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Abstract of the Dissertation

New designs and characterization techniques for thin-film solar cells

by

Yutong Pang

Doctor of Philosophy

in

Physics

Stony Brook University

2016

This thesis presents a fundamentally new thin-film photovoltaic design

and develops several novel characterization techniques that improve the

accuracy of thin-film solar cell computational models by improving the

accuracy of the input data.

We first demonstrate a novel organic photovoltaic (OPV) design,

termed a “Slot OPV”, in which the active layer is less than 50 nm; We apply

the principles of slot waveguides to confine light within the active layer.

According to our calculation, the guided-mode absorption for a 10nm thick

active layer equal to the absorption of normal incidence on an OPV with a

100nm thick active layer. These results, together with the expected
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improvement in charge extraction for ultrathin layers, suggest that slot OPVs

can be designed with greater power conversion efficiency than today’s

state-of-art OPV architectures if practical challenges, such as the efficient

coupling of light into these modes, can be overcome.

The charge collection probability, i.e. the probability that charges

generated by absorption of a photon are successfully collected as current, is a

critical feature for all kinds of solar cells [13, 28, 35]. While the

electron-beam-induced current (EBIC) method has been used in the past to

successfully reconstruct the charge collection probability [17, 37, 43, 61], this

approach is destructive and requires time-consuming sample preparation. We

demonstrate a new nondestructive optoelectronic method to reconstruct the

charge collection probability by analyzing the internal quantum efficiency

(IQE) data that are measured on copper indium gallium diselenide (CIGS)

thin-film solar cells. We further improve the method with a

parameter-independent regularization approach. Then we introduce the

Self-Constrained Ill-Posed Inverse Problem (SCIIP) method, which improves

the signal-to-noise of the solution by using the regularization method with

system constraints and optimization via an evolutionary algorithm.

For a thin-film solar cell optical model to be an accurate representation

of reality, the measured refractive index profile of the solar cell used as input
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to the model must also be accurate. We describe a new method for

reconstructing the depth-dependent refractive-index profile with high spatial

resolution in thin photoactive layers. This novel technique applies to any

thin film, including the photoactive layers of a broad range of thin-film

photovoltaics.

Together, these methods help us improve the measurement accuracy of

the depth profile within thin-film photovoltaics for optical and electronic

properties such as refractive index and charge collection probability, which is

critical to the understanding, modeling, and optimization of these devices.
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Chapter 1

Introduction

Transferring energy directly from the sunlight into electricity using

photovoltaic (PV) technology is being widely recognized as a critical

component of future global energy production [5]. Since the first inorganic

crystalline silicon solar cell which had an efficiency about 6% , was developed

at Bell Laboratories[10], there have been substantial improvements in silicon

cell performance, culminating in the 25% value [23], which is already close to

the theoretical predicted upper limit of 30% [22, 65]. For all conventional

inorganic solar cell, there is a p-n junction. The p side is doped with a

material (typically boron) that accepts electrons from the silicon, while the n

side is doped with a material (typically phosphorous) that donates electrons

to the silicon. Upon connecting the p and n-type materials, electrons flow

from the n-type to p-type region (and holes from the p to n type region),

leaving behind positively charged ions on the n-side near the junction and

negatively charged ions on the p-side. This depletion of charges from the

junction continues until the diffusion of charges due to their concentration
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gradient is balanced by the electric field established in the so-called depletion

region. Every carrier formed within the depletion region or that diffuses to

the depletion region will be directed by the electric field to the proper

electrode.

In addition to inorganic solar cells whose operation we have described

above, so-called organic solar cells that employ organic semiconductors as the

absorbing layer have the potential to be a less expensive alternative.

Although organic-based photovoltaics hold promise as a low-cost, highly

scalable and flexible technology, the conversion efficiency of the organic

polymer and small molecule based photovoltaics (OPVs) has been limited

due to the combined challenges of extremely short (∼10 nm) exciton diffusion

length, bimolecular recombination, and low free-carrier mobility [36];

Significant increases at least 1.5 times in device performance are needed for

economic viability [45, 49]. While an ultrathin (< 50 nm) active layer (the

layer in which absorption of photons leads to photogenerated charge carriers

that are extracted from the photovoltaic (PV) cell for power generation) is

desirable to overcome the above challenges, the optical absorption decreases

significantly for active layer thicknesses on the order of the exciton diffusion

length (∼10nm)[84]. Complete light absorption in OPV cells typically

requires active layer thicknesses of at least 150 nm, a length scale one order

of magnitude larger than the exciton diffusion length. To solve this problem,

we introduced the ultrathin slot organic photovoltaics structure.
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1.1 Ultrathin Slot Organic Photovoltaics design

Research over the past ten years has shown the potential for metallic

nanostructures to improve light absorption and thereby the efficiency of thin

film photovoltaics by using the plasmon resonance of the nanostructure to

effectively trap incoming light within the active layer of the cell [4, 9, 20].

These approaches typically have nanostructures somewhere throughout the

cell to efficiently couple incident sunlight into these guided modes. A typical

OPV architecture for this case is shown in Fig. 1.1.1 (a).These approaches

do not allow sufficiently light confinement of the electromagnetic field in

ultrathin active layers, which themselves are necessary to gain increased IQE.

In other words, as the active layer thickness is decreased to improve the IQE,

the absorption of guided modes becomes poor (no better than absorption of

normal incidence light for similarly thin active layers). Therefore with such

an approach, it is not possible to improve the overall cell performance by

decreasing the active layer thickness to improve IQE, while keeping

absorption as strong as for a thick active layer by scattering incident light

into tightly confined waveguide modes of the active layer. Further to this

fundamental drawback, work done on field enhancement using metal

nanoparticles within the active layer[38, 50], has other significant challenges

such as charge trapping, shunting, and increase in the overall cost.

In Chapter 1, we demonstrate a novel organic photovoltaic (OPV)

design, termed a “slot OPV”, that applies the principles of slot waveguides to

confine light within the ultrathin (< 50nm) active layer of an OPV. We have

3



(a) Typical OPV architecture (b) Ultrathin Slot OPV design

Figure 1.1.1: (a). Typical OPV architecture for the prior art: Glass / Transparent
Electrode(140nm) / Hole Transport Layer (50nm) with refractive index n = 1.8 /
Active Layer(100nm) / Nanostructured Layer / Metal electrode (110nm) (b). Ultra-
thin Slot OPV design: Glass / Transparent Electrode(140nm) / Hole Transport Layer
(40nm) with high refractive index n = 3.5 / Active Layer(100nm) / Electron Trans-
port Layer (40nm) with high refractive index n = 3.5 / Metal electrode (110nm)
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used the Transfer Matrix Method (TMM) [12, 80] to solve for the guided

modes and calculate the electromagnetic field (E-field) distribution of these

modes in various OPV waveguide structures, including archetype OPV

structures (glass/ITO/PEDOT: PSS/P3HT: PCBM/Al), and novel

structures whose layers have unique combinations of optical and electrical

properties. Our calculations demonstrate that a slot OPV can be designed

with guided-mode absorption for a 10nm thick active layer equal to the

absorption of normal incidence on an OPV with a 100nm thick active layer.

These results, together with the expected improvement in charge extraction

for ultrathin layers, suggest that slot OPVs can be designed with greater

power conversion efficiency than today’s state-of-art OPV architectures if

practical challenges, such as the efficient coupling of light into these modes,

can be overcome. For instance, the absorption fraction for TE0 guided mode

within a 10nm active layer is around four times better in our slot OPV

design than the typical OPV architecture.

1.2 Charge Collection Probability Reconstruction

In the previous section, we already discussed that a ultrathin active

layer could improve the charge collection probability. The charge collection

probability ϕ(z) which defined as the probability that a carrier generated by

light absorption at position z of the device will be collected and therefore

contribute to the light-generated current is a critical feature for all kinds of

solar cells. It mainly depends on the distance that a light-generated carrier
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Figure 1.1.2: Comparison of absorption and charge collection for the typical OPV
architecture (blue) and the ultrathin slot OPV design (gray). For typical OPV archi-
tecture, the thick active layer can achieve high absorption, but low charge extraction
efficiency. On the other hand, the thin active layer can achieve high charge extraction
efficiency, but low absorption. For ultrathin slot OPV design, we can achieve both
high absorption and high charge extraction efficiency if we can solve practical chal-
lenges such as efficiently coupling light into these modes.
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must travel compared to the diffusion length, but also dependent on the

surface properties of the devices [28]. Knowing the charge collection

probability will also give us some information about the surface and junction

properties of the device and show us how to optimize the device. In this

section, we will discuss how to measure the charge collection probability

using a non-destructive optoelectronic method.

While the electron-beam-induced current (EBIC) method has been

used in the past to successfully reconstruct the charge collection probability

[17, 37, 43, 61], this approach is destructive and requires time-consuming

sample preparation, it also changes the charges state of defects within CIGS

absorber layer, resulting in a change of ϕ(z) with electron energy [37], in

violation of the assumption of the ϕ(z) is the same for all measurements.

In Chapter 3, we described a novel optical and non-destructive method

for the direct reconstruction of the charge collection probability ϕ(z) from

the measurement of internal quantum efficiency (IQE) as a function of

wavelength (η(λ)).We also used this method to reconstruct the charge

collection probability for a standard CIGS solar cell as shown in Fig. 3.2.1.

Letting G(z, λ) be the normalized probability distribution per unit length of

creating an electron-hole pair at depth z within the active layer for the laser

wavelength λ, the basic relation between the depth-dependent

charge-collection probability ϕ(z) within the device and the externally
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measured IQE (η(λ)) is

η(λ) =

tCIGS∫
0

G(z, λ)ϕ(z)dz (1.1)

Where tCIGS is the thickness of CIGS active layer.

After, we measured η(λ) for different wavelengths, ϕ(z) is obtained by

using Eq.1.1 above to find the best fit in the following parametrized

functional forms [37] using least-squares fit with gradient decent:

when 0 ≤ z < zSCR

φ(z) = 1 (1.2)

when zSCR ≤ z ≤ zMo

φ(z) =

(
1

Leff
cosh[ z−zMo

Leff
]− SMo

D
sinh[ z−zMo

Leff
]
)

1
Leff

cosh[ zMo−zSCR

Leff
] + SMo

D
sinh[ zMo−zSCR

Leff
]

(1.3)

Where zMo represents the Position of CIGS/Mo interface, zSCR

represents the depth of space-charge region, Leff represents minority carrier

diffusion length, SMo represents the recombination velocity at CIGS/Mo and

D represents diffusion constant.

Our nondestructive optoelectronic method avoids the drawbacks from

EBIC method, allows the bias voltage, bias light, and temperature to be

easily varied, and also allows ϕ(z) to be reconstructed for a wider range of

material, including those which would be damaged by EBIC. However, this

method is a model and parameter dependent method, which means we need

to know the true form of the charge collection probability model beforehand.
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Any deviation from the model will lead to error in the reconstruction.

In Chapter 4, we further improve the method with a

parameter-independent approach for the direct reconstruction of the charge

collection probability ϕ(z) from the measurement of IQE as a function of

wavelength (η(λ)). This inversion process is an ill-posed problem, but a

stable solution can be found by applying the regularization method.

The linear problem is well-posed if it satisfies the following three

requirements [27]:

• The problem must have a solution.

• There must be only one solution to the problem.

• The solution must depend continuously on the data.

If the inverse problem violates one or more of these requirements, it is said to

be ill-posed or ill-conditioned [51].

Application of the regularization technique to an ill-posed inverse

problem is only possible if the data noise is within a specified range; the

noise can both come from measurement and model. To solve an ill-posed

inverse problem to which regularization cannot be applied due to noise, in

Chapter 5 we introduce the Self-Constrained Ill-Posed Inverse Problem

(SCIIP) method, which improves the signal-to-noise of the solution by using

the regularization method with system constraints and optimization via an

evolutionary algorithm. The source code for the SCIIP method can be found

on Github: https://github.com/wstcpyt/InverseProblemPackage [53].

Imagine that we have performed measurements, the results of which are
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denoted b, but we know that these measurements are composed of the actual

quantity of interest plus noise. Our method relies on the fact that the actual

quantity of interest without noise (denoted bnoiseless) must exist in the

parameter space neighborhood of the measured result bmeas, and that

bnoiseless will give a better reconstruction (the smaller residual, the better)

than bmeas. Our method searches the space b± η (where η defines the search

space, and should be on the order of the standard deviation of the noise to

successfully find bnoiseless) using a Cellular Evolutionary Algorithm (CEA) to

find the b that minimizes the residual. We then feed this new b into the

regularization process, which yields a result x that is closer to the true x

than would be obtained by just feeding bmeas directly into the regularization

method. This work has the potential to improve the accuracy of inverse

problem reconstruction solutions in a wide range of fields.

The self-constrained ill-posed inverse problem (SCIIP) method has the

potential to improve the accuracy of inverse problem reconstruction solution

in a wide range of fields, including subsurface mapping in geology [69], image

reconstruction in astronomy or medicine [2, 14], and depth profiling of solar

cells and other thin-film stacks [15, 55, 75]. In future work, a more efficient

optimization method other than Cellular Evolutionary Algorithm should also

be developed to apply this work to 2D case.
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1.3 High resolution depth-dependent refractive in-

dex profile reconstruction

For a thin-film solar cell optical model to be an accurate representation

of reality, the measured refractive index profile of the solar cell used as input

to the model must also be accurate. For the optical modeling in previous

sections, we are assuming that the refractive index are constant values within

the active layer. However, in real practice, the refractive index usually

depends on the depth of the active layer.

In Chapters 6 and 7 we describe a new method for reconstructing the

depth-dependent refractive-index profile with high spatial resolution in thin

photoactive layers which we refer to as index-matched IWKB (IM-IWKB),

While the Inverse Wentzel-Kramers-Brillouin (IWKB) method has been used

in the past to successfully reconstruct RIPs of various films [8, 11, 64, 85],

this approach is only valid for relatively thick (larger than 2 µm) films for

visible wavelengths, since the number of points in the reconstructed RIP is

equal to the number of modes supported by the film at that wavelength. For

the ultra-thin layers relevant to many thin-film photovoltaics (typically 100

nm – 200 nm for OPVs, for example), it is either impossible to reconstruct

the profile at all, or the result of the reconstruction has poor spatial

resolution due to the low number of guided modes. In contrast, my new

IM-IWKB technique applies to any thin film, including the photoactive

layers of a broad range of thin-film photovoltaics.

The IM-IWKB method described in this thesis deposits a relatively
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thick (1-10 µm) index-matched, non-absorbing layer below the thin

photoactive layer of interest, and then applies the IWKB method to this

system, resulting in a spatial resolution for the reconstruction of the RIP

that is improved by more than a factor of ten compared to the traditional

IWKB without the use of an index-matched layer. While RIPs for such thin

layers can be obtained using spectroscopic ellipsometry with multiple-layer

models [3, 21], our approach requires no free parameters, which is a

significant advantage compared to the parameterized, model-based technique

used in ellipsometry. This allows much higher spatial resolution using our

approach compared to ellipsometry, where the number of free parameters

necessarily increases with the desired spatial resolution.
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Part I

Optical Modeling of

Photovoltaics for improved solar

cell devices
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Chapter 2

Guided Mode Absorption in Ultrathin

Organic Photovoltaics

2.1 Introduction

In this chapter, we describe a novel organic photovoltaic (OPV) design,

termed a “slot OPV”, that applies the principles of slot waveguides to confine

light within the ultrathin (<50nm) active layer of an OPV. Our calculations

demonstrate that a ”slot OPV” can be designed with guided-mode

absorption for a 10 nm thick active layer equal to the absorption of normal

incidence on an OPV with a 100nm thick active layer. These results,

together with the expected improvement in charge extraction for ultrathin

layers, suggest that slot OPVs can be designed with greater power conversion

efficiency than today’s state-of-art OPV architectures if practical challenges,

such as the efficient coupling of light into these modes, can be overcome.
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2.2 Ultrathin Organic Photovoltaics

Organic Photovoltaics (OPVs) hold promise as a low cost, highly

scalable and sustainable photovoltaic technology, but significant increases in

device performance are needed for economic viability [45, 49]. The conversion

efficiency of OPVs has been limited due to the combined charge-extraction

challenges of short exciton diffusion length ( 10nm in organic polymers),

bimolecular recombination and disorder-induced low free carrier

mobility[30, 36, 41, 44, 45].

While an ultrathin (< 50 nm) active layer is desirable to overcome the

above challenges, the optical absorption for normal incidence decreases

significantly for active layer thicknesses on the order of the exciton diffusion

length [84]. For a traditional OPVs design, complete light absorption

typically requires active layer thickness of at least 150nm, a length scale one

order of magnitude larger than the exciton diffusion length. Research over

the past ten years has shown the potential for metallic nanostructures to

improve light absorption and thereby the efficiency of thin film photovoltaics

by using the plasmon resonance of the nanostructure to effectively trap

incoming light within the active layer of the cell [4, 9, 20]. These approaches

typically have nanostructures somewhere throughout the cell to efficiently

couple incident sunlight into these guided modes. A typical OPV

architecture for this case is shown in Fig. 1.1.1. These approaches do not

provide sufficient light confinement of the electromagnetic field in ultrathin

active layers, which themselves are necessary to gain increased IQE. In other
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words, as the active layer thickness is decreased to improve the IQE, the

absorption of guided modes becomes poor (no better than absorption of

normal incidence light for similarly thin active layers). Therefore with such

an approach, it is not possible to improve the overall cell performance by

decreasing the active layer thickness to improve IQE, while keeping

absorption as strong as for a thick active layer by scattering incident light

into tightly confined waveguide modes of the active layer. Further to this

fundamental drawback, work done on field enhancement using metal

nanoparticles within the active layer[38, 50], has other significant challenges

such as charge trapping, shunting, and increase in the overall cost.

Recent work suggests the possibility of achieving strong absorption in

ultrathin active layers by efficiently scattering the incident light into guided

optical modes [7, 20, 24, 59, 82]. In this chapter, we will apply this concept

to develop a novel organic photovoltaic design.

2.3 Guided Modes in Ultrathin Organic Photovoltaics

An important question to ask is whether light trapping in guided modes

can enable significant optical absorption for ultrathin OPVs. Guided mode

are defined such that their electromagnetic fields in the top layer (cover) and

the bottom layer (substrate) of the waveguide decay exponentially with

distance, thereby confining the energy in the waveguide structure [12, 78]. To

this end, in this chapter, we calculate the fraction of the incident power that

can be absorbed by the active layer for each guided mode and normally

incident light in several OPV architectures. The primary purpose of this
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analysis is to determine the maximum possible absorption for each guided

mode, and thereby determine whether light trapping via guided modes is a

potentially promising approach for enabling ultrathin active-layer OPVs.

2.4 Transfer Matrix Method

To compare guided-mode and normal-incidence absorption for various

OPV structures, we need to calculate the electromagnetic field propagation

within a multilayer structure like that shown in Fig. 2.4.1, both for the case

of normally-incident light and for the case of guided modes.

We use the Transfer Matrix Method (TMM) [12, 78] to calculate the

electromagnetic field distribution within the OPV structure for a given field

incident upon the cell.

TMM is a very useful method for determining the steady-state solution

to Maxwell’s equations in the thin film multilayer structure, and it is

addressed extensively in the literature[6, 12, 31, 32, 70].

Here we consider the stack of J films illustrated in Fig. 2.4.2. The

interface of the films is labeled from 1 to J − 1, the cover and substrate

interface is labeled as c and s. There is material variation in only x direction;

we only need to solve the Maxwell’s equations for transverse-electric (TE)

and transverse-magnetic (TM) polarization.

The Transfer Matrix relates the field amplitudes Uj and Vj at xj to the

17



Figure 2.4.1: Generic Schematic of an OPV. Each layer has a thickness t, and a
complex refractive index ñ = n + ik. TCO=Transparent Conductive Oxide and “Ac-
tive” denotes the active layer intended for photon absorption. Top layer is the hole
transport layer and bottom layer is electron transport layer.
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Figure 2.4.2: Generic Schematic of the multilayer film structure; it consists of J lay-
ers of films lying between the semi-infinite cover and substrate media.

corresponding amplitudes at a a second point xj−1 can be expressed as[12]:

 Uj−1

Vj−1

 = Mj

 Uj

Vj

 (2.1)

Transfer matrix Mj takes the form:

Mj =

 cosΦj
−i
γj

sinΦj

−iγj sinΦj cosΦj

 (2.2)

where
Φj = kαj(xj − xj−1)

α = n cos θ = (n2 − β2)1/2

β = n sin θ.

(2.3)
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Polarization γ U V W Other Field Com-
ponents

TE α/z0 Ez −Hy Hx Hz = Ey = Ex = 0
TM αz0/n

2 Hz Ey −Ex Ez = Hy = Hx = 0

Table 2.4.1: Polarization parameters for TE and TM mode

γ, U, V,W have different meanings for the two polarizations - the details are

shown in the table. 2.4.1. For the TE polarization, there is no electric field in

the direction of propagation. For the TM polarization, there is no magnetic

field in the direction of propagation The transfer matrix for a stack

consisting of J films is given by the product of the respective transfer

matrices for each individual layers:

M =
J∏

j=1

Mj =

 m11 m12

m21 m22

 (2.4)

2.4.1 Guided Mode

Guided modes occur when the fields in the cover and substrate decay

exponentially. We use TMM to solve for the guided modes of the OPV

structure by obtaining the transfer equations, and solving these transfer

equations to obtain the model dispersion function:

χM(β) = γcm11 + γcγsm12 +m21 + γsm22 = 0 (2.5)
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where β is the effective index of refraction, with zeros of this equation

corresponding to guided modes[12]. We can solve this equation using

Newton’s method [42]. Once the effective index is known, this can be

substituted back into our expression for the electric field using TMM to

calculate the electric field at any point in the structure for a given guided

mode [57]. Once the electric field of each guided mode is known, we calculate

the relative energy absorbed by each layer in the OPV structure. This allows

us to calculate the fraction of light in a given guided mode that is absorbed

by the active layer.

2.5 Results and Discussion

2.5.1 Standard OPV Structure

First, we determine the baseline optical absorption by calculating the

absorption fraction for guided modes and normally incident light in the OPV

structure shown in Fig. 2.4.1 with materials and thicknesses given by:

glass/TCO (140 nm) / Top (40 nm) / Active (5 - 150 nm) / Metal (200 nm),

where the TCO is indium tin oxide (ITO), the “Top” layer is poly(3

,4-ethylenedioxythiophene ):poly( styrenesulfonate) (PEDOT:PSS), the

“Active” layer is poly(3- hexylthiophene):[6,6]-phenyl Cwbutyric acid methyl

ester (P3HT : PCBM), the “Bottom” layer is absent, and the “Metal” layer

is Al. The glass cover is treated as semi-infinite in our calculations. We shall

refer to this structure as a “standard OPV” throughout this section.

Fig. 2.5.2 (a)-(c) show the fraction of light absorbed (at wavelengths
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λ=400 nm, 600 nm, and 800 nm, respectively) in the active layer of this

standard OPV architecture for P3HT : PCBM active-layer thicknesses

ranging from 5 nm - 150 nm. This calculation is performed for all guided

modes that exist at a given thickness/wavelength combination, and also for

normally incident light. At each active-layer thickness, the results shown in

Fig. 2.5.2(a)-(c) are discretely integrated, from 300 nm to 800 nm with 50

nm wide bins, over the AM1.5G [52] solar spectrum to obtain the total

absorption for each mode at a given active-layer thickness - this result is

shown in Fig. 2.5.2(d). The solar spectrum depends on the day and the

location, AM1.5 solar spectrum are introduced to allow the performance

comparison of photovoltaic devices from different manufacturers and research

laboratories. The standard solar spectral is shown in Fig. 2.5.1 [18]. We

limit the upper wavelength of the integration to 800 nm because the

absorption strength of P3HT : PCBM drops steeply at 650 nm, and is very

small for wavelengths larger than about 650 nm. The TM2 mode shown in

Fig. 2.5.2(d) but not seen in Fig. 2.5.2(a)-(c) comes from the wavelength

range 300 nm - 400nm. To obtain the plot shown in 2.5.2(d), for a given

active layer thickness, modes that exist over only part of the integration

range of 300 nm - 800 nm are simply integrated over the part of the

spectrum where they do exist.

From Fig. 2.5.2, we see that TM modes have a consistently larger

absorption fraction than normal incidence, with the relative difference

increasing greatly as the active layer thickness decreases. Fig. 2.5.2(d) shows
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Figure 2.5.1: Standard Solar spectrum for space and terrestrial use with extinction
coefficient k for P3HT:PCBM bulk heterojunction. The left-y axis shows the spectral
irradiance for red, green and blue lines. The right-y axis shows the extinction coeffi-
cient k for black line.
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Figure 2.5.2: Absorption fraction (power absorbed in active layer/incident power) vs.
thickness of the active layer (P3HT : PCBM) for the “standard OPV ” architecture
(see text), for wavelength: (a) 400 nm, (b) 600 nm, (c) 800 nm, and (d) Average
over AM1. 5G solar spectrum[52]. The calculation performed using Lumerical FDTD
for the 2D case with perfect matched layer (PML) boundaries absorb electromagnetic
waves incident upon them [67]. I also used C++ to develop my own version of FDTD
simulation package [66]. The refractive index for all materials are also obtained from
the Lumerical database. For each guided mode, all the incident energy is assumed
to be perfectly coupled into the mode of interest. For normal incidence, the incident
energy is the energy incident on the glass/ITO interface.
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that while the TM0 absorption fraction asymptotically approaches 0.65 at an

active layer thickness of 150 nm (a value approximately 1.4 times larger than

that for normal incidence), at an active layer thickness of 10 nm, the TM0

absorption fraction is approximately eight times larger than that of normal

incidence. This behavior makes physical sense, since for active layers thicker

than about 100 nm, most of the normally incident light is absorbed and so

less room for improvement exists by guiding modes in the active layer. For

ultrathin active layers on the order of 10 nm thick, however, very little light

is absorbed for normal incidence, meaning that any mode that is tightly

confined to the active layer (such as TM0 in this case) will have greatly

enhanced absorption relative to the normal incidence case. From Fig.

2.5.2(d), we see that a TM0 guided mode in a standard OPV cell with a 40

nm-thick active layer will have the same absorption fraction as normal

incidence on a standard cell with a 100 nm-thick active layer. An equivalent

absorption fraction in a thinner active layer has the potential to result in an

OPV with improved overall power conversion efficiency due to the improved

charge extraction properties of the thinner active layers. As we shall see in

the next section, the thickness of the active layer can be reduced even further

with the optimization of the optical properties of the Top and Bottom hole-

and electron-transport layers (see Fig. 2.4.1).

From Fig. 2.5.2 we also see that in contrast to the behavior of TM

modes, the TE modes have absorption fractions that are less than or equal to

the normal incidence case. The strong absorption of TM modes relative to

TE modes is due to the stronger confinement of TM modes in the active
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layer of the cell for the standard OPV architecture [40, 60]. As we shall

discuss in the next section, by carefully choosing the optical properties and

thicknesses of the Top and Bottom hole- and electron transport layers (see

Fig. 2.4.1), the absorption fraction of both TM and TE modes can be

increased by enabling tighter confinement of the guided mode in the active

layer of the cell.

2.5.2 Ultrathin OPV with Embedded High-Index Layers

Recent investigations of so-called “slot waveguides” have demonstrated

the strong confinement of light in layers on the order of 10 nm − 50 nm thick

by sandwiching a thin relatively low-index layer between two layers of higher

index [1]. We introduce a novel OPV design that applies the principles of

slot waveguides to tightly confine light within the active layer of an ultrathin

OPV structure. Regarding the generic schematic shown in Fig. 2.4.1, both

the Top and Bottom hole- and electron-transport layers of such a structure

have large values of refractive index relative to the active-layer index. We

shall refer to this structure as a “slot OPV” throughout the paper.

We first turn our attention to Fig. 2.5.3(a), which considers the case of

Top and Bottom layers with nTop=nBot=3.5, and kTop = kBot = 0. We see

that the absorption fractions of the guided modes in a slot OPV are equal to

the tactive = 100 nm absorption fraction of about 0.5 for the “Normal

(standard)” case for a slot OPV active-layer thickness of (20 nm, 40 nm) for

the (TM0, TE0) modes, respectively. This is a very important result, as it

suggests that strong guided-mode absorption is possible for ultrathin active
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Figure 2.5.3: Absorption fraction, averaged over the AM1. 5G solar spectrum, of
a slot OPV structure (glass/ITO/Top/P3HT : PCBM/ Bottom/AI) with: (a)
nTop=nBot=3.5, kTop=kBot=0, and (b) nTop=3.5, kTop=0, and no Bottom layer.
“TE0 (slot) ” and “TM0 (slot)” refer to the guided modes in a slot OPV. “Normal
(standard)” refers to normal incidence on a standard OPV (glass/ITO/PEDOT:PSS/
P3HT : PCBM/AI). The active-layer thickness is given by the x-axis. All calcu-
lations assume the following layer thicknesses: tglass=semi-infinite, tIT0= 140 nm,
tTop=40 nm, tBot=40 nm, tAl=200 nm.
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layers with thicknesses approaching the exciton diffusion length in these

materials. Comparing this result to the guided-mode absorption for a

standard OPV showed in Fig. 2.5.2(d), we see that the presence of the

high-index Top and Bottom hole- and electron-transport layers adjacent to

the active layer in the slot OPV case improves the absorption of the TM0

and TE0 modes in ultrathin active layers, with the improvement in the TE0

mode being most pronounced. This may prove especially important from a

practical perspective since the selective coupling of incident sunlight into TM

modes is certainly less efficient than coupling into either TM or TE guided

modes, as the slot OPV design allows.

From Fig. 2.5.3(b), we see that removal of the Bottom layer between

the P3HT :PCBM and Al layers improves the absorption fraction of the TM0

mode, but decreases that of the TE0 mode. Specifically, the absorption of

the guided modes in a slot OPV is equal to the “Normal (standard)”

(tactive = 100 nm) absorption fraction of about 0.5 for a slot OPV active-layer

thickness of (<10 nm, 90 nm) for the (TM0, TE0) modes, respectively. Figs.

2.5.3(a) and (b) demonstrate that is possible to equal or exceed the

absorption of normally incident light on a “Normal (standard)”

(tactive = 100 nm) cell with guided-mode absorption in an ultrathin “slot

OPV”.

The behavior observed in Fig. 2.5.3 can be understood by looking at

Fig. 2.5.4, which plots the distribution of the square of the electric-field

magnitude (|E|2) for TE0 (red) and TM0 (TM1 for Fig. 2.5.4(a)) (blue)

modes at A = 500 nm throughout a 10 nm-thick-active-layer slot OPV
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device. Fig. 2.5.4 considers a slot OPV with the structure: glass

(semi-infinite, not shown) / ITO (140 nm) / Top (40 nm) / P3HT : PCBM

(10 nm) / Bottom (40 nm) / Al (200 nm), for the case of: (a)

nTop = nBot = 3.5; (b) nTop = 3.5, No Bottom layer, (c)

nTop = 1.8, nBot = 1.8, and (d) nTop = 1.8, No Bottom layer, with ktop = kbot

= 0 for all panels (a)-(d). The maximum value of |E|2 for each plotted mode

is normalized to 1. When one is using Fig. 2.5.4 (|E|2) to help understand

the results of Fig. 2.5.3 (absorption fraction in the active layer), it is

important to remember that the absorption fraction of the active layer

depends on electric field distribution in the layers, as well as the absorption

strength of the active layer relative to other layers in the structure.

Fig. 2.5.4(a) shows that for nTop = nBot = 3.5 the TE0 mode is mostly

confined near the active layer, and due to the “slot-waveguide” effect, the

TM0 mode is tightly confined in the active layer [1]. This leads to strong

absorption in active layer for both modes. As Fig. 2.5.4(b) shows, removing

the Bottom Layer shifts the TE0 mode away from the active layer and

toward the Top layer, resulting in lower absorption than for the

Top-and-Bottom-layer case in Fig. 2.5.4(a). This can also be seen by

comparing the TE0 mode absorption shown in Fig. 2.5.3(b) with that shown

in Fig. 2.5.3(a). However, for the TM0 mode in Fig. 2.5.4(b), we can see

that removing the Bottom Layer leads to stronger active-layer confinement

and stronger absorption than the Top-and-Bottom-layer case in Fig. 2.5.4(a).

This can also be seen by comparing the TM0 mode absorption shown in Fig.

2.5.3(b) with that shown in Fig. 2.5.3(a). The ideal configuration for a given
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Figure 2.5.4: Distribution of the electric field magnitude squared (|E|2) at λ =
500 nm throughout a 10 nm-thick-active-layer slot OPV device-glass (semi-infinite,
not shown) / ITO (140 nm) / Top (40 nm) / P3HT : PCBM (10 nm) / Bottom
(40 nm) / Al (200 nm) - for the case of: (a) nTop = nBot = 3.5; (b) nTop = 3.5,
No Bottom layer, (C) nTop = 1.8,nBot = 1.8, (d) nTop=1.8, No Bottom layer.
kTop= kBot=0 for all panels (a)-(d). Line colors are: Red=TE0 guided mode, and
Blue=TM0 guided mode. Vertical lines show the separation between different layers
in the cell. The maximum value of |E|2 for each plotted mode is normalized to 1.
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application will depend on many factors, including the ability to couple

selectively into specific modes such as TM0, in which case a Top-Layer-Only

design may be desired.

Figs. 2.5.4(c) and (d) consider the cases of low-index Top and Bottom

layers: (c) nTop = 1.8, nBot = 1.8. and (d) nTop = 1.8, No Bottom layer,

allowing us to understand the effect of reducing the real part of the refractive

index. For the TE0 mode, as the real parts of the refractive indices of the

Top and Bottom layers decrease, the peak of the mode moves from the Top

layer towards the ITO layer, resulting in decreased field amplitude in the

active layer. For the TM0 mode, as the real parts of the refractive indices of

the Top and Bottom layers decrease, the confinement in the active layer

weakens and even reverses. From this comparison, it is clear that the

practical realization of ultrathin OPVs with improved power conversion

efficiency will require high-index layers on either side of the active layer to

enable sufficient optical confinement in the active layer. These high index

layers may take the form of hole- and electron-transport layers as shown in

Fig. 2.5.3(a), or a transport layer on one side and a metal electrode on the

other side as shown in Fig. 2.5.3(b).

Theoretical investigations from previous works have studied the

ultimate limit of guided-mode absorption in slot-waveguide devices [7, 59].

The local density of optical states (LDOS) within the low index slot will be

increased due to the presence of the high index cladding layers, which have

an LDOS significantly higher than that for a bulk slab of the low index

materials [7]. While both theoretical and computational have shown that the
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slot OPV structure will enhance the light absorption in the active layer, in

the actual implementation, the need for high index layers make the efficient

coupling of incident sunlight into the guided modes more difficult due to the

reflection from high index material.

The actual materials we may use for the top and bottom layer is

TiO2(n = 2.6) and V2O5(n = 2.3). The simulation result is shown in Fig.

2.5.5 We see that the absorption fractions of the guided modes in this case

are equal to the tactive = 100 nm absorption fraction of about 0.5 for the

“Normal (standard)” case for a slot OPV active-layer thickness of (60 nm, 45

nm) for the (TM0, TE0) modes, respectively.

2.5.3 Experimental way to measure Effective indices of the

guided mode

We use a prism coupler (Metricon Model 2010) to measure the effective

indices of the guided modes in a sample, as shown in Fig. 2.5.6[16, 54, 71, 76].

This setup consists of a prism that is contacted to the thin film sample, with

the air gap (typically measuring around 100 nm) between the prism and

sample controlled via the pressure in a pneumatic coupling head that pushes

the sample into the face of the prism. A pressure of 45 psi is typically used,

yielding an air gap of about 100 nm. In order to make sure this pressure does

not deform the film under study, we tune the incident angle of the laser on

the prism to coincide with a guided mode (indicated by a dip in the intensity

of the light reflected by the prism as measured by the photodetector) and

verify that as the pressure is swept over a range (30 psi – 55 psi) centered on
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Figure 2.5.5: Absorption fraction, averaged over the AM1. 5G solar spectrum, of
a slot OPV structure with real top and bottom materials (glass / ITO / TiO2 /
P3HT : PCBM / V2O5/Au) with: nTop = 2.6 nBot=2.3, kTop=kBot=0. “TE0

(slot) ” and “TM0 (slot) ” refer to the guided modes in a slot OPV. “Normal (stan-
dard)” refers to normal incidence on a standard OPV (glass/ITO/PEDOT:PSS/
P3HT : PCBM/AI). The active-layer thickness is given by the x-axis. All calcu-
lations assume the following layer thicknesses: tglass=semi-infinite, tIT0= 140 nm,
tTop=40 nm, tBot=40 nm, tAu=9 nm.
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the pressure used in the experiment (45 psi), the incident laser angle at

which the dip occurs remains unchanged. The fact that the angle remains

unchanged as the pressure is varied indicates that over the measured range of

angles, the thickness of the film does not vary significantly. As the laser

angle is swept, the light undergoes total internal reflection within the prism

and the photodetector measures the intensity of the reflected light. When

the phase velocity of the incident light of the sample / prism interface

component is equivalent to the phase velocity of a guided mode, resonant

energy transfer occurs from the incident light into the structure via “optical

tunneling” [79]. For the setup shown in Fig. 2.5.6, we detect the reflected

optical intensity as the laser angle (and therefore the incident phase velocity)

is scanned, resulting in intensity minima measured by the detector at angles

that allow resonant coupling to the guided modes of the sample. The

position of these minima determine the effective indices of the guided modes,

which are the propagation constants (divided by the vacuum wavevector) of

the electromagnetic wave within the plane of the thin film.

Fig. 2.5.7 shows the comparison of the prism coupler measurement

result and the FDTD simulation result for the structure glass(700um) /

ITO(140nm) / TiO2 (30nm) / P3HT:PCBM (98nm) / V2O5 (40nm) / Au

(9nm) with the prism contacting the Au side of the cell. The experimentally

measured (βTE0 = 1.85 and βTM0 = 1.67) and the numerically calculated

(βTE0 = 1.84 and βTM0 = 1.70) mode positions are in good agreement [16].
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Figure 2.5.6: Prism coupler setup used to measure the effective indices of the sam-
ple.

2.6 Summary and Outlook

We introduced a novel OPV design, termed a “slot OPV”, that applies

the principles of slot waveguides to tightly confine light within the active

layer of an ultrathin OPV structure. Our calculations demonstrated that by

judicious design of the layers and their optical properties, a “slot OPV” can

be designed with a guided-mode absorption fraction for a 10 nm thick active

layer that is equal to the absorption fraction of normal incidence on a

“Standard OPV” with 100 nm thick active layer. These results, together

with the expected improvement in charge extraction for ultrathin layers,

suggest that ultrathin OPVs can be designed with greater overall power

conversion efficiency than today’s state-of-the-art OPV architectures if we

35



Figure 2.5.7: Comparison of the prism coupler measurement result and FDTD simu-
lation result [16]. The structure for the measurement and simulation is glass(700um)
/ ITO(140nm) / TiO2 (30nm) / P3HT:PCBM (98nm) / V2O5 (40nm) / Au (9nm).
Solid lines: Fraction of incident TE (black, denoted TEM ) and TM (red, denoted
TMM ) polarized 633 nm laser reflected from the prism-device interface and detected
by the detector as shown in Fig. 2.5.6. Dashed lines: Same quantity calculated us-
ing Lumerical FDTD for the TE(black, denoted as TECal) and TM (red, denoted as
TMCal) polarizations.
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can couple the incidence light into the specific guided modes. For instance,

the absorption fraction for TE0 guided mode within a 10nm active layer is

around four times better in our slot OPV design than the typical OPV

architecture.

In this chapter, we are assuming that there is no variation of material

properties throughout the depth of the photoactive layer. In real practice,

the performance of many thin-film photovoltaics (PV) is significantly

influenced by the variation of material properties throughout the depth of

the photoactive layer. The accurate measurement of the resulting “depth

profiles” for optical and electronic properties such as refractive index and

charge collection probability is critical to the understanding, modeling and

optimization of these devices. In Chapters. 3 - 7, we will describe several

methods to measure and reconstruct the “depth profiles” for both

optical(refractive index) and electronic properties (charge collection

probability).
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Chapter 3

Reconstructing The Charge Collec-

tion Probability from the Probabil-

ity Density Function and Measure-

ment of the Internal Quantum Effi-

ciency

3.1 Introduction

In this Chapter, we apply a new, non-destructive technique that was

recently developed in our lab [15] to the accurate reconstruction of collection

probability depth profiles within the Cu(In,Ga)Se2 (CIGS) absorber layers.

The charge collection probability ϕ(z) is defined as the probability that a

carrier generated by light absorption at position z of the device will be

collected and therefore contribute to the light-generated current. It mainly
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depends on the distance that a light-generated carrier must travel compared

to the diffusion length, but also dependent on the surface properties of the

devices [28].

While the electron-beam-induced current (EBIC) method has been

used in the past to successfully reconstruct the charge collection probability

[17, 37, 43, 61], this approach is destructive and requires time-consuming

sample preparation, it also change the charges state of defects within CIGS

absorber layer, resulting in a change of ϕ(z) with electron energy [37], in

violation of the assumption of the ϕ(z) is the same for all measurements. In

this chapter, we described a novel optical and non-destructive method for the

direct reconstruction of the charge collection probability ϕ(z) from the

measurement of IQE as a function of wavelength (η(λ)). Our nondestructive

optoelectronic method avoids the drawbacks from EBIC method, allows the

bias voltage, bias light, and temperature to be easily varied, and also allows

ϕ(z) to be reconstructed for a wider range of materials, including those

which would be damaged by EBIC.

Below we first describe the mathematical basis of our approach, and

then apply it to a computational example that assumes a charge collection

probability ϕ(z) of a “canonical” CIGS system to demonstrate the method’s

accuracy. Finally, we apply this method to IQE data measured on a CIGS

solar cell.
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Figure 3.2.1: Generic schematic of an CIGS solar cell. With structure:Mo
(330nm)/CIGS(2300nm)/CdS(50nm)/ZnO(90nm)/AZO(175nm).

3.2 Statement of the Problem

Letting G(z, λ) be the normalized probability distribution per unit

length of creating an electron-hole pair at depth z for the laser wavelength λ,

the basic relation between the depth-dependent charge-collection probability

ϕ(z) within the device and the externally measured IQE (η(λ)) is

η(λ) =

tCIGS∫
0

G(z, λ)ϕ(z)dz (3.1)

where tCIGS is the thickness of the CIGS absorber layer and

G(z, λ) = 0 for z < 0 and z > tCIGS. G(z, λ) can be calculated from the

electric field distribution throughout the device once we know the thickness
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Figure 3.2.2: The normalized probability density function, G(z, λ) for CIGS solar cell
with the structure shown in Fig. 3.2.1, the red arrows indicate the start and end of
the CIGS absorber layer.
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and refractive index of each layer as shown in Fig. 3.2.1. Fig. 3.2.2 shows the

plot of G(z, λ) for the CIGS solar cell with the structure shown in Fig. 3.2.1,

as calculated using the Finite Difference Time Domain (FDTD) method with

the Lumerical refractive index database. After, we measured η(λ) for

different wavelengths, ϕ(z) are obtained by using Eq. 3.1 above to find the

best-fit parameters in the following parametrized functional forms [37]:

when 0 ≤ z < zSCR

φ(z) = 1 (3.2)

when zSCR ≤ z ≤ zMo (neutral bulk region)

φ(z) =

(
1

Leff
cosh[ z−zMo

Leff
]− SMo

D
sinh[ z−zMo

Leff
]
)

1
Leff

cosh[ zMo−zSCR

Leff
] + SMo

D
sinh[ zMo−zSCR

Leff
]

(3.3)

where zMo represents the Position of CIGS/Mo interface, zSCR

represents the depth of space-charge region, Leff represents minority carrier

diffusion length, SMo represents the recombination velocity at CIGS/Mo and

D represents diffusion constant. The collection probability within the neutral

bulk region is derived using reciprocity theorem with boundary conditions at

the space-charge region and the CIGS/Mo interface [58]. To calculate charge

collection probability ϕ(z), a least-squares fit to measured η(λ) values is

carried out via Eq. 3.1 using calculated G(z, λ) distributions.

3.3 Least-squares fit with Gradient decent

In order to demonstrate the benefits and reliability of our methods, We

consider the structure:Mo(330nm) / CIGS(2300nm) / CdS(50nm) /
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ZnO(90nm) / AZO(175nm) shown in Fig. 3.2.1, and a simulated charge

collection probability ϕ(z) shown in Eq. 3.2 and Eq. 3.3, where

zm0 = 2300nm, zSCR = 350nm, Leff = 900nm and SMo/D = 4× 103cm−1.

By substituting this ϕ and simulated G(z, λ) into Eq. 3.1, we can obtain the

simulated exact values of η(λ). This was done for N = 81 values of λ equally

space between 300nm and 1100nm.

Assuming that in Eq. 3.3, we have two unknown parameters x1: Leff

and x2: SMo/D. We can use least-squares fit with gradient decent to find the

best values for x1 and x2 with Eq. 3.1 [46]. The least-squares cost function is

shown as the following format:

J(x1, x2) =
∑
λ

 tCIGS∫
0

G(z, λ)φ(z, x1, x2)dz − η(λ)

2

(3.4)

Fig 3.3.1 shows the least-squares cost function of the parameters x1:

Leff and x2: SMo/D. The color-bar shows the value of the log2(F (x1, x2)).

In order to find the x1, x2 that minimize the cost function, we use gradient

decent algorithm as the following steps:

• Start with x1 = 890nm, x2 = 4.1× 103cm−1 (can be initialized with

other values).

• Repeat this step until convergence:

xj = xj − α
∂

∂xj

J(x1, x2) for j = 1 and j = 2

x1 = 899.980nm, x2 = 3.997× 103cm−1 after 20 iteration.
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Figure 3.3.1: Least-sqaures cost function of the parameters x1: Leff and x2:
SMo/D. The color-bar shows the value of the log2(J(x1, x2))
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3.4 Experimental results and discussion

In this section, we apply the method to IQE measured on an actual

CIGS solar cell at 81 equally spaced wavelength between 300nm and 1100nm

with the structure shown in Fig. 3.2.1. We obtain the reconstruction of the

charge collection probability ϕ(z) as shown in Fig 3.4.1 with zm0 = 2300nm

(fixed), zSCR = 350nm (measured via capacitance-voltage), Leff = 920nm

and SMo/D = 4.3× 103cm−1.

Finally, we substitute the reconstructed charge collection probability

ϕ(z) and the normalized probability G back to Eq. 3.1 to obtain the

calculate IQE shown in the Fig. 3.4.2 as the blue stars.

The errors of the reconstruction come from two primary sources:

• It is a model and parameter dependent method, which means we need

to know the true form of the charge collection probability model

beforehand. Any deviation from the model will lead to error in the

reconstruction.

• In this work, we assuming that there is no variation of the refractive

index throughout the depth of the CIGS active layer. In real practice,

the refractive index profile is significantly influenced by the variation of

material properties throughout the depth of the CIGS photoactive

layer [47]. The accurate measurement of the resulting “depth profiles”

is critical to the modeling of the G(z, λ) distributions.

To improve the fit, in Chapters 4 and 5, we developed a novel
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Figure 3.4.1: Reconstruction of the charge collection probability data point in the
CIGS layer from the IQE measurements using Least-squares fit with Gradient decent
method.
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Figure 3.4.2: Measured and Calculated IQE for the CIGS solar cell. The blue stars
represents the calculated IQE from the reconstruction of the charge collection proba-
bility and the red point represent the measured IQE.
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nondestructive and parameter-independent optoelectronic method for the

reconstruction of the charge collection probability profiles within CIGS solar

cells. In Chapters 6 and 7, we demonstrated a new method for reconstructing

the depth-dependent refractive-index profile in thin films with high spatial

resolution.

3.5 Summary And Outlook

In summary, we have developed a novel nondestructive optoelectronic

method for the reconstruction of the charge collection probability profiles

within CIGS solar cells.

Although we focused on the application of this technique to CIGS solar

cells in this Chapter, this method also applies to other types of solar cells

[15].
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Part II

New Reconstruction Techniques

for improved model accuracy
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Chapter 4

Reconstructing the charge collec-

tion probability using the Regular-

ization method

4.1 Introduction

This Chapter contributes to the understanding of the charge collection

probability ϕ(z) in thin-film solar cells with polycrystalline Cu(In,Ga)Se2

(CIGS) absorber layers. In this work, we described a novel optical,

non-destructive and parameter-independent method for the direct

reconstruction of the charge collection probability ϕ(z) from the

measurement of IQE as a function of wavelength (η(λ)). This inversion

process is an ill-posed problem, but a stable solution can be found by

applying the regularization method.

Below we first describe the mathematical basis of our approach, and

then apply it to a computational example that assumes a charge collection
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probability ϕ(z) of a “canonical” CIGS system to demonstrate the method’s

accuracy. Finally, we apply this method to IQE data measured on a CIGS

solar cell.

4.2 Statement of the problem

Eq. 3.1 is a special instance of the Fredholm integral equation, with the

kernel given by G(z, λ). G(z, λ) can be calculated from the electric field

distribution throughout the device once we know the thickness and refractive

index of each layer as shown in Fig. 3.2.1. Fig. 3.2.2 shows the plot of

G(z, λ) for the CIGS solar cell with the structure shown in Fig. 3.2.1, as

calculated using the Finite Difference Time Domain (FDTD) method with

the Lumerical refractive index database.

The first step to obtain a numerical solution of Eq. 3.1 is to change the

integral equation to matrix form by applying the midpoint discretization

method [63]. Suppose that η(λ) has been measured for selected wavelength

values λi, i = 1, ...N ; Let ηi = η(λi). A simple way of discretizing Eq. 3.1 is

using quadrature methods [51]. We assume that ϕ(z) is a piecewise constant

function, having the value ϕj in the interval (tj−1, tj), where t0 = 0

corresponds to the start of the CIGS layer (Here we assume the charge

collection probability is 0 outside the CIGS active layer). After the

discretization, Eq. 3.1 becomes

ηi =
N∑
j=1

Gijϕj i = 1, . . . , N (4.1)

51



with

Gij =

∫ ti

tj−1

G(z, λi)dz (4.2)

It is known that linear systems arising from the first kind Fredholm

integral equation such as Eq. 3.1 are likely to be ill-conditioned [51].

4.3 Singular Value Decomposition (SVD) Analysis and

the Picard Condition

The singular value decomposition (SVD) is a very powerful tool for

analyzing first kind Fredholm integral equation [74].

In our cases, the matrix G ∈ RN×N in Eq. 4.1 is square, and therefore

the SVD of G takes the form

G = UΣV T =
N∑
i=1

uiσiv
T
i (4.3)

where
∑

∈ RN×N is a diagonal matrix with the singular values,

satisfying

∑
= diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 (4.4)

The matrix U ∈ RN×N and V ∈ RN×N consist of the left and right

singular vectors

U = (u1, . . . , uN), V = (v1, . . . , vN) (4.5)

After we have performed SVD on the matrix G, the solution of ϕ in Eq.
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4.1is given by

ϕ = G−1η =
N∑
i=1

uT
i η

σi

vi (4.6)

For a stable solution ϕ to exist, the right-hand side coefficients uT
i η

must decay to zero faster than the singular values σi, a situation that is

referred to as the Picard condition. The violation of the Picard condition is

the simple explanation of the instability of the inverse problem in the form of

a first-kind Fredholm integral equation, but it also gives a way to deal with

the ill-posed problem, by employing the truncated SVD regularization

method.

4.4 Truncated SVD Regularization Method

From the discussion in the previous section, we compute a regularized

approximate solution by simply eliminating those SVD components where

the uT
i η decay to zero more slowly than the singular values σi. Hence, we

define the truncated SVD (TSVD) solution ϕk as the solution obtained by:

ϕk =
k∑

i=1

uT
i η

σi

vi (4.7)

The truncation parameter k should be chosen such that all the

noise-dominated SVD coefficients (uT
i η terms that decay to zero more slowly

than the singular values σi) are discarded. The value of k can be found from

an inspection of the Picard plot as shown in Fig. 4.5.1.
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Figure 4.5.1: The Picard Plot for the charge collection probability reconstruction
problem.

4.5 Numerical Results and discussion

In order to demonstrate the benefits and reliability of our methods, we

first use FDTD calculations [54, 56] to simulate a sample structure with a

known refractive index and thickness of each layer for the normalized

probability density function G(z, λ). We consider the structure: Mo (330nm)

/ CIGS(2300nm) / CdS(50nm) / ZnO(90nm) / AZO(175nm) shown in Fig.

3.2.1.

We tested this approach on a simulated charge collection probability
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ϕ(z), where 0 < z < tCIGS, and tCIGS is the thickness of CIGS layer. The

usual assumption for ϕ(z) in the CIGS layer is ϕ(z) = 1 for 0 < z < zSCR,

where zSCR is the depth of space-charge region, and

ϕ(z) = exp[−(z − zSCR)/L], where L is the minority-carrier diffusion length.

By substituting this ϕ and simulated G(z, λ) into Eq. 3.1 (we assume that

the charge collection probability is 0 outside the CIGS active layer), we can

obtain the simulated exact values of η(λ). This was done for N=81 values of

λ equally space between 300nm and 1100nm.

To find the value of truncation parameter k in Eq. 4.7, we investigate

the behavior of the SVD coefficients uT
i η and uT

i η/σi in Eq. 4.6. A plot of

these coefficients, together with the singular values, is referred to as a Picard

plot shown in Fig. 4.5.1. From this plot, we would choose k=17.

Fig. 4.5.2 is the plot of the assumed exact ϕ(z) and the N=81

simulated data points with k=17 in Eq. 4.7 which shows a good agreement

between the exact assumed profile (solid red line) and the data points

calculated using our method (black dots).

4.6 Experimental results and discussion

In this section, we apply the method to IQE measured on an actual

CIGS solar cell at 81 equally spaced wavelength between 300nm and 1100nm

with the structure: Mo (330nm) / CIGS(2300nm) / CdS(50nm) /

ZnO(90nm) / AZO(175nm) shown in Fig. 3.2.1. From the Picard Plot shown

in Fig. 4.6.1, we choose the truncation parameter k = 4. With the the
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Figure 4.5.2: Typical simulated charge collection probability data in the CIGS layer.
The red line represents the assumed exact profile of ϕ and the black dots represent
the simulated data points with k =17 in Eq. 4.7
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normalized probability G−1 simulated from the known structure, the

measured IQE η(λ) and the truncation parameter k = 4, using Eq. 4.7 and

Eq. 4.6, we can obtain the reconstruction of the charge collection probability

ϕ as shown in Fig. 4.6.2.

Finally, we substitute the reconstructed charge collection probability ϕ

and the normalized probability G back to Eq. 3.1 to obtain the calculated

IQE shown in the Fig. 4.6.3 as the star points, which shows a good

agreement with the measured IQE. However, from Fig. 4.6.2, we see that the

reconstruction of the charge collection probability oscillates very rapidly at

both the front and back interface, which is due to the small value of the

truncation parameter. To increase the truncation parameter, we need a

better device structure model that takes into account the surface roughness.

4.7 Summary and Outlook

In summary, we have developed a novel nondestructive and

parameter-independent optoelectronic method for the reconstruction of the

charge collection probability profiles within CIGS solar cells.

Application of the regularization technique to an ill-posed inverse

problem is only possible if the data noise is within a specified range; the

noise can come from both measurement and model. To solve an ill-posed

inverse problem to which regularization cannot be applied due to noise, we

introduce the Self-Constrained Ill-Posed Inverse Problem (SCIIP) method in
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Figure 4.6.1: The Picard Plot for the charge collection probability reconstruction of
the experiment.
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Figure 4.6.2: Reconstruction of the charge collection probability data points in the
CIGS layer from the IQE measurements.
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Figure 4.6.3: Measured and Calculated IQE for the CIGS solar cell. The black points
represent the measured IQE, and the red points represent the calculated IQE from the
reconstruction of the charge collection probability.
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Chapter. 5. The SCIIP method improves the signal-to-noise of the solution

by using the regularization method with system constraints and optimization

via an evolutionary algorithm. With the SCIIP method, we can first search

the data space within the noise range, pre-filter the noise, and then use it to

find the regularization reconstruction result.

Although we focused on the application of this technique to CIGS solar

cells in this chapter, this technique applies to inverse problems. In general in

a wide range of fields, including subsurface mapping in geology [69], image

reconstruction in astronomy or medicine [2, 14], and depth profiling of solar

cells and other thin-film stacks [15, 55, 75], among others.
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Chapter 5

Solving Inverse Problems More Ac-

curately Using Feedback

5.1 Introduction

Inverse problems, in which one reconstructs from a set of

measurements, the source that produced the data comprising those

measurements, are critical to a wide range of fields in science and

mathematics, including subsurface mapping in geology [69], image

reconstruction in astronomy or medicine [2, 14], and depth profiling of solar

cells and other thin-film stacks [15, 55, 75], among others. Such problems are

often ill-posed in that their solutions are highly sensitive to changes in the

measurement results [69]. This poses a challenge to the solution of real-world

inverse problems where measurement noise is unavoidable. To address this

challenge, various regularization methods have been developed

[19, 34, 72, 73], all of which allow the solution to ill-posed problems by
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introducing additional constraints in some form. The discrepancy principle

shows that we should choose the regularization parameter according to the

noise level [27]. When the noise is very large, we are forced to choose large

regularization parameters that can lead to under-fitting.

In this chapter, we introduce the Self-Constrained Ill-Posed Inverse

Problem (SCIIP) method. Our method can improve the signal-to-noise even

beyond the discrepancy principle, compared to the result obtained by

applying standard regularization. Imagine that we have performed

measurements, the results of which are denoted b, but we know that these

measurements are composed of the actual quantity of interest plus noise.

Our method relies on the fact that the actual quantity of interest without

noise (denoted bnoiseless) must exist in the parameter space neighborhood of

the measured result bmeas, and that bnoiseless will give a better reconstruction

(the smaller residual, the better) than bmeas. Our method searches the space

b± η (where η defines the search space, and should be on the order of the

standard deviation of the noise to successfully find bnoiseless) using a Cellular

Evolutionary Algorithm (CEA) to find the b that minimizes the residual. We

then feed this new b into the regularization process, which yields a result x

that is closer to the true x than would be obtained by just feeding bmeas

directly into the regularization method.

5.2 Ill-posed inverse problem

This Chapter deals with one important class of linear inverse problems,

which take the form of Fredholm integral equations of the first kind. A
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Fredholm integral equation of the first kind is an integral equation of the

form:

f(s) =

b∫
a

K(s, t)ϕ(t)dt (5.1)

where K(s, t) is the kernel and ϕ(t) is an unknown function for which we

wish to solve.

The first step to obtaining a numerical solution of Eq. (5.1) is to

change the integral equation to the matrix form by applying discretization

method. In this work, we use the quadrature method to change the integral

equation to the matrix form [25].

After the discretization, Eq. (5.1) becomes a linear system

Ax = b (5.2)

The elements of the matrix A, the right-hand side b, and the solution vector

x are given by
aij = ωjK(si, tj)

xj = ϕ(tj)

bi = f(si)

 i, j = 1, ..., n (5.3)

It is known that linear systems arising from the first kind Fredholm integral

equation such as Eq. (5.1) are likely to be ill-posed [51]. In order to solve the

ill-posed inverse problem arising from the Fredholm integral equation, we

need to use regularization method. In this Chapter, we will use Tikhonov

Regularization method.
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5.3 Tikhonov Regularization method

The Tikhonov solution xλ is defined as the solution to the problem:

min
x

{
∥Ax− b∥22 + λ2 ∥x∥22

}
(5.4)

where, the first term ∥Ax− b∥22 measures the goodness-of-fit, and the second

term ∥x∥22 measures the regulairty of the solution. The notation “∥v⃗∥2” in

Eq. (5.4) denotes the L2-norm of the vector v⃗:∥v⃗∥2 =
√∑n

i=1 |vi|
2 . The

balance between the two terms is controlled by the factor λ2.

The solution of Eq. (5.4) can also be rewritten as follows in terms of

the singular value decomposition (SVD) [27].

xλ =
n∑

i=1

ϕ
[λ]
i

uT
i b

σi

vi (5.5)

where φ
[λ]
i are the filter factors and take the form:

φ
[λ]
i =

σ2
i

σ2
i + λ2

≈


1 σi ≥ λ

σ2
i /λ

2
σi ≤ λ

5.4 Discrepancy Principle

The regularization parameter λ is chosen by the discrepancy principle,

which is described below.

For illustration, let’s consider Tikhonov regularization, which has the
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following properties.

• There exists a positive number δ1, such that Tikhonov Regularization

is defined for every λ > 0 and every b in solution space U for which

∥b− bexact∥2 ≤ δ ≤ δ1

and

• There exists a function λ = λ(δ) of δ such that, for every ε > 0, there

exists a number δ(ε) ≤ δ1 such that the inclusion bδ ∈ U and the

inequality

∥bexact − bδ∥ ≤ δ(ε)

imply

∥xexact − xλ∥ ≤ ε

This means that if the noise from the measurement is less than δ1, then λ is

a function of δ. This also implies that in order for the regularization method

and our self-constrained method to work, the noise must be in a certain

range, as will be shown in the numerical analysis section. Physically this

simply means that if the data is sufficiently noisy, the regularization method

fails to provide a unique solution because the noise is sufficiently large to

span multiple solutions in solution space.

We assume that all the error comes from the Eq. (5.2) is from the right

hand side b, such as

b = bexact + ε
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.

In order to obtain the regularized result of the Eq. (5.4) with the noise

based right hand side b, we need to choose the factor λ. The Discrepancy

Principle shows that we should choose the factor λ such that the residual

norm ∥Axλ − b∥ equals the “discrepancy” in the data, as measured by

vdp∥e∥2 [29], where vdp is the “safety factor”.

∥Axλ − b∥2 = vdp∥ε∥2 (5.6)

From Eq. (5.6), we know that the goodness-of-fit of the problem is

dependent on the error from the right hand side b. The larger the error, the

worse the fit. This is the main challenge of using regularization methods to

solve inverse problems. If the error from the right hand side is too large, we

can only choose a relatively large λ to discard the noise-dominated part,

which also discard a large amount of information that could be used to

reconstruct x.

5.5 Self constrained method with feedback

To solve the problem when the noise from the right-hand side b is

large, we introduce a self-constrained method to pre-filter the noise. We will

search the space b± η, where η is the standard deviation of the white noise,

and find the combination can give us the least residual ∥Axλ − b∥2 to form

the new b which is very close to bexact. Then we can feed the new b into the

regularization process, which can give us a better regularization result. Since
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the search space is a continuous space and can be very large, we need to use

a stochastic search algorithm. Evolutionary Algorithms (EA) are the most

well-known stochastic search algorithms, and in this work we use EAs to

search the noise space and find the smallest residual ∥Axλ − b∥2. The

flowchart for the self-consistent regularization method with EAs is shown in

Fig. 5.6.3. In the following sections, a parallel cellular evolutionary

algorithm is introduced that is designed for the self-constrained method.

5.6 Parallel Cellular Evolutionary Algorithm

EAs are a family of heuristic search methods. It is a generic

population-based optimization algorithm, which is inspired by biological

evolution. Each individual in the population may be viewed as a

representation of a particular solution to an algorithm problem. In the

self-constrained inverse problem, each individual represents one possible

self-constrained measurement. Selection, Crossover, and Mutation are three

key operators for all evolutionary algorithms.

• Selection: Inspired by “survival of the fittest” from biological

evolution, its aim is to select the parent according to their fitness.

Therefore, the individual with above average fitness will expect to have

more copies in the new population.

• Crossover: Once the parent is selected, the crossover is applied to

form the new offspring, the most common type is single point crossover

as shown in Fig. 5.6.1.
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• Mutation: After crossover, there is a probability that the offspring

individuals undergo mutation as shown in Fig. 5.6.1 . The mutation

simulates the effect of transcription errors when a chromosome is

duplicated from biological mutation. Its aim is to maintain genetic

diversity from one generation of a population to the offspring.

Algorithm 1: Cellular Evolutionary Algorithms
1 k = 0;
2 Pk := a population of randomly-generated individuals in a cellular

structure;
3 while not termination condition do
4 for each vertex i in the cellular grid do
5 evaluate fitness of individual i in Pk;
6 select individuals in its neighborhood;
7 produce offspring;
8 evaluate fitness of the offspring;
9 assign one of the offspring to vertex i;

10 end
11 k = k + 1;
12 end

Usually, EAs assume that any individual may interact with any other

individual in the population. That is to say; the crossover operator can

operate on any two of the individual in the population. However, this is not

always the case: individuals can interact locally, instead of globally, which

known as ”isolated by distance.” This situation is usually depicted by using a

connected graph as shown in Fig. 5.6.2, in which the vertex is an individual,

while edges correspond to interactions between pairs of individuals. The set

of potential mates of an individual is called its neighborhood. In Fig. 5.6.2,
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Figure 5.6.1: Apply crossover and mutation operators on the selected parent A and
B.

the individual, can only interact with its nearest neighborhood. The

crossover operator can operate between the individual and its neighborhood.

We call these kinds of EAs that are based on these particular graph and

neighborhood structure Cellular Evolutionary Algorithms (CEAs).The

pseudo-code for CEAs is shown in Algorithm. 1. There are two main reasons

we choose CEAs as our search and optimization method. The first reason is

that we can divide the connected graph as shown in Fig. 5.6.2 into many

sub-blocks, and distribute each block to the cluster for parallel computing.

The second reason is that CEAs are very good at retaining the diversity of

the population, preventing the search optimization from converging to the

local minimum.
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Figure 5.6.2: A grid cellular structure and neighborhood structure in CEAs.

Figure 5.6.3: Self constrained regularization method (SCRM) with Evolutionary Al-
gorithm.
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5.7 Parallel Cellular Evolutionary Algorithms based

on Apache Spark

5.7.1 Apache Spark

Apache Spark is a fast and general-purpose cluster computing system.

It was originally developed at UC Berkeley in 2009 [83]. We choose it as our

service to implement our CEAs because of it supports in-memory computing.

Fig. 5.7.1 illustrates the driver and worker model for the Spark

application. Every Spark application has a driver program runs the main

function. The main function is responsible to prepare the resilient

distributed datasets (RDDs) and the worker function. Then the RDDs is

distributed across the nodes of the cluster that can be operated on with the

worker function in parallel. The RDDs is very important abstraction Spark

provides. It can be created in 2 ways: the first is by directly paralyzing a

collection, and the second is by reading data from an external source (S3,

HDFS, etc.). The RDDs can be cached in the worker machine memory,

allowing it to be reused across parallel operations. It can also automatically

recover from node faller.

In the following section, we will demonstrate how we design the

Parallel version of the Cellular Evolutionary Algorithms and deploy it to the

cluster based on Apache Spark.
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Figure 5.7.1: Apache spark driver and worker model for in-memory cluster computing
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5.7.2 Parallel Cellular Evolutionary Algorithms

CEAs are naturally supporting by parallel computing. In this section,

we will carefully design the parallel version of the CEAs to best utilize the

Spark in-memory feature.

Fig. 5.7.2 shows the work flow of the Parallel CEAs ruining on the

cluster based on Apache Spark. We first initialize the individual in the

population grid and divide it into sub-grid which with the common boundary

as shown in the figure in the main function. Then the sub-grid is saved to

the RDDs, and we distribute the RDDs with worker function (PCEAs as

shown in Algorithm. 2) to the worker machine in the cluster. In the worker

machine, the RDDs which store the sub-grid is operated on with the PCEAs

worker function in parallel. We will get the updated sub-grid which is then

collected by the main function in the driver machine to form the updated

population grid. Finally, we will check whether the termination condition is

satisfied. If it is yes, then we give out the population grid. If it is not, then

we repeat the whole process with the updated population grid.

In line 2 and line 5 of Algorithms. 2, we need to evaluate the fitness

function for our particular problem. In the ill-posed inverse problem, the

fitness function is the residual of the regularization reconstruction. The

detail of which will be described in the following section with a

one-dimensional image restoration model test problem.
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Figure 5.7.2: Parallel Cellular Evolutionary Process based on Apache Spark.75



Algorithm 2: Parallel Cellular Evoulutionary Algorithms for sub-
grid

1 for each vertex i in the cellular sub-grid do
2 evaluate fitness of individual i in Pk;
3 select individuals in its neighborhood;
4 produce offspring;
5 evaluate fitness of the offspring;
6 assign one of the offspring to vertex i;
7 end

5.8 Numerical Results and discussion

In order to demonstrate the benefits and reliability of our methods, we

will it use to solve a test inverse problem: the one-dimensional image

restoration model test problem that assumes ϕ(t) as shown in Eqs.5.8 and

5.9 the source’s light intensity as a funtion of the angle s of the incidence.

Letting K(s, t) as shown in Eq. (5.8) to be the point spread function for an

infinitely long slit with a width equal to one wavelength, the basic relation

between the source light intensity ϕ(t) and the observed light intensity in the

image produced on the other side of the slit f(s) is

f(s) =

π/2∫
−π/2

K(s, t)ϕ(t)dt (5.7)

in which

K(s, t) = (cos(s) + cos(t))2
(

sin(π(sin(s) + sin(t)))
π(sin(s) + sin(t))

)2

(5.8)
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Where −π/2 ≤ s, t ≤ π/2, while the source’s light intensity as a function of

the angle t

ϕ(t) = 2 exp(−6(t− 0.8)2) + exp(−2(t+ 0.5)2) (5.9)

These equations model the situation where light passes through an infinitely

long slit.

This problem can easily be mapped onto our self-constrained

regularization method with the evolutionary algorithm. The light intensity in

the image produced on the other side of the slit is assigned to b in Eq. (5.2),

and the known point spread function is assigned to matrix A in Eq.5.2, and

we want to reconstruct the source’s light intensity (x in Eq. (5.2)) as a

function of the angles as t.

Fig.5.8.1 shows the Picard plots for the one-dimensional image

restoration model test problem with different white noise levels. From the

figure, we can see that the Discrepancy Principle is verified as shown in Eq.

(5.6).

Since we already know the kernel K and we are assuming that the

incoming light has the form as shown in Eq. (5.9), we can calculate the

“exact” b without noise using Eq. (5.2). In the following example, we add a

random white noise (with standard deviation = 0.5) on the first three points

in b (discretization size is 40). Fig.5.8.2, (a) shows the result when we

directly apply the regularization method on the measurement b without first
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(a) noise 1e-5

(b) noise 1e-9

(c) no noise

Figure 5.8.1: The Picard plots for the one-dimensional image restoration model test
problem with different noise levels. Random white noise level is shown by the red
dashed line.(a) With an additional white noised added to the measured b (1e-5).(b)
With an additional white noised added to the measured b (1e-9).(c) With no added
noise (only discretization noise).
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(a) Without noise reduction, residual =
0.250

(b) noise reduction after 1 genreation,
residual = 0.005

(c) noise reduction after 10 generation,
residual = 5.288e-4

Figure 5.8.2: Reconstructed ϕ(t) for one-dimensional image restorations model. Blue
curves: the exact solution, Red Point: the reconstructed result (a) Without Cellular
Evolution Algorithms(CEAs) noise reduction. residual ∥Ax− b∥2 = 0.250 (b) With 1
generation CEAs noise reduction, residual ∥Ax− b∥2 = 0.005, (c) With 10 generation
CEAs DeNoise, residual ∥Ax− b∥2 = 5.288e-4
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applying the SCIIP method, (the noise on the first three points is 0.5, -0.5,

0.4), and the residual is 0.250 for this case. Fig.5.8.2 (b) shows the result

when we use our self-consistent regularization method with Cellular

Evolutionary Algorithms(CEAs) for 1 generation(the noise on the first three

points reduce to -0.006, -0.007, -0.007), the residual is 0.005 for this case.

Fig.5.8.2(c) shows the result when we use our SCIIP method with Cellular

Evolutionary Algorithms(CEAs) for ten generations (the noise on the first

three points reduce to -8.6e-4, -8.7e-4, 4.6e-4), the residual is 5.288e-4.

The example in the previous section showed that our SCIIP method

does give a better result compared to the traditional regularization method.

However, this is not always the case, since in the previous example, we

assuming that the noise only exists at the first three point of the b.

The success of the SCIIP method requires the existence of a unique

solution for b within the search space. Otherwise, the self-constrained

regularization can yield multiple answers for b, as shown in Fig. 5.8.3. We

use the same example as in the previous section. This time, the discretization

size is 40 points, and we assume that the noise only exists on the first 20

points. The initial guess b is generated randomly in the b search range. In

Fig. 5.8.3 (a), the search range is b− 0.1 < b < b+ 0.2 and in Fig. 5.8.3 (b),

the search range is b− 2 < b < b+ 1. As seen, in Fig. 5.8.3 (a), when the

search range is relatively small, we obtain a result from the SCIIP that is

very close to the exact answer after only five generations. In Fig. 5.8.3 (b), as

we increase the b search range, we obtain another self-constrained b solution

other than the exact b, which means that the self-constrained b is not unique
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in the search range. Fortunately, we can simply discard this solution, since,

in this case, the result is nonphysical because it has negative b value.

Fortunately, in practice, there are many conditions that enable us to

narrow the b search space and obtain unique solutions:

• The standard deviation of the noise on b is usually very small

compared to b.

• The large noise usually only exists on some part of the measurement,

such as the low-frequency or high-frequency part.

5.9 Summary and Outlook

In summary, we have demonstrated a new method for improving the

signal-to-noise method compared to the result obtained by applying the

standard regularization method to ill-posed problems. We have applied this

method to a one-dimensional image restoration model test problem. In the

test problem, we reduce the residual from 0.250 to 0.005 with only 1

generation of CEAs. This work has the potential to improve the accuracy of

inverse problem reconstruction solutions in a wide range of fields.
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(a) b search range: b− 0.1 < b < b+ 0.2

(b) b search range: b− 2 < b < b+ 1

Figure 5.8.3: Self constrained b in the b search range. The initial guess b is generate
randomly in the b search range. The blue line is the exact b, and the green * is the
self constrained b. The discretization size is 40 points, we assuming that the noise
only exist on the first 20 point. In both cases, we ran 5 generations of the genetic
algorithm.(a) b search range: b−0.1 < b < b+0.2, the range is between the two black
lines. (b)b search range: b− 2 < b < b+ 1, the range is between the two red lines.
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Chapter 6

Index-matched IWKB method for the

measurement of spatially varying re-

fractive index profiles within thin-

film photovoltaics

6.1 Introduction

The performance of many thin-film photovoltaics (PV) is significantly

influenced by the variation of material properties throughout the depth (i.e.,

the vertical, or, substrate-normal, direction) of the photoactive layer.

Examples of the spatial variation of the photoactive layer material properties

include grading of the Ga concentration (and concomitantly the bandgap

energy) in copper indium gallium selenide (Cu(In1−x,Gax)Se2 − CIGS) solar

cells [47], as well as vertical phase segregation gradients (donor/acceptor

ratios that vary with depth) in bulk heterojunction organic photovoltaics
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(OPVs)[3, 21]. The accurate measurement of the resulting “depth profiles”

for optical and electronic properties such as refractive index [26] and charge

collection probability [15, 37, 61, 62] is critical to the understanding,

modeling, and optimization of these devices. Moreover, in many cases, the

optical refractive index profile alone can yield information on

depth-dependent material variation from which the depth profile of electronic

properties can be inferred [39, 48].

In this chapter, we describe a novel method, which we refer to as

index-matched IWKB (IM-IWKB), for the reconstruction of refractive index

profiles (RIPs) with high spatial resolution within the photoactive layers of

thin-film photovoltaics for films as thin as 200 nm. While the Inverse

Wentzel-Kramers-Brillouin (IWKB) method has been used in the past to

successfully reconstruct RIPs of various films [8, 11, 64, 85], this approach is

only valid for relatively thick (larger than 2 µm) films for visible

wavelengths, since the number of points in the reconstructed RIP is equal to

the number of modes supported by the film at that wavelength. For the

ultra-thin layers relevant to many thin-film photovoltaics (typically 100 nm –

200 nm for OPVs, for example), it is either impossible to reconstruct the

profile at all, or the result of the reconstruction has poor spatial resolution

due to the low number of guided modes.

The IM-IWKB method described below deposits a relatively thick

(1-10 µm) index-matched, non-absorbing layer below the thin photoactive

layer of interest, and then applies the IWKB method to this system,

resulting in a spatial resolution for the reconstruction of the RIP that is
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improved by more than a factor of ten compared to the traditional IWKB

without the use of an index-matched layer. While RIPs for such thin layers

can be obtained using spectroscopic ellipsometry with multiple-layer models

[3, 21], our approach requires no free parameters, which is a significant

advantage compared to the parameterized, model-based technique used in

ellipsometry. This allows for much higher spatial resolution using our

approach compared to ellipsometry, where the number of free parameters

necessarily increases with the desired spatial resolution.

Below we first describe the mathematical basis of our approach, and

then apply it to a computational example that assumes a RIP of a

“canonical” OPV system to demonstrate the method’s accuracy and

limitations for the typical system of interest. Finally, we describe our

experimental implementation of this method and results for OPV devices

fabricated in our lab.

6.2 Methodology

6.2.1 Index-matched IWKB (IM-IWKB) for improved spatial res-

olution

Consider a monotonically decreasing refractive index profile consisting

of the glass substrate, index-matched layer, photoactive layer, and air as

shown in Fig. 6.2.1.According to the IWKB method [11], the characteristic
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equation of the ith mode is given by

k

xi∫
0

[v2(x)−N2
i ]

1
2dx = (i− 1)π + ϕ0 + ϕt, i = 1, 2, 3... (6.1)

n(xi) = Ni (6.2)

v(x) =

 n(x) (TE)

n(x)[1 + n(x)n(x)−2n2(x)
k2n4(x)

] (TM)

 (6.3)

where n(x) is the actual refractive index profile as a function of

position x, Ni = βi/k is the effective index of the ith order mode with

propagation constant βi, k = 2π/λ is the free space wavenumber, � is the

free-space wavelength of light, xi is the turning point position of the ith order

mode as given by Eq. 6.2, x0 and N0 are the turning point and effective

index of the glass substrate, and ϕ0 and ϕi ≡ ϕt = cons tan t (for all i) are

the phase contributions from the turning points x0 and xi [11]. The profile is

assumed to be monotonically decreasing (true for the experimental case of an

OPV bulk heterojunction that we consider later), and therefore the first

turning point (x0) is always located at the beginning of the structure (the

interface between substrate and index-matched layer in this case). The

values of ϕ0and ϕt are given by

n(xi) = Ni (6.4)
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Figure 6.2.1: Refractive index profile n(x) of an index-matched layer and an unknown
photoactive layer on a glass substrate, as a function of position x. (Ni, xi) represents
the (effective index, turning point) for guided mode i.

ϕ0 = tan−1

{
r0

[
N2

i − n2
glass

N2
0 −N2

i

] 1
2

}
(6.5)

where r0 = 1 for transverse-electric (TE) modes, and r0 = (N0/nglass)
2 for

transverse-magnetic (TM) modes.

The recursive equation

xi =

(i− 1)π + ϕ0(Ni) + ϕt −
i−1∑
j=1

k
{
xj

[
(N2

avg,j −N2
i )

1/2 − (N2
avg,j+1 −N2

i )
1/2

]}
k(N2

avg,i −N2
i )

1/2
, i = 1, 2, 3

(6.6)

where Navg,i = (Ni +Ni−1)/2, relies on backward averaging of the effective

indices to obtain values between the measured ones. To verify the reliability

of our IM-IWKB method in the Numerical Results section below, we use

Finite-Difference Time-Domain (FDTD) calculations [67] to construct a
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sample structure with a known RIP and solve for the effective indices of the

guided modes. These effective index values are then used to reconstruct the

RIP using the IM-IWKB method outlined above. In the Experimental

Results section below, the effective index values of a test structure are

measured using prism coupling [16, 71, 76], and these values are then used to

reconstruct the RIP using the IM-IWKB method outlined above. It is

important to note that if the index gradient of the photoactive layer was in

the opposite direction (highest index at the air-layer interface and lowest at

the substrate-layer interface), then we would need to put the index-matched

layer between the photoactive layer and the air.

Experimentally, we use a prism coupler (Metricon Model 2010) to

measure the effective indices of the guided modes in a sample, as shown in

Fig. 2.5.6[16, 76].

6.2.2 Sample preparation and characterization

The test films used for the experiments shown in Fig. 6.4.1 were

deposited on the AlN side of AlN (5 �m ± 5%thicknesses were

used)/sapphire(430 µm) substrates (Kyma Technologies, wafer ID:B6523-1).

The thickness of the AlN layer was determined by spectroscopic ellipsometry.

The RMS surface roughness of the AlN is 50 nm. The test photoactive layer

films were bulk heterojunction (BHJ) layers that are typically used as the

photoactive layer in OPVs, consisting of solution-processed 1:1 ratio

poly(3-hexythiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl

ester (PCBM) (20 mg/ml) in dichlorobenzene solvent [15]. The
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P3HT:PCBM was spin-coated (700 rpm for 40 s) on the AlN. The devices

were thermally annealed at 150 °C for 10 min in a glove box for

post-processing before measurement. Although we use a sapphire substrate

in these experiments, any substrate can be used as long as it has minimal

absorption at the wavelength of interest, and as long as its refractive index is

lower than the lowest refractive index of the photoactive layer. We choose

AlN as the index-matched layer for the following reasons: (1) The refractive

index (n = 2.0039) of AlN is higher than and very close to the highest

refractive index of the P3HT:PCBM photoactive layer. To use the IM-IWKB

method, the refractive index of the whole structure (including the

index-matched layer) should decrease monotonically. Therefore the refractive

index of the index-matched layer should be higher than the highest refractive

index of the P3HT:PCBM photoactive layer. (2) The thickness of the

index-matched layer (AlN, 5 µm) should be large enough to obtain a

sufficiently large number of data points.

6.3 Numerical results and discussion

To demonstrate the benefits and reliability of our methods, we use

FDTD calculations [67] to simulate a sample structure with a known RIP

and solve for the effective indices of the guided modes. We first consider the

structure: substrate(semi-infinite thickness, refractive index n =

1.76)/index-matched layer(1 µm, 5 µm, 20 µm, n = 1.93)/photoactive

layer(1 µm)/air shown in Fig. 6.3.1(a) at a wavelength of 500 nm. For this

example, all layers are considered to be non-absorbing (purely real refractive
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index), including the RIP of the 1 µm photoactive layer, which is defined as

nPA(x) = 1.93−0.13(x/tPA)
2 (shown as the black line labeled “Actual

Profile” in Fig. 6.3.1(a)), where tPA is the thickness of the photoactive layer,

and x is the position within the photoactive layer with x = 0 representing

the photoactive-layer-index-matched-layer interface. From Fig. 6.3.1(a), we

see that by varying the thickness tIM of the index-matched layer, we can

increase the spatial resolution and accuracy of the reconstruction − (0.0095,

0.0072, 0.0068) are the root mean squared differences, ∆RMS, between the

reconstructed profile and the actual profile, and (200nm, 63nm, 33nm) are

the spatial resolutions (spacing between successive points in the

reconstruction) for (1 µm, 5 µm,10 µm) thick index-matched layers,

respectively. In this reconstruction, the deviations of the higher-order modes

near the air interface from the actual profile become larger because the phase

contributions from the turning points near air interface are not exactly π/4

due to the weaker confinement of these modes.

Next we consider the structure: substrate(semi-infinite, n =

1.76)/index-matched layer(tIM = 10 µm, n = 1.93)/photoactive layer(tPA =

1 µm, parabola (∆RMS = 0.0068), exponential (∆RMS = 0.0147),

Gaussian((∆RMS = 0.0090) profile)/air in Fig. 6.3.1(b) in order to test the

performance of the IM-IWKB method works for different profiles. As shown

in Fig. 6.3.1(b), the IM-IWKB method performs well for any functional

form, as long as that form satisfies the slowly varying constraint of the WKB

method.

Next we consider the structure: substrate(semi-infinite, n =
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Figure 6.3.1: Reconstructed RIPs for TE-polarized light performed by the IM-IWKB
method using guided mode effective indices obtained via FDTD simulation for the
structure: substrate(semi-infinite, n = 1.76)/index-matched layer(thickness tIM , n =
1.93)/photoactive layer(thickness tPA, “Actual Profile” (solid black line): nPA(x) =
1.93−0.13(x/tPA)

2 unless otherwise stated)/air. Wavelength λ assumed to be 500
nm unless otherwise stated. The number in parentheses in the legend is the root
mean squared difference between the reconstruction and the actual profile. (a) tIM
= (1 µm, 5 µm, 10 µm); tPA = 1µm. (b) tIM = 10 �m; tPA = 1µm, nPA(x) =
(parabolic, exponential, Gaussian). (c) tIM = 5 �m; tPA = (200 nm, 500 nm, 1 µm)
normalized to 1. (d) tIM = 5 µm; tPA = 200 nm; λ = (500 nm, 650 nm, 829 nm).
(e) tIM = 5µm, nIM = (1.95, 2.0, 2.03), Δn = (0.02, 0.07, 0.1); tPA = 1 µm. (f)
Spatial resolution (defined as the average spacing between successive points in the
reconstruction) for the IM-IWKB reconstruction tIM = 1-10 µm; tPA = (1 µm, 200
nm).
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1.76)/index-matched layer(tIM = 5 �m, n = 1.93)/photoactive layer(tPA =

200 nm, 500 nm, 1 µm)/air in Fig. 6.3.1(c) at a wavelength of 500 nm. From

the figure, we see that ∆RMS gets larger as the photoactive layer becomes

thinner. However, the reconstruction is still very accurate for a 200 nm

photoactive layer (∆RMS = 0.0133). Decreasing the laser wavelength can also

increase the spatial resolution and accuracy of the reconstruction. Figure

6.3.1(d) demonstrates this effect for the structure: substrate(semi-infinite, n

= 1.76)/index-matched layer(5 µm, n = 1.93)/photoactive layer(200 nm)/air

at laser wavelengths of 829 nm (∆RMS = 0.0249), 650 nm (∆RMS = 0.0182)

and 500 nm (∆RMS = 0.0133). The absorption spectrum of the material used

in the structure is the key limitation to determining which wavelengths are

experimentally feasible. Wavelengths that are strongly absorbed cannot be

used to measure the effective indices since the minimum in the reflected

signal that indicates the effective index becomes increasingly difficult to

identify with increasing absorption.

In the experiment setup, the refractive index of the photoactive layer at

the index-matched-layer interface (nPA(x = 0)) and the refractive index of

the index-matched layer (nIM) are not matched perfectly. If the IM-IWKB

method is used on such a profile, there will be an error introduced because

the slowly varying assumption of the IWKB method is violated at this

interface. However, if we can make the refractive index step (Δn =

nIM−nPA(x = 0)) at the interface small enough, the introduced error can be

neglected as shown in Fig. 6.3.1(e). The structure assumed in Fig. 6.3.1(e)

is: substrate(semi-infinite, n = 1.76)/index-matched layer(5 µm with Δn =
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0.02, 0.07 and 0.1 refractive index steps)/photoactive layer(1 µm)/air. From

Fig. 3(e), we see that while step sizes of Δn = 0.1 and Δn = 0.07 yield

relatively large ∆RMS values (0.0132 and 0.0144, respectively), reducing the

step to Δn = 0.02 improves the accuracy of the reconstruction (∆RMS =

0.0074).

Finally, in Fig. 6.3.1(f) we show that the spatial resolution of the

IM-IWKB method increases with increasing thickness of the index-matched

layer. The spatial resolution is defined as the average spacing between

successive points in the reconstruction, and is calculated by dividing the

thickness of the photoactive layer by the number of modes whose turning

points lie within the photoactive layer. Relative to the case of a 1µm thick

index-matched layer, a 10µm thick index-matched layer improves the spatial

resolution of the reconstruction for the 1 µm and 200 nm thick photoactive

layers by a factor of 6 and 9.4, respectively.

6.4 Experimental results and discussion

The bulk-heterojunction active layers that are typically employed in

OPV devices are comprised of a mixture of electron donor and electron

acceptor materials [81]. A canonical material choice for a OPV photoactive

layer employs poly(3-hexythiophene-2,5-diyl) (P3HT) as the electron donor

and phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor.

In this section, we describe experiments that use the IM-IWKB method to

reconstruct the RIP of P3HT:PCBM bulk heterojunction photoactive layers.

These experiments use a prism coupler to measure the guided-mode effective
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indices (as shown in Fig. 2.5.6) of P3HT:PCBM thin-film samples on top of

an indexed-matched layer of AlN, and then use these effective indices as

input to the IM-IWKB reconstruction technique. It is well known that these

layers exhibit vertical phase segregation gradients (donor/acceptor ratios

that vary with depth) [3, 21]. From knowledge of the refractive indices of

pure P3HT (1.780 for TE polarization at a wavelength of 829 nm) and pure

PCBM (1.95425 for TE at 829 nm) obtained via spectroscopic ellipsometry,

the RIP measured using IM-IWKB, and Bruggeman effective medium theory

[33], we obtain the concentration depth profiles for PCBM and P3HT

throughout the photoactive layer. In order to take into account the influence

of annealing on P3HT due to the change in crystallinity, the pure P3HT is

also thermally annealed at 150°C for post processing prior to measurement.

Fig.6.4.1(a) presents measurements of the reflected light intensity at 829 nm

for TE polarization as measured by the prism coupler setup shown in Fig.

2.5.6. For the structure: sapphire(430 µm)/index-matched layer(AlN, tIM =

5 µm ± 5%)/photoactive layer (P3HT:PCBM, 200 nm)/air, the reflected

intensity shows 13 minima, each of which corresponds to a guided mode

effective index. From these 13 effective index values, we use the IM-IWKB

method described above to reconstruct the RIP as shown in Fig. 6.4.1(b).

The thickness of the index-matched layer is around 5.3 µm from ellipsometry

measurements and by subtracting this thickness from the thickness of the

entire structure, we can obtain the RIP in the photoactive layer region as

shown in Fig. 6.4.1(c). From the reconstructed RIP, we measure that the

refractive index of the P3HT:PCBM photoactive layer changes from 1.98 to
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1.8, in going from the index-matched layer interface to the air, and that the

thickness is around tPA » 170 nm (5.3 µm to 5.47 µm), While ellipsometry

measurements yield tPA = 200 nm, from Fig. 6.3.1(d), we see that the

thickness of the photoactive layer (200 nm) suggested by the reconstructed

RIP underestimates the actual thickness by about 30nm. The refractive

index of index-matched layer (AlN) is 2.0039±0.0001 as measured by

single-film prism coupler measurements. There is a refractive index step Δn �

(2.0039 − 1.977) = 0.0269 between the index-matched layer and photoactive

layer, since we know from Fig. 6.3.1(e), that the highest refractive index

(1.977) at the index-matched layer-photoactive-layer interface is

overestimated. As mentioned earlier, the P3HT:PCBM films are typically

thermally annealed at 150 °C for 10 min in a glove box for post processing

prior to measurement. Fig. 6.4.1(d) shows the reconstructed RIP of the

structure: sapphire(semi-infinite)/index-matched layer(AlN, tIM = 5.3

µm)/photoactive layer (P3HT:PCBM, 200 nm)/air with and without

thermal annealing, demonstrating that the slope of the RIP with annealing is

larger than that without annealing. From these RIPs, and knowledge of the

refractive indices of pure PCBM (1.954 for TM and TE at 829 nm) and

P3HT (1.596 for TM and 1.780 for TE at 829 nm), we use Bruggeman

effective medium theory as shown in Eq. 6.8 and 6.8 (where vP3HT and

vPCBM are the volume fractions of P3HT and PCBM, and nP3HT and nPCBM

are the refractive indices of pure P3HT and pure PCBM) [33] to determine

the depth profile of the PCBM volume fraction in the photoactive layer, as
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shown on the right-hand vertical axis in Fig. 6.4.1(d).

vP3HT
nP3HT −Ni

nP3HT + 2Ni

+ vPCBM
nPCBM −Ni

nPCBM + 2Ni

= 0, i = 1, 2, 3... (6.7)

vP3HT + vPCBM = 1 (6.8)

6.5 Summary and Outlook

We have demonstrated a new method (IM-IWKB) for reconstructing

the depth-dependent refractive-index profile in thin films (200 nm) with high

spatial resolution (10 nm possible at a wavelength of 500 nm) by depositing a

relatively thick index-matched layer (1-10 µm) adjacent to the thin film of

interest and applying the Inverse Wentzel-Kramers-Brillouin (IWKB)

method. We have applied this method to 200 nm thick bulk heterojunction

layers of P3HT:PCBM, a common absorber layer used in OPVs and shown

that by combining the RIP reconstruction with effective medium theory, the

depth dependent profiles of the donor (P3HT) and acceptor (PCBM) volume

fractions can also be determined. By reconstructing the volume fraction

profile both before and after the annealing of the P3HT:PCBM layer, we

were able to measure directly, with high spatial resolution, the evolution of

phase segregation of the P3HT and PCBM phases during the annealing

process. In comparison with alternative approaches such as ellipsometry, the
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Figure 6.4.1: Experimental reconstruction of the RIP by the IM-IWKB method, using
guided mode effective indices measured the prism coupler setup shown in Fig. 2.5.6.
(a) Reflection spectrum for structure: sapphire(430 µm)/index-matched layer(AlN,
tIM = 5.3 µm)/photoactive layer (P3HT:PCBM, 200 nm)/air. (b) RIP reconstruc-
tion for the structure in (a). (c) RIP reconstruction of the photoactive layer region
for the structure in (a). (d) RIP reconstruction for the structure in (a) with (red)
and without (green) thermal annealing. In panels (d), the right-hand axis shows the
PCBM volume fraction calculated from the RIP by applying Bruggeman effective
medium theory as described in the text.
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IM-IWKB method achieves high spatial resolution with no free parameters

as it reconstructs the refractive index profile by applying the IWKB method

to direct measurements. The IM-IWKB technique applies to any thin film,

including the photoactive layers of a many thin-film photovoltaics, and we

believe it has the potential to be a broadly useful and non-destructive

technique for measuring optical and material properties with high spatial

resolution.
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Chapter 7

Modified Index-matched IWKB with

a Correction to the Phase Contri-

bution

7.1 Introduction

In Chapter. 6, We introduced the Index Matched Inverse

Wentzel-Kramers-Brillouin (IM-IWKB) Method as a new technique for the

reconstruction of refractive index profiles (RIPs) with high spatial resolution

within the photoactive layers of thin-film photovoltaics for films as thin as

200 nm [54].

The previous demonstration of both the IWKB and the IM-WKB

methods assume a constant phase shift equal to π/4 at the turning point in

the film. For thick films where IWKB is applicable, this approximation is

justified. However, the assumption of a phase shift of �π/4 becomes
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Figure 7.1.1: Refractive index profile n(x) considered in our calculations. Red
(Black) line: Index profile that is continuous (discontinuous) at x=a. (Ni, xi) rep-
resents the (effective index, turning point) for guided mode i, and a represents the
thickness of the index-matched layer + unknown photoactive layer.

increasingly unjustified as the thickness of the film is decreased. In the case

of thin films less than one micron in thickness, for which IM-IWKB is

appropriate, this assumption results in error in the reconstructed RIP.

In this Chapter, we derive a correction to this phase shift term for the

case of thin films and demonstrate the improved accuracy of IM-IWKB when

using this modified phase contribution compared to the standard case of π/4.

We first describe the mathematical basis of our approach, and then apply it

to a computational example that assumes a RIP of a “canonical” organic

photovoltaic (OPV) system to demonstrate that the method with modified

phase shift achieves improved accuracy.
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Figure 7.1.2: Reconstructed RIPs of the photoactive layer for TE-polarized light at
a wavelength of 500 nm performed by the IM-IWKB method both with and without
phase modification using guided mode effective indices obtained via FDTD simulation
for the structure (see Fig. 7.1.1 black line, discontinuous at x=a): substrate(semi-
infinite, n=1.76)/index-matched layer (n=1.93)/photoactive layer(“actual Profile”
(solid black line): n(x) = 1.93−0.13(x/tPA)

2 unless otherwise stated)/cover= (n=1).
(tpA, tIM ) = thickness of the (photoactive layer, index-matched layer). Number in
parentheses in legend is the root mean squared difference between the reconstruc-
tion and the actual profile. (a) Substrate(semi-infinite, n=1.76)/index-matched layer
(tIM = 5µm, n=1.93)/photoactive layer(tpA = 1µm)/cover both with (red) and with-
out (green) phase modification. (b) Substrate(semi-infinite, n=1.76)/index-matched
layer (tIM = 10µm, n=1.93)/photoactive layer(tpA = 1µm, Gaussian profile)/cover
both with (red) and without (green) phase modification. (c) With phase modification
for two values of tpA (500 nm and 1 µm) for substrate(semi-infinite, n=1.76))/index-
matched layer (tIM=5 �m, n=1.93)/photoactive layer (tpA = 500nm, 1 µm)/cover,
with depth in photoactive layer normalized to 1. (d) Dependence of phase contribu-
tion ϕi on the effective index in the cases with (red square) and without (black circle)
phase modification for the structure substrate(semi-infinite, n=1.76)/index-matched
Layer (5 �m, n=1.93)/photoactive Layer (tpA = 500nm)/cover.
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Figure 7.2.1: Reconstructed RIPs of the photoactive layer for TE-polarized light at
a wavelength of 500 nm performed by the IM-IWKB method both with and without
phase modification using guided mode effective indices obtained via FDTD simulation
for the structure (see Fig. 7.1.1 red line, continuous at x=a): substrate(semi-infinite,
n=1.76)/index-matched layer (n=1.93)/photoactive layer(“actual Profile” (solid black
line): n(x) = 1.93 − 0.13(x/tPA)

2 unless otherwise stated)/cover. (tPA, tIM ) =
thickness of the (photoactive layer, index-matched layer). Number in parentheses in
legend is the root mean squared difference between the reconstruction and the ac-
tual profile. (a) Substrate(semi-infinite, n=1.76)/index-matched layer (tIM = 5µm,
n=1.93)/photoactive layer (tPA = 0.5µm/cover (n=1.8) both with (red square)
and without (green diamond) phase modification. (b) Dependence of phase contribu-
tion ϕi on the effective index in the cases with (red circle) and without (black square)
phase modification for the structure substrate(semi-infinite, n=1.76)/index-matched
Layer (5 �m, n=1.93)/photoactive Layer (tPA = 500nm)/cover (n=1.8).
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7.2 Modified Phase Contribution

The quantity ϕi in Eq. 6.6 from Chapter 6 represents the phase

contribution from the turning point xi. The phase contribution ϕi is

typically assumed to be a constant value of π/4 [8], which is a good

approximation for the thick-film case. However, for the case of thin films (<

1µm thick) relevant to the IM-IWKB method and many thin-film

photovoltaics, ϕi must be modified, especially for modes that have turning

points near the cover interface [77].

In this chapter, to demonstrate the improved accuracy of IM-IWKB

when using this modified phase shift term, the thin-film structure is divided

to two cases. The first example is the structure shown in Fig. 7.1.1 (black

line), where the index profile is discontinuous at x=a. For this case, the

phase contribution ϕi is given by Eq .7.1. The second example is the

structure shown in Fig. 7.1.2 (red line), where the index profile continuous at

x=a, in which case the phase contribution ϕi is given by Eq. 7.2:

ϕi = tan−1

{
r0Pa+ [Bi(ξ1) + Ai(ξ1)] + D1/3

1 [B′
i(ξ1) + A′

i(ξ1)]

r0Pa+ [Bi(ξ1)− Ai(ξ1)] + D1/3
1 [B′

i(ξ1)− A′
i(ξ1)]

}
(7.1)

ϕi =
π

4
+ tan−1

[
Pa+Ai(ξ2)−D

1/3
2 A

′(ξ2)
i

Pa+Bi(ξ2)−D
1/3
2 B

′(ξ2)
i

]
(7.2)

where r0 = 1 for TE modes, r0 = n2(a−)/n2(a+) for TM modes, Ai(x)
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and Bi(x) are Airy functions, and for convenience we define:

P 2 = k2(N2
i − n2(x))

Pa+ = P (x = a+)

Pa− = P (x = a−)

D1 = k2[N2
i − n2(x = a−)]/(a− xi)

D2 = k2[n2(x = a−)−N2
i ]/(a− xi)

ξ1 = ξ(x = a−) = P 2
a−D

−2/3
1

ξ2 = ξ(x = a+) = P 2
a+D

−2/3
2

(7.3)

Now that we have derived a modified expression for the phase

contribution ϕi, we can apply this modified IM-IWKB technique to the

reconstruction of RIPs typical for P3HT:PCBM bulk heterojunction absorber

layers in organic photovoltaics [54]. The RIP is reconstructed via modified

IM-IWKB by the following iterative method:

1. Use IM-IWKB method (ϕi = π/4) to determine the initial set of xi.

2. Use the initial set of xi and corresponding Ni to calculate the modified

phase contribution ϕi

3. Use the modified phase contribution ϕi to calculate a new set of x′
i.

Calculate difference � between the initial xi and the modified

x,
i : δ = |x,

i − xi|.

4. Repeat steps (2) and (3) until � for successive sets of xi is sufficiently

close to zero.
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In order to perform step (2), we need to know the thickness a, which

can be obtained with the following approximation:

a = xi=f + (xi=f − xi=f−1)/2 (7.4)

Where xi = f is the last mode with an effective index larger than the

unknown photoactive layer refractive index at the cover interface (x=a).

This requires knowledge of the minimum refractive index values in the film of

interest, which can be obtained by using a surface-plasmon-mode resonance

measurement [68].

To quantify the improvement due to the modified phase contribution,

we use Finite-Difference Time-Domain (FDTD) calculations to construct a

sample structure with a known RIP and solve for the effective indices of the

guided modes. These effective index values are then used to reconstruct the

RIP using the IM-IWKB method both with ϕi = π/4, and with the modified

phase contribution. We compare the accuracy of the reconstruction with and

without the phase-shift correction.

7.3 Numerical Results and Discussion

The results of this comparison are shown in Fig. 7.1.2 and 7.2.1, which

shows the reconstructed RIPs performed by the IM-IWKB method using

guided mode effective indices obtained via FDTD simulation for the two

cases shown in Fig. 7.1.1 – continuous (red line) and discontinuous (black

line) refractive-index profile at x=a. We first consider the case where the
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refractive profile is discontinuous at x=a (black line in Fig. 7.1.1). From Fig.

7.1.2(a) and 7.1.2(b), we see significant improvement in the agreement

between the reconstruction and the actual profile when the modified phase

term is used, especially for points near the interface between the photoactive

layer and the cover. Averaged over the entire thickness of the photoactive

layer, modifying the phase contribution reduces the root mean squared

difference between the reconstruction and the actual profile from 0.01 to

0.002 in Fig. 7.1.2(a) and from 0.005 to 0.003 in Fig. 7.1.2(b). Fig. 7.1.2(c)

shows that the modified IM-IWKB maintains this improved accuracy near

the cover interface (x=a) even for films as thin as 500nm. Finally, Fig.

7.1.2(d) shows calculated value of ϕi as a function of the effective index of

the mode for the structure: substrate(semi-infinite, n=1.76)/index-matched

Layer (5 µm, n=1.93)/photoactive Layer ((tPA = 500nm)/cover (n=1). We

see that modified phase ϕi (red squares) increasingly deviates from π/4

(black circles) as the effective index decreases. This makes physical sense as

these lower-index modes are less strongly confined and have turning points

near the interface of the photoactive layer and cover, and are therefore more

strongly affected by the index/index-slope discontinuity at this interface.

In Fig. 7.2.1, we consider the case where the refractive profile is

continuous at x=a (red line in Fig. 7.1.1). Fig. 7.2.1(a) shows that by

introducing the modified phase contribution, we can increase the accuracy of

the reconstruction, especially for modes whose turning points are near the

cover interface (x=a). Fig. 7.2.1(b) shows calculated value of �i as a function

of the effective index of the mode for the structure: substrate (semi-infinite,
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n=1.76)/index-matched Layer (5 µm, n=1.93)/photoactive Layer (tPA=500

nm)/cover (n=1.8). We see that modified phase ϕi (red squares) increasingly

deviates from π/4 (black circles) as the effective index decreases. As in the

discontinuous case, this makes physical sense as these lower-index modes are

less strongly confined and have turning points near the interface of the

photoactive layer and cover, and are therefore more strongly affected by the

index-slope discontinuity at this interface. This is also consistent with Fig.

7.1.2(a), 7.1.2(b) and Fig. 7.2.1(a), which show the most dramatic

improvement at the cover interface. The modified phase term �i for the

continuous case is always less than π/4 (see Fig. 3(b)), whereas in the

discontinuous case where the modified phase term is always greater than π/4

(see Fig. 7.1.2(d)), as can be understood by inspecting Eqs. 7.1 and 7.2.

7.4 Summary and Outlook

In summary, we have developed a modified phase contribution for the

IM-IWKB method [54] for the reconstruction of refractive index profiles

within thin-film photovoltaic absorber layers, and quantified the

improvement due to this modification for structures typical of organic

photovoltaics. Near the low-index surface of the photoactive layer, this

modification improves the error in the reconstructed profile from about 2%

for unmodified IM-IWKB to less than 0.2% for modified IM-IWKB. Future

work will apply this technique to the in-situ measurement of phase

segregation evolution during the annealing of bulk heterojunction organic

photovoltaics. Although we focused on the application of this technique to
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organic photovoltaics, this technique applies to the reconstruction of the

refractive index profile within any thin-film material.
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Chapter 8

Conclusion

This thesis has presented a fundamentally new slot thin-film

photovoltaic design. By allowing strong optical absorption in a photovoltaic

device with a very thin active layer, the invention described in this thesis

allows photovoltaics devices with improved electrical performance due to the

very thin active layers (thus allowing charge to be more easily extracted from

the active layer), while at the same time maintaining strong optical

absorption typical of much thicker active layers in current state-of-the-art

devices.

While both theoretical and computational have shown that the slot

OPV structure will enhance the light absorption in the active layer, in the

actual implementation, the need for high index layers make the efficient

coupling of incident sunlight into the guided modes more difficult due to the

reflection from high index material. In real practice, light trapping with

carefully designed must be used to enable efficient coupling of the incident

light into the guided mode.
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We also have developed several novel characterization techniques that

improve the accuracy of thin-film solar cell computational models by

improving the accuracy of the input data. Both the charge collection

probability and depth-depend refractive index profile reconstruction methods

developed in this thesis are non-destructive and parameter-independent

optoelectronic method. The self-constrained ill-posed inverse problem

(SCIIP) method has the potential to improve the accuracy of inverse

problem reconstruction solution in a wide range of fields, including

subsurface mapping in geology [69], image reconstruction in astronomy or

medicine [2, 14], and depth profiling of solar cells and other thin-film stacks

[15, 55, 75]. In future work, a more efficient optimization method other than

Cellular Evolutionary Algorithm should also be developed to apply this work

to 2D case.

Together, these methods help us improve the measurement accuracy of

the depth profile within thin-film photovoltaics for optical and electronic

properties such as refractive index and charge collection probability, which is

critical to the understanding, modeling and optimization of these devices.

In the future, we will focus on designing new coupling structure to

couple the incidence light into the guided mode in the slot waveguide

structure. For the self-constrained ill-posed inverse (SCIIP) method, we will

develop a more efficient optimization method other than cellular evolution

algorithm to apply this method to the 2D inverse problem.
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Chapter 9

Appendix

For the code used to run the FDTD simulation. Please see the FDTD

simulation package: https://github.com/wstcpyt/FDTDcpp.

For the code used to run the SCIIP method. Please see the inverse

problem package: https://github.com/wstcpyt/InverseProblemPackage.
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