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Abstract of the Thesis

Quantum Phase Transition and Quantum Entanglement
in the Generalized Cluster-XY Model

by

Aydin Deger

Master of Arts

in

Physics

Stony Brook University

2016

In this work, we give a detailed analytic treatment of one-dimensional

anisotropic XY model in the transverse field. We present a multipartite

geometric measure of entanglement per site and per block and use it for

quantifying global entanglement in many-body systems. We also investigate

spontaneous symmetry breaking and Quantum Phase Transition (QPT) in

the model. Further, we extend the solution of the XY model to the n-site

interaction and diagonalize the Hamiltonian and obtain energy levels and

eigenvalues. We also examine Quantum Entanglement and QPT for next-

nearest neighbor interaction and halfway interaction. At last, we introduce a

Generalized Cluster-XY Hamiltonian with n-site interaction. Through this,

one can diagonalize many suitable bilinear Hamiltonians by defining param-

eters that characterize the model. By using the model, we investigate QPT

between Ferromagnetic-Paramagnetic state, GHZ-Cluster state and symme-

try protected topological order and an antiferromagnetic state.
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1 Introduction

Integrable quantum spin chains have a significant importance for statisti-

cal physics, quantum many-body physics and quantum information theory.

There are many challenges in this field. To name a few, one can study mag-

netism, superconductivity, quantum computing, new states of matter, and

strange quantum phenomena such as quantum entanglement or quantum

phase transition. Antiferromagnetic Heisenberg chain was one of the first

introduced models and solved by Bethe in 1931 [1]. Over the years, many

spin-1/2 and spin-1 models have been introduced in one and two dimen-

sions. For example, these include Ising Model [2] which is a mathematical

model for ferromagnetism, AKLT [3] for spin-1 systems for understanding

valence-bond solids and Hubbard model [4] for investigating conducting and

insulating systems.

The Ising Model was firstly introduced by Lenz [5] and studied by Ising

[2] through his Ph.D. research. In 1941, Kramers and Wannier [6] studied

high and low-temperature expansion of the two-dimensional Ising model and

after three years, the model was exactly solved by Onsager [7] for the first

time. Later, Lee and Yang investigated the partition function and its roots

on complex field plane [8]. In 1964, Schultz, Mattis and Lieb [9] solved the

problem using fermions. Later, all aspects of the problem and thermody-

namic properties have been discussed in great detail by McCoy and Wu [10].

Lieb, Schultz, Mattis presented two soluble spin chain, including the

quantum XY Model [11]. Many other authors studied all statistical proper-

ties, correlation, quantum entanglement and quantum phase transition in this

model [12] [13] [14] [15] [16] [17] [18]. Three-spin interactions and triangular

configuration has been also solved [19] [20] [21] [22] [23]. Many experimental

realization of the model has been studied such as Ion-traps [24], Quantum

dot spins and cavity [25] and Josephson junctions [26]. The bilinear form

of the Hamiltonian which consists two creation and annihilation operators

emerges in many models such as BCS and superfluids. To diagonalize the
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hamiltonian one shall use Jordan Wigner Transformation [27] [28] and Bo-

goliubov transformation which can be seen in the solution of the theory of

BCS Superconductivity [29].

The structure of this thesis as follows. In the first section, we give an

introduction to the Quantum Entanglement and Quantum Phase Transition.

In the second section, we will be mostly focusing on one-dimensional general-

ized spin-1/2 XY model. We begin with a quick derivation of one-dimensional

quantum Ising model and two-dimensional square lattice Ising model. Later

we shall show an alternative solution for the spin-1 Ising model in one dimen-

sion. In the next part, we present detailed solution of the anisotropic XY

model in the transverse field. We pay attention to the cyclic chain problem

and introduce a gauge term to specify periodic/antiperiodic boundary condi-

tions. Competition between vacuum states is also examined. Afterward we

introduce Fourier transformation in many-site interaction and give a detailed

treatment to Bogoliubov transformation.

Subsequently, we introduce the derivation of geometric entanglement per

site and block and using global entanglement in the geometric picture we

examine emergence of quantum phase transition for the model. In the next

section, we solve three-site interaction of the XY model. This model also

shows the quantum phase transition at the same critical point. Nevertheless,

in this model disorder line r2 + h2 = 1 vanishes, which exists in the XY

model.

Next we shall derive generalized Hamiltonian for n-site interaction and

investigate halfway interaction (n = N/2 − 1) properties in the context of

Quantum Phase Transition. It turns out that QPT does not occur when we

consider halfway interaction. Quantum-Classical duality is also examined for

this model, and we present the proper constants for mapping 1D Quantum

XY model to 2D Square-lattice Ising model.

In the last section, we introduce a generalized Cluster-XY Hamiltonian

and show diagonalization of the model. A similar model has been studied by
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Suzuki in 1971 [30]. We define the Hamiltonian in more convenient way that

one can solve many suitable bilinear Hamiltonians by defining parameters

that characterize the model. We give an example of several Hamiltonians

and examine Global Entanglement and Quantum Phase Transition between

Ferromagnetic-Paramagnetic state, GHZ-Cluster and Symmetry protected

topological order and an Antiferromagnetic state.
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1.1 Quantum Entanglement

Quantum entanglement is one of the most intriguing consequence of the

quantum mechanics. The term was introduced by Schrodinger as a “Ver-

schrankung” for the first time in 1935 [31]. It was discussed and objected

in the famous EPR paper [32] and defined by Einstein as a “spooky action

at a distance.” This spooky non-local correlation had been a very counter-

intuitive subject until Bell introduced a series of inequalities [33]. Bell’s

theorem says that “No physical theory of local hidden variables can ever

reproduce all of the predictions of quantum mechanics.” The existence of

entangled states was tested by many experiments over the years [34] [35].

Assume that Alice and Bob are sharing the entangled state.

|ψ〉 = (|↑〉A |↓〉B + |↓〉A |↑〉B) (1)

It does not matter how far Alice and Bob are apart from each other, their

state would stay entangled [36]. Now, let’s assume Alice decided to make

a measurement and find out her state. Bob’s state function also collapsed

instantaneously when Alice makes a measurement in her own state. Unfor-

tunately, Bob still needs to know which direction he needs to measure to

verify to collapse and it has to be done in the classical channels. Unfor-

tunately, therefore quantum entanglement can not be used for transferring

useful information faster than the speed of light.

Quantum entanglement has gained more attention with the emergence of

Quantum Information Science [37] and has played a major role in the very

different areas such as the theory of black holes, quantum many-body physics,

and quantum computation. Most of the subareas of quantum information

science are based on quantum entanglement. To list a few, entanglement

is needed for Quantum teleportation [38]; Quantum search and factoring

algorithms [39] [40] require entangling gates; Quantum Communication and

Quantum Cryptography [41] can be achieved with the use of entanglement;
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Quantum Error Correction [42] uses entangled states. As an unexpected

application, Quantum entanglement exhibits dramatic change and divergence

in the quantum critical point. Thus, it is very useful for detecting Quantum

Phase Transition at strongly correlated many body systems.

There has been much work done in detecting and quantifying entangle-

ment in bipartite and multipartite quantum systems the over years [43] [44].

Many different methods have been introduced for measuring entanglement

[45]. At this point, we shall start by defining some basic concepts. The

bipartite system can be described as the composition of two Hilbert Space

H = HA ⊗HB. Bipartite pure state |ψ〉 = |ψA〉 ⊗ |ψB〉 is separable —unen-

tangled—if it can be written in the following form by using Schmidt Decom-

position.

|ψ〉 =
∑
i,j

ci,j |ei〉A ⊗ |ej〉B (2)

where |ei〉 and |ej〉 are the basis of H

One can easily check the separability by using Schmidt Decomposition

|ψ〉 =
n∑
k=1

λk |uk〉A ⊗ |vk〉B (3)

where
∑
λ2
k ≥ 0 and n = min

[
dim (HA) , dim (HB)

]
. Schmidt coefficient

λ is useful for testing entanglement. If there is only one non-zero Schmidt

coefficient, then |ψ〉 is separable otherwise it is entangled [36] [46]. For decid-

ing separability in mixed states, one shall look at the density matrices of the

system. Mixed state is separable if and only if it is written in the following

form

ρ =
∑
i

pi |ei〉A 〈ei|A ⊗ |ei〉B 〈ei|B (4)

If there is more than two Hilbert spaces, H = HA ⊗HB ⊗HC ⊗HD . . . it is
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called multipartite system [47]. We shall consider the following multi state

|Ψ〉 = |ψ1〉E,F ⊗ |ψ2〉B,C,D ⊗ |ψ3〉A (5)

As one can see in the first state, it can not be written as a product state

of E and F . In the same way, B,C,D are entangled with each other. One

need to consider all entanglement between partitions. Because of this reason,

quantifying entanglement in the multipartite system is a less simple problem.

GHZ and W state can be an example for multipartite states [48] which we

discuss below. For an N-qubit, GHZ and W can be defined as following

|GHZ〉 =
1√
2

(
|0〉⊗ N + |1〉⊗ N

)
(6)

|W 〉 =
1√
N

(
|100 . . . 00〉+ |010 . . . 00〉+ |000 . . . 01〉

)
(7)

For N=3 qubit example, one expects to see bipartite entanglement even one

of the particle lost. On the other hand, GHZ would lose quantum correlation

and become a separable mixed state.

There are many methods for measuring entanglement in bipartite sys-

tems. To name a few, Von Neumann Entanglement Entropy, Concurrence,

Entanglement of Formation [49] [50], distillable entanglement, relative en-

tropy of entanglement. Introducing all of the entanglement methods is be-

yond the scope of this paper. Thus, we will only present first two of the

list.

Entanglement of Entropy—Von Neumann Entropy—is one of the simplest

technique for measuring entanglement. It is very helpful for solving problem

from Condensed Matter Theory to String Theory. By using density matrix

ρ =
∑
i

λi |ei〉 〈ei| (8)
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Von Neumann Entropy can be define as following

S(ρ) = −Tr (ρ log2ρ) (9)

One can measure the Entanglement of entropy by taking partial trace

ρA = TrB(ρ) of one of the states.

E(ψ) = S(ρA) = S(ρB) (10)

For pure pA or pB, entanglement will give 0. On the other hand, for any Bell

States, entanglement would give 1 which is maximally entangled. One can

also use entanglement of formation [49] for pure and mixed states.

E(ρ) = min
∑
i

piE(ψi) (11)

It is average of entanglement over minimum of all decompositions of ρ. This

function can be derived for the standard basis. Wootters [49] derived the

formula for the entanglement of formation of two qubits.

E(ψ) = E (C) = h

(
1 +
√

1− C2

2

)
(12)

where h is Shannon Entropy

h(x) = −x log2x− (1− x) log2(1− x) (13)

C is defined as concurrence. Let us define the state

|Ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 (14)

and concurrence is

C(Ψ) = |〈Ψ|Ψ̃〉 | (15)

|Ψ̃〉 = (σy ⊗ σy) |Ψ∗〉 (16)
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The entanglement is a monotonic function of concurrence. The range

of concurrence change between 0 to 1. Thus, it can be an another way to

quantify entanglement. For mixed states,

C(p) = max{0, λ1 − λ2 − λ3 − λ4} (17)

where λ are the eigenvalues of the R matrix in descending order

R =
√√

pp̃
√
p (18)

p̃ = (σy ⊗ σy) p∗ (σy ⊗ σy) (19)

Quantifying entanglement is a broad research area. There are many suc-

cessful techniques for a bipartite system. On the other hand quantifying en-

tanglement in a multipartite system is more challenging. Geometric measure

of entanglement is one of the promising methods for quantifying multipar-

tite system. It was first time introduced by Shimony [51] for the bipartite

systems and generalized to multipartite systems by Barnum and Linden [52].

Then, Wei and Goldbart [53] developed it further and applied it to the XY

model [54]. It has also been studied in two-dimensional systems [55].

To introduce this measure, let us define n-partite, normalized state

|Ψ〉 =
∑
p1...pn

Ψp1p2...pn |e(1)
p1
e(2)
p2
. . . e(n)

pn 〉 (20)

The main idea of analyzing entanglement is finding a distance between entan-

gled state and separable state. If we define general product state as follows

|Φ〉 ≡ ⊗ni=1 |φ(i)〉 (21)

The proximity can be calculated by taking overlap of entangled and separable

state

8



Λmax(Ψ) ≡ max
Φ
〈Φ|Ψ〉 (22)

where Λmax is inversely proportional to entanglement of |Ψ〉. Normalizing

entanglement for Bell States and giving 0 for separable states

Elog2(Ψ) ≡ −log2 Λ2
max(Ψ) (23)

entanglement density can be defined as following for N-particle

E ≡ Elog2(Ψ)

N
(24)

detailed treatment for Geometric entanglement per site and Geometric En-

tanglement per block will be given in the Section 2.2.5
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1.2 Quantum Phase Transition

Phase transition in a classical manner can be defined as the transformation

between states of the matters due to fluctuations in the temperature or other

system parameters. Boiling of water or water freezing to ice are common

phase transition that we experience in our daily life. The phase transition is

studied very well and can be shown in a phase diagram. On the other hand,

there is also phase transition which is happening in the quantum system.

Quantum Phase Transition (QPT) [56] is driven by quantum fluctuations

due to Heisenberg’s uncertainty principle. It happened at zero temperature

and induced by the change in physical parameters such as magnetic field or

chemical potential. QPT is a change in the ground state of the many body

systems between low-lying energy levels. It is known that there is an abrupt

change in the entanglement near the critical point due to divergence in long-

range correlation. Thus, Quantum Phase Transition can be characterized by

entanglement near the critical points. It has been widely studied by many

authors [57] [58].

Let us consider a Hamiltonian in the finite lattice H = H0 + g H1 where

[H0, H1] = 0. Thus, there will be a critical point in gc where the ground state

meets with the first excited state. Correlation in the energy gap ∆ can be

shown

∆ ∼ J |g − gc|zv∼ ξ−z (25)

zv is a critical exponent and ξ is correlation length. If the transition occurs

at a non-zero temperature Tc, correlation time is [59]

τ ∼ ξz ∼ |t|−zv (26)

where

t =
|T − Tc|
Tc

(27)
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Main differences between quantum phase transition and classical phase

transition are the energy scales and temperature. Typical energy scale in

the quantum systems is h̄wc while thermal energy is kBT . As long as h̄wc �
kBT classical phase transition can be considered since quantum effects would

be overshadowed by the thermal fluctuations. Nevertheless, if there is no

thermal fluctuations but only non-thermal variables change, transition in

the critical point can be defined as Quantum Phase Transition.

Figure 1: Quantum phase transition lies in quantum critical area

Symmetry breaking is an important phenomenon for the quantum phase

transition. Symmetry breaking is defined as the systems has lower symmetry

than the initial. In terms of group theory, broken symmetry is invariance

on the transformation of one of the subgroups of the initial system [60] [61].

Explicit symmetry breaking occurs when one or more terms of the perturba-

tion does not obey the symmetry of the unperturbed. Hydrogen atom in a

magnetic field can be an example for this type of symmetry breaking

H = H0 +H1 (28)

where H1 = −~µ ~B is a small perturbation due to magnetic field ~B and

11



H0 =
~p 2

2me

− e2

4πe0r
(29)

H0 is invariant under rotational symmetry, on the other hand, H1 is not in

the same symmetry group. Thus, symmetry is broken, and degeneracy is

lifted. On the other hand, spontaneous symmetry breaking occurs when the

Hamiltonian has an overall symmetry while ground states break the sym-

metry and exhibit degeneracy. It is one of the most crucial concepts in

theoretical physics. It is also associated with Phase Transition. Ferromag-

nets, Bose–Einstein condensate and standard model can be given an example

of this phenomena. The order parameter is a physical property of the sys-

tem that quantifies the strength of symmetry whereas it changes between

disorder—high symmetry and order—low symmetry.

Ising Ferromagnet may be given an example of spontaneous symmetry

breaking [2].

H = −J
∑

σiσj (30)

where J is the coupling constant. There is nearest neighbor interaction in

the system which leads unpaired couples to be aligned. In the case J > 0

system is ferromagnetic and spin point ↑ (up) direction. Hamiltonian enjoys

the Ising symmetry that is invariant under the change of σi → −σi. The

energy of the system remains unchanged under this transformation. On the

other hand, the ground state may choose a specific orientation depending on

the temperature.

Ferromagnet is a material which shows spontaneous symmetry breaking

at the Curie temperature. Magnetization is the differences between spin up

and spin down states. Below the Curie temperature, magnetization gives

a non-zero value and choose a particular direction that breaks the symme-

try of the system. Quantum phase transition occurs from ferromagnetic to

paramagnetic phase at the critical temperature.

In statistical physics and Condensed Matter Physics one can examine

12



the relation between d dimensional quantum and (d+1) dimensional clas-

sical systems. One can reach the classical partition function by mapping

temperature into imaginary time in the quantum partition function. Thus,

imaginary time acts as an additional dimension at zero temperature.

In classical partition function kinetic and potential part of Hamiltonian

commutes.

Z = Tr
(
e−H/kbT

)
(31)

where H = Hkin +Hpot Thus partition function Z = ZkinZpot can be factor-

izable which means dynamics and static parts are decoupled. On the other

hand in quantum mechanics, kinetic and potential terms do not commute

[T, V ] 6= 0 which indicates static and dynamics are coupled. Density oper-

ator in the partition function looks very similar to time evolution operator.

By choosing imaginary time τ

τ =
1

kbT
=
−it
h̄

(32)

where t is real time, one can show at zero temperature (T ) imaginary time

can be considered as an extra dimension [59].
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2 Integrable Quantum Spin Chains

Most of the physical phenomena can be expressed in spin, fermionic or

bosonic language. One’s main aim is solving—diagonolizing—Hamiltonian

and finding partition functions so that statistical mechanics of the system

can be easily derived. For instance, one can study Heisenberg spin model for

studying magnetism.

(33)H = −1

2

N∑
j=1

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
jσ

y
j+1 + Jzσ

z
jσ

z
j+1 + hσzj

)
where J are coupling constants. For the spin 1/2 systems σi are Pauli spin

matrices.

σx =

(
0 1

1 0

)
(34a)

σy =

(
0 −i
i 0

)
(34b)

σz =

(
1 0

0 1

)
(34c)

In the case J > 0 ground state is ferromagnet otherwise antiferromagnet. In

the limit of J = Jx = Jy 6= Jz called Heisenberg XXZ model [62] [63].

There are several methods solving for the spin chain problems. One ap-

proach is using certain similarities between spin operators (σi) and fermionic

(ci) or bosonic (bi) operators. For instance, Holstein-Primakoff transforma-

tion [64] is useful for mapping spin operators to bosonic annihilation and

creation operators. While bosonic canonical commutation relations (CCR)

[bi, b
†
j] = δi,j (35)

14



we define transformation where Si =
σi
2

and spin s

S+
i = Six + i Siy =

√
2s

√
1− b†ibi

2s
bi (36a)

S−i = Six − i Siy =
√

2s b†i

√
1− b†ibi

2s
(36b)

Sz = s− b†ibi (36c)

using this transformation one can work with bosons and expand the square

root for further analysis. One must note that total boson number can not

exceed twice spin number since square root must be a real number b†ibi ≤ 2s

On the other hand, as we consider fermionic picture, Jordan-Wigner

transformation [65] is very useful tool for diagonalizing spin chain problems.

This time we are mapping spin Hilbert space to the fermionic Fock space

whereas fermionic CCR [66]

{ci, c†j} = δi,j (37a)

{ci, cj} = 0 (37b)

One can easily see the problem here. Fermionic CCR obeys the anticom-

mutation relation. Therefore, we can not naively map spin operators into

fermionic operators since spin operators do not hold anticommutation rela-

tions for multi-site problems

{S+
i , S

+
j } 6= 0 (38)

Thus one need an extra phase to solve correct anticommutation-commutation

15



problem. We define the Jordan-Wigner transformation

S+
i = c†i e

iπ
∑i−1
j=1 c

†
jcj (39a)

S−i = e−iπ
∑i−1
j=1 c

†
jcj ci (39b)

Sz = c†ici − 1/2 (39c)

where ni = c†ici is the number of the fermion at a site. Thus desired commu-

tation [S+
i , S

+
j ] = 0 can be derived easily

S+
i S

+
j = S+

j S
+
i (40)

Now, one can safely use the transformation for mapping spin operators

to fermionic operators. This transformation has been examined in detailed

in the section 2.2.1
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2.1 Ising Model in a Transverse Field

Ising model is the simplest model for explaining ferromagnetism. As we con-

sider N atoms and their magnetic moments represented by opposite direction

of ↑ and ↓ spins in each site on the lattice. It can be represented in various

lattice and dimensions despite the fact that 3D dimensional classical Ising

model has not been solved properly. We shall give a quick derivation of one

and two dimensional Ising model since we will be referring this section later

for quantum-classical duality of XY-Ising Model.

2.1.1 One and Two Dimensional Square-lattice Ising Model

We begin with defining the two dimensional Hamiltonian for the model [9]

H(σ11, . . . σNM) = −h
∑

σnm − J1

∑
σnmσn+1,m − J2

∑
σnmσn,m+1 (41)

J1 and J2 is the bond strengths in the n-th row and m-th column. σnm

can take ±1 values. We assumed that it has periodic boundry conditions

σn,M+1 = σn1 and σN+1,m = σ1m. Then partition function can be defined

Z ≡
∑

σ11=±1

. . .
∑

σNM=±1

e−βH(σ11,...σNM ) (42)

Solving one-dimensional problem and generalizing to 2D is the most practical

way to derive. Then we define 1D cyclic lattice where K1 = βJ1 and H = βh

Z =
∑
σ1...σN

eK1
∑
σnσn+1eH

∑
σn (43)

Expanding Z terms

Z =
∑

σ1′σ1...σNσN′

eK1σ1′σ2eHσ2δσ2σ2′ . . . eK1σN′σ1eHσ1δσ1σ1′ (44)
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defining matrix for each exponential term (V1)σiσj = eK1σiσj

V1 =

(
eK1 e−K1

e−K1 eK1

)
(45)

and (V2)σiσj = eHσiδσiσj

V2 =

(
eH 0

0 e−H

)
(46)

then Z can be written as the trace of a matrix product under the cyclic

permutations of factors

Z = trV1V2 . . . V1V2 = tr(V1V2)N = tr(V
1
2

2 V1V
1
2

2 )N = trV N (47)

V is called the transfer Matrix. Then largest eigenvalue of this matrix is the

solution of Hamiltonian.

Z = ΛN
1 + ΛN

2 = ΛN
1 [1 + (

Λ1

Λ2

)N ] (48)

when N → ∞ only largest eigenvalue will contribute. Next step is writing

the matrices in terms of Pauli spins (τx, τ y, τ z)

V1 = eK11 + e−K1τx = eK1(1 + e−2K1τx) (49)

V2 = 1 coshH + τ z sinhH (50)

Using the followings property

eaτ
i

= 1 cosh a+ τ i sinh a = cosh a (1 + τ i tanh a) (51)
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and defining and using simple identities

tanhK ′1 ≡ e−2K1 (52)

tanhK1 ≡ e−2K′1 (53)

sinh 2K1 sinh 2K ′1 ≡ 1 (54)

we have reached

V1 = (2 sinh 2K1)
1
2 e−2K′1 τx (55)

V2 = eHτ
z

(56)

Generalization of 2D Ising model is following. In every row, we are taking

2M configuration.

τ zm = 1 . . . τ z . . .1 (57)

τxm = 1 . . . τx . . .1 (58)

we have reached the two-dimensional solution

V1 = (2 sinh 2K1)M/2 e−2K′1 τx (59)

V2 = eK2
∑
τzmτ

z
m+1+H

∑
τzm (60)

Z = tr
(
V

1
2

2 V1V
1
2

2

)N
= trV N (61)

Ising model with a transverse field in one-dimension will be introduced in

the next section.
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2.1.2 Spin-1 Ising model in a transverse crystal field

In this part, we shall consider spin-1 Ising Model with a transverse single-

ion crystal-field term. Pfeuty has given the exact solution of this model

[67]. Later, Oitmaa and Brasch [68] have shown that spin-1 Hamiltonian can

be solved by mapping to traditional spin-1/2 transverse Ising Model. Here

we show the quick derivation of the exact location of critical point in one

dimension by this transformation. Hamiltonian of a spin-1 Ising model is the

following:

H = −J
∑
<i,j>

Szi S
z
j −∆

∑
i

(Sxi )2 (62)

This Hamiltonian shows similarity with spin-1/2 Ising model under the right

transformation when one is only concerned with the ground state:

HTIM = −J
∑
<i,j>

σzi σ
z
j − Γ

∑
i

σxi (63)

If N is the number of sites,

N0 = N −
∑
i

(Szi )2 (64)

N0 indicates the number of sites in the ground states which commutes with

H since [(Szi )2, (Sxi )2] = 0 To see the eigenvalues we expand Sxi term.

(Sxi )2 =

(
S+
i + S−i

2

)2

=
1

4

∑
i

(
S+
i S

+
i + S+

i S
−
i + S−i S

+
i + S−i S

−
i

)
(65)
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It appears that there are no sites in the zero state and (mi = 0) [68]. Thus,

there are two states per site (m = ±1). Defining transformation

Szi −→ σzi (66a)

S+
i S

+
i −→ 2σ+

i (66b)

S−i S
−
i −→ 2σ−i (66c)

S+
i S
−
i −→ 1 + σzi (66d)

S−i S
+
i −→ 1− σzi (66e)

using Equation (66), one can map each spin-1 operator to a σ operator

(Sxi )2 =
1

4

∑
i

2σ+
i + 2σ−i + 1 + σzi + 1− σzi (67a)

=
1

2

∑
i

(
σ+
i + σ−i + 1

)
(67b)

=
1

2

∑
i

(σx + 1) (67c)

By doing this conversion, we can calculate crystal field term (V) in terms of

σ and later Heff . This is the same result with HTIM with a constant −1

2
N∆

V = −1

4
∆
∑
i

(S†iS
†
i + S†iSi + SiS

†
i + SiSi) (68)

H −→ Heff = −1

2
N∆− J

∑
<i,j>

σzi σ
z
j −

1

2
∆
∑
i

σxi (69)

If we consider more general Hamiltonian by adding a (Syi )2 term

H = −J
∑
<i,j>

Szi S
z
j −∆x

∑
i

(Sxi )2 −∆y

∑
i

(Syi )2 (70)
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and using same conversation and keeping in mind that ground state lies in

the N0 = 0 we will get the following

H −→ Heff = −1

2
N(∆x + ∆y)− J

∑
<i,j>

σzi σ
z
j −

1

2
(∆x −∆y)

∑
i

σxi (71)

In order to have Blume-Capel model [69], one can choose ∆x = ∆y = ∆ and

equation (70) become

H = −J
∑
<i,j>

Szi S
z
j −∆

∑
i

((Sxi )2 + (Syi )2) (72)

where we use (Sxi )2 + (Syi )2 = (Si)
2 − (Szi )2

H = −J
∑
<i,j>

Szi S
z
j + ∆

∑
i

(Szi )2 − 2N∆ (73)
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2.2 The Anisotropic XY Model in One Dimension

Quantum entanglement and Quantum Phase transition in XY Model is a

broad topic. There are several methods to diagonalize the Hamiltonian.

Firstly, we shall define Hamiltonian of the anisotropic XY model [11].

HXY = −
N∑
j=1

(
1 + r

2
)σxj σ

x
j+1 + (

1− r
2

)σyjσ
y
j+1 + hσzj (74)

where N is the number of the site, and r indicate the anisotropy between

σx and σy terms. r = 0 is isotropic XY limit and r = 1 Ising limit in the

transverse field (h)

Diagonalization of this Hamiltonian can be done by mapping spin opera-

tors into the fermionic picture and define boundary conditions. In this paper,

we are going to use only cyclic chain which is σxN+1 = σx1 and σyN+1 = σy1 .

Later we will perform Fourier Transformation and Bogoliubov transformation

to cancel out non-diagonal terms.

2.2.1 Jordan-Wigner Transformation

Let us begin with defining Jordan-Wigner Transformation for this problem.

σxi =
i−1∏
j=1

(
1− 2c†jcj

)(
ci + c†i

)
(75a)

σyi = −i
i−1∏
j=1

(
1− 2c†jcj

)(
ci − c†i

)
(75b)

σzi = 1− 2c†ici (75c)

bearing in mind that j ≤ i − 1. In order to determine correct boundary

conditions we check the last term of the chain [54]

σxNσ
x
N+1 = σxNσ

x
1 (76)
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(
cN + c†N

)(
cN+1 + c†N+1

)
= σx1 = −

N∏
j=1

(
1− 2c†jcj

)(
cN + c†N

)(
c1 + c†1

)
(77)

One can easily notice that there is two possibility to hold the above equation.

First is the periodic boundary condition occurs where total number of site

N is odd

N∏
j=1

(
1− 2c†jcj

)
= −1 (78)

cN+1 = c1 (79)

and other is the antiperiodic boundary condition where the total number of

site N is even

N∏
j=1

(
1− 2c†jcj

)
= 1 (80)

cN+1 = −c1 (81)

With the help of Jordan-Wigner transformation (75) in the Hamiltonian (74)

one can reach the fermionic Hamiltonian

−HXY =
N∑
j=1

(
1 + r

2
)

j−1∏
i=1

(1− 2c†ici)(cj + c†j)

j∏
i=1

(1− 2c†ici)(cj+1 + c†j+1)

+ (−i)2(
1− r

2
)

j−1∏
i=1

(1− 2c†ici)(cj − c
†
j)

j∏
i=1

(1− 2c†ici)(cj+1 − c†j+1)

+ h(1− 2c†jcj)

(82)
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After canceling terms and simplifying, we have

(83)
−HXY =

N∑
j=1

(
1 + r

2
)(cj + c†j)(1− 2c†ici)(cj+1 + c†j+1)

− (
1− r

2
)(cj − c†j)(1− 2c†ici)(cj+1 − c†j+1) + h(1− 2c†jcj)

Using anticommutation relations

(1− 2c†jcj)
2 = 1

(1− 2c†jcj)cj = cj

(1− 2c†jcj)c
†
j = −c†j (84)

cj(1− 2c†jcj) = −cj
c†j(1− 2c†jcj) = c†j

we reach the following form

(85)
−HXY =

N∑
j=1

(
1 + r

2
)(−cj + c†j)(cj+1 + c†j+1)

− (
1− r

2
)(−cj − c†j)(cj+1 − c†j+1) + h(1− 2c†jcj)

or expanding the products

(86)
−HXY =

N∑
j=1

(
1 + r

2
)[−cjcj+1 − cjc†j+1 + c†jcj+1 + c†jc

†
j+1]

− (
1− r

2
)[−cjcj+1 + cjc

†
j+1 − c

†
jcj+1 + c†jc

†
j+1] + h(1− 2c†jcj)

one can reach the simplest fermionic form of the Hamiltonian

−HXY =
N∑
j=1

(−cjc†j+1 + c†jcj+1) + r(−cjcj+1 + c†jc
†
j+1) + h(1− 2c†jcj) (87)
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2.2.2 Fourier Transformations

In the last form of the Hamiltonian, different sites are still exist. To eliminate

these terms, we use Fourier Transformation to transfer our system to momen-

tum space. We shall define gauge term b to indicate periodic—odd—where

b = 0 and antiperiodic—even—where b = 1/2 fermions.

cj =
1√
N

N−1∑
m=0

ei
2π
N
j(m+b)c̃m (88a)

c†j =
1√
N

N−1∑
m=0

e−i
2π
N
j(m+b)c̃†m (88b)

c̃m =
1√
N

N−1∑
j=0

e−i
2π
N
j(m+b)cj (88c)

c̃†m =
1√
N

N−1∑
j=0

ei
2π
N
j(m+b)c†j (88d)

where ˜ specify the momentum space. We shall show firstly the derivation

of each term and then derive the general form of the fourier transform.

N∑
j=1

cjcj+1 =
1

N

N∑
j=1

N−1∑
m,m′=0

ei
2π
N
j(m+b)ei

2π
N
j(m′+b)ei

2π
N

(m′+b)c̃mc̃m′ (89a)

=
1

N

N−1∑
m,m′=0

N∑
j=1

ei
2π
N
j(m+m′+2b)ei

2π
N

(m′+b)c̃mc̃m′ (89b)

in order to simplify we are using

N∑
j=1

ei
2π
N
j(m+m′+2b) = Nδm+m′+2b,N (90)
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and one can reach the result

N∑
j=1

cjcj+1 =
N−1∑
m=0

ei
2π
N

(N−m−b)c̃mc̃N−m−2b (91a)

=
N−1∑
m=0

e−i
2π
N

(m+b)c̃mc̃N−m−2b (91b)

other terms can be derive in the same way. One can also use hermitian

conjugate of the result. By keeping in mind (AB)† = B†A†

N∑
j=1

(cjcj+1)† =
N−1∑
m=0

(e−i
2π
N

(m+b)c̃mc̃N−m−2b)
† (92a)

N∑
j=1

c†j+1c
†
j =

N−1∑
m=0

ei
2π
N

(m+b)c̃†N−m−2bc̃
†
m (92b)

N∑
j=1

c†jc
†
j+1 =

N−1∑
m=0

ei
2π
N

(m+b)c̃†mc̃
†
N−m−2b (92c)

last line is derived by using the fermionic commutation relation {cm, cn} = 0,

c̃†N−m−2bc̃
†
m = −c̃†mc̃

†
N−m−2b (93a)

c†j+1c
†
j = −c†jc

†
j+1 (93b)
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diagonal term in the hamiltonian can be derived as following

N∑
j=1

cjc
†
j+1 =

1

N

N∑
j=1

N−1∑
m,m′=0

ei
2π
N
j(m+b)e−i

2π
N
j(m′+b)e−i

2π
N

(m′+b)c̃mc̃
†
m′ (94a)

=
1

N

N∑
j=1

N−1∑
m,m′=0

ei
2π
N
j(m−m′)e−i

2π
N

(m′+b)c̃mc̃
†
m′ (94b)

=
N−1∑
m=0

e−i
2π
N

(m+b)c̃mc̃
†
m (94c)

taking the hermitian conjugate

N∑
j=1

(cjc
†
j+1)† =

N−1∑
m=0

(e−i
2π
N

(m+b)c̃mc̃
†
m)† (95a)

N∑
j=1

cj+1c
†
j =

N−1∑
m=0

ei
2π
N

(m+b)c̃mc̃
†
m (95b)

Using the fermionic commutation relation {cm, c†n} = δm,n

N−1∑
m=0

c̃mc̃
†
m =

N−1∑
m=0

1− c̃†mc̃m (96)

N−1∑
m=0

ei
2π
N

(m+b)c̃mc̃
†
m =

N−1∑
m=0

ei
2π
N

(m+b) − ei
2π
N

(m+b)c̃†mc̃m (97)

Using the following series expansion

N−1∑
m=0

arm =
a
(
1− rN

)
1− r

(98)

N−1∑
m=0

eimx =
1− eiNx

1− eix
(99)
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we can calculate

N−1∑
m=0

ei
2π
N

(m+b) =
1− eN(i 2πN (m+b))

1− ei 2πN (m+b)
(100a)

=
1− ei2π(m+b)

1− ei 2πN (m+b)
(100b)

=
1− 1

1− ei 2πN (m+b)
= 0 (100c)

the result is trivial but explain why we can switch the fermionic terms with

negative sign.

N−1∑
m=0

ei
2π
N

(m+b)c̃mc̃
†
m =

N−1∑
m=0

−ei
2π
N

(m+b)c̃†mc̃m (101)

rewriting equation (95)

N∑
j=1

cj+1c
†
j = −

N−1∑
m=0

ei
2π
N

(m+b)c̃†mc̃m (102a)

N∑
j=1

c†jcj+1 =
N−1∑
m=0

ei
2π
N

(m+b)c̃†mc̃m (102b)

As can seen above calculations, one need to put attention to sign when re-

ordering the terms

We shall generalize the Fourier Transform by assigning x and y integer

constants which define the side interaction.

N∑
j=1

cj+xcj+y =
N−1∑
m=0

ei
2π
N [(x−y)(m+b)−yN]c̃mc̃N−m−2b (103)

in this context we can eliminate the term e−i
2π
N
yN = 1. Then we have reached
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the general form of the fourier transformation for spin-1/2 chain models.

N∑
j=1

cj+xcj+y =
N−1∑
m=0

ei
2π
N [(x−y)(m+b)]c̃mc̃N−m−2b (104a)

N∑
j=1

c†j+xc
†
j+y =

N−1∑
m=0

e−i
2π
N [(x−y)(m+b)]c̃†mc̃

†
N−m−2b (104b)

N∑
j=1

cj+xc
†
j+y =

N−1∑
m=0

ei
2π
N [(x−y)(m+b)]c̃mc̃

†
m (104c)

using fourier transformation in (104) we reach the followings

N∑
j=1

cjcj+1 =
N−1∑
m=0

e−i
2π
N

(m+b)c̃mc̃N−m−2b (105a)

N∑
j=1

cjc
†
j+1 =

N−1∑
m=0

e−i
2π
N

(m+b)c̃mc̃
†
m (105b)

N∑
j=1

c†jc
†
j+1 =

N−1∑
m=0

ei
2π
N

(m+b)c̃†mc̃
†
N−m−2b (105c)

substituting these into equation (87) which we derived in the previous section

−HXY =
N−1∑
m=0

(
e−i

2π
N

(m+b) + ei
2π
N

(m+b)
)
c̃†mc̃m

+r
(
−e−i

2π
N

(m+b)c̃mc̃N−m−2b+ei
2π
N

(m+b)c̃†mc̃
†
N−m−2b

)
+Nh− 2hc̃†mc̃m

(106)

Let us define ∆m = 2π
N

(m+ b). Using symmetry equations below and hyper-
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bolic functions eix + e−ix = 2 cos x and eix − e−ix = 2 i sinx.∑
m

(2 cos ∆m) c†mcm =
1

2

∑
m

[
2 cos ∆mc

†
mcm + 2 cos (−∆m) c†−mc−m

]
(107a)

N−1∑
m=0

e−i∆m c̃mc̃−m =
1

2

N−1∑
m=0

(
e−i∆m − ei∆m

)
c̃mc̃−m (107b)

= −i sin ∆mc̃mc̃−m (107c)

substituting these terms into equation (106) one can reach following form of

the Hamiltonian

(108)
HXY = −Nh−

N−1∑
m=0

[
2 cos

(
2π

N
(m+ b)

)
− 2h

]
c̃†mc̃m

+ ir sin

(
2π

N
(m+ b)

)(
c̃mc̃N−m−2b + c̃†mc̃

†
N−m−2b

)
2.2.3 Bogoliubov Transformation

There are still non-diagonal terms (c̃mc̃N−m−2b + c̃†mc̃
†
N−m−2b) in the hamil-

tonian. Bogoliubov transformation is a unitary transformation to mix these

operators as holding CCR {yi, y†j} = δij. With the help of this transforma-

tion one can diagonalize the Hamiltonian by eliminating non-diagonal terms.

Only for this section we use α = N −m− 2b and drop b terms for simplicity.

H =−Nh+
N−1∑
m=0

c̃†mc̃m

[
h− cos

(
2π

N
(m+ b)

)]
+ c̃†αc̃α

[
h− cos

(
2π

N
(m+ b)

)]
− ir sin

(
2π

N
(m+ b)

)[
c̃mc̃α + c̃†mc̃

†
α

]
(109)
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We define Bogoliubov angle θm and Bogoliubov fermions or quasiparticles γm

c̃m = cos θmγm + i sin θmγ
†
α (110a)

c̃†m = cos θm γ†m − i sin θm γα (110b)

c̃α = cos θα γα + i sin θα γ
†
m (110c)

c̃†α = cos θα γ
†
α − i sin θα γm (110d)

where fermionic canonical commutation relations (CCR)

{γm, γ†m} = γmγ
†
m + γ†mγm = 1 (111)

{γm, γα} = {γ†m, γ†α} = 0 (112)

Let us keep in mind the trigonometric relations

θm = −θα
cos θm = cos θα

sin θm = − sin θα

sin(θα − θm) = cos θm sin θα − sin θm cos θα

cos(θm − θα) = cos θm cos θα + sin θm sin θα

cos2θm = cos2θm − sin2θm

sin2θm = 2 sin θm cos θm

Multiplying terms by keeping the order

(114a)c̃mc̃α = cos θm cos θα γm γα + i cos θm sin θα γm γ†m
+ i sin θm cos θα γ†αγα − sin θm sin θα γ†α γ†m

(114b)c̃†mc̃
†
α = cos θm cos θα γ†m γ†α − i sin θα cos θm γ†m γm
− i sin θm cos θα γα γ†α − sin θm sin θα γα γm
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c̃†αc̃α = cos2θα γ
†
α γα+i cos θα sin θα γ

†
α γ
†
m−i cos θα sin θα γm γα+sin2 θα γm γ

†
m

(114c)

(114d)c̃†mc̃m = cos2θm γ†m γm + i sin θm cos θm γ†m γ†α
− i sin θm cos θm γα γm + sin2 θm γα γ†α

Adding non-diagonal terms

(115a)

c̃mc̃α + c̃†mc̃
†
α = γmγα [cos θm cos θα + sin θm sin θα]

+ γ†mγm [−i (cos θm sin θα + sin θα cos θm)]

+ γ†αγα [i (sin θm cos θα + sin θm cos θα)]

+ γ†mγ
†
α [sin θm sin θα + cos θm cos θα]

+ i [cos θm sin θα − sin θm cos θα]

and simplifying

c̃mc̃α + c̃†mc̃
†
α =

(
γmγα + γ†mγ

†
α

)
cos(θm − θα) + γ†mγm (−2 i cos θm sin θα)

+ γ†αγα (2 i sin θm cos θα) + isin (θα − θm)
(115b)
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Writing Hamiltonian upon using Bogoliubov angle

H = −Nh+
N−1∑
m=0

γ†mγm

[
− cos

(
2π

N
(m+ b)

)
cos2θm + hcos2θm

+cos

(
2π

N
(m+b)

)
sin2θα−hsin2θα−2r sin

(
2π

N
(m+b)

)
sin θα cos θm

]
+ γ†αγα

[
cos

(
2π

N
(m+ b)

)
sin2θm − hsin2θm − cos

(
2π

N
(m+ b)

)
cos2θα

+ hcos2θα + 2r sin

(
2π

N
(m+ b)

)
sin θm cos θα

]
+ γmγα

[
−i cos

(
2π

N
(m+ b)

)
sin θm cos θm + ih sin θm cos θm

+ i cos

(
2π

N
(m+ b)

)
sin θα cos θα − i h cos θα sin θα

− ir sin

(
2π

N
(m+ b)

)
cos(θm − θα)

]
+ γ†mγ

†
α

[
−i cos

(
2π

N
(m+ b)

)
sin θm cos θm + ih sin θm cos θm

+ i cos

(
2π

N
(m+ b)

)
sin θα cos θα − i h cos θα sin θα

− i r sin

(
2π

N
(m+ b)

)
cos(θm − θα)

]
+ hsin2θα + hsin2θm − cos

(
2π

N
(m+ b)

)
sin2θα

− cos

(
2π

N
(m+ b)

)
sin2θm + r sin

(
2π

N
(m+ b)

)
sin(θα − θm)

(116)
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using the fact that θm = −θα

H = −Nh+
N−1∑
m=0

(
γ†mγm + γ†αγα

) [
− cos

(
2π

N
(m+ b)

)(
cos2θm − sin2θm

)
+ h

(
cos2θm − sin2θm

)
+ r sin

(
2π

N
(m+ b)

)
sin 2θm

]
+
(
γmγα + γ†mγ

†
α

) [
−i cos

(
2π

N
(m+ b)

)
sin θm cos θm + ih sin θm cos θm

− i cos

(
2π

N
(m+ b)

)
sin θm cos θm + i h cos θm sin θm

− i r sin

(
2π

N
(m+ b)

)
cos2θm

]
+ sin2θm

[
2h− 2 cos

(
2π

N
(m+ b)

)]
− r sin

(
2π

N
(m+ b)

)
sin2θm

(117)

lets define c as a constant

c = sin2θm

[
2h− 2 cos

(
2π

N
(m+ b)

)]
− r sin

(
2π

N
(m+ b)

)
sin2θm (118)

cross terms should be equal to zero

(119a)

(
γmγα + γ†mγ

†
α

){
isin2θm

[
h− cos

(
2π

N
(m+ b)

)]
− i r sin

(
2π

N
(m+ b)

)
cos 2θm

}
= 0

sin2θm

[
h− cos

(
2π

N
(m+ b)

)]
= r sin

(
2π

N
(m+ b)

)
cos2θm (119b)
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After calculations we reach the solution for Bogoliubov angle

tan 2θm =

r sin

(
2π

N
(m+ b)

)
h− cos

(
2π

N
(m+ b)

) (120a)

sin 2θm =

r sin

(
2π

N
(m+ b)

)
√(

r sin

(
2π

N
(m+ b)

))2

+

(
h− cos

(
2π

N
(m+ b)

))2
(120b)

cos 2θm =

h− cos

(
2π

N
(m+ b)

)
√(

r sin

(
2π

N
(m+ b)

))2

+

(
h− cos

(
2π

N
(m+ b)

))2
(120c)

cos θm =

√
1 + cos 2θm

2
(120d)

sin θm =

√
1− cos 2θm

2
(120e)

we have used trigonometric identity in the last line cos2θm = 1− 2sin2θm we

simplify the diagonal part of the Hamiltonian

(121)
H = −Nh+

N−1∑
m=0

(
γ†mγm + γ†αγα

){
cos2θm

[
h− cos

(
2π

N
(m+ b)

)]
+ r sin

(
2π

N
(m+ b)

)
sin2θm

}
+ c (constant)

using symmetry
N−1∑
m=0

2 γ†mγm = γ†mγm + γ†αγα (122)
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We derived diagonalized Hamiltonian

(123)
H = −Nh+

N−1∑
m=0

2 γ†mγm

{
cos2θm

[
h− cos

(
2π

N
(m+ b)

)]
+ r sin

(
2π

N
(m+ b)

)
sin2θm

}
+ c (constant)

c = sin2θm

[
2h− 2 cos

(
2π

N
(m+ b)

)]
− r sin

(
2π

N
(m+ b)

)
sin2θm (124)

and expanding terms and substituting Bogoliubov angle (120)

(125)c = h− cos
(

2π

N
(m+ b)

)
− εm

2

where εm is the eigenvalue of the Hamiltonian

εm = 2

√(
r sin

(
2π

N
(m+ b)

))2

+

(
h− cos

(
2π

N
(m+ b)

))2

(126)

we collect all terms

(127)H = −Nh+
N−1∑
m=0

{
εm

(
γ†mγm −

1

2

)
+

[
h− cos

(
2π

N
(m+ b)

)]}
Last term and first term (Nh) cancels out. Thus, one arrives the diagonalized

expression where b = 0, odd-number fermion (periodic) and b = 1/2 even-

number fermion(antiperiodic)

(128)H =
N−1∑
m=0

ε(b)m

(
γ(b)†
m γ(b)

m −
1

2

)
For correct energy spectrum one should consider odd and even number of

fermion case separately. For the periodic boundary condition (odd-number-

fermion b = 0)

(129)E(0)
m (r, h) = ε

(0)
0

(
〈γ(0)†

0 γ
(0)
0 〉 −

1

2

)
+

N−1∑
m=1

ε(0)
m

(
〈γ(0)†
m γ(0)

m 〉 −
1

2

)
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Figure 2: dE shows energy differences between two lowest state vs transverse
magnetic field h where anisotropy r = 0.1 and total number of spin N = 8

and lowest state is 〈γ(0)†
m γ

(0)
m 〉 = 0 except 〈γ(0)†

0 γ
(0)
0 〉 = 1 and ε

(0)
0 = 2(h − 1)

Thus we obtain ground state energy where momentum index starts from

m = 1

E(0)
m (r, h) = (h− 1)−

N−1∑
m=1

√(
r sin

(
2πm

N

))2

+

(
h− cos

(
2πm

N

))2

(130)

For the antiperiodic boundary condition (even-number-fermion b = 1/2)

〈γ(1/2)†
m γ

(1/2)
m 〉 = 0 Therefore, ground state energy for even-fermion case

E(1/2)
m (r, h) = −

N−1∑
m=1

√(
r sin

(
2π

N
(m+

1

2
)

))2

+

(
h− cos

(
2π

N
(m+

1

2
)

))2

(131)

As can be concluded above calculations, there is a ground energy com-

petition in this model. The ground state is switching between these two

solutions when h ≤ 1. As the energy gap vanishes, we expect an emergence

of quantum phase transition and spontaneous symmetry breaking. As we con-
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sider thermodynamic limits N →∞ and h > 1 one can find energy difference

between two lowest state becomes

dE = E
(0)
0 (r, h)− E(1/2)

0 (r, h) = 2(h− 1) (132)

In the limit h > 1 degeneracy is lifted and dominated by b = 1/2 even-

number-fermion case. We will be investigating Quantum Phase Transition

by using Geometric Entanglement in the following sections.

2.2.4 Derivation of Ground State

Before starting derivation of Geometric Entanglement, we firstly give a quick

derivation of the ground state of the model. Bogoliubov solution defined in

the previous section (110) where θm = −θN−m−2b

c̃(b)
m = cos θ(b)

m γ(b)
m + i sin θ(b)

m γ
(b)†
N−m−2b (133a)

c̃b†m = cos θ(b)
m γ(b)†

m − i sin θ(b)
m γ

(b)
N−m−2b (133b)

c̃
(b)
N−m−2b = cos θ(b)

m γ
(b)
N−m−2b − i sin θ(b)

m γ(b)†
m (133c)

c̃
(b)†
N−m−2b = cos θ(b)

m γ
(b)†
N−m−2b + i sin θ(b)

m γ(b)
m (133d)

Solving for γm and γN−m−2b terms

γ(b)
m = c(b)

m cos θ(b)
m − i sin θ(b)

m c
(b)†
N−m−2b (134a)

γ
(b)
N−m−2b = c

(b)
N−m−2b cos θ(b)

m + i sin θ(b)
m c(b)†

m (134b)

The lowest state Ψ1/2(r, h) with even fermion case b = 1/2 has no Bogoliubov

fermion in the ground state.

γ(1/2)
m |Ψ1/2〉mγ = γ

(1/2)
N−m−1 |Ψ1/2〉mγ = 0 (135a)

c(1/2)
m |Ω〉 = c

(1/2)
N−m−1 |Ω〉 = 0 (135b)
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It can be written as linear combinations of fermionic vacuum states |Ω〉 and

a, b, c, d are constants.

|Ψ1/2〉mγ = a |Ω〉+ b c†m |Ω〉+ c c†N−m−2b |Ω〉+ d c†m c†N−m−2b |Ω〉 (136)

Let’s recall commutation relations of fermions

{ci, c†j} = δij (137)

c2
i = (c†i )

2 = 0 (138)

it can be easily shown

cN−m−2b c
†
m c†N−m−2b = −c†m + (c†m c†N−m−2b cN−m−2b) (139a)

cm c†m c†N−m−2b = c†N−m−2b + (c†m c†N−m−2b cm) (139b)

collecting all terms together

γ(1/2)
m |Ψ1/2〉mγ =

(
a cos θmcm |Ω〉 − i a sin θmc

†
N−m−2b |Ω〉

)
+
(
b cos θmcm c†m |Ω〉 − i b sin θmc

†
N−m−2b c

†
m |Ω〉

)
+
(
c cos θmcm c†N−m−2b |Ω〉 − i c sin θm(c†N−m−2b)

2 |Ω〉
)

+
(
d cos θm cm c†m c†N−m−2b |Ω〉 − i d sin θm c†N−m−2b c

†
m c†N−m−2b |Ω〉

)
= 0

(140)

Solving equation for each fermion operator we find b = c = 0 and;[
(−i a sin θm + d cos θm) c†N−m−2b

]
|Ω〉 = 0 (141a)

d

a
= i tanθm (141b)

Substituting constants into equation (136) where d = i sin θm and a = cos θm

we get the ground state for antiperiodic boundary even-fermion case where
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vacuum state |Ω〉

|Ψ1/2〉 =

m<N−1
2∏

m=0

(
cos θm + i sin θm c†m c†N−m−1

)
|Ω〉 (142a)

|Ψ1/2〉 =

m<N−1
2∏

m=0

cos θm ei tanθm c†m c†N−m−1 |Ω〉 (142b)

For the periodic conditions (odd-fermions) the lowest state is γ
(0)
0 = c

(0)
0

fermion where there is no Bogoliubov fermions in the state |Φ〉

|Ψ0〉 ≡ γ
(0)†
0 |Φ〉 = c̃(0)† |Φ〉 (143)

repeating same calculations we reach the ground state for odd-fermion case.

|Ψ0〉 =

m<N
2∏

m=0

(
cos θm + i sin θm c†m c†N−m

)
|Ω〉 (144a)

|Ψ0〉 =

m<N
2∏

m=0

cos θm ei tanθm c†m c†N−m |Ω〉 (144b)

For simplicity, after this point we will consider only b = 1/2 even-fermion

case.

2.2.5 Geometric Entanglement

Geometric Entanglement is a method for quantifying entanglement in the

multipartite system [70]. The derivative of the entanglement present sudden

changes near the critical point in the spin chain problems. We have given the

development of the method in the section (1.1) In this part, we will derive

the overlap of the ground state and general product state per site and per

block.
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2.2.5.a) Geometric Entanglement per site

Product of single spin state |Φ1〉 = (a |↑〉+b |↓〉)⊗N can be written in fermionic

language by applying the Jordan-Wigner transformation we derived in section

(2.2.1)

|Φ1〉 = ⊗Ni=1

(
a+ bσ−i

)
|↑↑ . . . ↑〉 (145)

=
N∏
i=1

[
a+ b

i−1∏
j=1

(1− 2c†jcj)c
†
i

]
|Ω〉 (146)

|Ω〉 is the vacuum with no c fermions. Using CCR and ci |Ω〉 = 0

|Φ1〉 =
N∏
i=1

(
a+ b c†i

)
|Ω〉 = aN

N∏
i=1

eb
′c†i |Ω〉 (147)

= aNe
∑N
i=1 b

′c†i e
∑
i<j(b

′)2c†i c
†
j (148)

where we have defined b′ = b/a and use BCH formula for A2 = B2 = 0 and

{A,B} = 0 and eAeB = eA+Be[A,B]/2 = eA+BeAB for reaching the last line

N∏
i=1

eb
′c†i = e

∑N
i=1 b

′c†i e
∑
i<j(b

′)2c†i c
†
j (149)

for even fermion case (b=1/2), by using Fourier transform

∑
j≤l

c†jc
†
l =

1

N

∑
l = 1N

l∑
j=1

N−1∑
m,m′=0

e−i
2π
N
j(m′+ 1

2
)−i 2π

N
l(m′+ 1

2 )c̃†mc̃
†
m′ (150a)

=
1

N

N−1∑
m,m′=0

∑
l = 1N

l∑
j=1

e−i
2π
N

(m+ 1
2

) 1− e−i 2πN l(m+ 1
2

)

1− e−i 2πN (m+ 1
2

)
e−i

2π
N
l(m′+ 1

2
)c̃†mc̃

†
m′

(150b)
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noting that

N∑
l=1

e−i
2π
N
l(m′+ 1

2
) = e−i

2π
N

(m′+ 1
2

) 1− e−i 2πN N(m′+ 1
2

)

1− e−i 2πN (m′+ 1
2

)
(151a)

=
2e−i

2π
N

(m′+ 1
2

)

1− e−i 2πN (m′+ 1
2

)
=

e−i
π
N

(m′+ 1
2

)

isin π
N

(m′ + 1
2
)

(151b)

N∑
l=1

e−i
2π
N
l(m+m′+1) = Nδm+m′+1,N (151c)

we find

(152)

∑
j ≤l

c†jc
†
l =

1

N

N−1∑
m,m′=0

e−i
π
N

(m+ 1
2

)

isin π
N

(m+ 1
2
)

e−i
π
N

(m′+ 1
2

)

isin π
N

(m′ + 1
2
)
c̃†mc̃

†
m′

−
N−1∑
m=0

e−i
π
N

(m+ 1
2

)

isin π
N

(m+ 1
2
)
c̃†mc̃

†
N−m−1

the first term vanishes since m and m′ are symmetric. expanding second

term

∑
j≤l

c†jc
†
l = −1

2

N−1∑
m=0

[
e−i

π
N

(m+ 1
2

)

isin π
N

(m+ 1
2
)
− e−i

π
N

(N−m− 1
2

)

isin π
N

(N −m− 1
2
)

]
c̃†mc̃

†
N−m−1 (153)

=
N−1∑
m=0

i cot
π(m+ 1

2
)

N
c̃†mc̃

†
N−m−1 (154)

and collection all terms in the initial product state

|Φ1〉 = aNe
∑N
i=1 b

′c†i e(b′)2
∑N−1
m=0 i cot

π(m+1
2 )

N
c̃†mc̃
†
N−m−1 |Ω〉 (155)

Simplifying c2
i = 0 and (

∑N
i=1 b

′c†i )
2 = 0 and using exponential expansion

e
∑N
i=1 b

′c†i = 1 +
N∑
i=1

b′c†i (156)
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Figure 3: XY model global entanglement per site vs transverse magnetic field
(h) in the thermodynamic limit where N = 1000

and choosing a and b normalizable constants where ξ is arbitrary term

a = cos
ξ

2
(157a)

b = sin
ξ

2
(157b)

we reach the general product state which is written in the same form as

the ground state with respect to c̃ fermions in the momentum space for even

N

|Φ1(ξ)〉 =

(
1 + tan

ξ

2

N∑
i=1

c†i

)m<N−1
2∏

m=0

(
cos2 ξ

2
+ i sin2 ξ

2
cot

π(m+ 1
2
)

N
c̃†mc̃

†
N−m−1

)
(158)

let us remember the ground state we derived in equation (142)

|Ψ1/2〉 =

m<N−1
2∏

m=0

[
cos θm + i sin θmc̃

†
mc̃
†
N−m−1

]
|Ω〉 (159)
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and we arrive the overlap for even N

(160)〈Ψ1/2|Φ(ξ)〉 =

m<N−1
2∏

m=0

(
cos θm cos2 ξ

2
+ sin θm sin2 ξ

2
cot

π(m+ 1
2
)

N

)
recalling the geometric entanglement

Λmax(Ψ) ≡ max
Φ
〈Φ|Ψ〉 (161a)

Elog2(Ψ) ≡ −log2 Λ2
max(Ψ) (161b)

Entanglement density can be defined as following for even number of N par-

ticle

E ≡ Elog2(Ψ)

N
(162)

2.2.5.b) Geometric Entanglement per block

One can also consider block entanglement in the multipartite systems. In

this section we will derive geometric entanglement per block which consist

L = 2. We begin with writing product state

|φ[2i−1,2i]〉 = a |↑〉2i−1 ⊗ |↑〉2i + b |↑〉2i−1 ⊗ |↓〉2i + c |↓〉2i−1 ⊗ |↑〉2i (163a)

+d |↓〉2i−1 ⊗ |↓〉2i
=
(
a+ 1⊗ 1 + b1⊗ σ− + cσ− ⊗ 1 + dσ− ⊗ σ−

)
|↑〉2i−1 ⊗ |↑〉2i (163b)

mapping to fermionic picture by Jordan Wigner transformation

a+ bσ−2i + cσ−2i−1 + dσ−2i−1 ⊗ σ−2i (164)

= a+ b

2i−1∏
j=1

(1− 2c†jcj)c
†
2i + c

2i−2∏
j=1

(1− 2c†jcj)c
†
2i−1 + dc†2i−1(1− 2c†2i−1c2i−1)c†2i

(165)
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Total product state becomes where |Ω〉 is vacuum state with no c fermions

and N is even

|Φ〉 =

N/2∏
i=1

[
a+ b

2i−1∏
j=1

(1− 2c†jcj)c
†
2i + c

2i−2∏
j=1

(1− 2c†jcj)c
†
2i−1 + dc†2i−1c

†
2i

]
|Ω〉

(166)

using the fact that c |ω〉 = 0 and defining b′ = b/a

(167)

|Φ〉 =

N/2∏
i=1

[
a+ bc†2i + cc†2i−1 + dc†2i−1c

†
2i

]
|Ω〉

= aN/2
N/2∏
i=1

[
1 + b′c†2i + c′c†2i−1 + d′c†2i−1c

†
2i

]
|Ω〉

= aN/2
N/2∏
i=1

e[b′c†2i+c
′c†2i−1+d′c†2i−1c

†
2i] |Ω〉

= aN/2
[N/2∏
i=1

e[b′c†2i+c
′c†2i−1

][N/2∏
i=1

ed
′c†2i−1c

†
2i]

]
|Ω〉

= aN/2
[N/2∏
i=1

e[b′c†2i+c
′c†2i−1

][
ed
′∑N/2

i=1 c
†
2i−1c

†
2i]

]
|Ω〉

one can arrive the product state in the fermionic picture

|Φ〉 = aN/2e
∑N/2
i=1 b

′c†2i+c
′c†2i−1e

∑
i<j(b

′c†2i+c
′c†2i−1)(b′c†2j+c

′c†2j−1)ed
′∑N/2

i=1 c
†
2i−1c

†
2i |Ω〉

(168)
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Figure 4: XY model global entanglement per block vs transverse magnetic
field (h) in the thermodynamic limit

expanding the terms and evaluating fourier transform we arrive the overlap

for even N

〈Ψ|Φ〉 = χN

m<(N/2−1)/2∏
m=0

a2 cos θm cos θN
2
−m−1 + d2 sin θm sin θN

2
−m−1 +

cos θN
2
−m−1 sin θm

[
b2 + c2

2
cot

2π

N
(m+

1

2
) + b c cot

2π

N
(m+

1

2
) cos

2π

N
(m+

1

2
)

+ a d sin
2π

N
(m+

1

2
)

]
+ cos θm sin θN

2
−m−1

[
−b

2 + c2

2
cot

2π

N
(m+

1

2
)

+ b c cot
2π

N
(m+

1

2
) cos

2π

N
(m+

1

2
) + a d sin

2π

N
(m+

1

2
)

]
(169)

with

χN = 1 for N/4 = integer

χN = a cos θ 1
2

(N
2
−1) + d sin θ 1

2
(N
2
−1) for N/2 = odd integer

One can choose normalizable arbitrary constants a2 + b2 + c2 + d2 = 1
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a = cos γ

b = cosα sin β sin γ

c = sinα sin β sin γ

d = cos β sin γ

Thus, geometric entanglement per block will be

Λmax(Ψ) ≡ max
Φ
〈Φ|Ψ〉 (170a)

Elog2(Ψ) ≡ −log2 Λ2
max(Ψ) (170b)

E ≡ Elog2(Ψ)

N
(170c)

2.2.6 Quantum Phase Transition

Quantum Phase Transition has been discussed in details in the first section.

Here, we will investigate quantum phase transition by looking at global en-

tanglement and its derivative near the quantum critical point for the XY spin

chain model and its limits such as XX and Ising model. Most of the case,

the field derivative of the entanglement diverges near the critical point. Let

us start with the Figure (5)

One can easily spot the fluctuation in the entanglement density near the

critical point h = 1. As can be also seen on the Figure (3). One can observe

that in the XX limit (r = 0) entanglement density decrese to 0 as h = 1

On the other hand in the Ising and XY model one can see a change in

entanglement near the critical point.

In order to notice sharp changes near critical point, one need to examine

the field derivative of the entanglement on the Figure (6) and Figure (7). XY

Model exhibit following phases; ordered oscillatory, ferromagnetic and para-

magnetic. Ordered oscillatory ends on the line r2 + h2 = 1 as Ferromagnetic

phase starts. In the critical point, Quantum Phase Transition occurs, and

the system becomes Paramagnetic.

48



0

0.02

0.04

0.06

0.08

Figure 5: Entanglement density per site vs transverse magnetic field (h) vs
anisotropy (r) in the thermodynamic limit where N = 1000
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Figure 6: Derivative of Entanglement Density. XY Model r=0.5 (left panel)
and Ising Limit r=1 (right panel)
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Figure 7: Contour plotting of Entanglement density vs trans-
verse magnetic field (h) vs anisotropy (r) in the thermody-
namic limit where N = 1000
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2.3 XY Model with three-site interaction

The motivation of this section is examining QPT and quantum entanglement

with next-nearest interaction Hamiltonian in the transverse field. One can

suspect that extra σz term in the triangular lattice might have change some

of the properties of the system. We will give an exact solution of the Hamil-

tonian and examine global entanglement and quantum phase transition. We

will follow the same steps as in the previous section.

2.3.1 Diagonolization of Hamiltonian

Let us define the Hamiltonian. We use HXzY for labeling to show three-site

interaction.

HXzY = −
N∑
j=1

(
1 + r

2
)σxj−1σ

z
jσ

x
j+1 + (

1− r
2

)σyj−1σ
z
jσ

y
j+1 + hσzj (171)

As one can see, there is an extra σz term in the X and Y blocks. Applying

Jordan-Wigner transformation which we defined in equation (75), we have

σxj−1σ
z
jσ

x
j+1 =

j−2∏
i=1

(1− 2c†ici)(cj−1 + c†j−1)(1− 2c†jcj)

j∏
i=1

(1− 2c†ici)(cj+1 + c†j+1)

=

j−2∏
i=1

(1− 2c†ici)(cj−1 + c†j−1)

j−1∏
i=1

(1− 2c†ici)(cj+1 + c†j+1)

= (cj−1 + c†j−1)(1− 2c†j−1cj−1)(cj+1 + c†j+1)

= (−cj−1 + c†j−1)(cj+1 + c†j+1)

= −cj−1cj+1 − cj−1c
†
j+1 + c†j−1cj+1 + c†j−1c

†
j+1

(172)
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and for the next block

(173)

σyj−1σ
z
jσ

y
j+1 = −

j−2∏
i=1

(1− 2c†ici)(cj−1 − c†j−1)

j−1∏
i=1

(1− 2c†ici)(cj+1 − c†j+1)

= −(cj−1 − c†j−1)(1− 2c†j−1cj−1)(cj+1 − c†j+1)

= (cj−1 + c†j−1)(cj+1 − c†j+1)

= cj−1cj+1 − cj−1c
†
j+1 + c†j−1cj+1 − c†j−1c

†
j+1

Substituting into Hamiltonian (171), we reach the fermionic form

−HXzY =
N∑
j=1

(−cj−1c
†
j+1 + c†j−1cj+1) + r(−cj−1cj+1 + c†j−1c

†
j+1) + h(1− 2c†jcj)

(174)

Further applying Fourier transformation in equation (104), we obtain

(175)

−HXzY =
N−1∑
m=0

(
e−i

2π
N

2(m+b) + ei
2π
N

2(m+b)
)
c̃†mc̃m

+ r
(
−e−i

2π
N

2(m+b)c̃mc̃N−m−2b + ei
2π
N

2(m+b)c̃†mc̃
†
N−m−2b

)
+Nh− 2hc̃†mc̃m

Next using symmetry equation (107), we arrive at

(176)
HXzY = −Nh−

N−1∑
m=0

{[
2 cos

(
2π

N
2(m+ b)

)
− 2h

]
c̃†mc̃m

+ i r sin

(
2π

N
2(m+ b)

)(
c̃mc̃N−m−2b + c̃†mc̃

†
N−m−2b

)}
2.3.2 Geometric Entanglement and QPT

In the Appendix (A) we present a general Bogoliubov solution for bilinear

Hamiltonian. HXzY can be easily solved by substituting into equation (A-8).
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Figure 8: Derivative of Entanglement Density. XzY Model r=0.5 (left panel)
and Ising Limit r=1 (right panel)

The solution of Bogoliubov fermions is as follows

tan 2θm =

r sin

(
2π

N
2(m+ b)

)
h− cos

(
2π

N
2(m+ b)

) (177a)

sin 2θm =

r sin

(
2π

N
2(m+ b)

)
√(

r sin

(
2π

N
2(m+ b)

))2

+

(
h− cos

(
2π

N
2(m+ b)

))2

(177b)

cos 2θm =

h− cos

(
2π

N
2(m+ b)

)
√ (177c)

One notices the same form of solution except twice momentum as in the XY

model (120). This similarity will be investigated in the next section.

One can see the change in global entanglement near the critical point.

It is also important to notice that disorder line r2 + h2 = 1 in the XY

model, does not exist in this model. At the point h = 1, QPT emerges

between ferromagnet and paramagnet phases. As can be seen in Figure 8,

the derivative of the entanglement shows divergence near the critical point.
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2.4 XY Model with n-site interaction

Often interaction in the spin chains problems are treated in nearest neighbor

or three-site interaction. However, generalizing this model to n-site interac-

tion can be useful for seeing overall features of the model and even can give

some strange features which we will examine in this section. We shall define

the Hamiltonian in a way that n shows the number of σz terms in the each

block where 0 ≤ n < N . One can simply take n = 0 to have original XY

Model and n = 1 to reach HXzY or XY model with three-site interaction.

2.4.1 Diagonolization of Hamiltonian

We start with the definition of the Hamiltonian

(178)
HXnY = −

N∑
j=1

(
(
1 + r

2
)σxj−1σ

z
jσ

z
j+1...σ

z
j+n−1σ

x
j+n

+ (
1− r

2
)σyj−1σ

z
jσ

z
j+1...σ

z
j+n−1σ

y
j+n + hσzj

)
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Applying Jordan-Wigner transformation, we transform the n-site terms to

σxj−1σ
z
jσ

z
j+1 . . . σ

z
j+n−1σ

x
j+n =

j−2∏
i=1

(1− 2c†ici)(cj−1 + c†j−1)(1− 2c†jcj)

(1− 2c†j+1cj+1) . . . (1− 2c†j+n−1cj+n−1)
j+n−1∏
i=1

(1− 2c†ici)(cj+n + c†j+n)

=

j−2∏
i=1

(1− 2c†ici)(cj−1 + c†j−1)

j−1∏
i=1

(1− 2c†ici)(cj+n + c†j+n)

= (cj−1 + c†j−1)(1− 2c†j−1cj−1)(cj+n + c†j+n)

= (−cj−1 + c†j−1)(cj+n + c†j+n)

= −cj−1cj+n − cj−1c
†
j+n + c†j−1cj+n + c†j−1c

†
j+n

(179)

and

σyj−1σ
z
jσ

y
j+1 . . . σ

z
j+n−1σ

x
j+n = −

j−2∏
i=1

(1− 2c†ici)(cj−1 − c†j−1)(1− 2c†jcj)

(1− 2c†j+1cj+1) . . . (1− 2c†j+n−1cj+n−1)
j+n−1∏
i=1

(1− 2c†ici)(cj+n − c
†
j+n)

= −(cj−1 − c†j−1)(1− 2c†j−1cj−1)(cj+n − c†j+n)

= (cj−1 + c†j−1)(cj+n − c†j+n)

= cj−1cj+n − cj−1c
†
j+n + c†j−1cj+n − c

†
j−1c

†
j+n

(180)
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Substituting them into the Hamiltonian (178), we have

−HXnY =
N∑
j=1

(
1 + r

2
)(−cj−1cj+n − cj−1c

†
j+n + c†j−1cj+n + c†j−1c

†
j+n)

+ (
1− r

2
)(cj−1cj+n− cj−1c

†
j+n + c†j−1cj+n− c

†
j−1c

†
j+n) +h(1− 2c†jcj)

(181)

which is then simplified to

−HXnY =
N∑
j=1

(−cj−1c
†
j+n + c†j−1cj+n) + r(−cj−1cj+n + c†j−1c

†
j+n) +h(1− 2c†jcj)

(182)

Using Fourier transformation formulas which we found in (104) for the n-site

interaction, we have

−HXnY =
N−1∑
m=0

(
e−i

2π
N

(n+1)(m+b) + ei
2π
N

(n+1)(m+b)
)
c̃†mc̃m

+ r
(
−e−i

2π
N

(n+1)(m+b)c̃mc̃N−m−2b + ei
2π
N

(n+1)(m+b)c̃†mc̃
†
N−m−2b

)
+Nh− 2hc̃†mc̃m

(183)

Using symmetry equations (107), we have

(184)
HXnY = −Nh−

N−1∑
m=0

{[
2 cos

(
2π

N
(n+ 1)(m+ b)

)
− 2h

]
c̃†mc̃m

+ i r sin

(
2π

N
(n+ 1)(m+ b)

)(
c̃mc̃N−m−2b + c̃†mc̃

†
N−m−2b

)}
It is convenient to define

Θ(b)
n =

2π

N
(n+ 1)(m+ b) (185)
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(186)
HXnY = −Nh−

N−1∑
m=0

(2 cos Θn − 2h) c̃†mc̃m

+ i r sin Θn

(
c̃mc̃N−m−2b + c̃†mc̃

†
N−m−2b

)
Using the matrix form of the Bogoliubov transformation (A − 8) one can

easily diagonalize the Hamiltonian and derive solution of the generalized XY

model in the n-site interaction. This model also can be solved exactly and

the structure looks very similar to XY model.

Here we present n-th nearest neighbor interaction solution

tan 2θm =
r sin Θn

h− cos Θn

(187a)

sin 2θm =
r sin Θn√

(r sin Θn)2 + (h− cos Θn)2
(187b)

cos 2θm =
h− cos Θn√

(r sin Θn)2 + (h− cos Θn)2
(187c)

Eventually we obtain the diagonalized Hamiltonian,

(188)H =
N−1∑
m=0

ε(b)m

(
γ(b)†
m γ(b)

m −
1

2

)
where εm is the eigenvalue of the Hamiltonian

ε(b)m = 2

√
(r sin Θn)2 + (h− cos Θn)2 (189)

and

γ(b)
m = c(b)

m cos θm − i sin θ(b)
m cN−m−2b (190)

The ground state energy for the periodic boundary condition (odd-number-
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fermion b = 0)

E(0)
m (r, h) = (h− 1)−

N−1∑
m=1

√(
r sin Θ

(0)
n

)2

+
(
h− cos Θ

(0)
n

)2

(191)

and antiperiodic boundary condition (even-number-fermion b = 1/2)

E(1/2)
m (r, h) = −

N−1∑
m=1

√(
r sin Θ

(1/2)
n

)2

+
(
h− cos Θ

(1/2)
n

)2

(192)

We note that one can vary the number of σz terms to obtain other models

without having to solve them again:

n→ 0 XY model

n→ 1 XY model with three-site interaction (XzY) model

n→ N

2
− 2 halfway interaction

We shall examine the features of halfway interaction in the context of quan-

tum phase transition and geometric entanglement in the next section.

2.4.2 Mapping to 2D Classical Ising Model

Before moving to next section, we will investigate the two-dimensional clas-

sical duality of one-dimensional XY model with n-site interaction. It has

been shown many times by several authors that one-dimensional quantum

XY Model can be mapped to two-dimensional square-lattice Ising model in

the transverse field by choosing proper constants [19] [71] [72].

In the section (2.1.1) we have given the brief derivation of transfer ma-

trix solution of 2D Square-lattice Ising Model. (59). One can study the

derivation of eigenvalues and eigenvectors of the transfer matrix by using

Jordan-Wigner, Fourier and Bogoliubov transformation [9]. In this part we
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will present the solution of this model.

V1 = (2sinh2K1)M/2 e−2K′1 τx

V2 = eK2
∑
τzmτ

z
m+1+H

∑
τzm

Z = tr
(
V

1
2

2 V1V
1
2

2

)N
= trV N

and HV is diagonalized Hamiltonian with εk energy eigenvalues

V = V
1
2

1 V2V
1
2

1 (193a)

V = exp

(
−
∑
k

εkγ
†
kγk

)
= exp (−HV ) (193b)

cosh εk = cosh2K ′1 cosh 2K2 − cosk sinh 2K ′1 sinh 2K2 (193c)

The XY model solution of Bogoliubov fermions has the same form as the V

matrix with proper constants [73].

tan 2θVk =
sin k sinh 2K2

sinh 2K ′1 cosh 2K2 cos k cosh 2K ′1 sinh 2K2

(194)

tan 2θXnYk =
r sin Θ

h− cos Θ
(195)

where Θ in the second equation is

Θ(n) =
2π

N
(n+ 1)(m+ b) (196)

Thus [HXnY , HV ] = 0 if we choose r and h in the following form

h =
tanh 2K ′1
tanh 2K2

(197)

r =
1

cosh2K ′1
(198)

In the case n = 0, it reduces to the XY Model. It has been known that
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1D quantum XY model is mapped to 2D Square-lattice Ising Model. An

interesting point here is that as we change the number of σz term (n), this

mapping looks still valid since h and r terms are not coupled with Θ. Thus,

one can naively think that where n = 1→ XzY model should also correspond

to same 2D square-lattice Ising model. It can also be shown that any Hamil-

tonian with n-site interaction in the XY Model should obey the following

commutation relations [HXnY , HV ] = 0

2.4.3 Geometric Entanglement and QPT

In this section, we will continue with XnY model which we developed in

the previous section and examine the effects of halfway interaction. One

specific point (n = N/2 − 1) is interesting in this model since in this point

characteristic of Θ changes. It affects the solution of Bogoliubov fermions by

vanishing some of the sin and cos terms depending on periodic/antiperiodic

boundary conditions (b = 0/b = 1
2
). Recalling the solution of XY model with

n-th nearest neighbors interaction

tan 2θm =
r sin Θ

h− cos Θ
(199a)

where

Θ(n) =
2π

N
(n+ 1)(m+ b) (200)

with a simple algebra one can show the solution of this interaction for even-

fermion case (b=1/2)

tan 2θ(1/2)
m =

r sin
[
π
(
m+ 1

2

)]
h− cos

[
π
(
m+ 1

2

)] (201a)

tan 2θm =
(−1)mr

h
(201b)
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and for odd-fermion case (b=0)

tan 2θ(0)
m =

r sin [πm]

h− cos [πm]
= 0 (202a)

plotting global entanglement and derivative of the entanglement in the halfway

interaction, it can be seen that there is no divergence near the critical point.

There can be two reasons for this result. Firstly, this method might not be

able to detect the entanglement. However, in the next graph one can see the

entanglement measurement for r = 0.5 and r = 1 case. Thus it is not the

explanation. Second reason, Quantum Phase Transition do not exist where

particles have interaction with the opposite side of the circle in the cyclic

boundary conditions.
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Figure 11: Derivative of Entanglement Density for halfway interaction in the
XnY model where r=0.5 (left panel) and Ising Limit r=1 (right panel)

One can naturally think that this interaction is not possible in the real

lattice. In this point, we would like to point out that n and N are arbitrary

numbers, and halfway interaction occurs also in the small systems such as n =

3 while N = 8. On the other hand, as we investigate other interactions, we

find out that quantum phase transition exists except the halfway interaction.

For instance, when n = 52 while N = 100, we can see discontinuity near the

critical point. Therefore, derivative of the entanglement does not diverge near

the critical point if and only if n = N/2− 1 for even number of particles.

We present a contour map for the derivative of the entanglement vs n-site
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Figure 12: Entanglement Density for halfway interaction in the XnY model
in the thermodynamic limit where N = 1000
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Figure 13: Entanglement density of halfway interaction vs transverse mag-
netic field (h) vs anisotropy (r) in the thermodynamic limit where N = 1000
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Figure 14: Derivative of Entanglement Density for halfway interaction. XnY
Model r=0.5 (left panel) and Ising Limit r=1 (right panel) where n=490-510
and N=1000. At the halfway interaction (N=499) there is no discontinuity
in the derivative of the entanglement therefore QPT do not emerge

interaction on the figure (14) As one can easily see in the halfway interaction

(n=49 in this case) derivative of entanglement is continuous function as other

points are not. Therefore, halfway interaction is like spin coupling between

opposite pairs which we do not expect the quantum phase transition.
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3 Generalized Cluster-XY Model

In this section, we introduce a new form of the generalized Cluster-XY Hamil-

tonian. Similar Hamiltonian has been presented by Suzuki [30]. However,

this Hamiltonian is more convenient and efficient regarding the size of the di-

agonalized matrix. By using this model, one can derive the exact solution of

the many suitable bilinear spin systems without applying any transformation.

Then one can examine global entanglement and quantum phase transition

easily. In the next part, we will give several examples of this model and

investigate the Quantum Phase Transition for each of them.

3.1 Diagonolization of Hamiltonian

We begin with defining the Hamiltonian. One needs to pay attention six

arbitrary quantities in this model. N (x) and N (y) are the number of X and Y

blocks in the Hamiltonian. For example, one can build a Hamiltonian with

several X blocks and only one Y block in the transverse field. J
(x)
l and J

(y)
l′

are the lists of coupling constants for each block. Thus, one can choose the

strength of each block separately. At last, one can choose any number of

site interaction for each block separately. n
(x)
l and n

(y)
l′ are list of σz terms

for each block. One should pay attention that the number of term in the

J
(x)
l & J

(y)
l′ and n

(x)
l & n

(y)
l′ can not exceed X & Y . The Hamiltonian is

(203)

HCXY = −
N∑
j=1

N(x)∑
l=1

J
(x)
l σxj−1σ

z . . . σzσx
j+n

(x)
l

+
N(y)∑
l′=1

J
(y)
l′ σ

y
j−1σ

z . . . σzσy
j+n

(y)

l′
+ hσzj
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Applying Jordan-Wigner transformation and simplifying, we arrive at

HCXY =−
N∑
j=1

N(x)∑
l=1

J
(x)
l

(
c†j−1cj+n(x)

l
+ c†j−1c

†
j+n

(x)
l

− cj−1cj+n(x)
l
− cj−1c

†
j+n

(x)
l

)

+
N(y)∑
l′=1

J
(y)
l′

(
c†j−1cj+n(y)

l′
− c†j−1c

†
j+n

(y)

l′
+ cj−1cj+n(y)

l′
− cj−1c

†
j+n

(y)

l′

)

+ h(1− 2c†jcj)


(204)

Mapping to momentum space, we have

HCXY =−Nh−
N−1∑
m=0

X,Y∑
l,l′=1

[(
J

(x)
l ei

2π
N

(m+b)(1+n
(x)
l ) +J

(y)
l′ e

i 2π
N

(m+b)(1+n
(y)

l′ )
)
c(b)†
m c(b)

m

+
(
−J (x)

l e−i
2π
N

(m+b)(1+n
(x)
l ) + J

(y)
l′ e

−i 2π
N

(m+b)(1+n
(y)

l′ )
)
c(b)
m c

(b)
N−m−2b

−
(
J

(x)
l e−i

2π
N

(m+b)(1+n
(x)
l ) + J

(y)
l′ e

−i 2π
N

(m+b)(1+n
(y)

l′ )
)
c(b)
m c

(b)†
m

+
(
J

(x)
l ei

2π
N

(m+b)(1+n
(x)
l ) − J (y)

l′ e
i 2π
N

(m+b)(1+n
(y)

l′ )
)
c(b)†
m c

(b)†
N−m−2b

− 2hc(b)†
m c(b)

m

]
(205)

Similar to earlier discussion, we define Θ for simplicity,

Θ
(x)
l =

2π

N
(m+ b)(1 + n

(x)
l ) (206a)

Θ
(y)
l′ =

2π

N
(m+ b)(1 + n

(y)
l′ ) (206b)
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Recall the fermionic commutation relations {ci, c†j} = δij and apply the sym-

metry we reach,

HCXY = −Nh−
N−1∑
m=0

X,Y∑
l,l′=1

{
c(b)†
m c(b)

m

(
2 J

(x)
l cos Θ

(x)
l + 2 J

(y)
l′ cos Θ

(y)
l′ − 2h

)
+ i
(
J

(x)
l sin Θ

(x)
l − J

(y)
l′ sin Θ

(y)
l′

) [
c(b)
m c

(b)
N−m−2b + c(b)†

m c
(b)†
N−m−2b

]}
(207)

After Bogoliubov transformation (A-8), we have

HCXY = −
N−1∑
m=0

X,Y∑
l,l′=1

{(
γ

(b)†
N−m−2bγ

(b)
N−m−2b + γ(b)†

m γ(b)
m

) [
−hcos2θ(b)

m

+ J
(x)
l cos

(
2θ(b)

m + Θ
(x)
l

)
+ J

(y)
l′ cos

(
2θ(b)

m −Θ
(y)
l′

)]
− i
(
γ(b)
m γ

(b)
N−m−2b+γ(b)†

m γ
(b)†
N−m−2b

) [
h sin 2θ(b)

m −J
(x)
l sin

(
2θ(b)

m +Θ
(x)
l

)
− J (y)

l′ sin
(

2θ(b)
m −Θ

(y)
l′

)]
+ h cos 2θ(b)

m + h(N − 1)

+ 2 sin θ(b)
m

[
J

(x)
l sin

(
θ(b)
m + Θ

(x)
l

)
+ J

(y)
l′ sin

(
θ(b)
m −Θ

(y)
l′

)]}
(208)

Equating non-diagonal terms to zero, we obtain

(209)
h sin 2θ(b)

m − J
(x)
l

[
sin 2θ(b)

m cos
(

Θ
(x)
l

)
+ cos2θ(b)

m sin
(

Θ
(x)
l

)]
− J (y)

l′

[
sin2θ(b)

m cos
(

Θ
(y)
l′

)
− cos2θ(b)

m sin
(

Θ
(y)
l′

)]
= 0

Solving for θm, we obtain the result

βm =
N(x)∑
l=1

J
(x)
l sin

(
Θ

(x)
l

)
−

N(y)∑
l′=1

J
(y)
l′ sin

(
Θ

(y)
l′

)
(210)

αm = h−
N(x)∑
l=1

J
(x)
l cos

(
Θ

(x)
l

)
−

N(y)∑
l′=1

J
(y)
l′ cos

(
Θ

(y)
l′

)
(211)

tan 2θm =
βm
αm

(212)
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Finally, we reach the diagonalized Hamiltonian,

H =
N−1∑
m=0

εm

(
γ†mγm −

1

2

)
(213)

where εm is the eigenvalue of the Hamiltonian

εm = 2

√
(βm)2 + (αm)2 (214)

and and

γm = cm cos θm − i sin θm cN−m−2b (215)

One should also pay attention to b gauge term which can be b = 0 (odd-

fermion case, periodic boundary conditions) or b = 1/2 (even-fermion case,

antiperiodic boundary conditions).
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3.2 Geometric Entanglement and QPT

In this part, we present several examples of the Hamiltonian we developed in

the previous section. The requested Hamiltonian may not be in the HCXY

but one can easily obtain the same form by operating rotation matrix on spin

states.

(216)

HCXY = −
N∑
j=1

N(x)∑
l=1

J
(x)
l σxj−1σ

z . . . σzσx
j+n

(x)
l

+
N(y)∑
l′=1

J
(y)
l′ σ

y
j−1σ

z . . . σzσy
j+n

(y)

l′
+ hσzj


Let us recall the solution for this Hamiltonian

Θ
(x)
l =

2π

N
(m+ b)(1 + n

(x)
l ) (217a)

Θ
(y)
l′ =

2π

N
(m+ b)(1 + n

(y)
l′ ) (217b)

βm =
N(x)∑
l=1

J
(x)
l sin

(
Θ

(x)
l

)
−

N(y)∑
l′=1

J
(y)
l′ sin

(
Θ

(y)
l′

)
(217c)

αm = h−
N(x)∑
l=1

J
(x)
l cos

(
Θ

(x)
l

)
−

N(y)∑
l′=1

J
(y)
l′ cos

(
Θ

(y)
l′

)
(217d)

εm = 2

√
(βm)2 + (αm)2 (217e)
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and

tan 2θm =
βm
αm

(218a)

sin 2θm =
(βm)√

(βm)2 + (αm)2
(218b)

cos 2θm =
(αm)√

(βm)2 + (αm)2
(218c)

cos θm =

√
1 + cos 2θm

2
(218d)

sin θm = sgn(βm)

√
1− cos 2θm

2
(218e)

where X and Y are the number of X and Y blocks in the Hamiltonian and

J
(x)
l and J

(y)
l′ are the list of coupling constants for each block and n

(x)
l and

n
(y)
l′ are list of σz terms or site interaction for each X or Y block.

One can substitute this solution into geometric entanglement per site/block

equation without performing any transformation. Recalling geometric en-

tanglement per site [70] derived from the overlap

(219)〈Ψ1/2|Φ(ξ)〉 =

m<N−1
2∏

m=0

(
cos θm cos2 ξ

2
+ sin θm sin2 ξ

2
cot

π(m+ 1
2
)

N

)
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and for geometric entanglement per block, the overlap is

〈Ψ1/2|Φ〉 = χN

m<(N/2−1)/2∏
m=0

{
a2 cos θm cos θN

2
−m−1 + d2 sin θm sin θN

2
−m−1 +

cos θN
2
−m−1 sin θm

[
b2 + c2

2
cot

2π

N
(m+

1

2
) + b c cot

2π

N
(m+

1

2
) cos

2π

N
(m+

1

2
)

+ a d sin
2π

N
(m+

1

2
)

]
+ cos θm sin θN

2
−m−1

[
−b

2 + c2

2
cot

2π

N
(m+

1

2
)

+ b c cot
2π

N
(m+

1

2
) cos

2π

N
(m+

1

2
) + a d sin

2π

N
(m+

1

2
)

]}
(220)

with

χN = 1 for N/4 = integer

χN = a cos θ 1
2

(N
2
−1) + d sin θ 1

2
(N
2
−1) for N/2 = odd integer

and

a = cos γ

b = cosα sin β sin γ

c = sinα sin β sin γ

d = cos β sin γ

Entanglement density (E) for the number of N particle is obtained from

Λmax(Ψ) ≡ max
Φ
〈Φ|Ψ〉 (221a)

Elog2(Ψ) ≡ −log2 Λ2
max(Ψ) (221b)

E ≡ Elog2(Ψ)

N
(221c)
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3.2.1 XY model and XY Model with n-site interaction

In this part, we present the solution of the anisotropic XY model in the

transverse field and XY model with n-site interaction by using the method

we derived earlier. In these models, there are one X and Y block and r is the

anisotropy constant. We introduce the following quantities that characterize

the model:

N (x) = 1 (222a)

N (y) = 1 (222b)

J
(x)
l = {(1 + r)/2} (222c)

J
(y)
l′ = {(1− r)/2} (222d)

n
(x)
l = {0} (222e)

n
(y)
l′ = {0} (222f)

Putting these terms into HCXY (203), we get XY Model

(223)HXY = −
N∑
j=1

[
1 + r

2
σxj−1σ

x
j +

1− r
2

σyj−1σ
y
j + hσzj

]

tan 2θ(b)
m =

(1+r
2

) sin
(

Θ
(x)
l

)
− (1−r

2
) sin

(
Θ

(y)
l′

)
h− (1+r

2
) cos

(
Θ

(x)
l

)
− (1−r

2
) cos

(
Θ

(y)
l′

) (224a)

tan 2θ(b)
m =

r sin
(

Θ
(x)
l

)
h− cos

(
Θ

(x)
l

) (224b)

where

Θ
(x)
l = Θ

(y)
l′ =

2π

N
(m+ b) (225)
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Likewise, we can solve the HXnY model with using following terms

N (x) = 1 (226a)

N (y) = 1 (226b)

J
(x)
l = {(1 + r)/2} (226c)

J
(y)
l′ = {(1− r)/2} (226d)

n
(x)
l = {n} (226e)

n
(y)
l′ = {n} (226f)

(227)H = −
N∑
j=1

[
1 + r

2
σxj−1σ

z . . . σzσxj+n +
1− r

2
σyj−1σ

z . . . σzσyj+n + hσzj

]
We can also build different numbers of site interaction for each block, such

as n-site interaction for X block and m-site interaction for Y block

N (x) = 1 (228a)

N (y) = 1 (228b)

J
(x)
l = {(1 + r)/2} (228c)

J
(y)
l′ = {(1− r)/2} (228d)

n
(x)
l = {n} (228e)

n
(y)
l′ = {m} (228f)

(229)H = −
N∑
j=1

[
1 + r

2
σxj−1σ

z . . . σzσxj+n +
1− r

2
σyj−1σ

z . . . σzσyj+m + hσzj

]
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3.2.2 GHZ-Cluster transition

In this part, we present GHZ-Cluster state which studied by Wolf et al. [74].

This time we choose X = 2 and a list of J
(x)
l since we need two X blocks

and Y = 1 even though we do not have Y block. We are choosing the

strength J
(y)
l′ = n

(y)
l′ = 0 in order to eliminate Y block. As one can see we

assign different value for h to build desired Hamiltonian. Here we give the

parameters

h = (1 + g)2 (230a)

N (x) = 2 (230b)

N (y) = 1 (230c)

J
(x)
l = {−2(g2 − 1),−(g − 1)2} (230d)

J
(y)
l′ = {0} (230e)

n
(x)
l = {0, 1} (230f)

n
(y)
l′ = {0} (230g)

after a rotation of the Hamiltonian (σx → σz) we reach

H = −
N∑
j=1

[2(g2 − 1)σxj−1σ
x
j + (g − 1)2σxj−1σ

zσxj+1 − (1 + g)2σzj ] (231)

where g = 0 for GHZ state g = −1 for cluster state.

Next figures show the global entanglement [75] upon using the solution

which we derived in the previous section equation (217). The first figure

shows the global entanglement per site (blue) and per block (orange, L=2)

of GHZ states (g = 0). One can examine the derivative of the entanglement

to see the divergence near the critical point.
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Figure 15: Geometric Entanglement per site (orange) and per block (blue,
L=2) for GHZ-Cluster state (first). Derivative of the Entanglement per site
(second) where N=200
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3.2.3 SPT-Antiferromagnetic transition

At last, we examine quantum phase transition between a symmetry protected

topological order and an antiferromagnetic phase [76] by using the same

method we derived. We choose one X and one Y block. We set h = 0 to

eliminate transverse field term. Parameters of the model considered is as

follows

h = 0 (232a)

N (x) = 1 (232b)

N (y) = 1 (232c)

J
(x)
l = {1} (232d)

J
(y)
l′ = {λ} (232e)

n
(x)
l = {1} (232f)

n
(y)
l′ = {0} (232g)

Thus the Hamiltonian

H = −
N∑
j=1

σxj−1σ
zσxj+1 + λ

N∑
j=1

σyj−1σ
y
j

As can be seen from the following plot, the quantum phase transition occurs

at λ = 1
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Figure 16: Geometric Entanglement per site (blue) and per block (orange)
for SPT-Antiferromagnetic phase (first). Derivative of the Entanglement
(second) where Blue: N=32, Orange: N=64, Green: N=200, Red: N=1000
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4 Conclusion and Outlook

In this work, we have given a detailed treatment to diagonalization of the

one-dimensional anisotropic XY model in the transverse field. We firstly

presented Jordan-Wigner transformation and derived Fourier transformation

and Bogoliubov transformation for generalized XY model with n-site inter-

action. Further, we introduced a geometric measure of entanglement per

site/block for quantifying entanglement in the multipartite system. We ex-

amined global entanglement near the quantum critical point and investigated

quantum phase transition in several models.

Later, we introduced the Quantum XY model with n-site interaction and

obtained the energy eigenvalues for the general model. We specifically ex-

amined three-site interaction and show the emergence of quantum phase

transition. Later we discussed halfway interaction and realized that field

derivative of the global entanglement is continuous near the quantum criti-

cal point. We also discussed duality between one dimensional quantum XY

model with n-site interaction and two dimensional Square-lattice Ising model.

In the last section, we introduced a generalized Cluster-XY Hamiltonian

which one can examine quantum entanglement and quantum phase transition

of many suitable bilinear Hamiltonian by defining quantities that characterize

the model. We also presented several examples such as QPT between GHZ-

Cluster phase and SPT-Antiferromagnetic phase.

For the future work, we shall examine global entanglement and quan-

tum phase transition in two-dimensional models and attempt to generalize

Cluster-XY Hamiltonian for higher spin problems.
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A Bogoliubov Transformation in the Matrix

Form

In this part, we present generalised matrix form of the Bogoliubov trans-

formation for the bilinear Hamiltonians. Hamiltonian can be written in two

ways [77]

For real β

H = λ
(
c†1c1 + c†2c2

)
+ β

(
c†1c
†
2 + c2c1

)
(A-1)

We define the Bogoliubov angle where {γi, γ†j} = δij

c̃1 = cos θ γ1 + i sin θ γ†2 (A-2a)

c̃†1 = cos θ γ†1 − i sin θ γ2 (A-2b)

c̃2 = cos θ γ2 − i sin θ γ†1 (A-2c)

c̃†2 = cos θ γ†2 + i sin θ γ1 (A-2d)

writing the Bogoliubov transformation in the matrix form(
c1

c†2

)
=

(
cos θ i sin θ

i sin θ cos θ

)(
γ1

γ†2

)
(A-3)

we can write Hamiltonian (A-1) in the matrix form

H =
1

2

(
c†1 c2 c†2 c1

)

λ β 0 0

β −λ 0 0

0 0 λ −β
0 0 −β −λ



c1

c†2

c2

c†1

+ λ (A-4)
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calculating upper 2× 2 block and doing the same calculation for other block(
cos θ −i sin θ

−i sin θ cos θ

)(
λ β

β −λ

)(
cos θ i sin θ

i sin θ cos θ

)
=

(
ε 0

0 −ε

)
(A-5)

=
(
γ†1 γ2

)(ε 0

0 −ε

)(
γ1

γ†2

)
(A-6)

diagonalized Hamiltonian can be written where ε =
√
λ2 + β2

H = ε
(
γ†1γ1 + γ†2γ2

)
+ λ− ε (A-7)

For complex β

H = λ
(
c†1c1 + c†2c2

)
+ β

(
c†1c
†
2 − c2c1

)
(A-8)

we can write Hamiltonian (A-8) in the matrix form

H =
1

2

(
c†1 c2 c†2 c1

)


λ β 0 0

−β −λ 0 0

0 0 λ −β
0 0 β −λ



c1

c†2

c2

c†1

+ λ (A-9)

invoking the same method, we reached diagonalized Hamiltonian where ε′ =√
λ2 − β2

H = ε′
(
γ†1γ1 + γ†2γ2

)
+ λ− ε′ (A-10)
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