
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Spin and QCD Instanton & Stringy Pomeron

A Dissertation presented

by

Yachao Qian

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

May 2017



Stony Brook University

The Graduate School

Yachao Qian

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Ismail Zahed
Professor, Department of Physics and Astronomy

Edward Shuryak
Distinguished Professor, Department of Physics and Astronomy

Xu Du
Associate Professor, Department of Physics and Astronomy

Robert Pisarski
Senior Scientist, Department of Physics, Brookhaven National Laboratory

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Spin and QCD Instanton & Stringy Pomeron

by

Yachao Qian

Doctor of Philosophy

in

Physics

Stony Brook University

2017

We summarize some of the works on understanding the nonperturbative
effects in QCD.

In the first part of the thesis, we review some aspects of spin physics
where QCD instantons play an important role. In particular, their large con-
tributions in semi-inclusive deep-inelastic scattering and polarized proton on
proton scattering. We also review their possible contribution in the P-odd
pion azimuthal charge correlations in peripheral AA scattering at collider en-
ergies. The QCD vacuum is dominated by large instanton and anti-instanton
fluctuations in the infrared, which are largely responsible for the sponta-
neous breaking of chiral symmetry and the anomalously large mass. The
QCD instanton intrinsic spin-color polarization makes them ideal for generat-
ing non-perturbative and large spin asymmetries in deep inelastic scattering
using polarized proton targets and polarized proton on proton scattering.
The large spin asymmetries observed experimentally are triggered by T-odd
contributions in the scattering amplitude. Since perturbative QCD does
not accommodate these effects, it was initially suggested that these T -odd
contributions are either induced in the initial state (Sivers effect) or in the
fragmentation function (Collins effect) thereby preserving the integrity of
QCD perturbation theory and factorization. QCD instantons offer a natural
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mechanism for generating T-odd amplitudes that is fully rooted in QCD and
beyond perturbation theory.

In the second part, we show that a single closed string exchange contri-
bution to the eikonalized dipole-dipole scattering amplitude yields a Regge
behavior of the elastic amplitude. The overall dipole-dipole scattering ampli-
tude in the soft pomeron kinematics is shown to be sensitive to the extrinsic
curvature of the string for finite momentum transfer. The characteristics of
the diffractive peak in the differential elastic pp scattering are affected by
a small extrinsic curvature of the string. After discretizing the string in N
string bits, we analyze its length, mass and spatial distribution for large N
and away from its Hagedorn point. The string bit distribution shows sizable
asymmetries in the transverse plane that may translate to azimuthal asym-
metries in primordial particle production in the Pomeron kinematics, and
the flow moments in minimum bias pp and pA events. We also analyze the
length, mass and spatial distribution of a discretized transverse string near
its Hagedorn temperature. We suggest that such a string may dominate the
(holographic) Pomeron kinematics for dipole-dipole scattering at intermedi-
ate and small impact parameters. Attractive self-string interactions cause the
transverse string size to contract away from its diffusive size, a mechanism
reminiscent of the string-black-hole transmutation. The string shows sizable
asymmetries in the transverse plane that translate to primordial azimuthal
asymmetries in the stringy particle production in the Pomeron kinematics
for current pp and pA collisions at collider energies.
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Chapter 1

Introduction

1.1 Instantons

1.1.1 Single (anti-)instanton solution

Yang-Mills theory [9] has a central position in modern theoretical physics.
The successful standard model of particle physics [10, 11, 12] was formulated
in the language of Yang-Mills theory. Historically, each step in understanding
the structure and the dynamics of Yang-Mills theory has helped us formulate
quantum field theory, which in turn widens and deepens our knowledge of
nature. One important discovery is instanton, which plays a central role in
the spontaneous breaking of chiral symmetry in the QCD vacuum. Though,
nowadays the calculations and analysis of the instantons are usually imple-
mented through ’t hooft symbols [13], it is still worthy reviewing the discovery
of instanton and the physics behind it [14].

Before the discovery of instantons, a static sourceless gauge field for SU(2)
in 3-Euclidean space solution has been found by Wu & Yang [15]:

Aµ,a = −εµaν
(x− x0)ν
(x− x0)2

, (1.1)

where we do not distinguish the upper and the lower indices for the Eulidean
space. The ansatz of the solution can be easily written down since both the
spinor indices µ and color indices a running from 1 to 3, which is natural
because both the lorentz group and color group are SU(2). According to
group theory:

3⊗ 3
.
= 5⊕ 3⊕ 1 , (1.2)

1



and we can specify (for Aµ,a):

• 5
1

x3

(
xµxa − δµax2

)
. (1.3)

• 3
1

x2
(εµaνxν) . (1.4)

• 1
1

x
δµa . (1.5)

It is not the same for SU(2) Yang-Mills theory in 4-Euclidean space be-
cause the Lorentz group now is SO(4). In other words, for Aµ,a the indices
µ run from 1 to 4 while the indices a run from 1 to 3. There are two ways
out, we can either decompose the lorentz SO(4) group as SU(2)×SU(2), or
we can extend the color group SU(2) to SO(4). The first case correspond to
the use of ’t hooft symbols and the second case was how the instanton had
originally been found [14]. First, we extend the SU(2) color group to SO(4)

Aaµ
extend−−−→ Aαβµ . (1.6)

This step is important because when we find the classical solution in forms of
Aαβµ for SO(4) Yang-Mills theory we can write down the classical solution in
forms of Aaµ for SU(2) Yang-Mills theory. The key here is SO(4) ' SU(2)×
SU(2). In simple words, if we can find a classical solution in forms of Aαβµ ,
then we can obtain the classical solution Aaµ by

Aaµ =
1

2

(
A4a
µ ±

1

2
εaβγA

βγ
µ

)
. (1.7)

Therefore, to search for the solution, one can easily write down the ansatz

Aαβµ = f(x2)(xαδµβ − xβδµα) , (1.8)

where f(x2) is an analytical function. In fact, one can write it down as Oµνxν
where Oµν is the SO(4) generators. In one of author’s paper, this ansatz has
been derived rigorously by considering the form invariance condition [16].
The step above doesn’t just give us a compact ansatz to search for the solu-
tions of Yang-Mills equation. It also reveals many important properties that
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instanton have. For example, the symmetries between the lorentz group and
color group are related. Because of this reason, in fact the instanton solu-
tion has a simple topological interpretation. Another important property of
(anti-)instanton is that it satisfies the (anti-)selfdual equation:

F a
µν = ±1

2
εµνρσF

a
ρσ . (1.9)

Or we can write it as

εαβα′β′F
α′β′

µν = ±εµνµ′ν′Fαβ
µ′ν′ . (1.10)

First, the equation above clearly shows the relations between the symmetries
in lorentz group and the symmetries in color group. The relation above
can also used to prove that instanton is not just the solution of Yang-Mills
equation, but is also the ground state. One can solve the equation of motion
and obtain the (anti-)instanton when f = 1/(x2 + ρ2). We then find

Aµ
|x|−→∞−−−−−−−−→ U−1∂µU , (1.11)

where U is a SU(2) group element. In sec-2.2, we will show that the topolog-
ical nature of the instanton is the winding number for one S3 sphere warping
around another S3 sphere. Besides the topological nature that instanton
contains, the instanton background also results in zero mode. A zero mode
is a solution of the linearized field equations for the fluctuations which is nor-
malizable. There are many important properties of zero mode: first, the zero
mode is nonperturbative, and thus the effects induced from the zero modes
cannot be obtained by perturbative QCD. Second, the zero mode contribute
to the path integral differently from the non-zero modes. The measure of
the zero modes in path integral is important in QCD vacuum [13]. Third,
the zero mode spontaneously break the chiral symmetry [17]. Fourth, the
color indices and spinor indices of the fermionic zero modes are mixed, and
therefore the imaginary phase due to the soft gluon exchange will result in
single spin asymmetry in instanton background.

1.1.2 Instanton liquid model and spin physics

The physical interpretation of an instanton is a tunneling event between de-
generate classical vacuua [18, 19, 20]. In the instanton liquid model [21], the
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QCD vacuum is populated with interacting instantons and anti-instantons
with a mean instanton density n ≈ 1 fm−4 and an average instanton size of
ρ = 1/3 fm. The classical configurations of instanton and anti-instantons
have been observed in lattice simulations using cooling methods. A typical
distribution of the topological charge GG̃ with quantum noise is shown in
Fig. 1.1 (left) and after 25 cooling sweeps in Fig. 1.1 (right) [22].

Figure 1.1: Left: typical fluctuations of GG̃ in a lattice simulation with a
lattice unit of 0.16 fm. Right: the same fluctuations of GG̃ after 25 cooling
sweeps with a lattice unit of 0.14 fm.

The instanton ensemble is dilute with a diluteness factor nρ4 ≈ 0.01. The
latter provides a natural order parameter when evaluating the various con-
tributions in collision processes induced by instantons to be detailed below.
Instantons provide an important mechanism for the spontaneous breaking of
chiral symmetry and the resolution of the axial U(1) problem through the
emergence and delocalization of the light quarks zero modes.

A number of important vacuum expectations values, e.g.〈
ψ̄ψ
〉
,
〈
ψ̄γ5ψ

〉
and 〈GµνGµν〉 . (1.12)

have been reproduced in the instanton liquid model of the QCD vacuum,
in support of the underlying semi-classical gauge and fermionic degrees of
freedom. Also many mesonic correlation functions of the type 〈j(x) j(0)〉,
with j a local operator with the quantum numbers of a mesonic state, e.g.

jπ = q̄τaγ5q , jρ =
1

2
q̄τaγµq and jη = q̄γ5q . (1.13)

have led to detailed agreements with lattice simulations after cooling [22].
These correlation functions are important in understanding the QCD vac-
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uum, hadrons and mesons. In particular, the heavy η′ mass is related to the
U(1)A anomaly [17].

Though instanton does not account for confinement of static charges.
Recently, it was noted that twisted instantons and anti-instantons with finite
Polyakov lines preserve most of the features of the instanton liquid model and
do account for confinement. QCD instantons may contribute substantially to
small angle hadron-hadron scattering [23, 24, 25, 26, 27] and possibly gluon
saturation at HERA [28, 29], as evidenced by recent lattice investigations [30,
31].

A number of semi-inclusive DIS experiments carried by the CLAS and
HERMES collaborations [32, 1, 33], and more recently with polarized pro-
tons on protons by the STAR and PHENIX collaborations [34, 35, 36],
have revealed large spin asymmetries in polarized lepton-hadron and hadron-
hadron collisions at collider energies. These effects are triggered by T -odd
contributions in the scattering amplitude. Perturbative QCD does not sup-
port the T -odd contributions, which are usually parametrized in the initial
state (Sivers effect) [37, 38] or the final state (Collins effect) [39, 40]. Non-
perturbative QCD with instantons allow for large spin asymmetries as dis-
cussed by Kochelev and others [41, 42, 43, 44, 2]. In [41] a particularly large
Pauli form factor was noted, with an important contribution to the Single
Spin Asymmetry (SSA) in polarized proton on proton scattering.

In author’s papers [44, 45, 46, 47], we showed some recent developments
regarding our understanding of spin physics in the instanton liquid model.
Assuming that the vacuum is populated by semi-classical but interacting
instantons and anti-instantons, with the vacuum parameters fixed by the
spontaneous breaking of chiral symmetry in bulk, we explicit their effects on
semi-inclusive DIS processes as well as singly polarized pp scattering. In both
cases, uncorrelated instantons or anti-instantons are at work. We show that
the effects of correlations between instantons and anti-instantons through
fluctuations are also important in both doubly polarized pp scattering as
well as through P-odd effects in peripheral AA scattering.

1.2 Stringy pomeron

The high energy proton on proton (anti-proton) cross sections are dominated
by Pomeron exchange, an effective object corresponding to the highest Regge
trajectory. The slowly rising cross sections are described by the soft Pomeron
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with intercept αP (0) − 1 ≈ 0.08 and vacuum quantum numbers. Reggeon
exchanges have smaller intercepts and are therefore subleading. Reggeon
theory for hadron-hadron scattering with large rapidity intervals provide an
effective explanation for the transverse growth of the cross sections [48].

The transverse growth of the proton with rapidity χ follows from the
BFKL ladders [49, 50, 51, 52, 53] at weak coupling in QCD. Collinear gluon
bremsstrahlung is large even when the coupling is weak and requires re-
summation. The ensuing BFKL hard Pomeron carries a large intercept and
zero slope. The intercept is slightly improved by higher order perturbative
corrections to the BFKL ladder.

The soft Pomeron kinematics suggests an altogether non-perturbative ap-
proach. Through duality arguments, Veneziano suggested long ago that the
soft Pomeron is a closed string exchange [54]. In QCD the closed string
world-sheet can be thought as the surface spanned by planar gluon diagrams
or fish-nets [55]. The quantum theory of planar diagrams in supersymmetric
gauge theories is tractable in the double limit of a large number of colors
Nc and ′ t Hooft coupling λ = g2Nc using the AdS/CFT holographic ap-
proach [56].

In the past decade there have been several attempts at describing the
soft pomeron using holographic QCD [57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. In [80] we follow the work
in [70, 71, 72, 73] and describe the soft pomeron as an effective string with
extrinsic curvature in 5-dimensions. This is inherently a bottom-up approach
with the holographic or 5th direction playing the role of the scale dimension
for the closed string. The geometry is that of AdS5 with a wall. In the UV
AdS5 enforces conformality which is a property of QCD-BFKL-kernels, while
in the IR the wall enforces confinement a generic feature of QCD.

Also, many descriptions of the soft Pomeron in holographic duals to QCD
have been suggested recently without supersymmetry [57, 58, 59, 60, 81, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. A simple version
is a stringy exchange in AdS5 with a wall with D⊥ = 3 dimensions, that
reproduces a number of features of diffractive scattering, production and
low-x DIS [76].

The Pomeron as a string exchange in holography can be thought as a
chain of closed but confined gluons, some sort of non-perturbative Weizacker-
Williams field tying two colorless dipoles separated by a large rapidity interval
χ. In this spirit, lepton on proton scattering in DIS at low-x can be described
through a holographic string exchange with the identification χ ≈ ln(1/x).
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In the proton rest frame, the leptonic dipole of size 1/Q acts as a small
probe dipole scattering off the larger dipole composing the proton at a fixed
impact parameter b. DIS experiments are always averaged over this impact
parameter when measuring gluonic densities in structure functions. However,
the dominant contribution in the averaging stems from large b [71, 72, 73].
More exclusive experiments could be done in future electron-Ion-Colliders to
unravel the impact parameter dependence at low-x as well.

Low-x physics translates to a large N = 1/x resolution of the holographic
string as we detail below. This is achieved for long strings by discretizing the
transverse Polyakov scalar action in N string bits and initially ignoring the
stringy interactions (free string) and the curvature of AdS5. String bits have
been identified with wee (gluonic) partons by Thorn [82, 83]. The slow loga-
rithmic growth of the free string transverse area translates to an anomalously
large transverse string bit density at low-x. Repulsive string interactions can
cause the transverse density to conform with the maximum Bekenstein bound
for a black-hole as argued by Susskind for wee gravitons [81, 84, 85]. However,
such a growth appears to be at odd with the Froissart bound [86].

A high string bit density at low-x points towards a liquid of string bits,
a priori resolving the string. However, the underlying presence of the string
is still paramount to maintain the (Gribov) diffusion of the string bits in
the transverse plane. Recall that the diffusion constant D = l2s/2 is dimen-
sional and ties with the squared string length. Also, a highly resolved string
provides an optimal description of low-x saturation in QCD as wee partons
reaching the Bekenstein bound [87, 88, 89, 90, 91, 77, 78, 79]. In this work
we will show that the bound is reached in two stages in flat D⊥ = 3. First
a dilute pre-saturation stage where the string transverse area undergoes a
first order transition from a large diffusive growth to a small but fixed size
set by the string scale for relatively weak string self-interactions. Second a
dense saturation stage at very low-x whereby the transverse string bit density
saturates the Bekenstein bound of one bit per transverse Planck area. To
assess the role of the AdS curvature on our results we suggest the use of an
effective transverse dimension for the string bit interactions. The result is a
smoothening of the transition to the Bekenstein bound.

Our pre-saturation condition in [76] is overall consistent with the satura-
tion condition following from the stringy dipole-dipole cross section analysis
derived in [71, 72, 73]. In some ways, the stringy description of satura-
tion can be regarded as the dual of the weak coupling description of gluon
saturation in QCD based on the color glass condensate [92, 93, 94, 95, 96,
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97, 98, 99, 100, 101, 102, 103, 104] and is variant in the impact parameter
space [105, 106, 107]. The exponential rise of the string density of states
with its mass provides the most efficient way of scrambling information and
reaching the Bekenstein bound and thus the saturation point as we will show
below.

In [76], we obtain number of new results:

• A detailed numerical spatial shape analysis of an open and free string
in flat D⊥ = 3 dimensions for increasing resolution.

• A variational analysis of the effects of two-body interactions on the
string shape as a function of the resolution.

• A contraction of the string to a black-hole-like configuration under
attraction and an expansion of the string shape under repulsion.

• A physical interpretation of the contracted string at high resolution
with saturation in DIS dipole-dipole scattering in curved D⊥(λ) < 3.

• A prompt transverse azimuthal asymmetry in dipole-dipole scattering.

One of the most remarkable feature of free strings is the exponential
growth with their mass of the degeneracy in their spectra, which trans-
lates to a constant entropy to mass ratio [108, 109]. Excited strings offer
a very efficient way to scramble information and create entropy. A compet-
ing mechanism for scrambling information appears in the opposite realm of
the physical spectrum in the form of black-holes. Bekenstein noticed that the
black-hole entropy grows in proportion to its area therefore to its mass to a
power larger than 1 in any dimension [87, 88, 89]. This has led Susskind and
others [81, 84, 85, 110, 111] to suggest that fundamental interacting single
strings reduce to black-holes at sufficiently strong self-coupling.

Recently the paper [75] has suggested that the transmutation of strings to
black-holes under self-interaction maybe revealed in hadron-hadron collisions
at high energy when probing small impact parameters. The idea is that the
standard Pomeron as a string exchange in pp collisions dominates the cross
section for typical impact parameters b ≈ 1.5 fm. However, at smaller impact
parameters, the string gets highly excited with a rapid buildup of entropy.
This translates to a high multiplicity event possibly at the origin of the
ridge observed recently at the LHC [112, 113, 114]. In author’s paper[115],
the length, mass and spatial distribution of a discretized transverse string
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in D⊥ dimensions with fixed end-points near its Hagedorn temperature are
discussed.

1.3 Organization of the thesis

This thesis includes my work during the last five years. It includes the Spin
Physics & QCD instantons and stringy pomeron. My research is closely
related to the current and future experiment. The thesis is organized in the
following:

• Chapter 2: Instanton Solution

We introduce the ’t hooft symbols and review the instanton solution
in different gauges. The topological nature of the instanton is also
discussed.

• Chapter 3: Instanton Background

The zero modes and non-zero modes in instanton background should be
analyzed separately. We calculate the bosonic zero modes and fermionic
zero modes in single instanton background. We also derive the non-zero
modes with spin 0 and with spin 1/2. Since the zero mode has its own
measure in path integral, the measure of the zero modes is discussed.

• Chapter 4: Spin effects through one instanton

We derive the Pauli form factor induced by single QCD instanton. By
inserting the effective vertex into the perturbative diagrams, we explicit
the QCD instantons effects on semi-inclusive DIS processes as well as
singly polarized pp scattering.

• Chapter 5: Spin effects through two instantons

We show that the effects of correlations between instantons and anti-
instantons through fluctuations in both doubly polarized pp scattering
as well as through P-odd effects in peripheral AA scattering.

• Chapter 6: Stringy pomeron I

We model the soft pomeron in QCD using a scalar Polyakov string
in the bottom-up approach of holographic QCD. The effects of the
extrinsic curvature in Polyakov string is also discussed.

9



• Chapter 7: Stringy pomeron II

We discretize a long and stretched (fixed impact parameter) transverse
quantum string in flat D⊥ = 3 dimensions. Its length, mass and spatial
distribution are discussed respectively when it is away from its Hage-
dorn point and is near its Hagedorn point.
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Chapter 2

Instanton Solution

2.1 Classical solution

In this section, we will briefly review the instanton solution, which is a classi-
cal solution to the Yang-Mills equation. We consider the SU(2) gauge group
in 4-dimensional Euclidean space here and will embed the SU(2) group into
the larger SU(3) color gauge group in the next section.

2.1.1 SO(4) group and Euclidean space

In this subsection we will review the SO(4) group and Euclidean Space. The
convention here is consistent with [16]. First, the Lie algebra so(4) has the
generators given by

(Mµν)mn ≡ δµmδνn − δµnδνm , (2.1)

satisfying

[Mµν , Mρσ] = δνρMµσ + δµσMνρ − δµρMνσ − δνσMµρ . (2.2)

Let us write down the generators in fundamental representations:

M23 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ≡ J1 , M14 =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 ≡ K1 ,
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M31 =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ≡ J2 , M24 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ≡ K2 ,

M12 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 ≡ J3 , M34 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ≡ K3 ,

(2.3)
where we have

[Ji, Jj] = −εijkJk , [Ki, Kj] = −εijkJk , [Ki, Jj] = −εijkKk . (2.4)

For convenience, we define

Mi ≡
1

2
(Ji +Ki) , Ni ≡

1

2
(Ji −Ki) . (2.5)

The (anti-)commutation relations are given by

[Mi, Mj] = −εijkMk , [Ni, Nj] = −εijkNk , [Mi, Nj] = 0 , (2.6)

{Mi, Mj} = −1

2
δij , {Ni, Nj} = −1

2
δij . (2.7)

Mi and Ni together form a complete basis of so(4) algebra. We expand
Mµν as

Mµν ≡ ηiµνMi + η̄iµνNi , (2.8)

where η and η̄ are ’t Hooft symbols, which read

ηiµν = −tr (MiMµν) = −(Mi)mn(Mµν)nm = 2(Mi)µν = (εiµν4 + δiµδν4 − δiνδµ4) ,

η̄iµν = −tr (NiMµν) = −(Ni)mn(Mµν)nm = 2(Ni)µν = (εiµν4 − δiµδν4 + δiνδµ4) ,
(2.9)

where we used

tr (MiMj) = −δij , tr (NiNj) = −δij , tr (MiNj) = 0 . (2.10)

Some important properties are

1

2
εµνρσηiρσ = ηiµν ,

1

2
εµνρση̄iρσ = −η̄iµν . (2.11)
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For convenience, we will also use the spinor representations:

σµν ≡
1

2
(σµσ̄ν − σν σ̄µ) ,

σ̄µν ≡
1

2
(σ̄µσν − σ̄νσµ) , (2.12)

where
σµ ≡ (τa, i) and σ̄µ ≡ (τa,−i) . (2.13)

τa is pauli matrices. Since σµν is the spinor representation of the SO(4)
group, we have

[σµρ, σνσ] = 2δµσσρν + 2δρνσµσ − 2δµνσρσ − 2δρσσµν . (2.14)

It is easy to show that the Clifford algebra is satisfied:

σµσ̄ν + σν σ̄µ = 2δµν . (2.15)

The following properties are also important:

σ̄µν = iηaµντ
a and σµν = iη̄aµντ

a . (2.16)

2.1.2 (Anti-)selfdual equation

The Yang-Mills equation reads

DµFµν = 0 , (2.17)

where
Dµ ≡ ∂µ + Aµ , (2.18)

and
Fµν ≡ [Dµ, Dν ] . (2.19)

Notice, we do not distinguish the upper and the lower indices for the Eulidean
space. Eq. (2.17) in general is difficult to solve. Instead, we consider the
(anti-)selfdual equation:

F̃µν =

{
+Fµν selfdual;
−Fµν anti-selfdual,

(2.20)
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where

F̃µν ≡
1

2
εµνρσFρσ . (2.21)

It is easy to show that Eq. (2.20) naturally satisfies Eq. (2.17):

DµFµν = ±DµF̃µν

= ∓1

2
εµνρσDνFρσ

= ∓εµνρσDνDρDσ

= 0 . (2.22)

where we used the Bianchi identity [116]. The solution to the (anti-)selfdual
equation is usually referred as (anti-)instanton solutions.

2.1.3 Classical solutions

Though the (anti-)selfdual equation (Eq. (2.20)) suffice our purpose in this
section, we will still show some simple steps to solve the spherically symmetric
Yang-Mills equations because we will also obtain Meron solution, which does
not satisfy the (anti-)selfdual equation, but is still very important in QCD
vacuum [117, 118].

The derivatives here are similar to the author’s paper [16]. Let us start
with

Aµ = Aaµ Ta , (2.23)

where
Ta =

σa
2i
. (2.24)

Hence
F a
µν = ∂µA

a
ν − ∂νAaµ + εabcA

b
µA

c
ν . (2.25)

The ansatz is then given by:

Aµ,a = 2
p(τ)

τ
ηaµν(x− x0)ν , (2.26)

where ηaµν is the ’t hooft symbol, p(τ) stands for arbitrary analytical function
of τ and

τ ≡
4∑
i=1

(x− x0)i(x− x0)i , (2.27)
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where x0 is the center of the solution. For simplicity, we chose the coordinate
centering at x0 in this section. In fact, the ansatz Eq. (2.26) can be derived
through a general way: the ansatz should satisfy certain geometric symme-
tries and topological boundary conditions to be stable. We will not review
the details in this thesis. For more details, see [16].

We obtain

F a
µν = 4ηaµν

(
p2

τ
− p

τ

)
+ 4xρ(xµηaνρ − xνηaµρ)

[(p
τ

)′
+
p2

τ 2

]
, (2.28)

where the prime denotes the derivative with respect to τ

(· · · )′ .= ∂(· · · )
∂τ

. (2.29)

The Yang-Mills equation reads

(DµFµν)
a = 8

ηaνρxρ
τ 2

(−p+ 3p2 − 2p3 + τp′ + τ 2p′′) = 0 , (2.30)

and we only need to solve the differential equation

−p+ 3p2 − 2p3 + τp′ + τ 2p′′ = 0 . (2.31)

As we explained in paper [16], the boundary values of p should be fixed
by the topological charges and can not be divergent. Hence, we can expand p
near the boundaries, which for the spherically symmetric case are just τ = 0
and τ =∞. The series is given as follows:

p(τ) =

{
aτ=0

0 +
∑∞

n=1 a
τ=0
n τn , for small τ ;

aτ=∞
0 +

∑∞
n=1 a

τ=∞
n /τn , for large τ .

Plugging these expressions into Eq. (2.31), at the leading order they both
lead to

aτ=0,∞
0 = 0 or

1

2
or 1 . (2.32)

It is simple to show that there are five solutions that satify the Yang-Mills
equation:

1. 4D meron solution:

aτ=0
0 = 1

2
, aτ=∞

0 = 1
2
. We obtain

p = a0 =
1

2
(2.33)
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2. Instanton solution in regular gauge:

aτ=0
0 = 0 , aτ=∞

0 = 1. We obtain

aτ=∞
n = (aτ=∞

1 )n , (2.34)

which leads to

p(τ) = 1 +
∞∑
n=1

(aτ=∞
1 )n

τn
=

τ

τ + ρ2
, (2.35)

where we denote −aτ=∞
1 → ρ2.

3. Pure Gauge solution:

aτ=0
0 = 1 , aτ=∞

0 = 1 :

We obtain
aτ=∞

1 = 0 . (2.36)

and
aτ=∞
n = 0 for n ≥ 1 . (2.37)

Therefore
p(τ) = 1 . (2.38)

4. Anti-instanton solution in singular gauge:

aτ=0
0 = 1 , aτ=∞

0 = 0. We obtain

aτ=∞
n = (−1)n−1(aτ=∞

1 )n . (2.39)

and

p(τ) =
∞∑
n=1

(−1)n−1 (aτ=∞
1 )n

τn
=

ρ2

τ + ρ2
, (2.40)

where we denote aτ=∞
1 → ρ2.

5. Trivial vacuum:

aτ=0
0 = 0 , aτ=∞

0 = 0. This case is the trivial solution with

aτ=∞
1 = 0 , (2.41)

and
aτ=∞
n = 0 for n ≥ 1 . (2.42)

Therefore
p(τ) = 0 . (2.43)
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Figure 2.1: Classical solutions in the regular coordinate.

We summarize the classical solutions obtained above in Fig. 2.1.
In fact, as we have shown in the author’s paper [16], all these five solutions

can be expected from the topological properties. To illustrate this point, we
can adopt a new coordinate introduced by the conformal transformation

ζ =
1

2

τ − ρ2

τ + ρ2
, (2.44)

then all the solutions displayed in Fig. 2.1 are replotted in the new coordinate
in Fig. 2.2.

2.1.4 (Anti-)instanton solutions

Let us continue the discussion with the instanton solution we obtained in
last subsection. First, we need to check that it indeed satisfies the selfdual
equation

Fµν = F̃µν . (2.45)

The ansatz Eq. (2.26) we used in last subsection is

Aµ,a = 2
p(τ)

τ
ηaµρxρ . (2.46)

From the ansatz Eq. (2.46), we have

F a
µν = 4ηaµν

(
p2

τ
− p

τ

)
+ 4xρ(xµηaνρ − xνηaµρ)

[(p
τ

)′
+
p2

τ 2

]
. (2.47)
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Figure 2.2: Classical solutions in a conformal coordinate.

Plugging

p(τ) =
τ

τ + ρ2
(2.48)

into Eq. (2.47), we obtain

F a
µν = −4ηaµν

ρ2

(ρ2 + τ)2
. (2.49)

Recalling the important properties of the ’t hooft symbol

1

2
εµνρσηaρσ = ηaµν , (2.50)

we obtain
F̃µν = Fµν , (2.51)

which is the selfdual equation. Also notice, in the paper we emphasize that it
is in the regular gauge, the reason is the following: Aµ is divergent at τ ∼ 0
yet is the pure gauge at τ ∼ ∞. To illustrate it, let us rewrite it as

Aµ =
2

τ + ρ2
ηaµρxρ Ta

= − 1

τ + ρ2
(iηaµρσa)xν

=
τ

τ + ρ2

(
− σ̄µν xν

τ

)
, (2.52)
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where we used
σ̄µν = iηaµντ

a . (2.53)

It is easy to check

− σ̄µν xν
τ

= U−1∂µU , (2.54)

where

U =
iσ̄µxµ
|x|

and U−1 = −iσµxµ
|x|

. (2.55)

Now we can rewrite instanton solution in regular gauge as

Aµ =
τ

τ + ρ2

(
U−1∂µU

)
. (2.56)

We have

• τ −→ 0
Aµ −→ 0 . (2.57)

• τ −→∞
Aµ −→ U−1∂µU . (2.58)

If we perform a gauge transformation

Asingular
µ = UAregular

µ U−1 + U∂µU
−1 , (2.59)

we obtain

Asingular
µ =

ρ2

τ + ρ2

(
U∂µU

−1
)
. (2.60)

The discussion above is about instanton. The same analysis also applies
to anti-instanton. Recalling the anti-instanton solution in singular gauge we
obtained in last section:

Aµ =
2ρ2

τ(τ + ρ2)
ηaµρxρ Ta

=
ρ2

τ + ρ2

(
− σ̄µν xν

τ

)
=

ρ2

τ + ρ2

(
U−1∂µU

)
. (2.61)
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The anti-instanton solution in regular can be obtained by

Aregular
µ = UAsingular

µ U−1 + U∂µU
−1

=
τ

τ + ρ2

(
U∂µU

−1
)

= − σµνxν
τ + ρ2

. (2.62)

We can also calculate

Fµν = 2σµν
ρ2

(τ + ρ2)2 , (2.63)

and check
F̃µν = −Fµν , (2.64)

where we used
1

2
εµνρσσρσ = −σµν . (2.65)

2.2 Winding number

In 4-dimensional Euclidean space, we introduce the topological term

S ≡ i2πk , (2.66)

with the winding number

k = − 1

16π2

∫
d4xTr

[
F µν(F̃µν)

]
= − 1

8π2

∫
d4x ∂µε

µνρσ Tr

[
Aν∂ρAσ +

2

3
AνAρAρ

]
. (2.67)

Let us derive the second line by rewriting the Aµ as 1-form

A ≡ Aµ dx
µ . (2.68)

Then
F = dA+ A2 , (2.69)

where
A2 .

= A ∧ A , (2.70)
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and

F ∧ F = (dA+ A2)(dA+ A2)

= (dA)(dA) + 2A2dA , (2.71)

where we dropped A4. We also notice

(dA)(dA) = d(AdA) , (2.72)

because
d(dA) = 0 . (2.73)

In sum

F 2 = d

(
AdA+

2

3
A3

)
. (2.74)

According to Stokes’ theorem, we have

k = − 1

16π2

∫
S3 space

dΩµ ε
µνρσ Tr

[
Aν∂ρAσ +

2

3
AνAρAσ

]
, (2.75)

where the integral is over S3 surface. Notice that Aµ does not have singular
point and therefore there are only two surface: around τ ∼ 0 and around
τ ∼ ∞. In this subsection, we adopt the solution in regular gauge, take
instanton for example

Aµ
τ∼0−−→ 0 . (2.76)

and
Aµ

τ∼∞−−−→ U−1∂µU . (2.77)

As we can see, only one surface would contribute to the integral

k =
−1

8π2

∫
S3 (τ∼∞)

dΩµ ε
µνρσ Tr

[
(U−1∂νU)∂ρ(U

−1∂σU)

+
2

3
(U−1∂νU)(U−1∂ρU)(U−1∂σU)

]
. (2.78)

After simple algebra, we obtain

k =
1

24π2

∫
S3 (τ∼∞)

dΩµ ε
µνρσ Tr

[
(U−1∂νU)(U−1∂ρU)(U−1∂σU)

]
. (2.79)
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Now let us use xµ and ξi(x) (i = 1, 2, 3) to denote the spacetime coordi-
nates and the group coordinates respectively [16]. Using

Tr
[
(U−1∂νU) (U−1∂ρU) (U−1∂σU)

]
=

∂ξi

∂xν
∂ξj

∂xρ
∂ξk

∂xσ
Tr
[
(U−1∂iU) (U−1∂jU) (U−1∂kU)

]
, (2.80)

and the volume element is given by

dΩµ =
1

6
εµαβγ dxα dxβ dxγ . (2.81)

The Integrand on the surface S3 around τ ∼ ∞ reads

dk =
1

24π2
εijk Tr

[
(U−1∂iU)(U−1∂jU)(U−1∂kU)

]
d3ξ

=
1

24π2
(det e) Tr

(
εabcTaTbTc

)
d3ξ

=
1

16π2
(det e) d3ξ , (2.82)

where we write
U−1∂iU = eai (ξ)Ta , (2.83)

and (det e)d3ξ is the Haar measure on the group manifold. Hence,

k =

∫
dk = 1 (2.84)

takes values in Z and in this case 1 since it is 1-instanton.
The derivative above shows the geometric meaning of the instanton. One

can also calculate the winding number by using

F a
µν = −4ηaµν

ρ2

(ρ2 + τ)2
. (2.85)

1

2
εµνρσF

a
µνF

a
ρσ = 16ηaµνηaµν

ρ4

(ρ2 + τ)4
. (2.86)

It is easy to check
ηaµνηaµν = 12 . (2.87)
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Obtain

k = − 1

16π2

∫
d4xTr

[
F µν(F̃µν)

]
= − 1

16π2
× 16× 12× 2× 1

(2i)2

∫
d4x

ρ4

(ρ2 + x2)4

= 1 . (2.88)

Instead of instanton, if we use anti-instanton, there is a negative sign due to

F̃µν = −Fµν . (2.89)

It is clear that the instanton is topologically stable because it has integer
winding number. Now we also want to show here that instanton is the
extrema of the action∫

d4xFµνFµν =
1

2

∫
d4x

(
Fµν ± F̃µν

)2

∓
∫
d4xFµνF̃µν

≥ ∓
∫
d4xFµνF̃µν , (2.90)

where the equality is true if and only if the field strength Fµν is (anti-)selfdual.
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Chapter 3

Instanton Background

3.1 Zero mode

3.1.1 Bosonic zero mode

What is a zero mode?

A zero mode is a normalizable solution of the linearized field equations for
the quantum fluctuations.

To illustrate the point, we write [16]

Aµ = Acl
µ +Qµ , (3.1)

where Acl
µ is the classical background and Qµ is the quantum fluctuations.

The full field strength is then given by

Fµν = [Dµ +Qµ, Dν +Qν ] , (3.2)

and one can also define a field strength of the classical background as

Fµν = [Dµ, Dν ] , (3.3)

where
Dµ ≡ ∂µ + Acl

µ . (3.4)

The field strength now reads

Fµν = Fµν +DµQν −DνQµ + [Qµ, Qν ] , (3.5)
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where Fµν is the field strength of the background Yang-Mills field. The
Yang-Mills Lagrangian is given by

LYM ≡ −
1

2
Tr (FµνFµν)

= −Tr

(
1

2
FµνFµν + 2Qµ (DνFµν)−QµMµνQν +O(Q3)

)
, (3.6)

where
Mµν ≡ D2δµν + Fµν −DνDµ , (3.7)

and we dropped the higher order of Qµ. In a full analysis, the higher orders
could be important. For more details, it is discussed in author’s paper [16].
To quantize the theory, we need to fix the gauge of quantum mode [16, 116]:

DµQµ = 0 , (3.8)

which could be done by introducing the gauge fixing term

Lfix = −Tr
[
(DµQµ)2] . (3.9)

Combining everything above, we have

L = LYM + Lfix

= −Tr

(
1

2
FµνFµν + 2Qµ (DνFµν)−QµMµνQν +O(Q3)

)
, (3.10)

where
Mµν ≡Mµν +DµDν = D2δµν + 2Fµν . (3.11)

Therefore, a zero mode Zµ by definition is the solution to Mµν

MµνZν = 0 . (3.12)

Bosonic zero modes

Our goal is to find the solutions to the equations

MµνZν = 0 . (3.13)

But before we proceed, we still need to fix the gauge of the zero mode. In
fact, in almost all the works, the gauge is fixed as

DµZµ = 0 , (3.14)
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where
Dµ = ∂µ + Acl

µ . (3.15)

There are two reasons: first, later we will obtain a propagator containing
both zero mode and quantum mode, it is convenient to analyze it if both the
zero mode and quantum mode satify the same gauge fixing condition; second
and probably the more important reason is that we want to find the mode
that is perpendicular to the gauge transformation. To illustrate the second
point, we write down the ”perpendicular” condition∫

dDx (DµΛ)Zµ = 0 . (3.16)

In order for the equation above is true for any gauge, we have

DµZµ = 0 . (3.17)

Well, now we have all the equations to solve the zero mode

MµνZν = 0 and DµZµ = 0 . (3.18)

In fact, this problem can become simpler. The classical solution by definition
satisfy

δScl

δAcl
µ

= 0 , (3.19)

where Scl is the action. We also have

δ
(
δScl

δAcl
µ

)
δγ(i)

= 0 , (3.20)

where γ(i) is the free parameter in the classical solution. We obtain the
important equation:

δ2Scl

δAcl
ν δA

cl
µ

∂γiA
cl
µ = 0 , (3.21)

where
δ2Scl

δAcl
ν δA

cl
µ

−→Mµν . (3.22)

The solution is still a solution up to a gauge transformation, therefore we
can writen down the zero mode as

Z(i)
µ =

∂Acl
µ

∂γ(i)
+DµΛ(i) , (3.23)
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where Λ(i) should be fixed by

DµZµ = 0 . (3.24)

To show how to calculate the zero modes, we take anti-instanton as an
example:

Aaµ = 2
ρ2

τ(τ + ρ2)
ηaµν(x− x0)ν . (3.25)

First, the solution has a parameter x0, which is the center of the anti-
instanton. Second, the solution has a size parameter ρ. Third, the solution
is still a solution up to a gauge transformation, so we can write

Aµ −→ U−1AµU + U−1∂µU , (3.26)

where
U = exp (θα Tα) (3.27)

and thus θα is a parameter. In fact, when we analyze the QCD instanton,
there are more freedoms, due to different ways to embed the SU(2) subgroup
into the larger SU(3) group. The last point is out of the scope of this paper,
but let us consider the first three cases: (see [16])

• Translational (γ(ν) = xν0):

∂Acl
µ

∂xν0
= −∂νAcl

µ ,

choose Λν = Acl
ν ,

Z(ν)
µ = F cl

µν ,

check DµZ
(ν)
µ = DµF

cl
µν = 0 . (3.28)

• Gauge orientation (γ(α) = θα):

∂Acl
µ

∂θα

∣∣∣
θα=0

= δαa[A
cl
µ , T

a] ,

choose Λν = −δαa
ρ2

τ + ρ2
Ta ,

Z(α)
µ = δαaDµ

(
τ

τ + ρ2
Ta

)
,

check DµZ
(α)
µ = D2

(
τ

τ + ρ2
Tα

)
= 0 . (3.29)
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• Dilatational (size ρ):

∂Acl
µ

∂ρ
=

2ρτ

(τ + ρ2)2

(
2

τ
ηaµν(x− x0)νTa

)
,

choose Λν = 0 ,

Zρ
µ =

2ρτ

(τ + ρ2)2

(
2

τ
ηaµν(x− x0)νTa

)
,

check DµZ
ρ
µ = 0 . (3.30)

We have obtained all the zero modes due to translational invariance,
gauge orientation equivalence, and dilatational invariance. As we will see
later, these modes will become important because they contribute to the
Jacobian in the path integral nontrivially.

3.1.2 Fermionic zero mode

Because of the presence of the (anti-)instanton, the fermion also has zero
mode. More importantly, as we will show now, the (anti-)instanton si-
multaneously breaks the chiral symmetry in the vacuum, which is curi-
cial for us to understand the QCD vacuum. First, we need to choose a
gauge of the (anti-)instanton. In the author’s works and other relating
works [119, 120, 121, 122, 43, 46, 45, 44], the calculation is usually im-
plemented in singular gauge, where the instanton configurations are more
localized.

The massless Dirac equation in instanton background reads /Dψ = 0. It
is easy to show that in the presence of an instanton [116, 16],

/D(1 + γ5)ψ = 0 (3.31)

has no solution while
/D(1− γ5)ψ = 0 (3.32)

has a normalizable left-handed zero mode. Let us explain it. In weyl basis,
we have [119, 121, 122]

(σµ)αβ

[
∂µδij +

(
Asin
µ

)
ij

]
ξβ,j = 0 , (3.33)

where we do not distinguish the upper and the lower indices for the Euclidean
space. But the indices here are very important: α and β are spinor indices
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while i and j are color indices. In perturbative QCD, they are independent,
however, as we can see now, they are mixed in instanton background. In
fact, one can find the solution:

ξ ∼ (σ̄l)ββ′ εβ′j
(x− x0)l
|x− x0|

ρ
3
2

[(x− x0)2 + ρ2]
3
2

, (3.34)

where

ε ≡
(

0 1
−1 0

)
. (3.35)

The important relation we need is

ετaε = (τa)T . (3.36)

To check it, let us assume x0 = 0 for simplicity:

(σµ)αβ

[
∂µδij +

(
Asin
µ

)
ij

]
ξβ,j

= (σµσ̄lε)αi ∂µ

(
xl
|x|

ρ
3
2

[x2 + ρ2]
3
2

)
−
(
σµσ̄lεσ

T
µν

)
αi

(
ρ2xν

x2(x2 + ρ2)

xl
|x|

ρ
3
2

[x2 + ρ2]
3
2

)
. (3.37)

By using

σµσ̄lεσ
T
µνxνxl = −σµσ̄lσµνεxνxl

= 3x2ε , (3.38)

we need to check

σµσ̄l∂µ

(
xl
|x|

1

[x2 + ρ2]
3
2

)
− 3

(
ρ2

x(x2 + ρ2)
5
2

)
= 0 . (3.39)

From which we can construct the zero mode propagator

S0(x, y)α,i ;β,j =
ρ2

π2λ

(σ̄lε)αi (x− x0)l (εσρ)jβ (y − y0)ρ

[(x− x0)2 + ρ2]
3
2 [(y − y0)2 + ρ2]

3
2 |x− x0||y − y0|

,

(3.40)

29



where λ is the normalization factor. Instead of the instanton, in the presence
of an anti-instanton, the zero mode reads

S̄0(x, y)α,i ;β,j =
ρ2

π2λ

(εσl)iα (x− x0)l (σ̄ρε)βj (y − y0)ρ

[(x− x0)2 + ρ2]
3
2 [(y − y0)2 + ρ2]

3
2 |x− x0||y − y0|

.

(3.41)
These two propagators are written in Euclidean space. Once we rotate them
back to Minkowski space, we need to be careful with the upper and lower
indices, also we need to define the εαi accordingly.

One may argue that though one instanton selects left-handed fermion,
the anti-instanton would select the right-handed one and in sum it should
not result in any effect. However, as we will show later, it is not so. For ex-
ample, if the incoming quark is polarized, then the instanton will be selected
accordingly and thus the instanton and anti-instantons would be weighted
differently in the ensemble. Other example is that, if the observant, instead
of being the cross section of one particle, is the correlation of two outgo-
ing particles. Then though the number of instantons equal the number of
anti-instantons, the fluctuations will result in very important P-odd effects.

3.1.3 Measure

The complete discussion of the measure for the zero modes is out of the
scope of this paper. Here, let us explain how the bosonic zero modes we
obtain before contribute to the Jacobian of the path integral. Notice, for
QCD instanton instanton, the bosonic zero modes we listed before are not
complete because we did not show the embedding of SU(2) group in SU(3)
group. And also, the Fermionic zero modes are important in the measure.

Let us follow the logic in one of the author’s papers [16]. To see the
relation between the zero modes and the Jacobian, we write it in the quantum
state language ∣∣Acl

µ

〉
= Z(1)

µ

∣∣γ(1)
〉
⊗ Z(2)

µ

∣∣γ(2)
〉
⊗ · · · . (3.42)

If
∣∣γ(i)

〉
is normalized, the norm of

∣∣Acl
µ

〉
is given by〈

Acl
µ |Acl

µ

〉
= det

∣∣U ij
∣∣ , (3.43)

where

U ij ≡ 〈Z(i)
µ

∣∣Z(j)
µ 〉 = − 2

g2

∫
d4xTr

[
Z(i)
µ Z

(j)
µ

]
. (3.44)
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If
∣∣γ(i)

〉
is orthogonal to each other as it is for results we obtained above, then

U ij should be a diagonal matrix. For simplicity, we adopt the approximation∣∣Acl
µ

〉
≈
√

det |U ij|
∣∣γ(1)

〉
⊗
∣∣γ(2)

〉
⊗ · · · , (3.45)

where it has the same norm as Eq. (3.42). Hence,

[Jac]γ(i) ≈
√

det |U ij| , (3.46)

where the corrections come from two-loop diagrams or higher [116].
Now, let us calculate them one by one

• Translational (γ(ν) = xν0):

Uµν =
8π2

g2
δµν . (3.47)

• Gauge orientation (γ(α) = ϕα):

Uαβ(ϕ) = eα
a(ϕ) eβ

a(ϕ)
4π2

g2
ρ2 , (3.48)

where eα
a(ϕ) is the group vielbein.

• Dilatational (size ρ):

Uρρ(ϕ) =
16π2

g2
. (3.49)

In summary, for the 4D SU(2) anti-instanton solution we obtain

[Jac]cl
transl =

(
8π2

g2

)2

,

[Jac]cl
gauge =

√
det gαβ(ϕ)

(
4π2

g2

) 3
2

ρ3 ,

[Jac]cl
ρ =

4π

g
. (3.50)

3.2 Non-zero mode

In this section, we will review the steps to derive the spin-0 propagator and
spin-1/2 propagator in [119].
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3.2.1 Spin-0

Our goal in this subsection is to solve the scalar propagator in instantons
background. The calculation can be easily generalized to anti-instantons.
The instantons solution in singular gauge reads

Aµ =
1

2
σµν∂ν lnΠ(x) , (3.51)

where

Π(x) = 1 +
k∑
i=1

ρ2
i

(x− ci)2
(3.52)

and ci is the center of each instanton with size ρi. For only one instanton
centering at ci = 0, we have

∂ν ln

(
1 +

ρ2

x2

)
=
−2xν

ρ2

x4

1 + ρ2

x2

= −2
xν
x2

ρ2

x2 + ρ2
, (3.53)

and hence

Aµ = −σµνxν
ρ2

x2(x2 + ρ2)
, (3.54)

which is indeed Eq. (2.60).
The scalar propagator ∆(x, y) satisfies

−D2∆(x, y) = δ(x− y) . (3.55)

First

D2 = (∂µ + Aµ)2

=

(
∂µ +

1

2
σµν∂ν lnΠ(x)

)2

= ∂2 + σµν [∂ν lnΠ(x)] ∂µ +
1

4
σµνσµρ [∂ν lnΠ(x)] [∂ρlnΠ(x)]

= ∂2 + σµν [∂ν lnΠ(x)] ∂µ −
3

4
[∂µlnΠ(x)]2 , (3.56)

where we used
σ̄µσνρ = δµν σ̄ρ − δµρσ̄ν − εµνρσσσ . (3.57)
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Second, let us calculate√
Π(x)(σ∂)

1

Π(x)
(σ̄∂)

√
Π(x)

= σµσ̄ν

[
1

2

(∂µ∂νΠ)

Π
− 3

4

(∂µΠ)(∂νΠ)

Π2
+

1

2

(∂νΠ)

Π
∂µ −

1

2

(∂µΠ)

Π
∂ν + ∂µ∂ν

]
= ∂2 + σµν [∂ν lnΠ(x)] ∂µ −

3

4
[∂µlnΠ(x)]2 , (3.58)

where we denoted

(σ∂)
.
= σµ∂µ and (σ̄∂)

.
= σ̄µ∂µ . (3.59)

Obviously, Eq. (3.56) equals Eq. (3.58), which would greatly simplify our
calculation below. Also we would like to emphasize that

1

Π(x)
∂2Π(x) =

2

Π(x)

k∑
i=1

ρ2
i ∂µ

xµ − cµi
(x− ci)4

= 0 . (3.60)

Notice, the Π−1(x) in the equation above is necessary bcause

1

4π2
∂2

(
1

x2

)
= −δ(x) . (3.61)

Also because of Eq. (3.61) above, we expect that at the singular point,
the propagator:

∆(x, y) ∼ 1

4π2

1

(x− y)2
. (3.62)

Therefore, we now write down the ansatz

∆(x, y) =
1√

Π(x)

f(x, y)

4π2(x− y)2

1√
Π(y)

, (3.63)

where
f(x, x) = Π(x) . (3.64)

Combining everything above, we obtain

−δ(x− y) = D2∆(x, y)

=
√

Π(x)(σ∂)
1

Π(x)
(σ̄∂)

f(x, y)

4π2(x− y)2

1√
Π(y)

. (3.65)
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It can be simplified as

(σ∂)
1

Π(x)
(σ̄∂)

f(x, y)

4π2(x− y)2
= − 1√

Π(x)
δ(x− y)

√
Π(y)

= −δ(x− y) . (3.66)

We also notice

(σ∂)(σ̄∂)
1

4π2(x− y)2
= −δ(x− y) . (3.67)

Therefore
1

Π(x)
(σ̄∂)

f(x, y)

4π2(x− y)2
− (σ̄∂)

1

4π2(x− y)2
= 0 . (3.68)

After simple algebra

(σ̄∂)f − 2
σ̄µ(xµ − yµ)

(x− y)2
[f − Π(x)] = 0 . (3.69)

The solution satisfies the equation above is not easy to obtain directly. Here
we write it down and check if it solves the equation above. The solution
reads

f(x, y) = 1 +
k∑
i=1

ρ2
i

(x− ci)
(x− ci)2

(y − ci)
(y − ci)2

, (3.70)

where
(· · · ) ≡ σµ(· · · )µ and (· · · ) ≡ σ̄µ(· · · )µ . (3.71)

First of all, the condition
f(x, x) = Π(x) (3.72)

is satisfied. Second

[f − Π(x)] =
k∑
i=1

ρ2
i

(x− ci)2(y − ci)2

[
(x− ci)(y − ci)− (y − ci)2

]
. (3.73)

We can use

(x− y)
[
(x− ci)(y − ci)− (y − ci)2

]
=

[
(x− ci)− (y − ci)

] [
(x− ci)(y − ci)− (y − ci)2

]
= (x− ci)2(y − ci)− (x− ci)(y − ci)2 + (y − ci)(y − ci)2

−(y − ci)(x− ci)(y − ci)

= (x− ci)2(y − ci)− 2(x− ci)µ(y − ci)µ(y − ci) + (y − ci)(y − ci)2

= [(x− ci)µ − (y − ci)µ]2 (y − ci) , (3.74)

34



where we used

(y − ci)(x− ci)(y − ci)

= 2(x− ci)µ(y − ci)µ(y − ci)− (y − ci)2(x− ci) . (3.75)

In sum

2
x− y

(x− y)2
[f − Π(x)] = 2

k∑
i=1

ρ2
i (y − ci)

(x− ci)2(y − ci)2

= (σ̄∂)f . (3.76)

In summary, we obtain the spin-0 propagator in multi-instantons background:

∆(x, y) =
1√

Π(x)

f(x, y)

4π2(x− y)2

1√
Π(y)

, (3.77)

where

f(x, y) = 1 +
k∑
i=1

ρ2
i

(x− ci)
(x− ci)2

(y − ci)
(y − ci)2

. (3.78)

For the spin-0 propagator in multi-anti-instantons, we have

f(x, y) = 1 +
k∑
i=1

ρ2
i

(x− ci)
(x− ci)2

(y − ci)
(y − ci)2

. (3.79)

3.2.2 Spin-1/2

It is fairly easy to obtain the propagator once we have obtained the scalar
propagator Eq. (3.77). The logic is the following: we need to find the prop-
agator S satisfying:

/DS = P̂ , (3.80)

where P̂ is the operator projecting to the nonzero mode subspace. Now let
us show that

S = /D∆

(
1 + γ5

2

)
+ ∆ /D

(
1− γ5

2

)
. (3.81)

First

P̂ = /DS

=

(
1 + γ5

2

)
+ /D∆ /D

(
1− γ5

2

)
, (3.82)
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where we used
/D /D = D2 . (3.83)

Check

P̂ 2 =

(
1 + γ5

2

)
+

(
1 + γ5

2

)
/D∆ /D

(
1− γ5

2

)
+ /D∆ /D

(
1− γ5

2

)(
1 + γ5

2

)
+ /D∆ /D

(
1− γ5

2

)
/D∆ /D

(
1− γ5

2

)
=

(
1 + γ5

2

)
+ /D∆ /D

(
1− γ5

2

)
= P̂ (3.84)

where we used
(1 + γ5)(1− γ5) = 0 . (3.85)

As we can see, P̂ in indeed the projection operator.
By combining Eq. (3.81) and Eq. (3.77), we can obtain the spin-1/2 propa-

gator in multi-(anti-)instantons background. Similar to Subsec-3.1.2, we need
to be careful with the spinor and color indices since they are mixed. For sim-
plicity, we only list the spin-1/2 propagator in single (anti-)instanton: [121]

• spin-1/2 propagator in one instanton

SNZ(x, y)αβ;ij =
1

2π2

1√
Π(x)

[(x− y)αβ

(x− y)4

(
δij + ρ2

(x y)ij
x2y2

)

+
ρ2 (σµ)αβ
2(ρ2 + y2)

(
x (x− y)σµ y

)
ij

x2(x− y)2y2

] 1√
Π(y)

.

(3.86)

• spin-1/2 propagator in one anti-instanton

S̄NZ(x, y)αβ;ij =
1

2π2

1√
Π(x)

[(x− y)αβ
(x− y)4

(
δij + ρ2

(x y)ij
x2y2

)

+
ρ2 (σ̄µ)αβ
2(ρ2 + y2)

(
x σ̄µ (x− y) y

)
ij

x2(x− y)2y2

] 1√
Π(y)

.

(3.87)

α and β are spinor indices while i and j are color indices.
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Chapter 4

Spin Effects Through One
Instanton

4.1 Spin physics and instanton

To best illustrate the important role played by instantons in QCD spin
physics, consider a light quark in the fundamental color representation prop-
agating in an external SU(2) colored Yang-Mills gauge field with a chromo-
magnetic field B and a chromo-electric field E field [47]. Generically [123](

−∇2 + 4gs S · (B∓ E)
)
ϕ± = 0 (4.1)

with i∇ = i∂ + A and Sa the SU(2) spin generators. The signs in Eq. (4.1)
refer to the chirality of the quark. Large quark amplitudes as polarized zero
modes occur when the spin contribution (second term) balances the squared
kinetic contribution (first term) in Eq. (4.1). For a self-dual instanton with
B = E the negative chirality quark produces a large zero mode state through
the magnetic moment term(

−∇2 + 4gs σ ·B
)
ϕ−D = 0 (4.2)

and similarly for an anti-self-dual anti-instanton. Typically E,B ≈ 1/gsρ
2

with ρ ≈ 1/3 fm the instanton or anti-instanton size in the vacuum and gs
the strong gauge coupling. So the induced and large magnetic moment in
Eq. (4.2) is about µD ≈ nρ4 where n ≈ 1 fm−4 is the density of instantons
in the vacuum [17, 118]. In contrast, perturbative QCD generates small
magnetic moments or µPT ≈ gs.
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In a similar way, a propagating gluon in an external SU(2) colored gauge
field acquires also an effective and large magnetic moment. Indeed, the ana-
logue of Eq. (4.1) for a massless gluon in a covariant (Feynman) background
gauge ∇µaµ = 0 is (

−∇2δµν − 2igsFµν
)
aν = 0 (4.3)

The colored gluon in Eq. (4.3) has two physical polarizations as both the
longitudinal and time-like are gauge artifacts. Using the decomposition aµ =
eaµΨ

a with a transverse we have(
−∇2 +

gs
2

ΣµνFµν

)
Ψa = 0 (4.4)

with iΣµν = 4eTµeν playing the role of the spin in the gluon transverse po-
larization space. Eq. (4.4) is the analogue of Eq. (4.3) with an induced and
large magnetic moment µG ≈ nρ4 as well.

In the Appendix we give a quantitative derivation of these estimates.
These semi-classical and large spin effects will now be explored in processes
with polarized protons and in peripheral AA collisions sensitive to P-odd
fluctuations, in the framework of the instanton liquid model.

4.2 Single spin asymmetry in semi-inclusive

deep inelastic scattering

To set up the notations for the semi-inclusive processes in deep inelastic
scattering, we consider a proton at rest in the LAB frame with transverse
polarization as depicted in Fig. 4.1 [47].

The incoming and outgoing leptons are unpolarized. The polarization
of the target proton in relation to the DIS kinematics is shown in Fig. 4.2.
Throughout, the spin dependent asymmetries will be evaluated at the par-
tonic level. Their conversion to the hadronic level will follow the qualitative
arguments presented in [41, 42, 43].

In general, the spin averaged leptonic tensor reads

Lµν =
1

2
tr [/l

′
γµ/lγν ] (4.5)
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Figure 4.1: p and k are the momenta of the incoming and outgoing quark.
The lepton and the quark exchange one photon in the single instanton back-
ground.

while the color averaged hadronic tensor in the one instanton background
reads

Wµν =
∑
color

1

2
tr [/kM̃µ/p(1 + γ5/s)γ0

(
M̃ν

)†
γ0] (4.6)

with the constituent vertex

M̃µ = γµ + M̃ (1)
µ (4.7)

that includes both the perturbative γµ and the non-perturbative insertion

M
(1)
µ .

Let us now derive the non-perturbative insertion M
(1)
µ following the origi-

nal arguments in [121, 43, 44]: according to [119, 121, 122, 43], the zero mode
quark propagator in the single instanton background after Fourier transfor-
mation with respect to the incoming momentum p is

S0(x, p) j

β̇ iδ
=

2ρ2

λ

xl(σl)β̇γε
γjεiδ

(x2 + ρ2)
3
2 |x|

(4.8)

Note the chirality of the zero mode flips as |L〉 〈R| as depicted in Fig. 4.3.
The incoming quark is left-handed and has momentum p (on-shell). ρ is the
size of instanton and λ is the mean virtuality. β and δ are spatial indices,
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Figure 4.2: The lepton and photon are in the same plane. The angle between
the transversely polarized spin s⊥ and this plane is φs. The angle between
the transversely spatial momentum K⊥ of the outgoing pion and the plane
is φ.

while j and i are color indices. In Euclidean space, σµ = (~σ, iI), σ̄µ = (~σ, iI)
and ε01 = −ε10 = −ε01 = ε10 [116]. The right-handed non-zero mode quark
propagator in the single instanton after Fourier transformation with respect
to the outgoing momentum k is [119, 121, 43]

Snz(k, x)βijα = −δβα
(
δij +

ρ2

x2

(σρσr)
i
jk
ρxr

2k · x
(
1− e−ik·x

)) |x|√
x2 + ρ2

eik·x

(4.9)
Consider the process depicted in Fig. 4.3: the incoming left-handed quark

meets one instanton and flips its chirality (zero-mode), then exchanges one
photon, and finally becomes an outgoing right-handed quark. As a result,
the nonperturbative insertion M

(1)
µ reads

(
M̃ (1)

µ

)βi
i′δ

=

∫
d4x e−iq·x Snz(k, x)βijα σ

αβ̇
µ S0(x, p) j

β̇ i′δ
(4.10)

All the other parts of the diagram are trivial in color, therefore we take the
trace of color indices i and i′. To further simplify the result, we need the
following formula [116]

δβαδ
i
j(σµ)αβ̇(σl)β̇γε

γjεiδ = (σµσl)
β
δ (4.11)
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Figure 4.3: The incoming left-handed quark with momentum p meets one
instanton and flips its chirality. The outgoing right-handed quark carries
momentum k. The momentum of the photon is q = p− k. S0 and Snz stand
for the zero-mode quark propagator and the non-zero mode quark propagator
in the single instanton background respectively.

δβα(σρσr)
i
j(σµ)αβ̇(σl)β̇γε

γjεiδ = (σµσlσrσρ)
β
δ (4.12)

Combining all the equations above, we obtain

M̃ (1)
µ = −

∫
d4x

( 2ρ2

λ
σµσle

ip·x xl

(x2 + ρ2)2

+σµσρk
ρρ

4

λ
(eip·x − e−iq·x) 1

(x2 + ρ2)2(k · x)

)
(4.13)

The d4x integration in Eq. (4.13) can be done with the help of the following
formula (p2 −→ 0) ∫

d4x eip·x
xl

(x2 + ρ2)2
= i2π2 p

l

p2
(4.14)

∫
d4x

eip·x

(x2 + ρ2)2(k · x)
= −i π

2

p · k
ρ|p|
ρ2

K1(ρ|p|)

= i
2π2

q2

ρ|p|
ρ2

K1(ρ|p|) (4.15)
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where we used −2p · k = (k − p)2 − k2 − p2 ≈ q2. In our paper [44], we
explicitly showed that all terms proportional to σlp

l vanish. Thus

M̃ (1)
µ = −i4π

2ρ2

λ
σµσl

kl

q2
[f(ρ|p|)− f(ρ|q|)] (4.16)

where f(a) = aK1(a) As the incoming quark with momentum p is on-shell
and the mass of the quark is small (p2 −→ 0), we have

f(ρ|p|) = ρ|p|K1(ρ|p|) −→ ρ|p| 1

ρ|p|
= 1 (4.17)

Since q2 < 0 in SIDIS, we define Q2 = −q2 > 0. Eq. (4.16) simplifies to

M̃ (1)
µ = i

4π2ρ2

λ
σµσl

kl

Q2
[1− f(ρQ)] (4.18)

Here we note that Eq. (4.18) is derived from Eq. (4.10) which pictorially
reads

• Left-handed quark (~p)
Instanton−−−−−→ Right-handed quark (zero mode)

Photon (~q)−−−−−−→
Right-handed quark (~k)

where ~q = ~k − ~p. On the other hand, if we consider

• Right-handed quark (~k)
Photon (−~q)−−−−−−−→ Right-handed quark (zero mode)

Anti−instanton−−−−−−−−→ Left-handed quark (~p)

instead of Eq. (4.18), we would obtain

M̃ (1)
µ = −i4π

2ρ2

λ†
σµσl

kl

Q2
[1− f(ρQ)] (4.19)

where we have taken the conjugate of Eq. (4.18) and replaced p↔ k. Thus

M (1)
µ = 4π2ρ2

(
i
P+

λ
σµσlk

l − iP−
λ†
σlσµp

l

)
[1− f(ρQ)]

Q2
(4.20)

where P± = 1/0 denote one or no instanton/anti-instanton. Similarly, for
the processes depicted pictorially as
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• Right-handed quark (~p)
Anti−Instanton−−−−−−−−→ Left-handed quark (zero mode)

Photon (~q)−−−−−−→ Left-handed quark (~k)

• Left-handed quark (~k)
Photon (−~q)−−−−−−−→ Left-handed quark (zero mode)

Instanton−−−−−→
Right-handed quark (~p)

Thus the result combining both the instanton and anti-instanton contribu-
tions

M (1)
µ = 4π2ρ2

(
i
P+

λ
γµ/k − i

P−
λ†
/pγµ

)
[1− f(ρQ)]

Q2
(4.21)

Now, we need to average Eq. (4.21) using the instanton liquid model. The
standard averaging in the vacuum is〈

1

λ

〉
=

1

2N

∫
dλ

λ
n(λ) = −iπn(0)

N
(4.22)

where by Banks-Casher relation is used πn(0)/N = −
〈
q†q
〉
. However, we

note that P± in Eq. (4.21) means that we fix an instanton or anti-instanton
pertaining to the polarized hadron prior to the averaging. This means that
the pertinent eigenvalue distribution instead is

n(±, λ) = n(λ)− δ(λ∓ λ∗/N) (4.23)

with λ∗ a typical eigenvalue in the zero-mode-zone. Technically n(±, λ)
amounts to fixing an instanton or anti-instanton, and averaging over the
remainder of the instanton-antiinstanton liquid by removing 1-row and 1-
column in the N×N overlap matrix of zero-modes TIJ for the fixed instanton
or anti-instanton while averaging with detT in the instanton liquid model.
Explicitly, this amounts to

P±
λ

fix an instanton/anti−instanton−−−−−−−−−−−−−−−−−→
〈

P±
λ

〉
=

1

N

∫
dλ

λ
n(±, λ) = ∓ 1

λ∗
− iπn(0)

N
(4.24)

Thus
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〈
M (1)

µ

〉
= 4π2ρ2πn(0)

N

(
γµ/k + /pγµ

) [1− f(ρQ)]

Q2

− i
4π2ρ2

λ∗

(
γµ/k + /pγµ

) [1− f(ρQ)]

Q2
(4.25)

The real part can be re-written as

4π2ρ2πn(0)

N

(
γµ/k + /pγµ

) [1− f(ρQ)]

Q2

= 4π2ρ2πn(0)

N

[1− f(ρQ)]

Q2
qνσµν + 4π2ρ2πn(0)

N

[1− f(ρQ)]

Q2

(
/kγµ − γµ/p

)
−→ 4π2ρ2πn(0)

N

[1− f(ρQ)]

Q2
qνσµν (4.26)

where σµν = [γµ, γν ]. The parts proportional to /kγµ and γµ/p vanish as dis-
cussed in [124]. The imaginary part is

−i4π
2ρ2

λ∗

(
γµ/k + /pγµ

) [1− f(ρQ)]

Q2
(4.27)

and contributes to SSA in SIDIS as noted in [43, 44].

Im
(〈
M̃ (1)

µ

〉)
= −4π2ρ2

λ∗Q2
[γµ/k + /pγµ](1− f(ρQ)) (4.28)

with f(a) = aK1(a) with K1 a modified Bessel function. Here ρ is the
instanton size and λ∗ ≈ 1/(0.2GeV)3 [17, 118] is a typical near-mode in the
zero-mode-zone as discussed. The electromagnetic gauge invariance in the
hadronic tensor in the random instanton model of the vacuum is detailed
in [120]. The normalized lepton-hadron cross section of Fig.4.1 follows in the
form

dσ

dxdydzdφ
= y

α2

Q6
LµνWµν

∑
i

e2
i fi(x,Q

2)Di(z) (4.29)

with y = P · q/P · l, where ei is the i-parton electric charge, fi its momentum
fraction distribution and Di its fragmentation function.
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The perturbative contribution to the hadronic tensor follows from Mµ →
γµ,

W (0)
µν =

Nc

2
tr [/kγµ/pγν ] (4.30)

Thus the leading perturbative contribution

d(0)σ

dxdydzdφ
= 2Nc

α2

Q2

1 + (1− y)2

y

∑
i

e2
i fi(x,Q

2)Di(z) (4.31)

with Nc the number of colors. The sum is over the charges ei of the quarks.
The non-perturbative instanton contribution to Eq. (4.29) is a cross contri-
bution in the hadronic tensor in Eq. (4.29) after inserting the one-instanton
vertex Eq. (4.28)

〈
W (1)
µν

〉
= i

2π2ρ2

λ∗Q2
[1− f(ρQ)]

(
tr [/kγµ/pγ5/s(γν/p+ /kγν)]

− tr [/k(γµ/k + /pγµ)/pγ5/sγν ]
)

(4.32)

= −16π2ρ2

λ∗Q2
(1− f(ρQ))(p+ k){µεν}abcs

akbpc

where p · s = 0 and the short notation (· · · ){µεν}abc ≡ (· · · )µενabc + (· · · )νεµabc
is used. If we set p = xP and k = K/z and note that p + k = 2p + q, then
Eq. (4.32) simplifies

〈
W (1)
µν

〉
= −25π2ρ2

λ∗Q2

x2

z
(1− f(ρQ))(P +

q

2x
){µεν}abcs

aKbP c (4.33)

Combining Eq. (4.5) and Eq. (4.33) yields

〈
W (1)
µν L

µν
〉

= −27π2ρ2

λ∗Q2

x2

z
(1−f(ρQ))M

(
Eενabcl

′νsaKbP c + E ′ενabcl
νsaKbP c

)
(4.34)

where E (E ′) is the energy of the incoming (outgoing) (anti)electron. The
leading instanton contribution to the total cross section Eq. (4.29) can be
obtained by inserting Eq. (4.34) into Eq. (4.30). The result is
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d(1)σ

dxdydzdφ

=
α2

yQ2

∑
q

∆⊥qq
64π2ρ2e2

qDq(z)

λ∗Q

K⊥
zQ

(1− f(ρQ))
1− y − x2y2M2

Q2√
1 + 4M

2

Q2 x2
sin(φ− φs)

(4.35)

where ∆⊥qq(x,Q
2) = s⊥fq(x) is the spin polarized distribution function for

the quark in the transversely polarized proton. To compare with experiment
and for simplicity, we will use the spin structure function [125]

g1(x,Q2) =
1

2

∑
q

e2
q(∆qq(x,Q

2) + ∆q̄q(x,Q
2)) (4.36)

where g1(x,Q2) is the spin distribution function for a longitudinally polarized
proton. In other words, we will assume for the sake of an estimate, that the
proton has a similar spin distribution function whether polarized longitudi-
nally, or transversely. As we note later, this assumption can be relaxed by
calculating the specific instanton contributions to SIDID, p↑p collisions etc.
and then using the results to extract the spin polarization distribution from
transversely polarized protons. However, this work is outside the scope of
this work. Finally, as we are only interested in the SSA in hard scattering
processes, we set Dq(z) = 1.

With this in mind, we now normalize Eq. (4.35) by dividing it by the
regular zeroth order differential cross section. The result is

d(1)σ

d(0)σ
= A

sin(φ−φs)
UT sin (φ− φs) , (4.37)

where

A
sin(φ−φs)
UT =

32π2ρ2

NcQλ∗
(1− f(ρQ))

K⊥
zQ

1

1 + (1− y)2

1− y − x2y2M2

Q2√
1 + 4M

2

Q2 x2

g1

F1

(4.38)

with F1(x) = 1
2

∑
q e

2
qfq(x) . In Fig. 4.4 we compare Eq. (4.38) to the results

reported by HERMES [1]. The mean quark zero mode virtuality λ̄ is tied
to the light quark condensate χuu through λ̄ = 1/χuu. For two flavors we
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have χuu ≈ (200 MeV)3. The average instanton size in the instanton liquid
is ρ∗ ≈ 1/3 fm (upper edge of the band). For comparison, we also show
our results for smaller size instantons with ρ ≈ 0.3 fm (lower edge of the
band). A better analysis could be done by averaging Eq. (4.38) over the
instanton size distribution as measured say on the lattice. Overall, the in-
stanton contribution through Eq. (4.38) appears to contribute sizably with
the right magnitude and overall behavior. They should be considered in any
analysis of the transversely polarized spin asymmetry, along with standard
perturbative contributions.

4.3 Single spin asymmetry in pp

In this section we briefly review the SSA in semi-inclusive and polarized
p↑p→ π±,0X experiments, following the recent analysis in [2, 46, 47].

4.3.1 Pauli form factor

The QCD vacuum is a random ensemble of instantons and anti-instantons
interacting via the exchange of perturbative gluons and quasi-zero modes of
light quarks and anti-quarks. In the dilute instanton approximation, a typical
effective vertex with quarks and gluons attached to an instanton is shown in
Fig. 4.5. The corresponding effective vertex is given by [13, 126, 127],

L =

∫ ∏
q

[
mqρ− 2π2ρ3q̄R

(
1 +

i

4
τaη̄aµνσµν

)
qL

]
× exp

(
−2π2

gs
ρ2η̄bγδG

b
γδFg(ρQ)

)
d0(ρ)

dρ

ρ5
dσ̄ + (L↔ R)

(4.39)

where dσ̄ is the integration over the instanton orientation in color space and
σµν = [γµ, γν ]/2. The incoming and outgoing quarks have small momenta p
(ρp � 1) and Q is the momentum transferred by the inserted gluon with a
form-factor

Fg(x) ≡ 4

x2
− 2K2(x)

x→0−−→ 1 (4.40)
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Figure 4.4: Transversely polarized spin asymmetry (solid line) versus data [1].
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Figure 4.5: Effective Quark-Gluon vertex in the instanton vacuum.

By expanding Eq. (4.39) to leading order in the inserted gluon field of Gb
γδ

and integrating over the color indices, we obtain

i

gs
Fg(ρQ)

∫
π4ρ4 q̄Rt

aσµνqL
m∗q

Ga
µν ×

(∏
q

(
ρm∗q

)
d0(ρ)

dρ

ρ5

)

=
i

gs
Fg(ρQ)

∫
dρ π4ρ4n(ρ)

q̄Rt
aσµνqL
m∗q

Ga
µν (4.41)

where n(ρ) is the effective instanton density and m∗q is the effective quark
mass. In the dilute instanton approximation [21]

n(ρ) = nIδ(ρ− ρc) (4.42)

where ρc is the average size of the instanton. Hence the induced instanton
effective quark-gluon vertex

i

gs
Fg(ρQ)π4(nIρ

4
c)
q̄Rt

aσµνqL
m∗q

Ga
µν (4.43)

as illustrated in Fig. 4.5. In momentum space, the effective vertex is Ma
µ and

reads
Ma

µ = ta [γµ −P+γ+σµνq
νΨ−P−γ−σµνq

νΨ] (4.44)
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with γ± = (1± γ5)/2 and

Ψ =
Fg(ρcQ)π4(nIρ

4
c)

m∗qg
2
s

(4.45)

The averaging of Eq. (4.44) in the instanton liquid gives〈
Ma

µ

〉
= ta [γµ − σµνqνΨ] (4.46)

where we used

〈P+〉 = 〈P−〉 = 1 (4.47)

after the analytical continuation to Minkowski Space. Eq. (4.43) yields an
anomalously large Quark Chromomagnetic Moment [127]

µa = −2nIπ
4ρ4
c

g2
s

(4.48)

4.3.2 Single spin asymmetry in pp

In going through an instanton, the chirality of the light quark can be flipped
as we noted in Eq. (4.2). The SSA follows from the diagrams of Fig. 4.6.

Figure 4.6: Schematically diagrammatic contributions to the SSA through
the Pauli Form factor [2]

Using the Pauli form factor discussed before, the SSA follows from the
diagrams of Fig. 4.6. As noted in [2], the leading diagram contributing to
the SSA is displayed in Fig. 4.7.
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Figure 4.7: Leading diagrammatic contribution to the SSA through the Pauli
form factor.

Note that Fig. 4.7 is of the same order in gs as the zeroth order diagram in
Fig. 4.6, since the chirality-flip effective vertex is semi-classical and of order
1/g2

s . The zeroth order differential cross section reads

d(0)σ ∼ 64g4
s

|p1 − k1|4
[(k1 · p2)(k2 · p1) + (k1 · k2)(p1 · p2)] (4.49)

The first order differential cross section for the chirality flip reads [128]

d(1)σ ∼ i
g6
s

(k1 − p1)2

1

16π

(4π)ε

Γ(1− ε)
µ2ε

sε

×
∫ 1

0

dy [y(1− y)]−ε
∫ 2π

0

dφl
2π

1

(l1 − k1)2

1

(p1 − l1)2
G(Ω) ,

(4.50)

where y = (1 + cos θl)/2, ±θl is the longitudinal angle of l1/2 and

G(Ω) ≡ tr [(Ma
µ)(1)

/p1
γ5/sγνt

b/l 1γρt
c/k1] tr [γµta/p2

γνtb/l 2γ
ρtc/k2] (4.51)

We have obtained 〈
(Ma

µ)(1)
〉

= −taσµνqνΨ (4.52)

where

Ψ =
Fg(ρcQ)π4(nIρ

4
c)

m∗qg
2
s

(4.53)

To simplify the analysis and compare to the existing semi-inclusive data,
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we use the kinematics

p1/2 =

√
s̃

2
(1, 0, 0,±1)

k1/2 =

√
s̃

2
(1,± sin θ sinφ,± sin θ cosφ,± cos θ)

s = (0, 0, s⊥, 0) (4.54)

where
√
s̃ is the total energy of the colliding ”partons”. It is simple to

show that d(1)σ ∼ ~k1 · (~p1 × ~s) ∼
√
s̃s⊥k⊥1 sinφ, which results in SSA. For

simplicity, we calculate the first differential cross section d(1)σ with φ = π/2,
where the transverse momentum of the outgoing particle lines along the x
axis. Straightforward algebra yields〈
d(1)
〉
σ ∼ s⊥k⊥1

2g4
s

3π

Γ(−ε)
Γ(2− 2ε)Γ(1− ε)

csc2(θ)(4π)ε
µ2ε

sε
(
Ψg2

s

)
×
[
25ε− 12 + cos θ(ε(9 + 2ε)− 4)2F1

(
1, 1− ε, 1− 2ε, sec2 θ

2

)
+ε(1− cos θ)2F1

(
2, 1− ε, 1− 2ε, sec2 θ

2

)]
(4.55)

where 2F (a, b, c; y) is a hypergeometric function. We note that |2F1(1, 1, 1; y)|
is much larger than |2F (0,1,0,0)

1 (1, 1, 1; y)| and |2F (0,0,1,0)
1 (1, 1, 1; y)| for y ∼ 1.

Therefore〈
d(1)σ

〉
∼ s⊥k⊥1

2g4
s

3π

(
Ψg2

s

)
csc4

(
θ

2

)
(3 + cos θ)

[
−1

ε
+ 2γE + ln

(
s̃

4πµ2

)]
(4.56)

The divergence in Eq. (4.56) stems from the exchange of soft gluons in the
box diagram. In [2] it was regulated using a constituent gluon mass mg. For

θl ∼ 0, ~l1 is parallel to ~p1, and this collinear divergence could be regulated
by restricting −(l1 − p1)2 > m2

g or equivalently setting ymax ∼ 1 − cm2
g/s̃

with c an arbitrary constant of order 1. This regularization amounts to the
substitution

∫ 1

0

dy −→

∫ 1+cos θ
2
−c

m2
g
s̃

0

+

∫ 1−c
m2
g
s̃

1+cos θ
2

+c
m2
g
s̃

 dy (4.57)
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in Eq. (4.50), where we have also regulated the collinear divergence when ~l1
is parallel to ~k1. Thus[

−1

ε
+ 2γE + ln

(
s̃

4πµ2

)]
−→ ln

(
c
s̃

m2
g

)
+ ln

(
1− cos θ

1 + cos θ

)
(4.58)

The regulated SSA is now given by

Asinφ
T ≈

〈
d(1)σ

d(0)σ

〉
= s⊥k⊥1

(
Ψg2

s

π

)
(3 + cos θ)

6(5 + 2 cos θ + cos2 θ)

[
ln

(
c
s̃

m2
g

)
+ ln

(
1− cos θ

1 + cos θ

)]
(4.59)

where the zeroth order cross section in Eq. (4.49) is used for normalization.
We note that the single spin asymmetry AT is sometimes referred to as AN
in other studies.

To compare with the semi-inclusive data on p↑p→ πX, we set s⊥u(x,Q2) =
∆su(x,Q2) and s⊥d(x,Q2) = ∆sd(x,Q2), with ∆su(x,Q2) and ∆sd(x,Q2) as
the spin polarized distribution functions of the valence up-quarks and valence
down-quarks in the proton respectively. For forward π+, π− and π0 produc-
tions, the SSAs are

Asinφ
T (π+) = k⊥

∆su(x1, Q
2)

u(x1, Q2)

(
Ψg2

s

π

)
(3 + cos θ)

6(5 + 2 cos θ + cos2 θ)

×
[
ln

(
c
s̃

m2
g

)
+ ln

(
1− cos θ

1 + cos θ

)]
(4.60)

Asinφ
T (π−) = k⊥

∆sd(x1, Q
2)

d(x1, Q2)

(
Ψg2

s

π

)
(3 + cos θ)

6(5 + 2 cos θ + cos2 θ)

×
[
ln

(
c
s̃

m2
g

)
+ ln

(
1− cos θ

1 + cos θ

)]
(4.61)

Asinφ
T (π0) = k⊥

∆su(x1, Q
2) + ∆sd(x1, Q

2)

u(x1, Q2) + d(x1, Q2)

(
Ψg2

s

π

)
(3 + cos θ)

6(5 + 2 cos θ + cos2 θ)

×
[
ln

(
c
s̃

m2
g

)
+ ln

(
1− cos θ

1 + cos θ

)]
(4.62)
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According to [129, 130]

∆su(x,Q2)

u(x,Q2)
= 0.959− 0.588(1− x1.048)

∆sd(x,Q2)

d(x,Q2)
= −0.773 + 0.478(1− x1.243)

u(x,Q2)

d(x,Q2)
= 0.624(1− x) (4.63)

These results can be compared to the experimental measurements in [3].
For simplicity, we assume the same fraction for each proton 〈x1〉 = 〈x2〉 = 〈x〉.
This assumption will be revisited later. We set

〈
k⊥
〉
≈ 〈K⊥〉 as the transverse

momentum of the outgoing pion. We then have
√
s 〈x〉 〈sin θ〉 = 2 〈K⊥〉 and

〈x〉 〈cos θ〉 = 〈xF 〉. For large
√
s, we also have 〈Q〉 ≈ 〈K⊥〉

√
〈x〉 / 〈xF 〉.

We set c = 2 and 〈K⊥〉 = 2 GeV for the outgoing pions. nI ≈ 1/fm4 is
the effective instanton density, ρ ≈ 1/3fm the typical instanton size and
m∗q ≈ 300 MeV the constitutive quark mass in the instanton vacuum. mg ≈
420 MeV is the effective gluon mass in the instanton vacuum[131].

In Fig. 4.8 we display the results Eq. (4.60)-Eq. (4.62) as a function of
the parton fraction xF for both the charged and uncharged pions at

√
s =

19.4 GeV [3].
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Figure 4.8: xF dependent SSA in p↑p→ πX collisions at
√
s = 19.4GeV [3].

The solid lines are the analytical results in Eq. (4.60)- Eq. (4.62) with c = 2.

In Fig. 4.9, the divergence in Eq. (4.50) is now regulated by using a
constituent gluon mass as in [2].
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Figure 4.9: xF dependent SSA in p↑p→ πX collisions at
√
s = 19.4GeV [3].

The solid lines are the analytical results in Eq. (4.60)- Eq. (4.62) regulated
by using a massive gluon propagator yields the results.

We also find that the instanton contribution is large with the right order of
magnitude and trend. This contribution may not be complete but should be
added to current perturbative estimates. Below we show that instantons also
give large contributions to the Double Spin Asymmetry (DSA), in particular
to DSA at

√
s = 62.4 GeV which is to be compared with RHIC′s future

measurement. Finally, we also compare our results with the data from [4] in
Fig. 4.10 and with the data from [5] in Fig. 4.11.

In sum, the anomalous Pauli form factor can reproduce the correct mag-
nitude of the observed SSA in polarized p↑p → πX for reasonable vacuum
parameters.

At the end of this subsection, let us revisit the simple assumption 〈x1〉 =
〈x2〉, which may appear to be unrealistic especially for large xF . Here, we
improve on this simplification and show that this amounts to a better fit to
the data. In the lab frame, we define

p1 = x1

√
s

2
(1, 0, 0, 1)

p2 = x2

√
s

2
(1, 0, 0,−1) (4.64)

set
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Figure 4.10: xF dependent SSA in p↑p → πX collisions at
√
s = 62.4 GeV.

Data is from [4].

s̃ =
s

4

[
(x1 + x2)2 − (x1 − x2)2

]
= x1x2s (4.65)

and identify the two Lorentz factors

γ =
x1 + x2

2
√
x1x2

, and β =
x1 − x2

x1 + x2

. (4.66)

The longitudinal momentum of the outgoing particle k1 is

kL =

√
s

2
xF = γ(k∗L + βE∗) (4.67)

where k∗L is the longitudinal momentum of the particle k1 in the CM frame
and E∗ is the energy of particle k1 in the CM frame. We have

k∗L =

√
s̃

2
cos θ , and E∗ =

√
s̃

2
(4.68)

with

cos θ =
2xF − x1 + x2

x1 + x2

(4.69)

Also we have
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Data (right) is from [5].

k⊥ =

√
s̃

2
sin θ , and Q =

√
s̃ sin

(
θ

2

)
(4.70)

With this in mind and for xF = 0.6, we show

• the dependence of the SSA Asinφ
T (π+) (Eq. (4.60)) in Fig. 4.12 on x1 ∈

(0.6, 0.9) and x2 ∈ (0.1, 0.3) for charged and uncharged pions.

Figure 4.12: SSAs Asinφ
T (π+) for xF = 0.6.
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• the dependence of the SSA Asinφ
T (π−) (Eq. (4.61)) in Fig. 4.13 on x1 ∈

(0.6, 0.9) and x2 ∈ (0.1, 0.3) for charged and uncharged pions.

Figure 4.13: SSAs Asinφ
T (π−) for xF = 0.6.

• the dependence of the SSA Asinφ
T (π0) (Eq. (4.62)) in Fig. 4.14 on x1 ∈

(0.6, 0.9) and x2 ∈ (0.1, 0.3) for charged and uncharged pions.

Figure 4.14: SSAs Asinφ
T (π0) for xF = 0.6.

Take Asinφ
T (π+) for example, the SSA Asinφ

T (π+) increases when x1 in-
creases and x2 decreases. The simplifying assumption 〈x1〉 = 〈x2〉, overesti-
mates x1 and underestimates x2 for small xF . Also, we underestimate x1 and
overestimate x2 for large xF . Instead of using 〈x1〉 = 〈x2〉, a more careful
calcution shows that Asinφ

T (π+) is smaller for small xF and larger for large
xF , and therefore fits the data better. Again, in this paper our aim was to
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show that instanton do contribute sizably to SSA with the right magnitude
and trend. They have to be included in any perturbative analysis of these
effects.
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Chapter 5

Spin Effects Through Two
Instantons

5.1 Double spin asymmetry in pp

The same Pauli form factor and vacuum parameters can be used to assess the
role of the QCD instantons on doubly polarized and semi-inclusive p↑p↑ →
ππX processes. The Double Spin Asymmetry (DSA) is defined as

ADS =
σ↑↑+↓↓ − σ↓↑+↑↓

σ↑↑+↓↓ + σ↓↑+↑↓
(5.1)

with the proton beam polarized along the transverse direction. The valence
quark from the polarized proton P1 exchanges one gluon with the valence
quark from the polarized proton P2 as shown in Fig. 5.1. At large

√
s,

Fig. 5.1-(a) is dominant in forward pion production and Fig. 5.1-(b) is dom-
inant in backward pion production. For Fig. 5.1-(a), the differential cross
section reads

dσ ∼ g4
s

|p1 − k1|4
∑

color tr [Ma
µ/p1

(1 + γ5/s1)γ0(M b
ν)
†γ0/k1]

× tr [Ma
µ/p2

(1 + γ5/s2)γ0(M b
ν)
†γ0/k2] (5.2)

where Mµ is proportional to (P+ +P−) as detailed in 4.3.1. To second order,
we approximately have〈

d(2)σ
〉
∼ (· · · )

〈
(P+ + P−)2

〉
≈ (· · · ) 〈P+ + P−〉2 (5.3)

60



since the instanton liquid is dilute. The contribution to the DSA then follows
from simple algebra

〈
d(2)σ

〉
∼ 256

|p1 − k1|4
(
ψg2

s

)2
[(k1 · s1)(k1 · s2)(k2 · p1)(k2 · p2)

−(k1 · p1)(k1 · s2)(k2 · p2)(k2 · s1)− (k1 · s1)(k1 · s2)(k2 · p2)(p1 · p2)

+(k1 · k2)(k1 · p1)(k2 · p2)(s1 · s2)− (k1 · p1)(k1 · p2)(k2 · p2)(s1 · s2)

−(k1 · p1)(k2 · p1)(k2 · p2(s1 · s2) + (k1 · p1)(k2 · p2)(p1 · p2)(s1 · s2)

−(k1 · p2)(k1 · s1)(k2 · p1)(k2 · s2) + (k1 · p1)(k1 · p2)(k2 · s1)(k2 · s2)

+(k1 · k2)(k1 · s1)(k2 · s2)(p1 · p2)− (k1 · p1)(k2 · s1)(k2 · s2)(p1 · p2)]

(5.4)

after using the identity

tr [(γµ/q − /qγµ)/pγ5/sγν/k] + tr [γµ/pγ5/s(/qγν − γν/q)/k]

= tr [(γµ/k + /pγµ)/pγ5/sγν/k] + tr [γµ/pγ5/s(/kγν + γν/p)/k]

= 8i [pµε(ν, k, p, s)− pνε(µ, k, p, s) + (k · p)ε(µ, ν, k, s)− (k · s)ε(µ, ν, k, p)]
(5.5)

with q = k − p and p · s = 0 because the protons are transversely polarized.
For an empirical application of Eq. (5.4) we adopt the simple kinematical set
up in Eq. (5.16). Thus

〈
d(2)σ

〉
∼ − 4

|p1 − k1|4
(
ψg2

s

)2
s̃3s⊥1 s

⊥
2 (1− cos θ)2

×[4 + cos(θ − 2φ) + 2 cos(2φ) + cos(θ + 2φ)] (5.6)

After adding the contribution of Fig. 5.1-(a) and Fig. 5.1-(b), and averaging
over the transverse direction φ, we finally obtain

d(2)σ

d(0)σ
∼ −4s⊥1 s

⊥
2

(
π4nIρ

4
c

m∗qg
2
s

)2 F 2
g [ρ
√

s̃(1−cos θ)
2

]s̃+ F 2
g [ρ
√

s̃(1+cos θ)
2

]s̃

5+2 cos θ+cos2 θ
(1−cos θ)2 + 5−2 cos θ+cos2 θ

(1+cos θ)2

(5.7)

Our DSA results can now be compared to future experiments at collider
energies. Specifically, our DSA for dijet productions are
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Figure 5.1: The valence quark in polarized proton p1 exchange one gluon
with the valence quark in the polarized proton p2.

Aπ+π+ = −1

8

∆su(x1, Q
2)

u(x1, Q2)

∆su(x2, Q
2)

u(x2, Q2)

×
(
π3nIρ

4
c

m∗qαs

)2 F 2
g [ρ
√

s̃(1−cos θ)
2

]s̃+ F 2
g [ρ
√

s̃(1+cos θ)
2

]s̃

(5 + 10 cos2 θ + cos4 θ) csc4 θ
(5.8)

Aπ−π− = −1

8

∆sd(x1, Q
2)

d(x1, Q2)

∆sd(x2, Q
2)

d(x2, Q2)

×
(
π3nIρ

4
c

m∗qαs

)2 F 2
g [ρ
√

s̃(1−cos θ)
2

]s̃+ F 2
g [ρ
√

s̃(1+cos θ)
2

]s̃

(5 + 10 cos2 θ + cos4 θ) csc4 θ
(5.9)

Aπ+π− = −1

8

∆su(x1, Q
2)∆sd(x2, Q

2) + ∆sd(x1, Q
2)∆su(x2, Q

2)

u(x1, Q2)d(x2, Q2) + d(x1, Q2)u(x2, Q2)

×
(
π3nIρ

4
c

m∗qαs

)2 F 2
g [ρ
√

s̃(1−cos θ)
2

]s̃+ F 2
g [ρ
√

s̃(1+cos θ)
2

]s̃

(5 + 10 cos2 θ + cos4 θ) csc4 θ
(5.10)

To compare our calculations with the future measurements at RHIC, we
use the same kinematics in Fig. 4.9:

√
s = 62.4GeV and η = 3.5. The value of

αs is from [132]. Our estimates for charged di-jet production in semi-inclusive
DSA are displayed in Fig. 5.2.
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Figure 5.2: Predictions for charged di-jet production in semi-inclusive DSA.

5.2 P-odd effects through instanton fluctua-

tions

It is commonly accepted that in a typical non-central AuAu collision at
RHIC as illustrated in Fig. 5.3, the flying fragments create a large magnetic
field that strongly polarizes the wounded or participant nucleons in the final
state. The magnetic field is typically eB/m2

π ≈ 1 at RHIC and eB/m2
π ≈ 15

at the LHC and argued to last for about 1-3 fm/c [133]. We recall that in
these units m2

π ≈ 1018 Gauss which is substantial. As a result, large P-odd
pion azimuthal charge correlations were predicted to take place in peripheral
heavy ion collisions [134, 135, 136, 137].

In this section, we would review the analysis in [45] and show that a large
contribution to the P-odd pion azimuthal charge correlations may stem from
the prompt part of the collision as each of the incoming nucleus polarizes
strongly the participating nucleons from its partner nucleus during the colli-
sion process as illustrated in Fig. 5.4. The magnetic field is strong but short
lived in the initial state, lasting for about 1/2 fm/c for a typical heavy ion
collision at current collider energies. Polarized proton on proton scattering
can exhibit large chirality flip effects through instanton and anti-instanton
fluctuations as we now show.
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Figure 5.3: 2-pion correlations in AuAu after the collision.

5.2.1 P-odd effects in the instanton vacuum

Consider the typical parton-parton scattering amplitude of Fig. 5.5 with 2-
gluon exchanges.

In each collision, the colliding “parton” pi has spin si, and thus u(pi)ū(pi) =
1
2 /pi(1 + γ5/si). The parton p1 from the A-nucleus encounters an instanton or
anti-instanton as depicted by the gluonic form-factor. Rewrite the Eq. (4.44)

Ma
µ = ta [γµ −P+γ+σµνq

νΨ−P−γ−σµνq
νΨ] (5.11)

with P+ = 1 stands for an instanton insertion and P− = 1 for an anti-
instanton insertion. In establishing Eq. (4.44), the instanton and anti-instanton
zero modes are assumed to be undistorted by the prompt external magnetic
field. Specifically, the chromo-magnetic field BG is much stronger than the
electro-magnetic field B, i.e. |gsBG| � |eB| ≈ or m2

πρ
2
c ≈ 0.004 � 1. The

deformation of the instanton zero-modes by a strong magnetic field have been
discussed in [138]. They will not be considered here.

In terms of Eq. (4.44), the contribution of Fig. 5.5 to the differential cross
section is

dσ ∼ g4
s

|p1 − k|4
tr [Ma

µ/p1
(1 + γ5/s1)γ0(M b

ν)
†γ0/k] tr [γµta/p2

(1 + γ5/s2)γνtb/k
′
]

(5.12)
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Figure 5.4: 2-pion correlations in AuAu at the collision.

which can be decomposed into dσ ≈ dσ(0) + dσ(1) in the dilute instanton
liquid. The zeroth order contribution is

d(0)σ ∼ 64g4
s

|p1 − k|4
[2(k · p2)(p1 · p2) + (k · p1)(p1 · p2 − k · p2)] (5.13)

where we used k′ = p1 + p2 − k. The first order contribution is

d(1)σ ∼ 64g4
s

|p1 − k|4
[
(p1 · p2)2 + (k · p2)(p1 · p2)

]
(k · s1)Ψ (P+ −P−) (5.14)

after using p1 · s1 = 0 and p2
1 = k2 = 0. Converting to standard parton

kinematics with p1 → x1P1, p2 → x2P2 and k → K/z, we obtain for the ratio
of the P-odd to P-even contributions in the differential cross section

d(1)σ

d(0)σ
=

x1(P1 · P2)2 + 1
z
(K · P2)(P1 · P2)

2(K · P2)(P1 · P2) + (K · P1)(x1

x2
P1 · P2 − K·P2

zx2
)
(K · s1)Ψ (P+ −P−)

(5.15)
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Figure 5.5: Gluon Exchange. The blob is an instanton or anti-instanton
insertion. See text.

Now consider the kinematics appropriate for the collision set up in Fig. 5.4,

P1/2 =

√
s

2
(1, 0, 0,±1)

K = (E,K⊥ cos ∆φ,K⊥ sin ∆φ,

√
s

2
xF )

s1 = (0, 0, s⊥1 , 0) (5.16)

where K⊥ and E2 = K2
⊥ + sx2

F/4 +m2
π are the transverse momentum and

total squared energy of the outgoing pion respectively. xF is the pion longi-
tudinal momentum fraction. Thus

lim
s→∞

d(1)σ

d(0)σ

= (sin ∆φ)s⊥1
xF + x1z

xF z

K⊥
m∗q

π3(nIρ
4
c)

8αs
Fg

(
ρ

√
x1

xF z
(K2
⊥ +m2

π)

)
(P− −P+)

(5.17)

We note that Eq. (5.17) vanishes after averaging over the instanton liquid
background which is P-even 〈

d(1)σ

d(0)σ

〉
= 0 (5.18)

since on average 〈Q〉 = 〈P+ −P−〉 = 0.
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5.2.2 P-odd effects in AA collisions

Now consider hard pp collisions in peripheral AA collisions as illustrated
in Fig. 5.4. The Magnetic field is strong enough at the collision to par-
tially polarize the colliding protons. Say c% of the wounded protons from
a given nucleus get polarized by the partner colliding nucleus. For simplic-
ity, we set s⊥u(x,Q2) = c%∆su(x,Q2) and s⊥d(x,Q2) = c%∆sd(x,Q2), with
∆su(x,Q2) and ∆sd(x,Q2) as the spin polarized distribution functions of the
valence up-quarks and valence down-quarks in the proton respectively. We
also assume that the outgoing u quark turns to π+ and that the outgoing d
quark turns to π−. With this in mind, we may rewrite the ratio of differential
contributions in Eq. (5.17) following [6, 139, 140, 7] as

dN

dφα
∼ 1− 2aα sin(φ−ΨRP ) (5.19)

with α = ± or

a+ =
∆su(x,Q2)

u(x,Q2)
ΥQ a− =

∆sd(x,Q2)

d(x,Q2)
ΥQ (5.20)

and

Υ ≡ xF + xz

xF z

K⊥
m∗q

π3(nIρ
4
c)

16αs
Fg

(
ρ

√
x

xF z
(K2
⊥ +m2

π)

)
(5.21)

While on average 〈aα〉 = 0 since 〈Q〉V = 0, in general 〈aαaβ〉 6= 0 for the
2-particle correlations. Explicitly

−〈aπ+aπ−〉 = −
(

∆su(x,Q2)

u(x,Q2)

∆sd(x,Q2)

d(x,Q2)

)
Υ2
〈
Q2
〉
V

−〈aπ+aπ+〉 = −
(

∆su(x,Q2)

u(x,Q2)

)2

Υ2
〈
Q2
〉
V

−〈aπ−aπ−〉 = −
(

∆sd(x,Q2)

d(x,Q2)

)2

Υ2
〈
Q2
〉
V

(5.22)

For reasonable values of 〈x〉, 〈aπ+aπ+〉 ∼ 〈aπ−aπ−〉 ∼ − 〈aπ+aπ−〉 as ex-
pected [6, 139, 140, 7].

A more quantitative comparison to the reported data in [6, 7] can be
carried out by estimating the fluctuations of the topological charge Q in the
prompt collision 4-volume V ≈ (τ 2/2)∆ηV⊥(b). In the latter, τ ≈ 1/2 fm/c
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is the prompt proper time over which the induced magnetic field is active,
∆η is the interval in pseudo-rapidity and V⊥(b) the transverse collision area
for fixed impact parameter b. Through simple geometry

V⊥(b) = 2R2

arccos

(
b

2R

)
− b

2R

√
1−

(
b

2R

)2
 (5.23)

where R is the radius of two identically colliding nuclei. Q2 involves a pair
P,P′ of instanton-antiinstanton. Specifically,〈

Q2
〉
V

=
〈
(P+ −P−)(P′+ −P′−)

〉
V

(5.24)

If we denote by N± the number of instantons and antiinstantons in V , with
N = N+ + N− their total number, then in the instanton vacuum the pair
correlation follows from

〈
Q2
〉
V
≡

〈(
N+ −N−
N+ +N−

)2
〉
V

≈ 〈(N+ −N−)2〉V
〈(N+ +N−)2〉V

(5.25)

Assuming N± to be large in V it follows that [141]

〈
Q2
〉
V
≈ 〈N〉V
〈N〉V (〈N〉V + 4/b)

(5.26)

The deviation from the Poissonian distribution in the variance of the num-
ber average reflects on the QCD trace anomaly in the instanton vacuum or
〈N2〉V − 〈N〉

2
V = 4/b 〈N〉V and vanishes in the large Nc limit [141]. Here

b = 11Nc/3 is the coefficient of the 1-loop beta function β(ρc) ≈ b/ln(Λρc)
(quenched). Thus 〈

Q2
〉
V
≈ 1

nI(τ 2∆ηV⊥(b)/2) + 4/b
(5.27)

where we have used that the mean 〈N〉V = nIV in the volume V . The
topological fluctuations are suppressed by the collision 4-volume. Note that
we have ignored the role of the temperature on the topological fluctuations in
peripheral collisions. Temperature will cause these topological fluctuations to
deplete and vanish at the chiral transition point following the instanton-anti-
instanton pairing [142]. So our results will be considered as upper-bounds.
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Figure 5.6: Pion azimuthal charge correlations of AuAu versus the data [6]
from STAR at

√
s = 200GeV.

For simplicity, we will set 〈x〉 ≈ 0.01 for each parton and 〈z〉 ≈ 0.5.
The measured multiplicity spectra in [143] at different centralities suggest
mπ < 〈K⊥〉 < 3mπ. We will set 〈K⊥〉 = 2mπ in our analysis. We will assume
a moderate polarization or c% = 15% in the collision volume for a general
discussion. We fix τ = 1/2 fm to be the maximum duration of the magnetic
field polarization, and set the pseudo-rapidity interval approximately (−1, 1)
for both STAR [6] and ALICE [7]. The radius of the colliding nuclei will
be set to R = 1fm × 3

√
A where A is the atomic number. The centrality is

approximated as n% = b2/(2R)2 [144]. We recall that [145]

〈cos(φα + φβ − 2ΨRP)〉 ≡ − 〈aαaβ〉 (5.28)

and our results are displayed as

• AuAu collisions at
√
s = 200GeV (STAR) in Fig. 5.6

• CuCu collisions at
√
s = 200GeV (STAR) in Fig. 5.7

• PbPb collisions at
√
s = 2.76TeV (ALICE) in Fig. 5.8

69



ççç
ç

ç

ç

ç

ááááá
á

á

70 60 50 40 30 20 10 0

-1.0

-0.5

0.0

0.5

1.0

%Most Central

C
o
s
Hf

a
+
f
b
-
2
Y
R
P
L

µ 10-3

p+p+

p-p-

p+p- ç same charge, CuCu

á opp. charge, CuCu

Figure 5.7: Pion azimuthal charge correlations of CuCu versus the data [6]
from STAR at

√
s = 200GeV.

æææ
æ

æ
æ

æ
æ

àààààà
à

à

70 60 50 40 30 20 10 0

-0.5

0.0

0.5

%Most Central

C
o
s
Hf

a
+
f
b
-
2
Y
R
P
L

µ 10-3

p+p+

p-p-

p+p-
æ same charge, AuAu

à opp. charge, AuAu
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√
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Chapter 6

Stringy Pomeron I

6.1 Dipole-dipole scattering I

In one of author’s paper [74], we model the soft pomeron contribution to
dipole-dipole scattering as a close string exchange in AdS5 with a wall. The
exchange of closed and long strings is characterized by an apparent Unruh
temperature and entropy that are caused by the rapidity interval χ of the
collision.

Let us now briefly review the basic formulation for the elastic dipole-
dipole scattering amplitude through a Wilson loop correlator [74, 80, 76,
115, 146, 147, 148, 149] first in flat D = 2 + D⊥ dimensions. Each dipole is
described by a Wilson loop as shown in Fig. 6.1. The kinematics is captured
by a fixed impact parameter b⊥, conjugate to the transferred momentum q⊥,
and the rapidity interval χ related to the collisional energy.

At high energies, the T-matrix factorizes [150, 151, 147]

T12→34(s, t) = 2is

∫
du1du2 ψ4(u1)ψ3(u1) TDD(χ,q⊥, u1, u2) ψ2(u2)ψ1(u2) ,

(6.1)
where ui is related to the transverse size of the dipole element described by
the wave function ψi. The dipole-dipole scattering amplitude is given by

TDD(χ,q⊥, u1, u2) =

∫
dD⊥−1b⊥ e

iq⊥·b⊥ WW , (6.2)

with
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Figure 6.1: Twisted surface connecting the Wilson loops.

WW ≡ 1− 〈W(C1)W(C2)〉G (6.3)

The integration is taken over the D⊥−1 dimensional impact parameter space
separating the two dipoles. For the results to follow and for simplicity, the
dipole sizes will be fixed to a near the UV boundary. We use the normaliza-
tion 〈W〉 = 1 and focus only on the connected part of the correlator. The
Wilson loops are evaluated along the surfaces C1, C2 pictured in Fig. 6.1. The
subscript G indicates that the expectation value of the Wilson loop correlator
is taken over gauge fields. This is the pomeron limit.

We note that TDD in (6.1-6.2) is the close string propagator attached to
the 2 sourcing dipoles in 5-dimensions. It different is from the distorted (by
curvature) spin-2 graviton exchange of [62, 63]. The graviton is massive in
walled AdS. Our approach is similar to the one used initially in [58, 59, 70]
with a key difference that D⊥ = 5 and not 10. In the eikonal approximation,
the ultrarelativistic dipole is a scalar since it moves nearly on the light cone.
In (6.2) we have suppressed a dependence on the individual momenta of the
dipole constituents and assumed that the total momentum of each dipole is
equally distributed between its constituents. The effective size of the dipole
is at a maximum when the momentum is unequally distributed and, hence,
we are restricting our analysis to small dipoles.

When the dipoles are small compared to the impact parameter and the
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rapidity interval is large, the surface connecting the two dipoles is highly
twisted and can be approximated by the world-sheet of a string with the
appropriate boundary conditions, see Figure 6.1. The exchanged surface in
Figure 6.1 is the world-sheet surface of a close string exchanged in the t-
channel. The string is subjected to twisted (boosted) boundary conditions.
The surface is best described in Euclidean space with a real twist angle θ
and then analytically continued to Minkowski space through θ → −iχ [58,
59, 70, 152, 153].

At large Nc the surface can be thought as the worldsheet made of fishnet
diagrams [55]. At strong coupling λ = g2Nc the worldsheet can be sought
in the context of holographic QCD. For that, we will use the bottom-up
approach and assume the string to be exchanged in curved AdS5 with a hard
wall, i.e.

ds2 =
1

z2

(
(dx0)2 + (dx1)2 + (dx2

⊥) + (dz)2
)
, (6.4)

with 0 ≤ z ≤ z0. So D⊥ = 3. The holographic z-direction will be identified
with the size of the probing dipoles [71, 72]. Their evolution is captured
by the conformal nature of the AdS5 metric in the UV. Although the field
theory corresponding to this truncated space is not exactly QCD, the idea is
that it captures a key aspect of the QCD string evolution in the conformal
limit. A similar idea was used in the light-front translation of the holographic
wavefunctions [154].

For dipole sizes a small and near the boundary, at large impact parameters
the exchanged string is long and lies mostly on the wall at z ≈ z0 whereby
the metric is nearly flat [58, 59, 70]. In this limit the string action can be
approximated by the flat Polyakov action

S[x] =
σT
2

∫ T

0

dτ

∫ 1

0

(
ẋµẋµ + x′µx′µ

)
(6.5)

with ẋ = ∂τx and x′ = ∂σx. The string tension is σT = 1/(2πα′). The Regge
slope α′ is related to the fundamental string length by α′ = l2s ≈ 1/(z2

0

√
λ).

We have made the following gauge choice for the world-sheet metric hab =
δab . With this in mind, the Wilson loop correlator is that of a close string
exchange [70]
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WW = g2
s

∫ ∞
0

dT

2T
K(T ) . (6.6)

with the string partition function

K(T ) =

∫
T

d[x] e−S[x]+ghosts . (6.7)

The close string is parametrized by one parameter, the modulus (”circum-
ference”) T . The factor g2

s in (6.6) comes from the genus of the string con-
figuration compared to the disconnected configuration.

Some details regarding the computation of the partition function (6.7) can
be found at the end of this section where we derived the partition through
both functional approach and canonical approach. The result is

K(T ) = i
a2

α′
e−

σT
2
Tb2

2 sin(T
2
χ)
×
∞∏
n=1

∏
s=±

sinh[T
2
nπ]

sinh[T
2
(nπ + isχ)]

× η−D⊥(
iT

2
) (6.8)

or

WW =
ig2
sa

2

4α′

∫ ∞
0

dT

T

e−
σT
2
Tb2

sin(T
2
χ)
×
∞∏
n=1

∏
s=±

sinh[T
2
nπ]

sinh[T
2
(nπ + isχ)]

× η−D⊥(
iT

2
)

(6.9)
with b2 = b2

⊥. The integral is dominated by the poles along the real T-axis
or Tχ/2 = kπ with positive integer k. Thus

WW = πg2
s

a2

4α′

∞∑
k=1

χ

2kπ

2

χ
(−1)ke−k

πσT b
2

χ ×
∞∏
n=1

∏
s=±

sinh(π
2nk
χ

)

sinh[π
2nk
χ

+ isπk]
η−D⊥(

ikπ

χ
)

(6.10)
Using the identity

∏
s=±

sinh(π
2nk
χ

)

sinh[π
2nk
χ

+ isπk]
=

(e
π2nk
χ − e−

π2nk
χ )2

(e
π2nk
χ eiπk − e−

π2nk
χ e−iπk)(e

π2nk
χ e−iπk − e−

π2nk
χ eiπk)

= 1 (6.11)

we obtain
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WW =
g2
sa

2

4α′

[Nc/2]∑
k=1

(−1)k

k
e−k

πσT b2

χ η−D⊥(
ikπ

χ
) (6.12)

In [70], the sum over the successive poles labeled by k was identified with
the N-ality of the Wilson-loop sourcing the close string exchange in Fig. 6.1.
Specifically, k = 1, .., [Nc/2] for the Wilson loops or k = 1 for Nc = 3. The
switch from [∞/2] to [Nc/2] can be inferred from the occurence of the k-string
tension or kσT in the exponent of (6.12) (see [70] for further arguments).
Throughout only the k = 1 N-ality for Nc = 3 in the sum (6.12) will be
retained, with

WW ≡ −g
2
sa

2

4α′
KT (β,b⊥; k = 1) (6.13)

Inserting (6.12-6.13) into (6.2) for fixed size dipoles u1 = u2 = ln(a/z0)
[71, 72], we obtain

1

−2is
T (s, t) ≈ g2

sa
2

∫
d2b⊥ e

iq⊥·b⊥ KT (β,b⊥; k = 1) (6.14)

where KT plays the role of a transverse partition function

KT (β,b⊥; k) = e−σkβb/2 η−D⊥
(
ik

2

β

b

)
(6.15)

Here σk = kσT and σT is the fundamental string tension. It is important to
note that the poles occur at (after restoring the dimension)

T = Tk ≡ 2kπ/χ (6.16)

characterizing a periodic close loop exchange in Fig. 6.1. Also

β ≡ 2πb/χ (6.17)

where 1/β acts as the Unruh temperature for the close string exchange.
Indeed, the string end-points are at a relative acceleration a = χ/b, so that
the average Unruh temperature on the string world-sheet is 1/β = a/2π [70].

ForNc > λ > 1, long strings and small Unruh temperatures in comparison
to the Hagedorn temperature i.e. βH < β < b, we will refer to KT as the
transverse propagator or partition function. In flat 5 = 2 +D⊥ dimensions it

75



follows from the scalar Polyakov action with twisted boundary conditions [70,
71]. The effects of AdS5 curvature will be briefly discussed below. Using the
modular identity for the Dedekind eta-function or η(ix) = η(i/x)/

√
x [155],

allows us to rewrite the eta-function in (6.15) as

η−D⊥
(
ik

2

β

b

)
=

(
kβ

2b

)D⊥/2
eπD⊥b/6kβ ×

+∞∏
n=1

(
1− e−4πnb/kβ

)−D⊥
(6.18)

effectively trading β/b with b/β which makes the string of exponents in (6.18)
convergent. We note that large b corresponds to

√
−t �

√
s pomeron ex-

change kinematics. Note that by inserting (6.18) into (6.15) and then in
(6.14) the elastic amplitude rises with (s/s0)1+D⊥/12k for

√
s �

√
−t = 0.

D⊥/12k is just the leading Luscher correction to the classical string contri-
bution in flat space. Curvature corrections to this result will be discussed in
next chapter.

We still need to derive the string partition function (Eq. 6.71) above using
(1) the functional approach and (2) the canonical approach. Both approaches
are complementary in illustrating the appearance of thermal effects. The
string partition function reads

K(T ) =

∫
T

d[x] e−S[x]+ghosts (6.19)

where

S[x] =
σT
2

∫ T

0

dτ

∫ 1

0

dσ
(
ẋµẋµ + x′µx′µ

)
(6.20)

is the Polyakov string action. The collision set up is shown in Fig. 6.1, with
the twisted boundary conditions

cos

(
θ

2

)
x1 + sin

(
θ

2

)
x0 |σ=0 = 0, x⊥|σ=0 = −b⊥

2

cos

(
θ

2

)
x1 − sin

(
θ

2

)
x0 |σ=1 = 0, x⊥|σ=1 = +

b⊥

2
(6.21)

with b⊥ = (0, · · · , b, · · · , 0) and periodicity xµ(τ) = xµ(τ + T ). This latter
property is at the origin of the thermal effects and the appearance of an
Unruh temperature.
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6.1.1 Functional approach

In Euclidean space, the twisted boundary condition (Eq. 6.21) can be sim-
plified by the following transformation(

x0

x1

)
=

(
cos θσ

2
− sin θσ

2

sin θσ
2

cos θσ
2

)(
x̃0

x̃1

)
(6.22)

with θσ = θ(2σ−1) and leading to an ordinary Dirichlet boundary condition

x̃1 |σ=0,1 = 0 (6.23)

Note that (6.23) translates to

∂τ x̃
1 |σ=0,1 = 0 ∂σx̃

0 |σ=0,1 = 0 (6.24)

The second equation follows from the fact that the world-sheet Tαβ = δS/δhαβ =
0. Thus, the mode decomposition

x̃0(τ, σ) =
∞∑

m=−∞

∞∑
n=0

y0
m,n exp(i2πm

τ

T
) cos(πnσ)

x̃1(τ, σ) =
∞∑

m=−∞

∞∑
n=1

y1
m,n exp(i2πm

τ

T
) sin(πnσ)

x̃⊥(τ, σ) = x⊥(τ, σ) = (σ − 1

2
)b⊥ +

∞∑
m=−∞

∞∑
n=1

y⊥m,n exp(i2πm
τ

T
) sin(πnσ)

(6.25)

Using the above results, we can recast (6.19) into

K = K0L ×KØL ×K⊥ ×Kghost (6.26)

where K0L and KØL are the longitudinal zero and non-zero mode contribu-
tions respectively, K⊥ is the transverse contribution, and Kghost is the ghost
contribution. The explicit forms are given by

K0L =
∞∏

m=−∞

[
σTT

2π
(θ2 +

4π2m2

T 2
)]−

1
2 (6.27)
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K/0L =
∞∏
n=1

∏
s=±

∞∏
m=−∞

{σTT
4π

[
4m2π2

T 2
+ (nπ + sθ)2]}−

1
2 (6.28)

K⊥ = exp[−σT
2
Tb2]

∞∏
n=1

∞∏
m=−∞

[
σTT

4π
(
4π2m2

T 2
+ n2π2)]−

D⊥
2 (6.29)

and the ghost contribution tags to the two longitudinal non-zero mode con-
tribution

Kghost =
∞∏
n=1

∞∏
m=−∞

σTT

4π
(
4m2π2

T 2
+ n2π2) (6.30)

The products are divergent, but can be done with the help of ζ-function
regularization and the product formula for sinh

sinhx

x
=
∞∏
n=1

(1 +
x2

π2n2
) (6.31)

The transverse-mode contribution K⊥ (Eq. 6.68) now reads

K⊥ = exp[−σT
2
Tb2]

∞∏
n=1

∞∏
m=−∞

[m2(1 +
(nπT

2
)2

m2π2
)]−

D⊥
2

= exp[−σT
2
Tb2]

∞∏
n=1

[2 sinh(
nπT

2
)]−D⊥ (6.32)

where we used
∏∞
−∞ c = 1 and

∏∞
m=1m =

√
2π. We further notice

∞∏
n=1

2 sinh(π
T

2
n) =

∞∏
n=1

(eπn
T
2 − e−πn

T
2 )

= e
∑∞
n=1 πn

T
2 ∗

∞∏
n=1

(1− e−πnT )

= e−π
T
24 ∗

∞∏
n=1

(1− e−πnT )

= η(
iT

2
) (6.33)
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where η(τ) is Dedekind eta function after using ζ(0) = −1/12. Similar
arguments yield

K0L =
1

2 sinh(T
2
θ)

K/0L =
∞∏
n=1

∏
s=±

1

2 sinh[T
2
(nπ + sθ)]

(6.34)

In sum, the string partition function is given by

K(T ) =
a2

α′
e−

σT
2
Tb2

2 sinh(T
2
θ)
×
∞∏
n=1

∏
s=±

sinh[T
2
nπ]

sinh[T
2
(nπ + sθ)]

× η−D⊥(
iT

2
) (6.35)

with

a2 −→ a2
T +

a2
L

sin2( θ
2
)
≈ a2

T (6.36)

the transpose dipole size squared. The analytical continuation to Minkowski
space or θ −→ −iχ, gives the final result

K(T ) = i
a2

α′
e−

σT
2
Tb2

2 sin(T
2
χ)
×
∞∏
n=1

∏
s=±

sinh[T
2
nπ]

sinh[T
2
(nπ + isχ)]

× η−D⊥(
iT

2
) (6.37)

which is (6.71).

6.1.2 Canonical approach

In this subsection, we re-derive the string partition function (6.71) using
the canonical approach. In Minkowski space, we recall the second quantized
transverse coordinates

xi⊥(τ, σ) = bi(
σ

π
− 1

2
) + i
√

2α′
∑
n6=0

ain
n

sin(nσ) e−inτ (6.38)

with the transverse oscillator algebra[
ain, a

j
m

]
= n δijδn+m,0 (6.39)

after rescaling σ → σ/π. We have

P i
⊥ = σT ẋ

i
⊥ = σT

√
2α′
∑
n6=0

ain sin(nσ) e−inτ (6.40)
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and the canonical commutation rule follows

[xi⊥(τ, σ), P j
⊥(τ, σ′)] = iσT2α′

∑
n6=0

∑
m6=0

sin(nσ)e−inτ

n
sin(mσ′)e−imσ

′
[ain, a

j
m]

= iδNM(σ − σ′) (6.41)

The Nonzero-Mode delta function is defined as

δNM(σ − σ′) =
∑
n6=0

sin(nσ) sin(nσ′)/π . (6.42)

Thus ∫ T

0

dτ

∫ π

0

dσ H⊥ =
π

2

∫ T

0

dτ

∫ π

0

dσ (
1

σT
P 2 + σT (x′)2)

=
σT b

2T

2
+
πT

2

∑
n6=0

D⊥∑
i

aina
i
−n (6.43)

We note that

< exp(−πT
2

∑
n6=0

D⊥∑
i

aina
i
−n) > = < exp{−πT

2

∑
n>0

D⊥∑
i

(aina
i
−n + ai−na

i
n)} >

= < exp{−πT
2

∑
n>0

D⊥∑
i

(2ai−na
i
n + [ain, a

i
−n])} >

= < exp(−πTL0) > exp(−πT
2

∑
n>0

D⊥∑
i

n)

= < exp[−πT (L0 −
D⊥
24

)] > (6.44)

where

L0 =
∑
n>0

D⊥∑
i

ai−na
i
n (6.45)

is the temporal Virasoro generator. For arbitrary constant c, we have the
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formula

Tr [exp(−cL0)] =

D⊥∏
i

∞∏
n=1

∞∏
Ni=0

ecnNi

= (
∞∏
n=1

1

1− e−cn
)D⊥

=
∞∏
n=1

(1− e−cn)−D⊥ (6.46)

where we used < N1, · · · , ND⊥|ai−nain|N1, · · · , ND⊥ >= Ni. Combining these
results, we reproduce the transverse propagator (6.32)

K⊥ = Tr [exp(−
∫ T

0

dτ

∫ π

0

dσ H⊥)]

= exp(−σT
2
Tb2)× e

D⊥
24
πT

∞∏
n=1

(1− e−nπT )−D⊥

= exp(−σT
2
Tb2)η−D⊥(

iT

2
) (6.47)

Now, we derive the longitudinal propagator (Eq. 6.34). In Minkowski
space θ −→ −iχ, the twisted boundary condition (Eq. 6.21) at σ = 0 reads

sinh(
χ

2
)x0 + cosh(

χ

2
)x1 = 0 (6.48)

Apply ∂τ to both sides of (6.48) and note again that Tαβ = δS/δhαβ = 0.
Thus

sinh(
χ

2
)∂τx

0 + cosh(
χ

2
)∂τx

1 = 0

cosh(
χ

2
)∂σx

0 + sinh(
χ

2
)∂σx

1 = 0 (6.49)

Use T -duality along the direction x1

∂τx
1 = ∂σy

1 ∂σx
1 = ∂τy

1 (6.50)

and denote y0 .
= x0. The boundary condition is now given by

sinh(
χ

2
)∂τy

0 + cosh(
χ

2
)∂σy

1 = 0

cosh(
χ

2
)∂σy

0 + sinh(
χ

2
)∂τy

1 = 0 (6.51)
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To diagonalize the boundary conditions (Eq. 6.51), define

y± =
1√
2

(y0 ± y1) (6.52)

We then obtain

∂σy
± = ∓ tanh(

χ

2
)∂τy

± (σ = 0)

∂σy
± = ± tanh(

χ

2
)∂τy

± (σ = 1) (6.53)

The canonical form of y± reads [156, 157]

y± = Y ± + i
√

2α′a±0 φ
±
0 + i

√
2α′
∑
n>0

[a±nφ
±
n − (a±n )∗(φ±n )∗] (6.54)

where
φ±n (τ, σ) = (n± iχ

π
)−

1
2 e−i(n±i

χ
π

)τ cos[(n± iχ
π

)σ ∓ iχ
2

] (6.55)

It follows readily that

∂σφ
±
n

∂τφ±n
= −i tan[(n± iχ

π
)σ ∓ iχ

2
] =

{
∓ tanh(χ

2
), (σ = 0)

± tanh(χ
2
), (σ = 1)

(6.56)

which explicitly satisfy (6.53). Define the commutation relations

[a±n , (a
∓
m)∗] = δn,m (6.57)

where (a±0 )∗ = ±ia±0 . The conjugate momentum is then

p± = σT ẏ
∓

=
√

2α′σT (∓iχ
π

)a∓0 φ
∓
0 + σT

√
2α′
∑
n>0

[(n∓ iχ
π

)a∓nφ
∓
n + (n± iχ

π
)(a∓n )∗(φ∓n )∗]

(6.58)

The canonical commutation relation follows

[y±, p±] =
i

π

∑
n

{cos[(n± iχ
π

)σ ∓ iχ
2

] cos[(n± iχ
π

)σ ∓ iχ
2

]}

= iδ(σ − σ′) (6.59)
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After simple algebra, we obtain∫ T

0

dτ

∫ π

0

dσ HL

=
π

2

∫ T

0

dτ

∫ π

0

dσ [
1

σT
(p±p∓) + σT (∂σy

±)(∂σy
∓)]

=
T

2

∑
n>0

{(nπ − iχ)[a−n (a+
n )∗ + (a+

n )∗a−n ] + h.c.}+ χ(a−0 a
+
0 + a+

0 a
−
0 )

(6.60)

where n > 0 are the nonzero modes and a±0 are zero modes. The zero mode
propagator reads

K0L = Tr < exp[−
∫ T

0

dτ

∫ π

0

dσ H0L] >

= Tr < exp[−T
2
χ(a−0 a

+
0 + a+

0 a
−
0 )] >

= Tr < exp[−iTχ(a−0 )∗a+
0 − i

T

2
χ[a+

0 , (a
−
0 )∗]] >

= e−i
T
2
χ 1

1− e−iTχ

=
1

2i sin(χT
2

)
(6.61)

Comparing with (6.34), we reproduce the zero mode propagator. A repeat
of the same algebra yields

K/0L =
∞∏
n=1

1

2 sinh(T
2
(nπ + iχ))

1

2 sinh(T
2
(nπ − iχ))

(6.62)

which is the nonzero mode propagator. In sum, we confirm the string parti-
tion function (6.71) through the canonical approach.

6.2 Dipole-dipole scattering II

In another one of author’s paper [80], we model the soft pomeron in QCD
using a scalar Polyakov string with extrinsic curvature in the bottom-up
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approach of holographic QCD. The overall dipole-dipole scattering amplitude
in the soft pomeron kinematics is shown to be sensitive to the extrinsic
curvature of the string for finite momentum transfer. The characteristics of
the diffractive peak in the differential elastic pp scatterings are affected by a
small extrinsic curvature of the string.

Our approach here is similar to the previous section with the difference
that 2 +D⊥ = 5 and not 10 [71, 72, 73]. The analysis of the soft pomeron is
different from the (distorted) spin-2 graviton exchange in [62, 63, 64, 65] as
the graviton is massive in walled AdS5. It is essentially an effective approach
along the bottom-up scenario of AdS5 with metric

ds2 =
R2

z2

(
(dx0)2 + (dx1)2 + (dx⊥)2 + (dz)2

)
(6.63)

and 0 ≤ z ≤ z0. R is the size of the AdS space for z0 = ∞. Although the
dual field theory corresponding to this truncated version of AdS5 metric is not
QCD, it does capture some key aspects, i.e. conformality in the UV and con-
finement in the IR. A similar argument was made in [158] in calculating the
light-front wave-functions from the AdS/CFT holographic correspondence.

There are many indications from lattice simulations that flux tubes in
Yang-Mills theory can be described by an effective theory of strings of which
the Nambu-Goto (NG) action is a good approximation in leading order [159].
Polyakov has suggested that the NG action must include an effective contri-
bution that accounts for the extrinsic curvature of the world-sheet at next
order. The extrinsic curvature favors smooth string configurations and pe-
nalizes strings with high curvature. Specifically, the scalar action in Polyakov
form with extrinsic curvature is [160, 161]

S[x] =
σT
2

∫ T

0

dτ

∫ 1

0

dσ (ẋµẋµ + x′
µ
x′µ)

+
1

2κb2

∫ T

0

dτ

∫ 1

0

dσ (ẍµẍµ + 2ẋ′
µ
ẋ′µ + x′′

µ
x′′µ) (6.64)

We have set the gauge on the world-sheet to be hab = δab and used the nearly
flat metric gµν(z ≈ z0) = δµνR2/z2

0 at the bottom of AdS5 (long strings).
Here ẋ = ∂τx and x′ = ∂σx. The string tension is σT = 1/(2πα′) with α′ =
z2

0/
√
λ, and the effective and dimensionless extrinsic curvature is κ = ez2

0/R
2.

A similar calculation as before yields the closed string propagator K in
the form
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K = K0L ×KØL ×K⊥ ×Kghost (6.65)

K0L and KØL are the longitudinal zero and non-zero mode contributions
respectively, K⊥ is the transverse contribution, and Kghost is the ghost con-
tribution. Their explicit forms are

K0L = {
∞∏

m=−∞

[
σTT

2π
(θ2 +

4π2m2

T 2
) +

T

2κb2π
(θ2 +

4π2m2

T 2
)2]}−

1
2 (6.66)

KØL = {
∞∏
n=1

∏
s=±

∞∏
m=−∞

[
σTT

4π
(
4m2π2

T 2
+ (nπ + sθ)2)

+
T

4κb2π
(
4m2π2

T 2
+ (nπ + sθ)2)2]}−

1
2 (6.67)

K⊥ = {
∞∏
n=1

∞∏
m=−∞

[
σTT

4π
(
4π2m2

T 2
+ n2π2) +

T

4κb2π
(
4π2m2

T 2
+ n2π2)2]}−

D⊥
2

× exp[−σT
2
Tb2] (6.68)

Kghost =
∞∏
n=1

∞∏
m=−∞

[
σTT

4π
(
4m2π2

T 2
+ n2π2) +

T

4κb2π
(
4m2π2

T 2
+ n2π2)2] (6.69)

which are seen to reduce to those in [70, 74] for κ = ∞. The ghost contri-
bution beyond the scalar Polyakov action and for finite extrinsic curvature
is assumed so as to cancel the s = ±1 spurious non-zero modes contribution
from the longitudinal contribution for θ = 0. This assumption while proved
for κ =∞ is now assumed for finite κ.

The string of diverging products can be regularized by standard zeta
function regularization

sinh(πx) = πx

∞∏
m=1

(
1 +

x2

m2

)
(6.70)

in terms of which the string partition function (6.65) now reads
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K(T, κ) =
a2

α′
e−σT

2
Tb2

2 sinh
(
θT
2

)
 ∞∏
n=1

∏
s=±

sinh
(
nπT

2

)
sinh

(
T (nπ+sθ)

2

)
[ ∞∏

n=1

2 sinh

(
nπT

2

)]−D⊥

× 1

2 sinh
(
T
2

√
θ2 + σTκb2

) ∞∏
n=1

∏
s=±

1

2 sinh
[
T (nπ+sθ)

2

√
1 + σT κb2

(nπ+sθ)2

]
×2D⊥

[
2
∞∏
n=1

sinh

(
nπT

2

√
1 +

σTκb2

n2π2

)]−D⊥+2

(6.71)

with

a2 −→ a2
T +

a2
L

sin2( θ
2
)
→ a2

T (6.72)

as the longitudinal dipole size aL is suppressed at large χ after analytical
continuation. Note that for large transverse impact parameter b

∞∏
n=1

∏
s=±

1

2 sinh
(
T (nπ+sθ)

2

√
1 + σT κb2

(nπ+sθ)2

)
≈ exp

[
−
∞∑
n=1

∑
s=±

Tb
√
κσT

2

(
1 +

1

2

(nπ + sθ)2

σTκb2
+ · · ·

)]

≈ exp

(
−ζ(0)Tb

√
κσT

√
1 +

θ2

σTκb2

)

= exp

(
T

2

√
σTκb2 + θ2

)
(6.73)

and

∞∏
n=1

2 sinh

(
nπT

2

√
1 +

σTκb2

n2π2

)

≈ exp

[
∞∑
n=1

Tb
√
κσT

2

(
1 +

1

2

n2π2

σTκb2
+ · · ·

)]

= exp

(
−
Tb
√
κσT

4

)
(6.74)
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where we used ζ(−2n) = 0 (n = 1, 2, 3, · · · ). Thus (6.71) simplifies to

K(T, κ) ≈ KF(T ) exp

[
(D⊥ − 2)

4
Tb
√
κσT

]
(6.75)

with KF(T ) the closed string propagator without the extrinsic curvature κ,

KF(T ) =
a2

α′
e−

σT
2
Tb2

2 sinh
(
θT
2

) ∞∏
n=1

∏
s=±

sinh
(
nπT

2

)
sinh

[
T (nπ+sθ)

2

] [ ∞∏
n=1

2 sinh

(
nπT

2

)]−D⊥
(6.76)

The resulting (6.75) is rather similar to the one derived in one-loop in [161]
for a large and static Wilson loop. We now detail its impact on the scattering
of two twisted dipoles with the soft Pomeron kinematics.

Now we can analytically continue θ −→ −iχ and then obtain the twisted
Wilson-loop correlator

WW =
g2
sa

2

4α′

∞∑
k=1

(−1)k

k
e−k

πσT b2

χ η−D⊥(
ikπ

χ
) exp

[
(D⊥ − 2)kπ

2χ
b
√
κσT

]
(6.77)

where η(τ) is Dedekind eta function and η(ix) = η(i/x)/
√
x [70, 74]

η−D⊥(
ikπ

χ
) = (

kπ

χ
)
D⊥

2 e
χD⊥
12k

∞∏
n=1

(1− exp[−2nχ

k
])−D⊥

= (
kπ

χ
)
D⊥

2 e
χD⊥
12k

∞∑
n=0

d(n)e−n
2χ
k (6.78)

In momentum space, the scattering amplitude is

1

−2is
TDD(χ, q) ≈

∫
d2b eiq⊥·b〈WW〉

≈ π2g2
sa

2

2

∞∑
n=0

∞∑
k=1

d(n)
(−1)k

k

(
kπ

χ

)D⊥−2

2

× exp

(
χ
D⊥
12k
− χ2n

k
− χ q2

⊥
4σTkπ

+
√
κ
D⊥ − 2

4

|q⊥|√
σT

)
(6.79)
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where we used χ ≈ ln s for large s. Recall that the sum over k runs over
the N-ality of the gauge group which is up to [Nc/2] = ∞ in the AdS/CFT
correspondence [74]. For QCD Nc = 3 and [3/2] = 1 which means only the
k = 1 term contributes to the scattering of two dipoles in the fundamental
representation of SU(Nc). The effect of the extrinsic curvature is a momen-
tum dependent contribution to the exponent that is large but sub-leading at
large χ.

6.3 pp scattering

For fixed impact parameter, 〈WW〉 is the elastic amplitude of a dipole of
size a onto a fixed dipole a′ = a, both of which are fixed in the UV or on the
boundary. In general, the dipole size in a given hadron, say p or p̄ is scale
dependent and identified with the holographic direction i.e. a→ z = z0e

−u(z)

and a′ → z′ = z0e
−u′(z′) with 0 < u, u′ <∞ [72]. With this in mind the elastic

scattering amplitude for pp scattering p1p2 → p1p2 reads in general

Tpp(χ,b) =

∫ ∞
0

du

∫ ∞
0

du′ ψ∗1(u)ψ∗2(u′)TDD (χ,b, u, u′)ψ1(u)ψ2(u′) (6.80)

In our case |ψ1,2(u, u′)|2 ≡ Npδ(u, u′ − u(a)) for equal and fixed size dipoles
a and TDD is the dipole-dipole scattering amplitude. In the eikonal approxi-
mation the elastic differential cross section reads

dσ

dt
=

1

16πs2
|Tpp(χ, q)|2

=
1

4π

∣∣∣∣i ∫ db2

∫
du

∫
du′ eiq⊥·b|ψ1(u)|2|ψ2(u′)|2

(
1− eWW

)∣∣∣∣2
. (6.81)

An optimal analysis of the available elastic differential pp data follows by
setting: D⊥ = 3, Nc = 3, λ = g2Nc = 9.4, κg = 4π gs/g

2 = 2.85, z0 = R =
0.4 fm, Np = 1.5 and a = 0.25 fm with a fixed rapidity interval χ = 6. This
parameter set is overall consistent with the one used in [72] for the analysis
of the DIS data. The results are displayed in Fig 6.2 and compared to the
elastic pp data for

√
s = 30.7, 44.7, 52.8 GeV from [162]. The solid curve is for
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√
s [GeV] t [GeV2]

B(t) [GeV−2] B(t) [GeV−2]
Experimental Data [162] e = 0 e = 0.002

30.7 0.015 - 0.055 13.0± 0.7 8.4 8.5
44.7 0.03 - 0.15 12.9± 0.4 8.4 8.5
52.8 0.04 - 0.16 13.0± 0.3 8.5 8.5

Table 6.1: Slope parameter B(t) for the elastic differential cross section.

no extrinsic curvature e = κ = 0 and the dashed curve is for e = κ = 0.002.
The slope parameter B(t) for the elastic differential cross section

B(t) =
d

dt

(
ln

(
dσ

dt

))
(6.82)

is tabulated in Table-6.1.
While B(t) does not change with a small change in the extrinsic curvature

e, Fig 6.2 shows that the depth and somehow the position of the diffractive
peak are affected by a small extrinsic curvature for a stringy description
of the pomeron. The shaded region illustrates a possible range of extrinsic
curvatures that are compatible with the measured diffractive peak.
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Figure 6.2: Elastic differential pp cross section: solid curve stringy pomeron
with no extrinsic curvature κ = e = 0; dashed curve with κ = e = 0.002; the
data is from [8].

While a more exhaustive analysis of the parameter space together with
a better description of the dipole-dipole scattering amplitude at larger |t|
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are needed, our estimates show an interesting interplay between the char-
acteristics of the diffractive peak and the extrinsic curvature of the stringy
pomeron. Is this expected within the range of our analysis? To answer
this question, we recall that in dipole-dipole scattering the use of the lead-
ing scalar Polyakov action (first term in (6.64)) is justified for large im-
pact parameters b, when the induced Unruh temperature 1/β = 2πb/χ on
the string world-sheet is small in comparison to the Hagedorn temperature
1/βH =

√
6/(D⊥α′)/2π [115, 75, 74, 163]

β

βH
≡ 2πb

χβH
>

1√
2

(6.83)

with the string length
√
α′ = ls ≈ 0.1 fm. For the above choice of parame-

ters, this implies that b > 4ls/
√

2 ≈ 0.28 fm which puts the validity range
at
√
−t ≈ 1/b ≈ 0.7 GeV. The inclusion of the extrinsic curvature (second

term in (6.64)) extends the validity range to smaller b or larger
√
−t. Our

numerical analysis shows that these corrections are small with the exception
of the region near the diffractive peak or

√
−t ≈ 1 GeV. Clearly, next to

next to leading corrections in the string effective action as discussed in [164]
maybe needed to firm up the validity of this observation. Their analysis goes
beyond the scope of this work. Finally, we note that if we were to relax the
flat space approximation, the validity range can be somehow increased, as
the effects of curvature on the stringy part of the dipole-dipole scattering can
be schematically captured through an effective reduction in the transverse
dimension D⊥ = 3 → D⊥(λ) < 3 [71, 72, 73, 75, 115, 76]. Thus, an effec-
tive increase in the Hagedorn temperature and a slightly lower bound on b
through (6.83).

6.4 Static and stringy dipole-dipole interac-

tion

At the end of this chapter, we detail the role of the extrinsic curvature on
the correlator of two static but untwisted Wilson loops with θ = 0, i.e. the
interaction between two static dipoles. Instead of (6.25) we now have the
mode decomposition
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x0(τ, σ) =
∞∑

m=−∞

∞∑
n=1

x0
m,n exp(i2πm

τ

T
) cos(πnσ) +X +

P

σT
τ

x1(τ, σ) =
∞∑

m=−∞

∞∑
n=1

x1
m,n exp(i2πm

τ

T
) sin(πnσ)

x⊥(τ, σ) = (σ − 1

2
)b⊥ +

∞∑
m=−∞

∞∑
n=1

x⊥m,n exp(i2πm
τ

T
) sin(πnσ) (6.84)

with P the number of windings in the temporal direction. The exchanged
closed string is assumed to be infinitely thin in this case in the absence of
the boosting kinematics for the two scattering dipoles in the text. This
approximation is justified in the final result (6.91-6.93) below. With this in
mind, a repeat of the algebra above, yields the string partition function

K(T, κ) = KF(T ) exp

(
D⊥
4
Tb
√
κσT

)
(6.85)

with KF(T ) the string propagator propagator without the extrinsic curvature
in 6.64

KF(T ) =
a2

α′
exp

(
−σT

2
Tb2 − TP 2

2σT

)[ ∞∏
n=1

2 sinh

(
nπT

2

)]−D⊥
(6.86)

In comparing to the result in [161], we note the occurrence of the same zero-
point energy (one loop)

Enon
0 = −D⊥

4

√
σTκ (6.87)

This is to be compared with our result (6.75) for the twisted dipoles, and
shows the commonality between the untwisted and large Wilson loop and
the twisted and far Wilson loops.

Now, we also notice that in our case

x0(τ + T, σ) = x0(τ, σ) +
P

σT
T (6.88)

Thus P = cW with W = 0,±1,±2, ... with W the winding number and c a
constant to be interpreted below. The propagators with different windings
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can be re-summed using the Poisson summation formula

∞∑
W=−∞

K(T, κ) =
∞∑

W=−∞

a2

α′
exp

(
−σT

2
Tb2 −W 2 Tc

2

2σT
+
D⊥
4
Tb
√
κσT

)

×

[
∞∏
n=1

2 sinh

(
nπT

2

)]−D⊥
=

√
2πσT
Tc2

a2

α′

∞∑
k=−∞

exp

[
−σT

2
Tb2

(
1− D⊥

√
κ

2b
√
σT

)
− k2 2π2σT

Tc2

]
×η−D⊥

(
i
T

2

)
(6.89)

where η(τ) is Dedekind eta function [70, 74]

η(ix) = η(i/x)/
√
x . (6.90)

Obtain

WW =
g2
sa

2

4α′

√
πσT
|c|

∞∑
k=−∞

∞∑
n=0

d(n)

∫ ∞
0

dT

(
T

2

)D⊥−3

2

× exp
[
− T

2
σT b

2

(
1− D⊥

√
κ

2b
√
σT

)
− 2

T
k2π

2σT
c2

(
1 +

2nπc2

k2π2σT
− D⊥c

2

12k2πσT

)]

=
g2
sa

2√σT
α′

(
π

|c|

)D⊥
2

∞∑
k=−∞

∞∑
n=0

d(n)

1 + 2nπc2

k2π2σT
− D⊥c

2

12k2πσT

1− D⊥
√
κ

2b
√
σT


D⊥−1

4

×KD⊥−1

2

(
2bkπσT
|c|

√(
1− D⊥

√
κ

2b
√
σT

)(
1 +

2nπc2

k2π2σT
− D⊥c2

12k2πσT

))

×
(
k

b

)D⊥−1

2

(6.91)

which is the correlator between two static dipoles at large distances b �
D⊥
√
κ/4σT . The summation over k should be limited to k = [Nc/2] = 1

for dipoles in the fundamental representation of SU(Nc) [74]. d(n) is the
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canonical string density of states with d(0) = 1. The static dipole-dipole
potential following from the smooth string exchange, amounts to a tower of
scalar exchanges with masses (k = 1)

mn(b, c) =
2πσT
|c|

√(
1− D⊥

√
κ

2b
√
σT

)(
1 +

2nπc2

π2σT
− D⊥c2

12πσT

)
(6.92)

at large distances b � D⊥
√
κ/4σT . Without the extrinsic curvature and

setting |c| ≡ 2π/β, mn is the mass spectrum for closed strings of (arbitrary)
size β > βH ,

mn(∞, 2π/β) = σTβ

√
1− β2

H

β2
+

8πn

σTβ2
(6.93)

with the Hagedorn temperature βH =
√
πD⊥/3σT . Here 1/β = |c|/2π plays

the role of an effective temperature associated with the exchange of a closed
(periodic) string.
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Chapter 7

Stringy Pomeron II

7.1 At high resolution

We model the (holographic) QCD Pomeron as a long and stretched (fixed
impact parameter) transverse quantum string in flat D⊥ = 3 dimensions.
After discretizing the string in N string bits, we analyze its length, mass
and spatial distribution for large N or low-x (x = 1/N), and away from its
Hagedorn point.

7.1.1 Discretized free transverse string

Scattering of dipoles in the pomeron kinematics with a large rapidity interval
χ = ln(s/s0) and fixed impact parameter b is dominated by a closed t-channel
string exchange. In leading order in χ, the exchange amplitude can be shown
to be that of a free transverse string at fixed Unruh temperature T = a/2π
with the mean world-sheet acceleration a = χ/b [70, 71, 72, 73, 80]. For
long strings the Unruh temperature is low. These strings will be referred
to as cold strings. With this in mind, the free transverse string with fixed
end-points in flat D⊥ dimensions is characterized by

S⊥ =
σT
2

∫
dτ

∫ π

0

dσ
[
(ẋ⊥)2 + (x′⊥)

2
]

(7.1)

with the end-point condition

xi⊥(σ = 0, τ) = 0 xi⊥(σ = π, τ) = bi (7.2)
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The string tension is σT = 1/(2πα′) with α′ = l2s . For simplicity, we will
set 2ls ≡ 1 throughout and restore it by inspection when needed. The pur-
pose of the present work is to show how the concept of saturation at low-x
emerges from the string description and identify its key parameters in QCD
through holography. We will also study the general geometrical structure
of the transverse string, in particular its spatial size and deformation in the
cold or pomeron regime both for a free and interacting string. Initial ge-
ometrical string deformations maybe the source of large prompt azimuthal
deformations in the inelastic channels and for high multiplicity events.

The transverse free string (7.1) can be thought as a collection of N string
bits connected by identical strings [83, 82] and discretized as follows

L⊥ =
1

N

N∑
k=0

(
ẋi⊥(k)

)2 − 1

N

N∑
k=1

(
xi⊥(k)− xi⊥(k − 1)

π
N

)2

(7.3)

with S⊥ =
∫
dτL⊥. For N → ∞ the (7.1) is recovered. Using the mode

decompostion for the amplitudes xi⊥

xi⊥(k, τ) = bi
k

N
+

N−1∑
n=1

X i
n(τ) sin

(
nk

N
π

)
(k = 0, 1, · · · , N) (7.4)

and their conjugate momenta

pi⊥(k, τ) =
∂L
∂ẋi⊥

=
2

N

N−1∑
n=1

Ẋ i
n(τ) sin

(
nk

N
π

)
≡ 2

N

N−1∑
n=1

P i
n(τ) sin

(
nk

N
π

)
(7.5)

allow us to write the Hamiltonian

H⊥ =
N

4

N∑
k=0

(
pik
)2

+
1

N

N∑
k=1

(
xik − xik−1

π
N

)2

=
1

2

N−1∑
n=1

(
P i
n(τ)P i

n(τ) + Ω2
nX

i
n(τ)X i

n(τ)
)

+
b2

π2
(7.6)

with free harmonic oscillators of frequencies

Ωn =
2N

π
sin
( nπ

2N

)
(7.7)
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Each oscillator in (7.6) carries a small mass mN = 2/N and a large
compressibility kN = 4/(π2mN). The ground state of this dangling N-string
bit Hamiltonian is a product of Gaussians [83]

Ψ[X] =
∏
n,i

Ψ(X i
n) =

∏
n,i

(
Ωn

π

) 1
4

exp

[
−Ωn

2
(X i

n)2

]
(7.8)

leading to the ground state energy

〈H⊥〉 =
D⊥
2

N−1∑
n=1

Ωn +
b2

π2
=
D⊥
2

N

π

[
cot
( π

4N

)
− 1
]

+
b2

π2
(7.9)

The string transverse squared size is

R2
⊥ =

1

N

N∑
k=0

〈(
xik − bi

k

N

)2
〉

=
D⊥
4

N−1∑
n=1

1

Ωn

while its transverse squared mass is

M2
⊥ =

1

2
〈H⊥〉 =

D⊥
4

N−1∑
n=1

Ωn +
b2

2π2
=
D⊥
4

N

π

[
cot
( π

4N

)
− 1
]

+
b2

2π2
(7.10)

We note that back to the continuum Ωn → n with the ground state wave
functions

Ψ(X i
n) =

(n
π

) 1
4

exp
[
−n

2
(X i

n)2
]

(7.11)

so that

〈H⊥〉 ≈
2D⊥
π2

N2 +
b2

π2
(7.12)

The transverse squared radius of the string diverges logarithmically

R2
⊥ ≈

D⊥
4

ln(N) (7.13)

while its effectve squared mass diverges quadratically

M2
⊥ ≈

D⊥
π2

N2 +
b2

2π2
(7.14)
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with the number N of string bits.
A simple interpretation of N in relation to the holographic Pomeron fol-

lows from the diffusive equation for the tachyonic mode of the closed string
exchange in [71], (

∂χ −
D⊥
12

)
K =

α′

2
∆2
⊥K ≡ 1

8
∆2
⊥K (7.15)

where K is the quantum propagator for long closed strings in flat D⊥ + 2
space. The last equality follows after setting 2ls = 1 in our current conven-
tions. Thus the transverse diffusive size of the Pomeron is

R2
⊥ =

D⊥
4
χ ≡ D⊥

4
ln

(
Q2

s0

(
1

x
− 1

))
(7.16)

where the last equality uses the DIS kinematics [71]. Thus, the identification

R2
⊥ ≈

D⊥
4

ln

(
1

x

)
(7.17)

for small x, which leads to

N ≡ 1

x
(7.18)

as the string resolution as suggested earlier. The curvature of AdS5 causes
the leading Pomeron intercept D⊥/12 → D⊥(λ)/12 in leading order in λ =
g2
YMNc with D⊥(λ) < 3 [71, 72, 73]. The string diffusion is reduced to a

diffusion in a smaller effective dimension. We will return to this point below.
In its ground state, each of the discretized string bit coordinates X i

n is
normally distributed with probability |Ψ(X i

n)|2. This gives rise to a random
walk of the string bits along the chain in the transverse direction with fixed
end-points. This is also true for the continuum. In Fig. 7.1 and Fig. 7.2 we
show the string shape for a fixed distance b = 5 for two distinct resolutions
N = 10 and N = 50 respectively. The left figure is the string projected in the
transverse plane, while the right figure is the string in D⊥ = 3 dimensions.
Fig. 7.3 (left) show the string bits in the transverse plane for an ensemble of
200 strings at a resolution of N = 10 with fixed b = 5. Fig. 7.3 (right) shows
the same for 40 strings at a higher resolution N = 50.
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b=5, N=10

Figure 7.1: Free transverse string shape at a resolution x = 1/10 and b = 5.
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0.0

0.5
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xÞ �b

yÞ �b

b=5, N=50

Figure 7.2: Free transverse string shape at a resolution of x = 1/50 and
b = 5.
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b=5, N=10, 200 Strings

0.0 1.00.5 1.5-0.5

0.0
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-0.5

xÞ �b

yÞ �b

b=5, N=50, 40 Strings

Figure 7.3: Transverse string bit distributions: at x = 1/10 sampling 200
strings (Left) and at x = 1/50 sampling 40 strings (Right).

7.1.2 Self-interacting string in the mean-field approx-
imation

Attractive string self-interaction will cause the string to shrink transversely,
while repulsive self-interactions will cause the transverse string to grow out-
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ward, in a way pushing the string bits out. While string bits are held by
confinement which is harmonic in our discretized case, self-string interac-
tions are not well-known. We now postulate that for a sufficiently high
resolution or large N we may average the inter-bit interactions in the string
using two-body self-interactions

V = −g
2

2

∑
k 6=k′

∫
dD⊥+1p

(2π)D⊥+1

M(~xk)M(~yk)

p2 +m2
exp (i~p · (~xk − ~yk)) (7.19)

where M(~xk) is the mass of the discrete point at ~xk. Here m is a finite mass
in units of the string length that characterizes the range of the interaction.
Most of our numerical analyses to follow will be for m = 0. Results at finite
m may be mapped on m = 0 through a pertinent re-scaling of the bare
coupling g → g(m). Note that the static interaction involves the virtual
exchange in D⊥+ 1 as the holographic set up is in D⊥+ 2. The effect of the
curvature of AdS5 will be assessed phenomenologically below.

In holographic QCD m is typically the mass of the graviton in bulk which
is dual to the glueball mass on the boundary. In the large number of colors
limit, the value of m is large. However, for a finite number of colors and
flavors mixing between the glueballs and the flavor scalars lead to a much
lighter m [165, 166, 167]. Also, in a dense but cold gluon medium the glueball
mass maybe lighter. In our case we will consider m a parameter that could
be re-absorbed by redefining g. Throughout we will discuss in detail the
attractive self-interactions or g2 > 0. The repulsive case and results will only
be quoted. Note that our analysis of the string ground state is quantum so
that self-interactions do not result in a string collapse thanks to the quantum
uncertainty principle.

For large N , the bit coordinates xk and xk′ are approximately indepen-
dent. They are normally distributed with a probability distribution

ρ(~xk) =

(
1

Σk

√
2π

)D⊥
exp

(
−

(~xk −~b kN )2

2Σ2
k

)
(7.20)

The squared variance is

Σ2
k =

N−1∑
n=1

sin2
(
nk
N
π
)

2ωn
≈

N−1∑
n=1

1

4ωn
=
R2
⊥

D⊥
(7.21)
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We note that the normal frequencies ωn differ from the free frequencies Ωn.
They are defined variationally below. (7.19) is a highly simplified two-body
interaction as higher-order many-body interactions are also possible. We just
note that g ≈ 1/Nc justifying the dominance of the two-body interactions.

Using (7.20) we may define the bit mass distribution on the string in the
mean-field type approximation as

M(~xk) ≈
M⊥
N + 1

ρ(~xk) (7.22)

Inserting (7.20-7.22) into (7.19) yield

V = −g
2

2

∑
k 6=k′

(
M⊥
N + 1

)2 ∫
dD⊥+1p

(2π)D⊥+1
ρ(~xk)ρ(~yk′)

ei~p·(~xk−~yk)

p2 +m2
(7.23)

In the large N limit, we may average (7.23) over xk and yk to obtain in the
mean-field approximation

V ≡ −g2

2

∑
k 6=k′

(
M⊥
N + 1

)2 ∫
dD⊥xk

∫
dD⊥yk

∫
dD⊥+1p

(2π)D⊥+1
ρ(~xk)ρ(~yk′)

ei~p·(~xk−~yk)

p2 +m2

=
−g2

2

∑
k 6=k′

(
M⊥
N + 1

)2 ∫
dD⊥+1p

(2π)D⊥+1

1

p2 +m2

× exp

[
−p

2

2

(
Σ2
k + Σ2

k′

)
+ i~p ·~b(k − k′)

N

]
(7.24)

Thus

V ≈ −g
2

2
M2
⊥

∫
dD⊥+1p

(2π)D⊥+1

1

p2 +m2

∫ 1

0

dk

∫ 1

0

dk′ exp

[
−p2R

2
⊥

D⊥
+ i~p ·~b(k − k′)

]

= −g
2

2
M2
⊥

∫
dD⊥+1p

(2π)D⊥+1

1

p2 +m2
exp

(
−p2R

2
⊥

D⊥

) 4 sin2
(
~p·~b
2

)
(
~p ·~b

)2 (7.25)

For m = 0 and ~b→ 0, (7.23) simplifies
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V ≈ −C(D⊥) g2 M2
⊥

RD⊥−1
⊥

(7.26)

with C ≡ (1/
√

16πD⊥) (D⊥/4π)
D⊥

2 Γ(D⊥/2 − 1/2)/Γ(D⊥/2 + 1/2). In this
limit, the self-interactions between the string bits reduce to a Newtonian
potential acting as a mean-field approximation. The Newtonian constant
is identified as GN = g2D

(D⊥−1)/2
⊥ /(8π) through the bottom-up holographic

setting in D⊥ + 2 dimensions [71]. Thus,

g2 = 8πD
1−D⊥

2
⊥ lD⊥P = 8πD

1−D⊥
2

⊥ g2
s l
D⊥
s ≡ 23−D⊥πD

1−D⊥
2

⊥ g2
s (7.27)

where in the last equality we reset 2ls ≡ 1 as per our current conventions. Re-
call that the curvature effects of AdS5, which we are ignoring so far, amounts
to an effective D⊥ → D⊥(λ) in leading order on the transverse string prop-
agator as we noted earlier. This observation will be used below to estimate
the curvature corrections to the current analysis.

7.1.3 Variational analysis

For small perturbative interactions, we can modify the transverse Hamilto-
nian through

H⊥ = 2M2
⊥ + 2M⊥δ(2M⊥) ≡ 2M2

⊥ + 2M⊥ V (7.28)

H⊥ in Eq. 7.28 is difficult to analyze analytically in the presence of V . We
follow Thorn and Ogerman [82] and analyze it variationally by using a trial
Gaussian distribution for each string bit

Ψ(X i
n) =

(ωn
π

) 1
4

exp
[
−ωn

2
(X i

n)2
]

(7.29)

where the set of normal modes ωn will be defined below by minimizing the
energy of the string in the presence of V . In terms of (7.29) the scalar part
is

H0
⊥ =

D⊥
4

N−1∑
n=1

(
ωn +

Ω2
n

ωn

)
+
b2

π2
(7.30)
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and reduces to (7.10) when ωn = Ωn for V = 0. The effective mass of the
string is

M2
⊥[ωn] =

1

2
H0
⊥ =

D⊥
8

N−1∑
n=1

(
ωn +

Ω2
n

ωn

)
+

b2

2π2
(7.31)

The squared effective transverse radius is

R2
⊥[ωn] =

1

N

N∑
k=0

〈(
xik − bi

k

N

)2
〉

=
D⊥
4

N−1∑
n=1

1

ωn
(7.32)

With our conventions the total string energy is E[ωn] = 2M2
⊥ + 2M⊥V de-

pends on the set of variational parameters ωn which are fixed through the
minimum

δE

δωn

=
δM2

⊥
δωn

2− 3g2

2
M⊥

∫
dD⊥+1p

(2π)D⊥+1

1

p2 +m2
exp

(
−p2R

2
⊥

D⊥

) 4 sin2
(
~p·b
2

)
(
~p ·~b

)2


+

1

D⊥

δR2
⊥

δωn
g2M3

⊥

∫
dD⊥+1p

(2π)D⊥+1

p2

p2 +m2
exp

(
−p2R

2
⊥

D⊥

) 4 sin2
(
~p·b
2

)
(
~p ·~b

)2

= 0 . (7.33)

The mass and size variations can be made explicit

δM2
⊥

δωn
=
D⊥
8

(
1− Ω2

n

ω2
n

)
1

D⊥

δR2
⊥

δωn
= − 1

4ω2
n

(7.34)

Inserting (7.34) into (7.33) and rearranging yield

ω2
n = Ω2

n +

g2M3
⊥

D⊥

∫
dD⊥+1p

(2π)D⊥+1
p2

p2+m2 exp
(
−p2 R

2
⊥

D⊥

)
4 sin2( ~p·b2 )

(~p·~b)
2

1− 3g2

4
M⊥

∫
dD⊥+1p

(2π)D⊥+1
1

p2+m2 exp
(
−p2 R

2
⊥

D⊥

)
4 sin2( ~p·b2 )

(~p·~b)
2

(7.35)
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where bothM2
⊥[ωn] andR2

⊥[ωn] depend on the variational parameters through
(7.31-7.32). (7.35) define a highly non-linear set of equations for the varia-
tional parameters ωn defining the Gaussian ansatz (7.29). The generic solu-
tion is of the form ωn =

√
Ω2
n + η2 with

η2 =

g2M3
⊥

D⊥
Φ1

2D⊥π
D⊥+2

2 Γ(D⊥
2

)− 3g2

4
Φ2

, (7.36)

where

Φ1 ≡
∫ ∞

0

dp

∫ π

0

dφ (sinφ)D⊥−1 pD⊥+2

p2 +m2
exp

(
−p2R

2
⊥

D⊥

)
4 sin2

(
pb cosφ

2

)
p2b2 cos2 φ

Φ2 ≡
∫ ∞

0

dp

∫ π

0

dφ (sinφ)D⊥−1 pD⊥

p2 +m2
exp

(
−p2R

2
⊥

D⊥

)
4 sin2

(
pb cosφ

2

)
p2b2 cos2 φ

to be determined numerically. Note that for b = 0, (7.36) simplifies as

η2 =
M2
⊥

R2
⊥

A

B−C
, (7.37)

where

A =
1

2

g2M⊥

RD⊥−1
⊥

exp

(
m2R2

⊥
D⊥

)
Γ

(
3 +D⊥

2

)(
m2R2

⊥
D⊥

)D⊥+1

2

×Γ

(
−1 +D⊥

2
,
m2R2

D⊥

)
B = 2D⊥π

D⊥+1

2 (D⊥)
1−D⊥

2 Γ(
D⊥ + 1

2
)

C =
3

8

g2M⊥

RD⊥−1
⊥

exp

(
m2R2

⊥
D⊥

)
Γ

(
1 +D⊥

2

)(
m2R2

⊥
D⊥

)D⊥−1

2

×Γ

(
−D⊥ − 1

2
,
m2R2

D⊥

)
. (7.38)

For m = 0, Eq. 7.37 further simplifies as

η2 =
M2
⊥

R2
⊥

1
2
g2M⊥

R
D⊥−1

⊥

2D⊥π
D⊥+1

2 (D⊥)
1−D⊥

2 − 3
4(D⊥−1)

g2M⊥

R
D⊥−1

⊥

(7.39)
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Note that for b 6= 0, (7.36) simplifies as

η2 =
M2
⊥
b2

4
D⊥

g2M⊥
bD⊥−1 I[0]

2D⊥π
D⊥+2

2 Γ(D⊥+1
2

)− 3 g2M⊥
bD⊥−1 I[2]

, (7.40)

where

I[a] ≡
∫ ∞

0

dx

∫ π

0

dφ (sinφ)D⊥−3 tan2 φ
xD⊥−a

x2 +m2b2

× exp

(
− x2

D⊥

R2
⊥
b2

)
sin2

(
x cosφ

2

)
. (7.41)

The repulsion will cause the string bits to expand. A rerun of the precedent
arguments yields now ωn =

√
Ω2
n − η2 with

η2 =
M2
⊥
b2

4
D⊥

g̃2M⊥
bD⊥−1 I[0]

2D⊥π
D⊥+2

2 Γ(D⊥+1
2

) + 3 g̃2M⊥
bD⊥−1 I[2]

(7.42)

The variational analysis will be now carried numerically for both the attrac-
tive and repulsive string interaction in the mean-field approximation.

7.1.4 Numerical results

The Gaussian variation ansatz (7.29) can be used to define a variational
probability distribution |Ψ(X i

n)|2 for the string amplitudes X i
n in the normal

mode decomposition (7.54). Each string bit undergoes a Gaussian random
walk which is free for g = 0 but constrained by the interaction through ωn
for g 6= 0. In Fig. 7.4 we show the spatial geometry of our discretized strings
in D⊥ = 3 with a resolution N = 200 for the attractive interaction g = 0.3,
no interaction and repulsive interaction g̃ = 0.3. The string is stretched with
b = 5. In Fig. 7.5 we show the transverse distribution of the string bits for
an ensemble consisting of 40 stretched strings. The string bits are the dots
and we have left out the string connection for a better visualization. The
resolution is N = 1/x = 200. The attractive configurations are denser along
b, while the repulsive configurations are spread out of b.

In Fig. 7.6 we show the growth of the transverse radius as measured by
(7.32) versus the resolution N for different strengths of the attractive forces
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Figure 7.4: Attractive interaction: g = 0.3 (Left). No interaction: g =
g̃ = 0 (Center). Repulsive interaction: g̃ = 0.3 (Right).

-0.5 0.5 1.5

0

1

-1

xÞ �b

yÞ �b

g=0.3, N=200, 40 Strings

-0.5 0.5 1.5

0

1

-1

xÞ �b

yÞ �b

g
�
�g=0, N=200, 40 Strings

-0.5 0.5 1.5

0

1

-1

xÞ �b

yÞ �b

g
�
=0.1, N=200, 40 Strings

Figure 7.5: Attractive interaction: g = 0.3 (Left). No interaction: g =
g̃ = 0 (Center). Repulsive interaction: g̃ = 0.1 (Right).

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ æ

æ æ
æ æ

æ æ

á

á

á

á
á
á
á á
á á á á á á á á á á á á

í

í

í
í
í í í í í í í í í í í í í í í í

ó

ó

ó
ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó ó

50 100 150 200 250
1.4

1.6

1.8

2.0

2.2

N

RÞ

g=0.0

g=0.1

g=0.2

g=0.3

æ
æ æ

æ æ æ
æ æ æ æ æ

æ æ æ æ æ æ æ æ æ

á
á á

á á á
á á á

á á
á
á
á
á
á
á
á
á
á

í
í í

í í
í
í
í
í
í
í
í
í
í
í
í
í
í
í
í

ó
ó
ó
ó
ó
ó

ó

ó

ó

ó
ó
ó
ó
ó
ó
ó
ó
ó
ó
ó

50 100 150 200 250
1

2

3

4

5

6

7

N

RÞ

g
�
=0.0

g
�
=0.1

g
�
=0.2

g
�
=0.3

Figure 7.6: Attractive interaction: g = 0.1, 0.2, 0.3 (Left). Repulsive
interaction: g̃ = 0.1, 0.2, 0.3 (Right).

(left) and repulsive forces (right). For comparison, we also show the full
length of the string
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L ≡
N∑
k=1

√(
xik − xik−1

)2
(7.43)

The analogue change of the total length of the string with the resolution
as defined in (7.43) and the mass of the string as defined in (7.31) are also
shown in Fig. 7.7 and Fig. 7.8. While the length and mass scale linearly with
N whatever the interaction, the transverse size of the string bit distribution
shows sensitivity to N . For g = g̃ = 0 the transverse radius grows logarith-
mically as expected. As the attraction is switched on, the transverse radius
asymptotes a constant about the string length. In contrast, as the repulsion
is switched on, the transverse radius asymptotes a linear rise with the reso-
lution as also noted in [82] in their non-relativistic string bit models with a
variety of repulsive string interactions of different ranges. This supports our
earlier observation that at large resolution N the mean-field approximation
is generic.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

á
á
á

á
á
á
á
á
á
á

á
á
á
á

á
á
á
á

á
á

í
í

í
í

í
í
í
í
í
í

í
í
í

í
í
í
í
í

í
í

ó
ó
ó
ó
ó

ó
ó

ó
ó
ó
ó
ó
ó
ó
ó
ó
ó
ó
ó

ó

50 100 150 200

0

50

100

150

200

250

300

N

L

æ

á

í

ó

g=0.0
g=0.1
g=0.2
g=0.3

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

á
á
á
á
á
á
á
á
á

á
á
á
á
á

á
á
á
á

á
á

í
í
í
í
í

í
í
í
í
í
í

í
í
í
í
í

í
í

í
í

ó
ó
ó

ó
ó
ó
ó

ó
ó

ó
ó

ó
ó

ó
ó
ó
ó
ó
ó

ó

50 100 150 200

0

50

100

150

200

250

300

N

L

æ

á

í

ó

g
�
=0.0

g
�
=0.1

g
�
=0.2

g
�
=0.3

Figure 7.7: Attractive interaction: g = 0.1, 0.2, 0.3 (Left). Repulsive
interaction: g̃ = 0.1, 0.2, 0.3 (Right).

We note that all attractive string self-interactions result in transverse area
that are less than or equal to the Froissart bound. In contrast, all repulsive
string self-interactions result in a transverse area that upsets the Froissart
bound at asymptotic N or asymptotically low-x. Thus our observation that
saturation of the Bekenstein bound by the the string bits or wee gluons,
follows from weakly attractive string-self interactions in conformity with the
Froissart bound. We also note that our treatment of the interaction assumes
weak self-interactions, or the smallness of the ratio

2M⊥V

H0
⊥

=
V [g]

M⊥[g]
(7.44)
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Figure 7.8: Solid line is the analytical result in (7.14). Numeric data is
for attractive interaction: g = 0.1, 0.2, 0.3 (Left) and repulsive interaction:
g̃ = 0.1, 0.2, 0.3 (Right).

We show in Fig. 7.9 that this is indeed the case.
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Figure 7.9: Attractive interaction: g = 0.1, 0.2, 0.3 (Left). Repulsive
interaction: g̃ = 0.1, 0.2, 0.3 (Right).

7.1.5 Saturation

At low-x or largeN and b = 0, the transverse string density is high n⊥(0, N) ≈
N/RD⊥

⊥ as R⊥ shrinks under the effect of attractive self-interactions. For
0 < g < 0.3 our numerical results yield 1.2 < R⊥ < 1.6 in units where
2ls = 1, i.e. 2.4 < R⊥/ls < 3.2. To understand the effects of the self-
interaction on the string size configuration, we re-write schematically the
squared mass E = 2M2

⊥ + 2M⊥V of the self-interacting string in terms of N
and R⊥ dropping all numerical factors
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E ≈ N2 1

R2
⊥

+N2 R2
⊥

D2
⊥ln2N

−N2 g2N

RD⊥−1
⊥

(7.45)

The first contribution in (7.45) follows from the kinetic contribution in (7.6)
using the estimateN2p2

i and the uncertainty principle pi ≈ 1/R⊥. The second
contribution in (7.45) follows from the harmonic potential in (7.45) using
the estimate N2(∆xi)

2 with typically ∆xi ≈ R⊥/(D⊥lnN) in the diffusive
regime. The third contribution in (7.45) is the potential contribution 2M⊥ V
to the squared mass after using M⊥ ≈ N . Note that for g = 0 the minimum
of (7.45) yields the diffusive result R2

⊥ ≈ D⊥lnN whatever D⊥. For finite g,
the minimum of (7.45) depends on the dimensionality D⊥. A similar relation
to (7.45) was found to hold for classical strings at hi high temperature by
Damour and Veneziano [110] using different arguments.

Flat Space: D⊥ = 3

For our case D⊥ = 3 so the minimum of (7.45) occurs for

R⊥ ≈
(
1− g2N

)1/4 √
lnN (7.46)

For a relatively small attraction g2N ≈ 1, R⊥ in (7.122) undergoes a
numerical change from an increasingly large and diffusive string to a small
and fixed size string of about few string lengths. Fig. 7.10 (left) shows that
for g = 0.1 the transverse size flattens out at about R⊥ ∼ 1.85 ≡ 3.7ls ≈ 0.3
fm in the range 200 < N < 600. For fixed b the transverse area is ellipsoidal
with a transverse bit density
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n⊥(b,N) ≈ N

b (2R⊥)D⊥−1
≡ N

Nc

1

g2lD⊥s

g2Nc

b
ls

(
2R⊥
ls

)D⊥−1
(7.47)

The critical resolution xc = 1/Nc at which this change takes place can be
read from Fig. 7.10 (right)

xc =
1

Nc

≈ 0.12 × 0.177 = 1.77× 10−3 (7.48)

for g = 0.1 with D⊥ = 3 and b = 5 ≡ 10 ls ≈ 1 fm. We identify the onset
x ≈ xc as the pre-saturation phase of the string at high resolution whereby
its transverse area contracts to the string scale under weak self-attraction.
However, the transverse string bit density is still dilute at this resolution
since

n⊥(5, x) ≈ xc
x

1
π
3
l3p

1

10× (4× 1.85)2 × 0.177
=
xc
x

0.01

l3p
≡ xs

x

1

l3p
(7.49)

or n⊥(5, xc) ≈ 0.01/l3P . Recall that the Planck length lD⊥P = g2
s l
D⊥
s and that

g2 = (π/3)g2
s from (7.27). At the saturation point or x ≡ xs = 0.01xc ≈

10−5 the transverse density saturates the Bekenstein bound of one bit per
transverse Planck area or n⊥(5, xs) ≈ 1/l3P . We identify this point with the
saturation scale or black hole regime. A schematic rendering of the pre-
saturation and saturation phases in the low-x regime for b = 5 are shown
in Fig. 7.11.

Curved Space: D⊥(λ) < 3

An exact spatial analysis of the transverse string in curved AdS5 space is
beyond the scope of this work. In this section we will attempt to give simple
estimates of the effects of the curvature of AdS5 on some of our previous
results. For that we first note that an aspect of the curved geometry on the
Pomeron is to cause the string transverse degrees of freedom to effectively
feel a reduced transverse spatial dimension [71, 72, 73, 75]

D⊥ → D⊥(λ) = D⊥

(
1− 3(D⊥ − 1)2

2D⊥
√
λ

+O
(

1

λ

))
(7.50)
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Figure 7.11: Saturation (red), pre-saturation (blue) and diffusive (green)
regimes for a transverse string with decreasing resolution in D⊥ = 3.

with λ = g2
YMNc. Indeed, (7.117) causes the Pomeron intercept to move

from D⊥/12 = 0.25 to D⊥(λ ≈ 40) ≈ 0.17 closer to the empirical interceptt
of 0.08 [168]. A phenomenological way to implement this effect is to add
warping factors on the oscillators in (7.1) as we detail in the here and repeat
the numerical analysis.

We introduce the rescalings τ → λττ and b→ b̃, so that (7.1) now reads

S⊥ =
σT
2

∫
dτ

∫ π

0

dσ

[
1

λ2
τ

(ẋ⊥)2 + (x′⊥)
2

]
(7.51)

with the end-point condition

xi⊥(σ = 0, τ) = 0 xi⊥(σ = π, τ) = b̃i (7.52)

The Lagrangian for the discretized string is now

L⊥ =
1

λ2
τ

1

N

N∑
k=0

(
ẋi⊥(k)

)2 − 1

N

N∑
k=1

(
xi⊥(k)− xi⊥(k − 1)

π
N

)2

(7.53)

The mode decomposition for the amplitudes xi⊥ reads

xi⊥(k, τ) = λτ b̃
i k

N
+λτ

N−1∑
n=1

X i
n(τ) sin

(
nk

N
π

)
(k = 0, 1, · · · , N) (7.54)

and their conjugate momenta are
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pi⊥(k, τ) =
∂L
∂ẋi⊥

=
1

λτ

2

N

N−1∑
n=1

Ẋ i
n(τ) sin

(
nk

N
π

)
≡ 1

λτ

2

N

N−1∑
n=1

P i
n(τ) sin

(
nk

N
π

)
(7.55)

Thus, the Hamiltonian

H⊥ =
1

2

N−1∑
n=1

(
P i
n(τ)P i

n(τ) + λ2
τΩ

2
nX

i
n(τ)X i

n(τ)
)

+ λ2
τ

b̃2

π2
(7.56)

The ground state of this dangling N-string is a product of warped Gaussians

Ψ[λτ ;X] =
∏
n,i

Ψ(λτ ;X
i
n) =

∏
n,i

(
λτΩn

π

) 1
4

exp

[
−λτΩn

2
(X i

n)2

]
(7.57)

leading to the ground state energy

〈H⊥〉 =
D⊥λτ

2

N−1∑
n=1

Ωn +
λ2
τ b̃

2

π2
(7.58)

(7.9) is recovered for λτ = 1 as it should. If we set λτ = D⊥(λ)/D⊥ and
b̃ = b/λτ , (7.58) reads as

〈H⊥〉 =
D⊥(λ)

2

N−1∑
n=1

Ωn +
b2

π2
(7.59)

The string transverse squared size (7.10) is now

R2
⊥ =

1

N

N∑
k=0

〈(
xik − bi

k

N

)2
〉

=
D⊥(λ)

4

N−1∑
n=1

1

Ωn

≈ D⊥(λ)

4
ln(N) (7.60)

with a Pomeron intercept D⊥(λ)/12.
A simpler estimate follows from the substitution (7.117) in the interacting

part of our variational analysis. Indeed, the schematic estimate (7.45) shows
that the first contribution reflects on the uncertainty principle which probes
short distances and thus is not sensitive to the curvature of AdS5. The

111



second diffusive contribution is sensitive through D⊥ but will turn out to be
subleading as we will show below. The third contribution is long ranged and
senses the curvature of AdS5. Thus

E → N2 1

R2
⊥

+N2 R2
⊥

D2
⊥(λ) ln2N

−N2 g2N

R
D⊥(λ)−1
⊥

(7.61)

For very small values of g the first two contributions in (7.118) are dominant
and the string transverse size grows diffusively. The minimization of the
first two dominant contributions in this regime yields R2

⊥ ≈ D⊥(λ) lnN .
This is consistent with the growth of the Pomeron in curved AdS5 noted
in [71, 72, 73, 75]. However, for

g2 >
1

N
(lnN)

D⊥(λ)−3

2 (7.62)

the string size shrinks and the transverse string size follows from balancing
the first term with the last term due to the interaction. The balance between
the self-interaction and the uncertainty principle, yields a continuously de-
creasing transverse string size

R⊥ ≈
(

1

g2N

) 2
√
λ

3(D⊥−1)2

(7.63)

in units of the string length. A typical configuration of the string with N =
200 using the string interaction (7.23-7.25) with the effective substitution
D⊥ → D⊥(λ) is displayed in Fig. 7.12.

For λ = 40, D⊥ = 3 and g = 0.3, the scaling regime (7.120) is observed
to take place for our string samplings for Nc ≈ 400 as shown in Fig. 7.13. As
before, we identify the critical resolution xc = 1/Nc ≈ 0.0025 with the onset
of the scaling regime (7.120).

The transverse density for fixed impact parameter b is now

n⊥(b, x = 1/N) ≈ N

b (2R⊥)D⊥−1

≈
(

(0.3)2 × 400

x/xc

) 2
√
λ

3(D⊥−1)
+1(

ls
b

)(
1

2× 42.28

)D⊥−1
1

lD⊥p
.

(7.64)
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Figure 7.12: 3D configuration of the string with N = 200 and g = 0.3 using
D⊥(λ) in the interaction. See text.
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Figure 7.13: R⊥[g] for g = 0.1, 0.2, 0.3 (Left). R⊥[g = 0.3] and Eq. 7.120
(Right).

For a typical impact parameter of b = 5ls, it saturates the Bekenstein bound
for x ≡ xs ≈ 0.6xc (1/xs = Ns ≈ 633)

n⊥(5, xs ≈ 0.0016) ≈ 1

lD⊥p
(7.65)

In Fig. 7.14 we give a schematic rendering of the diffusive (green, pre-
saturation (blue) and saturation (red) regimes following from the effective
D⊥ → D⊥(λ) substitution.
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Figure 7.14: Saturation (red), pre-saturation (blue) and diffusive (green)
regimes for a transverse string with decreasing resolution in D⊥(λ). See
text.

Stringy Saturation

In flat D⊥ = 3 the transverse string size distribution remains diffusive or
logarithmic in N for small self-attractive interactions in the range 0 < g2N <
1. However for g2N ≈ 1−1/ln2N the transverse string size shrinks to a fixed
size comparable to the string length. The change sets in at weak coupling
with g2 ≈ 1/N , for which the transverse density at b = 0 is now

n⊥(0, x = 1/N) ≈ N

RD⊥
⊥
→ (g2N)

1

lD⊥p
(7.66)

after restoring the string length. The first transition occurs in a very narrow
range of g and thus appears to be first order by our analysis in (7.45-7.122).
It is a pre-saturation transition where the string size shrinks away from its
diffusive growth and remains about fixed at a relatively dilute transverse
string bit density. At much higher resolution or low-x a saturation transition
takes place when the transverse string bit distribution reaches the Bekenstein
bound of one string bit per Planck scale. This maybe intuitively understood
by noting that low-x follows from large boosts a situation analogous to falling
matter on a black-hole. For completeness, we note that self-repulsive strings
increase in sizes following the substitution g2 → −g2 in (7.66).

Using the estimates for the AdS curvature through the substitution (7.117)
yields
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n⊥(0, x = 1/N) ≈ N

RD⊥
⊥
−→

(
g2N

) 2
√
λD⊥

3(D⊥−1)2
1

lD⊥p
(7.67)

instead of (7.66). (7.67) reaches more smoothly the Bekenstein bound as the
string self-interaction satisfies g2N ≈ 1. Alternatively, the effective density
using the effective dimension D⊥(λ)

ñ⊥(0, x = 1/N) ≈ N

R
D⊥(λ)
⊥

→
(
g2N

) 2
√
λD⊥(λ)

3(D⊥−1)2
+
D⊥(λ)

D⊥

(
1

x

) 3(D⊥−1)2

2D⊥
√
λ 1

l
D⊥(λ)
p

(7.68)
is seen to increase beyond the Bekenstein bound as the string self-interaction
reaches g2N ≈ 1. There is no black-hole to saturate in fractional dimension.

Relation to Saturation in DIS

The present observations on stringy saturation are consistent with the argu-
ments presented in [71, 72, 73] whereby the stringy but eikonalized dipole-
dipole cross section was found to saturate in the impact parameter space
when g2

s l
D⊥
s n⊥ ≡ lD⊥P n⊥ ≈ 1 (see their Eq. 47). Although the relationship

between the string coupling and the gauge coupling depends on the holo-
graphic extension of QCD used, for the generic model of AdS5 with a wall
gs ≈ C g2

YM/4π ≡ C αs (C = 1 for AdS5 without a wall). Our numerical
analysis puts gs ≈ 0.1− 0.3.

The 3-dimensional density n⊥ was physically interpreted in [71, 72, 73] as
the number of wee dipoles per unit transverse 2-dimensional space per unit
dipole size z along the holographic direction. The latter enforces hyperbolic
evolution of the dipole size through the AdS5 metric (with a wall). At sat-
uration zs ≈ 1/Qs. The transverse 2-dimensional density is then defined as
Q2
s ≡ zsn⊥.

For curved AdS5, the Pomeron intercept is D⊥(λ ≈ 40)/12 ≈= 0.17, and

(7.67) at saturation gives lsQs ≈ ls/lp ≈ 1/x
1
3 . This is to be compared with

lsQ
GW
s ≈ ls/lp ≈ 1/x0.144 obtained empirically by Golec-Wustoff [169, 170],

and lsQ
SZ
s ≈ ls/lp ≈ 1/x0.114 obtained by Stoffers and one of us [71, 72, 73].

For curved D⊥(λ), (7.68) yields at saturation

lpQs(λ) ≈
(

1

x

) 3(D⊥−1)2

2D⊥
√
λD⊥(λ)

→
(

1

x

)0.155

(7.69)
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using D⊥ = 3 and λ ≈ 40 [71, 72, 73]. (7.69) is overall consistent with the
full AdS5 curved analysis carried in [71, 72, 73], and remarkably close to the
empirical result [169, 170].

The saturation of the Bekenstein bound maybe viewed as the string dual
to the gluon saturation description in the color glass condensate model for
fixed impact parameter using the Pomeron or string slope as a scale [171, 172].
The large string bit density (7.66) may upset the integrity of the string. Per-
haps a more appropriate description is in terms of a fluid of string bits.
However, three generic stringy ingredients need to be retained: 1) the string
provides for a key property of the wee partons namely their transverse (Gri-
bov) diffusion with a diffusion constant D = l2s/2 set by the string length;
2) the exponential rise in the string density of states with its mass, pro-
vides for the most efficient mechanism to scramble information and reach
the Bekenstein bound and thus saturation; 3) the self-interacting string in
the mean-field approximation maybe the dual of a Pomeron branching into
multiple Pomerons or fan-diagrams in Reggeon calculus [173].

7.1.6 Angular deformations

The fluctuating string with fixed end-points exhibit azimuthal deformations
in the transverse plane that can be characterized by the azimuthal mo-
ment [174, 165]

εn =
1
N

∑N
i e

inφi
(
r⊥i
)n

rn⊥
(7.70)

where

rn⊥ =
1

N

N∑
i

(
r⊥i
)n

(7.71)

with φ the azimuthal angle as measured from the impact parameter line along
b. r⊥ is the averaged size of the string on the transverse plane. For b = 0,
we have 〈r2

⊥〉 /2 = R2
⊥/D⊥, where 〈· · · 〉 is the average over string ensembles.

Specifically, define x ≡ xi=1
⊥ and y ≡ xi=2

⊥ in the transverse plane, where x is
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parallel to the impact parameter b and y perpendicular to it,

x⊥(k, τ) =
N−1∑
n=1

Xn(τ) sin

(
nk

N
π

)
+ b

k

N

y⊥(k, τ) =
N−1∑
n=1

Yn(τ) sin

(
nk

N
π

)
(7.72)

Both Xn, Yn are normally distributed with width 1/2ωn (7.29) or

Xn ∼ N
(

0,
1

2ωn

)
Yn ∼ N

(
0,

1

2ωn

)
(7.73)

satisfy the normal distributions. We obtain

x⊥(k, τ) ∼ N
(
b
k

N
,Σ2

k

)
y⊥(k, τ) ∼ N

(
0,Σ2

k

)
(7.74)

where

Σ2
k =

N−1∑
n=1

sin2
(
nk
N
π
)

2ωn
(7.75)

For large N , each of the transverse coordinates x⊥(k, τ) are almost inde-
pendent. The azimuthal moments averaged over the independent transverse
coordinates read

〈εn〉 =

(
1

〈rnT 〉
1

N + 1
+

i

〈rnT 〉
1

N + 1

]
×

N−1∑
k=1

∫ ∞
0

dr

∫ 2π

0

dφrn+1 cos(nφ)ρ

(
r cosφ+

b

2
, r sinφ, k

)
+

1

〈rnT 〉
1 + (−1)n

N + 1

(
b

2

)n
, (7.76)

where

〈rnT 〉 =
1

N + 1

N−1∑
k=1

∫ ∞
0

dr

∫ 2π

0

dφ rn+1 ρ

(
r cosφ+

b

2
, r sinφ, k

)
+

2

N + 1

(
b

2

)n
(7.77)
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and

ρ(x, y, k) =
1

2π

1

Σ2
k

exp

[
−
(
x− b k

N

)2
+ y2

2Σ2
k

]
(7.78)

The Gaussian integrations can be done leading to

〈εn〉 =
bn

〈rnT 〉

[
1

N + 1

N−1∑
k=1

(
1

2
− k

N

)n
+

1 + (−1)n

N + 1

(
1

2

)n]
(7.79)

Note that the moments 〈εn〉 are real and that all the odd moments vanish,
i.e. 〈εn〉 = 0 for odd n. Simple algebra yields

〈r2
T 〉
b2

=
1

N + 1

N−1∑
k=1

(
1

2
− k

N

)2

+
2

N + 1

N−1∑
k=1

Σ2
k

b2
+

2

N + 1

(
1

2

)2

(7.80)

and

〈r4
T 〉
b4

=
1

N + 1

N−1∑
k=1

(
1

2
− k

N

)4

+
8

N + 1

N−1∑
k=1

Σ2
k

b2

(
1

2
− k

N

)2

+
8

N + 1

N−1∑
k=1

Σ4
k

b4
+

2

N + 1

(
1

2

)4

(7.81)

In the limit N −→∞, the moments simplify

Σ2
k̃
≈

N∑
n=1

1

4n
=
R2
⊥

D⊥
(7.82)

so that (for even n)

〈εn〉 ≈
bn

〈rnT 〉

∫ 1

0

dk̃

(
1

2
− k̃
)n

=
bn

〈rnT 〉
1

2n(1 + n)
(7.83)

〈r2
T 〉
b2
≈ 1

12
+

2

D⊥

R2
⊥
b2

(7.84)

〈r4
T 〉
b4
≈ 1

80
+

2

3

R2
⊥

b2D⊥
+ 8

R4
⊥

D2
⊥b

4
(7.85)
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For small b, we obtain

〈ε2〉 ≈
D⊥
24

b2

R2
⊥

(7.86)

〈ε4〉 ≈
D2
⊥

640

b4

R4
⊥

(7.87)

For general b, the numerical results of 〈ε2〉 and 〈ε4〉 are displayed in Fig. 7.15
and Fig. 7.16 respectively.

æ

æ

æ

æ

æ
æ
æ
æ
æ æ æ æ æ æ æ æ æ æ æ æ

á

á

á

á
á
á á á á á á á á á á á á á á á

í

í

í
í
í í í í í í í í í í í

í í í í í

ó

ó

ó

ó ó ó ó ó
ó ó ó ó

ó ó ó ó
ó ó ó ó

50 100 150 200

0.40

0.45

0.50

0.55

0.60

0.65

N

Xe2\

æ

á

í

ó

g=0.0
g=0.1
g=0.2
g=0.3

æ

æ
æ
æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

á

á
á
á á á á á á

á
á
á
á
á á á á á á á

í

í
í
í
í
í
í
í
í
í í í í í í í í í í í

ó

ó

ó

ó

ó

ó
ó
ó
ó ó ó ó ó ó ó ó ó ó ó ó

50 100 150 200
0.0

0.2

0.4

0.6

0.8

N

Xe2\

æ

á

í

ó

g
è
=0.0

g
è
=0.1

g
è
=0.2

g
è
=0.3

Figure 7.15: Attractive interaction: g = 0.1, 0.2, 0.3 (Left). Repulsive
interaction: g̃ = 0.1, 0.2, 0.3 (Right).
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Figure 7.16: Attractive interaction: g = 0.1, 0.2, 0.3 (Left). Repulsive
interaction: g̃ = 0.1, 0.2, 0.3 (Right).

To show the transverse cross correlations it is also useful to use the cross
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moments [174, 165]

(εn{2})2 =
〈
|εn|2

〉
(εn{4})4 = −

〈
|εn|4

〉
+ 2

〈
|εn|2

〉2

(εn{6})6 =
1

4

[〈
|εn|6

〉
− 9

〈
|εn|4

〉 〈
|εn|2

〉
+ 12

〈
|εn|2

〉3
]

(εn{8})8 =
1

33

[
−
〈
|εn|8

〉
+ 16

〈
|εn|6

〉 〈
|εn|2

〉
+ 18

〈
|εn|4

〉2

−144
〈
|εn|4

〉 〈
|εn|2

〉2
+ 144

〈
|εn|2

〉4 ]
. (7.88)

To characterize the initial azimuthal deformation of the string bits in
the transverse collision plane, we show in Fig. 7.17 the pdf distributions of
1000 randomly generated strings at a resolution of N = 200 with no self-
interactions g/g̃ = 0.
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Figure 7.17: 3D Histograms, 1000 random generated strings. N=200.

The pdf shown are for the distributions in ε2,3,4 respectively. We also
show in Fig. 7.18 the pdf distributions of 1000 randomly generated strings
at a resolution of N = 200 undergoing string bit attractions with g = 0.3 in
the mean-field approximation.

Note the strong dipole deformation in the leftmost figure. The same pdf
for the repulsive case with g̃ = 0.3 are shown in Fig. 7.19. The linear spread-
ing of the string bits with the resolution N causes the azimuthal deformations
to be relatively uniform.

For completeness we show the behavior of the cross moments with the
resolution for attractive, non-interacting and repulsive strings in Fig. 7.20,
Fig. 7.21 and Fig. 7.22 respectively by sampling 1000 times a single string
stretched with b = 5.

The attraction is set at g = 0.3 while the repulsion at g̃ = 0.3 for the
infinite range case with m = 0. Recall that the realistic case of a massive
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Figure 7.18: 3D Histograms, 1000 random generated strings. N=200. At-
tractive interaction g = 0.3.
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Figure 7.19: 3D Histograms, 1000 random generated strings. N=200. Re-
pulsive interaction g̃ = 0.3.
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Figure 7.20: Attractive interaction g = 0.3.

glueball or scalar mass m is amenable to m = 0 by appropriately decreasing
g or g̃. In a typical pp collision at collider energies, we expect to exchange
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Figure 7.21: Non-interacting g/g̃ = 0.
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Figure 7.22: Repulsive interaction g̃ = 0.3.

about 10 such long strings [71, 72, 73]. In Fig. 7.23, Fig. 7.24 and Fig. 7.25 we
show the same cross moments following from the exchange of 5 typical strings
stretched at b = 5 sampled 200 times for the attractive, non-interacting and
repulsive case respectively.

The case where 10 string are exchanged is shown in Fig. 7.26, Fig. 7.27
and Fig. 7.28 for the same arrangements of parameters with each 10 string
event sampled 100 times.

The critical moments for the pre-saturation coupling g ≈ 1/
√
N ≈ 0.01
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Figure 7.23: Attractive interaction g = 0.3.
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Figure 7.24: Non-interacting g/g̃ = 0.

are not much different from the g = 0 presented here. We note that εn{4} ≈
εn{6} ≈ εn{8} in agreement with suggestion made in [174]. The more string
exchanges, the denser and more symmetric the transverse string bit distri-
bution for a fixed resolution N , the smaller the cross moments. Fig. 7.27
should represent typical cross moments in pp collisions at collider energies
such as RHIC and LHC for minimum bias events. For the high multiplicity pp
and pA events reported at LHC hot string configurations near the Hagedorn
temperature are needed. They will be discussed in next subsection.
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Figure 7.25: Repulsive interaction g̃ = 0.3.
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Figure 7.26: Attractive interaction g = 0.3.

7.2 At Hagedorn point

We analyze the length, mass and spatial distribution of a discretized trans-
verse string in D⊥ dimensions with fixed end-points near its Hagedorn tem-
perature.
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Figure 7.27: Non-interacting g/g̃ = 0.
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Figure 7.28: Repulsive interaction g̃ = 0.3.

7.2.1 Free string at finite temperature

To describe the string close to its classical or Hagedorn point, we introduce
an effective temperature 1/β which is conjugate of the squared and normal
ordered mass operator [84, 85, 110],

: H⊥ :=
N−1∑
n=1

Ωn(ain)†ain +
b2

π2
(7.89)

125



with the standard commutators
[
ain, (a

i′

n′)
†] = δnn′δii′ . All expectation values

at finite 1/β will be carried using the density matrix e−β:H⊥:/Z⊥, with the
transverse partition function

Z⊥ =
〈
e−β:H⊥:

〉
= exp

(
−β b

2

π2

) D⊥∏
i=1

N−1∏
n=1

1

1− e−βΩn
(7.90)

This is a micro-canonical description of a single thermal string. In practical
terms, it corresponds to string bits X i

n normally distributed with

X i
n ∼ N

(
0,

1

Ωn

(
eβΩn − 1

)) (7.91)

The squared mass is then 2M2
⊥ ≡ −∂Z⊥/∂β or

2M2
⊥ = 〈〈 : H⊥ : 〉〉

= D⊥

N−1∑
n=1

Ωn

eβΩn − 1
+
b2

π2

−→ D⊥

β2

∫ ∞
β

dx
x

ex − 1
+
b2

π2

≈ D⊥
6

π2

β2 +
b2

π2
(7.92)

and its squared transverse size is

R2
⊥ ≡ 1

N

N∑
k=0

〈〈
:

(
xik − bi

k

N

)2

:

〉〉

=
D⊥
2

N−1∑
n=1

1

Ωn

1

eβΩn − 1

→ D⊥
2

∫ ∞
β

dx

x

1

ex − 1

≈ D⊥
2β

, (7.93)
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where 〈〈 · · · 〉〉 is the expectation value carried using the density matrix. The
effective entropy is

S⊥ = −β∂ lnZ⊥
∂β

+ lnZ⊥

= D⊥

N−1∑
n=1

[
βΩn

eβΩn − 1
− ln

(
1− e−βΩn

)]

→ D⊥
β

∫ ∞
β

dx

[
x

ex − 1
− ln

(
1− e−x

)]
≈ D⊥

3

π2

β
(7.94)

which can be recasted using the Hagedorn temperature 1/βH

S⊥ ≈ 2π

√
D⊥
6
M⊥ → 2π

√
D⊥α′

6
M⊥ ≡ βHM⊥ (7.95)

after re-instating the string unit with M⊥/ls →M⊥. Below the value of 1/β
will be fixed by fixing the mass or the entropy of the thermal string. We
note that for large 1/β the string behaves classically with dwarfed quantum
or zero point contributions. Hence the normal ordering. To make contact
with physical observables, we identify S⊥ with the prompt multiplicity and
approximate it with the final charge multiplicity Nch (upper bound). For a
single string exchange

S⊥ ≈
D⊥
3

π2

β
≈ 7.5Nch (7.96)

Throughout, high temperature means β � 1 and classical means Nβ �
1. Analytically, we will take N → ∞ and fix β � 1. Numerically, the
best we can do is set N = 500 which fixes the range β ≈ (0.1, 0.02), since
β ≤ 0.1 is small and Nβ ≥ 10 is large. For a single string this translates to
a charge multiplicity Nch in the range (13, 66). In Fig. 7.29 and Fig. 7.30 we
show a single string for a fixed distance b = 5 ≡ 10ls ≈ 1 fm with charge
multiplicity Nch = 13 and Nch = 66 respectively. The left figure is the string
projected in the transverse spatial plane, while the right figure is the string
in the holographic but flat D⊥ = 3 dimensions. The effects of the warping
in the holographic direction will be discussed below.
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b0
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-b

xÞ

yÞ

Nch=13, b=5

Figure 7.29: Streched string with fixed b = 5 = 10ls and multiplicity
Nch = 13 in the holographic D⊥ = 3 (left) and projected onto the spatial
2-dimensional transverse space (right).

0.5b-2.5b 3.5b

0

-3b

3b

xÞ

yÞ

Nch=66, b=5

Figure 7.30: Streched string with fixed b = 5 = 10ls and multiplicity
Nch = 66 in the holographic D⊥ = 3 (left) and projected onto the spatial
2-dimensional transverse space (right).

pp and pA scattering in the holographic context may involve more than
a single string exchange [75, 175, 72]. Multiple string exchanges involve
colder strings in their diffusive regime with a higher multiplicity. For 5 and
10 multiple string exchanges, the charge multiplicity Nch is in the range
(66, 329) and (132, 658) respectively. In Fig. 7.31 (left) we display 5 strings
with β = 0.1 or a charge multiplicity of Nch = 66. In Fig. 7.31 (right) we
display 10 strings with β = 0.1 or a charge multiplicity of Nch = 132.

Fig. 7.32 is the same as Fig. 7.31 but with β = 0.02 or Nch = 329 for 5
strings and Nch = 658 for 10 strings.
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Figure 7.31: 5 string shapes (left) with a total multiplicity Nch = 66, and
10 string shapes (right) with a total multiplicity Nch = 132. The string
end-points are fixed at b = 5 = 10 ls
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5 Strings, Nch=329, b=5
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10 Strings, Nch=658, b=5

Figure 7.32: 5 string shapes (left) with a total multiplicity Nch = 329, and
10 string shapes (right) with a total multiplicity Nch = 658. The string
end-points are fixed at b = 5 ≡ 10 ls

7.2.2 Thermal string with self interactions

We now follow our recent analysis for the cold string in [76] and explicit
the string self-interaction by assuming it to be dominated by the two-body
string bits interactions mediated by a static exchange in D⊥+ 2 dimensions.
Specifically,

V = −1

2
g2
∑
k 6=k′

∫
dD⊥+1p

(2π)D⊥+1

M(~xk)M(~xk′)

p2 +m2
exp (i~p · (~xk − ~xk′)) (7.97)
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where M(~xk) is the mass of the discrete point at ~xk. The exchange is generic
and is parameterized with an attractive coupling g and a mass m. In holo-
graphic QCD, the exchanged mass is that of the lowest scalar [165, 166, 167].
Throughout, we will set m = 0 as any finite m can be re-absorbed into a
re-definition of the coupling and use g as a parameter.

The interacting Hamiltonian is now H⊥ → H0
⊥ + 2M⊥V . The partition

function for the interacting string is now formally given by

Z =
〈
e−βH⊥

〉
=
〈
e−β(H

0
⊥+2M⊥V )

〉
(7.98)

where the averaging is carried using a complete set of free harmonic oscillators
with trial frequencies ωn instead of the free frequencies Ωn. This corresponds
to the interacting string bits X i

n normally distributed with

X i
n ∼ N

0,
1

ωn

[
e
β

2

(
ωn+

Ω2
n

ωn

)
− 1

]
 (7.99)

Variational Analysis

To estimate (7.98) we will use the Feynman variational principle [141, 176]

Z ≥ Z0 exp
(
−2βM⊥ 〈〈 V 〉〉

)
(7.100)

with

Z0 =
〈
e−βH

0
⊥

〉
= exp

(
−β b

2

π2

) D⊥∏
i=1

N−1∏
n=1

1

1− exp
[
−β

2

(
ωn + Ω2

n

ωn

)] (7.101)

In leading order in the interaction the squared mass and size of the interacting
string are given by

2M2
⊥ =

〈〈
H0
⊥
〉〉

=
D⊥
2

N−1∑
n=1

ωn + Ω2
n

ωn

exp
[
β

2

(
ωn + Ω2

n

ωn

)]
− 1

+
b2

π2
(7.102)
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R2
⊥ =

1

N

N∑
k=0

〈〈 (
xik − bi

k

N

)2
〉〉

=
D⊥
2

N−1∑
n=1

1

ωn

1

exp
[
β

2

(
ωn + Ω2

n

ωn

)]
− 1

(7.103)
The discretized string mass distribution M(~xk) −→ M⊥/N + 1 so that the
averaged pair-interaction reads

〈〈 V 〉〉 ≈ −g
2

2

M2
⊥

N2

∑
k 6=k′

∫
dD⊥+1p

(2π)D⊥+1

ei~p·
~b

(k−k′)
N

p2 +m2

× exp

(
− p2

2D⊥

〈〈 (
~xk − bi

k

N
− ~xk′ + bi

k′

N

)2
〉〉)

≈ −g
2

2

M2
⊥

N2

∑
k 6=k′

∫
dD⊥+1p

(2π)D⊥+1

ei~p·
~b

(k−k′)
N

p2 +m2

× exp

(
− p2

2D⊥

〈〈 (
~xk − bi

k

N

)2

+

(
~xk′ − bi

k′

N

)2
〉〉)

(7.104)

where we have exponentiated the averaging and then used the quadratic
nature of the distributions. Since the position of the string bits are normally
distributed, we can carry the averaging in the exponent explicitly. The result
is

〈〈 V 〉〉 ≈ −1

2
g2M

2
⊥

N2

∑
k 6=k′

∫
dD⊥+1p

(2π)D⊥+1

ei~p·
~b

(k−k′)
N

p2 +m2

× exp

−p
2

2

N−1∑
n=1

[
sin2

(
nk
N
π
)

+ sin2
(
nk′

N
π
)]

ωn

(
e
β

2

(
ωn+

Ω2
n

ωn

)
− 1

)


≈ −1

2
g2M2

⊥

∫
dD⊥+1p

(2π)D⊥+1

1

p2 +m2

4 sin2
(
~p·~b
2

)
(~p ·~b)2

exp

(
−p2R

2
⊥

D⊥

)
(7.105)
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We note that (7.104) is overall similar to the result established in [76], except
that now both M⊥, R⊥ are implicit functions of the effective temperature 1/β.
Inserting (7.105) back into (7.100) shows that for the interacting string the
free energy is bounded from below

F ≥ −g2M3
⊥

∫
dD⊥+1p

(2π)D⊥+1

1

p2 +m2

4 sin2
(
~p·~b
2

)
(~p ·~b)2

exp

(
−p2R

2
⊥

D⊥

)

+
D⊥
β

N−1∑
n=1

ln

(
1− exp

[
−
β

2

(
ωn +

Ω2
n

ωn

)])
+
b2

π2
. (7.106)

The bound in 7.106 is parametrized by the set of frequencies ωn which are
fixed variationally through

δF

δωn
≥ D⊥

2

(
1− Ω2

n

ω2
n

)
1

exp
[
β

2

(
ωn + Ω2

n

ωn

)]
− 1

−δM
2
⊥

δωn

3g2M⊥
2

∫
dD⊥+1p

(2π)D⊥+1

1

p2 +m2

4 sin2
(
~p·~b
2

)
(~p ·~b)2

exp

(
−p2R

2
⊥

D⊥

)

+

(
1

D⊥

δR2
⊥

δωn

)
g2M3

⊥

∫
dD⊥+1p

(2π)D⊥+1

p2

p2 +m2

4 sin2
(
~p·~b
2

)
(~p ·~b)2

exp

(
−p2R

2
⊥

D⊥

)
= 0

(7.107)

High Temperature Limit

To find the lower bound in (7.107) is in general involved. However, at high
temperature the contributions simplify

δM2
⊥

δωn
=

D⊥

(
1− Ω2

n

ω2
n

)
(

2 exp
[
β

2

(
ωn + Ω2
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− 1
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)]
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−
β

2

(
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n
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)
exp

[
β

2

(
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n
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(
1

β

)
(7.108)
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⊥
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≈ 2ωn

β (ω2
n + Ω2

n)2 . (7.109)

So in leading order in 1/β or close to the Hagedorn temperature, the lower
bound in (7.107) is reduced to finding ωn which are solutions to

δF

δωn
≈ D⊥

βωn

ω2
n − Ω2

n

ω2
n + Ω2

n

− 2ωn

β (ω2
n + Ω2

n)2 g
2M3
⊥

∫
dD⊥+1p

(2π)D⊥+1

p2

p2 +m2

4 sin2
(
~p·~b
2

)
(~p ·~b)2

exp

(
−p2R

2
⊥

D⊥

)
= 0 (7.110)

Thus ω2
n = η2 +

√
η4 + Ω4

n with

η2 =
g2M3

⊥
D⊥

∫
dD⊥+1p

(2π)D⊥+1

p2

p2 +m2

4 sin2
(
~p·~b
2

)
(~p ·~b)2

exp

(
−p2R

2
⊥

D⊥

)
(7.111)

Since M⊥, R⊥ in (7.111) involve ωn implicitly, the evaluation of η follows
iteratively using numerical analysis.

Numerical Results: D⊥ = 3

In Fig. 7.33 we show the string shape for an interacting string with fixed
end-points b = 5 = 10ls, an effective temperature parameter 1/β = 1/0.1 or
a charge multiplicity of Nch = 66, and a coupling g = 0.6. On the right the
string is displaced in D⊥ = 3 dimensions with a flat holographic direction.
On the left, we show the same string projected on the 2 transverse spatial
directions only. Fig. 7.34 is the same as Fig. 7.33 with the exchange of 5
strings and 10 strings with g = 0.6.

133



0.5b-1.5b 2.5b

0

-2b

2b

xÞ

yÞ

g=0.6, Nch=66, b=5

Figure 7.33: Interacting string with g = 0.6 and Nch = 66 for a separation
of b = 5 = 10ls in D⊥ = 3 (left) and projected onto the 2-spatial dimensions
(right).

0.5b-1.5b 2.5b

0

-2b

2b

xÞ

yÞ

5 Strings, g=0.6, Nch=329

0.5b-1.5b 2.5b

0

-2b

2b

xÞ

yÞ

10 Strings, g=0.6, Nch=658

Figure 7.34: 5 interacting strings with g = 0.6 and Nch = 329 for a separation
of b = 5 = 10ls in D⊥ = 3 (left) and the same for 10 interacting strings and
Nch = 658 (right).

In Fig. 7.35 (right) the single string mass versus the charge multiplic-
ity Nch following from (7.102) is shown for a string at high resolution with
N = 500 and different attractive couplings. In Fig. 7.35 (left) the transverse
size R⊥ versus

√
Nch following from (7.103) for the same string parameters.

We note that the attraction does not change the mass or entropy, but does
cause the string to contract transversally away from its free diffusive thermal
expansion.

In Fig. 7.36 we show the transverse size versus the string mass (also
entropy) or R⊥ as given by (7.103) versus M⊥ as defined in (7.102). The
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Figure 7.35: Transverse size (left) and mass (right) of the string versus its
multiplicity for N = 500 string bits and different attractive self-couplings g.

lines in Fig. 7.36 (right) corresponds to

R2
⊥ ≈ 1.5

√
3D⊥
2π2

√
1− 0.012g2M⊥M⊥ (7.112)

and in overall agreement with the schematic analysis of the variational result
in (7.116). The latter suggests a first order transmutation to a black-hole
for sufficiently strong and attractive self-string interactions. (7.112) shows
that weak coupling but high temperature means 0.012g2M⊥ < 1. Since for
most of our analyses we use M⊥ < 100, this corresponds to g < 1, hence our
choices of g = 0.4, 0.5, 0.6.
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Figure 7.36: Transverse size of the interacting string for N = 500 string bits
and attractive self-coupling coupling g versus its mass (left). The solid curves
are analytical results (right).

For completeness, the length of the string L defined as
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L =

〈〈
N∑
k=1

D⊥∑
i=1

∣∣xik − xik−1

∣∣ 〉〉 (7.113)

versus M⊥ (7.102) and R⊥ (7.103) with the resolution N = 100 for different
coupling strengths g are displayed in Fig. 7.37 (left) and Fig. 7.37 (right).
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Figure 7.37: Total length of the interacting string versus its mass (left) and
its transverse size (right) for different attractive self-coupling coupling g. The
number of string bits is N = 100.

Schematic Analysis

An understanding of the self-interacting string in the Hagedorn regime fol-
lows from the variational minimization of the free energy above. Here we
note, that for no self-interaction or g = 0, the classical diffusive growth
noted in (7.93) follows from the fact that the kinetic term in the transverse
Hamiltonian (7.6) scales like 1/R2 by the uncertainty principle and does not
favor short strings, while the confining harmonic term in (7.6) does not favor
long strings and scales like R2. This trade-off is captured by minimizing the
schematic free energy

F0⊥ = M2
⊥

(
1

R2
+

R2

M2
⊥

)
(7.114)

dF0⊥/dR = 0 yields (7.93). Self-interactions in 2 + D⊥ are holographically
dual to the exchange of light excitations in bulk. As a result, (7.114) now
reads
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F⊥ ≡ F0⊥ +M⊥V = M2
⊥

(
1

R2
(1− g2

sM⊥) +
R2

M2
⊥

)
(7.115)

after dropping terms of order 1. dF⊥/dR = 0 now occurs for

R2
⊥ ≈

√
1− g2

sM⊥M⊥ (7.116)

which is (7.112) for g2M⊥ � 1. However, for g2M⊥ ≈ 1− 1/M2
⊥ (7.116) un-

dergoes a first order change into a fixed size string of few string lengths. The
self-interacting string described variationally above begins its transmutation
to a black-hole as illustrated by the present schematic analysis.

Numerical Results: 2 < D⊥(λ) < 3

An exact treatment of the transverse string in curved AdS5 space is beyond
the scope of this work. In this section we will give simple estimates of the
effects of the curvature of AdS5 on some of our previous results. One of the
main effect of the curved geometry on the Pomeron is to cause the string
transverse degrees of freedom to effectively feel a reduced transverse spatial
dimension [71, 72, 73, 75]

D⊥ → D⊥(λ) = D⊥

(
1− 3(D⊥ − 1)2

2D⊥
√
λ

+O
(

1

λ

))
(7.117)

with λ = g2
YMNc. (7.117) causes the Pomeron intercept to move from

D⊥/12 = 0.25 to D⊥(λ ≈ 40) ≈ 0.17 closer to the empirical intercept of
0.08 [168]. A phenomenological way to implement this effect is to add warp-
ing factors on the oscillators in (7.1) as we noted in our recent analysis [80].
This will be used in our numerical results to follow. A simple estimate follows
from the substitution (7.117) in the schematic analysis. Indeed, the estimate
in (7.115) shows that the first contribution reflects on the uncertainty prin-
ciple which probes short distances and thus is not sensitive to the curvature
of AdS5. The second diffusive contribution is sensitive through D⊥ but will
turn out to be sub-leading as we will show below. The third contribution is
long ranged and senses the curvature of AdS5. Thus

F0⊥ →M2
⊥

(
1

R2
⊥

+
R2
⊥

D⊥(λ)M2
⊥
− g2M⊥

R
D⊥(λ)−1
⊥

)
(7.118)
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For very small values of g the first two contributions in (7.118) are dominant
and the string transverse size grows diffusively. The minimization of the
first two dominant contributions in this regime yields R2

⊥ ≈
√
D⊥(λ)M⊥, in

agreement with (7.93). However, for

g2M⊥ > M
D⊥(λ)−3

2
⊥ (7.119)

the string size shrinks and the transverse string size follows from balancing
the first term with the last term due to the interaction. The balance between
the self-interaction and the uncertainty principle, yields a continuously de-
creasing transverse string size

R⊥ ≈
(

1

g2M⊥

) 2
√
λ

3(D⊥−1)2

(7.120)

in units of the string length. A black-hole with a transverse string size
emerges for g2M⊥ ≈ 1. In Fig. 7.38 we display the interacting string in the
effectively curved space for λ = 40, D⊥ = 3 and g = 0.6. In Fig. 7.39 we dis-
play the transverse size of the interacting string in the effectively curved space
versus M⊥. The dots are from the numerically simulated string, while the line
is a fit to the schematic result (7.119) with R⊥ ≈ 209(1/g2M⊥)2

√
λ/3(D⊥−1)2

in a narrow range of M⊥.

0.5b-1.5b 2.5b

0

-2b

2b

xÞ

yÞ

g=0.6, Nch=60.8, Λ=40

Figure 7.38: A typical string with multiplicity Nch = 60.8.
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7.2.3 Angular deformations

The fluctuating string with fixed end-points exhibits large azimuthal defor-
mations in the transverse plane that can be characterized by the azimuthal
moment [174, 165]

εn =
1
N

∑N
i e

inφi
(
r⊥i
)n

rn⊥
(7.121)

with Nrn⊥ =
∑N

i

(
r⊥i
)n

. Here φ is the azimuthal angle as measured from the
impact parameter line along b. r⊥ is the averaged size of the string in the
transverse plane. For b = 0, we have 〈r2

⊥〉 /2 = R2
⊥/D⊥, where 〈· · · 〉 is the

average over string ensembles. Specifically, define x ≡ xi=1
⊥ and y ≡ xi=2

⊥ in
the transverse plane, where x is parallel to the impact parameter b and y
perpendicular to it,

x⊥(k, τ) =
N−1∑
n=1

Xn(τ) sin

(
nk

N
π

)
+ b

k

N
y⊥(k, τ) =

N−1∑
n=1

Yn(τ) sin

(
nk

N
π

)
(7.122)

where both string bit coordinates Xn, Yn are normally distributed according
to
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Xn ∼ N

0,
1

ωn

[
e
β

2

(
ωn+

Ω2
n

ωn

)
− 1

]
 Yn ∼ N

0,
1

ωn

[
e
β

2

(
ωn+

Ω2
n

ωn

)
− 1

]


(7.123)
Since (7.122) are themselves sum of random walks, they are both normally
distributed according to

x⊥(k, τ) ∼ N
(
b
k

N
,Σ2

k

)
y⊥(k, τ) ∼ N

(
0,Σ2

k

)
(7.124)

with the squared variance

Σ2
k =

N−1∑
n=1

sin2
(
nk
N
π
)

ωn

[
e
β

2

(
ωn+

Ω2
n

ωn

)
− 1

] (7.125)

For N → ∞, the squared variance is Σ2
k̃
≈ R2

⊥/D⊥ and the moments
simplify (even n)

〈εn〉 ≈
bn

〈rnT 〉

∫ 1

0

dk̃

(
1

2
− k̃
)n

=
bn

〈rnT 〉
1

2n(1 + n)
(7.126)

〈r2
T 〉
b2
≈ 1

12
+

2

D⊥

R2
⊥
b2

〈r4
T 〉
b4
≈ 1

80
+

2

3

R2
⊥

b2D⊥
+ 8

R4
⊥

D2
⊥b

4
(7.127)

For small b, the lowest moments reduce to

〈ε2〉 ≈
D⊥
24

b2

R2
⊥

〈ε4〉 ≈
D2
⊥

640

b4

R4
⊥

(7.128)

The numerical results of 〈ε2〉 and 〈ε4〉 with a maximum resolution of N = 500
are displayed in Fig. 7.40.

For the cross moments (flow), we can only do N = 100 (randomly gen-
erated strings). We use β ∼ (0.2, 0.05) such that β ≤ 0.2 and Nβ ≥ 5. For
a single string exchange, the multiplicity range is Nch ∼ (7, 26), while for
5 strings Nch ∼ (35, 130) and 10 strings Nch ∼ (70, 260). To characterize
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Figure 7.40: The azimuthal moments 〈ε2,4〉 versus multiplicity for a single
string with attractive self-coupling g.

the initial azimuthal deformation of the string bits in the transverse collision
plane, we show in Fig. 7.41 the pdf distributions of 1000 randomly generated
single strings at a resolution of N = 100 and a multiplicity of Nch = 7 with
no self-interactions g = 0. The pdf shown are for the distributions in ε2,3,4
respectively.
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Figure 7.41: 3D Histograms, 1000 random generated strings. N=100 and
Nch = 7.

We also show in Fig. 7.42 the pdf distributions of 1000 randomly gener-
ated single strings at a resolution of N = 100 with a multiplicity Nch = 7
undergoing string bit attractions with g = 0.6 in the mean-field approxima-
tion. Note the strong dipole deformation in the leftmost figure.

For completeness we show the behavior of the cross moments with the
resolution N = 100 for a non-interacting and for an attractive string, in
Fig. 7.43 and Fig. 7.44 respectively by sampling 1000 times a single string
stretched with b = 5 = 10ls. The attraction is set at g = 0.6.

In a typical pp collision at collider energies, we expect to exchange about
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Figure 7.42: 3D Histograms, 1000 random generated strings. N=100 and
Nch = 7 with attractive interaction g = 0.3.
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Figure 7.43: Non-interacting.

10 such long strings [71, 72, 73]. In Fig. 7.45 and Fig. 7.46 we show the same
cross moments following from the exchange of 5 typical strings stretched at
b = 5 sampled 200 times for non-interacting and attractive case respectively.

The case where 10 string are exchanged is shown in Fig. 7.47 and Fig. 7.48
for the same arrangements of parameters with each 10 string event sampled
100 times.
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Figure 7.44: Attractive interaction g = 0.6.
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Figure 7.46: Attractive interaction g = 0.6.
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Chapter 8

Conclusion

8.1 Spin physics through QCD instantons

Instantons and anti-instantons provide the key building blocks of the instan-
ton liquid model. The latter offers a detailed framework for understanding
aspects of the spontaneous breaking of chiral symmetry and the resolution of
the U(1) problem. Key to this is the appearance of light quark zero modes of
fixed chirality and their de-localization through the formation of an interact-
ing liquid. Some aspects of this model are supported by lattice simulations
upon cooling [177, 178, 22].

In light of the many phenomenological successes of the instanton liquid
model, it is natural to ask about the role of instantons in scattering pro-
cesses, in particular on spin physics. An essential aspect of the light quark
zero modes is the emergence of large constituent masses and (chromo) mag-
netic moments. Also instantons and anti-instantons correlate strongly the
spin with color leading to sizable contributions in spin polarized processes
involving light quarks.

We give a brief summary of recent advances in the emerging field of spin
physics where the induced effects by instantons and anti-instantons in a semi-
classical analysis, are sizable in comparison to those usually parametrized
using perturbation theory. We stress that the effects we have reported both
in polarized electron-proton or proton-proton semi-inclusive scattering, rely
solely on the instanton liquid parameters in the vacuum without additional
changes. The effects are large and comparable in size with those reported
experimentally. We also show that the large spin effects induced by instan-

146



tons and anti-instantons in polarized experiments may also be present in
peripheral AA collisions where a prompt and large magnetic field can induce
a prompt and large polarization although on a short time scale. A simple
analysis of the correlated fluctuations between target and projectile protons
shows that the effects is of the same magnitude and sign are those reported in
the peripheral charged pion azimuthal correlations at collider energies. Again
it is important to stress that only the fluctuations expected from instanton
vacuum configurations were used. The study of the spin effects induced by
instanton is not exhaustive as many new effects can be explored using this
framework. One important shortcoming of the instanton liquid model is the
lack of confinement as described by an ordering of the eigenvalues of the
Polyakov line at low temperature. Some important amendments to the in-
stanton liquid model have been proposed, suggesting that instantons and
anti-instantons split into dyons in the confined phase [179]. It was recently
shown that the key chiral effects and U(1) effects in the standard instanton
liquid model are about similar to those emerging from the new instanton-
dyon liquid model [180, 181, 182, 183, 184, 185, 186]. It would be important
to revisit the spin effects in this context.

8.2 Stringy pomeron

Holographic strings in walled AdS5 provide a non-perturbative description
of diffractive scattering, production as well as low-x DIS [71]. Although
a key aspect of AdS5 is its conformality which translates to the conformal
character of QCD in the UV, the essentials of the walled AdS5 construction
for the holographic string with a large rapidity interval can be captured by a
string with an effective transverse dimension 2 < D⊥ < 3. The holographic
Pomeron intercept follows from the zero-point motion or Luscher term of the
free transverse string with D⊥/12, and the Pomeron slope is fixed by the
string tension.

Long color flux tubes in QCD are smooth. In leading order, the Nambu-
Goto effective theory is corrected by a term that depends on the extrinsic
curvature to allow for smooth string configurations [160]. The extrinsic cur-
vature affects the zero-point energy of large Wilson loops to one loop [161]
and is amenable to lattice simulations. We have shown that a similar contri-
bution affects the scattering amplitude of two dipoles.

In leading order, the extrinsic curvature induces an overall momentum
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dependent contribution to the scattering amplitude. Detailed comparison
with accurate but differential proton on proton measurements at large

√
s

but fixed t = −q2
⊥ show sensitivity of the diffractive peak to changes in

the extrinsic curvature. pp scattering may provide for an empirical esti-
mate of the extrinsic curvatures of smooth QCD strings, besides the current
measurement estimates for the slope (string tension) and intercept (Luscher
contribution) of the Pomeron.

Low-x physics in the holographic string set up corresponds to a string
with higher zero-point resolution, whereby the string bits play the non-
perturbative analogue of the wee partons in perturbative QCD. A key as-
pect of the partonic description is Gribov transverse diffusion which arises
naturally in the quantum string description as emphasized by Susskind and
others [84, 85, 110, 111]. A new aspect of our recent study of the holographic
string at low-x consists in the role played by the interactions between the
string bits in 2 < D⊥ < 3 and their role in producing a stringy mechanism
for saturation [76].

For strings exchanged at smaller impact parameters, the exponential in-
crease in the string excited states dwarf the zero point fluctuations making
the string essentially classical. We have used this observation to construct a
micro-canonical description of a holographic string by introducing an effec-
tive temperature. Close to its Hagedorn temperature, the string carries large
entropy and multiplicity and provides a possible and generic mechanism for
large multiplicity events in hadronic collisions in the Pomeron kinematics.

In flat D⊥ = 3 dimensions the free string close to its Hagedorn tem-
perature carries large multiplicities and exhibits large transverse geometrical
deformations mostly due to its transverse and classical diffusion [115]. The
large outgrowth of the string bits makes it ideal for a mean-field analysis
of the string self-interactions. We have used the variational analysis to put
a lower bound on the interacting string free energy and use it to detail its
geometrical content. Self-interactions cause the effectively thermal string to
contract, a process typical of string-black-hole transmutation in fundamental
string theory [75, 163, 87, 88, 89, 81, 84, 85].

The geometry of the string bit distributions emerging from stretched
strings for small impact parameters is rich in structure and transverse defor-
mation. We have presented a detailed study of its transverse moments and
distributions for single and multiple string exchanges. These prompt and
deformed distributions can be used to initialize the prompt parton distribu-
tions in current pp and pA collisions for the recently reported high multiplic-
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ity events by the LHC [112, 113, 114]. Our azimuthal and cross-moments
provide a specific measure of the prompt asymmetries versus multiplicity.
The holographic string close to its Hagedorn temperature maybe at the ori-
gin of the fire ball mechanism underlying the relevance of a hydrodynamical
description in hot but small hadronic volumes [163, 187, 188, 189, 165].
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