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Abstract of the Dissertation

Probing the Knowable Unknown

by

James Zuber

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

August2014

Three problems in discrete optimization are considered and solved
to varying degrees using novel algorithms. Worst case behavior
experiments were run in all chapters.

First, a seating arrangement problem is shown to be NP-hard. A
simplified case is solved using a greedy algorithm and we use a two
phase approach to find a 2-factor approximation for a slightly more
complex version of the problem.

Next, we bound the performance of a recently published approach
to DNA copy number analysis. We then devise a dynamic pro-
gramming PTAS and an integer programming formulation which
outperformed the published approach.

Finally, we introduce a dynamic load balancing problem. For this
NP-hard problem we devise a lower bound, a 2.7-factor heuris-
tic and an experimentally promising heuristic. We experimentally
compared the solution quality of our algorithms to some suggested
heuristics.
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Chapter 1

Airplane Seating

Summary:
We imagine passengers on an airplane being asked to swap seats so that

a couple or family can sit together. This paper focuses on minimizing the
number of passenger exchanges to make all families on a plane happy. We give
a hardness proof for the general case of unbounded, heterogeneous family sizes
and constant factor approximation heuristics for smaller families on idealized
planes.

1.1 Introduction

Though passengers on an airplane book their seats as families, we imagine
that during boarding many of these families wind up scattered throughout the
plane rather than next to each other. Since the only way to fix this situation
without reboarding is single passenger exchanges (swaps), we would like to
find the smallest number of swaps necessary so that all families are happily
seated together.

1.1.1 Prior and Related Work

Ths problem is closely related to the Dutch Flag problem posed by Djikstra [1],
where a number of colored marbles need to be rearranged from a random order
to a final, known configuration. The correct solutions posed by Djikstra and
Meyer were analyzed and found non-optimal by McMaster [2]. A generalization
to any number of colors was proposed and solved optimally [3] using a scanning
algorithm with insights that helped us form ours. This generalization was later
named the American Flag problem and shown to have applications for speeding
up Radix sorting [4], [5].
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Another related problem is found in kidney exchanges and other market
clearinghouses where a number of patient-donor pairs that aren’t compatible
require trades with other patient-donor pairs for compatible organs. Market
clearinghouses work like our 1D airplanes with large families that only need to
sit together in pairs. Market clearinghouses are solved by finding a cycle cover
of a graph, which was proven NP complete [6]. Its impact on saving lives was
both simulated [7] and implemented [6]. It was also proven that at allowing
only 4 pairs of patients in any exchange chain is sufficient to guarantee an
optimal cycle cover [8].

Cycle covers of graphs also find an application in genetics. This NP com-
plete family of problems [9], [10], [11], [12], [13], [14] seeks the series of changes
in DNA that lead from the DNA sequence of a common ancestor to two (or
more) descendents. Because the mutations and exchanges in DNA over time
are functionally identical to swapping passengers, we can reformulate this as a
constained seating rearrangement with known starting and ending poisitions.

1.1.2 Airplane as a Line Simplification

Instead of using actual airplane seating charts, we first consider the one di-
mensional case, where we think of the airplane seats to be arranged in a line,
as shown below in figure 1.1.2. All seats labeled “A” are initially populated
with a member of the A family, “B” the B family, and “C” the C family. You’ll
note from the figure that we don’t care about the ordering within a family (i.e.
Dad in seat 1 and Mom in seat 2 is exactly as optimal as Mom in seat 1 and
Dad in seat 2).

A B B C A C

Figure 1.1: Viewing an airplane as a a line of passengers.

In order to make all passengers happy in the smallest number of swaps, we
first exchange seats 2 and 5 (which keeps the total number of happy families
constant):

A A B C B C

Then we exchange the passengers in seats 3 and 6:

A A C C B B
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This second swap made 2 families happy with a single swap, and now all
families are seated together. Please note that the family blocks are not in
alphbetical order, and that any arrangement where all family membes are
seated adjacent to each other is optimal.

Also note that while this required only 2 swaps (the lowest possible for
this input) that both swaps involved member of the “B” family. Its possible
to generate a pathological case where every swap involves the same passenger
yet still minimizes the total number of swaps. While this does not accurately
reflect how grumpy this would make a passenger on our plane, our current
model only cares about total number of swaps, future work will limit the
maximum number of times a single passenger will have to swap.

1.1.3 Limited Family Size Simplification

While the general case allows passengers to fly together in arbitrarially large,
heterogeneous groups, finding the optimal number of swaps in that case is NP-
complete (see section 1.2). Because of this, we simplify the number of people
who can belong to a family in two ways: either we limit the maximum family
size in a heterogeneous assortment of families, or we demand all families be
the same size.

1.2 Hardness

For any case of the known NP-complete problem, 3-partition, there exists
an initial passenger location assignment and family size combination where
finding the minimum number of swaps possible would mean solving the 3-
partition problem. The reduction follows.

The 3-partition problem is defined as: Given a set of n = 3m integers xi,
is there a grouping of the xi into m disjoint triplets so that the sum of each
triplet is the same number k?

For any 3-partition instance, we can design the seating arrangement as
follows. There are m blocking families, B1, B2...Bm all with the very large
number of family members, Mb > mk. For each xi there is a single family
with xi family members, call these families fi. Finally there is a single huge
family, the Seatwarmers, of size

∑
i xi = mk, that we label S.

Our initial seating arrangement is to sit exactly k seatwarmers in the
first seats, followed by every member of B1, then alternate between placing a
block of k seatwarmers and family Bi until we seat Bm and all mk seatwarm-
ers. After this we seat all remaining passengers in perfectly rifled order, i.e.
f1f2f3f1f2f3 . . .. We sketch this arrangement below (with k = 4, M=2):
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SSSS B1 . . . B1 SSSS B2 . . . B2f1f2f3f4f5f6f1f6

If this problem has a 3 partition, then in exactly mk swaps we can make
every family happy by swapping all of the seatwarmers in to the back of the
plane, leaving the blocking families in place and in between each set of blocking
families putting exactly 3 full fi families.

Our toy instance’s optimal seating arrangement is:

f1f1f2f3B1 . . . B1f4f5f6f6B2 . . . B2 SSSSSSSS

Lemma 1.2.1. mk is the minimum number of required swaps ∀m > 2

Proof. If the seatwarmers all sit together in the back of the plane, it requires
one swap per seatwarmer to get back there, or exactly mk swaps.

By contradiction, assume the seatwarmers don’t sit in the final block in the
back of the plane. This means some members of a blocking family Bi have to
move. As long as MB > mk, there are more blocking members in any family
than there are seatwarmers, so at most k seatwarmers don’t have to change
their seat. Getting the rest to sit in this unmoving block will require (m− 1)k
swaps.

However, there are now (m − 1)k blocking members sitting in the wrong
seats. Since any exchange either puts 0,1 or 2 people in their optimal location,
it takes a minimum of (m−1)k

2
exchanges to make these blocking members

happy. So long as 3(m−1)
2

>= m or m >= 3, this is no better than the mk
swaps we achieved using the initial method.

1.3 Solved Cases

1.3.1 Family size of exactly 2

Let us assume that we only have couples on-board, maybe a plane full of
honeymooners headed to a post-nuptial resort. For this case, the following
sweeping-line algorithm was proposed:
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Algorithm 2 Sweep algorithm for families of size two

while i ≤ n− 2 do
Read a pair (i, i+ 1)
if couple(i) 6= couple(i+ 1) then

let j = i+ 2
while couple(j) 6= couple(i) do j = j + 1
end while
Swap (j, i+1)

end if
end while

Theorem 1.3.1. There exists an optimal set of single passenger exchanges
where the leftmost position of passengers involved in each exchange is non-
decreasing.

If we imagine a solution to this problem as an ordered pair of seat numbers
to be exchanged, (i1, j1), (i2, j2)... then the following observation can be made.

Lemma 1.3.1. We can change the order of exchanges using the three rules
(with a, b, c, d being unique seat numbers) without changing the final permuta-
tion achieved by performing these swaps.

(a, b)(c, d)→ (c, d)(a, b)

(a, b)(a, c)→ (a, c)(c, b)

(a, b)(b, c)→ (b, c)(a, c)

(a, b)(c, a)→ (c, a)(c, b)

Proof. Assume an odered pair of exchanges has the two exchanges (a, b)(c, d)
occurring in sequence. If either a = b or c = d, that exchange does nothing
and isn’t optimal. By the commutativity of a single exchange, we can insist
that a < b and c < d. If a = b and c = d, then these two exchanges do nothing
and are also not optimal. The final two cases are that one element of (a, b) is
equal to another from (c, d) or that all 4 elements are unique.

When all four elements are unique, performing the first exchange does not
change the initial position of either passenger in the second exchange and thus
the two exchanges can be completed in any order and preserve exactly the
final permutation.

When there is a shared seat being exchanged in both, as in (a, b)(b, c)
performing exchange 2 first would change the inhabitant of the repeated seat
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(b) in exchange 1. Since the previous inhabitant of this seat is now located
in the non-shared seat location from the exchange 2, if we want to perform
exchange 2 first then we must change exchange 1’s shared element (b) to the
non-shared element of exchange 2 (c) in order to perserve the final permuation.

Proving theorem 1.3.1 is now trivial.

Proof. If we are given an optimal set of exchanges that are in non-decreasing
order of leftmost passenger, we can transform it into a set of exchanges using
the same number of swaps that is in non-decreasing order by combining a
bubble sort and lemma 1.3.1.

First, we insist that all exchanges be listed with their lowest index first.
Ten we note that in all swaps where an exchange is modified by the rules of
lemma 1.3.1, even after making the modifications, the modified exchange will
never have a first index smaller than that of the exchange that we just swapped
it for.

Finally, starting at exchanges n − 1 and n, we swap the exchanges if the
first index of exchange n is lower than that of the exchange n − 1, and then
move on to comparing exchanges n−1 and n−2. After one pass, the exchange
with lowest left passenger would be our first element. After n passes, the list
will be sorted.

We have only proven that there exists a left to right sweep algorithm that
will allow us to seat all couples together, not that our specific sweep algorithm
is optimal. To bridge this gap, we need to make the following observations.

First, because the plane is full of couples, each pair of aligned adjacent
seats (where aligned means the first is an odd numbered seat and the second
an even numbered seat) will hold a matched couple in the final arrangement.
Any pair of seats in the initial seating arrangement that is not occupied by a
matched couple will require at least one exchange to remedy that.

Second, any sweep algorithm will start with the leftmost aligned pair of
seats containing a mismatched couple and swap one of those two inhabitants
with another passenger in the plane. Once we prove below that all exchange
choices leave the plane in a state that requires the same number of swaps, we
can claim that our sweep algorithm is optimal.

Lemma 1.3.2. All exchanges that make one couple happy are equivalent up
to a relabeling.

Proof. If the first two passengers are parts of the A and B couple, their part-
ners are in one of two configurations (where we only show seats occupied by
one member of the A or B couple):
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AB AC BC

AB AC BD

For the first configuration, we can swap A to be with its partner in either
the first or second block:

AA BC BD

CB AA BD

Other than changing which pair of seats are occupied, we have a happy
couple A and two pairs of unhappy patrons, BC and BD. These configurations
require the exact same number of swaps to rectify.

If we instead swapped B, we’d get two configurations also:

BB AC AD

AD AC BB

These cases are, exactly like the A swapping cases, equivalent in terms of
how many swaps would be required to finish pairing the rest of the plane. The
second possible initial case (where A and B are both seated next to family C,
yields similarly equivalent situations after an exchange for A:

AA BC BC

CB AA BC

And B

BB AC AC

CA BB AC

In all cases, exchanging either A or B first left us with conifgurations that
were identical up to relabeling A and B. Further, swapping A or B out of the
first pair into the seat beside its partner left us with identical configurations
up to a reordering of seats.

Since all sweep algorithms that make at least one couple happy with every
exchange are equivalent, and there exists an optimal sweep algorithm that
does exactly that, we have proven that our sweep alorithm finds the lowest
number of required exchanges.
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1.4 Mixed families – couples and singletons

Let us now consider the case where we have a mixture of couples and singletons,
where we want to seat all of the couples together. We assume that singletons
are always happy, regardless of whom they sit next to.

1.4.1 Phase One, determining structure:

We first observe that the worst case scenario for performing exchanges is when
we have a situation like:

eAABBCCDDe

This requires 4 swaps, or one swap per couple between the two unhappy
members of the e pair. In terms of defining structure beforehand, this was an
example of the following situation (where solid boxes will be occupied by a
couple, and dotted by singletons):

eAABBCCDDe

With this assignment, we can clearly see that all passengers are seated in
an incorrect seat to start. If instead the two e passengers were singletons,
then the following structural assignment would have allowed us to keep all
passengers in their starting seats and require zero swaps.

s1AABBCCDDs2

To properly assign a structure to a seating arangement for singletons and
couples that minimizes swaps, we generalize the above bad example. Sets of
paired individuals already seating by their partners are called blocks. Our bad
example had AABBCCDD all starting in good places, and thus we had a
block of N = 4 couples. Our block was out of alignment with our first seating
type assignment and would require N swaps to satisfy all seating requirements.
On the other hand, the block was in perfect alignment with the second seating
type assignment and required no swaps to be seated.

Aligned s1AABBCCDDs2

Unaligned eAABBCCDDe
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To fully represent a starting seating arrangement, we must note which
passengers are not in blocks, contigious seats thus occupied will be called
gaps. While all blocks will be of even length (because they’re comprised of
couples), gaps can be of even or odd length. I will refer to the parity of a gap
as odd or even depending on whether the number of elements in it are odd or
even.

Lemma 1.4.1. For each starting block of size Ni, the optimal structural as-
signment will have a contiguous block of Ni coupled seats. These can either be
at the starting location or offset from that position by 1.

Proof that contiguous blocks remainin in place. By contradiction. Let’s sup-
pose that the first (left) k couples are declared to be aligned improperly with
seats asigned to couples, and the remaining N − k to be aligned properly. In
order for this to occur, there had to be a singleton seat at the transition from
aligned to unaligned.

In order for this structural assignment to be optimal, there can’t be a place
to put this singleton that would require fewer swaps than the middle of this
block. However, placing it to the left of the k unaligned couples would allow
them to all be properly aligned, and reduce the number of swaps required by
k.

This in hand, we are going to ask how many existing blocks are going to
have to be declared unaligned in order to globally minimize the number of
swaps we perform. When a block is declared unaligned, we mean that instead
of saying its first and second passengers (who are presupposed to be a couple
due to this being a block) are in a single pair of couple designated seats, that
instead they are siting in two different designated paired seats. i.e.

We need another lemma before we can get an algorithm out of these ob-
servations.

Lemma 1.4.2. To satisfy all couples in an odd parity gap without disturbing
its neighboring blocks, an odd number of singleton seats will be assigned to the
gap.

Proof. All seats not assigned to a singletons are assigned in pairs to couples.
All assigned couples take up an even number of seats leaving an odd number
of seats to fill with singletons.

Corollary 1.4.3. All odd gaps require at least one singleton seat to be assigned
to it.

Corollary 1.4.4. Any structural assignment with more odd parity gaps than
singleton passengers will require that some blocks move.
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So which blocks move? With O representing a gap of odd parity, E a
gap of even parity, and B being a block, the following situations exhaustively
describe gap-block borders:

OBO

EBO

OBE

EBE

OB1EB2EB3 . . . BkO

In the first situation, if we declare the block unaligned and then perform
the N couple swaps to make it a block again, we wind up with EBE and two
fewer odd parity gaps.

If we declare the block unaligned in the second or third cases, and preform
N couple swaps to make it a block again, we wind up with OBE and EBO
respectively but keep the number of odd parity gaps constant. The third case
would become OBO, generating two aditional odd parity gaps.

The final case would become EB1EB2E . . . BkE. This would reduce the
number of odd parity gaps by 2 and cost

∑k
i=1 |Bi| swaps. Please note that

only shifts between adjacent odd parity gaps decrease the number of odd parity
gaps that we have, that all such shifts decrease our number of odd parity gaps
by 2 and that they all cost a number of swaps equal to the number of couples
in the blocks between them all.

Lemma 1.4.5. Shifting a block surrounded by odd gaps either to the right
or left makes both of its odd parity gap neighbors even, and are equivalent in
terms of total swaps left to pair all couples.

Proof. The gap reduction part was argued above, so we need only prove equiv-
alence. A block bordered by two odd gaps has two neighbor passengers, x and
y. After moving the block one to the left, we will shift passenger x to the right
side of the block, immediately before passenger y. If x and y match, they
increase the size of the block, if they don’t, we know that y didn’t match its
right neighbor otherwise it would have been a part of a block rather than an
odd gap.

If we move the block to the right, then passenger y winds up one unit to
the left of the block next to x again. Since we know that x wasn’t partnered
with its neighbor to the left, the only new passible partnership is, as before, x
and y.
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Thus moving a block left or right are equivalent in terms of number of
swaps left to complete all pairings.

1.4.2 Dynamic Program for Gap Assignment

A simple dynamic program can answer the question: which blocks do we
declare unaligned in the optimal seating structure?

Diagramatically, we have:

. . . O0 E1 O1 E2 O2 E3 O3 E4 O4
. . .

Ei, the block or B1EB2E...Bk complex between odd gap i − 1 and i has
Ni paired couples. We label the number of required swaps to fix parity S(x, k)
where x is the index of the block we’re moving and k is the number of odd
parity gaps we’ve closed.

Our recurrence relation is:

S(x, k) = minS(x− 2, k − 2) +Nx, S(x− 1, k)

Memoizing this table takes the number of odd gaps times the number of
gaps we have to close. Since each odd gap lies between two blocks, the number
of odd gaps is no more than 1

3
of our total number of seats. We can’t close

more gaps than we have, so this simple algorithm is worst case quadratic in
number of passengers.

1.4.3 Performing the Swap Sweep

After the dynamic program is run, we perform the swaps it indicated. This
leaves us with a set of subproblems, the gaps between blocks (who will not
move again). Even gaps are easier to solve than odd gaps because their parity
is already set, so we’ll start with them. While sweeping through a gap, we look
at two elements at a time, seats i and i+1. With s representing singletons, and
all capital letters representing couple members, there are five distinct cases,
each of which get treated differently.

• AA Though it would seem that this shouldn’t happen as gaps are filled
with unpaired passengers, earlier steps in our sweep algorithm can leave
these completed pairings in place. When enountered, leave them there.

• AB The same arguments from Lemma 1.3.2 hold here and swapping
either A or B with its pair elsewhere in the plane leaves the passenger
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arrangement identical up to a relabeling. When encountered, swap B
for the partner of A.

• As The same arguments from Lemma 1.3.2 hold here with some slight
modification. The relabeling would be calling 2 specific singletons A.
Since singletons have the potential to be left in place (saving swaps)
swapping in the partner to A will always be the optimal answer. When
encountered, exchange s for the partner for A.

• sA This case is more complicated, as we can leave the singleton in place
if we have 2 more singletons than we have odd parity gaps, and we have
a complementary Bs in this same gap. When encountered, if we have 2
extra singletons in the budget, scan from right of this gap. If there is
a matching Bs, leave both singletons in place and turn this gap into 2
new gaps: the one between these 2 singletons, and the gap between the
right singleton and the next block. Else, swap the s for the matching A.

• ss Leave in place permanently if we have 2 more free singletons than odd
parity gaps, temporarially if we are going to have to use these singletons.

By Lemma 1.3.2, and the observation that when an swap is identical up to
a relabel, if the singletons are moved to an incomplete portion of the plane,
they can never require more swaps than if we instead moved halves of couples.

Lemma 1.4.6. Permanently leaving a singleton at an odd position in an odd
length gap partitions it into 2 even length gaps that can be scanned using the
above rules.

Following this order, we have 2 types of odd length gaps left: those with
singletons in even numbered seats (counting from their first seat) and those
with no singletons. Each of these gaps needs 1 singleton in an odd numbered
seat to apply Lemma 1.4.6 and then scan using the even gap rules. To scan
odd gaps with singletons in them, we add in one rule:

• As To save a single exchange, if the other A is in an odd seat, exchange
the s for that A and then use even scan rules on the 2 even gaps just
created. If the other A is in an even seat, exchange this pair from As to
sA and continue this gap as if it were even.

With only odd length gaps remaining that have no singletons in them, we
need to swap in singletons that were left in their original seats using the ss
rule. While scnaning these gaps, we use the simple rules:
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• A1B If A2 is also in an odd seat, trade both A1 and A2 for a pair of
singletons sitting next to each other in a completed gap. Then complete
the 3 newly created even gaps using the even gap rules.

• A1−When we reach the end of a gap without encountering the previous
situation, trade both A1 and A2 for a pair of singletons sitting next
to each other in a completed gap. Then scan the gap that previously
contained A2.

1.4.4 Computer Simulations and Results

In order to verify our hunch that the above algorithm was optimal, we coded
up our algorithm in C++ and ran it on a PC. Each passenger was represented
by a data structure: all passengers have a family name, a chair number, and
know the family name of their left and right neighbors and the location of
their partner. Indices of seats occupied by singletons were stored in a single
sorted array to allow range queries of singletons to occur in logarithmic time.

We sought to uncover the worst cases ecountered by our algorithm and
devised the following simple test: starting from a completely content plane,
we would select and exchange k random passengers. Because the optimal
number of exchanges to return the plane to a completely content state must
be no greater than k, we could compare the number of exchanges our algorithm
found to k in order to find the worst case performance ratio. Any performance
ratio less than 1 was discarded since this meant that the initial shuffling was
simple enough that it could be undone in less than k exchanges.

In order to find the high performance ratios, we allowed a genetic algorithm
to search the space of shiffled seating arrangements. For a plane of size N with
fixed Ns ≤ N singletons, the GA’s genes first Ns alleles were the indices of the
singletons. The next 2k indices were each interpreted as a pair of passenger
positions to swap.

The initial conifguration routine first sorted the list of singletons, then han-
dled duplicate entries and having an odd number of seats between consecutive
singletons. The vacant seats were occupied by content couples. Finally the
swapping portion of the genes were applied and passenger data structures were
kept up to date with each swap.

It became almost immediately apparent that our algorithm was not op-
timal, as even modest sized problems (N = 100, k = 10) had worst case
performance ratios above 1.6 after a few hundred generations.
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1.4.5 Win-Win Exchanges, Completed Couples and N-
Chains

Analysis of the genetic algorithm’s worst case returns pointed us towards the
following conclusion: we weren’t handling win-win exchanges properly. A win-
win exchange is of the form:

AB BA

We have two pairs of seats that can be satisfied completely with a single
exchange. Since we cannot possibly make more than 2 couples happy with a
single exchange, the optimal solution will contain as many of these as possible.

Lemma 1.4.7. If a either of the seated couples in win-win exchanges are
misaligned, it requires 2 swaps to make both pairs happy.

Proof. Without loss of generality, we call the first, unaligned pair A1B1 and
the second A2B2. Since the first pair is unaligned, any exchange to pair it or
its seatmate will necessarially not include B1.

Corollary 1.4.8. If a consecutive block of N win-win pairs is misaligned, it
requires N more exchanges to satisfy all pairings than if they were all aligned.

Win-win exchanges are 2 couples that can both be paired with a single
exchange. We would like to generalize this, calling win-win exchanges a 2-
chain. 3-chains are three pairs that can all be satisfied with 2 exchanges like
the example below:

AB BC AC

This generalizes to N chains, where chains are characterized by N pairs
that can all be satisfied with exactly N − 1 swaps.

1.4.6 Performance Ratio of Sweep Algorithm

Our sweep algorithm ensures that we leave in place as many completed couples
as possible. We do this because each completed couple we leave in place re-
quires zero swaps, while setting them to be unaligned introduces new exchanges
into our solution. The ratio of unaligned exchanges to aligned exchanges is
thus infinite, something to be avoided if we want a to bound the badness of a
solution.
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In its current incarnation, our algorithm ignores all N -chains. Since each
N -chain optimally requires N − 1 swaps, failing to optimally align our couple
seats will cost us at most N

N−1
times the optimal number of exchanges. That

is, our current algorithm is a 2 approximation.

1.5 Conclusions

We have introduced the novel problem of rearranging passengers on an air-
plane. For even the special case of the airplane only having one row, we have
shown in the general case of large families that this problem is NP complete.
The simple case of all passengers being in couples was solved optimally. For
the more difficult case of all passengers being either alone or in couples, our
algorithm was shown, first via simulations and then analytically, to be a 2
aproximation to optimal.

Our future work plans on analyzing heterogeneous family sizes larger than
2, and homogeneous small families as our hardness proof depended on ar-
bitrarially large heteroeneous families. We would also like to analyze two
dimensional planes with realistic seating arrangements, and families that nned
not sit in one complete block, but where all family members has at least one
familial neighbor.

Obviously, the optimization versions of all of these questions is also of
interest.
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Chapter 2

Genomic Interval Algorithm
Analysis

Summary:
Using a specific mathematical model, we treat DNA copy number analysis

as an optimization problem. We devise a polynomaial time approximation
scheme, two greedy heuristics and a binary programming model to solve the
model exactly. These algorithms are analyzed for correctness and then their
performance is tested using synthetic data.

2.1 Introduction

We have interpreted the DNA copy number analysis discussed in [15] as follows:
given possibly overlapping “defect” intervals on a line, cover them with a set
number of “explanation” intervals. An explanation can only get credit for
a defect if the explanation is a subset of said defect. This is a special case
of the maximum coverage problem, where our objective is to maximize the
monotone submodular scoring function over a very structured set of subsets.
The hardness of this problem remains an open question.

2.1.1 Prior Work

While the problem was formulated in relation to the CORE software product
in [15], the work done on related problems heavily influenced our algorithm
development. Our dynamic programming approach, as well as the definition
of maximal explanations, started as an extension of the stabbing problem in
[16].
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There is a graph formulation on which a maximum independent set would
solve this problem. The heuristic approaches to maximal independent set in
[17] inspired those graph based approaches and lead directly to the counterex-
ample to our LP relaxation constraint matrix being total unimodular.

The k-OPT approach to maximum clique problem used in [18] as well as
previous exposure to the Lin-Kerrigan heuristic [19] motivated our own k-OPT
algorithm.

2.2 Description of the problem

We imagine the genome as an interval graph. The set D contains (possibly
overlapping) intervals where damage has been observed. We seek to find a set
of k explanations, E that cover as much of D as possible.

Figure 2.1: a general description of the problem.

An explanation gets ’credit’ for an area of overlap of a defect of which is it
a proper subset. In figure 2.1, this means that e1 may be allocated credit for
explaining defect d1, but not d2. The amount of credit for covering a defect is
|ei|
|dj | , i.e. the fraction of the defect covered by the explanation.

When two explanations ei, ej overlap and both are a subset of a defect,

they may be attributed at most
|(ei∪ej)|
|dk|

. For example, in the above diagram,
the intersection of e2 and e3 will be attributed as an explanation on d1. They
will be given no ’credit’ for any explanation of e4, because the segment is not
a proper subset of d4.

Goal : Given k explanations, cover the maximum fraction of D.
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2.2.1 Definitions

For the problem at hand, we have a set of defects D = {di}. The endpoints
of these defects are the integers li, ri.

We have a set of all relevant explanations E = {e1, e2, ...em}. The number
of explanations we can use is k.

The output explanation set from our algorithm is A = {S1, S2, ...Sk}.
Score(ei|A) is the improvement to our score from the explanation ei given
that all of the explanations in A are already in our solution.

The set T = t1, t2, ...tk is the optimal explanation set, i.e. the highest
scoring set of k explanations. Score(T ) = OPT.

A defect primitive di,j is the portion of defect di between the consecutive
endpoints xj and xj+1, where xj and xj+1 are the endpoints of any defect in
the set. As all maximal explanations start and end at these endpoint (from
Lemma 2.2.1), defect primitives are atomic: either they are wholly explained
or not explained at all.

d1,1 d1,2 d1,3

D1

D2

D3

Figure 2.2: Defects and defect primitives.

A primitive’s depth is the number of defects for which it is a subset.

2.2.2 Observation

The following simplifying observation is useful:

Lemma 2.2.1. Though any interval could be considered for membership in
E, only ones that share endpoints with members of D are interesting (i.e.
candidates for inclusion in the maximal solution).

Proof. First off, explanations that are not proper subsets of any member of D
score nothing, so we ignore those.

By contradiction, the explanation e = [a, b] is a proper subset of some
number of defects, G = ∩idi. One or more of a and b are not endpoints of a
defect. The credit it gets is

∑
i

(b−a)
|di| , i.e. proportional to (b− a).

Each di ∈ G can be represented as [li, ri]. We construct the interval

[max li,min ri]. Its credit is
∑

i
(min ri−max li)

|di| .
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Because [a, b] is a subset of G, we know that ∀ia ≥ li, bi ≤ ri. Thus, min ri−
max li ≥ b−a where the inequality is only tight at [a, b] = [max li,min ri]. This
contradicts the assumption that an interesting explanation doesn’t share an
endpoint with a defect.

2.3 Greedy Algorithm

The obvious greedy algorithm would look at all possible explanations that
could be placed, and place that explanation. This explanation would score
certain portions of one or more defects. The next step of the greedy algorithm
would find the single explanation that scores the best in the presence of the
existing solution.

Algorithm 3 greedyExplanationCover(D, k)

M = set of maximal explanations
E = ∅
while |E| < k do

ei = arg maxm∈M S(D,m|E)
E ← E ∪ ei

end while
return E

2.3.1 Automated Worst Case Generation

In order to characterize the worst case performance ratio of greedyExplanationCover(D),
we decided to first perform a black box analysis of its outputs. Our method-
ology was simple:

1. For fixed k, generate a defect set, D

2. Given D, compute the greedy explanation set E, and its score.

3. Compute optimum score and compare to the greedy score.

To generate the defect endpoints, we randomly choose two integers per
defect in the interval [1, 1000] and assign the lower (higher) to li (ri). Because
the underlying problem is on DNA with discrete base pair positions, integers
were judged more appropriate than floating point positions.

Computing the optimum score is trivial for one special case of problems:
the set of problems where k = |D|. In such cases, the optimal ouput set is just
D and the maximum score is |D|.
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k Greedy
OPT

2 .750001
3 .779596
4 .75361
5 .800568
6 .776081
7 .806111
12 .931058
36 .995146

Our results indicated that we should look at 3
4

as the performance ratio of
the greedy algorithm.

2.3.1.1 Worst Case Analysis

Our computer simulations showed us scores for which we know cases exist on
which greedy does poorly, and it also showed us the defect sets leading to said
worst case behavior. We performed case analysis for k = 2 and k = 3 to
compare the computer’s output with analytic results.

1.0
0.5

1.0
1.0

Figure 2.3: Worst case for k = 2 Defects, Greedy solution Optimal solution.
Numbers are scores of the explanation.

2.3.1.1.1 k = 2 The first explanation placed has to score at least one, i.e.
S1 ≥ 1, since it is the highest scoring explanation and covering either defect
scores exactly one.

For the second explanation, S2 ≥ 2−S1

2
. This follows from a simple pidgeon-

hole argument: there are at most two defects with some regions uncovered.
The sum of those remaining scores is 2− S1. The higher scoring of those two
defects has to yield at least half of this.

Combining the two, we get S1 + S2 ≥ 1 + S1

2
, this quantity is at least 3

2
.

The defect set in figure 2.3 would be scored 3
2

by the greedy algorithm,
assuming it made the worst choice at the first step.

2.3.1.1.2 k = 3 With 3 defects, we resort to case analysis. A case will be
defined by a table like:
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Round Size Score Remainder
a b c d

Round: which explanation we’re applying.
Size: number of defects touched this round.
Score: score gained this round.
Remainder: total unexplained portions.

Round Size Score Remainder
1 3 ≥ 1 2
2 1 ≥ 2

3
4
3

3 ? ≥ 2
3

2
3

Where round 2’s bound comes from the pigeonhole argument: with 3 total
defects, and a score of 2 remaining, one yields at least 2

3
. Round 3 is also

pigeonhole: in round 2 we completely covered one defect, the remainder of 4
3

is shared amongst 2 defects, thus one yields at least 2
3
.

Round Size Score Remainder
1 3 S1 ≥ 1 2
2 2 S2 + S1 ≥ 2 1
3 ? ≥ 1

3
2
3

In round one, we take fractions a, b, c from the first, second and third
defects. WOLG, we say that in round 2, the two defects covered are the first
and second for fractions a2 + b2 = p. We know a+ b+p ≤ a+ b+ c since A∩B
wasn’t covered in round one. Thus p ≤ c. The remainders of each defect are
also less than p:

p ≥ (1− a) → a ≥ 1− p
p ≥ (1− b) → b ≥ 1− p

Now we show how round one and two sum to a number greater than two:

S1 = a+ b+ c ≥ (1− p) + (1− p) + c

S1 ≥ 2 + c− 2p

S2 = p

S1 + S2 ≥ 2 + (c− p)
p ≤ c → (c− p) ≥ 0

S1 + S2 ≥ 2 + (0)
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Round three is the standard pigeonhole argument.
Round Size Score Remainder

1 2 ≥ 1 2
2 ? ≥ 1 1
3 ? ≥ 1

3
2
3

Round 2 has to be at least one since there was an untouched defect entering
that round, and any maximum explanation has to score at least that much.
Then round three follows by pigeonhole.

Round Size Score Remainder
1 1 ≥ 1 2
2 ? ≥ 1 1
3 ? ≥ 1

3
2
3

Exact same argument as above.

2.3.1.1.3 Concrete k = 3 Example We’ve seen that the worst remainder
we can achieve for 3 defects being covered with 3 explanations is 2

3
. This means

greedy will score at least 7
9

of optimal. Note: in figure 2.4, only one of the
three 1

3
gray explanations is chosen.

1.0 1.0
0.5 0.5 0.5

1.0
1.0 1.0

Figure 2.4: Worst case for k = 3 Defects, Greedy solution, Optimal solution.
Numbers are scores of the explanation.

2.3.1.2 Upper Performance Bound

It is important to note that the example in figure 2.3 can be extended for any
even N . By placing N

2
non-overlapping copies along the number line we create

an instance where the first N
2

explanations placed by the greedy algorithm
score 1 while the next N

2
all score 1

2
. These sum to 3N

4
which is clearly 3

4
of

the N that an optimal soution would score.

2.3.2 MAXIMUM COVERAGE

AKA The e−1
e

Barrier
For MAXIMUM COVERAGE, a related problem, the greedy algorithm is known

to have an approximation ratio of (1− 1
e
). That is:

22



Theorem 2.3.1. Given a set P of sets Pi, the percentage of the total elements
covered by the greedy algorithm can be as bad as (1− 1

e
) times OPT.

Proof. We define:
OPT The most that can be covered by k subsets.
xi Amount covered by greedy in step i

yi Total covered by step i:
∑i

j=0 xi
zi OPT−yi

Lemma 2.3.1. For all i, There exists subset where xi+1 ≥ zi
k

.

Proof. Pidgeonhole. OPT uses k subsets in total. The residual zi is no greater
than the sum of score remaining in A∗, the subsets OPT uses. Since |A∗| = k,
one member of A has at least zi

k
worth of score left.

xi+1 ≥ zi
k

zi+1 = zi − xi+1

zi+1 ≤ zi − zi
k

= zi(1− 1
k
)

zk ≤ z0(1− 1
k
)k

lim
k→∞

(1− 1

k
)k ≤ (1− 1

e
)

lim
k→∞

zk ≤ z0(1− 1
e
)

2.3.3 k = 4 and Beyond

After our case analysis and computer simulations, we were convinced that the
set coverage greedy approximation factor of 1− 1

e
was overly pessimistic. Our

central contention was that the analysis leading to 1− 1
e

would require at each
step for an explanation to hit every single defect. This is not possible.

Lemma 2.3.2. For a set of n defects where all start and end points are unique,
if there is one primitive of depth n, there is exactly 1, and there are exactly
two primitives of each depth between 1 and n− 1.

Proof. This is most easily seen by scanning our endpoints from left to right.
As a left endpoint is reached, our depth increases by exactly one (since only 1
unique endpoint can be reached at once), as a right endpoint is reached, our
depth decreases by exactly 1.
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We start at depth 0, so to have a primitive of depth n, we must scan
past exactly n left endpoints and no right endpoints. As there are only n
left endpoints in our defect set, we have exhausted our supply to get a single
primitive of depth n.

Once we have scanned the first n left endpoints, we passed through exactly
n primitives, each of unique depth. As we continue, we will encounter all n
right endpoints. Each of them will decrease our depth by 1 as we encounter it
in our left to right scan, and thus mark the entrance into a new primitive of
depths n− 1, n− 2, ... 1.

With one primitive of each depth encountered to the left of our depth n
primitive, and another encountered right of our depth n primitive, we have
exactly 2 of each depth between 1 and n− 1.

Because we can arbitrarially break ties in starting and ending points by
judiciously adding powers of ε to actual starting/ending positions, we can treat
all defect sets as having unique starting and ending points. Unfortunately,
beyond this observation, we have no bound on how well greedy performs.

2.3.4 1-OPT Improvement

A natural refinement to the greedy algorithm is to improve its output by
repeatedly asking whether any of its included explanations can be replaced
with an unused explanation to improve the score. This is known as 1-OPT

refinement.
In our results section, we will show how much of an imporvement 1-OPT

was over the greedy algorithm, but here we will show that it does not always
lead to the correct answer.

E1 E2 E3

Figure 2.5: Initial Greedy Solution

The initial greedy solution’s explanations are red. It gets full credit for all
yellow portions of explanations. E1 scores 4. Both E2 and E3 score 2 + ε. Its
score is 8 + 2ε.

Each of E4, E5, E6 score 31
3

for a total of 10.
There is no single exchange from the greedy solution with any of the ex-

planations in the optimal solution that improve the score. Thus 1-OPT is a
useful refinement, but does not optimally solve the problem.
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Algorithm 4 1-OPTExplanationCover(D, k)

E = greedyExplanationCover(D, k)
haveExchanged = false
M = set of maximal explanations
repeat

haveExchanged = false
for all ei ∈ E do

OldScore = S(D,E)
E ′ = E/ei
e = argmaxm∈MS(D,m|E ′)
NewScore = S(D, e|E ′)
if OldScore < NewScore then

haveExchanged = true
E ← E ′ ∪ e

end if
end for

until haveExchanged = false
return E

E4 E5 E6

Figure 2.6: Optimal Solution

m-OPT refinement is the natural generalization when we ask if any set of
m explanations in the current solution can be replaced with another m unused
explanations to improve the score.

2.4 Dynamic Programming

A simple dynamic programming approach, where we score the k + 1st de-
fect and place all of them between points a and b such as S(k + 1, a, b) =
maxy S(k, a, y) + S(1, y, b) fails because the score, S(1, y, b), is dependent on
the full state of which explanations are already placed.

Simply put, the barrier between solved and unsolved regions doesn’t exist.
To get around this complication, we’ve proposed constant depth dynamic

programming solutions. Such a solution is characterized by the maximum
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number of explanations that can overlap at any one place in the solution. A
depth 1 dynamic programming solution would have no overlaps, and a depth 2
solution can have many regions where 2 explanations overlap, but none where
3 overlap.

2.4.1 Depth 1 Dynamic Program

A depth 1 dynamic program will find the set of explanations that cover any set
of defects with the guarantee that no explanations will overlap. The recurrence
relation is simple: S(k+1, 0, x) = maxy S(k, 0, y)+S(1, y, x). The score we can
achieve with k+1 explanations in the region [0, x] is the max over intermediary
points, y, of the score achieved before y with k explanations plus the score we
can achieve to the right of y with 1 explanation. The barrier between the
completed subproblem and the unsolved region is the point y. We cannot
place new explanations that start to the left of it.

The obvious question is: how well does this perform compared to an opti-
mal solution which can overlap arbitrarially?

We will construct a non-overlapping solution, compare its value to OPT
and then appeal to the correctness of a dynamic programming solution to
claim that it will do this well or better.

To construct our solution, we will take OPT as an input. The k explana-
tions of opt have associated with them 2k − 1 explanation primitives. These
are primitives whose endpoints come from a set of explanations. There are
2k−1 of them because no more than 2k unique points are required to describe
k defects.

Were we to use all of OPT’s 2k− 1 explanation primitives, we would cover
all defects that OPT covers. If we select the k highest scoring of these expla-
nation primitives, we cover at least half of OPT’s total credit. Unfortunately,
this is worse than our greedy bound of (1− 1

e
).

2.4.2 Depth d Dynamic Program

For dynamic programs of depth d ≥ 2, our state is slightly more complicated
than it was for depth 1. We have k, the number of explanations used, a the
end of the solved region, b the end of the active region and S, the left endpoints
of the set of explanations that are active (there are up to k of them) at point
b to form DS(k, a, b, S).
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Active S

Placed E a b

Figure 2.7: An illustration of a depth d ≥ 3 DP in action.

Running Time: The memoization table can contain every legal state
of the form DS(k, a, b, S). The first argument takes all values from 0 to k
inclusive. The next two will only hold the values of endpoints, of which there
are 2N of. Each member of S can be empty or hold the value of an endpoint,
and there can be no more than k members. This gives us a total running time
of: O(kn2+k).

In order to build an optimal coverage that never exceeds a depth of d, the
dynamic program sweeps. Starting with a and b at the leftmost endpoint, we
move them right respecting that a ≤ b. An explanation (L,R) can become
active iff L ≤ a and R ≥ b and |S| < d for the current set S.

Each state DS(k, a, b, S) has an associated explanation set E, the explana-
tions that were placed earlier in the sweep and to attain the maximum current
score for our state. The following four transformations are sufficient to get
from any starting state to any final state.

DS(k − 1, a, b, S − e) → DS(k, a, b, S)A new explanation becomes active.
An explanation starting at e, where e > x ∀x ∈ S, is added to our active list.

DS(k, a−1, a, S+(x, a))→ DS(k, a, b, S)An active explanation ends. Note
the differing endpoints. If we leave the ending explanation in the active region,
it will be able to influence our current scoring region. Thus the active region
moves to the right of the departing explanation.

DS(k, a− 1, b, S)→ DS(k, a, b, S)Left boundary of active region contracts.
Since all explanations in S start and end outside of [a, b], this will not change
the obtainable score. It will, however, disqualify some candidates from joining
the set S.

DS(k, a, b−1, S)→ DS(k, a, b, S)Right boundary of active region expands.
All active explanations in S are treated as having b as their right endpoint
until they cease to be active. Because of that, this movement can lead to
explanations in S to become non-scoring and is not always permitted.

Lemma 2.4.1. Using the rules outlined above, any legal explanation set could
be reached.

Proof. If we start any legal explanation set E and convert it into the set of
sorted endpoints xi, the following sequence (in reverse) would find that set E.
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Start with DS(k, xk, xk, ∅). Use the “active explanation ends” rule in re-
verse to get to the state: DS(k, xk, xk, x

L
k ) where xLk is the left endpoint of the

explanation ending at xk.
We can then use the left endpoint moving rule in reverse to get toDS(k, xk−1, xk, x

L
k )

and the right endpoint in reverse to get to DS(k, xk−1, xk−1, x
L
k ).

If this is the right endpoint of an explantion, we will either use the “active
explanation ends” as above. If left, the “new explanation becomes active” rule
in reverse will take us to the new predecessor state DS(k − 1, xk, xk, Si \ xLi ).

We would then continue shifting endpoints to xi−1 and selecting the ap-
propriate endpoint rule until we reach the leftmost extent of E. With this
construction, the members of Si at xi are those explanations stabbed by a line
through that point. Since the explanation set’s depth is less than d, |Si| will
also be less than d. Thus these steps are all legal.

2.4.3 Quality of d = 2 DP Solution

Our result from section 2.4.1 tells us that a depth 2 dynamic program will
score no worse than the 1

2
of OPT that a depth 1 dynamic program will. We

can generalize that proof to find tighter bounds.

Lemma 2.4.2. Each of the k
2

subproblems formed by dividing an optimal so-
lution after every fourth explanation primitive can have 65.5% of its optimal
score achieved with the use of 2 explanations.

We prove this by exhaustively enumerating all possible 4 width subprob-
lems, dismissing most of them with a counting argument and then exhaustively
covering the remaining two with two explanations and finding the worst case
behavior.

The border between any two explanation primitives occurs when an expla-
nation is either ending or starting. There are exactly three internal borders in
any width four subproblem. We will label classes of similar problems by the
events they contain. Using 1 to represent a beginning, and 0 an end, there are
8 naive classes of subproblems: 000, 001, 010...111.

Mirror image subproblems can be covered with mirror image explanations,
and the mirror image of subproblem abc is ¬c¬b¬a. This leaves us with four
distinct subproblem classes: 110, 101, 111, 011.

2.4.3.1 Trivial Classes

The first two classes, 110, 101 can be drawn in multiple ways depending on
which defect the 0 terminates.
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Figure 2.8: Class 110a

Figure 2.9: Class 110b

All of the 110 class members can be completely covered using as explana-
tions the three green defects. Since we are allowed to choose the two highest
scoring of those three, clearly 2

3
of the optimal score is trivial for this class.

The 101 class is smaller and similarly covered:
As with the 110 class, the members of 101 can both be covered completely

with 3 explanations, meaning 2 can always score 2
3

of the optimum score.

2.4.3.2 Exhaustive Explanation Enumeration

The next two classes can each only be drawn in one way and require some
labeling and reasoning to get our .655 approximation factor.

The full score available from covering a subproblem of class 111 is:

SMAX =a∆ + b∆ + c∆ + d∆ + . . .

bλ1 + cλ1 + dλ1 + . . .

cλ2 + dλ2 + dλ3

The set of maximal explanations for a subproblem of class 111 would in-
clude all explanations that begin where a defect begins and end where one
ends. That set is: (0, 4)(1, 4)(2, 4)(3, 4). There are (4

2) = 6 possible explana-
tion pairs to cover this region, and so we form a table.

The table, C is 6×10, with each column representing one of our 6 possible
explanation pairs, and each row corresponging to a term in the SMAX sum.
If C(i, j) = 0, neither of the explanations in pair i covers term j in the sum.
Otherwise, C(i, j) = 1.
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Figure 2.10: Class 110c

Figure 2.11: Class 101a

(0,4) (0,4) (0,4) (1,4) (1,4) (2,4)
sj (1,4) (2,4) (3,4) (2,4) (3,4) (3,4)
a∆ 1 1 1 0 0 0
b∆ 1 1 1 1 1 0
c∆ 1 1 1 1 1 1
d∆ 1 1 1 1 1 1
bλ1 1 0 0 1 1 0
cλ1 1 1 0 1 1 0
dλ1 1 1 1 1 1 0
cλ2 0 1 0 1 0 1
dλ2 0 1 1 1 0 1
dλ3 0 0 1 0 1 1

For any column i, the score obtained by placing those two explanations
is
∑

j sjC(i, j). Because each sj is a product of x ∈ {∆, λ1, λ2, λ3} and α ∈
{a, b, c, d}, our problem can be reformulated as the quadratically constrained
quadratic program (QCQP):

minimize F

subject to: ∀iF ≥
∑
j

sjC(i, j)∑
i

si = 1∑
j

αj = 1

∀i>0xi ≤ 1

0 < αi < 1

0 < xi
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Figure 2.12: Class 101b

a b c d
∆

λ1
λ2

λ3

Figure 2.13: Class 111

Our first constraint ensures that we are minimizing the highest score at-
tainable by any legal combination of maximal explanations. The second con-
straint,

∑
i si = 1 scales the score we achieve in this interval, making F the

ratio of score we can get to score possible in this interval. The third constraint,∑
j αj = 1 scales distance to allow for a unique solution to be found.
The fourth constraint, ∀i>0xi ≤ 1 guarantees that each defect λk can only

schieve a score of 1, with the exception of δ. Since δ represents the sum of all
defects that started before this span and end after it, it clearly should not be
constrained.

For d = 2, this QCQP can easily be typed into a computer algrbra system
(i.e. Mathematica) or modeling language (like AMPL) and yields a solution of
.705 for class 011 and .655 for 111. As we are looking for the worse performing
class, we see that in each 4 width subdivision, 2 explanations can score at least
65.5% of the available score.

For d > 2, the process outlined in section 2.4.3.2 is difficult to do by hand.
We wrote a computer program to solve this problem. Its subroutines:

1. Given the input d, generate all subproblem classes as 2d−1 bit numbers.
(i.e. 111, 101)

2. For each class, enumerate all possible matchings of defect beginning and
defect end to find all members of a class. (i.e. 101a, 101b)

3. Check if any set of d+ 1 explanations completely covers the class (since
α is theorized to be ≤ d

d+1
).

4. For each of these class members, find the set |E| of maximal explanations.

5. Using quadratic programming, calculates the min-max of the score of
(
|E|
d ) of these explanations.

31



a b c d
∆

λ1 λ2
λ3

Figure 2.14: Class 011

6. Report as the approximation factor for d the score from the worst per-
forming class.

We used the open source ipopt non-linear programming solver described in
[20] to solve the many quadratic programs that this procedure generates. Our
numerical results follow:

d Lower Bound
2 .655
3 .698
4 .736
5 .754
6 .773

While these bounds are encouraging, the dynamic program runs in O(|E|d).
Since we expect |E| ≥ 1000, the dynamic program for d = 4 is going to take of
order an hour on modern hardware, and d = 5 will take upwards of a month.

2.4.4 Linear Programming Relaxation / Binary Pro-
gramming

We are going to employ an LP relaxation in our numerical studies to determine
how close to optimal our solution is. We’ll also see how frequently a cutting
plane method can find a feasible, optimal solution to the integer program.

In order to turn our problem into an LP, we need to use defect primitives.
These were defined in section 2.2.1.

With defect primitives in hand, we can define a linear program that max-
imizes the weighted sum of defect primitives explained. The constraints are
that each defect primitive is only explained if a covering explanation is in the
set E. We have no more than k explanations in E. Primitives can only be
counted once for score.

Our variables are:
ei: 1 if explanation Ei is in our explanation set, and 0 if not.
pi,j: 1 if defect primitive di,j is explained, 0 if it is not.
Note: |di,j| and |Di| are constant lengths.
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Without integer constraints, our LP relaxation is:

Maximize
∑

i

∑
j pi,j

|di,j |
|Di|

Subject to:

∀i,jpi,j ≤
∑

k ek · θ(Ek ⊆ Di ∧ di,j ⊆ EK)∑
i ei ≤ k

∀i,jpi,j ≤ 1

∀i,jei ≤ 1

Those integer constraints are:

∀i,jpi,j ∈ {0, 1}
∀i,jei ∈ {0, 1}

2.4.4.1 Total Unimodularity

e1 e2 e3 e4 d1 d2 d3 d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7

-1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 1 0 0 0 0 0 0

-1 0 0 -1 0 0 0 0 1 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 1 0 0 0 0
0 -1 0 -1 0 0 0 0 0 0 1 0 0 0
0 0 0 -1 0 0 0 0 0 0 0 1 0 0
0 0 -1 -1 0 0 0 0 0 0 0 0 1 0
0 0 0 -1 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0

Table 2.1: Simple non-totally unimodular constraint matrix.

Were our formulation totally unimodular, the linear program would always
guarantee an integer solution and merely coming up with this model would
solve the problem. Unfortunately this is not the case. We will prove this by
counterexample.

The constraint matrix for the defect set and associated maximal explana-
tions in figure 2.15 is shown in table 2.1. We use Camion’s necessary and
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d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7

d1 d2 d3

Figure 2.15: Simple non-totally unimodular defect set.

sufficient condition for total unimodularity from [21] to prove this constraint
array is not totally unimodular. We quote that theorem below:

Theorem 2.4.1. Matrix A is totally unimodular if and only if for every
(square) Eulerian submatrix AIj

∑
i∈I
∑

j∈J A
i
j = 0 mod 4.

The highlighted cells from our constraint matrix form the following 4 × 4
square submatrix:

-1 0 0 -1
0 -1 0 -1
0 0 -1 -1
1 1 1 1

This submatrix is Eulerian since the sum of elements in each of its rows
and columns are even, but the sum of all elements is −2, a number that is
not divisible by 4. By Camion’s theorem, this constraint matrix is not totally
unimodular, so in general we cannot assume that any of our constraint matrices
will be totally unimodular.

2.5 Algorithm Bakeoff

While the only algorithms with calculated bounds are the dynamic program-
ming algorithm, and the Binary Programming algorithm (optimal when a so-
lution is found), we tested our algorithms’ performance on randomly generated
instances. The algorithms tested were:

greedyExplanationCover The greedy algorithm described in section 2.3.
For each of its k steps, places the highest scoring explanation given the expla-
nations already placed.

1-OPT A natural improvement to greedy where the output is improved by
a series of single explanation exchanges. It is greedy itself, choosing the best
single exchange at each step and terminating once there are no exchanges that
will improve the score.

Depth 1 Dynamic Program The approach from section 2.4, uses a dynamic
program to solve this problem. The dynamic program’s solution is limited to
the space of all solutions where no 2 explanations overlap.
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Depth 2 Dynamic Program This algorithm, described in section 2.4.2, uses
a dynamic program to solve this problem. The dynamic program’s solution is
limited to the space of all solutions where no 3 explanations overlap.

Integer Program Solution Implements the Binary program from sec-
tion 2.4.4 and lets the COIN-OR’s OsiClpSolver (as described in [22]) use
branch and bound methodology to get a solution.

2.5.1 Methods

Because purely random samples are unlikely to find even a local minimum, we
modified the GAlib genetic algorithm library [23] to minimize the performance
ratios of our algorithms. A gene consisted of 2N integers from [0, 100]. Each
consecutive pair of endpoints was made into a defect.

We started with a completely random population, and used a steady state
GA with sexual reproduction characterized by two point crossover. We wrote a
custom mutation routine that selected one of the following three randomization
operations:

Point flip: This looped through the entire gene and with constant proba-
bility p per endpoint, changed that value to a random number in [0, 100].

Neighbor swap: Loop through the entire gene, and with probability p per
defect, swapped an endpoint of defect i with an endpoint of defect j.

Random inversions: For each position i in the genome, with probability p,
generate a random number x in [1, 2k − i] and reverse the order of the next x
alleles.

We made the objective function to minimize the performance of each algo-
rithm in turn, and ran it for 10,000 generations with a population of 400.

2.5.2 N = K Results

WhenN = K, the trivially optimal solution would be one explanation identical
to each defect. Since 1-OPT and IP were uniformly optimal for these cases,
they are not shown.

Alg. DP 1 Greedy DP 2
(N,K)
(2, 2) 0.50 0.75 1
(3, 3) 0.67 0.79 0.90
(4, 4) 0.75 0.78 0.90
(5, 5) 0.75 0.82 0.91
(6, 6) 0.77 0.82 0.91
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2.5.3 N ≤ k

We then held N steady, and varied k. Here we had to use the LP relaxation
in place of an a priori OPT:

2 3

0.6

0.8

1

k

Percent OPT, N = 3

DP 1 DP 2 Greedy 1-OPT

Figure 2.16: Results for placing 2− 3 explanations to cover 3 defects.

Here we see what will become the overriding theme. A one depth dynamic
program is strictly inferior to the 2 depth DP, and worst performer overall.
As expected in light of greedy being a preprocessing step to 1-OPT, 1-OPT
dominates greedy. The 2 depth dynamic program outscores 1-OPT for low k
and gives up that lead as k increases.
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k

Percent OPT, N = 4

DP 1 DP 2 Greedy 1-OPT

Figure 2.17: Results for placing 2− 4 explanations to cover 4 defects.

The exact same pattern holds, with our algorithms from worst to best
being one depth dynamic program, greedy and the 1-OPT / 2 depth tie.

2 3 4 5

0.7

0.8

0.9

1

k

Percent OPT, N = 5

DP 1 DP 2 Greedy 1-OPT

Figure 2.18: Results for placing 2− 5 explanations to cover 5 defects.

Here, while the rankings don’t change, the 2-depth dynamic program held
its lead for all but the N = K case. Considering that 1-OPT will always find
the optimal solution in an N = k case, and that real life scenarios are char-
acterized by N >> k, this result strongly suggests that the 2 depth dynamic
program outperforms the other three heuristics.
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The clear winner was binary programming (not shown). In all but 4 of
the genome evaluations (out of 1.6 million), the MILP solver from COIN-
OR produced an optimal output. If it scales well for problems of real world
applicationsize, it would be the best algorithm to use in practice.

2.5.4 Timing Data

To illustrate algorithm running times on smallscale problems, we generated
1024 random defect sets of size N ∈ {4816} and had each algorithm place
K = {N,N/2, N/4} explanations. The timing results follow:

1 2 4

10−1

100

101

k

Log(Time) in seconds, N = 4

DP 1 Greedy LP
1-OPT DP 2

Figure 2.19: Time to place k explanations to cover 4 defects.

Even for small cases, the depth 2 dynamic program is more than 10 times
slower than any other algorithm. Since it scales as O(kn2+k), this algorithm
will quickly become impractical. We will devote a chart to its scaling, but
omit it from the rest of the timing plots.

1-OPT’s scaling is so much greater than the other algorithms that it is
masking the story. The dynamic program and greedy algorithm are both
requiring more time as k increases while the LP, surprisingly, requires less.

The N = 16 and N = 32 graphs tell the same story. Greedy scales linearly
with k, the LP takes marginally less time as k increases and the DP scales as
either

√
k or log k but with large enough n dependent scaling to be slow
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Figure 2.20: Time to place k explanations to cover 8 defects.
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Figure 2.21: Time to place k explanations to cover 8 defects (without 1-OPT).
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Figure 2.22: Time to place k explanations to cover 16 defects.
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Figure 2.23: Time to place k explanations to cover 32 defects.
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A log-log linear regression on the k dependence of the 1-OPT algorithm
shows that its dependence on k is approximately O(k2.5). For moderate values
of k ≤ 100, this may prove acceptable for use in the field.

2.5.4.1 2-Depth DP Timing

0.25 0.5 1

0.2

0.4

0.6

0.8

1

k
N

Normalized time vs. k

N = 4 N = 8

Figure 2.24: Timing data for the 2-depth dynamic program. Note that time
is normalized by the duration of the N = k call.

The running time dependence on k for the 2-Depth dynamic program is
exactly as it should be: linear.

On the other hand, the pessimistic O(kNk+2) upper bound on running
time is exactly that, pessimistic. The best fitting line’s slope for the log-log
plot with k = 2 was 3.78, and for k = 4 it was 4.26, and 5.21 for k = 8. We
hypothesize that these coefficients are below the worst case powers of 4, 6 and
10 because that bound occurs when our defect set is of depth O(N) for the
majority of times we encounter an endpoint.

If this hypothesis holds, it’s possible that the structure of real data will
allow for even better running times for the dynamic programming algorithm
than did our synthetic data.
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Figure 2.25: Timing data for the 2-depth dynamic program as a function of
N

2.6 Conclusions

We studied a number of candidate heuristics for the DNA copy number anal-
ysis problem. Our most powerful approaches were a binary programming for-
muation of the problem and dynamic programming based PTAS. The PTAS
has both a stronger theoretical grounding and performance guarantees, but its
running time is prohibitively expensive.

Fortunately, the binary programming formulation solved with a freeware
MILP had a very acceptable running time for problems of modest size. It is
our recommendation that researchers, specifically those who implemented the
CORE product referenced in [15], utilize this optimization method in place of
their current greedy approach.
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Chapter 3

The Waiter Problem in One
Dimension

James Zuber
Summary:

The waiter problem is a discrete packing problem where the objective is to
contain the partial centers of mass of objects placed on a line within a small
interval. We introduce the problem, prove its NP completeness, and present
both a bound on performance and a 2.7 factor approximation heuristic to solve
the problem.

3.1 Introduction

The waiter problem is fairly easy to define. Given a set xi ∈ X of unit point
masses, we seek an ordering πi that optimizes a measurement on the partial

centers of mass Cj =
∑j
i=1 xπi
j

.
The measurement that we choose to optimize over is the length of the

continuous interval [L,R] that contains the set of Cj. Other measurements
proposed. were the radius of a symmetric interval [−r, r] containing all Cj,
and the decision version of this problem: can the masses xi be placed in such
an order that the partial center of mass never leaves the given interval [A,B].

Any input set y can be transformed to have a final center of mass at 0 and
max |xi| = 1, with the following transformation: yi → yi−ȳ

max(|yi|−ȳ)
.
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3.2 Literature Review

While the problem that we are solving is novel, it is closely related to two well
researched problems in the literature. The first class of problems ask how to
best pack one dimensional boxes into one dimensional containers.

In [24] and [25], the problem under consideration is to pack one dimensional
boxes into a container in such away that the center of mass is as close as
possible to a target point. This differs from our problem because the center of
mass after each box is placed is never considered. Their problem was shown to
be strongly NP hard by a reduction from 3 partition in [24] who used the sorted
orderings that we’ll heavily rely on in this paper. Their formulation’s similarity
to the Knapsack Problem led to an interesting, and superior, algorithm in [25].

Another notable example of box packing was seen in [26] where they gen-
eralized the final position problem to be two dimensional, thus introducing an
added complexity layer of closest packing (in addition to weight balance).

We see another approach to the packing problem in [27] where he showed a
mixed integer programming model whose answer would be an optimal packing
of boxes. Recently, a similar mixed integer programming approach was used
in the practical application of loading cargo airplanes [28].

While the above are simliar to our problem, they all differ by not requiring
that the center of mass be measured and constrained with each additional
weight added. A problem that requires such a constraint check at each step is
compact vector summation or CVS.

In CVS the problem is to specify an order to sum a number of k−dimensional
vectors and keep every partial sum within a k−dimensional ball of fixed radius.
In [29] we find an excellent summary of results in CVS and their application to
job scheduling problems, this is updated with further results in [30]. Because
of the similarity between ours and the job scheduling problem, many of the
heuristic approaches referenced in [31] and [32] can be translated directly into
heuristics for our problem, though we should be careful as certain bad cases
for CVS [33] are trivial in our problem.

3.3 NP Completeness

The waiter problem is NP complete, and the reduction is from 3-partition.
But before we prove this, we require one simple lemma.

Lemma 3.3.1. Placing a point at 0 (the final center of mass) never reduces
the number of legal future moves.

Proof. When we place a point xπn , it will cause our center of mass to leave
the current interval [L,R] if either:
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n−1∑
i=1

xπi + xπn > nR

n−1∑
i=1

xπi + xπn < nL

In other words, all legal values for the point xπn lie in the interval [nL −∑n−1
i=1 xπi , nR−

∑n−1
i=1 xπi ]

If our original sum over n elements contained none with a value of zero, and
our new sums contain k elements with a value or zero, then the new inteval of
all legal values is:

Σ =
n−1∑
i=1

xπi +
k∑
j=1

0

xπn ≤ (n+ k)R− Σ

xπn ≥ (n+ k)L− Σ

xπn ∈ [(n+ k)L− Σ, (n+ k)R− Σ]

∀L,R with L ≤ R this is larger than our initial range of:

xπn ∈ [(nL− Σ, nR− Σ]

Since our final center of mass is located at 0, and must be contained in
our interval, we know that L ≤ 0 and R ≥ 0 so our initial range of values is a
subinterval of the range allowed after placing the zeros.

Theorem 3.3.1. Given an instance of 3-partition where |xi| = 3N,∀i 1
4
<

xi <
1
2
, we can reduce it to an instance of the 1 dimensional waiter problem in

polynomial time.

Proof. Our set of weights will fall into 3 categories. There will be M masses
to place at 0 (which will be the final center of mass), there will be N masses
to place at −1 and the remaining 3N masses will all be placed at the positions
xi corresponding to our 3-partition instance.

By lemma 3.3.1, we can say that instead of requiring a non-polynomial re-
duction where M , the number of weights located at point 0, wasn’t polynomial
in input size and required we have that many weights in the instance, we can
instead place those M weights in O(1) time and tackle the remaining 3N +N
weights in our reduction.
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In order to remain in the interval [0, 1
M

], whenever we seek to place one of
our xi = −1 weights, the running sum must be exactly 1.

Σ =
n−1∑
i=1

xπi +
M∑
j=1

0

xi ≤ (n+M)R− Σ

xi ≤
n

M
+
M

M
− Σ = 1− Σ

xi ≥ (n+M)L− Σ = 0− Σ

xi ∈ [−Σ, 1− Σ]

Positive xi weights can be placed whenever xi + Σ < 1 and the negative
values can be placed whenever −1 ∈ [Σ, 1 − Σ], or Σ >= 1. But if Σ > 1,
we have the center of mass C = Σ

k+M
≈ Σ

M
> 1

M
where the approximation

approaches equality as M →∞.
This means our negative weights can only be placed when Σ = 1, i.e. when

three positive masses have been placed that sum to 1. Deciding if this can be
repeated N times is exactly the 3-partition question, which is NP-hard.

The requirement that Σ
n+M

≤ 1
M

for all Σ can allow us to set a lower bound
for M . As the greatest value k will hold is 4n, this gives us the requirement
that:

Σ ≤ 1 +
4n

M

TO ensure this is never violated, we find the smallest sum of 3 or 4 xi that
is strictly greater than 1 and call this sum 1 + ε. When ε > 4n

M
, all sums of 3

elements that are greater than 1 are greater than 1 + k
M

for all k ≤ 4n.

3.4 Analytical Bounds

3.4.1 Naive Bound

Throughout this section, we are requiring that
∑

i xi = 0, an assumption that
can be satisfied by transforming any input set yi into xi = yi − ȳ.

We will show that |R − L| ≥ |xi|
i

is a naive lower bound on the optimum
difference between the left and right endpoint of the interval containing the
center of mass (hereafter Ci ∈ [L,R]) if our masses are sorted by distance from
the origin.
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Observation:
Adding a new point moves the current center of mass according to:

ci =
xi +

∑i−1
j=1 xj

i

ci =
(i− 1)ci−1

i
+
xi
i

ci − ci−1 =
xi − ci−1

i
|ci − ci−1| = ∆C ≤ |R− L|

Lemma 3.4.1. If sign(ci) = sign(ci−1) then |R− L| ≥ xi
i

Proof. Continuing from above:

ci − ci−1 =
xi − ci−1

i

ci = ci−1(
i− 1

i
) +

xi
i∣∣ci∣∣ =

∣∣ci−1(
i− 1

i
) +

xi
i

∣∣
S = sign(ci−1) ∗ sign(xi)∣∣ci∣∣ =
∣∣ci−1

(i− 1

i

)∣∣+ S
∣∣xi
i

∣∣
There are two cases:
Case 1, S = +1:

∣∣ci∣∣ =
∣∣ci−1

(i− 1

i

)∣∣+
∣∣xi
i

∣∣
→
∣∣ci∣∣ ≥ ∣∣xi

i

∣∣∣∣R− L∣∣ ≥ ∣∣ci∣∣By definition of R,L

→
∣∣R− L∣∣ ≥ ∣∣xi

i

∣∣
Case 2, S = -1:
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∣∣ci∣∣ =
∣∣ci−1

(i− 1

i

)∣∣− ∣∣xi
i

∣∣∣∣xi
i

∣∣+
∣∣ci∣∣ =

i− 1

i

∣∣ci−1

∣∣∣∣ci−1

∣∣ =
i

i− 1

∣∣xi
i

∣∣+
i

i− 1

∣∣ci∣∣∣∣ci−1

∣∣ ≥=
i

i− 1

∣∣xi
i

∣∣
→
∣∣ci−1

∣∣ ≥ ∣∣xi
i

∣∣∣∣R− L∣∣ ≥ ∣∣ci−1

∣∣By definition of R,L

→
∣∣R− L∣∣ ≥ ∣∣xi

i

∣∣

Lemma 3.4.2. If sign(ci) 6= sign(ci−1) then
∣∣R− L∣∣ ≥ xi

i

Proof. First, sign(ci) = sign(xi) is trivially true as a positive ci can’t be the
sum of two negative numbers, and conversely a negative ci can’t be the sum
of two positive numbers. Then we continue:

ci = ci−1
i− 1

i
+
xi
i

ci − ci−1 =
xi
i
− ci−1

i∣∣ci − ci−1

∣∣ =
∣∣xi
i
− ci−1

i

∣∣∣∣ci − ci−1

∣∣ =
∣∣xi
i

∣∣+
∣∣ci−1

i

∣∣∣∣ci − ci−1

∣∣ ≥ ∣∣xi
i

∣∣∣∣R− L∣∣ ≥ ∣∣ci − ci−1

∣∣By definition of R,L∣∣R− L∣∣ ≥ ∣∣xi
i

∣∣
By combining Lemmas 3.4.1 and 3.4.2, we get:

Theorem 3.4.1. For any ordering of xi the interval containing the center of

mass satisfies: ∀i
∣∣R− L∣∣ ≥ ∣∣xi∣∣

i
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Corollary 3.4.3. For any valid solution to the waiter problem, |R−L| ≥ |xi|
i

where xi is the mass whose position has the ith smallest magnitude.

3.4.1.1 Non-tightness of Naive Bound

The above bound is not particularly tight, as is evidenced by the following
counterexample:

Allow the first k xi to all be positive and have values of i. Let xk−1 = −k
and then require ∀i>k,−1 ≤ xi

i
≤ 0 giving us a value of 1 for our naive bound

on interval width.
The actual center of mass achieved by placing the masses in this order is:

ck = 1
k

∑k
i=1 i = k−1

2
.

The optimal center of mass interval is shorter than this, as we can add
positive weights in order until cl = k

l
which occurs approximately when l2−l

2
=

k → l ≈ 2
√
k. This gives us a center of mass of cl ≈

√
k

2
. This is arbitrarially

better than our naive lower bound.

3.4.2 Tentpole Bound

If we separate the masses into a positive list p and a negative list n and
sort these both by absolute value, we can bound the optimum solution in the
following manner:

|R− L| ≥ pi
π+
i

|R− L| ≥ |ni|
π−i

Where the tentpole permutation orders π+, π− are defined as follows:

π+
j = j + max

k
{k :

k∑
i=1

|ni| ≤
j∑
l=1

pl}

π−j = j + max
k
{k :

k∑
i=1

pi ≤
j∑
l=1

|nl|}

The definition of the tentpole ordering is fairly straightforward: we place
our masses at the latest possible point where they don’t allow the

√
n bad case
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to occur. We first place the smallest absolute value mass and make that list
(either positive or negative) active. That list remains active (and we place its
members in increasing order) until placing its next member would move the
center of mass so far that placing the head of the inactive list would not change
the sign of our center of mass. Instead of letting this happen, we switch active
lists.

The name tentpole comes from the idea that optimally placing a very large
magnitude element will move our center of mass from R before it is placed to
L after, i.e. that element will be like a tentpole, touching the entire span of
our center of mass range.

In the following sections, we will prove this bound is a minimum bound.

3.4.2.1 Bounds on |R− L|

Lemma 3.4.4. For any input set to the waiter problem, where si are all terms
with the same sign sorted by magnitude, the min-max of the ratio |si|

πi
must

occur when ∀k<iπk < πi.

Proof. si is a stand in for either our positive or negative vectors that are sorted
by magnitude. By contradiction, we assume min-max |si|

πi
occurs at an i where

∃k<iπi < πk.
Because the inputs are sorted, |sk| ≤ |si|. Exchanging the two would lead

to two new ratios in our sequence: |si|
πk

and |sk|
πi

.

From πk > πi
|si|
πk

<
|si|
πi

Since |sk| ≤ |si|
|sk|
πi
≤ |si|

πi

These new ratios being lower than |si|
πi

contradict the assumption that it
was the lowest possible maximum value of this ratio.

Lemma 3.4.5. For the i maximizing the quantity |si|
πi

in the tentpole bound,

any ordering placing this element earlier than πi has a span |R− L| > |si|
πi

.

Proof. This follows from trivial application of theorem 3.4.1.

Lemma 3.4.6. For the i maximizing the quantity |si|
πi

in the tentpole bound,

any ordering placing this element later than πi has a span |R− L| > |si|
πi

.
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Proof. WOLG we are going to assume si is positive, in the tentpole ordering
we have placed J − 1 positive elements, before si and K negative elements.
Clearly, J + K = i. Next, we define the useful variable S, and restate the
tentpole ordering relation for π+

j in terms of S:

S =
K∑
k=1

nk +
J−1∑
j=1

pj

S < pJ < |S + nK+1|

If pJ isn’t placed during this step, then somewhere in the first i placements,
we added another positive or negative element. We will show that placing a
positive or negative element in place of pJ will increase the span.

If that replacement element, x, is positive, the lowest value it can hold is
pJ+1 > pJ . Replacing pJ by x results in a center of mass at this step greater
than that from the tentpole bound:

c∗i =
S + x

K + J

x > pj

c∗i > ci ≥
pJ
π+
J

If x is negative, its minimum magnitude is nK+1 and we get:

c∗i =
S + x

K + J

|S + x| ≥ |S + nK+1| > pj

|c∗i | > ci ≥
pJ
π+
J

Theorem 3.4.2. The tentpole permutations minmax the quantity |si|
πi

, and thus
represent a lower bound on |R− L|.
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3.4.2.2 Tentpole Placement Heuristic

If we place our masses in the order perscribed by the π+
i and π−i from the

tentpole ordering, how close to optimal will this ordering be? In this section,
we’ll scale distance so that the maximum of the tentpole ratio si

πi
= 1, and use

our partial sum notation of Si as above:

Si =
K∑
k=1

nk +
J∑
j=1

pj

The tentpole ordering ensures that si will be placed at the latest point
where it will cause a change in the sign of the running sum. In other words,
si ≥ |S|. If the inequality is tight, the center of mass before placing si was:

S

πi − 1
=

si
π+
i − 1

>
si
πi

This tells us that the center of mass can be a bit greater in magnitude than
the tentpole bound the following theorem tells us how bad a constant ratio we
can promise for the tentpole ordering as a placement heuristic.

Theorem 3.4.3. If we use the tentpole ordering as a placement heuristic, it
gives us a result no worse than 2.7 times wider than the tentpole width of
max si

πi
.

Proof. Because we’ve redefined length so the ratio of si
πi

= 1, we can say
∀i, |si| ≤ i.

From the tentpole ordering we know that:

|Si| < |si+1|
|Si| < i+ 1

ci =
Si
i
≤ i+ 1

i

If we define a and b as the indices where we stop going left and right, then
we can say:
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|L| ≤ a+ 1

a
= 1 +

1

a

R ≤ b+ 1

b
= 1 +

1

b

|R− L| ≤ 2 +
1

a
+

1

b

From this we obviously want a and b as small as possible, but wecalling
that in order to get from L (which we approach first) to R, we have to conit-
nue respecting our |si| ≤ i constraint and that gives us the following set of
constraints:

|L| = |
a∑
i=1

si| =
|Sa|
a
≤ a(a+ 1)

2a

R =
b∑
i=1

si =
Sb
b
≤ b(b+ 1)

2b

Sb − |Sa| =
b∑

i=a+1

si ≤
b(b+ 1)

2
− (a+ 2)(a+ 1)

2

This final difference is zero unless b ≥ a+ 2. Now we just start calculating
the ratio R(a, b) of tentpole width vs tentpole ratio of si

i
= 1:

R(1, 3) = 21
3

1∑
i=1

|si| ≤ l ≤ |L|

3∑
i=2

si ≤ 4

R ≤ 4

3

|R− L| ≤ 2
1

3
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R(1, (n > 3)) < 21
3

R(2, 4) = 21
2

2∑
i=1

si ≥ −3

|L| ≤ 3

2
4∑
i=3

si ≤ 7

R ≤ 7− 3

4
= 1

|R− L| ≤ 2
1

2

R(2, 5) = 2.7

2∑
i=1

si ≥ −3

|L| ≤ 3

2
5∑
i=3

si ≤ 12

S5 ≤ 6

R ≤ 6

5

|R− L| ≤ 2
7

10

R(2, (n > 5)) < 2.7
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3.5 Selected Algorithm Descriptions

The three algorithms we tried that require detailed explanations are the tent-
pole placement heuristic, Tentpole, described in section 3.4.2.2; the price is
right heuristic, PriceIsRight; and the optimal sorted algorithm, Staircase.

3.5.1 Price Is Right Heuristic

The price is right algorithm is designed to answer a similar but not identical
problem to the one at hand: given a specific input interval [L,R], can we select
an ordering of point placements that keep the center of mass inside of that
given interval. Our insight was that instead of placing points in as conservative
a manner as possible, we should aim for the center of mass to get as close to the
interval boundaries as possible. Whether this ordering would keep us inside
the input interval is answered by PriceIsRightQuery(x,L,R).

With the PriceIsRightQuery(p,n,L,R) algorithm in hand, we performed
a modified version of binary search to minimize the span, � = |R − L|, re-
quired by the algorithm. By normalizing our inputs, we know that all of our
positive and negative elements are in [−1, 1]. Thus, � ≤ 2. We then select a
number of slices K, and turn our optimizing problem over L and R into a one
dimensional function:

PQ(L,R) = PriceIsRightQuery(p, n, L,R)

f(�) = min
0≤i≤K

PQ(−� + i ∗ �
K
, i ∗ �

K
)

Clearly when i = 0, the arguments to PQ are (−�, 0), while when i = K
they are (0,�). This binary search finds a minimum span no more than 1 + 2

K

times the smallest span into which we can fit a PriceIsRightQuery.

3.5.2 Staircase Heuristic

Once we constrain ourselves to placing positive and negative elements in sorted
order (i.e. before placing the third smallest positive element, the secondsmall-
est must be placed), the solution space shrinks. We define with J the number
of placed positives and K the number of placed negatives. For any ordered
pair (J,K) there will be a current center of mass:
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Algorithm 5 PriceIsRightQuery(p,n,L,R)

Given input interval [L,R], sorted positive points pi, sorted negative points
ni
Running sum S = 0
for i = 1 to initial size of |p|+ |n| do

Find lowest magnitude candidates:
Li+1 = S+n1

i+1

Ri+1 = S+p1
i+1

if Li+1 < L and Ri+1 > R then
Return false
Both new points will be too large.

end if
Find max values to stay within boundaries:
minL = (i+ 1)L− S
maxR = (i+ 1)R− S
Search for largest legal candidates
LC = minj nj|nj ≥ minL
RC = maxj pj|pj ≤ maxR
if then|LC −minL| ≤ |RC −R|

xi ← ni(l)
n← n \ ni(l)

else
xi ← pi(r)
p← p \ ni(r)

end if
S ← S + xi

end for
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C(J,K) =

∑J
j=1 pj +

∑K
k=1 nk

J +K

The Dynamic Program That Almost Was
It would be straightforward to use a dynamic program and this matrix

C(J,K) to answer queries of the sort: For a given lower bound on L, what is
the minimax value of R we must pass through while placing all of our p and
n elements?

The recurrence is R(j, k) = max(C(j, k),min(R(j − 1, k), R(j, k − 1))),
the memoization table is of size |p||n| and we have to ask this query once
for each possible negative value of C(j, k) which is O(|p||n|) for a grand total
running time of O(|p|2|n|2) which dominates the sorting time required for any
sorted algorithm of O(|p| log |p| + |n| log |n|). Fortunately, this slow dynamic
programming solution inspired the much faster staircase heuristic.

A Staircase
If we view a table of C(i, j) as a matrix, its upper left entry is 0, its lower

right entry is 0. By lemma 3.5.1, we know that each row’s entries increase
as we move to the right, and each columns’s entries decrease as we go from
top to bottom. Any path in this chart from the upper left corner to the lower
right corner that travels exactly one box right or down at a time correlates to
a legal placement ordering of our masses. We will call such a path a staircase.
The highest value of C(i, j) encountered on this staircase is R, and the lowest
L.

In each row, there is a single lowest valued positive entry, and it occurs im-
mediately after the single highest valued negative entry. Similarly for columns,
the lowest positive entry is before the highest negative entry. Our algorithm
starts with the staircase that includes the lowest valued positive entry of each
row and column. Since this staircase is never negative, its span is just its
associated R value.

Our algorithm progresses by removing the highest valued R from the stair-
case, located at C(i, j) and inserting the negative element C(i − 1, j + 1) in
its place so that the staircase remains connected. Now we update the L value
for the staircase to min(L,C(i− 1, j + 1)), and update R to the new highest
valued positive member of the staircase. We note the span each time (and
record the best to return), and stop when there are no positive elements left
in the staircase. Our initial sort took O((|p| + |n|) log((|p| + |n|) operations,
and each of our O(|n|+ |p|) updates takes O(1) operations.

Generating the initial staircase is trivial. Since C(0, 1) has to be negative,
C(1, 0) is the first element and our starting location. When we are at positive
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C(i, j) we can either add a negative element and get to C(i, j + 1) or add
a positive element and wind up at C(i + 1, j). We do the first whenever
C(i, j+1) ≥ 0, and the second otherwise. This required O(|p|+|n|) operations.

Theorem 3.5.1. The staircase heuristic yields the smallest possible span of
all sorted algorithms.

This requires some steps.

3.5.2.1 Proof of Staircase Optimality

We need a few lemmas to prove theorem 3.5.1.

Lemma 3.5.1. ∀i,j,k>1C(i, j + k) ≤ C(i, j) ∀i,j,k>1C(i+ k, j) ≥ C(i, j)

Proof. From the definition of C(j, k) we get:

C(i, j + k) ≤ C(i, j)∑i
a=1 pa +

∑j+k
b=1 nb

i+ j + k
≤
∑i

a=1 pa +
∑j

b=1 nb
i+ j

(i+ j)
k∑

b=j+1

nb ≤ k(
i∑

a=1

pa +

j∑
b=1

nb)

k∑
b=j+1

nb ≤ knj+1

∀anj+1 ≤ pa → (i)nj+1 ≤
i∑

a=1

pa

∀b≤jnj+1 ≤ nb → (j)nj+1 ≤
j∑
b=1

nb

k(i+ j)nj+1 ≤ k(
i∑

a=1

pa +

j∑
b=1

nb)

(i+ j)
k∑

b=j+1

nb ≤ k(
i∑

a=1

pa +

j∑
b=1

nb)

A similar argument works for the other relation.

58



Because we can only add masses one at a time:

Lemma 3.5.2. The predecessor of C(i, j) must be either C(i−1, j) or C(i, j−
1). Its successor must be either C(i+ 1, j) or C(i, j + 1).

Lemma 3.5.3. If C(i, j) is on our initial staircase, C(i − 1, j + 1) must be
negative.

Proof. C(i, j)’s predecessor in our initial staircase is either C(i−1, j) or C(i, j−
1).

Predecessor is C(i−1, j): By construction, we only would go from C(i−
1, j) to C(i, j) if C(i− 1, j + 1) < 0.

Predecessor is C(i, j − 1): The predecessor of this predecessor is either
C(i − 1, j − 1) or C(i, j − 2), since the first would imply C(i − 1, j) < 0 (by
construction) and thus C(i− 1, j + 1) < C(i− 1, j) < 0, (from lemma 3.5.1),
the only problematic case is C(i, j − 2). Continuing in this vein for k > 0, the
first predecessor of the form C(i− 1, j− k) implies C(i− 1, j− k+ 1) < 0 and
thus C(i− 1, j + 1) < C(i− 1, j − k + 1) < 0. Such a predecessor must exist
since there is an entry in each row and C(i, 0) ≥ 0.

Lemma 3.5.4. In order to remove the highest valued C(i, j) from the staircase,
the negative element C(i− 1, j + 1) must be added to it.

Proof. Combining lemma 3.5.1, with the knowledge that C(i, j) is the maxi-
mum element in the staircase, we can say that C(i+1, j) > C(i, j) and so would
be removed before C(i, j), similarly C(i, j−1) > C(i, j) and would also already
be removed. Since the staircase can only consist of adjacent neighbors, C(i, j)
occurs in the chain between its only legal neighbors: C(i−1, j) and C(i, j+1).
The only other element adjacent to both of these is C(i−1, j+1), which would
have to be added to the staircase to allow for removal of C(i, j).

Lemma 3.5.5. The initial staircase has the smallest span of any mass ordering
with L = 0.

Proof. By contradiction we assume that a wholly positive staircase exists
whose maximum element R is strictly less than the max element C(i, j) in
our initial staircase.

The predecessor of C(i, j) is either C(i−1, j) or C(i, j−1). But C(i, j−1) <
C(i, j) by lemma 3.5.1, contradicting the assertion that C(i, j) is our maximum
element.

This leaves us with C(i− 1, j) as predecessor. From lemma 3.5.4, we know
that C(i − 1, j + 1) is negative. This means all wholly positive paths cannot
enter row j with fewer than i positive elements already placed. Since their
entry point, C(i+ k, j) ≥ C(i, j) ≥ R for k ≥ 0, we have a contradiction.
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We can now prove theorem 3.5.1.

Proof. By induction. At each step k our Lk is the maximum (i.e. minimum
magnitude) negative entry that any staircase must hit for the Rk we allow.
The beginning of the recursion is easy: L = 0 is the maximum L can be, ever.

At a step in our algorithm, we seek a lower Rk by removing the highest
C(i, j) in our sequence. To do this, by 3.5.4, we replace it with negative
element, C(i − 1, j + 1). If this new negative element is more positive than
Lk−1, then the induction holds trivially. If not, then Lk = C(i− 1, j + 1).

For contradiction, we assume that a staircase exists with R = Rk and
L > Lk. To improve our staircase, we would have to remove C(i − 1, j + 1).
The chain of reasoning used in 3.5.4 leads us to conclude that the only way to
do this is by adding in C(i, j) which would give a path with R = Rk−1 > Rk,
a contradiction.

Since at each step, we find the max L for each candidate R value and record
the smallest span found, we find the smallest span.

3.6 Numerical Testing of Heuristics

In the spirit of testing our work, we developed and tested 6 heuristics that
gave us solutions to the waiter problem and also a heuristic giving a lower
bound on the width of the optimum solution. To test these heuristics against
an optimum solution, we wrote a branch and bound exact solver for the waiter
problem that ran in exponential time.

3.6.1 Branch and Bound Exact Solver

The waiter problem can be solved in exponential time with a simple to write re-
cursive function which tests all possible candidates. By modifying this slightly
to record the smallest width of a complete traversal thus far discovered, we
can prune many unnecessary branch traversals and significantly improve run-
ning time. This branch and bound routine is BBWaiter. Note that ∆ must
be passed by reference (or be global) so that the recursive function calls can
modify it for all calls, not just their descendants.
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Algorithm 6 BBWaiter(input,L,R,sum,N,∆)

for i = 1 to |input| do
newL = L;
newR = R;
newCenter = (sum+input[i])/(N+1);
if newCenter < L then

newL = newCenter;
end if
if newCenter > R then

newR = newCenter
end if
if newR − newL ≥ ∆ then

Continue
end if
if |input| > 1 then

bestWidth[i] = BBWaiter(input \ input[i], newL, newR, sum+x, N+
1,∆);

else
bestWidth[i] = newR − newL

end if
if |input| = 1 AND newR − newL < ∆ then

∆ = newR − newL
end if

end for
return mini bestWidth[i]
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3.6.2 Brief Heuristic Descriptions

In the following discussion, “the interval” will be used as shorthand to mean
the interval containing the center of mass Ci for all i less than or equal to the
current step of the algorithm. “CoM” will also be used regularly to mean the
center of mass at the curent step of the algorithm.

Almost all of our heuristics start by separating our inputs into positive and
negative lists and sorting those lists by absolute value. When either positive or
negative elements are placed, they are placed in order of increasing magnitude.
We will note algorithms which do not do this by calling them unsorted.

1. GreedyCentroid This algorithm belongs to our family of sorted algo-
rithms. At each step, it places the smallest magnitude remaining posi-
tive or negative candidate that minimizes the absolute value of the next
step’s center of mass.

2. PositvesNegatives This sorted algorithm seeks to keep the center of
mass positive by placing positive elements in order of increasing magni-
tude and only placing the next largest magnitude negative element when
its inclusion will not make the center of mass negative.

This is repeated for keeping the CoM negative and the smaller interval
order is returned.

3. PriceIsRight The price is right is an unsorted algorithm that optimizes
the interval width of the yes/no question: can applying this heuristic
keep the center of mass inside of a given input interval [L,R]?

At each step the price is right heuristic places the mass that moves the
CoM closest to one of its endpoints without going past it. See its writeup
in section 3.5.1 for more details.

4. SlowGrow This greedy, sorted algorithm seeks to increase the width of
the interval containing the CoM by the smallest amount each step. It
does so by placing the smallest positive or negative element if doing so
would not increase the width of the interval, or selecting the element
that increases the interval width by the smallest amount.

5. SortedMidpoint This is very similar to SlowGrow. It seeks to indepen-
dently minimize the values of |L| and |R| by placing the smallest positive
or negative element if the resultant CoM is within the curent interval, or
if they both would result in increasing the width of the interval, placing
the point whose resultant center of mass has the smallest magnitude.
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6. SortedPoints This very naive heuristic places points in order of in-
creasing magnitude. This heuristic performs poorly on the case shown
in section 3.4.1.1 and is expected to have worst case behavior no better
than an O(

√
n) times the width of the optimal solution.

7. Staircase The best possible algorithm that uses sorted placements. For
each relevant R, it finds the path with minimum |L| whose CoM is never
less than L. See its writeup in section 3.5.2.

8. Tentpole This sorted heuristic seeks to keep us from making a bad
decision that will allow the center of mass to grow larger than it has
to. At each step it places masses of the same sign (positive or negative)
until the magnitude of the running sum of masses placed plus the next
candidate of the same sign is greater than the magnitude of the candidate
of the opposite sign. Once this happens, the opposite sign candidate is
placed and this becomes the active sign.

9. TentpoleLB

This is not a solver algorithm, it calculates the absolute lower bound for
|R − L| defined in theorem 3.4.2 by determining the tentpole ordering

and then finding the maximum of the two quantities pi
π+
i

, |ni|
π−
i

, which is an

occasionally tight lower bound on optimum |R− L|.

We also reassure ourselves that the independent bounds on |L| and |R|
that we find using the tentpole ordering are in fact lower bounds no smaller
than 1

2
of the width of the optimum solution.

3.6.3 Numerical Results

We generated a few million sets of input masses. Our input mass sets had a
fixed length of 10, an average of 0, and a maximum magnitude of 1. For each
input set, we found the optimum solution of smallest width using BBWaiter

and then also found the heuristic solution using each of our methods. The
indices of worst cases were flagged for later worst case analysis.

For each algorithm, we noted which inputs it struggled with the most. Since
all algorithms were run on the same inputs, we summarize in table 3.2 how
algorithms solved each other’s toughest cases. Though PriceIsRight outper-
forms all other algorithms on their own worst cases, SlowGrow, SortedMidpoint
and Staircase outperform PriceIsRight on its own worst case scenario, and
Staircase outperforms it on GreedyCentroid’s worst case.

Since Staircase was analytically shown to dominate Tentpole and SlowGrow,
it is nice to see the numbers bear this out. The numbers also allow us to
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Heuristic Min Max Mean Std Runs
GreedyCentroid 1 1.98 1.23 0.17 1000000
PositivesNegatives 1 4.71 1.39 0.29 1000000
PriceIsRight 1 1.34 1.02 0.03 1000000
SlowGrow 1 1.63 1.08 0.09 1000000
SortedMidpoint 1 1.63 1.08 0.09 1000000
SortedPoints 1 3.13 1.65 0.34 1000000
Staircase 1 1.38 1.03 0.05 1000000
Tentpole 1 1.98 1.24 0.18 1000000
TentpoleLB 0.55 1 0.89 0.08 1000000

Table 3.1: Algorithm performance on 10 input points drawn from a Nor-
mal(0,1) distribution and then fixed using the transformation: yi → yi−ȳ

max(|yi|−ȳ)
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GreedyCentroid 1.98 1.98 1.05 1.09 1.09 1.99 1 1.77 0.99
PositivesNegatives 1.38 4.71 1 1 1 1 1 1.09 1
PriceIsRight 1.33 1.33 1.34 1.29 1.29 2.26 1.29 1.33 0.98
SlowGrow 1.55 1.55 1 1.63 1.63 1.43 1 1.63 1
SortedMidpoint 1.55 1.55 1 1.63 1.63 1.43 1 1.63 1
SortedPoints 1 1.64 1 1 1 3.13 1 1 0.91
Staircase 1.39 1.39 1 1.39 1.39 1.53 1.38 1.39 0.92
Tentpole 1.86 1.97 1 1.02 1.02 1.98 1 1.98 0.98
TentpoleLB 1.53 1.53 1.01 1.01 1.01 1.79 1.01 1.31 1

Table 3.2: Each row represents the worst scenario observered for a specific
algorithm. Columns show performance of each algorithm on those inputs.
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abandon the three algorithms whose performance could be arbitrarially bad:
GreedyCentroid, PositivesNegatives and SortedPoints. As the running
time of all algorithms that are not PriceIsRight is O(n log n), these badly
performing algorithms have no competitive advantage.

Since Tentpole was soundly beaten by the remaining algorithms, it is likely
that a more careful analysis will show a tighter bound on Staircase than the
2.7 it inherited by dominating all sorted algorithms, including Tentpole.

3.7 Conclusion

In this paper we introduced a new, NP-complete, balanced packing problem:
the waiter problem. Our initial results in one dimension were promising. We
devised a number of simple heuristics based on sorting. For one of them,
Tentpole, we were able to prove that it was a 2.7 factor approximation algo-
rithm. Initial experimental tests showed that another of our proposed algo-
rithms, PriceIsRight outperforms the other heuristics on a large number of
test cases.

We then devised a Staircase algorithm which is the best possible sorted al-
gorithm. This algorithm’s dominance over the earlier sorted algorithms was ex-
perimentally verfied, and the non-sorted PriceIsRight algorithm was shown
to occasionally outperform it.

Though we plan to extend the work to two dimensions, we note that the real
world applications to airplane loading are well served with a one dimensional
approximation.
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