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Abstract of the Dissertation

White Dwarf Mergers on Adaptive Meshes

by

Maximilian Peter Katz

Doctor of Philosophy

in

Physics

Stony Brook University

2016

The mergers of binary white dwarf systems are potential progenitors of astrophysical
explosions such as Type Ia supernovae. These white dwarfs can merge either by orbital
decay through the emission of gravitational waves or by direct collisions as a result of or-
bital perturbations. The coalescence of the stars may ignite nuclear fusion, resulting in the
destruction of both stars through a thermonuclear runaway and ensuing detonation. The
goal of this dissertation is to simulate binary white dwarf systems using the techniques of
computational fluid dynamics and therefore to understand what numerical techniques are
necessary to obtain accurate dynamical evolution of the system, as well as to learn what
conditions are necessary to enable a realistic detonation. For this purpose I have used soft-
ware that solves the relevant fluid equations, the Poisson equation for self-gravity, and the
systems governing nuclear reactions between atomic species. These equations are modeled
on a computational domain that uses the technique of adaptive mesh refinement to have the
highest spatial resolution in the areas of the domain that are most sensitive to the need for
accurate numerical evolution. I have identified that the most important obstacles to accurate
evolution are the numerical violation of conservation of energy and angular momentum in the
system, and the development of numerically seeded thermonuclear detonations that do not
bear resemblance to physically correct detonations. I then developed methods for ameliorat-
ing these problems, and determined what metrics can be used for judging whether a given
white dwarf merger simulation is trustworthy. This involved the development of a number of
algorithmic improvements to the simulation software, which I describe. Finally, I performed
high-resolution simulations of typical cases of white dwarf mergers and head-on collisions
to demonstrate the impacts of these choices. The results of these simulations and the cor-
responding implications for white dwarf mergers as astrophysical explosion progenitors are
discussed.
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1 Introduction

Type Ia supernovae (SNe Ia) are among the most exciting events to study in astrophysics.
These bright, brief pulses of light in the distant universe have led to a number of important
discoveries in recent years, including the discovery of the accelerated expansion of the universe
(Perlmutter et al., 1999; Riess et al., 1998). Their origin, though, is shrouded in mystery. It
has long been expected that these events arise from the thermonuclear explosions of white
dwarfs (Hoyle & Fowler, 1960), but the cause of these explosions is uncertain. In particular,
it is not clear what process causes the temperatures in these white dwarfs (WDs) to become
hot enough for explosive burning of their constituent nuclei. The model favored initially by
the community was the single-degenerate (SD) model (Whelan & Iben, 1973). Accretion
of material from a companion star such as a red giant would cause the star to approach
the Chandrasekhar mass, and in doing so the temperature and density in the center would
become sufficient for thermonuclear fusion to proceed. In the last decade, though significant
research on the single-degenerate model has continued, the focus has shifted to a number
of alternative progenitor models. For example, a competing model is the double detonation
scenario (Livne, 1990; Woosley & Weaver, 1994), where accretion of material onto a sub-
Chandrasekhar mass white dwarf leads to a detonation inside the accreted envelope, sending
a compressional wave into the core of the star that triggers a secondary detonation.

We focus here on another leading candidate for explaining at least some of these explo-
sions, the double-degenerate (DD) model, in which two white dwarfs merge and the merged
object reaches the conditions necessary for a thermonuclear ignition (Iben & Tutukov, 1984;
Webbink, 1984). These systems may be isolated or they may be in hierarchical triple sys-
tems, where a WD binary system in a tight inner orbit is gravitationally coupled to a third,
outer star. In either case the binary WD pair can merge due to the emission of gravitational
waves, though in the hierarchical triple case, dynamical interactions between the WD binary
and the outer star can prompt mergers as well (Thompson, 2011; Hamers et al., 2013). The
mergers occur due to perturbations in the eccentricity of the binary orbit caused by the
outer star, which significantly increases the gravitational wave emission of the system. In a
subset of these mergers the eccentricity may be driven to such a high value that the merger
resembles a head-on collision of the binary WDs. For the purposes of the rest of this work, we
will adopt the simplified terminology that “mergers” are systems that start in approximately
circular orbits, where the circular orbit gradually decays (for example, due to gravitational
wave emission or some other damping force) and leads to inspiral and coalescence, while
“collisions” will refer to head-on (or nearly head-on) impacts (despite the fact that there is
not a clean boundary between these working definitions of collisions and mergers). A recent
review of Type Ia supernova (SN Ia) progenitor models can be found in Hillebrandt et al.
(2013).

There are several observational reasons why double-degenerate systems are a promising
progenitor model for at least a substantial fraction of normal SNe Ia. No conclusive evidence
exists for a surviving companion star of a SN Ia; this is naturally explained by the DD
model because both WDs are likely to be destroyed in the merger process. Similarly, pre-
explosion images of the SN Ia systems have never clearly turned up a companion star, and
in some cases a large fraction of the parameter space for the nature of the companion star is
excluded. Some supernovae (e.g. Howell et al. 2006) imply an ejecta mass that is larger than
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the Chandrasekhar mass, the maximum mass for a non-rotating, non-magnetic white dwarf,
and for at least some of these cases, a double white dwarf binary may be the most natural
explanation. Additionally, not enough progenitor systems are seen for the SD case to match
the observed local SN Ia rate, whereas the number of white dwarf binaries may be sufficient
to account for this rate. Finally, the DD model can naturally explain the fact that many
SNe Ia are observed to occur at very long delay times after the stars were formed, since the
progenitor systems only become active once both stars have evolved off the main sequence.
A thorough review of the observational evidence about SNe Ia and further discussion of these
ideas can be found in Maoz et al. (2014).

1.1 Simulations of Mergers

The first attempts to model the results of the merger process came in the 1980s. Nomoto &
Iben (1985) demonstrated that off-center carbon ignition would occur in the more massive
white dwarf as it accreted mass near the Eddington rate from the less massive white dwarf
overflowing its Roche lobe. Saio & Nomoto (1985) tracked the evolution of the flame and
found that it propagated quiescently into the center, converting the carbon-oxygen white
dwarf into an oxygen-neon-magnesium white dwarf. This would then be followed by collapse
into a neutron star—a result with significantly different observational properties compared
to a SN Ia. This scenario, termed accretion-induced collapse, would be avoided only if the
accretion rate were well below the Eddington rate (see, e.g., Fryer et al. 1999 for a discussion
of the possible implications of the accretion-induced collapse scenario). Tutukov & Yungelson
(1979) observed that the collapse could be avoided if the mass loss from the secondary was
higher than the Eddington rate and thus the accreted material formed an accretion disc,
which might rain down on the primary more slowly. The main finding was that double
degenerate systems would not obviously lead to Type Ia supernovae.

Three-dimensional simulations of merging double degenerate systems were first performed
by Benz et al. (1990), who used the smoothed particle hydrodynamics (SPH) method to
simulate the merger process. This was followed later by a number of authors (Rasio &
Shapiro, 1995; Segretain et al., 1997; Guerrero et al., 2004; Yoon et al., 2007; Lorén-Aguilar
et al., 2009a; Raskin et al., 2012). The main finding of these early 3D SPH simulations
was that if the lower-mass star (generally called the “secondary”) was close enough to the
more massive star (the “primary”) to begin mass transfer on a dynamical time scale, the
secondary completely disrupted and formed a hot envelope around the primary, with a
centrifugally-supported accretion disk surrounding the core and envelope. Carbon fusion
might commence in the disk, but not at a high enough rate to generate a nuclear detonation.
Mochkovitch & Livio (1990) and Livio (2000) also observed that turbulent viscosity in this
disk would be sufficiently large for angular momentum to be removed from the disk at a
rate high enough to generate the troublesome accretion timescales discussed by Tutukov &
Yungelson (1979) and mentioned above. Based on this evidence, the review of Hillebrandt
& Niemeyer (2000) argued that the model was only viable if the accretion-induced collapse
problem could be avoided. Later work by Shen et al. (2012) and Schwab et al. (2012) used
a more detailed treatment of the viscous transport in the outer regions of the remnant and
found that viscous dissipation in the centrifugally supported envelope would substantially
heat up the envelope on a viscous timescale, but their simulations still led to off-center
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carbon burning. van Kerkwijk et al. (2010) argued that equal-mass mergers would lead
to the conditions necessary for carbon detonation in the center of the merged object, but
Shen et al. (2012) also questioned this for reasons related to how viscous transport would
convert rotational motion into pressure support. Zhu et al. (2013) followed this with an
expanded parameter space study and argued that many of their carbon-oxygen systems had
the potential to detonate. The study of the long-term evolution of the remnants is thus still
an open subject of research.

A recent shift in perspective on this problem started around 2010. Pakmor et al. (2010)
used the SPH method to study the merger of equal-mass (0.9 M�) carbon-oxygen white
dwarfs and found that a hotspot was generated near the surface of the primary white dwarf.
They argued that this region had a temperature and density sufficient to trigger a ther-
monuclear detonation. They inserted a detonation which propagated throughout the sys-
tem. They found that the result would observationally appear as a subluminous Type Ia
supernova. This was the first time a DD simulation successfully reproduced at least some
characteristics of a SN Ia. Pakmor et al. (2011) tried a few different mass combinations and
found empirically that this would hold as long as the secondary was at least 80% as massive
as the primary. These events, where the merger process resulted in the detonation of the
system during the merger coalescence—avoiding the much longer time-scale evolution—were
termed “violent” mergers.

Around the same time, however, Guillochon et al. (2010) and Dan et al. (2011) pointed
out that the previously mentioned simulations generally shared a significant drawback, which
was that their initial conditions were not carefully constructed. Motl et al. (2002), D’Souza
et al. (2006), and Motl et al. (2007) (the first three-dimensional mesh-based simulations of
mass transfer in binary white dwarf systems) pioneered the study of the long-term dynamical
evolution of binary white dwarf systems after constructing equilibrium initial conditions.
Earlier work placed the stars too close together and ignored the effects of tidal forces that
change the shape of the secondary, leading to the merger happening artificially too quickly
(Fryer & Diehl, 2008). When the initial conditions are constructed in equilibrium, the
system can be stable for tens of orbital periods, substantially changing the character of
the mass transfer phase. One limitation of this series of studies is that the authors used a
polytropic equation of state and thus could not consider nuclear reactions. Guillochon et al.
(2010) and Dan et al. (2011) improved on this using a realistic equation of state, a nuclear
reaction network, and a similar approach to the equilibrium initial conditions, and found
substantial agreement with the idea that mass transfer occurs in a stable manner over tens
of orbital periods. They also found that, assuming the material accreted onto the surface of
the primary was primarily helium, explosive surface detonations would occur as a result of
accretion stream instabilities during the mass transfer phase prior to the full merger. This
could trigger a double-detonation explosion and thus perhaps a SN Ia.

The latest violent merger developments have resulted in some possible areas of conver-
gence. Pakmor et al. (2012b) performed a merger scenario with a 1.1 M� and 0.9 M� setup,
with better treatment of the initial conditions, and indeed found that the merger process hap-
pened over more than ten orbits. Nevertheless, they still determined that a carbon-oxygen
detonation would occur, in line with their earlier results. Moll et al. (2014) and Kashyap
et al. (2015) were also able to find a detonation in similarly massive systems. Notably, the
detonation occurred self-consistently and did not need to be intentionally triggered using

3



an external source term. Dan et al. (2012) and Dan et al. (2014) performed a large sweep
of the parameter space for merger pairs and found that pure carbon-oxygen systems would
generally not lead to detonations (and thus be violent mergers) except for the most massive
systems. They did find that for systems with WDs containing helium, many would detonate
and potentially lead to SNe Ia, either through the aforementioned instabilities in the accre-
tion stream, or during the contact phase, similar to the violent carbon-oxygen WD mergers.
Sato et al. (2015) also examined the parameter space and came to a similar conclusion for
massive carbon-oxygen WD systems (and also looked at the possibility of detonations after
the coalescence had completed), while Tanikawa et al. (2015) discussed the plausibility of
helium detonations in the massive binary case. Pakmor et al. (2013) added a thin helium
shell on their primary white dwarf, and found that this robustly led to a detonation of the
white dwarf. For now there is preliminary support for the hypothesis that systems with
helium shells (or helium WDs), and very massive carbon-oxygen binaries, could robustly
lead to events resembling SNe Ia.

1.2 Simulation of Collisions

With regard to WD collisions, over the past few years a number of groups have performed
simulations to understand whether they may yield astrophysical transients that look like SNe
Ia (Rosswog et al., 2009; Raskin et al., 2010; Lorén-Aguilar et al., 2010; Hawley et al., 2012;
Garćıa-Senz et al., 2013; Kushnir et al., 2013; Papish & Perets, 2015; Holcomb & Kushnir,
2015). Head-on collisions rapidly convert a significant amount of kinetic energy into thermal
energy in a small region and thus set up the conditions for a thermonuclear detonation,
and these previous simulations have indeed found that detonations occur and convert a
large amount of carbon/oxygen material into iron-group elements. These papers varied
significantly in the hydrodynamic methods used (Lagrangian versus Eulerian methods), the
methodology used for coupling nuclear reactions to the hydrodynamics (including variation
in the number of isotopes in the nuclear network and in the evolution of the temperature),
and the temporal and spatial resolution. Consequently they yielded estimates of production
of nickel-group elements that varied significantly, leaving much uncertainty about how such
an event would appear observationally and whether it bears any resemblance to a SN Ia. See
Table 4 of Garćıa-Senz et al. (2013) for a summary of the outcome of many of these studies.

1.3 Motivation

Given the considerable research into the double degenerate problem described above, why
is another approach using a different simulation code warranted? First and foremost, re-
producibility of the results across simulation codes and algorithms is important for gauging
confidence in this result. So it is always worth trying the same problem with a different
code; at best, it simultaneously tests the simulation code and the model, and if multiple
groups using multiple simulation methods obtain similar results, that builds confidence in
the model (or, if not, means that further research is warranted). As an example of why this
matters, most of the existing results that study the viability of double degenerate systems
as progenitors for Type Ia supernovae (that is, including a realistic equation of state and
nuclear reactions) have used the SPH method. SPH codes have a number of features which
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do aid them in the study of mergers, such as good conservation of angular momentum (the
main sources of non-conservation come from the time integration scheme and the level of
tolerance to error in the gravity solver; see Rosswog 2009 for a description of the conservation
properties). A drawback relates to the fact that whether a prompt detonation in a merger
happens depends in detail on the nature of the gas at the interface between the two stars,
which is at much lower density than the rest of the stellar material. The SPH codes for these
simulations generally all use uniform mass particles, so their effective resolution is lowest at
the stellar surface. In contrast, a code with adaptive mesh refinement can zoom in on the
regions where hotspots will develop, while also maintaining high enough resolution in the
high-density regions to adequately capture the large-scale mass transfer dynamics. There
are also outstanding questions of convergence in SPH (e.g. Zhu et al. 2014) and whether
the method correctly captures fluid instabilities. This is an important question for white
dwarf mergers because of the likely importance small-scale instabilities will have on the
evolution of the low-density gas at the primary’s surface. The pioneering work of Agertz
et al. (2007) compared grid and SPH codes and found some important differences. Most
relevant for this discussion is that the SPH codes could not adequately handle mixing from
the Kelvin-Helmholtz instability in the test they propose. As pointed out by Price (2008),
this is not a result of SPH being inherently unable to model this instability, but instead it is
attributed to the fact that the standard SPH evolution equations do not have a mechanism
for capturing discontinuities in internal energy. Price showed that the addition of an artificial
thermal conductivity can dramatically improve the ability of the SPH codes to exhibit this
instability. There have since been a number of other papers discussing this issue, but to
our knowledge none of these improvements have yet been incorporated into an SPH model
of a WD merger. Another reason for caution is that other than the most recent results of
Kashyap et al. (2015), no white dwarf merger simulation has self-consistently resulted in a
thermonuclear detonation. And, as we shall see in Section 6, there are reasons to be deeply
skeptical of detonations that appear in simulations with the typical level of resolution af-
fordable on today’s supercomputers. At any rate, reproducibility of the detonation through
numerical simulation is critical for building confidence in this progenitor model.

This dissertation is the culmination on an effort designed to address these outstanding
theoretical issues for white dwarf mergers and collisions. This work discusses the verification
of our hydrodynamics software for simulating these events. Section 2 describes the algorithms
used by our hydrodynamics software and why this software can provide useful results com-
pared to other methodologies used for this problem. Section 3 describes the method we use
for setting up a binary white dwarf simulation. Section 4 discusses a few test problems that
we use to verify that our code accurately solves the equations of fluid dynamics. Section 5
demonstrates that the software scales well for supercomputer applications. In Section 6 we
discuss our results for collisions of white dwarfs, and in Section 7 we discuss our results for
mergers of white dwarfs. Finally, Section 8 recaps what we have shown and highlights some
of the future work that could be done.

5



2 Numerical Methodology

To study the white dwarf merger problem, we use the mesh-based hydrodynamics code
CASTRO1 (Almgren et al., 2010). CASTRO solves the Euler equations, along with the inclusion
of optional modules for gravity, nuclear reactions and thermodynamics. CASTRO is based on
the BoxLib2 adaptive-mesh refinement (AMR) framework (Rendleman et al., 2000; Zhang
et al., 2016), which represents fluid data on a hierarchical mesh where regions of interest
have higher spatial resolution. CASTRO is highly parallel and is designed for large-scale use
on modern supercomputers; see Section 5 for information on how CASTRO performs for our
problem. The next few subsections describe our approach to each of the physics components
used in this work. We direct the reader to the original code paper for a full description
of CASTRO’s approach to solving the equations of hydrodynamics. Rather than reproducing
that discussion here, we report mainly on the changes we have made to the code since its
original release for the purpose of approaching this problem, and the aspects most relevant
to binary white dwarf simulations.

2.1 Hydrodynamics

The Euler equations for hydrodynamics (in the absence of source terms) in conservative form
are:

∂ρ

∂t
= −∇ · (ρu) (1)

∂ρu

∂t
= −∇ · (ρuu)−∇p (2)

∂ρE

∂t
= −∇ · (ρuE + pu). (3)

Here ρ is the mass density, u = (u, v, w) is the fluid velocity vector, p is the pressure, and
E = u2/2 + e is the total specific energy, where e is the internal (thermal) specific energy
(energy per unit mass).

We use the unsplit piecewise-parabolic method (PPM) solver in CASTRO to advance the
hydrodynamics system in time (Miller & Colella, 2002). The PPM method is a specific case
of the general class of Godunov algorithms (Godunov, 1959) where the fluid state is updated
by fluxes across the interfaces between zones. To determine the flux at an interface, we
estimate of the value of the state at the interface as it would be predicted from fluid data
on either side of the interface, and solve the Riemann problem to resolve the discontinuity
between the two edge states. The art of the method is in determining appropriate edge states
to feed into the Riemann solver that computes the flux. PPM estimates a reconstruction
of a state variable within a zone as a parabolic profile, limits the parabolic profile so that
new extrema in the state are not introduced, and then integrates over that parabolic profile
to determine the fluid properties on the zone edge. The PPM reconstruction and Riemann
solve is done using the so-called “primitive” variables (ρ, u, p) rather than the “conserved”
variables (ρ, ρu, ρE), and the hydrodynamic update to the conserved variables is constructed

1CASTRO can be obtained at https://github.com/BoxLib-Codes/Castro.
2BoxLib can be obtained at https://github.com/BoxLib-Codes/BoxLib.
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using the final values of the primitive variables. (This is a typical approach in the literature
because the wave structure of the system, and the solution to the Riemann problem, are
easier to express using the primitive variables. Note that in CASTRO the primitive variables
are supplemented with the quantity (ρe).) This is then used to predict the final edge state
that goes into the Riemann solver. A number of changes have been made to the PPM solver
since the release of CASTRO, which are detailed in Appendix A of Katz et al. (2016). These
changes bring the algorithm more in line with that of the original PPM paper, Colella &
Woodward (1984). CASTRO as originally released featured a slightly modified version of the
higher order parabolic profile limiter of Colella & Sekora (2008), which can be used in the
code3 by setting castro.ppm type = 2 in the inputs file (the inputs file is a set of code
parameters accessed at runtime to determine the algorithms used in the simulation). The
advantage of this limiter is that it is intended to preserve physical extrema rather than
clipping them off as in the original approach of Colella & Woodward (1984). Despite the
advantages of this limiter we have found it to be unsatisfactory for our problem. There are
many regions in our problem with large density gradients (such as the interface between the
star’s atmosphere and the ambient gas outside of it) and in these regions the algorithm can
yield negative densities. This often results from the limiters interpreting these gradients as
being true minima. As a result, we use the original limiter, which is strictly monotonicity
preserving in the parabolic profiles it generates; this is activated with castro.ppm type =

1 in the inputs file.
A related issue that required a code improvement is that in cases of large density gradients

such as the edge of a star, it is possible to generate negative densities in zones even with the
more strongly limited PPM. This can occur if a region of large density is moving away from
an ambient zone at relatively large speeds; then the net density flux in the ambient zones
can be large enough to unphysically drag the density below zero. In practice, this occurs
at the trailing edge of a star that is moving across a grid. In such a situation, there are
two main approaches one could take: either explicitly introduce a generic diffusive flux term
that ensures positivity preservation everywhere, or take a specific action to prevent zones
from retaining a negative density in the specific places where it occurs as the simualtion
progresses. We choose the latter approach, and implement it in two ways. If the sum of all
fluxes that would cause the density in the zone to decrease is large enough that the density
would drop below a pre-determined density floor (which is typically 10−5 g cm−3 for our
stellar simulations), we reduce the magnitude of the fluxes to the point where the density
would remain above the density floor. While this may be non-conservative, it preserves a
characteristic we value better than the generic diffusive flux, which is that it only operates
on the zones it is needed for, and thus helps to keep the edge of the stars relatively sharp, as
they physically should be. Also, since the mass of the affected zones is typically already fairly
low, this should not seriously affect the dynamics or the energy conservation properties of
our simulation, and the need for this typically decreases as resolution increases. If the code
still finds itself in a situation where a negative density develops, which is possible in certain
edge cases especially in adaptive mesh refinement simulations with multiple levels, we reset

3In a few cases we will refer to specific code parameters in this dissertation. As code parameters can
change when software is updated over time, the specific parameters may be changed in meaning or have been
removed in later releases. Therefore, the meaning of the inputs parameters should be interpreted based on
the state of the simulation software as of the publication date of this dissertation.
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the zone characteristics such that the density returns to being above the floor. Our strategy
for a reset is that we take the average of all fluid quantities in adjacent cells whose density is
also above the floor, and set the fluid state variables in the reset zone to match that average.
If no adjacent zone reaches the density floor, then the zone is set to the density floor, and
given a temperature equal to the temperature floor for our simulations (which is typically
105 K for mergers and 107 K for collisions). We then recompute the thermodynamics to be
consistent with these values. The velocity of the zone is arbitrarily set to zero. This latter
approach only occurs in very rare situations, and is there as a last resort.

CASTRO’s approach to adaptive mesh refinement, based on its underlying BoxLib frame-
work, is to refine zones based on certain user-specified criteria that tag regions of interest
for higher spatial resolution. Data is represented on one of a number of AMR levels, where
each level corresponds to a set of zones at the same resolution, which covers a subset of
the domain covered by the level immediately below it. We typically call the level 0 grid
the coarse grid, which has the lowest spatial resolution. Each finer, higher-level grid has
a higher resolution than the grid below it by some integer factor N , which is restricted to
be N = 2 or 4 in CASTRO. The zones are strictly contained within the logically rectangular
extent of the underlying coarser zones (this implies that geometrically the area of the refined
zones is contained in the area of underlying coarse zones). For the time evolution of the
AMR system we use subcycling, where each AMR level is advanced at a different timestep
and a correction step is applied at the end to synchronize the various levels. The number of
subcycled timesteps is equal to the jump in refinement between levels, so for example on a
grid with three levels and two jumps of four in refinement, the level 2 zones have 16 times
higher spatial resolution than the coarse grid and there are 16 level 2 timesteps per level 0
timestep.

The boundary conditions on the hyperbolic system are simply zero-gradient zones that
allow material to flow directly out of the domain. Using AMR, we make the coarse grid large
enough that the boundaries are relatively far from the region of interest, and enforce that
refined grids cannot reach the domain boundary. This ensures that any boundary effects do
not pollute the inner region where the stars will eventually make contact.

CASTRO uses the dual energy formalism of Bryan et al. (1995, 2014), where we evolve
equations for both the specific gas energy E and the specific internal energy e, using one
or the other to determine the pressure in the hydrodynamics step (if we are using the total
energy, we compute the corresponding internal energy by subtracting the kinetic energy
K). The switching parameter is η1 = 10−3, and if (E − K)/E < η1, we use the internal
energy variable e in the equation of state call that obtains the pressure. Otherwise we use
(E −K). The idea behind this is that in high Mach number flows where the kinetic energy
dominates the total energy, we do not want to risk generating an inaccurate estimate of
the internal energy due to roundoff and/or truncation error. Similarly, at regular intervals
when we enforce consistency of the internal energy variable (which occurs a few times per
timestep), we sync the internal energy variable so that it is equal to E − K, skipping this
step only if (E − K)/E < η2. We adopt by default η2 = 10−4. This choice can matter
much more for reacting hydrodynamics than non-reacting hydrodynamics. For example, a
collision can only lead to a detonation if there is sufficient conversion of kinetic to thermal
energy. Obviously this happens physically, but if the parameter η2 is set high enough then it
could in principle interfere by not allowing the simulation to efficiently convert kinetic energy
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to thermal energy. (This does not end up mattering much for our simulations because the
kinetic energy does not strongly dominate the internal energy for colliding WDs.) And on
a similar note, when using this formalism it is ambiguous which variable to use ((E − K)
or e) when calculating the initial temperature that goes into the reaction step. We have
introduced a new parameter η3 that uses the same logic as the first two: if (E−K)/E < η3,
we use (E−K) in the equation of state call that obtains the temperature; otherwise, we use
e. However, unlike the other two, the CASTRO default is η3 = 1.0, meaning that we normally
use the internal energy variable.

2.1.1 Hybrid Advection

It is well known that there is a trade-off between conservation of linear momentum and
conservation of angular momentum in grid-based, Eulerian codes such as CASTRO. CASTRO by
default chooses to conserve linear momentum at the expense of angular momentum, and the
serious consequences of this for merger simulations can be observed in Section 4.4. Although
conservation of both quantities should hold analytically, we cannot numerically guarantee
this. Consequently the choice of which physical quantity to conserve must be motivated by
analysis of the particular problem to be done. Ideally, a simulation code will be capable of
evolving the equations for both the linear momentum and the angular momentum, and be
able to switch between them as appropriate. To solve the need for an angular momentum
evolution in CASTRO to complement the existing linear momentum scheme, we adopt the
“hybrid” advection scheme presented by Byerly et al. (2014) (see also Motl et al. (2002) for
a similar equation set). Their approach is appropriate for physical situations where there
is a dominant angular momentum axis and it is desirable to conserve that component as
accurately as possible. This is certainly applicable for studies of the stability of binary
stellar systems. This section contains a discussion of our implementation of that scheme in
CASTRO. For the sake of simplicity, let us assume that the rotation axis of the binary system
is the z axis and so the WDs orbit in the xy-plane. The core of the method is that instead
of solving the Euler equations for the linear momenta (ρu) and (ρv), we instead solve the
corresponding equations for the radial momentum sR ≡ ρvR (where vR is the radial velocity
with respect to the rotation axis) and the angular momentum with respect to the z-axis,
`z ≡ Rρvφ (where vφ is the azimuthal velocity). The equation for the linear z-momentum is
unchanged. We want to be able to solve these equations while still operating in our preferred
Cartesian coordinate system. Byerly et al. (2014) present these equations as the following;
for the moment we neglect inclusion of external source terms such as gravity and rotation:

∂(sR)

∂t
+∇ · (sRu) = − 1

R

(
x
∂

∂x
+ y

∂

∂y

)
p+

`2
z

ρR3
(4)

∂(`z)

∂t
+∇ · (`zu) =

(
y
∂

∂x
− x ∂

∂y

)
p (5)

Here u is the ordinary linear momentum used to advect any fluid quantity on the grid, and
R =

√
x2 + y2, where the coordinates x and y are defined relative to the axis of rotation,

and the origin is located on a zone corner so that singularities are avoided. Note that
vR = (1/R)(xu + yv), and vφ = (1/R)(xv − yu). These equations can be straightforwardly
derived from the Euler equations for linear momentum by appropriate multiplication of x, y,
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x/R, and y/R, and subsequent algebraic manipulation. We now rewrite this in a way that
illustrates how the update is done in the code:

∂(sR)

∂t
= −∇ · (sRu)− 1

R

(
x
∂p

∂x
+ y

∂p

∂y

)
+

`2
z

ρR3
(6)

∂(`z)

∂t
= −∇ · (`zu)−

(
∂(−py)

∂x
+
∂(px)

∂y

)
. (7)

The first term on the right-hand-side (RHS) of both equations is the standard advective flux
term for any conserved variable that advects with the flow, and the state quantity inside this
advective term can be derived on cell edges using the primitive hydrodynamic variables after
a Riemann solve has been performed. The second term on the RHS of Equation 7 can be
swept up into the flux terms in the same way that the pressure term for the linear momenta
is often added to the fluxes, to make the conservation form explicit. The remainder are
the last two terms on the RHS of Equation 6. While maintaining second-order accuracy in
time, the last term can be treated as a cell-centered source term that we deal with using a
predictor-corrector method (similar to how we implement external forcing like gravity and
rotation; see Almgren et al. (2010) for details). The pressure gradients in the second-to-last
term can be constructed using the Riemann-solved edge states, and they are multiplied by
zone coordinates that are cell-centered. In principle this is second-order accurate in time
because the edge states are too; however, as a drawback, the pressure is unaware of the source
terms that are applied in the corrector step after a hydrodynamics update. The benefit of
this approach is that we do not need to construct a general cell-centered gradient of the
pressure using cell-centered state data, nor do we need to perform the equation of state call
that this entails.

It is important to observe that in this formulation the radial momentum equation is not
a conserved quantity: it should and will in general change with time over the course of the
simulation if the system is not in perfect rotational equilibrium. The above form, absent of
source terms, makes this clear. The angular momentum term in Equation 4 can be thought
of physically as expressing the fact that a particle with some initial angular momentum will
have its radial momentum strictly increase with time as it moves away from the origin, and
can be thought of geometrically as expressing the curved nature of the underlying coordinates
for the radial momentum (Motl et al., 2002). It is only the presence of a source term like
gravity that can keep such a particle on an orbit at its original radius, and for such a case
it may be helpful to think of the angular momentum source term as an outward centrifugal
force that balances against the inward centripetal force provided by gravity.

In the absence of source terms, the angular momentum is conserved to machine precision
(ignoring the effects of physical domain boundaries). In the presence of source terms, the
error in angular momentum conservation is of a similar order of magnitude to the error in
linear momentum conservation under the influence of those source terms (see Equation 9).
Since this error is quite small for gravitational and rotational forces in practice, angular
momentum conservation is quite good, especially in comparison to the standard method of
evolving only the linear momentum. Thus this method is most appropriate when the net
radial momentum is small in comparison to the net angular momentum, that is, when the
motion is primarily azimuthal in nature.

10



To implement this method in CASTRO, we desired an approach that was flexible and
would leave as little imprint on the code structure as possible. To this end, what we have
done is to add three new “hybrid” momentum state variables, corresponding to the radial
momentum, angular momentum, and the linear momentum component that is perpendicular
to both. Whenever we update the normal momentum state variables with hydrodynamics
fluxes, we add the analogous fluxes to the hybrid momenta – that is, using the edge state
values determined by the final multi-dimensional Riemann solve, we construct the value of
the hybrid momenta on that zone edge, and then allow it to be transported as usual by the
advective velocity u. When we update the normal momenta with an external forcing F such
as gravity or rotation, with x and y components Fx and Fy, we apply the update to the
hybrid momenta as well:

∂(sR)

∂t

∣∣∣∣
F

= −Fx
x

R
− Fy

y

R
(8)

∂(`z)

∂t

∣∣∣∣
F

= Fx y − Fy x. (9)

Then, when we are in a phase of the evolution when we want to conserve angular momentum,
we make one additional change: at the end of a (single-level) advance, we recompute the
normal momenta so that they are fully consistent with the hybrid momenta. This is all that
is necessary to have a calculation that conserves angular momentum over the course of the
simulation, without changing any of the core infrastructure for the hydrodynamics update.
For example, when we compute the primitive variables from the conservative variables, we
will still be getting them from the normal momenta, but these normal momenta are always
consistent with the conserved angular momentum, so we get the same result as if we had
done a much more involved update where we explicitly computed the primitive variables
using the hybrid momenta. There is of course no unique choice for how to do this. For
example, we could take the approach of explicitly re-calculating the normal momenta after
any change has been made to the state. This would add significant code complexity without
a clear benefit. The most significant difference would be that when evaluating the new-time
value of source terms like rotation, the velocity field used is slightly different than it would
otherwise be; but this is a high-order effect that does not change the core angular momentum
conservation property. An analysis of the different mechanisms for implementing this update
may be an interesting avenue for future research — including various aspects like how to
implement the source terms in the radial momentum equation. Of course, the answer will
likely be problem-dependent.

2.2 Equation of State

The equation of state (EOS) for our simulations is the Helmholtz EOS (Timmes & Swesty,
2000). This models an electron-positron gas of arbitrary relativity and degeneracy over
a wide range of temperatures and densities. Thermodynamic quantities are calculated as
derivatives of the Helmholtz free energy, and the values are interpolated from a table. Con-
tributions from the photon radiation pressure, the ion thermal pressure, and corrections
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due to Coulomb interactions are added4 to the electron-positron contribution. The natural
variables of the Helmholtz free energy are temperature and density, and calling the EOS is
simplest in this form. In hydrodynamics we often have the density and internal energy as in-
dependent variables, and we want to obtain the temperature, pressure, and other quantities.
To do this, we employ a Newton-Raphson iteration over the temperature (given some suffi-
cient starting guess) until we find the temperature that corresponds to the desired internal
energy. Sometimes this process fails to converge and the iterative value approaches zero. In
these cases we enforce a “floor” that limits how low the temperature can go, which has the
same value as it does for the hydrodynamics (typically 105 to 107 K). There is a choice here
how to proceed: we can either assign this floor value to the temperature and let that zone
be thermodynamically inconsistent (the original behavior in CASTRO), or we can adjust the
internal energy to be thermodynamically consistent with the temperature, at the cost of vio-
lating energy conservation. We have found in some test problems of strong one-dimensional
shocks (Zingale & Katz, 2015) that reach the temperature floor that the latter yields more
accurate results. However, allowing the equation of state call to update the internal energy
can actually result in significant changes to the total energy of the system over long periods
of time, due not just to resets in low-density zones but also to small inconsistencies between
the energy given to the EOS and the energy that is consistent with the returned temperature.
These inconsistencies are dependent on the tolerance of the Newton-Raphson iterative solve.
While this error tolerance is typically very small in an individual zone (a relative difference
of 10−8 by default in CASTRO; this can be controlled through a simulation parameter at run
time), over time and given a large number of zones, this can result in a significant energy
drift. This is a serious enough problem that we opt for the energy conserving approach for
our simulations.

2.3 Gravity

We solve the Poisson equation for self-gravity for our problem,

∇2Φ(x) = 4πGρ(x), (10)

where Φ is the gravitational potential, G is the gravitational constant, and ρ is the mass
density. The solution of this equation in CASTRO is described in Almgren et al. (2010), and
consists of both level and composite solves, and (optionally) a final synchronization at the
end. We do not enable this final synchronization for the merger simulations, because the
grid boundaries never lie in regions of high density, so the change in the potential due to the
correction at coarse–fine interface is always negligible.

2.3.1 Coupling to Hydrodynamics

The effect of gravity on the hydrodynamical evolution is typically incorporated by the use
of a source term for the momentum and energy equations. In a finite volume methodology,

4Many authors disable these Coulomb corrections in their local versions of the software, and it is not always
reported in the literature when the Coulomb corrections are or are not used. The Coulomb corrections can
sometimes be challenging because, at present, they are implemented with a hard cut-off at low temperature
and energy that can introduce problems. In the future we plan to look at approaches that use a smooth
form for the Coulomb corrections over the entire T and ρ plane.
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the momentum source term often appears in integral form as

∂(ρu)

∂t

∣∣∣∣
grav

=
1

∆V

∫
ρg dV (11)

and for the energy source term it is

∂(ρE)

∂t

∣∣∣∣
grav

=
1

∆V

∫
ρu · g dV. (12)

Here ∆V is the cell’s volume. In most hydrodynamics codes these integrals are discretized
assuming the integrand is uniform through the zone, resulting in (ρg) and (ρu · g), respec-
tively, where ρ, u, and g are evaluated at the zone center.

These source terms enter the system evolution in two places: as source terms themselves
that directly update the state, and as contributions to the calculation of the hydrodynamics
update. During the hydrodynamics update, we alter the edge states that enter into the deter-
mination of the fluxes. (This only applies for the momentum source term; the gravitational
force does not directly do work on the internal energy, which is used to infer the pressure.)
To second order in space and time, this can be done using the cell-centered source term eval-
uated at time-level n, by directly applying the value of the force to the relevant primitive
variables over a time interval of ∆t/2. We refine this approach in two ways which maintain
the second order convergence property of the approach but are more accurate. First, we
perform characteristic tracing under the source term5 in the prediction. Characteristic trac-
ing involves including components of the primitive equations used to predict an edge state
only if the velocity of those components is moving toward the relevant interface, and is used
for the hydrodynamic components in the primitive equations as well. The details of this are
described in Appendix A of Katz et al. (2016). Second, instead of using the time-level n
value of the source term, we predict it to time-level n + 1/2 using a lagged linear predictor
that estimates the current time derivative of the source term by using a finite difference over
the last timestep.

After the hydrodynamics step, we add the time-centered source terms to the state. First
we describe how we do this for the momentum, and then we describe our approach for
the energy. This discussion is somewhat detailed. We believe that the attention is necessary
because of the importance of accuracy in the gravitational source terms for our problem. The
stability of the white dwarf binary system is dependent in large part upon accurate coupling
of the hydrodynamics and gravity; an error in this approach could lead to, for example,
a spurious mass transfer episode that might lead us to very different conclusions about
the long term stability of such a system. Such considerations are generally unimportant
for spherically-symmetric single star calculations, but are of the utmost importance in a
simulation where the global gravitational field can change quite significantly over the course
of the simulation.

In a system with self-gravity, total momentum is conserved if the spatial domain includes
all of the mass of the system. This must be the case because each mass element exerts an

5In practice in the code, we add all relevant source terms, not just gravity, together for each primitive
variable and then perform the characteristic tracing on this overall source.
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equal and opposite gravitational force on every other mass element. However, the standard
approach does not necessarily guarantee that momentum is conserved numerically. We can-
not represent a vacuum state in our code, so there is a small but non-zero density on the
edge of the grid. This allows momentum to leak out of the domain even if the gravitational
source term is written in an explicitly conservative manner. To see this, one can use the
Poisson equation to write the density in terms of the potential and then consider its spatial
discretization, as follows. For simplicity, we consider one spatial dimension and a uniform
discretization. Analogous results may be readily obtained for the non-uniform case.

−ρi
dΦi

dx
= − 1

4πG

d2Φi

dx2

dΦi

dx

= − 1

4πG

[
Φi−1 − 2Φi + Φi+1

∆x2

] [
Φi+1 − Φi−1

2∆x

]
= − 1

8πG∆x3

[
Φ2
i+1 − Φ2

i−1 − 2Φi (Φi+1 − Φi−1)
]

(13)

It is easy to verify that adding the source terms for the current zone and the two zones to the
left and right results in complete cancellation of the source terms. The catch is that if the
potential is non-zero outside of the domain, then there will be momentum lost or gained from
the grid, which will be encapsulated in the ghost cells just outside the domain. In addition,
when we replace the Laplacian above by the full three-dimensional stencil including the y
and z derivatives, depending on the discretization these may not be cancelled at all.

This last problem can be resolved by writing the momentum update in an explicitly
conservative way. Shu (1992, Chapter 4) observes that it is possible to describe the source
term for the momentum equation by taking the divergence of a gravitational stress tensor,

Gij = − 1

4πG

(
gigj −

1

2
|g|2δij

)
. (14)

The momentum equations are then written explicitly in conservative form. The flux at any
zone boundary is added to one cell and subtracted from another, so that the total momen-
tum in the domain interior stays constant to within numerical roundoff error. This result
can be derived by analytically recasting the multi-dimensional version of Equation 13. In
the continuum limit, the two momentum formulations are identical. Thus the latter has
been advocated by, for example, Jiang et al. (2013) for the ATHENA code. A significant
limitation to this approach is that in a finite discretization, the divergence of the gravita-
tional acceleration is not numerically guaranteed to be proportional to the zone density. In
particular, we find that the mixing of the gravitational accleration components means that
the truncation error in the gravitational field can lead to large errors that imply a density
much different than the zone’s actual density. This is especially problematic in a simulation
with a low-density ambient medium, where even a small error in the momentum update can
lead to large changes in a zone’s momentum. By continuing to explicitly use the cell density
in the momentum update, we can avoid this possibility: the size of the update will always
be suitably small if the zone’s density is small. Thus for our simulations we continue to use
the standard source term for the momentum.

Time centering of this source term is done in CASTRO using a predictor-corrector ap-
proach. At the start of a coarse grid timestep, we solve the gravitational potential for the
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density ρn. We then add to the momenta a prediction of the source term that is first-order
accurate in time, ∆t ρn gn. After the hydrodynamics update, we recalculate the gravitational
potential based on the new density, ρn+1, and then add −(∆t/2)ρngn + (∆t/2)ρn+1gn+1 to
the momenta.

For the energy equation, the central challenge is to write down a form of the discretized
energy equation that explicitly conserves total energy when coupled to gravity. When gravity
is included, the conserved total energy over the entire domain is∫

ρEtot dV =

∫
dV

(
ρE +

1

2
ρΦ

)
, (15)

where ρE is the total gas energy density from the pure hydrodynamics equation. The factor
of 1/2 in the gravitational energy is necessary for simulations with self-gravity to prevent
double-counting of interactions. Historically many simulation codes with gravity have not
used a conservative formulation of the energy equation, but it is straightforward to do so.
Our approach, and the discussion that follows, is based on that of Springel (2010).

Conservation of total energy requires that a change in gravitational energy is compensated
for by a change in gas energy, and that energy changes due to mass transfer are explicitly and
exactly tracked. Suppose that we have some fluid mass ∆Mi+1/2 = ∆ρi+1/2∆V leave the zone
with index i and enter the zone with index i+1. The subscript indicates that the mass change
is occurring at the interface between the two zones, at index i+ 1/2. The work W done by
the gravitational force on the gas is ∆(ρE) = W =

∫
Fdx = (∆Mi+1/2 gi+1/2)(∆x/2), where

gi+1/2 is the gravitational acceleration at the interface. The second term in parentheses is
just the distance from the zone center to the zone edge: once the mass leaves the zone edge,
it no longer needs to be tracked. To second order, gi+1/2 = −(Φi+1 − Φi)/∆x, and also to
second order the potential at the interface is given by Φi+1/2 = (Φi+1 + Φi)/2, so we can
equivalently view the work done as W = −∆Mi+1/2(Φi+1/2 − Φi). Physically, this is just
the negative of the gravitational potential energy change as the fluid is pushed from the cell
center potential to the cell edge potential, exactly as the work-energy theorem implies.

Now, in a hydrodynamics code, mass changes correspond to hydrodynamic fluxes. In
particular, the continuity equation tells us that the mass flux Fρ = ρ

n+1/2
i+1/2 v

n+1/2
i+1/2 yields an

integrated mass motion through the interface i+ 1/2 over a timestep ∆t of:

∆ρi+1/2 =
∆t

∆V

(
ρ
n+1/2
i+1/2 v

n+1/2
i+1/2 dA

)
. (16)

Note that here vi+1/2 is the component of the velocity perpendicular to the zone face, whose
area is dA.

Finally, then, we write the update in a zone for the total energy that conserves (ρEtot)
as:

∆(ρE) = −1

2

∑
f

∆ρf (Φf+1/2 − Φf−1/2), (17)

where the sum is over the cell faces with indices f and the indices f + 1/2 and f − 1/2 refer
to the zone centers immediately to the left and right in the direction perpendicular to the
face. As long as we record the hydrodynamical fluxes through the zone faces after coming
out of the hydrodynamics step, this algorithm is able to conserve the total energy completely
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(except for any energy loss or gain through physical domain boundaries). In order for the
method to be second-order accurate in time, we need to use a time-centered Φ (which can
be computed by averaging the time-level n and n+ 1 potentials; we already have the latter
because CASTRO re-computes the potential at the new time after the hydrodynamics step, and
we can apply this energy at the end of the timestep). Note that of course the hydrodynamical
flux is already second-order accurate in time. We observe also that in practice we will not
obtain conservation of energy to machine precision even in the absence of open domain
boundaries. The method itself is conservative if it is time-centered and correctly evaluates
the energy change on cell faces. This was demonstrated empirically by Jiang et al. (2013)
and is obvious in the case of a fixed external potential; it is not as obvious in the case of the
gravitational self-potential, which changes in response to changes in the mass distribution,
so we give a short proof of this in Appendix A. However, in practice there is a non-zero
numerical tolerance associated with the Poisson gravity solver (in our case, the multigrid
method) that results in a non-zero error in the calculation of the gravitational potential.
This results in a very small deviation from perfect conservation. It is not usually larger
than the other effects which result in energy non-conservation for our simulations, such as
resetting the state of zones that acquire a negative internal energy, and in principle if desired
it can be made smaller by using stricter tolerance levels on the gravity solve.

In passing, we hope to clear up a spot of potential confusion that we feel is unclear in other
papers on this subject: the factor of 1/2 that appears in Equation 17 has nothing to do with
the factor of 1/2 that appears in the statement of conservation of total energy, Equation 15.
The former comes simply from the fact that the energy change is evaluated using the mass
motion through a distance of half of the zone width. The latter is needed to ensure that
these local changes in energy are not double-counted when doing a global integral, since the
gravitational potential is self-generated. Equation 17 applies to any conservative potential
Φ, and we use this to our advantage for the rotation forces in Section 2.4.

As observed by Springel (2010), this method is more accurate than the more common
(non-conservative) approach of evaluating the change in gas energy using the work done
(v · ρg) by the gravitational force at the cell center. Analytically the non-conservative form
expresses the same core idea as Equation 17 via the work-energy theorem, but a major flaw
is that it evaluates the energy change at the cell center when in fact the mass transfer is
happening at the cell edges. This can result in a significant leaking of energy throughout
the course of the evolution, dramatically affecting the course of the evolution. The standard
approach is therefore unacceptable in the case of a problem like white dwarf mergers, and
the fix to this energy leaking—evaluating the energy transfer at the six zone faces instead
of the single zone center—adds only a very minor cost in terms of code complexity and
computational time.

Another approach to conserving total energy recently taken in the literature is to evolve an
equation for the total energy (ρEtot); see Jiang et al. (2013) (see also Springel (2010), Section
5.3). That is, one can replace the gas energy equation with a total energy equation, and then
the energy flux includes a term corresponding to the flux of gravitational potential energy.
We avoid this approach for our problem because there are regions on the computational
domain where the total energy is dominated by potential energy (especially the low-density
regions near the edge of the white dwarfs), and the gas energy can only be retrieved by
first subtracting −ρΦ/2 from the total energy. Like Springel (2010), we find that this can

16



result in some serious errors due to numerical discretization, yielding unphysical energies or
temperatures. We observe also that the implementation of Jiang et al. (2013) has terms in
the gravitational flux that are not directly proportional to ρ in the numerical implementation,
and so the algorithm can lead to the same troubles that plague the tensor-based formalism
for the momentum equation, where small errors in the discretization of the gravitational
potential can lead to very large changes in the energy of the gas.

2.3.2 Boundary Conditions

Analytical solutions to the Poisson equation customarily assume that the potential vanishes
at large distances from the region of non-zero density. On a finite computational domain,
however, it is usually not possible to have the edges of the domain be far enough away
that the potential can be taken to be zero there. Solving the Poisson equation therefore
requires knowledge of the values of the potential on the edges of the computational domain.
In principle, the boundary values can be computed by doing a direct sum over the mass
distribution inside the domain, where the mass in each zone is treated as a point source:

Φlmn = −
∑
i,j,k

Gρijk
|xlmn − xijk|

∆Vijk. (18)

Here (i, j, k) are the indices of cells inside the domain, and (l,m, n) are the indices of ghost
zones outside the domain where the boundary values for the potential is specified6. ∆V is the
volume of the zone. If there are N zones per spatial dimension, then there are 6N2 boundary
zones, and each boundary zone requires a sum over N3 zones, so the direct computation of the
boundary conditions scales as O(N5). This method is expensive enough that it is not used
for hydrodynamics simulations (though it is useful for comparison to approximate solutions,
so we have implemented it as an option in CASTRO).

In a typical simulation we place the boundaries of the domain far enough away from
the region containing most of the mass that some method of approximation to this direct
summation is justified. Many approaches exist in the literature. The original release of
CASTRO featured the crudest possible approximation: a monopole prescription, where the
boundary values were computed by summing up all the mass on the domain and treating it
as a point source at the domain center. This is correct only for a spherically symmetric mass
distribution, and therefore is best suited for problems like single-star Type Ia supernova
simulations (e.g. Malone et al. 2014) that employ self-gravity. For a problem like that of
a binary star system with significant departures from spherical symmetry, this assumption
fails to produce accurate boundary values, which we find in Section 4.4 results in a significant
drift of the center of the mass of the system over time.

The most natural extension of the monopole prescription is to include higher-order multi-
pole moments. If the entire mass distribution is enclosed, then the potential can be expanded
in a series of spherical harmonics Ylm(θ, φ) (where θ ∈ [0, π] is the usual polar angle with
respect to the z axis and φ ∈ [0, 2π) is the usual azimuthal angle with respect to the positive

6In CASTRO we actually specify the potential on cell edges, not on cell centers, but the idea is the same,
and we use the location of the cell edge in computing the distance to each zone in the domain.
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x axis):

Φ(x) = −
∞∑
l=0

l∑
m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1
, (19)

where qlm are the so-called multipole moments. The origin of the coordinate system is taken
to be the center of the computational domain, and r is the distance to the origin. The multi-
pole moments can be calculated by expanding the Green’s function for the Poisson equation
as a series of spherical harmonics. After some algebraic simplification of Equation 19, the
potential outside of the mass distribution can be written as:

Φ(x) = −
∞∑
l=0

{
Q

(0)
l

Pl(cos θ)

rl+1

+
l∑

m=1

[
Q

(C)
lm cos(mφ) +Q

(S)
lm sin(mφ)

] Pm
l (cos θ)

rl+1

}
. (20)

Pl(x) are the Legendre polynomials and Pm
l (x) are the associated Legendre polynomials.

Q
(0)
l and Q

(C,S)
lm are variants of the multipole moments that involve integrals of Pl and Pm

l ,
respectively, over the computational domain; their definition is given in Appendix B.

This approach becomes computationally feasible when we cut off the outer summation
in Equation 20 at some finite value of l that we define lmax. If it is of sufficiently high order,
we will accurately capture the distribution of mass on the grid. In practice we first evaluate
the discretized analog of the modified multipole moments for 0 ≤ l ≤ lmax and 1 ≤ m ≤ l,
an operation that scales as N3. We then directly compute the value of the potential on all of
the 6N2 boundary zones. Since the multipole moments only need to be calculated once per
Poisson solve, the full operation scales only as N3. The amount of time required to calculate
the boundary conditions is directly related to the chosen value of lmax, so there is a trade-off
between computational expense and accuracy of the result.

As a demonstration of the method’s accuracy, we consider the case of a binary white dwarf
system of mass ratio 2/3, using the initialization procedure described below in Section 3. We
terminated the simulation just after initialization, so that we perform only an initial Poisson
solve for this density distribution. We did this for values of lmax ranging from 0 to 20, and
we also did this using the numerically exact solution provided by Equation 18. Defining the
L2 norm of a field f as

‖f‖2 =

(∑
i,j,k

∆x∆y∆z f 2
ijk

)1/2

, (21)

we computed the L2 error of Φ on the entire domain for multipole boundary conditions,
which we call Φl, relative to Φ obtained using the exact boundary conditions:

Errorl =
‖Φl − Φexact‖2

‖Φexact‖2

. (22)

The result is shown in Figure 1. At lmax = 6, the error is already well below 10−4 and we
adopt this as our default choice for all simulations with Poisson gravity. In Section 4.4 we
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show that there are no gains to be had by increasing the accuracy further. At very high
orders (l ≥ 18) the approximation breaks down, as seen in Figure 1. This is a result of the
ambient material on the grid. At each boundary point we assume that all of the mass on the
grid is contained within a sphere whose radius is the distance from that boundary point to
the center of the domain. This does not hold for boundary points in the centers of domain
faces, because of the material in the domain corners. This can be fixed by using multiple
mass shells at diferent radii, but the error is negligible in practice for the values of lmax that
we use.
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Figure 1: Error of Φ on the computational domain for a binary white dwarf simulation whose
boundary conditions were computed using various values of the maximum multipole order,
relative to the exact solution determined by a brute force sum on the boundaries. Circles
represent the error at integer values, and they have been connected by a line to guide the
eye.
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2.3.3 Convergence Testing

Since the results of a merger simulation depend strongly on gravity, it is important to check
whether proper numerical convergence is achieved for the Poisson solver. To do so, we created
a simple test that initializes a sphere of radius R and uniform mass density ρ onto our grid,
and used CASTRO to calculate the gravitational potential Φ of this setup. We ensure that
R is an integer multiple of the grid spacing, and the center of the sphere is at the origin.
The problem domain for our simulations is [−1.6 cm, 1.6 cm]3, and we take R = 1.0 cm
and ρ = 103 g cm−3. The zones with r > R are filled with an ambient material of very low
density (10−8 g cm−3). We run this problem at multiple resolutions corresponding to jumps
by a factor of two. For comparison, at each grid point we evaluate the analytical potential
of a uniform sphere, which can be easily determined using Gauss’s law:

Φsphere(r) = −GM
r
×

{
(3R2 − r2)/(2r2) r ≤ R

1 r > R
, (23)

where M = 4πR3/3 is the mass of the sphere. We measure the numerical error by calculating
the L2 norm of the error and normalizing it by the L2 norm of the analytical solution:

Error =
‖Φ− Φsphere‖2

‖Φsphere‖2

. (24)

We define the order of convergence p between two simulations with a jump in resolution of
integer factor m > 1 as

p = logm

(
Errorlow

Errorhigh

)
. (25)

Here Errorlow is the L2 error at the lower resolution and Errorhigh is the L2 error at the higher
resolution. We expect the error to converge at p = 2 given the discretization we choose. For
all simulations in this section and for all our main science simulations, we choose a relative
error tolerance of 10−10 to be satisfied in the multigrid solve. The results of this test are
plotted in Figure 2.

We find that at low resolution convergence is actually substantially better than second-
order. The explanation for this is that we are attempting to model a spherical object on a
rectangular grid. This results in two sources of error. First, at very low resolution, the object
does not look very spherical due to the rectangular grid representation, so the potential it
produces is not quite that of a sphere. As the resolution is increased, the distribution of the
mass on the grid will change. Second, the total amount of mass on the grid will change as
the sphere fills out. So we are combining the true accuracy bonus from increased resolution
with the artificial accuracy bonus from getting closer to solving the problem we are supposed
to be solving. At high resolution this effect levels off, though, as the representation of the
sphere is not significantly different in our two highest resolutions shown. For example, at
128 zones per dimension the amount of mass on the grid happens to be slightly closer to the
true spherical mass than at 256 zones per dimension. We can eliminate the second source
of error by changing the density on the grid so that the total mass M is actually what we
intend it to be. The resolution study for this case (the “normalized sphere”) is also plotted
in Figure 2. At low resolution we still obtain convergence slightly better than second-order,
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Figure 2: Comparison of the CASTRO gravitational potential to the analytical solution for:
a sphere of uniform density; the same sphere, but with the potential normalized using the
actual amount of mass on the grid instead of the mass of a perfect sphere; and, a cube of
uniform density. Plotted also is a notional curve whose slope represents perfect second order
convergence.

indicating that we have not eliminated the geometrical problem of the mass distribution
changing.

The only way to fully eliminate this effect is to use a test problem that does not change
with resolution. The obvious companion problem is a cube of uniform density ρ, where now
R is half of the side length of the cube. At each resolution we use the same R as for the
sphere, which ensures that the cube always fills exactly the same fraction of the domain and
thus has the same mass, so the only improvement comes from better sampling at higher
resolution. The gravitational potential for this object has been worked out analytically by
Waldvogel (1976) (see also a similar result by Hummer (1996), and an earlier calculation by
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MacMillan (1958)). The potential is given in Equation 15 of that paper7:

Φcube(x, y, z) = −Gρ
1∑

i,j,k=0

[
xiyj tanh−1

(
zk
rijk

)
+ yjzk tanh−1

(
xi
rijk

)
+ zkxi tanh−1

(
yj
rijk

)
−x

2
i

2
tan−1

(
yjzk
xirijk

)
−
y2
j

2
tan−1

(
zkxi
yjrijk

)
− z2

k

2
tan−1

(
xiyj
zkrijk

)]
(26)

where x0 = R + x, x1 = R − x, y0 = R + y, y1 = R − y, z0 = R + z, z1 = R − z, and
r2
ijk = x2

i +y2
j +z2

k. We note that if implemented in Fortran or C/C++, the inverse hyperbolic
tangent used in this formula corresponds to atanh and the inverse tangent corresponds to
atan (not the more common atan2). This formula is valid both inside and outside the cube.
The normalized L2 error for this problem is also shown in Figure 2, and only for this problem
do we obtain perfect second-order scaling at all resolutions.

The main lesson here is that in a convergence study, it is important to ensure that the
physical problem does not change with resolution. Since in the case of spherical objects on
rectangular grids the effect may be to artificially boost convergence with resolution, in a
simulation with spherical objects like stars one can envision a scenario of being fooled into
believing apparently good convergence results that are simply a convolution of artificially
high gravitational convergence and poor convergence in the hydrodynamics. A convergence
study in this case is only fully valid if there is reason to be confident that this effect is
negligible compared to other factors.

2.4 Rotation

For the evolution of binary systems, it is most natural to evolve the two stars in a frame
that is co-rotating at the same period as the orbital period. Since the publication of the
original code paper, CASTRO now has the ability to evolve systems in a rotating reference
frame. Source terms corresponding to the Coriolis and centrifugal force terms are added to
the momentum and energy equations. In this frame, the stars essentially remain stationary
in their original positions due to the centrifugal force supporting against the gravitational
attraction, and will remain this way until significant mass transfer occurs. Swesty et al.
(2000) demonstrated (in the context of neutron star mergers) that conservation of angular
momentum is much easier to obtain in the rotating reference frame than in an inertial
frame in which stars advect large amounts of material around the domain. So the use of a
rotating reference frame is similar in motivation to the use of the hybrid advection equations
of Section 2.1.1. As the extent to which angular momentum conservation is violated in
our code is a function of the resolution, when the resolution is sufficiently high, excellent

7The last term in that equation is missing a factor of 1/2, which destroys the symmetry. We have inserted
this missing factor and performed a simple coordinate transformation so that the center of the cube is at
the origin.
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conservation properties can result, lessening the need for approaches such as the rotating
frame or the hybrid equations. Nevertheless, at moderate resolution in an inertial frame,
there is a secular loss of angular momentum (when solving the conservative equations for the
linear momentum) that eventually will result in a spurious merger. We note that as the stars
begin to coalesce, the rotating reference frame will no longer provide a good approximation
to the spatial motion of the stars and then they will begin to significantly move around
the domain. This is not necessarily problematic because the most important feature of the
rotating frame is that it helps ensure that the initial coalescence is not the result of spurious
numerical loss of angular momentum. When significant mass transfer sets in and evolution
proceeds on a dynamical timescale, the rotating frame may no longer be the best choice,
but should still yield quite reasonable results. In passing, we note that for this reason, some
groups (e.g. Pakmor et al. (2012a)) have opted to perform the early evolution in the rotating
frame and then transform to the inertial frame once mass transfer sets in; we do not adopt
this approach in the current work, but may experiment with it in the future.

In a rotating reference frame with angular frequency vector ω, the non-inertial contribu-
tion to the momentum equation is8:

∂(ρu)

∂t

∣∣∣∣
rot

= −2ω × (ρu)− ρω × (ω × r) . (27)

Here r is the position vector with respect to the origin. Typically we choose ω = (0, 0, 2π/T )T ,
with the rotation axis coincident with the z axis at x = y = 0. T is the rotation period,
which is the most natural quantity to specify for a rotating stellar system. As described in
Appendix A of Katz et al. (2016), we include this source term in the edge state prediction
in a way that is analogous to the gravity source. We evaluate all quantities at cell centers.
We use the same predictor-corrector approach that we use for the gravity source terms to
the momentum equations. A slight difference is that the Coriolis force for each velocity
component is coupled to other velocity components. If the rotation is about the z-axis, then
the discrete update to un+1 depends on the value of vn+1, and vice versa. If we fix the value
of the time-level n+1 quantities after coming out of the hydrodynamics update, there would
be a slight inconsistency between the x and y components of the velocity.

We propose a more accurate coupling that directly solves this implicit system of coupled
equations. We denote by (ρ̃u) the value of the momentum after updating it with the cen-
trifugal force, and the time-level n Coriolis force. The remaining update for the time-level
n+ 1 Coriolis force then appears as:

(ρu)n+1 = (ρ̃u) +
∆t

2

(
−2ω × (ρu)n+1

)
(28)

To proceed further, we assume that the rotation is about the z axis with frequency ω. Then
there is no update to the z-momentum, and the other equations are:

(ρu)n+1 = (ρ̃u) + ω∆t(ρv)n+1 (29)

(ρv)n+1 = (ρ̃v)− ω∆t(ρu)n+1 (30)

8In general there also a term corresponding to the time rate of change of the rotational frequency, ω̇; we
have implemented the ability to use a time-changing rotational frequency in CASTRO but do not discuss it in
this dissertation.
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We can directly solve this coupled system:

(ρu)n+1 =
(ρ̃u) + ω∆t(ρ̃v)

1 + ω2∆t2
(31)

(ρv)n+1 =
(ρ̃v)− ω∆t(ρ̃u)

1 + ω2∆t2
(32)

We use this form of the momentum update in CASTRO. This improvement is small but in-
creases the accuracy of our rotating white dwarf systems over long time-scales.

The update to the energy equation can be determined by taking the dot product of the
velocity with the momentum source terms. The Coriolis term vanishes identically, and so
the Coriolis term does no work on the fluid. The update from the centrifugal force becomes

∂(ρE)

∂t

∣∣∣∣
rot

=
1

∆V

∫
ρu · fR dV, (33)

with fR ≡ −ω × (ω × r). This expression is identical in form to the gravity source under
the interchange of g with fR. As observed by Marcello & Tohline (2012), we can similarly
write down a rotational potential,

ΦR =
1

2
|ω × r|2 . (34)

In the presence of rotation the conserved total energy becomes:∫
dV (ρEtot) =

∫
dV

(
ρE +

1

2
ρΦ + ρΦR

)
. (35)

Given that we can write down a potential energy for the rotation field, then we can use the
machinery of Section 2.3.1. We again continue to evolve explicitly an equation for the gas
energy, and allow it to change in response to work done by or on the rotational potential.

∆(ρE)|rot = −1

2

∑
f

∆ρf (Φ
R
f+1/2 − ΦR

f−1/2) (36)

We apply the rotational forces after the gravitational forces, but there is some freedom
in the order in which to apply the gravitational and rotational terms. This order may
matter because the Coriolis force depends on the fluid velocity, and in the predictor-corrector
approach, we use the velocities both at time-level n and time-level n + 1. If we update the
latter with the gravitational force, then the Coriolis force sees a different velocity than the
one obtained through the pure hydrodynamics step. (The energy equation does not face
the same issue in our new formulation, because the velocities used are always the time-level
n + 1/2 values coming from the Riemann solver.) This likely does not matter significantly
for our simulations in this work because it is a high order effect, but this issue may be worth
exploring in future work.

In simulations performed in a rotating reference frame, we transform all relevant quan-
tities back to the inertial reference frame when reporting them in analysis routines and
visualization (except for the analysis in Section 7), though the data is saved to plotfiles
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while still in the rotating frame. In particular, for every zone we adjust the position, mo-
mentum, and energy to account for rotation. If the position is x in the inertial frame and x′

in the rotating frame, and the rotation vector is ω, the transformation rules are:

x(t) = Rx′(t) (37)

v(t) = v′(t) + ω × (Rx′(t)) (38)

The rotation matrix R is:

R = Rz(θ3)Ry(θ2)Rx(θ1) (39)

where Rx, Ry, and Rz are the standard rotation matrices about the x, y, and z axes, and
θ = ωt.

2.5 Nuclear Network

2.5.1 Nuclear Isotopes

White dwarfs are mainly composed of α-chain particles, primarily 4He, 12C, 16O, 20Ne, and
24Mg, where the α particle is a 4He nucleus and the α chain is the series of isotopes obtained
by successive captures of an α particle. Therefore the core of any network appropriate for
modeling nuclear burning in white dwarfs will be these alpha chain nuclides, with the idea
being that links up the α-chain will eventually get us to 56Ni, the nuclide responsible for
the luminous energy output of Type Ia supernovae. In this dissertation we consider four
networks to do this, presented in order of increasing complexity. The most simple is iso7

(Timmes et al., 2000), which includes all of the aforementioned isotopes and 28Si (see also Hix
et al. (1998)). 28Si effectively measures the equilibrium state of silicon-group elements, and
56Ni effectively measures the equilibrium state of iron-group elements, with the link between
them governed by the effective loss or gain of seven α-particles. This type of network was
used by Rosswog et al. (2009) for their collision calculations in SPH.

Next is aprox13 (Timmes, 1999; Timmes et al., 2000). This includes all of the isotopes of
iso7, and all of the α-chain particles between silicon and nickel (32S, 36Ar, 40Ca, 44Ti, 48Cr,
and 52Fe). This network was used in collisions by Hawley et al. (2012) and Raskin et al.
(2010); Lorén-Aguilar et al. (2010) and Garćıa-Senz et al. (2013) used a very similar network
that included additionally 60Zn. It has also been used in mergers by Raskin et al. (2012,
2014). aprox13is the default network used by our software and is used in the simulations
below unless otherwise stated. The aprox19 network (Timmes, 1999) builds on aprox13

by including isotopes for hydrogen burning and explicit tracking of photodisintegration into
54Fe. This network was used by Kushnir et al. (2013), Kushnir & Katz (2014), and Rosswog
et al. (2009) for their collision calculations with FLASH (Fryxell et al. 2000; a commonly
used compressible hydrodynamics code in the astrophysics literature), and Papish & Perets
(2015). Finally we will also consider aprox21, which includes all of the above plus 56Cr and
56Fe and related reaction links. The primary virtue of using the latter two networks is that
they allow us to track changes away from Ye = 0.5, where Ye is the electron fraction, the
mean number of electrons per nucleon.
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All four of these networks have been ported into a form that is consistent with the BoxLib
codes, in the freely available Microphysics code repository9, a collection of microphysical
routines that are designed to be used in our hydrodynamics codes. These can be easily
swapped at compile time by using the appropriate makefile variable.

2.5.2 Nuclear Burning

Given a set of nuclides and the reaction links between them, we now consider how a burning
step is performed in our software. The goal is to integrate the vector Y = (Y1, Y2, . . . , Yn, e, T ),
where Yn = Xn/An is the molar fraction of species n, with Xn the mass fraction and An
the mass number of that species, e is the energy released during the burn, and T is the
temperature. The equation describing its evolution is given by

dY

dt
= f(Y), (40)

where the components of the right-hand-side for the species come from the particular nuclear
burning network we are using. The energy e of the zone will change when the nuclear
abundances evolve, according to

∂e

∂t
= NA

∑
n

∂Yn
∂t

mnc
2, (41)

where c is the speed of light and mn is the mass of each nuclide.
We define several burning modes that determine how T and e are evolved during a

nuclear burn. In a hydrostatic burn, which we call burning mode 0, we keep ρ and T fixed
throughout, and use the energy released at the end to compute a final temperature that is
thermodynamically consistent with the new internal energy. By contrast, in a self-heating
burn (mode 1), we allow the temperature to evolve in response to the burning (see10 Almgren
et al. 2008):

dT

dt
=

1

cV

∂e

∂t
(42)

(Although T evolves during the burn so that the integration is physically accurate, as in the
hydrostatic method we discard the final value for T at the end of the burn and recompute
a temperature for the zone that is consistent with its new internal energy.) Here cV is the
specific heat at constant volume, which is provided by the equation of state. During this
burn, we can keep cV constant using its initial value, or at each step we can choose to re-
evaluate the equation of state using the latest value of (ρ, T ). The latter is more expensive
but also more accurate, and we use it in this dissertation. In practice we find that the cost is
small in comparison to the more expensive parts of the calculation, and it can significantly
speed up convergence near NSE. A third option (mode 2) presented by Raskin et al. (2010)
is a so-called “hybrid” mode. In this mode, by default we do a hydrostatic burn. If that

9Microphysics can be obtained at https://github.com/BoxLib-Codes/Microphysics, and is also
where we store our version of the Helmholtz equation of state.

10In the cited paper, a term based on the thermodynamic chemical potential was included; we now believe
that it is incorrect to include such a term in the burn, since it automatically sums to zero analytically.
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burn fails, or if the net energy change is negative, we do the burn again in self-heating mode.
A final option is a burn that artificially limits the changes that occur within the burn to
avoid the type of numerically unstable burning that can occur when the burn is coupled to
hydrodynamics. This mode is discussed in Section 2.5.4 and we will call it a “suppressed”
burn (mode 3) for the remainder of this work. All four options are implemented in our
burner software. The simulations shown in this work all use the self-heating mode unless
otherwise specified.

In our Microphysics repository we provide several software options for solving a set of
coupled stiff ODEs. For this work we use an implementation of the well known variable-order
Richardson extrapolation method presented by Stoer & Bulirsch (1980), that is similar to the
integrator which ships with the original versions of the networks mentioned above. Previous
work using the BoxLib codes typically used the VODE integrator (Brown et al., 1989). We
do maintain a version of the software that is compatible with our software interfaces in the
Microphysics repository, but we have largely shifted to integrators which are written in
modern Fortran as a consequence of our efforts to run our codes on GPUs. The Stoer and
Bulirsch integrator we provide satisfies this criterion; we also provide a rewrite of the VODE
BDF algorithm that uses modern Fortran features. The Stoer and Bulirsch algorithm relies
on a uniform relative error tolerance for all of the ODEs in the system, which we set at 10−6

for all simulations described here.

2.5.3 Coupling Burning to Hydrodynamics

In CASTRO, the reactions are coupled to the hydrodynamics using Strang splitting (Strang
1968). In a given timestep advance ∆t, we first evolve the reactions alone through a time
interval ∆t/2. Then, we evolve the hydrodynamics for ∆t, and we evolve the reactions again
for a further ∆t/2. The principal drawback of this approach is that the reactions and the
hydrodynamics can become decoupled from each other. A common solution to this problem
presented in the literature has been to limit the size of the timestep and thereby limit the
extent of this decoupling (Raskin et al., 2010; Hawley et al., 2012), which we adopt here
and have implemented in CASTRO. Defining the nuclear energy injection timescale τe, and the
species evolution timescale τXk

,

τe ≡
e

|ė|
(43)

τXk
≡ Xk

|Ẋk|
, (44)

where ė is an estimate of the time rate of change of the internal energy from nuclear burning,
and Ẋk is an estimate of the time rate of change of the mass fraction of the species with
index k, we define burning-limited timesteps ∆tbe and ∆tbXk

:

∆tbe = fe τe (45)

∆tbXk
= fX τXk

. (46)

Given an estimate for ė, the factor fe determines by what fraction we would like to allow
the internal energy to change in the current timestep, under the assumption that ė does
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not change from timestep to timestep. Similarly, given an estimate for Ẋk, the factor fX
determines the maximum change in the mass fraction of any species. By making fe and
fX smaller, we can control the magnitude of the decoupling between the reactions and the
hydro. A typical choice for fe parameter in the literature is in the range of 0.2 or 0.3 (e.g.
Hawley et al. 2012), while to our knowledge a limiter based on fX has not been used by
others performing these types of calculations. The sensitivity of results to the value of these
timestep limiters will be discussed in Section 6.1.1. The factors fe and fX can be set at
runtime in CASTRO.

At the start of each advance, we limit the size of the timestep to be the smaller of
the minimum hydro timestep (limited by the CFL condition), and the minimum of all the
burning timesteps across all zones. To do this, we need a method for determining ė and Ẋk.
A typical choice in the literature (e.g. Raskin et al. 2010; Hawley et al. 2012) has been to
set, for example,

ė =
en − en−1

∆tn−1
, (47)

where is en is the internal energy at the start of the current timestep and en−1 is the internal
energy at the start of the previous timestep. The obvious analogue is used for construct-
ing the species rate of change. However, there are alternative methods of constructing this
derivative estimate, and we have found that these different methods have measurable con-
sequences. We define four separate methods for calculating the time derivative, with the
above being mode 4. Mode 3 is similar to mode 4 but replaces the numerator in Equation 47
with the change in internal energy over the last timestep only from the nuclear reactions.
Mode 2 is the same as mode 3 but we only use the change in internal energy from the most
recent nuclear burning step, that is, the second-half of the Strang-split burning from the last
timestep (the denominator then becomes ∆t/2). In mode 1, the most accurate option and
the current default in CASTRO, we evaluate the right-hand-side of the burning network given
the current state to explicitly obtain the instantaneous value of ė and Ẋk.

To understand the consequences of this choice, and more broadly to understand the
limitations of Strang splitting, we consider the basic outline of a single-level advance in an
advection-reaction system:

1. Evaluate timestep ∆t for the current advance

2. Advance the nuclear burning network by ∆t/2

3. Advance the hydrodynamics by ∆t

4. Advance the nuclear burning network by ∆t/2

5. Return to Step 1

Now, consider that during a head-on collision, initial nuclear burning will occur at the contact
point between the two stars. Because of the staggered updates from splitting, the evolution
effectively progresses as a cycle between burning for ∆t and getting fresh material advected
into the contact point by the hydro update for ∆t. When the collision begins, ∆t is controlled
by the hydrodynamic stability criterion, and may be large enough that it is possible for the
burning advance in Step 4 to completely burn the freshly advected material all the way to
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NSE. Consequently the evolution is no longer a good approximation to smooth burning of
the in-falling material but rather separate discrete burning and hydro steps, and the nature
of the burning evolution will be quite different. Furthermore, by the time we return to
Step 1 and estimate the next timestep size, all of the burning rates will be small again, and
the instantaneous timestep limiter of mode 1 may actually substantially overestimate the
needed timestep. The other modes will see that the energy/species substantially changed
over the last timestep, but will still overestimate the needed timestep because the burning
was quiescent for at least some portion of the last advance. Our experience has shown that
none of these methods is flawless, and that limiting based on only changes in internal energy
is particularly susceptible to this staggered burning phenomenon; silicon-group material can
build up without changing the internal energy by a large fraction, so the timestep limiter is
never triggered, and then in a single step a substantial amount of iron-group elements can be
be generated, perhaps forming a detonation. This can have non-trivial effects on the total
amount of iron-group elements generated over the course of the simulation. We have found
that the addition of the limiter based on changes in species functionally precludes this, and
so the two methods can complement each other.

With the timestep limited the way we advocate in this dissertation, the timesteps are
generally short enough so that the errors due to splitting are small. (Note that the timestep
limiting is most crucial at low resolution; higher resolution automatically demands shorter
timesteps due to the CFL criterion.) Other approaches to the coupling between reactions and
hydrodynamics have been proposed in the broader literature, especially iterative methods
such as deferred corrections that allow each of these operators to feel the lagged effects of
the other operators. For example, in the context of low Mach number flows, Nonaka et al.
(2012) have used the method of spectral deferred corrections (Dutt et al., 2000) to couple
their advection-diffusion-reaction equation set. In our context this would involve treating
the full evolution equation for each of the state variables as an ODE with a directly coupled
burning source term integrated at high order; the advective flux is evaluated at the standard
second order accuracy and is included as an ODE source term. We are presently investigating
such a method, and it may form the basis of further work on this subject.

Now we return to a point we hinted at above. The timestep will only actually satisfy the
energy criterion ∆t ≤ feτe and species criterion ∆t ≤ fXk

τXk
when the estimates for ė and

Ẋk we generate are at least as large as the actual rate of change of energy and mass fractions
over the timestep. However, this can assumption can fail during periods of runaway burning
when the rate of change of these quantities is highly nonlinear. We may not want to neglect
the errors caused by this approximation because they may build up over an extended period
of nonlinear evolution and perhaps substantially change the final results. To this end, we
have implemented a timestep “retry” option in CASTRO, which re-computes an advance if it
violated the stability criteria as judged from the end of the timestep. However we have found
that the benefits for this problem are small and thus we do not use it for the simulations
here.

One other point worth noting for the coupling of the reactions and the hydrodynamics
relates to the dual-energy formalism (Bryan et al., 2014) used by CASTRO and many other
hydrodynamics codes. CASTRO evolves separately equations for the total energy (ρE) and for
the internal energy (ρe). The former is conservative while the latter is not, so for accurate
hydrodynamics we prefer to use the total energy when possible and to use the evolved internal
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energy variable only in situations where the kinetic energy dominates the contribution to the
total energy. Indeed, for the cosmological purpose for which this was originally developed,
Bryan et al. (1995) choose a value η2 = 0.1 so that e is only updated to be equal to E−v2/2
if e > η2E. In other cases the evolved value of the internal energy variable is preserved.
However, this choice is somewhat unsafe for our application, because the ultimate cause of the
nuclear burning in a white dwarf merger or collision is the rapid conversion of kinetic energy
from the white dwarf bulk motion to thermal energy as the white dwarfs slam into each other.
Keeping η2 large prevents this from happening, and consequently the temperature will never
reach values high enough to generate significant amounts of nickel. For this dissertation we
choose η2 = 10−4, which is low enough for the correct conversion of kinetic energy but not so
low that we need to be concerned about roundoff issues caused by subtracting kinetic from
total energy. This is also the value that was used by Hawley et al. (2012).

2.5.4 Numerically Unstable Burning

Kushnir et al. (2013) point out that an inappropriate timestep is not the only way for
the numerical discretization to cause severe errors in the burning. Another failure mode is
when the energy injection timescale τe is shorter than the sound-crossing time τs in a zone.
When the sound-crossing time is too long, energy is built up in a zone faster than it can
be advected away by pressure waves. This is obviously a problem inherent to numerically
discretized systems as the underlying fluid equations are continuous. This can lead to a
numerically seeded detonation caused by the temperature building up too quickly in the
zone; the detonation is spurious in this case and should be avoided if possible. The goal is
to ensure that the following condition holds:

τs ≤ fs τe (48)

The sound crossing time, τs, is given by ∆x/cs, where cs is the sound speed and ∆x is the
(minimum) zone width. The parameter fs then determines the minimum ratio of the nuclear
energy generation timescale to the sound-crossing time. Kushnir et al. (2013) choose fs = 0.1
for their simulations, and we do too (this parameter can be set at runtime in CASTRO).

Kushnir et al. (2013) implemented this criterion by artificially limiting the magnitude
of the energy release after a burn. We too have developed an option for our burner to do
this, the “suppressed” burning mode. In a suppressed burn, we limit the changes to the
state so that Equation 48 is always satisfied. To achieve this we directly multiply the right-
hand-side vector in the integration by a constant factor F for all variables, where F is the
multiplicative factor needed to be applied to ė such that the equality in Equation 48 holds.
(If the inequality is already satisfied, then the integration vector is not modified.) We fix τs
to be the value of the sound crossing time at the beginning of the burn (that is, we do not
update it as the sound speed changes) and we fix the energy e that goes into the estimate
for τe to be the value of the internal energy of the zone at the beginning of the burn. If
instead one allowed cs and e to evolve with the burn, one would obtain a less conservative
limiter in the case of explosive burning, as cs and e are both increasing in this case. As the
point of the limiter is to ensure that the changes to the original energy are small enough so
that the following hydrodynamics update can advect away newly generated energy quickly
enough to avoid a numerically seeded detonation, we desire the most conservative version of
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the limiter. We discuss our results with the suppressed burning mode in Section 6.1.3. Note
that we have found that with this option enabled, it typically takes many more timesteps to
complete a burn than in self-heating mode.

Regardless of whether the suppressed burning mode works for this particular problem,
it is not physical, so we include for consideration a different approach. If we insist that
we cannot directly control the energy injection timescale, we must find a way to alter the
sound-crossing timescale. We can achieve this by adding levels of refinement in regions that
do not satisfy Equation 48, which effectively lowers ∆x and thus the sound-crossing time.
We keep tagging zones for refinement based on this criterion until the criterion is satisfied on
the finest level. Since the concern is regions that may detonate, we also tag nearby zones in
a buffer region which do not themselves satisfy the criterion, so that a detonation in a single
timestep cannot escape into non-refined regions. The width of the buffer region should thus
be at least as large as the number of timesteps before a regridding procedure is performed.
We choose a value of two for both the number of zones in the buffer region and the number
of steps in between regrids, for all simulations in this dissertation.

We agree with Kushnir et al. (2013) that solving this numerical instability is crucial to
avoiding unphysical detonations. A simulation that does not solve this problem will not
obtain the correct amount and will not converge properly with resolution. This may justify
the addition of many AMR levels to the domain if a correct evaluation of the burning phase
is desired. Even if one cannot afford the full resolution required by this AMR criterion, and
chooses to limit the number of levels to some predetermined maximum based on a constraint
of computing time, the added resolution will still go to the most-needed places. However,
a significant drawback to this approach is that it does not turn on until after an unstable
burning region has been generated, so this AMR criterion cannot help in the case where a
spurious detonation begins in a single timestep on the coarse grid, though it will kick in
immediately after that timestep to resolve the regions where the detonation has occurred. A
possible remedy to be explored in future work is to add refinement pre-emptively in regions
where the ratio τs/τe approaches fs but does not yet exceed it. Another possibility for this
case would be to track how many levels would have been needed to prevent the numerical
detonation, based on the stability criterion, and reject the timestep and retry it from the
starting state using that many levels of refinement. As mentioned in Section 2.5.3, the ability
to reject a timestep and retry it is functionality that we have recently added to CASTRO, so
we may try this in future work.
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3 Simulation Software

In this section we describe the white dwarf merger software, and focus in particular on the
initial white dwarf models (Section 3.1), the initial problem setup (Section 3.2), and analysis
(Section 3.3) components.

The software used to set up the problems in this dissertation wdmerger11, is freely avail-
able at the online repository hosting service GitHub. wdmerger is effectively a problem
setup for CASTRO similar to the types of problems that come packaged with the software,
and also contains tools for setting up simulations and analyzing the results. Version control
in both the parent software (BoxLib, CASTRO, Microphysics) and in wdmerger permits us
to reference the state of the code at the time a simulation was performed. In all plot files
and diagnostic output generated by CASTRO, and figure files generated by wdmerger, we store
the active git commit hashes of BoxLib, CASTRO, Microphysics, and wdmerger. Line plots
are generated using the matplotlib library for Python (Hunter, 2007), while slice plots and
other multi-dimensional visualizations are generated using the yt code (Turk et al., 2011).

3.1 White Dwarf Models

At the start of any full simulation, we generate initial model white dwarfs by integrating the
equation of hydrostatic equilibrium, taking the temperature to be constant, and using the
stellar equation of state. This results in a single non-linear equation to find the density in a
zone given the conditions in the zone beneath it:

pi+1 − pi
∆x

=
1

2
(ρi + ρi+1)gi+1/2. (49)

This equation is a function of ρi+1 only since the pressure is uniquely determined by the
density in this case. Here, ρi and pi are known, and gi+1/2 is the gravitational acceleration at
the interface between zones i and i+ 1, found by simply adding up all the mass from zones 1
to i to get the enclosed mass, Mi+1/2, and then setting gi+1/2 = −GMi+1/2/r

2
i+1/2. We solve

this equation for ρi+1 using a Newton-Raphson iteration.
We desire to specify the mass of the white dwarf, as well as its temperature and com-

position. To start the integration off, we therefore need to guess at a central density. We
then do a secant iteration over the entire integration procedure to find the central density
needed to yield the desired total mass. The grid spacing is ∆x = 6.25 km. We chose this
value because no simulation we perform is likely to exceed this grid resolution inside the
stars themselves; for our normal domain size (see below), this corresponds to three jumps in
refinement by a factor of four. We find that for low resolution runs, this is a better choice
than selecting the 1D grid spacing to be comparable to the 3D grid spacing.

The white dwarf composition is determined by the chosen mass. For this disserta-
tion we adopt the scheme of Dan et al. (2012). Low-mass WDs are pure helium; low-
to-intermediate-mass WDs are an even carbon-oxygen core with a relatively large helium
envelope; intermediate-mass WDs are a carbon-oxygen core with slightly more oxygen than
carbon; and, high-mass WDs are composed of oxygen, neon, and magnesium. This choice

11wdmerger can be obtained at https://github.com/BoxLib-Codes/wdmerger.
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of composition distribution broadly resembles the results of stellar evolution calculations in
the respective mass ranges, though it does not match the calculations in detail.

We map the 1D model onto the 3D Cartesian grid by taking density, temperature, and
composition as the independent variables, interpolating these to the cell centers, and then
calling the equation of state to initialize the remaining terms. It is possible to interpolate
instead by using pressure instead of temperature, as pressure is more closely related to hy-
drostatic balance, but the EOS we use is so insensitive to temperature that this mapping can
result in large deviations from the isothermal assumption we started with. The interpolation
process divides each zone into nsub sub-zones of equal volume for the purpose of sampling
the 1D model, and the sub-zones are averaged together to obtain the full zone’s state. This
sub-grid-scale interpolation is useful especially near the edge of the star, where the density
falls off rapidly with radius. Typically we take nsub = 4.

3.2 Initial State

The wdmerger software comes with a range of options for setting up various types of binary
white dwarf systems (and it can also do a single star simulation by placing the star at the
center of the computational domain, which we take to be the origin.) For mergers and other
problems that start the WDs in a circular orbit, the setup is described in Section 3.2.1, while
for collisions the setup is described in Section 3.2.2.

3.2.1 Mergers

For a binary star merger simulation that starts in a circular orbit, we take as parameters
the mass of the two white dwarfs and some measure of the initial distance. The simplest
is the initial orbital period T . Using Kepler’s third law, we can then work out the orbital
semi-major axis a (which is just the distance between the stars for a circular orbit):

a =

(
GMT 2

4π2

)1/3

. (50)

Here M = MP + MS is the total mass of the system, where MP is the specified primary
mass and MS is the specified secondary mass. The primary WD always starts on the left
side (corresponding to negative coordinate values) of the computational domain for our
simulations, and is more massive than the secondary. This reflects the usual terminology in
the literature where the primary WD is the accretor and the secondary is the donor. The
center of mass is located at the center of the computational domain, and by default the
stars lie along the x axis, so that the primary’s center of mass is located at x = −(MS/M) a
and the secondary’s center of mass is located at x = (MP/M) a. The user may choose to
initialize the stars along a different axis, and can also choose a non-zero orbital phase and/or
eccentricity.

For simulations intended to cause a merger, we want a measure that takes into account
the likelihood that mass transfer will begin. The traditional choice is the Roche radius of
the star, which measures the effective gravitational sphere of influence for each star. The
effective Roche radius rL is defined as the radius of a sphere that would have the same volume
as the Roche lobe, the region of space in which material principally belongs to one of the
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stars. (The surface of the region is the isosurface where the effective potential becomes zero,
meaning that material becomes unbound due to the centrifugal force). It is an approximation
because this region is teardrop-shaped in reality. A common expression, which we adopt, for
rL is the formula provided by Eggleton (1983):

rL
a

=
0.49q2/3

0.62/3 + ln(1 + q1/3)
. (51)

q ≡ MS/MP is defined as the mass ratio of the binary system. Since we specify the mass
ratio, we can use this formula to obtain a binary setup where a, the initial separation, is
such that the location of the inner edge of the secondary is coincident with the extent of
its Roche radius. In other words, the secondary is on the brink of mass transfer. We can
also multiply this by a factor fR to increase or decrease the distance relative to the Roche
radius; for fR > 1 the system gets more stable against mass transfer, and fR < 1 the system
becomes more unstable to mass transfer.

The initial velocity is taken to be zero in if we are in the reference frame that rotates with
the WDs, and if we are in the inertial frame the velocity in every zone is set equal to the
rigid rotation rate corresponding to the distance of that zone from the rotation axis, given
the specified period T . Thus the inertial frame and rotating frame simulations are starting
off with the same initial conditions: two white dwarfs locked in synchronous rotation. This is
the simplest assumption to make, but in the future we may explore relaxing this requirement.

In this dissertation we do not attempt to enforce equilibrium with an additional relaxation
step. This will be an important part of future work that follows up on what we have done
here, as numerous groups working on binary evolution (Swesty et al., 2000; Motl et al.,
2002; Rosswog et al., 2004; Dan et al., 2011; Pakmor et al., 2012a) have commented on the
importance of equilibrium initial conditions in determining the evolution of the system. As
a consequence of starting in a non-equilibrium setting, there are large density and pressure
gradients near the white dwarf surfaces that result in significant amounts of mass flowing out
of the white dwarfs. This can result in spurious non-physical consequences such as the total
density or energy going negative in a zone. To compensate for this, we start the simulation
with a timestep that is a few orders of magnitude smaller than that required by the CFL
criterion, and allow the timestep to increase by 1% each timestep so that the timestep
reaches its maximum allowed by the velocities on the grid over a span of approximately
1000 timesteps. This allows the gas at the surface of the white dwarf to come closer to
equilibrium without having discontinuous jumps in the density or energy. For all simulations,
the maximum hydrodynamic timestep is set to be equal to one-half of the CFL limit.

The computational domain has a total size of 1.024× 1010 cm in each spatial dimension,
and is centered at the origin. Our coarse grid has 2563 zones, corresponding to a spatial
resolution of 400 km. For all mergers in the present study, we choose a simple refinement
strategy for mergers: on the coarse grid, all zones within twice the Roche radius of each star
are tagged for refinement. The extra buffer from doubling the Roche radius ensures that
the sharp density gradients near the edge of the star are within the zone of refinement. On
higher levels, we tag all zones above a given density threshold (taken to be 1 g cm−3 in this
dissertation) that corresponds to the stars themselves.

Outside of the stars we fill the rest of the domain with a very low density ambient gas
because our hydrodynamics model requires the density to be non-zero everywhere. This
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ambient material can create difficulties for the simulation. In addition to negative densities
or energies that can be created at the stellar surfaces, in the rotating reference frame we
observe that standing instabilities can create very large velocities in the ambient fluid that
drag down the global timestep by up to an order of magnitude. To deal with this we employ
a “sponge” similar to that described by Almgren et al. (2008) for the outer regions of the
computational domain. After the hydrodynamics update, we apply a damping force to the
momentum equation as follows:

(ρu)n+1 → (ρu)n+1

1 + (∆t/∆tS)fS
, (52)

where ∆tS is a timescale for the sponge to operate on, and fS is the damping factor. We
choose it so that that the sponge is non-operational inside a radius rS from the origin, and
fully applied at a radius r′S ≡ rS + ∆rS. We then smooth the sponge out between rS and
r′S:

fS =


0 r < rS

1

2

(
1− cos

[
π

(
r − rS
∆rS

)])
rS ≤ r < r′S

1 r ≥ r′S.

(53)

For the simulations in this dissertation that use the sponge, we set rS to be 75% of the
distance from the origin to the domain boundaries, and ∆rS so that the sponge smoothing
region extends another 10% of that distance. The resulting profile is displayed in Figure 3.
We set ∆tS = 0.01 s, which is of the same order as the CFL timestep for typical problem
setups. While the sponge is applied we should avoid imputing any physical meaning to what
is happening in the low-density gas far from the stars. We use the sponge for the verification
tests of Section 4 but do not enable it for the runs in Section 7.
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Figure 3: Radial profile of the hydrodynamical sponge we apply (Equation 53). We subtract
fS from unity; the value of 1− fS indicates what happens to the sponged function after the
sponge is applied. The sponge has no effect in the inner part of the domain, and is fully
applied at the outer edge.
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3.2.2 Collisions

We implement the white dwarf collision problem in CASTRO by setting the white dwarf centers
of mass to be initially separated by a distance of four times the (secondary) white dwarf ra-
dius. (Note that the radius of the white dwarf, and consequently the initial distance, depends
on the equation of state, and the physics included in the equation of state of white dwarf
material can vary between simulation codes. While the Helmholtz EOS is very commonly
used for supernova simulations, there are still some differences between codes, the most no-
table being that some, including ours, include Coulomb corrections for the ions, while others
do not. However, the results do not really depend on the exact initial distance as long as
there is enough time for the WDs to distort in response to tidal forces as they approach.)
Their initial velocity is that of two point-masses in free-fall towards each other coming in
from infinity, such that the contact point is at the origin, and they approach each other
along the x-axis. By default the WDs approach each other head-on, with their respective
centers lying on the x-axis, but we have also added an option to have the WDs approach
each other at a non-zero impact parameter b, where the offset is perpendicular to the x-axis
in the y direction. We measure b in units of the secondary WD’s radius, so that the default
head-on case corresponds to b = 0 and the case where the two WDs just graze past each
other corresponds to b = 1 (in practice it happens slightly differently because of the WDs
responding to each other’s gravitational fields).

For all the 3D simulations to follow, we use the same coarse grid as in Section 3.2.1.
When we use adaptive-mesh refinement, we will usually use the refinement scheme described
in Section 2.5.4. This is acceptable because the outcome of the collision problem is chiefly
a function of the propagation of burning front through the WDs, so for this problem one
can take some liberties in other parts of the algorithm for the purpose of computational
efficiency, which can always be turned back on later if a more accurate answer is desired.
So, for example, we do not need to add refinement everywhere in the WDs in the interest
of getting the collision dynamics to be slightly more accurate. Additionally, we choose to
solve the Poisson equation for the self-gravity of the system only on the coarse grid. The
gravitational potential and acceleration on the finer levels are interpolated from the coarse
grid. This grants enhanced computational speed without a serious effect on the accuracy of
the simulation (for the case where the fine grids cover the stars, we have checked that the
more accurate gravitational forcing would only modify slightly the time to impact and the
subsequent detonation process).

We have also enabled in wdmerger the ability to use the 2D cylindrical (R−z) coordinate
system evolution in CASTRO. In this coordinate system, we align the WDs along the z-axis
(which is analogous to our x-axis in the Cartesian evolution) at the usual distance, with
the center of the WDs at R = 0. The un-simulated φ dimension then would extend the
WDs through a 2π revolution. The nature of the axisymmetry inherent to the cylindrical
coordinate system means that we can only run head-on collisions with b = 0. The coarse
grid is the same resolution as the 3D case: the width of the z axis is 1.024 × 1010 cm and
the width of the R axis is 5.012× 109 cm, with twice as many zones along the z axis as the
R axis so that the equal 400 km resolution is maintained.

For the collision problem only, we implement a specific stopping criterion: the simulation
is terminated when the total energy is positive, indicating that the system has become
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Figure 4: Temperature T and density ρ for the 2D collision as the WDs make initial contact.
The domain is mirrored with respect to the r = 0 symmetry plane for visual purposes; the
actual simulation domain is only the size of one of the two half-planes.

unbound due to nuclear energy release, and has been constant or decreasing for the last five
timesteps, indicating that no further meaningful nuclear energy generation is occurring and
material is now beginning to stream off the simulation domain. As nearly all simulations in
this dissertation are of WD collisions that generate enough energy to unbind the system, this
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stopping criterion is applied throughout all simulations shown here unless stated otherwise.
As for the mergers, the region outside the WDs is filled with a low-density ambient

material with ρ = 10−4 g / cm−3 whose composition is the same as that of the WDs (which
is equal carbon and oxygen by mass, unless stated otherwise). Reactions in this region are
unimportant, so for computational efficiency, we disable all nuclear burning for zones that
have ρ < 106 g / cm−3 and T < 108 K. The initial ambient temperature is 107 K, which
is the same as the initial temperature everywhere throughout the WDs, and we set the
temperature floor to the same value.

Figure 4 shows the temperature and density profile of the WDs in the 2D collision just as
they are making contact at t = 5 s. Note two interesting features: first, the temperature is
mostly cold (at the temperature floor) for the inner edges of the WDs, but warmer (well above
the initial temperature) for the outer edges of the WD; second, there is a trailing wake of
material left behind the stars as they move toward each other. These are both manifestations
of the Galilean invariance violations described in Section 4.3, where the leading and trailing
edges of the WDs have numerical differences in their evolution as a consequence of moving
through the simulation at high speed in a particular direction.

3.3 Analysis

We track a number of diagnostic quantities at the end of coarse grid timesteps. For all sim-
ulations, we record the total energy (including the breakdown into its components: kinetic,
internal, gravitational potential, and rotation; we note that for the diagnostics we actually
use (ρE) for calculation of the total energy, rather than explicitly calculating the sum of
kinetic and internal, as this is the quantity that should be explicitly conserved), the total
angular momentum, and the center of mass of the system. We also separately record diag-
nostic information about the stars. Our strategy for tracking their locations is as follows:
at the beginning of the calculation, we store the physical center of mass xc of the stars as
determined by Kepler’s third law. We also store the velocity vc of the stars. Then, at each
new time step we make a preliminary guess for their location by updating the location using
the old velocity, xc → xc + vc∆t. We then refine our guess for the location and velocity of
each star by computing a location-weighted sum of the mass and velocity over the compu-
tational domain. To do this, we need a cutoff for determining what counts as part of the
primary and what counts as part of the secondary. We use a simple criterion: the star that a
zone “belongs” to is the one that exerts a larger magnitude gravitational force on that zone
(as computed using the tentative data for that star’s mass and radius). From this we obtain
the corrected mass of each star as well as its location and velocity. Once we have the new
centers of mass, we compute the effective radius of each star at various density cutoffs. This
involves computing the volume V of all zones that belong to the star (in the sense described
above) whose density is greater than the cutoff. We then compute reff = (3V/4π)1/3.

When we do simulations with adaptive-mesh refinement, there are multiple levels of
refinement that contribute to a global integral. To deal with this we employ a “mask” which
zeros out the data in a zone on a given level if there is a refined region overlying that zone.
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3.3.1 Gravitational Waves

A final diagnostic quantity we consider is the gravitational wave emission by the binary
system. White dwarfs are not strongly affected by general relativistic effects; the orbital
motions are much slower than the speed of light, and the relativity parameter GM/c2R,
which measures the ratio of the Schwarzschild radius of a mass M to the actual radius R of
the object, is much less than unity for a white dwarf. Thus at any given time the relativistic
effects are negligible compared to the Newtonian gravity and so we do not directly include
relativistic effects in computing the dynamical evolution of the system. A white dwarf binary
system does emit gravitational waves during its evolution; this energy loss is what drives the
initial inspiral over very long timescales for isolated binary systems, and contributes to the
orbital decay for hierarchical triple systems. Eventually it will drive the system to become
dynamically unstable due to the Newtonian tidal forces alone, though once that period
begins, the gravitational energy loss is inconsequential in affecting the dynamical evolution
of the system. The frequency of the gravitational waves emitted by the white dwarf binary
is similar to the frequency of the orbital motion, which is in the range 10-100 mHz for our
problem. This is well outside the range of currently existing gravitational wave detectors but
is very well suited for proposed space-based detectors such as eLISA (Amaro-Seoane et al.,
2013).

We follow the prescription of Blanchet et al. (1990) for computing a gravitational wave
signal for our simulation. At distances far from the gravitational wave source, we need only
consider the leading term in the gravitational wave signal:

hTTij (t,x) =
2G

c4r
Pijkl(n)Q̈kl(t− r/c). (54)

h is the perturbation to the spacetime metric and is commonly called the strain; for laser
interferometers, it measures the relative change in the distance between mirrors. The “TT”
superscript indicates that we work in the commonly used tranverse-traceless gauge. This
strain is measured at time t and position x relative to the binary system. r ≡ |x| is the
distance from the observer to the binary system. The unit vector n ≡ x/r then measures
the direction of the outgoing wave with respect to the observer, and Pijkl(n) is an operator
that projects a tensor onto the direction orthogonal to n:

Pijkl(n) = (δik − nink) (δjl − njnl)

− 1

2
(δij − ninj) (δkl − nknl) . (55)

Qkl is the quadrupole moment tensor:

Qkl =

∫
dV ρ

(
xkxl −

1

3
δklx

2

)
. (56)

The argument (t − r/c) indicates that to get the strain at time t we evaluate the second
derivative of the quadrupole moment at the retarded time t− r/c. In practice the retarded
time is simply the simulation time and the observer would see the gravitational waves after
a time delay of order r/c.
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Therefore the primary component of the calculation is the evaluation of the second time
derivative of Qkl. Explicitly constructing a discretized form of this derivative, using the cur-
rent state and the state at previous times, is undesirable because of the inherent imprecision
(its accuracy depends on the size of the timestep), in addition to the logistical challenges
that may be implied by saving and using previous simulation states. Blanchet et al. (1990)
provide a prescription for this time derivative purely in terms of the state at a given time:

Q̈kl = STF

{
2

∫
dV ρ(vkvl + xkgl)

}
. (57)

The symmetric trace-free (STF) operator is defined as:

STF {Aij} =
1

2
Aij +

1

2
Aji −

1

3
δij
∑
k

Akk. (58)

The strategy is then as follows. At the end of the coarse timestep, we first calculate Q̈kl

using an integral over the domain. This quantity is independent of the observer. If we are
using a rotating reference frame, we first convert velocities and positions back to the inertial
frame before evaluating the integral. Then, we pick an observing location x relative to the
domain, evaluate the projection operator, and then perform the relevant tensor contraction
to determine the strain tensor. We can repeat this process for any number of observing
locations at minimal cost, since the quadruple tensor only needs to be calculated once.
Gravitational waves only excite modes orthogonal to their direction of travel. These are
the “plus” and “cross” modes, h+ and h×, named after the types of spatial distortions they
exhibit. We calculate the signal at a distance r along the x, y and z axes. For the latter,
as an example, h+ = h11 = −h22 ∝ (Q̈11 − Q̈22)/2 and h× = h12 = h21 ∝ Q̈12. All other
entries vanish. By default we take r = 10 kpc; as shown by Lorén-Aguilar et al. (2005), this
is a typical distance scale over which an experiment such as LISA could detect a coalescing
binary white dwarf system. The strain at any other distance is easily calculated and goes as
the inverse of the distance.
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4 Verification Tests

White dwarf merger simulations face a number of numerical difficulties, including the typical
issues that make any numerical hydrodynamics simulation challenging, but also a number
of difficulties that are not present in single-degenerate Type Ia and core-collapse supernova
simulations. Thus while the behavior of CASTRO for many standard hydrodynamics test
problems was detailed in the original code paper (Almgren et al., 2010), and the code is
regularly subjected to a battery of test problems that ensure it gives reasonable results, the
usual suite of problems needs to be complemented by a set of tests that exercise the features
unique to binary star systems. In Section 2.3, we gave examples of how the gravity solver
can affect such a system, for example through the boundary conditions on the potential and
the way the gravitational source term is added to the hydrodynamics update. There are
also hydrodynamical issues that are specific to the case where large amounts of material
move at significant speeds across the grid, and the merger process is just such a case. This
bulk motion presents an opportunity for advection errors to build up, and is only partially
mitigated by evolving the white dwarfs in a co-rotating frame. It is therefore important to
be aware of the behavior of the code in such circumstances.

Our focus here is on a subset of problems that highlight the special difficulties introduced
in merger simulations. These problems couple the hydrodynamics, gravity and equation of
state modules. We observe that while in most non-trivial three-dimensional problems this
creates a complexity that makes it impossible to determine exact analytical solutions, it is
straightforward to devise problems for which certain global properties should obey simple,
expected behaviors. Where possible, these should be quantified and a convergence study
performed; where not, we should at least be able to run the test and see whether the results
make sense given what we know about the properties of the system. We should also at least
be able to see whether the results converge with numerical resolution (even if we cannot see
whether this convergence is to the correct answer for the problem). This is the focus of the
current section.

4.1 Maintaining Hydrostatic Equilibrium

In Section 3.1 we describe the process by which we generate initial stellar models. While
the 1D models are in hydrostatic equilibrium to within a small error, interpolation onto
the 3D Cartesian grid will introduce perturbations into the solution (Zingale et al., 2002).
Although we ensure that the initial models are generated with the same equation of state
and are at least as well resolved as our finest grid, there is still be a hydrodynamical error
associated with the fact that the rectangular grid cannot faithfully represent a spherical star.
Additionally, the gravitational potential obtained by the multigrid solver will differ slightly
from the one assumed by the initial model, and the operator splitting between the gravity
and hydrodynamics should also result in small errors. As a result, we expect that the star
will oscillate slightly about an equilibrium point, but that the amplitude of this oscillation
should decrease with increasing resolution.

This problem was studied in the first CASTRO paper, but is worth revisiting here. A single
star explosion simulation may only last a couple of seconds, and the CASTRO paper studied
the behavior of the star after one second of evolution. However, the dynamical timescale of
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Figure 5: Time evolution of the effective radius of a 0.9M� white dwarf, seeded onto the grid
using a one-dimensional hydrostatic model and evolved without further relaxation. The lines
represent different number of zones per spatial dimension; when this number is greater than
256, it represents an effective resolution obtained using AMR levels that cover the star. The
radius is determined using the volume of the grid that has a density greater than 103 g cm−3.

a typical carbon-oxygen white dwarf is on the order of 1–10 seconds. Additionally, a binary
orbit is typically on the order of 10–100 seconds when a merger simulation starts, and with
equilibrium initial conditions the system may survive for tens of orbits before the secondary
is disrupted. When this does happen, we want to be confident that it was because of the
dynamics of the merger process and not because of an instability in an individual star. Our
goal here is thus to install a single star onto our three-dimensional coordinate grid and evolve
it for a period of time long enough to assess whether the star is truly stable, and to probe
how the size of deviation from equilibrium is affected by grid resolution.

We loaded a single star of mass 0.9 M� onto the grid at the origin, and evolved it for
200 seconds. Our diagnostic of choice is the effective radius of the star, determined by the
volume of the grid that has a density greater than 103 g cm−3 (see Section 3 for details on
this measure). This choice of density is intended to mark a reasonable outer edge to the
star that is not immediately susceptible to the numerical errors prevalent near the physical
edge of the star. Figure 5 shows our results at various resolutions. As expected, the star
quickly approaches an equilibrium size that is different (and in this case larger) than the one-
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dimensional model, though the magnitude of this change becomes smaller with resolution.
The star is only approximately in equilibrium by this measure when the coarse grid of 2563

zones has a level of refinement that jumps by a factor of four. Even then there is a slight
uptick in the size toward the end, implying that the numerical stability is not guaranteed for
arbitrarily long timescales. For another view, we consider the kinetic energy on the grid, in
Figure 6. This is a more holistic measure that weights the contribution by the density. At
the end of the simulation the kinetic energy is not lower at the highest resolution than at the
lower resolutions. This result suggests that when constructing the equilibrium initial models
that will form the basis of later calculations, we should carefully monitor the evolution of the
stars when applying any artificial damping to cause the merger, to ensure that the merger
is due to this applied force and not the intrinsic numerical instability of the stars.
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Figure 6: Time evolution of the kinetic energy of a 0.9 M� white dwarf. The lines have the
same meaning as in Figure 5.
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4.2 Gravitational Free Fall

A simple dynamical test to verify the coupling between the gravity and hydrodynamics in
CASTRO is the case of gravitational free fall. We place two stars on the grid in the manner of
Section 3. The distance a between them corresponds to a chosen orbital period T , consistent
with the total system mass M , but we disable the rotational source terms so that the stars
start at rest in an inertial reference frame. Thus the stars will simply begin moving toward
each other. As long as the stars remain approximately spherical, the stars can be treated
as point masses (this approximation only seriously breaks down after the stars have come
into contact). In dimensionless units where r → r/a and t→ 2

√
2πt/T , the simple free fall

equation of motion governing the distance r between their centers of mass takes the form:

r̈(t) = − 1

2r2
. (59)

It is possible to derive a closed-form solution for the evolution time as a function of separation
by starting with the integral formulation,

t(r) =

∫ r

1

dr

v(r)
. (60)

The velocity v (in dimensionless units) can be found by noting that r̈ = v dv/dr and then
separating and integrating the equation of motion. This yields

v(r) =

√(
1

r
− 1

)
. (61)

For our problem 0 < r ≤ 1, so this is always valid. Integrating, we find

t(r) = arccos
(√

r
)

+
√
r (1− r). (62)

so that the point of contact would occur at t = 1. We actually stop the simulation at t = 0.9,
which is when the effects from the extended sizes of the stars starts to become important.
The results of our simulation for our default 2563 zone uniform grid are shown in Figure 7.
They show excellent agreement between the analytical solution and the simulation results.

4.3 Galilean Invariance

It is often stated in the literature that Eulerian methods for hydrodynamics with grids
fixed in space do not obey the Galilean invariance of the underlying Euler equations, so that
simulations moving at a uniform bulk velocity appear different than an equivalent stationary
simulation (e.g. Springel 2010). If true, we need to understand the importance of this effect
when deciding whether to trust the output of a code like CASTRO when applied for merger
problems. Recently, concern for the issue of Galilean invariance has come up in two ways
which are of note for us in the present study. We explain these situations and display the
results of tests we have run to determine whether this actually is a significant concern for
our study.
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Figure 7: Time evolution of two initially stationary white dwarfs, mutually attracted to each
other by the gravitational force. The horizontal axis gives the separation of the white dwarfs,
scaled to the initial separation, and the vertical axis gives the elapsed time of the simulation,
scaled to the time it would take two point masses to collide. The solid curve shows the
analytical result, calculated from Newtonian mechanics, and the circles show the samples
from the time evolution with CASTRO. For visual clarity, we show only a small fraction of the
timesteps.

Springel (2010) (hereafter, S10) performed a Kelvin-Helmholtz instability test and showed
that (at low resolution) a fixed-grid code failed to develop the expected fluid instability when
the whole fluid was moving at a strongly supersonic uniform velocity. (See also Wadsley
et al. (2008), who used the FLASH code to simulate a hot bubble subject to mixing by the
Kelvin-Helmholtz instability, and also found that the mixing was affected by a uniform bulk
velocity.) This contrasted with the results of the moving-mesh code AREPO being presented
in that study, which demonstrated Galilean invariance even at large bulk velocities. Inability
to correctly model the Kelvin-Helmholtz instability would have important consequences for
how much we can trust the ability of CASTRO to test the violent merger progenitor model,
where a detonation arises in the low-density material at the stellar surface. Shearing between
the material flowing out of the secondary and material near the surface of the primary may
trigger fluid instabilities that play an important role in the evolution of that gas, which is
the site of the initial detonation in the prompt explosion model. Guillochon et al. (2010)
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showed for their simulation that Kelvin-Helmholtz instabilities produced this way may raise
the temperature of the accreting material enough to ignite a detonation. Therefore if we are
not correctly reproducing the characteristics of the Kelvin-Helmholtz instability in the case
where there is significant mass motion on the grid, we cannot be confident that a detonation
(or lack thereof) is not numerically seeded.

Robertson et al. (2010) (hereafter, R10) observe that violation of Galilean invariance
of simulation results for the Euler equations occurs because of truncation error in the dis-
cretization of the fluid equations. This takes the form of a numerical diffusion term which
is dependent on velocity (and also resolution). The advantage of a moving-mesh code is
that the mesh everywhere moves with the local flow velocity, which substantially reduces
the numerical diffusion. R10 argue that the differences seen between the moving-mesh and
fixed-grid code are caused by the interaction of this numerical diffusion with small-scale in-
stabilities (that may be physical or numerical) which couple with and fundamentally alter
the large-scale modes. Small-scale instabilities are seeded by the choice of a sharp initial
discontinuity between the fluids in the problem posed by S10. Crucially though, R10 point
out that this problem does not converge with resolution (because the initial perturbation is
too sharp and seeds numerical noise at the grid resolution level) and so it is not possible to
know the correct behavior of this problem. As such, we do not know whether the small-scale
modes found in AREPO are real, and the problem is not useful in formally discriminating be-
tween methodologies. They instead propose an alternate test with a smoother initial contact.
This converges to the same solution qualitatively in both the stationary and bulk velocity
cases, indicating that the code does generally maintain Galilean invariance (to some specified
error that depends on resolution and the uniform flow speed). We will see whether we can
reproduce this result.

A related question is whether our code reliably simulates the bulk motion of the stars
across the grid, and whether such bulk motion affects the stability of the star. This concern
is prompted by the study of Tasker et al. (2008), who studied the effect of uniform translation
on the stability of a spherically symmetric model for a galaxy cluster. They compared the
radial profile of the cluster at initialization and after a period of time evolution. Using
FLASH and ENZO, they found that a static cluster retains its shape at high enough resolution,
while uniform translation of the cluster causes mixing of the core material due to numerical
diffusion which results in an underestimation of the core’s true density. The SPH codes they
used did a better job maintaining the core density. We will perform a variant of this test
using white dwarf models.

4.3.1 Kelvin-Helmholtz Instability

Following Robertson et al. (2010), we set up a Kelvin-Helmholtz test in the following way.
The problem domain runs from 0 to 1 in both the x and y directions. This is a two-
dimensional test, so we run CASTRO in 2D mainly to avoid extra computational expense; in
3D, it would merely involve replicating the problem in the z direction. The problem involves
a fluid slab of density ρ2 = 2.0 traveling rightward in the x-direction at velocity v2 = 0.5,
sandwiched by a fluid of density ρ1 = 1.0 traveling leftward at velocity v1 = −0.5. (The units
here are arbitrary since the gamma law equation of state we use will provide scale-invariant
results; in the CASTRO code, the default units are CGS, so density is measured in units of
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g cm−3 and velocity in units of cm s−1.) The density gradient is in the y direction, so this
creates a velocity shear along the interface between the fluids. The density and velocity
distribution on the computational domain are given by:

ρ = ρ1 +R(y) [ρ2 − ρ1] (63)

vx = v1 +R(y) [v2 − v1] (64)

vy = vbulk + v′ (65)

Here R(y) is a ramp function that describes the transition between the two fluids, while vbulk

is the bulk motion of the fluid in the y direction and v′ is the velocity perturbation that
seeds the instability.

The problem is established for two sets of initial conditions (ICs), which we follow R10
in calling ICs A and B. They differ in their ramp function (RA and RB respectively), as well
as the initial perturbation (v′A and v′B respectively), and the frequency of the perturbation
(nA = 4 and nB = 2):

RA =

{
0 |y − 0.5| > 0.25

1 |y − 0.5| < 0.25
(66)

RB =
{ [

1 + e−2(y−0.25)/∆y
] [

1 + e2(y−0.75)/∆y
] }−1

(67)

v′A = w0 sin (nA π x)
{
e−(y−0.25)2/2σ2

+ e−(y−0.75)2/2σ2
}

(68)

v′B = w0 sin (nB π x) . (69)

Here w0 = 0.1 is the scale of the velocity perturbation, σ = 0.05/
√

2 controls the width of
the Gaussian for IC A, and ∆y = 0.05 is the transition distance scale for the smooth ramp of
IC B. The pressure everywhere is set to p = 2.5, and we run this with a gamma-law equation
of state set to γ = 5/3. Plotfiles are generated every 0.05 seconds, and the problem is run
until t = 2.

We run the problem for vbulk = [0, 1, 3, 10, 30, 100], and for each set of initial conditions
run the problem at resolutions of 642, 1282, 2562, 5122. For context, in these units the sound
speed is c ≈ 0.7. In addition, for each initial condition we run simulations at the higher
resolutions of 10242, 20482, and 40962 for the stationary problem only. These serve as a
reference solution to gauge the extent to which the bulk flow affects the development of the
fluid instability, and to determine if the problem is numerically converged.

We find the same result as R10 for IC A, which is equivalent to the test proposed by S10:
at low resolutions and high bulk velocity, the Kelvin-Helmholtz instability completely fails
to develop. Furthermore the problem does not converge even qualitatively at the highest
resolutions we used. Our results are very similar to Figure 3 of R10 so we do not show them
here. For IC B, our results can be seen for the normal resolutions and all velocities in Figure 8.
At low resolutions and very large bulk velocities, the fluid does get significantly disrupted
by numerical error. This effect quickly converges away with resolution and qualitatively at
5122 resolution the solution is nearly identical to the stationary v = 0 problem. We agree
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Figure 8: 2D Kelvin-Helmholtz instability test at t = 2.0 for the initial conditions given by
Equation 67 and Equation 69. The rows each represent a different bulk fluid velocity v and
the columns each represent a grid resolution n (the number of zones per spatial dimension).
The highest velocity simulation, v = 100, corresponds to approximately Mach 70. Compare
to Robertson et al. (2010), Figure 7.

with R10 that this problem does converge with resolution and is not subject to numerically-
seeded secondary instabilities at the stopping time. This is evident even at low resolutions
by examining the first row of Figure 8.

McNally et al. (2012) published another Kelvin-Helmholtz problem that is well-posed in
the sense that it converges with resolution and is not subject to uncontrollable numerical in-
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Figure 9: 2D Kelvin-Helmholtz instability test at t = 2.0 for the initial conditions given by
Equation 70 through Equation 72, which come from McNally et al. (2012). The meaning of
the rows and columns is the same as in Figure 8.

stabilities. Though they were not explicitly interested in the question of Galilean invariance,
we visit that issue here to see what can be learned. The initial conditions for this problem
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Figure 10: Time series of the Kelvin-Helmholtz problem proposed by McNally et al. (2012)
as the simulation is just starting to go non-linear. The rows represent resolution, where n is
the number of grid cells per spatial dimension, and the columns are different snapshots in
time.

are:

ρ =


ρ1 − ρme(y−0.25)/∆y 0.25 > y ≥ 0

ρ2 + ρme
(0.25−y)/∆y 0.5 > y ≥ 0.25

ρ2 + ρme
(y−0.75)/∆y 0.75 > y ≥ 0.5

ρ1 − ρme(0.75−y)/∆y 1 > y ≥ 0.75

(70)

vx =


v1 − vme(y−0.25)/∆y 0.25 > y ≥ 0

v2 + vme
(0.25−y)/∆y 0.5 > y ≥ 0.25

v2 + vme
(y−0.75)/∆y 0.75 > y ≥ 0.5

v1 − vme(0.75−y)/∆y 1 > y ≥ 0.75

(71)

vy = w0 sin (4πx) . (72)

Here ∆y = 0.025, w0 = 0.01, vm = (v1 − v2)/2, ρm = (ρ1 − ρ2)/2, and the other symbols
have the same meaning as above (this means the flow direction is reversed compared to
the original paper, so as to achieve consistency with the other simulations presented here).
We run this problem at all the same resolutions and bulk velocities as the previous two
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problems. The results for the normal resolutions at t = 2.0 are displayed in Figure 9. We
see a similar pattern as for the test proposed by R10: as we get to higher flow speeds we
need to have higher spatial resolution to compensate for the increased numerical diffusion.
The qualitative accuracy is much lower for the highest bulk velocities for this problem than
for the previous problems. This is because the amplitude of the instability overall is smaller
than for the previous problems, at least by t = 2.0, so it is easier for numerical diffusion at
the shearing layer, caused by the high bulk velocities, to completely wipe out the instability.
Like Robertson et al. (2010) found for their problem, we find for this problem that the
convergence properties are not substantially affected by altering the perturbation frequency
– the results show the same qualitative pattern even if we halve this frequency.

Hopkins (2015) performed this test as part of the testing of their code GIZMO. They
showed the late-time evolution of this system, when non-linear effects have taken over and
significantly disrupted the initial flow. At low resolution the tested grid algorithm had failed
to disrupt both for v = 0 and v = 10. We too ran this problem until t = 10, and confirm
that the Kelvin-Helmholtz instability damps out at low resolution but goes strongly non-
linear and disrupts the flow at high resolution. We strongly emphasize the point that this
does not objectively demonstrate a deficiency in fixed-grid codes for this problem. We can
only determine the validity of a method when we have a trustworthy, converged solution
to compare to, and this is lacking for this problem at late times. As observed by McNally
et al., this lack of a solution is because the secondary instabilities form for this problem when
the whorls of the Kelvin-Helmholtz tendrils stretch out and create gradients that approach
the grid resolution. This is prime breeding ground for numerical noise. But because the
nature of this noise depends on the resolution, it is very different for simulations at different
resolutions. If these instabilities are seeded because of this resolution-dependent noise and
are not seeded instead in a controlled manner such that they appear at the same time and
location, then we simply cannot draw any conclusions that bear on the question of verification
from this test at late times. Figure 10 provides a sense of this by examining the crucial time
at which the transition from the linear to the non-linear regime is occurring. At all of these
very high resolutions the secondary instabilities develop, but they occur at different times
and have different spatial scales for each resolution.

We conclude that large bulk motions of fluid can have very significant effects on numerical
calculations of shear mixing in fixed-grid codes, but that this effect diminishes with increasing
resolution. As a result, we must be confident that we are sufficiently resolving the major
mixing regions on the white dwarf surfaces, specifically that the density gradients occur over
spatial scales much larger than the grid resolution. If we find instead that this mixing occurs
near the grid resolution scale, this will imply that we need to ramp up the resolution in
these regions using AMR. If this becomes too expensive, we would need to be skeptical of
any conclusions that could be drawn about the effect of the mixing on the nuclear burning.

4.3.2 Moving Star

To analyze the effects of velocity-dependent results for a stellar simulation, we repeated the
test of Section 4.1 with a bulk velocity on the grid. We chose a velocity of 2.56×108 cm s−1.
For context, this is comparable to the orbital velocities of the stars in Section 4.4, and the
Mach number is of order unity in the stellar core at this speed. This test was inspired
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by Tasker et al. (2008), who considered a moving galaxy cluster and who obtained a long
timescale evolution by using periodic boundary conditions, so that the cluster would cross
the domain multiple times throughout the evolution. We believe that periodic boundary
conditions are unrealistic for our type of simulation, so we prefer to do one continuous
simulation where the star does not cross the boundaries. Since our normal grid was not
large enough to allow the motion to continue for very long, we expanded the domain size by
a factor of four, and then included an extra refined level around the star to keep the effective
resolution the same. We started the star off in the lower left corner of the domain, and
pointed its velocity towards the upper right corner. This allowed us to evolve the star for
the same length of time as for the original test. We note that getting the gravity boundary
conditions right required us to move the origin of the problem at the bulk velocity, so that
the multipole moments were always computed with respect to the current location of the
stellar center.
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Figure 11: A variation on Figure 5 where we now compare the “static” case to “motion”
simulations where the star moves across the grid at a fixed linear speed. The lines represent
the effective number of zones per dimension inside the stellar material; due to the expanded
size of the grid in the “motion” case, the physical resolution is the same in each column in
the legend.

In Figure 11, we take the results of Section 4.1 (the “static” case), and plot on top of
it the results of this new simulation (the “motion” case). We see immediately that this
bulk velocity causes the star to be much worse at maintaining hydrostatic equilibrium. Not
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only is the absolute size of the star significantly larger (nearly a factor of two at the lowest
feasible resolution we consider), but also there is a clear upward trend in the size that has not
terminated at any resolution by the end of the simulation. This again emphasizes the results
mentioned earlier, that we must be careful not to trust any simulation with significant mass
transfer if we are not confident that the mass transfer is seeded in a controllable manner and
free from numerical noise.

4.4 Keplerian Orbit

We now consider the phase of the binary system where the stars are orbiting each other
at distances great enough that the initial orbits should be approximately Keplerian. There
are a number of effects worth looking into here. For simplicity, we choose two cases to
demonstrate the simulation behavior: an equal mass case of two 0.9 M� white dwarfs, and
an unequal mass case of 0.9 M� and 0.75 M� white dwarfs. In both systems, the secondary
should be stable against mass loss. In each case, the initial orbital period is 100 seconds.
For all simulations in this section, we use the standard Euler equations that conserve linear
momentum, and defer to Section 7 a description of the hybrid advection technique.

For some of the algorithms described earlier in this work, a single orbit of these systems
is enough to examine their effects. In Section 2.3.2, we discussed the replacement of a
monopole boundary condition solver for the gravitational potential with a more general
multipole solver for the boundaries. To test the relevance of this effect, we considered a
single orbit of the unequal mass system and measured the distance between the two white
dwarf centers of mass at the beginning of the simulation and after the full orbital period.
This distance should not change significantly over that timescale. We performed this test
for maximum multipole moments ranging from 0 (the monopole term) to 16. The results
are shown in Figure 12. Terms in the boundary potential that vary faster than r−5 are
effectively negligible in determining the outcome of the orbit, justifying our typical choice of
maintaining terms up to r−7.

Another diagnostic that we consider is the energy conservation of the system. Recalling
Section 2.3.1, there are several different methods of applying the gravitational source term
to the hydrodynamics equations. In CASTRO we presently have four options, controlled by
the parameter castro.grav source type, which we shorten to gs for the present discussion.
gs = 1 and gs = 2 are variations on the standard cell-centered source term for gravity. The
difference between them is that gs = 2 determines the value of the energy source term after
the momentum source term has been applied, while gs = 1 uses the uncorrected momenta
in calculating ρug. We have found gs = 2 to be more accurate. gs = 3 is entirely different:
after calculating the new momenta, we reset the total energy to be equal to the internal
energy plus the kinetic energy. This approach has the virtue of ensuring that there is no
conflict due to discretization between the momentum and energy equations, and also correctly
ensuring that the gravitational force does not directly change the internal energy—and thus
the temperature—of the fluid. However, it explicitly sacrifices total energy conservation.
gs = 4 is the new conservative method of evaluating the energy source terms at cell faces.
The results for the change in energy after a single orbit are seen in the first column of Table 1.
The first two versions give reasonable and similar levels of energy conservation. The third
has total energy changes on the order of 100%, but this itself does not have a severe effect
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Figure 12: Absolute magnitude of the relative change in the distance of two unequal mass
white dwarfs after one orbital period. The stars were evolved in an inertial reference frame.
The horizontal axis is the number of terms or multipole moments captured in the series
expansion for the potential at the domain boundary.

on the dynamics because in this scheme the total energy variable is effectively a placeholder
value of the kinetic energy plus internal energy, rather than being evolved directly. The last
scheme is nearly two orders of magnitude better in energy conservation, justifying the effort
in varying the scheme.

In Table 1 we show also the effects on energy conservation of using the inertial reference
frame. We use rs for the CASTRO parameter castro.rot source type. Each option for rs

is implemented in the same way as for the gravitational source term, simply swapping out
the gravitational acceleration for the rotational acceleration (except for the improvement to
the momentum update for rs = 4 described in Section 2.4). The rs = 0 column means that
rotation is turned off and we are in the inertial frame. We see that the choice of rotational
coupling is much less important than the choice of gravity coupling. The “conservative”
rs = 4 is slightly better in energy conservation than the non-conservative, cell-centered
rs = 2 algorithm, but it is a small effect.

We are most interested in the stability of these systems over long timescales. To this end,
we consider the same systems as above, but evolve them for 25 orbital periods. In Figure 13
we illustrate the evolution of these systems by plotting the center of mass locations of the
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rs = 0 rs = 1 rs = 2 rs = 3 rs = 4
gs = 1 4.8× 10−2 4.6× 10−2 4.6× 10−2 4.6× 10−2 5.7× 10−2

gs = 2 4.9× 10−2 4.6× 10−2 4.6× 10−2 4.6× 10−2 5.7× 10−2

gs = 3 1.1× 100 2.8× 100 2.8× 100 2.8× 100 2.8× 100

gs = 4 4.4× 10−4 1.3× 10−3 1.3× 10−3 3.1× 10−4 1.0× 10−3

Table 1: Change in energy after a single orbit, |∆E/E|. “rs” is shorthand for the
code parameter castro.rot source type and “gs” is shorthand for the code parameter
castro.grav source type. The parameter meanings are explained in the main text.

white dwarfs on the orbital (xy) plane. For the equal mass case in the inertial reference
frame, the curves fall nearly on top of each other for most of the run, indicating that the
stars are indeed orbiting at the initial distance, at least for a while. Towards the end of the
run, however, the orbit starts to decay significantly, and the center-of-mass distance of the
two stars has decreased by about 10% after 25 orbits. We attribute this to non-conservation
of angular momentum, which occurs because here we ran our code in the mode that only
explicitly conserves linear momentum. This orbital decay resembles the effect seen by Swesty
et al. (2000) for the case of neutron stars. In the unequal mass case, the magnitude of the
orbital decay is smaller but at the end of the run the secular decline in distance is also
visible. In both cases the stars would likely merge due to numerical error after a long enough
timescale.

The co-rotating frame is different. For clarity of visualization, we rotate these results
back into the inertial frame before displaying their orbits. In both the equal and unequal
mass cases, the centrifugal force pushes the stars outward toward a new equilibrium distance
that is a few percent larger than its initial distance. At the end of the run, the system
is relatively stable, with oscillations about the new equilibrium distance. In fact these
oscillations occur too in the inertial frame, but they are much more pronounced here. In
the unequal mass case this is coupled with severe precession of the orbit, which results in
chatoic-looking orbits when viewed from the rotating reference frame. These result from the
explicit numerical consideration of the Coriolis and centrifugal terms, which do not appear
in the inertial frame. So while the rotating frame is clearly more stable against mass transfer
than the inertial frame, the cost is that the specific dynamics may be more suspect.

Turning to the conservation properties of the system, we examine as fairly typical cases
the equal mass system in the inertial frame for energy conservation (Figure 14), and the
unequal mass system in the rotating frame for angular momentum conservation (Figure 15).
For the former system angular momentum is conserved to within 10 percent over the 25
orbits, while energy conservation is about an order of magnitude better. We note that while
this is already a fairly good level of energy conservation, it is not nearly as good as the
results of Marcello & Tohline (2012). This is because we reset the internal energy to a level
corresponding to our temperature floor when it goes negative, while Marcello & Tohline
do not reset and instead ignore the internal energy if it is negative. The resets impose an
artificial floor on our ability to conserve energy, but they only happen in low-density regions
and do not much affect the large-scale dynamics. Meanwhile, relative angular momentum
conservation is not quite as good as relative energy conservation. This is linked to the decline
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Figure 13: Positions of the white dwarfs in the orbital plane for four cases evolved over 25
orbital periods. The x and y axes are normalized to the size of the domain, so that x = −0.5
is the left edge and x = 0.5 is the right edge. The dashed blue curve is the position of the
primary white dwarf, and the solid red curve is the position of the secondary. In plot (a) we
have the equal mass system evolved in the inertial reference frame, and in plot (c) we have
the same system evolved in a rotating frame, where the positions have been transformed back
to the inertial frame for comparison. Plots (b) and (d) are analogous but for the unequal
mass system.

(or increase) in the size of the orbit. This implies that we ought to be careful in concluding
that at these moderate resolutions we can safely evolve systems for many dozens of orbits;
this needs to be verified to ensure that an observed inspiral and merger is physically (not
numerically) motivated.

As a simple verification test to ensure our gravitational wave calculations are correct,
we plot the gravitational wave strain along the rotation axis for the first two periods of an
unequal mass system. At this early time the orbit is circular and so to a good approximation
we expect that the gravitational wave signal should be that of two point masses, whose
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Figure 14: Absolute magnitude of the relative change in energy of two equal mass white
dwarfs through 25 orbital periods, evolved in an inertial reference frame. The decline and
recovery is a change in sign of the energy difference.

positions are:

rP (t) = −aP cos(ωt)x̂− aP sin(ωt)ŷ (73)

rS(t) = aS cos(ωt)x̂+ aS sin(ωt)ŷ. (74)

Then the mass distribution is ρ(r) = MP δ
3(r− rP ) +MS δ

3(r− rS). From this it is straight-
forward to calculate the quadruopole tensor, take its second time derivative, and then apply
the projection operator to get the gravitational wave polarizations along the rotation axis:

h+ = −4
Gµ

c4r
[GMtotω]2/3 cos(2ωt) (75)

h× = −4
Gµ

c4r
[GMtotω]2/3 sin(2ωt). (76)

µ is the reduced mass, while Mtot is the total mass. From this we see that the gravitational
wave frequency is twice the orbital frequency, and that the two polarizations are out of phase
by 90◦ in time. We compare this analytical expectation to the numerical results in Figure 16.
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Figure 15: Absolute magnitude of the relative change in angular momentum of two unequal
mass white dwarfs after 25 orbital periods, evolved in a co-rotating reference frame. We
consider only the component of the angular moment along the rotational axis.

We find very good agreement in this case, and this level of agreement holds in the rotating
frame as well.

Finally we consider whether the dynamical behavior of the system converges with resolu-
tion. In Figure 17 we plot the first full orbit for the unequal mass system, at three different
resolutions in the inertial frame: our default resolution of 2563 zones, as well as a single level
of refinement with a jump by a factor of two (effective resolution 5123) or a jump by a factor
of four (effective resolution 10243). It is clear that at the latter resolution (corresponding to
physical resolution of 100 km), we have achieved convergent behavior. In the rotating frame,
the results also show convergent behavior but the convergence is not as fast with resolution
as in the inertial frame; see Figure 18. At the two higher resolutions the white dwarf dis-
tance is qualitatively similar, and both are qualitatively different from the lower resolution.
However, quantitatively the two higher resolution runs are not as similar to each other as
the analogous runs in the inertial frame. Convergence with resolution is slightly slower in
the rotating reference frame because in the rotating reference frame a stable, unchanging
circular orbit requires balance between two forces with opposite sign (the gravitational and
centrifugal forces), and slight perturbations from the circular orbit are amplified by the effect
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Figure 16: Gravitational wave strain polarizations for the first two orbital periods of an
unequal mass system. The curves with markers are the numerical data, while the curves
without markers are the analytical results for two point masses.

of the Corolis force. In the inertial frame, these numerical instabilities vanish, but the cost
is that there is no centrifugal force to actively maintain the white dwarf distance, which is
why it is much more likely for the orbit to prematurely decay. In either case, these results
suggest at least a minimum resolution of 200 km for getting the dynamics qualitatively right.
To put that into context, consider that the parameter study of Dan et al. (2014) used 40,000
SPH particles per simulation, or (for an equal mass binary) 20,000 particles per white dwarf.
For, say, a 0.9 M� + 0.9 M� white dwarf binary on a 2563 zone simulation grid, there are
20,000 zones that fit within a white dwarf. We do not intend here to directly compare results
between the two simulation methods. We limit ourselves to the observation that at least for
grid-based codes, a parameter study such as the ones performed by Dan et al. (2012) and
Dan et al. (2014) would likely not yield qualitatively convergent results if it were to use the
same effective mass resolution. Instead the number of zones inside each star should at least
be doubled.
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Figure 17: Distance between the two white dwarfs in the unequal mass system, for the
first orbit. The distance is scaled by the initial orbital distance. We plot at three different
resolutions, corresponding to the number of effective zones per dimension in the refined
regions.
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Figure 18: Distance between the two white dwarfs in the unequal mass system, for the
first orbit. The distance is scaled by the initial orbital distance. We plot at three different
resolutions, corresponding to the number of effective zones per dimension in the refined
regions.
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5 Parallel Performance

CASTRO is designed to be deployed on high-performance computing systems using many thou-
sands of processors simultaneously. It is worth briefly examining our strategy for parallelizing
the problem over many computational nodes and our performance in situations similar to
production science simulations. This is especially true because some aspects of our approach
to parallelism have changed since the first CASTRO paper (Almgren et al., 2010), and we have
obtained improved performance in certain settings.

The BoxLib framework that CASTRO is based on domain decomposes each AMR level
into a number of boxes that collectively span the level. These boxes are distributed to
processors through MPI parallelism; each MPI task in general holds multiple boxes and an
update includes a loop over all the boxes an MPI task owns. The distribution obeys a load-
balancing algorithm that attempts to equalize the amount of work done by each processor.
BoxLib contains a number of strategies for distributing work in this way, and by default uses
a space-filling curve approach with a Morton ordering (e.g. Sasidharan & Snir 2015; Beichl &
Sullivan 1998). By experiment we have found that the most efficient load-balancing strategy
for our problem is often actually a simple knapsack algorithm, though this depends on the
size and layout of the problem. In this approach, the amount of work owned by a processor
is proportional to the number of grid cells associated with that processor, and the algorithm
attempts to ensure that all processors have a similar number of total grid cells. We demand
an efficiency of 0.9, meaning that the average workload per processor should be no smaller
than 90% of the maximum workload found on any processor. We find that in practice the
performance is largely insensitive to this choice.

The size and shape of grid boxes is an important consideration for efficiency. Boxes that
are very small suffer from a host of problems, including the larger amount of communication
required between hydrodynamics solves. Additionally, the multigrid solver is less efficient if
the boxes are small because there are fewer available levels for coarsening and performing
V-cycles. Furthermore, the ratio of the number of ghost zones to physical zones becomes
larger for small boxes, and is above unity for a 163 (or smaller) box. Conversely, boxes that
are too large often mean that there isn’t enough work to go around when we have a large
number of processors. Good performance is the result of a careful balance between these
two effects. For mergers, on the lower end, we require that all boxes be a multiple of 16
zones in each dimension; multigrid efficiency sharply decreases if this factor is any lower.
On the upper end, we select the maximum grid size based on the number of processors
we use and the total number of cells in the simulation. This size will therefore in general
vary on different AMR levels. Generally we select a value in between 32 and 64 zones per
dimension. For collisions, when nuclear burning usually dominates all other effects including
the communication cost, we allow the minimum box size to become smaller (sometimes as
small as 8 zones per spatial dimension); we do not need to burn on the ghost zones, as we
can replace it with a communication step that fills the ghost zones using data from other
boxes.

We use OpenMP to accelerate the work associated with the boxes owned by each MPI
task. Originally CASTRO used OpenMP to accelerate individual loops in the hydrodynamics
routines, such as the piecewise-parabolic edge state reconstruction and the conservative flux
update. However, there is a significant amount of overhead associated with generating a
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Figure 19: CASTRO weak scaling test, performed on Blue Waters at NCSA. Each processor
had a fixed amount of work, and we increased the number of simulation zones in concert
with the number of processors. The solid curve represents perfect weak scaling, while the
blue circles show CASTRO’s performance at each processor count. The vertical axis measures
the median time per timestep, normalized to this value for the smallest processor count.

new OpenMP region at each of the many different loops in a hydrodynamics algorithm.
This makes such a strategy sub-optimal for use on many-core processors and GPUs. CASTRO
has recently switched to a tiling approach where an OpenMP region is generated at the
start of the hydrodynamics routine and the individual threads separately work on different
partitions of each box (Zhang et al., 2016). This results in much less overhead for the
threading. In general we obtain more efficient simulations than could be obtained using
MPI only, because there are fewer boxes and thus less communication for a given number
of processor cores. We have also made significant progress in developing an approach to
evaluating the hydrodynamics and microphysics modules on GPUs, which will allow us to
take advantage of the significant computational resources embedded in GPUs on certain
systems.

To examine the parallel performance of CASTRO, we performed both strong scaling and
weak scaling tests on the Blue Waters machine at the National Center for Supercomputing
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Applications. For the weak scaling test, whose results are shown in Figure 19, we ran a
binary white dwarf simulation for uniform grids (no mesh refinement) with resolutions of
1283 zones through 20483 zones. The number of processors was scaled with the number
of zones so that each processor had the same amount of work; the smallest test used 8
processors and the largest used 32,768 (note that the number of processor cores on a Blue
Waters node is twice the number of floating point units on that node). The test was run for
10 timesteps, with each timestep including two Poisson solves and a hydrodynamics update
(though for a uniform grid calculation we generally do not need to perform any multigrid
iterations for the first Poisson solve in a timestep, since the density distribution has not
changed since the end of the last timestep). We disabled plotfile and checkpoint writing, as
well as calculation of diagnostic information (the latter can contribute to a significant fraction
of the run time at large processor counts if computed every timestep). We computed the
median wall time required per time step for each simulation, and then normalized this to
the median time per timestep for the smallest simulation. We find excellent weak scaling
through 4,096 processors. At the largest run, the simulation time required is slightly less
than 1.5 times the amount required for the smallest simulation. This is due entirely to the
increased cost of the multigrid Poisson solve in each timestep and this cannot be mitigated
except by improving communication or computation efficiency in the multigrid solver. We
observe that this weak scaling behavior with Poisson gravity is a significant improvement
over the results presented in the first CASTRO paper.

The strong scaling test we performed uses a grid setup similar to what we use for well-
resolved binary simulations. With only a uniform coarse grid, there are approximately 2×107

zones. With a single refined level, we have approximately 2 × 108 zones, typically spread
over ∼ 2000 grids. On a second refined level, there are a similar number of zones and grids
(the volume covered by this level is smaller, which offsets the greater resolution). We ran a
scaling test for all three cases, with the highest processor count in each case chosen so that
the number of MPI tasks is similar to the number of grids. There are no gains to be achieved
from further parallelism. The results are found in Figure 20. We find excellent scaling for
low to moderate numbers of processors. Parallel efficiency is well maintained when there
are at least 2 grids per processor. The scaling behavior worsens at the highest processor
counts, but this is an expected consequence of processors becoming work-starved. At the
highest processor count in this test, there is approximately only one grid per processor. In
general we find very good strong scaling behavior in the regime we are presently interested
in, simulating the early phases of a simulation at moderate resolution. The strong scaling
behavior is acceptable, though not perfect, at very large processor counts when self-gravity is
considered. Note though that this test did not include nuclear reactions, and in simulations
where nuclear reactions dominate the strong scaling behavior would be much better.
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Figure 20: CASTRO strong scaling test performed on the Blue Waters machine at NCSA. The
vertical axis measures the median time per timestep, and the horizontal axis measures the
number of processors in the simulation. Data points are normalized to the time per timestep
for the smallest number of processors. The green circles show the data for a simulation with
one AMR level (a single uniform grid), the blue diamonds show the data for a simulation
with two AMR levels (one coarse and one fine), while the red circles show the data for a test
with three AMR levels (one coarse and two fine). The fine levels increase the resolution only
in the regions around the stars. For each case we draw a solid curve representing perfect
strong scaling.
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6 White Dwarf Collisions

6.1 Parameter Study

Before turning to the effect that adaptive mesh refinement has on WD collisions, we will first
examine the effect of a number of other code parameters. For most of the following we will
use two-dimensional axisymmetric simulations which have impact parameter b = 0, unless
otherwise specified, and we will stick to a moderate resolution (we use only the coarse grid
described in Section 3). For all simulations in this section, we use a pair of 0.64 M� WDs, a
binary system that has been studied in most of the collision papers to date. This allows us
to cheaply test how the collision responds to many effects. One limitation of this is that we
will not find out exactly how a simulation differs in the case of a high-resolution 3D run when
these parameters changed. Another is that we will not perform a full parameter study where
we consider the full non-linear dependence of all parameters on all other parameters; here
we are merely interested in qualitative trends that will help to understand the limitations of
WD collision simulations.

With those caveats in mind, let us consider the tests and the results we obtained. Our
primary metric for the following tests will be the amount of 56Ni generated in the collision,
as this is the parameter most directly related to the observable quantities of interest for
Type Ia supernovae. Specifically, we collect information at the end of every timestep about
the total amount of nickel on the grid (in solar masses), and we will use the maximum value
of this nickel mass. When the stopping criterion described in Section 3 is used, this nickel
mass is generally constant or decreasing by the end of the run. The typical amount of nickel
mass generated for our runs at low resolution is 0.2 M�, which is significantly lower than
that obtained by Raskin et al. (2010) and Kushnir et al. (2013) for the same problem. We
will discuss this in Section 6.2.

6.1.1 Timestepping

For the standard self-heating burns that we use, the most important parameters we examined
come from the timestep limiting scheme described in Section 2.5.3. The parameters fbe (from
Equation 45) and fbX (from Equation 46) control the size of the timestep as a function of
the burning rate. As the timestep gets smaller, the error due to the Strang splitting scheme
coupling the reactions and the burning also gets smaller, and we expect that the results
become more accurate. Figure 21 demonstrates the effect of both parameters on the nickel
production. As either f becomes small, the restriction on the timestep becomes quite severe:
for fbX = 0.01, the minimum timestep in the simulation is smaller than 2×10−9 s and the full
simulation requires over 750,000 timesteps. Yet it is clear that even for this steep value of the
limiter, which is much stricter than the limiter used in, e.g., Hawley et al. (2012) and Raskin
et al. (2010), the simulation has not fully converged in nickel production. These limiters are
somewhat redundant in the sense that a given fbX corresponds to another (higher) fbe, as is
evident by the fact that on the graph the curves look similar in shape but with a horizontal
offset.

We also examined the effect of the method used to enforce the limiting, using the four
limiting modes discussed in Section 2.5.3. The results are shown in Table 2 for the case
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Figure 21: Nickel production as a function of the timestep factors fbe (solid blue, limiting
the timestep on changes in internal energy) and fbX (dashed green, limiting the timestep on
changes in species). For a given fbe, fbX with the same value typically limits the timestep
by at least an order of magnitude more.

fbe = 0.3 (we did not use limiting with fbX for this test). The two modes that use the full
last timestep’s worth of information to estimate ė yield a slightly larger nickel mass than the
two modes that only use more recent information, but the difference is negligible.

For all remaining tests in this section, unless otherwise stated, we take fbe = 102 and
disable limiting with fbX by setting it to a large number. This choice is a balance between
accuracy and efficiency: we avoid the obviously wrong answers that occur for fbe > 103 while
ensuring that the timesteps are long enough that the following tests are computationally
inexpensive.

6.1.2 Nuclear Network

Now we move to a discussion of the effect of including various isotopes in the nuclear reaction
network. In particular we compare the iso7, aprox13, aprox19, and aprox21 reaction net-
works. In all cases we run the same problem setup, and the unused isotopes (everything but
carbon and oxygen) have their mass fractions in every zone set to a negligibly small number
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Mode Max. 56Ni (M�)
1 0.193
2 0.193
3 0.194
4 0.194

Table 2: Maximum 56Ni mass produced as a function of the burning limiter mode used,
which controls how ė is estimated. Mode 1 uses an instantaneous estimate via an RHS call;
Mode 2 uses the second half-timestep of burning in the last advance; Mode 3 uses both
half-timesteps of burning in the last advance; and, Mode 4 uses the full change in internal
energy over the last advance, including both reactions and hydrodynamics.

at initialization. Table 3 lists the 56Ni generation and total energy generation (determined
by subtracting the initial energy from the final energy). The energy generated in the latter
three cases agrees remarkably well, with a less than 0.5% difference. aprox13 over-generates
nickel at the 2% level compared to the networks with more isotopes, a reasonably small
difference. On the other hand, agreement with iso7 is not very strong, as iso7 generates
too much nickel and too little energy. Nevertheless while the quantitative agreement is not
there, the collision looks qualitatively similar compared to the evolution with more compli-
cated networks, so while iso7 should not be used for predicting nucleosynthetic yields in
production science runs, it may still be fair for use in proof-of-concept studies.

Network Max. 56Ni (M�) Energy Release (1051 erg)
aprox13 0.193 1.330
aprox19 0.189 1.326
aprox21 0.189 1.327
iso7 0.253 1.303

Table 3: Maximum 56Ni mass produced, and energy released, as a function of the nuclear
network.

iso7 also has the peculiar property that after the detonation had passed through the
WDs, the region at the central contact point did not fully stop burning, yielding a quasistatic
energy release that added a couple of million extra timesteps to the simulation (in addition
to the few hundred it normally takes) before we manually terminated the run. The full
effect of these additional timesteps only amounted to a 10−4 relative change in the nickel
production. By examining the behavior of zones near the collision point, we discovered the
reason for this. The zones in question have a composition that is approximately 98% Ni
and 2% He by mass. For this combination, a direct evaluation of the RHS in comparison
to, say, aprox13, reveals that dX/dt for these isotopes is off by many orders of magnitude.
This is a consequence of the choice inherent to the network to assume that the isotopes in
between 28Si and 56Ni are in an effective equilibrium state. So an advective update that
yields even a small change to the abundances in the zone will very strongly knock the zone
out of equilibrium with respect to the burn step following the advective update. This then
causes the burning timestep limiter to kick in and make the timestep very small so that
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the advective changes do not cause such strong effects on the burning equilibrium. (Other
networks can have the same problem in principle, but the effect is much less pronounced
for networks with more isotopes.) This effect is an argument against the use of iso7 for
explosive, non-hydrostatic burning problems.

6.1.3 Burning Mode

In Section 2.5.2 we observed that there are several alternatives to the traditional self-heating
approach in a burn. These alternatives are relevant to a collision problem because, as
pointed out by Raskin et al. (2010) and Kushnir et al. (2013), it is possible for a typical zone
in our simulation to release a very large amount of energy in a burn before it is cooled off
by a subsequent hydrodynamic expansion step, leading to the numerically unstable burning
problem described in Section 2.5.4. Table 4 lists nickel production for the four burning modes
described earlier. The hydrostatic burn does produce slightly more nickel than the self-
heating burn, consistent with the idea that by limiting the energy release from early carbon
burning, we can forestall a detonation which is numerically spurious. Yet the difference
is only about 5%. The reason is that the hydrostatic burn controls the energy release
during the burn, but not what happens in the rest of the hydrodynamics step. And in the
hydrodynamics step, the CASTRO algorithm performs multiple EOS calls to ensure that the
temperature is synchronized with the internal energy at various points in the update. So
in practice there is a temperature change due to the burn for our problem. This seems
inevitable for any hydro code unless the hydrodynamics update includes an explicit equation
for T that is independent of what is happening for the internal energy. Similarly, the hybrid
burn does not affect the total nickel production relative to the hydrostatic burn. The hybrid
burn only changes the behavior for zones that have a net negative energy release from the
hydrostatic burn, which occurs only after we have burned to NSE.

Burning Mode Max. 56Ni (M�)
0 0.204
1 0.193
2 0.204
3 0.001

Table 4: Maximum 56Ni mass produced as a function of the burning mode for allowing
nuclear reactions. Burning mode 0 is a hydrostatic burn, mode 1 is a self-heating burn,
mode 2 is a hybrid burn, and mode 3 is a suppressed burn. The meaning of these burning
modes is explained in the text.

In contrast, the suppressed burning mode (modeled after Kushnir et al. 2013) produces
only about 5 × 10−4 M� of 56Ni. In a suppressed burn, we ensure that at every evaluation
of the right-hand-side vector for the nuclear network integration, all quantities are scaled
by the same factor, with this factor ensuring that the energy release is not large enough to
permit a spurious detonation. This seems to be equivalent to the method used in Kushnir
et al. (2013). We reproduce their claim that this suppresses the detonation until later in the
collision, after more material has approached the stalled shock. We also observe that, for a
given resolution, the simultaneous detonations occur slightly outside the initial contact point,
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near the edges of the stalled shock. Kushnir et al. establish this as the main source of error
in simulations that produce too little nickel. However, we find that the resulting detonations
are not strong enough to convert a significant amount of material to NSE conditions; instead,
only QSE conditions are reached near the center of the collision, leaving a significant amount
of silicon and sulfur on the domain that is not further processed. This may be a consequence
of the low resolution we are using here; see the discussion on the properties of the detonation
in Section 6.2.

6.1.4 Impact Parameter

As the impact parameter varies for a head-on collision, the cross-section of the contact zone
between the two stars varies in size and geometry. In Figure 22, we see the dependence
of the nickel production on the impact parameter b, measured in units of the WD radius.
This test was performed using the 3D setup at our usual base resolution of 400 km. For
computational efficiency, timestep limiting based on burning was disabled. We sampled at
b = 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, and then increasing in increments of 0.05. Relative to
b = 0, there is a slight increase in nickel production for small but non-zero b, which then
declines with increasing b except for a bump at b = 0.5. For b ≥ 0.7, no detonation forms
at all, and the merged object remains a stable C/O WD with M = 1.2 M� at least until
t = 100.

It is worth noting that for b = 0.0 the nickel production is a bit smaller for the 3D
simulation than its equivalent 2D simulation, the default case described above. There are
differences both in the size of the timestep (which as we saw in Section 6.1.1 plays a role
in the total nickel production; the typical timestep for the 3D version is about four times
smaller than for the 2D version) and in the discretized nature of the stars; the assumption of
perfect azimuthal symmetry inherent to the 2D simulation breaks down for the 3D simulation,
especially at low resolution, since the zones are rectangular.

6.1.5 Other Parameters

We tested a few other parameters that ended up having no serious effect on the outcome.
The dual energy parameter η2 described in Section 2.1 can have a minor effect on the nickel
production, yielding variations on the order of a few percent, but there is no clear pattern.
The dual energy parameter η3 has no effect on the outcome: the answer is the same for
η3 = 0 and η3 = 1, which makes sense because all of the reacting regions have a low
enough kinetic energy relative to their total energy such that the internal energy variable
is always kept in sync with (E − K). (We did not look at η1 because that has a direct
effect only on the hydrodynamics, not the reactions.) We also tested whether our choice for
the temperature floor mattered by lowering it to 106 K and 105 K, and this had no effect
on nickel production. It does allow parts of the WDs to become colder as they move (see
Figure 4), due to numerical errors in the advecting flow (the Helmholtz equation of state
is very insensitive to temperature, so even small changes in the internal energy can create
very large changes in the implied temperature), but the amount of energy injected by the
collision is so large that the final result is insensitive to whatever the initial temperature of
the WDs were. We also checked whether there was any consequence of our choice to disable
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Figure 22: 56Ni generation as a function of the initial WD impact parameter for a 0.64 M�
+ 0.64 M� WD collision.
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the burning for small enough ρ and T . Lowering the minimum ρ for reactions to 100 g cm−3

from 106 g cm−3 had a negligible effect, and varying the minimum T for reactions from
2× 107 K to 4× 108 K also had no meaningful effect.

The choice of the WD composition to be equal carbon and oxygen by mass is a common
choice in the literature and is broadly comparable to what stellar evolution codes yield for
WDs of this mass. Still, it is an arbitrary approximation, especially the insistence that the
composition is uniform throughout the WD. In Table 5 we list the nickel production as a
function of the initial carbon mass fraction. This can have a few percent impact on the
outcome for the plausible values we tested. In future work we may look at the effect of a
more realistic progenitor structure, including the effects of a helium shell on the surface of
the WDs (Holcomb & Kushnir, 2015) and a non-uniform interior structure.

C Max. 56Ni (M�)
0.30 0.192
0.40 0.193
0.50 0.193
0.60 0.198
0.70 0.201

Table 5: Maximum 56Ni mass produced as a function of the initial mass fraction C. Since
the white dwarfs are purely carbon/oxygen the initial oxygen fraction is 1− C.

6.2 Resolution Dependence

To test the effect of adaptive mesh refinement based on the burning rate, specifically based
on the criterion in Equation 48 with the safety factor set to fs = 0.1, we performed a series of
2D calculations starting with the coarse grid and allowing refinement up to a predetermined
maximum jump in refinement. Each successive run allowed a factor of two jump in refinement
relative to the last. For this set we did not enable timestep limiting other than the usual
hydrodynamic limiting. We plot the nickel production from this series of runs in Figure 23.
The additional resolution yields a nearly monotonic increase in the nickel production, which
is modulated both by the smaller timestep on the finer levels and by the detonation being
effectively slowed down by the ability of the zones to more quickly disperse over-pressure
generated by the nuclear burning.

Taking a cue from Kushnir et al. (2013), we also examined the nature of the detonation
itself. For the default collision case we use, the detonation occurs at approximately t = 7.5
seconds (this is offset by about 5 seconds compared to Kushnir et al. because they started
the WDs at a smaller initial distance). Figure 24 is a plot of the inner 10% of the domain
0.05 seconds after the detonation initiated, for the case of refinement by a factor of 32.

However, the coarseness of the resolution means that there is an effective floor on any
detonation that is seeded by the coarse grid of 400 km. (Recall that the AMR criterion
does not take effect until after the unstable burning has begun.) If the actual scale for
the detonation formation is smaller than this, then the coarse grid hides the details of this
small-scale process, but in so doing may yield an inaccurate result for the nature of the
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Figure 23: 56Ni production as a function of the maximum refinement factor relative to the
coarse grid. Refinement is only applied after Equation 48 is violated, and typically maximal
refinement is achieved for the duration of the explosive burning.

detonation. To study the effect of the small-scale burning physics, we swapped the adaptive
mesh refinement technique for a static one: maximally refine all zones within a radius of 200
km from the center, up to the specified maximum amount of refinement permitted on the
domain. The radius is chosen based on the finding of Kushnir et al. that their detonation
occurs within that distance. The nickel production for this case is documented in Figure 25.

The stark difference in this case, where at sufficient resolution very little nickel is gener-
ated, is a consequence of the detonation occurring at a much earlier time (∼ 6.7 seconds).
The high density regions corresponding to the WD centers of mass are thus further away
from the detonation, so processing to NSE is largely precluded. Instead, there is efficient
conversion of carbon into silicon and sulfur material, but this event would look very differ-
ent from a Type Ia supernova, despite releasing enough energy to unbind the system. A
snapshot of the inner 5% of the domain is shown in Figure 26 immediately after detonation
has initiated. We find that the early burning phase is characterized by a high temperature
region at the center of the stalled shock, which contains several local hotspots. The hotspots
are not symmetrical with respect to z = 0 even though the initial problem setup is, which
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may reflect a lack of perfect symmetry in the hydrodynamics algorithm we use or seeding by
numerical error. The resolution in the detonation region is 6.25 km, which is comparable to
the resolution used by Kushnir et al. in FLASH. The major difference between our result and
theirs is their use of the suppressed burning mode. Even for a refinement factor of 64, the
sound-speed timescale ts is significantly longer than the energy injection timescale ts when
the detonation forms, so there is evidence that this detonation is likely a numerical artifact.
The ratio of ts to te trends downward with resolution at the initial detonation, and based on
our data would likely cross under unity when the resolution hits ∼ 1 km. This lends support
to the basic conclusion that the nickel production is a strong function of when and where
the detonation occurs, with earlier detonations at small z leading to lower amounts of nickel
production. In this paradigm we can then explain why the nickel production levels are at
least within the same ballpark (a factor of two compared to Kushnir et al. and Raskin et al.
2010) for the initially low resolution runs that are tagged for refinement after the detonation
occurs: the coarse size of the zones prevents the detonation from occurring too early and
too close to the center.
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Figure 24: Snapshot of the detonation formation (the bright region in the temperature field
centered at z = 0). Refinement is based on the unstable burning criterion, with a maximal
jump in refinement of 32 with respect to the coarse grid (effective resolution of 12.5 km).
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Figure 25: 56Ni production as a function of the maximum refinement factor relative to
the coarse grid. Refinement is applied statically for all zones near the center of the domain.
Compare to Figure 23; there, refinement occurs only after a detonation has begun, while here,
the central contact point is maximally refined before the contact occurs and a detonation is
formed.
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Figure 26: Snapshot of the detonation formation. The detonation is visible as a small, high-
temperature region near z = 0 and r = 0. Refinement is applied statically for all zones near
the center, with a maximal jump in refinement of 64 with respect to the coarse grid (effective
resolution of 6.25 km).
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Figure 27: Gravitational wave strains for the head-on collision of two 0.64 M� white dwarfs.
The strain is normalized to a source distance of 10 kpc.

6.3 Gravitational Wave Signature

While a typical merger event has a characteristic profile including a chirp and ringdown, white
dwarf collisions are noticeably distinct in their gravitational wave signatures, and hence may
be interesting targets for observation for future low frequency gravitational wave detectors.
The strain increases monotonically for a collision until impact, instead of oscillating back
and forth at a characteristic frequency as for mergers. The main caveat for these events
compared to events such as neutron star mergers is that due to the event being inherently
less energetic, the typical distance scale on which we could observe a white dwarf merger or
collision is the size of our own galaxy, with extragalactic events being unlikely to be detected,
at least with the first generation of space-based gravitational wave detectors.

Figure 27 is a plot of the gravitational wave strain for the representative case of Section 6.1
(MP = 0.64 M�, MS = 0.64 M�, b = 0), where we disabled the normal stopping criterion
and let the simulation run until t = 20. We show the + and × polarizations for observers
situated along the x, y, and z axes (for the 2D case, this corresponds to the z, R, and φ
axes, respectively, in the simulation) at the conventional distance of 10 kpc. The shape of the
profile agrees qualitatively with the gravitational wave signatures predicted by Lorén-Aguilar
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Figure 28: Gravitational wave strains for the off-center collision (b = 0.8) of 0.8 M� and
0.6 M� WDs. The strain is normalized to a source distance of 10 kpc.

et al. (2009b) and Garćıa-Senz et al. (2013). Figure 28 shows the strain prediction for a 3D
collision event with MP = 0.8 M�, MS = 0.6 M�, and b = 0.8. This mass combination was
chosen because Lorén-Aguilar et al. (2009b) used the same combination for gravitational
wave signal prediction, but we cannot replicate the large impact parameter they used on our
simulation grid, so the detonation looks quite different than in their case.
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7 White Dwarf Mergers

In this section we turn to results from merger calculations. We focus specifically on results
from two cases: one where the secondary is just filling its Roche radius (fR = 1.0); and one
where the secondary is already significantly overflowing its Roche radius (fR = 0.9). See
Section 3.2.1 for a description of the initialization procedure; fR is defined as the ratio of
the position of the location of the inner edge of the secondary (relative to the origin) to
the location where its inner edge would be equal to the location specified by the effective
Roche radius formula used in Equation 51. In the former case mass transfer begins slowly
and steadily, while in the latter the binary orbit quickly decays and the system coalesces.

7.1 Steady Mass Transfer

For the case with fR = 1.0, mass transfer begins immediately but at a slow and steady pace.
This would occur even if angular momentum was perfectly conserved, because the stars will
deform in response to the discrete nature of the grid and the tidal gravitational field of the
other star, and because the Roche lobe is not spherical, so some material will be jutting out
of the Roche lobe and become unbound from the secondary and fall onto the primary. For
the case fR = 1.0 we consider only the early mass transfer phase of the system so that we
can understand the convergence properties of the system and some basic properties of the
mass transfer.

To determine the resolution needed to get the dynamics right, we repeated a test similar
to that of Section 4.4, running the same problem on our usual coarse grid (n = 256 zones
per spatial dimension) and on grids that have jumps by a factor of two or four (n = 512
or n = 1024 effective zones per spatial dimension, respectively). In this section we choose
MP = 0.90 M� and MS = 0.60 M�, which for fR = 1.0 corresponds to an effective Keplerian
orbital period T = 61 seconds.

We ran the test in the four combinations corresponding to the inertial versus rotating
frames and the hybrid versus standard equations. We show most of the first orbit’s worth
of evolution in Figure 29 for evolution in the inertial frame using the standard Euler equa-
tions, and in Figure 30 for evolution in the co-rotating frame using the angular momentum-
conserving hybrid advection equations of Section 2.1.1. The metric we use is the distance
between the centers of mass for the two stars.

The results confirm what we saw in Section 4.4: the grid that refines within the stars
with only a jump by a factor of two, with effective spatial resolution of 200 km, is sufficient
to obtain qualitative convergence and obtain fairly accurate quantitative results. We use
results from that case in the remaining plots in this section. The dynamical evolution
between the two frames is qualitatively pretty similar, which confirms the trustworthiness of
the hybrid momentum formalism. The differences between the two methods become more
apparent upon looking at the angular momentum conservation in Figure 31. In the inertial
frame, the system slowly leaks angular momentum over time for either evolution method.
Angular momentum changes are inevitable because of losses or gains through the domain
boundary (both hydrodynamic and due to the source terms) and because the gravitational
and rotational forces may not numerically be conservative in their effect on the angular
momentum (for example, this can happen due to gravity because of the non-zero error
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Figure 29: Convergence properties of the fR = 1.0 merger for the first 50 seconds (corre-
sponding to approximately one full orbit) in the inertial frame with the standard equation
set. The vertical axis is the distance of the stars normalized to their initial distance. The
curves are labeled by the effective number of zones per dimension n.

tolerance in the solve for the potential). However, we have added to CASTRO the ability to
directly track the amount of mass, momentum, energy, and angular momentum lost off the
domain boundary due to hydrodynamic fluxes, and for the hybrid momentum evolution, the
angular momentum changes are almost entirely dominated by losses through the boundary,
with less than 1% of the angular momentum change due to effects other than boundary
losses. This implies that angular momentum within the stellar material itself is excellent.
That there is a steady loss of angular momentum on the full domain over this time period is
an indication of the fact that in the inertial frame, the stellar motion is constantly exciting
ambient material through hydrodynamic pressure waves as it plows through the ambient gas,
driving periodic motions that prevent the ambient material from reaching an equilibrium
state (at least at this early time). As one would expect for this mechanism, the amount of
angular momentum lost through the grid boundary is nearly identical for both the standard
and hybrid evolutions. The difference is that the inertial frame has an additional source of
angular momentum loss which is over twice as large as the amount lost to the grid boundary.
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Figure 30: Convergence properties of the fR = 1.0 merger for the first 50 seconds (cor-
responding to approximately 80% of one full orbit) in the rotating frame with the hybrid
equation set. The vertical axis is the distance of the stars normalized to their initial distance.
The curves are labeled by the effective number of zones per dimension n.

Consequently the angular momentum conservation for the hybrid equations is actually far
better than the plot first appears; the total size of the change in the angular momentum is
three orders of magnitude smaller for the hybrid equations when this effect is accounted for.
To illustrate this, in Figure 32 we show the same plot but with the domain boundary losses
of angular momentum subtracted. This result confirms that the hybrid advection technique
does a much better job at its intended goal of angular momentum conservation.

The results of the rotating frame tell a slightly different story. In Figure 31, we see
that the angular momentum evolution is nearly identical in the rotating frame for both the
standard and the hybrid evolution. This is a consequence of the rotation source term having
a property that the gravitational source term does not. Momentum conservation for the
latter is violated only to the extent that the cell-centered gravitational acceleration does not
exactly satisfy the Poisson equation (see Equation 13 and the surrounding text), which is
caused by small errors in the Poisson solve. By contrast, the rotation source term as applied
here is not numerically conservative, due mainly to the presence of the Coriolis term. This
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Figure 31: Angular momentum conservation error for the fR = 1.0 merger for the first 100
seconds. The vertical axis is the absolute value of the change in the angular momentum
relative to its initial value.

could potentially be mollified by changing the way the rotation source term for momentum
is applied, but that is outside the scope of this work. However, the angular momentum
eventually stabilizes (as we confirmed by running the simulation a little longer), as the non-
conservation effect here depends on the Coriolis force, which is proportional to velocity and
therefore becomes less important as the system reaches a quasi-stable equilibrium. This is
another application of the observation of Section 4.4 that while the rotating frame does a
reasonable job of keeping the system stable against collapse, the Coriolis force can wreak
havoc if the system is far from equilibrium in the frame. We note in passing that Byerly
et al. (2014) have advocated a compromise approach where the variables are advected in
a rotating frame but measured with respect to the inertial frame. This has the nice effect
of causing the Coriolis term to drop out of the angular momentum equation in the hybrid
equation set, so it is a promising avenue for future work.

The final quantity we look at is the mass of the stars over this time period, shown
in Figure 33. The mass of the secondary declines at a steady secular rate of approximately
2×10−5 M� s−1. This mass loss is modulated by a periodic oscillation of the stars around their
quasi-static orbital distance, a consequence of not starting the stars exactly in equilibrium.
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Figure 32: Same as Figure 31, but losses through the domain boundary have been subtracted.

This mass loss rate is such that if it were maintained linearly, the secondary would disrupt
completely in approximately 100 orbits. Of course, this estimate is an upper bound, as
white dwarfs expand when they lose mass, making escape of material through the Roche
lobe surface easier, amplifying the mass loss in a non-linear feedback loop (see the discussion
in Dan et al. 2011, Section 2 for an overview of the physics related to mass transfer stability).
Nevertheless, this estimate is far longer than the ∼ 1 orbital period that this system lasts
in Dan et al. (2011), and more in keeping with the ∼ 30 orbital periods of mass transfer
they obtained when starting from equilibrium initial conditions. Why is there such a stark
difference? It is true that an AMR code is better equipped to resolve small levels of mass
transfer than a SPH code that uses equal-mass particles because the density in a zone can
take effectively any value, while for the SPH code mass transfer occurs in more discrete
chunks corresponding to the motion of particles on the domain. Nevertheless, even a small
number of SPH particles would be sufficient to resolve the mass transfer rate we observe
in our simulation. The dominant effect actually comes from the fact that our initial WD
distance is about 15% larger. The cause of this is found in a relatively obscure place: the
use of Coulomb corrections in the equation of state. We enable the Coulomb corrections in
the Helmholtz equation of state, and for a given stellar mass the Coulomb corrections cause
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Figure 33: Mass of the primary (MP = 0.9 M�) and secondary (MS = 0.6 M�) stars for
fR, normalized to their initial masses. The evolution is done in the inertial frame with the
hybrid equation set.

the star to be more compact (the central density becomes about 10% higher), with a smaller
radius. But since, like Dan et al., we selected the initial WD distance to be based on the WD
radius, and the Roche lobe size does not depend on the WD radius, the effect of enabling the
Coulomb corrections is to make the distance implied by the Roche lobe-based algorithm to
be larger. While Dan et al. do not explicitly state whether they use the Coulomb corrections,
we obtain nearly exact agreement with the initial WD distance they report if we disable the
Coulomb corrections. (Note that there can be small differences in the reported radius even
for identical equations of state since the initial radius depends on what cutoff density is used
in computing the initial one-dimensional stellar model.) Consequently, less of our star is
outside the Roche lobe than theirs is, so our mass transfer is much steadier.

We agree with Dan et al., that equilibrium initial conditions can play an important role
in determining the subsequent mass transfer, and that the cause of this is largely due to
tidal deformation of the stars and also that the equilibrium simulation starts mass transfer
at a larger radius. The upshot here though is that we can use a larger initial distance even
without the equilibrium conditions; fR = 1.0 is not clearly the uniquely correct choice for
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“approximate“ initial conditions, as resolvable mass transfer can occur even at larger fR.
Due to this, and also because equilibrium initial conditions are themselves idealized cases
(and it is not even fully clear whether binary WDs do become completely tidally locked on
the relevant evolution timescale), a full understanding of the effect of the initial conditions
on the outcome of the merger process requires comparing merger simulations that realize
more fully the possible initial conditions for these systems.

7.2 Unsteady Mass Transfer

Here we briefly consider results for mergers that are immediately unstable to mass transfer.
Because of the above caveats about the initial conditions, these tests should not be considered
representative of how the mergers would physically occur. Future work will compare these
results against more accurate initial conditions.

7.2.1 Unequal Mass Merger

To obtain unstable mass transfer on a short simulation timescale, we repeated the test of
Section 7.1, for a 0.9 M� primary and 0.6 M� secondary, with fR = 0.9, so that the stars are
10% closer to each other. This is a very significant change, as now much of the secondary
is overflowing its Roche lobe and substantial mass transfer begins immediately; the mass
transfer rate reaches 10−3 M� s−1 in under five seconds. We ran the test with an effective
5123 zone, 200 km resolution for the hybrid advection case only, in both the inertial and
rotating frames. Snapshots of the evolution in both frames are found in Figure 34 and
Figure 35, respectively. The initial Keplerian orbital period for this system is 52 seconds, so
the timescale for complete disruption of the secondary is about three orbital periods.

The temperature peaks at around 109 K during this merger, which happens around
t = 135 s when the flow of stellar material onto the primary WD’s surface is near its
height. This occurs in material with densities approaching 106 g cm−3, so the conditions are
clearly ripe for significant levels of thermonuclear burning. In followup simulations we will
enable reactions to see what effect they have. However, two important caveats are worth
considering. First, the mass transfer phase here is more violent than it would be for different
initial conditions, so the burning here is not necessarily representative for all cases. Second,
the burning in this type of system may be susceptible to the same type of burning instability
that afflicts the collisions, so any detonation obtained at this low resolution should be viewed
with significant caution. We can make progress on this by adding significant refinement at
the impact point, though.

The conservation properties are similar as for the steady mass transfer phase (for the fol-
lowing, the data comes from the inertial frame run). At t = 150 s, after complete disruption
has occurred, the magnitude of the total angular momentum on the domain has decreased by
about 11%, but this is mainly due to mass leaving the domain as it is flung outward by the
tidal tail that develops. When this is accounted for, the angular momentum loss due to other
sources is about 0.02% of the initial angular momentum. Conservation of linear momentum
is not quite as good, but still respectable. A good proxy for this is to look at where the
system center of mass is. At t = 150 s, xCOM = 4.6×107 cm and yCOM = 9.8×107 cm. Recall
that the effective resolution is 200 km, so this is equivalent to the system center moving a
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few zones away from the center over the course of the evolution. The center of mass usually
stays a little better localized in the case where we evolve the linear momentum equations.
About 0.7% of the initial energy is lost, half of which is accounted for by hydrodynamic
fluxes off the domain.
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Figure 34: Density evolution for the unequal mass merger starting with fR = 0.9. The view
is a slice plot of the z = 0 plane. The evolution is in the inertial frame. For visual clarity
we show only the inner 75% of the domain. The simulation time is displayed in the upper
left corner of each pane.

Figure 36 shows the gravitational wave signal for this event. The signal has the expected
characteristics for such an event when viewed perpendicular to the rotation axis: initially, the
signal has a constant amplitude and an oscillation period equal to half the orbital frequency.
As significant mass transfer sets in, the frequency increases because of rapid coalescence,
and then the system eventually relaxes to an equilibrium (the ringdown phase).
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Figure 35: Density evolution for the unequal mass merger starting with fR = 0.9. The view
is a slice plot of the z = 0 plane. The evolution is in the rotating frame. For visual clarity
we show only the inner 75% of the domain. The simulation time is displayed in the upper
left corner of each pane. In this plot we have not transformed back to the inertial frame.
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Figure 36: Gravitational wave strain for the unequal mass merger starting with fR = 0.9.
From top to bottom, we show the + and × polarizations for observers at 10 kpc along the
x, y, and z axes respectively.
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7.2.2 Equal Mass Merger

Equal-mass mergers are maximally unstable against mass transfer so they provide a limiting
case for how violent the coalescence phase is. We use two 0.9 M� mass stars for the sim-
ulation shown here, again with fR = 0.9 and an effective 200 km resolution. The inertial
frame evolution is displayed in Figure 37 and the rotating frame evolution is displayed in
Figure 38. The initial Keplerian orbital period for this system is 24 seconds, so the co-
alescence has essentially completed, leaving a single merged remnant, within two orbital
periods. The conservation properties are very similar to those discussed in Section 7.2.1.
The corresponding gravitational wave signal is shown in Figure 39.
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Figure 37: Density evolution for the equal mass merger starting with fR = 0.9. The view is
a slice plot of the z = 0 plane. The evolution is in the inertial frame. For visual clarity we
show only the inner 75% of the domain. The simulation time is displayed in the upper left
corner of each pane.
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Figure 38: Density evolution for the equal mass merger starting with fR = 0.9. The view is
a slice plot of the z = 0 plane. The evolution is in the rotating frame. For visual clarity we
show only the inner 75% of the domain. The simulation time is displayed in the upper left
corner of each pane. In this plot we have not transformed back to the inertial frame.
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Figure 39: Gravitational wave strain for the unequal mass merger starting with fR = 0.9.
From top to bottom, we show the + and × polarizations for observers at 10 kpc along the
x, y, and z axes respectively.
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8 Conclusions

Reacting, self-gravitating, hydrodynamic flows pose many interesting computational chal-
lenges, in both computational performance and numerical accuracy. There are outstanding
questions of numerical stability both in the pure hydrodynamics (Section 4.3) and in the
reactions (Section 2.5.4), and fundamental questions about how to correctly couple hydro-
dynamics, gravity, and reactions together given that they operate on fundamentally different
timescales and have very different effects on the nature of the fluid flow. We have seen that
failure to pay careful attention to this coupling can lead to devastating effects like viola-
tion of energy and angular momentum conversation and numerically seeded thermonuclear
detonations. All of these effects, and more, make it very difficult to state with confidence
whether a given system is likely to correspond to an observed astrophysical explosion based
on simulation results. The point of this dissertation is therefore not to make definitive state-
ments about the extent to which double white dwarf systems contribute to particular events
like Type Ia supernovae, but rather to answer the question of when we can trust the results
of simulations of these events, and to suggest computational techniques that improve the
legitimacy of these simulations. We hope that our work instills the point that one should
not simply download a research-grade simulation code and use it without understanding the
impact of the various choices made in the software.

For merger simulations, we found that the most important stumbling blocks to trustwor-
thy simulations are the non-conservation of energy (due to the coupling of the gravitational
and rotational forces to the hydrodynamics), and the non-conservation of angular momen-
tum. Both can play very important effects on the long-term stability of a binary system,
and also shape the mass transfer phase. It must be emphasized that conservation of angular
momentum and energy are not always obviously the right things to enforce in a simulation;
sometimes small violations of these properties can be justified if it means more accurate
thermodynamics or hydrodynamics on smaller timescales. But if what we are interested
in is the long-term stability of the flow, then paying attention to the conservation proper-
ties is paramount. While an angular-momentum-conserving approach (say) may introduce
non-physical artifacts into the simulation that cause the stellar flow to be inaccurate, the
artifacts are certainly less disastrous than the alternative of ignoring conservation, as this
leads to spurious coalescence. We have found that the use of a hybrid advection technique
that advects angular and radial momentum (and therefore conserves the former hydrody-
namically) rather than linear momenta can be very helpful in improving the conservation
properties for angular momentum. And for conservation of energy, we found that explicitly
constructing the source terms in a conservative manner (for example, by evaluating source
terms at zone edges where hydrodynamic fluxes actually occur rather than zone centers)
permits reasonable conservation of energy on much longer timescales than was previously
possible in our simulations. Future work on the mergers can then pay attention to the con-
struction of accurate and physically meaningful initial conditions, confident that the issues
with the subsequent evolution have been well-characterized.

Collisions of white dwarfs are less challenging from the perspective of the gravity and
rotation forces, but they easily make up for it in their demand for accurate evolution of
the nuclear reaction source term. In this work we have characterized two effects that play
a major role on the accuracy of these simulations. First, the operator splitting coupling
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the hydrodynamics and reaction steps introduces non-physical artifacts due to the feeding of
fresh, unburned material into the burning region occurring in staggered, discrete steps rather
than continuously. We have shown that this can have a very large effect on the accuracy
of a simulation and that using a timestep limiter that accounts for this can help limit the
effect. However, we also showed that the amount of limiting needed to achieve a converged
simulation is prohibitively large. Future work should focus on more accurate methods of
coupling these two updates. Second, low spatial resolution introduces the possibility of
numerically seeded detonations that bear no resemblance to what a physical detonation
would look like. However, the correct spatial resolution needed to fully avoid this possibility
is also quite restrictive (note though that higher spatial resolution automatically leads to
smaller timesteps due to the CFL stability criterion, which may capture some of the temporal
resolution effect just described, so even adding some resolution will often be worth it even
if the full resolution cannot be achieved). Furthermore, even adaptive mesh refinement that
targets this effect can miss a detonation that begins before the refinement has kicked in, and
we have shown that adding resolution can actually make the result look even more incorrect
than using low resolution (though this really says that the coarse resolution simulations are
simply not qualitatively correct, and the fact that they get a plausible answer for the head-
on collision problem is to some extent a consequence of the nature of the problem). Future
work should be focusing on efforts that add resolution in the places where it is needed rather
than resorting to approximate workarounds, but the computational resources demanded by
this will make it difficult to perform large studies of the collision parameter space in three
dimensional simulations. At any rate, it is clear that the story of explosive burning in
hydrodynamics simulations is far from over. This has relevant consequences even for the
question of whether the inspiral mergers can lead to detonations, because simulations that
have found detonations in these mergers typically have employed spatial resolutions that
are far too low to understand the small-scale burning activity. It is quite likely that if the
requisite resolution were to be added, the location and time of any detonations may change
substantially, or even reveal the detonation itself to be spurious.

More broadly, this dissertation is intended to emphasize that the challenges of accurate
large-scale hydrodynamical simulations require a rigorous understanding of the limitations
of these simulations and a serious approach to reproducibility. Much of the challenge in
comparing results from different simulation methods and academic groups is the lack of a
common language in which to perform such comparisons, and often a lack of motivation to
be fully open about the details of the computational methods used make it quite difficult
to reproduce the work of others. We hope that by publishing fully the software we have
used for the generation and analysis of our simulation results, we are encouraging others
to examine our approach and challenge the assumptions we make, in addition to the more
prosaic but crucially important issues like finding programming errors. The only way that
this can be achieved is by throwing as much sunlight on what we are doing as is possible, so
that others who seek to replicate our work do not have much trouble in understanding what
we did. Even if we ignore the broader concerns about the impact of study replicability, there
is a simple reason why publishing of the software is important: it is not feasible or desirable
to list every minor code choice in a research document. Publishing the software allows the
researcher to safely decide what details are relevant to include in the text of a manuscript,
and what details are best left for the documentation of the software itself, without being
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concerned that important details about what actually went on in the simulations are being
hidden.

In conclusion, much work remains to be done in our effort to understand binary white
dwarf systems and their relevance to Type Ia supernovae. There are important outstanding
questions about the nature of the progenitors and the initial conditions of the simulation –
for example, to what extent do carbon-oxygen white dwarfs have a surface helium layer, and
does this helium layer impact the viability of explosion in these white dwarfs? Similarly, the
interior of the white dwarfs is not uniform carbon and oxygen in reality, and results from
stellar evolution calculations can inform our simulations to be more realistic in this vein.
Future work on this project will largely focus on the impact of the initial composition and
density profiles, and on how nuclear reactions affect the system evolution in particular. The
goal of this dissertation was to create a framework for studying these questions that allows
us to reliably understand whether the results of a given simulation are physically plausible.
We hope that the tools we have provided in service of this goal are one small step in the
right direction.
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A Proof of Energy Conservation in Simulations using

Self-Gravity

In Section 2.3.1, we described our approach to updating the gas energy in response to
motions of fluid through the self-generated gravitational potential using Equation 17. While
it is straightforward to observe that this approach should be conservative for an arbitrary
fixed external potential Φ, it is not as obvious that this should be so for a self-generated
potential which changes in response to mass motions on the domain. To see that this still
holds for the self-generated gravitational potential Φ, let us start with Equation 17 in a
slightly revised form:

∆(ρE)i = −1

2

∑
j

∆ρij(Φi − Φj) (77)

where by ∆ρij we mean the density transferred from zone j to zone i, so that ∆ρij = −∆ρji,
and the sum is over all zone indices j that are adjacent to zone i. Let us define Φij = Φji =
(Φi + Φj)/2 as the potential on the zone interface between zones i and j. Then we have:

∆(ρE)i = −
∑
j

∆ρij(Φi − Φij). (78)

We can evalute the sum for all of the terms proportional to Φi by observing that the change
in density from time-level n to time-level n + 1 is the sum of the density fluxes from all
adjacent zones.

∆(ρE)i = −(ρn+1
i − ρni )Φi +

∑
j

∆ρij Φij

Now let us sum this over all zones i in the domain, and ignore the domain boundaries, or
assume that they are far enough away from the region of compact support for ρ that Φ is
negligible there. As the second term on the right-hand side is antisymmetric in i and j, it
cancels when summing adjacent zones, and we have:∑

i

(ρE)n+1
i −

∑
i

(ρE)ni = −1

2

∑
i

(Φn+1
i + Φn

i )(ρn+1
i − ρni )

Note that, as explained the text, we are using a time-centered Φ to correspond to the mass
fluxes at time-level n+ 1/2. Finally we re-write this in a form where the difference in total
energy between time-levels n and n+ 1 is on the left-hand side and any sources causing this
to be non-zero are on the right-hand side:

∑
i

(
ρE +

1

2
ρΦ

)n+1

i

−
∑
i

(
ρE +

1

2
ρΦ

)n
i

=
1

2

∑
i

(
Φn+1
i ρni − Φn

i ρ
n+1
i

)
=

1

8πG

∑
i

(
Φn+1
i ∇2Φn

i − Φn
i∇2Φn+1

i

)
(79)

Equation 79 expresses total energy conversation if and only if the right-hand side vanishes.
We observe that the right-hand side has the form of a variant of the divergence theorem
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often called Green’s second identity:∫
(Φn∇2Φn+1 − Φn+1∇2Φn)dV =

∫ (
Φn∇Φn+1 − Φn+1∇Φn

)
· dS, (80)

where dS is the area element with vector component parallel to the outward normal. The
analogous result holds for the discretized form in Equation 79. With the assumptions used
above, the right-hand side of Equation 80 will vanish as the surface integral is evaluated
at infinity, where the potential tends to zero. This concludes the proof that the method is
conservative when the potential used at the zone interfaces is time-centered, even in light
of the change of the potential over the timestep due to the mass motion that is causing the
change in the energy.

From the above discussion it is straightforward to see exactly why the method is not fully
conservative to machine precision in practice. First, we cannot simulate the domain out to
infinity, so Green’s second identity does not hold exactly and there is some loss or addition
of energy at domain boundaries. Second, Equation 79 holds in the continuum limit by using
the Poisson equation, but in practice it is not exactly true that ρi = 4πG∇2Φi due to small
errors in the potential at the level of the tolerances used in the Poisson solver.
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B Formulation of the Multipole Expansion for the Grav-

itational Potential

The integral formulation of the gravitational potential, using a series expansion in spherical
harmonics, is:

Φ(x) = −G
∞∑
l=0

l∑
m=−l

4π

2l + 1

∫
ρ(x′)Ylm(θ, φ)Y ∗lm(θ′, φ′)

rl<
rl+1
>

dV ′, (81)

where θ is the polar angle and φ is the azimuthal angle, r ≡ |x| is the radial distance, and at
any point in the domain r< is the smaller of r and r′, and r> is the larger of the two. This
immediately suggests writing the potential at any location as the sum of two series:

Φ(x) = −G
∞∑
l=0

l∑
m=−l

4π

2l + 1

[
qLlm(x) r−l−1 + qUlm(x) r−l−1

]
Ylm(θ, φ),

where we have defined two multipole moments as integrals over the domain:

qLlm(x) =

∫
dV ′ ρ(x′)Y ∗(θ′, φ′) Θ(r − r′) r′l (82)

qUlm(x) =

∫
dV ′ ρ(x′)Y ∗(θ′, φ′) Θ(r′ − r) r′−l−1

. (83)

Θ(r) is the standard step function, equal to one if the argument is positive and zero if the
argument is negative. Geometrically, qL(x) is an integral containing only mass interior to
|x|, and qU(x) is an integral containing only mass exterior to |x|. Provided that one has
computed these two integrals for a point x, one can use the series expansion to calculate the
potential at that point in principle to arbitrary accuracy by including higher order terms.

We prefer to work with solely real-valued quantities, and so we make use of the addition
theorem for spherical harmonics (Jackson, 1998, Section 3.6):

4π

2l + 1

l∑
m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ) = Pl(cos θ)Pl(cos θ′)

+ 2
l∑

m=1

(l −m)!

(l +m)!
Pm
l (cos θ)Pm

l (cos θ′) [cos(mφ) cos(mφ′) + sin(mφ) sin(mφ′)] . (84)

The Pl(x) are the Legendre polynomials and the Pm
l (x) are the associated Legendre poly-

nomials. We construct them using a stable recurrence relation given known values for l = 0
and l = 1. We can then formulate the expansion in a different way:

Φ(x) = −G
∞∑
l=0

{
Q

(L,0)
l (x)Pl(cos θ) r−l−1 +Q

(U,0)
l (x)Pl(cos θ) rl

+
l∑

m=1

[
Q

(L,C)
lm (x) cos(mφ) +Q

(L,S)
lm (x) sin(mφ)

]
Pm
l (cos θ) r−l−1

+
l∑

m=1

[
Q

(U,C)
lm (x) cos(mφ) +Q

(U,S)
lm (x) sin(mφ)

]
Pm
l (cos θ) rl

}
(85)
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The multipole moments now take the form:

Q
(L,0)
l (x) =

∫
Pl(cos θ′) Θ(r − r′) r′lρ(x′) d3x′ (86)

Q
(U,0)
l (x) =

∫
Pl(cos θ′) Θ(r′ − r) r′lρ(x′) d3x′ (87)

Q
(L,C)
lm = 2

(l −m)!

(l +m)!

∫
Pm
l (cos θ′) cos(mφ′) Θ(r − r′) r′lρ(x′) d3x′ (88)

Q
(U,C)
lm = 2

(l −m)!

(l +m)!

∫
Pm
l (cos θ′) cos(mφ′) Θ(r′ − r) r′−l−1

ρ(x′) d3x′ (89)

Q
(L,S)
lm = 2

(l −m)!

(l +m)!

∫
Pm
l (cos θ′) sin(mφ′) Θ(r − r′) r′lρ(x′) d3x′ (90)

Q
(U,S)
lm = 2

(l −m)!

(l +m)!

∫
Pm
l (cos θ′) sin(mφ′) Θ(r′ − r) r′−l−1

ρ(x′) d3x′. (91)

In practice, of course, we select some maximum value lmax at which we terminate the sum-
mation, determined either by computational efficiency requirements or by the fact that there
is little information at high orders for sufficiently smooth mass distributions. In CASTRO we
have the capability to compute any of the above multipole moments, though in this disser-
tation we are only using the multipole expansion to calculate the boundary conditions on
the potential, and so we neglect calculation of the moments with a U subscript as we are
assuming that all of the mass is interior to the boundary. Equation 20 is directly recovered
under these conditions.
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