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Abstract of the Dissertation

Aspects of T-dually extended Superspaces

by

Martin Poláček

Doctor of Philosophy

in

Physics

Stony Brook University

2017

This dissertation is divided into three main parts where we derive various
properties of the T-dually extended superspaces.

In the first part we reformulate the manifestly T-dual description of
the massless sector of the closed bosonic string, directly from the geome-
try associated with the (left and right) affine Lie algebra of the coset space
Poincaré/Lorentz. This construction initially doubles not only the (space-
time) coordinates for translations but also those for Lorentz transformations
(and their “dual”). As a result, the Lorentz connection couples directly to the
string (as does the vielbein), rather than being introduced indirectly through
covariant derivatives as previously. This not only reproduces the old defini-
tion of T-dual torsion, but automatically gives a general, covariant definition
of T-dual curvature (but still with some undetermined connections).

In the second part we give the manifestly T-dual formulation of the mass-
less sector of the classical 3D Type II superstring in off-shell 3D N = 2
superspace, including the action. It has a simple relation to the known su-
perspace of 4D N = 1 supergravity in 4D M-theory via 5D F-theory. The
pre-potential appears as part of the vielbein, without derivatives.

In the last and the most involved part we find the pre-potential in the
superspace with AdS5 × S5 background. The pre-potential appears as part
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of the vielbeins, without derivatives. In both subspaces (AdS5 and S5) we
use Poincaré coordinates. We pick one bulk coordinate in AdS5 and one
bulk coordinate in S5 to define the space-cone gauge. Such space-cone gauge
destroys the bulk Lorentz covariance. However, it still preserves boundary
Lorentz covariance (and gives projective superspace) SO ( 3, 1 ) ⊗ SO ( 4 )
and so symmetries of boundary CFT are manifest.
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tastic support and very helpful scientific discussions and insights.

I would like to thank my amazing family and close friends for their ever-
lasting support.

This work was supported in part by National Science Foundation Grants
No. PHY-1316617 and PHY-0969739.

xi



Chapter 1

1 General Introduction

T-duality is an important duality that we know exists in string theory. We
also know that there should exist a low energy effective theory coming from
string theory. This low energy theory is known as supergravity and string
theory hints to us that supergravity should exhibit a natural appearance
of T-duality. As in usual general relativity also in supergravity the Rie-
mann curvature tensor is of uttermost importance. The T-dual analog of the
Riemann tensor was first obtained by Professor Warren Siegel in his paper
Superspace duality in low-energy superstrings [1]. The derivation of
that tensor was not direct. In our first paper Natural curvature for man-
ifest T-duality [11] we therefore obtained the T-dual Riemann tensor in a
natural way directly using a certain T-dually extended superspace (though
this did not require supersymmetry). Our derivation of the Riemann tensor
paralleled the original Einstein theory. We also discovered that additional
covariance compensators should be added to the original T-dual Riemann
tensor.

As we saw in our first paper the T-dually extended superspace has po-
tential to produce objects of interest (like the Riemann tensor) in a very
natural way. In the next paper we proceeded to include supersymmetry into
the model. One of the easiest models of supergravity is three dimensional
supergravity with two kinds of supersymmetry, often written as 3D N = 2
supergravity. It is known that this supergravity naturally comes from an
even easier theory of four dimensional supergravity with only one supersym-
metry, also known as 4D N = 1 supergravity. The process of going from
4D N = 1 to 3D N = 2 supergravity is called dimensional reduction where
one basically forgets about one spatial dimension. It did not take long to
realise that this setting was even more interesting with respect to the emer-
gence of the T-dually extended superspace. One can imagine that the four
dimensional supergravity with one supersymmetry could be thought of as
coming from a curious five dimensional space with one supersymmetry, but
with two dimensions of time! It was even more fascinating because this idea
parallels some formulations of twelve dimensional two-time theories called
F-theory. So we also called our peculiar two-time theory a low dimensional
F-theory. The reason why we looked one dimension higher and at two-time
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theory was the twofold use of the dimensional reduction. Starting from five
dimensional F-theory one can dimensionally reduce in the time direction,
i.e. forget about one time direction and re-obtain the classical N = 1 su-
pergravity in four dimensions. However, one can alternatively remove one
spatial dimension and thus get a very interesting two-time and two-space
dimensional theory. Surprisingly, this theory can be naturally re-casted as
the theory living at three dimensional T-dually extended superspace. This
identification was our starting motivation for the second paper T-duality
off shell in 3D Type II superspace [12]. The objective was to use the
T-dually extended superspace to solve three dimensional supergravity via
an object called the pre-potential. One can imagine a pre-potential as the
basic vacuum field from which all the physical fields can be obtained by ac-
tion of covariant derivatives. We succeeded and obtained the right form of
pre-potential again in a very natural way.

The long term objective was to look at real superstring theory, which nat-
urally lives in ten dimensions. The real space is however four dimensional.
Superstring theory therefore has to be somehow constrained or compactified
to four dimensions. In the last paper Pre-potential in the AdS5× S5 Type
IIB superspace [13] we examined fully fledged ten dimensional N = 2
superstring theory, i.e. IIB supergravity using the T-dually extended super-
space. We solved it for flat and also for the AdS5 × S5 background. The
AdS5 × S5 background is a curved, but still maximally symmetric back-
ground. This space is of high importance because of the AdS/CFT corre-
spondence. In recent years physicists realised that there exists a dictionary
between problems formulated in terms of superstring theory i.e. supergrav-
ity living in ten dimensional space and Conformal Field theory living at the
boundary of that space, this is the AdS/CFT correspondence. It is of high
interest because it shows how to translate hard problems in one theory to
hopefully easier problems in another. The natural formulation of objects in
the supergravity is therefore very important. That was our motivation to use
our T-dually extended superspace to understand solutions in the AdS5 × S5

background. The pre-potential solution we obtained for both backgrounds
(flat and AdS5 × S5) is in a sense united. We started with the T-dualised ver-
sion of type IIB superstring theory in a flat background. As in usual general
relativity this theory could be made curved by using generalised vielbeins. To
see the physical content of the theory one needs to solve various constraints,
known as the ABCD constraints. In the theory with extended T-dual su-
perspace one also finds a huge gauge symmetry. Therefore we picked the
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gauge to be a generalised light-cone gauge. This choice fully fixes the gauge
freedom. We solved the theory at the linearised level around the flat and
the AdS5 × S5 background. The particular treatment of the AdS5 × S5

background was in its own right interesting. In order to put it on the same
footing with the flat space we needed to extend the AdS5 × S5 symmetry
group (after the Wick rotation) SO ( 5 ) ⊗ SO ( 5 ) to the the double flat
space space symmetry group SO ( 10 ) ⊗ SO ( 10 ) (after the Wick rotation).
That added some non-trivial contributions into the solutions of the torsion
constraints. Finally we found the right pre-potential solution for both flat
and the AdS5 × S5 background and even more interestingly the AdS5 × S5

pre-potential was a certain curvature dependent deformation of the flat so-
lution. We also provided the near horizon limit in the case of AdS5 × S5

and a more detailed analysis about the connection with the boundary CFT
theory.
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Chapter 2

2 Introduction: Natural curvature for mani-

fest T-duality

2.1 Outline

T-duality invariance can be manifested on all the fields of the massless sector
of bosonic strings [1]. This was based on the treatment of the compactifi-
cation scalars, for dimensional reduction of d dimensions, as elements of the
coset SO(d, d) /SO(d)2 [2]. This symmetry was expanded to:

SO(D, D) / SO(D − 1, 1)2 (2.1)

for the full D dimensions to include all fields without compactification, where
the symmetry is broken spontaneously to the usual SO(D−1,1), except when
partially restored by dimensional reduction. (Generalization to GL groups [4]
was also treated, but turned out not to be convenient for supersymmetry, and
will not be considered here. For relations to later approaches, and extensions
beyond what is needed here, see [3] and references therein.)

We will work on a space with explicit Lorentz coordinates. Dependence
of the (background) vielbein on them is completely fixed (up to gauge) by
the coset constraints, as applied by fixing the associated parts of the torsion
to take their “vacuum” values. Moreover, as in [1], D-dimensional spacetime
will be dualized. To do the stringy generalizations (of oscillator algebras to-
gether with the Lorentz algebras), we will need to introduce a new current
Σ for consistency with the Jacobi identity [5]. (The necessity of this current
was first realized in the context of AdS5×S5 [16].) The usual oscillator Lie al-
gebra will become the extended affine Lie algebra (Lorentz and Σ generators
included).

The generalized torsion is constructed from this affine Lie algebra in a
general background, which acts as the stringy generalization of covariant
derivatives. Because of the additional currents, the enlarged vielbein that
describes this background includes the Lorentz connection, and the enlarged
torsion includes also the curvature. Closure of the algebra implies the orthog-
onality constraints EηET = η on the vielbein. Solving these together with
the coset constraints reduces the vielbein to the usual T-dual generalization
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of the vielbein and Lorentz connection, as well as a new curvature-like field.
There is also an extension of dimensional reduction to the usual D coordi-
nates. At the end we will obtain the same results for the torsion constraints
and curvature tensor as previously, but by a much more direct way.

The rest of this paper is organized as follows: In the remainder of the
Introduction we summarize the general procedure. In the next section we
review the description of fields on general coset spaces, and then apply this
to the case of spin for Poincaré/Lorentz to give a “first-quantized” approach
to general relativity. The corresponding affine Lie algebra is described in
section 3. In section 4 we introduce the vielbein and the coset constraints on
the torsion, and orthogonality. The new analysis of Lorentz connections and
curvatures is given in section 5, followed by our conclusions.

2.2 Procedure

The general procedure (to be applied in detail below for the present example)
is thus:

1. Begin with a coset space G/H. By the usual construction (left and right
group multiplication) this comes with two Lie algebras for G, one for
“symmetry generators” and one for “covariant derivatives”, represented
by derivatives on the group space.

2. Generalize to the affine Lie algebras by making the group coordinates
functions of the worldsheet coordinate σ. The number of currents is
double that of the original Lie algebra, since they are also worldsheet
vectors. (I.e., there are τ and σ components, or “left” and “right”,
depending on the basis. In the present case, the left and right currents
are also left-propagating and right-propagating on the worldsheet; this
is determined by the definition of the Virasoro operators, which we
don’t discuss here.) The covariant derivatives and symmetry generators
become currents Z and Z̃ that commute with each other, [Z, Z̃] = 0.

3. The zero-modes of this affine Lie algebra define an enlarged ordinary
Lie algebra/group, the inhomogeneous version IG of the original group
G [16]. For manifest T-duality, double the coordinates to describe this
enlarged group space, using the standard construction for the affine Lie
algebra of a group [19].

4. Make this group space into a general curved space (describing massless
fields) by multiplying the covariant derivative currents Z by a “viel-
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bein” E: The group currents Z are thus a basis for general currents
Π on this space; they define the “vacuum”, 〈Π〉 = Z. The algebra of
these currents Π replaces the structure constants of the affine Lie al-
gebra IG with covariant “torsion”. Requiring that the inhomogeneous
term still gives the group metric imposes orthogonality on the vielbein.

5. The coset constraints are then imposed by requiring that commutators
of the currents Π of H with arbitrary Π’s yield the same result as in
the coset (before introducing the vielbein). This implies the Π for H
can be gauged to its coset value, and fixes the H-dependence of the
remaining currents. These constraints can be stated as conditions on
the torsion.

6. Apply any additional torsion constraints, such as those in ordinary
(super)gravity.

7. Finally, to spontaneously break T-duality symmetry and return to the
usual coordinates, half of the currents for the symmetry generators
Z̃ (forming a subalgebra) are taken as Killing vectors [6]. (This cor-
responds to removing the coordinates for the inhomogeneous part of
IG, reversing step 3 above.) Since they commute with the basis Z for
the covariant derivatives, the requirement that they commute with the
(curved space) covariant derivatives Π implies that the vielbein E is
independent of the corresponding coordinates.

6



Chapter 3

3 Coset spaces and their generalizations

3.1 Group spaces

Coset constructions have proven useful in defining representations of the
Poincaré, (anti) de Sitter, and conformal groups, and their supersymmetric
generalizations. With these in mind, we now review the general procedure
for defining fields on coset spaces.

Cosets are often used to construct nonlinear σ models: There one focuses
on the coset space itself, of which the scalar fields are elements. For example,
one usually first-quantizes string theory about symmetric backgrounds by
treating the spacetime coordinates X(τ, σ) (etc.) as coordinates of a coset
space. (Of course, more general backgrounds are also considered, but are less
tractable.) The string wave function is then implicitly a scalar functional of
these coordinates (at fixed τ).

There is some difficulty with this approach for the superstring, since the
ground state, and thus the string field/wave function, is not a scalar. Sim-
ilar remarks apply to introducing massless backgrounds into the string ac-
tion, since the coordinates carry “curved” indices, while coupling gravity to
fermions requires also “flat” ones.

The generalization that solves this problem is simple: For the coset G/H,
keep all the coordinates of G (the “symmetry” or “isometry” group), rather
than the usual procedure of immediately going to a unitary gauge where
the coordinates of H (the “gauge”, “isotropy”, or “stabilizer” subgroup) are
gauged away. The dependence of the fields on the H coordinates will be fixed,
by defining their representations of H, but will be trivial only for scalars.

For this purpose we need to distinguish the differential operators respon-
sible for left and right group multiplication:

g′ = gL g gR (3.1)

Parametrizing any group element g by coordinates αI in terms of the gener-
ators GI

[GI , GJ ] = −ifIJK GK (3.2)
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(e.g., using any exponential parametrization), we can then write the corre-
sponding infinitesimal transformations as

δg = iεILGIg + giεIRGI = (εILqI + εIRDI)g(α) (3.3)

where
qI = L M

I (α)∂M , (dg)g−1 ≡ idαML I
M GI (3.4)

DI = R M
I (α)∂M , g−1(dg) ≡ idαMR I

M GI (3.5)

(where ∂M ≡ ∂/∂ αM) define the symmetry generators q and covariant
derivatives D in terms of the vielbein appearing in the differential forms
invariant under one or the other type of transformation. Because left and
right group multiplication commute, so do the symmetry generators and co-
variant derivatives:

[qI , DJ ] = 0 (3.6)

Thus the “covariant” derivatives are actually invariant; they become only
covariant in unitary H gauges, due to compensating gauge transformations.

3.2 Fields on coset spaces

We then decompose the basis of generators GI of the symmetry group G
into the generators Hι of the isotropy group H and the remaining ones Ti
of the coset G/H. The representation space for the coset is constructed as
follows: Define the linear space with basis elements |0, m〉. Let that space
carry the matrix representation ρ (Hι)m

k of the isotropy subgroup algebra;
i.e., we have:

Hι |0, m〉 := ρ (Hι)m
k |0, k〉 (3.7)

We also have the action of the whole group on this basis:

|α, m〉 := g(α) |0, m〉 (3.8)

We can then express the representation of the symmetry generators and
covariant derivatives as differential operators on the wave function

ψm(α) := 〈α, m|ψ 〉 (3.9)

8



The wave function ψm (α) depends also on the isotropy group coordinates αι,
but this dependence is fixed: In a convenient exponential parametrization,

ψm(α) := 〈0, m| e−i α
ιHι e−i α

i Ti |ψ〉 =
(
e−i α

ι ρ (Hι )
) k

m
〈0, k| e−i α

i Ti |ψ〉

=
(
e−i α

ι ρ (Hι )
) k

m
ψk (αi) ≡ em

k(αι )ψk (αi)

(3.10)
The vielbein em

k(αι) is dependent only on the coset coordinates αι and can
be gauged to the identity.

From the above construction we know how the covariant derivatives cor-
responding to the isotropy subgroup act on ψm(α):

Dι ψm (α) = 〈0, k| ρ (Hι)m
k g−1(α) |ψ〉

= ρ (Hι)m
kψk (α)

(3.11)

We can also calculate the action of the symmetry group generators on the
wave function:

qI ψm(α) = 〈0, m| g−1(α)GI |ψ〉
= (GI ψ )m (α)

(3.12)

Since we know how the covariant derivatives with respect to the αι act,
we can therefore solve those constraints and replace partial derivatives (with
respect to the αι) with matrices in qI and DI . The dependence of all objects
on the coset coordinates is thus fixed. The remaining covariant derivatives
Di act nontrivially.

3.3 Curved spaces with isotropic coordinates

We can also covariantize the covariant derivatives DI with respect to (super)
Yang-Mills symmetry. (The (super) Yang-Mills gauge group is unrelated to
the isotropy gauge group, except for the case of gravity.) We can write the
(super) Yang-Mills covariantized covariant derivatives as:

∇I := DI + i AI , [∇I , ∇J } = fIJ
K ∇K + i FIJ (3.13)

In the first-quantized approach to (super)gravity the derivatives are gauge
covariantized with respect to the (super-)Poincaré group [5]. The Yang-Mills
generators are replaced with partial derivatives with respect to all coordi-
nates:

DI → ∇I = e K
I ∂K = ê K

I DK (3.14)
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The vielbein e K
I or ê K

I are arbitrary. The local Lorentz transformations
are now included with the rest of the coordinate transformations and the
covariant derivatives transform under the symmetry transformations as:

∇′ = eΛ∇ e−Λ where Λ := ΛM DM ≡ Λ̄A∇A (3.15)

The torsion T is a combination of the structure constants and field strengths
of Yang-Mills:

[∇I , ∇J ] = TIJ
K ∇K (3.16)

We divide indices as before, for the isotropy group, which in our case will
be the Lorentz groups SO(D− 1, 1)2, and for the coset space: We can write
∇I ≡ (∇H , ∇G/H ). Using the newly defined indices:

[∇H , ∇H ] = fH H
H ∇H

[∇H , ∇G/H ] = fH G/H
G/H ∇G/H

[∇G/H , ∇G/H ] = RG/H G/H
H ∇H + TG/H G/H

G/H ∇G/H

(3.17)

The R in (3.17) is the usual curvature (its stringy analog will be calculated
in the Riemann tensor subsection 6.2); TG/H G/H

G/H is the usual torsion.
We have required that ∇H act as in coset space (which in our case will be

flat space): The fact that the torsions THH
H and TH H

G/H (= 0) take their
free values implies that ∇H can be gauged to its free value. The isotropy
transformation of the coset part ∇G/H is fully fixed by the requirement that
the torsions TH G/H

H (= 0) and TH G/H
G/H get their free values. (We will

see the stringy analog of this in subsection 5.2.) By keeping this dependence
on the H coordinates, rather than gauging them away entirely, we have the
first-quantized way to define the spin (for arbitrary representations), as a
differential operator on that space [5].
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Chapter 4

4 Affine Lie algebra and generalized T-duality

4.1 Current algebras

For application to the string, we consider current algebras on the worldsheet,
or affine Lie algebras

[ZM (1), ZN (2) ] = −i ηMN δ′ ( 2 − 1 ) − i fMN
P ZP δ ( 2 − 1 ) (4.1)

where f is the structure constants of the ordinary Lie algebra. (Note that all
the generators are understood as string currents, so they are dependent on
the string coordinate σ ≡ σ1 ≡ “1”. There is an implicit 2π with every δ(σ).
Also, for dimensional analysis there is an implicit 1/α′ with η.) The metric η
of the affine (Schwinger) term is invertible as a consequence of our including
both components of the current, as should be clear from the Abelian case
considered below. Due to our doubling of coordinates for manifest T-duality,
the group coordinates XM carry the same index. Acting on background
fields φ, these reduce to the group covariant derivatives DM of the ordinary
(non-affine) algebra (with the same structure constants),

[ZM(1), φ(X(2))] = −i(DMφ)δ ( 2 − 1 ) (4.2)

(Similar remarks apply to a second Lie algebra Z̃ for which q replaces D and
[Z, Z̃] = 0.) We are interested in the affine Poincaré algebra, where the index

M := (MN , M ,
MN ) (4.3)

has dimension 2D2, as we will now describe.
We begin with the current algebra associated with the usual X coordi-

nates. In string theory one naturally gets the interpretation of T-duality as
the reflection subgroup of the bigger O(D,D) group. One can rewrite the
string oscillator algebra using the explicit O(D,D) vector

PM := (Pm, X
′m ) (4.4)

Using this generalized O(D,D) momentum one gets the algebra

[PM (1), PN (2) ] = i ηM N δ
′ ( 2 − 1 ) (4.5)

11



where ηMN is the O(D,D) metric:

ηMN =

(
0 δ n

m

δ m
n 0

)
(4.6)

In the future we want to use a different basis for the string oscillator
algebra (4.5). Therefore we introduce the left/right vector

PM := (Pm, Pm̃ ) ≡ 1√
2

(Pm + X
′

m, Pm − X
′

m) (4.7)

In this basis the oscillator algebra has the same form as (4.5) except for the
form of the metric:

ηMN =

(
ηm n 0

0 − ηm̃ ñ

)
(4.8)

4.2 Lorentz

In the next step we want to merge the algebra (4.5) with the Lorentz algebra
so(D−1, 1)2. The reason is that the metric g and b field are in the coset space
SO(D,D)/SO(D − 1, 1)2. This suggests that the coordinate space should
be obtained by modding out by the subgroup SO(D − 1, 1)2. The left/right
basis of (4.7) is then appropriate.

The generators for this Lorentz algebra are denoted as

SMN := (Smn, Sm̃ñ ) (4.9)

and satisfy the usual commutation relations

[Smn (1), Skl (2) ] = − i η[ m [ k Sn ] l ] δ ( 2 − 1 ) (4.10)

[Sm n (1), Sk̃ l̃ (2) ] = 0 (4.11)

99 Same for Left → Right

(where [. . . ] is the unweighted anti-symmetrization). Since P and S form the
ordinary Poincaré algebra, we have:

[Sm n (1), Pk (2) ] = iηk [ m Pn ] δ ( 2 − 1 ) (4.12)

[Sm n (1), Pk̃ (2) ] = 0 (4.13)

99 Same for Left → Right

12



However, the set of generators (SMN , PM) does not form a closed affine
Lie algebra. The Jacobi identity requires a new field Σ such that

[P, P ] ∝ δ
′

+ Σ and [S, Σ ] ∝ δ
′

+ Σ (4.14)

Using the commutators [S, [P, P ] ] and the Jacobi identity, we obtain the
new set of generators

ZM := (SM N , PM , Σ
M N ) (4.15)

for which we have the following affine Lie algebra (providing only non-zero
commutators):

[Smn (1), Skl (2) ] = −i η[ m [ k Sl ] n ] δ ( 2 − 1 ) (4.16)

[Smn (1), Pk (2) ] = i ηk [ m Pn ] δ ( 2 − 1 )

[Smn (1), Σkl (2) ] = i δmn
kl δ′ ( 2 − 1 ) − iδ[ m

[ k ηn ] sΣ
l]s δ ( 2 − 1 )

[Pm (1), Pn (2) ] = i ηmn δ
′ ( 2 − 1 ) + i ηm h ηn sΣ

hs δ ( 2 − 1 )

99 left algebra → − right algebra

[ left, right } = 0.

Thus we get the general structure of an affine Lie algebra (10.1). (Non-affine
stringy Lorentz algebras were considered in [20]. Left and right spin algebras
have also been used in [21], but commuting with P . Neither of those had Σ.)

For dealing with antisymmetric pairs of indices we have introduced an
implicit metric such that for any two antisymmetric tensors we have

A ·B ≡ 1
2
AmnBmn (4.17)

The identity matrix with respect to this inner product is

δmn
pq ≡ δ[m

pδn]
q (4.18)

The only nonvanishing terms in the metric and structure constants are
(as could be guessed by dimensional analysis)

ηPP , ηSΣ ; fSPP , fSSΣ (4.19)

where we have lowered the upper index on f with η to take advantage of its
total antisymmetry, and used “schematic” notation, replacing explicit indices
with their type:

M := (MN , M ,
MN ) := (S, P, Σ ) (4.20)

13



Explicitly these are, for the left-handed algebra,

(η)mn = ηmn; (η)mn
pq = δmn

pq (4.21)

fmn
p q = −δmn

pq; fmn pq
rs = η[m[pδq]n]

rs

For the right-handed algebra we change the signs of the corresponding terms
in ηMN but not in f .

14



Chapter 5

5 Curved spaces with affine algebras

5.1 Background fields

We now introduce background fields following [1], but using the affine algebra
(10.1). Using the vielbein we can write:

ΠA(1) = EA
M(XM)ZM (5.1)

Then we get the affine Lie algebra for the ΠA operators:

[ΠA(1), ΠC(2)] ≡ −iηAC δ′ ( 2 − 1 )− iTACEΠE δ ( 2 − 1 ) (5.2)

where T is the stringy generalization of the torsion:

TAC
E = E[A

M(DMEC]
N )E−1

N
E + 1

2
ηEDED

M(DME[A|
N )E−1

N
FηF|C]

+EA
MEC

NE−1
P
EfMN

P (5.3)

where [A | | C ] indicates antisymmetrization in only those indices. Note that
the Jacobi identities imply the total antisymmetry of the torsion, just as for
the structure constants.

This torsion can be identified with that of “ordinary” curved-space co-
variant derivatives (as in subsection 3.3) by use of the strong constraint: We
write

∇A := EA
MDM (5.4)

Using this and the strong constraint

(∇Aφ)(∇Aψ) = 0 (5.5)

we get the same torsion in

[∇A, ∇C ] = TAC
D∇D (5.6)

when acting on fields, since the second term in (15.3) can be added for free.
By setting the coefficient of the Schwinger term to be the metric η, the

vielbein is forced to obey the orthogonality constraints:

EA
MηMN E C

N ≡ ηAC (5.7)
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This choice does not affect the physics, and simplifies many of the expressions.
For example, it implies the total antisymmetry of the torsion, when the upper
index is implicitly lowered with η:

TAB C = 1
2
E[A |

M(DME| B
N )EC ]N + EA

MEB
NEC

PfMN P (5.8)

where we have used E−1
M
A = ηA BηM NEB

N . (Also note that in the first
term the antisymmetrization can be written as a cyclic sum without the 1/2,
since it is already antisymmetric in the last two indices.) Thus, because of
orthogonality, the vielbein is like (the exponential of) a 2-form, while the
torsion is a 3-form; similarly, the Bianchi identities are a 4-form.

When solving the orthogonality constraint, note that we are also putting
some parts of E to zero or to some particular constant value, which comes
from the coset constraints on the torsion, as explained later. We get:

EA
M =


MN M

MN

AB δAB
MN 0 0

A ωA
MN eA

M 0
AB rABMN − 1

2
ωCAB ωC

MN −eCMωCAB δABMN

 (5.9)

where the new field r has a role to be explained later, and satisfies

rABCD + rCDAB = 0 (5.10)

5.2 Coset constraints

Our aim is to generalize the coset construction described in subsection 3.3
to affine Lie algebras, specifically the affine Poincaré algebra (14.7). Coset
space dependence is fixed by the constraint that the covariant derivatives
with the Lorentz group indices S ≡ AB act on fields by some particular
matrix representation, i.e.,

(∇S ψ)S := (MS)S
S ψS (5.11)

For the covariant derivatives themselves, this implies, as described in section
3.3,

[∇S,∇A ] = fSA
B∇B (TSA

B = fSA
B ) (5.12)

I.e., all covariant derivatives are in the same representations of S as in flat
space. In particular, this means the subalgebra of ∇S is unmodified from flat
space, so we can choose the gauge

∇S = DS (ES
M = δS

M ) (5.13)
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(However, other gauges, such as lightcone gauges, may also be useful [5].)
This gauge was used, in addition to orthogonality, to obtain the expression
for the vielbein in (5.9).

The rest of the coset constraint (5.12) gives the action of DS on the
nontrivial components of EA

K:

DS EP
P ≡ DAB eC

K = −ηC[A e
K

B ] + eC
MηM [A δB]

K (5.14)

DS EP
S ≡ DAB ωC

KL = − ηC[A ωB ]
KL (5.15)

+ωC
MN η[M [A δB]

K δN ]
L

Thus in this gauge the dependence on the Lorentz coordinates is fixed for
the vielbein, as well as the (residual) gauge parameters. (E.g., the Lorentz
gauge parameters still have arbitrary dependence on x.)

Dimensional analysis is useful for further analysis of the torsion. The
following table summarizes the torsion engineering dimensions:

Torsion component Dimension

T Σ
S S − 2
T P
S S − 1
T S
S S 0
T P
S P 0
T S
S P 1

Torsion component Dimension

T P
P P 1
T S
S Σ 2
T S
P P 2
T S
P Σ 3
T S
ΣΣ 4

Note that most of the torsions, including all torsions of nonpositive dimen-
sion, have already been fixed by the coset constraint.
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Chapter 6

6 Relations to previous tensors

6.1 Remaining torsion constraint

The “usual” torsion constraint (generalized to 2D-valued indices)

TPP
P = 0 (6.1)

eliminates the last surviving torsion of dimension 1, and gives the constraints
that were previously found in [1] by a different method. This can be expanded
in schematic notation as

0 = TPPP = 1
2
E[P |

K(DKE|P
H)EP ]H + EP

KEP
HEP

LfKHL (6.2)

(Colored indices are not summed.)
For comparison, the analog of the torsion that appears in [1] (but taking

into account orthogonality):

FABC := 1
2
e[A|

K(∂Ke|B
H)eC]H (6.3)

is the same except that the range of indices is over only P , where (in our
gauge) eA

M ≡ EA
M and DP = ∂M acting on a field. Thus, expanding the

indices in (6.2) over (S, P, Σ) will separate it into F and ω terms.
Using the structure of the vielbein EA

M in (5.9), from the former term
of (6.2) we get:

FPPP + 1
2
E[P |

S(DSE|P
P )EP ]P (6.4)

(Repeated schematic indices (S, P, Σ) are summed over the subset indi-
cated.) The latter term in this expression vanishes according to the first
condition in (5.14) and structure of the vielbein. The latter term of (6.2)
gives:

EP
KEP

HEP
LfKHL = 1

2
E[P

SEP
PEP ]

P fSPP
P → A | P → B | P → C

= 1
2
ω[ABC]

(6.5)

We thus get the relation

FABC + 1
2
ω[ABC] = 0 (6.6)
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This agrees with the constraints on ωA
BC in [1],

ω[ abc ] = −2Fabc , ωab̃c̃ = −Fab̃c̃ (6.7)

There are also constraints involving the dilaton, which work the same
way as previously; these are needed to allow definition of a Ricci tensor and
scalar (i.e., field equations and action) independent of those connections that
are not fixed by the above constraint.

6.2 Riemann tensor

Previously no full curvature tensor with manifest T-duality was derived, and
even those pieces that were found came in an indirect way, not by commuta-
tion of covariant derivatives. Here we duplicate the known curvature directly
as a torsion, and the missing pieces are identified as corresponding to the
new field rABCD.

From (3.17) the curvature tensor is TP P
S ≡ RG/H G/H

H :

TP P
S = E[P

S(DS EP ]
R)E−1

R
S + 1

2
ηS Σ E S

Σ (DS E
R

[P )E−1
R
K ηK |P ] (6.8)

+E P
[P (DP EP ]

R)E−1
R

S + 1
2
ηS Σ E P

Σ (DP E[P
R)E−1

R
K ηK |P ]

+1
2
ηS Σ EΣ

Σ(DΣ E[P
R)E−1

R
K ηK |P ] + EP

SEP
SE−1

S
S fS S

S

+E [P
S EP ]

P E−1
P
S fS P

P + EP
PEP

PE−1
Σ
S fP P

Σ

Rewriting using explicit forms of the schematic indices and f , and using
(5.14) and (6.3), after some algebra we get the final expression:

TAB
CD = e[A

M ∂M ωB ]
CD + ω[A |

C
H ωB]

HD − 1
2
ωM

CD ωMAB (6.9)

−FAB
N ωN

CD + rC DAB + ((DΣ)CD eA
K)eBK

In the usual representations, DΣ = qΣ = ∂Σ; as part of dimensional
reduction, we set qΣ φ = 0. Then the curvature reduces to:

TAB
C D = e M

[A ∂M ω C D
B ] + ω C

[A | H ω
HD

B ] − 1
2
ω C D
M ωMAB (6.10)

−F N
AB ω C D

N + rC DAB

This form was derived also in [1] up to the antisymmetric rCDAB part, re-
quired for covariance. Here the curvature tensor was obtained in a more
direct way.
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r can also be fixed by constraining the corresponding part of the curvature
to vanish:

Tabcd − Tcdab = Tãb̃c̃d̃ − Tc̃d̃ãb̃ = Tabc̃d̃ − Tc̃d̃ab = 0 (6.11)

As the final step we reduce the coordinates to the usual half by dimen-
sional reduction, with the conditions

qΣ φ = (qPL − qPR)φ = 0 (6.12)

Here q indicates a Killing vector of the original (“flat”) coset space, commut-
ing with all the flat covariant derivatives D. Since qΣ are Abelian, we can
always choose coordinates where qΣ = ∂Σ; and since the rest are Abelian mod
qΣ, we can also choose coordinates where they are ∂PL − ∂PR mod ∂Σ terms.
We have also fixed the dependence of the fields on the Lorentz coordinates
previously by the coset constraints. In that way the original 2D2-dimensional
coordinate space is reduced to RD.
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Chapter 7

7 Conclusion: Natural curvature for mani-

fest T-duality

We outline the results we have obtained: We began with the generalized affine
algebra SPΣ (14.7), enlarging the configuration space to 2D2 dimensions.
The background fields were introduced via vielbein EA

M(XN ). The orthog-
onality constraints were applied to them. Together with coset constraints on
torsions the specific structure of the vielbein was derived (5.9). From dimen-
sional arguments we obtained one particular torsion constraint reproducing
that originally obtained in [1]. From the torsion TPP

S ≡ RG/H G/H
H we got

the curvature tensor. The result (6.10) matches the result from [1] except
for the antisymmetric part rCDAB, which can be fixed by an additional con-
straint. The resulting curvature tensor has explicit O(D,D) index structure,
which was our goal.

Various generalizations suggest themselves:

1. supersymmetry (especially AdS),

2. α′ corrections, which may clarify the results of [3],

3. the corresponding first-quantization of the string (ghosts, BRST, etc.),
and

4. string field theory (with vielbein fields).

21



Chapter 8

8 Introduction: T-duality off shell in 3D Type

II superspace

In previous chapters and in the paper [11] we obtained the curvature tensor
(previously discovered in [1]) in a manifestly T-dual way. The aim of the
following chapters is to extend the techniques of the (only bosonic) T-dually
extended spaces to the supersymmetric case.

The manifest T-duality is in general constructed by doubling the space-
time coordinates, as shown in [1]. This doubled space-time is further ex-
tended by the coordinates for the Lorentz generators. The dependence of
the background vielbein on them is fully fixed (up to gauge) by the coset
constraints [1]. This is done by requiring that the associate torsions take
their vacuum values. The generalisation of this approach to string theory
requires the use of the affine symmetry algebra (oscillator algebra together
with the Lorentz algebra). The consistency (closure of the Jacobi identities)
of the new affine symmetry algebra requires addition of the new current Σmn

for every Lorentz current Smn. We also add the new coordinates for the cur-
rent Σmn (The necessity of this new current was first realized in the context
of AdS5× S5 [16] ). In the supersymmetric case the fermionic coordinates
are being doubled as well. For the fermionic current Dµ we need to add a
dual current Ωµ (for the consistency of the affine supersymmetry algebra),
see [1]. By this way we obtain the affine supersymmetry algebra with the
extra currents Ωµ, Σmn.

The generalized torsion is constructed from this affine Lie algebra in a
general background, which acts as the stringy generalization of covariant
derivatives. Because of the additional currents, the enlarged vielbein that
describes this background includes the Lorentz connection, and the enlarged
torsion includes also the curvature. Closure of the algebra implies the orthog-
onality constraints E η ET = η on the vielbein. In the following chapters we
solve these just on linear level together with the coset constraints also solved
on linear level. There is also an extension of dimensional reduction to the
usual D coordinates.

In the following chapters (as a starting point for a bigger program on
T-dually extended superspaces) we consider the 3 dimensional T-dually ex-

22



tended superspace. The higher dimensional case is discussed in [17]. We
would also see that this (toy) model of 3 dimensional T-dually extended space
goes with the idea of lower dimensional F-theory (i.e. lower dimensional ana-
logue of the 12 dimensional F-theory, see [37]). At the end we will show that
the physical spectrum (and the structure) of the theory coincides with the
N = 2 supergravity in 3 dimensions (after the dimensional reduction). That
should be expected since as we will show the classical N = 1 supergravity in
4 dimensions could be interpreted as to have the same F-theory origin as the
T-dual 3D supergravity. So does the 3D N = 2 supergravity (after the com-
pactification of 4D N = 1 supergravity to 3D). The doubling in this paper is
obtained naturally from the compactification of the F-theory along one space
direction. We will get: SO ( 3, 2 ) → SO ( 2, 2) ' SO ( 2, 1 ) ⊗ SO ( 2, 1 )
(to be explained in the text) what is the T-dual N = 2 string theory and
effectively the T-dual 3D N = 2 supergravity.

We are following the procedure described in the articles [11], [1] and [17].
The differences are that we are working just to linear order in fields and in
the 3D T-dual superspace. On top of that will also find the relation of the
T-dually extended theory to the (lower dimensional analog of) F-theory.
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Chapter 9

9 F-theory (membrane vs. strings)

9.1 F-theory and its compactification

The F-theory has first been proposed by Cumrun Vafa as 12 dimensional
theory, see [37]. The theory is further compactified on the two-torus or more
generally on the elliptically fibered Calabi-Yau manifolds. We discuss the 5
dimensional analogue of this theory. We want to motivate the natural iden-
tification between the 4D N = 1 supergravity, further compactified to a 3D
N = 2 (the 3D N = 2 supergravity is recently discussed in [38]), and the
T-dual 3 D N = 2 string theory. Both can be thought to have an origin in
higher dimensional F-theory. This theory will be further compactified in two
ways. One compactification produces the 4 dimensional M-theory that will
effectively become the N = 1 supergravity with the specific chiral compen-
sator that contains a 3-form. This is expected since this N = 1 supergravity
is an effective theory of 2-branes (discussion of the lower dimensional su-
persymmetric membrane theory could be found in [39], (super) membrane
theory discussed in [40], [41], [42], [43]). The other compactification gives the
3 dimensional T-dual N = 2 string theory so effectively the T-dual N = 2
supergravity.

9.2 5D vs. 4D vs. 3D - compactifications

The 5 dimensional F-theory is the (supersymmetric) 2-brane theory in the
space with the signature ( +, +, +, −, − ) . The Lorentz group is SO ( 3, 2 ).
We can pick the time direction and compactify the F-theory along one time
direction, so we will get the Lorentz group breaking SO ( 3, 2 ) → SO( 3, 1 ).
The 4 dimensional N = 1 SO( 3, 1 ) theory is just the 4 dimensional M-
theory, which is effectively the 4 dimensional N = 1 supergravity. We can
also pick the space direction and compactify the F-theory along this direction,
so we will get: SO ( 3, 2 ) → SO ( 2, 2) ' SO ( 2, 1 ) ⊗ SO ( 2, 1 ) what will
become the T-dual N = 2 string theory and effectively the T-dual 3D N = 2
supergravity. If we further compactify the 4 dimensional N = 1 supergravity
along the space direction we will get the 3 dimensional N = 2 supergravity
coupled to a vector multiplet. On the other hand, if we take the T-dual 3D
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N = 2 theory and compactify half of the dimensions we would again get the
3D N = 2 supergravity coupled to a vector multiplet. We therefore have the
natural identification of the objects from the 4D N = 1 supergravity (further
compactified) and the T-dual 3D N = 2 supergravity. We can therefore use
the techniques of T-dually extended superspace and derive the 3D N = 2
supergravity coupled to a vector multiplet.

In the 4D (n = −1
3

minimal and linearised) supergravity we have the
prepotential Hα β̇ and the scalar prepotential V . The scalar prepotential

becomes a particular (chiral) compensator of the form φ = D̄2 V . That
contains a 3-form, see section 4.4.d in [22], or more generally [23]. This is
expected since 4D N = 1 supergravity is the effective theory for 2-branes.

The 4D N = 1 gauge transformations are, see section 5.2 in [22] or [7]:

δ Hα β̇ = Dα L̄β̇ − D̄β̇ Lα and δ V = Dα Lα + D̄α̇ L̄α̇ (9.1)

where Dα and D̄α̇ are usual 4D N = 1 covariant derivatives. We can dimen-
sionally reduce the theory to 3D and obtain the 3D N = 2 theory. Using the
dimensional reduction we get:

Dα = 1√
2

(Dα + iDα′ ) and D̄α̇ = 1√
2

(Dα − iDα′ ) (9.2)

where Dα and Dα′ are real 3D N = 2 covariant derivatives. The gauge
parameters can be written as:

Lα = 1√
2

(Λα − i Λα′ ) and L̄α̇ = 1√
2

(Λα + i Λα′ ). (9.3)

The 3D N = 2 gauge transformations thus are:

δ H(α β̇) = δ Hαβ′ = i (D(α′ Λβ) + D(α Λβ′) ) (9.4)

δ H[α β̇] = δ V = Dα Λα − Dα′ Λα′ (9.5)

δ V = Dα Λα + Dα′ Λα′ (9.6)

The 4D N = 1 prepotential Hα β̇ ≡ (H(α β̇), H[α β̇] ) is a 4D vector and
becomes the 3D vector H(αβ′) and a prepotential V (for a vector multiplet).
We also have the 4D prepotential V (for the chiral compensator φ = D̄2 V)
that becomes the 3D prepotential V . On the other hand the 3D T-dual
prepotential (symmetric part) H(αβ′) (after the dimensional reduction to 3D
N = 2) is again a vector (describes the conformal supergravity) but the
H[αβ′] becomes the prepotential V , see the transformations (10.24), and the
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prepotential Hαβ′ is just part of vielbeins, see table (10). Finally the 3D T-
dual N = 2 prepotential V becomes the prepotential for the vector multiplet
in 3D N = 2 supergravity.

Therefore we have an identifications between 3D N = 2 T-dual super-
gravity and 3D N = 2 supergravity coupled to a vector multiplet: H(αβ′) →
H(αβ′), H[αβ′] → V andV → V .

We also have the identification between 4D N = 1 supergravity and 3D
N = 2 supergravity coupled to a vector multiplet: H(α β̇) → H(αβ′), H[α β̇] →
V andV → V .

The situation could be summarised in the following diagram 1:

5D, N = 1, SO ( 3, 2 )

H t
[αβ]

��

&&
3D, T-dual, N = 2,

SO ( 2, 2) ' SO ( 2, 1 ) ⊗ SO ( 2, 1 )

Hαβ′ V

��

4D, N = 1,

SO ( 3, 1 )

Hα β̇ V

xx

3D, N = 2, SO ( 2, 1 )

H(αβ′) V V

Figure 1: F-theory breaking

where H t
[αβ] is the 5 dimensional prepotential (α ∈ { 1, ..4 },“t” means

that it is traceless, it has 5 real components).
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Chapter 10

10 Algebra

We give very brief outline of the algebraic objects and steps that will lead
to the formulation of the linearised T-dual 3D supergravity. The interested
reader may see the following references (where the subject is explained in
great detail): [11], [1].

10.1 Current algebra of ZM

As in the paper [11], we consider the (super)string generalisation of the string
oscillator algebra. Because of the T-duality and the (super)Bianchi identity
the current algebra has a structure:

[ZM (1), ZN (2) ] = −i ηMN δ′ ( 2 − 1 ) − i fMN
P ZP δ ( 2 − 1 ) (10.1)

where ZM := (SMN , Dµ, PM , Ω
µ, ΣMN ) is the generalisation of the (su-

per)string oscillators and the metric ηMN (given later). The PM genera-
tors are the O (D, D) generalisation of string oscillators Pm. In the explicit
O(D, D) basis are the PM generators given as: PM := (Pm, X

′m ). For the
future purpose we want to use a different left/right basis. In left/right basis
the PM := (Pm, Pm̃ ) = 1√

2
(Pm + X ′m, Pm − X ′m ). The Lorentz genera-

tors also have the left/right structure: SMN := (Smn, Sm̃ñ), where Smn are
generators of left (or equivalently Sm̃ñ right) Lorentz transformations. The
Dµ := (Dµ, Dµ̃ ) are the generators of left and right supersymmetry trans-
formations. The generators Ωµ := (Ωµ, Ωµ̃ ) and ΣMN := (Σmn, Σm̃ñ )
are the new generators, needed to satisfy the Bianchi identity. For further
reference see [11], [1].

The full current algebra of ZM oscillators (10.1) is the affine (super)Lie
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algebra (14.7) and its explicit form is:

[Smn (1), Skl (2) ] = −i η[ m [ k Sl ] n ] δ ( 2 − 1 ) (10.2)

[Smn (1), Dρ (2) ] = − i 1
2

( γmn )σρDσ δ ( 2 − 1 )

[Smn (1), Pk (2) ] = i ηk [ m Pn ] δ ( 2 − 1 )

[Smn (1), Ωρ (2) ] = i 1
2

( γmn )ρσ Ω
σ δ ( 2 − 1 )

[Smn (1), Σkl (2) ] = i δmn
kl δ′ ( 2 − 1 ) − iδ[ m

[ k ηn ] sΣ
l]s δ ( 2 − 1 )

{Dρ (1), Dσ(2) } = 2 ( γm )ρσ Pm δ ( 2 − 1 )

[Dρ (1), Pm (2) ] = 2 ( γm)ρσ Ω
σ δ ( 2 − 1 )

{Dρ (1), Ω
σ (2) } = i δσρ δ

′ ( 2 − 1 ) − i 1
4

( γmn )σρΣ
mn δ ( 2 − 1 )

[Pm (1), Pn (2) ] = i ηmn δ
′ ( 2 − 1 ) + i ηm h ηn sΣ

hs δ ( 2 − 1 )

99 left algebra → − right algebra

[ left, right } = 0.

The only nonvanishing terms in the metric and structure constants are
(as could be guessed by dimensional analysis)

ηPP , ηSΣ, ηDΩ, ; fSPP , fSSΣ , fDDP , fSDΩ (10.3)

where we have lowered the upper index on f with η to take advantage of
its total (graded)antisymmetry, and used “schematic” notation, replacing
explicit indices with their type:

M := (MN , µ, M ,
µ, MN ) := (S, D, P, Ω, Σ ) (10.4)

Explicitly these are, for the left-handed algebra,

(η)mn = ηmn , (η)mn
pq = δmn

pq , (η)σ
ρ = δρσ (10.5)

fmn
p q = − δmn

pq || fmn pq
rs = η[m[pδq]n]

rs (10.6)

fσρ
m = 2 ( γm )σρ || fmnσ

ρ = − 1
2

( γmn )ρσ

For the right-handed algebra we change the signs of the corresponding terms
in ηMN but not in f .

For dealing with antisymmetric pairs of indices we have introduced an
implicit metric such that for any two antisymmetric tensors we have

A ·B ≡ 1
2
AmnBmn (10.7)

The identity matrix with respect to this inner product is

δmn
pq ≡ δ[m

pδn]
q (10.8)
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10.2 Cartan-Killing metric

Having the Lie algebra G, one can define a symmetric bilinear form:

K (X, Y ) := 1
xλ

Tr ( adX adY ) ≡ 1
xλ

〈
Ei
∣∣ adX adY |Ei〉 (10.9)

where X, Y ∈ G and xλ ≡ Dynkin index

and Ei, E
j ∈ G andG∗

then for X, Y ∈ basis of G:

K (Ei, Ej ) ≡ Kij = 1
xad

fim
n fj n

m (10.10)

where fa b
c are struc. cons. of G

The Cartan-Killing metric has many important group theoretical properties.
We are interested in it because of the way we will fix the (engineering) di-
mension 1 torsion constraints. They are fixed using the (generalized) Cartan-
Killing metric (using its free values). To see that, we need to generalize the
Cartan-Killing metric (10.10) to the case of the graded algebra (14.7). We
use the direct generalisation of the expression (10.10) for the algebra (14.7) in
the presence of the background fields (vielbeins). In that case the structure
constants are given by (15.3). We get (the Dynkin index xad = 2):

KAB = 1
2
TAC

D TBD
C (10.11)

We are interested in linearised version of previous equation. Again we expand
the vielbeins to the first order and get:

KAB = 1
2
fAC

D fBD
C + 1

2
f(A | C

D T (1)
B ]D

C︸ ︷︷ ︸
K(1)

AB

(10.12)

+O (E(2) )

where T (1)
AB C := 1

2
D[AE

(1)
B C ) + 1

2
E(1)

[A
M fM|B C )

10.3 Background fields

The aim is to find linearised formulation of the 3D T-dual theory. We are
following the approach used in the paper, see [11], section 1.2. We will briefly
mention the outline here:
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We want to use the T-dual formulation of the stringy generalisation of the
oscillatory algebra (14.7). We introduce the background fields via vielbeins.
Following [1] but using algebra (10.1) we get:

ΠA(1) = EA
M(XN )ZM (10.13)

the affine Lie algebra for the ΠA could be compactly written as:

[ΠA(1), ΠC(2)] ≡ −iηAC δ′ ( 2 − 1 )− iTACEΠE δ ( 2 − 1 ) (10.14)

where TAC
E is a (super)stringy generalisation of torsion, see [11]:

TAC
E = E[A

M(DMEC)
N )E−1

N
E + 1

2
ηEDED

M(DME[A|
N )E−1

N
FηF|C)

+EA
MEC

NE−1
P
EfMN

P (10.15)

where [A | | C ) indicates graded antisymmetrization in only those indices. By
the DM in the (15.3) and in the whole text we mean the group covari-
ant derivatives of the (non-affine) part of algebra (14.7): [DM, DN } =
− i fMNE DE .

Note that the (super)Jacobi identities imply the total graded antisymme-
try of the torsion, just as for the structure constants. Torsion (15.3) can be
identified with that of “ordinary” curved-space covariant derivatives by use
of the strong constraint, as explained in [11], [1].

We can set the coefficient of the Schwinger term to be the metric η, the
vielbein is forced to obey the orthogonality constraints:

EA
MηMN E C

N ≡ ηAC (10.16)

This choice does not affect the physics, and simplifies many of the expressions.
For example, it implies the total graded antisymmetry of the torsion, when
the upper index is implicitly lowered with η:

TAB C = 1
2
E[A |

M(DME| B
N )EC )N + EA

MEB
NEC

PfMN P (10.17)

where we have used E−1
M
A = ηA BηM NEB

N . (Also note that in the first
term the graded antisymmetrization can be written as a cyclic sum without
the 1/2, since it is already graded antisymmetric in the last two indices.)
Thus, because of orthogonality, the vielbein is like (the exponential of) a
super 2-form, while the torsion is a super 3-form; similarly, the Bianchi iden-
tities are a super 4-form.
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The (super)orthogonality constraint (15.4) could be fully solved for the
general structure of the vielbein EA

M. However, we are interested just in
the linear level. Thus we get the (super)orthogonality constraint for the
linearised part of the vielbein E(1)

A
M:

EA
M = δA

M + E(1)
A
M + O (E(2) ) ⇒ using (15.4) (10.18)

E(1)
(AB ] = 0 (10.19)

We would also need the linear level version of the equation (15.5):

TAB C = fAB C + T (1)
AB C + O (E(2) ) (10.20)

where T (1)
AB C := 1

2
D[AE

(1)
B C ) + 1

2
E(1)

[A
M fM|B C ) (10.21)

10.4 Further constraints and gauge fixing

Following the discussion in the subsection 4.2 in the paper [11], we get the
coset constraint on the torsion piece TS A

B = fS A
B (where we used the S

index as the schematic index (10.4) and A, B are general indices). On the
linear level the previous condition becomes: T (1)

S AB = 0. From this one
gets the condition for the linear vielbein: E(1)

S
M = 0 + O (E(2) ).

We would like to gauge fix some of the remaining gauge freedom. Note
that the coset constraints discussed above sets the gauge parameter (defined
below) λS = 0. From specific gauge fixing we get the further conditions on
the linear vielbein E(1). The gauge transformations are given as (see also
[1]):

δΛΠA = [− i Λ, ΠA } (10.22)

where Λ :=

∫
d1λM (X )DM

We are working in the basis where the covariant derivatives satisfy:

[DM, DN } = i fMN
P DP (10.23)

Thus the (linear)gauge transformation of (linear)vielbein are:

δΛE
(1)
AB = − i

2
D[A λB ) + fAB

C λC (10.24)
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Now, we can pick the following gauge:

γa
αβ E(1)

αβ = 0 ⇒ λa ∝ γa
αβDα λβ (10.25)

γa αβ E(1)
αa = 0 ⇒ λα ∝ γa αβD[ a λβ ] (10.26)

E(1)
a b = 0 ⇒ λa b ∝ D[ a λb ] (10.27)

99 Same for Left → Right

We can see that by (10.25), (10.26), (10.27) we automatically have expres-
sions for gauge parameters λP , λΩ, λΣ as derivatives of another gauge pa-
rameter λD. It is unlike the usual N = 1 supergravity where we need first
to solve the chirality condition to relate derivatives of Λ with K, see section
X.A.1 in [10], also section 5.3 in [22]. Moreover, the (10.25)-(10.27) give the
constraints on E(1) and solving those we will get:

E(1)
DD = E(1)

αβ = 0 || E(1)
PP = E(1)

a b = 0 (10.28)

E(1)αβ
β = 0 (part of E(1)P

D)

Later (by dimension −1
2

constraints) one can see that the E(1)
PD = 0.

We thus need to set up the dimensional constraints. The following table 1
summarise the torsion dimensions:

Torsion Dim.

T Σ
S S − 2
TS S

Ω − 3
2

T P
S S − 1
TS D

Ω − 1
TS S

D − 1
2

TS P
Ω − 1

2

TDD
Ω − 1

2

T S
S S 0

TS D
D 0

T P
S P 0

TDD
P 0

Torsion Dim.

TS D
S 1

2

TS P
D 1

2

TDD
D 1

2

TP P
Ω 1

2

T S
S P 1

TS Ω
D 1

TDP
D 1

TDD
S 1

T P
P P 1
TS Ω

S 3
2

TDP
S 3

2

TDΩ
D 3

2

TP P
D 3

2

Torsion Dim.

T S
S Σ 2

TDΩ
S 2

T S
P P 2

TP Ω
D 2

TDΣ
S 5

2

TP Ω
S 5

2

TΩΩ
D 5

2

T S
P Σ 3
TΩΩ

S 3
TΩΣ

S 7
2

T S
ΣΣ 4

Table 1: Torsion dimensions
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Notice that many of the torsions in the previous table 1 are fixed (to flat
structure constants fS A

B).
We put the torsions of the negative (engineering) dimensions to 0 (as

always in QFT, see the red coloured torsions in the previous table). We also
put the (unfixed) torsions of the zero dimension to 0 (see the blue torsions
in the previous table), see [11]. We will also put the dimension 1

2
(unfixed)

torsions to 0 (the green torsions in the table). Doing that we produce just
algebraic constraints on veilbeins.

The nontrivial dimensional constraints are:

TDD
Ω = 0, TDD

P = fDD
P , TDD

D = 0, TP P
Ω = 0 (10.29)

10.5 Dimensional constraints: solution

The solution of the previous nontrivial dimensional constraints could be given
in a full generality, however in the following chapters we are interested just
in the linearised case. The tables 9 and 10 summarise the linearised solutions
of those four constraints (notice that we have also the possibility of mixed
left/right indices):

TDD
Ω = 0 and γa αβ E(1)

αa = 0 ⇒ E(1)
PD = 0

TDD
P = fDD

P ⇒ E(1)
DΩ = 0

TP P
Ω = 0 or TDD

D = 0 ⇒ E(1)
ΣD = E(1)ab

α =
− 2 γ[ a

αρE
(1)ρ |b ]

Table 2: Unmixed constraints

TDD
Ω̃ = 0 ⇒ E(1)

P D̃ ≡ E(1)
a α̃ = − 1

2
γa

β εDβ E
(1)

ε α̃

TDD
P̃ = 0 ⇒ E(1)

P P̃ ≡ E(1)
a b̃ = − 1

2
γa

β εDβ E
(1)

ε b̃

TD D̃
P = 0 ⇒ E(1)

Ω D̃ ≡ E(1)α
β̃ = − 1

6
γa ε αD[εE

(1)
a] β̃

TP P̃
Ω = 0 ⇒ E(1)

Ω P̃ ≡ E(1)α
ã = − 1

6
γb ε αD[εE

(1)
b] ã

TP P
Ω̃ = 0 ⇒ E(1)

Σ D̃ ≡ E(1)ab
α̃ = ηa c ηb dD[cE

(1)
d] α̃

Table 3: Mixed constraints

From the table 9 we can see that we have one linear relation:

E(1)
ΣD ∝ E(1)

Ω P (10.30)

33



From the table 10 we have linear relations:

{E(1)
P D̃, E

(1)
P P̃ , E

(1)
Ω D̃, E

(1)
Ω P̃ , E

(1)
Σ D̃ } ∝ E(1)

D D̃ (10.31)

Again, we have automatically obtained the expressions for the vielbeins as
derivatives of E(1)

D D̃ vielbein (prepotential). It is unlike the N = 1 super-
gravity where the prepotential comes as the solution of the bisection condition
(or chirality condition in covariant approach), see section X.A.1 in [10] and
section 5.2.a and 5.3 in [22].

10.6 Dimension 1 unmixed constraints

To proceed we need to find the constraints for the dimension 1 torsions.
We can see that putting those to zero in general introduces the differential
constraints, that we do not want (except of the strong constraint and later
the equation of motion). However there is a way how to fix dimension 1
torsions without producing differential constraints. We will use the following
set of unmixed constraints (again we have two cases for the torsion index
structure: mixed and unmixed):

T (1)
P P P ≡ T (1)

a b c = ϑ εa b cB (10.32)

T (1)
DDΣ ≡ T (1)

αβ
ab = ξ γab

αβ B

T (1)
P DΩ ≡ T (1)

aα
β = ζ γa

β
αB

where the new object B is determined from (10.32). Using the linearised
Bianchi identity the coefficients in (10.32) are related as:

ξ = − 8 ζ − 2ϑ (10.33)

Equation (10.21) gives explicit relations for the T (1)’s from (10.32):

T (1)
a b c = − 1

2
η[a|d ηb| eE

(1)de
c] (10.34)

T (1)
αβ

ab = D(αE
(1)

β)
ab + 2 γc

αβ E
(1)ab

c (10.35)

T (1)
aα

β = DαE
(1) β

a + 2 γa α εE
(1) ε β + 1

4
εc d e γ

e β
αE

(1) cd
a(10.36)

From (10.34) and first relation of (10.32) we get:

2ϑB = − εh d e η
h cE(1)de

c (10.37)
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From (10.36) and requiring that we want just algebraic constraints we get
the second equation for (10.32) fixing constants:

0 = − 3 ζ − 1
8

( 2ϑ + 3 ξ ) − 1
2
ϑ (10.38)

Substituing result (10.33) we have soultion for any ϑ and ζ except when
ϑ = − 6 ζ. That condition would produce the differential constraint on
E(1)

Ω P (see eq. (10.39)). From (10.36) and third of (10.32) we will get fixing
of E(1)

ΩΩ. From (10.35) and second of (10.32) we will get fixing of E(1)
P Σ.

The net result of dimension 1 unmixed algebraic constraints (10.32) is that
everything could be expressed in terms of E(1)

DΣ and so (see table (9)) by
E(1)

P Ω (and two constants ϑ, ζ s.t. ϑ 6= − 6 ζ):

B = − 1
ϑ+ 6 ζ

γa α
β DαE

(1)β
a (10.39)

E(1)
ΩΩ = E(1) αβ = 1

12
γa (α| εDεE

(1) β)
a + 1

12
γa

αβE(1)ab
b (10.40)

E(1)
P Σ = E(1)

c
ab = − 1

2
γc
αβDαE

(1)
β

ab (10.41)

+ (ϑ + 4 ζ ) ηc e ε
e a bB

10.7 Dimension 1 mixed constraints

Some of the mixed dimension 1 torsions are determined in terms of E(1)
α β̃ ≡

E(1)
D D̃ and E(1)

P Ω already. Using the previous results (tables 9, 10 and
results of previous section) we can see that mixed dimension 1 torsions
T (1)

a α̃
ρ ≡ T (1)

P D̃ Ω and T (1)
α̃ β

ab ≡ T (1)
D̃ DΣ are fully determined, see

(10.42). The mixed determined and undetermined torsions are summarised
below:

T (1)
P D̃ Ω ≡ T (1)

a α̃
β = DaE

(1)
α̃
β + D(β E(1)

α̃) a

T (1)
D̃ DΣ ≡ T (1)

α̃ β
ab = D(α̃E

(1)
β)

ab + DabE(1)
α̃ β

}
(10.42)

T (1)
P̃ P P ≡ T (1)

ã b c = D[bE
(1)

c] ã − ηb d ηc eE
(1)de

ã

T (1)
P̃ DΩ ≡ T (1)

ãα
β = D(αE

(1)β)
ã + 1

4
γde α

β E(1)de
ã

T (1)
P D Ω̃ ≡ T (1)

aα
β̃ = D[aE

(1)
α]
β̃ + 2 γa α εE

(1)ε β̃

T (1)
D̃ D̃ Σ ≡ T (1)

α̃ β̃
ab = D(α̃E

(1)
β̃)

ab + 2 γẽ
α̃ β̃ E

(1)
ẽ
ab

 (10.43)

From the (10.43) is evident that by putting T (1)
P̃ P P = 0 we can determine

E(1)
Σ P̃ in terms of E(1)

P P̃ and so E(1)
D D̃. Equivalently we can obtain that
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fixing either of T (1)
P̃ DΩ or T (1)

DD Σ̃ . By putting T (1)
P D Ω̃ = 0 we can

determine E(1)
Ω Ω̃ in terms of E(1)

D Ω̃ and E(1)
P Ω̃ and so again in E(1)

D D̃.
The dimension 1 mixed constraints give:

E(1)
Σ P̃ ≡ E(1)bc

ã = ηb d ηc eD[dE
(1)

e] ã ≡ ηη D[P E
(1)

P ] P̃ (10.44)

E(1)
Ω Ω̃ ≡ E(1)α β̃ = 1

6
γa α εD[aE

(1)
ε]
β̃ ≡ γ D[P E

(1)
D]Ω̃ (10.45)

The dimension 1 constraints could be viewed also form another perspec-
tive. For that we would need to borrow the expression for the Cartan-Killing
metric KAB that is discussed in section 10.2. The expression for the linearised
Cartan-Killing metric:

K(1)
AB ≡ 1

2
f(A | C

D T (1)
B ]D

C (10.46)

taking the (10.46) for A, B ∈ {α, β̃ } we will get:

K(1)
αβ ∝ εαβ B, K(1)

α̃ β̃ ∝ εα̃ β̃ B̃, K(1)
α β̃ (10.47)

then using the exercise XA2.6 in [10] we could write the dimension 1 con-
straints as:

T (1)
a b c ∝ εa b c ε

αβK(1)
β α , T (1)

αβ
ab ∝ γab

αβ ε
ε σK(1)

σ ε (10.48)

T (1)
aα

β ∝ γa
β
α ε

ε σK(1)
σ ε , T (1)

a α̃
β ∝ γa

β εK(1)
ε α̃ (10.49)

T (1)
α̃ β

ab ∝ γab
β
εK(1)

ε α̃ , T (1)
aα

β̃ ∝ γa α εK
(1) ε β̃ (10.50)

Remaining dimension 1 torsions have to be 0 since we do not have appropriate
nonzero Cartan-Killing metric. We also put second torsion of (10.50) to 0.
Since that does not produce any differential constraints and fixes E(1)

Ω Ω̃,
see (10.45). Moreover in the spirit of the exercise XA2.6 in [10], we can
identify (K(1)

α β̃, B, B̃ ) with a SO( 3, 3 ) vector Gαβ = (Ga, B, B̄ ) in
SL( 4 ) notation (form the N = 1 supergravity).

10.8 T̃ = 0 constraints

In the previous subsections we discovered that all the vielbeins (mixed and
unmixed) (except of E(1)

ΩΣ and E(1)
ΣΣ) could be determined in terms of

E(1)
PΩ and E(1)

DD̃. We need further constraint to relate those two unde-
termined vielbeins. We are following article [1]. There a new torsion was
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introduced. It came from the requirement of partial integration also in the
presence of the new integration measure φ2 (dilaton). Following [1] the new
torsion is:

T̃A := φ2←−∇A φ− 2 (10.51)

where ∇A = EA
MDM. The torsion (10.51) should vanish, so we get the T̃

torsion constraint: T̃A = 0. We are interested just in the first order part of
T̃A:

T̃A = 0 + T̃ (1)
A + O(E(2) ) ⇒ T̃ (1)

A = DB E(1)
BA + 2DA φ

(1)

where φ = 1 + φ(1) + O (φ(2)) (10.52)

The relation T̃ (1)
S = 0 gives DS φ

(1) = 0. Using T̃ (1)
D = 0 we get the

relation:

1
4
εa b c γ

c β
αE

(1)ab
β = 2 γaαβ E

(1) β a = Dβ̃ E(1)
β̃ α + DãE(1)

ãα(10.53)

−Dβ̃ E
(1) β̃

α − 2Dα φ
(1)

= DΩ̃ E
(1)

D̃D + DP̃ E
(1)

P̃D

−DD̃E
(1)

Ω̃D −DD φ
(1) (10.54)

Where we used the results of table 9. Using the table 10 for E(1)
ãα and E(1) β̃

α

we have the relation between E(1)
PΩ and E(1)

DD̃ and linearised dilaton φ(1):

γ E(1)
Ω P ≡ 2 γa

αβ E
(1) β

a = − 1
3
γã β̃ ε̃ [Dã, Dβ̃ ]E(1)

ε̃ α (10.55)

+ 1
2
γã β̃ ε̃DãDβ̃ E

(1)
ε̃ α − 2Dα φ

(1)

≡ − γ [DP̃ , DD̃]E(1)
D̃ D

+ γ DP̃DD̃ E
(1)

D̃ D − DDφ
(1)

We notice that result (10.55) is exactly the right combination in order to
express B from (10.39) in terms of E(1)

D̃ D and φ(1). This will be used in
next sections:

B = − 1
ϑ+ 6 ζ

εν αDν

[
γã β̃ ε̃

(
− 1

6
[Dã, Dβ̃] + 1

4
DãDβ̃

)
E(1)

ε̃ α(10.56)

−Dα φ
(1)
]

≡ εDD

[
γ
(

[DP̃ , DD̃ ] − DP̃ DD̃

)
E(1)

D̃ D − DD φ
(1)
]

37



Using the relation T̃ (1)
P = 0 and similar steps we get:

− 2 εa b c γ
b α
ε DαE

(1) ε c + 2DαE
(1)α

a − 4Da φ
(1) =

− 1
3
γã β̃ ε̃ [Dã, Dβ̃ ] γa

σ αDσ E
(1)

ε̃ α + 1
2
γã β̃ ε̃DãDβ̃ γa

σ αDσ E
(1)

ε̃ α =

γa
σαDσ

(
− 2 γb

αβE
(1) β

b

)
(10.57)

− 2 εa b c γ
b α
ε DαE

(1) ε c + 2DαE
(1)α

a − 4Da φ
(1)=

− 2 εa b c γ
b α
ε DαE

(1) ε c + 2DαE
(1)α

a − 4Da φ
(1) (10.58)

So, from relation T̃ (1)
P = 0 we will get no new constraints.

From relations T̃ (1)
Ω = 0 and T̃ (1)

Σ = 0 we will get some constraints on
unfixed (and unused) vielbeins E(1)

ΣΩ and E(1)
ΣΣ.

10.9 Structure of linearized dilaton

After imposing all the constraints we have found that everything could be
expressed in terms of E(1)

P Ω and E(1)
D D̃. The gamma “trace” part of E(1)

P Ω

is related directly to E(1)
D D̃ by (10.55). Therefore we want equation of

motion for the field E(1)
D D̃.

We start with some action S and vary it with respect to vielbein EDD and
put it to the zero, i.e. δ/δ EDD S = 0. The variation produces the dimension 1
antisymmetric tensor. On the other hand in the previous subsection we have
seen that KDD is the canonical antisymmetric dimension 1 tensor. Therefore
we can impose the equations of motion:

δ
δ EDD

S ≡ KDD = 0 (10.59)

To obtain the structure of linearized dilaton we do the variation of the S
with respect to Eαβ and Eα̃ β̃. We get:

Kαβ = K(1)
αβ = 0 and Kα̃ β̃ = K(1)

α̃ β̃ = 0 (10.60)

where

K(1)
αβ ∝ εαβ B K(1)

α̃ β̃ ∝ εα̃ β̃ B̃ (10.61)

Equations (10.60) and (10.61) could be rewritten in a different way:

B + B̃ = 0 and B − B̃ = 0 (10.62)
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where B is given by eq. (10.56). Because the explicit structure of B and B̃
is important for the next considerations we repeat it here:

B ∝ εν αDν (Dε̃ + 1
4
γã β̃ ε̃DãDβ̃ )E(1)

ε̃ α + εαβDβDα φ
(1) (10.63)

≡ ε DD (DΩ̃ + γ DP̃ DD̃ )E(1)
D̃ D + DD DD φ

(1)

B̃ ∝ εν̃ ε̃Dν̃ (−Dα + 1
4
γa β αDaDβ )E(1)

ε̃ α + εα̃ β̃Dβ̃Dα̃ φ
(1)(10.64)

≡ ε DD̃ (−DΩ + γ DP DD )E(1)
D̃ D + DD̃ DD̃ φ

(1)

To analyse the second terms in (10.63) and (10.64) we need the following
identities:

γa β αDaDβ = 4Dα − 1
2
D2 εα εDε (10.65)

γã β̃ α̃DãDβ̃ = − 4Dα̃ + 1
2
D̃2 εα̃ ε̃Dε̃ (10.66)

where D2 = εβ αDαDβ ≡ DD DD (similarly for D̃2). Using (10.65) and
(10.66) we get:

B ∝ − 1
8
D̃2 ( εαν εε̃ σ̃Dν Dσ̃ E

(1)
ε̃ α ) + D2 φ(1) (10.67)

B̃ ∝ − 1
8
D2 ( εαν εε̃ σ̃Dν Dσ̃ E

(1)
ε̃ α ) + D̃2 φ(1) (10.68)

Then the first of (10.62) becomes the equation:

0 = (D2 + D̃2 ) (− 1
8
εαν εε̃ σ̃Dν Dσ̃ E

(1)
ε̃ α + φ(1) ) (10.69)

We can rewrite (10.69) using a new field V :

(D2 − D̃2 )V =: (− 1
8
εαν εε̃ σ̃Dν Dσ̃ E

(1)
ε̃ α + φ(1) ) (10.70)

Using this definition the (10.69) could be written as:

0 = (D2 + D̃2 ) (D2 − D̃2 )V (10.71)

The operator (D2 + D̃2 ) (D2 − D̃2 ) is acting on the scalar field V . It can
be rewritten in a nicer form:

(D2 + D̃2 ) (D2 − D̃2 )V = 4 (� − Dν D
ν + Dν Dν (10.72)

− ( �̃ − Dν̃ D
ν̃ + Dν̃ Dν̃ ) )V

≡ 4DADA V (10.73)
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Therefore the first equation of (10.62) could be rewritten as:

DADA V = 0 (10.74)

and so (10.74) is identically satisfied since it is just the strong constraint.
Using the relation (10.70) we find the structure of the linear dilaton:

φ(1) = 1
8
εαν εε̃ σ̃Dν Dσ̃ E

(1)
ε̃ α + (D2 − D̃2 )V (10.75)

We notice that the structure of the linearized dilaton matches the structure
of the dilaton field obtained by compactifying the 4D N = 1 supergravity to
3 dimensions, see section 7.2.b in [22].
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Chapter 11

11 Conclusion: T-duality off shell in 3D Type

II superspace

We outline results we have obtained: we started with the T-dualN = 2 string
theory, i.e. effective N = 2 supergravity in 3 dimensions. We knew that this
theory should be equivalent to the theory obtained from the classical N = 1
supergravity in 4 dimensions. In the following chapters we first obtained
the dimension − 1 prepotential as the vielbein component E(1)

D D̃ ≡ E(1)
α β̃

and the dimension − 3
2

unconstrained gauge parameter ΛD ≡ Λα (also ΛD̃)
without solving any differential constraints. In the usual 4 dimensionalN = 1
supergravity they appear only through their derivatives in objects of higher
dimension after solving differential constraints, see section X.A.1 in [10]. We
have also derived the structure of the N = 2 supergravity in 3 dimensions
using the techniques of the T-dually extended superspace. In particular the
structure of the linear dilaton φ has been derived. It matches the structure
obtained from 4D N = 1 and its compactification, see section 7.9 in [22]
and [7]. This suggest that T-dualy extended superspace approach could be
extended also to higher dimensional cases, see [17].
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Chapter 12

12 Introduction: Pre-potential in the AdS5 ×
S5 Type IIB superspace

In the paper [11] we obtained the curvature tensor (previously discovered in
[1]) in a manifestly T-dual way. In the paper [12] we extended the techniques
for the case of three dimensional N = 2 T-dual extended superspace. There
we correctly obtained the pre-potential (as a part of vielbein), structure of
linearised dilaton and field equations. The aim of this paper was to look at
the full ten dimensional N = 2 T-dually extended superspace in the flat
and also in AdS5 × S5 background, i.e. IIB string theory expanded around
AdS5 × S5 background. The AdS was earlier analysed in superspace in
papers [24], [25], [14] and [15]. In following chapters discovered the projective
(and also the chiral) pre-potential to sit in a certain combination of HS S̃

and HD D̃. This was first obtained in the flat case and later generalised for
the AdS5 × S5. We also performed the near horizon limit and derived the
equation of motion for the pre-potential in that limit. This limit also picks out
the projective pre-potential instead of the chiral pre-potential, even though
both pre-potentials are valid bulk solutions. The projective and harmonic
superspaces were earlier analysed in [26] and [27].
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Chapter 13

13 Motivation

The massive development of the AdS/CFT correspondence (and its generali-
sations) started with foundational papers [29] and [30]. It is considered to be
one of the best achievements in string theory. The correspondence promises
the way of computing quantum effects in strongly coupled field theory us-
ing the classical (super) gravity theory. The AdS/CFT correspondence (and
its generalisations) is currently used in many different areas, like study of
confinement, condensed matter systems or investigation of non-equilibrium
phenomenas in strongly coupled plasma.

In the AdS/CFT correspondence the strongly coupled quantum field the-
ory (four dimensional N = 4 super Yang-Mills theory) is related to the
supergravity theory living on AdS5 × S5 space. The strongly coupled con-
formal field theory is hard to work with. The correspondence provides feasible
way to calculate effects in such theory by translating it to weakly coupled
supergravity.

It is therefore of high interest to develop suitable framework to handle
supergravity living on AdS5 × S5 background. This framework could be later
used as a base for perturbative calculations. In this paper our aim was to
look at type IIB supergravity living on AdS5 × S5 background. We are look-
ing for solutions generated via field called pre-potential. The pre-potential is
a basic field from which all physical fields (in the massless spectrum) arise.
Thus we get the classical solution of supergravity living on the background
AdS5 × S5. This solution is interesting because of our later aim to use it in
perturbative calculations. Our novel approach unites the way how this so-
lution is found. The first interesting observation is universal usage of string
based framework of T-dually extended superspaces, that started with foun-
dational paper [1] and later examined in [11] and [12]. Another interesting
feature is the way how the AdS5 × S5 pre-potential solution was obtained in
this paper. The approach is actually an analogy of how we derived the flat
ten dimensional pre-potential in this paper. We started with flat supergrav-
ity where it was much easier to identify the pre-potential. Inspired by this
solution we turned on the AdS5 × S5 background, modified the equations
and looked for the AdS5 × S5 deformed solution. This gave us both tech-
nical and also geometrical advantages to look at the pre-potential as coming
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from the same field solution. The sanity checked worked here, if we flatten
back the AdS5 × S5 (i.e. the R → ∞ limit) we would get back the flat
space pre-potential solution. Moreover by looking at the near horizon limit
(R → 0) it was easy to naturally identify the equations of motion and find
the correspondence between gravity fields and CFT fields.

We believe that the use of the string based T-dually extended superspaces
in various contexts is fruitful and natural way to cast supergravity, as was
observed in [11] and [1]. In this particular work we showed how it can be
effectively used to naturally find the pre-potential solution in the fully fledged
type IIB supergravity on the AdS5 × S5 background. That is a novel result
that to our best knowledge has never been derived. In the future we would
like to look how similar approach might shed some light on the supergravity
solutions on different backgrounds, relevant for generalizations of the AdS5 ×
S5. Moreover in this framework the calculations beyond linearized level are
also feasible and are left for future work.
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Chapter 14

14 Type II superspace, notation and motiva-

tion

14.1 10 dimensional type II superspace

The T-duality is important duality we know to exist in (super)string theory.
The low energy limit of superstring theory is version of ten dimensional
supergravity. The T-duality then forms T-duality symmetry which is the
symmetry of such low energy theory. That symmetry can be manifestly
realized by doubled spacetime coordinates. This realization was first made
in the paper [1].

In the next introduction we are closely following paper [17]. To T-dualize
ordinary space we start with space that can be built by the coset construc-
tion. In the procedure of T-dualizing the coset construction one starts with
ordinary Lie algebra generated by GI , where by I we mean some particular
set of indices. We require this Lie algebra to have non-degenerate metric.
As for the usual coset construction, one can exponentialize the Lie algebra
and get the Lie group (more precisely the vicinity of the unit element), i.e.
one constructs the Lie group element g(ZI ), where ZI are group coordi-
nates. The covariant derivatives and symmetry generators (Lie derivatives)
on that space are obtained by considering left and right actions of the group.
Since left and right action on a group element commute so do the covariant
derivatives and symmetry generators. More explicitly for ordinary (particle)
construction we get:

Symmetry generators: ∇̃I = LI
M 1

i
∂M (14.1)

Covariant derivatives: ∇
◦
I = RI

M 1
i
∂M

where LI
M and RM

I are matrices defining right and left invariant one forms:
(d g ) g−1 = i d ZM LM

I GI and g−1 (d g ) = i d ZM RM
I GI . The L matrix is

used in left action generator and R matrix is used in right action generator

in (14.1). It follows from construction that the covariant derivatives ∇
◦
I and
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symmetry generators ∇̃J satisfy the following Lie algebra:

[ ∇̃I , ∇̃J} = i fI J
K ∇̃K || [∇

◦
I , ∇
◦
J} = − i fI JK ∇

◦
K (14.2)

[∇
◦
I , ∇̃J} = 0

where we included graded commutators as an immediate superalgebra gen-
eralization. The graded bracket in (14.2) is anticommuting for two fermions
and commuting for others. Having the covariant derivatives in hands we can

curve given space arbitrarily via vielbeins ∇A = EA
I ∇
◦
I .

The next step is to generalize the algebra (14.2) to the (super)string case.
It is obtained by string extension of particle one parameter ZI ( τ ) to stringy
ZI ( τ, σ ). By that we get string generalization of (14.2), the string affine
Lie algebra:

[ B̃I , B̃J} = i fI J
K B̃K + i η

◦
I J ∂σ δ ( 2 − 1 ) (14.3)

[B
◦
I , B
◦
J} = − i fI JK B

◦
K − i η

◦
I J ∂σ δ ( 2 − 1 )

[ B̃I , B
◦
J} = 0

where the metric η
◦
I J is the (graded), constant, non-degenerate (super) Lie

group metric and ∂σ δ ( 2 − 1 ) ≡ ∂σ2 δ ( 2 − 1 ) ≡ δ′ ( 2 − 1 ). In analogy
with (14.1) the left and right action generators could be solved explicitly in
the string case:

Symmetry generators: B̃I := LI
M
(

1
i
∂M + ∂σ Z

N BN M

)
(14.4)

− ∂σ ZM LM
J η
◦
J I

Covariant derivatives: B
◦
I := RI

M
(

1
i
∂M + ∂σ Z

N BN M

)
+ ∂σ Z

M RM
J η
◦
J I

where BM N is the B-field. We can get the curved version of the string
covariant derivatives (in paper [17] also called curved current) via vielbeins:

BA := EA
I (Z ( τ, σ ) )B

◦
I ≡ EA

I B
◦
I (14.5)

Using (14.5) we can introduce geometric objects like torsions. Looking at
stringy affine algebra in the curved background we get:

[ BA, BB} := −i TABC BC δ ( 2 − 1 ) − i ηAB ∂σ δ ( 2 − 1 ) (14.6)
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where TAB
C is the string generalization of torsion and ηAB is the curved

group metric. In general are both functions of vielbeins. We will impose con-
straint on ηAB and require ηAB to be a constant metric η

◦
AB. Such constraint

does not impose any restrictions on physical content and makes calculations
simpler.

In the next step we will describe particular realization of above con-
struction. For the usual particle we can start with algebra of translations
generated by pm, where m ∈ {1, . . . , dim}. Next we can include the su-
persymmetry generator Dµ, where µ is fermionic index and range depends
on dimensionality of space. By including Dµ we get the supertranslations.
Finally we can add the Lorentz generator Smn and thus get a particle alge-
bra of super-Poincaré transformations. All previous can be described by nice
diagram (see table 4), see also reference paper [17].

translations → supertranslations → super-Poincaré
pm Dµ, pm Smn, Dµ, pm

Table 4: Particle algebra generators

To build the T-dual analog of table 4 for type II string we first need to
double the translation generators and also have in mind that those gener-
ators are forming an affine Lie algebra as seen in (14.3). We get the set
of string translation generators Pm, Pm̃, they generate left and right trans-
lations. Next we will include the supersymmetry generators that are for
obvious reasons also doubled to Dµ, Dµ̃. Including those generates a small
issue. Because we consider the non-degenerate group metric ηI J and the
affine Lie algebra of supertranslations has to satisfy super-Jacobi identities
we need to include another independent fermionic generators (dual currents)
Ωµ, Ωµ̃. The necessity for the dual currents was discussed in great detail
in [5]. Finally, if we include the Lorentz generators Smn, Sm̃n we also dis-
cover yet another set of dual currents Σmn, Σm̃n. We summarise the type II
generators in diagram 5.

translations → supertranslations → super-Poincaré
Pm Dµ, Pm, Ω

µ Smn, Dµ, Pm, Ω
µ, Σmn

Pm̃ Dµ̃, Pm̃, Ω
µ̃ Sm̃n, Dµ̃, Pm̃, Ω

µ̃, Σm̃n

Table 5: String affine algebra generators
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We can see that the whole set of generators is doubled for type II string
affine algebra. That introduces space with high dimensionality. In the end
the dimensional reduction, coset constraints and section condition are im-
posed on fields (living on such high dimensional space) to remove unphysical
degrees of freedom. To deal with indices and generators in table 5 we intro-
duce notation for various forms of graded indices, notation can be found in
table 6.

Explicit: M := ( mn, µ, m,
µ, mn)

Carried by: Smn, Dµ, Pm, Ω
µ, Σmn

Explicit: M̃
:= ( m̃n, µ̃, m̃,

µ̃, m̃n)
Carried by: Sm̃n, Dµ̃, Pm̃, Ω

µ̃, Σm̃n

Symbolic: M := (S, D, P, Ω, Σ )

M̃
:= ( S̃, D̃, P̃ , Ω̃, Σ̃ )

Multiindices: M := (S, S̃, D, D̃, P, P̃ , Ω, Ω̃, Σ, Σ̃ ) ≡ (M , M̃ )

Table 6: String affine algebra indices

Using definition from table 6 we can define stringy super-Poincaré covari-
ant derivatives (and string coordinates) in the sense of generic string affine
(super) Lie algebra from (14.3), see table 7.

Covariant derivatives: B
◦
M := (Smn, Dµ, Pm, Ω

µ, Σmn )

B
◦
M̃

:= (Sm̃n, Dµ̃, Pm̃, Ω
µ̃, Σm̃n )

Coordinates: ZM := (umn, θµ, xm, ϕµ, vmn )

ZM̃ := (um̃n, θµ̃, xm̃, ϕµ̃, vm̃n )

Table 7: String covariant derivatives and coordinates

The table 7 covariant derivatives satisfy the following explicit string type
II affine super-Poincaré algebra, for which the non-zero structure constants
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and the central charges are:

[Smn (1), Skl (2) ] = −i η[ m [ k Sl ] n ] δ ( 2 − 1 ) (14.7)

[Smn (1), Dρ (2) ] = − i 1
2

( γmn )σρDσ δ ( 2 − 1 )

[Smn (1), Pk (2) ] = i ηk [ m Pn ] δ ( 2 − 1 )

[Smn (1), Ωρ (2) ] = i 1
2

( γmn )ρσ Ω
σ δ ( 2 − 1 )

[Smn (1), Σkl (2) ] = i δmn
kl δ′ ( 2 − 1 ) − iδ[ m

[ k ηn ] sΣ
l]s δ ( 2 − 1 )

{Dρ (1), Dσ(2) } = 2 ( γm )ρσ Pm δ ( 2 − 1 )

[Dρ (1), Pm (2) ] = 2 ( γm)ρσ Ω
σ δ ( 2 − 1 )

{Dρ (1), Ω
σ (2) } = i δσρ δ

′ ( 2 − 1 ) − i 1
4

( γmn )σρΣ
mn δ ( 2 − 1 )

[Pm (1), Pn (2) ] = i ηmn δ
′ ( 2 − 1 ) + i ηm h ηn sΣ

hs δ ( 2 − 1 )

99 left algebra → − right algebra

[ left, right } = 0.

As indicated above, the algebra for the right generators is the same up to
the overall sign. We can assign the canonical dimensions to the genera-
tors: dim (S, D, P, Ω,Σ) = (0, 1

2
, 1, 3

2
, 2). The S generators generate the

SO ( 9, 1 ) ⊗ SO( 9, 1 ) algebra, i.e. left (and right) local Lorentz transfor-
mations. The D generate left (and right) supersymmetry transformation
and P left (and right) translations. The Ω and Σ are the left (and right)
dual currents (corresponding to D and S), see also [1]. We can see once
again that the only non-vanishing terms (for left handed algebra, similarly
for right handed algebra) in the metric and structure constants in (14.7) are
(as can be guessed by dimensional analysis):

ηPP , ηSΣ, ηDΩ; fSPP , fSSΣ , fDDP , fSDΩ (14.8)

where we have lowered the upper index on f with η to take advantage of
its total (graded) antisymmetry. In that notation we explicitly have, for the
left-handed algebra:

(η)mn = ηmn , (η)mn
pq = δmn

pq , (η)σ
ρ = δρσ (14.9)

fmn
p q = − δmn

pq || fmn pq
rs = η[m[pδq]n]

rs (14.10)

fσρ
m = 2 ( γm )σρ || fmnσ

ρ = − 1
2

( γmn )ρσ
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The type IIA and IIB theories are distinguished by the choice of ten
dimensional fermionic coordinates. For IIA theory we pick fermionic coordi-
nates with both ten dimensional chiralities (Zµ, Z µ̃ ) ≡ ( θµ, θµ ). Note that
now the θ coordinate uses concrete ten dimensional fermionic index (in chiral
representation), in contrast with generic fermionic index used in description
of θ coordinate in table 7. Moreover those indices are ten dimensional chiral
indices with respect to the common (diagonal) local Lorentz group (defined
after the dimensional reduction). The IIB theory uses the indices of the same
ten dimensional chirality (Zµ, Z µ̃ ) ≡ ( θ1

µ, θ2
µ ), therefore we denoted them

by substript 1 and 2.
The above construction is very natural from the point of view of the su-

perstring theory, where we know the T-duality is a symmetry of low energy
theory. Moreover as we have seen in papers [11] and [12] this description
has advantages to naturally introduce objects of interest. For example in the
paper [11] we derived the T-dual version of Riemann curvature tensor using
T-dually extended space (even though there without supersymmetry). That
tensor has been previously discovered in [1] but by indirect methods. In pa-
per [12] we discovered that the pre-potential for N = 2 three dimensional
supergravity is naturally part of vielbeins living on the T-dually extended
superspace (i.e. the three dimensional version of above construction). It was
known how to find the pre-potential for N = 2 three dimensional supergrav-
ity before, however some further differential constraints were needed (like the
bisection condition) see [22]. In paper [12] all constraints are coming natu-
rally from the torsion constraints (we will discuss them later in this paper
as well). We will see that ten dimensional generalization of [11] and [12] is a
fruitful way how to treat the pre-potential in ten dimensional flat and even
AdS5 × S5 space.

In next sections we will use the Wick rotation. We feel free to Wick
rotate from Minkowski to Euclidean metric and back because in the following
chapters we do not discuss the reality conditions, so the rotation is the matter
of convenience.

Our first and most significant use of Wick rotation is in the description
of space-cone gauge in the case of AdS5 × S5. The procedure is described
more precisely in [8] and so we are giving just short overview. In order to
introduce the space-cone basis in AdS5 × S5 one can first Wick rotate the
sphere S5 to AdS5. This is done by extension of one S5 coordinate to complex
numbers and then taking it to be purely imaginary. After that we have space
AdS5 × AdS5. At two corresponding Poincaré patches (at the AdS5 × AdS5)
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we take two bulk coordinates (two space-like coordinates one from the original
AdS5 and another one from the Wick rotated sphere) and introduce the space-
cone coordinates x+ and x− as their combinations. The near horizon limit
is attained by x+ → 0. This limit turns the superspace into the projective
superspace. In the text we will use those x+ and x− coordinates and related
space-cone gauge (for vielbeins living on the extended space). The space-
cone gauge destroys the explicit local Lorentz covariance but still preserves
the boundary (near horizon limit) Lorentz covariance SO ( 3, 1 ) ⊗ SO( 4 )
the symmetries of boundary CFT.

We will also use the Wick rotation whenever we find it easier to explain
or define some notion. For example, we define ten dimensional Γ matrices
as matrices for SO ( 10 ) Lorentz group. To get the gamma matrices for
SO ( 9, 1 ) one can Wick rotate back.

14.2 Gamma matrices

The gamma matrices (γm)µ ν used in the algebra (14.7) are the 16⊗ 16 block
gamma matrices from 10 dimensional 32⊗ 32 chiral representation:

Γm =

(
0 (γm)µ ν

(γm)µ ν 0

)
where {Γm, Γn } = 2 ηm n δ. (14.11)

Moreover the block gamma matrices satisfy:

(γm)µ ν = (γm)ν µ || (γ(m)µ ν (γn))ν σ = 2 ηm n δ
µ
σ (14.12)

(γm)(µ ν(γ
m)σ)λ = 0

The IIB fermion generators (in algebra 14.7) are described by 16 ⊕ 16
chiral fermion generators (for left and right generators) with the same 10
dimensional chirality. For the future use we need to look closer at the struc-
ture of the matrices (γm)µν from equation (14.11). The gamma matrices
from equation (14.11) could be constructed from SO ( 9 ) gamma matrices or
equivalently from SO ( 8 ) gamma matrices and the chirality matrix. We can
go one step down and construct the SO ( 8 ) gamma matrices from SO ( 6 )
gamma matrices. For the SO ( 6 ) gamma matrices we use the Majorana rep-
resentation of those matrices (they are purely imaginary). Thus we can get
the Majorana - Weyl representation of the SO ( 8 ) gamma matrices.
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For the future reference we will define the following 16 ⊗ 16 matrix Γ̃5:

Γ̃5 := γ10

4∏
m = 1

γm (14.13)

where γm are block gamma matrices from (14.11).

14.3 Space - cone basis and indices

In the following sections we will use the space-cone basis we introduce it
for the gamma matrices we constructed in previous subsection. We first
notice that the block gamma matrices γm in equation (14.11) could have
either upper indices (γm)µ ν or lower indices (γm)µ ν . From the construction
it follows that those matrices are equal up to the sign.

In the equation (14.11) let us further divide the (either upper or lower)
16 dimensional index µ to 8 ⊕ 8 pieces (they are the SO ( 8 ) chiral indices),
thus we introduce µ := (µ, µ′ ). In another words we want to look how the
block γm matrices look in the SO ( 8 ) (Majorana - Weyl) basis. Furthermore
we introduce the following space-cone combinations of the equation (14.11)
block gamma matrices:

(γ+)µ ν = 1
2

( γ10 + γ9 )µ ν =

(
0 0
0 δµ′ ν′

)
|| (γ−)µ ν = 1

2
( γ10 − γ9 )µ ν

=

(
δµ ν 0
0 0

)
(14.14)

(γ+)µ ν = 1
2

( γ10 + γ9 )µ ν =

(
δµ ν 0
0 0

)
|| (γ−)µ ν = 1

2
( γ10 − γ9 )µ ν

=

(
0 0
0 δµ

′ ν′

)
(14.15)

For the convenience we also write the remaining gamma matrices using the
SO ( 8 ) indices:

(γ i)µ ν =

(
0 ( γ̃ i )µ ν′

( γ̃ i )µ′ ν 0

)
|| (γ i)

µ ν =

(
0 ( γ̃ i )µ ν

′

( γ̃ i )µ
′ ν 0

)
(14.16)

where the γ̃ i are the SO ( 8 ) gamma matrices.
In the above introduced 8 ⊕ 8 basis the (14.13) looks like σ3 ⊗ 1 where

1 is the 8 ⊗ 8 unit matrix and σ3 is the Pauli matrix.

52



Chapter 15

15 The AdS background in the T-dually ex-

tended superspace

15.1 Short review of the theory in curved background

In the treatment of the theory (of T-dually extended superspaces) the curved
background is introduced via vielbeins EA

M(ZN ), see papers [1], [11], [12].
Note that the index M was introduced in table 6:

BA= EA
M(ZN )B

◦
M (15.1)

where B
◦
M are generators of the flat algebra (14.7). The affine Lie algebra

for the curved covariant derivatives BA can be written as:

[ BA,BC } ≡ −iηAC δ′ ( 2 − 1 )− iTACE BE δ ( 2 − 1 ) (15.2)

where TAC
E is the superstring generalisation of the torsion, see [11]:

TAC
E = E[A

M(DMEC)
N )E−1

N
E + 1

2
ηEDED

M(DME[A|
N )E−1

N
FηF|C)(15.3)

+EA
MEC

NE−1
P
EfMN

P

where [A | | C ) indicates graded anti-symmetrization in only those indices. By
DM in (15.3) and in the whole next text we mean the group covariant deriva-
tives of the (non-affine) part of algebra (14.7): [DM, DN } = i fMN

E DE .
Note that the super-Jacobi identities imply the total graded antisymmetry

of the torsion, just as for the structure constants. We can set the coefficient of
the Schwinger term (the central charge in algebra (15.2)) to be the flat metric

η
◦

(now we rename it to η, to simplify notation). After that the vielbein is
forced to obey the orthogonality constraints:

EA
MηMN E C

N ≡ ηAC (15.4)

This choice does not affect the physics, and simplifies many of the expressions.
For example, it implies the total graded antisymmetry of the torsion, when
the upper index is implicitly lowered with η:

TAB C = 1
2
E[A |

M(DME| B
N )EC )N + EA

MEB
NEC

PfMN P (15.5)
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where we have used E−1
M
A = ηA BηM NEB

N . Also note that in the first
term the graded anti-symmetrization can be written as a cyclic sum without
the 1/2, since it is already graded antisymmetric in the last two indices.
Because of orthogonality, the vielbein is like (the exponential of) a super
2-form, while the torsion is a super 3-form. Similarly the Bianchi identities
are a super 4-form.

To solve the theory (in terms of pre-potential, to get physical fields and
equation of motion) orthogonality condition (15.4) has to be solved explic-
itly (or at least at linearised level). Moreover there is a huge gauge group
invariance that should be fixed:

δΛ BA= [− i Λ, BA } where Λ :=

∫
d σ λM (Z )DM (15.6)

At the top of the orthogonality condition and the gauge invariance, we should
include the torsion constraints. The torsion constraints are additional con-
straints on vielbein. They are imposed by putting some of the torsions in
(15.5) to zero. Of course, not all torsions in (15.5) are zero. The relevant tor-
sion constraints have been carefully analysed in [17]. All possible constraints
on torsions are coming from curved space version of the A B C D (first class)
constraints: A Virasoro, (string world-sheet) diffeomorphism constraints, B
and C and D are the first class fermionic κ symmetry constraints, for further
details see [9], [32], [33], [34], [35] and [17]. The rule of thumb is that at least
the torsions of negative (10 dimensional) engineering dimension should be
zero.

We will not try to solve the full nonlinear version of the theory. We
linearise the theory around some background. In the papers [11], [12] we
linearised around the flat background. In this paper however we linearise the
theory around the AdS5 × S5 solution of the classical supergravity (refor-
mulated in the language of the doubled algebra).

After the linearisation we rewrite the orthogonality constraints (15.4) and
torsions (15.5) using the vielbein expansion EC

D = δC
D +E(1)

C
D +O (E(2) ).

Let us for simplicity rename the first fluctuation E(1)
C
D ≡ HC

D. Then the
equation (15.4) is just statement that: H( C

D ηD |E ] ≡ H(C E ] = 0 and the
structure of linearised torsion (15.5):

TAB C = fAB C + T (1)
AB C + O (T (2) ) (15.7)

where T (1)
AB C ≡ 1

2
D[AHB C ) + 1

2
H[A

M fB C )M
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15.2 AdS5 × S5 background

In the expansion (15.7) we need to have the concrete structure constants
fAB C (i.e. vacuum values of torsions). We are interested in solving the theory
(at least identifying the pre-potential) around this AdS5 × S5 background.
The relevant structure constants for the T-dually extended superspace in the
context of the AdS5 × S5 background were analysed in the last section of
the paper [17]. We are repeating them here for the convenience. In the next
section we will embed this AdS5 × S5 version of T-dual algebra (see [17])
to a certain larger algebra that will be actually used in computations. The
relevant non-vanishing AdS5 × S5 torsions from [17] are:

dim 0 : TS S Σ = fS S Σ || TS DΩ = fS DΩ || TS P P = fS P P

TDDP = fDDP

dim 1 : TD D̃Σ = RD D̃Σ || TP D̃ Ω = RP D̃ Ω

dim 2 : TΩΩ P = RΩΩ P || TΩΩ P = RΩΩ P̃ || TP P̃ Σ = RP P̃ Σ

dim 3 : TΩ Ω̃ Σ = RΩ Ω̃ Σ (15.8)

note that the left and right index notation was introduced in table 6.
The fAB C in (15.8) are usual flat superspace structure constants for

the (flat) T-dually extended superspace with the (common) local Lorentz
group SO ( 4, 1 ) ⊗ SO ( 5 ). The nontrivial curvatures from table (15.8),
for example RD D̃Σ ,RP D̃ Ω, etc. are defined using the dimension 1 torsion
TP D̃ Ω. The TP D̃ Ω ≡ Ta α̃

β = γa ασ F
β σ̃, where the R-R field strength

FΩ Ω̃ ≡ Fα β̃ = 1
rAdS

(Γ̃5)αβ. Note that the Γ̃5 was defined in (14.13) and the

new parameter rAdS is the AdS5 space radius (note, rAdS = rS, i.e. the ra-
dius of S5 is the same of AdS5, so that Ricci scalar R = 0). More specifically
some of the table (15.8) curvatures:

dim 1 : RD D̃Σ ≡ Rα β̃
a b = Tβ̃

σ [a γb ]
ασ (15.9)

dim 1 : RP D̃ Ω ≡ Ra α̃
β = Ta α̃

β = γa ασ F
β σ̃

dim 2 : RP P̃ Σ ≡ Ra b̃
cd ∝ Tb̃α

β̃ Rβ̃ γ
cd γa

αγ

dim 3 : RΩ Ω̃ Σ ≡ Rα β̃ ab ∝ (T d̃ β̃
σ Rd̃ e

ab + Te
β̃ ν Rσ̃ ν

ab) γe σ α

where the dim 2 curvature is proportional with the constant 2−
D
2

+ 1 and the
dim 3 curvature is proportional with a constant D (where D is 10 in our
case).
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All the other curvatures in (15.9) are obtained using the appropriate
Bianchi identities (one can obtain all curvatures from TP D̃ Ω using Bianchi
identities). We note that the torsions (15.8) and curvatures (15.9) are con-
sistent with torsions and curvatures given in the [31].

15.3 Extended AdS5 × S5 T-dual algebra

To identify the pre-potential in the generalised vielbeins, i.e. solving the
spectrum of the theory (on linearised level) we want to proceed as described
in earlier papers [17], [11], [12]. There the vielbeins were introduced as in
(15.1) and linearised as above the equation (15.7). This procedure means
the expansion of generally curved superspace around some (in those papers
just a flat) background. Moreover the gauge invariance was completely fixed
(in referenced papers the covariant gauge was considered) and after that the
pre-potential was identified as a part of vielbein (acting on by derivatives,
the physical spectrum is produced).

Here we want to proceed in similar way. We want to introduce the viel-
beins and linearise the theory around the AdS5 × S5 background. We have
tried to use solely the algebra described in the previous sub-section, i.e. to
take the algebra (15.8) and introduce the vielbeins, gauge fix and linearise.
Even though we still believe that the pre-potential is sitting in that theory
in some combination of vielbeins, it was not easy to identify it. The reason
was that to identify the pre-potential we need to find a scalar contraction
of some linear combination of vielbeins that is anihilated by the Dv and Dv̄

operators. The Dv and Dv̄ are certain combinations of Dα′ and Dα̃′ (see the
index notation above the (14.14), i.e. they are a particular chiral part of
the SO ( 8 ) chiral decomposition of the 16 supersymmetry translations Dα

defined at the beginning, see (14.7) and section above (14.14)).
Because the metric is in HP P̃ vielbein, we expected the pre-potential

to be (at least a part of it) in TrHP P̃ . The problem with TrHP P̃ is that
it already has dimension 0. To show that it is annihilated by Dv and Dv̄

operators we would need to use torsion constraints of dimension 1
2
. Moreover

we also know that the pre-potential has to be annihilated by the suitably
defined P+ operator (P+ ∝ (P+ + P+̃ ) where P+ ≡ DP+ and P+̃ ≡ DP+̃

),
in a light cone basis introduced in (14.14) and in the near horizon limit
(defined later)). The high dimensionality of TrHP P̃ then requires to use at
least dimension 1 torsion constraints to prove that P+ vanishes (in the near
horizon limit). That seemed to be problematic to analyse in the theory based
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just on the algebra (15.8) and (15.9) because of the degauging procedure.
The degauging appears since the theory coming from algebras (15.8) and
(15.9) is really coming from the full SO ( 10 ) ⊗ SO ( 10 ) so there are some
missing Lorentz connections. By simple dimensional analysis it is evident
that the missing Lorentz connections are first appearing at dimension 1 (for
example the appearance of the full HP S in the dim 1 torsion TP P P ∝ . . . +
H[P |S fP P ]Σ + . . . ).

For that reason we extended the algebra (15.8) to include the original
(Wick rotated) local Lorentz group SO ( 10 ) ⊗ SO ( 10 ). All the other struc-
ture constants and curvatures in (15.9) and (15.8) stay the same. Except now
we have separate left local Lorentz Sab generator together with the right local
Lorentz generator Sãb, where a ∈ { 1, . . . 10}. The common (Wick rotated)
SO ( 5 ) ⊗ SO ( 5 ) Lorentz group of original AdS5 × S5 algebra (15.8) is then
the subgroup in the diagonal SO ( 10 ) subgroup of SO ( 10 ) ⊗ SO ( 10 ). The
extension procedure can be viewed from the different picture. We could start
with the full 10 dimensional string superspace as introduced in [1] and [16].
Then introduce the curved version of that space via vielbeins and then lin-
earise around some background as described earlier. The extension of (15.8)
and (15.9) to full SO ( 10 ) ⊗ SO ( 10 ) is then just a choice of some particular
background that is consistent with the original AdS5 × S5. This has an ad-
vantage that now we have a natural place where to put the troubling (part)
of the pre-potential TrHP P̃ . Because of the additional Sab and Sãb we can
have TrH+a +̃b ≡ TrHS S̃ instead of the TrHP P̃ . The TrHP P̃ ≡ Ha b̃ is
related to TrHS S̃ ≡ TrH+a +̃b by an action of DP− ≡ P− and DP−̃

≡ P−̃
(they are both invertible operators). The vielbein HS S̃ is of the dimension
− 2 and so there is no need to use the higher dimensional torsion constraints.
Moreover in the full SO ( 10 ) ⊗ SO ( 10 ) theory we do not have to do the
degauging procedure.

This extension comes with the cost. The mixed pieces of the AdS algebra
(15.9) are breaking the explicit SO ( 10 ) ⊗ SO ( 10 ) invariance (they are
not the SO ( 10 ) ⊗ SO ( 10 ) invariant tensors). We still have present the
full DS ≡ S generators. Those derivatives could hit the (non-invariant)
curvatures. The solution of this is to keep the explicit mixed curvature
dependence (as generic mixed curvatures) till the S derivatives are not being
explicitly evaluated. We will describe this procedure in detail later.
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Chapter 16

16 Gauge fixing

We want to fix the space-cone gauge (T-dual super space-cone gauge) for the
first fluctuation HAB, i.e. like in the usual light-cone we have DP− ≡ P−
operator invertible, now we have P− and P−̃ invertible (where DP−̃

≡ P−̃).
First we look at the gauge variation (15.6) more closely and at the lin-

earised level:
δΛHAB = D[A λB ) + fAB

C λC (16.1)

In the light-cone gauge we in general pick a vielbein with an P− or P−̃ index,
put that vielbein to zero. In order to maintain that gauge we need to fix the
particular gauge parameter. For simplicity we call P− ≡ − and P−̃ ≡ −̃
then:

H−A = 0 ⇒ δΛH−A = 0 (16.2)

⇒ P− λA − DA λ− + f−A
C λC = 0

then λA = 1
P−

(DA λ− + f−A
C λC )

Note that there are more possibilities to fix the particular gauge parameters
λA. To fix λA we could also put H−̃A = 0 and use the invertibility of P−̃. Of
course we can not fix some gauge parameter twice. We have to decide which
vielbeins we are going to fix in this “double” light-cone gauge.

We picked the approach where we used the mixed vielbeins to vanish
by the double light-cone gauge fixing, i.e. we put H−̃A = 0 for A ∈
{S, D, P, Ω, Σ } ≡ left part of algebra. Together with H−Ã = 0 for

Ã ∈ { S̃, D̃, P̃ , Ω̃, Σ̃ } ≡ right part of algebra. By that choice we fully
fix the gauge parameters λA and λÃ in terms of λ−. That parameter can be
fixed by the gauge invariance of the gauge invariance.

The motivation for the previously described mixed left right light-cone
gauge fixing came from the flat space (just the extended AdS5 × S5 space
with rAdS → ∞, i.e. the flat SO ( 10 ) ⊗ SO ( 10 ) T-dual superspace). After
picking this type of the light-cone gauge the mixed torsion constraints of the
type T−̃AB = 0 are as algebraic as possible:

T−̃AB = P−̃HAB +DBH−̃A +DAHB −̃ +H−̃M ηMNfABN (16.3)

+H[A |Mη
MNfB ) −̃N

T−̃AB = P−̃HAB = 0 ⇒ HAB = 0 forA, B : T−̃AB = 0 (16.4)
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where we used our mixed light-cone gauge and rAdS → ∞ of extended
algebra in (16.4).

The same as in (16.3) and (16.4) holds if one fully swaps left and right
indices. For finite rAdS we can have the mixed structure constants nonzero
(i.e. fAB −̃ 6= 0) and so we would have a right hand side in (16.4). Note
also that there could be the contribution from S derivatives hitting the mixed
structure constants. Even though the right hand side in (16.4) is not generally
vanishing for finite rAdS we found that the mixed left-right light-cone gauge
is still useful in the AdS5 × S5 case.

59



Chapter 17

17 Torsion constraints

17.1 AdS5 × S5 curvatures and DS derivatives

As we noted in the introduction section. Because we have enhanced our
superspace, we have to take special care when the local Lorentz derivatives
DS ≡ S are hitting the mixed curvatures (15.9). This problem arises because
the curvatures in (15.9) are not full SO ( 10 ) ⊗ SO ( 10 ) invariant. The
solution is to keep the non-invariant torsions (15.9) generic and explicitly
act by the DS ≡ S derivatives on those torsions. Only after this explicit
S action we can evaluate those torsions (or curvatures) and be fixed as in
(15.9).

Let’s take an example, from the equation (16.3) we can see that in the
AdS5 × S5 case in the mixed light-cone gauge the HAB is determined as:

HAB = 1
P−̃
H[A|M ηMN fB) −̃N (17.1)

In many instances in the following chapters we use similar relation as in (17.1)
to fix some particular vielbein in terms of another vielbeins. If all structure
constants f would be SO ( 10 )⊗SO ( 10 ) invariant tensors then there is not a
problem and we can treat the f structure constants as genuine constants also
with respect to the S derivatives. In our case however the mixed f structure
constants (that we call also the curvatures) in (15.9) explicitly break the
SO ( 10 ) ⊗ SO ( 10 ) local Lorentz invariance down to the SO ( 5 ) ⊗ SO ( 5 )
local Lorentz (as it should be in the AdS5 × S5 case). One possibility is
to restrict our superspace local Lorentz invariance (the S derivatives) to
SO ( 5 ) ⊗ SO ( 5 ). Then we would return back to the PSU ( 2, 2 | 4 ) that we
wanted to avoid in the first place (in order to have H+a +̃b instead of Ha b̃).
The alternative, that we picked, is to work with the full SO ( 10 ) ⊗ SO ( 10 )
local Lorentz group. But then the structure constants that are breaking that
invariance are not invariant tensors and so the action of those S derivatives
on the mixed structure constants has to be accounted for. So we should
keep the mixed f structure constants and when needed explicitly act by the
S derivatives on them. We will evaluate them as the very last step in our
calculations. Let’s look at the example in (17.1) and look at the action of
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S+̃a, where a ∈ { 1 . . . 8}:

S+̃aHAB = S+̃a

(
1
P−̃
H[A|M ηMN

)
fB) −̃N (17.2)

+ 1
P−̃
H[A|M ηMN

(
S+̃a fB) −̃N

)
= S+̃a

(
1
P−̃
H[A|M ηMN

)
fB) −̃N + η+−

1
P−̃
H[A|M ηMN fB) ãN

We will evaluate the fB ãN in the second equation just after all the (possibly
future) S derivatives have already acted. We also should bear in mind that
whenever we are acting by the S derivative on some vielbein (that is deter-
mined by another vielbeins) there might be the above described issue. The
second term can (and it will) nontrivially contribute to our calculations.

17.2 Torsion constraints and HS S vielbein

The torsion constraints are (mainly) given by the curved version of the
A B C D (first class) constraints, see [9] and [17]. There are further con-

straints called T̃A = 0 coming from requirement of partial integration in
the presence of the dilaton measure, see [1], and [12]. There is also a
strong constraint: on every field in the double field theory one has to re-
quire DADA = 0. There are also a dimensional reduction constraints, as we
see later.

Our aim is to analyse the necessary constraints consistent with the above
constraints by which we can identify the pre-potential. Following the analysis
given in [8], we identify the pre-potential as a scalar super-field (given by
some super-trace of possibly a combination of vielbeins), that is annihilated
by certain combination of the Dν′ and Dν̃′ . The precise combination of Dν′

and Dν̃′ is also going to be determined from the constraints.
As usual, we start to eliminate the lowest dimensional vielbeins. The viel-

beins of the lowest dimension areHS S, HS S̃, HS̃ S̃. They are of the dimension
− 2 (we mean the ten dimensional dimension). Using equations (16.3) and
(16.4) for indices A = S and B = S (also after change left ↔ right) we
immediately get that HS S = 0 = HS̃ S̃. Note, that even in the extended
AdS5 × S5 superspace the structure constant fS Ã B = 0 → fS −̃ B = 0.

We mention an important observation that will help us simplify future
calculations. As we saw in previous sub-chapter, we should keep the mixed
structure constants generic and evaluate them at the end. Note however,
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that the mixed structure constants with the S indices are always zero (like
the one we considered here: fSÃB). The action of S derivatives on them
results in the mixed structure constants again with the S index and such are
zero after the evaluation. So specifically, we can evaluate the mixed structure
constants with the S indices to zero even before acting by S derivatives on
them.

The mixed vielbein HS S̃ is not all zero and the claim is that the part
of the pre-potential is in this particular vielbein. To see which parts are
possibly nonzero we rewrite the HS S̃ in the double light-cone components:

HS S̃ ≡ {H+a +̃c, H+a −̃b, H−a−̃b, H+a b̃c, H−a b̃c, Hab c̃d, H+− +̃−, H+− +̃a

H+−−̃a, H+− ãb} ⊕ swap (17.3)

where we might swap left index with the right index in (17.3). Also note that
in all previous we have a ∈ { 1, . . . , 8 }. We remind that P+ ≡ + ∝ 10 + 9
and P− ≡ − ∝ 10 − 9.

We want to use analog of equations (16.3) and (16.4) for the mixed HS S̃

and rAdS 6= ∞:

T−̃S S̃ = 0 = P−̃HS S̃ + DS̃ H−̃S + DS HS̃ −̃ (17.4)

+H[ −̃|M ηMN fS S̃ ]N

In equation (17.5) we have term H−̃S zero by gauge choice. The vielbein
HS̃ −̃ is proportional to fS −̃N . We see that this term is zero after evaluating
fS −̃N = 0 by (15.9). Using the (16.3) and (16.4) for A = S and B = − and
keeping f−−̃S nonzero, we get HS − = 1

P−̃
f−−̃M ηMN HSN and similarly for

HS̃ −̃ and so the third term in (17.5) is also fixed. The (17.5) is then:

T−̃S S̃ = 0 = P−̃HS S̃ +DS

(
1
P−

f−−̃M ηMN HS̃N

)
+ HSM ηMN fS̃ −̃N

(17.5)
Using equations (16.3), (16.4), (17.5) and the mixed light-cone gauge together
with keeping the mixed structure constants and evaluating the explicit ac-
tions of the S and S̃ derivatives we get the first important result for the
structure of the HSS̃ vielbein (in the AdS case), see table (9) in Appendices.
From the table (9) we can see that the possibly nonzero HS S̃ in (17.5) are
those for which fS̃ −̃N are nonzero (after evaluation of mixed structure con-
stants). By simple left ↔ right swap we get that for HS S̃ to be nonzero
also fS−N has to be nonzero. From the [S, P ] part of SO ( 10 ) ⊗ SO ( 10 )
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extended algebra of (14.7) we can see the only possibility: H+a +̃c 6= 0. All
the other components of HS S̃ = 0 by (17.5) and table (9) after evaluation.
This is a first hint that we are on the right track. The H+a +̃c 6= 0 is the only
nonzero part (after evaluation of mixed structure constants) of HS S̃ piece,
it has a scalar trace and we can easily relate it to Ha b̃ ≡ HP P̃ , where we
expect the part of the pre-potential to be (the symmetric part corresponds
to the metric).

To see how HP P̃ is related to HS S̃ consider the third relation from table
(9) and after evaluation of mixed structure constants:

( 1 + 1
2 (rAdS)2

1
P− P−̃

)H+a+̃b = 1
P−
Ha +̃b (17.6)

We want to reduce Ha +̃b further to get Ha b̃. One can näıvely expect

to just hit Ha +̃b with P−̃ to get rid of the S̃ index (or alternatively hit
by P− the H+a b̃). It works but one has to be more careful since in the
AdS5 × S5 space one has the mixed structure constant f− b̃N 6= 0. To see
what is this structure constant (after the mixed structure constants evalua-
tion) we remind that in (15.9) we saw that dimension 2 structure constant

is given as RP P̃ Σ ≡ Ra b̃
cd ∝ Tb̃α

β̃ Rβ̃ γ
cd γa

αγ. We have to be care-

ful with the indices in the Ra b̃
cd. The Σ indices cd in (15.9) were indices

for SO ( 5 ) ⊗ SO ( 4, 1 ) local Lorentz group (or its Wick rotated version
SO ( 5 ) ⊗ SO ( 5 )). But the index N in f− b̃N 6= 0 includes the indices
for the full SO ( 10 ) ⊗ SO ( 10 ). We have already made the claim that the
original local Lorentz group SO ( 5 ) ⊗ SO ( 5 ) is in the diagonal subgroup of
the SO ( 10 ) ⊗ SO ( 10 ), i.e. we have the following (at the level of algebras)
so ( 10 ) ⊕ so ( 10 ) ≡ 1

2
(so ( 10 ) + so ( 10 )) ⊕ 1

2
(so ( 10 ) − so ( 10 )) :=

so( 10 )D ⊕ so( 10 )Off . (The meaning of previous is to do the operations on
basis. The so ( 10 ) − so ( 10 ) means for example to combine e.g. Lorentz

generators like: S − S̃ = SOff and similarly for another generators). Now the
so( 5 ) ⊕ so( 5 ) ↪→ so( 10 )D. Let us write the last sequence of algebras more
precisely. Using indices, the diagonal subgroup (subalgebra) is so( 10 )D ≡
SD

ab := 1
2

(Sab + Sãb ) = (SD
ij, S

D
kl, S

D
ik ), where i ∈ { 10, 1, 2, 3, 4 }

and k ∈ { 5, 6, 7, 8, 9 } and the a = ( i, k ) ≡ { 1, . . . , 10 }. The SD
ij and

SD
kl are the generators of the SO ( 5 ) ⊗ SO ( 5 ). Moreover, the previous

definitions give precise embedding of those operators.
Defining SD

ij and SD
kl we can see that the structure constant fa b̃N is

either 0 or given by the appropriate RP P̃ ΣD
. We included a small subindex
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to the Σ coordinate just to remind us that the Σ coordinate is now for the
SO ( 5 ) ⊗ SO ( 5 ) diagonal subgroup of SO ( 10 )D only.

Finally, taking definitions of Ra b̃
cd and table (15.9) and our definitions

we can see that fa b̃N is coming from the mixed commutator:

[Pa, Pb̃ ] ∝


( 1
rAdS

)2 SD
ab if a & b ∈ { 10, 1, 2, 3, 4 }

− ( 1
rAdS

)2 SD
ab if a & b ∈ { 5, 6, 7, 8, 9 }
0 otherwise

(17.7)

The proportionality constant is c1 = − 2. With the previous definition
and with P− ≡ − = 1

2
( 10 − 9 ) and b̃ ∈ { 5, 6, 7, 8, 9 } we will get the

[P−, Pb̃ ] ∝ SD
9 b = 1

2
(S9 b + S9̃ b ) we can also use P9 = (P+ − P− ) and

so [P−, Pb̃ ] ∝ (S+ b + S+̃ b − S−b − S−̃b ). Knowing the last relation we
can proceed and hit the result of (17.6) by P−̃ and relate H+a +̃b with Ha b̃

for the evaluated version. For non-evaluated version we need to do the same
for the non-evaluated version of (17.6), that is the third top equation in table
(9). For vielbein H+̃b a needed in this procedure we get:

0 = TP P̃ S̃ ≡ Ta −̃ +̃b = P[ aH−̃ +̃b ] + H[ a |M ηMN f−̃ +̃b ]N (17.8)

= −P−̃H+̃b a − PaH−̃ +̃b − H+̃bM ηMN fa −̃N

−HaM ηMN f−̃ +̃bN

The term H−̃a vanishes because of mixed light-cone gauge, the term H−̃ +̃b is
fixed by the torsion T−−̃ +̃b = 0 and use of mixed light-cone gauge similarly
as in equation (A.1). By that we get:

H−̃ +̃b = − f−−̃M ηMN 1
P−
H+̃bN  0 (17.9)

The last term in (17.8) is just η−+ ηaN , the analog term as in (17.6). The
extra mixed term (after evaluation) in (17.8) is:

H+aM ηMN fb̃−N ∝ ( 1
rAdS

)2H+a +̃b (17.10)

Plugging (17.9) into (17.8) and then the result (that is the fixed vielbein
H+̃b a) into the third top equation in table (9) we obtain the non-evaluated
relation between H+a +̃b:

P−H+a +̃b = − f−−̃M ηMN S+̃b ( 1
P−̃
H+aN ) − f− b̃M ηMN 1

P−̃
H+aN

= − f−−̃M ηMN 1
P−̃
Pa

1
P−
H+̃bN + f−̃aM ηMN 1

P−̃
H+̃bN

+ 1
P−̃
Ha b̃ (17.11)
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after evaluation of the mixed structure constants in (17.11) we get:

Ha b̃ =
(
P− P−̃ + 1

(rAdS)2

)
H+a +̃b (17.12)

17.3 Torsion constraints and HDS vielbein

To identify what combination of vielbeins gives the pre-potential, we first
repeat the properties we are looking for. We are looking for combination
of vielbeins (of the low dimension), that has a scalar contraction and is
annihilated by certain combination of Dα′ and Dα̃′ (see indices defined above
(14.14)). Moreover the combination has to be annihilated by the properly
defined P+ operator in the R → 0 limit (still to be defined).

To start, we have one nontrivial hint. We showed that the vielbein H+a +̃b

is nonzero and is related to the Ha b̃. So we can examine what is the action
of the Dα′ on H+a +̃b, i.e. we look at the torsion constraint:

TDS S̃ ≡ Tα′+a +̃b = 0 = D[α′ H+a +̃b) + H[α′ |M ηMNf+a +̃b)N(17.13)

= Dα′ H+a +̃b + S+̃bHα′+a + S+aH+̃bα′

+H+̃bM ηMN fα′+aN

= Dα′ H+a +̃b + S+̃bHα′+a + S+aH+̃bα′

+ 1
2

(γ+a)α′
βH+̃bβ (17.14)

In the (17.14) we can see various terms with the S derivatives. If we could
evaluate mixed structure constants before an action of S derivatives, those
S terms in (17.14) would vanish (because the relevant vielbeins are propor-
tional to vanishing mixed constants as we will see). Now they will nontrivially
contribute. We note again that we still have the fS̃ DN ≡ f+̃bα′N = 0 =
fS S̃N ≡ f+a +̃bN . The vielbeins Hα′+a and Hα′ +̃b are fixed by torsion con-
straints TP̃ D S = T−̃α′+a = 0 = TP D S̃ = T−α′ +̃b and some few other
torsion constraints, as will be shown. We note that as in (16.3) and (16.4)
we almost always have the strategy to use invertibility of P− andP−̃ together
with our mixed left-right light cone gauge to eliminate/fix vielbeins. Some-
times its not enough and we need to explore some further torsion constraints.
Let’s look at the already mentioned set of torsion constraints:

TP̃ D S = T−̃α′+a = 0 = P[−̃Hα′+a] + H[−̃ |M ηMN fα′+a]N (17.15)

= P−̃Hα′+a + H+aM ηMN f−̃α′N (17.16)

⇒ Hα′+a = f−̃α′M ηMN 1
P−̃
H+aN  0 (17.17)
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in (17.15) we used just the mixed light cone gauge and fS P̃ N = 0 (in flat case
and also in AdS). To evaluate the last term in (17.16) that is present only

in AdS case we have to take the AdS curvature TP̃ D Ω̃ ≡ Tãα
β̃ ≡ fãα

β̃ =
1

rAdS
(γa)αν Γ̃5

ν β as discussed above (15.9). For our specific indices we have
1

rAdS
(γ−)α′ ν′ Γ̃5

ν′ β but the (γ−)α′ ν′ = 0 as we can see in the construction of

the light cone basis for the gamma matrices in (14.14). The vielbein Hα′−a

can be fixed in almost the same set of equations as Hα′+b. Fixing the vielbein
Hα′ +̃b (and similarly Hα′ −̃b) is also similar but a bit more profound. For that
we first examine torsion analogous to (17.13) but for Hα′ +̃b vielbein:

TP D S̃ ≡ T−α′ +̃b = 0 = P[−Hα′ +̃b] + H[− |M ηMN fα′ +̃b]N (17.18)

= P−Hα′ +̃b + S+̃bH−α′ + H+̃bM ηMN f−α′N

⇒ Hα′ +̃b = − 1
P−
S+̃bH−α′ (17.19)

The (17.18) structure constant f−α′N ∝ (γ−)α′ ν′ but as before that par-
ticular piece of gamma matrix is zero (remember the non-mixed structure
constants are not breaking the SO ( 10 ) ⊗ SO ( 10 ) so we can evaluate them
without any concern). The other term in (17.18) is H−α′ . That is fixed by
the dim 1

2
torsion constraint T−−̃α′ = 0:

TP P̃ D = T−−̃α′ = 0 = P[−H−̃α′ ) + H[−M ηMN f−̃α′ )N (17.20)

= P−̃Hα′− + Hα′M ηMN f−−̃N (17.21)

⇒ Hα′− = − 1
P−̃
f−−̃M ηMN Hα′N  0 (17.22)

We used in (17.20) the mixed light cone gauge, also the fact that f−α′M ∝
(γ−)α′ β′ = 0. We note that the (17.20) evaluates to zero because the mixed
structure constant f−−̃N = 0. Moreover by the light-cone gauge the (17.20)
term H−M ηMN f−̃α′N = 0 even in the non-evaluated regime. The reason
is that the structure constant f−̃α′N is zero after evaluation and the action
of whatever S on this structure constant produces either zero or the right D
index ≡ D̃ (after the summation with the vielbein) i.e. the vielbein H− D̃
that is again zero by the light-cone gauge. Combining (17.19) and (17.22)
we can get a fixed version of the Hα′ +̃b. By the similar equations as above
we can fix Hα′ −̃b. That result and more detailed analysis is shown in the
Appendix, see table (10).

In the Appendix, we also derived the equations (A.16) and (A.37). Those

are the actions of the S and S̃ derivatives that we need in the equation
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(17.14). Putting the results from (A.16) and (A.37) into (17.14) we get
fixing of the Dα′ H+a +̃b, we note that this is an important result:

Dα′ H+a +̃b = − 1
g

1
(rAdS)P−̃

(γb)α′ σ (Γ̃5)σ βHβ̃+a (17.23)

+ 1
2 g

( 1 − 1
f

1
(rAdS)2 P−̃ P−

)(γ+a)α′
βHβ +̃b

+ 1
f g

1
2 (rAdS)3 P− (P−̃)2

(γa)α′ ν (Γ̃5)ν βHβ̃+b

where f and g are defined as follows:

f := ( 1 − 1
2 (rAdS)2 P−̃ P−

) (17.24)

g := ( 1 − 1
f

1
2 (rAdS)2 P−̃ P−

)

Changing left ↔ right in (17.23) we get the equation for Dα̃′ H+a +̃b. There
is one simplification we can make in equations (17.23). Because only half of
the block diagonal γ+ matrix is nonzero and is proportional to the δ for the
nonzero part. The (γ+a)α′

β = δα′ ν′ (γa)ν
′ β ≡ (γa)α′

β.
The observation from (17.23) and its left ↔ right swap is that the action

of the Dα′ and Dα̃′ on H+a +̃b is producing two new vielbeins Hβ +̃a and Hβ̃+a.
This hints that we need some another vielbein, such that the action of Dα′

and Dα̃′ on it will effectively subtract the fields Hβ +̃a and Hβ̃+a. We found
such a vielbein, but before giving it we will look at the flat case superspace
first to give a motivation. After that we will generalise it to the AdS5 × S5

background.
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Chapter 18

18 Flat space solution

18.1 Flat space diagram

To see what could be possibly a missing vielbein that will subtract vielbeins
in (17.23) (and its left ↔ right change) we first solve the same problem in
flat space background. That is the extended superspace with rAdS → ∞.
Note that in flat superspace (rAdS → ∞) the relation (17.23) simplifies
significantly, because there are no rAdS dependent parts. The surviving part
after rAdS → ∞ is just the second term on the right hand side of (17.23)
with g = 1, i.e. 1

2
(γ+a)α′

βHβ +̃b.
Let us therefore further examine an action of Dα′ and Dα̃′ on Hβ +̃a and

Hβ̃+a respectively:

TDD S̃ ≡ Tα′ β +̃a = 0 = D[α′ Hβ +̃a) + H[α′M ηMN fβ +̃a )N (18.1)

= Dα′ Hβ +̃a + S+̃aHα′ β − DβH+̃aα′ (18.2)

+Hα′M ηMN fβ +̃aN

+H+̃aM ηMN fα′ βN − HβM ηMN f+̃aα′N

The mixed terms in the f part of (18.1) are zero (note they are zero also in
the AdS background). The structure constant fα′ βN = 2 (γa)α′ β δ

a
N (the

same is in the AdS background). The vielbein H+̃aα′  0 by the table (10).
Then the equation (18.1) can be rewritten as:

0 = Dα′ Hβ +̃a + S+̃aHα′ β + 2 (γc)α′ βH+̃a c (18.3)

To evaluate the only S derivative term in (18.3) i.e. S+̃aHα′ β we would
need to work a bit, in the AdS superspace. The whole AdS analysis of the
actions of Dα′ and Dα̃′ on Hβ +̃a and Hβ̃+a is done in the Appendix, see
equations (A.41) till (A.65). In this section we would need only rAdS → ∞
limit of that analysis.

In the Appendix we derived the equations (A.59) and (A.65). Those
equations are telling us that in the AdS case (and so also in the flat case) the
actions of Dα̃′ and Dα′ result in a combination of H+a +̃b and Hα β̃. This is
actually a hint that we should add the trace of Hα β̃ to the trace of H+a +̃b in
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order to subtract an action of a linear combination of Dα′ and Dα̃′ (future Dv

derivative) on trace H+a +̃b. In the rest of this paragraph and next chapter
we will look at how the pre-potential is built up in a flat space limit, i.e.
we consider equations (A.59) and (A.60) and (A.65) and (A.66) in the limit
rAdS → ∞. We find equations that are fixing pre-potential and vanishing
Dw derivative.

Thus we repeat the flat space limits of the Dα̃′ and Dα′ actions on Hβ +̃a

and Hβ̃+a respectively, i.e. the equations (A.65) and (A.66) in rAdS → ∞
limit:

0 = Dα̃′Hβ +̃a + 1
2

(γa)α′
νHβ ν̃ (18.4)

0 = Dα′Hβ̃+a + 1
2

(γa)α′
νHν β̃ (18.5)

Similarly, we can also look at the equations (17.23) and (A.59) and (A.60)
(in the flat space limit) and together with (18.4) and (18.5) we can observe
the following interesting flat space diagram:

H+a +̃b

Dα̃′

��

Dα′ // Hβ +̃b

Dα̃′

��

Dα′ // Hc +̃b

H+a β̃

Dα′ //

Dα̃′

��

Hβ β̃

H+a c̃

Figure 2: Flat space diagram

The scheme (2) is nice and actually tells us what we should do next.
Recall that the nodes H+a +̃b and Hc +̃b and H+a c̃ could be identified by the
use of invertible operators P− and P−̃ see (17.6). Our original aim was find
a field that has a scalar trace and could possibly subtract actions of Dα′ and
Dα̃′ on H+a +̃b. We will see that the missing field is exactly Hββ̃ (in the flat
space, the only nonzero part of HD D̃). The diagram (2) suggests what to do.
We calculate the remaining arrows and fill the square.

To fill the remaining arrows we need to calculate the action of Dα′ and
Dα̃′ on Hα β̃ together with some another arrows that will be discussed later.

We consider the dimension 1
2

torsion constraint TDD D̃ ≡ Tα′ β σ̃ = 0. We

69



note again that for now on we are working in the flat space. Later we will
generalise the procedure for the AdS space:

TDD D̃ ≡ Tα′ β σ̃ = 0 = D(α′Hβ σ̃) + H(α′ |M ηMN fβ σ̃ )N (18.6)

= Dα′Hβ σ̃ + 2 (γa)α′ βHσ̃ a (18.7)

where we used that Hα′ β = Hα′ σ̃ = 0 in flat space (see (A.42) and (A.47)
and do flat space limit). We also have a left ↔ right swap of (18.7). The
vielbein Hσ̃ c in (18.7) is related to H+c σ̃. For that consider torsion constraint
TP S D̃ ≡ T−+c σ̃ = 0:

TP S D̃ ≡ T−+c σ̃ = 0 = P[−H+c σ̃) + H[− |M ηMN f+c σ̃ )N (18.8)

= P−H+c σ̃ + η+−Hσ̃ c (18.9)

where we used left-right light-cone gauge, together with H−+c = 0 that is
shown in the Appendix and holds even in AdS, see (A.23).

To fill the diagram (2) we need to calculate two more torsion constraints
that are providing the actions of Dα′ on H+a c̃ and on Hσ c̃. We first consider
TDS P̃ ≡ Tα′+a c̃ = 0:

TDS P̃ ≡ Tα′+a c̃ = 0 = D[α′H+a c̃) + H[α′ |Mη
MN f+a c̃)N (18.10)

= Dα′H+a c̃ + 1
2

(γ+a)α′
σHc̃σ (18.11)

= Dα′H+a c̃ + 1
2

(γa)α′
σHc̃σ (18.12)

where we used that Hα′+a = 0 (holds even in the AdS, see table (10)). We
also used that Hα′ c̃ = 0 (that is enough in a flat space to have S+aHα′ c̃ =
0). To see that Hα′ c̃ = 0 we use the torsion TP̃ S̃ D ≡ T−̃ +̃cα′ = 0:

TP̃ S̃ D ≡ T−̃ +̃cα′ = 0 = P[−̃H+̃cα′) + H[−̃ |M ηMN f+̃cα′ )N (18.13)

= P−̃H+̃cα′ + η+−Hα′ c̃ (18.14)

and previously we saw that H+̃cα′ = 0 (even in the AdS case, see table (10)).
From (18.14) in the flat case follows that Hα′ c̃ = 0. Examining the (18.14)
in the AdS case one also finds that Hα′ c̃ = 0 (after evaluation). The (18.12)
however could have some additional term in the AdS case. The structure
constant fα′ c̃N 6= 0 and so the term proportional to that structure constant
in the AdS case is 1

rAdS
(γc)α′ σ (Γ̃5)σ ν H+a ν̃ . That term is nonzero in the AdS

case. Moreover, in the (18.10) one finds one more AdS term, coming from
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evaluated action S+aHα′ c̃. Those terms are not of a big concern right now
(doing the flat space first), we will see them later in the section where we
generalise to AdS case.

Last torsion constraint to examine in order to fill the (2) is the one that
determines the action of Dα′ on Hβ c̃. Consider therefore the dimension 1

2

torsion TDD P̃ ≡ Tα′ β c̃ = 0:

TDD P̃ ≡ Tα′ β c̃ = 0 = D[α′Hβ c̃) + H[α′ |M ηMN fβ c̃ )N (18.15)

= Dα′ Hβ c̃ + 2 (γa)α′ βHc̃ a (18.16)

where we used the Hα′ β = 0 (holds also in AdS after the evaluation)
and Hc̃α′ = 0 (also holds in AdS after the evaluation). In the AdS case
in the equation (18.16) we have two additional terms. They come from
fβ c̃N 6= 0 and also fα′ c̃N 6= 0. Those terms will be further analysed in

future sections, let just write their structure as 1
rAdS

(γc)β ν′ (Γ̃5)ν
′ σ′ Hσ̃′ α′ and

1
rAdS

(γc)α′ ν (Γ̃5)ν σHσ̃ β. The vielbein Hσ̃′ α′ = 0 (in flat case and also in AdS

after the evaluation) as can be calculated from torsion constraints T− σ̃′ α′ = 0
and T−̃− σ̃′ = 0 and the use of the double light-cone gauge. The term Hσ̃ β

is nonzero (Hσ̃ β vielbein is a part of a pre-potential).
We can add results of (flat space) equations (18.12) and (18.16) together

with (18.7) and their left ↔ right swaps to the diagram (2) and find the
following square diagram:

H+a +̃b

Dα̃′

��

Dα′ // Hβ +̃b

Dα̃′

��

Dα′ // Hc +̃b

Dα̃′

��

H+a β̃

Dα′ //

Dα̃′

��

Hβ β̃

Dα′ //

Dα̃′

��

Hc β̃

Dα̃′

��

H+a c̃

Dα′ // Hβ c̃

Dα′ // Hc c̃

Figure 3: Full flat space diagram

As we saw before the (3) nodes {H+a +̃b, Hc +̃b, H+a c̃, Hc c̃ } should be
identified (as one node). We proved that using various torsion constraints,
mixed light-cone gauge and invertibility of P− and P−̃. The same way the
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nodes {H+a β̃, Hc β̃ } and independently nodes {Hβ +̃b, Hβ c̃ } should be iden-

tified (as two independent nodes). The vielbein Hβ β̃ is then just a single
node. After the described identifications the diagram (3) could be rewritten
in the simpler and more informative form.

H+a +̃b Dα′

��Dα̃′ww

H+a β̃

Dα̃′
44

Dα′

��

Hβ +̃b

Dα′

^^

Dα̃′rrHβ β̃

Dα̃′
77

Dα′

XX

Figure 4: Identified flat space diagram

Note, the dashed arrows stand for action of Dα̃′ and solid arrows stand
for action of Dα′ . From the nice flat space diagram (4) it is obvious that in
order to have a vanishing derivative we have to combine Dα′ with Dα̃′ and
that combination should act on the combination of traces of H+a +̃b with
Hβ β̃.

18.2 The H matrix

The diagram (4) could be rewritten in the matrix form. The observation is
that each action of the derivatives in the (4) is given by some matrix. The
derivatives are mixing fields just as in (4). Let us introduce the 2 ⊗ 2 block
matrix H:

H :=

(
H+a +̃b H+a β̃

Hβ +̃b Hβ β̃

)
(18.17)

The action of Dα′ is then given as the left action of some constant (up to P−
operator) block off diagonal matrix Γα′ :

Dα′

(
H+a +̃b H+a β̃

Hβ +̃b Hβ β̃

)
≡

(
0 1

2
(γa)α′

σ

2P− (γc)α′ β 0

) (
H+c +̃b H+c β̃

Hσ +̃b Hσ β̃

)
Dα′ H = Γα′ H (18.18)
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The action of Dα̃′ on H is given as a right action of similar matrix Γα̃′ :

Dα̃′

(
H+a +̃b H+a β̃

Hβ +̃b Hβ β̃

)
≡

(
H+a +̃c H+a σ̃

Hβ +̃c Hβ σ̃

) (
0 2P−̃ (γc)α′ β

1
2

(γb)α′
σ 0

)
Dα̃′ H = HΓα̃′ (18.19)

Now we will proceed to the main step. We arbitrarily linearly combine Dα′

and Dα̃′ , i.e. we multiply the Dα̃′ with some unknown nonsingular matrix
Mα′

β′ :
Dv ≡ Dvα′ := (Dα′ − Mα′

β′ Dβ̃′ ) (18.20)

Moreover we impose that in the matrix version of Dα̃′ action the matrix M
acts as follows:

Mα′
β′ Γβ̃′ := AΓα̃′ B (18.21)

for some nonsingular matrices A and B. Combining (18.18) and (18.19)
together with (18.20) and (18.21) we get:

Dvα′ H = Γα′ H − HAΓα̃′ B /B−1 (18.22)

Dvα′ HB−1 = Γα′ HB−1 − HAΓα̃′ / Str (18.23)

Dvα′ Str (HB−1 ) = Str
(

(B−1 Γα′ − AΓα̃′ )H
)

(18.24)

by the Str we mean the super-trace. We put to zero the Str
(

(B−1 Γα′ −

AΓα̃′ )H
)

= 0 by finding the suitable matrices B and A and the matrixM.

By that we get the equation:

Dvα′ Str (HB−1 ) = 0 (18.25)

thus the equation (18.25) defines the Str (HB−1 ) as the scalar field on which
particular combination of Dα′ and Dα̃′ now called Dvα′ vanishes. So, we
found a pre-potential V := Str (HB−1 ). We note that even though the
equation (18.24) might seem easy to solve just by putting B−1 = A. It is
not that simple since Γα′ 6= Γα̃′ . Therefore some more involved solution has
to be found.

18.3 Solution via the gamma matrix identity

We solve the equation (18.24) using the following identity:

Aα′σ
′ Ba

c Cβν (γc)σ′ ν = (γa)α′ β (18.26)
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has two SO ( 4 ) invariant solutions:

I. : Aα′β
′

= δα′
β′ || Cαβ = δα

β || Ba
b = δa

b (18.27)

II. : Aα′β
′

= (Γ̃5)α′
β′ || Cαβ = (Γ̃5)α

β || Ba
b = (Γ̃5)a

b (18.28)

The solution (18.27) is trivial, the solution (18.28) is based on property of

the Γ̃5 matrix: [ Γ̃5, γa ] = 0 for a ∈ { 10, 1, 2, 3, 4 } and { Γ̃5, γa } =
0 for a ∈ { 5, 6, 7, 8, 9 }. The previous follows directly from the definition

of Γ̃5, see (14.13). The new matrix (Γ̃5)a
b in (18.28) is defined by the (18.26)

to fix the signs. Note that the indices a in (18.26) have a range: a ∈
{ 1, . . . , 8}.

Next, we look explicitly at the equation:

Str
(

(B−1 Γα′ − AΓα̃′ )H
)
≡ StrXα′ = 0 (18.29)

let’s rename the members of the matrix H:

H ≡
(
H+a +̃b H+a β̃

Hβ +̃b Hβ β̃

)
≡

(
HS S̃ HS D̃

HD S̃ HD D̃

)
(18.30)

Let us define the matrices A and B−1 to be block diagonal matrices. This is
a consistent choice with the fact that we want to have a pre-potential build
out of HS S̃ and HD D̃. The pre-potential is in (18.25) given as Str (HB−1 ).
We do not want to mix in some off diagonal H fields by the action of B−1.
Thus A and B−1 are:

A ≡
(
AS S̃ 0

0 AD D̃

)
|| B−1 ≡

(
B−1

S S̃ 0
0 B−1

D D̃

)
(18.31)

With definitions (18.31) we get the equation (18.29) into the following matrix
equation:

Str
( (1

2
B−1

S S̃ γ HD S̃ . . .
. . . 2P−B

−1
D D̃ γ HS D̃

)
(18.32)

−
(

2P−̃AS S̃ γ HD S̃ . . .
. . . 1

2
AD D̃ γ HS D̃

) )
= 0

Then from (18.32) we get two equations (since fields HD S̃ and HS D̃ are
independent):

1
2
B−1

S S̃ − 2P−̃AS S̃ = 0 ⇒ AS S̃ = 1
4P−̃

B−1
S S̃ (18.33)

P−B
−1

D D̃ − AD D̃ = 0 ⇒ AD D̃ = 4P−B
−1

D D̃ (18.34)
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Now we are prepared to examine the equation (18.21) using the A and B
constructed above. Then the matrix equation (18.21) can be (schematically)
written:(

1
4P−̃

B−1
S S̃ 0

0 4P−B
−1

D D̃

) (
0 2P−̃ γ

1
2
γ 0

) (
BS S̃ 0

0 BD D̃

)
=

=M
(

0 2P−̃ γ
1
2
γ 0

)
(18.35)

M
(

0 2P−̃ γ
1
2
γ 0

)
=

(
0 1

2
B−1

S S̃ γ BD D̃

2P−B
−1

D D̃ γ BS S̃ 0

)
(18.36)

We now do the following re-scalings M → 1
λ
M and BS S̃ → ∆BS S̃ and

BD D̃ → ρBD D̃. Rescaled M and BS S̃ and BD D̃ belong to one of the two
solutions of identity (18.26). Then we get the version of (18.36):

M
(

0 2P−̃ γ
1
2
γ 0

)
=

(
0 1

2
λ ρ
∆
B−1

S S̃ γ BD D̃

2 λ∆
ρ
P−B

−1
D D̃ γ BS S̃ 0

)
(18.37)

Now we want the λ and ρ and ∆ to satisfy:

λ ρ
∆

= 4P−̃ and λ∆
ρ

= 1
4P−

⇒ λ = ±
√

P−̃
P−

(18.38)

ρ
∆

= ± 4
√
P−̃ P−

The (18.37) is just a matrix equation:

M
(

0 P−̃ γ
γ 0

)
=

(
0 A−1

S S̃ P−̃ γ AD D̃

A−1
D D̃ γ AS S̃ 0

)
(18.39)

that can be solved by (18.26). Even though we saw the appearance of the
nasty square roots in the (18.38) and so in the definition of Dvα′ and in the
pre-potential via super-trace of HB−1. We will see in the AdS case solution
that there is a way how to get rid of it.
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Chapter 19

19 AdS5 × S5 solution

19.1 AdS5 × S5 diagram

In the previous sub-sections we saw how to find the pre-potential in the flat
case. We are really interested in the AdS case. Along the way we analysed
the flat case in the previous sub-sections we mentioned also changes one has
to make in the AdS case. We repeat them here again since they are scattered
over the previous flat case sub-sections and in the Appendix. First change has
already been worked out in the relation between H+a +̃b and Ha b̃ in (17.12).
We also note that there are AdS contributions in equations (17.23) also in
(A.59) and (A.60). The nontrivial contributions also appeared in equations
(A.65) and (A.66).

We could visualise the relations (17.23) and (A.59) and (A.60) and (A.65)
and (A.66) by the similar diagram as used in flat case, see (2). The structure
is very similar just with more arrows between nodes. Since the AdS diagram
is messier we will not provide it. The idea is however the same as in the
flat case. In order to determine the vanishing Dv

α′ derivative and the pre-
potential we need to combine Dα′ and Dα̃′ for Dv derivative and H+a +̃b

together with Hα β̃ for pre-potential.
The only missing derivative in the set of AdS equations: (17.23) and

(A.59) and (A.60) and (A.65) and (A.66), is an action of Dα′ on Hβ σ̃. This
action can be calculated from TDD D̃ ≡ Tα′ β σ̃ = 0 torsion constraint. The
AdS contribution in that constraint comes from fα′ σ̃N structure constant.
We have already analysed this structure constant, see equations (A.48) and
(A.49) till (A.52). We can thus directly write the constraint with an extra
AdS term:

TDD D̃ ≡ Tα′ β σ̃ = 0 = D[α′Hβ σ̃) + H[α′ |M ηMN fβ σ̃ )N (19.1)

= Dα′ Hβ σ̃ + 2 (γa)α′ βHσ̃ a

+ 1
rAdS

(γ[c)σ ρ (Γ̃5)ρ ν (γd])ν α′ Hβ cd

where we again note that the Σ indices in the last expression of the (19.1)
second line are from the SO( 5 ) ⊗ SO( 5 ) diagonal subgroup. The Hβ cd

vielbein has nonzero both Hβ+b and also Hβ +̃b. The second vielbein is the

76



term already in the matrix H from the flat section (ultimate goal is to rewrite
the AdS case in the terms of matrix H and use the super-trace trick to get
the pre-potential). The field Hβ+b is related to the Hρ̃+c as we saw in table
(11).

There is one last piece in the equation (19.1) that we did not relate to
the fields in the H matrix. The field Hσ̃ a. As we saw in the flat case, that
field should be related to Hσ̃+a via P−. We have seen however (for example
in (17.12)) that such relations are a bit changed in the AdS case. Consider
the following torsion constraint (and use mixed light-cone and H−+a  0):

TP D̃ S ≡ T− β̃+a = 0 = D[−Hβ̃+a) + H[− |M ηMN fβ̃+a)N (19.2)

= P−Hβ̃+a + Hβ̃M ηMN f−+aN

+H+aM ηMN f− β̃N
= P−Hβ̃+a + η−+Hβ̃ a

+ 1
rAdS

(γ−)β ν (Γ̃5)ν σH+a ν

In the table (11) we derived the relation between H+a ν and H+a ν̃ . That
result together with (19.3) we get:(

P− − 1
P−̃

1
(rAdS)2

)
H+a α̃ = Ha α̃ (19.3)

With the equation (19.3) we succeeded to calculate the last missing deriva-
tive Dα′ Hβ σ̃ in terms of H vielbeins:

Dα′ Hβ σ̃ − 2 (P− − 1
P−̃

1
(rAdS)2

) (γa)α′ βH+a σ̃ (19.4)

− 1
2 (rAdS)2 P−̃

(Γ̃5)σ
ν (γd)ν α′ (Γ̃5)β

ρHρ̃+d − 1
2 (rAdS)

(Γ̃5)σ
ν (γd)ν α′ Hβ +̃d = 0

Dα̃′ Hβ̃ σ − 2 (P−̃ − 1
P−

1
(rAdS)2

) (γa)α′ βH+̃aσ (19.5)

− 1
2 (rAdS)2 P−

(Γ̃5)σ
ν (γd)ν α′ (Γ̃5)β

ρHρ +̃d −
1

2 (rAdS)
(Γ̃5)σ

ν (γd)ν α′ Hβ̃+d = 0

Where the (Γ̃5)σ
ν := (γ+)σ λ (Γ̃5)λ ν . The AdS equations (17.23) and (A.59)

and (A.60) and (A.65) and (A.66) and (19.4) and (19.5) could be summarised
in the following diagram:
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(H+a +̃b, Hα β̃)

Dα̃′

##
pp

Dα̃′

(Hβ +̃b, H+a β̃)
::

Dα′

Dα′
oo

Figure 5: AdS5 × S5 space diagram

From the above diagram is obvious that we again have to combine H+a +̃b

and Hα β̃ and derivatives Dα̃′ and Dα′ to get a vanishing derivative on some
scalar.

19.2 The H matrix in AdS5 × S5

We want to repeat the chapter on the flat solution via the H matrix. The
H matrix was defined in (18.30). We want to write the action Dα′ and Dα̃′

on the H. This was given in components in equations: (17.23) and (A.59)
and (A.60) and (A.65) and (A.66) and (19.4) and (19.5) and also graphically
in (5). We expect that the resulting matrix equations have pieces given by
the flat equations (18.18) and (18.19) plus purely AdS pieces (dependent as
powers of 1

rAdS
). We could write those equations in such explicit matrix form,

but resulting equations are complicated and unnecessary for our purpose.
We instead summarise the right hand side of Dα′ H and Dα̃′ H using two
new matrices Xα′ and Yα̃′ respectively. We propose matrix from of the AdS
equations:

Dα′ H = Xα′ (19.6)

Dα̃′ H = Yα̃′ (19.7)

The matrices Xα′ and Yα̃′ are fully fixed by (17.23) and (A.59) and (A.60) and
(A.65) and (A.66) and (19.4) and (19.5). In the rAdS → ∞ the Xα′ → Γα′ H
and Yα̃′ → HΓα̃′ , where the matrices Γα′ and Γα̃′ are given in (18.18) and
(18.19).
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19.3 Chiral and projective solutions for AdS5 × S5

In the next step we repeat the argument we gave in the flat case section but
for the AdS equations (19.6) and (19.7). We define:

Dv ≡ Dvα′ := (Dα′ + Mα′
β′ Dβ̃′ ) (19.8)

now we act by (19.8) on H:

Dvα′ H = (Xα′ + Mα′
β′ Yβ̃′ ) (19.9)

we multiply by B and apply Str:

Dvα′ Str (HB ) = Str
(
(Xα′ + Mα′

β′ Yβ̃′ )B
)

(19.10)

We will further analyse the structure of (19.10) in next discussion but before
we note one change with respect to (18.20). In (18.20) we used B−1 here we
are using (yet to be determined) matrix B, the difference is purely conven-
tional. As in the flat case, we want to put the right hand side of (19.10) to
zero and by that obtain vanishing Dvα′ on some scalar field Str (HB ), that
will be called pre-potential. In the flat space it was crucial that we had the
identity (18.26). It was used in the relation (18.21). Similarly in the AdS
case the identity (18.26) will also be crucial.

In the solution of the vanishing (19.10) right hand side we still want to
maintain the SO ( 4 ) ⊗ SO ( 4 ) invariance. Therefore the B matrix has a
block-diagonal form:

B :=

(
b+a +b 0

0 bαβ

)
(19.11)

Let us also simplify the notation for the constants appearing in the equations
(17.23) and (19.4) and similarly for their left-right conjugates. In (17.23) we
redefine:

X1 := − 1
g

1
(rAdS)P−̃

|| X2 := 1
2 g

( 1 − 1
f

1
(rAdS)2 P− P−̃

)(19.12)

X3 := + 1
f g

1
2 (rAdS)3 P− (P−̃)2

||

where the f and g were defined in (17.24). In (19.4) we define:

Y1 := − 2
(
P−̃ − 1

P−
1

(rAdS)2

)
|| Y2 := − 1

2 (rAdS)2 P−
(19.13)

Y3 := − 1
2 (rAdS)
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With the definitions (19.11), (19.12) and (19.13) let us rewrite the right hand
side of (19.10) explicitly:

0 = (X1 − X3 ) (Γ̃5)β σ b+a +b (γb)σ α′ − Mα′
σ′ X2 b+a +b (γb)βσ′

+Y1 b
β σ (γa)σ α′ + Y2 b

ν σ (Γ̃5)σ
λ (γa)λα′ (Γ̃5)ν

β (19.14)

+Mα′
σ′ Y3 b

β σ (Γ̃5)σ
λ (γa)λσ′

0 = Mα′
ν′ ( X̃1 − X̃3 ) (Γ̃5)β σ b+a +b (γb)σ ν′ − X2 b+a +b (γb)βα′

+Mα′
ν′ Ỹ1 b

β σ (γa)σ ν′ + Mα′
ν′ Ỹ2 b

ν σ (Γ̃5)σ
λ (γa)λ ν′ (Γ̃5)ν

β

+Y3 b
β σ (Γ̃5)σ

λ (γa)λα′ (19.15)

where X̃1, X̃3 and Ỹ1, Ỹ2 are left-right conjugates of the constants defined in
(19.12) and (19.13) and X2 and Y3 are the same after left-right swap.

The equations (19.14) and (19.15) are the AdS analogies of the flat space
equations (18.39). To solve them we first multiply the equation (19.15) by
matrix Mα′

β′ . Thus we get the equation (19.15) into the form:

0 = M2
α′
ν′ ( X̃1 − X̃3 ) (Γ̃5)β σ b+a +b (γb)σ ν′ − Mα′

ν′ X2 b+a +b (γb)βν′

+M2
α′
ν′ Ỹ1 b

β σ (γa)σ ν′ + M2
α′
ν′ Ỹ2 b

ν σ (Γ̃5)σ
λ (γa)λ ν′ (Γ̃5)ν

β (19.16)

+Mα′
ν′ Y3 b

β σ (Γ̃5)σ
λ (γa)λ ν′

The equation (19.16) is almost identical to the (19.14) except of the left-right
swapped constants and M2 matrix. By suitable choice of the M matrix we
can turn (19.16) into (19.14) and thus reduce number of equations by half.
By that we get the condition on the matrix M:

M2
α′
β′ = q2 δα′

β′ (19.17)

where the constant q2 = P−
P−̃

. By that choice of the matrixM2 and constant

q2 we turn equation (19.16) into (19.14). Furthermore we should solve rela-
tion (19.17) for the matrix M. As in the whole AdS section we ask for the
SO ( 4 ) ⊗ SO ( 4 ) invariance. With that requirement we get two branches
for theM matrix (actually we get four, as we will see, but the ± is not very
important to us):

(M2)α′
β′ = P−

P−̃
δα′

β′ ⇒ Mα′
β′ = ±

√
P−
P−̃

{
δα′

β′

(Γ̃5)α′
β′

(19.18)
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We first notice few nice properties of (19.18). The solution is actually the
same as in the flat case, see (18.38). We are in the AdS space but the matrix
M that combines Dα′ and Dα̃′ does not depend on the rAdS. Unfortunately
we got the same not very nice square root factor in (19.18). We would need
to find some way to deal with it.

Having solved one half of equations (19.14) and (19.15). We solve the
second half, that is just relation (19.14):

0 = (X1 − X3 ) (Γ̃5)β σ b+a +b (γb)σ α′ − Mα′
σ′ X2 b+a +b (γb)βσ′

+Y1 b
β σ (γa)σ α′ + Y2 b

ν σ (Γ̃5)σ
λ (γa)λα′ (Γ̃5)ν

β (19.19)

+Mα′
σ′ Y3 b

β σ (Γ̃5)σ
λ (γa)λσ′

The claim is that given solution M the block matrices b+a +b and bαβ are
fixed (up to the overall constant). We will again use the same identity (18.26)
as in the flat case. We expect the solutions (we have two branches) will be
certain rAdS dependent deformation of the original flat space solutions. We
also require to maintain the SO( 4 ) ⊗ SO ( 4 ) invariance of the solution so
the most general ansatz for the equation (19.19) is:

b+a +b := Aδa b + B (Γ̃5)a b || bαβ := C δαβ + D (Γ̃5)αβ (19.20)

Because of later importance we will first solve the (Γ̃5) branch of the M
solution (19.18). Later we will also provide solution for the δ branch of the
(19.18). We plug M and (19.20) into (19.19) and solve for A, B, C and D

using the identity (18.26), we remind that q := ±
√

P−
P−̃

. We get the following

solutions:

the (Γ̃5)α′
β′ branch: (19.21)

det :=
(

(X1 − X3 )2 − ( q X2 )2
)

A = D
det

(
(X1 − X3 ) (Y1 + Y2 ) + q2X2 Y3

)
B = q D

det

(
X2 (Y1 + Y2 ) + (X1 − X3)Y3

)
C = 0

the δα′
β′ branch: (19.22)

det :=
(

(Y1 + Y2 )2 − ( q Y3 )2
)

B = 0

C = q A
det

(
(Y1 + Y2 )X2 + (X1 − X3 )Y3

)
D := − A

det

(
(Y1 + Y2 ) (X1 − X3 ) + q2X2 Y3

)
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We can again see that as we do rAdS → ∞ limit in (19.21) we will get the
flat solution (18.38), keeping the D ( or A in δ branch ) rAdS independent in
that limit.

19.4 Near horizon limit

In the previous section we found the structure of the linearised pre-potential
(19.21) and (19.22) and also the construction of Dvα′ that vanishes on the
pre-potential (19.8) and (19.18). We will now introduce the complementary
derivative Dwα′ that is constructed after picking the Dvα′ derivative (i.e.
picking the matrix M in (19.18)) and changing the sign in front of the M
(the second linearly independent combination). Thus we have:

Dwα′ := Dα′ − Mα′
β′ Dβ̃′ (19.23)

The notation for the upper indices v and w in ((19.8) and (19.23)) comes
from equivalent notation for dv and dw derivatives used in [8], (and also for du
and dū, whose analogies are to be defined later). In analogy with the paper
[8] we want to define the P+ operator that has Dvα′ and Dwα′ as eigenvectors
with nonzero eigenvalues. We can solve for P+ in full generality, i.e. keeping
the non-local square root factors in derivatives Dvα′ and Dwα′ . This would
introduce the non-local square root factors also into the definition of P+ and
would cause further problems. What we will do instead is to restrict the
coordinate dependence of the pre-potential V to be just the PSU (2, 2 | 4).
This is the same algebra we wanted to use at the beginning of this project, but
we were forced to extend it to the full SO (10) ⊗ SO (10) T-dually extended
super-algebra. Now, we want to restrict just the coordinate dependence of
the pre-potential. Doing so the P− = P−̃ on pre-potential, not everywhere.
That is enough to get rid of the non-local factors in Dvα′ and Dwα′ as they
act on pre-potential. Then we can redefine (19.8) and (19.23) by saying that
the new square root free Dv and Dw to be our new definitions. With this it
is easy to see that the good definition of P+ is:

P+ := 1
2

(P+ + P+̃ ) = P+ (19.24)

where the last equality holds on pre-potential.
Following the definitions in [8] of the AdS boundary limit we propose that

any operator K which is an eigenvector of P+ operator, i.e. [P+, K ] = cK,
scales as Rc as we approach the boundary, i.e. R → 0 limit, where R is a
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radial coordinate on the Poincaré patch. Another way how to state the limit
is that by putting the R → 0 we contract the isometry groups SO ( 4, 1 ) and
SO ( 4, 1 ) to ISO ( 3, 1 ) and ISO ( 3, 1 ) (we Wick rotated the S5 isometry
group for the purpose of this limit). For more details on this limit (that can
be stated also through the explicit coordinates on AdS5 and S5) see notes
[8].

Using the previous definitions of the AdS boundary limit we can analyse
the different branches of the Dv solutions (19.18). Let’s first pick the δα′

β′

branch (let’s work with both ± sub-branches at once). Note that even on
pre-potential the Dα′ 6= Dα̃′ as can be seen from the explicit construction of
those derivatives in [17] in the section 5. Then the commutator is:

[P+, Dα′ + Dα̃′ ] = ± 1
rAdS

(γ+)α′ β′ (Γ̃5)β
′ σ′ (Dσ′ ± Dσ̃′) + . . . (19.25)

The . . . part correspond to the current that vanishes in the supergravity
limit (i.e. we do not see string parameter σ) and on pre-potential. We also
used the commutators from (14.7) and the mixed AdS commutators from
(15.9). We also used the explicit solution for the PSU ( 2, 2 | 4 ) (we are on
pre-potential) derivatives in terms of τ and σ currents, see section 5 in [17].

More specifically we used that DΩ ≡ Dα′ = ωα
′
+ 1

2
1

rAdS
(Γ̃5)α

′ β′ Dβ̃′ , where

the ωα
′

is the current proportional to σ derivative and it has to vanish in the
supergravity limit. The equation (19.25) is very interesting. It tells us how
the Dv scales for the ± δα′β

′
branch of (19.18). We also notice that the scaling

constant is rAdS dependent and vanishes for rAdS → ∞. More importantly
because of the (Γ̃5) for fixed rAdS and for fixed sub-branch of ± δα′β

′
the

scaling constant c is either + ( 1
rAdS

) for one half of SO (8) chiral index α′ or

− ( 1
rAdS

) for second half. And this is not good because by [8] the Dv derivative

should scale like 1
R

and Dw should scale like R (put rAdS = 1 for simplicity).
In (19.25) we can see that just 1

2
of derivatives scale properly. This boundary

limit then distinguishes between two branches of (19.18). In the following

we will see that the (Γ̃5) branch has exactly right scaling properties so it
corresponds to the right solution. Without this boundary limit we did not
have a way how to pick a branch in (19.18). In the case of (Γ̃5) branch we

have one more (Γ̃5) matrix in (19.25) thus we get:

[P+, Dα′ ± (Γ̃5)α′
ρ′ Dρ̃′ ] = ± 1

rAdS
(Dα′ ± (Γ̃5)α′

ρ′ Dρ̃′) + . . . (19.26)

The equation (19.26) will give us the correct solution. From (19.26) we can

see that for fixed rAdS and for fixed (Γ̃5) sub-branch we will have proper
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scaling for full SO ( 8 ) chiral index α′. Because we require Dv to scale like
1
R

and Dw scale like R we have Dvα′ = (Dα′ − (Γ̃5)α′
ρ′ Dρ̃′) and Dwα′ =

(Dα′ + (Γ̃5)α′
ρ′ Dρ̃′). The positive news is that the blowing-up derivative

Dv is zero on the pre-potential by our construction, so there is no possible
singularity arising as we approach the boundary.

Its easy to see how the derivativesDα andDα̃ scale. Because the (γ+)αβ =
0 the [P+, Dα ] = [P+, Dα̃ ] = 0. So they scale like 1. Those derivatives
are building up the Du and Dū, analogous derivatives to paper [8] derivatives
du and dū. The explicit forms of Du and Dū won’t be needed in this paper
so we do not provide them.

19.5 Near horizon limit and field equations

Comparing result with [8] we want to see that the field equations for the
pre-potential in the near horizon limit (i.e. in the R → 0) is just of the form
P+ V = 0 + O(R ). This will be our final confirmation that we discovered
the right pre-potential. We first notice that the Lorentz generator scales like
O( 1 ), this can be seen from commutator [S+a, P+ ] = [S+̃a, P+ ] = 0. To
see what is P+ on pre-potential we could directly use some appropriate tor-
sions (remember pre-potential is a linear combination of fields). We found
it easier however to use a different approach. Let’s look at the torsion con-
straint (17.13) but for the α index instead of α′ (the α index is one of the
SO (8) chiral indices):

TDS S̃ ≡ Tα+a +̃b = 0 = D[αH+a +̃b) +H[α |M ηMNf+a +̃b)N (19.27)

= DαH+a +̃b + S+̃bHα+a + S+aH+̃bα(19.28)

First notice that the structure of (19.28) is very different than the structure
of (17.13). There is no f term in (19.28) and there is the full derivative
term present. Even in the AdS case the f term is missing. This can be
seen as follows. The f+a +̃bN = 0 in AdS and also in flat case and also
fα +̃bN = 0. The only possibly nonzero f term is coming from fα+aN . The

H+̃bM ηMN fα+aN ∝ (γ+a)α
ν′ Hν′ +̃b. The vielbein Hν′ +̃b is zero (also in

the AdS) as was shown in the analysis under (17.13). Next, we can recognise
the term Hα +̃a as a part of H matrix (18.17). The vielbein Hα+a has also
been analysed in table (11). It is related to H+a α̃ , see table (11). We need
to be more careful with that relation because in (19.28) we again discover
the S derivative peculiarity, we saw earlier.
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In general all fields in H (now better viewed as their irreducible pieces)
could be obtained from the pre-potential V by an action of appropriate (ir-
reducible) combination of Dw on the pre-potential. One could analyse in
full detail what is the exact structure of those pieces and reproduce famous
field content of AdS5 × S5 supergravity first discovered in [36] and later
used in [28]. This would lead us away from this paper real aim, so we post-
pone this analysis to next paper. The aim of this section is to show that on
pre-potential V the operator P+ vanishes in the near horizon limit.

For this reason we notice following expansions:

H+a +̃b = c0 V + c2 (Dw)2 V + c4 (Dw)4 V + c6 (Dw)6 V (19.29)

+ c8 (Dw)8 V

H+a α̃ = d1Dw V + d3 (Dw)3 V + d5 (Dw)5 V + d7 (Dw)7V(19.30)

H+̃aα = e1Dw V + e3 (Dw)3 V + e5 (Dw)5 V + e7 (Dw)7V (19.31)

where factors c0, c2 . . . , d1, d3 . . . and e1, e3 . . . are constant factors with
appropriate index structure. Note that the c0 is non-zero. The important
observation is that for each term in (19.29), (19.30) and (19.31) we know how
it scales in the R → 0 limit, because we know that Dw scales like R.

Next, we want to combine (19.28) with known scalings of all (19.28)
objects to get an information how Dα V scales. On one hand it should scale
like O (1) on the other hand the relation (19.28) relates it to different fields.
What we obtain is a nontrivial relation that Dα V = O (R ) as we go to the
boundary. It just means that Dα V = 0 (and so also Dα̃ V = 0) in the near
horizon limit. Because of the anti-commutator {Dα, Dβ} = 2 (γ−)αβ P+.
This is enough to see that P+ V ≡ P+ V = 0 in the near horizon limit.
There are two crucial steps. One is to relate the (19.28) term S+̃bHα+a to
H+a α̃. This is relatively straightforward using table (11) and explicit S+̃b

derivative. Second step is to plug expansions (19.29), (19.30) and (19.31) and
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the scalings of particular pieces into (19.28). Doing that we get the following:

0 = DαH+a +̃b + S+̃bHα+a + S+aH+̃bα (19.32)

= DαH+a +̃b + S+̃b

(
− f−̃αM ηMN 1

P−̃
H+aN

)
+ S+aH+̃bα

= DαH+a +̃b −
c

rAdS
(γ−)αν ( Γ̃5 )ν σ S+̃b

1
P−̃
H+a σ̃ + S+aH+̃bα(19.33)

= Dα

(
c0 V + c2 (Dw)2 V + . . .

)
(19.34)

− 1
rAdS

(γ−)αν ( Γ̃5 )ν σ S+̃b
1
P−̃

(
d1Dw V + d3 (Dw)3 V + . . .

)
+ S+a

(
e1Dw V + e3 (Dw)3 V + . . .

)
The equation (19.33) contains all the right expressions to establish the

near horizon limit. By the discussion below (19.26) the Dwα′ derivative scales
like O (R ) (for the projective branch), we also have the scaling of S+a and
S+̃b that goes like a constant. Applying that knowledge we get the equation
(19.33) in the near horizon limit:

0 = c0Dα V + O (R) (19.35)

The c0 is nonzero constant (tensor) so it follows that Dα V = 0 at the AdS
boundary. From {Dα, Dβ } = (γ−)αβ P+ we get the field equation for the
pre-potential in the near horizon limit:

0 = P+V + O (R) (19.36)

≡ P+V + O (R) (19.37)
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Chapter 20

20 Conclusion: Pre-potential in the AdS5× S5

Type IIB superspace

We outline results we have obtained: starting from the 10 dimensional IIB
string theory. We embedded the AdS5 × S5 background and expanded the
theory around this background (we also considered a flat background, i.e.
AdS5 × S5 with rAdS → ∞ ). Our aim was to obtain (linearised) pre-
potential with desired properties in the case of AdS5 × S5 (also in the flat
case). We succeeded and obtained pre-potential construction for flat and
AdS5 × S5 background. We derived only the linearised form, but the vielbein
construction makes non-linearisation straightforward perturbation. The pre-
potential (in flat and also in AdS5 × S5, the projective and chiral) sits in
the combination (without further derivatives) of vielbeins HS S̃ and HD D̃.
By construction the Dv derivative vanishes in bulk on the pre-potential and
the (projective) pre-potential satisfies the near horizon limit field equation
P+ V = 0 + O (R) together with vanishing of Du and Dū on pre-potential
in the near horizon limit. This near horizon limit picks out the projective
pre-potential instead of chiral pre-potential (both were obtained as valid bulk
solutions).

The vanishing of P+ at the boundary fixes the difference between the
conformal weights (≡ ∆) and U(1) charges (≡ ∆Y ) of all boundary BPS
operators, since P+ ∝ ∆ − ∆Y . The P− ∝ ∆ + ∆Y and known expansion
of H in powers ofDw from V , fixes the conformal weights and the U(1) charges
for the boundary BPS operators, the relations important in the AdS/CFT
correspondence, see [29], [30].
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Appendices

A AdS5 × S5 structure of some vielbeins and

their derivatives

A.1 The HS S̃

Using equations (16.3), (16.4), (17.5) and the mixed light-cone gauge together
with keeping the mixed structure constants and evaluating the explicit ac-
tions of the S and S̃ derivatives we derived the first important result for the
structure of the HSS̃ vielbein (in the AdS case). Note that by the symbol
 in the in the whole text we denoted the evaluation of the mixed structure
constants in the sense described in section (17.2).

H−a −̃b = − f−−̃M ηMN 1
P−̃
S−a ( 1

P−
H−̃bN )  0

H−a +̃b = − f−−̃M ηMN 1
P−
S+̃b ( 1

P−̃
H−aN )

− f− b̃M ηMN 1
P− P−̃

H−aN

 − 1
2 (rAdS)2

1
P− P−̃

H−a+̃b ⇒ H−a +̃b = 0

H+a +̃b = − f−−̃M ηMN 1
P−
S+̃b ( 1

P−̃
H+aN )

− f− b̃M ηMN 1
P− P−̃

H+aN + 1
P−
H+̃b a

 − 1
2 (rAdS)2

1
P− P−̃

H+a+̃b + 1
P−
H+̃b a

⇒ ( 1 + 1
2 (rAdS)2

1
P− P−̃

)H+a+̃b = 1
P−
Ha +̃b

H−a b̃c = − f−−̃M ηMN 1
P−
Sb̃c ( 1

P−̃
H−aN )  0

H+a b̃c = fa −̃M ηMN 1
P−̃ P−

Hb̃cN

− f−−̃M ηMN 1
P−̃
S+a ( 1

P−
Hb̃dN )

 − 1
2 (rAdS)2

1
P−̃ P−

Hb̃c +a ⇒ H+a b̃c = 0

Hab c̃d = − f−−̃M ηMN 1
P−
Sc̃d ( 1

P−̃
HabN )  0

Table 8: HS S̃ vielbein
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H+− +̃− = f−−̃M ηMN 1
P−̃ P−

H+̃−N

− f−−̃M ηMN 1
P−̃
S+− ( 1

P−
H+̃−N )  0

H+−−̃a = f−−̃M ηMN 1
P−̃ P−

H−̃aN

− f−−̃M ηMN 1
P−̃
S+− ( 1

P−
H−̃aN )  0

H+− +̃a = f− ãM ηMN 1
P− P−̃

H+−N

− f−−̃M ηMN 1
P−
S+̃a ( 1

P−̃
H+−N )

 1
2 (rAdS)2

1
P− P−̃

H+− +̃a ⇒ H+− +̃a = 0

H+− ãb = f−−̃M ηMN 1
P−̃ P−

HãbN

− f−−̃M ηMN 1
P−̃
S+− ( 1

P−
HãbN )  0

Table 9: HS S̃ vielbein

In the table (9) (and after the evaluation of mixed structure constants) we
have heavily used the structure of the mixed structure constant fa b̃M that is
analysed in the main text, see analysis before equation (17.8). Moreover we
used one more torsion constrain to fix HP S and HP̃ S̃ in the table (9). Let’s
take an example HP S = Ha bc. To fix that vielbein we consider T−̃a bc = 0:

TP̃ P S ≡ T−̃a bc = 0 (A.1)

= P−̃Ha bc + SbcH−̃a + PaHbc −̃ + HbcM ηMN f−̃aN

= P−̃Ha bc + f−̃aM ηMN HbcN

⇒ Ha bc = − f−̃aM ηMN 1
P−̃
HbcN

A.2 The HS D̃ and HS̃ D

In the section (17.3) we analysed vielbein Hα′+b. By the similar set of
equations as in the section (17.3) we can fix Hα′ −̃b. We summarise the
structure of the fixed vielbeins from the section (17.3) discussion in the table
10.
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Hα′−a = f−̃α′M ηMN 1
P−̃
H−aN  0

Hα′+a = f−̃α′M ηMN 1
P−̃
H+aN  0

Hα′ −̃a = − f−−̃MηMN 1
P−
S−̃a

1
P−̃
Hα′N  0

Hα′ +̃a = −S+̃a ( f−−̃M ηMN 1
P− P−̃

Hα′N )  0

Table 10: HD S̃ vielbein

Similarly we can calculate what is the table (10) with α′ swapped with
α. We will use the analogous analysis as in section (17.3) except sometimes
instead of the equation (17.18) we use TP̃ D S̃ and also we fix the HP̃ S̃ using
TP P̃ S̃ (or some left− right swap of those). Let’s look at two such examples
and calculate what is Hα−a and Hα̃−a respectively (we also use the mixed
light-cone gauge):

TP̃ D S ≡ T−̃α−a = 0 = P[−̃Hα−a ) + H[ −̃ |M ηMN fα−a )N (A.2)

= P−̃Hα−a + H−aM ηMN fα −̃N (A.3)

⇒ Hα−a = − fα −̃M ηMN 1
P−̃
H−aN

Hα−a  (γ−)αν (Γ̃5)ν σ 1
(rAdS)P−̃

H−a σ̃

Next, examine:

TP S D̃ ≡ T−−a α̃ = 0 = P[−H−a α̃ ) + H[− |M ηMN f−a α̃ )N (A.4)

= P−H−a α̃ + Dα̃H−−a (A.5)

+H−aM ηMN fα̃−N (A.6)

the H−−a is fixed by TP̃ P S ≡ T−̃−−a = 0:

TP̃ P S ≡ T−̃−−a = 0 = P[−̃H−−a) + H[−̃ |M ηMN f−−a)N (A.7)

= P−̃H−−a + H−aM ηMN f−̃−N (A.8)

⇒ H−−a = f−−̃M ηMN 1
P−̃
H−aN  0 (A.9)

plugging (A.9) into the (A.5) we get:

H−a α̃ = − f−−̃M ηMN 1
P−
Dα̃

1
P−̃
H−aN (A.10)

− f− α̃M ηMN 1
P−
H−aN (A.11)

⇒ H−a α̃  − (γ−)αν (Γ̃5)ν σ 1
(rAdS)P−

H−aσ (A.12)
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We notice that combining the result (A.12) with (A.3) we get after the evalua-
tion of the mixed structure constants that H−aα  0 and so also H−a α̃  0.
Similar analysis can be made for the rest of the vielbeins (we mean those from
table (10), except α′ switched with α). Thus we get the table (11).

Hα−a = − fα −̃M ηMN 1
P−̃
H−aN

⇒ Hα−a  0
Hα+a = f−̃αM ηMN 1

P−̃
H+aN

 (γ−)αν (Γ̃5)ν σ 1
(rAdS)P−̃

H+a σ̃

Hα̃−a = f−−̃M ηMN 1
P−
Dα̃

1
P−̃
H−aN

+ f− α̃M ηMN 1
P−
H−aN

⇒ Hα̃−a  0
Hα +̃a = − f−−̃M ηMN 1

P−̃
Dα

1
P−
H+̃aN + f−̃αM ηMN 1

P−̃
H+̃aN

− η−̃ +̃
1
P−̃
Hα ã

⇒ Hα +̃a  (γ−)αν (Γ̃5)ν σ 1
(rAdS)P−̃

H+̃a σ̃ + 1
P−̃
Hα ã

Table 11: HD S̃ vielbein

Let us repeat our goal. We wanted to determine the actions of S+̃b and
S+a on Hα′+a and H+̃bα′ respectively. We wanted to do that because then
the (17.14) gives the action of Dα′ on H+a +̃b (where at least the part of the
pre-potential sits). The action of S+̃b on Hα′+a is easily computed using
our table (10). Taking the second top relation from the table (10) and by
explicitly applying the S+̃b derivative we get:

S+̃bHα′+a = S+̃b ( f−̃α′M ηMN 1
P−̃
H+aN ) (A.13)

= η−̃ +̃ fb̃α′M ηMN 1
P−̃
H+aN (A.14)

+ f−̃α′M ηMN S+̃b ( 1
P−̃
H+aN ) (A.15)

⇒ S+̃bHα′+a  − (γb)α′ ν (Γ̃5)ν σ 1
(rAdS)P−̃

H+a σ̃ (A.16)

To evaluate S+aH+̃bα′ we need to work a bit more. One can directly use the
last relation in the table (10). We found an easier way however. For that
we need an alternative fixing of the vielbein H+̃bα′ . This alternative fixing
seems to be more suited for an explicit evaluation of the S+a action (and
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S−a action). An alternative way how to fix Hα′ +̃a is to use TP̃ D S̃ ≡ T−̃α′ +̃a

instead of one that we used in (17.18) and (17.19). Similarly it will be
useful to find an alternative fixing for Hα′ −̃a. Again that could be done by
considering torsion TP̃ D S̃ ≡ T−̃α′ −̃a. Let’s look at this alternative fixing
more closely:

TP̃ D S̃ ≡ T−̃α′ −̃a = 0 = P[−̃Hα′ −̃a ) + H[−̃ |M ηMN fα′ −̃a )N (A.17)

= P−̃Hα′ −̃a + Dα′ H−̃a −̃ (A.18)

+H−̃aM ηMN f−̃α′N

The H−̃a −̃ type of vielbein has been fixed in (A.9). Plugging the fixing into
(A.18) we get an alternative Hα′ −̃a fixing:

Hα′ −̃a = − f−−̃M ηMN 1
P−̃

Dα′
1
P−
H−̃aN (A.19)

− f−̃α′M ηMN 1
P−̃
H−̃aN

Hα′ −̃a  0 (A.20)

again we can see the behaviour of the Hα′ −̃a in (A.20) as we evaluate the the-
ory, as it should be comparing with its behaviour from the fixing in the table
(10). The alternative fixing for the vielbein H+̃bα′ is calculated similarly:

TP̃ D S̃ ≡ T−̃α′ +̃a = 0 = P[−̃Hα′ +̃a ) + H[−̃ |M ηMN fα′ +̃a )N (A.21)

= P−̃Hα′ +̃a + Dα′ H+̃a −̃ (A.22)

+H+̃aM ηMN f−̃α′N + Hα′ ã

The H+̃a −̃ is fixed similarly to (A.9) resulting in:

H+̃a −̃ = f−−̃M ηMN 1
P−
H+̃aN  0 (A.23)

The Hα′ ã is fixed by the dim 1
2

torsion constraint TP D P̃ ≡ T−α′ ã = 0:

TP D P̃ ≡ T−α′ ã = 0 = P[−Hα′ ã ) + H[− |M ηMN fα′ ã )N (A.24)

= P−Hα′ ã + PãH−α′ (A.25)

+Hα′M ηMN fã−N

The last vielbein we need to fix is the H−α′ , that is again fixed by the dim
1
2

torsion constraint TP̃ P D ≡ T−̃−α′ = 0:

TP̃ P D ≡ T−̃−α′ = 0 = P[−̃H−α′ ) + H[−̃ |M ηMN f−α′ )N (A.26)

= P−̃H−α′ + Hα′M ηMN f−̃−N (A.27)

⇒ H−α′ = f−−̃M ηMN 1
P−̃
Hα′N  0 (A.28)
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Plugging (A.28) into (A.25) and that into (A.22) we finally get an alternative
fixing for the Hα′ +̃a:

Hα′ +̃a = − f−−̃M ηMN
(

1
P−̃ P−

Pã
1
P−̃
Hα′N + 1

P−̃
Dα′

1
P−
H+̃aN

)
− fα′ −̃M ηMN 1

P−̃
H+̃aN − f− ãM ηMN 1

P−̃ P−
Hα′N (A.29)

Now we are ready to calculate an action of S−̃a and S−a and S+̃a and S+a

on table (10) vielbeins (with the exception of S+aH+̃bα′ that we want to

calculate in the end of this paragraph). We summarise those S (and S̃)
actions in the next tables:

S−bHα′−a = − (γ−b)α′
ν f−̃ νM ηMN 1

P−̃
H−aN

− f−̃α′M ηMN S−b
1
P−̃
H−aN

⇒ S−bHα′−a  0
S−̃bHα′−a = − f−̃α′M ηMN S−̃b

1
P−̃
H−aN

⇒ S−̃bHα′−a  0

S−bHα′+a = − (γ−b)α′
ν f−̃ νM ηMN 1

P−̃
H+aN

− f−̃α′M ηMN S−b
1
P−̃
H+aN

⇒ S−bHα′+a  0
S−̃bHα′+a = − f−̃α′M ηMN S−̃b

1
P−̃
H+aN

⇒ S−̃bHα′+a  0

S−bHα′ −̃a = − f−−̃M ηMN S−b
1
P−̃
Dα′

1
P−
H−̃aN

− (γ−b)α′
ν f−̃ νM ηMN 1

P−̃
H−̃aN − f−̃α′M ηMN S−b

1
P−̃
H−̃aN

⇒ S−bHα′ −̃a  0
S−̃bHα′ −̃a = − f−−̃M ηMN S−̃b

1
P−̃
Dα′

1
P−
H−̃aN

− f−̃α′M ηMN S−̃b
1
P−̃
H−̃aN

⇒ S−̃bHα′ −̃a  0

Table 12: the S action on HD S̃ vielbein

Now we calculate S−bHα′ +̃a. The reasoning will be similar later for the
final calculation of the S+bHα′ +̃a so we first do the former in order to see
how it works. Calculation of the S−b action on Hα′ +̃a is straightforward. It’s
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done using the relation (A.29) and applying S−b, thus we get:

S−bHα′ +̃a = − f−−̃M ηMN S−b

(
1

P−̃ P−
Pã

1
P−̃
Hα′N + 1

P−̃
Dα′

1
P−
H+̃aN

)
− 1

2
(γ−b)α′

ν fν −̃M ηMN 1
P−̃
H+̃aN (A.30)

+ fα′ −̃M ηMN S−b
1
P−̃
H+̃aN − f− ãM ηMN S−b

1
P−̃ P−

Hα′N

Now, we want to evaluate equation (A.30). The terms proportional to f−−̃M
and fα′ −̃M are vanishing by the AdS algebra. We write what’s left over after
evaluation:

S−bHα′ +̃a = 1
2

(γ−b)α′
ν (γ−)ν σ (Γ̃5)σ ε 1

(rAdS)
1
P−̃
H+̃a ε̃ (A.31)

+ 1
2 (rAdS)2

1
P−̃ P−

S−b (Hα′+a + Hα′ +̃a ± Hα′−a ± Hα′ −̃a )

Note, the ± in last line in (A.31) is explained in the section above (17.8).
According to the table (12) all actions of S−b in the second line of (A.31) are
evaluated to zero except of the S−bHα′+a that we want to determine. Then
the (A.31) could be rewritten in a way that determines S−bHα′ +̃a (after
evaluation):(

1 − 1
2 (rAdS)2

1
P−̃ P−

)
S−bHα′ +̃a = . . . (A.32)

= 1
2

(γ−b)α′
ν (γ−)ν σ (Γ̃5)σ ε 1

(rAdS)
1
P−̃
H+̃a ε̃

We remind that the H+̃a ε̃ vielbein is related to the H+̃a ε vielbein by the
second top line in the table (11). Similarly to the (A.30) and its evaluated
version (A.32) we can calculate an action of S−̃bHα′ +̃a. The result is:

S−̃bHα′ +̃a = − f−−̃M ηMN S−̃b

(
1

P−̃ P−
Pã

1
P−̃
Hα′N + 1

P−̃
Dα′

1
P−
H+̃aN

)
− fα′ −̃M ηMN S−̃b

1
P−̃
H+̃aN − ηã b̃ f−−̃M ηMN 1

P−̃ P−
Hα′N

− f− ãM ηMN S−̃b
1

P−̃ P−
Hα′N (A.33)

and after evaluation, where we again use the results from table (12):

S−̃bHα′ +̃a  0 (A.34)

Finally the action of S+bHα′ +̃a is calculated as in (A.30). Now we know
that by an analogy with the (A.30) and its evaluation we would need to
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know analogy of the table (12) except now for the S+b. Since calculations
are very analogous to those that led to the table (12) we list just the resulting
table(s): (13) and (14)

S+bHα′−a = − 1
2

(γ+b)α′
ν f−̃ νM ηMN 1

P−̃
H−aN

+ f−̃α′M ηMN S+b
1
P−̃
H−aN

⇒ S+bHα′−a  0
S+̃bHα′−a = η−̃ +̃ fb̃α′M ηMN 1

P−̃
H−aN + f−̃α′M ηMN S+̃b

1
P−̃
H−aN

⇒ S+̃bHα′−a  0

S+bHα′+a = − 1
2

(γ+b)α′
ν f−̃ νM ηMN 1

P−̃
H+aN

+ f−̃α′M ηMN S+b
1
P−̃
H+aN

⇒ S+bHα′+a  − (γ+b)α′
ν (γ−)ν σ (Γ̃5)σ λ 1

(rAdS)
1
P−̃
H+a λ̃

S+̃bHα′+a = η−̃ +̃ fb̃α′M ηMN 1
P−̃
H+aN + f−̃α′M ηMN S+̃b

1
P−̃
H+aN

⇒ S+̃bHα′+a  (γb)α′ ν (Γ̃5)ν σ 1
(rAdS)

1
P−̃
H+a σ̃

Table 13: the S action on HD S̃ vielbein

S+bHα′ −̃a = − 1
2

(γ+b)α′
ν f−̃ νM ηMN 1

P−̃
H−̃aN

+ f−̃α′M ηMN S+b
1
P−̃
H−̃aN

+ η−+ fb −̃M ηMN 1
P−̃
Dα′

1
P−
H−̃aN + f−−̃M ηMN S+b

1
P−̃
Dα′

1
P−
H−̃aN

⇒ S+bHα′ −̃a  0
S+̃bHα′ −̃a = η−̃ +̃ f− b̃M ηMN 1

P−̃
Dα′

1
P−
H−̃aN

+ f−−̃M ηMN S+̃b
1
P−̃
Dα′

1
P−
H−̃aN

+ η−̃ +̃ fb̃α′M ηMN 1
P−̃
H−̃aN + f−̃α′M ηMN S+̃b

1
P−̃
H−̃aN

⇒ S+̃bHα′ −̃a  0

Table 14: the S action on HD S̃ vielbein

Now, we calculate the the missing piece in the equation (17.14), i.e.
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S+bHα′ +̃a. In analogy with (A.30) we get:

S+bHα′ +̃a = − f−−̃M ηMN S+b

(
1

P−̃ P−
Pã

1
P−̃
Hα′N + 1

P−̃
Dα′

1
P−
H+̃aN

)
− η−+ fb −̃M ηMN

(
1

P−̃ P−
Pã

1
P−̃
Hα′N + 1

P−̃
Dα′

1
P−
H+̃aN

)
+ 1

2
(γ+b)α′

ν fν −̃M ηMN 1
P−̃
H+̃aN (A.35)

− fα′ −̃M ηMN S+b
1
P−̃
H+̃aN

− f− ãM ηMN S+b
1

P−̃ P−
Hα′N

+ η−+ fã bM ηMN 1
P−̃ P−

Hα′M

and the (partially) evaluate version of (A.35):

S+bHα′ +̃a  − 1
2 (rAdS)2

1
P−̃
Dα′

1
P−
H+̃a +b (A.36)

− (γ+b)α′
ν (γ−)ν σ (Γ̃5)σ λ 1

(rAdS)
1
P−̃
H+̃a λ̃

+ 1
2 (rAdS)2

S+b
1

P−̃ P−

(
Hα′+a + Hα′ +̃a ± Hα′−a ± Hα′ −̃a

)
We can see why we just partially evaluated the equation (A.35). The reason
is that last term leads to an action of S+b. Fortunately for us we already
computed all those actions in tables (13) and (14) except S+bHα′ +̃a that we
want to calculate. Therefore the (A.36) leads to the evaluated version of the
S+bHα′ +̃a:(

1 − 1
2 (rAdS)2

1
P−̃ P−

)
S+bHα′ +̃a  − 1

2 (rAdS)2
1
P−̃
Dα′

1
P−
H+̃a +b (A.37)

− 1
2

(γ+b)α′
ν (γ−)ν σ (Γ̃5)σ λ 1

(rAdS)
1
P−̃
H+̃a λ̃

− (γ+b)α′
ν (γ−)ν σ (Γ̃5)σ λ 1

2 (rAdS)3
1

P−̃ P− P−̃
H+a λ̃

where we used results of tables (13) and (14). For completeness we provide
(just the evaluated version) the last remaining part of tables (13) and (14),
i.e. S+̃bHα′ +̃a:(

1 − 1
2 (rAdS)2

1
P−̃ P−

)
S+̃bHα′ +̃a  − 1

2 (rAdS)2
1
P−̃
Dα′

1
P−
H+̃a +b (A.38)

− 1
2

(γb)α′ ν (Γ̃5)ν λ 1
(rAdS)

1
P−̃
H+̃a λ̃

− (γb)α′ ν (Γ̃5)ν λ 1
2 (rAdS)3

1
P−̃ P− P−̃

H+a λ̃
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We repeat the first important relation we derived by the above analysis
from (17.13) where we add results from (A.16) and (A.37):

Dα′ H+a +̃b = − 1
g

1
(rAdS)P−̃

(γb)α′ σ (Γ̃5)σ βHβ̃+a (A.39)

+ 1
2 g

( 1 − 1
f

1
(rAdS)2 P−̃ P−

)(γ+a)α′
βHβ +̃b

+ 1
f g

1
2 (rAdS)3 P− (P−̃)2

(γa)α′ ν (Γ̃5)ν βHβ̃+b

where f and g are defined as follows:

f := ( 1 − 1
2 (rAdS)2 P−̃ P−

) (A.40)

g := ( 1 − 1
f

1
2 (rAdS)2 P−̃ P−

)

A.3 The HD D̃

To obtain the AdS equation (18.3), we need to fix Hα′ β. This term is fixed
by the zero dimensional torsion TP̃ DD ≡ T−̃α′ β = 0:

T−̃α′ β = 0 = P[−̃Hα′ β) + H[−̃ |M ηMN fα′ β )N (A.41)

= P−̃Hα′ β + H(β |M ηMN fα′) −̃N

⇒ Hα′ β = − f−̃ (α′ |M ηMN 1
P−̃
Hβ )N  0 (A.42)

In (A.41) we again used the mixed light-cone gauge. In the flat case the mixed
f terms are zero so is Hα′ β. In the AdS case (after evaluation), term propor-
tional to fα′ −̃N is zero because of (γ−)α′ β′ = 0. But the term proportional to

fβ −̃N is nonzero. Luckily for us the fβ −̃N ∝ 1
rAdS

(γ−)β σ (Γ̃5)σ ν ην̃N . That
structure constant just eats up the β index and returns ν̃ index with some
fixed constant dependence. The torsion constraint TP D̃D ≡ T− σ̃ α′ = 0 re-
lates Hσ̃ α′ back to Hσ α′ (after the evaluation). From that and assuming some
wider invertibility (P− and P−̃ are bigger than some constant lower bound
in AdS) we get also in the AdS space Hα′ β  0 (after the evaluation).

We apply S+̃a on the result of non-evaluated (A.42), thus get:

S+̃aHα′ β = − η−̃ +̃ fã (α′ |M ηMN 1
P−̃
Hβ )N (A.43)

− f−̃ (α′ |M ηMN S+̃a
1
P−̃
Hβ )N

S+̃aHα′ β  − (γ−)β ν (Γ̃5)ν σ 1
rAdS

S+̃a
1
P−̃
Hα′ σ̃ (A.44)

+ (γa)α′ ν (Γ̃5)ν σ 1
rAdS

1
P−̃
Hβ σ̃
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The last term in (A.44) does not bother us too much (it will be a part of
the pre-potential), the first term in (A.44) is actually something we need to
evaluate. For that we need to fix Hα′ σ̃. That could be done by the torsion
constraint TP D̃D ≡ T−α′ σ̃ = 0:

T−α′ σ̃ = 0 = P[−Hα′ σ̃ ) + H[− |M ηMN fα′ σ̃ )N (A.45)

= P−Hα′ σ̃ − Dσ̃H−α′ + H−M ηMN fα′ σ̃N (A.46)

+Hα′M ηMN fσ̃−N

moreover the H−α′ has been fixed in (A.28), plugging that into (A.46) we
get fixing of Hα′ σ̃:

Hα′ σ̃ = f−−̃M ηMN 1
P−
Dσ̃

1
P−̃
Hα′N − fα′ σ̃M ηMN 1

P−
H−N (A.47)

+ fσ̃−M ηMN 1
P−
Hα′N

We are ready to calculate S+̃aHα′ σ̃ i.e. the term needed in (A.44):

S+̃aHα′ σ̃ = η−̃ +̃ f− ãM ηMN 1
P−
Dσ̃

1
P−̃
Hα′N (A.48)

+ f−−̃M ηMN S+̃a
1
P−
Dσ̃

1
P−̃
Hα′N

+ 1
2

(γ+a)σ
ν′ fα′ ν̃′M ηMN 1

P−
H−N − fα′ σ̃M ηMN S+̃a

1
P−
H−N

− 1
2

(γ+a)σ
ν′ fν̃′−M ηMN 1

P−
Hα′N + fσ̃−M ηMN S+̃a

1
P−
Hα′N

Now, we can evaluate (A.48), for clearness we include terms that we already
know are evaluated to zero or are zero by the mixed light-cone gauge:

S+̃aHα′ σ̃  1
2 (rAdS)2

1
P−
Dσ̃

1
P−̃

(Hα̃′+a (A.49)

+Hα̃′ +̃a ± Hα̃′−a ± Hα̃′ −̃a )

(± ) 1
2

1
rAdS

(γ+a)σ
ν′ (γcd)ν′

ρ′ (Γ̃5)ρ′ α′
1

2P−
(H− cd (A.50)

+H− c̃d )

− (± ) 1
rAdS

(γcd)σ
ρ′ (Γ̃5)ρ′ α′ S+̃a

1
2P−

(H− cd (A.51)

+H− c̃d )

− 1
rAdS

(γ−)σ ν (Γ̃5)ν ρ S+̃a
1
P−
Hα′ ρ (A.52)

Note that in the lines (A.50) and (A.51) we have the ± symbol. It comes
from the mixed structure constant fD D̃Σd ≡ fα β̃

cd, where underline in-

dices are now (and just now) the SO( 10 ) chiral indices (for the left and
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right algebra), and Σd is the Σ index for the SO( 5 ) ⊗ SO( 5 ) diago-
nal subgroup of the original SO( 10 ) ⊗ SO( 10 ) group. The (± ) symbol
determines to which SO( 5 ) of the diagonal subgroup given Σd belongs.
This mixed structure constant could be written without the ± symbols as
fα β̃

cd = 1
rAdS

(γ[c)σ ρ (Γ̃5)ρ ν (γd])ν α′ . The ± then comes from the fact that by

the construction Γ̃5 commutes with a ∈ { 10, 1 . . . 4 } and anti-commutes
with a ∈ { 5, . . . 9 }. We used the prior definition in this section for some
convenience. In the final expressions we will always use the definition without
the ± symbol.

Let’s evaluate expressions (A.49), (A.50), (A.51) and (A.52). The line
(A.49) is evaluated to 0 by the table (10). We note very important property
in the lines (A.50) and (A.51). The summation over the cd indices is really
just a summation over the SO ( 5 ) ⊗ SO ( 5 ) diagonal subgroup of the full
SO ( 10 ) ⊗ SO ( 10 ). The line (A.50) is evaluated to 0 by the mixed light-
cone gauge (second term) and by the following fixing of the H− cd (coming
from torsion constraint TP̃ P S ≡ T−̃−ab = 0):

H−ab = f−−̃M ηMN 1
P−̃
HabN ⇒ H−ab  0 (A.53)

The line (A.52) has an action S+̃aHα′ ρ that is exactly what we want to
determine. The line (A.51) is fixed as follows. The vielbein H− c̃d = 0 by
the mixed light-cone gauge. The action S+̃aH− cd is however nontrivial. We
should take fixing (A.53) and apply S+̃a:

S+̃aH− cd = − f− ãM ηMN 1
P−̃
HcdN (A.54)

+ f−−̃M ηMN S+a
1
P−̃
HcdN

S+̃aH− cd  1
2 (rAdS)2

1
P−̃

(Hcd +a + Hcd +̃a (A.55)

±Hcd−a ± Hcd −̃a )

By the table (9) the only nonzero term in (A.55) is H+d +̃a thus we get:

S+̃aH−+d  1
2 (rAdS)2

1
P−̃
H+d +̃a (A.56)

Then finally the equation (A.49 till A.52) is evaluated to:

S+̃aHα′ σ̃  ± (− 1 )
4 (rAdS)3 P− P−̃

(γ+d)σ
ρ′ (Γ̃5)ρ′ α′ H+d +̃a (A.57)

− 1
(rAdS)P−

(γ−)σ ν (Γ̃5)ν ρ S+̃aHα′ ρ
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Combining (A.57) and (A.44) we will get the following relation for the eval-
uated action of S+̃aHα′ β:

( 1 − 1
P− P−̃ (rAdS)2

)S+̃aHα′ β =

= − 1
4 (rAdS)4 P− P−̃

2 (Γ̃5)β ν (γd)ν ρ
′
(Γ̃5)ρ′ α′ (Γ̃5)d

g H+g +̃a

+ 1
(rAdS)P−̃

(γa)α′ ν (Γ̃5)ν σHβ σ̃ (A.58)

where we simplified (A.57) by using the explicit property of γ− and γ+ being
the unit or zero matrix (depending on specific indices), see (14.14). We
used this simplification in another equations as well (for example in equation

(17.23)). In the equation (A.58) we also used new matrix (Γ̃5)d
g, that was be

introduced in (18.28). We also used the identity (18.26) to simplify (A.58).
Plugging the evaluated expression (A.58) into (18.3) we will get the action
of Dα′ Hβ +̃a:

0 = Dα′ Hβ +̃a − 1
h 4 (rAdS)4 P− P−̃

2 (γc)α′ βH+c +̃a (A.59)

+ 2 (γc)α′ βH+̃a c + 1
h (rAdS)P−̃

(γa)α′ ν (Γ̃5)ν σHβ σ̃

left ↔ right (A.60)

where h is defined as:

h := ( 1 − 1
P− P−̃ (rAdS)2

) (A.61)

The equations (A.59) and (A.60) are very interesting since after applying the
Dα′ (or Dα̃′) derivatives we are getting terms like H+̃a c that is basically our
original H+̃a +c, see (17.6). Moreover we got also term Hβ σ̃ that is a new
term and was important in chapters where we constructed the pre-potential.

Another important derivatives are Dα̃′ on Hβ +̃a and Dα′ on Hβ̃+a. We
will look at those closer:

TD̃ D S̃ ≡ Tα̃′ β +̃a = 0 = D[α̃′ Hβ +̃a) + H[α̃′ |M ηMN fβ +̃a )N (A.62)

= Dα̃′ Hβ +̃a + S+̃aHα̃′ β − DβH+̃a α̃′ (A.63)

+Hα̃′M ηMN fβ +̃aN

+H+̃aM ηMN fα̃′ βN − HβM ηMN f+̃a α̃′N

The mixed f terms are zero in the flat superspace. In the AdS case the
fα̃′ βN 6= 0 and there is also AdS contribution coming from S+̃aHα̃′ β. This
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contribution can be calculated by analogy with the equations (A.49), (A.50),
(A.51), (A.52) and (A.58). Thus getting evaluated action S+̃aHα̃′ β:

S+̃aHα̃′ σ = ± (− 1 )
h 4 (rAdS)3 P−̃ P−

(γ+d)α′
ν (Γ̃5)ν σH+̃d +a (A.64)

+ 1
h (rAdS)2 P−̃ P−

(γ−)σ ν (Γ̃5)ν ρHρ̃ β (Γ̃5)β ε (γa)ε α′

where h was defined in (A.61). The (A.63) mixed structure constant fβ +̃aN =
0 and the fα̃′ βN has been discussed before (see equations (A.48) and (A.49)
till (A.52)). Moreover, the vielbein H+̃a α̃′ is evaluated to 0, see table (10).
Evaluating everything in (A.64) we get:

0 = Dα̃′ Hβ +̃a − 1
h 4 (rAdS)3 P−̃ P−

(γd)α′ ε (Γ̃5)ε σ γ+
σ βH+̃d +a (A.65)

+ 1
rAdS

(γd)α′ ε (Γ̃5)ε σ (γ+)σ βH+d +̃a

+ 1
h (rAdS)2 P−̃ P−

(γ−)β ν (Γ̃5)ν ρHρ̃ λ (Γ̃5)λ ε (γa)ε α′ − 1
2

(γ+a)α′
ν Hβ ν̃

left↔ right (A.66)
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