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Abstract of the Dissertation

Topics in Statistical Physics: Protein Stability, Non-Equilibrium Thermodynamics and Bibliometrics

by

Michael Hazoglou

Doctor of Philosophy

in

Physics

Stony Brook University

2016

This dissertation will cover three distinct topics of protein stability, non-
equilibrium thermodynamics and scientometrics. In senescent organisms ag-
ing is correlated with oxidative damage of proteins. The damage done to
proteins destabilizes them inhibiting their function. The implications of a
simplified model based on side-chain modification of charged residues using
Debye-Hückel theory will be presented. Short length and highly charged pro-
teins are susceptible to destabilization from oxidative damage. Among these
proteins already studied in aging several proteins fit this description of being
short and highly charged. There is a noticeable enrichment of short- highly-
charged proteins in categories of proteins known to be important in aging.
Maximum Caliber (MaxCal) is a potential theory of non- equilibrium statis-
tical mechanics. It will be shown how MaxCal is used to derive the Onsager
reciprocal relations, Green-Kubo relations and Prigogines Principle and ex-
tend these relations beyond the near-equilibrium regime. The last topic is
the citation and publication trends of papers and authors, respectively. A
discussion of how pure-birth processes can be applied to understanding ci-
tation trends and how birth-processes can be used in classifying papers into
different categories of performance.
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1 Introduction

This dissertation is broken into three main parts each having to do with
projects that I have worked on these last few years. Each part covers disjoint
topics in protein stability, non-equilibrium thermodynamics and scientomet-
rics. The only thing connecting these topics is that statistics, probability
theory and statistical physics are utilized in all three of them and because of
this, the name of this thesis was selected.

The first part will be on the effect of oxidative damage to the thermody-
namic stability of proteins and how this influences the stability and function
of a proteome of an organism. This study was motivated by aging, as ox-
idative damage of proteins is more prevalent in older senescent organisms
and individuals who suffer from premature aging diseases. It is uncertain if
this correlation is a direct cause and effect and which direction it goes (does
oxidative damage cause aging or the other way around). The main result of
this study is that proteins which are highly charged and/or short in length
are highly susceptible to destabilization from oxidation, we identified twenty
proteins from the human proteome that have been found implicated in aging
two fall into this group of short highly charged proteins. These are mostly
proteins that carry out important functions in the nucleus or ribosome as
proteins that interact with DNA are positively charged due to the negative
backbone of DNA. This section is an expanded version of our work in [15].

The second part describes the statistical mechanics of non-equilibrium
steady state systems from a possible theory of non-equilibrium statistical
mechanics called Maximum Caliber (MaxCal). A statistical theory for non-
equilibrium thermodynamics would be a great achievement with profound
applications. With a statistical theory of non-equilibrium processes one can
characterize fluctuations, dissipation, transport properties, and possibly un-
derstand turbulence and chaotic dynamics from the point of critical phenom-
ena and phase transitions. A statistical formulation of non-equilibrium ther-
modynamics would be an incredibly powerful tool. Many of the celebrated
results of non-equilibrium thermodynamics such as the Onsager reciprocal
relation, Prigogine’s principle, Green-Kubo equations are reproduced and
entropy fluctuation theorem are reproduced under the umbrella of MaxCal.
Within the formalism of MaxCal the higher order symmetry relations, rela-
tionships which are analogous to the Onsager reciprocal relations for higher
order terms in the expansion of constitutive equation are shown to not exist
for all orders greater than second order. Much of the key results presented
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in this section were published in [27].
The third and last part is focused on the study of scientific writings and

their publication and citation, known as scientometrics which is a subset of
bibliometrics. These fields are studied with the purpose of understanding
how scientists on a whole publish, how they get cited, developing metrics
of quality, and predicting future success. This part will develop a model to
describe how individuals publish papers and get cited, based on the birth
process with cumulative advantage, where the rate of events depends on the
number of previous events. By utilizing the mathematical formalism of the
birth process one can reproduce the results of Wang, Song and Barabási
[72] reducing the number of assumptions that need to go into deriving their
primary equation but also providing a theory for the stochastic nature of
citation. As far as an individual publishing articles previous studies and
our own indicate that as long as a scientist is active they publish papers
at a relatively constant rate over their career, characterized by the birth
process and a negative binomial distribution. These results are born out
from observations on data sets obtained from PubMed and the American
Physical Society.
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2 Proteins and the Effect of Oxidative Dam-

age on their Stability

In this chapter, I develop a first-principles physical model for how normal
oxidative damage processes such as are prevalent in aging biological cells
can change the physical properties of the proteins in the cell. This may
be important for how cells manifest the effects of aging. Our model begins
by recognizing the following key properties: (i) protein molecules are linear
chains that fold up into compact structures through large numbers of weak
non-covalent interactions, (ii) that protein folding stability is critical for their
functioning as biology’s workhorse units, (iii) that oxidative damage is ran-
domly distributed across biomolecules in the cell, (iv) that protein molecules
are among the most important affected targets, and (v) that a key effect of
oxidative damage on proteins is the changing of the charges of some highly
charged side chains. Using a polymer statistical physics model of proteins
as charged chains, we show how those protein molecules that already are
highly charged can be substantially destabilized, and caused to unfold, by
even single random oxidative damage events.

At the age of 80 about half the proteins in the human body are damaged
by oxidization. Oxidative damage occurs because of the natural metabolic
processes (the conversion of nutrients to energy in the presence of oxygen)
that occur in the body of organisms. Searching protein databases and pro-
cessing the data found 20 proteins that where already studied in aging ex-
periments and suggests that proteins which play important roles in DNA
maintenance, and protein synthesis are most susceptible to damage by oxi-
dation. This is applicable to the discovery of proteins related to aging and
age-related diseases for potential aging studies.

2.1 The Model for Charge-based Destabilization of Pro-
teins

Proteins are the work-horses of the cell. Proteins are enzymes that carry out
essential functions for life. They are polymers (peptide chains) composed
of twenty possible amino acids with different side chains, see Figure 1 for
the chemical structure of an amino acid. The sequence of these amino acid
residues (residue refers to the remnant of the amino acid monomer in the
chain) determines how the chain folds. The side chains on the backbone of the
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peptide chain and their interactions between them will cause the protein to
fold into a configuration with the minimum free energy. As the environment
of a protein is aqueous much of the hydrophobic residues form the core of
the protein which is shielded from the water, the exterior of the protein
will prefer residues with charge, polarity as they can interact favorably with
surrounding water molecules. Any disturbance in these interactions will harm
a protein’s stability and if it significant enough to cause the protein to change
configuration it will hinder its ability to function.

NH2

R OH

O

Figure 1: The structure of an amino acid, the is derived from the amine
group and carboxyl group (which is acidic) the side chain R is anyone of 20
possibilities, which are either negatively charged (acidic), positively charged
(basic), or neutral where hydrogen bonds, steric and Van der Waals interac-
tions are more significant for how they interact with other side chains in a
peptide chain. Peptide chains are formed by hydrolysis of the amine group
with the carboxyl group of another amino acid.

As an organism ages their proteins are damaged by reactive oxygen species,
reactive nitrogen species, reactive lipids and glycolytic products, see Figure 2.
These reactive species can modify side chains of proteins, cleave the back-
bone, and covalently bond to lipids, carbohydrates or other proteins [61, 64].
Most of the damage is done by side chain modification, it is an order of mag-
nitude higher than the others. Modification of sides chains in many instances
causes a change in the charge [64]. See Table 1 for possible which residues
are affected by oxidative damage.

As a first approximation of the effect of oxidative damage on stability of
a protein can be modeled by Debye-Hückel theory [17]. Using the linearized
Poisson-Boltzmann equation with the assumptions that the net charge is uni-
formly distributed over the surface of the protein, and the folded (native) and
unfolded (denatured) forms are approximately spherical in shape (compact
in the native case, compact partially folded molten globules in the denatured
case). The change in the folding free energy due to charge effects, ∆Ge,
would be [23]
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Figure 2: Oxidative damage as measured by carbonyl content versus age
normalized to the average lifespan of the species. The purple diamonds are
worms [3], the green triangles are flies [63], cyan squares are rats [65], blue
upside-down triangles are humans [49]. The black curve is is an exponential
fit to all the data with least squares regression, and the cyan band shows the
deviation when then parameters are varied by ±15%. The pink bands show
the levels of carbonylation in accelerated aging diseases [49], which show the
same levels of carbonylation as observed in the latest stages of life.

∆Ge

kT
=

Q2
dlb

2Rd(1 + κRd)
− Q2

nlb
2Rn(1 + κRn)

(1)

k is the Boltzmann constant, T is the temperature, lb is the Bjerrum length,
κ =

√
2cslb the inverse of the Debye screening length, cs being the salt

concentration, Qn the net charge of the native protein, Qd the net charge of
the denatured protein, Rn and Rd are the radii of gyration for the protein
in the native and denatured form respectively. The definition of ∆G above
is taken so that positive values means the native form is stable, this is for
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Method of oxidation Amino Acids affected
Metal-catalyzed oxidation Arg, Lys, His, Pro, Thr, Tyr, Cys, Met
1O2 Arg, Lys, His, Pro, Thr, Tyr, Cys, Met
ONOO− Tyr, Cys, Met
HOCl Arg, Lys, Pro, Thr, Tyr, Cys, Met
Ozone Arg, Lys, Pro, Thr, Cys, Met
γ-Ray Arg, Lys, His, Pro, Thr, Tyr, Trp, Val, Leu,

Cys, Met

Table 1: Main methods of oxidative damage to side chains [61].

convenience. Since Rd > Rn and Qd ≈ Qn, ∆G < 0 meaning net charge will
only destabilize a protein. Oxidative modification will change the charge of
a protein by at most one unit in either direction, Q→ Q± 1, the change in
the folding free energy ∆∆G

∆∆Ge

kT
=

(±2Qd + 1)lb
2Rd(1 + κRd)

− (±2Qn + 1)lb
2Rn(1 + κRn)

(2)

when the oxidation increases the magnitude of the charge in either direction it
destabilizes the protein. For the typical conditions found in a cell calculations

are carried out with lb = 7.13Å, κ = 0.03Å
−1

which result from cs = 0.1M
and a relative dielectric constant of 78.5 and a pH of 7. The radii of gyration
are functions of chain length, N , these are give by empirical relations Rn =
2.24N0.392Å and Rd = 1.927N0.598Å [38]. The equation (1) indicates that
a protein with a greater chain length allows the charge to be spread out
over the surface of the protein, so longer proteins can accommodate greater
charge. For determining the average charge of a residue which is cased on
the chance of protonation p and the relevant pKa

p =
1

1 + 10pH−pKa
(3)

for a basic residue this would mean the charge is given by p and for an
acidic residue the charge is given by −(1 − p) (minus the chance of being
deprotonated) the net charge can is the sum of these term for each amino
acid in a sequence

Q =
∑
i=base

1

1 + 10pH−pKa,i
−
∑
j=acid

1

1 + 10pKa,j−pH
(4)
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the formula can be used to calculate the net charge of either the native or
denatured form of the protein depending on the choice of pKas. The pKas
used for the denatured form are from [43], and the values used for the native
form are estimated from experimental data from [73], see Figure 3. The only
significant change in protonation occurs for histidine which in the native form
of proteins is protonated approximately 40% of the time compared to the 10%
predicted from the pKa ≈ 6. Using the average of the pKa is incorrect as the
p is a non-linear function of pKa. Cysteine (pKa ≈ 8) is difficult to model
because of it’s tendency to form disulfide bridges, there is no simple way to
model cysteine’s without knowing the structure of protein. So we use the
standard value for cysteine.

Figure 3: Experimentally measured pKa values of side chains in the folded
state of proteins. From left to right aspartic acid: red, glutamic acid: yellow,
histidine: black, and lysine: cyan.

7



2.2 The Length Distribution of proteins in the Pro-
teome of an Organism is Gamma Distributed

In order to calculate the stability distribution of a proteome (set of all pro-
teins in a organism) we need to know the length distribution p(N) of proteins.
From the database UniProt [13], which has protein sequence data, the pro-
teomes of 4 organisms were E. coli, S. cerevisiae, M. musculus and H. sapiens
(using only proteins verified experimentally at the protein level). These four
organisms were chosen because they are commonly studied organisms in ag-
ing. By binning the length of the sequences one sees that the probability
distribution of protein sequence length is approximately Gamma distributed
[34]

P (N) =
Nk−1 exp

(
−N

θ

)
θkΓ(k)

(5)

with scale parameter θ, and shape parameter k, with mean kθ and variance
k2θ2. The peak for E.coli (a prokayotic organism which is distinguished
from eukaryotes by not having a nucleus) occurs around 200 amino acid
residues and around 250 for the other three eukaryotic species. The values
of the fitting parameters are shown in Table 2 and a plot showing the fit in
Figure 4F. The greater fraction of shorter proteins in the E. coli proteome
may allow for a greater portion of the proteome to fold without the help of
chaperones, this is likely to result in lower average protein stability. This
lower stability imposed evolutionary pressure for E. coli proteins to lower net
charge per residue.

Species k θ mean = kθ
E. coli 2.82 105 295
S. cerevisiae 2.49 182 453
M. musculus 2.57 183 472
H. sapiens 2.59 163 421

Table 2: Species-specific parameters for protein length distributions. These
parameters were determined by fitting to a Gamma distributions as shown
in equation (5). Only proteins experimentally verified at the proteins level
are included.
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2.3 The Average Net Charge and Variance of Net Charge
Depend Linearly on Protein Length

As the model predicts that the oxidative damage to charged side chains
changes the stability of a protein, we need to known how many proteins are
highly charge for their respective length. From the proteomes of the organ-
isms previously mentioned in the last section 2.2. The charge distribution for
all these organism is rather broad and bell shaped. The spread in charge is
greater the longer the proteins are. The average and variance of net charge
depend approximately linearly on the length. The fitted values for the mean
folded net charge are given as

µEcoli = 1.1− 0.0054N (6a)

µScer = 4.0− 0.0068N (6b)

µMmus = 1.5− 0.0005N (6c)

µHsap = 2.3− 0.0003N. (6d)

The fitted mean net charge for unfolded proteins as

µEcoli = 0.9− 0.0117N (7a)

µScer = 4.0− 0.0135N (7b)

µMmus = 1.7− 00088N (7c)

µHsap = 2.6− 0.0086N. (7d)

The variance in net charge for folded proteins as

σ2
Ecoli = 11.7 + 0.17N (8a)

σ2
Scer = 24.8 + 0.44N (8b)

σ2
Mmus = −4.5 + 0.43N (8c)

σ2
Hsap = 3.4 + 0.43N. (8d)

The variance in net charge for the unfolded proteins as

σ2
Ecoli = 8.8 + 0.19N (9a)

σ2
Scer = 25.8 + 0.43N (9b)

σ2
Mmus = −3.0 + 0.41N (9c)

σ2
Hsap = 5.3 + 0.41N. (9d)
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These fits are shown in Figure 4A-D. Again we see a difference between the
E. coli and the other three eukaryotic organisms. As was mentioned in the
previous section (Section 2.2) E. coli with it’s generally shorter proteome,
in theory is more sensitive the higher charge and a result of evolutionary
pressure has much less variance in charge. The variance in charge in E. coli
is about 50% of the other proteomes meaning that the standard deviation of
net charge is about 25% in E. coli for proteins of the same length. With all
else being equal this would predict E. coli being less susceptible to oxidative
damage compared to the other three organism.

The mean and variance are of net charge for fixed length are sufficient as
the net charge is normally distributed, see Figure 4E. Previous studies on D.
Melanogaster and S. cerevisiae have also observed Gaussian distributions in
net charge for fixed length [36, 37]. The distribution in net charge is given
as a conditional distribution

P (Q|N) =
1

σ(N)
√

2π
exp

(
−(Q− µ(N))2

2σ2(N)

)
(10)

the joint distribution of charge and length is given by the product of Eq. (5)
and Eq. (10)

P (Q,N) = P (Q|N)P (N) =

1

σ(N)
√

2π
exp

(
−(Q− µ(N))2

2σ2(N)

)
Nk−1 exp

(
−N

θ

)
θkΓ(k)

(11)

which is plotted in Figure 4G for the parameters of H. sapiens. The narrower

Figure 4 (preceding page): Species specific charge and length distributions.
The each species is labeled. E.coli in light orange circles, S. cerevisiae in
orange squares, M. musculus in brown upward triangles, and H. sapiens in
black downward triangles. The size of each symbol indicates the size of each
bin. A) average folded protein charge versus length B) average unfolded
protein charge as function of length C) variance in net charge as a function
of folded protein length D) variance in net charge a function of unfolded
protein length E) net charge distribution for fixed protein lengths F) the
Length distribution of proteins G) joint probability distribution of charge
and length
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distribution in charge at shorter lengths causes the peak to occur at ≈ 130
(instead of ≈ 250 as given from the marginal Gamma distribution) amino
acids and a charge +2.

2.4 Stability distribution of Proteins

The fraction of time the protein is folded, f , can be determined by

f =
1

1 + exp(−∆G)
(12)

∆G is the folding free energy. Adding ∆∆Ge to the free energy of folding
would give the appropriate estimate after oxidative damage. The phenomeno-
logical studies of proteins suggest that the average free energy of a protein
should depend linearly on the length of the chain [23, 74] but the scatter
in the data has to be properly accounted. The a proteins should be stable
enough to fold (∆G > 0) but not so stable that it cannot change configuration
to perform its function, so there must some peak in the stability distribution
reflecting this fact. The analytical calculation of Zeldovich et al. [74] sug-
gests a skewed stability distribution for this purpose a Gamma distribution
is used to estimate the empirical distribution from a high quality data on
mesophiles [59]. The Gamma distribution is fit by the method of maximum
likelihood using a linear dependence on length in the scale parameter. The
average stability ∆G(N)

∆G(N)

kT
= 1.06 + 0.0369N (13)

the fit is shown in Figure 5. The data is collapsed into one Gamma dis-
tribution (inset of Figure 5) by subtracting off ∆Gmin = 1.06kT and then
dividing by the length dependent term. Protein stabilities for an organism
can be modeled by a conditional distribution P (∆G|N) that is a gamma
distribution for given length. Even though big proteins are more stable on
average there are proteins of all that are barely stable and susceptible to
oxidative destabilization. This is the reason why we avoid complicated com-
binations of ∆G and ∆∆G and focus instead on the effects of oxidative
damage protein based solely on ∆∆G.
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Figure 5: Experimentally measured stability of proteins for mesophilic or-
ganisms (circles), with the length dependent average stability ∆G(N) (solid
line) and length independent minimum ∆Gmin (dashed line). The inset is
the normalized histogram of experimental stabilities normalized by ∆G(N)
compared to a Gamma distribution with mean equal to one.

2.5 Estimating the Stability Distribution of a proteome
from its length distribution

Although we have stability data that is not specifically from one species [59]
we will use this assuming the stability distribution is somewhat universal.
The joint probability P (∆G,N) = P (∆G|N)P (N) can be integrated over
length N for the particular organism of interest, in this case H. sapiens

PH.sap.(∆G) =

∫ ∞
0

P (∆G|N)PH.sap.(N)dN (14)

where PH.sap.(N) is given in Eq. (5) with the parameters listed in Table 2.
The resulting distribution is shown in Figure 6 where we can see a substantial
difference due to the variability than what would be determined from just the
in mean in Eq. (13). This suggests that the a substantial portion of human
proteins are near the boundary of stability. The peak stability is about 4kT
and a mean around 10kT , the effects of oxidative damage are on the same
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order of magnitude, as seen in Figure 7. These marginally stable proteins
are also sensitive to other age-related phenomena such as DNA mutation and
protein mistranslation resulting in amino acid substitution.

Figure 6: The estimated human stability distribution based off of equa-
tion (14) (solid line with blue shading underneath) and the (incorrect) esti-
mate based on substituting Eq. (13) into Eq. (5) (Jacobian included)

2.6 Even if the Net Change in Charge Caused by Ox-
idative Damage is Zero it Will Destabilize a Pro-
teome

As mentioned earlier oxidative damage can increase or decrease the net charge
of a protein. When an oxidation event increases the magnitude of the net
charge, the protein is destabilized, but the opposite can happen as well where
the proteins net charge is brought closer to zero. Even if the average ∆G is
unchanged due to are equal amounts of stabilizing and destabilizing oxida-
tive damage the proteome as a whole will have a higher fraction of unfolded
proteins. The nonlinear dependence of f in Eq. (12) means that for proteins
with ∆G ≤ 5kT would suffer a substantial change in f from a destabilizing
event than a stabilizing one as f is near saturated (nearly one). The signifi-
cance of this nonlinear effect can be seen by taking the stability distribution
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Figure 7: A colormap showing the magnitude of oxidative destabilization
from Eq. (2) for the human proteome. The solid black line is one standard
deviation from neutrality. The circles are proteins that have been identified
as important to aging and are listed in table 3.

of the undamaged and singly-oxidized (Q → Q ± 1 with equal probability)
human proteome and changing variables from ∆G to f , see Figure 8 and
it’s inset. Despite the number of marginally stable proteins being small they
contribute substantially to the fraction of proteins that are unfolded. As a
result of this nonlinearity more focus will be placed on destabilization, as it
would apply greater stress on the chaperones and proteasomes responsible
for folding and degrading damaged protein.

Some caveats about the calculation of destabilization from Equation (2)
and the expressions for the radius of gyration, particularly of the denatured
state Rd = 1.927N0.598Å, should be mentioned for clarity. The radius of
gyration for the native state is relatively easy to predict from empirical re-
lations as it is a compact form. The expression for the radius of gyration of
the denatured state were obtained by chemical denaturant experiments [38].
Under typical physiological conditions these would be overestimates of the
denatured state radius, as it would most likely be a compact molten globu-
lar structure. Overestimating the radius of gyration of the denatured state
underestimates the denatured state’s contribution to the destabilization.
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Gene Name Function Charge Length (aa)
1 HSF1 transcription regulator -17 529
2 H2AFX histone +17 143
3 IGF1 hormone +20 195
4 SHFM1 proteasome -21 70
5 HSP90AA1 protein folding -23 585
6 NFKBIA transcription factor binding -25 317
7 RBBP7 histone binding -26 425
8 PARP1 poly ADP ribosylation +29 1014
9 MTA1 histone deacetylase +29 714
10 RBBP4 histone acetylase -29 425
11 TERF2IP telomere -30 399
12 MDM2 E3 ubiquitin ligase -37 291
13 ELN structure +40 786
14 TOP1 transcription regulator +43 765
15 RPS6 ribosome +43 249
16 APP receptor binding -55 770
17 SIRT1 histone deacetylase -55 747
18 BCLAF1 transcription regulator +77 920
19 PJA2 E3 ubiquitin ligase -87 708
20 TERT telomerase +98 1132

Table 3: A set of twenty human proteins that have been implicated in aging
or aging-related processes [69] that fall into the set of highly charged proteins.

The denatured state of a protein with charge and hydrophobicity profiles
with a stable, folded native state are captured by a swollen molten globule-
like state. The radius of this molten globule state have been observed to
posses a similar length dependence as the native state but with a radius
roughly 50% greater [71]. Using this relation for Rd in Equation (2) decreases
∆∆Ge by roughly 40%, without much of an affect of the length and charge
dependence of ∆∆Ge effectively leave the predictions unchanged expect for
a scaling.
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Figure 8: The inset is a comparison of the stability distribution of the human
proteome when all proteins are unoxidized in black, and single oxidated in
red. The main plot is the same data as in the inset but plotted against the
fraction of time each protein is folded given by Eq. (12).

2.7 Proteins Sensitive to Oxidative Destabilization are
Prone to Disorder Before Oxidation

The model of oxidative damage predicts that proteins which are highly
charged per unit length are the most susceptible to oxidative-induced desta-
bilization. The model also predicts that even without damage proteins with
high charge density should have more difficulty folding, see Eq. (1). One
can test this prediction by determining where highly charged proteins fall on
an Uversky plot [71]. For our purposes highly charged proteins are define
as more than two standard deviations away from neutral. An Uversky plot
discribes a protein in terms of its average hydrophobicity per amino acid
versus its net charge per amino acid, it has been shown to predict whether
proteins have a stable folded form or are innately disordered. Only arginine,
lysine, aspartic acid and glutamic acid are counted as charged amino acids in
the Uversky plots. The hydrophobicity of each amino acid is defined by the
Kyte-Doolittle scale in such a way that is shifted and rescaled to lie between
zero and one, least to most hydrophobic respectively.

Of the 14,079 proteins in the human proteome available on UniProt, that
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Function GO term Outliers Total Enrichment p-Value
Nucleosome 0000786 51 60 12.2 < 2.2× 10−16

Ribosome 0005840 85 195 6.3 < 2.2× 10−16

Nucleolus 0005730 133 781 2.4 < 2.2× 10−16

Telomere or-
ganization

0032200 8 62 1.9 0.064

Histone mod-
ification

0016570 31 293 1.5 1.3× 10−2

Transcription 0006351 188 1828 1.5 7.8× 10−9

DNA replica-
tion

0006260 18 198 1.3 0.15

Signaling 0023052 206 4181 0.7 1.6× 10−10

Lipid
metabolism

0006629 21 944 0.3 1.3× 10−11

Precursor
metabolism
& energy

0006091 7 358 0.3 1.3× 10−5

Nucleotide
synthesis

0009165 3 186 0.2 7.9× 10−4

Amino acid
synthesis

0008652 0 94 0 1.1× 10−3

Table 4: The proportion of proteins that are highly charged outliers by GO
categories. The highly charged outliers are defined to be more than two stan-
dard deviations away from neutrality. The total number of highly-charged
proteins in the human proteome are 979 out of the 14,079 verified experimen-
tally at the protein level. The p-value is determined by a one-tailed Fisher’s
exact test.

have been experimentally verified at the protein level, 80% are in the stable
region of the Uversky plot, see Figure 9. This fraction decreases to 30%
for the set of highly charged proteins, the ones most susceptible to oxida-
tive damage. This supports the prediction that proteins with high charge
which would be destabilized by oxidation, are less stable when unoxidized.
This result does not mean that 70% of our predicted proteins lack a stable
folded state, because the Uversky plot treat proteins as monomers (lacking
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binding partners). Many proteins in the human proteome do not function as
monomers they are part of multi-protein and RNA-protein complexes. The
protein SHFM1 is an example of this with a net charge per amino acid of 0.31
and average hydrophobicity per amino acid of 0.35 puts it in the intrinsically
disordered region of the Uversky plot, but it is known to have a stable form
when it is a member of a larger complex.

Figure 9: The black line marks the boundary between folded (above the line)
and those with unstructured tendencies (below the line). The purple circles
are human proteins predicted to be at higher risk (more than two standard
deviations from neutrality) of which a higher portion are in unstructured
region than the rest of the H. sapiens proteome, shown as blue circles.

2.8 Many Proteins in the Human Proteome are Desta-
bilized by Oxidative Damage

Figure 7 shows key predictions from the model. The color map shows the
oxidative destabilization predicted from the equation (2). The proteins that
are suspected to destabilize are shorter and highly charged (in the red region).
Most proteins will only be affected by less than 2kT by a single oxidative
event, as about two-thirds of the human proteome lie in the low risk blue
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region. The twenty points in figure 7 are human proteins implicated in aging.
These are listed in table 3 with their net charge and length.

The electrostatic potential of the surface of high-risk proteins differs from
the lower-risk proteins as shown in figure 10. Three examples are shown
in figure 10 of A) a highly positively charged telomerase reverse transcrip-
tase (TERT) B) a negatively charged protein nucleosome-remodeling factor
subunit (RBBP4) C) and the relatively neutral ubiquitin. Compared to
ubiquitin, TERT and RBBP4 have almost uniformly positive and negative
potentials on their surfaces, respectively. Any change net increase in the
magnitude of charge, by oxidative damage or otherwise will destabilize the
TERT/RBBP4 proteins locally or possibly globally due to the increase in
electrostatic repulsion.

Using GO terms provided by Gene Ontology Consortium as categories
[6] we investigate how these different categories compare in their proportion
of high-risk proteins to the proteome as a whole. The greatest enrichment
occurs for proteins mainly involved in DNA binding, see Table 4. Due to the
negative charge of the backbone of DNA, the enrichment of high-risk proteins
in DNA binding categories makes sense as these proteins would need a strong
positive charge to bind DNA. Aging-implicated proteins are involved is the
following dysfunctions altered packing of DNA around histones, abnormal
histone modification, telomere destabilization, decreased transcriptional re-
sponse to stress, and decreased translation and degradation of proteins [45].
The protein categories conducting these processes implicated in aging are
consistent with the predictions from the model. Many of these functions
are carried out in the nucleus, suggesting that keeping nucleus devoid of
damaging species protects high-risk proteins from destabilization.

2.9 Experimental Point Mutation Studies and Similar-
ity to Stability Changes from Oxidation

Debye-Hückel theory is observed to capture the change in stability from pH-
induced unfolding [23] and charge-ladder experiments [25], another test of
this models predictions, equation (2), is from the experimental studies on
the destabilization effect of single point mutations. Ideally is would be best
to compare the model with actual oxidation data composed of known oxida-
tion sites and stability change, these experiments have yet to be conducted
(most likely due to their difficulty). One can however use single point mu-
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tation data as proxy, since certain amino acids acts as good approximations
to common oxidation products due to their similar hydrophobicity [54, 55].
From a mutation curated dataset [70], keeping only those mutations that:
mutate charged amino acids to amino acids that are good proxies to their
oxidation products, and involved solvent-exposed residues (residues acces-
sible to oxidation). The distribution of stability changes can be compared
with the distribution predicted with equations (2) and (11) for the human
proteome, shown in Figure 11. If the compact denatured state were used, the
predicted distribution would be narrower with a standard deviation roughly
half of that shown in Fig. 11.

Not all mutation should be used as proxies for oxidation. For the pur-
pose of predicting the effects of oxidation on stability only the mutations to
methione, cysteine, alanine and theorine have been used as they are known
to be similar to amino-adipic and glutamic semialdehyde due to their simi-
lar hydrophobicity. Amino-adipic semialdehyde and glutamic semialdehyde
are the most abundant carbonylated products of side chain oxidation [54].
Picking only mutations of charged residues (arginine, lysine, aspartic acid
and glutamic acid) to the four previously mentioned proxy residues, resulted
in combined distribution of stability changes shown in Fig. 11. The aver-
age stability change of arginine, lysine, aspartic acid and glutamic acid are
−1.1kT , −0.3kT , −0.5kT and −0.2kT respectively, with an cumulative av-
erage of −0.5kT . The model predicts an equal number of stabilizing and
destabilizing mutations due to the assumption that increasing and decreas-
ing charge are equally likely, but the small bias of −0.5kT does not change
the conclusion that the overall effect of oxidative damage is destabilizing, it
in fact enhances destabilization. The width of the predicted distribution is
similar to the experimental one, suggest fluctuations and the magnitude of
the perturbation predicted by the model is realistic.

The comparison of the average and variance of stability change to experi-
mental data is only appropriate if the experimental set of proteins has similar

Figure 10 (preceding page): The surface potential of A) the positively charged
telomerase reverse transcriptase (point 20 in Figure 7 and Table 3; PDB:
3KYL) and B) the negatively charged nucleosome-remodeling factor subunit
RbAp48 (point 10 in Figure 7 and Table 3; PDB: 2XU7) differ greatly from
the weak potential at the surface of C) the neutral protein ubiquitin (PDB:
1UBQ).
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Figure 11: Experimental effect of the charge modification Q → Q ± 1 on
protein stability from mutation data (histogram) compared to model predic-
tion for the human proteome (black curve). The top is only from mutations
that turned charged residues to uncharged oxidation-product analogs, used
in producing the histogram. The bars are one standard deviation.

charge and length characteristics of the human proteome. Luckily, the ex-
perimental set has an average net charge per unit length close to that of the
human proteome, and the set contains a similar number of mutations that
bring the net charge closer to neutrality as those that bring it farther away.
So it is fair to compare experimental dataset for the model’s predictions.
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3 Non-equilibrium Thermodynamics and the

Theory of Maximum Caliber

A longstanding challenge in non-equilibrium statistical physics is to estab-
lish its root foundations. The foundation of equilibrium thermodynamics
is the Second Law, which is a variational principle. It says that states of
equilibrium can be predicted as those states that have maximum entropy.
Microscopically, the Second Law is manifested as the Boltzmann Distribu-
tion Law. No such variational principle is yet accepted as the basis for
predicting the microscopic processes in dynamical forces and flows, such as
in Ficks Law diffusion, Fouriers Law of heat flow and others. Our lab has
explored a principle called Maximum Caliber as the possible variational basis
for non-equilibrium statistical physics.

In this chapter, we take some key steps along that road. We show that
some of the major known near-equilibrium results of non-equilibrium statis-
tical mechanics can be derived from Max Cal, and we go beyond in showing
what MaxCal predicts far from equilibrium. It will start with a brief review of
the method of Maximum Entropy (MaxEnt) going over several important fea-
tures of constraints and their relation to the Lagrange multipliers that enforce
them. Then introduce Maximum Caliber (MaxCal) as potential theory for
describing the non-equilibrium statistical mechanics. The Onsager recipro-
cal relations and Prigogine’s principle will be discussed and derived from the
newer and simpler perspective of MaxCal. These arguments are then general-
ized to determine if similar reciprocal relations or principles hold further away
from equilibrium. More general results can be obtained for far-from equilib-
rium systems, offering expressions in terms of fluctuations near-equilibrium
and an alternative derivation of the entropy fluctuation theorem. Finally,
this part ends with a discussion of the assumed known distribution q[Γ] of
dynamical fluctuations at equilibrium and difficulties of naive attempts to
use MaxCal for determining it. Much of the key results from this section are
summarized in my paper and the supplementary material [27].

3.1 Maximum Entropy Methods in Statistical Mechan-
ics

This section will introduce the method of Maximum Entropy (MaxEnt) as it
was originally used by Jaynes to derive the ensembles of statistical mechanics
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[32, 33]. The key quantity here is the (Shannon) entropy of the probability
distribution. This quantity is maximized as it is a measure of the spread of
the distribution. This created the least bias distribution consistent with cer-
tain information which is known to be relevant to the system. The Shannon
entropy satisfies four key properties as given by Shore and Johnson [56, 62],

• unique

• invariant under coordinate transformation

• subset independent, this means that the relative probability of two
subsets of results are independent of other subsets

• system independent, if the probability distributions of two systems are
independent of one another they factorize and the entropy is additive

The mathematical form of the entropy consistent with these four axioms
is,

S = −
∑
i

pi ln
pi
qi

(15)

for a discrete probability distribution pi with prior qi. The Shannon entropy
will be identified with the entropy of thermodynamic system. Boltzmann
constant will be equal to 1 in these units, in other words temperature and
energy will be measured in the same units. If we identify pi with the prob-
ability of the state i in a physical system with energy Ei. If one knows the
average energy of the system 〈E〉 it can be imposed as a constraint on the
system by the typical method of a Lagrange multipliers. One would also im-
pose the typical requirement that the probabilities pi are normalized. With
uniform prior the Lagrange function is

−
∑
i

pi ln pi − β

(∑
i

piEi − 〈E〉

)
− α

(∑
i

pi − 1

)
(16)

This function is maximized in the usual way by taking derivatives with re-
spect to the set of pi, α and β and equating them to zero. This gives the
following set of equations
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− ln pi − 1− βEi − α = 0 (17)∑
i

piEi − 〈E〉 = 0 (18)∑
i

pi − 1 = 0 (19)

which the solution for pi is

pi = exp(−βEi − α− 1) =
exp(−βEi)

Z
(20)

where Z =
∑

i exp(−βEi) is the partition function. This is the Boltzmann
distribution which finds its use in the canonical ensemble. These results are
very easy to interpret in hindsight. With β = ∂S

∂〈E〉 (a property of Lagrange

multipliers appearing in constrained optimization [16]) because we identified
the Shannon entropy with the entropy of the system we immediately see
β = 1/T where T is the temperature of the system. Averaging equation (17)
gives

− α− 1 = β〈E〉 − S = βF (21)

which when using equation (20) is equivalent to

F = −T lnZ. (22)

The cumulants of energy can be calculated by taking derivatives of lnZ with
respect to −β just as one would typically do in the canonical ensemble. Much
of this example can be generalized. The microcanonical ensemble would only
constrain the normalization and the states are restricted to fixed energy or
other conserved quantities if they exist. For example by adding the average
number of particles as a constraint to the example above much of the same
arguments can be repeated yielding the grand canonical ensemble. Adding
the average magnetization as a constraint instead gives the magnetic Gibbs
ensemble, which is typically used in the study of the Ising and other magnetic
models (rarely being recognized as a different ensemble).
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3.2 MaxCal as a Generalization of MaxEnt Methods
for Non-Equilibrium Statistical Mechanics

Much of the mathematics in section 3.1 still will apply in this section. The
main difference between Maximum Caliber (MaxCal) and what is normally
done in statistical mechanics, is that in MaxCal the probability distribution
is over a space of trajectories instead of states of the system. By trajectory
one means a time-ordered sequence of states. Trajectories will be labeled
with Γ and the probability distribution over the trajectories p[Γ] and a prior
distribution q[Γ]. With any constraints on the average of AΓ

i (t), 〈Ai(t)〉,
which is dependent on the trajectory Γ and the time t. It is important to
note that the constraints are imposed over the time range of the trajectories
so the Lagrange multipliers λi(t) are functions of time and they are integrated
over time. The Lagrange function for MaxCal is

−
∫
dΓ p[Γ] ln

(
p[Γ]

q[Γ]

)
−
∑
i

(∫
λi(t)

∫
dΓ p[Γ]AΓ

i (t)− 〈Ai(t)〉dt
)

− α
(∫

dΓ p[Γ]− 1

)
(23)

where the integration over Γ is some properly defined sum over paths. The
probability distribution consistent with these constraints using the same
methods from above

p[Γ] =
q[Γ]

Z
exp

(
−
∑
i

∫
λi(t)A

Γ
i (t) dt

)
(24)

where Z =
∫
dΓ q[Γ] exp

(
−
∑

i

∫
λi(t)A

Γ
i (t) dt

)
is the dynamical partition

function. The logarithm of the dynamical partition function is the cumulant
generating function

− δ lnZ

δλi(t)
= 〈Ai(t)〉 (25a)

δ2 lnZ

δλi(t)δλj(τ)
= 〈Ai(t)Aj(τ)〉 − 〈Ai(t)〉〈Aj(τ)〉 (25b)

the derivatives here are variational derivatives which pick out a particu-
lar time in the trajectory. As an inference method MaxCal determines the
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probability of the trajectory to depends on the AΓ
i (t) at each time along the

trajectory, so when one determines the path average 〈Ai(t′)〉 for a trajectory
defined along the time interval ta ≤ t ≤ tb, the average will weight part of
the trajectory that has occurred after the time of interest (when t > t′) this
is causality violating. So one must be careful when evaluating averages and
correlations to including only the causal parts of the trajectories. Since we
will be looking at systems in steady state (time-translation invariant) and
evaluating expectation values when the system is microscopically time re-
versible the distinction between past and future is non-existent allowing one
to ignore the issue.

3.3 The Onsager Reciprocal Relations

The Onsager reciprocal relations are one of the earliest and most celebrated
results in Non-equilibrium thermodynamics particularly transport phenom-
ena. The reciprocal relations are a relationship between transport coefficients
in the near equilibrium regime. If there is a system with two flowing quanti-
ties J1 and J2, driven by thermodynamics gradients X1 and X2 in the near
equilibrium regime they are related by

J1 = L11X1 + L12X2 (26a)

J2 = L21X1 + L22X2 (26b)

an example of this is a thermoelectric effect, heat and electricity flow in a
metal is coupled, temperature and electrical potential gradients induce both
heat transfer and electrical currents. The statement of the Onsager reciprocal
relations is

L12 = L21 (27)

more generally if one has a system with n fluxes Ji and n driving forces Xi

with i = 1, ..., n in the linear regime the fluxes are

Ji =
n∑
j=1

LijXj (28)

the reciprocal relations state that the matrix of transport coefficients Lij is
symmetric (Lij = Lji).

Microscopic reversibility is the condition that a fluctuation in a at time t
followed by another fluctuation b at t+ ∆t is just as likely as a fluctuation in
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b at time t and a fluctuation in a at time t+ ∆t. Equivalently this can also
be stated that every forward trajectory is just as like as its time reversed at
equilibrium. Onsager’s original derivation required microscopic reversibility
and assumes near-equilibrium [50, 51]. This derivation is quite involved. I
will show in a later section that it can be obtained with those assumption in
a few lines of simple calculation from MaxCal.

3.4 Prigogine’s Principle of Minimum Entropy Pro-
duction

Prigogine’s principle of minimum entropy production states that for systems
with coupled flows near equilibrium, and some imposed driving forces, the
remaining driving forces adopt values to minimize the entropy production
[39]. For the example of a system with two coupled fluxes J1 and J2, with a
fixed driving force X1 the entropy production per unit volume σ is

σ = J1X1 + J2X2 ≥ 0 (29)

this can be derived by applying balance equations and local thermodynamic
equilibrium as shown in chapter 15 of reference [39]. The entropy production
in steady state must be positive according to the second law of thermody-
namics. This would require that the matrix of linear response coefficients is
positive definite. Substituting in equations (26) and the reciprocal relations
gives

σ = L11X
2
1 + 2L12X1X2 + L22X

2
2 (30)

with X1 fixed differentiating with respect to X2 and setting that expression
equal to zero gives

∂σ

∂X2

= 2(L12X1 + L22X2) = 2J2 = 0 (31)

so the unconstrained fluxes go to zero according to Prigogine’s principle. It
is guaranteed to be a minimum since matrix of transport coefficients are pos-
itive definite. There is a subtlety with Prigogine’s principle. The entropy
production per volume σ is truncated to second order in driving forces as the
calculation is done near equilibrium. The derivative of entropy production
in equation (31) is a first order quantity in driving forces effectively ignor-
ing terms of the order of σ. It is a coincidence that these mathematically
inappropriate truncations lead to experimentally observed absence of flux
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for unspecified driving forces, this still means that the entropy production is
not minimized. Detailed criticisms of this truncation is given in writings by
John Ross [29, 30, 5]. Prigogine’s principle will be shown in later sections
to be a specialized case of MaxCal and a more general far from equilibrium
expression.

3.5 MaxCal for Steady State Systems Near and Far
From Equilibrium

In this section I will re-derive results from previous sections 3.3 3.4 and show
how to generalize the MaxCal results to systems further away from equilib-
rium. The treatment will be similar to what is found in [27]. For a spatially
homogeneous system in steady state which satisfies microscopic reversibility
with two coupled fluxes of J1 and J2 can be imposed as constraints for the
averages of jΓ

1 (t) and jΓ
2 (t) and a prior q[Γ] for the probability distribution

of trajectories at equilibrium as having macroscopic fluxes drive the system
away from equilibrium and when they become irrelevant constraints (the La-
grange multipliers equal zero and the average flux is zero as a result) the
system is characterized by the prior q[Γ]. Using equation (24) with these
constraints gives

p[Γ] =
q[Γ]

Z
exp

(∫
λ1(t)jΓ

1 (t) + λ2(t)jΓ
2 (t) dt

)
(32)

here we use the opposite sign convention for the Lagrange multipliers λ1(t)
and λ2(t) as it will be more convenient for expanding. Equations (25) differ
by this sign convention there are no negative signs appearing in the equations.
The fluxes J1 and J2 at time t = 0 as we are in steady state do not depend
on time, these fluxes will be expanded around λ1(t) = λ2(t) = 0

J1 =
δ lnZ

δλ1(0)
≈
∫
λ1(t)〈jΓ

1 (0)jΓ
1 (t)〉λ=0 + λ2(t)〈jΓ

1 (0)jΓ
2 (t)〉λ=0 dt+O(λ2)

(33a)

J2 =
δ lnZ

δλ2(0)
≈
∫
λ1(t)〈jΓ

2 (0)jΓ
1 (t)〉λ=0 + λ2(t)〈jΓ

2 (0)jΓ
2 (t)〉λ=0 dt+O(λ2)

(33b)

where the angle brackets 〈 〉λ=0 are averages over the equilibrium distribution
q[Γ] (equivalently the average when both λs equal zero for all time). There
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are no zero order terms as 〈jΓ
1 (t)〉λ=0 and 〈jΓ

2 (t)〉λ=0 are zero at equilibrium.
The integration over time t is taken from −∞ to ∞ this will be implicit
for convenient notation, this long time limit is analogous to the thermody-
namic limit it will give the steady state properties of the system just as the
thermodynamic limit gives the bulk properties of a system.

One can show that λ1(t) and λ2(t) are time-independent if J1 and J2 are
time independent. The Caliber

C =

∫
dΓ p[Γ] ln

p[Γ]

q[Γ]
= lnZ −

∫
[λ1(t)J1 + λ2(t)J2] dt (34)

is a convex function of λ1(t) and λ2(t) (since δ lnZ/δλi(t)δλj(τ) with i, j =
1, 2 is positive semi-definite being a Hessian matrix). It is guaranteed a
unique solution for the quantities λ1(t) and λ2(t). The time independence
of this solution follows from uniqueness when applying the trial solution
λ1(t) = λ1 and λ2(t) = λ2 to the condition ∂C/∂λi = 0 (being a maximum)
for i = 1, 2 yielding

Ji =
1

τ

∂ lnZ

∂λi
(35)

where τ is the duration of a trajectory. Using the constancy of the Lagrange
multipliers λ1 and λ2 gives the linear response of fluxes as

J1 ≈ λ1

∫
〈jΓ

1 (0)jΓ
1 (t)〉λ=0 dt+ λ2

∫
〈jΓ

1 (0)jΓ
2 (t)〉λ=0 dt+O(λ2) (36a)

J2 ≈ λ1

∫
〈jΓ

2 (0)jΓ
1 (t)〉λ=0 dt+ λ2

∫
〈jΓ

2 (0)jΓ
2 (t)〉λ=0 dt+O(λ2) (36b)

if we identify the Lagrange multipliers (up to some constant factor) as driving
forces as the fluxes have no other functional dependence the coefficients Lik =∫
〈jΓ
i (0)jΓ

k (t)〉λ=0 dt are transport coefficients. This equality is Green-Kubo
formula which uses equilibrium fluctuations to calculate the response of the
system to driving forces near-equilibrium. Applying microscopic reversibility
gives

〈jΓ
1 (0)jΓ

2 (t)〉λ=0 = ε1ε2〈jΓ
1 (t)jΓ

2 (0)〉λ=0 (37)

where ε1, ε2 are the parities of the fluxes J1 and J2 respectively. For example
fluxes of heat, mass and electric charge have ε = −1 since they are flows of
quantities which are unaffected by time reversal. An example of a flux with
ε = +1 would be a flux of momentum (e.g. shear stress). Integrating eq. (37)
over time results in

L12 = ε1ε2L21 (38)
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this is a more general result than Onsager’s reciprocal relations called the
Onsager-Casimir relations [7, 8].

The Caliber in equation (34) for a system with a fixed driving force λ1

and allowing λ2 to vary the maximum of the caliber occurs when

δC
δλ2(τ)

= −
∫
λ1(t)

δJ1(t)

δλ2(τ)
+ λ2(t)

δJ2(t)

δλ2(τ)
dt = 0 (39)

when truncated to lowest order at steady state and using the standard On-
sager reciprocal relation

− λ1L12 − λ2L22 +O(λ2) ≈ −J2 = 0 (40)

gives the same result as the Prigogine’s principle as was shown in section 3.4.
Equation (39) can be thought of a generalized version of Prigogine’s principle
which applies even when far from equilibrium.

3.6 Lack of Symmetry Relations in Higher-Order Ex-
pansions of Flux

The expansion of fluxes J1, J2 in terms of driving forces λ1, λ2 can be carried
out to any order. The terms of second order in the expansion of J1

λ2
1

2

∫
dtdτ〈jΓ

1 (0)jΓ
1 (t)jΓ

1 (τ)〉λ=0 + λaλb

∫
dtdτ〈jΓ

1 (0)jΓ
1 (t)jΓ

2 (τ)〉λ=0

+
λ2
b

2

∫
dtdτ〈jΓ

1 (0)jΓ
2 (t)jΓ

2 (τ)〉λ=0 (41)

and the equivalent formula for J2 will be shown to be zero when ε1 = ε2 = −1.
For the time ordering 0 ≤ t ≤ τ applying time-reversal to the third order
moments of fluxes gives

〈jΓ
l (0)jΓ

m(t)jΓ
n(τ)〉λ=0 = −〈jΓ

n(0)jΓ
m(τ − t)jΓ

l (τ)〉λ=0 (42)

where l,m, n = 1, 2 applying time translation to the above expression

〈jΓ
l (0)jΓ

m(t)jΓ
n(τ)〉λ=0 = −〈jΓ

n(−τ)jΓ
m(−t)jΓ

l (0)〉λ=0, (43)

and microscopic reversibility for the alternative ordering t ≤ 0 ≤ τ

〈jΓ
l (t)jΓ

m(0)jΓ
n(τ)〉λ=0 = −〈jΓ

n(−τ)jΓ
m(0)jΓ

l (−t)〉λ=0 (44)

32



these show that for the integrations done in Eq (41) there will be regions
of the function that have the same magnitude but opposite signs therefore
canceling out. This is expected as Ji(−λ1,−λ2) = −Ji(λ1, λ2), reversing the
driving forces should reverse the fluxes in this case. So the next leading
order non-trivial relations occur at third order, for which the terms for J1

are integrals over fourth order cumulants of the fluxes

〈jΓ
1 (0)jΓ

l (t)jΓ
m(τ)jΓ

n(s)〉λ=0 − 〈jΓ
1 (0)jΓ

l (t)〉λ=0〈jΓ
m(τ)jΓ

n(s)〉λ=0

− 〈jΓ
1 (0)jΓ

m(τ)〉λ=0〈jΓ
l (t)jΓ

n(s)〉λ=0 − 〈jΓ
1 (0)jΓ

n(s)〉λ=0〈jΓ
l (t)jΓ

m(τ)〉λ=0. (45)

the first order coefficients make a reappearance at the this order but applica-
tion of microscopic reversibility and other symmetries of the system do not
yield any useful relations between terms at third order. It is known through
other methods that there are no simple relations among higher order terms
in the expansion of fluxes [7, 8, 9].

3.7 Entropy Production Fluctuation Theorem from Max-
Cal

Let us start with Eq. (32) and divide it by its time reversed trajectory ΓR
assuming both ε1 = ε2 = −1

p[Γ]

p[ΓR]
= exp

(
2

∫
λ1(t)jΓ

1 (t) + λ2(t)jΓ
2 (t) dt

)
(46)

as λi ∝ Xi the relative probability of the forward process to the reverse is
proportional to the exponent of entropy produced along the trajectory as can
be seen from Eq. (29). This result is a type of entropy production fluctuation
theorem (see [14] and the references therein). Rearranging Eq. (46) and
integrating over paths Γ〈

exp

(
−2

∫
λ1(t)jΓ

1 (t) + λ2(t)jΓ
2 (t) dt

)〉
= 〈exp (−τσ)〉 = 1 (47)

here σ is the time averaged entropy production and τ is the time of the
trajectory and the angle brackets here are averages over trajectories. Using
Jensen’s inequality 〈exp(x)〉 ≥ exp〈x〉 and Eq. (47) gives 1 ≥ exp(−τ〈σ〉)
taking the logarithm and negating both sides gives

0 ≤ 〈σ〉 (48)
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which is a statement of the second law of thermodynamics. This is an inter-
esting result in that a well known inequality can be obtained directly from
fluctuation theorems like Eq. (46). Fluctuation theorems are important in
that they allow for bounds to be calculated on physical processes recently
this has been applied to self-replicating systems [19].

3.8 Expanding Flux Around A Point Away From Equi-
librium

So far the expansions of fluxes in terms of driving force have only been
carried out around equilibrium (λ = 0), but there is nothing in the formalism
that prevents us from choosing another arbitrary point for expansion. We
will assume here for the rest of this section that the fluxes have odd time
reversal parity, ε1 = ε2 = −1. Taking the example from previous sections
and expanding the flux around the point λ∗ = λ∗1, λ

∗
2 gives

J1 ≈ J∗1 + (λ1 − λ∗1)

∫
〈jΓ

1 (0)jΓ
1 (t)〉λ=λ∗ dt+ (λ2 − λ∗2)

∫
〈jΓ

1 (0)jΓ
2 (t)〉λ=λ∗ dt

(49a)

J2 ≈ J∗2 + (λ1 − λ∗1)

∫
〈jΓ

2 (0)jΓ
1 (t)〉λ=λ∗ dt+ (λ2 − λ∗2)

∫
〈jΓ

2 (0)jΓ
2 (t)〉λ=λ∗ dt

(49b)

since the expansion is no longer around equilibrium there is a non-vanishing
zeroth order term. With the expression in Equation (32) we can re-write the
brackets as

〈jΓ
a (0)jΓ

b (t)〉λ=λ∗ =

〈
jΓ
a (0)jΓ

b (t) exp

(∫
λ∗1j

Γ
1 (τ) + λ∗2j

Γ
2 (τ) dτ

)〉
λ=0

(50)

where a, b = 1, 2 in such an expression it would be tempting to apply micro-
scopic reversibility since the right hand side is evaluated at equilibrium but
since the exponential has an argument that is integrated over time it is not
a simple reordering of factors, the result is〈

jΓ
a (0)jΓ

b (t) exp

(∫
λ∗1j

Γ
1 (τ) + λ∗2j

Γ
2 (τ) dτ

)〉
λ=0

=〈
jΓ
b (0)jΓ

a (t) exp

(
−
∫
λ∗1j

Γ
1 (τ) + λ∗2j

Γ
2 (τ) dτ

)〉
λ=0

(51)
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this is equivalent to

〈jΓ
a (0)jb(t)〉λ=λ∗ = 〈jΓ

b (0)ja(t)〉λ=−λ∗ (52)

so it is not a simple equality between coefficients at the same values of λ1, λ2.
Another way of deriving the previous result is by utilizing equation (46)

to determine the appropriate time reversed form. By multiplying both sides
by jΓ

a (0)jΓ
b (t)p[ΓR] and averaging over trajectories

〈jΓ
a (0)jΓ

b (t)〉λ=λ∗ =

〈
jΓ
b (0)jΓ

a (t) exp

(
−2

∫
λ∗1j

Γ
1 (τ) + λ∗2j

Γ
2 (τ) dτ

)〉
λ=λ∗

(53)
one must time-reverse the integrand in the right hand side. Using equa-
tion (32) one can write〈

jΓ
b (0)jΓ

a (t) exp

(
−2

∫
λ∗1j

Γ
1 (τ) + λ∗2j

Γ
2 (τ) dτ

)〉
λ=λ∗

=〈
jΓ
b (0)jΓ

a (t) exp

(
−
∫
λ∗1j

Γ
1 (τ) + λ∗2j

Γ
2 (τ) dτ

)〉
λ=0

(54)

the right hand side of this equality is the same as the right hand side of
equation 51, establishing the result in Eq. (52).

3.9 The Dynamical Fluctuations of Equilibrium and
the Distribution q[Γ]

So far nothing has been said as to what the distribution of trajectories for a
system in equilibrium, q[Γ], takes as a mathematical form. Having a mathe-
matical form for q[Γ] very important as the actual calculation of expectation
values rely on this distribution and much of making new and useful predic-
tions falters if this unavailable. Currently the author does not know what
general form q[Γ] for each commonly used ensemble.

For the case of the microcanonical ensemble the situation is the simplest
and q[Γ] can be determined explicitly. The microcanonical ensemble describes
an isolated system with known energy E. For a Hamiltonian system its dy-
namics are deterministic and conserve energy E. Because of the deterministic
Hamiltonian evolution there is mapping between any initial condition to a
trajectory. This mapping allows the equality q[Γ] = q(Γ(0)) where q(Γ(0)) is
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equilibrium distribution at the time t = 0. This basically makes the second
law of thermodynamics equivalent to MaxCal. For this special case we can
only have trajectories that are consistent with those provided by Hamilton’s
equations and the multiplicity of these trajectories is the same as that of the
multiplicity of microcanonical ensemble Ω(E). The distribution q[Γ] can be
written in terms of a product of Dirac functionals (one for each coordinate
represented by the shorthand of ∆)

q[Γ] =
∆[Γ− z(t,Γ(0))]

Ω(E)
(55)

where z(t,Γ(0)) is the particular trajectory in phase space starting with ini-
tial conditions Γ(0). This means that one can integrate the equations of
motion and obtain any dynamical correlations or expectation values. The
most practical way of doing this would be with molecular dynamics simula-
tions so this does not offer any new insights. This is also stifled by the nature
of the microcanonical ensemble, being an isolated system it does not easily
lend itself to describing a nonequilibrium steady state system, which would
be exchanging matter, energy, charge, etc. with its surroundings.

The natural question to ask is: how does a bath influence the distribution
of trajectories of a system at equilibrium? This can be built out a large
isolated system where the majority of the degrees of freedom are assigned
to a bath or a set of reservoirs and the energy can exchange between the
subsystem and its baths. Equation (55) still applies to the collection of
reservoirs and the system but in order to determine the distribution q[Γs] for
just the degrees of freedom associated with the system, Γs, one would need
to integrate over the degrees of freedom of the bath after solving the set of
equation of motion for the reservoir and system. Solving equations of motion
is not the business of statistical mechanics and should be avoided like the
plague. We know from the canonical ensemble that the only information we
need to specify is the temperature of the bath (or equivalently the energy
per degree of freedom) to obtain the Boltzmann distribution. The question
now becomes do the dynamics of the reservoirs play a role in q[Γ] or does
only the temperature matter?

From the point of view of MaxCal several R.M.L. Evans has suggested a
method for a system exchanging energy with a bath. R.M.L Evans considered
imposing the time averaged energy as a constraint and the corresponding La-
grange multiplier being the inverse temperature as in section 3.1, claiming
that for long trajectories this choice would result in the Boltzmann distri-
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bution [20]. The mapping of a general trajectory to a configuration, as the
length of time of the trajectory goes to infinity does not make much sense
as there should be no restriction on trajectories (every trajectory is possible
although some are so rare they are practically impossible). If use a Feyn-
man like path integral with this weight of the energy the resulting two point
probability distribution would similar the density matrix of the equivalent
quantum mechanical problem in thermodynamic equilibrium [22]. For a sin-
gle degree of freedom this would be

p(xb, tb;xa, ta) ∝
∫ xb

xa

Dx(t) exp

(
− β

tb − ta

∫ tb

ta

mẋ2(t)

2
+ V (x(t)) dt

)
(56)

this can be written in terms of the solutions of the equivalent Schrödinger
equation which is (see [22] for details)

− tb − ta
β

∂ψ

∂t
=

(tb − ta)2

2mβ2

∂2ψ

∂x2
+ V (x)ψ(x, t) (57)

which is a Wick rotated Schrödinger equation (t→ −it) with ~ replaced by
tb−ta
β

. The two point probability can be written in terms of eigensolutions of

the above equation ψn(x) exp
(
− β
tb−ta

εnt
)

p(xb, tb;xa, ta) ∝
∞∑
n=0

ψ∗n(xb)ψn(xa) exp

(
−βεn

tb + ta
tb − ta

)
(58)

it is important to keep in mind εn are not energy levels, simply eigenvalues,
there are no energy levels as we are still dealing with a classical thermo-
dynamics. In general ψn(x, t) is complex though for one dimension we can
always find a combination eigensoltions that are real. It is simple to see this
does not result in the Boltzmann distribution as ψ0 6= exp(−βV (x)) where
ε0 is the smallest eigenvalue of all the εn. So despite what would appear intu-
itively simple as applying the same constraints as in section 3.1 for canonical
ensemble does not yield sensible results assuming all trajectories are possible
no matter how improbable.

If we started with the idea of keeping the dynamics to some extent, allow-
ing fluctuations around the classical equations of motion by constraining the
action then results would be similar because the Lagrangian would replace
the energy in the equations above. Constraining the Lagrangian does limit
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to equations of motion as the Lagrange multiplier goes to infinity and for
finite values it gives non-dissipative stochastic motion [44], but it is not a
viable option to the question of ”what is q[Γ]?”.

Given the previous constraints and allowing all possible paths may not be
viable solution to the currently posed but what if physically not all paths are
possible? We will now examine what the consequences of the Kolmogorov-
Arnold-Moser (KAM) theorem will have on the allowed trajectories of an
integrable Hamiltonian system in contact with a thermal reservoir. Taking
a classical integrable Hamiltonian system as an example with Hamiltonian
H(pk, qk), with k = 1, 2, . . . N since this system is integrable it has as many
conserved quantities as there are degrees of freedom [68]. The 2N dimensional
phase space is foliated by all the invariant N -tori which are define by the N
action variables Ij =

∮
cj
pkdqk (summation over repeated indices is implied,

the integration is done over cj, the unique cycles of the invariant torus). The
name invariant torus comes from the fact that all trajectories starting on the
torus remain on it. Now adding a reservoir which is integrable with a Hamil-
tonian Hr(Pj, Qj) and introducing a weak interaction term between the reser-
voir and system hint(pk, qk, Pj, Qj) such that it breaks integrability, the total
Hamiltonian isH(pk, qk, Pj, Qj) = H(pk, qk)+Hr(Pj, Qj)+hint(pk, qk, Pj, Qj).
By the KAM theorem, of the original set of tori to the integrable part of the
system-reservoir Hamiltonian H(pk, qk) + Hr(Pj, Qj) (which are the prod-
ucts of the invariant tori of the two independent systems) the ones with
sufficiently irrational frequencies (corresponding to trajectories which are
not quasi-periodic) are preserved under the perturbation hint(pk, qk, Pj, Qj).
Since trajectories cannot cross the invariant tori act as barriers closing off
annular sections of the phase space. So even the assumption made before
that all transitions are possible may not be generically true and may depend
on how strongly coupled the system is to the bath.

Jarzynski in [31] has suggested that according to Hamiltonian mechanics
where the system is in contact with several reservoirs at given temperatures,
near or far from equilibrium, it satisfies the fluctuation theorem for some
process sending the system between state a, represented by phase space point
za and state b with zb generating entropy ∆S in its surrounding reservoirs is

P (zb,∆S|za)
P (z∗a,−∆S|z∗b )

= exp(∆S/k) (59)

where z∗ is the time reverse of z which only negates the momenta, and k is
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the Boltzmann constant. Because P (zb,∆S|za) is a conditional probability
the product of it and another transition probability like it, P (zc,∆s, |zb) for
example give

P (zc, zb,∆S + ∆s|za)
P (z∗a, z

∗
b −∆S −∆s|z∗c )

= exp

(
∆S + ∆s

k

)
(60)

this argument can be continued indefinitely for an arbitrary number of time
points which are arbitrarily close together making p(zn, zn−1, . . . , z1,∆S|z0)
limit to a probability functional (denoted with square brackets)

P [z(t),∆S|z(0)]

P [zR(t),∆S|zR(0)]
= exp(∆S/k) (61)

where zR(t) = z∗(τ − t) is the time-reversed trajectory of z(t) for 0 ≤ t ≤ τ .
This is similar to the fluctuation theorem in Eq. (46), but the difference is
in the choice made in the defining of entropy production ∆S. Jarzynski says
each reservoir is prepared in a state with known temperature and the entropy
produced ∆S is calculated by

∆S = −
∑
i

Qi

Ti
(62)

where the sum runs over the index of all baths and Qi = Hb
i (yi(τ))−Hb

i (y(0))
is determined by the change in energy of each of reservoir. This definition
of entropy production assumes the temperature of the reservoirs does not
change as energy is added to them, which is a reasonable assumption if the
bath is so large that the added/removed energy is not changing the tem-
perature appreciably. The expression in Equation (61) is appealing as any
preferred direction of time for the trajectories can be chalked up to the pro-
duction of entropy in the surroundings, and it was derived from completely
reversible Hamiltonian dynamics.

3.10 MaxCal Describes Dissipative Systems of Few De-
grees of Freedom Experiencing Thermal Fluctu-
ations

So far only systems with many degrees of freedom have been considered.
These are the types of systems that can be given a macroscopic description,
but dissipation can occur at multiple length scales, and Langevin dynamics
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is typical used to model dissipative processes with few degrees of freedom by
implicitly modeling a solvent as thermal noise plus a drag effect. It is impor-
tant to understand what quantities are key for a mathematical description
of this type dynamics. It will be shown that the relevant details are the fluc-
tuations of the force, velocity and the work done by the random force. The
results are exactly those of a path integral formulation of Langevin dynamics,
a review of those techniques is given here [10].

Consider a mechanical system of a particle with a single degree of freedom
which is in contact with a bath with a given temperature. Let’s say that we
want to know the probability, p(xb, vb, tb|xa, va, ta), that given a particular
initial position and velocity, xa and va respectively, the chance that it will
have position xb and velocity vb at time tb. By mathematical necessity re-
quiring both initial and final position and velocity to be specified means that
path integration must be done on a function of x, ẋ and ẍ or equivalently
x(t), ẋ, ẋ with the condition v(t) = ẋ(t).

The conditional probability, p(xb, vb, tb|xa, va, ta), for the process consid-
ered here will depend on the equation of motion of the system and the tem-
perature of the bath (related to fluctuations in velocity of the system). We
will consider only constraints that are generally quadratic functions of the
equation of motion and the velocity. There are a total of 5 constraints of this
nature

• 〈(mẍ− F )2〉 imposed with Lagrange multipliers c0

• 〈v2〉 imposed with c1

• 〈v(F −mẍ)〉 imposed with c2

• 〈mẍ− F 〉 imposed with c3

• 〈v〉 imposed with c4

and two more if we include normalization of p(xb, vb, tb|xa, va, ta) and p(xa, va, ta).
F = −∂V (x)/∂x = −V ′(x) is a conservative force field on the particle and
we require that the definition of velocity holds for all times ẋ(t) = v(t), this
will be imposed with a Dirac functional. By having this Dirac functional we
can free switch ẋ and v under any path integration of either x(t) or v(t).

The maximizing the Caliber subject to these constraints gives the path
weights
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exp

(
−
∫ tb

ta

c0

(
v̇ +

V ′(x)

m

)2

+ c1v
2

+ c2v

(
v̇ +

V ′(x)

m

)
+ c3

(
v̇ +

V ′(x)

m

)
+ c4v dt

)
(63)

the (normalized) path integration of these over position and velocity subject
to the definition v(t) = ẋ(t) fixed by the Dirac functional gives p(xb, vb, tb|xa, va, ta)
as

p(xb, vb, tb|xa, va, ta) =∫
Dk(t)

∫ xb

xa

Dx(t)

∫ vb

va

Dv(t) exp

(
−
∫ tb

ta

c0

(
v̇ +

V ′(x)

m

)2

+ c1v
2+

c2v

(
v̇ +

V ′(x)

m

)
+ c3

(
v̇ +

V ′(x)

m

)
+ c4v − ik(t)[ẋ(t)− v(t)] dt

)
(64)

with the corresponding Fokker-Planck type equation (derivation is shown in
the following section 3.11)

∂p(x, v, t)

∂t
=

− v∂p(x, v, t)
∂x

+
∂

∂v

[(
c2v

2c0

+
V ′(x)

m

)
p(x, v, t)

]
+

1

2c0

∂2p(x, v, t)

∂v2
. (65)

the corresponding Langevin equations

dx

dt
= v (66a)

dv

dt
= −V

′(x)

m
− ζv

m
+
η(t)

m
(66b)

η(t) is a Gaussian white noise driving term, which gives the last conditions

c0 =
βm2

2ζ
(67a)
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c1 =
ζβ

2
(67b)

c2 = mβ (67c)

3.11 Derivation of Corresponding Fokker-Plank Equa-
tion

Completing the squares

p(xb, vb, tb|xa, va, ta) =∫
Dk(t)

∫ xb

xa

Dx(t)

∫ vb

va

Dv(t) exp

(
−
∫ tb

ta

c0

(
v̇ +

V ′(x)

m
+

c2

2c0

v +
c3

2c0

)2

+

(
c1 −

c2
2

4c0

)(
v +

c4

2c1 − c22
2c0

)2

− c2
3

4c0

− c2
4

4
(
c1 − c22

4c0

)−ik(t)[ẋ(t)−v(t)] dt

)
(68)

We can take the short time step approximation ε→ 0 to derive the Fokker-
Plank equation and because of the delta function replace ẋ(t) with v(t)

p(xb, vb, t+ ε) =

∫ ∞
−∞

dk

∫ ∞
−∞

dva

∫ ∞
−∞

dxa

√
c0

πε
×

exp

(
−ε

[
c0

(
vb − va
ε

+
V ′(xa)

m
+

c2

2c0

va +
c3

2c0

)2

+

(
c1 −

c2
2

4c0

)(
va +

c4

2c1 − c22
2c0

)2

− c2
3

4c0

− c2
4

4
(
c1 − c22

4c0

)]+ ik[xb − xa − εva]

)
p(xa, va, t) (69)

the integral over k gives a Dirac delta function and the integration over xa
is easily done yielding

p(xb, vb, t+ε) =

∫ ∞
−∞

dva

√
c0

πε
exp

(
−ε

[
c0

(
vb − va
ε

+
V ′(xb − εva)

m
+

c2

2c0

va +
c3

2c0

)2

+

(
c1 −

c2
2

4c0

)(
va +

c4

2c1 − c22
2c0

)2

− c2
3

4c0

− c2
4

4
(
c1 − c22

4c0

)])p(xb − εvb, va, t)
(70)
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substitute η = (1 − ε c2
2c0

)va − vb − εV ′(xb)/m − c3
2c0

and expanding keeping
terms of order ε.

exp

−ε(c1 −
c2

2

4c0

)(
va +

c4

2c1 − c22
2c0

)2
 =

exp

−ε(c1 −
c2

2

4c0

)(
η + vb + ε

V ′(xb)

m
+

c3

2c0

+
c4(1− εc2/2c0)

2c1 − c22
2c0

)2/(
1− ε c2

2c0

)2
 ≈

exp

−ε(c1 −
c2

2

4c0

)(
η + vb +

c3

2c0

+
c4

2c1 − c22
2c0

)2


≈ 1− ε
(
c1 −

c2
2

4c0

)(
η + vb +

c3

2c0

+
c4

2c1 − c22
2c0

)2
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+
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η

ε
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as it will not contribute to leading order in ε

p

(
xb − εvb,

vb + η + εV ′(xb)/m+ c3/(2c0)

1− ε c2
2c0

, t

)
≈ p(xb, vb, t)−εvb
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∂xb

+

(
ε
c2

2c0
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+
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2c0

)
∂p(xb, vb, t)

∂vb
+
η2

2

∂2p(xb, vb, t)

∂v2
b

(73)

p(xb, vb, t+ ε) ≈ p(xb, vb, t) + ε
∂p(xb, vb, t)

∂t
(74)
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at zeroth order we obtain an identity (the probability equals itself) at first
order one obtains

p(xb, vb, t) + ε
∂p(xb, vb, t)

∂t
≈
∫ ∞
−∞

dη

1− ε c2
2c0

√
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c3

2c0

+
c4

2c1 − c22
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4

4
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4c0

)
 ×

[
p(xb, vb, t)− εvb
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∂xb
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ε
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2c0
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V ′(xb)

m
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2c0

)
∂p(xb, vb, t)
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η2

2
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∂v2
b

]
(75)

Note that the substitution introduces a term of order ε from the Jacobian
(1 − εc2

2c0
)−1 ≈ 1 + εc2

2c0
. Keeping only terms of order ε and removing the b

subscripts

∂p(x, v, t)
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which can be grouped as
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(77)

requiring normalization or the conservation of probability gives the condition
that 4c0c1 = c2

2 and c3 = 0.
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4 Bibliometrics and the Dynamics of Publi-

cation and Citation

In this chapter, we make a statistical-physical model of the scientific cita-
tion process. It has interesting dynamics. After a research paper is initially
published, that paper begins to attract citations from other subsequent pub-
lications in the same area. However, in contrast to simple physical processes
which have rate coefficients that are independent of time, the citation pro-
cess is one in which the rate changes with time, in multiple ways. First, in
addition to having an initial citation velocity, highly regarded papers also
receive accelerating citations over time. This is an example of ‘the rich get
richer, where the ‘rich here refers to papers that are already being highly
cited. Second, over longer timescales, the citation rates of even the best
papers begin to fall, as newer papers become more relevant. Here, by study-
ing a large database of the papers published by PubMed and the American
Physical Society, we are able to classify papers into categories based on their
citation fingerprints.

Positions in fields of science are particularly competitive, so much so that
”publish or perish” has become a mantra. As a result of this pressure many
scientist have turned their attention to scientometrics, and bibliometrics to
study general trends in the career of scientists. The advantages of such
studies could be significant, as considerable amounts of money and time are
spent by organizations reviewing grant proposals and evaluating individuals
for positions. Expert opinion is struggling in some places to be consistent.
For example NIH percentile scores of proposals do not correlate well with
their productivity unless they are highly ranked in terms of scoring [21]. A
similar lacking of consistency in expert opinion has been observed with two
different groups of experts reviewing the same NSF proposals. The proposals
were ranked by the two groups of experts and there was poor correlation
between the two rankings [12]. Any models that can provide reliable and
useful projections could reduce the burden on financial resources. The vast
majority of these studies focus on easily obtainable data such as citations,
citation networks and publication counts, though more studies have been
focused on citations rather than publication.

Various schemes and metric have been developed in order to improve
our understanding of scientometrics, we will briefly mention some important
results. Impact factor has been used a measure of journal quality and has
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been used to quantify the quality of a scientists publications, though it has
some serious flaws [4, 1, 60]. Individualized metrics such as h-index and
g-index have been developed as measures of productivity and impact of a
scientist’s body of work [28, 18]. At the level of individual papers the work
of Stringer et al. [67, 66] have developed a way to determine the eventual
accumulated total of citations by a paper. Wang et al. [72] have developed
a cumulative advantage theory for the citation trajectory of a paper. The
distribution of citation count per paper have been shown to follow a universal
log-normal distribution when normalized by a field specific average number
of citations per article [57]. The very early work of Lotka has shown that the
frequency of individuals with a given number of total publication goes as a
power law [46, 11]. The cross-sectional studies of publication and age have
shown that despite what is some might expect old age does not result in a
decline in productivity for active scientists [24, 40, 41, 58].

In the following section I will give a brief overview of the datasets used
for the analysis of publication and citation trends. We will see that scientists
publish papers at a steady pace much like previous research has suggested
but with new detail that the number of papers published each year is given
by a negative binomial distribution. The reason to focus on the probability of
publishing a certain number of papers a year is that it’s a necessary ingredient
for projecting how cited a scientist will be, as citations would be accumulated
by published papers both new and old. Then I will discuss the use of birth
processes to for describing (the stochastic process) of citation in scientific
papers, whose evolution depends on the number of previous citations, I will
show how the main result of Wang, Song and Barabási follows trivially from
these process and introduce a simple model based on the two-mechanism
model, and that these two models are rather similar in performance. Then
I will show that we can classify papers into three different types of clusters
which have different behaviors. This type of clustering is useful in making
predictions as it is easier to classify papers into these clusters than it is
to make very accurate predictions of citations using Bayesian methods of
projection which are normally limited by the model and the trends observed
in the training data.
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4.1 The Data from PubMed Database and the Amer-
ican Physical Society

The studies performed here where done on two separate datasets. One
dataset is from the American Physical Society (APS) which has both pair-
wise citation information for all papers published in APS journals and rel-
evant meta-data, which can be downloaded upon request. Each paper has
its own digital object identifier (DOI) along with other data such as authors
names and publication data. The data from the PubMed databased was
scraped. Each paper has a unique identifier and information on the authors
and publication year. The author names in PudMed do not have have unique
identifiers, so name clashes must be accounted for and removed.

From the APS data we can determine how citation trajectories for in-
dividual papers with a resolution of days. This allows one to get better
estimates of parameters as the time between each citation, and the time to
get the first citation as pieces of information, compared to taking year-wise
counts. In the PubMed database many papers do not have their exact date
of publication, there is merely the year of publication, so in the PubMed data
we are stuck to using year-wise counts.

4.2 The Pure Birth Process and the Mathematics of a
Process with Cumulative Advantage

In this section we will review a special case of birth-death processes, the pure
birth process. In a birth-death process which involves an increase in the state
variable by one, called birth and a decrease in the state variable by one called
death. The pure birth process is useful in bibliometrics citations and papers
don’t disappear the is no death process (retraction of a paper is an extremely
rare event). This formalism allows the user a lot of flexibility in describing
bibliometric data, as long as the four defining properties of the birth process
are true the rate can be refined with different functional forms to model
the data. The birth process which is described in terms of a conditional
probability distribution p(N(t + τ) − N(t) = n|N(t) = m) ≡ pm,n(t, τ) for
the number of events N(t) at the time t, has the following properties:

• There can be no events if time does not pass N(0) = 0

• The process is Markovian depending only on the current state N(t), t ≥
0
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• pm,1(t, δt) = λm(t)δt+ o(δt) for m = 0, 1, 2, 3, . . .

• pm,n(t, δt) = o(δt) for n > 1, m = 0, 1, 2, 3, . . .

here λm+n(t) is the rate which can depend on the total number of events
and the time. These conditions can be used to obtain a set of differential
equations to solve for pm,n(t, τ) [52], but a general solution can be obtained in
terms of a recursive integral equation which is simpler and straight forward
to understand. The probability of no events occurring in a time τ + dτ is
pm,0(t, τ + dτ), this is equivalent to the product pm,0(t, τ)(1 − λm(t + τ)dτ)
where pm,0(t, τ) is the probability that no events occur from t to t + τ and
1 − λm(t + τ)dτ is the probability that no events occur in the interval of
length dτ after the time t+ τ . This gives

pm,0(t, τ + dτ) = pm,0(t, τ)[1− λm(t+ τ)dτ + o(dτ)] (78)

expanding pm,0(t, τ + dτ) and canceling out the first term in the expansion
with the first term of the left hand side

dpm,0(t, τ)

dτ
dτ = −λm(t+ τ)pm,0(t, τ)dτ (79)

which can be rearranged and integrated over τ on the interval of interest

pm,0(t, τ) = exp

(
−
∫ τ

0

λm(t+ τ ′)dτ ′
)

(80)

with this expression the general solution for pm,n(t, τ), for n ≥ 1, can be built
through recursion of the following integral equation

pm,n(t, τ) =

∫ t+τ

t

pm,n−1(t, u− t)λm+n−1(u)pm+n,0(u, t+ τ − u) du (81)

which can be understood as breaking the process down into three compo-
nents. The first is the chance of getting n − 1 events in the time interval
u − t, the next is probability of a single event between u and u + du which
is λm+n−1(u)du, and for the remaining time the probability that no events
occur is pm+n,0(u, t + τ − u) and we integrate over u to account for all pos-
sible realizations of the same process. The differential equations for which
equations (80) (81) are solution for

∂pm,0(t, τ)

∂τ
= −λm(t+ τ)pm,0(t, τ) (82a)
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∂pm,n(t, τ)

∂τ
= −λm+n(t+ τ)pm,n(t, τ) + λm+n−1(t+ τ)pm+n−1(t, τ) (82b)

for all n ≥ 1, which are derived in reference [52] in detail (alternatively, take
the derivative of equations (80) (81) with respect to τ).

For the the purposes of this thesis we will consider the case λn(t) =
λ(t)(an+b), with a, b > 0 and λ(t) ≥ 0 for all t. In this case the equations (82)
can be written compactly in terms of the probability generating function

Pm(z, t, τ) =
∞∑
n=0

pm,n(t, τ)zn (83)

by differentiating the generating function with respect to τ and replacing the
right hand side of the above equation with equations (82) yields

∂Pm(z, t, τ)

∂τ
= λ(t+ τ)×(

−
∞∑
n=0

[a(m+ n) + b]pm,n(t, τ)zn +
∞∑
n=1

[a(m+ n− 1) + b]pm,n−1(t, τ)zn

)
(84)

which is straight forwardly simplified to

∂Pm(z, t, τ)

∂τ
= λ(t+ τ)

(
(z − 1)[am+ b]Pm + az(z − 1)

∂Pm
∂z

)
(85)

this partial differential equation can be solved by the method of characteris-
tics.

dτ

dγ
=

1

λ(t+ τ)
(86a)

dz

dγ
= az(1− z) (86b)

here γ is a dummy variable that parameterizes the flow which makes the
above partial differential equation into an ordinary differential equation,∫ τ

0

λ(t+ τ ′) dτ ′ =

∫ t+τ

t

λ(u) du = γ(t, τ) (87a)
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z =
1

1− k exp(−aγ)
(87b)

are the characteristics of the flow, we can solve equation (85) by writing it
as an ordinary differential equation

dPm
dγ

= −(am+ b)k exp(−aγ)

1− k exp(−aγ)
Pm (88)

which is integrated as

Pm(z, t, τ) = Pm (t, γ(t, τ) = 0)

(
1− k exp(−aγ)

1− k

) b
a

+m

(89)

replacing k in terms of z and γ from equation (87)b

Pm(z, t, τ) =

(
exp(−aγ(t, τ))

1− z[1− exp(−aγ(t, τ))]

) b
a

+m

(90)

where this is the probability generating function for the negative binomial
distribution

pm,n(t, τ) =
Γ(b/a+m+ n)

n!Γ(b/a+m)
[e−aγ(t,τ)]

b
a

+m[1− e−aγ(t,τ)]n (91)

the mean number of events in the time interval τ given m events in the time
t

〈n(τ)|m, t〉 =

(
b

a
+m

)[
eaγ(t,τ) − 1

]
(92)

this formula will be important for comparison in later sections. The negative
binomial distribution is characteristic of a process with cumulative advantage
where the frequency of events increases as there are more events. In the
context of citations this is would model the discovery of a paper through
the references of another more recent paper. In the limit that the parameter
a→ 0+ removes the cumulative advantage effect and the distribution reduces
to a Poisson distribution.

Given data containing the times t1, t2, t3, . . . , tn for each of the n events
that occurs in a time interval from 0 to T such that 0 < t1 < t2 < t3 <
· · · < tn < T the model parameters can be extracted by maximizing the
likelihood of observing the data given the model, without needing to repeat
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multiple trials. This is convenient since we will be using the birth process to
describe the citations of a paper and we cannot repeat history to get multiple
trials, to maximize the probability pm,n(t, τ). Knowing the probability of
no events in a time interval τ given m events occurred in a time t, shown
in equation (80) allows us to determine the probability of any number of
events occurring in the time interval τ given m events occurred in a time t,
pm,n>0(t, τ) = 1 − pm,0(t, τ). The probability pm,n>0(t, τ) is the cumulative
distribution function for the waiting time distribution, since it is the chance
of observing at least one event if one waits for a time τ to pass. Differentiating
pm,n>0(t, τ) with respect to τ will give the waiting time distribution or the
probability that an event occurs after a time τ passes between τ and τ + dτ

f(τ |m, t)dτ = λm(t+ τ) exp

(
−
∫ τ

0

λm(t+ u) du

)
dτ (93)

so the probability density of n events occurring at the times t1, t2, t3, . . . , tn
with the condition that 0 < t1 < t2 < t3 < · · · < tn < T is simply the
products of the above formula which give the likelihood function

L = f(t1, t2, t3, . . . , tn) = exp

(
−
∫ T

0

λN(t)(t) dt

) n∏
i=1

λi−1(ti) (94)

note that in the integral the rate λN(t)(t) has an implicit time dependence on
the number of events that happened up to the time t. Explicitly N(t) can
be written as

N(t) =
n∑
i=1

θ(t− ti) (95)

where θ(x) is the Heaviside step function which is unity for x > 0 and zero
x < 0. The formula in equation (94) is general as we made no assumptions
about the mathematical form of the rate. It is quite easy to interpret that
maximum likelihood estimate (MLE) maximizes the rates at the points in
time when events occur, but minimize the rate between the times of events.

Alternatively, if one just has count data for fixed time intervals (the units
are rescaled here for convenience to be equal to 1 with no loss of generality),
the likelihood function for T time intervals would be given by
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L = p(n1, n2, n3, . . . , nT ) =
T−1∏
i=1

pni,ni+1
(i, 1) (96)

where ni is the number of events in the ith interval. Again, MLE methods
can be used to obtain the most likely parameters for the process

4.3 Two-Mechanism model of Citation

Due to the work of Peterson et. al [53] in this section we propose a model
that is inspired by their two mechanisms model for citation. The direct
mechanism is when one person finds an article out of a group of many and
decides to cite it, and the indirect mechanism is when an author finds an
article through another articles references and decides to cite the referenced
article. Mathematically we motivate the rate for our birth process as

λn(t) = λindirect(t) + λdirect(t) (97)

if we say a paper is found selected almost randomly from a body of relevant
papers

λdirect(t) ∝ 1

N(t)
(98)

N(t) is the number of relevant papers at time t, and the indirect rate is
proportional to the number of citations a paper has received at a given time
n(t)

λindirect(t) ∝ n(t)

N(t)
(99)

and since the number of papers increases exponentially with time N(t) ∝
exp(rt) [42, 72].

λn(t) = (an+ b)r exp(−rt). (100)

This choice of rate gives γ(t, τ) = exp(−rt) − exp(−r(t + τ)), the mean
number of citations from Eq. (92), with t = 0 and m = 0

〈n(τ)|0, 0〉 =
b

a

[
exp

(
a(1− e−rτ )

)
− 1
]

(101)

52



this result will be relevant when it comes to rescaling and collapsing the
citation data from the Physical Review Corpus.

For long times we can use this to determine the expected number of new
citations a paper will receive given some m and t

lim
τ→∞
〈n(τ)|m, t〉 =

(
b

a
+m

)[
exp

(
ae−rt

)
− 1
]

(102)

setting m = 0 and t = 0 gives the expected number of total citations

lim
τ→∞
〈n(τ)|0, 0〉 =

b

a
[exp (a)− 1] (103)

and the relevant time scale for this process is 1/r with our original motivation
this will tell us the doubling time from

t2× =
ln(2)

r
(104)

a typical doubling time of 13 years would result in a r ≈ 0.05 year−1

4.4 Log-Normally Distributed Rate Gives the Model
of Wang-Song-Barabási

We also consider the rate given by

λn(t) =
(an+ b)

t
√

2πσ2
exp

(
−(ln t− µ)2

2σ2

)
(105)

there are several reasons for this, as the probability distribution between cita-
tions for papers with a fixed total number of citations and age is log-normally
distributed [72]. Additionally the age of cited literature in references of pa-
pers published in the same year are log-normally distributed [26].

The log-normal rate gives the mean number of citations from Eq. (92),
with t = 0 and m = 0

〈n(τ)|0, 0〉 =
b

a

[
exp

(
aΦ

(
ln τ − µ

σ

))
− 1

]
(106)

where Φ(x) is the cumulative distribution function for the normal distribution
given by
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Φ(x) ≡ 1√
2π

∫ x

−∞
exp(−y2/2)dy =

1

2

[
1 + erf

(
x√
2

)]
(107)

so γ(t, τ) = Φ(t+ τ)− Φ(t) for this model.
Equation (106) is a formula similar in form to a model proposed in [72]

which will be referred to as the Wang-Song-Barabási (WSB) model. The
formulation here differs from original in that it does not require one of their
assumptions, that the number of papers increases exponentially with time.
In their paper the factor b/a is set fixed to 30 as it is interpreted as the
typical number of references in a paper.

The expected number of new citations given m in time t are

lim
τ→∞
〈n(τ)|m, t〉 =

(
b

a
+m

)[
exp

(
a

[
1− Φ

(
ln t− µ

σ

)])
− 1

]
(108)

and a characteristic time scale for impact

T ∗ = exp(µ− σ2) (109)

this time is where the peak occurs in the log-normal in equation (105).

4.5 The Negative Binomial Distribution from the Polya
Process and Other Motivations, for describing the
Mechanism of Near Constant Publication

Cross-sectional studies of publication of aging scientists have shown that
the publication rate of scientists is relatively constant [24, 40, 41, 58]. To
describe this process from some sort of mechanistic point we need to be con-
sistent with this observation of constant publication rate observed in previous
studies. Two possible models can produce constant rate processes with over-
dispersion (variance that is greater than the mean) for large values of mean
publication rate, as seen in figure 12.

In the previous sections it was shown that a process with a rate that
increases linearly with the number of events results in a negative binomial
distribution. The Polya Process is described by a rate

λn(t) =
n+ α

t+ β
(110)

which gives the stationary distribution
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Figure 12: Yearly variance of publication versus the mean publication rate
for each unique author in PubMed dataset (in blue). The green line is the
curve y = x and the red line is the curve y = x2.

pm,n(t, τ) =
Γ(α + n+m)

n!Γ(α +m)

(
β + t

β + t+ τ

)α+m(
τ

β + t+ τ

)n
(111)

with the expected value of new events being

〈n(τ)|m, t〉 = τ
α +m

β + t
(112)

this is easy to interpret as the number of events m occurring in time t update
our knowledge of the process, for long enough times t the rate of the process
will be given by what was observed as it will approximate to m/t. If we
where tracking the process from when it began the mean would be ατ/β so
the process can thought of as a constant rate process, such that eventually
for large enough t the approximation of the negative binomial distribution
to a Poisson distribution becomes exact.

Alternatively, the negative binomial distribution can be obtained if we
take a Poisson process and take the rate to be distributed by a gamma
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distribution

p(n|α, p) =

∫ ∞
0

λn

n!
exp (−λ)λα−1 exp (−λ(1− p)/p)(

p
1−p

)α
Γ(α)

dλ

=
Γ(n+ α)

n!Γ(α)
(1− p)αpn. (113)

where the scale parameter of the gamma distribution β = 1−p
p

.
These two models are similar in that with no prior information besides

the model parameters the expected number of publications are

〈n(τ)〉 =
ατ

β
(114)

which is the same for both the birth process with m = 0 and t = 0 and the
Poisson process with a gamma distributed rate (with β = 1−p

p
), but the two

distributions are not the same.
If we use each individual’s yearly paper counts to fit a negative binomial

distribution given by the Polya process or the one in equation (113) we can
compare each individual’s publication records by the percentiles predicted
by these models. First we extract the model parameters for each individual
with 15 or more years of data using maximum likelihood estimation. As the
negative binomial probability distribution is discrete the percentiles will be
discrete too. In order to get a uniform distribution (assuming the model
fits the data properly) when plotting the histogram of the percentiles, one
must evenly distribute the count across multiple bins. Take for example
the year with n publications, the percentiles of n and n − 1 are calculated
from the cumulative distribution function, and this year is even distributed
across all bins that fall in this range. The results of these plots are shown in
figure 13. Most of the deviation from these models is at the highest percentiles
where in the Polya process about 8% of the data is underestimated and in
the time independent negative binomial process (Eq. (113)) where less than
1% of the data is overestimated. Ideally the entropy would be ln(100) ≈
4.6051 for the Polya process it is 4.468 and the time independent process is
it about 4.605. From these results we can see that the yearly publication of
scientists is well approximated by a negative binomial distribution with time
independent parameters. This is agrees with previous studies that indicate
that the productivity of scientists is relatively constant with time [40, 41, 58].
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(a) Polya Process

(b) Negative binomial with time independent parameters.
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It has been observed that the total number of articles an author produces
is power law distributed, indicative of a cumulative advantage this is very
much the case in the PubMed database, see figure 14. Of the two models
used to fit the data the Polya process was lacking despite it have the better
motivation based off of cumulative advantage. This would either mean that
there is a fluctuating rate in publication or that the cumulative advantage
effect only lasts for a short amount of time (about a year or significantly less)
and then resets. Both of these would approximate to the time independent
negative binomial distribution. As the PubMed data is limited to yearly
counts there is no way to extract more information to distinguish between
these two models.

Using the data from APS after accounting for clashing author names
similar features are observed as in the PubMed dataset. The same over

Figure 13 (preceding page): The distribution of percentiles for publications
per year for each author in the PubMed database with more than 15 years
of data, with the percentiles calculated from the a) Polya Process and b)
equation (113). The more uniform the percentiles are distributed the better
the model describes the data.

Figure 14: The distribution of total publications per author from PubMed.
The inset is the survival function.
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Figure 15: Yearly variance of publication versus the mean publication rate
for each unique author in APS dataset (in blue). The green line is the curve
y = x and the red line is the curve y = x2.

Figure 16: The distribution of total publications per author from APS. The
inset is the survival function.
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dispersion observed in figure 12 occurs in APS set (see figure 15) and power
law tails are observed in both the set (see figure 16). Since we can resolve
the citations down to the scale of days we can improve our estimation of
the parameters for the models. So we compared how these models perform
compared to a Poisson process with constant rate in figure 17. The Polya
process performs the same or worse than the Poisson as the G-score (twice
the logarithm of the likelihood ratio) is negative so there is no reason to
even consider the Polya process above a Poisson process. The model in
equation 113 performs better than to about the same as a Poisson process.
The question of whether or not to accept the negative binomial distribution
is not quite as easy as doing a likelihood ratio test since the number of
observations are not enough to take the limit of a χ2-distribution.

4.6 The Vast Majority of Citation Histories can be
Reduced to a Few Parameters

The citation information provided by the APS dataset is easily fit two both
models in sections 4.3 and 4.4 by maximum likelihood estimation (MLE)
using the likelihood given in equation (94). From the parameters obtained
from MLE one can rescale the data using by manipulating the expected
number of citations from equations (101) and (106), such that the expected
trajectories are straight lines with slope of unity and intercept of zero. Plots
of these rescaled trajectories are seen in figure 19 for all papers with 30 or
more citations. The a lower limit was placed on the parameter a in both
models of 10−8 to avoid dividing by zero. There is a particularly strong
power law like trend in the parameters a and b in WSB model as determined
by MLE which goes over several orders of magnitude. The MLE values of a
and b are compared to b = 30a which reflects that in the work of D. Wang,
et al. [72] that m = 30.

Comparing the two models it seems that the WSB model performs better
than the direct-indirect mechanism though the WSB model based on the
birth process has one more parameter so improvement in the fit is to be
expected. A better way of comparing the two models would be comparing the
likelihoods. The distribution of G-score (twice the logarithm of the likelihood
ratio with the WSB model in the numerator) is shown in figure 20. We can
see that the distribution falls very closely to zero despite the WSB model
having one additional degree of freedom it fails to outdo the direct-indirect
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(a) Polya Process

(b) Negative binomial with time independent parameters.

Figure 17: Histogram of G-score (twice the log-likelihood ratio) for each
author in the APS dataset from the a) Polya Process and b) equation (113).
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Figure 18: The scatter of b versus a as determined by MLE for the WSB
model. The red line is the line b = 30a which reflects the assumption in the
work of D. Wang, et al. [72] that m = 30 in all their calculations.

model in terms of likelihood in about 28% of cases and the vast majority of
G-score fall so close to zero that the addition of a parameter does not yield
much improvement. As the direct-indirect mechanism is much simpler and
faster to obtain parameters we will focus on it primarily.

4.7 Clustering Papers Based on Model Parameters May
Give Insight into Future Performance

Determining the parameters for a paper with a few citations is a difficult
problem as estimates can have rather wide distributions, this can be a prob-
lem for making accurate statistical predictions. A better method is to classify
papers based on a rough idea of their behavior. This can be achieved if we
look at the order of magnitude of the parameters (the logarithm of their
values) and cluster papers by their similarity to other papers. We can then
use relatively short training periods to classify papers with a good level of
accuracy.

Having fit the papers with at least ten citations with the direct-indirect
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(a) Direct-indirect mechanism

(b) Wang-Song-Barabási model

Figure 19: Plots of rescaled citation trajectories with a minimum of 30 cita-
tions, each trajectory is rescaled based off of the expected number of citations
from (a) the direct-indirect mechanism and (b) Wang-Song-Barabási model
using the maximum likelihood estimates for the parameters of each model.
With these rescaling the data should fall mostly along the line with slope of
unity and intercept of zero (y=x).
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Figure 20: Histogram of the G-scores of the WSB model and the direct-
indirect mechanism.

(DI) model we can make an attempt to cluster the papers into groups charac-
terizing them by some similarity in behavior. I propose that you can cluster
the papers by Euclidean distance between the logarithm of the parameter
values (linear distance on a log-scale). This compares papers with param-
eters that are of similar order of magnitude. We utilized a density based
method for clustering the papers called DBSCAN.

The papers mostly fall into one of 4 clusters shown in figure 21. These 4
clusters have different typical behavior which is shown in figure 22 for the ten
most cited papers in each cluster. One can see that the red cluster (cluster
0) has the most citations and they all occur relatively quickly. The green
cluster (cluster 1) reaches their respective maxima relatively quickly as they
as cited mostly in their first ten years. The yellow and blue clusters (clusters
2 and 3 respectively) have rather similar long term growth, the blue cluster
having a slower response.

The composition of the journals in each cluster was examined compared
to the whole, p-values where calculated to test the significance using a Fisher
exact test at a significance level of 0.01/(5 × 12) ≈ 1.67 × 10−4. Dividing
by 60 accounts for the multiple times the hypothesis is tested reducing the
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(a) b vs. a

(b) r vs. a

Figure 21: Scatter plot showing the clustering of papers based on the DB-
SCAN algorithm with ε = 0.406 and a minimum threshold of 50 papers
projected onto (a) the b and a axes and (b) the r and a axes. The different
clusters are color coded as red, green, blue and yellow. The black points are
papers categorized as noise.
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Figure 22: Citation trajectories of the ten most cited papers in each cluster.
The colors indicate the clusters the papers belong to and are the same as
figure 21

odds of accepting the alternative by chance. The raw counts of papers by
their journal and cluster are shown in table 6 as well as the whole. The
enrichment of certain journals the clusters compared to the whole is shown
in table 5. The p-values appear in table 7. Looking at cluster 0 (the one in
red) we notice a significant enrichment in papers from Phys. Rev. B, Phys.
Rev. Lett., and Rev. Mod. Phys. which are well regarded journals in the
Physical Review Corpus. Where as these same journals are lacking papers
to a significant degree in cluster 1 (green), and it is the only cluster enriched
in papers from Phys. Rev. which existed before the split in 1970. Clusters
2 and 3 (yellow and blue) have the fewest papers from before the 1970 split,
comparatively, and these clusters have far more papers from Phys. Rev. A,
C, D and E. If we are to interpret cluster 0 as the one with the fastest and
highest impact (in terms of having the most citations), cluster 1 having the
lowest impact with rapid saturation (reaches obsolescence quickly) this comes
along with the negligible values of a = 1×10−8 (this was the lower bound used
to avoid a divide by zero error) which indicate weak cumulative advantage
effect, and clusters 2 and 3 as having slower long term impact, then the
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Journal Cluster 0 Cluster 1 Cluster 2 Cluster 3 Noise
PhysRev 0.786275 1.185251 0.212699 0.191920 1.661312
PhysRevA 0.944248 1.009865 1.156630 1.233410 0.867695
PhysRevB 1.098570 0.977874 0.962043 0.907453 0.766124
PhysRevC 0.881826 0.997911 1.485603 1.421313 0.897456
PhysRevD 0.809020 1.028589 1.363962 1.231208 1.279976
PhysRevE 0.991213 0.952417 1.575415 1.588778 0.513525
PhysRevLett 1.081608 0.970159 0.920078 0.994517 0.928858
PhysRevSTAB 0.812700 0.735513 3.726188 2.893501 0.842557
PhysRevSTPER 0.335239 0.532798 2.049403 4.774277 6.255983
PhysRevSeriesI 0.670477 0.710397 0.000000 0.000000 8.341311
PhysRevX 1.005716 0.355199 0.000000 0.000000 10.426639
RevModPhys 1.281528 0.635657 0.679437 1.098278 3.767135

Table 5: Relative ratios of journal compositions of each cluster compared to
the whole. Values greater than one are enriched while values less than unity
are unenriched. The cells highlighted in yellow are statistically significant at
a significance level of 1.67× 10−4.

enrichments observed also tell us a similar story. The fastest growing subfield
in physics is condensed matter, which is published primarily in Phys. Rev. B
since 1970 which is enriched in cluster 0. The other subfields of atomic and
molecular, nuclear, particle, and statistical physics (Phys. Rev. A, C, D, and
E respectively) appear more enriched in clusters 2 and 3. If the reader is not
convinced that condensed matter is the fastest growing subfield of physics
the number of Ph.D.s awarded in last few years is nearly double of its closest
competitor particle physics [47, 48, 2].

Using a training period limited to the first few years of each paper whose
age exceeds that limit had its parameters calculated and then clustered. Then
these were compared to the clusters determined by their full history and a
success rate was determined based on how many where correctly classified
based on the training period. We used training periods of 1 to 30 years. With
only five years of training we can successfully place the papers fit in their
correct clusters about half the time (49.85%) and the success monotonically
increases with the amount of training time see figure 23. The relatively high
rate of success is not due to papers with ages close to the training period.
For example, the set with a training period of 30 years, over half the papers
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Journal whole Cluster 0 Cluster 1 Cluster 2 Cluster 3 Noise
PhysRev 13682 3209 9131 142 110 1090
PhysRevA 15309 4312 8705 864 791 637
PhysRevB 39985 13103 22016 1877 1520 1469
PhysRevC 7877 2072 4426 571 469 339
PhysRevD 18361 4431 10634 1222 947 1127
PhysRevE 6010 1777 3223 462 400 148
PhysRevLett 48246 15566 26355 2166 2010 2149
PhysRevSTAB 99 24 41 18 12 4
PhysRevSTPER 10 1 3 1 2 3
PhysRevSeriesI 5 1 2 0 0 2
PhysRevX 20 6 4 0 0 10
RevModPhys 1478 565 529 49 68 267

Table 6: Raw Counts of Papers with at least ten citations each within each
cluster compared to the whole.

Journal p-value 0 p-value 1 p-value 2 p-value 3 p-value Noise
PhysRev 4.60e-40 2.30e-40 4.48e-139 1.11-128 1.18e-57
PhysRevA 1.87e-05 6.58e-03 1.45e-06 4.28e-10 1.42e-05
PhysRevB 1.20e-28 4.86e-05 1.82e-03 8.71e-07 5.56e-34
PhysRevC 1.08e-08 1.19e-02 1.13e-19 8.25e-14 2.98e-03
PhysRevD 1.12e-43 3.90e-04 5.69e-28 1.07e-11 1.17e-17
PhysRevE 1.35e-02 1.01e-03 3.55e-20 2.01e-18 3.84e-20
PhysRevLett 4.13e-26 6.09e-08 2.47e-07 1.10e-02 2.67e-06
PhysRevSTAB 7.27e-02 2.51e-02 7.24e-06 1.35e-03 1.95e-01
PhysRevSTPER 2.03e-01 1.95e-01 3.47e-01 8.36e-02 2.18e-02
PhysRevSeriesI 4.36e-01 3.89e-01 7.88e-01 8.14e-01 4.64e-02
PhysRevX 2.35e-01 2.81e-02 3.86e-01 4.40e-01 6.96e-07
RevModPhys 1.33e-07 5.60e-21 1.05e-03 3.92e-02 8.71e-67

Table 7: The p-values corresponding with tables 5 and 6 included for com-
pleteness.
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(a) (b)

Figure 23: (a) Success Rate vs. Training time in years. The red curve treats
clusters 2 and 3 as one cluster (due to there similarities confusing them can
be considered ”forgivable”) and the blue curve keeps them separate. (b)
Median Age vs. Training time in years for the samples in figure 23a. The
relatively high rate of success is not due to papers with ages close to the
training period. For example, the set with a training period of 30 years, over
half the papers are more than 40 years old.

are more than 40 years old as seen in figure 23b. So even with a very narrow
window of time such as 5 or 6 years we can get a rough idea of what half of
the papers we are looking at will be doing for many years to come.

4.8 Bayesian Methods Allow for Purely Evidence Based
Prediction of Future Outcomes

The advantage of a probabilistic model is that it lends itself easily to all the
inference tools of Bayesian analysis. This allows someone to make evidence
based predictions, using only the model on previously observed data. One can
utilize Monte Carlo methods such as Markov Chain Monte Carlo (MCMC)
to sample from the following distribution without having to evaluate the
(implied) integration in the denominator if it is analytically intractable.

p(a, b, {α}|t1, t2, . . . , tm; t) =
p(t1, t2, . . . , tm; t|a, b, {α})p(a, b, {α})

p(t1, t2, . . . , tm; t)
(115)
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where p(a, b, {α}|t1, t2, . . . , tm; t) is the posterior distribution, p(a, b, {α}) is
the prior distribution which represents the users prior knowledge,
p(t1, t2, . . . , tm; t|a, b, {α}) is the likelihood, and p(t1, t2, . . . , tm; t) =∫
p(t1, t2, . . . , tm; t|a, b, {α})p(a, b, {α}) da db d{α}. The set {α} is the set of

all parameters belonging to the intrinsic time dependence of the process λ(t).
The posterior distribution p(a, b, {α}|t1, t2, . . . , tm; t) calculated from the

above equation either analytically or by sampling can be used in making pre-
dictions by integrating with the appropriate probability distribution over the
parameters. For example the density of certain events occurring at particular
times is given by

p(t′1, t
′
2, . . . , t

′
n; τ |t1, t2, . . . , tm; t) =∫

p(t′1, t
′
2, . . . , t

′
n; τ |a, b, {α})p(a, b, {α}|t1, t2, . . . , tm; t) da db d{α} (116)

alternatively since it is particularly awkward to talk about a probability
density such as the one above we can answer questions like ”what is the
probability of a paper getting n citations in the next t years?”. Such a
results can be obtained from integrating the posterior with equation (91)
over the parameters

pm.n(τ |t1, t2, . . . , tm; t) =∫
pm,n(t, τ |a, b, {α})p(a, b, {α}|t1, t2, . . . , tm; t) da db d{α} (117)

this can address practical questions such as what is the probability that a
paper never gets cited again by setting n = 0 and taking the limit as τ →∞.
Another option is to use moments of the distribution such as equation (101)
and (106) instead of the probability distribution and integrate over the model
parameters. Lets takes for example the WSB model for a papers with a
total of 250 citations at the end of 2013 its digital object identifier (DOI)
is PhysRevB.55.3015 we will calculate the expected (based off of Eq. (106))
number of citations based off of the first 7 years of the papers history and
compare it to what is actually observed. If we look at the projection in
figure 24 based off the first 7 years the projection seems to do pretty well
over the next 9 years, but such projections should be taken with a grain of
salt.

Looking at how the posterior is distributed in a corner plot (figure 25) we
can see even though we had over a hundred citations in the training period,
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Figure 24: Using the first 7 years of data (this is marked by the black dashed
line) the expected number of citations (in red) is inferred using Bayesian
analysis is compared to the cumulative citation count (in blue). The red
dashed lines represent plus and minus one standard deviation.
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the parameters are not very sharply defined so any projection is much fuzzier
than the red curve plotted in figure 24 or a standard deviation would indicate,
and different runs can give somewhat different results. This is problem with
any type of extrapolation with the any of these models projecting forward
requires a good estimate of the parameters of a paper (sharp posterior) which
requires a lot of data and there is no way to obtain multiple histories for the
same paper. Anyone should be skeptical of people claiming any stochastic
model can predict the future of a large body of papers with high accuracy
even for long training periods. Examples of papers that would be difficult to
characterize would be ones called ”sleeping beauties” [35], these are papers
that are characterized by a significant increase in citation many years after
publication. The original paper on Einstein-Podolsky-Rosen (EPR) paradox
with DOI PhysRev.47.777 is an example of such a paper where obtained
most of its citations 50 years after it publications. By the clustering done
before for 5 to 30 years of training this paper was lumped in cluster 1 as it
appeared to stagnate very quickly. Though it was put into the noise group
its parameter values of a = 44.6, b = 40.5 and r = 2.4 × 10−3 it is closest
to cluster 3 which has slow long term growth. Sleeping beauty papers would
require either expertise in their field or hindsight in order to determine that
they are indeed beauties and not members of cluster 1. No simple stochastic
model involving a point process can predict if a paper will be a sleeping
beauty.
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Figure 25: Using the first 7 years of data the posterior distribution of the
parameters for the paper with DOI PhysRevB.55.3015.
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5 Concluding Remarks

Hopefully upon reading each of the sections of this thesis I have convinced the
reader of the main detail of each middle section. The first is that short highly
charged proteins are susceptible to oxidative destabilization. The second is
that Maximum Caliber (MaxCal) is a theoretical framework which also all
known results of non-equilibrium thermodynamics to fall under one umbrella,
and has the potential to generalize those results regimes far from equilibrium.
Lastly, although precise predictions of citations trends are difficult, papers
can be categorized into three groups of poor citation, high citation with
quick impact and sleeping beauties that take many year before they obtain
most of their citations. By no means are these the only important details or
applications. For example, the fact that short and highly charged proteins are
susceptible to oxidative destabilization means we can use this to find other
proteins to study for aging studies and the study of age-related diseases.
The clustering of papers can be combined with data from authors, with a
suitable model, to predict roughly how many papers of each class the author
will produce in the future. If we can characterize dynamical fluctuations at
equilibrium by some statistical theory we could use MaxCal exactly like we
would perform calculations in statistical mechanics.
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