynomial fitting and also reduces the number of layers of

ghosts needed to be exchanged in a parallel computation.

Differentiating both sides of (3.9) with respect to u, we obtain

∇u
∂x(uk; t)

∂t
= ∇uψ(x(uk, t); t).

In the left-hand side, we can change the order of differentiation if x is smooth,

and hence

∂ (∇ux(uk; t))

∂t
= ∇uψ(x(uk, t); t).

Note that ∇ux(u; t) corresponds to the surface normal at point uk. More

specifically, given ∇ux(uk; t), the surface normal is uniquely defined, and

given the surface normal and a parameterization, ∇ux(uk; t) is also uniquely

defined. Therefore, this equation corresponds to the propagation of the normal

to the interface.

Using the Taylor series of the derivatives, we then obtain

∇ux(uk; t) = KT (t)∇uM(δuk) +O(‖δu‖2),

where

∇uM(δuk) =

 0 1 0 2u v 0

0 0 1 0 u 2v


T

u=δuk

.

To ensure the same length scale as (3.11), we introduce a normalization matrix

C = diag(max{|δuk|},max{|δuk|},max{|δuk|}) and obtain a set of six new
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equations

C
dKT (t)

dt
∇uM(δuk) = C∇uψ

(
KT (t)M(δuk); t

)
+O(‖δu‖3). (3.12)

Equations (3.11) and (3.12) define nine equations per point in the stencil,

which are linearly independent if all the first three rows of K(t) are computed

and propagated over time. Therefore, we now need as few as two points in

the stencil to achieve third-order accuracy. For better robustness, it is more

advantageous to use three or four points in the stencil. In the numerical tests

we use one ring of neighboring points as the stencil.

When the local parameterization is changed, we need to define a trans-

formation of K(t) between different coordinate systems. This is done by first

converting K1,:(t) into points and converting K2:3,:(t) into surface normals.

Next we transform the points and normals in the coordinate system, and then

convert points and normals back to coefficients K1:3,:(t).

In the right-hand side, if ψ is defined over R3 instead of only on the

interface, we can apply the chain rule to differentiate it with respect to x and

obtain

∇uψ(x(uk; t), t) =
∂ψ(x(uk; t), t)

∂x
(∇ux(uk; t))

=
∂ψ(x(uk; t), t)

∂x

(
KT (t)∇uM(δuk)

)
.
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3.2.4 Explicit time discretization

For a first-order explicit time stepping, from (3.11) and (3.12) we form a

rectangular linear system solved using a weighted least squares formulation at

a point x(u0) and neighboring points x(uk), k = 1, . . . , |X| − 1.

KT (tn+1)M(δuk) = x(uk; tn) + δtψ (x(uk; tn); tn) , (3.13)

KT (tn+1)∇uM(δuk) = KT (tn)∇uM(δuk)

+ δt
∂ψ(x(uk; tn), tn)

∂x

(
KT (tn)∇uM(δuk)

)
. (3.14)

From the equations (3.11) and (3.12) and the first order discretization in time

t. We derive that the new point positions has a O(h3) +O(∆t) error and the

first derivative which corresponding to normals has a O(h2) + O(∆t) error,

where h is the average edge length of the input triangular mesh and ∆t is the

time step.

For higher-order time stepping, we can use the four-stage Runge-Kutta

scheme. Note the solutions of different points affect each other. Therefore,

within each stage we need to propagate all the points before we can advance

to the next stage, similar to using Runge-Kutta for a system of ODEs.

Using the same notation as above, we have:

A1 = δtψ(x(uk; tn); tn),

B1 = δt
∂ψ(x(uk; tn), tn)

∂x

(
KT (tn)∇uM(δuk)

)
,
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A2 = δtψ(x(uk; tn) +
A1

2
; tn +

δt

2
),

B2 = δt
∂ψ(x(uk; tn) +

A1

2
, tn +

δt

2
)

∂x

(
KT (tn)∇uM(δuk) +

B1

2

)
,

A3 = δtψ(x(uk; tn) +
A2

2
; tn +

δt

2
),

B3 = δt
∂ψ(x(uk; tn) +

A2

2
, tn +

δt

2
)

∂x

(
KT (tn)∇uM(δuk) +

B2

2

)
,

A4 = δtψ(x(uk; tn) +A3); tn + δt),

B4 = δt
∂ψ(x(uk; tn) +A3, tn + δt)

∂x

(
KT (tn)∇uM(δuk) +B3

)
.

and the linear system is constructed as:

KT (tn+1)M(δuk) = x(uk; tn) +
A1 + 2A2 + 2A3 +A4

6
, (3.15)

KT (tn+1)∇uM(δuk) = KT (tn)∇uM(δuk) +
B1 + 2B2 + 2B3 +B4

6
.

(3.16)

Again from the equations (3.11) and (3.12) and the fourth order discretization

in time t. We derive that the new point positions has a O(h3) +O(∆t4) error

and the first derivative which corresponding to normals has a O(h2) +O(∆t4)

error, where h is the edge length of the input triangular mesh and ∆t is the

time step. Using the same argument we could also derive easily that with a

higher degree of fitting d in the Taylor series expansion (3.1) and a k-th order

time stepping, the point positions converges with error O(hd+1) +O(∆tk).
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Chapter 4

Verification and Validation of One-Phase Flow

In this chapter we consider the order of accuracy of the projection method

for solving the single-phase incompressible Navier-Stokes equations and the

verification/validation studies for Taylor-Couette flow in different flow regimes.

4.1 Verication of One-Phase Flow by the Method of

Manufactured Solutions

As mentioned in Sec. 2.2.3, the method tested here uses PMII which is a

second-order projection method for single-phase, incompressible fluid flow. We

use initial and boundary data and associated source terms for which the exact

solution is known. This method is applied in 2D and 3D Cartesian coordinates

and in 3D cylindrical coordinates. The exact solution and data for the 2D

solution we use here were employed previously [9]. The 3D exact solution

comes from [19] and a modification is needed for the case of 3D cylindrical

coordinates.
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4.1.1 Time-dependent solutions in 2D Cartesian coor-

dinates

With the domain Ω = [0, 1] × [0, 1] and parameters ρ = 1 and µ = 1,

the Navier-Stokes equations are augmented with a forcing term so that the

functions

u = cos
(

2π
(
x− ω(t)

))
(3y2 − 2y) (4.1)

v =2π sin
(

2π
(
x− ω(t)

))
y2 (y − 1) (4.2)

p =− ω′(t)

2π
sin
(

2π
(
x− ω(t)

))(
sin(2πy)− 2πy + π

)
− cos

(
2π
(
x− ω(t)

)) (
−2 sin(2πy) + 2πy)− π

)
, (4.3)

with ω(t) = 1 + sin(2πt2), become an exact solution [9]. The boundary condi-

tion for the x direction is periodic and Dirichlet for the y direction.

The required source terms are derived by substituting (4.1)–(4.3) into

(2.22)–(2.24). We derive the formulas for the source term using Maple with

C code generated directly from symbolic computation. A uniform time step

of ∆t = 0.4h was used, corresponding to a CFL number of 0.4. The errors

are calculated in both L1 and L∞ norms at time 0.5 for N ×N grids with N

equal to 10, 20, 40 and 80. The errors and order of accuracy for the u and v

component of the velocity field and the pressure p are shown in Tables 4.1–4.3.

The results are very close to the theoretically predicted second-order accuracy.
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Table 4.1: Verification of convergence rate of the u-component of the velocity
for 2D NSE in Cartesian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.02505001 NA 0.05749996 NA
20× 20 0.00596152 2.0711 0.02271585 1.3399
40× 40 0.00138930 2.1013 0.00620064 1.8732
80× 80 0.00033850 2.0371 0.00159809 1.9561

Table 4.2: Verification of convergence rate of the v-component of the velocity
for 2D NSE in Cartesian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.02187048 NA 0.04523046 NA
20× 20 0.00706664 1.8890 0.01307569 1.6299
40× 40 0.00179580 1.9671 0.00334820 1.9764
80× 80 0.00045103 1.9879 0.00084932 1.9933

Table 4.3: Verification of convergence rate of the pressure p for 2D NSE in
Cartesian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.20987610 NA 0.91315993 NA
20× 20 0.04786609 2.1325 0.29326793 1.6391
40× 40 0.00970739 2.3018 0.06626968 2.1458
80× 80 0.00219919 2.1421 0.01504217 2.1393
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4.1.2 Time-dependent solutions in 3D Cartesian coor-

dinates

We set the domain Ω = [−1, 1]× [−1, 1]× [−1, 1], and choose parameters

ρ = 1 and µ = 1. The Navier-Stokes equations are augmented with a forcing

term in order to the solution be [19]:

u =− a
[
eax sin(ay + dz) + eaz cos(ax+ dy)

]
e−d

2t (4.4)

v =− a
[
eay sin(az + dx) + eax cos(ay + dz)

]
e−d

2t (4.5)

w =− a
[
eaz sin(ax+ dy) + eay cos(az + dx)

]
e−d

2t (4.6)

p =− a2

2

[
e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+ 2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+ 2 sin(az + dx) cos(ay + dz)ea(x+y)
]
e−2d2t . (4.7)

We set a = 1 and d = 1, with Dirichlet boundary conditions on all six bound-

aries.

As in the 2D test, we derive the source term using Maple from (2.25)–

(2.28). The maximum flow speed of the solution is about 10, so a uniform time

step of ∆t = 0.05h is used, corresponding to a CFL number of 0.5 to make the

algorithm stable. The errors are calculated in both L1 and L∞ norms at time

0.2 for N ×N ×N grids with N equal to 10, 20, 40 and 80. In Table 4.4, we

omit the v and w velocity components as their convergence rates are similar

to that of the u velocity component.

We observe in Table 4.5 that the L∞ norm error of pressure p is only first-
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Table 4.4: Verification of convergence rate of u-component velocity for 3D
NSE in Cartesian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.04540364 NA 0.01354348 NA
20× 20 0.01177651 1.9469 0.00373252 1.8594
40× 40 0.00299105 1.9772 0.00127001 1.5553
80× 80 0.00075277 1.9904 0.00038637 1.7168

Table 4.5: Verification of convergence rate of pressure p for 3D NSE in Carte-
sian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.56668074 NA 0.57665525 NA
20× 20 0.14954512 1.9220 0.53674946 0.1035
40× 40 0.03779002 1.9845 0.34788539 0.6256
80× 80 0.00947893 1.9952 0.19797179 0.8133

order accurate when using Dirichlet boundary condition for all boundaries.

The normal mode analysis of [9] for second-order accuracy in pressure requires

the boundary conditions to be periodic except in one direction. Since the 3-D

exact solution we used does not satisfy this requirement, the obtained reduced

order of accuracy in the L∞ norm appears to be justified; this is not a verified

assertion.

4.1.3 Time-dependent solutions in 3D cylindrical coor-

dinates

We generalize the second-order projection method [4, 5] to cylindrical co-

ordinates for equations (2.29)-(2.32). The manufactured solution in cylindrical
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coordinate is

uθ(r, θ, z) =
1

12

(
−r2 sin θ + r2 cos θ − z2 sin θ + z2 cos θ

)
e−t (4.8)

uz(r, θ, z) = −1

6
zr
(
cos θ + sin θ

)
e−t (4.9)

ur(r, θ, z) = − 1

12

(
r2 cos θ + r2 sin θ + z2 cos θ + z2 sin θ

)
e−t (4.10)

p(r, θ, z) =
1

12
(r2 + z2)e−t . (4.11)

We set the computational domain to be θ ∈ [0, 2π], z ∈ [−1, 1], r ∈ [1, 2]

and the other parameters as in the 3D manufactured solution in Cartesian

coordinates. The source term was derived by substituting the exact solu-

tion into the incompressible Navier-Stokes equations in cylindrical coordinates

(2.29)–(2.32). The results, summarized in Tables 4.6–4.9, are very close to the

theoretically predicted convergence rates.

Table 4.6: Verification of convergence rate of uθ for 3D NSE in cylindrical
coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.21461366 NA 0.03974838 NA
20× 20 0.05242220 2.0335 0.01018509 1.9643
40× 40 0.01297461 2.0145 0.00256724 1.9882
80× 80 0.00323912 2.0020 0.00064171 2.0002

Again we see here that the convergence rate of the L∞ norm error for

pressure is first-order accurate rather than second-order when we refine the
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Table 4.7: Verification of convergence rate of uz for 3D NSE in cylindrical
coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.01729539 NA 0.00352590 NA
20× 20 0.00483825 1.8378 0.00135969 1.3747
40× 40 0.00123408 1.9710 0.00035601 1.9333
80× 80 0.00031296 2.0020 0.00011209 1.6673

Table 4.8: Verification of convergence rate of ur for 3D NSE in cylindrical
coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.01569499 NA 0.00346419 NA
20× 20 0.00427474 1.8764 0.00144748 1.2590
40× 40 0.00109416 1.9660 0.00053794 1.4280
80× 80 0.00028311 1.9504 0.00017048 1.6553

Table 4.9: Verification of convergence rate of p for 3D NSE in cylindrical
coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 7.41387743 NA 0.76635043 NA
20× 20 1.78645195 2.0531 0.19345287 1.9860
40× 40 0.43545378 2.0365 0.05218918 1.8902
80× 80 0.10759368 2.0169 0.02173881 1.2535
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mesh because of the Dirichlet boundary condition on all six boundaries; not a

verified assertion.

4.2 Verication and Validation of One-Phase Annular

Couette Flow

The Taylor-Couette flow regime occurs in the annulus between differen-

tially rotating concentric cylinders, most often with the inner cylinder rotating

and the outer cylinder fixed. The flow becomes unstable when the rotation

rate exceeds a critical value (Fig. 4.1) [47] and a secondary motion in the form

of vortices appears in the cross section of the primary flow. The critical rota-

tion rate is different depending on whether the inner or the outer cylinder is

moving. Since the pioneering work of [71], in which linear stability analysis was

used to predict the appearance of Taylor vortices, the Taylor-Couette flow has

been studied extensively, theoretically, experimentally and computationally.

Taylor-Couette flow is important not only because of its applications, such

as the design of a viscometer, fluid mixture apparatus, and in biology; it also

has been studied to observe flow patterns during the transition from laminar to

turbulent flow. With increasing Reynolds number, the flow undergoes a series

of transitions from circular Couette flow, to axially periodic Taylor vortex flow,

to a state with time-dependent waves imposed on the vortices (wavy Taylor

vortex flow) and to chaotic and turbulent Taylor vortex flow. A visualization

of Taylor vortex flow is displayed in Fig. 4.1 [47].

Section 4.2.1 develops the analytic solution for the annular Couette flow
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Figure 4.1: Left: Schematic diagram of counter-rotating axisymmetric vortices
of Taylor-Couette flow ( c©2000, Mike Minbiole and Richard M. Lueptow).
Right: Axisymmetric Taylor vortices visualized using titanium dioxide-coated
mica flakes ( c©2002, Alp Akonur and Richard M. Lueptow)

used for code verification. Section 4.2.2 presents simulation results for the tran-

sition from circular Couette flow regime to the Taylor-Couette flow regime.

The critical value for this transition is predicted from 3-D simulations as

demonstrated in Section 4.2.4, while fully turbulent flow is studied in Sec-

tion 4.2.5.

The dimensionless parameters which characterize the system are: the

radii ratio η = Ri/Ro of the inner to the outer cylinders respectively; the

cylinder height to the gap width aspect ratio Γ :=
Lz

Ro −Ri

, where the gap

width between cylinders is also denoted d := Ro − Ri; the Reynolds number

Re; and the Taylor number T . The definitions for the last two parameters

vary in the literature, here we use

Re :=
ΩiRi(Ro −Ri)

ν
, and (4.12)

56



T := 4Re2

(
1− η
1 + η

)
, (4.13)

where Ωi is the rotation speed of the inner cylinder and ν is the kinematic

viscosity of the fluid.

4.2.1 Steady-state 1-D Couette flow in an annular sec-

tor

For a sub-critical Reynolds number, Couette flow is laminar. Under this

assumption, the Navier-Stokes equations simplify to one-dimensional flow. In

cylindrical coordinates, we derived an exact solution for an infinite cylinder

(Γ =∞),

vθ = C1r +
C2

r
(4.14)

vz = 0; (4.15)

vr = 0; (4.16)

P = ρ
[C2

1(r2 −R2
i )

2
+ 2C1C2 ln

r

Ri

− C2
2

2

( 1

r2
− 1

R2
i

)]
+ P0 , (4.17)

with

C1 =
ΩiR

2
i

R2
i −R2

o

C2 = −C1R
2
o

P0 = P (Ri) .
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This solution was used as a verification and convergence rate test for the nu-

merical solution method of the three-dimensional Navier-Stokes equations. For

this purpose, we used periodic boundary conditions in the z and θ directions

and no slip conditions on the boundaries in the r direction. We set the compu-

tational domain to be θ ∈ [0, 0.628] rad, z ∈ [0, 0.628] cm, r ∈ [2.538, 3.166] cm,

and Ωi = 0.05 rad/s (0.48 RPM). A time-dependent, three-dimensional sim-

ulation was performed using ρ = 1.0 g/cm3 and ν = 0.0089 cm2/s which

resulted in Re = 9.0. The initial velocity and pressure fields for the simulation

were enforced using the foregoing exact solution fields. The simulation results

obtained for a small Re compared well with the exact solution (4.14)–(4.17)

obtained for Re = 0. Errors were calculated in both L1 and L∞ norms at time

1 s (0.008 rotations) for N × N × N grids with N equal to 10, 20, 40 and

80. As uz = 0 within round off error, we omit analysis of this variable and

display convergence results for uθ, ur and the pressure p in Tables 4.10–4.12.

Table 4.10: Verification of the convergence rate of uθ for 1D Couette flow.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 8.9689427e-06 NA 4.2889586e-05 NA
20× 20 2.3392513e-06 1.9445 1.2213023e-05 1.8122
40× 40 5.8993089e-07 1.9874 3.2289907e-06 1.9193
80× 80 1.4774364e-07 1.9974 8.2839859e-07 1.9627

All convergence results confirm a second-order accurate solution algorithm.
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Table 4.11: Verification of the convergence rate of ur for 1D Couette flow.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 3.2098794e-06 NA 1.3955543e-05 NA
20× 20 2.3019156e-07 3.8016 3.2426953e-06 2.1056
40× 40 1.4560125e-08 3.9827 4.0839172e-07 2.9892
80× 80 9.1318711e-10 3.9950 5.0681518e-08 3.0104

Table 4.12: Verification of the convergence rate of p for 1D Couette flow.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 4.0876435e-06 NA 2.2784380e-05 NA
20× 20 7.9287009e-07 2.3661 4.6255377e-06 2.3004
40× 40 1.9027897e-07 2.0590 1.2303281e-06 1.9106
80× 80 4.6547912e-08 2.0313 3.2019695e-07 1.9420

4.2.2 Transition from 1-D to 3-D Taylor vortices

A qualitative demonstration of the existence of the vortex transition is

made in this section at the Reynolds number Re = 2686. The simulation

parameters were Ri = 2.538 cm, Ro = 3.166 cm, η = Ri/Ro = 0.8, Ωi =

15 rad/s (or 38.07 cm/s, or 143.2 RPM), ρ = 1.0 g/cm3, ν = 0.0089 cm2/s

and

Re =
ΩiRi(Ro −Ri)

ν
= 2686.3, T = 4Re2

(
1− η
1 + η

)
= 3.2× 106.

The critical Reynolds number for the transition to vortex flow is 94.7 [57], so

this simulation is well above the transition point. The computational domain
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is θ ∈ [0, 0.628] rad, z ∈ [0, 1.256] cm, r ∈ [2.538, 3.166] cm. We used periodic

boundary conditions for both the θ and z directions and a no slip boundary

condition for the velocity in the r direction. The initialization of the velocity

and pressure fields were as in (4.14)–(4.17), that is, the unperturbed laminar

solution for one-phase Couette flow. A simulation up to t = 2s was performed

(about 5 rotations of the inner cylinder). The grid size for this simulation is

40× 80× 40. Streamlines of the vr and vz velocity component fields indicate

the formation of the Taylor vortices (Fig. 4.2) which is consistent with the

linear stability theory (Sec. 4.2.3).

Figure 4.2: Computed velocity streamlines in the r–z plane of a Taylor vortex
flow at Re = 2686.3 (i.e. T = 3.2× 106).
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4.2.3 Axisymmetric linear stability analysis of Couette

flow

Before verifying the critical value for the transition from laminar Couette

flow to Taylor vortex flow we summarize the classical linear stability analy-

sis of small perturbations for getting a theoretical critical Reynolds number.

Infinitesimal disturbances are applied to the Couette flow in the domain

R1 < r < R2 , 0 ≤ θ < 2π and −∞ < z <∞, (4.18)

with an aspect ratio Γ =∞.

The velocity field for the Couette flow in cylindrical coordinates is given

by

vr = vz = 0 , vθ = V (r) = Ar +
B

r
,
∂p

∂r
= ρ

V 2(r)

r
, (4.19)

where ρ is the density and

A =
R2

2Ω2 −R2
1Ω1

R2
2 −R2

1

= −Ω1
η2 − µ
1− η2

, (4.20)

B = −R
2
1R

2
2(Ω2 − Ω1)

R2
2 −R2

1

= Ω1R
2
1

1− µ
1− η2

(4.21)

µ =
Ω2

Ω1

, η =
R1

R2

. (4.22)

The Couette flow can be characterized by the parameters µ, η, and

Reynolds number. Here the values for the parameters are

Ω2 = 0 , µ = 0 , η =
R1

R2

=
2.538

3.166
= 0.8. (4.23)
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Let u′, v′, w′ and p′ denote the perturbations of vr, vθ, vz and p for Couette

flow. Substituting vr → vr +u′ = u′, vθ → vθ +v′ = V +v′, vz → vz +w′ = w′

and p→ p+ p′ in the Navier-Stokes equations, we get

r :
∂u′

∂t
+
V

r

∂u′

∂θ
− 2V

r
v′ +

1

ρ

∂p′

∂r
− ν

(
∇2u′ − 2

r2

∂v′

∂θ
− u′

r2

)
= −

(
u′
∂u′

∂r
+
v′

r

∂u′

∂θ
+ w′

∂u′

∂z

)
+
v′2

r
(4.24)

θ :
∂v′

∂t
+
dV

dr
u′ +

V

r

∂v′

∂θ
+
V

r
u′ +

1

ρr

∂p′

∂θ
− ν

(
∇2v′ +

2

r2

∂u′

∂θ
− v′

r2

)
= −

(
u′
∂v′

∂r
+
v′

r

∂v′

∂θ
+ w′

∂v′

∂z

)
− v′u′

r
(4.25)

z :
∂w′

∂t
+
V

r

∂w′

∂θ
+

1

ρ

∂p′

∂z
− ν∇2w′ = −

(
u′
∂w′

∂r
+
v′

r

∂w′

∂θ
+ w′

∂w′

∂z

)
. (4.26)

Similarly for the equation of continuity

∂u′

∂r
+
u′

r
+

1

r

∂v′

∂θ
+
∂w′

∂z
= 0 . (4.27)

The no slip condition at the inner and outer cylinder gives the boundary

conditions

u′ = v′ = w′ = 0 at r = R1 and r = R2 . (4.28)

We consider infinitesimal disturbances that are axisymmetric, i.e. independent

of θ, and periodic in the axial direction. Linearizing the equations (4.24),

(4.25), (4.26) and (4.27) and taking into account that all the disturbances are
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independent of θ we obtain

∂u′

∂t
− 2V

r
v′ = −1

ρ

∂p′

∂r
+ ν

(
∇2u′ − u′

r2

)
(4.29)

∂v′

∂t
+

(
dV

dr
+
V

r

)
u′ = ν

(
∇2v′ − v′

r2

)
(4.30)

∂w′

∂t
= −1

ρ

∂p′

∂z
+ ν∇2w′ (4.31)

∂u′

∂r
+
u′

r
+
∂w′

∂z
= 0 , (4.32)

where ∇2 = ∂2

∂r2
+ 1

r
∂
∂r

+ ∂2

∂z2
.

The normal mode solutions for the disturbances have the form

u′ = u(r)eβt+iλz, v′ = v(r)eβt+iλz, w′ = w(r)eβt+iλz, p′ = P (r)eβt+iλz. (4.33)

In these disturbances β is the growth rate and λ is the wavenumber in the axial

direction. Substituting these expressions in (4.29), (4.30), (4.31) and (4.32)

we get

ν

(
d2

dr2
+

1

r

d

dr
− 1

r2
− λ2 − β

ν

)
u =

1

ρ

dP

dr
− 2V

r
v (4.34)

ν

(
d2

dr2
+

1

r

d

dr
− 1

r2
− λ2 − β

ν

)
v = 2Au (4.35)

ν

(
d2

dr2
+

1

r

d

dr
− λ2 − β

ν

)
w =

1

ρ
P (iλz) (4.36)

du

dr
+
u

r
+ iλw = 0 . (4.37)
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Finally, eliminating P and w we obtain

ν

(
d2

dr2
+

1

r

d

dr
− 1

r2
− λ2 − β

ν

)(
d2

dr2
+

1

r

d

dr
− 1

r2
− λ2

)
u = 2λ2Ω(r)v,

(4.38)

ν

(
d2

dr2
+

1

r

d

dr
− 1

r2
− λ2 − β

ν

)
v = 2Au,

(4.39)

where Ω(r) = V
r

. From (4.28) we get at r = R1 and r = R2

u = v = 0 . (4.40)

From equation of continuity we get at r = R1 and r = R2

du

dr
= 0 . (4.41)

Using the transformations [57]:

r = R0 + dx, R0 =
R1 +R2

2

δ =
d

R0

, ξ(x) =
1

1 + δx

Ω = Ω1G(x), G(x) =
1

1− η2

[
µ− η2 + 4ξ2(x)η2 1− µ

(1 + η)2

]
(4.42)

σ =
βd2

ν
, α = λd, T = −4AΩ1d

4

ν2

D =
d

dx
, D∗ = D + δξ(x) .

(4.43)

64



on equations (4.38) and (4.39), we obtain

(DD∗ − α2 − σ)(DD∗ − α2)u11 = −α2TG(x, µ, η)v11, (4.44)

(DD∗ − α2 − σ) = u11 . (4.45)

with the boundary conditions

u11 = v11 = Du11 = 0 at x = ±1

2
. (4.46)

Equations (4.44)-(4.46) form an eigenvalue problem in two parameters along

with the boundary conditions. The flow can be described in terms of the

geometry parameter η, the fluid parameters (µ and Taylor’s number T ) and

the disturbance parameters α and σ. It can be shown that for given µ and η

there exists a value Tc such that for T < Tc , Re(σ) < 0 for all α > 0 and for

T > Tc , Re(σ) > 0 for a band of wave numbers (α− < α < α+). This defines

a set of points in T, α space which is called the neutral curve (see Fig. 4.3)

. Clearly the minimum point of the neutral curve is the Tc below which all

disturbances of any wavenumber decay with time and above which there is

a band of wave numbers for which the disturbances grow exponentially with

time. Table 4.13 shows the critical Reynolds and wave numbers for different

radius ratios η [10, 57, 75, 60, 67]. At marginal stability the growth rate of

the critical wavenumber is zero (σ = 0). For a supercritical disturbance the

growth rate will be positive. From linearized theory, the disturbance grows

exponentially with time. However, the disturbances do not show continual

amplification with time and instead attains a finite equilibrium amplitude.
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Table 4.13: Critical Reynolds number (Γ =∞, µ = 0) of axisymmetric, linear
stability analysis.

η Recrit kcrit
0.975 260.9 3.13
0.90 131.6 3.13
0.80 94.7 3.13
0.70 79.5 3.14
0.60 71.7 3.15
0.50 68.2 3.16

Figure 4.3: Neutral curve of axisymmetric, linear stability analysis [57].
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In [15, 78] Davey showed that the growth rate is proportional to the

reduced Reynolds number ε = 1 − R2
c

Re2
. He also calculated the coefficient

of the reduced Reynolds number for the growth rate for the wide gap case

(R2 = 2R1) and the narrow gap case (η → 1) [15].

4.2.4 Verifying the Couette flow perturbation growth

rate

The axisymmetric linear stability analysis of 3-D small perturbations im-

posed on a 1-D Couette base flow predicts the minimum Reynolds number

for the growth of the disturbances for any wave number. The analysis also

predicts the growth rate to be time dependent. Therefore in this section we

present a verification of the growth of the disturbances (by means of numerical

analysis) through a direct time-dependent, 3-D simulation of the evolution of

the initial 1-D Couette flow field.

Using (4.14)–(4.17) as the initial conditions for a 3-D flow simulation in

the same annular sector used in Sec. 4.2.2, we calculate the growth rate

K(t) :=

√
〈vr〉2 + 〈vz〉2∣∣〈vθ〉∣∣ ,

≈
√

(u′)2 + (w′)2∣∣V + v′
∣∣ ,

≈
[
eβt

eiλz
√
u2(r) + w2(r)∣∣V + v′

∣∣
]
,

lnK(t) ≈βt+ C(r, θ, z).
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where C is a constant, in time, according to the linear stability analysis as-

sumption (4.33). Thus the slope β of the graph of lnK versus t gives the

growth rate of the fundamental mode for each Reynolds number (Fig. 4.4 and

Fig. 4.5).

As indicated in Fig. 4.4 and Fig. 4.5, K has two flat sections and one

linearly growing section; the slope is calculated in the interval 10−6 < K <

10−4. The linearly growing section is associated to an exponential growth of

the instability eβt from linear stability analysis. The first flat section results

from the initialization of the instability, which is seeded by numerical grid

effects, and not by a perturbation at the maximally growing wave length. The

results confirm that at a higher Reynolds number the flow disturbances grow

faster. The second flat section corresponds to the approach to the steady state

flow with Taylor vortices.

Fig. 4.6 shows the growth rate β as a function of Reynolds number. The

growth rate for supercritical disturbances grows with the Reynolds number

Re. As β → 0 then Re → Rc and by virtue of a first order Taylor expansion

we know from linear stability analysis that β(Re) = c0(Re−Rc) when Re−Rc

is small. Thus from a linear fitting to the slope of β(Re) we compute c0 and

find Rc setting β = 0 (inset of fig. 4.6). We obtain the value Rc = 95.35, which

is very close to the theoretical value of Rc = 94.7 [57].
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Figure 4.4: Computed instability growth lnK at Re = 125 for a Taylor-Cou-
ette flow.

Figure 4.5: Computed instability growth lnK at Re = 200 for a Taylor-Cou-
ette flow.
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Figure 4.6: Calculated growth rate vs. Reynolds number for a Taylor-Couette
flow. Critical Reynolds number Rc = 95.35 found by extrapolation.

4.2.5 Turbulent Taylor-Couette flow: verification and

validation

In this section a comparison of flow simulation with and without turbu-

lence modeling is made against experimental results and direct numerical simu-

lation of the Navier-Stokes equations for the Taylor-Couette flow at Re = 8000.

The same geometry as in Sec. 4.2.4 was used. Our results are compared against

the experimental results of [66], and the direct numerical simulation (DNS)

results of [16].

For turbulent flow simulation, the incompressible, LES-filtered Navier-

Stokes equations in cylindrical coordinates that we used and presented below.

The low-pass filtered quantities are considered to be mesh cell averages and
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denoted with an overbar.

∂uz
∂z

+
∂ur
∂r

+
1

r

∂uθ
∂θ

+
ur
r

= 0, (4.47)
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− ∂τzr

∂z

− ∂τrr
∂r
− τrr − τθθ
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where uθ, uz and ur are the velocity components in the azimuthal, axial and

radial directions, respectively, and ρ and p represent the density and the pres-

sure, and the f i (i = θ, z, r) denote body forces.

The components of the viscous stress tensor dij (i, j = θ, z, r) are given

by

dθθ = 2µ

(
1

r

∂uθ
∂θ

+
ur
r

)
, dzz = 2µ

∂uz
∂z

, drr = 2µ
∂ur
∂r

,

drθ = µ

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

)
, dθz = µ

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
,

71



dzr = µ

(
∂ur
∂z

+
∂uz
∂r

)
. (4.51)

The subgrid scale (SGS) variables τij (i, j = θ, z, r) are defined by

τij = uiuj − uiuj. (4.52)

We use the dynamic eddy viscosity model [21, 48] for τij . The anisotropic

part of τij is modeled as

τMij = τij −
δij
3
τkk = −2CS∆2|S|Sij, (4.53)

where

Sθθ =
1

r

∂uθ
∂θ

+
ur
r
, Szz =

∂uz
∂z

, Srr =
∂ur
∂r

,

Srθ =
1

2

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

)
, Sθz =

1

2

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)
,

Szr =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
. (4.54)

and

|S|2 =
∑

2S2
ij . (4.55)

The CS is a model coefficient to be computed dynamically. Let a spatially

test-filtered quantity be denoted by a caret. The test filtered stress Tij is
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defined by

Tij = ûiuj − ûi ûj, (4.56)

and the anisotropic part of Tij is modeled as

TM
ij = −2CS∆̂2|Ŝ|Ŝij. (4.57)

From the Germano’s identity,

Lij = Tij − τ̂ij = ûiuj − ûi ûj, (4.58)

where Lij is the Leonard stress. The right hand side is completely computable

from the resolved variables. In addition,

Laij = TM
ij − τ̂Mij = 2CS∆2 |̂S|Sij − 2CS∆̂2|Ŝ|Ŝij = CSMij , (4.59)

where

Mij = 2∆2 |̂S|Sij − 2∆̂2|Ŝ|Ŝij (4.60)

and Laij is the anisotropic part of Lij. We introduce an spatial averaging

operation 〈·〉 to avoid numerical problem. The specification of the average

is problem dependent, as the universal definition of an ensemble average is

inconvenient to use.

Applying this average to (4.59) and using least squares in the resulting
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equations leads to the formula

CS =
〈∑LaijMij〉
〈∑MijMij〉

. (4.61)

The dimensionless values of the parameters in our simulation are Lz = π,

Ri = 1, Ro = 2, density ρ = 1 and dynamic viscosity µ = 1/8000. The

Reynolds number in this case is Re = U1(Ro − Ri)ρ/µ = 8000. Periodic

boundary conditions are imposed in the axial and azimuthal direction with

no-slip boundary conditions at the inner and outer cylinder. The initialization

is a uniform velocity field U = 0.5. The simulation was not terminated until a

statistically-stationary state was achieved and at this stage, data was collected

for a period of 250 dimensionless time units. We used three sets of meshes

64 × 32 × 32, 64 × 64 × 32 and 128 × 64 × 32, in the coordinate directions:

θ, z, r.

Fig. 4.7 compares the mean angular momentum 〈uθ r〉/U1Ri with exper-

imental values (Re = 8698) which are available only for the region near the

inner cylinder. The most refined mesh agrees with the experimental data for

the region near the inner cylinder [66]. Fig. 4.7 also shows the agreement of

our results with DNS [16] as the mesh is refined.

Similarly, in Fig. 4.8, the profile of the mean azimuthal velocity 〈uθ〉/U1

agrees with that of the DNS simulation upon mesh refinement. The results

using the subgrid scale model show slightly improved convergence. Results in

both figures compare well with DNS [16] and with the experimental result of

[66]. This verification and validation test evaluates positively the implemen-
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tation of our fluid flow solver.

Figure 4.7: Mean angular momentum 〈vθ r〉/U1Ri for a turbulent (LES model)
single-phase Couette flow.
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Figure 4.8: Mean azimuthal velocity 〈vθ〉/U1 for a turbulent (LES model)
single-phase Couette flow.
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Chapter 5

Two-Phase Flow in Annular Sector

Two-phase Taylor-Couette flow has multiple applications, including liquid-

gas oxygenators, and, as considered here, liquid-liquid extraction. However in

various practical liquid-liquid systems of industrial interest the mass density

and dynamic viscosity differences combined with fast cylinder rotation pro-

duce an extremely complex flow pattern of mixing that has received far less

attention than the one-phase Taylor vortex flow counterpart.

Using the mathematical models and numerical methods developed in

Chapter 2, we are able to present interaction of micron-sized drops and bub-

bles from the annular turbulent mixing in chemically reacting flows relevant

to optimized design of contactor devices used in solvent extraction processes

of nuclear spent fuel reprocessing. The macroscopically observed chemical re-

action rate is critical in liquid-liquid solvent extraction and it depends on two

hydrodynamic factors, which are the interfacial surface area and the extent of

turbulent induced fluid diffusion, to transport unreacted chemicals to the fluid

interface.
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In this chapter we first present a verification study on low-speed two-

phase couette flow with and without surface tension in the annular sector for

demonstrating the order of accuracy of our methods. Then we present our

simulation result and statistical picture for distribution of the droplets in the

middle and at the end of the simulation. We also discuss about the role of

turbulent diffusion in Taylor-Couette flow utilizing the analysis of other flows.

5.1 Verification of Two-Phase Annular Couette Flow

When the flow is circular 1-D in the presence of gravity pointing in the

axial direction, the incompressible Navier-Stokes equations in cylindrical co-

ordinates simplify to a one, non-zero velocity component in the azimuthal

direction. In addition, if the pressure gradient is only a function of the radial

direction, an exact solution can be constructed for the velocity and pressure

unknowns as function of the radius and axial coordinates.

Denoting µ1 and µ2 the kinematic viscosity of fluid 1 and fluid 2, respec-

tively, and RI the radial position of the interface, the following constants of

integration are obtained

B1 =
−ΩiR

2
I

1−R2
Ii + µ12R2

Io − µ12

, (5.1)

A1 = Ωi −
B1

R2
i

, (5.2)

B2 = µ12B1, (5.3)
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and

A2 = −µ12
B1

R2
o

. (5.4)

where µ12 = µ1/µ2, RIi = RI/Ri, RIo = RI/Ro. Then in the fluid phase 1,

r ≤ RI, the azimuthal velocity and pressure fields are

vθ,1(r) = A1r +
B1

r
, (5.5)

P1(r, z) = ρ1

[
A2

1

2
(r2 −R2

i ) + 2A1B1 ln
r

Ri

− B2
1

2

( 1

r2
− 1

R2
i

)]
− ρ1g(z − z0) + P0, (5.6)

and in the fluid phase 2, r ≥ RI,

vθ,2(r) = A2r +
B2

r
, (5.7)

P2(r, z) = ρ1

[
A2

1

2
(R2

I −R2
i ) + 2A1B1 ln

RI

Ri

− B2
1

2

( 1

R2
I

− 1

R2
i

)]
+ ρ2

[
A2

2

2
(r2 −R2

I ) + 2A2B2 ln
r

RI

− B2
2

2

( 1

r2
− 1

R2
I

)]
− ρ1g(z − z0)− σ

RI

+ P0, (5.8)

where

C1 =
ΩiR

2
i

R2
i −R2

o

, C2 = −C1R
2
o . (5.9)

The pressure jump across the interface is computed by subtracting (5.8) from

(5.6)

P1(RI, z)− P2(RI, z) =
σ

RI

.
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The above expressions are used as a verification and convergence rate

test for our front tracking solution method as described next. Periodic bound-

ary conditions in the z and θ directions are enforced in conjunction with

no slip boundary conditions on the r-direction boundaries. The computa-

tional annular sector domain is θ ∈ [0, 0.628] rad, z ∈ [0, 0.628] cm and

r ∈ [2.538, 3.166] cm, and the following values were selected

ρ1 = 0.811 g/cm3, ρ2 = 1.03 g/cm3,

µ1 = 57.6 g/cm s (5760 cP), µ2 = 36.72 g/cm s (3672 cP).

with the angular speed of the inner cylinder is Ωi = 0.22367 rad/s (2.1249

RPM) which results in the Reynolds number Re = 0.01 to approximate a

zero inertial flow. The gravity g is neglected and the interface position at

r = 2.9 cm is used as the initial condition.

In addition, three different values of interfacial tension coefficients were

used in various tests, namely, σ = 0, σ = 0.001, and σ = 10 dyn/cm. Relative

errors of the interface position, velocity field uθ, and pressure field p were

calculated using reference values in both L1 and L∞ norms for N × N × N

grids with N equal to 10, 20 and 40. In the calculation of relative errors,

the exact position of the interface was used, i.e., RI = 2.9 cm, the speed of

the inner cylinder was chosen as the velocity scale, Ωi Ri = 0.56768 cm/s,

and for the reference pressure, the maximum pressure difference ∆p in the

computation domain was used; this value is different for each of the three test

cases. The CFL number was adjusted (reduced) for this two-phase flow test
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case.

5.1.1 Couette flow with no interfacial tension

Without interfacial tension the pressure is continuous. The errors are

computed at time t = 28.1 s (1 revolution) when the reference pressure is

∆p = 0.023257 dyn/cm2. Results for 3D simulations are collected in tables 5.1,

5.2, and 5.3.

Table 5.1: Solution verification and calculation of the convergence rate of the
interface position for 1D, two-phase Couette flow without interfacial tension,
σ = 0.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 2.6857e-8 NA 2.6866e-8 NA
20× 20 3.1387e-9 3.0971 3.2010e-9 3.0692
40× 40 2.9334e-11 6.7413 7.9670e-11 5.3283

Table 5.2: Solution verification and calculation of the convergence rate of uθ
for 1D, two-phase Couette flow without interfacial tension, σ = 0.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0025184 NA 0.013839 NA
20× 20 0.0011825 1.0907 0.0089610 0.6270
40× 40 0.0005298 1.1583 0.0025929 1.7891

5.1.2 Couette flow with lowered interfacial tension

Similarly, for this test with perturbed interfacial tension, errors are com-

puted from 3D simulations at time t = 28.1 s (1 revolution) and with the refer-
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Table 5.3: Solution verification and calculation of the convergence rate of p
for 1D, two-phase Couette flow without interfacial tension, σ = 0.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0044984 NA 0.019847 NA
20× 20 0.0013152 1.7741 0.0064381 1.6242
40× 40 0.0004539 1.5348 0.0020022 1.6850

ence pressure ∆p = 0.022912 dyn/cm2. The results displayed in tables 5.4, 5.5,

and 5.6 are similar to the case with no interfacial tension except for the pressure

calculation which does not converge with mesh refinement in the L∞ norm.

With a small, non-zero interfacial tension, the analytical solution for pressure

becomes discontinuous and this cannot be accommodated by the numerical so-

lution method which approximates the pressure jump with a continuous field.

Table 5.4: Solution verification and calculation of the convergence rate of the
interface position for 1D, two-phase Couette flow with perturbed interfacial
tension, σ = 0.001 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 2.6941e-8 NA 2.6951e-8 NA
20× 20 3.1471e-9 3.0977 3.2094e-9 3.0699
40× 40 2.4069e-11 7.0307 3.2086e-11 6.6442

5.1.3 Couette flow with interfacial tension

In this test for a larger interfacial tension, 3D calculations of the error at

time t = 28.1 s (1 revolution) and the reference pressure ∆p = 3.448276 dyn/cm
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Table 5.5: Solution verification and calculation of the convergence rate
of uθ for 1D, two-phase Couette flow with perturbed interfacial tension,
σ = 0.001 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0025184 NA 0.013839 NA
20× 20 0.0011825 1.0907 0.0089610 0.6270
40× 40 0.0005298 1.1583 0.0025929 1.7891

Table 5.6: Solution verification and calculation of the convergence rate
of p for 1D, two-phase Couette flow with perturbed interfacial tension,
σ = 0.001 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0041033 NA 0.020524 NA
20× 20 0.0013926 1.5590 0.006899 1.5729
40× 40 0.0005164 1.4312 0.002690 1.3588

were obtained. We demonstrate by numerical experiment that the algorithm

Table 5.7: Solution verification and calculation of the convergence rate of
the interface position for 1D, two-phase Couette flow with interfacial tension,
σ = 10 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 8.2300e-7 NA 8.2364e-7 NA
20× 20 9.2962e-8 3.1462 9.3070e-8 3.1456
40× 40 9.3184e-9 3.3185 9.3199e-9 3.3199

is first-order accurate for the interface position and velocity field as well as

for pressure in an L1 error norm. For the σ = 10 dyn/cm interfacial tension

case, the L∞ error for pressure does not converge using the continuous sur-

face tension model, which is consistent with the description of IB method in
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Table 5.8: Solution verification and calculation of the convergence rate of uθ
for 1D, two-phase Couette flow with interfacial tension, σ = 10 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0025164 NA 0.0138301 NA
20× 20 0.0011822 1.0899 0.0089558 0.6269
40× 40 0.0005297 1.1582 0.0025923 1.7886

Table 5.9: Solution verification and calculation of the convergence rate of p
for 1D, two-phase Couette flow with interfacial tension, σ = 10 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0382376 NA 0.2708899 NA
20× 20 0.0323036 0.2433 0.4541237 -0.7454
40× 40 0.0062075 2.3796 0.1725304 1.3962

Sec. 2.2.2.

5.2 Two-Phase Turbulent Mixing in Annular Sector

At a high Reynolds number, a two-phase Couette flow of two immiscible

liquid phases with distinct mass density and viscosity will not remain stratified.

When the inner cylinder rotates at a high speed, the heavier fluid is propelled

outwards in the direction of the outer cylinder wherein high shear stresses

promote vigorous mixing and dispersion formation and the phases are fully

mixed by combined shear and centrifugal forces.

We focus on the annular mixing region in a centrifugal contactor and to

keep the computational effort at a reasonable cost, a sector of the annulus is

selected for analysis by means of periodic boundary conditions in the axial and
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azimuthal directions (Fig. 5.1). This truncation of the annulus requires the

neglect of gravity because of axial periodicity. When comparing to a realistic

device, this assumption is only plausible in the bulk of the mixing zone where

the centrifugal force imparted in the fluid surpasses gravity substantially.

Figure 5.1: Annular sector of a centrifugal contactor used for the computation
domain. On the left is the complete flow domain in a centrifugal contactor.
On the right is the computational sector used.

5.2.1 Role of turbulent diffusion

Chemical species in liquids diffuse relatively slowly, so that diffusion lim-

ited chemical reactions are common. Vigorous stirring leads to high Reynolds

number flow and turbulence. At high Reynolds numbers, turbulent transport

is usually more important than molecular transport. In Table 5.10, we list

molecular and turbulent properties for the TC flow. The Schmidt number,

the ratio of viscosity to species diffusion, is a dimensionless measure of species
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diffusion; it influences the rate of chemical reactions, especially diffusion lim-

ited ones.

Since in this study the flow has only a single species in each phase there

is no diffusion for current simulations, we compare this flow with a Rayleigh-

Taylor flow [65, 42] for the mixing of fresh and salt water at a comparable

Reynolds number. See Table 5.10. Turbulent viscosity and turbulent species

diffusion rates are mesh dependent, but in a recent study we observed quite

stable values for their ratio, the turbulent Schmidt number, at high Reynolds

numbers [51]. From Table 5.10, we conclude that turbulent viscosity plays a

small role in our large eddy simulations (LES) of TC flow, but comparison to

our RT flow suggests a strong role for turbulent diffusion, and the turbulent

Schmidt number, once chemistry is considered, in addition to the hydrody-

namics.

RT TC (aqueous) TC (organic)
molecular kinematic viscosity (cm2/s) 1.0× 10−2 9.9× 10−3 1.9× 10−2

turbulent kinematic viscosity (cm2/s) 8.0× 10−4 3.6× 10−4 2.3× 10−4

molecular diffusion (cm2/s) 1.8× 10−5 – –
turbulent diffusion (cm2/s) 2.4× 10−3 – –
molecular Schmidt number 5.6× 102 – –
turbulent Schmidt number 3.3× 10−1 – –

Reynolds number ≈ 25× 103 25× 103 12× 103

Table 5.10: Viscosity and mass diffusion for Rayleigh-Taylor and Taylor-Cou-
ette flow.
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5.2.2 Fully developed two-phase T-C flow

We initialize the flow in a maximally unstable configuration, with the

aqueous phase (heavy fluid) in the inner region and the organic phase (light

fluid) in the outer region between the cylinders. The initial perturbed interface

between the two phases is positioned to achieve nearly a 0.5 volume fraction

for the organic and aqueous phases. We use periodic boundary conditions

in the axial and azimuthal directions and no-slip boundary conditions at the

inner and outer cylinder walls.

The inner cylinder speed is set at 1500 rpm while the outer cylinder

is fixed. We use the analytical Couette flow fields (5.5)–(5.8) as the initial

condition and the geometrical parameters and physical properties used in the

simulation are collected in Table 5.11.

Ri 2.538 cm
Ro 3.166 cm

` = Ro −Ri 0.628 cm
η = Ri/Ro 0.8

Ωi 157 radians/s (1500 RPM)
µorg 0.016 g/cm · s
µaqu 0.0102 g/cm · s
ρorg 0.811 g/cm3

ρaqu 1.03 g/cm3

Reorg := ΩiRi`
νorg

1.27× 104

Reaqu := ΩiRi`
νaqu

2.53× 104

σ 25 dyn/cm

Table 5.11: Geometric parameters and physical properties for 3D simulation
of two-phase flow in an annular sector.

Fig. 5.2 shows the growth of the interfacial area from a time after the
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Figure 5.2: Growth of interfacial area with time.

initial fluctuation to a late time with a presumed statistically steady state.

We observe that a transient chaotic flow regime with a high surface area is

followed by a statistically stable flow regime at a late time. This state has a

surface area much higher than that of a simple cylindrical surface to divide

the two fluids, but it is also significantly lower than the peak of the interfacial

area during the transient regime. The transient regime has an interfacial area

some seven times larger than that observed for the late time flow. The late

time interface surface area is itself about 10 times that of the simple cylindrical

interface.

The transient chaotic flow regime has significant breakup of the interface

between the two phases into small droplets and thus an extensive interfacial

area. See Fig. 5.3 and Fig. 5.4. We found that the initial unstable configura-
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tion of the two continuous phases approaches a stable two phase configuration

at a late time as a statistically steady state through the transient chaotic flow

regime. The droplets are formed at the unstable interface and they migrate in

their respective stable directions and then are segregated into four continuous

phase in layers from the inside to the outside, as oil, water, oil, water. See

Fig. 5.5. The two central phases and the interface between them are unstable

and the unstable interface generates new unstable droplets, migrating to the

two stable phases. Finally the statistically stable flow regime has two continu-

ous phases with the organic phase on the inner region and the aqueous phase

on the outer region, each with a few droplets of the dispersed phase embedded

in it. See Fig. 5.6. We call this statistically stable configuration the centrifuge

mode.

Figure 5.3: Organic phase at an early time with unstable configuration.

In Fig. 5.7 and Fig. 5.8, we show the statistical distribution at two dif-
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Figure 5.4: Organic phase at a transient chaotic flow regime.

Figure 5.5: At t = 240 ms, the two phase are now broken up into four domains,
arranged from inner to outer radius, in which the dominant continuous phase
is (in this order) light (oil, red), heavy, light (oil, red), heavy.
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Figure 5.6: Organic phase at the statistically stable flow regime.

ferent time regimes. A large number of small droplets are observed, but on a

volume weighted basis, they contribute little. The histogram in Fig. 5.7 shows

the total volume of droplets vs. the droplet diameter size. Fig. 5.8 shows the

frequency of droplets vs. the droplet diameter size. We found small droplets

primarily on a transient basis only, and in a late time statistical steady state

we observe a flow segregated into distinct domains, each with a dominant fluid

as a continuous phase.

There is a significant difference between the centrifugal mode our sim-

ulation reaches and the experimental picture for the late time flow. The ex-

perimental picture has a single continuous phase and many small droplets

with sizes around 60 microns forming a honeycomb structure with thin lu-

bricating walls of some 10 microns in thickness. We believe the main reason

for this difference is the missing disjoining pressure between slightly separated
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Figure 5.7: Total volume of droplets vs. diameter at a transient chaotic regime
(above) and a statistically stable flow regime (below).
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Figure 5.8: Frequency of droplets vs. diameter at a transient chaotic regime
(above) and a statistically stable flow regime (below).
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droplets, similar to what if found for the physics of lubricating thin films. Here

we propose a different subgrid scale picture, motivated by experimental pho-

tographs. If small droplets come in close contact, rather than merging, they

may form a type of foam, and occupy the majority of the volume while still

being a dispersed phase. Direct resolution of this phase will be difficult and

perhaps unfeasible, but a subgrid model wherein the hydrodynamic pressure

is corrected for fluid confinement via a disjoining pressure of molecular origin

could be effective. Also as in the experiment air is added as a third phase, the

influence of air could also be a factor. Other possible factors include various

domain sizes and different rotating speed of inner cylinder.

With subgrid model added and domain size increased, the geometry of in-

terface would become more complicated than current simulation. Also adding

the influence of air would require the interface library to be able to handle

non-manifold surfaces. These requirements promote the develop of a more ro-

bust interface library. In Chapter 6 we present a new parallel triangular mesh

structure which serves as the basis for this requirement.

94



Chapter 6

HiProp: A Robust Parallel Mesh Library and

Its Applications

In this chapter we develop a robust and efficient array based parallel tri-

angular mesh library called HiProp which serves as the basis for parallel mesh

algorithms. In this new library, any element (point or triangle) shared with

other processors maintains a complete parallel information list which has the

processor ranks and local IDs for all the processors sharing that element. Each

point or triangle thus has a unique global ID which is defined by the proces-

sor rank/local ID pair. The attributes on an element could only be updated

by its master processor. Compared with the interface communication routine

scatter front() for FronTier described in Sec. 2.2.1, this new communication

model requires no floating point comparison except in initialization, generates

unique global results for parallel mesh algorithms and is more suitable for par-

allel high-order mesh algorithms. For the convenience of updating attributes

defined on the elements, parallel updating lists are built locally based on the

parallel information lists. The new library also supports periodic boundary

95



condition by adding shift flag into the parallel information structure. The

details of the new library structure are described in Sec. 6.1.

Most of the high-order mesh algorithms require n-rings of ghost triangles,

where n is decided by the number of neighboring points and triangles the

algorithms need for each element. Also most parallel simulation codes solving

numerical PDEs decompose the spatial domain into N parts, one part solved

on each processor. Thus for using the library with numerical PDEs solvers, we

need the capability for building ghost triangles based on either the connectivity

or spatial decomposition. In Sec. 6.2 we describe the algorithm for building

ghost triangles based on the parallel information constructed while maintaining

the parallel information during the procedure.

Two examples of parallel mesh algorithms implemented based on this new

library, high-order normal and curvature calculation and mesh optimization,

are presented in Sec. 6.3. The parallel information discussed in Sec. 6.1 has

to be constructed before using the algorithms. The flow chart for using the

new library is shown in Fig. 6.1. Under this framework, the parallelization

of the high-order functional propagation algorithm is straightforward and the

numerical results for two benchmark tests are presented in Sec. 6.3.3 .

As the new HiProp library does not support all the functions in Fron-

Tier currently, in Sec. 6.4 we present a complete surface propagation package

with both high-order smoothing and locally grid based untangling by coupling

HiProp with FronTier through an interface between the two libraries together.

We export the triangular mesh from HiProp to FronTier for locally grid based

untangling if a self-intersection is detected through a collision detection algo-
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Figure 6.1: HiProp library flow chart
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rithm.

6.1 HiProp Parallel Mesh Structure

6.1.1 Array-based mesh data structure

Mesh data structures are the foundation of mesh algorithms, mesh-based

numerical methods and the parallel mesh structures. Although the mesh data

structures are highly application specific, there are certain requirements that

are common to all applications. They should be simple, efficient in both space

and time, neutral of programming language, convenient for I/O, generalizable

to higher dimensional and non-manifold surfaces and easy to support parti-

tioned meshes as well as mesh communications. The mesh structures must

also support various queries such as finding the neighboring entities efficiently

on the mesh.

Most of the mesh structures are divided into two types, pointer-based

and array-based. While the pointer-based structures are more popular as they

are relatively easy to manipulate and mesh entities could be recognized as

objects for Object Oriented Programming (OOP), they usually suffer from

larger storage requirements for the pointers and are inconvenient for parallel

mesh communication between processors. The front tracking package FronTier

has a pointer-based mesh representation. In an array-based mesh structure,

the entities are not represented as objects. Instead, an attribute of all the

entities of the same type is stored in one or few arrays, and the attributes

for a single entity might be distributed in different arrays. An entity may be
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referenced through an ID, which can be mapped easily to array indices.

We choose to use the compact array-based half-edge data structure intro-

duced in [1]. This array-based structure provides comprehensive and efficient

support for querying incidence, adjacency and boundary classification while

requiring substantially less memory than pointer-based mesh representations

[1]. It also supports partitioned meshes and interprocessor mesh communica-

tion in a natural way. Here we focus on orientable, manifold triangular meshes,

the generalization of this data structure could be used also for volume meshes

[1] and non-manifold meshes [18].

In this array-based data structure, we assume that the points are assigned

consecutive integer IDs ranging from one to the number of points, and similarly

for triangles. Each triangle has the same local numbering convention same as

CGNS conventions shown in Fig. 6.2. The point positions are stored in a n×3

double matrix and the triangle connectivities are stored in a m × 3 integer

matrix where n is the number of points and m is the number of triangles. For

a parallel mesh, each partition has its own numbering system.

As shown in Fig. 6.2, each triangle is bounded by a loop of directed edges

in counterclockwise order thus each edge has two directed half-edges with

opposite directions belonging to two adjacent triangles except for boundary

edges. In the array-based half-edge data structure we use, the half-edge list

is represented by a m× 3 integer matrix OHEm×3 where m is the number of

triangles. Element OHE(i, j), corresponding to j-th half-edge in i-th triangle

on the mesh, is composed of a pair of numbers 〈f, j〉 where f is the ID of

the adjacent triangle and j is the local ID of the opposite half-edge in the
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Figure 6.2: Local numbering convention for triangle. Underscored numbers
correspond to local edge IDs and the vertex next to an edge is the first vertex
of the edge.

adjacent triangle. OHE(i, j) = 0 for boundary edges. We also build a n × 1

integer vector IHEn×1 called incident half-edge array where n is the number

of points. Element IHE(k), corresponding to the k-th point, has a half-edge

data originated from that point and is composed of a pair of numbers 〈f, j〉

where f is the triangle containing that half-edge and j is the local index of

the half-edge. Both OHE and IHE could be built on-the-fly in linear time

and need to be updated if mesh is modified. Using these two lists, we are able

to perform mesh queries such as finding d-rings of neighborhood for a point,

which is necessary for our ghost exchange algorithm. Most of our parallel mesh

algorithms are built based on this array-based half-edge structure.
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6.1.2 Parallel information list

With the array-based triangular mesh on each processor, we describe here

the parallel information lists for identifying entities globally and also give the

algorithms for building these lists. We assume that the global mesh has been

partitioned to submeshes and each processor reads its own portion of the mesh.

We call the input submeshes clean if each submesh only intersects with other

submeshes in a partition boundary curve, i.e., with no overlapping triangles.

The input submeshes could be clean or non-clean and if the input type is

unknown, it is always recognized as non-clean.

Before we build the parallel information list we first build the neighboring

processor list for each processor via an all-to-all communication. The purpose

for doing this is that for the following algorithms with message exchange, a

point-to-point instead of all-to-all communication could be used to improve

the efficiency. Two processors p and q are considered to be neighbors if there

exists a common point: Sp ∩ Sq 6= ∅, where Sp and Sq are submeshes on

processor p and q respectively. Assume that the total number of processors

is N . For a specific processor pi, we first gather the possibly overlapping

point set Pij = {v ∈ Bj}, j = 0 . . . , N − 1, j 6= i with each of the other N − 1

processors where Bj is the bounding box of the submesh on processor j . Then

we communicate Pij using a non-blocking send non-blocking receive model for

maximally overlapping the communication and computation time, which is

critical for good performance of communication models using message passing.

On a specific processor pi, after we receive the point set Pji from processor

pj, we compare the two sets Pij and Pji using floating point comparison with
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tolerance ε. This is a O(n2
l ) algorithm where nl is the number of points in

the local overlapping point sets calculated from the bounding boxes. For most

applications, especially when the input submeshes are clean, nl = O(
√
n),

where n is the number of points on each submesh. Thus the overall time

complexity of this algorithm is O(n).

With the neighboring processor information, now we build the parallel

information lists for both points and triangles on each processor. First we

consider the parallel information lists for points. The parallel information lists

for points is an array of n lists L where n is the number of points and L(i)

is the parallel information list for the i-th point. Each node in the lists has

a processor rank ID, a local index ID on the corresponding processor and a

pointer to the next node. Each node in the list L(i) represents a duplication

of the i-th point on one processor, including the processor that this point is

currently on. The first node (head node) in each list is called the master node,

which means any attribute defined on that point is uniquely updated by the

processor stored in that node. The other nodes are called slave nodes. For

example, in Fig. 6.3 we see that the local point v3 on processor 0 also exists on

processor 1 and processor 2, with processor 0 as the master processor. Thus on

processor 0 for point v3 we have parallel information list 0/v3 → 1/v1 → 2/v4

which means the point exists on three processors and the local index IDs for

the point on three different processors are v3, v1, v4 respectively. Also 0/v3 is

the head node. Thus we know that processor 0 is the master processor for this

point. Similar parallel information list is kept on processor 1 and 2 and we

could see that for the same point, although the order of the slave nodes could
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differ on various processors, we always keep the master node as the first node

of the list. Note that our array of lists is also array-based, which means we use

index rather than pointer for representing a list data structure. The benefit

for using array-based list representation is that it has better memory locality

and is more suitable for communication. The index for head nodes and tail

nodes are kept as two arrays with size n for efficient operations on the heads or

the tails of the lists, which we could see later, is necessary for building parallel

information lists.

The algorithm for building the parallel information list for points is sim-

ilar to the algorithm for getting neighboring processor list referred above in

that floating points comparison with tolerance ε is used for two possibly over-

lapping point sets calculated from the bounding boxes of the submeshes. With

the neighboring processor information, we only need point-to-point communi-

cations now. In the algorithm for building parallel information lists, assume

we have processor p and point set receiving from processor q and the i-th point

on p is considered to be the same as the j-th point on q. We then need to

insert node q/j to the list L(i). We insert the node either to the head or to

the tail depending on the relationship between p and q. If rank(p) < rank(q),

the node is inserted to the tail and if rank(p) > rank(q) the node is inserted

to the head which means that in the initialization of parallel information, for

the same point on different processors, the processor with a lower rank would

be the master. For the points only existing on the current processor, list with

a single node is created.

For a clean mesh, we could build the parallel information lists for m
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Proc 0 Proc 1

Proc 2

0/t1

0/t2

0/t3

1/t1

1/t2

1/t3

1/t4

2/t3 2/t1

2/t2

0/v1, 2/v5

0/v1, 2/v5 1/v6, 2/v12/v3

1/v3, 2/v2

0/v2

0/v4
0/v5, 1/v2 0/v5, 1/v2 1/v4

1/v5

1/v6, 2/v1

1/v3, 2/v20/v3, 1/v1, 2/v4

0/v3, 1/v1, 2/v4

0/v3, 2/v4, 1/v1

Figure 6.3: Submeshes with parallel information list.
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triangles in a trivial way by inserting single nodes for all m lists. However,

for non-clean meshes, parallel information lists for triangles also needs to be

calculated. This is done by using the connectivity and the parallel information

lists of the points. For the triangle t with vertices v0, v1, v2 on processor p, the

triangle t̂ from processor q is considered to be the same triangle if v0, v1, v2

also exist on q. The parallel information node for t̂ is inserted under the

same assumption that the processor with lower rank is the master. Similar

to the analysis for building neighboring processor list, the time complexity for

building parallel information lists for points is O(n) and O(m) for triangles.

Fig. 6.3 is an example of clean submeshes with complete parallel information

lists.

Using the parallel information lists we could classify all entities into three

types: GHOST, OVERLAY and INTERIOR. For points and triangles on pro-

cessor p, GHOST entities have a master processor 6= p, OVERLAY entities

have master processor p but also exist on another processor and INTERIOR

entities only exist on current processor. The attributes on GHOST entities

are always updated from other processors while the OVERLAY entities up-

date other processors and INTERIOR entities only update itself. In Fig. 6.4

we show an example of a partitioned mesh and the visualization of the points

types for processor 2 after the parallel information lists are built. The yellow

points are INTERIOR points, green points are OVERLAY points and blue

points are GHOST points.
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Figure 6.4: A mesh partition (upper) and points types of processor 2 (lower).
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6.1.3 Parallel updating list

With a complete parallel information list, we are now able to update

any attribute defined on the entities, for example, point positions or velocity

field. For any point or triangle, if it is shared by other processors, we receive

the attributes if the current processor is not the master processor or send

attributes to the processors sharing the same entity. To avoid too many small

messages for communication, we construct a parallel updating list between any

two neighboring processors for efficiently updating the attributes on entities.

First we discuss the parallel updating list for points and the same updating

list could also be built for triangles if needed.

For two neighboring processors p and q, we keep a local array on processor

p which maintains the indices of the OVERLAY points shared with processor q

and on processor q we keep a corresponding local array which has the indices of

the GHOST points shared with processor p. We collect these points by simply

traversing through the parallel information list of the points. The receiving

array on processor q needs to be sorted based on the master index IDs so

that the two arrays are in the same order. See Fig. 6.5 for an example of the

parallel updating lists. Using these arrays, we could easily build the sending

and receiving buffers for any attribute and update the values in a linear time.

In the applications where attributes on entities, for example, point positions

need to be updated after mesh modification, this function needs to be called

before we update the attributes.
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...
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...

Proc 1 Proc 2

Receive

Figure 6.5: Parallel updating list between two neighboring processors.
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6.1.4 Boundary conditions

It is common that different scientific applications have different boundary

conditions, such as Dirichlet boundary condition, Neumann boundary condi-

tion, periodic boundary condition, etc. Thus we need to add various bound-

ary conditions support for HiProp. For a triangular mesh library, the physical

boundary conditions fall into two classes: periodic and non-periodic. Our pre-

vious discussion about the algorithms for building parallel information list and

parallel updating list are based on the assumption of non-periodic boundary

conditions, which mean, two points are considered to be the same point glob-

ally and the parallel information list must be built if and only if they share

the same physical position. For a triangular mesh with periodic boundary

conditions, two points could be logically the same point if there exists a shift

between them in the direction of the periodic boundary. Fig. 6.6 is an example

of a 2D triangular mesh on single processor with periodic boundaries in both

x and y directions. Although the four corners of the mesh are far away from

each other, they are considered to be the same point logically and one of them

has to be assigned as the master point.

For supporting periodic boundary conditions, we first generalize the neigh-

boring processor list so that a processor p could be the neighbor of itself. We

also add shift tags s = (s0, s1, s2) for neighboring processors and each paral-

lel information node depending on the boundary conditions, which could be

either periodic or regular inter-processor boundary conditions.

Suppose we have two processors p, q and the overall domain length is

D = (D0, D1, D2) in three directions. Point v = (v0, v1, v2) on p and point
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Figure 6.6: A 2D triangular mesh with periodic boundary conditions.

v̂ = (v̂1, v̂2, v̂3) on q are considered to be the same point globally if and only if

vi − v̂i = siDi,∀i = 0, 1, 2

where si could only equal to 0 or ±1. We add this shift tag s to each parallel

information node for points. The shift tags for triangles could be derived from

connectivity. We also add the shift tags to the neighboring processor list so

that we do not need to go through each possible shift every time. Note that

multiple shifts could exist for a single neighboring processor. Taking Fig. 6.6 as

an example, the processor 0 has one neighboring processor which is processor 0

itself and 8 different shift tags are associated with this neighboring processor.

The algorithm for building parallel information list also needs to be gen-
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eralized for periodic boundary conditions. The simple comparison between the

ranks of processors is not valid anymore and local indices have to be used for

recognizing the master nodes. Assuming point v point v̂ on the same processor

p are considered to be the same point with shift, we use local indices and the

point with the lower local index is the master. Fig. 6.7 shows the visualization

of the point types of the triangular mesh with periodic boundary conditions

in Fig. 6.6. We use yellow, green and blue to denote INTERIOR, OVERLAY

and GHOST points respectively.

Figure 6.7: Point types of a 2D triangular mesh with periodic boundary con-
ditions.
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6.2 Ghost Exchange Algorithm

For using this parallel mesh library on mesh algorithms and parallel nu-

merical PDE solvers based on domain decomposition, it is necessary for each

processor to have the ability of gathering ghost triangles from neighboring

processors. We describe here two types of ghost exchanging algorithms based

on connectivity and domain decomposition. The first is required for parallel

high-order mesh algorithms and the second one is necessary for coupling with

numerical PDE solvers based on domain decomposition and FronTier which

is also based on domain decomposition. The parallel information lists for both

points and triangles need to be updated while exchanging the ghosts. In the

following we first discuss the algorithm for building ghost triangles based on

connectivity and the second ghost exchange algorithm shares the major part

for communicating triangles and differs in the way of collecting ghost triangles.

First we give a general description of the algorithm for exchanging a

n-ring ghost triangles on all processors:

1. For each neighboring processor, collect the vertices shared between the

two processors.

2. Collect the n-ring buffer triangles and points based on the shared vertices

for send. We only keep triangles not existing on neighboring processors

and corresponding points in the buffer.

3. Exchange the ghost entities with parallel information lists.

3(a) For each point and triangle to be sent, add the parallel information
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node for each neighboring processor with an unknown ID.

3(b) Send the points and triangles collected in Step 2 to neighboring

processors with the parallel information lists.

3(c) Receive the ghost buffers from neighboring processors and attach

to the local mesh. The common points could be recognized using

parallel information nodes associated.

3(d) Update the parallel information lists on the master processors.

3(e) Update the parallel information lists for all entities from their mas-

ter processors to slave processors.

4. Update the neighboring processors list, opposite half edge structure and

incident half edge structure.

For the mesh partition given in Fig. 6.3, the result mesh with fully up-

dated parallel information lists after building a 1-ring ghost is given in Fig. 6.8.

The major complication of this algorithm comes from step 3 where par-

allel information lists are communicated three times for each entity. In the

1-ring ghost exchange example shown in Fig. 6.3 and Fig. 6.8, we need to send

triangle t1 on processor 1 to both processor 0 and 2. In Fig. 6.9 we could see

that before processor 1 send the triangle to 0 and 2, it could not get the future

local index of triangle t1 on two other processors in advance and has to keep

the initial value as unknown. When the processors 0 and 2 receive the triangle

after communication 1©, they assign local indices t4 and t7 for that triangle

separately but still do not have the parallel information for each other. Then

in communication 2© we use the IDs t4 and t7 to update processor 1 and now
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Figure 6.8: 1-ring ghost with fully updated parallel information lists for pro-
cessor 0 (upper), processor 1 (middle) and processor 2 (lower).
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processor 1 has a complete parallel information list for triangle t1. In the end

the whole list is sent back to processors 0 and 2 by communication 3© for

keeping consistency of the lists on all processors.

1/t1, 0/?, 2/?

1/t1, 0/t4, 2/?

1/t1, 0/?, 2/t7

1©

1©

2©

2©

1/t1, 0/t4, 2/t7

3©

3©

1/t1, 0/t4, 2/t7

1/t1, 0/t4, 2/t7

Figure 6.9: Updating the parallel information list for single ghost triangle.

Another complication lies in step 3(c) where ghost buffers are attached to

local submeshes. In step 2 we discard the triangles and corresponding points

if they already exist on target processor. However it is possible that a same

ghost point is gathered from different processors. In Fig. 6.8 the point v8 on

processor 2 is gathered from both point v5 on processor 0 and v2 on processor

1. Thus in step 3(c) before adding an point to the local submesh as a new

point, we go through all the newly attached points to identify existing points
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by their global ID pair which is kept in the master node. For non-clean meshes,

same complication exists for triangles and it has to be taken care of. Fig. 6.10

is the example of a submesh with 2-ring ghost (red ones) triangles built. As

described in Sec. 6.1.4, we also generalize the ghost exchange algorithm for sup-

porting periodic boundary conditions with shift information. Fig. 6.11 shows

an example of the 2-ring ghost triangles for a mesh with periodic boundary

conditions in both x and y directions. We use the same convention as before

for visualizing GHOST, OVERLAY and INTERIOR entities.

Figure 6.10: A submesh (part of a uniform sphere) with 2-rings of ghost tri-
angles.

For building ghost triangles based on domain decomposition, only step

1 and step 2 in the algorithm needed to be changed. Instead of gathering

ghost triangles based on shared vertices and connectivity, we gather the ghost

triangles based on domain decomposition. Suppose we have domain controlled
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by processor p denoted as Bp, then on any other processor q, the triangles for

sending to processor p is {t, t ∩Bp 6= ∅}. Note that for the most general case

we do not have any restrictions on the domains and an all-to-all communica-

tion cannot be avoided as it is possible that all processors are collecting from

each other. However if we have some prior knowledge of the domain decom-

position, point-to-point communications could be used. In Fig. 6.12 we show

a comparison of the ghost triangles built from connectivity (left) and domain

decomposition (right).

Figure 6.11: 2-rings of ghost triangles for a mesh with periodic boundary
conditions.
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Figure 6.12: Comparison of ghost triangles built from connectivity (left) and
domain decomposition (right).

6.3 Applications

In this section we give two applications of the parallel mesh library in-

troduced in this Chapter. First, we present parallel high-order differential

quantity calculations using the formula discussed in Sec. 3.1. It is a static

mesh algorithm which means that even though ghost triangles are required to

be built on each processors, the global mesh is not changed. Second, we use the

library for developing a parallel high-order mesh smoothing algorithm. This

is a non-static mesh algorithm as points are moved after each iteration. Thus

not only we need to build ghost triangles for high-order polynomial fitting,

parallel updating for various quantities is also needed. This parallel algorithm

is based on the serial version first introduced in [13] and improved in [58] with

a geometric limiter.
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6.3.1 Parallel high-order normal and curvature calcula-

tion

We calculate normals and curvatures on a triangular mesh using the

high-order polynomial fitting technique introduced in Sec. 3.1. For polyno-

mial fittings on meshes, neighboring points selection is critical and we select

points based on mesh connectivity, which is introduced in [31]. As discussed in

[31], for a degree k fitting, a k+1
2

-rings of neighborhood points should suffices.

Fig. 6.13 shows the neighborhood definitions of half-rings up to 2.5 rings [31].

Figure 6.13: Schematics of 1-, 1.5-, 2-, and 2.5-ring neighborhood. Each dia-
gram shows the neighborhood of the center (black) vertex [31].

For clean submeshes, neighborhood information is not sufficient for the

points close to the partition boundary. Thus for a degree k fitting, we use

the ghost exchange algorithm developed in Sec. 6.2 for building a k+1
2

-rings of
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ghost triangles on each processor. We then calculate normals and curvatures

for all INTERIOR and OVERLAY points while the normals and curvatures

on GHOST points are updated by other processors. In tables 6.1 and 6.2 we

present the L2 error and convergence rate for normals and mean curvatures of

a sphere with radius 0.15 centered at [0.35, 0.35, 0.35] under mesh refinement

using both degree 3 and degree 5 fittings. We use single processor for level 1

and 2 meshes, 4 processors for level 3 and 4 meshes and 8 processors for level

5 mesh. The convergence rate is consistent with the results presented in [31],

and for the same input mesh, the parallelized high-order normal and curvature

calculation algorithm gives identical results to serial algorithms up to machine

epsilon, which shows verification of the parallel mesh library.

Table 6.1: L2 error and convergence rate for normals using degree 3 and degree
5 fittings on sphere.

d = 3, L2 error d = 3, order d = 5, L2 error d = 5, order
Level 1 mesh 3.151e-4 NA 6.624e-5 NA
Level 2 mesh 4.065e-5 2.9545 1.940e-6 5.0927
Level 3 mesh 4.211e-6 3.2710 5.010e-8 5.2751
Level 4 mesh 4.300e-7 3.2918 1.312e-9 5.2553
Level 5 mesh 4.869e-8 3.1426 3.675e-11 5.1579

6.3.2 Parallel mesh optimization

Based on the capability for building ghost triangles and updating at-

tributes on ghost entities, we parallelized the high-order mesh smoothing al-

gorithm introduced in [58].
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Table 6.2: L2 error and convergence rate for mean curvatures using degree 3
and degree 5 fittings on sphere.

d = 3, L2 error d = 3, order d = 5, L2 error d = 5, order
Level 1 mesh 0.21925 NA 0.02499 NA
Level 2 mesh 0.05487 1.9985 1.54e-3 4.0203
Level 3 mesh 0.01361 2.0114 9.42e-5 4.0311
Level 4 mesh 0.00340 2.0011 5.91e-6 3.9945
Level 5 mesh 0.00086 1.9831 3.73e-7 3.9859

First we need to build ghost triangles on each processor. For the high-

order smoothing algorithm using a degree k polynomial fitting, a k+1
2

rings of

points is needed for local stencils and an additional 1 ring is needed for using

CMF or WALF to project the displacement to high-order continuous surface.

For an even number k, k+1
2

-rings + 1-ring is not the same as k+1
2

+1-rings. Thus

we always build a dk+1
2

+1e-rings of ghost points before we go into the iterations

for the mesh optimization algorithm. We also build the parallel updating

lists for updating the GHOST point attributes. After this pre-processing for

building ghost layers, we go into the iterations for the optimization algorithm

and the flowchart is given in Fig. 6.14.

In general, we apply a laplacian smoothing on meshes with many folded

triangles or very sharp angles and apply a variational smoothing otherwise.

Then the new vertices are scaled to lie within the projection of one ring neigh-

borhood and then projected to high-order surface reconstructed by WALF or

CMF. A geometric limiter is then applied to poorly sampled area and a vol-

ume preserving smoothing is then applied. For details of each step see [58].
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Figure 6.14: Flowchart for parallel optimization algorithm.
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We present here two tests for parallel mesh optimization. The input mesh

for the first example is a poor quality unit sphere distributed to 4 processors.

The mesh is given in Fig. 6.15 and the difference colors on the mesh represent

different partitions. We use a degree 2 fitting and CMF for reconstructing the

high-order surface. We could see that after 15 iterations, the original mesh

on the left is optimized to the mesh on the right. The histogram for triangle

angle distributions before and after smoothing is given in Fig. 6.16. We could

see from both visualization and angle distribution that the mesh has been

improved significantly, which is consistent with the result presented in [58].

Figure 6.15: Parallel mesh optimization algorithm on unit sphere using 4 pro-
cessors. The original mesh (left) and the optimized mesh (right).

The input mesh for the second example comes from the contactor simu-

lation on 64 processors. The initial full mesh is given in Fig. 6.17 and the local

visualization of the comparison before and after applying the parallel smooth-

ing algorithm is shown in Fig. 6.18. We could see that the triangle quality is
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Figure 6.16: Angle distributions of initial mesh (upper) and the optimized
mesh (lower).
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improved and the mesh is smoothed due to the lapalacian smoothing we used

in the algorithm.

Figure 6.17: Input mesh on 64 processors for parallel smoothing test.

6.3.3 Parallel high-order functional propagation

In this section we present the convergence results of the high-order func-

tional propagation algorithm introduced in Sec. 3.2 for both point positions
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Figure 6.18: Comparison of mesh quality before (left) and after (right) smooth-
ing in a local area.

and normals for two benchmark tests. We use a degree 2 fitting for both tests

and the formulation for compact stencil discussed in Sec. 3.2.3 requires a 1-ring

neighborhood for each point. With 1-ring ghost points built for each proces-

sor, the parallelization of this non-static mesh algorithm is straightforward as

we only need to update the positions and normals for GHOST points at the

end of each time step. For testing the rate of convergence, five meshes with

different refinement level are used in both tests. We use single processor for

level 1 and 2 meshes, 4 processors for level 3 and 4 meshes and 8 processors

for level 5 mesh.

Sphere Rotation

First we present the numerical result for rotating a sphere centered at

[0.35, 0.35, 0.35]. The sphere has a radius of 0.15 and the rotation velocity
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field is given by

u(x, y, z) = −y,

v(x, y, z) = x,

w(x, y, z) = 0.

Time step ∆t is set to π/80 thus a full revolution takes 160 times steps.

Fig. 6.19 shows the error for point positions (left) and normals (right) in L1,L2

and L∞ norms. The order of accuracy for point position is approximately 3.5

and the order of accuracy for normal is approximately 2.5.
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Figure 6.19: Errors of point positions (left) and normals (right) for sphere
rotation test.

3D Deformation Velocity Field

We now consider the deformation of a sphere under a reversal vortex flow.

As we currently have no mesh optimization and adaptivity combined, we do

not stretch the mesh to the point with extremely high curvature where mesh
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quality is bad enough to ruin the local polynomial fittings. The deformation

velocity field of the vortex is given by:

u(x, y, z) =


2 sin2(πx) sin(2πxy) sin(2πz) cos(πt/2) if t < 0.3,

2 sin2(πx) sin(2πxy) sin(2πz) cos(π(t+ 1.4)/2) if t >= 0.3.

v(x, y, z) =


− sin2(πy) sin(2πx) sin(2πz) cos(πt/2) if t < 0.3,

sin2(πy) sin(2πx) sin(2πz) cos(π(t+ 1.4)/2) if t >= 0.3.

w(x, y, z) =


− sin2(πz) sin(2πx) sin(2πy) cos(πt/2) if t < 0.3,

− sin2(πz) sin(2πx) sin(2πy) cos(π(t+ 1.4)/2) if t >= 0.3.

We start from a sphere with radius 0.15 centered at [0.35, 0.35, 0.35] at t = 0

and stop at t = 0.6 where the mesh is reversed to the original sphere. The

mesh has largest deformation at t = 0.3 and the initial mesh versus mesh at

t = 0.3 is shown in Fig. 6.20. We use a time step ∆t = 0.015 thus it takes 40

Figure 6.20: Initial sphere (left) and deformation at t = 0.3 (right).
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time steps for the sphere to be deformed back to the initial position. Fig. 6.21

shows the error for point positions (left) and normals (right) in L1,L2 and

L∞ norms. The L2 errors and convergence rates are given in Table 6.3 and
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Figure 6.21: Errors of point positions (left) and normals (right) for deformation
velocity field test.

the L∞ errors and convergence rates are given in Table 6.4. We see that

the numerical result is consistent with our theoretical rate of convergence for

finer meshes. For coarse mesh the number of points in the local stencil is not

sufficient for polynomial fitting in high curvature region. Thus a large error

and low convergence rate is observed.

6.4 Coupling with FronTier

As described in the previous sections, our new interface library could be

used as the basis for implementing various parallel triangular mesh algorithms.

However it does not have all the functions needed for a complete interface

tracking package, which should contains the following components:
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Table 6.3: L2 error for point positions and normal in deformation velocity test.

Position error Position order Normal error Normal order
Level 1 mesh 0.025022 NA 0.363804 NA
Level 2 mesh 0.006688 1.9036 0.243460 0.5795
Level 3 mesh 6.040e-4 3.4689 0.095352 1.3523
Level 4 mesh 4.419e-5 3.7729 0.026975 1.8216
Level 5 mesh 3.056e-6 3.8537 0.006930 1.9606

Table 6.4: L∞ error for point positions and normal in deformation velocity
test.

Position error Position order Normal error Normal order
Level 1 mesh 0.094246 NA 0.710556 NA
Level 2 mesh 0.031112 1.5989 0.587540 0.2743
Level 3 mesh 0.002378 3.7096 0.242237 1.2783
Level 4 mesh 2.499e-4 3.2506 0.074971 1.6920
Level 5 mesh 2.248e-5 3.4741 0.021347 1.8123
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1. Point propagation with velocity field defined on the mesh or velocity field

defined on the cells given by numerical fluid solvers.

2. Triangular mesh quality improvement without lossing accuracy.

2(a) Mesh optimization which moves the points on a high-order surface

without changing the number of points and the connectivity.

2(b) Mesh adaptivity which includes edge flipping, edge splitting and

edge contraction.

3. Untangling the meshes with self-intersections for a topologically correct

surface.

Our current HiProp library could only handles step 1 and step 2(a) as described

in Sec. 6.3.2. Thus for getting a complete interface tracking package we couple

HiProp and FronTier through an interface between two libraries. Here we

also replace the locally grid based tangle detection currently used in FronTier

by applying an exact triangle-triangle intersection detection introduced in [25].

We only transfer data between the two libraries if a self-intersection is detected

by the new tangle detection algorithm and the whole parallel information lists

have to be rebuilt. The Locally Grid Based algorithm in FronTier is then

used to resolve the tangle region locally. Fig. 6.22 gives the detail of the

local reconstruction of the example of two merging spheres. Note that the

small tangle shown in the left of Fig. 6.22 would not be detected using the

old grid based intersection detection algorithm. Under the framework based

on the interface between the two libraries, we would gradually migrate the
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front-tracking package to the new library for a high-order and more robust

interface library.

Using the interface between the two libraries, we are currently applying

the paralle high-order mesh optimization algorithm introduced in Sec. 6.3.2

to the ongoing simulation of the incompressible Rayleigh-Taylor problem. We

optimize the triangular mesh for each time step using iteration number of five

and the data transfer between two libraries is called for each time step. A

roughly 10 percent overall computation time is reported and a decrease in

the computation time is expected in the future when the full front-tracking

packaged is migrated to this new library.
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Figure 6.22: Tangle of two merging spheres (upper) and local recontruction
result with mesh optimization (lower).
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We use the front tracking method and the Immersed Boundary Method

for the solution of the interface problem in two-phase incompressible flow.

The fluid solver we developed is second order accurate for one-phase flow

and first order accurate near the interface. High-order normal and curvature

calculation based on local polynomial fitting was used for accurately coupling

the interfacial tension into the fluid solver. We performed verification study

for one-phase Taylor-Couette flow and presented numerical results which are

consistent with both experiment for Taylor vortices and with linear analysis

for the growth rate of the instability. Convergence results on turbulent TC

flows were improved by adding a subgrid scale model. We use the solver

developed on a complicated, two-phase mixing problem originated from the

solvent extraction process in nuclear spent fuel reprocessing. A sector of the

annular mixing zone of a high speed centrifugal contactor is used to study

both the interfacial area and the droplet distribution for the two fluids. With
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an unstable initialization, a stable late time configuration, with heavy fluid

outside and light fluid inside, is reached after going through a complicated

fully mixed regime. This stable configuration, which we call the centrifuge

mode, is inconsistent with the experiment which has microstructure consisting

of droplets of some 60 microns in size forming a honeycomb structure and a

single connected phase. The discrepancy is mainly caused by the missing of the

disjoining pressure existing in the thin lubricating wall between two droplets

which are close to each other and by the algorithm which tend to accelerate

the merge of separated droplets.

For handling complicated surfaces originated from fluid mixing problems

such as the contactor problem, we develop a parallel triangular mesh library

called HiProp which has a different communication model from the front track-

ing package FronTier and serves as the basis for various parallel mesh algo-

rithms. Full parallel information lists for all entities are maintained in the new

library and each entity has unique master processor which is the only processor

that updates the attributes defined on that entity. Any parallel mesh opera-

tion would have an unique global output as the attributes on any entity could

only be updated by its master processor. A ghost exchanging algorithm was

developed for building ghost layers on each processors based on either con-

nectivity or domain decomposition. The parallel information lists is updated

when building ghosts for building multiple layers of ghosts of different types.

The new library also supports periodic boundaries by adding a shifting tag

to each parallel information node. The library is tested by implementing two

high-order mesh algorithms based on the capability of building ghost trian-
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gles. For both the parallelized static mesh algorithm for calculating differential

quantities and the parallelized non-static mesh algorithm for optimizing the

mesh for better quality, we present results consistent with the original serial

algorithm, which verifies the uses of the new library. We also get an interface

tracking package by combining HiProp with FronTier. The new library and

the full interface tracking package could be used on many other problems and

serves as the framework for gradually improving the front-tracking package.

Based on the same technique we used for high-order normal and curvature

calculation and parallel library HiProp, we present the computational frame-

work of a functional propagation which propagates local polynomial patches

instead of isolated points. We solve the problem via the high-order local poly-

nomial fitting and weighted least square formulation that generates not only

high-order results for point positions, but also for differential quantities such as

normals. We present numerical results for a rotation and a deformation veloc-

ity field. For a degree 2 fitting, higher than third order convergence is observed

for point positions and second order is observed for normals. The benchmark

tests do not have very large extortion as that would require high-order mesh

optimization and high-order adaptivity for mesh quality control.

7.2 Suggestions for Future Work

As mentioned in Sec. 5.2.2, we are currently modeling disjoining pressure

in the front tracking method to obtain experimentally consistent simulation

results for multi-phase incompressible flows.

For getting a more accurate and robust interface tracking library, the
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following steps needed to be done based on HiProp:

1. High-order parallel adaptivity algorithm for better mesh quality.

2. A robust and accurate topology operation for meshes with self-intersection.

3. Component calculation for any point in the space.

For task 1, we need to use parallel information lists on points and triangles

to defined parallel information lists on edges as the edges are the main object

for the adaptivity algorithm to work on. Task 2 could be tackled partially by

first finding the exact point where the first topological change happens inside

a time step using continuous collision detection (CCD). Then by changing the

connectivity at that moment, untangle algorithm could be simplified by con-

sidering a single point of contact. Either the old locally grid based untangling

could be used on the region surrounding the contact point or a more accurate

grid free untangling algorithm which does topological operations directly on

the triangles neighboring the contact point could be developed. Task 3 could

either be resolved by a grid-based algorithm for checking components on grid

lines or by a domain decomposition by tetrahedralizing each cell to find the

connected components.

The high-order functional propagation could be improved by coupling

with high-order mesh optimization and high-order mesh adaptivity of the al-

gorithm to handle large deformations. For meshes with sharp features, the

face offsetting method could be used for the points close to the edges or cor-

ners. Parameterizations other than local orthogonal projection parameteriza-

tion such as spherical or cylindrical parameterizations could be used for the
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regions with large curvature on the mesh. Lastly an implicit or semi-implicit

time discretization could also be used on the PDE for propagating the local

polynomial patches.
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