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Abstract of the Dissertation

Strong Electronic Correlations in Manganese
Pnictide Compounds

by

Daniel McNally

Doctor of Philosophy

in

Physics

Stony Brook University

December 2015

Electron-electron interactions must be considered to understand
the electronic ground states of many crystalline solids. The work
presented here addresses the effects of electronic correlation in sev-
eral manganese pnictide compounds. These results contribute to
our understanding of the conditions under which high temperature
superconductivity and spin liquid behavior can occur.

First, we find that the intra-atomic Hunds coupling between elec-
trons is crucial for the stabilization of an insulating ground state
in LaMnPO and BaMn2As2, which are isostructural to the parent
compounds of the high temperature iron-based superconductors.
Second, we find that competing inter-atomic exchange interactions
frustrate the long range magnetic order in the corrugated honey-
comb lattice compound CaMn2Sb2. Finally, we find signatures of
an orbitally selective Mott phase in LaMnxSb2.

To arrive at these results, we performed and analyzed inelastic
neutron scattering, x-ray and neutron diffraction, transport, spe-
cific heat and magnetization measurements on bulk single crystals
and powders that we synthesized. We also collaborated extensively
with groups that performed optical spectroscopy measurements on
single crystals that we provided and electronic structure calcula-
tions on input crystal structures that we provided.
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Chapter 1

Introduction

1.1 Strongly Correlated Systems

Electron-electron interactions must be considered to understand the ground
states of many different compounds, in particular 3d, 4d or 5d transition metal
compounds, and compounds containing 4f (lanthanides) or 5f electrons (ac-
tinides). In these systems, the band theory for independent electrons that
classifies materials into metals and insulators fails dramatically [1]. For ex-
ample, according to independent electron band theory, the transition metal
oxide NiO should be metallic as the d band of the nickel is partially filled [2].
However, experiments show that NiO is most definitely insulating. Electron-
electron interactions governed by the Coulomb interaction U must be taken
into account to understand why NiO is insulating. These materials are called
Mott insulators [3]. The Hubbard Hamiltonian frames the problem of cor-
related electrons as a lattice of sites with a competition between the onsite
Coulomb repulsion U and kinetic hopping between sites t (∝ bandwidth W)
(see Figure 1.1). Approximate solutions of this Hamiltonian can successfully
account for the metal-insulator transition in many systems where independent
electron band theory fails as outlined in Figure 1.1.

The appearance of magnetic ordering in a compound often indicates that
electron-electron interactions are important. It has been well established that
the parent compounds of the copper oxide high temperature superconductors
(HTSC), e.g. La2CuO4, are antiferromagnetic Mott insulators [1]. The in-
troduction of chemical dopants suppresses the long range antiferromagnetic
order and reveals a superconducting state, e.g. La1.85Sr0.15CuO4 (see Figure
1.2a). The ground state properties of the cuprates are well described by a
single orbital Hubbard model, as the Cu2+ atoms are in a d9 configuration
and a Jahn-Teller-type distortion of the oxygen octahedron co-ordinating the
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Figure 1.1: (left) The density functional theory plus dynamical mean field the-
ory (DFT+DMFT) [4] solution of the single orbital Hubbard model can well
account for the properties of systems where electron-electron interactions, de-
fined by the ratio of the Coulomb interaction to electron bandwidth U/W, are
important. (a) Density of states (DOS) for a system of non-interacting elec-
trons. (b) DOS for weak electron-electron interactions. The narrowing of the
peak can be described by Fermi liquid theory of mass enhanced quasiparticles.
(c) DOS for stronger electron-electron interactions. Upper and lower Hubbard
bands originate from local atomic excitations and there is a quasiparticle peak
near the Fermi level (d) For sufficiently strong electronic correlations a band
gap opens at the Fermi level and a metal-insulator transition has occurred.
These spectral features may be observed by photoemission experiments. Fig-
ure reproduced from [5] (right) Triangular lattice showing the onsite Coulomb
interaction U and the kinetic hopping t ∝ W. Figure reproduced from [6]
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Cu lifts the degeneracy of the eg orbital so that the half-filled dx2−y2 orbital
dominates near the Fermi level.

The paradigm of doping a Mott insulator to realize HTSC was challenged
by the discovery of superconductivity in iron pnictide compounds, whose par-
ent compounds are antiferromagnetic metals, e.g. LaFeAsO [7]. The introduc-
tion of chemical dopants suppresses the long range antiferromagnetic order
and reveals a superconducting state, e.g. LaFeAsO0.89F0.11 (see 1.2b). The
importance of electron-electron interactions in iron pnictide compounds is a
topic of much current debate [8]. The temperature-doping phase diagram pre-
sented in Figure 1.2 shows similar behavior between iron and copper based
superconductors. However, an important distinction between these materials
is that multiple orbitals may contribute to the ground state properties of the
iron pnictides as Fe2+ is nominally in a d6 configuration, with experiments
and theory showing that the three t2g orbitals dominate the Fermi level. In
such multiorbital systems Hund’s coupling, discussed further below, can lead
to orbital decoupling and different degrees of correlation in different orbitals:
the closer an orbital is to half-filling, the more correlated it will be [9]. Thus
one or more orbitals may be in a Mott insulating phase while the other orbitals
become metallic. This is called orbitally selective Mottness and allows for the
co-existence of both weakly and strongly correlated electrons in iron pnictide
compounds(Figure 1.3).

Figure 1.2: Phase diagram of cuprate (a) and iron pnictide (b) superconduc-
tors. Superconductivity emerges out an antiferromagnetic case for both classes
of high temperature superconductors. However, the parent compounds of the
cuprates are Mott insulators while the parent compounds of the iron pnictides
are Hund’s metals. Figure reproduced from [10].
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Figure 1.3: Phase diagram for a three band model with four electrons and
band fillings (1, 1.5, 1.5) where the band degeneracy is lifted by adjusting
the crystal field within slave spin mean field theory. The presence of Hund’s
coupling J in multi-orbital systems can lead to the emergence of an orbitally
selective Mott phase (OSMP). Figure reproduced from [11].
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In this thesis, I examine the interplay between the electronic, magnetic
and structural properties of antiferromagnetic manganese compounds that are
isostructural with the iron pnictide compounds discussed above. To provide
further background for the results that will be presented later in this thesis,
I now briefly describe the magnetic interactions between electrons in solids.
In particular, I emphasize how these interactions can lead to short and long
range magnetic order, and the interplay between the spin, charge, orbital and
lattice degrees of freedom in solids.

1.2 Hund’s rules

The combination of angular momentum quantum numbers that minimize the
energy of an isolated magnetic ion can be estimated by the empirical Hund’s
rules [12] given in order of decreasing importance as:

(1) The wavefunction of the ion should be arranged so as to maximize the
total spin S.

(2) The wavefunction of the ion should be arranged so as to maximize the
total orbital angular momentum L.

(3) The total angular momentum J = ‖L - S‖ if the shell is less than
half-filled and J = ‖L + S‖ if the shell is more than half-filled. This rule is
associated with spin-orbit coupling, which we shall not consider in this thesis
although its physical effects have attracted considerable attention recently.

These empirical rules result from the minimization of the energy governed
by the Coulomb interaction between electrons. The fluctuating moment µ1 =
gJ
√
J(J + 1) (gJ is the Landé g-factor) calculated using Hund’s rules yields

very good agreement with experiment for 4f ions, whose orbitals are very
localized. However, for the more extended orbitals in 3d ions the effect of the
local crystal field environment is more important than the spin-orbit coupling
and Hund’s third rule is no longer valid. The crystal field effect leads to orbital
quenching such that L = 0, gJ = 2 and µ2 = 2µB

√
S(S + 1). With this

modification, the magnetic ground states of 3d ions calculated using Hund’s
rules is in very good agreement with experiment as shown in Table 1.1.
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ion shell S L J µ1 µexp µ2

Ti3+, V4+ 3d1 1/2 2 5/2 1.55 1.70 1.73
V3+ 3d2 1 3 2 1.63 2.61 2.83
Cr3+, V2+ 3d3 3/2 3 3/2 0.77 3.85 3.87
Mn3+, Cr2+ 3d4 2 2 0 0 4.82 4.90
Fe3+, Mn3+ 3d5 5/2 0 5/2 5.92 5.82 5.92
Fe2+ 3d6 2 2 4 6.70 5.36 4.90
Co2+ 3d7 3/2 3 9/2 6.63 4.90 3.87
Ni2+ 3d8 1 3 4 5.59 3.12 2.83
Cu2+ 3d9 1/2 2 5/2 3.55 1.83 1.73
Zn2+ 3d10 0 0 0 0 0 0

Table 1.1: The experimental values of the fluctuating moment µexp taken from
measurements of paramagnetic salts. These values are in excellent agreement
with those expected from Hund’s rules when orbital quenching is considered

1.3 Hund’s Coupling

While the appropriateness of Hund’s rules in determining the magnetic ground
states of localized ions has long been established, it is only more recently that
the role of Hund’s coupling in systems with extended hybridized orbitals, even
displaying metallic behavior, has been considered. These studies of the elec-
tronic correlation effects associated with Hund’s coupling have been motivated
by the discovery of high temperature superconductivity when the antiferro-
magnetic metallic state of the layered multi-orbital iron pnictide compounds is
suppressed by pressure or doping [13]. Density functional theory plus dynam-
ical mean-field theory (DFT+DMFT) calculations have revealed that Hund’s
coupling is critical to understanding basic properties of the parent compounds,
such as enhanced Pauli-like susceptibility and a linear temperature dependence
of the resistivity (Figure 1.4).

The effect of Hund’s coupling has been termed “Janus-faced” (two-faced)
because while it enhances electronic correlations that would be expected to
localize electrons, it actually promotes a metallic state in non half-filled multi-
orbital systems [15]. To put this statement on a firmer footing I now show that
the charge gap is decreased by Hund’s coupling away from half filling following
the outline and notation presented in [15]. The simplest model in which the
Janus behavior occurs is the Hubbard-Kanamori model of three degenerate
bands described by the Hamiltonian:

6



Figure 1.4: DFT+DMFT calculations show that Hund’s coupling suppresses
the coherence temperature for the formation of a Fermi liquid. (a) The in-
troduction of Hund’s coupling JH transforms the static susceptility from a
temperature-independent Pauli-like behavior (JH = 0) to local moment Curie-
Weiss-like behavior (JH = 0.7). For intermediate values of JH the system
displays enhanced Pauli-like susceptibility. (b) In the presence of JH the re-
sistivity shows bad metal behavior with a small electron mean free path and
a linear temperature dependence. These calculations are in reasonable agree-
ment with experiments and emphasize the importance of Hund’s coupling in
multi-orbital magnetic systems. Figure reproduced from [14].
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HK = U
∑
m

n̂m↑n̂m↓ + U ′
∑
m 6=m′

n̂m↑n̂m′↓ + (U ′ − JH)
∑

m<m′,σ

n̂mσn̂m′σ

−JH
∑
m 6=m′

d†m,↑dm,↓d
†
m′,↓dm′,↑ + JH

∑
m6=m′

d†m,↑d
†
m,↓dm′,↓dm′,↑ (1.1)

The first three terms involve density-density Coulombic interactions, be-
tween electrons with opposite spins in the same orbital m (U), opposite spins
in different orbitals (U’ = U - 2JH) and parallel spins in different orbitals (U
- 3JH) where JH is the Hund’s coupling. The fourth and fifth terms are the
exchange interaction and pair hopping.

Consider an isolated atom with N electrons and M orbitals. We are
interested in the energetic cost ∆ of changing the valence of two isolated
atoms from their nominal electron numbers N to the state with N-1, N+1, i.e.
transferring one of the electrons from one atom to the other. This corresponds
to the difference of the affinity and ionization energies:

∆ = [E0(N + 1)− E0(N)]− [E0(N)− E0(N − 1)] (1.2)

where E0 is the ground state energy of the atom. When the number of electrons
N is less than the number of orbitals M, the ground state energy involves only
the pairwise interactions between parallel spins:

E0(N) = (U − 3JH)N(N − 1)/2 (1.3)

Hence U - 3JH plays the role of the effective Hubbard interaction and the gap
∆ is reduced

∆ = U − 3JH (N < M or N > M) (1.4)

with the expression for N > M resulting from particle-hole symmetry. In
contrast, for a half-filled shell (N=M), the excited state with N + 1 = M +
1 involves one doubly-occupied orbital and has a higher energy. Considering
each type of pair, that is parallel spins on different orbitals and antiparallel
spins on same orbital and antiparallel spins on different orbitals, the expression
for the ground state energy of the N + 1 excited state reads:

E0(N + 1) = (U − 3JH)M(M − 1)/2 + U + (U − 2JH)(M − 1) (1.5)

and the other energies may be calculated as before, yielding a gap

∆ = U + (M − 1)JH , N = M (1.6)
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It is clear that this Hubbard Hamiltonian predicts that Hund’s coupling
has a dramatic effect on the energetics of the gap, increasing the gap for half-
filling while decreasing the gap for all other fillings.

1.4 Exchange Interaction

We now consider the interaction between two electrons on different atoms. The
exchange symmetry requires that the eigenstates formed by the two electrons
must be symmetric or antisymmetric under particle exchange. The difference
between the resulting singlet (S=0) and triplet (S=1) states gives the strength
of the direct exchange interaction between two electrons on different atoms
occupying orbital states with wave function ψa and ψb:

J = −
∫
ψ∗a(r1)ψ

∗
b (r2)

e2

r12
ψa(r2)ψb(r1)dr1dr2 (1.7)

which measures the frequency with which two electrons exchange their orbital
states. The Hamiltonian describing the interaction between the spin degree of
freedom between electrons on different atoms can be written:

H = JS1S2 (1.8)

For localized orbitals the integral is always positive and the direct ex-
change coupling is negative J < 0, resulting in parallel, ferromagnetic align-
ment of spins. This is the origin of the first of Hund’s empirical rules for
electrons on an isolated atom presented above. However, the direct ex-
change mechanism usually cannot account for the experimentally observed
co-operative magnetic behavior between collections of atoms. This is a con-
sequence of the magnetic ions being too far apart in solids so that there is
insufficient direct overlap between neighboring magnetic orbitals and the di-
rect exchange interaction is very weak.

The indirect superexchange interaction is usually the dominant cause of
antiferromagnetism in Mott insulators, such as the parent compounds of the
cuprate superconductors. This interaction is mediated by the hybridization
of the wave functions of the magnetic ions with those of an intervening anion
(Figure 1.5). Because superexchange involves anion orbitals as well as the
orbitals of the magnetic ions, it is a second order effect and can be derived
from the Hubbard Hamiltonian with second order perturbation theory. The
exchange energy is then the square of the hopping term divided by the Hubbard
U:
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J ≈ t2

U
(1.9)

In this case, the intersite exchange interaction mediated by superexchange can
result in an antiferromagnetic configuration of spins (J > 0) that minimizes
energy compared to a ferromagnetic configuration of spins or independently
fluctuating spins as in a paramagnet. Thus, charge transport between atomic
sites becomes energetically unfavorable and the exchange interaction should
contribute to a charge gap ∆ ≈ J.

1.5 Long Range Magnetic Order

The exchange interactions presented above can apply between all neighboring
localized atoms in a solid. In the limit U >> t the Hubbard Hamiltonian then
reduces to the Heisenberg model:

H =
∑
ij

JijSiSj (1.10)

where Jij is the exchange interaction between the ith and jth spins. This can
result in the formation of a long range magnetically ordered ground state when
the exchange interaction is greater than the thermal fluctuations J > kB T.

Generally, the existence of a periodic potential can open a charge gap in
solids as in a band insulator such as silicon. The formation of a long range
ordered magnetic state can modify the periodic potential that may then open
a charge gap. This is the situation in a Slater insulator, such as NaOsO3 [16]
or perhaps Na2IrO3 [17].

Here we follow the outline and notation in [18] to show that a periodic
potential can open a charge gap. In the nearly free electron approximation
the lattice potential is treated as a perturbation. The starting point for the
calculation is a set of electronic wavefunctions in the form of plane waves:

ψ0
k = eik.r (1.11)

and the energies are E = ~2k2/2m. In the presence of an external potential
V(r) we search for the wavefunction in the form of a linear combination of
plane waves:

ψk =
∑
G

Ck−Ge
i(k−G)r (1.12)

where the G’s are reciprocal lattice vectors. Inserting this wavefunction into
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Figure 1.5: Superexchange mediated between the transition metal dx2−y2 or-
bital and the oxygen px orbital [12]. Such a situation may arise in an octa-
hedral environment where the crystal field increases the energy of the dx2−y2
orbital relative to other d orbitals. The arrows show the spins of the four
electrons and how they are distributed over the magnetic d orbital M and the
anion 2p orbital O. Ground state antiferromagnetic coupling between mag-
netic ions such as in (A) can mix with excited configurations such as (B)
and (C) thus delocalizing the electrons over the M-O-M unit and lowering
the kinetic energy. Here, the kinetic energy is lowered because the electron’s
wavefunction becomes more spread out and thus its momentum, which is the
spatial derivative of the wavefunction, decreases. If the moments on the M
atoms are coupled ferromagnetically then the ground state (D) cannot mix
with excited configurations like (E) and (F) because they are not allowed by
the Pauli exclusion principle. The ferromagnetic configuration therefore costs
more energy.
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the Schrodinger equation leads to a set of linear equations:

[E − E(k −G)]Ck−G =
∑
G′

Ck−G′VG−G′ (1.13)

where VG is the Fourier component of the lattice potential V(r). If we assume
that a weak periodic potential has its major effects only on those free electron
levels whose wavevectors are close to ones at which Bragg reflections can occur,
i.e. only the G-G’ component of VG−G′ is non-zero, the result is:

E± = 1/2(Ek + Ek−G0)± 1/2
√

(Ek − Ek−G0)
2 + 4VG2

0
(1.14)

This is plotted in Figure 1.6.
The tight-binding model starts in the other extreme, where wavefunctions

are localized on the atoms. The gap at the zone boundary for a weak potential
in the tight binding model is the same as that for the nearly free electron model.

Figure 1.6: Energy bands for the free electron model (black) and the nearly free
electron model with a periodic potential calculated using a linear combination
of plane waves approach. A gap is opened at the zone boundary in the presence
of a periodic potential.
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1.6 Frustrated Magnetism

Sometimes, the presence of local moments and a sufficiently strong exchange
interaction between them is not sufficient to drive long range magnetic or-
der. An interaction-mediated frustration between spins, through geometric
constraints or multiple exchange pathways, can create a large degeneracy of
ground states among which the spins fluctuate. An example of the degeneracy
of ground states present for a triangular lattice of spins is presented in Figure
1.7.

Magnetic frustration can lead to the formation of novel co-operative mag-
netic states with short range ordering of spins such as spin glass, spin ice or
spin liquid. A spin glass may be defined as a random, mixed interacting (ferro-
magnetic and antiferromagnetic interactions) magnetic system characterized
by a random, yet cooperative, freezing of spins at a well defined tempera-
ture Tf below which a highly irreversible, metastable frozen state appears but
without magnetic long range ordering [12]. An example of a site-random spin
glass system is the alloy Cu1−xMnx where small amounts of Mn atoms ran-
domly occupy sites and the oscillatory RKKY interaction mediated by Cu ions
yields mixed magnetic interactions between Mn sites. An example of a bond-
random spin glass system is Rb2Cu1−xCoxF4 [19] where the superexchange
pathway and hence the exchange interaction varies depending on whether Cu
or Co occupy a site. Pyrochlore systems, such as Ho2Ti2O7, may be considered
as spin ice systems where there are local constraints on the directions of spins
imposed by the geometry and exchange interactions on this lattice, known as
the ’ice rules’ [20]. Unlike in a spin glass or spin ice, for a spin liquid there is
no local freezing of the spins and the spins continue to fluctuate down to the
lowest measured temperatures, as in herbertsmithite [21].

The degree of magnetic frustration may be conveniently quantified as the
ratio of the Weiss temperature θCW (or mean-field ordering temperature) to
the ordering temperature TN :

f =
θCW
TN

(1.15)

where f is the frustration parameter [22].

1.7 Scope of this Work

In Chapters 3 and 4 of this thesis, we investigate the importance of electron-
electron interactions in the manganese pnictide compounds LaMnPO and
BaMn2As2, which are isostructural with the iron pnictide superconductors.
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Figure 1.7: A triangle of antiferromagnetically coupled Ising spins is the sim-
plest example of magnetic frustration. All three spins cannot be antiparallel.
As a result, instead of the two ground states allowed by Ising symmetry, there
are six degenerate ground states through which the spins fluctuate. These
degeneracies can persist on 2D and 3D lattices, enhancing fluctuations and
suppressing order. This produces exotic magnetic ground states such as spin
glass, spin ice or spin liquid. Geometrical frustration is not a necessary con-
dition: competing interactions may also enhance fluctuations and frustrate
magnetic order.

Unlike their metallic Fe counterparts, both of these materials are antiferromag-
netic insulators, like the cuprate parent compounds. We present a combined
experimental and theoretical approach to determine the importance of elec-
tronic correlations for the formation of an insulating ground state in these two
compounds. Inelastic neutron scattering is used to determine the magnitude of
exchange interactions and the mean field ordering temperature in LaMnPO.
Optical spectroscopy measurements at high temperature are used to show
the charge gap persists even in the absence of exchange-coupled spins. We
shared this experimental input with our theoretical colleagues who performed
DFT+DMFT calculations that show Hund’s coupling, as well as Coulomb U,
is crucial to understand the origin of the charge gap in LaMnPO. We find
similar behavior in BaMn2As2. This experimental work directly probes the
interplay between the spin and charge degrees of freedom in these systems.
Our results support the view that electronic correlations are important in
both manganese and iron pnictide systems, with the strong Hund’s coupling
in these multi-orbital systems playing a critical role.

Our work on LaMnPO has been published as [23] and our work on
BaMn2As2 has been published as [24].

In Chapter 5 of this thesis, we present inelastic neutron scattering mea-
surements of the antiferromagnetic insulator CaMn2Sb2, in which the Mn
atoms form a corrugated honeycomb lattice. At low temperature T = 5
K we observe sharp dispersive spin wave excitations. We model these spin
waves using a Heisenberg model to determine the magnetic exchange interac-
tions. Using these experimentally determined exchange parameters we situate
CaMn2Sb2 on the theoretical phase diagram of the honeycomb lattice and find
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it lies very close to a tricritical point, where three different types of magnetic
order co-exist. We suggest that this proximity frustrates the magnetism in
CaMn2Sb2 leading to a reduced magnetic ordering temperature.

Our work on CaMn2Sb2 has been published as [25].
In Chapter 6 of this thesis, we investigate the metallic state in LaMnxSb2,

that is isostructural with the insulators LaMnPO and BaMn2As2 discussed
above. Resistivity and specific heat measurements reveal a correlated metallic
state with the presence of significant local moments inferred from high tem-
perature magnetic susceptibility measurements. Neutron diffraction revealed
these moments order in a canted magnetic structure below 130 K with an
ordered moment of 2.9 µB at T = 5 K. The presence of strong electronic cor-
relations in a metal with a large ordered moment is suggestive of an orbitally
selective Mott phase. DFT+DMFT calculations revealed the Mn dxy band is
shifted away from the Fermi level when electronic correlations are included.
This result supports our experimental findings and hints at the importance of
orbital selectivity via Hund’s coupling in multi-orbital systems.
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Chapter 2

Experimental Methods

Most of the experiments presented here were performed on single crystals of
compounds that were prepared using the flux method. We first present an
overview of the flux growth technique and then outline the application of this
method to the preparation of single crystals of multinary manganese pnictide
compounds.

2.1 Flux Growth

The description presented here largely follows that of [26] and references
therein. To synthesize a multinary single crystal compound (product) from
starting materials (reactants), necessary conditions must be provided to min-
imize the Gibbs free energy G = H - TS of the desired product, making it
an equilibrium phase. One approach is to heat the reactants, which serves to
increase the energy of the system and to promote mixing, thus increasing the
enthalpy H and entropy S until a liquid state is reached (Figure 2.1a). Slow
cooling this liquid results in an entropy decrease until a solid phase precipi-
tates out of the melt. The composition of the solid phase is a function of the
initial fractions of the reactants and the temperature T(Figure 2.1b). Often,
the melting temperature of the reactants is prohibitively large or the reactants
melt incongruently, such that the solid decomposes into a mixture of a solid
and liquid, each with a different composition to that of the original solid (see
Figure 2.1c, point B). These difficulties may be overcome by the use of an
appropriate eutectic ’flux’ to dissolve the reactants at low temperature (see
Figure 2.1c, point A) or by finding a congruent melting point (see Figure 2.1c,
point C). A good flux allows for reasonable diffusivity, does not contaminate
the product as inclusions or chemical substitutions, and is easy to remove.

Various pieces of apparatus are required for the implementation of the
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Figure 2.1: a) Gibbs free energy G = H - TS and enthalpy H as a function of
temperature T. The liquid phase has a larger entropy and is favorable at higher
temperatures. b) Gibbs energy G as a function of composition for different
temperatures. Figures a) and (b) are reproduced from [26] c. The binary
phase diagram of platinum and antimony. Eutectic point is a minima in the
liquid region marked A. Point of incongruent melting is indicated by B. Here,
a solid decomposes on heating to a two-phase mixture of solid and liquid, each
with a different composition to that of the original solid. Congruent melt
from a homogeneous solid to a homogeneous liquid is marked C. Figure c)
reproduced from online resource Springer Materials
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flux growth technique (Figure 2.2). Starting materials are purchased directly
from Alfa Aesar and Sigma-Aldrich, used as received, all with a stated purity
higher than 99.9%. Materials are mixed using a mortar and pestle and/or
pelletized using a hydraulic press. This work involves the use of a glove box
if oxygen or moisture sensitivity is an issue. Materials are loaded into an ap-
propriate non-reactive vessel (e.g. α-Al2O3, tantalum) and sealed under gas
in the glove box or left open to air. Often, an evacuated container is desir-
able in which case the materials, perhaps already in an auxilliary vessel, are
loaded into a fused quartz ampoule. The quartz ampoule is held in rubber
tubing and evacuated using a rotary pump and back-filled using Ar gas. The
quartz ampoule is then sealed under vacuum or partial pressure of Ar using an
oxyhydrogen torch. With the materials in an appropriate container, a temper-
ature cycle is performed to transform these reactants into our desired product.
Furnaces with silicon carbide heating elements can reach temperatures as high
as 1500 ◦C, but syntheses using fused quartz are usually performed below the
devitrification temperature ≈ 1200◦C. Excess flux is decanted by removing the
container from the furnace above the flux melting temperature and spinning
in a centrifuge or removed using an appropriate etch such as HCl for many
metals.

2.1.1 LaMnPO

Molten salt fluxes are used to synthesize many metal-oxide single crystals [27].
The use of a binary combination of NaCl and KCl reduces the melting point
of these salts to 650 ◦C, lowers the viscosity, and allows us to synthesize single
crystals of LaMnPO (Figure 2.3). We found the optimal recipe for growing
LaMnPO to be La:MnO:InP:(NaCl+KCl) = 5:5:5:80 (atomic ratios). These
starting materials were placed in an alumina crucible and sealed in an evac-
uated quartz tube under argon, that was then heated to 1100 ◦C in 4 hours,
held at 1100◦C for 4 hours and subsequently cooled to 800 ◦C in 57 hours. The
crucible was then removed from the oven and the salt was washed away with
water, revealing thin, dark plate-like crystals. Single crystal x-ray diffraction
was performed on these crystals to confirm the previously reported ZrCu-
SiAs structure [28]. A solid state reaction method was utilized to grow gram
amounts of polycrystalline LaMnPO powder used for neutron scattering mea-
surements. The optimal recipe was La:La2O3:MnP = 1:1:3. These starting
materials were ground together and pressed into a pellet that was placed in
an alumina crucible and sealed in an evacuated quartz tube under argon. The
tube was then heated to 800 ◦C in 2 hours, held at 800◦C for 24 hours, heated
to 1100 ◦C in 2 hours, held at 1100◦C for 24 hours and subsequently quenched
in liquid nitrogen.
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Figure 2.2: (a) Argon-filled glove box used to manipulate oxygen and moisture
sensitive materials. (b) Vacuum manifold used to seal evacuated quartz tubes.
(c) Alumina crucibles loaded in a sealed quartz tube with tantalum filter to
separate flux from crystals while spinning in centrifuge. (d) Box furnace with
SiC heating element to reach temperatures up to 1500◦C. (e) Centrifuge to
decant flux. Figure c), d), e) used with permission of J.W. Simonson. (f)
Single crystal of YMn2Ge2 grown using In flux.
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Figure 2.3: (left) Phase diagram of NaCl and KCl from online resource Fact-
Sage FTSalt. (right) LaMnPO single crystal grown from NaCl-KCl flux, cour-
tesy of J.W. Simonson.

2.1.2 Ba1−xKxMn2As2

A Sn flux was utilized for the synthesis of single crystals of Ba1−xKxMn2As2
(x=0, 0.02). Sn readily dissolves the reactants (Figure 2.4) and the optimal
recipe for single crystal growth was found to be K+Ba:Mn:As:Sn = 1:2:2:35.
The use of a glove box was required for air sensitive potassium and barium
and the reactants were heated slowly to allow K and As to dissolve fully. The
starting materials for the K doped samples were placed in a tantalum tube
that was sealed in an arc furnace under argon. The middle of the tantalum
tube was carefully pressed tight to allow for decanting of the Sn flux with
a centrifuge. The tantalum crucible was required to prevent the reaction of
K with quartz and alumina; for undoped crystals an alumina crucible was
used. The tantalum tube was then placed in a quartz tube and sealed under
Ar to prevent the oxidation of the Ta at high temperature. The materials
were then heated to 500 ◦C in 3 hours, held at 500◦C for 24 hours, heated
to 1000◦C in 6 hours, held at 1000 ◦C for 4 hours and subsequently cooled
to 500 ◦C. The quartz tube was then removed from the oven and quickly
inverted and dropped in a centrifuge and spun at 1000 rpm to remove the
Sn flux. This synthesis typically yielded ≈ 10 mg crystals with dimensions 2
mm × 2 mm × 0.3 mm. The presence of K in the crystals was confirmed by
energy dispersive x-ray spectroscopy as shown and described later in Figure
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2.7b,c and the previously reported ThCr2Si2 structure was confirmed by single
crystal x-ray diffraction [29].

Figure 2.4: Relevant phase diagrams for the synthesis of Ba1−xKxMn2As2 from
a Sn flux, reproduced from online resource Springer Materials. (bottom right)
Tantalum tube containing the starting elements sealed inside a quartz tube
(courtesy of S. Zellman) and a typical crystal of 2 % K doped BaMn2As2

21



2.1.3 CaMn2Sb2

We grew single crystals of CaMn2Sb2 as large as 5×10×3 mm3 (mass ≈ 1 g)
from a Sn flux, following a procedure similar to the established method [30].
Operations with Ca were carried out in an Ar-filled glove box to minimize
oxidation. An initial composition of 2:4:4:15 Ca:Mn:Sb:Sn was found to result
in the largest and highest-quality crystals.

CaMn2Sb2 was initially reported as a metal [30] (Figure 2.5). However,
the crystals contained inclusions of Sn which may effectively short-circuit the
resistivity measurements of a bulk insulator. In our case, great care was taken
to pick out clean CaMn2Sb2 single crystals. The crystals were then etched in
a 1% nital solution (1% nitric acid, 99% ethanol) and Meissner measurements
showed our crystals had between 0 - 3% Sn inclusions by volume. Electri-
cal resistivity measurements in Figure 2.5b shows the resistance of our sin-
gle crystals of CaMn2Sb2 increases as temperature decreases, consistent with
insulating behavior. Figure 2.5c presents our optical transmission measure-
ments. The transmission presents a sharp drop around 1 eV, thus confirming
CaMn2Sb2 is a bulk insulator with a charge gap ≈ 1 eV. These results empha-
size the importance of crystal quality when measuring the physical properties
of intermetallic compounds.

Figure 2.5: (left) Electrical resistivity as a function of temperature on single
crystals that contained significant Sn inclusions [30] (right) Resistivity and
optical transmission on high quality single crystals of CaMn2Sb2, showing it
is in fact an insulator [31]
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2.1.4 LaMn0.7Sb2

We grew large (≈ 1 g) single crystals of LaMnxSb2 from a Mn-Sb flux. An ini-
tial composition of 10:33.5:56.5 was found to result in the largest and highest-
quality crystals. The previously reported ZrCuSiAs structure [32] was con-
firmed by single-crystal x-ray diffraction and the occupancy ’x’ of the Mn site
was found to be ≈ 0.71 from energy dispersive x-ray spectroscopy and neu-
tron diffraction measurements, presented in Chapter 6. Despite several efforts,
these crystals consistently were contaminated by MnSb inclusions. MnxSb (x
= 0.96 - 1.1) is a ferromagnet with a saturation magnetization per Mn atom
of 3.6 µB - 2.4 µB and a Curie temperature from 600 K - 420 K [33]. The mag-
netic susceptibility as a function of temperature T measured on the LaMnxSb2

crystals shows a ferromagnetic transition around T = 600 K (Figure 2.6). The
magnetization as a function of field measured at 300 K reveals a ferromag-
netic signal with a magnetic moment of 0.2 µB per Mn atom. However, our
neutron diffraction measurements, which probe the bulk of the sample, show
that LaMnxSb2 is not ferromagnetic but antiferromagnetic with an ordering
temperature T = 130 K. These results emphasize great care must be taken
even when measuring single crystals, as the presence of a small amount of
ferromagnetic impurities can greatly affect the results of magnetization mea-
surements.
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Figure 2.6: Magnetic susceptibility of a LaMnxSb2 crystal with mass = 4.55
mg measured in a field of 1 T measured between 1.8 K and 400 K (black)
in a Quantum Design Magnetic Property Measurement System (MPMS) and
between 300 K and 800 K (red) using the Vibrating Sample Magnetometer
(VSM) option of a Quantum Design Physical Property Measurement System
(PPMS). Inset shows the magnetization as a function of field for the same
crystal. These measurements reveal non-linear field dependence at low fields
and a saturation at higher fields due to the presence of ferromagnetic MnSb
impurities. Neutron diffraction measurements presented in Chapter 6 show
that LaMnxSb2 is in fact antiferromagnetic with an ordering temperature of
130 K.
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2.2 Structure, Magnetization, Transport and

Heat Capacity Measurements

Structural characterization at room temperature was performed using x-ray
diffraction on powders using the Bruker D8 Advance and on single crystals
using the Bruker APEX II system. Elemental composition was confirmed
using energy dispersive x-ray spectroscopy on a JEOL 7600F. The magneti-
zation, electrical resistivity and specific heat measurements presented in this
thesis were all performed in Quantum Design Magnetic Property Measure-
ment System (MPMS) and Physical Property Measurement System (PPMS),
using the Vibrating Sample Magnetometer (VSM) option. These instruments
provide temperature control from 1.8 K - 400 K (MPMS) and 50 mK - 1000
K (PPMS) and allow for the application of magnetic fields up to 7 T (MPMS)
and 14 T (PPMS). We provide below a brief description of these measurement
techniques.

The Bruker D8 Advance powder diffractometer, using Cu Kα radiation
(λKα1 = 1.5406 Å, λKα2 = 1.54439 Å), was used primarily for rapid phase
identification immediately following sample synthesis. A fine powder is ground
using a mortar and pestle. A thin layer of this powder is mounted on a glass
slide, often using Apezion N grease as an adhesive so the powder remains
fixed while it spins in the diffractometer. Phases can usually be adequately
identified with scans less than 1 hour. An example of a 30 minute scan on a
powder of crushed single crystals of CaMn2Bi2 is presented in Figure 2.7a. The
major Bragg peaks may be clearly identified thus confirming the previously
reported CaAl2Si2-type structure [34]. In the mainly tetragonal systems that
generally form the platelike crystals studied here, it was also often useful to
look for (00l) reflections with the crystals lying flat on the glass slide to quickly
confirm the phase before proceeding with further measurements. These type
of scans only take 1 minute.

If crystals are present after a synthesis procedure, the APEX II diffrac-
tometer, using Mo Kα radiation (λKα1 = 0.709 Å), was used to quickly de-
termine the unit cell. A small (≈ 100-200 micron on side) crystal is mounted
with super glue and oriented in the crosshairs of the camera. If relatively
heavy atoms are present, the collection of about 30 frames is usually sufficient
to give good estimate of the unit cell. This scan takes about 5 minutes. One
can then quickly search the Pearsons or ICSD crystallographic databases us-
ing the determined unit cell parameters to see if this is a known phase. If
one then wishes to determine the structure more completely, a strategy can
be developed with the Bruker software to determine the structure down to a
certain resolution in d-spacing, say 0.7 Å. Our strategy assumed a triclinic
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Figure 2.7: (a) Powder XRD scan performed on crushed single crystals of
CaMn2Bi2 using a Bruker D8 advance with wavelength 1.54 Å. (b) EDX scan
performed on a single crystal of K-doped BaMn2As2 using 10 keV xrays with
JEOL 7600 F. (c) SEM image of the crystal measured in (b). (d) Integrated
image of the Bragg reflections in the hk0 plane of a LaMnxSb2 single crystal.
Green arrows indicate the absence of intensity at wavevectors with h + k =
odd, thus confirming the ZrCuSiAs structure.
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crystal system, even if the initial unit cell determination was of higher symme-
try. This strategy usually involves the collection of several thousand reflections
within several hundred frames and can take ≈ 12 hours. Once completed, the
reflections are integrated using Bruker software and .hkl and .p4p files are gen-
erated. An example of a precession image generated using the Bruker software
is presented in Figure 2.7d. This image is from a single crystal of LaMnxSb2

that was previously reported to crystallize in the ZrCuSiAs structure [32]. In-
deed, in this structure type the reflections h + k = odd for l = 0 should be
forbidden, and we do not observe Bragg intensity at these positions, thus con-
firming the structure. These .hkl and .p4p files can be further analyzed within
the Jana2006 software to look at the electron charge density and determine
atomic positions, etc. within the unit cell.

Energy dispersive x-ray spectroscopy using the JEOL 7600F was used
to determine the presence and relative amounts of elements within a crystal.
Here, an incident beam of high energy electrons is used to knock core-shell
electrons out of the atoms, with the subsequent emission of radiation that can
be analyzed to uniquely identify heavy elements. This provides complementary
information to single crystal x-ray diffraction. Crystals are mounted on carbon
tape and either 10 keV or 20 keV incident energy is used, depending on the
size of the atoms. An example of an EDX analysis of a K-doped BaMn2As2
is presented in Figure 2.7b that was performed on the region of the crystal
shown in the SEM image of Figure 2.7c. The presence of potassium is readily
deduced from the enhanced x-ray intensity corresponding to the K and L edges
of potassium.

DC magnetization as a function of temperature was measured in a MPMS
or in a PPMS using the vibrating sample magnetometer (VSM) option usually
on single crystals. Care must be taken in the selection of clean single crystals
as the presence of a small amount of an impurity phase can drastically modify
the results as shown in Figure 2.6. The mass of the crystal should be recorded.
Single crystals should be aligned in a sample holder that does not have a sig-
nificant magnetic signal (e.g. a plastic straw). The direction of the magnetic
field with respect to a crystalline axis can be used to determine whether mag-
netic anisotropy is present, as is commonly found in the strongly correlated
materials of interest. For VSM measurements, the sample is rigidly mounted
on a heater using high temperature alumina or silica-based cement. If one is
uncertain of the remnant field in the superconducting magnet a magnetization
curve is measured on palladium standard to find the zero field. A Hall sensor
can also be used to zero the field in a PPMS. The sample is then inserted into
the bath at 30 K. A small field (< 100 Oe) is applied to center the sample
in the coil. The field is then turned off and the sample cooled to 1.8 K. The

27



magnetization as a function of temperature may then be recorded in a chosen
field from 1.8 K to 1000 K and this is a zero-field cooled measurement. These
measurements can often reveal whether a material is paramagnetic, supercon-
ducting, antiferromagnetic or ferromagnetic and whether local moments are
present [12]. An example of a magnetization measurement as a function of
temperature on a single crystal of YMn2Ge2 in both the MPMS and VSM is
presented in Figure 2.8a. A sharp feature is observed at TN = 425 K, indicat-
ing the presence of long range antiferromagnetic order below this temperature.
Figure 2.8b presents the inverse of the high temperature magnetic susceptibil-
ity revealing Curie-Weiss like behavior with a fluctuating moment of µeff =
3.27 µB/Mn.

Resistivity as a function of temperature was measured in a PPMS, usually
on single crystals to avoid intergranular effects potentially present in polycrys-
talline samples. The standard four-probe technique was used, with silver epoxy
used to contact thin platinum wires to the crystal which are mounted on the
sample pucks provided by Quantum Design. The dimensions of the contacts
on the crystals should be noted to calculate the sample independent resistivity
ρ = RA/l, where R is resistance, l is the distance between contacts, and A is
the cross sectional area of the crystal. A schematic of the four-probe setup is
presented in the inset to Figure 2.8c Care must be taken in the selection of
clean single crystals as the presence of a small impurity can drastically mod-
ify the results as shown in Figure 2.5. The puck is then carefully inserted
into the PPMS and resistivity or AC transport option chosen. For insulating
samples, the DC resistivity measurement option was used so that a smaller
current may be applied to avoid heating while measuring large resistances. For
metallic samples, the AC resistivity option was used as it can provide greater
measurement sensitivity by using signal filtering. First, a small current should
be chosen, the current may then be slowly increased until a steady Ohmic re-
sistance is recorded. On the most basic level, measurement of the magnitude
of the resistivity will quickly tell us whether a material is metallic or insu-
lating [1]. Figure 2.8c presents an example of an AC resistivity measurement
of a single crystal of YMn2Ge2 as a function of temperature. The resistiv-
ity is rather small and increases as the temperature T increases, indicating
YMn2Ge2 is metallic. Figure 2.8 presents the resistivity as a function of T2.
The linear trend indicates electron-electron scattering may be dominant over
a very large range of temperatures.

Specific heat as a function of temperature was measured in a PPMS, usu-
ally on single crystals. The sample puck used for these measurements is pre-
sented in Figure 2.9a,b. The sample stage is thermally isolated and supported
by eight fine wires, which are also used to provide heater power and measure
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Figure 2.8: (a) Magnetic susceptibility as a function of temperature T per-
formed on a single crystal of YMn2Ge2 with the magnetic field applied in the
ab plane (b) High-T inverse magnetic susceptibility as a function of tempera-
ture with Curie-Weiss fit (c) Electrical resistivity ρ as a function of temperature
performed in the ab plane of a single crystal of YMn2Ge2. (d) ρ as a function
of T2 performed on a single crystal of YMn2Ge2.
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the sample temperature. First, the sample stage is allowed to equilibrate with
the surroundings. Then a heat pulse is applied to induce a sample temperature
increase of 2%. The heater power is then turned off and the sample allowed
to return to equilibrium. This is termed the ’thermal relaxation method’. A
typical plot of heater power, thermometer resistance and sample temperature
versus time is shown in Figure 2.9c,d. With knowledge of the thermal con-
ductance of the wires, these data may be fit with heat transport equations
to determine the heat capacity of the sample (further details may be found
in [35]). For these measurements it is very important for there to be good ther-
mal contact between the sample and the platform. Thus an ’addenda’ should
be measured on a small amount of N grease deposited on the sample platform
of the puck provided by Quantum Design. The sample is then carefully de-
posited on the grease. This allows for measurement from 1.8 K to 300 K. For
compounds of molecular weight 400 g/mol a crystal mass of 4 mg is often ideal
for specific heat measurements. Specific heat measurements as a function of
temperature performed on single crystals of YMn2Ge2 and YRu2Ge2 are pre-
sented in Figure 2.9e. From Figure 2.8 we know that YMn2Ge2 is magnetic
and that electron-electron interactions may be important. Indeed the specific
heat of YMn2Ge2 is greather than that of its non-magnetic isostructural ana-
log due the contribution of the mass-enhanced electrons at the Fermi surface,
as well as spin wave excitations. Figure 2.9f presents the low temperature
specific heat C/T as a function of T2. The y-axis intercept is the Sommerfeld
coefficient γ and provides a measure of the strength of the electronic corre-
lations. We find that γ is significantly larger in the Mn compound that its
non-magnetic isostructural Ru analog.
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Figure 2.9: (a) Single crystal of YFe2Al10 mounted on N grease on the sample
platform of a specific heat puck. (b) View of the underside of the puck with
the heater and thermometer indicated. (c-d) Heater power, thermometer re-
sistance, and sample temperature as a function of time. Figures (a-d) were
reproduced with permission from [36]. (e) Specific heat C measured as a func-
tion of temperature T on a single crystal of YMn2Ge2 and a polycrystalline
pellet of YRu2Ge2. (f) C/T as a function of T2 with linear fit
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2.3 Neutron Scattering

Neutron scattering is a powerful probe of the static and dynamic magnetic
properties of crystalline solids. The neutron is an uncharged particle with a
magnetic dipole moment. It interacts with the nuclei in a solid via the strong
nuclear force and with the magnetic spins of the nuclei or electrons via the
electromagnetic force. These interactions are comparable and relatively weak
so that the neutron interaction with matter may often be considered as non-
perturbative, with a very well understood cross-section [37]. A traditional
challenge presented by this relatively weak interaction is the need to grow
rather large single crystals to provide a measurable cross-section. However,
with the advent of higher intensity spallation sources and low background in-
struments, the utility of neutron scattering measurements is extending to ever
smaller samples. In this thesis, inelastic neutron scattering (INS) is used to
measure the spin wave excitations in the antiferromagnetic insulators LaMnPO
and CaMn2Sb2. We performed measurements at high temperature to deter-
mine where spin correlations vanish and compared the measured spin wave
dispersion at low temperature to the dispersion expected for a Heisenberg
model of spins on a lattice to determine the magnetic exchange interactions
in these compounds. In addition, neutron diffraction of the metal LaMnxSb2

was performed to determine its magnetic structure.

2.3.1 Magnetic Scattering Cross-section

Consider a flux Φ of incident neutrons, with certain incident energy E and
momentum k, that scatters from a sample into a solid angle dΩ with energy
E+dE (see Figure 2.10), with resolution determined by experimental setup.
The quantity measured by the detector in a neutron scattering experiment is
then the partial differential scattering cross-section:

d2σ

dΩdE
=

(number of neutrons scattered per unit time into a
small solid angle dΩ in the direction θ, φ with final
energy between E and E + dE)/ Φ dΩ dE

(2.1)

The measured partial differential scattering cross-section reflects transitions
in the state of the combined neutron (momentum k, spin state σ) and sample
system (λ) from |kσλ〉 to |k’σ’λ’〉 with energy conservation. Applying Fermi’s
golden rule the cross-section for magnetic scattering can be written in the
form [38]:
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d2σ

dΩdE
=
k′

k

( m

2π~2
)2
|< k′σ′λ′|Vm|kσλ >|2 δ(Eλ − E ′λ + ~ω) (2.2)

where Vm consists of a magnetic potential between the dipole moment of the
neutron and the spin and orbital parts of the magnetic field of the electrons
in the scattering system.

To obtain the expression relevant for the work presented in this thesis, we
can average over the spin states of the neutron (unpolarized beam), assume
the scattering system is crystalline with electrons localized at lattice sites
(shown by x-ray diffraction), and that magnetic scattering is due to spin only
(quenched orbital moments in 3d transition metal elements and application of
Hund’s rules to Mn d5 configuration). The expression is most useful in the
form of a two-time correlation function [38]:

d2σ

dΩdE
=

(γr0)
2

2π~
k′

k
N [1/2gF (κ)]2

∑
α,β

(δα,β − κακβ)
∑
l

exp(iκl)

×
∫ ∞
−∞
〈exp[−iκ.u0(0)]exp[−iκ.ul(t)]〉

×
〈
Sα0 (0)Sβl (t)

〉
exp(−iωt)dt (2.3)

where F(κ) is the magnetic form factor, ul(t) is the displacement of nucleus l
from its atomic position and α, β label spin orientation. From this expression,
one can see that when there are infinite time correlations between spins (t
→ ∞) we observe magnetic Bragg scattering and that when spins precess in
time we observe inelastic scattering. See [38] for a more detailed discussion.
From an application of the Heisenberg model to the spin waves observed in
the inelastic channel we may determine the strength of the magnetic exchange
interactions. This will be discussed further for the case of an antiferromag-
netic square lattice (Chapter 3) and antiferromagnetic corrugated honeycomb
lattice (Chapter 5).

2.3.2 Instrumentation

Neutrons are especially abundant in nuclei of high atomic number, where they
can significantly exceed the number of protons. To create a neutron beam,
the first challenge is to extract neutrons from the nuclei. The first practical
source was the nuclear reactor, in which neutron bombardment of 235U nuclei
induces fission, a process that releases several neutrons per incident neutron,
thus allowing for a self-sustaining chain reaction. H2O can be used to moderate
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Figure 2.10: Schematics of the scattering process in a neutron scattering ex-
periment, (a) elastic, (b), inelastic, neutron energy loss, (c), inelastic, neutron
energy gain. Image reproduced from [37]

or cool the reactor yielding slow-moving (thermal) neutrons that have a higher
fission cross section:

235U + n→ 2.4 n + fragments + 192.9 meV (2.4)

In research reactors such as NCNR at NIST, MD and HFIR at ONRL,
TN we would like to extract some of the neutrons from the reactor core and
the moderator to scatter from our samples. To achieve this we can use D2O to
make the moderator more transparent to neutrons and insert cylindrical thim-
bles poking into this heavy water to provide an escape path for the neutrons.

Another increasingly popular approach to the production of neutrons is
the use of spallation sources. Here, neutrons are knocked out of heavy nuclei
with high-energy protons from an accelerator. The Spallation Neutron Source
(SNS) at ORNL uses a liquid mercury target that allows for adequate heat
removal. The very high energy neutrons produced require a moderator to
provide a neutron beam with the desired wavelength for the properties you
wish to study. For condensed matter systems we usually want to use neutrons
to study phenomena at the atomic scale. Therefore a moderator at room
temperature is appropriate considering the Maxwell-Boltzmann distribution
of velocities for a neutron at a temperature ≈ 300 K (see Figure 2.11a) where
the energy of a neutron En ≈ 81.81/λ2 = 1/2 mv2 and the Maxwell Boltzmann
distribution of velocities is given by the well-known expression

f(v) =

√
(

m

2πkBT
)34πv2exp(

−mv2

2kBT
) (2.5)

Spallation sources can produce pulsed beams allowing for time-resolved
studies on millisecond timescales, in contrast to reactor sources that produce
continuous beams. The SNS currently provides the highest neutron intensity
of all operating neutron sources (see Figure 2.11) and therefore is the facility
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Figure 2.11: (a) Maxwell-Boltzmann distribution of velocities for moderators
at different temperatures. At 300 K, the most probable velocity of a neutron
is 2200 m s−1 corresponding to a wavelength λ = 1.8 Å and energy E = 25
meV. (b) Flux at neutron sources worldwide.
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of choice for probing e.g. weakly magnetic materials or for examining smaller
crystals or for techniques that require a high flux such as pair distribution
function measurements.

There are two commonly used spectrometers to measure inelastic neu-
tron scattering, the triple-axis spectometer and the time-of-flight spectome-
ter (Figure 2.12). In a triple-axis spectometer, the three axes correspond to
monochromator, sample, and analyzer where incident/final energies are se-
lected by Bragg diffraction from an appropriate grating. We used the triple-
axis spectometer BT-7 at NIST for high temperature inelastic neutron scat-
tering measurements presented in Chapter 3.

Figure 2.12: Schematic of a triple axis spectrometer (a) reproduced from [39]
and time-of-flight spectometer (b)

In a time-of-flight instrument at a spallation source, the energy transfer
is determined by the time it takes a neutron to travel from the sample to the
detector, while the incident energy is selected from the white beam using a
rapidly rotating cylinder with a single slit, i.e. a Fermi chopper. The time-of-
flight measurements presented in this thesis were performed at the SEQUIOA
time-of-flight instrument at Oak Ridge [40] and the sample geometry used with
single crystals of CaMn2Sb2 as described in Chapter 5.

The large detector banks of 3He linear position sensitive tubes at SE-
QUIOA enable the sampling of large regions of energy-wavevector space, gen-
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Figure 2.13: Schematics of the SEQUIOA time-of-flight instrument at SNS
(top [40]) and the BT1 diffractometer at NIST (bottom)
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erating a large amount of data (see Figure 2.13 for schematic of the SEQUIOA
instrument). An example of the region of reciprocal space at one energy trans-
fer sampled at SEQUIOA for one orientation of the crystal with respect to the
incident beam is provided in Figure 2.14a. The final measured cross-section
over a large region of reciprocal space is obtained by summing all these angles,
and the result is presented in Figure 2.14b. The Horace software developed at
the ISIS neutron source in the UK was used within Matlab to generate the sum
of the measured cross sections at different orientations of the crystal with re-
spect to the incident beam. The u-v matrix that defines the orientation of the
crystal in the beam and the unit cell of the crystal must be provided, as well as
the parameter file of the instrument. The file used for this data reduction and
summing for a temperature of 5 K for CaMn2Sb2 may be found on the SNS
cluster in the directory /SEQ/IPTS-8138/shared/ak7/gen sqw 50meV 5K.m.
Similar files for different temperatures may be found in this directory where
IPTS-8138 corresponds to the sample identifier assigned to CaMn2Sb2 by the
SNS. The measurements on a powder sample of LaMnPO were assigned the
same IPTS-8138. A summary of the parameters for each experimental run may
be found in /SEQ/IPTS-8138/shared/autoreduce/experiment summary.csv.

Figure 2.14: (a) H-L space sampled at fixed energy transfer for different ori-
entations of the sample with respect to the incident beam. (b) Final H-L
coverage after integrating over all angles.

High resolution neutron diffraction measurements on LaMnxSb2 were per-
formed at the BT1 high resolution powder diffractometer at NCNR, NIST
utilizing the mail-in service. A schematic of the diffractometer is presented in
Figure 2.13 showing the choice of three different monochromators depending
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on whether higher flux or better resolution is desired. For our experiments we
used the Ge(311) (λ = 2.078 Å) monochromator which provides the highest
flux and is ideal for looking at magnetic samples, where most intense Bragg re-
flections occur at low angles. For a complete description of the BT1 instrument
see www.ncnr.nist.gov/instruments/bt1 which provides detailed information.
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Chapter 3

LaMnPO

We present here experimental and theoretical evidence that together clarifies
the relative importance of the Hubbard U, Hund’s JH and Heisenberg J for
stabilizing the charge gap ∆ in LaMnPO. Our inelastic neutron scattering
measurements determine the nearest and next-nearest exchange interactions
J1,2, which are much smaller than ∆. LaMnPO is found to be a quasi-two
dimensional antiferromagnet with magnetic correlations persisting to ≈ 700 K,
far above the Néel temperature TN = 375 K. Optical measurements indicate
that ∆ has decreased by only 10% at ≈ 700 K, where magnetic correlations
have vanished, compared to its value deep in the antiferromagnetic phase T
<< TN . This is evidence that J1,2 play only minimal roles in setting the
size of ∆ in LaMnPO. Density functional theory plus dynamical mean field
theory (DFT+DMFT) calculations show instead that a large JH as well as U
is required to reproduce the charge gap observed in both the antiferromagnetic
and paramagnetic states. The Mn-pnictide LaMnPO is thus a Mott-Hund’s
insulator, analog to the Hund’s metal from which superconductivity emerges in
the Fe-pnictides. The results presented in this chapter have been published as
[23]

3.1 Introduction

The metal-insulator transition in correlated electron systems, where electron
states transform from itinerant to localized, has long been one of the central
themes of condensed matter physics [1]. In a prototypical Mott transition [3],
increasing the ratio U /t of the onsite Hubbard U to the kinetic hopping t
leads to the enhancement of the effective mass of initially itinerant electrons
and to spin fluctuations that can drive magnetic order. When U /t surpasses
a critical value, the electrons become spatially localized and a metal-insulator
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transition (MIT) occurs, driven by the formation of a charge gap. Often,
the localized electrons are moment-bearing, and magnetic order accompanies
the MIT. Thus, electronic localization transitions often involve two different
instabilities: magnetic order, involving spontaneous symmetry breaking, and a
metal-insulator transition (MIT) that connects an electronic structure with a
non-zero density of states at the Fermi surface to an electronic structure with
a charge gap.

Recently, Mn-pnictide compounds have received widespread attention be-
cause they are magnetic insulators [31, 41–43] like the parent compounds of
the cuprate high temperature superconductors (HTSC) [44] while adopting
the same crystal structures as the metallic parent compounds of the Fe-based
HTSC (Figure 3.4a) [7, 45]. Suppressing the magnetic order and driving an
insulating Mn-pnictide across a MIT could lead to a more correlated version of
their Fe-based counterparts, where even higher temperature superconductivity
may be observed [43, 46, 47]. However, it is only very recently that supercon-
ductivity has been observed in any Mn-based compound: the itinerant magnet
MnP becomes superconducting below Tc ≈ 1 K at pressure of 8 GPa [48]. As
outlined in the introduction to this thesis, in multi-orbital compounds such
as the Fe and Mn-pnictides the origin of the charge gap may be not only
the Hubbard U, but also the Hund’s interaction JH and possibly Heisenberg
exchange interaction J. In these systems, antiferromagnetic (AF) correlations
can stabilize an insulating state when the spin flip energy ∝ J, is comparable
to the charge gap ∆ [49]. In addition long range AF order alone can stabilize
a gap in a Slater insulator, with the gap vanishing at TN [16]. The importance
of these interactions has been established in the metallic Fe-pnictides [50], but
so far their impact on the isostructural and insulating Mn compounds is not
well understood.

Previous measurements show that LaMnPO can be driven through a
metal-insulator transition using pressure but not doping [43]. Optical trans-
mission and photoemission measurements show that ambient pressure LaM-
nPO is an insulator with ∆ = 1.3 eV [43, 51, 52]. The magnitude of the charge
gap is much larger than the activation gap of 100 meV determined from electri-
cal resistivity measurements, suggesting that ρ(T) is dominated by excitations
from in-gap states to the conduction band edge [52]. Neutron diffraction mea-
surements reveal a checkerboard-type antiferromagnetic structure below the
Néel temperature TN = 375 K with a T→ 0 K ordered moment of 3.2 µB/Mn,
much reduced from the high spin value of 5 µB/Mn predicted by Hund’s rules
when all the spins of the Mn d electrons are parallel [43, 53]. The low value of
the ordered moment, coupled with significant valence fluctuations detected in
x-ray absorption measurements and also in density functional theory plus dy-
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namical mean field theory (DFT+DMFT) calculations, suggests that ambient
pressure LaMnPO is near a metal-insulator transtion [43]. However, doping
28% fluorine into LaMnPO1−xFx had a minimal effect on the charge gap and
ordered moment and no other suitable dopant (e.g. As, Ca, Sr, vacuum treat-
ment, H2/Ar gas flow) has been identified that can drive an insulator-metal
transition, as judged by electrical resistivity measurements [52]. In contrast,
pressure drives a MIT in LaMnPO at 20 GPa, followed by AF order collapse
at ≈ 30 GPa (Figure 3.1) [54]. This separation of charge and magnetic in-
stabilities in pressurized LaMnPO adds new urgency to uncovering the origin
of the charge gap and its relationship to magnetic order.

In this chapter, we present a combined experimental and theoretical ap-
proach to determine the origin of the charge gap in insulating antiferromag-
netic ambient pressure LaMnPO. We present inelastic neutron scattering mea-
surements over a range of temperatures T from 5 K to 600 K to determine
the magnitude of the exchange interactions in LaMnPO and the temperature
where the magnetic moments become de-coupled. We then compare these re-
sults to complementary high temperature optical transmission measurements.
These spectroscopic methods decisively show that both short and long range
mangetic ordering play only a small role in opening a charge gap. We then
present DFT+DMFT calculations that are in agreement with our experimen-
tal results and further show that Hund’s coupling, as well as Hubbard U, can
account for the insulating ground state of LaMnPO.

3.2 Experimental Details

High temperature T > 300 K inelastic neutron scattering measurements were
performed at the BT-7 triple-axis spectrometer using the reactor source at
NIST Center for Neutron Research [55] on a powder sample of LaMnPO.
PG(002) crystals were used as monochromators and analyzers with a fixed
final energy E = 14.7 meV and the reactor collimation was open. Inelastic
neutron scattering measurements at T = 5 K were performed at the SEQUIOA
time of flight instrument using the Spallation Neutron Source at Oak Ridge
National Laboratory [40] on a powder sample of LaMnPO. An incident energy
of 250 meV was used, with the Fermi 2 chopper set to 600 Hz and the T0
chopper set to 120 Hz.
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Figure 3.1: The pressure-temperature electronic phase diagram of LaMnPO
taken from [54]. The open triangle represents the antiferromagnetic ordering
temperature TN = 375 K at ambient pressure, taken from neutron diffraction
measurements [43, 53]. The filled triangles correspond to values of TN obtained
from high pressure ac susceptibility measurements. The open circles represent
temperatures T, where the resistance is at a maximum, taken from different
independent runs. There is no indication of antiferromagnetic order at 34 GPa,
as displayed by the dashed open triangles. The acronyms AFM-I and AFM-
M stand for antiferromagnetic insulating and antiferromagnetic mixed state
regimes, respectively. PM-I and PM-M represent paramagnetic insulating and
paramagnetic metallic states, respectively.
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Figure 3.2: (Color online)(a) Wavevector q dependence of the scattered neu-
tron intensity S(q,E ) for constant energy transfer E = 5 meV at temperatures
T indicated. Solid lines are fits as described in the main text. Inset: T -
dependence of the spatial correlation length ξ in units of the lattice constant
a, for E = 5 meV (•), 10 meV (N), 15 meV (�). (b) Magnetic susceptibility
〈χ〉 of a collection of single crystals (◦) 〈χ〉 = 2/3 (χab) +1/3 (χc) where χab (•)
and χc (•) were measured with a 1 T field applied in the ab plane and c plane
respectively. The magnetic susceptibility at high temperatures was measured
on a powder sample (•). Orbital susceptibility χorb = 1.7e-4 emu/mol Mn is
subtracted from all data. Dashed lines indicate the Néel temperature TN and
mean-field ordering temperature Tmax.

3.3 Experimental Results and Analysis

Inelastic neutron scattering provides a detailed picture of the development of
the antiferromagnetic correlations above TN = 375 K. Fig 3.2a presents the
wavevector q dependence of the scattered neutron intensity for temperatures
T > TN and energy transfer E = 5 meV. We observe two overlapping peaks
centered at the antiferromagnetic ordering wavevectors q100 ≈ 1.6 Å−1 and
q101 ≈ 1.75 Å−1, and we ascribe this enhanced scattering to antiferromagnetic
spin correlations in the paramagnetic state.

We wish to determine the maximum temperature at which the spin cor-
relations are confined to the unit cell and the moments are freely fluctuating
so as to determine the effect of antiferromagnetic correlations on the charge
gap in LaMnPO. For this purpose, it is crucial to account for the instrumental
resolution function of the BT-7 triple-axis spectrometer. The Matlab-based
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software ResLib [56] allows one to calculate the resolution function at each
point, given the spectrometer configuration and sample parameters, and can
accept a theoretical structure factor S(Q) that is convoluted with the resolu-
tion function and fit to the experimental data. The resulting expression for
the inelastic neutron scattering intensity:

d2σ

dΩdE
= R0(q)

∫
d4QS(Q)exp[−1/2(Qi − qi)(Qj − qj)Mij(q)] (3.1)

where Q is a 4-D vector in energy momentum space and M is the Cooper-
Nathans resolution matrix[57, 58].

We will assume the Lorentzian form for the wavevector dependence of the
critical scattering that was originally proposed by Ornstein and Zernicke [59].
The structure factor S(q) is then the sum of two Lorentzian functions and a
linear background:

S(q) =
2∑
i=1

Ai
(q − qi)2 + Γ2

+Bq (3.2)

Here, i indexes the q100,101 peaks, Γ is the width of the peaks and Ai, B are
constants.

We fit the resulting expression for the expected neutron cross-section to
our high temperature S(q, E = 5 meV, 10 meV, 15 meV) (shown for E = 5 meV
in Figure 3.2a) and find that the spin correlation length ξ = 1/aΓ, in units of
the lattice parameter a = 4.054 Å, decreases with increasing temperature for
energy transfers E = 5, 10, 15 meV (inset of Figure 3.2a). Furthermore, we
can estimate the temperature where the antiferromagnetic spin correlations
have vanished using the approximate value of the critical exponent for the
three-dimensional Heisenberg model ξ ≈ t−ν where ν ≈ 0.707 and t = (T-
TN)/TN . We find that ξ→ a at Tmax ≈ 700 K (inset of Fig 3.2a), evidence
that the intersite exchange interactions are no longer strong enough to keep
the Mn moments coupled above this temperature due to the strong thermal
fluctuations.

In Figure 3.3a we present inelastic neutron scattering measurements of
LaMnPO at T = 5 K. The measured cross-section has been transformed into
the imaginary part of the dynamic susceptibility χ(q,E ) that is related to the
scattering cross-section by the fluctuation-dissipation theorem:

χ′′(q, E) =
d2σ

dΩdE
(1− exp(

~ω
kBT

)) (3.3)

The data have also been corrected for the magnetic form factor of Mn2+

that is obtained from the Fourier transform of the magnetization distribution
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Figure 3.3: (a) The dynamic susceptibility χ(q,E ) = S(q,E ) (1-exp(-E/kBT))
measured at 5 K. (b) E -cuts near the (100) AF zone center summed over the
indicated ranges. Solid lines are fits to the sum of two Lorentzians. Inset: ∆q,
measured relative to q100, for different E. Solid line is theoretical expression for
ε(q) in Γ-X direction, with SJ 1 = 34 meV. Error bars are smaller than points.
(c) E -cut near (210) averaged on the interval 40-50 meV. Solid lines is the
resolution-convoluted intensity expected from a powder-averaged Heisenberg
model for SJ1 = 18 meV (-), 34 meV (-), 48 meV (-). (d) Left: Calculations of
ε(q) along different directions in reciprocal space for values of J 2/J 1 indicated.
Right: Comparison of the experimental density of states DOS (green shaded
area) to the powder average of ε(q) for values of J 2/J 1 indicated. The low
energy part of the DOS is attributed to phonons.
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of an isolated atom and has been tabulated in [60] for L = 0 as:

F (q) = (0.422 e−17.684q
2

+ 0.5948 e−6.005q
2

+ 0.0043 e0.609q
2 − 0.00219)2 (3.4)

F(q) falls off at higher q as shown in Figure 3.4d.
The most prominent features of the magnetic scattering are the intense

dispersive arches of excitations centered near q100 = 1.6 Å−1 and q210 = 3.5
Å−1. We attribute this scattering to spin waves from the ordered Mn moments
and note that the spin waves merge near (q,E) = (3 Å−1, 80 meV). In Fig-
ure 3.3b we present Q-cuts through Figure 3.3a at different energies χ(q,E)
to quantify the dispersion of the spin waves at the q100 position. Here we
observe that q100 is flanked by two peaks at q100 ± ∆q, which we fit with
Lorentzian functions to determine the spin wave dispersion E(∆q), plotted in
the inset. The intense scattering at all q below ≈ 20 meV is attributed to
phonon excitations.

The Heisenberg model for localized spins should be applicable to LaMnPO
as it is an insulator:

H = 2J
∑
m,m+r

SmSm+r (3.5)

when only the exchange interaction between nearest neighbors separated by
the vector r are included.

The expected spin wave dispersion for an antiferromagnet considering only
nearest-neighbor interactions between the two sublattices is [61]:

ω(Q) = 2S
√
J(0)2 − J(Q)2 (3.6)

where S is the total spin on the atom and the exchange interaction term:

J(Q) =
∑
rNN

J1e
iQrNN (3.7)

The reciprocal lattice vector Q = (qx, qy) and there are four nearest
neighbors for the square lattice rNN = [(a/2,a/2), (-a/2,a/2), (a/2,-a/2), (-
a/2,-a/2)] where a is the lattice parameter yielding the expression:

E(Q) = 4SJ1

√
(1− cos2(qx

a

2
)cos2(qy

a

2
)) (3.8)

This expression was fit to the experimental spin wave dispersion as shown
in Figure 3.3b to determine the nearest neighbor exchange interaction SJ1 =
34 ± 4 meV. The fits were performed above the spin gap of 7 meV that was
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Figure 3.4: (a) The crystal structure of LaMnPO which consists of square nets
of Mn atoms (Mn-Mn = a/

√
2 = 2.87 Å) that are tetrahedrally co-ordinated

by P atoms. This forms a layers of edge sharing Mn-P tetrahedra that are well
separated by a LaO charge transfer reservoir layer with c = 8.83 Å. (b) First
and second neighbor exchange interactions on the square lattice. (c) Calcu-
lated neutron scattering cross-section for LaMnPO. The columns of scattering
centered at q100 = 1.6 Å−1 and q210 = 3.5 Å−1 and the overlap of scattering
near 90 meV are well reproduced. (d) The magnetic form factor for neutrons
scattering from Mn2+ ions.
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Figure 3.5: (a) Scattered neutron intensity as a function of energy at the
temperatures indicated. (b) Spin gap as a function of temperature.

determined from our high resolution measurements at BT 7 (Figure 3.5). The
spin gap is found to vanish at the antiferromagnetic ordering temperature TN

= 375 K.
Since our sample is polycrystalline, χ(q,E ) may include significant contri-

butions from spin waves that originate in different magnetic zones. Figure 3.3c
compares χ(q,E ) near the q210 = 3.5 Å−1 AF zone center to the powder aver-
ages of the theoretical dispersions for different values of SJ 1. The experimental
data are also consistent with the Heisenberg model for the same value of SJ 1

= 34 meV.
Analysis of the total spin wave density of states (SWDOS), obtained by

integrating over all wavevectors shown in Figure 3.3a , shows that a full de-
scription by the Heisenberg model requires the inclusion of a second neighbor
interaction J2. Theoretical spin wave dispersions along high symmetry direc-
tions in reciprocal space are presented in Fig. 3.3d for values of J 2/J 1 ranging
from 0.1-0.5. When J2 is included (see Figure 3.4b), the spin wave dispersion
derived above for J1 must be modified as outlined Chapter 5 and the resulting
expression for the spin wave dispersion is:

~ω = 2

√
(2− J2

J1
(2− cos(2πqx)− cos(2πqy)))2 − (2cos(πqx + πqy))2 (3.9)

The corresponding powder averaged SWDOS is compared to the observed
DOS (Fig. 3.3d) and most resembles the experimental results when 0.2< J 2/J 1

< 0.4, yielding SJ 2 in the range 7-14 meV. With these values of exchange inter-
actions, a mean-field ordering temperature TMFT = 4(J 1-J 2)S (S+1)/(3kB)
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≥ 760 K is expected [13], similar to the value of Tmax determined from the
analysis of the high temperature inelastic neutron scattering measurements
presented above.

The temperature dependence of the magnetic susceptibility χ(T ) in
LaMnPO is much as expected [62, 63] for a quasi-2D Heisenberg AF. χ(T)
of powdered LaMnPO crystals in a 1 T field is shown in Fig. 3.2b. While
no feature is seen at TN = 375 K, there is a broad maximum in χ(T ) cen-
tered at ≈ 700 K above which the onset of a Curie-Weiss susceptibility χ ∝
1/T is observed [64] and above which LaMnPO may be considered a simple
paramagnet with independent freely fluctuating magnetic moments. This is
the same temperature where the AF correlations determined from inelastic
neutron scattering measurements are projected to vanish. We also measured
χ(T ) between 1.8 K and 400 K on a collection of single crystals with the
field oriented along the c-axis (χc) and with the field in the ab plane (χab).
The polycrystalline average χ = 2/3χab+1/3χc. The normalized T =0 suscep-
tibility χ0 = χ(T = 0)J 1/Ng2µ2

B [64] = 0.063 ± 0.01 is in good agreement
with a modified spin-wave theory [65] with S = 3/2 and J1 = 22 meV which
yields χ0 = 0.058. The experimental value of the peak susceptibility χmax =
χ(T = Tmax)J 1/Ng2µ2

B = 0.085±0.05 is also in good agreement with the calcu-
lated value of 0.091 ± 0.003. We conclude that this modified spin-wave theory
provides a very good description of our magnetic susceptibility measurements.

Our analyses of the inelastic neutron scattering and magnetic suscepti-
bility data reveal that the exchange interactions J1,2 are significantly smaller
than the charge gap. The ratio of the spin flip energy cost to the gap, 2S2J/∆
≈ 0.1, naively implies only a ≈ 10 % reduction of ∆ would occur by T =
700 K. On the other hand, if ∆ → 0 at TN , it would identify LaMnPO as
a Slater insulator, where the gap is entirely due to the long range magnetic
order. What is the importance of short and long range magnetic order for the
stabilization of the charge gap in LaMnPO?

This question can be addressed by measuring the temperature dependence
of ∆, using optical transmission measurements T(ω) through a single crystal
of LaMnPO for temperatures up to 725 K. Therefore, we provided single crys-
tals of LaMnPO to our collaborator Prof. Dimitri Basov and his graduate
student Kirk Post at UC San Diego who performed optical spectroscopy mea-
surements. The transmission as a function of photon energy T(ω) is shown in
the inset to Fig. 3.6a at T = 295 K and 500 K. With increasing ω, a rapid
decrease of T(ω) is observed, consistent with the onset of absorption due to
optical excitations across the energy gap ∆. Fig. 3.6a presents [log(T)/ω]2 for
temperatures from 295 K to 725 K, where ∆ is extracted from linear fits [66].
∆ decreases approximately linearly with increasing temperature (Fig 3.6b), by
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Figure 3.6: (Color online) (a) (Log(Transmission)/wavenumber)2 at T = 295
K (-), 325 K (-), 350 K (-), 380 K (-), 425 K (-), 450 K (-), 500 K (-). Dashed
lines are fits to the 295 K and 500 K data as described in the text. Inset:
Transmission data for 295 K (black) and 500 K (purple) [23] (b) The temper-
ature dependence of the experimental direct gap ∆ (•), ∆ in the AF and PM
states determined from DFT+DMFT calculations (•), and the experimental
AF correlation length ξ.
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≈ 10% between 300 K and 725 K. These data project a 10 % reduction in ∆ by
725 K, where ξ→ a, just as predicted above. In addition, ∆(T) is featureless at
TN , showing that the exchange interaction alone cannot be responsible for the
charge gap in LaMnPO , which is consequently not a Slater insulator. Given
that the exchange interaction plays a small role in gap formation, we turned
our collaborators Prof. Gabriel Kotliar and his postdoctoral researcher Dr.
Zhiping Yin who performed to electronic structure calculations to investigate
further the origin of the gap.

The importance of correlations for the charge gap in LaMnPO in the AF
state has previously been emphasized [43]. Here, we present new DFT+DMFT
calculations [23] of the electronic structure of LaMnPO that show Hund’s
coupling JH plays a decisive role for the formation of a charge gap in the
PM state, even when long range magnetic order is no longer present. We
begin by presenting in Fig 3.7a the calculated electronic structure along high
symmetry directions in the PM state, using an unreasonably large Hubbard U
= 10 eV [5, 67, 68]. Here, LaMnPO is found to be a metal as there are bands
crossing the Fermi level, in direct contradiction to the measured gap ∆ = 1
eV. Thus, we can conclude that U is not solely responsible for the charge gap,
and LaMnPO cannot be considered a conventional Mott-Hubbard insulator.

Recently, it has been established that JH is important for the correlations
in multi-orbital transition metal systems such as the Fe-pnictides [14, 50, 67,
69, 70]. The first of Hund’s empirical rules is that energy is minimized for
a maximum spin S on an isolated atom. For Mn2+ ions Hund’s rule fills all
five 3d orbitals with parallel spins to maximize S. This results in a significant
energy cost in hopping between atoms as any doubly occupied orbitals would
reduce S. Consequently, it has been emphasized that JH stabilizes the gap at
half filling, i.e. d5 Mn, and reduces the gap for other fillings [15] as outlined
in the introduction to this thesis.

The role of Hund’s coupling is highlighted in Fig. 3.7b, which presents a
DFT+DMFT calculation in the PM state that includes both JH = 0.9 eV,
along with a more realistic value of U = 8 eV [68]. The inclusion of JH shifts
the bands away from the Fermi level, opening a gap. Paramagnetic LaMnPO
has evolved, by including Hunds coupling, from a moderately correlated metal
(U = 10 eV, JH = 0 : Fig 3.7a) to a bona fide insulator (U = 8 eV, JH = 0.9
eV : Fig 3.7b).

Does the presence of AF order significantly affect the magnitude of the
gap? Fig 3.7c presents a DFT+DMFT calculation of LaMnPO in the AF state
for the same U = 8 eV, JH = 0.9 eV (a similar calculation was previously
reported but for U = 6 eV, JH = 0.9 eV [31]). Energy cuts from Fig 3.7b,c of
the spectral function A(k,ω) at high symmetry points are presented in Fig 3.7d.
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Figure 3.7: Density functional theory + dynamical mean field theory
(DFT+DMFT) calculations of the band structure of LaMnPO (a) Param-
agnetic (PM) state with Hubbard U = 10 eV and Hund’s JH = 0 eV (b) PM
state with U = 8 eV and JH = 0.9 eV (c) Antiferromagnetic (AF) state with
U = 8 eV and JH = 0.9 eV (d) Spectral function A(k,ω) at high symmetry
points for the calculations shown in (b,c). Triangles indicate peak position of
A(k,ω) [23].
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The direct charge gaps, defined from the maxima of A(k,ω), are calculated to be
rather insensitive to AF order and are in good agreement with the experimental
values (Fig 3.6b), showing that ∆ is well accounted for when JH is considered
as well as U. The indirect gap is defined from the conduction band minimum
at M to the valence band maximum at Γ (Fig. 3.7d). While the indirect gap
has decreased substantially from 0.74 ± 0.05 eV in the AF state to 0.4 ±
0.05 eV in the PM state, it is still much larger than the activation gap of 0.1
eV found in resistivity measurements [52], suggesting that the conduction in
LaMnPO is still dominated by in-gap states in the paramagnetic phase.

3.4 Discussion

We have presented a combined experimental and theoretical study of LaMnPO
that shows that exchange coupling J plays a minimal role in determining the
charge gap ∆. The argument rests on three observations. First, there is only
a 10% reduction in ∆ between TN and the mean field temperature, where the
magnetic moments are no longer coupled. Secondly, J sets the scale for the
fraction of ∆ that can vanish for T>>TN and we fit the spin waves detected
in inelastic neutron scattering measurements to the Heisenberg model to show
that J≈ 0.1 ∆. Finally, electronic structure calculations show that ∆ persists
in the absence of AF order, prompting our identification of LaMnPO as a
Mott-Hunds insulator, where the intra-atomic Hubbard U and Hund’s JH are
primarily responsible for the charge gap.

Although LaMnPO shares the insulating AF ground state of the cuprates,
its multiorbital nature and the strong Hunds coupling JH associated with its
half-filled Mn d-shell establish that it is a more strongly correlated and thus
insulating version of the metallic Fe-based pnictides. Substantial charge fluc-
tuations are observed in LaMnPO relative to the d5 (Mn2+) state [31], and high
pressures drive the transition to a metallic state, followed at higher pressures
by the collapse of AF order [54]. This strong d5 character leading to half-
filled orbitals due to the strong Hund’s coupling, is likely to dominate well
into the metallic state, making LaMnPO substantially more correlated than
isostructural LaFeAsO [15]. So far, no superconductivity has been observed
in pressurized LaMnPO but superconductivity in pressurized MnP below 1
K has recently been observed [48]. While it may be tempting to ascribe this
to overly strong electronic correlations, it is possible that LaMnPO, like the
cuprates, requires doping as well as pressure to drive superconductivity. Of-
ten the highest superconducting transition temperatures require metallization
accompanied by the collapse of AF order. Despite the multiorbital charac-
ter associated with Hund’s coupling, these conditions have been met in other
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Mott-Hund’s insulators [71].
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Chapter 4

Ba1−xKxMn2As2

We first present optical reflectance measurements of single crystals of the an-
tiferromagnetic insulator BaMn2As2 that are rather temperature independent
and do not display the broad hump centered around 60 meV that was previously
interpreted as the charge gap. Instead our optical reflectance measurements re-
veal intereference fringes below 0.86 eV indicating that the direct charge gap
in BaMn2As2 is 0.86 eV, an order of magnitude larger than previously re-
ported. To clarify these results we performed optical transmission measure-
ments, which are our most accurate measurement of the charge gap. Single
crystals of BaMn2As2 are transparent below 0.86 eV and become opaque above
this energy, further confirming the magnitude of the charge gap ∆ = 0.86 eV.
Density functional theory plus dynamical mean field theory (DFT+DMFT)
calculations correctly reproduce this charge gap only when a strong Hund’s
coupling is considered, as well as Hubbard U. Thus, BaMn2As2 is a member
of a wider class of Mn pnictide compounds that are Mott-Hund’s insulators.
We also present optical reflectance for metallic 2% K doped BaMn2As2 that
we use to extract the optical conductivity at different temperatures. The opti-
cal conductivity σ1(ω) exhibits a metallic response that is well described by a
simple Drude term. Both σ(ω→0, T) and ρ(T) exhibit Fermi liquid tempera-
ture dependencies. From these measurements, we argue that a more strongly
correlated Hund’s metal version of the parent compounds of the iron pnictide
superconductors has not yet been realized by doping this class of Hund’s insu-
lators. The work presented in this chapter has been published as [24]

4.1 Introduction

In Chapter 3, we presented an experimental and theoretical approach to eval-
uate the relative importance of long range magnetic order, magnetic exchange
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interactions J, Hund’s coupling JH and Hubbard U for the formation of a
charge gap in LaMnPO. High temperature inelastic neutron scattering and
optical transmission measurements revealed that exchange interactions were
much smaller than the direct charge gap of ≈ 1 eV in LaMnPO that persists
into the high temperature paramagnetic phase. DFT+DMFT showed that a
strong Hund’s coupling JH = 0.9 eV is crucial for the formation of the gap.
Here, we present the results of applying a similar methodology to the related
compound BaMn2As2.

BaMn2As2 adopts the ThCr2Si2 structure, which is qualitatively similar
to the ZrCuSiAs structure adopted by LaMnPO (Figure 4.1), consisting of
square nets of Mn atoms, tetrahedrally co-ordinated by pnictogen atoms [72].
BaMn2As2 is an antiferromagnetic insulator with an ordering temperature of
TN = 625 K and ordered magnetic moment of 3.9 µB/Mn [73]. This large
ordered moment, compared with the 3.2 µB moment of LaMnPO [43], suggests
valence fluctuations in BaMn2As2 are weaker than LaMnPO, and the effects
of Hund’s coupling should be just as important for the formation of a charge
gap.

However, the direct charge gaps in BaMn2As2 previously reported from
optical reflectance (0.024 eV [74]), ARPES (0.15 eV [46]) and DFT (0.1 eV [75],
0.058 eV [46]), are an order of magnitude smaller than those found in related
Mn pnictide systems such as LaMnXO (X = P, As, Sb) [76]. We have shown
in Chapter 3 that Hund’s coupling is crucial for the formation of a charge gap
on the order of 1 eV and so these reports of a drastically reduced charge gap in
BaMn2As2 are inconsistent with our expectation for this class of compounds.

To clarify the magnitude and origin of the charge gap in undoped and
insulating BaMn2As2 we present optical transmission and reflectance measure-
ments and DFT+DMFT calculations. Our optical measurements determine
a charge gap of 0.86 eV in undoped BaMn2As2, an order of magnitude larger
than previous reports [74] and very similar to values found in other square-
net Mn compounds [76]. DFT+DMFT calculations correctly reproduce the
measured charge gap only when a large JH = 0.9 eV is included, as well as
Hubbard U = 8 eV.

We also present optical reflectance measurements on a 2% K doped single
crystal of BaMn2As2 that find metallic behavior, characterized by the appear-
ance of a Drude peak. The optical conductivity σ(ω) is extracted from the
reflectance by Kramers-Kronig analysis and we find that σ1(ω) is well described
by one Drude term. The temperature T-dependence of both the electrical re-
sistivity and σ1(ω → 0) is as expected for a Fermi liquid for T = 1.8 K - 300
K.
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Figure 4.1: (left) The tetragonal a = b = 4.15 Å, c = 13.47 Å ThCr2Si2
(S.G. I4/mmm) structure adopted by BaMn2As2. (right) The tetragonal a =
b = 4.054 Å, c = 8.834 Å ZrCuSiAs (S.G. P4/nmm) structure adopted by
LaMnPO. (bottom) Top view of the crystal structures emphasizing the square
nets form my Mn ions.
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4.2 Experimental Details

We grew single crystals of BaMn2As2 and 2% K doped BaMn2As2 from a Sn
flux as detailed in Chapter 2. The presence of 2% K was confirmed by energy
dispersive x-ray spectroscopy using a SEM JEOL 7600F, and the previously
reported ThCr2Si2 structure [29] was confirmed by x-ray diffraction using a
Bruker D8 Advance x-ray diffractometer. Electrical resistivity and heat capac-
ity measurements were performed using a Quantum Design Physical Properties
Measurement System. Magnetization measurements were performed using a
Quantum Design Magnetic Properties Measurement System.

Optical reflectance measurements were performed on Bruker IFS 113v and
Vertex 80v Fourier transform spectrometers. Reflectance was measured on pol-
ished single crystal samples at a near-normal angle of incidence from 2 meV
to 3 eV using an in situ overcoating (overfilling) technique [77]. Infrared trans-
mission measurements were carried out on single crystals of BaMn2As2 using
a Bruker LUMOS FT-IR Microscope with a KBr window. These data were
normalized to an open channel by keeping all other conditions the same but
moving the sample out of the way.

The electronic structure of BaMn2As2 was determined using DFT +
DMFT [4, 78], which is based on the full-potential linear augmented plane
wave method implemented in Wien2K [79], using the generalized gradient ap-
proximation to the exchange-correlation functional [80]. We use the atomic
positions taken from the experimentally determined crystal structure [29]. The
convergence of the calculations with respect to number of k points, charge den-
sity, total energy, Fermi level, self-energy reached a level similar to previous
publications [31, 50].

4.3 Experimental Results and Analysis

Figure 4.2 presents a comparison of the magnetization and specific heat of our
single crystals of BaMn2As2 and 2 % K-doped BaM2As2 with those previously
reported. Figure 4.2a presents the previously reported magnetic susceptibil-
ity as a function of temperature in a field of 3 T applied in the ab plane and
along the c-direction [72]. These data were corrected for a ferromagnetic MnAs
(Tc = 318 K) impurity by recording magnetization curves at several temper-
atures, thus saturating the MnAs impurity and using the slope of high field
linear magnetization as the intrinsic magnetic susceptibility of BaMn2As2. The
anistropic temperature dependence of the magnetic susceptibility for fields ap-
plied in the ab plane and c-direction, as well as the low magnitude of the molar
susceptibility, suggests BaMn2As2 is an antiferromagnet with moments along
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the c-direction (see Figure 5.9 on page 95 of [12]). Indeed neutron diffraction
revealed collinear long range antiferromagnetic order with moments along c-
direction in BaMn2As2 with an ordering temperature TN = 625 K [73]. The
static magnetic susceptibility above TN does not display a Curie-Weiss like
temperature dependence up to the highest measured temperature of 1000 K
(not shown here, see [13]), suggesting that spin correlations persist well above
TN , as is the case in LaMnPO (see Chapter 3). Figure 4.2c presents our
measurements of the magnetic susceptibility of BaMn2As2 with a field of 3 T
applied in the ab plane. The magnitude and temperature dependence of the
magnetic susceptibility is similar to that previously reported (Figure 4.2a).
We did not detect any ferromagnetic MnAs impurity in our crystals, so the
raw data are presented. These data show that our BaMn2As2 crystals display
the same magnetic behavior as previously reported [72].

Figure 4.2b presents the previously reported magnetic susceptibility of 2%
K-doped (red points) and 5% K-doped (blue points) BaMn2As2 as a function
of temperature in a field of 3 T applied in the ab plane [46]. Figure 4.2d
presents the same measurement on our 2% K-doped BaMn2As2 crystals. For
both sets of measurements the magnetic susceptibility is slightly enhanced
compared to the undoped compound, likely due to the emergence of ferromag-
netic fluctuations that eventually lead to ferromagnetic ordering of As holes
at higher K dopings [81]. The origin of the weak feature near 50 K in both
our measurements and previously reported measurements in a sample with 5%
K doping may also be related to this ferromagnetism. Overall, the magnetic
susceptibility of our single crystals of 2% K-doped BaMn2As2 is similar to that
previously reported [46].

Figure 4.2e presents the previously reported specific heat C divided by
the temperature T as a function of T2 for 2% K-doped (red points) and 5%
K-doped BaMn2As2 (green points). Figure 4.2f presents the same data for
our 2% K-doped BaMn2As2 crystals. For both sets of measurements there
is a non-zero vertical axis intercept, i.e. a Sommerfeld coefficient γ = C/T
for T → 0. This corresponds to a non-zero density of states at the Fermi
level, consistent with the metallic behavior observed by electrical resistance
and optical reflectance measurements described below. Overall, the magnetic
and thermal properties of our K-doped and undoped BaMn2As2 are in very
good agreement with those previously reported.

Figure 4.3 shows that BaMn2As2 is an insulator. The electrical resistiv-
ity ρ(T) measured with the current in the ab plane is presented in Figure
4.3a and is found to increase with decreasing temperature T down to 1.8 K.
The inset shows that at low temperatures ρ(T) is well described by activated
T-dependence ρ ∝ exp(εA/ kBT), with an activation gap εA = 13 meV, in

60



Figure 4.2: (a) Previously reported magnetic susceptibility as a function of
temperature for H = 3 T for BaMn2As2 [72] (b) Previously reported mag-
netic susceptibility as a function of temperature for H = 3 T for K-doped
BaMn2As2 [46] (c) Our magnetic susceptibility measurement as a function of
temperature for H = 3 T for BaMn2As2 (d) Our magnetic susceptibility mea-
surement as a function of temperature for H = 3 T for 2 % K-doped BaMn2As2
(e) Previously reported specific heat as a function of temperature for K-doped
BaMn2As2 [46] (f) Our specific heat measurement as a function of temperature
for 2 % K-doped BaMn2As2
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reasonable agreement with previous reports [72]. To further investigate the
electrical and optical properties of BaMn2As2 we provided single crystals to
our collaborator Dr. Chris Homes at BNL. Figure 4.3b presents high resolution
optical reflectance of a single crystal of BaMn2As2 as a function of wavenum-
ber for T = 6 K - 295 K. The overall reflectance is rather low, consistent with
insulating behavior, and exhibits little T-dependence. The sharp features at
≈ 80 cm−1 and 200 cm−1 correspond to phonons. The energy scale associated
with these phonons (< 30 meV) is similar to that previously reported from
powder inelastic neutron scattering measurements (Figure 3 in [13]). These
phonon modes were also observed in previously reported optical reflectance
measurements by Antal et al. who further provided a modelling of the phonon
modes for the ThCr2Si2 structure [74]. This modelling ruled out the tempera-
ture dependent feature they observed at ≈ 500 cm−1 as a phonon mode, and
they thus assigned this feature (marked by arrow in Figure 4.3d) to the energy
gap. However, we have not been able to reproduce this T-dependent feature
or the overall T-dependent reflectance [74]. Furthermore, Figure 4.3c shows
the optical reflectance as a function of wavenumber, with interference fringes
below 6900 cm−1, indicating that BaMn2As2 is transparent and insulating be-
low these wavenumbers. The fringes vanish above 6900 cm−1, consistent with
the onset of absorption for energies above the charge gap ∆ = 0.86 eV.

To investigate further the magnitude of the charge gap in BaMn2As2 we
provided single crystals to our collaborators Prof. Basov and his graduate
student Kirk Post at UC San Diego. Room temperature optical transmission
as a function of wavenumber is presented in Figure 4.4a. At ≈ 6500 cm−1 a
rapid decrease of transmission is observed, consistent with the onset of absorp-
tion due to optical excitations across a charge gap ∆ = 0.86 eV, significantly
larger than the previously reported charge gap of 0.024 eV [74]. Figure 4.4b
shows that the reduced transmission below ≈ 2000 cm−1 is well accounted
for by a model of Lorentzian-like oscillators including some small intra-gap
absorption, which may be due to in gap states or Sn inclusions [82]. We em-
phasize that we used single crystals for our optical spectroscopy and ρ(T) (Fig
4.3a) measurements that were taken from the same batch. Overall, our optical
transmission measurements are in good agreement with our optical reflectance
measurements that show the charge gap in BaMn2As2 = 0.86 eV, an order of
magnitude larger than previously reported.

We turned to our collaborators Prof. Gabriel Kotliar and his postdoctoral
researcher Dr. Zhiping Yin at Rutgers, who performed electronic structure cal-
culations to investigate further the origin of the gap in BaMn2As2. Figure 4.5
shows that the charge gap in BaMn2As2 results from strong Hund’s coupling.
First, in Figure 4.5a, we present a DFT+DMFT calculation for Hubbard U
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Figure 4.3: (a) Resistivity ρ of BaMn2As2 as function of temperature T mea-
sured in the ab plane. (inset) ln(ρ) versus T−1. The solid line is a fit to the
Boltzmann expression as described in the main text (b) Optical reflectance
measured in the ab plane for temperatures T = 295 K (red), 250 K (mag-
neta), 200 K (orange), 150 K (green), 100 K (cyan), 60 K (black) and 5 K
(blue). (c) Optical reflectance measured in the ab plane at room tempera-
ture at higher wavenumbers. (d) Previously reported optical reflectance as
a function of wavenumber for range of temperatures from 10 K to 300 K.
Data reproduced from [74]. The arrow indicates the temperature-dependent
feature previously assigned as the energy gap that we do not observe in our
measurements presented in Figure 4.3b.
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Figure 4.4: (a) Optical transmission of a single crystal of BaMn2As2 measured
in the ab plane at room temperature. (b) Optical transmission measured in the
ab plane at room temperature (black) and a model of the optical transmission
with (red) and without (green dash) intra-gap absorption.

= 8 eV with no Hund’s term (JH = 0). Several bands are crossing the Fermi
level, and so, in the absence of Hund’s interactions, BaMn2As2 is predicted to
be metallic, contrary to our resistivity and optical spectroscopy measurements
that find insulating behavior. Figure 4.5b presents DFT+DMFT calculations
for Hubbard U = 8 eV and JH = 0.9 eV, the same parameters used for the
related compound LaMnPO [23]. The inclusion of Hund’s coupling severely
modifies the band structure. Now, there are no bands crossing the Fermi level
and BaMn2As2 is found to be insulating, in agreement with our experiments.
Further, a direct charge gap of ≈ 0.8 eV (Figure 4.5c) is found at the Γ point
that is in excellent agreement with the experimental value ∆ = 0.86 eV found
from our optical measurements presented in Figures 4.3, 4.4.

Using our experimental and theoretical results, we now situate BaMn2As2
amongst archetypal layered Mn pnictide compounds LaMnXO and BaMn2X2

(X = P, As) (Figure 4.5d). First, we discuss the experimentally determined
activation gaps εA and charge gaps ∆. The values of εA determined from elec-
trical resistivity measurements with the current flowing in the ab plane range
from 0.027 - 0.2 eV, while the optical gaps range from ∆ = 0.86 - 1.4 eV. Thus,
εA likely corresponds to the energy differences between in-gap states, possibly
originating from impurities, and the conduction band edge. In contrast, ∆ cor-
responds to the direct charge gap that separates the valence and conduction
bands. DFT calculations find a direct charge gap of similar magnitude to the
activation gaps, which is order of magnitude smaller than the experimentally
determined charge gaps. On the other hand, DFT+DMFT calculations in-
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cluding a strong Hund’s coupling correctly reproduce the measured charge gap.
These calculations assert that including strong electronic correlations is crucial
to properly understand the insulating state of Mn pnictide systems [23, 34].
It has also been emphasized that Hund’s coupling is responsible for the mass
enhancement observed in the parent compounds of the iron pnictide super-
conductors [50]. Thus, driving the strongly correlated Mn pnictide Hund’s
insulators across an electronic delocalization transition where ∆→0 could po-
tentially lead to a more correlated version of the Fe pnictides, and perhaps
even higher temperature superconductivity. While a metal-insulator transi-
tion has been realized in K-doped BaMn2As2, this sample was not found to
be superconducting [46]. We now present ρ(T ) and optical spectroscopy mea-
surements that address the metallization of 2% K doped BaMn2As2 . These
measurements were performed by our collaborator Dr. Chris Homes at BNL
on single crystals of K-doped BaMn2As2 that we provided.

The temperature dependence of the electrical resistivity of 2% K doped
BaMn2As2 is presented in Figure 4.6a. A metallic ρ(T ) = ρ0 + A T2 temper-
ature dependence typical of a Fermi liquid is observed, with A = 0.09 µΩ cm
K−2. The measured T-dependence is similar to that previously reported [46]
but our crystals have slightly lower ρ0 = 0.54 mΩ cm and a larger residual
resistivity ratio ρ(300 K)/ρ(2 K) ≈ 12, indicating good sample quality. The
optical reflectance R(ω) of K0.02Ba0.98Mn2As2 at different temperatures is pre-
sented in Figure 4.6b. A strong temperature dependence is observed with the
reflectance increasing as the temperature decreases, consistent with the for-
mation of a metallic state upon chemical doping. The real part of the complex
optical conductivity σ1 was determined from R(ω) via a Kramers-Kronig anal-
ysis. Below the lowest measured frequency point, the Hagen-Rubens form has
been used for the reflectance, 1−R(ω) ∝

√
ω, and above the highest-measured

frequency point the reflectance was assumed to be constant up to 5×104 cm−1,
above which a free-electron 1/ω4 response was assumed. Figure 4.6c shows σ1
at selected temperatures. All the spectra exhibit clear Drude-like responses,
expected for metals.

In order to quantitatively analyze the optical data, we fit σ1(ω) to the
Drude-Lorentz model [66],

σ1(ω) =
2π

Z0

[
ω2
p

τ(ω2 + τ−2)
+
∑
j

γjω
2Ω2

j

(ω2
j − ω2)2 + γ2jω

2

]
(4.1)

where Z0 is the vacuum impedance. The first term describes the free-carrier
Drude response, characterized by the plasma frequency ωp = 4πne2/m*, where
n is the carrier concentration and m* is an effective mass, and a scattering rate
1/τ . The second term corresponds to a sum of Lorentz oscillators characterized

65



Figure 4.5: (Color online) (a) Density functional theory + dynamical
mean-field theory (DFT+DMFT) calculation of the band structure of
BaMn2As2 with Hubbard U = 8 eV and no Hund’s coupling (JH = 0 eV).
(b) DFT+DMFT of the band structure of BaMn2As2 with U = 8 eV and
JH = 0.9 eV. (c) Spectral function at high symmetry points for the calcula-
tion shown in (b). (d) Summary of the activation gaps εA determined from
electrical resistivity ρ measurements and charge gap ∆ determined from dif-
ferent experimental and theoretical approaches in LaMnXO, BaMn2X2 (X =
P, As) [23, 75, 76, 83].
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by a resonance frequency ωj, a linewidth γj, and an oscillator strength Ωj.
We find that one Drude term, which we assign to the doped holes intro-

duced by K, is sufficient to describe σ1 (Figure 4.6c). As there are several
hybridized Mn bands near the Fermi level in insulating BaMn2As2 (Figure
4.5b) one might expect several Drude terms to be necessary to describe the
optical conductivity in metallic K-doped BaMn2As2. Therefore, this modelling
is consistent with the observation that the ordered magnetic moment associ-
ated with Mn is not reduced by K doping [84] but remains localized while
the observed metallic behavior is due to the doped holes introduced by the K,
as previously emphasized [81, 85–87]. These results are in sharp contrast to
Ba1−xKxFe2As2 (x=0.4), where two Drude terms corresponding to two differ-
ent types of charge carriers are necessary to describe the optical conductivity,
corresponding to multiple hole and electron pockets at the Fermi surface [88].

Figure 4.6: (Color online) (a) Temperature dependence of the electrical resis-
tivity measured in the ab plane of a single crystal of K0.02Ba0.98Mn2As2 (b)
Optical reflectance measured in the ab plane on a single crystal of
K0.02Ba0.98Mn2As2 for temperatures indicated in (c). (c) Optical conductivity
for different temperatures as indicated. Solid lines are fits to the 6 K and 295
K measurements as described in the main text.
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Figure 4.7 shows the temperature dependencies of the Drude parameters
taken from our fits. The plasma frequency (Figure 4.7a) is almost tempera-
ture independent, indicating that the band structure and n/m* do not change
appreciably with temperature. The relatively small magnitude of the plasma
frequency ≈ 1700 cm−1, as well as the large value of the resistivity and the
rather weak Drude peak, indicates that is a ’bad metal’, as expected for only
2% K doping. This plasma frequency is substantially smaller than in the
related compound Ba1−xKxFe2As2 (x=0.4) where ωp1,p2 ≈ 6000 cm−1, 14000
cm−1 [88]. Figure 4.7b presents the temperature dependence of the scattering
rate of the Drude component, with 1/τ ∝ T2; the dashed line denotes a T2

fit that implies the charge carriers are described by Fermi liquid theory. The
temperature dependencies of the dc optical conductivity σ1(ω →0), resisitiv-
ity ρ = 1/σ1(ω →0) and dc resistivity from electronic transport measurements
are presented in Figure 4.7c,d. Excellent agreement is found between our op-
tical spectroscopy and electrical resistivity measurements. In both cases, the
behavior is well described by Fermi liquid theory, as previously observed and
suggested to arise from hole-hole scattering [46].

4.4 Discussion

The parent state of the iron pnictide superconductors may be regarded as
a Hund’s metal [14, 15] and it is interesting to ask whether this is also the
case for the isostructural Mn pnictide metals. There are two signature fea-
tures of a Hund’s metal: a reduction in the coherence scale for Fermi liquid
behavior and the promotion of a metallic state away from half filling. For
2% K doped BaMn2As2 our optical conductivity and transport measurements
find the dc resisitivity has a Fermi-liquid like T2 dependence at all measured
temperatures. Thus, 2% K doped BaMn2As2 may be viewed as a system of
weakly interacting quasiparticles that does not display the unusual non-Fermi
liquid properties ρ(T)∝T found in the metallic Fe pnictides [7]. The optical
conductivity of 2% K doped BaMn2As2 is well described by hole conduction
corresponding to the introduction of K dopants. This observation, combined
with the result that the ordered magnetic moment remains robust in the K-
doped metal [84], suggests the emergence of a metallic state does not promote
significant valence fluctuations on the Mn site. Therefore, no signatures char-
acteristic of a possible correlated Hund’s metal state have been realized in this
system.

Rather, K doping has transformed BaMn2As2 from a local moment anti-
ferromagnetic insulator to a local moment antiferromagnetic metal where the
doped holes are responsible for the conduction. The realization of a Hund’s
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Figure 4.7: The temperature dependence of (a) the plasma frequency ωp, (b)
the scattering rate 1/τ , (c) the dc conductivity σ(ω→0), and (d) the resistivity
1/σ(ω→0) and the corresponding dc resistivity from transport measurements.
For clarity, the dc resistivity is offset by 1 mΩ cm compared to the same data
presented in Figure 4.6a
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metal and superconductivity requires the suppression of magnetic order, as
well as metallization. At higher K doping in BaMn2As2 itinerant ferromag-
netism due to a Stoner-type instability of the Fermi surface originating from
the As 4p holes has been detected [81, 85], similar to that reported in H
doped LaMnAsO [89]. Thus, doping Mn pnictide systems toward metallicity
may generically lead to ferromagnetic fluctuations or even order, with limited
suppression of the antiferromagnetic order. On the other hand, pressure was
found to transform LaMnPO from an antiferromagnetic insulator to an anti-
ferromagnetic metal at 20 GPa and eventually to a paramagnetic metal at 34
GPa [31, 54]. No ferromagnetism was detected and it appears to be the case
that only pressure can transform Mn pnictide insulators into potentially cor-
related Hund’s metals, a now familiar breeding ground for superconductivity.
For example, recent experiments have shown the pressure-induced suppression
of magnetic order in MnP reveals a superconducting state with Tc ≈ 1 K [48].

Recently, x-ray magnetic circular dichroism measurements, combined with
nuclear magnetic resonance and x-ray and neutron diffraction, have revealed
that the itinerant ferromagnetism in K0.4Ba0.6Mn2As2 originates from holes
doped into the As 4p band [81]. This is likely to also be the case in the
related half-metal Rb0.6Ba0.4Mn2As2 [90]. There is an apparent decoupling of
magnetic interactions between the As 4p states and the Mn 3d states. This is
very surprising as the Mn and As atoms are in the same layer and significant
hybridization between Mn and As states would be expected. These findings
should stimulate further interest in chemically doping Mn pnictide compounds,
such as pressurized LaMnPO and LaMnSb2.

We have reported optical transmission and reflectance measurements of
BaMn2As2 that find insulating behavior and a charge gap of 0.86 eV. The mea-
sured charge gap is an order of magnitude larger than previously reported and
of similar magnitude to that of other Mn pnictide compounds. DFT+DMFT
correctly reproduces the charge gap only when Hund’s coupling is included.
Using these results, we present BaMn2As2 as part of a wider class of layered
Mn pnictide systems that we classify as Mott-Hund’s insulators. We have
also presented the optical conductivity of K0.02Ba0.98Mn2As2 that reveals a
Drude peak, characteristic of a metallic state. A Fermi liquid like tempera-
ture dependence of σ1(ω→0, T) and ρ(T ) suggests K0.02Ba0.98Mn2As2 should
not be considered a correlated Hund’s metal and thus is an unlikely candidate
for high temperature superconductivity. While the outlook for suppressing
the local moment antiferromagnetism in these systems by chemical doping re-
mains challenging, the possibility of suppressing the moment by pressure is
more positive. We believe a closer examination of the pressure dependence of
the magnetic state of layered Mn pnictide compounds, for instance using high
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pressure neutron scattering techniques, is warranted.

71



Chapter 5

CaMn2Sb2

Our single-crystal inelastic neutron scattering measurements reveal spin wave
excitations in CaMn2Sb2 at T = 5 K << TN . We will show that these ex-
citations are well described by a Heisenberg model of spins on a corrugated
honeycomb lattice, allowing us to characterize the antiferromagnetic exchange
interactions J1 and J2, as well as the exchange interactions between nearest
neighbors in the c-direction Jc. Using the exchange interactions determined
in this way, we situate CaMn2Sb2 on the theoretical magnetic phase diagram,
and find it is proximate to a tricritical point, and is consequently magnetically
frustrated. The results presented in this chapter have been published as [25]

5.1 Introduction

As outlined in Chapter 1 magnetic frustration can occur in spin systems when
constraints prevent the formation of a ground state satisfying all of the pairwise
interactions [91]. The honeycomb lattice is an interesting manifestation of a
spin system where frustration arises from competing further neighbor interac-
tions, and this frustration is further enhanced by strong quantum fluctuations
due to the low coordination number z=3.

The system of interacting spins on a honeycomb lattice has attracted
the attention of theorists for decades [92, 93], with more recent calculations
proposing that a spin liquid state can be stabilized on this lattice [94–97].
Competition between first, second and third neighbor magnetic exchange in-
teractions, J1, J2, and J3, results in a rich magnetic phase diagram as shown
in Figure 5.1 [92, 93]. For classical localized spins described by a Heisenberg
Hamiltonian, Néel, stripy, zigzag and spiral magnetic orderings are possible
depending on the relative strengths of these interactions. Further, three tri-
critical points marked as black squares in Figure 5.1, where three of these
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types of long range magnetic order become degenerate, are predicted and the
strongest frustration would be expected near these points [92].

Figure 5.1: Phase diagram of the Heisenberg model for a honeycomb lattice
with first, second and third neighbor exchange interactions J1, J2, and J3

respectively [92]. The three black squares represent the three tricritical points,
where three different types of long range magnetic order co-exist.

The honeycomb lattice compounds MnTiO3 and BaNi2(PO4)2 were dis-
covered early on [98, 99]. Both were found to be Néel antiferromagnets with
MnTiO3 ordering at 64 K [100] and BaNi2(PO4)2 ordering at 23.5 K [101], in
agreement with the determined exchange interactions that place them deep in
the Néel phase of the theoretical honeycomb lattice phase diagram [101, 102].
More recently, there have been several experimental realizations of frustrated
honeycomb lattice systems with antiferromagnetic interactions based on tran-
sition metals, e.g. Bi3Mn4O12(NO3) [103], (Na/Li)2IrO3 [104–106], α-
RuCl3 [107] SrL2O4 (L = Gd, Dy, Ho, Er, Tm, and Yb) [108], Cu5SbO6 [109],

73



and Cu3M2SbO6 (M = Ni, Co) [110]. While inelastic neutron scatter-
ing measurements and complementary electronic structure calculations have
placed bounds on the exchange interactions in Bi3Mn4O12(NO3) [111–113] and
Na2IrO3 [114, 115], determination of individual exchange interactions in these
compounds has not been possible due to the lack of large single crystals and/or
strong Ir absorption. Uncertainty remains over even the relative strength of the
exchange interactions in these compounds. This has hindered comparison with
theoretical phase diagrams, which propose spin liquid and highly frustrated
phases depending on the value of the exchange interactions [94–97, 116].

We present inelastic neutron scattering results that characterize the
exchange interactions in single crystals of the antiferromagnetic insulator
CaMn2Sb2, which consists of honeycomb layers of Mn in which every other
atom is shifted perpendicular to the ab plane (Figure 5.2a) [31, 117]. Neu-
tron powder diffraction measurements reveal Néel-type antiferromagnetic or-
der (Figure 5.2b) in CaMn2Sb2 below TN = 85 - 88 K, with an ordered moment
between 2.8-3.4 µB/Mn [118, 119]. The magnetic moment is substantially
smaller than the 5 µB/Mn expected from the high spin state produced by
Hund’s rules, and this reduced moment may reflect the interplay of quantum
fluctuations and hybridization [23, 43]. The moments are refined to lie in
the honeycomb a-b plane, possibly with some degree of out-of-plane canting.
Between TN and 210 K a weak ferromagnetic component was detected in mag-
netic susceptibility measurements [31]. From 340 K - 400 K, Curie-Weiss be-
havior was reported with a low paramagnetic moment of 1.4 µB/Mn [31]. The
low ordering temperature, as well as the unusual character of the intermediate
temperature phase, suggest that frustration characteristic of the honeycomb
lattice may be a crucial part of the magnetism of CaMn2Sb2, unaddressed until
now.

5.2 Experimental Details

Single crystals of CaMn2Sb2 were prepared from a Sn flux as described in
chapter 2. The trigonal crystal structure of CaMn2Sb2 (P3̄m1, No. 164) with
a = b = 4.52 Å and c = 7.46 Å was confirmed by single crystal x-ray diffraction
down to temperature T = 8 K [31] (Figure 5.2a). Inelastic neutron scattering
measurements were performed at the SEQUIOA time-of-flight spectrometer
at the Spallation Neutron Source at Oak Ridge National Laboratory, TN.
A collection of four single crystals of CaMn2Sb2 of total mass 3.2 g were
coaligned on a sheet of aluminum. The crystals were mounted in a Displex
helium closed cycle refrigerator with the L axis along the beam direction and
the H direction perpendicular to the beam direction in the same horizontal

74



Figure 5.2: (a) The crystal structure of CaMn2Sb2. The corrugation of the
honeycomb layer of Mn is emphasized by the black and green Mn atoms dis-
placed along c-direction. (b) A compressed view of the Néel antiferromagnetic
corrugated honeycomb lattice formed by the Mn moments in the ab plane.
Exchange interactions between first neighbors J1 and second neighbors J2 are
indicated. (c) Collection of aligned single crystals of CaMn2Sb2 on aluminum
sheet. The angle Φ is indicated that represents rotation about an axis perpen-
dicular to the H-L plane of CaMn2Sb2 (d) H-L space sampled by the detectors
at SEQUIOA for incident energy of 50 meV and different Φ (e) The expected
spin wave dispersion along H and L. [120]
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plane (Figure 5.2c). We define Q = b1 h + b2 k + b3 l = (H,K,L) where
b1,2,3 are the reciprocal lattice vectors. The resulting Q-space coverage for
our crystal at various orientations is shown in Figure 5.2d. The detectors at
SEQUIOA cover a 90◦ area and so a limited amount of H-L space is sampled
at fixed angle. To access a larger region of reciprocal space we rotate the
crystal about the axis perpendicular to the H-L plane. For our measurements
we rotated the sample about 111◦ in 1◦ steps. An incident energy of 50 meV
with the Fermi chopper 2 set to 420 Hz and the T0 chopper set to 90 Hz was
found to be optimal to sample the full excitation spectrum, with an energy
resolution of 1 meV.

5.3 Experimental Results and Analysis

Figure 5.3 presents an overview of our inelastic neutron scattering measure-
ments of CaMn2Sb2 at T = 5 K. The energy dependence of the scattered
neutron intensity S(Q,E) along the H and L directions is presented in Figs.
5.3a and 5.3b. Sharp, dispersive excitations emerge from all reciprocal lattice
points with integer h and l values, as expected for spin waves in the Neel phase
of a honeycomb lattice (Figure 5.2e). Two spin wave branches are discernible,
corresponding to an acoustic mode and an optical mode emanating from the
antiferromagnetic zone center and 4 meV, respectively. The excitations are
similar along the (H01) and (10L) directions, with a maximum spin wave en-
ergy of 24 meV in both cases. S(Q,E) is observed to decrease slightly as the
wave vector increases, as expected from the magnetic form factor for Mn, act-
ing in concert with the polarization-dependent scattering from the ordered
magnetic moments [60, 121]. Figures 5.3c to 5.3f present two-dimensional cuts
along the H and L directions for increasing energy transfers. For data summed
over energy transfers 5 meV < E < 10 meV (Fig. 5.3c), we observe the most
intense scattering in an oval shape centered at the Bragg position (h,k,l) =
(1,0,0). For larger energy transfers (Figs. 5.3d and 5.3e), S(Q,E) has only a
twofold rotational symmetry centered at the Bragg position, suggesting the
spin waves disperse differently along the H and L directions. For 20 meV <
E < 25 meV (Fig. 5.3f), the spin waves have dispersed to the edge of the
Brillouin zone, consistent with a magnon bandwidth of 25 meV. The energy
and wave-vector dependence of the scattered neutron intensity behave just as
expected for three-dimensional spin waves.

CaMn2Sb2 is an insulator [31] and thus the Heisenberg model of localized
moments is an appropriate starting point to describe the magnetic excitations.
The corrugated honeycomb lattice formed by the magnetic Mn ions is non-
Bravais and therefore the appropriate expression for the spin wave dispersion
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Figure 5.3: Contour plots of inelastic neutron scattering intensity at T = 5
K. Scale bars are shown on the left. Scattered neutron intensity as a function
of energy E along the (a) H direction, (b) L direction. Scattered neutron
intensity as a function of H and L for (c) 5 < E < 10 meV, (d) 10< E < 15
meV, (e) 15 < E < 20 meV, (f) 20 < E < 25 meV
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is [122]

ω(Q) = 2S
√

(J(0)− J ′(0) + J ′(Q) + hA)2 − |J(Q)|2

Here, S is the total spin on an atom and hA is a reduced anisotropy field. The
exchange term J (Q) describes interactions betweens spins on opposite sublat-
tices and J’(Q) describes interactions between spins on the same sublattice.
We include first neighbor exchange interactions J1 for spins that are on oppo-
site sublattices, second neighbor interactions J2 for spins that are on the same
sublattice, and exchange interactions between nearest neighbors in different
honeycomb layers Jc for spins that are on opposite sublattices (Figure 5.2).
The interaction term J’(Q) =

∑
n.n.n. J2e

iQ.rn.n.n. , where the sum is over the 6
second neighbor atoms. The term J(Q) =

∑
n.n. J1e

iQ.rn.n. +
∑

c Jce
iQ.rc . The

resulting spin wave dispersions along the H and L directions are

ω(h) = 2S
√

(∆ + 4J2 cos(2πh) + 3J1 − 4J2 + 3Jc)2 − (4 cos(2πh) + 5)(J1 + Jc)2

ω(l) = 2S
√

∆2 + 6∆(J1 + Jc)− 18J1Jc cos(2πl) + 18J1Jc

In Figure 5.4a,b we present H-cuts and L-cuts of the data presented in
figure 5.3 at different energies. We approximate the resolution limited peaks
by a Gaussian profile and our subsequent fitting of the observed scattering
allows us to extract the spin wave dispersion along the H and L directions,
and to characterize the magnetic exchange interactions in CaMn2Sb2. The
scattered neutron intensity S(Q,E) for different energy transfers along the H
direction is shown in Figure 5.4a. For summed energy transfers 6 meV ≤ E
≤ 8 meV, S(Q,E) is well fitted by the sum of two Gaussian functions, shifted
from the magnetic Bragg peak. At larger energy transfers the peak positions of
the fits move further from the Bragg peak, just as expected for dispersing spin
wave excitations. For E > 24 meV we no longer observe scattering from the
spin waves. Figure 5.4b presents S(Q,E) along the L direction, where we again
observe dispersive spin wave excitations. Fits along H and L, centered at the
average spin momenta ±∆Q(E), were performed every 2 meV . This fitting
yields the spin wave momenta for different energy transfers, and the resulting
spin wave dispersions, E(∆H) and E(∆L), are presented in Figures 5.4c,d.

The Mn spins in CaMn2Sb2 are in the ab-plane and so there should be
two magnon branches. The first branch corresponds to spin deviations in ab-
plane with a tiny gap set by a small in-plane hexagonal anisotropy. If one
neglects this anisotropy, the resulting continuous symmetry with respect to
spin rotations around c gives rise to a gapless Goldstone mode. The second
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Figure 5.4: Scattered neutron intensity S(Q,E) along the H and L directions
for ranges of energy transfers, as indicated. Scans are displaced for clarity.
The solid lines are fits to the measured data as described in the text. (c,d)
Black points represent the spin wave momenta and energies along H and L
extracted from fits. Solid lines are fits to the observed dispersion with that
expected from a Heisenberg spin model, as described in the text. The black
line is the gapless acoustic mode and the red line is the optical mode, as
described in the text.
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branch corresponds to spin deviations out of plane with a larger gap. Both
of these branches are seen in Figure 5.3a,b: the bottom of the gapped branch
is seen as an intense spot, and another branch clearly goes to lower energies
below this spot. As the q-resolution of our data is not sufficient to resolve the
dispersion of the two branches individually we determined the magnitude of
the spin gap by taking a constant Q-cut as shown in the inset to Figure 5.4c.
We determine a spin gap of ≈ 4.5 meV.

The theoretical expressions for the spin wave dispersion for a J1-J2-Jc
Heisenberg model were fit simultaneously to the measured dispersions along
the H and L directions. Fits were performed for a gapless acoustic mode (hA =
0) and a gapped optical mode and are shown respectively as black and red solid
lines in Figure 5.4c,d. Excellent agreement is found between the Heisenberg
model and the observed excitations. We find that SJ1 = 7.9 ± 0.6 meV and SJ2

= 1.3 ± 0.2 meV are both positive with J2/J1 = 0.165, signalling that the in-
plane interactions are antiferromagnetic. The value of the ratio J2/J1 = 0.165
remains robust independent of the details of the microscopic model, that is
whether or not the corrugation of the honeycomb planes or multiple anisotropy
terms are included. The exchange interaction betwen nearest neighbors in
different honeycomb layers SJc = 0.51± 0.05 meV.

5.4 Discussion

In Figure 5.5 we use the ratio of the experimentally determined exchange in-
teractions to situate CaMn2Sb2 on the phase diagram of the classical J1-J2-J3

Heisenberg model [92] for a honeycomb lattice of spins, which is controlled by
the ratios J2/J1 and J3/J1. We found that including a third neighbor exchange
J3 in our modelling of the spin wave excitations in CaMn2Sb2 did not signif-
icantly improve the quality of our fits and therefore take J3 = 0. The phase
diagram was constructed by calculating the ground state energies within the
mean field approximation for different relative values of the exchange interac-
tions [92]. Depending on the relative strengths of these interactions different
types of antiferromagnetic ordering are expected, as indicated. Using the val-
ues of the exchange interactions determined from our inelastic neutron scat-
tering measurements, we find that CaMn2Sb2 lies in the Néel ordered region
of the phase diagram, in agreement with the magnetic structure determined
from powder neutron diffraction measurements [118, 119]. Further, CaMn2Sb2

is found to be very close to the tricritical point where Néel order and two spiral
antiferromagnetic configurations are predicted to co-exist. This large degener-
acy of possible ground states, as well as presumed strong fluctuations among
these states, is likely responsible for the relatively low ordering temperature
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of CaMn2Sb2, TN = 85 K [23, 31], which is much reduced from the mean
field ordering temperature TMFT = (S+1)(3SJ1+6SJ2+2SJc)/3kB = 310 K
for S=3/2 or 370K for S= 2. The close proximity of CaMn2Sb2 to the tri-
critical point reported here confirms a recent prediction by Mazin [116], who
speculates that the weak ferromagnetic component found in the intermediate
temperature range could result from this proximity.

Figure 5.5: Phase diagram of the Heisenberg model for a honeycomb lat-
tice with first, second and third neighbor exchange interactions J1, J2, and
J3 respectively [92]. Solid lines are phase boundaries for the different an-
tiferromagnetic configurations indicated. The blue, green and red symbols
represent MnTiO3, Bi3Mn4O12 and Na2IrO3 respectively. Filled black square
is CaMn2Sb2

Until now, there has been a dearth of antiferromagnetic honeycomb lat-
tice compounds whose exchange interactions have been determined experi-
mentally, so as to facilitate comparison with the phase diagram in Figure
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5.5. The exchange interactions determined from a single crystal inelastic
neutron scattering study of MnTiO3 and BaNi2(PO4)2 place them deep in
the Néel phase [101, 102], in agreement with the determined magnetic struc-
ture [100, 101]. Bounds on the exchange interactions of the effective spin 1/2
honeycomb lattice compound Na2IrO3 place it solidly in the zigzag antifer-
romagnetic phase. While this is in agreement with the experimentally deter-
mined magnetic structure, a Kitaev exchange term is important to characterize
the strong magnetic frustration in this compound, and the strong spin-orbit
coupling may displace this compound from the indicated position [114, 115].
Inelastic neutron scattering measurements have also been reported on the hon-
eycomb lattice compound Bi3Mn4O12 and, using the resulting bounds on ex-
change interactions, this compound is also situated in the Néel antiferromag-
netic phase of Figure 5.5. However, long range magnetic order in Bi3Mn4O12

has not been observed down to 0.4 K, indicating interlayer exchange interac-
tions are likely necessary to understand its magnetic properties [111]. Thus,
our experiments are the first to show that CaMn2Sb2 is an antiferromagnetic
honeycomb lattice compound situated in close proximity to a multicritical
point on the phase diagram of the Heisenberg model for a honeycomb lat-
tice. This proximity enhances the magnetic frustration and further reduces
the ordering temperature in CaMn2Sb2 from the expected mean field ordering
temperature. It would be interesting to study a structurally similar compound
with stronger quantum fluctuations, e.g. by replacing the large Mn moments
with lower spin moments, to determine if the long range magnetic order could
be completely suppressed, leading to a spin liquid state.
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Chapter 6

LaMnxSb2

We have synthesized large single crystals of LaMnxSb2 and confirmed that it
crystallizes in the ZrCuSiAs structure. Electrical resistivity measurements as a
function of temperature ρ(T ) display metallic behavior that is confirmed by the
large Sommerfeld coefficient, determined by our low temperature specific heat
C(T) measurements. Both ρ(T ) and C(T) display anomalies at T = 130 K.
To determine its origin we performed neutron diffraction measurements that
show LaMnxSb2 exhibits long range antiferromagnetic order below TN = 130
K. We use irreducible representational analysis to model the neutron diffrac-
tion data, determining a canted antiferromagnetic structure and an ordered
moment of 2.9 µB/Mn. The presence of a large ordered moment and Sommer-
feld coefficient in this correlated metallic system suggests LaMnxSb2 may be in
an orbitally selective Mott phase. We then present DFT+DMFT calculations
that find the dxy electrons remain localized in the metallic state, in contrast
to DFT calculations that find a dxy band that crosses the Fermi level. These
results are consistent with a strong Hund’s effect that decouples the manganese
orbitals leading to an orbitally selective Mott phase in LaMnxSb2.

6.1 Introduction

In Chapters 3 and 4 of this thesis we showed that strong electronic cor-
relations due to a large Hubbard U and Hund’s coupling JH are responsible
for the formation of an insulating state in LaMnPO and BaMn2As2, which
are isostructural with the parent compounds of the Fe-based superconductors.
There has been a large effort to metallize and suppress the magnetic moment
in these systems via chemical doping, with the hope of realizing superconduc-
tivity that has not yet been observed in square-net Mn compounds. While
there has been some success in reducing the gap size and even metallizing
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Arsenic bands, the Mn moments have remained largely localized [43, 52, 84].
In contrast, pressurized LaMnPO becomes metallic at 16 GPa, with magnetic
susceptibility measurements suggesting it remains magnetic until 34 GPa at
which point the long range magnetic order vanishes [54] (see Figure 6.1). These
findings are supported by electronic structure calculations [43](see Figure 6.1).
Unfortunately, there has so far been no spectroscopic evidence from neutron
scattering or photoemission for the nature of the antiferromagnetic metallic
state in pressurized LaMnPO or BaMn2As2, due to the inherent difficulty in
performing these measurements under pressure. It has been proposed that the
correlation effects due to a strong Hund’s coupling that lifts the band degen-
eracy [9, 11] may be responsible for the separation of the charge and moment
delocalization transitions in Mn pnictide systems [23, 43]. In this picture,
charge delocalization takes place when one of the Mn orbitals becomes delo-
calized, while the other orbitals remain localized. Thus, we are left with an
antiferromagnetic metallic state with a significant local moment. Such an or-
bitally selective Mott phase, arising in the presence of strong Hund’s coupling
(see Figure 1.3), has been reported in the iron chalcogenide superconduc-
tors AxFe2−ySe2 [123], which are generally considered as the most correlated
iron-based superconductors as indicated by their large ordered moment of 3.3
µB/Fe, comparable to the ordered moment of 3.2 µB/Mn in LaMnPO.

Here we report the first physical property measurements of the Mn pnic-
tide compound LaMnxSb2 [32], isostructural to LaMnPO and the iron-based
superconductors. Intriguingly, our electrical resistivity measurements per-
formed on single crystals of LaMnxSb2 display metallic behavior, in contrast to
its isostructural counterparts. Specific heat measurements confirm a density
of states at the Fermi level, with a rather large Sommerfeld coefficient sug-
gesting strong electronic correlations associated with Mn. High temperature
magnetic susceptibility measurements reveal a large fluctuating moment of 4.2
µB/Mn. Both resistivity and specific heat measurements display an anomaly
at T = 130 K. To investigate whether this anomaly is associated with long
range antiferromagnetic ordering we performed neutron diffraction measure-
ments. These measurements revealed a canted antiferromagnetic state below
TN = 130 K with an ordered magnetic moment of 2.9 µB/Mn at T = 5 K.

These experimental observations of a strongly correlated metallic state
with a significant ordered moment of 2.9 µB/Mn, rather strongly reduced
from the full Hund’s value of 5 µB/Mn, are suggestive of the co-existence of
local moment and itinerant Mn states. To investigate whether this is the case,
our colleagues Dr. Yin and Prof. Kotliar at Rutgers performed DFT+DMFT
calculations. For the same values of Hubbard U = 8 eV and Hund’s coupling
JH = 0.9 eV used for LaMnPO and BaMn2As2, these calculations reveal a
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metallic state in LaMnxSb2. Further, these calculations find that the dxy
orbital, in the presence of a large U and JH , remains localized in the metallic
state, but contributes to the Fermi surface in DFT calculations that do not
include strong correlations. Taken together, our experimental and theoretical
results suggest that LaMnxSb2 may be in an orbitally selective Mott phase
(OSMP), due to the orbital decoupling imposed by a strong Hund’s coupling.

Figure 6.1: (left) Local spin density approximation (LSDA) calculations of
LaMnPO: the charge gap (green squares), and the ordered magnetic moment in
tetragonal (red circles), orthorhombic (open squares) and collapsed orthorhom-
bic (blue squares) [43]. A DMFT calculation of the gap is shown as a yellow
circle. (right) Temperature-pressure phase diagram of LaMnPO constructed
from electrical resistivity and magnetic susceptibility measurements [54]. An
antiferromagnetic insulating (AFM-I) phase gives way to an antiferromagnetic
metallic phase (AFM-M) that eventually results in a paramagnetic metallic
phase (PM-M) at higher pressures.

6.2 Experimental Details

Single crystals of LaMnxSb2 were prepared from a Mn-Sb flux as described in
chapter 2. The previously reported tetragonal crystal structure of LaMnxSb2
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(P4/nmm, No. 129) with a = b = 4.3864(4) Å and c = 10.799(1) Å was
confirmed by single crystal x-ray diffraction at room temperature [32]. Elec-
trical resistance measurements were performed with a 5 mA current flowing in
the ab plane using a Quantum Design Physical Properties Measurement Sys-
tem. Heat capacity measurements were performed on a 5.2 mg single crystal
using a Quantum Design Physical Properties Measurement System. Temper-
ature dependent magnetic susceptibility measurements were performed with a
1 T field applied in the ab plane of a 30 mg single crystal using the Vibrat-
ing Sample Magnetometer option on a Quantum Design Physical Properties
Measurement System. Neutron diffraction measurements were performed at
the BT1 instrument at NCNR at NIST on a 6 g powder of crushed single
crystals for temperatures T = 5 K - 650 K with an incident wavelength of
2.078 Å using Ge(311) monochromator, that provides the highest intensity on
this instrument. Pair distribution function measurements were performed by
measuring the total scattering powder diffraction on beam-line X17A at the
National Synchrotron Light Source at Brookhaven National Laboratory. Data
were collected in rapid acquisition mode with an x-ray energy of 67.419keV
(=0.1839 Å) on a Perkin-Elmer 2D flat panel detector (2048×2048 pixels and
200×200 µm pixel size) mounted orthogonal to the beam path. The sample
to detector distance was approximately 206 mm for the experiments and was
calibrated using a nickel standard with the FIT2D program. A bulk powder
of LaMnxSb2 was packed into a Kapton capillary and measured at 100K. The
raw 2D intensity was corrected for experimental effects and azimuthally inte-
grated and converted to 1D intensity versus Q plots using FIT2D. PDFgetX3
was used to correct and normalize the diffraction data to obtain F(Q) and
Fourier transform them to obtain the PDF, G(r).

6.3 Experimental Results and Analysis

A room temperature single crystal x-ray diffraction measurement was
performed on a carefully selected small (≈ 100 µm) single crystal of
LaMnxSb2. While single crystal diffraction has previously been reported on
LaMnxSb2 [124], our results have significantly improved on the accuracy of this
previous report. In addition we wished to investigate more closely whether
a super-structure exists, as the reported structural unit LaMnxSb2 has only
partial site occupancy on the Mn site. We assumed a triclinic unit cell and
developed a strategy using the Bruker APEX II software to determine the
stucture of LaMnxSb2. 1650 Bragg reflections were collected and 1466 of these
were unique reflections, far more than in the previous report where only 314
unique reflections were sampled [124]. The Jana software was then used to de-
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termine the space group that best satisfies the observed absorption-corrected
reflections. The previously reported P4/nmm is determined to provide the
best fit. Over the range of Q-space covered by our measurement we find that
of the 41 reflections that should be extinct within this space group only 6 have
intensities I/σ(I) > 3. These reflections are displayed in Table 6.1.

Table 6.1: (left) Forbidden reflections of P4/nmm that were observed with
I/σ(I)>3. (right) Crystallographic and refinement parameters from x-ray
diffraction measurements of a single crystal.

Next, we use the Superflip charge-flipping algorithm to solve for the elec-
tronic distribution within the unit cell. We start with the initial composition
LaMnxSb2 with composition determined from our EDX measurements x =
0.74 ± 0.04, where we found that the value of x can vary somewhat between
crystals as previously pointed out [32]. The program repeatedly and rapidly
converges to the crystal structure presented in Figure 6.2. The refinement data
and crystallographic parameters are presented in Table 6.1. Figure 6.2 com-
pares the crystal structure of the compound LaMnPO discussed in detail in
Chapter 3 of this thesis with LaMnxSb2. The size of the unit cell of LaMnxSb2

is significantly larger, in particular the distance between Mn planes has in-
creased by 2 Å. Therefore the MnSb layers are more well separated than the
MnP layers in LaMnPO suggesting LaMnxSb2 is more two-dimensional. How-
ever, while the LaO layer in LaMnPO can be viewed as a charge reservoir layer,
this is likely not the case for the LaSb layer in LaMnxSb2. This is reflected
in the structure presented in Figure 6.2 which shows the bonding to indicate
that La is nearly equidistant from both Sb sites. It is likely that this increase
in the size of the cell and the height of La may be attributed to the larger size
and lower electronegativity of Sb compared to O/P. We also point out that,
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while La+3Mn+2P−3O−2 is nominally charge balanced, La+3Mnx×(+2)Sb2×(−3)

is not.

Figure 6.2: (left) LaMnPO crystal structure a = 4.054 Å, c = 8.8 Å. (right)
LaMnxSb2 crystal structure a = 4.39 Å, c = 10.8 Å.

We now present room temperature powder neutron diffraction and pair
distribution function measurements at 100 K that are both well described
by the nuclear structure determined from our single crystal x-ray diffraction
analysis. Total scattered neutron intensity as a function of angle is presented
in Figure 6.3a. These measurements were performed at the high-resolution
BT1 instrument at NIST using the Ge(311) monochromator (λ = 2.078 Å).
The best fit of this diffraction pattern to the pattern expected from our single
crystal structure is presented as a black line. Good agreement with the single
crystal structure is found as indicated by the low R and χ2 values shown in
Figure 6.3a. Our refinement finds best agreement for Mn site occupancy x =
0.77, larger than the single crystal value of 0.71 but consistent with our EDX
observations that there is a distribution of possible site occupancies as pre-
viously reported [32]. Figure 6.3b presents pair distribution function (PDF)
measurements that were performed on a powder sample of LaMnxSb2 that we
provided to Prof. Billinge and his graduate student Soham Banerjee. PDF
measurements can be sensitive to local structural order, such as local dimer
formation, as well as the formation of superstructures that may not be de-
tectable by conventional single crystal x-ray diffraction [125]. For LaMnxSb2

the PDF is well described by the average crystal structure from our single
crystal x-ray diffraction measurements over a large range of distances 1.5 Å -
50 Å, as indicated by a low R value = 0.073. Overall, our determinations of
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the long range and short range nuclear structure of LaMnxSb2 indicate that
the occupancy of the Mn site is fully random.

Figure 6.3: (a) Room temperature neutron diffraction on a powder sample of
LaMnxSb2 with incident wavelength of 2.078 Å. (b) Pair distribution function
measurements of LaMnxSb2 at 100 K.

Previously, only the crystal structure of LaMnxSb2 was reported. In Fig-
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ure 6.4 we present the basic physical properties of single crystals of LaMnxSb2.
Electrical resistivity as a function of temperature ρ(T) (Figure 6.4a) increases
as the temperature T increases, consistent with metallic behavior. The tem-
perature derivative dρ(T)/dT is presented in the inset of Figure 6.4a and
displays a clear minimum at T ≈ 130 K. We find Fermi liquid behavior, ρ =
ρ(T = 0) + A T2 at low temperatures in LaMn0.7Sb2 with A = 6.1×10−3 µΩ
cm K−2 (Figure 6.4b). These measurements were repeated on three different
single crystals of LaMnxSb2 with similar results, indicating that the metallic
character of LaMnxSb2 is intrinsic, and is not associated with inclusions of the
MnSb contaminant phase.

Specific heat as a function of temperature C(T) is presented in Figure 6.4c.
Of particular note is an anomaly that is observed at 130 K (inset of Figure
6.4c), the same temperature where dρ(T )/dT displays a local minimum. The
low temperature specific heat has both electronic and phonon contributions
C/T = γ + βT2. Figure 6.4d presents a linear fit to C/T as a function of
T2. The slope of this linear fit corresponds to β while the y-axis intercept
corresponds to the Sommerfeld coefficient γ. We find a rather large γ = 19.2
mJ/f.u. mol K2 suggestive of strong correlations and a large density of states
at the Fermi level. The low temperature phonon contribution β = 12 π4 r R/(5
TD

3) where r is the number of atoms and R is the gas constant yields a Debye
temperature TD = 277 K. However, this Debye temperature drastically un-
derestimates the intermediate temperature phonon contribution. Accordingly,

we used the full Debye expression C = 9 r R (T/TD)3
∫ TD/T
0

x4ex/(ex - 1)2

where x = T/TD to more accurately model the data. This modelling yielded
a Debye temperature TD = 217 K, which can rather accurately account for
the phonon contribution to the experimental C(T) over the full temperature
range as shown in Figure 6.4b. Figure 6.4e presents the magnetization M of a
single crystal of LaMnxSb2, obtained over wide temperature and field ranges.
As described in Chapter 2 of this thesis, these measurements are likely to be
affected by ferromagnetic MnSb contaminants. However, above the ordering
temperature of MnSb (Tc ≈ 600 K) the moments associated with LaMnxSb2

should dominate. Figure 6.4f presents the inverse high temperature suscepti-
bility of a single crystal of LaMnxSb2 that reveals Curie-Weiss like behavior
with an effective moment µeff = 4.2 µB/Mn, indicating the presence of large
local moments with spin between S = 3/2 (µeff = 3.87 µB/Mn) and S = 2
(µeff = 4.9 µB/Mn). This fit also revealed a large negative Weiss tempera-
ture of θW = 307 K that indicates the presence of strong antiferromagnetic
interactions between local magnetic moments.

We now present neutron diffraction measurements obtained at 6 K on a
powder sample of LaMnxSb2 that reveal the presence of long range antiferro-
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Figure 6.4: Measurements on single crystals of LaMnxSb2 (a) Electrical re-
sistivity as a function of temperature ρ(T) (b) Low temperature fit to Fermi-
liquid model (c) Specific heat as a function of temperature. Solid line is fit
to the Debye model plus low temperature electronic contribution. (inset 1)
closer look at the anomaly at 130 K (d) Electronic and phonon fit to the low
temperature specific heat. (e) Magnetic susceptibility as a function of tem-
perature (inset) magnetization as a function of field H (f) Inverse magnetic
susceptibility as a function of temperature with Curie-Weiss fit
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magnetic order below TN = 130 K (Figure 6.5). The inset of this figure is a
comparison of the 6 K and 300 K neutron diffraction patterns at low angles. It
is clear that at low temperature we have new peaks (marked with black dots)
that do not correspond to the nuclear structure at 300 K, as well as enhanced
intensity at select nuclear peaks. The intensity of these peaks decreases as the
angle increases, consistent with the magnetic form factor for Mn (see Figure
3.4). We therefore attribute these additional peaks to the formation of long
range magnetic order. We define a wavevector Q = â 2π

a
h + b̂ 2π

a
k + ĉ 2π

c
l.

The additional peaks, as well as the peaks that have enhanced intensity, may
be conveniently indexed in terms of the wavevector Q = (1 0 l

2
) where l is a

positive integer.

Figure 6.5: Neutron diffraction of powder of LaMnxSb2 (red dots) with refine-
ment as described in the text (black line). The inset compares the low angle
diffraction pattern at T = 6 K and T = 300 K. The black dots indicate peaks
that are wholly are partially due to the onset of long range antiferromagnetic
order.

We now analyze our T = 6 K neutron diffraction data using magnetic rep-
resentational theory to determine the magnetic structure and ordered magnetic
moment. Before one proceeds with representation analysis, it is necessary to
first find the “k-vector” k that determines how moments transform when trans-
lating between unit cells ψj = ψiexp(i k tij) where i,j are different unit cells,
and tij is a lattice vector. Within the FullProf suite [126] there is a ksearch
tool that allows the user to determine the k for the magnetic diffraction pat-
tern. The input for this search tool is the crystallographic space group as well
as the diffraction angles and intensities of the magnetic diffraction peaks. We
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find that no single commensurate k can account for the magnetic diffraction
pattern of LaMnxSb2. An incommensurate magnetic structure means that
at least one component of k is an irrational number. We find best agreement
when all three components of k are irrational. While magnetic structures with
incommensurate k-vectors are rather common and can indicate spin density
wave magnetism, for example in chromium metal or 1D organic salts [127], we
do not consider this possibility here due to the large local moments revealed
by the Curie-Weiss behavior in Figure 6.4.

As described earlier the observed magnetic diffraction peaks from our neu-
tron diffraction measurements of LaMnxSb2 may be indexed as (1 0 l

2
). From

a survey of the literature, we find that there are two common types of anti-
ferromagnetic order in manganese pnictide compounds that adopt the same
ZrCuSiAs structure as LaMnxSb2. Figure 6.6a presents a measured neutron
diffraction measurement of LaMnPO at different temperatures [43, 53]. In the
antiferromagnetically ordered state below 375 K, additional magnetic diffrac-
tion peaks appear that can be indexed as (1 0 L). The authors then determined
a k1 = (0 0 0) and the magnetic structure shown in Figure 6.6c that con-
sists of collinear antiferromagnetic planes stacked ferromagnetically. Figure
6.6b presents the results of a neutron diffraction measurement of BaMnAsF
in the antiferromagnetically ordered state [128]. Additional magnetic diffrac-
tion peaks are present that can be indexed as (1 0 2l+1

2
). The authors then

determined a k2 = (0 0 1/2) and the magnetic structure shown in Figure 6.6d
that consists of collinear antiferromagnetic planes stacked antiferromagneti-
cally. We realized that by considering two propagation vectors k1 and k2, we
could index the magnetic diffraction diffraction peaks observed in LaMnxSb2.
The same conclusion may be reached using the k-vector search tool in the
SARAh-Refine software [129, 130] that allows the user to search for multiple
propagation vectors.

The irreducible representations that leave the space group elements invari-
ant under k may be found using the Kovalev tables as tabulated in SARAh.
The basis vectors of the irreducible representations of the magnetic space
groups of P4/nmm with k1 = (0 0 0) and k2 = (0 0 1

2
) are the same and

are presented in Table 6.2. A detailed prescription of how an irreducible rep-
resentation is decomposed into basis vectors is provided in the help files of the
SARAh program. Using these two propagation vectors, there are now 16 pos-
sible combinations of irreducible representations. However, only four of these
combinations, (k1 → Γ6, k2 → Γ6) or (k1 → Γ6, k2 → Γ10) or (k1 → Γ10, k2

→ Γ6) or (k1 → Γ10, k2 → Γ10), produce the desired magnetic reflections at
(1 0 l

2
) and therefore we only consider these. Two of these combinations yield

ferrimagnetic solutions that we do not consider, because we have only one Mn
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Figure 6.6: (a,c) Neutron diffraction pattern and refined magnetic structure of
LaMnPO [43] (b,d) Neutron diffraction pattern and refined magnetic structure
of BaMnAsF [128]
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site symmetry. Thus all Mn ions have the same local environment and should
have the same valence and moment via Hund’s rules.

IR BV Atom BV components
m‖a m‖b m‖c im‖a im‖b im‖c

Γ3 ψ1 1 0 0 8 0 0 0
2 0 0 8 0 0 0

Γ6 ψ2 1 0 0 8 0 0 0
2 0 0 -8 0 0 0

Γ9 ψ3 1 4 0 0 0 0 0
2 4 0 0 0 0 0

ψ4 1 0 -4 0 0 0 0
2 0 -4 0 0 0 0

Γ10 ψ5 1 0 4 0 0 0 0
2 0 -4 0 0 0 0

ψ6 1 -4 0 0 0 0 0
2 4 0 0 0 0 0

Table 6.2: Basis vectors for the space group P 4/n m m:2 with k = (0, 0, 0)
or k = (0, 0, 0.5).The decomposition of the magnetic representation for the
Mn site (.75, .25, 0) is ΓMag = 0Γ1

1 + 0Γ1
2 + 1Γ1

3 + 0Γ1
4 + 0Γ1

5 + 1Γ1
6 + 0Γ1

7 +
0Γ1

8 + 1Γ2
9 + 1Γ2

10. The atoms of the nonprimitive basis are defined according
to 1: (.75, .25, 0), 2: (.25, .75, 0).

Only two possible solutions remain and we present the fits of these solu-
tions to our measured T = 6 K diffraction pattern in Figure 6.7. The (k1 →
Γ6, k2 → Γ10) is a better fit with (Rp, Rwp) = (0.0488, 0.0634) for the com-
bined magnetic and nuclear structure compared to (Rp, Rwp) = (0.054, 0.0721)
for (k1 → Γ10, k2 → Γ6). The resulting magnetic structure of LaMnxSb2 is
presented in Figure 6.8. The magnetic unit cell is doubled with respect to the
nuclear unit cell. The structure consists of collinear antiferromagnetic spins in
the ab plane with the moment direction canted 36o from the c-axis. This plane
is then repeated along the c-direction but with the moments pointing -36o from
the c-axis in the repeated unit. Due to powder averaging the orientation of
the moment in the ab plane may not be uniquely determined.

The overall picture that emerges from our experimental results presented
above is that LaMnxSb2 is a strongly correlated antiferromagnetic metal be-
low TN = 130 K. The presence of strong correlations inferred from a large
electronic contribution to the specific heat suggests that bands with substan-
tial Mn 3d character are present at the Fermi level. However, our neutron
diffraction measurements reveal a rather large ordered magnetic moment of 2.9
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Figure 6.7: Neutron diffraction pattern of LaMnxSb2 at T = 6 K with refined
magnetic model for the propagation vectors k1,2 and irreducible representation
Γ6,10 indicated.

Figure 6.8: Two different projections of the magnetic structure of LaMnxSb2

determined from irreducible representation analysis of neutron diffraction pat-
tern. The angle α between the c-axis and direction of magnetic moment is α
= 36o. The magnitude of the ordered magnetic moment is 2.9 µB/Mn.
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µB/Mn, albeit one that is substantially reduced from the 5 µB/Mn expected
from Hund’s rules. Taken together, these observations suggest the coexistence
of substantial localized Mn magnetic moments with itinerant bands of Mn
character.

We now turn to electronic structure calculations performed by Dr. Zhiping
Yin in the group of Prof. Kotliar to investigate further the electronic properties
of LaMnxSb2. Although these calculations are performed for stoichiometric
LaMnSb2, they appear to qualitatively capture the physics of LaMnxSb2, as
will now be discussed.

A DFT calculation of the electronic density of states of LaMnSb2 along
high symmetry directions in reciprocal space is presented in Figure 6.9a. It
is clear that there are bands crossing the Fermi level and LaMnSb2 is found
to be metallic. The orbitally resolved density of states for the same calcu-
lation is presented in Figure 6.9c. The bands crossing the Fermi level are
found to be predominantly associated with the t2g orbitals (dxy (green) dxz,yz
(brown/red)), as would be expected for tetrahedrally co-ordinated Mn ions.
While DFT correctly predicts metallic behavior in LaMnxSb2, we emphasize
that the experimental observation of strong correlations in this compound sug-
gests that DFT may not be an appropriate method to describe material, as
has been shown in structurally similar Mn pnictide compounds [23, 25]. Thus,
we now present DFT+DMFT which can more accurately capture the physics
of strongly correlated electron systems.

Figure 6.9b presents a DFT+DMFT calculation of the electronic density
of states of LaMnSb2 along high symmetry directions including a Hubbard U =
8 eV and Hund’s JH = 0.9 eV, the same values used for isostructural LaMnPO
and BaMn2As2 [23, 25]. Unlike LaMnSb2, those two compounds are insulating.
The band structure of LaMnSb2 has clearly been severely modified compared to
the DFT calculation, which does not properly account for electronic correlation
effects. Figure 6.9d presents the orbitally resolved density of states for the same
calculation shown in Figure 6.9b. Of particular note, the dxy band, which DFT
predicted crosses the Fermi level, is now completely gapped out. This gapping
out of the dxy band is likely a direct consequence of the strong Hund’s coupling
that tunes the correlations in different orbitals [9, 11]. The contribution of the
different Mn 3d bands is presented more clearly in Figure 6.9e, that presents
the k-space integrated partial density of states for the same calculation. It is
clear that the dxz,yz electrons dominate at the Fermi level.

Figure 6.9f presents the partial density of states for different atoms ob-
tained from the same calculation as Figure 6.9b. While the Mn 3d ions dom-
inate, there is a significant contribution from electrons originating from Sb
and La atoms. As would be expected, there is considerable hybridization be-
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Figure 6.9: (a) DFT calculation of LaMnSb2. (b) DFT+DMFT calculation of
LaMnSb2. (c) DFT calculation of LaMnSb2 with different colors for different
bands dxy (green) dxz,yz (brown/red) and dz2,x2−y2 (blue). (d) DFT+DMFT
calculation of LaMnSb2 with different colors for different bands dxy (green)
dxz,yz (brown/red) and dz2,x2−y2 (blue). (e,f) Partial density of states for the
calculation presented in (b,d) calculated using the muffin-tin approximation.
Figures courtesy of Z.P. Yin (unpublished)
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tween Mn and the Sb that tetrahedrally co-ordinates it. Moreover we have a
contribution from the La-Sb layer. This is in contrast to pressurized metal-
lic LaMnPO, where there is no contribution to the density of states at the
Fermi level from the LaO layer [131]. This observation may be rationalized by
considering our earlier comparison of the La position in the crystal structures
of LaMnPO and LaMnxSb2, as presented in Figure 6.2. The larger size and
lower electronegativity of Sb shifts the La in LaMnxSb2 to be equidistant from
both Sb sites, unlike in LaMnPO where the LaO layer may be considered as
a charge reservoir for the MnP layer.

6.4 Discussion

The experimental and theoretical results on LaMnxSb2 presented here suggest
orbital selectivity due to a strong Hund’s coupling is responsible for promot-
ing a correlated metallic state. Previous studies of manganese pnictides have
revealed mostly insulating behavior at ambient pressure as shown in Chap-
ters 3, 4. However, it has been shown experimentally that LaMnPO becomes
metallic by 16 GPa, with calculations suggesting an ordered moment of ≈ 1.5
µB at this pressure (see Figure 6.1). This much smaller ordered moment indi-
cates the metallic phase in LaMnPO is less correlated than ambient pressure
LaMnxSb2 that has ordered moment 2.9 µB/Mn. Indeed we have shown here
that there is significant contribution to the Fermi surface from the La-Sb layer
in LaMnxSb2, while no such bands due to the LaO layer are present at the
Fermi surface in pressurized LaMnPO [131].

These results also draw immediate comparison to the iron chalcogenide
superconductors, whose parent compounds are the most correlated of iron-
based materials. In these compounds a high temperature orbitally selective
Mott phase is reported to give way to a superconducting phase at low tempera-
ture [123, 132]. Our identification of LaMnxSb2 as an ambient pressure metallic
manganese pnictide should allow for angle resolved photoemission measure-
ments on LaMnxSb2 to determine whether the dxy orbital is fully gapped and
the degree of band renormalization. Our DMFT calculations above predict a
dyz band renormalization of 33 in LaMnxSb2, far larger than the band renor-
malizations between 4 and 5 reported in the iron chalcogenides [132]. This
suggests LaMnxSb2, even though metallic, may still be overly correlated com-
pared to its superconducting isostructural iron counterparts.

We have reported transport, specific heat and neutron diffraction measure-
ments that reveal a correlated antiferromagnetic metallic state below TN = 130
K. The metallic nature of this compound sets it apart from most square-net
manganese pnictide compounds that are correlated insulators. DFT+DMFT
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calculations of the electronic density of states, including a strong Hubbard U
and Hund’s JH , find that LaMnxSb2 may be an orbitally selective Mott phase.
We believe a closer examination of the electronic density of states near the
Fermi level is warranted; for instance, by using angle-resolved photoemission
spectroscopy.
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Chapter 7

Concluding Remarks

An understanding of the key ingredients necessary for high temperature super-
conductivity (HTSC) and the discovery of a room temperature superconductor
have been two big open questions in science since the serendipitous discovery
of HTSC in copper-based materials in 1986. This field was re-invigorated in
2008 with the, also serendipitous, discovery of HTSC in a new class of iron-
based materials. Intensive experimental investigation of these two classes of
materials have revealed somewhat similar phase diagrams (see Figure 1.2).
One topic of much current debate is the importance of electron correlations in
the metallic parent compounds of the iron-based HTSC and their proximity to
Mott insulating phase [8]. In contrast, strong correlations are widely accepted
as crucial to understand HTSC in copper-based materials [1].

In this work, we have presented results on three different manganese-based
compounds, LaMnPO, BaMn2As2 and LaMnxSb2, that are isostructural with
the parent compounds of the iron-based HTSC. No one technique can possibly
characterize the complex interplay between spin, charge, lattice and orbital
degrees of freedom (DOF) in strongly correlated materials. We have there-
fore combined the resources in our lab with those of national user facilities
and our experimental and theoretical collaborators to understand the inter-
play between these DOF in manganese pnictide compounds. As outlined in
detail in Chapters 3, 4, 6 we find that strong electronic correlations asso-
ciated with intra-atomic Hund’s coupling must be considered to understand
the electronic and magnetic ground states of these nominally half-filled (d5)
manganese pnictide compounds.

Figure 7.1 provides a summary of the degree of correlation in these man-
ganese pnictide systems and compares them to known iron pnictide and chalco-
genide superconductors. The top panel of Figure 7.1 presents the renormal-
ization of the dyz band as a function of the filling of the 3d orbitals. For
the manganese pnictide compounds the band renormalization and filling have
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been calculated in the paramagnetic state using DFT+DMFT [133], while
band renormalization for iron pnictide and chalcogenides have been reported
from ARPES measurements [123, 132]. The parent compounds LaMnPO and
BaMn2As2 are both found to be very strongly correlated with the lower bounds
of the band renormalization between 35-50 and filling of the d-electron shell
between 5.05-5.1. These large renormalization factors are consistent with our
findings that these compounds are correlated Hund’s insulators. In contrast
the known iron-based superconductors are more moderately correlated with
band renormalizations between 2.5-8. In addition superconductivity occurs
between fillings of ≈5.5 (KFe2As2) and ≈ 6.15 (BaFe1.7Co0.3As2), that is by
electron or hole doping the antiferromagnetic metal BaFe2As2 to suppress the
antiferromagnetism and induce superconductivity.

Measurements of the properties of LaMnPO under pressure have been
reported in an attempt to drive it toward this region of superconductivity [54].
While these measurements showed promise in inducing an antiferromagnetic
metallic and eventually paramagnetic metallic phase, no superconductivity
was observed. DFT+DMFT calculations presented in figure 7.1 show that the
band renormalization of ≈ 2.4 for this paramagnetic metallic phase that has
filling of ≈ 5.4 is too small to allow for the same type of superconductivity
that occurs in the iron compounds. This may be understood by considering
the bottom panel of Figure 7.1 that presents the band renormalization as a
function of transition metal-anion distance. The effect of 30 GPa on LaMnPO
is to induce a structural transition from tetragonal to collapsed orthorhombic
phase with drastic reduction in this distance [43]. Consequently the Mn-P
hybridization becomes very strong and hence 30 GPa LaMnPO is rather weakly
correlated and paramagnetic like non-superconducting LaFePO.

Our group has also tried extensively to chemically dope LaMnPO toward
a metallic and perhaps superconducting state. No suitable dopant was identi-
fied, and LaMnPO was still antiferromagnetic and insulating after the intro-
duction of ≈ 30 % fluorine [52]. Johnston et al. have also tried extensively
to dope BaMn2As2, initially with limited success [135]. Eventually, potassium
was identified as an appropriate dopant to metallize BaMn2As2 but with no
effect on the local moment antiferromagnetism [46, 85], with ARPES measure-
ments showing that K states are present at the Fermi level and dominate the
transport. We would therefore expect the band renormalization and filling in
metallized BaMn2As2 to be similar to that in the undoped compound. A simi-
lar metallic state is present in LaMnxSb2 that is a strongly correlated metal as
indicated in Figure 7.1 with antimony states likely dominating the transport
properties.

The above results suggest that, so far, manganese compounds cannot be
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Figure 7.1: Band renormalization as a function of filling (top) and transi-
tion metal-anion distance (bottom). The highlighted region indicates where
superconductivity is found. AF-M is antiferromagnetic metal, PM-M is para-
magnetic metal, SC is superconductor, AF-I is antiferromagnetic insulator.
LMPO is LaMnPO, BMS is BaMn2As2, LMS is LaMnxSb2. Data points taken
from [50, 134]
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driven into the moderately correlated region where superconductivity would
be expected. However, there has been a recent report that the superconductor
NaFeAs may be driven toward an insulating state by doping copper ions on iron
sites [136]. This supports the idea that superconductivity in the iron pnictide
compounds appears near a correlated insulating state and that manganese
pnictide compounds could still be a source of new superconductors, if a suitable
chemical dopant can be identified.

So far, the discovery of new superconducting materials has been over-
whelmingly by chance. This is largely because we have not had the tools
necessary to properly account for and predict materials properties, especially
when strong correlations are present. In this work, we performed experi-
ments that allowed us to guide our theoretical colleagues who used advanced
electronic structure methods (DFT+DMFT), that include electron correla-
tions, to properly account for the correlated insulating state in LaMnPO and
BaMn2As2, i.e. they calculated the electronic density of states as would be
measured by angle-resolved photoemission (ARPES). In addition, we find that
DFT+DMFT can account for the correlated metallic state of LaMnxSb2 as
shown in Chapter 6. Furthermore, in recent years these computational meth-
ods have also correctly predicted inelastic neutron scattering spectra [137]
and optical conductivity data [67], as well as the stability of different struc-
tures [138]. The next step is then to identify common structures and spectral
features in the afore-mentioned scattering methods, as well as rapidly devel-
oping techniques such as resonant inelastic x-ray scattering (RIXS) [139], that
correlate with useful material properties such as superconductivity. With more
advanced computational tools being made available to a wider user base, we
may then rapidly identify candidate materials that host the desired structures
and excitations, thereby overcoming serendipity in finding new useful materi-
als.

It is then clear that the work in Chapters 3, 4, 6 quite generally con-
tributes to our understanding of the conditions under which superconductivity
may occur, as well as the goal of theory-assisted design of new high temper-
ature superconductors. A common framework based on orbital filling and
orbital selectivity due to Hund’s coupling may be employed to understand the
correlations in the manganese pnictide systems studied here, as well as in the
iron pnictide and chalcogenide superconductors. Future superconductor ma-
terials design approaches should employ a wide array of scattering techniques
in concert with computational methods that can account for strong electronic
correlations, as these are common to all known types of HTSC.

Finally, in the course of our investigations we also identified large single
crystals of CaMn2Sb2. This compound does not adopt a structure that hosts
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the square nets of 3d transition metals common to all HTSC. Rather, the Mn
ions form on a corrugated honeycomb lattice. There is significant interest cur-
rently in honeycomb lattice materials in the context of spin liquids and Kitaev
physics. We noted there are very few honeycomb lattice compounds for which
individual exchange interactions had been determined due to several factors
such as a lack of large single crystals. We therefore undertook inelastic neutron
scattering measurements of CaMn2Sb2 and analyzed these data to determine
exchange interactions. Interestingly we found that, while CaMn2Sb2 orders
antiferromagnetically at 85 K, our determination of the exchange interactions
situates it very near to a tricritical point where three different types of long
range magnetic order co-exist. This proximity frustrates the formation of long
range magnetic order from its mean field value. The identification of a com-
pound with similar structure type but with smaller magnetic moments may
lead to the identification of a spin liquid phase on this lattice.
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Appendix A

High Temperature Inelastic
Neutron Scattering
Measurements of CaMn2Sb2
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We present here the high temperature inelastic neutron scattering of
CaMn2Sb2 measured under the same conditions as those described in Chapter
4. Combined with other experimental or theoretical insight, these data may be
able to shed some light on the origin of the weak ferromagnetic phase observed
in AC magnetic susceptibility measurements of CaMn2Sb2 [31].
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Figure A.1: Contour plots of inelastic neutron scattering S(Q,L) for tempera-
tures indicated

121



Figure A.2: Contour plots of inelastic neutron scattering S(Q,H) for temper-
atures indicated
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Figure A.3: Contour plots with reduced scale of inelastic neutron scattering
S(Q, H) and S(Q,L) for temperatures indicated
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