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Abstract of the Dissertation

A first-principles study of structural, electronic and optical

properties of GaN, ZnO and (GaN)1−x(ZnO)x

by

Jian Liu

Doctor of Philosophy

in

Physics

Stony Brook University

2015

The pseudobinary (GaN)1−x(ZnO)x alloy is attractive for its high efficiency
in photocatalytic water splitting[1]. Its reduced band gap is a main ad-
vantage for harvesting solar energy. Short-range order (SRO) dramatically
affect the atomic and electronic structures due to the non-isovalent nature
of the alloy. In this thesis, I perform Monte-Carlo simulations on a first-
principles-based cluster-expansion model[2, 3, 4, 5] to show the existence of
SRO in (GaN)1−x(ZnO)x alloy. I also construct the special quasi-ordered
structures to faithfully include SRO in a computationally affordable super-
cell. Subsequent density-functional theory (DFT) calculations reveal signif-
icant influence of SRO on the structural, electronic and optical properties
of (GaN)1−x(ZnO)x alloy. The short-range ordered alloys experience smaller
lattice bowing as well as band gap bowing than the disordered alloys. The
role of SRO in the band-gap reduction is dominated by the Zn3d-N2p re-
pulsion. SRO inhibits the nearest-neighbor Zn-N pairs, which affects the
strength of the Zn3d-N2p repulsion and consequently the top of the valence
band.
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Electronic structure method can now handle fairly large supercells (e.g., over
100 atoms). For the study of non-isovalent semiconductor alloys, a large su-
percell is generally favored in order to average out the fluctuation error due
to the nite size of the supercell. As large structural relaxations are expected,
DFT total energy and force calculations have the merit of rigor, but are
computationally expensive. Therefore it is desirable to pre-relax the inter-
nal atomic positions in an economical way. In this thesis, the bond valence
method[6] (BVM) and its application in (GaN)1−x(ZnO)x alloy is studied.
Particular attention is paid to the role of SRO. A physical interpretation
based on atomic orbital interaction is proposed and examined by DFT cal-
culations. Bond-length distribution and bond-angle variation are predicted
by parameter-fitting BVM empirical correlations to reliable DFT-calculated
structural data. The correlation between bond valence and bond stiffness is
revealed. The concept of bond valence is extended into the modelling of an
atomistic potential.

The pure end-member semiconductors of (GaN)1−x(ZnO)x alloy, GaN and
ZnO, have spontaneous polarizations comparable with those of ferroelectric
materials. Nowadays spontaneous polarization can be predicted at the first-
principles level[7]. However, pyroelectricity, namely the temperature depen-
dence of the spontaneous polarization, has not been investigated at the first-
principles level. In this thesis, I discuss the pyroelectric theory of Born[8]
in detail. Through first-principles calculations, the primary pyroelectricity is
calculated according to the anharmonic internal displacements of the Born
effective charges on the cations and anions. While the primary (anharmonic
internal displacement) pyroelectricity contributes the major part of the to-
tal pyroelectricity at low temperatures, the secondary (thermal expansion)
pyroelectricity becomes comparable with the primary pyroelectricity at high
temperatures. An efficient way of calculating third-order force constants at
zone-center using the dynamical matrix is proposed.

In this thesis, I also include a chapter on a preliminary study of combining
Allen-Heine-Cardona (AHC) theory with the Virtual Crystal Approximation
(VCA) in order to obtain the temperature dependence of the band gap of iso-
valent semiconductor alloy Ga1−xInxN. I report on the structural, electronic
and vibrational properties of the Ga1−xInxN alloy from first-principles. I
show that VCA ignores disorder effect and is therefore unable to describe the
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broadening of the phonon spectra upon alloying. The role of electron-phonon
interaction in the temperature dependence of the band gap is also studied
for GaN, InN and their alloy Ga1−xInxN. The calculated zero-point motion
renormalization and the fitted Varshni parameter over the entire composition
range are discussed.
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Chapter 1

1 Background

1.1 (GaN)1−x(ZnO)x: Short-range Order

Relative to pure end-member materials, the non-isovalent pseudobinary semi-
conductor alloy (GaN)1−x(ZnO)x shows improved efficiency as a photocata-
lyst in splitting water into hydrogen and oxygen under visible light illumination[1].
High efficiency is partly attributed to the band-gap reduction which can be
tuned by varying the ZnO content x of the alloy. First-principles calculations
show that including short-range order (SRO) could dramatically affect the
band gaps of the heterovalent semiconductor alloys[9, 10]. Experiments on
different (GaN)1−x(ZnO)x samples also observe large variation in the band
gaps, which could be attributed to the different degrees of SRO introduced in
growing the samples. For example, the absorption edge shifts monotonically
to longer wavelength with increasing x for samples synthesized by nitrida-
tion of nanocrystalline ZnGa2O4 and ZnO precursors[11], while a minimum
gap at x ∼ 0.5 is found for samples synthesized by mixing of GaN and ZnO
powders at high pressure and high temperature[12]. Previous theoretical
studies assume the (GaN)1−x(ZnO)x alloy to be completely random, and use
the Special Quasirandom Structure (SQS) method to construct supercells
mimicking random alloys[13, 14, 15]. However, even for isovalent ternary
nitride semiconductor alloys, neglecting SRO introduces non-negligible sys-
tematic errors[16]. The situation is compounded for the (GaN)1−x(ZnO)x
alloy whose heterovalent nature favors local charge neutrality and therefore
valence-matched nearest-neighbor Ga-N and Zn-O pairs. The aim of this
thesis is to construct DFT-affordable supercells whose structural correlations
reflect the actual SRO at certain thermodynamic condition (x, T ). This will
allow us to study with a single DFT calculation the statistical average atomic,
electronic and vibrational properties of the (GaN)1−x(ZnO)x alloy.
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1.2 (GaN)1−x(ZnO)x: Bond Valence Method

In order to fulfill the local charge neutrality, the substitutional SRO is accom-
panied with and compensated by the positional atomic deviation from the
ideal lattice sites. Therefore it is imperative to study the large composition-,
temperature- and SRO-dependent (x, T,Π) structural relaxations. The bond
valence method (BVM) is widely adopted in solid state chemistry for various
applications including prediction of the molecular geometry[17], construction
of the atomistic potentials for perovskite oxides[18, 19], and calculations of
the acidity constant pKa[20, 21]. Its power in predicting the energetics for
non-isovalent semiconductor alloys is recently demonstrated[22, 23]. In inor-
ganic chemistry the BVM is commonly recognized as an empirical tool, the
underlying physics of which is not widely discussed. For example, the fact
that bond valence correlates strongly with bond length[17] indicates the con-
nection between bond valence and bond-length-dependent transferable force
constant[24]. Also the correlation between total energy and bond valence[17]
is not fully understood yet. Brown[17] proposed a “more rigorous but less
physical” analogy of the Kirchhoff circuit law which treated the bond valence
network as a capacitive electric circuit. Burdett[25] derived an interpreta-
tion from a molecular orbital basis. There is also some similarity between
the bond valence and the Mayer bond order[26]. In this thesis, a physical
interpretation of BVM is discussed from the computational perspective. The
underlying assumptions within BVM are revealed by DFT calculations on
the non-isovalent semiconductor alloy (GaN)1−x(ZnO)x. The aim is a re-
liable prediction for bond-length distribution and bond-angle variation by
parameter-fitting BVM empirical correlations to DFT-calculated structural
data.

1.3 Pyroelectricity

Pyroelectricity, defined as the temperature dependence of the spontaneous
polarization, is a fundamental and poorly understood property[27]. Among
various applications, pyroelectric materials are widely used in thermal in-
frared (IR) detectors[28] for their sensitivity over a wide range of temper-
ature. Among the non-ferroelectric pyroelectrics, wurtzite crystals exhibit
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spontaneous polarization and pyroelectricity comparable with those of ferro-
electric pyroelectrics, and are candidates for high-temperature IR detection
because they do not lose pyroelectricity at the Curie temperature. Recent de-
velopments include the measurement of significant pyroelectricity of c-plane
GaN at room temperature[29, 30]. Peng and Cohen[31] studied the origin of
pyroelectricity in LiNbO3 using molecular dynamics with a first-principles-
based shell model potential. They found that the primary pyroelectric effect
is the major part of the pyroelectricity, and comes from the anharmonic
atomic displacement of participating ions carrying Born effective charges.
This agrees with the estimate of Zook and Liu[32] that the effects of clamp-
ing are negligible for the ferroelectric pyroelectrics. However they estimate
a more significant secondary effect for the non-ferroelectric wurtzite pyro-
electrics. Nowadays spontaneous polarization can be predicted at the first-
principles level[7], but corresponding theory for pyroelectricity seems not to
exist. In this thesis I give a first-principles quasi-harmonic theory and calcu-
lation for pyroelectricity in wurtzite GaN and ZnO.

1.4 Ga1−xInxN: Electron-phonon Interaction

The Ga1−xInxN alloy has attracted great interest due to its technological im-
portance in optoelectronics and electronics. Direct generation of hydrogen by
splitting water using solar energy has also been reported for the Ga1−xInxN
alloy[33]. The band gap of the Ga1−xInxN alloy can be tuned to cover nearly
the entire solar spectrum, from 0.8 eV (InN) to 3.5 eV (GaN), by vary-
ing the composition x. Many basic properties of the Ga1−xInxN alloy are
not well known due to the difficulty in growing high quality samples. The
composition-dependence of the band gap, also known as the band gap bow-
ing, has been extensively studied in recent years. However, consensus on the
band gap bowing of the Ga1−xInxN alloy has not been reached. A bowing pa-
rameter b of 1.43 eV is reported from an early measurement[34], while more
recently a considerably larger value of 2.8 eV is experimentally observed[35].
Results from first-principles calculations range from 1.1 eV (HSE06)[36], 1.3
eV (LDA-1/2)[37] and 1.5 eV (mBJ)[38] to 2.1 eV (LDA+C)[39], depending
on the exchange-correlation functional used. The enhancing effect of Indium
clustering on the band gap bowing has also been examined[39, 40]. Previous
first-principles calculations rely on either one reasonably sized special quan-
sirandom structure (SQS) supercell or a statistical ensemble of clusters to
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account for the compositional disorder. The virtual crystal approximation
(VCA), on the other hand, has the main advantage of simplicity in modelling
the disordered alloy. VCA has demonstrated good accuracy for semiconduc-
tor alloys and ferroelectric perovskite solid solutions[41, 42]. It offers an
efcient way of studying quantities which are computationally more demand-
ing such as vibrational properties and electron-phonon interactions. Indeed it
is found that the inclusion of lattice vibrations, which is commonly neglected
due to its prohibitive computational cost, could reduce the order-disorder
transition temperature by ∼30%[43].

1.5 Outline

The thesis is organized as follows. Chapter 2 introduces the density-functional
theory (DFT), the density-functional perturbation theory (DFPT) and the
cluster expansion (CE) method. Chapter 3 presents an extensive study on
the atomic, electronic and vibrational properties of the (GaN)1−x(ZnO)x al-
loy using a modified version of the SQS method — the Special Quasi-ordered
Structures (SQoS) method. Chapter 4 focuses on a convenient and accurate
prediction of the bond-length distributions and bond-angle variations in the
(GaN)1−x(ZnO)x alloy using the bond valence method (BVM). Chapter 5
is devoted to the theoretical and computational studies of pyroelectricity in
wurtzite GaN and ZnO. Chapter 6 reports on the structural, electronic and
vibrational properties of the Ga1−xInxN alloy. Other theories/methods used
in this thesis (SQoS in Chapter 3, BVM in Chapter 4 and pyroelectric theory
of Born in Chapter 5) are introduced at the beginning of each corresponding
chapter respectively.
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Chapter 2

2 Methods

2.1 Density Functional Theory

Density functional theory is based upon the Hohenberg-Kohn theorems[44].

Theorem I: For any system consisting of interacting electrons in an external
potential Vext(r), the potential Vext(r) and hence the Hamiltonian is uniquely
determined, except for a constant, by the ground state electron density n0(r).
Theorem II: For any Vext(r), a universal functional for the total energy E[n]
in terms of the density n(r) can be defined, the global minimum value of
which is the exact ground state energy, while the density n(r) minimizing
the total energy functional E[n] gives the exact ground state density n0(r).
The Hohenberg-Kohn energy functional is

EHK[n] = T [n] +

∫

d3rVext(r)n(r) + EII + Eint[n] (2.1)

where T [n] and Eint[n] are kinetic and potential energies of the interacting
electron system, and EII is the interaction energy of the nuclei. While DFT
is made possible by the Hohenberg-Kohn theorems, the exact functionals
remain unknown. The Kohn-Sham approach replaces the original full in-
teracting many-body system with an auxiliary non-interacting independent-
electron system[45]. The Kohn-Sham energy functional is

EKS[n] = Ts[n] +

∫

d3rVext(r)n(r) + EII + EHartree[n] + Exc[n] (2.2)

where Ts[n] is the independent-electron kinetic energy, and the Hartree en-
ergy is given by

EHartree[n] =
1

2

∫

n(r)n(r′)

|r − r′|
drdr′ (2.3)

All the complicated many-body exchange and correlation interactions are
grouped into the exchange-correlation energy Exc. By applying variation of
the Kohn-Sham energy functional EKS with respect to the wavefunctions,
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Kohn-Sham approach leads to self-consistent Schrödinger-like independent-
electron Kohn-Sham equations with an effective Kohn-Sham potential

VKS(r) = Vext(r) +
δEHartree

δn(r)
+
δExc

δn(r)

= Vext(r) + VHartree(r) + Vxc(r)

(2.4)

Fig. 2.1 shows schematically the flowchart for solving Kohn-Sham equations
self-consistently[46].

Although the exact functional Exc[n] is unknown, approximate function-
als are proposed. The most widely used ones include the Local Density
Approximation[47, 48] (LDA) and the Generalized Gradient Approximation[49]
(GGA). The LDA exchange and correlation potential V LDA

xc is derived from
the homogeneous electron gas model, and is expressed in terms of the local
density n(r) as

V LDA
xc (r) = ǫhomxc (n(r)) + n(r)

∂ǫhomxc (n(r))

∂n(r)
(2.5)

The GGA exchange and correlation potential V GGA
xc requires the local density

and its gradient

V GGA
xc (r) = ǫhomxc (n(r)) + n(r)

∂ǫhomxc (n(r))

∂n(r)
−∇

(

n(r)
∂ǫhomxc (n(r))

∂∇n(r)

)

(2.6)

2.2 Density Functional Perturbation Theory

While DFT provides the ground state electron density and total energy, the
Density Functional Perturbation Theory investigates response functions un-
der external perturbations. DFPT has been particularly successful in pre-
dicting many physical properties[50]. Typical perturbations include atomic
displacement, strain and external macroscopic electric field. Consider the
phonon perturbation {R}. According to the Hellmann-Feynman theorem,
the matrix of interatomic force constants (IFCs) read

∂2EKS({R})

∂RIRJ

=

∫

∂2VKS({R})

∂RIRJ

n(r)dr +

∫

∂VKS({R})

∂RI

∂n(r)

∂RJ

dr (2.7)
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Figure 2.1: Schematic representation of the self-consistent loop for solution
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The linear response of the ground state electron density is

∂n(r)

∂RI

= 4Re

N/2
∑

m=1

ψ∗
m(r)

∂ψm(r)

∂RI

(2.8)

The variation of wavefunctions is obtained by first-order perturbation theory:

(H
(0)
KS − ǫ0m)|ψ(1)

m 〉 = −(H
(1)
KS − ǫ1m)|ψ(0)

m 〉 (2.9)

where H
(0)
KS = −1

2
∇2 + VKS is the unperturbed Kohn-Sham potential, and

H
(1)
KS is its first-order variation

H
(1)
KS = V

(1)
ext (r) +

∫

n(1)(r′)

|r − r′|
dr′ +

∫

δVxc
δn(r′)

n(1)(r′)dr′ (2.10)

Analogous to the Kohn-Sham equations, equations (2.8)-(2.10) form a set of
self-consistent equations, the solution of which readily leads to IFCs in Eqn.
(2.7).

2.3 Cluster Expansion Method

In the cluster expansion (CE) method, the energetics of a substitutional alloy
is modeled by a generalized Ising-type Hamiltonian. Consider a binary alloy
AxB1−x, the total energy as a function of volume V is expressed as[4]

E(V ) =
∑

n

vn(V )ξn (2.11)

where vn(V ) is the (unknown) many-body interaction potential, also referred
to as effective-cluster interactions (ECIs) in some literature. ξn is the multi-
site correlation of an nth order cluster. The correlation function is written
as

ξn =
1

Nn

∑

{p}

σp1σp2 ...σpn (2.12)

where the spin variable σp takes the value of +1 (if the site is occupied by an
A atom) or −1 (if the site is occupied by a B atom). The summation goes
over all the Nn number of clusters in a given structure. It can be shown that
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Table 2.1: Values of ECIs in meV.

{0, 0} {1, 1} {2, 1} {2, 2} {2, 3} {2, 4} {2, 5} {2, 6}
495.69 −2.20 −134.19 −112.95 29.29 29.82 31.21 39.25
{2, 7} {2, 8} {2, 9} {2, 10} {2, 11} {2, 12} {2, 13} {2, 14}
−6.89 −4.96 −4.19 −0.88 −1.55 −3.59 −5.24 −4.88

the expansion is exact if the correlation functions form a complete basis in
the configurational space[3, 4, 5]. In practice, it is often sufficient to truncate
the correlations to the first few nearest neighbor pair/three-body/four-body
interactions. Then the ECIs can be treated as fitting parameters, and the
truncated total energies are obtained from first-principles DFT calculations
for selected configurations. Since vn(V ) is volume-dependent, it is important
that the total energy is minimized at the corresponding equilibrium volume
with respect to only the internal atomic coordinates. In the present study
we use a previously constructed CE model for the (GaN)1−x(ZnO)x alloy[2].
Table 2.1 lists the values of the ECIs thus obtained. The geometries of the
clusters are enumerated in the inset of Fig. 3.1.

Once constructed, the CE model requires the site occupancy as input and
allows one to study the thermodynamic properties of the alloy from Monte-
Carlo simulations[51]. For example, in Fig. 2.2 we show for the (GaN)1−x(ZnO)x
alloy the energy distribution of ensembles thermodynamically equilibrated
at 1200K and 10, 000K. In Fig. 2.3, we show for the (GaN)1−x(ZnO)x al-
loy at x=0.5 the formation energy as a function of temperature. Through
the Monte-Carlo simulations combined with the CE method, we are able to
predict that the (GaN)1−x(ZnO)x alloy at x=0.5 orders at low temperatures
and undergoes a first-order order-disorder transition at T ≈ 870K. Other
properties, such as the configurational entropy, could also be evaluated in a
similar manner (Fig. 2.4).
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Figure 2.2: Energy distribution P (E) for the (GaN)1−x(ZnO)x alloy at x=0.5,
equilibrated at T = 1200K and T = 10, 000K.

Figure 2.3: Formation energy as a function of temperature at x=0.5. The
statistical error is smaller than the width of the line.
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Figure 2.4: Configurational entropy at x=0.5 calculated with the Monte-
Carlo simulation and with a SRO-corrected approximate model.
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Chapter 3

3 (GaN)1−x(ZnO)x: Short-range Order

3.1 Special Quasi-ordered Structures

Understanding the role of order and disorder in determining physical prop-
erties such as bond length is complicated by the difficulty in modeling the
numerous local chemical environments of the alloy. The motivation of the
SQS approach is to approximate the actual alloy with one representative spe-
cial structure S whose structural correlation functions Πk,m(S) best match
the corresponding ensemble-averaged 〈Πk,m〉 of the realistic alloy. For the
structural correlations, the notations are adopted from Ref. [52]. The site
occupation is denoted by Ising spin σi with σ = 1 denoting Ga/N and σ = −1
denoting Zn/O. The total energy of configuration s is expanded in terms of
clusters (called “figures” and labeled as {k,m}). The label k = 1, 2, ... is the
number of sites of the cluster. The label m = 1, 2, ... enumerates the distinct
cluster geometries. The structural correlation function Πk,m(l, s) describes
the occupation of the cluster. The label (l, s) indicate that the cluster is
located at location l in configuration s. For instance, the notation Π2,1(l, s)
refers to the spin product σiσj for the particular nearest-neighbor pair of
sites i and j positioned at location l in configuration s. Πk,m(s) refers to the
average of Πk,m(l, s) over all locations l in one configuration s, and 〈Πk,m〉
refers to the average of Πk,m(s) over the ensemble equilibrated at a certain
(x, T ).

The original SQS approach reproduces the average structural correlation
functions of the random (R) alloy Πk,m(S) ∼ 〈Πk,m〉R[52]. Therefore the
original SQS represent the optimal supercell approximation to the com-
pletely disordered alloy with a given computationally affordable number of
atoms per supercell. In this study, the SQS approach is extended to approx-
imating the correlation functions of short-range ordered alloys 〈Πk,m〉SRO.
〈Πk,m〉SRO is first obtained by performing Monte Carlo simulations on a
DFT-based cluster expansion model. Then numerous site occupancies for
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a certain composition x are generated and the representative configuration
S for which the set of Πk,m(S) is closest to 〈Πk,m〉SRO is selected by min-

imizing
∑

k,m gk,mDk,m

[

Πk,m(s) − 〈Πk,m〉SRO

]2
, where Dk,m is the degener-

acy (number of equivalent figures) and gk,m is the assigned weighting factor.
Enumeration of all possible configurations is not possible since the number
grows exponentially with the number of atoms in the supercell. However,
increasing the size of the supercell allows better flexibility of matching struc-
tural correlation functions. The conflict is eased by the short-range nature
of the structural correlations of the (GaN)1−x(ZnO)x alloy. The most rele-
vant physical property of the (GaN)1−x(ZnO)x alloy is the formation energy,
which is dominated by the short-range pair structural correlations[2]. There-
fore large weighting factors are assigned to the nearest-neighbor {2, 1-2} and
next nearest-neighbor {2, 3-6} figures. At each (x, T ), 1 × 105 72-atom su-
percell (3 × 3 × 2) candidate structures are generated, among which the
best-matching structure S is selected. Notice that the obtained structures
are not optimal. However, the contributions to the energetics from longer-
range figures E(s)− 〈E〉 =

∑

k,mDk,m

[

Πk,m(s) − 〈Πk,m〉SRO

]

ǫk,m (Eq. (3.1)
in Ref. [52]) are reasonably small. To avoid confusion, I name the cor-
responding special structure for the short-range ordered alloy (equilibrated
at the experimental synthesis temperature T = 1, 123K[1]) as SQoS (Special
Quasi-ordered Structure), and for the disordered alloy (equilibrated at an un-
realistic high temperature T = 20, 000K) as SQdS (Special Quasi-disordered
Structure), in resemblance to the widely used SQS (Special Quasi-random
Structure) formalism introduced by Zunger[52]. A completely random “SQS”
at x = 0.5 is also studied for reference.

3.2 Structural Correlations

The (GaN)1−x(ZnO)x alloy was modeled in the wurtzite structure with in-
terpenetrating cation and anion hcp sublattices. Ga/Zn can only occupy the
cation sublattice, while N/O can only occupy the anion sublattice. A de-
tailed description of the cluster expansion model used in this study can be
found in Ref. [2]. Monte Carlo simulations are performed using the ATAT
package[53, 54, 55] with a 12 × 12 × 8 supercell containing 4608 atoms. For
each (x, T ), an ensemble of N configurations (labeled by s = 1, 2, ..., N) is
equilibrated for 1 × 104 MC passes followed by a subsequent 1 × 104 MC
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passes sampling.

The (GaN)1−x(ZnO)x alloy is thermodynamically stable over the full range of
compositions for T > 870K. The x = 0.5 alloy orderes at low temperature and
undergoes a first-order order-disorder transition at T ≈ 870K. The ground
state is an ordered 50%-50% superlattice labeled as (GaN)1(ZnO)1, where
GaN and ZnO double layers stack alternately along the hexagonal c-axis
(P63mc). The formation energy for the (GaN)1(ZnO)1 superlattice is pre-
dicted to be small and negative, indicating the stability against phase separa-
tion. An analogous superlattice structure is also predicted for (SiC)m(AlN)n
alloy[9]. Upon alloying, the main effect of SRO is to enhance the statistical
presence of the valence-matched nearest-neighbor Ga-N and Zn-O pairs. As
shown in Fig. 3.1, the ensemble-averaged pair correlation functions 〈Π2,m〉
at x = 0.5 reveal a large degree of SRO. The nearest-neighbor 〈Π2,1−2〉 de-
viate significantly from the null value of the random alloy, while the next
nearest-neighbor 〈Π2,3−6〉 are relatively small, comparable with those found
in ternary nitride isovalent semiconductor alloys[16]. Longer-range 〈Π2,7−14〉
are not important. The long tail of the 〈Πk,m〉 − T curve also indicates
that SRO persists to high temperature, and therefore complete randomness
may not be achievable under common experimental growth conditions. The
positive signs of 〈Π2,1−2〉 indicate nearest-neighbor preference for the valence-
matched Ga-N and Zn-O pairs, while the positive signs of 〈Π2,3−6〉 indicate
next nearest-neighbor preference for Ga-Ga and Zn-Zn as well as N-N and
O-O pairs. The composition dependence of 〈Πk,m〉 at T = 1, 123K is shown
in Fig. 3.2. The deviation of 〈Πk,m〉 from that of the random alloy increases
upon mixing, and yields the largest deviation at x = 0.5, where neglect
of SRO is worst. To compare the degree of SRO included in SQoS, SQdS
and SQS, the corresponding structural correlation functions at x = 0.5 are
summarized in Table 3.1. In spite of the small size of the supercell, the
statistical accuracy is good. The 72-atom SQoS, SQdS and SQS accurately
reproduce the ensemble-averaged structural correlation functions obtained
with a 12 × 12 × 8 supercell. These special structures are expected to yield
an accurate description of the atomic, electronic and vibrational properties
of the (GaN)1−x(ZnO)x alloy.
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Figure 3.1: Ensemble-averaged pair correlation functions 〈Π2,m〉 at x = 0.5.
Definitions of pair figures {2,m} can be found in I. {2, 1-2} and {2, 3-
6} stand for nearest-neighbor cation-anion pair figures and next nearest-
neighbor cation-cation/anion-anion pair figures respectively. Longer-range
pair figures {2, 7-14} are shown by dotted lines.

3.3 Atomic, Electronic and Vibrational Properties

The constructed special structures are fully relaxed with respect to atomic
coordinates, volume and shape. Electronic structure calculations are per-
formed using the Quantum ESPRESSO package[56] with the PBEsol
functional[57]. The pseudopotentials are constructed by means of the pro-
jector augmented wave (PAW) method[58, 59] with 60 Ry and 240 Ry cutoff
energy for plane-wave basis set and charge density respectively. Ga-3d and
Zn-3d states are treated explicitly as valence states. The k-point mesh is cho-
sen to be equivalent to a 6× 6× 4 mesh for the 4-atom wurtzite unit cell. To
speed the structural relaxations, the input lattice parameters are estimated
using Vegard’s law[60]. Phonons are calculated using the small displacement
method as implemented in the PHON code[61]. For each 72-atom primitive
cell, a 2 × 2 × 2 supercell is used while a small displacement of 0.02 Åis
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Figure 3.2: Ensemble-averaged pair correlation functions 〈Π2,m〉 at T =
1, 123K. The structural correlations for the random alloy 〈Πk,m〉R = (2x−1)k

is shown by the solid grey line for comparison.

employed. The force constants are calculated with the SIESTA package[62].
Pseudopotentials for all the atomic species are available from the SIESTA

homepage, except for Ga a smaller d-orbital cutoff radius is used[63].

GaN and ZnO have a type-II band alignment[15]. The valence band is com-
posed mainly of N-2p states. DFT with LDA or GGA tends to over-delocalize
the semicore Zn-d states and consequently over-hybridize the semicore Zn-d
states with the N-p states, resulting in an enhancement of the p − d repul-
sion. The band gap is therefore severely underestimated due to the artifi-
cially large p − d repulsion. In this study U corrections are added to the
semicore Ga-d and Zn-d states[64]. The on-site Coulomb interaction param-
eter U ∼ 3.1eV is determined by a first-principles method adopted in Ref.
[65]. U is approximated as the screened atomic on-site Coulomb interaction
Uat/ǫ∞, where Uat is the Coulomb energy cost of placing two electrons at
the same site Uat = Eat(d

n+1) + Eat(d
n−1) − 2Eat(d

n) and ǫ∞ is the optical
(high-frequency) dielectric constant. In this study, d9 occupancy is taken
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Table 3.1: 72-atom SQS at x = 0.5.

Π2,m-SQoS 〈Π2,m〉1,123K Π2,m-SQdS 〈Π2,m〉20,000K Π2,m-SQS
{2, 1} 0.444 0.442 0.074 0.070 0
{2, 2} 0.333 0.333 0.000 0.058 0
{2, 3} 0.037 0.041 -0.037 -0.011 0
{2, 4} 0.037 0.036 0.000 -0.012 0
{2, 5} 0.074 0.089 -0.037 -0.012 0
{2, 6} 0.074 0.063 0.000 -0.016 0

as the reference point for dn. The optical dielectric constant ǫ∞ is calcu-
lated from linear-response theory[50]. A similar approach of screening the
exact-exchange by the dielectric constant is shown to improve significantly
the performance of the traditional hybrid functionals[66].

The calculated Uat, ǫ∞ and U parameters are listed in Table 3.2. Compared
to the experimental values[67], the calculated optical dielectric constant is
overestimated due to the band-gap underestimation of DFT. However, since
the atomic and electronic structures are not sensitive to the U parameters,
the error in the calculated ǫ∞ (and also the choice of the reference point for
dn) does not affect the main conclusions drawn in this study. The calculated
lattice constants and band gaps are listed in Table 3.3. DFT-PBEsol cal-
culations accurately reproduce the lattice constants of GaN and ZnO. The
overall improvement compared with LDA of the lattice constants comes at
the cost of severely weakening the influence of U corrections on the band
gap. The band gap of ZnO is more sensitive to the U correction, due to
the strong interaction between the high-lying Zn-3d states and the O-2p
states. Subsequent DFT+U calculations are performed on the SQoS, SQdS
and SQS in order to obtain accurate electronic structure properties. For
comparison, total energy and force calculations on configurations randomly
selected from the T = 1, 123K ensembles are also performed within the
DFT+U methodology. As shown in Fig. 3.3, the constructed SQoS accu-
rately represents the ensemble-averaged energetics of the short-range ordered
(GaN)1−x(ZnO)x alloy. The formation energy of SQoS is significantly lower
than that of SQdS. The effect of SRO on the energetics grows upon mixing.
Even at T = 20, 000K, the formation energy of SQdS is still considerably
lower than that of SQS due to the non-negligible residual SRO. SRO also
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Table 3.2: Calculated Uat, ǫ∞ and the corresponding U parameters for GaN
and ZnO. Experimental values are shown in parenthesis. The PBE version[49]
of the GGA functional is used instead of PBEsol in obtaining Uat, due to its
better treatment of free atoms.

Uat (eV) ǫ∞ U (eV)
GaN 18.1 5.9 (5.35) 3.1
ZnO 16.1 5.2 (3.71) 3.1

Table 3.3: Calculated lattice constants a and c and band gaps Eg.

GaN ZnO

a (Å) c (Å) Eg a (Å) c (Å) Eg (eV)
PBEsol 3.182 5.187 1.88 3.225 5.207 0.71

PBEsol+U 3.184 5.189 1.89 3.232 5.213 0.92
Expt. 3.189 5.185 3.3 3.250 5.204 3.4

plays an important role in determining the structural properties. Fig. 3.4
compares the lattice constant bowing obtained theoretically and experimen-
tally. Once again the lattice constants of SQoS accurately reproduce the
corresponding ensemble-averaged values. With reduced SRO, the disordered
alloy shows an expansion as well as a larger bowing compared to the short-
range ordered alloy. The experimentally synthesized samples[11, 12] also ex-
hibit moderate bowing, larger than the short-range ordered alloy but smaller
than the disordered alloy, indicating the presence of SRO. Fig. 3.5 shows
the (nearest-neighbor) bond-length distribution of the short-range ordered
(T=1123K) alloy at x = 0.5. In the (GaN)1−x(ZnO)x alloy, the Ga-N bonds
shrink while the Zn-O bonds expand. This unusual bond-length distribution
is determined by the non-isovalent nature of the alloy. Chapter 4 of this the-
sis will discuss the prediction and explanation of the bond-length distribution
based on the concept of bond valence[6]. For the (GaN)1−x(ZnO)x alloy, the
Zn-N bond-length distribution has crucial importance since it is related to
the band-gap reduction through the Zn3d-N2p repulsion. In Fig. 3.6 the
dependence of band gap reduction on the ZnO content is shown. The Zn-N
bond-length distribution of the short-range ordered alloy shifts to shorter
bonds as the ZnO content increases. Shorter Zn-N bond lengths result in
stronger Zn3d-N2p repulsion and therefore significantly push up the top of
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Figure 3.3: DFT-calculated formation energies of SQoS, SQdS and SQS.
{SQoS} is a set of configurations randomly selected from the T = 1, 123K
ensemble.

the valence band. Bond-angle variation is also unusual, namely N-Ga-N and
Ga-N-Ga angles expand while O-Zn-O and Zn-O-Zn angles shrink relative
to the ideal tetrahedral angle 109.5◦. Fig. 3.7 shows the variation of bond
angles. For example, the Ga centered bond angle shrinks with increased
presence of ligand O atoms. This tendency can also be explained using the
concept of bond valence. For Fig. 3.5-3.7, see Chapter 4 of this thesis for a
statistically reliable prediction based on the bond valence method.

The atomic and electronic structures of the short-range ordered alloys devi-
ate significantly from those of the disordered alloys. Theoretical atomistic
modeling requires explicit inclusion of SRO. Fig. 3.8 shows the calculated
band gaps of SQoS and SQdS. Due to the enhanced statistical presence of the
Zn-N bonds, the band gap of the disordered alloy is further reduced relative
to that of the short-range ordered alloy. The band-gap reduction is asymmet-
ric. For the disordered alloys the band gap bowing is somewhat parabolic,
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Figure 3.4: DFT-calculated lattice constants of SQoS and SQdS.

while for the short-range ordered alloys the band gap reduces almost lin-
early with increasing ZnO in the GaN host. The linear band-gap reduction
is maintained even for the unrelaxed short-range ordered alloys, indicating
the dominating role of configurational SRO. In Fig. 3.8, the linear redshift
of the absorption onset with increased ZnO content observed in samples syn-
thesized by nitridation of nanocrystalline ZnGa2O4 and ZnO precursors[11]
is also shown. The linearity is a clear indication of the presence of SRO.
Notice that the high-temperature and high-pressure synthesized samples ex-
hibit the minimum gap at x = 0.5[12], which is somewhat consistent with
the parabolic band gap bowing of the random alloy. The parabolic bowing
is attributed to the promoted kinetics of mixing at high-temperature and
high-pressure. The contrast in the band gap bowing is a clear indication of
the importance of SRO. Since the SRO introduced in the sample is related
to the synthesis techniques and the growth conditions, one might therefore
consider the opportunity of engineering the band gap Eg(x, T,Π) via SRO.

Fig. 3.9 compares the projected density of states (PDOS) of SQoS and SQdS
at x = 0.5. The main contribution to the bottom of the valence band comes
from O-2s states, which are taken as the reference level because they are
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Figure 3.5: DFT-calculated bond-length distribution at (x = 0.5, T = 1123).
Thirty 72-atom structures are selected from the corresponding thermody-
namic ensemble. The bin interval is set to 0.01Å. The vertical dotted lines
mark the bond lengths of the corresponding compounds.

less sensitive to the local chemical environment. The top of the valence
band is mainly composed of N-2p states. For the disordered alloy the in-
creased statistical presence of the energetically unfavored Zn-N pairs pushes
the band edge upward, resulting in further reduction of the band gap. The
N-2p states depend strongly on the local chemical environment. Fig. 3.10
shows the PDOS of N-2p states with the N atoms surrounded by different
numbers of Zn atoms. The N-2p states shift upward (dashed lines in Fig.
10) with increased presence of Zn neighbors.

The effect of lattice vibrations is included under the harmonic approxima-
tion. The phonon DOS for the SQoS alloys along with those of compound
GaN and ZnO are shown in Fig. 3.11. Three mechanisms have been sug-
gested to explain the origin of vibrational entropy differences in alloys[24]:
the bond proportion effect, the volume effect and the size mismatch effect.
Upon disordering, the bond proportion effect is typically associated with a
broadening of the phonon DOS due to the statistical presence of bonds with

21



1.85 1.90 1.95 2.00 2.05 2.10

 x=0.2

 x=0.4

 x=0.6

 x=0.8

  ZnN, T=1,123K  

B
o

n
d

-l
e
n

g
th

 d
is

tr
ib

u
ti

o
n

Bond length (Å )

Figure 3.6: DFT-calculated Zn-N bond-length distribution at T = 1123K.
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measurements (Lee et al in Ref. [11] and Chen et al in Ref. [12]) are also
shown for comparison.

different stiffness. On the other hand, the volume effect is usually char-
acterized by an overall shift of the phonon DOS due to the change in the
frequency of all phonon modes. For the (GaN)1−x(ZnO)x alloy, as the alloy
expands with increasing x, the phonon DOS shifts to lower frequencies as
the chemical bonds are in general softened. The volume effect is magnified
by the fact that the “ionic” Zn-O bond is softer than the “covalent” Ga-N
bond. The low-frequency phonon DOS could be well represented by the com-
position weighted average (1 − x)gGaN(ω)+xgZnO(ω). The significant part of
the phonon DOS difference (and therefore the vibrational entropy difference)
comes from the high-frequency phonons. The effect of SRO is shown for the
x = 0.5 case. The high-frequency phonon DOS of the SQdS exhibits a much
broader spectrum than that of the SQoS. Consequently the phonon mixing
entropy of the SQdS is three times larger than that of the SQoS, as is shown
in Fig. 3.12. While the x-dependence of the configurational mixing entropy
is symmetric[51], the x-dependence of the phonon mixing entropy is highly
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Figure 3.9: Projected density of states (PDOS) of the valence band. The
cation-s states in the conduction band are not shown. The deep-lying anion-
s states are shown by the shaded area.

asymmetric, indicating that the inclusion of the vibrational free energy into
the alloy thermodynamics could alter the shape of the phase diagram.

3.4 Conclusion

The importance of SRO in atomistic modeling schemes such as the SQS ap-
proach is often overlooked. For binary metal alloys or isovalent semiconductor
alloys, SRO is usually less important. However, for the non-isovalent semi-
conductor alloys, the valence-matching driving force induces significant SRO.
The SQS approach provides a way of approximating the actual alloy with a
DFT-affordable supercell. In order to properly compute the non-isovalent
alloy, one needs prior knowledge of SRO. In this study the correlated site oc-
cupations are provided by Monte Carlo simulations on a DFT-based cluster
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4 Zn neighbors. PDOS is not normalized so that the area under each curve
represents the corresponding statistical presence.

expansion model. Exhausted enumeration of all possible site occupations is
avoided due to the short-range nature of the (GaN)1−x(ZnO)x alloy. We seek
to match only the cation-anion nearest-neighbor and the cation-cation/anion-
anion next nearest-neighbor correlations. The longer-range correlations are
optimized to a lesser extent. Since the short-range nature is inherited in
the non-isovalency, the construction of SQoS proposed in the present study
should also be applicable to other non-isovalent semiconductor alloys. If
longer-range correlations come into play, one might apply for example the
evolutionary algorithm in order to efficiently search for the optimal SQoS.

In the present study we have revealed the presence of strong SRO in the
(GaN)1−x(ZnO)x alloy. We constructed reliable SQoS and SQdS whose struc-
tural correlations reproduce those of the short-range ordered alloys and the
disordered alloys respectively. Atomic, electronic and vibrational proper-
ties of the short-range ordered alloys deviate significantly from those of the
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0.9) and SQdS (dash-dot blue) (x = 0.5) alloys. The dash red lines represent
the corresponding average of phonon DOS: (1 − x)gGaN(ω)+xgZnO(ω).

disordered alloys. The short-range ordered alloys experience smaller lattice
bowing than the disordered alloys. We offer a tentative explanation in terms
of SRO for the discrepancy of the band gaps found in samples synthesized
by different methods. SRO inhibits the nearest-neighbor Zn-N pairs, which
affects the strength of the Zn3d-N2p repulsion and consequently the top of
the valence band. The dependence of the N-2p states on local chemical en-
vironment demonstrates the vital role of SRO in accurately describing the
(GaN)1−x(ZnO)x alloy. Phonon DOS is sensitive to the presence of SRO.
Disordered alloys could have much larger vibrational entropy of mixing than
short-range ordered alloys.

26



0 200 400 600 800 1000

0.00

0.04

0.08

0.12

0.16

 

 

S vi
b (k

B
/a

to
m

)

Temperature (K)

 SQoS x=0.1
 SQoS x=0.3
 SQoS x=0.5
 SQoS x=0.7
 SQoS x=0.9
 SQdS x=0.5

Figure 3.12: x-dependence of the phonon mixing entropy ∆Svib = Svib(x) −
[(1 − x)SGaN

vib + xSZnO
vib ].

27



Chapter 4

4 (GaN)1−x(ZnO)x: Bond Valence Method

4.1 Bond Valence Method

The BVM is extensively discussed in Ref. [68]. Each nearest-neighbor cation-
anion bond is assigned a bond valence vIJ . Next nearest-neighbor cation-
cation/anion-anion interactions are neglected. The bond valence sum (BVS)
of an atom is defined as the sum of the bond valences surrounding the atom.
Each atom has an ionic valence equal to its corresponding formal ionic charge.
By convention, V (Ga)=+3, V (N)=−3, V (Zn)=+2, V (O)=−2, vIJ = −vJI .
Of crucial importance for non-isovalent semiconductor alloys are two rules:
(1) the valence sum rule V (I) =

∑

J vIJ , and (2) the valence loop rule
∑

loop vIJ = 0. The valence loop rule is also known as the equal valence
rule, since the zero circulation condition is equivalent to the minimization of
∑

I,J v
2
IJ (see for example the appendix in Ref. [23]). The solution is a set of

{vIJ} which minimizes the measure of the total energy E = α
∑

I,J v
2
IJ (α is

the correlation constant) under the constraint of the valence sum rule.

The valence sum rule is interpreted by assuming the correlation PIJ ∝ vIJ ,
where PIJ is the Mulliken overlap population[69, 70]. As for the measure
of the total energy, in solid state language, a perturbation expansion of the
orbital interaction energy reads

E =
∑

i∈I

ǫi =
∑

i∈I

(

ǫ0i +
∑

j∈J

|〈φ0
i |V |φ0

j〉|
2

ǫ0i − ǫ0j

)

(4.1)

where ǫ0i and φ0
i denote for atomic energy and orbital respectively. Capi-

tal I, J and lowercase i, j refer to atomic and orbital indices respectively.
Assuming the correlation Hij ∝ Sij (Hij is the matrix element 〈φ0

i |V |φ0
j〉

and Sij is the overlap integral 〈φ0
i |φ

0
j〉), the relaxation energy E −

∑

ǫi is
then proportional to αIJ

∑

i∈I,j∈J S
2
ij, where the denominator ǫ0i − ǫ0j reduces

into the correlation constant αIJ . The overlap integral Sij(r, θ, φ) can be
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expressed in a separable form Sij(r)f(θ, φ)[25]. The angular dependence is
lifted after summing

∑

i∈I,j∈J f
2(θ, φ) over all the interacting orbital pairs.

The summation over orbital pairs then reduces to the summation over atom
pairs. Finally the measure of the total energy E = α

∑

I,J v
2
IJ is obtained,

with the definition of the bond valence vIJ ∼ SIJ =
√

∑

i∈I,j∈J S
2
ij. In the

analogy of the Kirchhoff circuit law, the bond capacitances are all equal[17],
which is equivalent to assuming α equal for different types of atomic pairs.

The radial dependence of Sij(r) derives naturally to the empirical exponential
correlation between bond valence and bond length

vIJ = exp
((

R0
IJ −RIJ

)

/bIJ
)

(4.2)

where RIJ is the observed bond length while R0
IJ and bIJ are empirically fit-

ted bond valence parameters for I −J bond. bIJ measures the bond softness
and is usually taken as a universal constant of 0.37Å, while R0

IJ is experimen-
tally determined from structural data of related materials[71]. In the present
study, the disordered alloy offers abundant structural data. Therefore R0

IJ

and bIJ are fitted to DFT calculations instead. The bond-angle variation
depends on the higher-order terms of orbital interactions in the perturba-
tion expansion. In general the bond bending force is weaker than the bond
stretching force. In the present study, an empirical relation[68] is used for
the crude prediction of anion-cation-anion angles

θICJ = 109.5 + k(vCI + vCJ − VC/2) (4.3)

where k is an empirical constant (equal to 15.3◦ per valence unit (v.u.) in
Ref. [68]), vCI and vCJ are the bond valences of the two ligand bonds, and
VC is the ionic valence of the central cation. The underlying geometrical
implication of the linear correlation between bond angle and bond valence is
the vectorization of the scalar bond valence[72]. Finally, taking into account
the constraints of bond lengths and bond angles, the tetrahedrally coordi-
nated alloy lattice is over-constrained. A cost function can be assigned to
the constraints in order to perform the pre-relaxation.
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4.2 Examination of BVM

To keep the integrity of this section, relevant computational methods are out-
lined. A Ising-type model Hamiltonian for the (GaN)1−x(ZnO)x alloy is first
constructed using a DFT-based cluster expansion method[3, 4, 5]. Monte-
Carlo simulations are then performed on the constructed cluster expansion
model using the ATAT package[53, 54, 55]. For each (x, T ) of interest, a
thermodynamic ensemble of configurations is generated. At this stage only
the site occupancies are needed. For each configuration the bond valences
can then be determined using BVM. One could in principle minimize the
measure of the total energy E = α

∑

I,J v
2
IJ with respect to the set of bond

valences {vIJ}. Unlike the Ising-type cluster expansion model, BVM model
is essentially long-ranged since the set of bond valences {vIJ} forms a inter-
active network. In order to speed the BVM solution, an iterative scheme[73]
is used to apply the equal valence rule, which generally yields better com-
putational efficiency. Finally the bond-length distribution and bond-angle
variation are obtained using the empirical correlations.

For most of the results presented in this section, the Perdew-Burke-Ernzerhof
(PBE)[49] version of the exchange-correlation functional is used. Kohn-Sham
wavefunctions are expanded in a variationally optimized double-ζ polarized
(DZP) basis set, as implemented in the SIESTA package[62]. Ga-3d and
Zn-3d electrons are treated explicitly as valence electrons. The k-point mesh
is chosen to be equivalent to a 6×6×4 mesh for the 4-atom wurtzite unit cell.
Pseudopotentials for all the atomic species are available from the SIESTA

homepage[74]. DFT calculations are performed for two reasons: (1) The
correlations PIJ ∝ vIJ , Hij ∝ Sij and vIJ ∼ SIJ are crucial for the interpre-
tation of BVM and are therefore examined first. (2) The BVM parameters
are to be fitted to DFT calculations, after which bond-length distribution
and bond-angle variation can be predicted. I construct three representative
432-atom supercells at x = 0.25, 0.5 and 0.75 for the former purpose, and
use a thermodynamic ensemble equilibrated at the experimental synthesis
temperature T = 1, 123K[1] with 72-atom supercells for the latter purpose.

The valence sum rule is an equivalent statement of the principle of local
charge neutrality. In Fig. 4.1 the correlations PIJ ∝ vIJ for different types
of bonds are shown. One should keep in mind that the Mulliken population
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has no strict physical sense due to its sensitivity over the projected atomic
basis set. Therefore in present study only the qualitative correlation is dis-
cussed. The correlation Hij ∝ Sij is in reality adopted in the extended Hückel
method[75] where the off-diagonal Hamiltonian matrix elements Hij are ap-
proximated by the corresponding diagonal Hamiltonian matrix elements and
the overlap integral through Hij = KSij(Hii + Hjj)/2. In Fig. 4.2 the cor-
relations Hij ∝ Sij between the first ζ numerical atomic orbitals of different
species are shown. Since Ga and O are more electronegative than Zn and N
respectively, Ga-4s and O-2p lie deeper in the atomic energy level diagram
than Zn-4s and N-2p. Therefore Ga-O has the largest correlation while Zn-N
has the smallest correlation. In Fig. 4.3 the correlations vIJ ∼ SIJ for dif-
ferent types of bonds are shown. The linearity of the correlations validates
the interpretation of BVM proposed in the present study.
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Figure 4.1: The correlation PIJ ∝ vIJ for different types of bonds.

The ability of BVM in predicting bond-length distribution relies signifi-
cantly on the empirical correlation vIJ = exp ((R0

IJ −RIJ) /bIJ), the quality
of which should be examined at the first stage. To yield accurate struc-
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Figure 4.2: The correlation Hij ∝ Sij between the first ζ numerical atomic
orbitals of different species.

tural properties, DFT calculations are performed using the QUANTUM
ESPRESSO package[56] with the PBEsol functional[57]. The lattice con-
stants of GaN and ZnO are well reproduced[76]. In Table 4.1, the origi-
nal (tabulated in Ref. [71]) and fitted-to-DFT bond valence parameters are
listed. As a sanity check, bond lengths of compound GaN and ZnO (la-
beled as R0) calculated with the two sets of bond valence parameters are
also listed. As the fitting procedure releases the freedom of the bond softness
bIJ , an overall improvement is observed for the fitted-to-DFT set of bond va-
lence parameters. Fig. 4.4 shows the correlation between the DFT-calculated
bond lengths and the BVM-predicted bond valences. Bond-length distribu-
tion is predicted by BVM with good accuracy. The prediction of bond-angle
variation is less accurate, as is shown in Fig. 4.5. The fitted bond valence
parameters k for Ga and Zn are 18.1◦/v.u. and 20.1◦/v.u. respectively. In
order to perform the pre-relaxation, one can simply add a penalty function to
bond-length distribution and bond-angle variation. A large penalty to bond-
length distribution is suggested while bond angles are subject to change.
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4.3 Structural Relaxation

To represent the thermodynamic ensembles at (x, T ), Monte-Carlo simula-
tions are performed on a DFT-based cluster expansion model. Given the site
occupancies of each configuration, bond-length distribution and bond-angle
variation are then obtained using the fitted-to-DFT bond valence parameters.
In the present study, temperature is interpreted as a measure of the degree of
randomness. Temperatures of 1123K, 2000K, 5000K and 20000K represent
short-range ordered (SRO), disordered (DIS1 and DIS2) and random (RAN)
alloy respectively. Fig. 4.6 shows the bond-length distributions at various
temperatures. As the temperature is raised, the peak of bond-length distri-
bution shifts slightly toward shorter bond-length direction. The shift of the
peak position is small, and can be easily overwhelmed by other factors such
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Table 4.1: Bond valence parameters.

original BVM[71] fitted to DFT
GaN GaO ZnN ZnO GaN GaO ZnN ZnO

R0
ij(Å) 1.84 1.73 1.77 1.704 1.844 1.755 1.831 1.756
bij(Å) 0.37 0.357 0.391 0.268 0.312
R0 (Å) 1.946 – – 1.960 1.947 – – 1.972

Expt. (Å)[67] 1.95 – – 1.977 1.95 – – 1.977
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Figure 4.4: Correlations between the DFT-calculated bond lengths and the
BVM-predicted bond valences. The solid red lines represent the fitted cor-
relations. In each figure the number of data points drawn is reduced by a
factor of ten.

as thermal expansion, which is not considered here. In the meanwhile the
width of bond-length distribution becomes broader as increasing the degree
of randomness. In Fig. 4.7 bond-length distributions of different types of
bonds are shown. Upon mixing the Ga-N bond shrinks while the Zn-O bond
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expands relative to the bond lengths in the corresponding compounds. From
SRO alloy to RAN alloy, the shift is toward shorter bond-length direction for
Ga-N, barely temperature-dependent for Ga-O and Zn-N, and is reversed to
the longer bond-length direction for Zn-O. This unusual tendency of bond-
length distribution is a consequence of the non-isovalent nature of the alloy,
and can be easily interpreted in terms of bond valence. One consequence of
elevating the degree of randomness is to enhance the statistical presence of
the energetically unfavored valence-mismatched Ga-O and Zn-N pairs. In the
language of BVM, for a cation-anion pair, enhancing the presence of N(O)
neighbors around the cation and Ga(Zn) neighbors around the anion will
drain(pour) bond valence from(into) the cation-anion pair and as a result
the bond is lengthened(shortened). Of particular importance is the Zn-N
bond-length distribution due to the decisive role of Zn3d-N2p repulsion on
the top of the valence band. In the previous chapter, a almost linear band
gap reduction upon increasing the ZnO content for the short-range ordered
alloy is observed. Since the p-d repulsion is inversely proportional to the bond
length, upon increasing the ZnO content a shortened Zn-N bond-length dis-
tribution is expected, which is confirmed by the BVM prediction shown in
Fig. 4.8. The stronger p-d repulsion pushes the top of the valence band
pushed, resulting in the linear band gap reduction. Fig. 4.9 shows the anion-
cation-anion bond-angle variation of short-range ordered alloy at x = 0.5.
The N-Ga-N angle expands while the O-Zn-O angle shrinks relative to the

35



ideal tetrahedral angle 109.5◦, which can be explained by noticing that the
bond valence of the ligand cation-O bond is generally smaller than that of
the ligand cation-N bond. For Fig. 4.7-4.9, see the previous chapter for the
DFT-calculated more reliable but less statistical predictions.
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Figure 4.6: Temperature dependence of bond-length distribution at x = 0.5.

4.4 Energetics

As for the energetics, DFT total energy calculations are performed on 170
structures selected from the T = 1, 123K thermodynamic ensemble over the
full range of composition. The formation energies are also calculated using
the valence loop rule (i.e. the measure of energy E = α

∑

I,J v
2
IJ). The

results are shown in Fig. 4.10. The fitted parameter α = 1.07 is consis-
tent with that of Ref. [22]. The power of BVM is shown by the accurate
reproduction of the energetics. However, BVM fails to reproduce the or-
dered superlattice (GaN)1(ZnO)1 ground state at x = 0.5[2], possibly due
to the nearest-neighbor short-range nature of BVM itself, i.e. the wurtzite
and zincblende structures are indistinguishable from one another in BVM).
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Figure 4.7: Bond-length distributions of short-range ordered alloy and ran-
dom alloy at x = 0.5. The vertical dotted lines mark the bond lengths of the
corresponding compounds.

The formation energy of (GaN)1(ZnO)1 predicted by BVM is positive, while
that predicted by DFT is slightly negative[2]. The discrepancy should not
affect any conclusion drawn in present study since only the disordered phase
is concerned.

Inclusion of vibrational entropy in the first-principles alloy phase diagram cal-
culation is a long-standing challenge. The main difficulty lies in the conflict
between the requirement for a large supercell and the expensive computa-
tional cost associated with it. The problem is partly alleviated by the SQS
approach[43, 77, 76]. Another idea is to use bond-length-dependent trans-
ferable force constant[24, 78], where the bond stiffness is predicted from the
bond length and the chemical identity of the bond. The present study re-
veals the strong correlation between bond valence and bond length, which
indicates the possibility of using bond valence instead of bond length as a
predictor for bond stiffness. Such extension will release the estimation of
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nearest-neighbor force constants from the requirement for the knowledge of
the relaxed geometry of a configuration. Fig. 4.11 shows the dependence of
stretching bond stiffness φII

αα and φIJ
αα on bond length, where α refers to the

bond-stretching direction and I, J are nearest neighbors. The bond stiffness
calculations are performed on selected 72-atom supercells with a displace-
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Figure 4.10: Comparison of DFT-calculated formation energies with BVM-
predicted formation energies.

ment of 0.02Å from the relaxed atomic coordinates along each bond direc-
tion. While a linear bond stiffness vs bond length relationship is suggested
in bond-length-dependent transferable force constant approach[24, 78], an
exponential correlation (similar with that between bond valence and bond
length) seems to fit better according to the present study, which is consistent
with the interpretation that bond valence measures bond strength. Bond
stiffness depends on bond length in a similar manner, regardless of the chem-
ical identity of the bond. The most covalent Ga-N bond is the stiffest, while
the most ionic Zn-O bond is the softest.

For isovalent III-V semiconductor alloys, the widely used Keating’s valence
force field (KVFF) model[79] yields generally good accuracy[80, 81, 82, 83, 84,
16]. In KVFF model the force constants are related to the macroscopic elastic
constants and therefore can be accurately determined experimentally. Also
the isovalent nature of III-V semiconductor alloys guarantees good trans-
ferability from compound semiconductors to the corresponding alloy. For
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non-isovalent semiconductor alloys, the transferability no longer holds, for
the apparent reason that there exists no wurtzite GaO or ZnN. The present
study offers an alternative way of accurately reproducing the energetics of
non-isovalent semiconductor alloys with BVM, where only site occupancies
are needed. The non-isovalent nature is well captured by the valence sum
rule. An extension of BVM derives naturally to the modelling of an atom-
istic potential. In present study, the relaxation energy is assumed to consist
of three parts:

Erelax = α
∑

I,J

v2IJ +
∑

I=Ga,Zn

kI
∑

J1,J2

(θJ1IJ2 − θ0)
2 +

∑

I=N,O

βI

(

∑

J

vIJ − V0,I

)2

(4.4)
The first term is simply the valence loop rule, and the second term is the
harmonic angle potential. The third term accounts for large lattice relax-
ations by penalizing deviations from the bond valence conservation and is
important for reliable molecular dynamics simulations[18, 19]. In the fitting
procedure each relaxed structure is expanded and contracted by 1%. Fitting
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parameters kN,O and βGa,Zn are found to be negligible. In Figure 4.12 the
comparison between DFT-calculated and BVM-fitted formation energies is
shown. The agreement is generally satisfactory. Further studies will involve
refinement of the atomistic potential, and anharmonicity effect within quasi-
harmonic approximation.
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Figure 4.12: Comparison between DFT-calculated and BVM-fitted formation
energies.

4.5 Conclusion

A physical interpretation of BVM is discussed from the computational per-
spective. The underlying assumptions and correlations within BVM are re-
vealed by DFT calculations on the non-isovalent semiconductor alloy (GaN)1−x(ZnO)x.
Bond-length distribution and bond-angle variation are predicted by parameter-
fitting BVM empirical correlations to reliable DFT-calculated structural data.
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The unusual relaxations associated with the non-isovalent nature of the al-
loy are explained in the language of BVM. Effects of SRO on bond-length
distribution and bond-angle variation are also discussed. The energetics is
accurately reproduced by BVM. The connection between bond valence and
stretching bond-length-dependent transferable force constant is revealed. A
tentative improved bond valence potential is proposed. In principle, discus-
sions in the present study should also be applicable for other non-isovalent
semiconductor alloys.
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Chapter 5

5 Pyroelectricity: Theory and Calculation

5.1 Pyroelectric theory

Crystals have specific free parameters that can vary without altering sym-
metry. These are external strains and internal strains. The external strains
are components of the strain tensor ǫαβ that have full crystalline symmetry
(∆V/V if cubic, or ∆a/a and ∆c/c if hexagonal like wurtzite.) The external
strains will be denoted ǫi. The internal strains describe degrees of freedom of
atoms in the unit cell. An example is the c-axis cation-anion spacing denoted
uc in wurtzite, where u is typically close to the “ideal” value 3/8 of perfect
stacked tetrahedra, a value not required by symmetry. The internal strains
will be denoted ui. Wurtzite is the highest symmetry structure that can have
spontaneous polarization, and has the minimal number of 2 external strains
and 1 internal. The polarization is strongly affected by the internal strain[85]
u, and pyroelectricity is closely related to its temperature shift du/dT .

It is conventional to separate the total (constant stress, σ) pyroelectric co-
efficient pσ(T ) into two parts[8, 86]: the primary (constant strain, ǫ) pǫ(T )
and the secondary p2(T )

pσ(T ) =

(

dPs

dT

)

σ

=

(

∂Ps

∂T

)

ǫ

+
∑

i

(

∂Ps

∂ǫi

)

T

(

∂ǫi
∂T

)

σ

= pǫ(T )+p2(T ). (5.1)

where pǫ(T ) measures the “clamped-lattice” pyroelectricity while p2(T ) ac-
counts for “thermal expansion” pyroelectricity. Here we simplify the notation
by assuming that polarization ~P = P ẑ occurs along a unique axis. The label
z for this axis is dropped when unnecessary. The primary part, pǫ(T ), is the
“clamped-lattice” pyroelectricity, where external strains are held fixed, but
internal strains relax thermally. The secondary part p2(T ) accounts for the
changes that occur when external strains are allowed to develop.

Harmonic vibrational normal modes are labeled by (~qλ), wavevector and
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branch index. The ~q = 0 normal modes of A1 symmetry (invariant under all
point-group operations), labeled (~0j), are dynamic versions of the internal
strains uj. Lattice anharmonicity allows the amplitudes Q~0j of these modes
to develop static thermal and zero-point internal strains 〈Q~0j(T )〉. This is
one source of pyroelectric thermal shifts of Ps. The other normal modes ~qλ
have no allowed first order static effect (〈Q~qλ〉 = 0), but their second or-
der static mean square amplitude 〈Q~qλQ−~qλ〉 increases with T in harmonic
approximation. These cause electron-phonon thermal renormalization of Ps

even in the absence of internal and external strains, a second source of py-
roelectricity. Both effects are mentioned by Born [8] and Szigeti [86]. After
Szigeti’s work, the electron-phonon part has been generally discounted as less
important, and will be ignored in our work. Then to first approximation, the
temperature-dependent spontaneous polarization Ps(T ) varies linearly with
internal strain. To first-order approximation, the temperature-dependent
primary spontaneous polarization Ps(T ) can be expanded in terms of atomic
displacement as

Ps,ǫ(T ) = Ps,ǫ(0) +
∑

κα

∂Ps,ǫ

∂uκα
uκα(~0j) (5.2)

~0j is the active phonon mode in the long-wavelength limit. In wurtzite,
the structure considered in this paper, there is only one relevant mode, the
A1(TO) mode, with opposite displacements ~uκα of anions and cations along
the polar c or ẑ axis. The connection between static displacement 〈~uκ〉 of
atom κ in each cell, and normal mode amplitude 〈Q~0j〉 is

〈uκz〉 =
∑

j

〈Q~0j〉ǫ~0j(κz)/
√

Mκ (5.3)

In the long-wavelength limit ∂Ps

∂uκα
yields the Born effective charge eZsα

κ per
unit-cell volume Ω, whose magnitude governs the zone-center LO/TO splitting[50].
The pyroelectric theory of Born [8] and Szigeti [86] recognizes two kinds of
contributions to the primary pyroelectric coefficient, a non-rigid term caused
by electron-phonon interaction and a rigid term caused by anharmonic inter-
nal displacement. Schematically,

pǫ(T ) =
e

Ω

[

dZ∗

dT
u+ Z∗ du

dT

]

. (5.4)
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Born and Szigeti present different-looking formulas for the second term. We
find that they are equivalent. Neither Born nor Szigeti examines the first
term in much detail, but they disagree about whether its power law is T or
T 3 at low T . It is clear to all that the second term follows a specfic heat T 3

form. Born cites experimental evidence for p ∝ T , and therefore favors the
first term. More recent evidence (for example, Heiland and Ibach[87] for ZnO)
indicates p ∝ T 3 at low T . It is now generally believed that the second term
in Eq.(5.5) dominates. An interesting experiment on ZnO by Albertsson et

al. [88] measures the internal parameter shift du/dT directly. They find that
the second term in Eq.(5.5) matches pσ(T ) provided Z∗ = 0.2 is used. We
believe that they have mis-defined Z∗ and that the correct definition makes
the empirical Z∗ larger by 4, or Z∗ = 0.8. Our results presented below are
the first microscopic calculations of thermal shift of internal parameters. Our
results for du/dT are smaller than the Albertsson experiment by ≈ 2, and our
computed Z∗ = 2.2 is larger (agreeing with all modern calculations). We are
not able to identify the source of the discrepancy, but our results also indicate
that the second term dominates. The primary pyroelectric coefficient is then
given by

pβ(T ) =
e

Ω

∑

j,κα

Zβα
κ

duκα(~0j)

dT
. (5.5)

This ignores the electron-phonon term. In wurtzite, it simplifies to p(T ) =
(2e/Ω)Z∗d(uc)/dT , where Z∗ is the Born effective charge of the cation (the
anion’s is opposite by definition), and the factor of 2 recognizes the two
molecules per unit cell.

Following Szigeti’s derivation[86], the temperature-dependent spontaneous
polarization Ps(T ) can be expanded in terms of atomic displacement as

Ps(T ) = Ps(0) +
∑

~qλ

∂Ps

∂Q~qλ

Q~qλ +
∑

~qλ~q′λ′

∂2Ps

∂Q~qλ∂Q~q′λ′

Q~qλQ~q′λ′ (5.6)

where Ps(0) is the spontaneous polarization at T = 0K. Under the rigid-ion
approximation the second-order expansion term is neglected since the elec-
tron cloud follows the ion rigidly without deformation. The atomic displace-
ment is written in terms of the phonon creation and annihilation operators

ulκα =
∑

~qλ

√

h̄

2Mκω~qλ

[â~qλ + â+−~qλ]ǫκα(~qλ)ei~q·
~Rl (5.7)
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Only the zone-center phonon term is left after taking the thermodynamic
average. The primary pyroelectric coefficient then reads

pβ(T ) =
∑

j,κα

eZβα
κ

Ω

∂〈uκα(~0j)〉

∂T
(5.8)

In order to evaluate the mean displacement, the potential energy is expanded
in terms of atomic displacement to third order

V (3) =
1

3!

∑

~q~q′~q′′jj′j′′

V3

(

~q ~q′ ~q′′

j j′ j′′

)

(â~qj + â+−~qj)(â~q′j′ + â+−~q′j′)(â~q′′j′′ + â+−~q′′j′′)

(5.9)
Treating the cubic anharmonicity as a perturbation, the perturbed phonon
wavefunction reads

φ
(1)
ñ = φ

(0)
ñ +

∑

ñ′

〈ñ′(0)|V (3)|ñ(0)〉

E
(0)
ñ − E

(0)
ñ′

φ
(0)
ñ′ (5.10)

The atomic displacement is then

〈Q~0j〉 =

2
∑

ñ

e−β(n+ 1
2
)h̄ω
∑

ñ′

〈ñ(0)|Q~0j |ñ
′(0)〉〈ñ′(0)|V (3)|ñ(0)〉

E
(0)
ñ −E

(0)

ñ′

∑

ñ

e−β(n+ 1
2
)h̄ω

(5.11)

The first Dirac bracket is non-zero only for ñ′ = ñ± 1. Therefore the second
Dirac bracket reduces to terms containing â~0j â~qλâ

+
−~qλ, â~0j â

+
~qλâ−~qλ, â+~0j â~qλâ

+
−~qλ

and â+~0j â
+
~qλâ−~qλ.

〈Q~0j〉 = −
∑

~qλ

2n~qλ + 1

h̄ω~0j
Q~0jV3

(

~0 ~q −~q
j λ λ

)

(5.12)

More specifically

〈uκα(~0j)〉 = −
∑

~qλ

2n~qλ + 1

h̄ω~0j

√

h̄

2Mκω~0j
ǫκα(~0j)V3

(

~0 ~q −~q
j λ λ

)

(5.13)
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where the anharmonic coefficient V is given by the third derivative of the
total energy with respect to the atomic displacement as

V3

(

~0 ~q −~q
j λ λ′

)

=
∑

κ0κ1κ2,α0α1α2

√

h̄3

8Mκ0Mκ1Mκ2ω~0jω~qλω−~qλ′

·

ǫκ0α0(~0j)ǫκ1α1(~qλ)ǫκ2α2(−~qλ
′)

(

∑

l1l2

∂3E

∂ul0κ0α0∂u
l1
κ1α1∂u

l2
κ2α2

ei~q·(τl1−τl2)

) (5.14)

The third-order anharmonic coefficient V (~0j, ~qλ,−~qλ′) can also be obtained
from the derivative of the dynamical matrix Dα1α2(κ1κ2, ~q) with respect to
the displacement pattern Q~0j as

V3

(

~0 ~q −~q
j λ λ′

)

=

√

h̄3

8ω~0jω~qλω−~qλ′

∑

κ1κ2,α1α2

ǫκ1α1(~qλ)ǫκ2α2(−~qλ
′)·

(

∂

∂Q~0j

∑

l1l2

1
√

Mκ1Mκ2

∂2E

∂ul1κ1α1∂u
l2
κ2α2

ei~q·(τl1−τl2)

) (5.15)

Through the diagonalization of the dynamical matrix Dα1α2(κ1κ2, ~q) we have

∑

κ1κ2,α1α2

ǫκ1α1(~qλ)

(

∑

l1l2

1
√

Mκ1Mκ2

∂2E

∂ul1κ1α1∂u
l2
κ2α2

ei~q·(τl1−τl2)

)

ǫκ2α2(−~qλ
′)

= ω2
~qλδλλ′

(5.16)

The relation between the third-order anharmonic coefficients V3(0j, ~qλ,−~qλ)
and the “internal Grüneisen parameter” reads

V3

(

~0 ~q −~q
j λ λ

)

=

√

h̄3

8ω~0jω~qλω−~qλ

∂ω2
~qλ

∂Q~0j

= −

(

h̄

2ω~0j

)1/2
h̄ω~qλ

2Q~0j

γ~qλ(~0j)

(5.17)

The temperature-dependent atomic displacement eventually reduces to

〈Q~0j〉 = −
∑

~qλ

h̄

2

2n~qλ + 1

ω2
~0j

∂ω~qλ

∂Q~0j

(5.18)
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Equivalently, under the “clamped-lattice” condition, the Born-Oppenheimer
potential energy is harmonic with respect to uκα(~0j):

UBO = U0 +
1

2
ω2
~0j
Q2

~0j
(5.19)

where Q~0j is the normal coordinate
√

∑

κα

Mκu2κα(~0j), and uκα is the atomic

displacement of κth atom in α-direction. The Helmholtz free energy reads

F = UBO + kBT
∑

~qλ

ln

(

2 sinh
h̄ω~qλ

2kBT

)

(5.20)

The temperature-dependent atomic displacement uκα(~0j) shall minimize the
Helmholtz free energy F . We then have

ω2
~0j
Q~0j = −

∑

~qλ

h̄

2
(2n~qλ + 1)

∂ω~qλ

∂Q~0j

(5.21)

Finally, the primary pyroelectric coefficient reads

pǫ,β(T ) =
∑

κα

∑

~0j

∑

~qλ

Zβα
κ

Ω

2

h̄ω~0j

√

h̄

2Mκω~0j
ǫκα(~0j)V3

(

~0 ~q −~q
j λ λ

)

∂(2n~qλ + 1)

∂T

(5.22)
where β labels the direction of the spontaneous polarization, and V3 is the
third-order anharmonic coefficient for the active mode ~0j. ~qλ runs over all
phonon branches λ in the entire Brillouin zone. The “internal” Grüneisen pa-
rameter is defined as γ~qλ(~0j) = −d logω~qλ/d logQ~0j. This measures the shift
of phonon frequency ω~qλ per unit change in the amplitude Q~0j of the active
mode. It has been defined previously by Gibbons[89]. In wurtzite structure,
the active A1 mode is split. When ~q approaches 0 along the c or ẑ axis, it is
a high frequency longitudinal branch denoted A1(LO). When ~q approaches 0
along lines in the xy plane, it is an intermediate frequency transverse branch
labeled A1(TO). The rule is to use the TO frequency, which corresponds to
a pyroelectric distortion in zero electric field. In this work we only address
the “rigid” primary pyroelectricity arising from atomic anharmonic displace-
ments. The influence of external strains (the “secondary” effect) will be
added later using measured external strains ǫi(T ) and computed piezoelec-
tric coefficients. The challenge of the “non-rigid” electron-phonon interaction
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part, which give rises to the temperature dependence of the Born effective
charges, is left open.

5.2 Pyroelectricity of GaN and ZnO

Electronic structure calculations are performed within the local density ap-
proximation (LDA)[48] using the Quantum ESPRESSO package[56]. We
use norm-conserving Martin-Troulliers pseudopotentials[90] in our calcula-
tions. The electronic wave-functions are expanded in a plane-wave basis
with a kinetic energy cutoff of 180 Ry. Ga-3d and Zn-3d states are treated
explicitly as valence states. We use a 6 × 6 × 4 k-point mesh for Brillouin-
zone sampling. Phonons are calculated using density-functional perturbation
theory (DFPT)[50]. The third-order anharmonic coefficients V3(0j, ~qλ,−~qλ)
are computed on an 8 × 8 × 6 q-point mesh through the finite difference
of the dynamical matrix by displacing atoms along the displacement pat-
tern uκα(~0j). The quasiharmonic internal shift 〈Q~0j〉, derived from the

“internal” Grüneisen parameter γ~qλ(~0j), involves only diagonal components
(~qλ = −~qλ′). The secondary pyroelectric coefficient is calculated from the
linear thermal expansion coefficients and the piezoelectric constants.

Computed properties of GaN and ZnO are summarized in Table 5.1. In har-
monic approximation, the mean displacement of an atom is zero (the mean
position coincides with the equilibrium position). Inclusion of the third-order
anharmonicity causes the mean displacement of cations and anions to deviate
along the polar c-axis in opposite directions. The Born effective charges on
cations and anions are equal and opposite. The net effect is a temperature-
dependent shift of the spontaneous polarization. In Figs. 5.1-5.2 we show the
calculated primary pyroelectric coefficients pǫ(T ) and the experimental total
pyroelectric coefficient pσ(T ) for GaN[29, 30] and ZnO[87] respectively. The
secondary pyroelectric coefficients p2(T ) are calculated from 2e31α1 + e33α3

using the experimental linear thermal expansion coefficients α1, α3[91] and
the calculated piezoelectric stress constants e31, e33[7]. However, it is reported
that for GaN and ZnO the computed piezoelectric constants are uncertain by
as much as 30%[92, 93]. Therefore the calculated p2(T ) shown in Figs. 5.1-
5.2 should be considered rough estimates. As shown in Figs. 5.1-5.2, for GaN
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Table 5.1: The calculated lattice constants, Born effective charge and long-
wavelength A1(TO) phonon frequency for GaN and ZnO. Experimental val-
ues are shown in parentheses except for Born effective charge where theoret-
ical values are shown instead.

a(Å) c(Å) Z33(e) ωTO(cm−1)
GaN 3.182 (3.1871) 5.189 (5.1861) 2.77 (2.722) 534 (533.83)
ZnO 3.219 (3.251) 5.195 (5.2071) 2.28 (2.112) 390 (3784)
1Ref. [91], X-ray powder diffractometry at 300K.
2Ref. [7], first-principles calculations in the local density approximation.
3Ref. [94], Raman spectra at 6K.
4Ref. [95], inelastic neutron scattering spectra at 10K.

and ZnO above room temperature the secondary pyroelectric effect is com-
parable with the primary effect. This differs from ferroelectric pyroelectrics,
where the primary pyroelectricity dominates[31]. For GaN, disagreement
in the experimentally measured pyroelectric coefficients is reported[29, 30],
possibly due to the piezoelectric contribution from the strain introduced by
the substrates. For ZnO, our calculated total pyroelectricity is about 20%
lower than the experimental data, indicating the possible contribution from
the electron-phonon interaction term, which is left out in our first-principles
calculations.

Yan et al. conjecture a temperature dependence of the primary pyroelectric
coefficient pǫ(T ) of GaN as a sum of Debye and Einstein functions[96]. In
Fig. 5.3 we show for ZnO our calculated contributions from acoustic and
optic branches respectively. At low temperatures, only the acoustic phonon
modes are sufficiently excited, while at high temperatures, contributions from
the optic phonon modes become important. Our calculations indicate that
for wurtzite ZnO, contributions from acoustic and optic branches are more
complicated than Debye and Einstein functions, especially at low tempera-
tures. In Fig. 5.4, we show for ZnO the vibrational density of states D(ω),
together with the frequency-distributed internal Grüneisen parameter γu(ω)
defined as

γu(ω)D(ω) =
∑

~qλ

γ~qλ(~0j)δ(ω − ω~qλ). (5.23)
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Figure 5.1: The pyroelectric coefficient of GaN.

As an example of the use of this definition, the pyroelectric coefficient is

p(T ) =
eZ∗

2Mredω2
0cu

∫∫ ∞

0

dωD(ω)γ(ω)C(ω), (5.24)

where C(ω) is the harmonic specific heat of a mode of frequency ω, h̄ω(dn/dT )/Ω.
The total contribution to p(T ) is a complicated mix of contributions of both
signs from acoustic and optic branches.

Figure 5.5 shows the predicted and the experimentally measured values of
the internal parameter u of ZnO. The theory for pyroelectricity also gener-
ates a formula for the internal strain u(T ) which is closely parallel to the
Grüneisen quasiharmonic theory of volume expansion,

∆u

u
=

1

2Mredω2
0c

2u2

∑

~qj

(

n~qj +
1

2

)

h̄ω~qjγ~qj(0) (5.25)

where the label 0 on ω0 and γ ~Qj(0) indicates the A1(TO) mode. This formula
gives only the part of u(T ) that occurs when external strains are absent. The
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Figure 5.2: The pyroelectric coefficient of ZnO.

full result is

u(T ) = u(0)+[∆u(T )−∆u(0)]+

(

∂u

∂a

)

BO

[a(T )−a(0)]+

(

∂u

∂c

)

BO

[c(T )−c(0)]

(5.26)
The value u(0) from experiment contains all zero-point shifts. The fac-
tor [∆u(T ) − ∆u(0)] comes from the theory of Eq.(5.25), and the factors
[a(T )−a(0)] and [c(T )− c(0)] come from experiment [91]. For ZnO, the the-
oretical values of ∂u/∂a and ∂u/∂c are 0.083Å−1 and −0.051Å−1 respectively,
coming from our DFT Born-Oppenheimer calculations. Our calculated ther-
mal displacement increases monotonically with increasing temperature, while
experimentally u(T ) remains unchanged between 20 and 300 K. Except for
this discrepancy at low-T , the overall agreement is satisfactory.

We also calculate the pyroelectric coefficients for AlN, BeO and CdS, as
shown in Figs. 5.6-5.8. While for GaN and ZnO the secondary effect becomes
important only at high-T, for AlN and BeO the primary effect completely
dominates. There is also disagreement found in the experimentally mea-

52



0 200 400 600 800 1000
-2

0

2

4

6

8

ZnO  primary p

 primary p  - acoustic

 primary p - optic

 

 

py
ro

el
ec

tri
c 

co
ef

fic
ie

nt
 (

C
/m

2 K
)

Temperature (K)

Figure 5.3: The primary pyroelectric coefficient of ZnO: acoustic and optic
branches.

sured pyroelectric coefficients for AlN[99, 100]. For AlN, the uncertainty in
the computed piezoelectric constants is about 20%[92, 7]. For BeO, the piezo-
electric constants e31 and e33 are predicted to be −0.02 and 0.02 respectively
from the calculation of Bernardini et al.[7], while a subsequent comparative
calculation predicts −0.3 and 0.55 otherwise. The large sensitivity in the
piezoelectric tensor results in a large uncertainty in the calculated secondary
effect. Accurate piezoelectric constants are needed before we could come to
a reliable calculation of the secondary pyroelectricity.

5.3 Raman linewidth of A1(TO) phonon

The last subsection of this chapter is devoted to a preliminary first-principles
study on the Raman linewidth of A1(TO) phonon in III-V/II-VI wurtzite
semiconductors. Through the anharmonic three-phonon process, the zone-
center A1(TO) phonon ~0j decays into two phonons with opposite wave vec-
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Figure 5.4: Vibrational density of states D(ω) and internal grüneisen param-
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tors ±~q whose frequencies sum up to ω~0j. To the lowest order terms in the
perturbative expansion, only the bubble diagram has an imaginary compo-
nent of the phonon self-energy, resulting in an anharmonic contribution to
the linewidth[102]:

Π
(B)
~0j

(ω) = −
1

2Nh̄2

∑

~q,j1,j2

∣

∣

∣
V3(~0j, ~qj1,−~qj2)

∣

∣

∣

2

(

2(ω~qj1 + ω~qj2)(n~qj1 + n~qj2 + 1)

(ω~qj1 + ω~qj2)
2 − (ω + iδ)2

+
2(ω~qj1 − ω~qj2)(n~qj2 − n~qj1)

(ω~qj1 − ω~qj2)
2 − (ω + iδ)2

)

(5.27)

The third-order anharmonic coefficient V3(~0j, ~qj1,−~qj2) is readily obtained
through the finite difference of the dynamical matrix by displacing atoms
along the displacement pattern uκα(~0j).

Experimentally, the temperature dependence of the Raman linewidth Γ(T )
is frequently fitted as

Γ(T ) = Γ0 + 2C(n1 + n2 + 1) (5.28)
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Figure 5.5: Thermal shift of the ZnO internal parameter u. The measured
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where Γ0 accounts for impurity and defect scatterings, and n1,2 describes
the phonon population of the two participating phonons with opposite wave
vectors ±~q. To the best of my knowledge, there are no first-principles calcula-
tions on Γ(T ) for the III-V/II-VI wurtzite semiconductors. While in principle
Γ(T ) can be calculated from first principles, V3(~0j, ~qj1,−~qj2) is related to the
third derivative of the total energy with respect to the atomic displacement,
which involves hundreds of total energy and force calculations in the supercell
approach. Therefore most researchers consider V3(~0j, ~qj1,−~qj2) as adjustable
parameters which are fitted to the experimental data. Our scheme is compu-
tationally more efficient in the way that the necessity of a supercell is reduced
into the calculation of ±~q phonons along the displacement pattern uκα(~0j)
within the unit cell. This scheme can be readily applied to other zone-center
transverse-optic phonons.

The calculated Raman linewidth for several III-V/II-VI wurtzite semicon-
ductors (AlN, GaN, BeO and ZnO) are shown in Figs. 5.9-5.11. In Fig.
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Figure 5.6: The pyroelectric coefficient of AlN.

5.9, the difference in the measured Γ(0) for AlN is attributed to the scat-
tering from the impurities in the samples. While experimental measurement
is sensitive over the quality of the semiconductor film, our first-principles
calculations treat exactly the three-phonon process. For AlN and GaN, the
calculated temperature dependence of the Raman linewidth agree well with
the experimental data at low-T . For GaN, at high-T the deviation becomes
large, possibly due to higher-order phonon-phonon interactions which are
not included in our first-principles calculations. For BeO and ZnO, to our
best knowledge, no experimental measurement exists for the A1(TO) phonon.
Our calculations provide predictions at the first-principles level.
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Figure 5.7: The pyroelectric coefficient of BeO. Dash dot: piezoelectric con-
stants from Ref. [7]. Dash dot dot: piezoelectric constants from Ref. [93].

5.4 Conclusion

We have calculated the primary pyroelectric coefficients for wurtzite GaN
and ZnO from first-principles. For wurtzite crystals the pyroelectricity was
attributed to the anharmonic atomic displacements of the Born effective
charges on the cations and anions. A good agreement was found between our
first-principles calculations and the experimental data. We have shown that
the primary pyroelectricity contributes to the major part of the total pyro-
electricity at low temperatures, while the secondary pyroelectricity becomes
comparable with the primary pyroelectricity at high temperatures. The pri-
mary pyroelectric coefficient could be separated into two parts: contributions
from the acoustic and the optic phonon modes, which were moderately well
described by Debye and Einstein functions respectively. The present study
offers evidence that theory and computation can predict pyroelectricity with
some reliability over a wide range of temperatures.
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Figure 5.8: The pyroelectric coefficient of CdS. The piezoelectric constants
are taken from Ref. [101].
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Figure 5.9: Raman linewidth of AlN. Dash: expt. from Ref. [103]. Dash
dot: expt. from Ref. [104].
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Figure 5.10: Raman linewidth of GaN. Dash: expt. from Ref. [105]. Dash
dot: expt. from Ref. [106].
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Chapter 6

6 Ga1−xInxN: Electron-phonon Interaction

6.1 Background

In the recent past, the temperature dependence of the band gaps Eg(T )
of semiconductors have attracted increasing attentions[107, 108, 109, 110,
111, 112, 113, 114]. Experimentally, this temperature dependence has to be
determined by photoluminescence (PL) or optical absorption spectroscopy
with caution. For example, it is at first reported that in InN the PL peak
energy increases monotonically with increasing temperature[115]. A subse-
quent study yields normal redshift of optical absorption peak with increas-
ing temperature, and attributes the anomalous blueshift of PL peak with
increasing temperature to the fact that the PL peak is strongly affected by
the localized states[116]. For semiconductor alloys, theoretical study on the
temperature dependence of the band gap is rather at its preliminary stage.
Attempt has been made to fit the experimental Eg(x, T ) based on the Varshni
equation[117]. To our best knowledge, first-principles calculations on Eg(T )
for GaN, InN and Eg(x, T ) for their alloy Ga1−xInxN are still lacking. Of par-
ticular importance for the first-principles band structure calculations is the
zero-point motion renormalization (ZPR), while the composition dependence
of the Varshni parameter is crucial for the extrapolation of high-temperature
Eg(T ) from the experimental low-temperature values. The present study
aims at throwing some light on the application of VCA in the first-principles
calculations of the temperature dependence of the band gap.

6.2 Ga1−xInxN: Eg(x, T )

First-principles calculations are performed using the ABINIT program[118,
119]. In VCA, the potential of each atom in the alloy is replaced by a
composition-weighted average of the potentials of its components. We em-
ploy the VCA provided by the ABINIT program. The pseudopotentials are
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generated using the fhi98PP code[120]. The Ga-3d and In-4d electrons are ex-
plicitly included in the valence. The electronic wave-functions are expanded
in a plane-wave basis with a kinetic energy cutoff of 50 Hartree. We use
a 6 × 6 × 4 k-point mesh for Brillouin-zone sampling. Phonons are calcu-
lated using density-functional perturbation theory (DFPT)[50] on a 8×8×6
q-point mesh. It is well known that the band gap calculated from LDA is
severely underestimated. In the present study we apply the recently proposed
TB09 functional[121] (a modified version of the Becke-Johnson exchange[122]
part combined with a LDA PW92 correlation[48] part). It allows us to im-
prove the band gap prediction with a computational cost only slightly heavier
than that of LDA. The electron-phonon matrix elements are calculated on
a 8 × 8 × 6 q-point grid in the adiabatic rigid-ion approximation[114]. An
imaginary shift (iδ) of 0.1 eV is used in the perturbation denominator of the
sum-over-states to avoid numerical instability. The most common empirical
relation for the variation of the band gap with temperature in semiconductors
is the so-called Varshni relation[123]:

Eg = E0 − αT 2/(T + β) (6.1)

where E0 is the band gap at 0 K and α,β are fitting parameters. Although
the Varshni relation bears no physical resemblance and incorrectly predicts
a quadratic temperature dependence for T → 0[124], it fits the experimental
data remarkably well. In present study, we continue to use the Varshni rela-
tion for its significant popularity in applications.

The calculated lattice constants and band gaps of GaN and InN with the
TB09 functional are summarized in Table 6.1. While LDA severely underes-
timates the band gap for GaN and even incorrectly predicts a metallic state
for InN, the TB09 functional yields band gaps close to the experiments. Our
VCA calculations show that the dependence of a and c on the In content x
clearly deviate from the Vegard’s law[60]. In Fig. 6.1 we show the calcu-
lated and experimental band gaps. To study the effect of local environment
relaxations (which VCA lacks) on the band gaps, we also perform calcula-
tions using the TB09 functional on fully relaxed SQSs. Firstly, the TB09
functional corrects for the LDA band gaps independently on x, which fur-
ther confirms the applicability of LDA in calculating the band gap bowing
parameter for Ga1−xInxN alloy[36, 37]. Secondly, our VCA calculations show
that the band gap bowing at low In content is larger than that at high In con-
tent. Therefore one single composition-independent bowing parameter may
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Table 6.1: Lattice constants and band gaps of GaN and InN calculated with
the TB09 functional. Experimental data are taken from Ref. [67] and are
shown in parentheses.

a(Å) c(Å) Eg(eV)
GaN 3.216 (3.189) 5.239 (5.185) 2.93 (3.51)
InN 3.521 (3.545) 5.692 (5.703) 0.57 (0.78)

not be adequate for accurate description of the nonlinear band gap bowing.
If we enforce the composition-independent bowing, the corresponding bow-
ing parameter reads 3.85 eV by a least-square fitting. Thirdly, the band gap
bowing of SQS alloy is much smaller than that of VCA alloy. The tendency
accidentally corresponds to the effect of In clustering where the band gap
bowing ranges from 2.1 eV for the uniform case to 3.9 eV for the clustering
case[39]. The calculated phonon density of states (DOS) is shown in Fig.
6.2. The peak of phonon DOS shifts to lower frequency while the shape of
phonon DOS remains unchanged as In content x is increased. Compared
with 32-atom SQS calculations[43], VCA succeeds in capturing the shift of
phonon DOS, but fails in describing the broadening of the phonon spectra,
since the broadening of phonon DOS upon alloying is associated with local
environment disorder.

The temperature dependence of the band gap ∆Eg(T) can be decomposed
into two parts: the electron-phonon interaction (EPI) term and the ther-
mal expansion (TE) term. While the EPI contribution to the temperature
dependence of the band gap of GaN is calculated from first-principles, the
TE contribution[124] is calculated from −B(∂Eg

∂p
)T
∫ T

0
[2αa(T

′) + αc(T
′)]dT ′.

The bulk modulus B is taken from ab initio calculatoins[125], while the
pressure coefficient of band gap (∂Eg

∂p
)T is taken from low-temperature PL

measurement[126]. The linear thermal expansion coefficient α(T ) over the
entire temperature range is described by the experimentally determined De-
bye model[127]. Our calculations agree well with the experimental data[128],
as is shown in Fig. 6.3. The ZPR is as large as -0.15 eV. The main con-
tribution to the temperature dependence of the band gap comes from the
EPI term, which is almost three times of the TE term. The fitted Varshni
parameters (for only the EPI term) α and β reads 0.51 meV/K and 745
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Figure 6.1: Band gaps of Ga1−xInxN. Zero band gaps represent the incorrect
metallic states predicted by LDA. SQSs are taken from Ref. [43]. Experi-
mental bowing parameters are taken from Ref. [34] (b = 1.43 eV) and Ref.
[35] (b = 2.8 eV).

K respectively. A simple average of the diverse experimental data suggests
α=0.91 meV/K and β=830 K[129], while a more recent measurement yields
α in the range of 0.54-0.63 meV/K and β in the range of 700-745K.

The calculated (x, T ) dependence of the band gap is shown in Fig. 6.4.
Due to the LDA band gap problem (see Fig. 6.1), we focus on the Ga-rich
(x ≤0.5) contents. The ZPR and the Varshni parameter α decrease in mag-
nitude as x is increased because of the larger atomic mass of In, indicating a
decrease in the strength of EPI. We describe the deviation of the composition
dependence from linearity by a bowing term −bx(1 − x), as is shown in Fig.
6.5. The bowing parameter for the ZPR is −0.1 eV, which should be taken
into account in the calculated band gap bowing parameter (in present study
3.85 eV). The extrapolated ZPR for InN is -0.036 eV, considerably smaller
than that for GaN. The extrapolated α for InN is 0.096 meV/K, while the
experimentally measured value reads 0.414 meV/K[116]. The large differ-
ence indicates a significant role of TE in the Eg(T ) of InN, contrary to the
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Figure 6.2: Phonon density of states of Ga1−xInxN.
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Figure 6.3: Temperature dependence of the band gap (referenced to zero) of
GaN. Experimental data are taken from Ref. [128].

situation for GaN where EPI dominates over TE.
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Figure 6.5: Composition dependence of the ZPR and the Varshni α.

6.3 Conclusion

In conclusion, we have studied the structural, electronic and vibrational prop-
erties of the Ga1−xInxN alloy using VCA from first-principles. We obtain a
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band gap bowing parameter of 3.85 eV with the TB09 functional. VCA
succeeds in capturing the shift of phonon DOS, but fails in describing the
broadening of the phonon spectra. We have also studied the role of EPI in
the temperature dependence of the band gaps for GaN, InN and their alloy
Ga1−xInxN. For GaN EPI plays the dominant role, while for InN TE could
contribute significantly. The calculated ZPR is important for modifying the-
oretical zero-temperature band gap, while the fitted Varshni parameter α is
crucial for extrapolating high-temperature band gap experimentally.
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