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Abstract of the Dissertation

Applications of Tensor Network Algorithms in
Quantum Many-Body Physics

by

Colin G. West

Doctor of Philosophy

in

Physics

Stony Brook University

2016

The classical simulation of many-body quantum systems is an es-
sential tool in understanding many fundamental aspects of con-
densed matter physics. But a major obstacle arises from the num-
ber of degrees of freedom involved in describing such systems,
which is exponential in the system size. Recently, however, a class
of numerical techniques based on structures called “tensor net-
works” has emerged, which allows many “typical” quantum states
(such as the ground states of gapped, local Hamiltonians) to be
represented much more efficiently.

In this work we extend and apply these techniques to consider
several central topics in quantum many-body physics. After re-
viewing the relevant background material from the field of tensor
networks and tensor network states, we demonstrate a method for
computing high order moments and cumulants of operators with
respect to such states, including the so-called “Binder cumulant,”
a powerful tool for detecting phase transitions. Next, we employ
tensor network algorithms to characterize the ground state phase
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diagram a quantum spin model, including both symmetry-breaking
phases and symmetry protected topological order (SPT), and find
a significant variety of phases and phase transitions. Finally, we
consider the entanglement properties of quantum states exhibiting
many-body localization, using a combination of exact diagonaliza-
tion and tensor network techniques.
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4.1 Graphical notation demonstrating the structures of matrix prod-
uct states. In this notation, a shape represents a tensor, and a
line represents an index. Connected lines between shapes repre-
sent contracted indices between tensors. (a) A finite spin chain
state |ψ〉 represented as a matrix product state. The state is
specified by the set of rank-three tensors {Aj}, with the phys-
ical degrees of freedom sj left open. (b) The expectation value
of a product operator Q = ⊗jQj with respect to |ψ〉. Each Qj

acts locally on only one site. The total expectation value can
be thought of as a trace over a product of transfer matrices Tj,
defined in Eq. (2.15). An example of an individual transfer
matrix, T1 is highlighted. . . . . . . . . . . . . . . . . . . . . . 74

4.2 (a) An infinite spin chain state |ψinf〉, possessing translation
invariance with respect to a unit cell of length ` = 2, represented
as a matrix product state. (b) A product operator Q = ⊗jQj

which possesses the same translation symmetry as |ψ〉; i.e. Qj =
Qj+` (c) To compute the quantity of interest, we first construct
T`, the transfer matrix containing an entire unit cell of |ψ〉 and
Q, and extract its dominant eigenvalue λ1. (d) To normalize the
result, we will also need T̃` (a transfer matrix which contains
only the identity operator) and it’s dominant eigenvalue λ̃1. The
desired quantity limL→∞

1
L

log〈Q〉 is given by log(λ1/λ̃1)1/`. . . 77
4.3 (a) Graphical representation of the moment-generating function

F (a) = 〈eaO〉 for an operator M =
∑

j Oj. Since each term in
M acts at only one site, the moment-generating operator pos-
sesses the same structure, even though the moments Mn are
fundamentally non-local. (b) The moment-generating function
for an operator which is the sum of two-body terms and which
possesses the form H = Hodd + Heven, such as the transverse
Ising Hamiltonian defined in Eq. (4.37). The operator is ap-
proximated by the second-order Suzuki-Trotter formula in Eq.
(4.42), which produces three “layers” of operations. Each layer
is a sum of two-body terms. . . . . . . . . . . . . . . . . . . . 84

4.4 The moment-generating operator eaM for an operator of the
form M =

∑
j

∑
k Ojk, applied to a two-dimensional state on a

square lattice. As in the one-dimensional case, the locality of
each term in M ensures the locality of the terms in eaM , and
hence, the moment-generating operator can still be evaluated
all at once, by applying the appropriate onsite operator at each
lattice site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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4.5 (Color online) A Binder cumulant study of the transverse Ising
model. The cumulants are computed for different system sizes
across a range of values for the transverse field B (some in-
termediate system sizes have been suppressed for clarity of the
figure). Crossing points are interpolated for successive pairs of
curves, i.e. L = 10 and L = 15. These crossing values can then
be seen to approach the known value of the critical field, Bc = 1
(inset). The BST algorithm is used to extrapolate these values
to the infinite limit, which gives Bc = 1.001(1). . . . . . . . . 93

4.6 (Color online) Per-site value of the second cumulant of the lon-
gitudinal magnetization, 1

L
〈∆M2

x〉 = 1
L

(〈M2
x〉 − 〈Mx〉2), for the

transverse Ising model. The cumulant is plotted for various fi-
nite system sizes, plotted against a range of applied fields. As
the system length increases, the behavior tends towards the in-
finite limit (inset). In the limit, the cumulant diverges at the
critical point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 (Color online) Second cumulant of the transverse magnetiza-
tion, 〈∆M2

z 〉 = 〈M2
z 〉 − 〈Mz〉2, for the transverse Ising model

(computed per site). The cumulant is plotted for various finite
system sizes, plotted against a range of applied fields. As the
system length increases, the behavior tends towards the infi-
nite limit (inset) where the derivative of the cumulant shows
a discontinuity at the critical point. This behavior is in excel-
lent agreement with the analytical result for the thermodynamic
limit, that 〈∆M2

z 〉/L = 1 for B < 1 and 1/B2 for B > 1. . . . 96
4.8 (Color online) The Binder cumulants for the transverse Ising

model, plotted for a variety of system sizes as a function of
L1/ν(B − Bc) for the known values ν = 1 and Bc = 1. As
expected, for these values the curves are seen to collapse to a
functional form essentially independent of the length scale. This
property can be used to estimate the values of the critical point
and the critical exponent by treating them as fit parameters
and optimizing the collapse. . . . . . . . . . . . . . . . . . . . 97
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Chapter 1

Introduction

There is, perhaps, a common misconception that physicists simply want to
know what makes up the universe, by finding the most fundamental “building
blocks.” To be sure, this desire to find the smallest, indivisible constituents
of matter is certainly one of driving forces behind advancements in physics.
It has been from the days when ancient Greeks contemplated the uncuttable
“ατµoν” to the days of the true atomic age of the mid-twentieth century [1];
it was partly this desire which brought us the quark model and the revolution
of high-energy particle physics, and it continues to this day as a motivation
for the study of string theory [2]. But while identifying the building blocks of
the universe is a necessary part of understanding its physics, this alone is not
sufficient.

An equally or perhaps even more important goal of physics is to understand
how these building blocks interact and interrelate. It is only from this, an
understanding of how particles in the universe affect one another, that we
might hope to achieve a complete understanding of their behavior, and from
this that we might hope to harness their behavior to produce new and better
technologies.

To this end, the field of quantum many-body physics has alway sought to
explain the incredible complexity which can arise when particles affect one
another at a quantum scale. The unique set of relationships that can exist
between particles in quantum physics is in some ways its most remarkable
property, and perhaps ultimately its most useful. In particular, the uniquely
quantum notion of entanglement [3, 4] has not only played a vital role in our
conceptual understanding of the universe [5, 6], but it may also hold the key
to tremendously powerful new technologies in fields like efficient communica-
tion [7], cryptography [8], and computing itself [9, 10].

But the power of interaction and entanglement comes at a price. When ev-
ery particle in a system can potentially be entangled with every other particle,
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it can take an enormous amount of information to describe their state unless
the number of particles involved is very small. In an age where progress in sci-
ence increasingly relies upon computer simulations and computer-aided data
processing, we might hope that our PCs and laptops could come to our aid.
But for a spin-1/2 system, a description of the state of a mere 30 particles will
require so many numbers to specify that it can scarcely be held in the memory
of an everyday hard drive. And this is only what is required to describe the
state itself; if one wishes to work with the Hamiltonian operator that governs
the behavior of the system, it will require nearly a trillion such hard drives
to store it. As Laughlin put it [11], “No computer existing, or that will ever
exist, can break this barrier because it is a catastrophe of dimension.”

There may however be a loophole in this catastrophe. Nature, it appears, is
fundamentally local, and the “typical” states that we might most easily expect
to encounter or construct in a laboratory (namely, low-energy eigenstates of
gapped, local Hamiltonians) tend not to be quite as hopelessly entangled as
one might expect of a more generic quantum state. Instead, these states obey
a so-called “area law” [12] for the entanglement of their subsystems, which
limits the amount of entanglement that has to be considered, even when the
system becomes large in size [13].

In recent years, a new set of numerical methods has emerged for repre-
senting quantum systems and simulating them with computers [14–16]. These
techniques describe the quantum states with a “tensor network” structure,
which naturally embodies the entanglement area law property and can dra-
matically simplify the amount of information required to describe such states.

Initially, these methods were introduced in the context of one-dimensional
systems, where they are referred to as “matrix product states” (MPS) [17–20].
Soon after, the methods rose to even greater prominence when it was realized
that an important computational technique for studying quantum systems, the
celebrated “Density Matrix Renormalization Group” (DMRG) method [21, 22]
could be reformulated (and even expanded) entirely in terms of tensor network
methods [23–26]. Additional algorithms based on MPS soon followed, such as
the“Time Evolving Block Decimation” (TEBD) technique [27, 28], which is
important both for calculating the ground state wavefunction of a given Hamil-
tonian, and for simulating the time evolution of such a state. Since then, tensor
network methods have also been readily applied to gapless systems by means
of the “Multiscale Entanglement Renormalization Anzatz” (MERA) [29, 30],
as well as generalized to higher-dimensional systems, where they are termed
“tensor network states,” or “projected-entangled pair states” (PEPS)[31–37].

In this dissertation we will be examining closely the class of tensor network
algorithms, considering the best methods for putting them into practice, and
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exploring new problems to which they can be applied. We begin with a review
of the current state of such methods. In Chapter 2, we first establish some
of the theoretical and mathematical details behind tensor networks, and give
an explanation as to why they are so efficient at representing certain quantum
states. In Chapter 3, we then focus specifically on two classes of algorithms
that we have implemented numerically and used to generate the data in the
remaining sections of this work. Specifically, we describe our implementation
of DMRG for finite systems, and then discuss the application of TEBD to both
the finite and infinite states. In the latter case, we also describe some gener-
alizations, and perform a study of how to set some of the tunable numerical
parameters to optimize the algorithm’s efficiency.

In the remaining chapters, we then employ these MPS techniques to study
three different types of phenomena that have become focal points of study in
quantum many-body physics: quantum phase transitions, symmetry-protected
topological phases, and many-body localization.

Our work in Chapter 4 begins with the “traditional” view of quantum
phases and phase transitions [38–40]: we consider phases characterized by
different instances of spontaneous symmetry breaking, and ask about the order
parameters which distinguish them. Matrix product states have can be used to
efficiently compute various observables in an effort to detect these transitions
and calculate the location of the critical points, a central problem in many-
body physics [19, 41–44]. In our work, we look beyond the expectation value of
an operator and ask instead about the higher-order moments and cumulants.
We introduce a method that allows these cumulants to be evaluated efficiently
using tensor networks. Then, we show how this allows the so-called “Binder
Cumulant” [45], a technique from the world of quantum Monte Carlo, to be
imported into the world of matrix product states. By applying the Binder
Cumulant and other moment/cumulant techniques to a variety of different
spin systems, we show how the locations of the quantum phase transitions can
be computed to relatively high precision at low computational cost.

In Chapter 5, we expand our understanding of phase transitions in quantum
systems and consider in particular the phenomenon of symmetry-protected
topological order [46–48], a particular type of quantum phase classification
which can emerge even when comparing states which share a symmetry group.
The possibility of phases labelled by spontaneous symmetry breaking, symmetry-
protected topological order, or both, gives rise to an enormous diversity of
phases which can exist in one dimensional systems. A complete set of clas-
sification parameters sufficient to describe all the possible phases has been
established [49–53], and it has also been shown that many of these parameters
can be computed directly from the MPS representation of a state [52]. We
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give the necessary methods for extracting all such parameters, and demon-
strate them on a model Hamiltonian which we have constructed to possess an
onsite A4 symmetry, in addition to invariance under lattice translations and
inversions. We give a phase diagram for this Hamiltonian and identify eight
different quantum phases within it, including an interesting example of two
nontrivial SPT phases with a second-order phase transition between them.

Finally, in Chapter 6 we turn from the question of static phase transitions in
quantum ground states to the phenomenon of “many body localization,” [54–
58] where in fact a different type of dynamical quantum phase transition can
exist in the excited states of a disordered Hamiltonian. Depending on the
nature of the disorder (and the dimensionality of the system), the excited
states may fail to thermalize, even if the system contains interactions. The
critical strength of disorder beyond which this occurs then serves as a kind
of phase boundary between the localized and delocalized regimes. Naturally,
we discuss how MPS can be used to study systems of this type [59–62], and
also consider two measures of local entanglement, the concurrence [63] and
negativity [64]) as possible indicators for locating this phase boundary (the
former of which was also recently considered in Ref. [65]). We show that indeed
both measures show distinctive behavior in the localized case as compared to
a delocalized, thermal system. Moreover, we give numerical evidence that the
two measures, though analytically distinct [66] appear quite similar in terms of
their ability to detect many-body localization. This may be important, since
the negativity is a more flexible measure and can be applied to study a wider
variety of systems.

To conclude, our results and findings are summarized in Chapter 7. We
discuss briefly some ongoing projects that build further on this work, and
identify other interesting questions which remain open as directions for future
study.
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Chapter 2

Tensor Network States

In this chapter, we begin by presenting some basic concepts and clarifying
some notation and terminology with respect to tensors and tensor networks as
used in this work (Sec. 2.1). We shall then briefly introduce the motivation for
tensor network states in Sec. 2.2, and review some of their features as relevant
to this work with a particular focus on matrix product states. The formalism
of these states will form the backbone for all the techniques and algorithms
applied in subsequent chapters.

2.1 Tensors and Tensor Networks

To begin, we state some very basic principles about tensors which will be
used extensively, in order to fully clarify our notation and define terminology.
In the context of this work, a rank-n “tensor” is simply an n-dimensional array.
We do not distinguish between, say, tensors and pseudotensors, and the use of
the term implies nothing about transformation laws, as might necessary when
viewing a tensor as a basis-independent multilinear map. We will use both
upper and lower indices to label tensors without implying or distinguishing
the notions of covariance and contravariance. We may explicitly make efforts
to distinguish types of index in other ways, particularly in the case of a simple
matrix, in which case we will call the indices “incoming” an “outgoing” when
necessary. We do, however, make use of the Einstein summation convention
in which any repeated indices are implicitly summed over, except where an
explicit sum is necessary for clarity.

Many times, the index of a matrix or tensor will describe the elements of
some composite space; in these situations, we have a choice between separately
associating an index with each subspace, or assigning a larger index to the
whole space. For example consider a space H = HA ⊗ HB. Vectors which
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live in this space can be written in terms of basis elements |τ = {1, 2, 3, 4}〉,
or in terms of elements |α = {1, 2}〉 ⊗ |β = {1, 2}〉. These labelings are in
general quite artificial (unless a certain symmetry is being imposed), and can
be directly equated through a standard mapping, e.g. τ = 1→ (α = 1, β = 1)
etc. Accordingly we call the index τ a “composite” index, and instead of
using the name “τ ,” as in the vector Xτ , we may write X(αβ) to emphasize the
composite nature of the index.

Sometimes, it will be helpful to explicitly consider the constituent indices
within such a composite index. For example, an operation which acts with
operation Z in subspace A and trivially in the B subspace could be written as

M = ZA⊗1B, and applied to the vector X as M
(α′β′)
(αβ) X(αβ). But alternatively,

we could consider “ungrouping” the composite index of X and consider Xα,β.
From this point of view, the operation above can be expressed as (ZA)αXα,β.

The reverse process is is also often useful, in which we “group” the incoming
and outgoing indices of a matrix Vα,β into a single composite index (αβ), so
that the matrix can now be viewed as a vector. We call this operation the
“vectorization” of V . Note that grouping or ungrouping of a set of indices
does not mathematically change the tensor; the same numbers are stored, but
simply indexed with slightly different labels. The choice of grouping is purely
to aid in our understanding or to allow for more compact notation.

2.1.1 Graphical Tensor Notation

In this work, we will make use of the so-called “graphical notation” for
tensors. This notation, often attributed to Penrose (see for example Ref. [67])
has been used widely to simplify the expression of complex tensor systems,
with applications far outside the field of tensor network algorithms. Even
here, it includes many useful subtleties; for a general overview we refer the
reader to the discussion in Ref. [68]. In our context, however, the following
points are by far the most relevant:

• A tensor is represented by a solid shape. The nature of the shape is not
mathematically relevant and more akin to a “variable name”– i.e., we
may choose to represent all tensors which serve a particular function as
circles, just as we might give them a similar set of names such as {An}.
But the shape does not say anything directly about the mathematical
structure of the tensor.

• A line extending from a tensor is an index of the tensor. Thus, a rank-n
tensor should have n lines extending from it. Where appropriate and
necessary (i.e., to distinguish bras and kets), the incoming and outgoing
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indices of a matrix will be represented by lines on opposite sides of the
tensor, either left/right or top/bottom, depending on the context. Other
than this, the “shape” of the lines also does not carry mathematical
significance; where necessary, lines in our diagrams may be curved for
visual convenience.

• two tensors next two each other but not connected by a line are combined
by the tensor product. This is a visual analogy to placing two variables
next to one another algebraically to imply scalar multiplication

• A connected line between two tensors represents a contraction. This is
the visual equivalent of the Einstein summation convention; when two
index lines are connected, they are shown to be “the same,” just as
under the Einstein convention, in which two indices of the same name
are assumed to be “contracted,” i.e.

Cα,β = Aα,β,γBγ (2.1)

• Composite indices can be graphically “grouped” and “ungrouped”. When
necessary for clarity, we will explicitly show grouping in our diagrams,
either by bending indices together, labelling them with a bracket, or
both.

For examples of these conventions in graphical notation, see Fig. 2.1.
Note that in this notation that the identity matrix 1i,j = δi,j can simply

represented by a line. Similarly, tracing over a pair of indices, i.e. constructing
Xβ = Zα

α,β is represented graphically by simply connecting the two indices with
a line (Fig. 2.2).

Naturally, the phrase “tensor networks” contemplates that we will be con-
tracting many tensors together, potentially in elaborate ways. In these cases,
the order in which the contractions are performed can be very important. Al-
though finding the optimal sequence of contractions is generally a hard problem
subject to its own study (see for example [69]), at a minimum one can often
identify suboptimal choices by considering the size of the intermediate tensors.
Clearly, the memory impact of a tensor is measured by the product of the di-
mensions of its indices. Hence, when choosing the order in which to contract
the tensors in a network, one should “look ahead” to foresee the largest total
size of the open indices which occurs during the intermediate steps. Keeping
this size small can dramatically change the performance of an algorithm based
on tensor contractions. For more comments on implementing these contrac-
tions in practice, we also refer readers to the Matlab-based tensor contraction
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a) b)

c)

d)

= =

C
α

β

α

β

A
B

A
B M1

M2

M

α

β

α

β

(αβ) τ

γ

=

=

V V V

Figure 2.1: (Color Online). Examples of the graphical notation for tensor
operations. (a) Examples of tensor. A solid shape represents a tensor, with
extended lined representing indices. Here evidently A is a rank-three tensor,
and B is rank-one, i.e. it is a vector. (b) Adjacent tensors with imply a
tensor product. This diagram represents the equation M = M1 ⊗ M2. (c)
Tensor contraction is represented by connecting indices. The equation Cα,β =
Aα,β,γBγ is represented here. (d) By changing our labelling convention, the
indices of a tensor can be “grouped” or ungrouped. In graphical notation,
this can be represented by literally grouping the lines. Pictured here is the
vectorization of a matrix: Vα,β → V(αβ)
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A !! B = A B

!! =

a)

b) c)

M
=Mα

α

= Tr(M )

α

β

X Z

β

=

Figure 2.2: (Color Online). Additional examples of graphical tensor notation.
(a) Clearly, since A1B = AB, then in our graphical notation we can simply
represent the identity matrix with a line. (b) Tracing over a matrix is shown
by connecting its two indices, contracting it with itself. (c) Tracing in this
sense can happen over any pair of indices originating from the same tensor.
Pictured here is the equation Xβ = Zα

α,β. This is related to the notion of a
“partial trace,” which we shall also discuss in Chapter 6.
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subroutine “NCON,” [70] which can perform sequential tensor contractions in
a robust manner, and also provides warnings in many situations where the
specified sequence is inefficient.

2.2 Tensor Network States: Structure and Mo-

tivation

We now consider the purposes and properties of matrix product states,
with a particular focus on those properties relevant to our subsequent work.
For a fully comprehensive review and additional technical details, see Refs. [14,
15, 71]. For a more pedagogically-motivated introduction to tensor networks
states and their applications, see Refs. [16, 72].

Before the arrival of tensor network states, numerical simulation of quan-
tum many-body systems was faced with a seemingly insurmountable barrier:
the so-called “curse of dimensionality” with respect to the Hilbert space. Con-
sider for example a simple spin system consisting of N different spin-s particles.
Each particle’s spin degrees of freedom live in a Hilbert space local dimension
d = 2s + 1; hence, to capture the spin degrees of freedom for the entire sys-
tem (to say nothing of any other necessary quantum numbers) we will require
a space of dimension dN . Thanks to the remarkable power of the exponen-
tial function, this scaling becomes physically unworkable almost impossibly
quickly.

More tangibly, consider the state vector for a set of L particles on a one-
dimensional lattice, and expand the vector in some orthonormal basis. For
compactness, the expansion coefficients can be collected up into a tensor cs1...sL ,
with L indices, each of size d–one for each of the local Hilbert spaces (we shall
call these the “physical indices,” for reasons which will become clear later). In
other words, we have

|ψ〉 =
d∑

s1=1

. . .

d∑
sL=1

cs1...sL|s1 . . . sL〉 (2.2)

The problem with representing such a state in a computer is the size of the
coefficient tensor cs1...sL : this is the structure which must store dL numbers
to represent an arbitrary state. But one may ask if there is some way we
can condense this tensor to reduce the amount of information which must be
stored. After all, “data compression” is a familiar method for dealing with the
need to store large amounts of numerical data. And indeed, there is a loose
sense in which the answer is “yes.” At least for certain classes of quantum
states, the massive tensor cs1...sL can be restructured and simplified through a
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controlled approximation scheme, so that nearly the same coefficients can be
represented by far fewer numbers.

2.2.1 Truncated Singular Value Decompositions

To understand how this restructuring can be done, consider the Schmidt de-
composition of a vector [73, 74]. In particular, imagine a (pure) state |ψ〉 living
in a Hilbert spaceH which is a tensor product of two subspaces, H = HA⊗HB.
The Schmidt decomposition states that, for some choice of orthonormal bases
for these subspaces, {|i〉A} and {|j〉B}, we can decompose |ψ〉 as

|ψ〉 =
∑
i

pi|i〉A|i〉B. (2.3)

The coefficients pi are called the “Schmidt Coefficients,” and for a normalized
state |ψ〉, they clearly must satisfy

∑
i p

2
i = 1. The number of nonzero coeffi-

cients required to form this decomposition is called the “Schmidt rank” of the
system, and can be taken as a rough indicator of the entanglement between the
subsystems HA and HB. A product state, which by definition can be written
as |ψprod〉 = |ψA〉|ψB〉 is a state with Schmidt rank 1.

The Schmidt coefficients pi are deeply connected to the singular value de-
composition (SVD), a standard linear algebra technique generalizing the eigen-
value decomposition which likely requires no introduction (though we wish to
call the reader’s attention to Ref. [75], which gives an intriguing history of the
technique, and to Ref. [76], the original statement of the fully general matrix
SVD by Eckart and Young.) The SVD decomposes an m×n matrix M into the
form M = UΛV †, with U an m×m unitary matrix, V an n×n unitary matrix
(n.b. the historically motivated convention of the Hermitian conjugate), and
Λ an m × n rectangular diagonal matrix with non-negative entries λi. These
entries of Λ are the titular “singular values” of the original matrix M .

What is special about Eq. 2.3 is the fact that there is only a single index
which must be summed over; the same coefficient can be applied to the basis
states in each subspace when chosen correctly, with no “cross terms” necessary
in the expansion. Naturally, for a more generic choice of orthonormal bases
|̃i〉A and |j̃〉B, our state |ψ〉 could have been more trivially expanded in the
two subspaces as

|ψ〉 =
∑
i

∑
j

cij |̃i〉A|j̃〉B, (2.4)

But here, the expansion coefficients depend on two indices, and as such can
be viewed as a matrix cij. To recover the Schmidt decomposition, we must
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perform an SVD on this matrix, cij = UΛV †. U and V † can then be absorbed
into the choice of bases, so that the “special” Schmidt bases of Eq. 2.3 are
given by

|i〉A =
∑
i′

Ui,i′ |i′〉A|i〉B =
∑
i′

V †i,i′|i
′〉B (2.5)

Thus, the singular value decomposition gives us both the correct choice of
Schmidt bases, and also the Schmidt coefficients themselves, as evidently pi =
λi, the singular values of ci,j (henceforth we shall simply refer to them with
the notation λi).

This refines our understanding of the decomposition allows us to make
two observations which will be of great significance. First, we can now see
the connection to a much more nuanced indicator of entanglement: instead
of simply counting the number of nonzero coefficients, we can ask about the
relative sizes of such coefficients. After all, a state with two Schmidt coefficients
essentially equal in magnitude is much further from a product state than a
state whose two Schmidt coefficients are given by λ1 = ε and λ2 =

√
1− ε2 for

some ε which is nonzero but vanishingly small. To give proper consideration to
the relative size these coefficients, we want a measure of entanglement which
grows as the Schmidt coefficients become more mutually comparable in size.
This notion recalls precisely the idea of entropy, and in fact, if we consider the
density matrix ρ = |ψ〉〈ψ| and the von Neumann entropy S(ρ) = tr(ρ log ρ),
we can see (by substituting the Schmidt decomposition of |ψ〉) that the entropy
is given directly from the singular values λi, with S = −

∑
i λ

2
i log λ2

i . This is
the so-called “entanglement entropy” between the subsystems HA and HB.

This notion also allows us to imagine a way in which the degrees of freedom
required to represent the state ψ could be reduced, furthering our overall goal
of being able to represent a many-body system in a manner not exponentially
large relative to the system size. If we return to the case contemplated above,
where a state’s Schmidt coefficients are given by λ1 = ε and λ2 =

√
1− ε2, we

can see informally that such state is, to a good approximation, really just a
product state. If we chose to neglect the smallest coefficient, it seems likely
that little would change about our understanding of the state, at least up to
order ε. This idea was explored even in the early work on the singular value
decomposition, which considered the extent to which a matrix changes when
one performs an SVD, and “truncates” the n smallest singular values, i.e.,
these values are set to zero, and the corresponding rows/columns of U and V †

are therefore ignored [76, 77]. The resulting “approximation” of the original
matrix, which has smaller rank, has been shown to be “ideal,” in the sense
that it maximizes the fidelity with the original matrix relative to all other
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matrices of the same dimensionality [15, 77, 78]. For our purposes, if we recall
that the “matrix” in question can be the matrix of coefficients representing a
bipartition of the state, this means that we can use the SVD as an optimal tool
to eliminate degrees of freedom without changing the state too significantly.

Let us return our focus now to the original goal, of taking the coefficient
tensor cs1...sL from Eq. 2.2 and simplifying its structure, so that the associated
state can be represented more compactly. This tensor is just a larger gener-
alization of the matrix ci,j, which we simplified through the truncated SVD
above. Hence, at least for the class of states whose Schmidt decompositions
produce many small, truncatable values, the tensor of coefficients can be dra-
matically simplified by successively applying the truncated SVD operation to
split cs1...sL into smaller and smaller pieces. For example, we can start by con-
sidering separately only the first index s1, and grouping the remaining indices
into some composite index S2...L. Viewed in this fashion, the coefficient tensor
is simply a matrix (admittedly, one with highly unbalanced dimensions) and
we can break it apart by SVD. This gives

cs1,(s2...sL) = Us1ΛV
†
S2...L

(2.6)

= As1 c̃s2...sL (2.7)

where in the second line, we have simply defined As1 = Us1 and c̃s2...sL =
ΛV †S2...L

, in the latter case also ungrouping the index s2 . . . sL. And if, in
particular, we truncate the SVD in Eq. 2.6 by discarding any small singular
values, then we will have reduced the total amount of information without
substantially changing the coefficients represented.

The process above, also demonstrated graphically in Fig. 2.3 can be it-
eratively applied to the “remaining” portion of the coefficient tensor, c̃s2...sL ,
continuing to split off pieces of the tensor for each of the physical indices (i.e.,
for each particle in the system). If we are fortunate enough to have many
small, truncatable singular values along the way, we can potentially realize a
dramatic reduction in the size of the tensor needed to specify the state coef-
ficients. In the end, instead of representing the coefficients with a massive,
single tensor, we have instead employed a “network” of smaller tensors, all
contracted together, which collectively specify the state. A state expressible
in this manner is thus generally called a “tensor network state.”

2.2.2 Matrix Product States

Thus, we have seen a possible method by which some quantum states could
be represented with a much smaller amount of information, by discarding
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s1 s2 s3 s4 sL S2…Ls1

=c c

SVD
(truncated)

c

S2…Ls1

U Λ V    †!!

S2…Ls1

s1 s2 s3 s4 sL

A !c

Figure 2.3: (Color Online). The coefficients for a one-dimensional spin sys-
tem of length L could be represented by an enormous tensor cs1...sL . However,
we may be able to iteratively reduce the overall size of the tensor structure
needed to specify the state by means of a truncated singular value decompo-
sition. First, we conceptually group all of the indices except that for the first
site, leaving a rectangular matrix. This matrix can then be decomposed and
simplified by truncated SVD. The matrices Λ and V †S2...L

collectively serve as
a large coefficient tensor for all of the state but the first site. This tensor can
in turn be further decomposed by the same process.
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information about the Schmidt coefficients when those coefficients are very
small or zero. But one might still ask how useful this trick is. What hope do
we have that a physically interesting state could have its coefficients efficiently
represented in this way? Fortunately, if we consider what is happening during
the truncated SVD process, we can see reason to suspect that many states of
interest might admit this kind of representation. At each step, we were looking
at two neighboring particles and discarding some of the information about the
entanglement (measured by entanglement entropy) between them. Hence, and
“slightly entangled” states, without long-range correlations reaching across the
system, are promising candidates.

Thankfully, these properties can all be found a familiar and useful family of
states: the ground states (and low energy excitations) of gapped Hamiltonians
with purely local interactions. The entanglement and correlation properties
of such states give rise to exponentially decaying Schmidt coefficients along
bifurcations of the systems[13, 15, 27]. In particular, such states obey an
“area law” for entanglement scaling: if we choose some subsystem within the
state and ask about its entanglement with the rest of the system, we will
find that it depends upon the size of the boundary of the subsystem, not the
volume of the subsystem [12, 79]. Thus, for such cases, we should always
be able to find small values in the tails of the singular value distribution
which can be safely truncated without dramatically altering the state, allowing
us to perform the tensor decomposition described above. As a result, the
ground states of gapped, local Hamiltonians can be efficiently represented by
one dimensional tensor network systems [13, 15, 16, 80]. But such states are
also among the most physically relevant, as both laboratory experiments and
natural phenomena often arise from local interactions, and much of the typical
physics occurs in the low-lying energy levels.

Unsurprisingly, then, this is precisely the context in which tensor net-
work methods were first successfully applied to the representation of quantum
states[17–20]. For one-dimensional systems, these representations are called
“matrix product states,” [14, 15] or simply “MPS.”

In a chain of length L with open boundary conditions, an MPS has the
form

|ψ〉 =
∑
s

As1[1]A
s2
[2] . . . A

sL
[L]|s1s2 . . . sL〉. (2.8)

This structure, which is perhaps made clearer in the graphical notation of
Fig. 2.4, is essentially what results if one takes a generic coefficient tensor of
Eq. 2.2 and decomposes it site-by-site through a sequence of truncated SVDs,
as described above. We have changed notation slightly compared to Eq. 2.6.
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The indices of the “A” tensors are now being written as superscripts, but recall
that in our context this is not meant to convey anything physical; rather, it is
done to make room for the bracketed labels“[j].” These do not label an index,
but rather are part of the “name” of a tensor, typically indicating the lattice
site with which it is associated. As such, A

sj
[j] and Ask[k] represent in principle

two different tensors. We could perhaps have called them Asj and Bsk , but we
prefer the flexibility and precision of the bracketed notation, as there will be
times in subsequent discussions when the labelled index may not match the
bracketed label, resulting in a tensor such as A

sj
[j+1].

We have said that the A[j] tensors all possess three indices. Of these, one
index has special significance. The labelled indices s1, etc., correspond to the
indices of the original coefficient tensor, and are also the indices which must
match the labels in the basis vectors |s1s2 . . . sL〉. We call these the “physical
indices” of the tensors.

The other two indices of any given A tensor are often suppressed in the
MPS notation, because for any fixed value of sj the two remaining virtual
indices simply represent a matrix. For this reason, the labels of the remaining
indices are often suppressed, because the contractions of these indices occur
in the same manner as ordinary matrix multiplication. Nevertheless, although
they are rarely labelled explicitly, the two “non-physical” indices, typically
termed the “virtual” indices (sometimes also “bond” or “auxilliary indices”)
are extremely important. The dimension of these indices, called the “bond
dimension” and often represented as “χ,” controls the amount of entanglement
and the lengths of correlation which can be encoded by the MPS. For example,
if our MPS is constructed through the truncated SVD process described above,
then χ is a value of our choosing: it represents the number of singular values
which we chose to leave in place after the truncation. χ can thus also be seen
as a numerical parameter, controlling the representative power of the MPS.
Smaller values of χ are of course less numerically expensive, but larger values
can allow the MPS to more accurately represent the features of the state,
particularly in systems with longer correlation lengths. When necessary, the
value of χ can also vary from matrix to matrix, although in such cases we may
still refer to the largest of these values as the “bond dimension” of the state.

Note now that the MPS structure can be more general and flexible than
simply that given in Eq. 2.8. For example, A small adjustment will also allow
us to consider systems with periodic boundary conditions, by simply tracing
over the product of A[j] tensors so that the outgoing virtual index of the final
tensor A[L] connects to the incoming virtual index of A[1], i.e.

|ψ〉 =
∑
s

Tr
(
As1[1]A

s2
[2] . . . A

sL
[L]

)
|s1s2 . . . sL〉. (2.9)
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A[i, j ]

A[i, j+1]
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si, j+1
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A[i−1, j+1]
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si−1, j+1

A[1] A[2] A[L−1] A[L ]
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!!M[1] M[2] M[L−1] M[L ] VrightVleft
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s '1 s '2 s 'L−1 s 'L

Figure 2.4: (Color Online). The structures of common tensor network sys-
tems. (a) A matrix product state (MPS) for a system of length L with open
boundary conditions, as in Eq. 2.8. The physical indices which relate to the
physical degrees of freedom are explicitly labelled. The indices connecting the
A[i] tensors to one another are called “virtual” indices. (b) A matrix product
operator, as in Eq. 2.19. The left and right boundary vectors are explicitly
indicated to clarify the structure, although they could have been subsumed by
the definitions of M[1] and M[L]. (c) A two dimensional tensor network state
or “PEPS”, for the particular case of a square lattice.
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Perhaps more importantly, the MPS structure also extends naturally to
certain infinite systems (where they are sometimes called “iMPS”). This can
be done for systems with some form of translation invariance, so that the
properties of the system are completely captured by describing only a repre-
sentative unit cell. For example, consider an infinite, one-dimensional periodic
system possessing translation invariance with respect to a unit cell of length
`. Represented as a matrix product, the state is of the form given by Eq.
(2.8), but with the further restriction that not all tensors Aj[i] are distinct,

and instead repeat every ` sites. A state with only a one-site unit cell (full
translation invariance) can therefore be specified by only a single tensor A, i.e.

|ψ〉 =
∑
s

Tr (As1As2 . . . ) |s1s2 . . . 〉. (2.10)

Similarly, a state with two-site translation invariance (` = 2) specified by
two tensors, A1, A2 and has the form

|ψ〉 =
∑
s

Tr(As1[1]A
s2
[2]A

s3
[1]A

s4
[2]...)|s1s2s3s4 . . . 〉. (2.11)

If we carefully take into account the infinite nature of these states, their
iMPS representations allow us to study properties of the states directly in the
thermodynamic limit, rather than through any kind of finite-size extrapolation.
Note however that finding an MPS representation for an infinite system still
relies on having limitations on the entanglement. In particular, for an iMPS
with finite bond dimension to capture an infinite state, we must still have
exponentially decaying correlations, i.e. correlations which are not themselves
also infinite [25]. A ground-state preparation algorithm for infinite states will
be discussed subsequently in Sec. 3.2.2, and we will present more methods for
evaluating properties of infinite states in Chapter 4 and 5.

A final note about the usage of MPS representations in practice: in the
foregoing, we have motivated the MPS structure by imagining the decompo-
sition of a general coefficient tensor, and indeed, in principle it is possible to
construct an MPS representation of any quantum state with known coefficients
in a manner similar to this (for complete details, see Ref. [81]). However, this
situation is often not the one which arises in practice. After all, our desire is
to find representations for quantum systems with so many particles that their
coefficient tensors become unworkably large; in such cases, of course we will
not already be in possession of a coefficient tensor which we can decompose.
Instead, we shall more typically be developing numerical methods in which
we consider only states with an MPS form, and then numerically search for
particular state of interest from among this class of MPS states. Examples
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and descriptions of such methods will be presented in Sec. 3.1 and Sec. 3.2.

Gauge Freedom and Canonical Form

Before presenting the details of the algorithms, we wish to identify a few ad-
ditional properties of MPS states and their generalizations. First and foremost,
it is important to observe that some gauge freedom is allowed in the represen-
tation of MPS states. For example, consider a periodic state represented as in
Eq. 2.9 by a set of tensors {A[1], A[2], . . . A[L]}. If for some appropriately-sized
matrix X and some phase factor eiφ we transform each MPS tensor according
to

A
sj
[j] → eiφXA

sj
[j]X

−1 (2.12)

then by substitution of this transformation into Eq. 2.9 we can see that all the
X’s will cancel and the state itself will only change by an overall factor eiLφ.
Since the global phase is not observable, this transformation of the tensors
essentially leaves the state invariant. Indeed, this isn’t even the most general
transformation that could be made in this case without changing the state;
one can easily imagine a site-dependent transformation A

sj
[i] → eiφX[j]A

sj
[i]X

−1
[j+1]

which accomplishes the same thing. Clearly, a single physical state can be
represented by many different sets of MPS tensors.

This freedom allows us to make some choices about the structure of the
representation which will prove useful in subsequent calculations. In particu-
lar, we can choose our MPS to be represented in the so-called “canonical form”
[15], in which each of the state tensors satisfy the property,

Ajα,β(A∗)jα′,β′δ
β,β′ = δα,α′ (2.13)

Note that in this case, we have explicitly labelled both the physical index and
the virtual indices of the tensors for clarity, with Greek indices for the virtual
space. Strictly speaking, the canonical form of Ref. [15] also implies the related
condition that

(Λ[i−1])α,α′(A[i])
j
α,β(A∗[i])

j
α′,β′ = (Λ[i])β,β′ (2.14)

for some set of positive, diagonal matrices {Λ[i]}, which are related directly
to the Λ’s of Eq. 2.6. However in this work, when we refer to employing the
canonical form, we will be using the property in Eq. 2.13 unless otherwise
stated.

Generally, the properties of canonical forms will turn out to be quite useful
in our applications of MPS states, and hence it is desirable to work with MPS
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states which have these properties. Happily, when an MPS is constructed from
a coefficient tensor through successive SVD’s as described above, that state is
already in canonical form [15, 82]. Essentially, this occurs directly from the
unitarity of the Asj which arise from the SVD in Eq. 2.6; for greater detail see
Appendix B in Ref. [82].

To achieve the canonical form in other cases, analytical procedures have
been given in Refs. [15, 83] for transforming a general MPS without chang-
ing the physical state. Furthermore, the numerical application of sequential
Schmidt decomposition to all pairs of neighboring sites can be used to approx-
imate the canonical form up to machine precision [84, 85]. This latter method,
which we employ for most of our numerical algorithms, is discussed below in
Sec. 3.2.1.

Transfer Matrices

The canonical condition for the MPS tensors in Eq. 2.13 can also be thought
of in terms of the “transfer matrix” for those tensors (see Fig. 2.5). This
object, a common construction used in MPS formalism to compute things like
expectation values, is given by:

T
(αα′)
(ββ′) ≡ Ajα,β(A∗)jα′,β′ . (2.15)

Now consider the dominant eigenvector of T , which will be some vector
X(β,β′). Because the outgoing indices of T are a composite of smaller indices
(β, β′), any eigenvector of this matrix can also be thought of as a (smaller)
matrix in its own right, by interpreting X(β,β′) as Xβ

β′ , so that X(β,β′) is a

vectorization of the matrix Xβ
β′ . Now, the condition for canonical form can

be rephrased as the requirement that the dominant eigenvector of the state’s
transfer matrix is a vectorization of the identity matrix, i.e.

(T )
(αα′)
(ββ′)δ

(ββ′) = δ(αα′). (2.16)

For a graphical depiction, see Fig. 2.5.
Of course, there is nothing special about the fact that we have considered

the right eigenvector. From the transfer matrix point of view, we now see that
we could have also defined a comparable choice of canonical form in which the
tensors satisfy instead

δ(αα′)(T )
(αα′)
(ββ′) = δ(ββ′). (2.17)

We call these conditions the “right” and “left” canonical forms of an MPS.
In general when we refer subsequently to states in “canonical form,” we mean
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the right canonical form, although as we will see in Sec. 3.1, there will be
situations where it is advantageous to use a combination of both right and
left.

Let us now look more closely at the transfer matrix. Because it represents
a contraction of the physical indices of the tensors Aj, the transfer matrix can
be thought of as containing the overlap of the state with itself at a single site.
In other words, in an L-site periodic state with one-site translation invariance,
the norm square of the state is given by taking a product of L transfer matrices
(one for each site) and then tracing over them.

〈ψ|ψ〉 = Tr(TN) (2.18)

This fact in turn produces a relationship between the eigenvalues λj of the
transfer matrix, and the norm of the state. Consider for example an infinite-
length, translation-invariant state with unique largest eigenvalue λ1, whose
norm is given by limN→∞ Tr(T

N) =
∑

j λ
N
j ≈ λN1 . This state is normalized if

|λ1| = 1. Hence in this case, computing the largest eigenvalue of the transfer
matrix gives us a convenient way to ensure normalization.

2.2.3 Matrix Product Operators

As difficult as it is to represent an arbitrary quantum state because of
large the Hilbert space becomes relative to the number of particles, recall that
representing a generic operator on such space becomes even more prohibitive.
One might naturally wonder if the same techniques used to represent states as
MPS could be used to condense the representation of the associated operators.
And one would find that indeed they can.

The ansatz in this case is called a “matrix product operator” (MPO) [26,
32, 86, 87]. In a manner quite similar to Eq. 2.19, the MPO representation
of some operator O consists of taking the expansion of the operator in some
orthonomal basis, and expressing the coefficients with a product of tensors.
The only difference is that the tensor associated with each site will now have to
carry two physical indices (corresponding to the incoming and outgoing indices
of O), so that in total the tensors are rank four. We write this representation
as

O =
∑
s,s′

(
〈Vleft|M

s1,s′1
[1] M

s2s′2
[2] . . .M

sLs
′
L

[L] |Vright〉
)
|s1s2 . . . sL〉〈s′1s′2 . . . s′L| (2.19)

Note that in addition to the set of tensors, for the open boundary case we
must specify also two boundary vectors 〈Vleft| and |Vright〉. These vector set
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Figure 2.5: (Color Online). The transfer matrix of a translationally-invariant
matrix product state, demonstrated in graphical tensor notation. In (a), the
construction of the transfer matrix is shown as a contraction of two MPS ma-
trices, with the virtual indices grouped to form a single matrix. In (b), the
relationship between the transfer matrix and the norm square of the state is
shown. Finally, in (c) we show graphically the behavior of a matrix prod-
uct state in canonical form: such a state has a transfer matrix whose domi-
nant eigenvector is a vectorized version of the identity matrix. In particular,
this demonstrates the “right” version of canonical form; the condition for left
canonical form appears the same, but with a horizontal reflection.
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the boundary conditions of the system and ensure that the product in Eq. 2.19
gives a scalar result. We have included them here for clarity, but elsewhere in
this work we shall absorb them into the definitions of M[1] and M[L]. The MPO
description can also be generalized to cases with periodic boundary conditions
(where a trace replaces the boundary vectors), or to infinite systems (by means
of a representative unit cell).

Like an MPS, an MPO can be described by the bond dimension, i.e. the
dimension of the virtual indices of its tensors. And like an MPS, there is no
guarantee that a generic operator can be expressed efficiently in this language,
without resorting to an exponentially large bond dimension. But perhaps
unsurprisingly, operators which can be expressed as a sum of local terms–such
as Hamiltonians whose ground states admit efficient MPS representations–are
themselves well-suited to representation as an MPO. For example, consider
a Hamiltonian composed of some two-body terms XiYi+1 and some onsite
operations Zi with coefficients {Ji} and {hi}, i.e.

H =
∑
i

JiXiYi+1 + hiZi. (2.20)

It is convenient to represent the rank-four tensors of Eq. 2.19 as matrix-
valued matrices. The indices of the “outer” matrix are the virtual indices of the
tensors, whereas the indices of the “inner” matrices (the elements of the outer
matrices) are the the physical indices of the tensor. Under this convention,
The Hamiltonian in Eq. 2.20 is given by the tensors.

M[i] =

 1 0 0
Y 0 0
hiZ JiX 1

 , (2.21)

coupled with the boundary vectors

〈Vleft| =
(

0 0 1
)
, (2.22)

and

|Vright〉 =

 1
0
0

 . (2.23)

Note also that the representation achieved here is exact, with no approx-
imate truncations. Additional two-body terms in the Hamiltonian can be
accommodated by inserting additional rows and columns, keeping the identity
matrices as the first and last diagonal elements, and always keeping the single-
site term in the lower left corner. Terms with three-body operations can be
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incorporated by including additional nonzero terms beyond the first column,
although this can be done while maintaining a lower-triangular structure [32].
In general, this construction can represent an operator with up to n different
types of interaction terms in an MPO with a bond dimension of most n+ 2.

The MPO and MPS structures are also well-suited to calculating expecta-
tion values. Just as one would compute 〈ψ|O|ψ〉 by contracting the indices of
bras and kets onto the incoming and outgoing indices of the operator O, so
too can we compute this quantity by contracting all the physical indices of the
tensors representing 〈ψ| and |ψ〉 around the MPO tensors representing O, as
shown in Fig. 2.4.

2.2.4 PEPS

Finally, we conclude by considering the obvious question: can the matrix
product structure be generalized to systems with more than one spatial dimen-
sion? The answer is that indeed they can, although not all of the properties
and advantages of the representation are present to the same degree. The MPS
structure took the form of a rank three tensor associated with each site along
a chain, with the virtual indices of each tensor all contracted together. We
can naturally imagine the same structure generalized to an arbitrary graph,
with a tensor at each site of rank z + 1, where z is the coordination number
of the site. An example for the case of a square lattice is demonstrated in
Fig. 2.4. As with an MPS, this network could represent a state with the ex-
pansion coefficients for each basis vector given by fixing the physical indices
and contracting the virtual degrees of freedom. Since this contraction involved
a product of matrices in the case of an MPS, and now involves contracting a
more general tensor network, it would seem natural to call this representation
a “tensor network state.” But while this term can be found in the literature,
due to historical reasons [31] and notational inertia it is more commonly called
a “projected-entangled pair state” (PEPS) [14, 16, 31, 32, 34, 35]. In reluctant
deference to this emerging consensus, we shall use that term here as well.

For the most part, PEPS (and iPEPS, their generalization to infinite sys-
tems with translation invariance [33]) share the important qualities of the MPS
structure. For example, since the entanglement of any particular site with its
neighbors is limited by the bond dimension of the PEPS, it can be shown
that PEPS states also satisfy an area law with respect to the entanglement of
subsystems with their environment [88, 89]. In turn it can be shown that the
ground states and low-lying excitations of gapped two-dimensional Hamiltoni-
ans can be efficiently represented by PEPS [33, 80, 88, 89]. As with the MPS
case, this family of states contains many systems of particular practical or
theoretical significance, including states with special significance to the study
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of quantum computing, such as the Cluster state [90, 91], the two-dimensional
generalizations of the AKLT state [92–94], or the toric code [95]. In fact in
some ways the power of PEPS extends beyond what was possible with an MPS;
whereas MPS with finite bond dimension could only represent states with ex-
ponentially decaying correlations, a finite-bond PEPS can represent a state
whose correlations correlations decay only polynomially with distance [88],
meaning that we can also represent states from gapless Hamiltonians.

But as one might expect, the increased complexity of two-dimensional sys-
tems also comes at a much greater numerical cost. Evaluating any properties of
a PEPS requires contracting the underlying two-dimensional tensor network,
and in general exact calculation has been shown to be exponentially costly
in the size of the system (in particular, it is a #P-hard problem [96]). The
reason for this may be intuitively apparent: earlier we remarked that when
contracting a network of tensors, the optimal sequence of contractions is the
one which minimizes the number of free indices which appear during the in-
termediate steps. For arbitrary two-dimensional graphs (picture, for example,
a square lattice), this number of free indices will inevitably be of order

√
N ,

where N is the total number of tensors [72]. As a result it is generally neces-
sary to keep the bond dimensions of the tensors very small; values of χ = 2, 3
or 4 are typical. But even in these cases, the process can be expensive. Con-
sequently, PEPS methods generally rely on a variety of numerical techniques
to approximate these contractions. These methods typically involve the use of
truncated SVD’s to remove low-weight information about the contraction; for
more details and particular examples, see Refs. [33, 97–101].
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Chapter 3

Ground State Preparation
Algorithms

As discussed in Chapter 2, much of the power of tensor networks and
matrix product states lies in their ability to efficiently represent the ground
states (and low-lying excitations) of gapped, local Hamiltonians. Typically,
to find an MPS representation for such a state, we start by first assuming an
MPS structure, and then, within the class of states described by this structure,
we search for our desired state. When the state is found, the MPS structure
can allow us to study its properties with great efficiency and explore a variety
of important topics in quantum many-body physics.

In this chapter we present a detailed look at two classes of algorithms which
do precisely this, searching the space of MPS states for the ground states of
a given Hamiltonian. The first of these, the so-called “Density Matrix Renor-
malization Group” method (DMRG), is described in Sec 3.1). The second
method, based upon “Time Evolving Block-Decimation” (TEBD) appears in
Sec. 3.2). Both families of methods were used extensively to generate the data
studied and presented in subsequent chapters, and we give considerable detail
about both the theory behind these methods and about our implementations
in practice.

3.1 DMRG

Ironically, the Density Matrix Renormalization Group (DMRG) algorithm,
perhaps the most widely-known and often-employed tensor network algorithm
for finding ground states, was in fact in development before tensor network
states emerged as a fully-recognized area of study in its own right. Originally,
the technique was introduced by White [21, 22], drawing directly (as the name
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implies) upon Wilson’s renormalization-group(RG) method [102, 103], and ap-
plied to perform real-space RG calculations for spin chains, and quickly gener-
alized further. Then, during the course of an intervening decade, it was grad-
ually discovered that the states which were well-described by DMRG methods
corresponded to those which could be represented as an MPS [20, 23], and
that key steps and structures of the DMRG process (as applied to both fi-
nite and infinite systems) were deeply connected to the language of tensor
networks [23, 24]. Ultimately, it was realized that the entirety of the DMRG
technique could be understood as a variational optimization problem for tensor
network states [24, 25, 104].

Even then, this striking equivalence was regarded to some extent as a fact
of more conceptual than practical significance, since the original purpose of
DMRG (to compute ground states for finite spin chains with open boundary
conditions) is not noticeably better served by the MPS reformulation [26].
Beginning in the early 21st century, however [31, 86, 105], a wide variety of
additional applications and generalizations for the DMRG technique began to
be identified which would not have been possibly in the original formulation
(notably, even the problem of periodic spin chains, discussed below, is ad-
dressed more naturally in the language of MPS). For a more complete review
of the nature and history of these techniques, see [25, 26].

3.1.1 Basic Algorithm

We present here a brief overview of the method behind DMRG, as viewed
in the framework of a variational problem for matrix product states, for one-
dimensional finite systems of length L. This is the context for which it has
been principally employed in this dissertation (and which forms the basis for
an additional algorithm presented in Chapter 6). We emphasize of course that
extensions to higher-dimensional systems exist [31].

Defining the Optimization Problem

Any variational method for finding a (normalized) ground state |ψgs〉 of
some Hamiltonian H essentially contemplates the inequality

〈φ|H|φ〉
〈φ|φ〉

≥ 〈ψgs|H|ψgs〉 ∀ |φ〉, (3.1)

which is true almost by definition, with equality only when |φ〉 = |ψgs〉 up
to overall phases and normalization. Any |φ〉 which is different from |ψgs〉
is expressible as a linear combination of |ψgs〉 and other normalized energy

27



eigenstates |ψi〉, i.e.

|φ〉 = c0|ψgs〉+
∑
i

ci|ψi〉 (3.2)

for some ci = 〈ψi|φ〉. Consequently, the energy expectation value for such
state is

〈φ|H|φ〉 = |c0|2〈ψgs|H|ψgs〉+
∑
i=1

|ci|2〈ψi|H|ψi〉. (3.3)

Now, because by definition the matrix elements on the right are all bounded
below by 〈ψgs|H|ψgs〉, we can write

〈φ|H|φ〉 ≥
∑
i=0

|ci|2〈ψgs|H|ψgs〉

≥ 〈φ|φ〉〈ψgs|H|ψgs〉.

and the desired inequality follows directly. From here, it is obvious that the
search for the ground state can be cast as an optimization problem by simply
seeking the state |φ〉 which saturates the bound, which is to say

|ψgs〉 = min
|φ〉

〈φ|H|φ〉
〈φ|φ〉

. (3.4)

In the foregoing, we have very intentionally avoided a presumption that
the general state |φ〉 is normalized. In practice, as one varies numerically
the parameters which specify a state, it may well not be a trivial to do so
in a manner which preserves the norm while exploring the full domain of
possible states. But the norm of the state is an essential part of the desired
inequality. Hence, in practice we take the normalization into account as an
additional constraint on the optimization problem. A standard approach [14]
is to include this constraint by means of a Lagrange multiplier and minimize
〈φ|H|φ〉 subject to 〈φ|φ〉 = 1 by minimizing the function

L = 〈φ|H|φ〉 − λ〈φ|φ〉 − λ. (3.5)

Note that the final term in Eq.3.5 is a constant and can safely be ignored
without affecting the minimum energy or the minimizing state.

Optimization with Matrix Product States

If we have reason to believe that our target ground state |ψgs〉 can be ex-
pressed efficiently as a matrix product state (for example, if we are seeking the
ground state of a gapped, local Hamiltonian), then the minimization described
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above can be restricted to the domain of such states, with the matrices {Asj[j]}
of the MPS serving as the variational parameters. Recall that the bracketed
labels [j] are part of the “name” of the tensor (not an additional tensor index).
As discussed in [14], when viewed this way, the problem amounts to an opti-
mization with respect to a standard multiquadratic cost function. As such, it
can be solved by the method of alternating least-squares (ALS), wherein one
seeks to optimize over a single parameter while keeping the others fixed, and
then iteratively “sweeps” back and forth over the other parameters until a so-
lution converges. In the language of matrix product states, this means moving
back and forth across the sites in the spin chain and choosing at each site a new
tensor which minimizes the overall energy, treating the other tensors as fixed
for the time being. Note that while in principle this method is not guaranteed
to globally converge [106] (and one can construct special cases where it does
not [107]), in practice the convergence properties of the DMRG algorithm have
been extensively studied [108, 109] and judged to be very strong, particularly
given the properties of “typical” ground states which matrix product states
are naturally designed to represent [13].

At each step of the ALS optimization, we are no longer considering the full
cost function of Eq. 3.5. Rather, in step j we are optimizing only the tensor
A
sj
[j]. If we momentarily regard this tensor as a “state” |A[j]〉 (i.e., we group all

the indices and treat them as a combined, “vectorized” index), then the rest of
the state can be grouped with the original Hamiltonian H to form an “effective
Hamiltonian” Heff with respect to this “state” which is to be optimized. More
concretely, let |A[1...j]〉vj be the state represented by the tensors, {A[1] . . . A[j]},
with the subscript vj indicating that the uncontracted virtual index at site j
is left open. The effective Hamiltonian can then be described as

Heff =

〈A[1...j−1]|v′j−1
⊗ 〈A[j+1...L]|v′j+1

H|A[1...j−1]〉vj−1
⊗ |A[j+1...L]〉vj+1

(3.6)

Note that the open virtual indices are not contracted with one another, and
as such are separately labelled with and without primes. The open virtual
indices and the remaining physical degrees of freedom from H are grouped to
form the indices α and β of Hαβ

eff . In practice, to achieve this desired overlap,

we cast H as an MPO with tensors {M s′isi
[i] }i=1...L, and contract it with the

tensors for the MPS at all sites except site j. This structure is substantially
clarified by graphical notation as shown in Fig. 3.1, and Fig. 3.3 for the case
of periodic boundary conditions.

A similar approach allows us to define Neff , an effective norm operator,
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with respect to the tensor we are optimizing, i.e.

Neff =

〈A[1...j−1]|vj−1
⊗ 〈A[j+1...L]|vj+1

|A[1...j−1]〉v′j−1
⊗ |A[j+1...L]〉v′j+1

(3.7)

This structure can be dramatically simplified in the case of open boundary
conditions (see Sec. 3.1.1), but for the sake of completeness and clarity we
discuss it first in its most general form.

In this language, the cost function in Eq. 3.5 becomes

L = 〈A[j]|Heff |A[j]〉 − λ〈A[j]|Neff |A[j]〉. (3.8)

When we consider variation with respect to the tensor, represented here as
〈A[j]|, and seek to make this derivative vanish, the optimization simply amounts
to solving

Heff |A[j]〉 − λNeff |A[j]〉 = 0 (3.9)

which is simply a generalized Hermitian eigenvalue problem (GHEP), a well-
studied class of linear problems which can be numerically solved by any of
a number of suitable methods[110] to give us both an eigenvalue λ and a
solution vector |A[j]〉. This vector gives us the new tensor for site j, by simply
re-interpreting its vectorized index as the three original tensor indices. We
update the MPS with the new tensor, and observe that, by acting this bra on
Eq. 3.9, we have

〈A[j]|Heff |A[j]〉 − λ〈A[j]|Neff |A[j]〉 = 0 (3.10)

Which, by definition of Heff and Neff , implies that

〈A[1...L]|H|A[1...L]〉 − λ〈A[1...L]||A[1...L]〉 = 0 (3.11)

Or in other words, since |A[1...L]〉 is just the full state φ,

λ =
〈φ|H|φ〉
〈φ|φ〉

. (3.12)

Hence, one can see that the eigenvalue is in fact equal to the energy of the
new state with respect to the original Hamiltonian. Choosing the vector asso-
ciated with the smallest such eigenvalue will thus assure that we have locally
minimized the energy. We can then move to the next site, and repeat the opti-
mization calculation with respect to the new MPS. Proceeding in this way, the
algorithm is in fact guaranteed to be what is known as a “greedy” algorithm:
it monotonically pursues the solution by choosing the locally optimal update
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Figure 3.1: (Color online) (a) The matrix Heff with respect to some site j of
a system with open boundary conditions, illustrated in graphical notation to
show its internal structure, as described in Eq. 3.6. The incoming and outgoing
indices α and β are composite indices which group two virtual indices and a
physical index of Mj, where the M tensors specify the total Hamiltonian H as
an MPO. (b) Similar structure showing the effective norm operator Neff with
respect to site j. See Eq. 3.7
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at each step.
Broadly, then, the steps of the numerical algorithm are as follows

1. We set a maximum bond dimension χ for our matrix product states and
initialize the algorithm with a “random” state |φ1〉; in practice, this is
simply an MPS whose L tensors {As1[i] . . . A

sL
[L]} have been chosen with

random elements.

2. Beginning at site 1, we fix the tensors at all remaining sites 2 through L
and construct Heff and Neff in accordance with Eq. 3.6 and Eq. 3.7.

3. Solve the GHEP of Eq. 3.9 for the smallest eigenvalue λ and interpret
the resulting eigenvector as the new tensor Ãs1[1].

4. By replacing the old tensor As1[1] with Ãs1[1], we arrive at a new state |φ2〉.

5. Shift our focus to site two, and repeat the above. These steps are it-
eratively “swept” along the sites until we reach site L; at this point, a
sound numerical practice is to reverse directions and sweep back towards
site one. This ensures a sort of symmetry in the overall optimization, so
that no portion of the state excessively leads or lags the minimization.
During the forward sweep, the optimization of sites at the end of the
chain benefit from the additional information provide by optimizing the
sites at the beginning. When sweeping backwards, the reverse is true.
Note that for this reason, it is good practice to sweep “back and forth”
with respect to an arbitrary starting point even for the case of a periodic
system, where one could in principle sweep “around” the chain nonstop.

6. The entire process can be repeated until one’s desired convergence cri-
teria are met. Further discussion of convergence criteria can be found
below in Sec. 3.1.1; comments in Sec. 3.2.5 may also be applicable.

Numerical Considerations

When implementing this algorithm in a programming language, a number
of important practical considerations emerge to aid in the efficiency of the
algorithm. Perhaps the most significant issue arises in the case where one
considers a system with open boundary conditions. Recall the canonical form
(discussed in Sec. 2.2.2) into which an MPS can be placed. Suppose we have
reached step j of a DMRG sweep, i.e. that we are preparing to optimize the
tensor A

sj
[j]. As demonstrated graphically in Fig. 3.2, if the tensors Asi[i] for

i > j satisfy the “right” canonical form condition (Eq. 2.16), then the entire
structure of Neff to the right of site j is simply equal to the identity matrix
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Figure 3.2: (Color online) With open boundary conditions, the effective norm
tensor Neff at site j can be substantially simplified if certain conditions are
enforced. (a) First, we must place the state into a left canonical form for all
tensors A[i]left of site j, i.e. i < j. (b) Next, we must similarly place all tensors
A[i] for i > j in a right canonical form. (c) As a result, the tensor Neff can be
“collapsed in” by repeated applications of properties (a) and (b) (recall that
the initial structure has only a null index of dimension zero at the boundary).

and can be neglected. In the same manner, if the tensors Asi[i] for i < j are

in “left” canonical form (Eq. 2.17), the same can be said about Neff to the
left of site j. As such, although there is a small extra computational cost
involved, it us ultimately quite profitable to explicitly enforce these canonical
forms throughout the DMRG sweeps, since we can then avoid constructing the
entire Neff tensor at each step. The result is that one can avoid a large number
of repeated tensor contractions, far outweighing the cost of the canonical form.

Indeed, it is relatively simple to enforce the canonical conditions in this
case, as we are dealing with the state only one tensor at a time. Let us
suppose we initialize our system with a state which is already in canonical form
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(either by construction, by application of the techniques in Refs. [15, 83],or
through the identity gate TEBD method of Sec. 3.2.1). At each step, once
one obtains the optimized tensor A

sj
[j], it can be reshaped and decomposed

by SVD, keeping only the unitary parts which already satisfy canonical form,
as in Eq. 2.6. Then, the remaining pieces of the decomposition can simply
be neglected, since at step j they would have been “pushed” onto the tensor
A
sj+1

[j+1]. But this is the tensor which will be replaced by optimization in the
very next step, so there is no need to change it now. This keeps the state in
right canonical form; when left canonical form is desired, we simply group the
indices differently before the SVD. Note, however, that we can now see why
this optimization is only available for the open boundary case: since the tensors
to the left and right of the current site have to be placed in canonical form in
different directions, in a periodic chain these successive transformations will
eventually come into conflict.

Unfortunately, while this technique allows one to avoid the costly construc-
tion of the large Neff matrix in the open boundary case, there still remains
the even-more-expensive process of constructing Heff at each site. And for the
periodic case, construction of both Heff and Neff is unavoidable. Neverthe-
less, the computational cost of this process can be minimized by using a basic
form of “dynamical programming,” i.e. by allowing the algorithm to store the
result of certain tensor contractions when one can anticipate that they will
be reused, minimizing the number of redundant steps. In this context, the
potential redundancies become apparent when one considers that Heff and
Neff can be viewed as products of (potentially generalized) transfer matrices
(see Fig 3.3). For example, at step j, the “left side” of Neff is given by

N
(j)
left =

j−1∏
j′

Tj′ . (3.13)

where
Tj =

∑
sj

A
sj
[j]A

∗sj
[j] . (3.14)

In the subsequent step j + 1, we will be constructing

N
(j+1)
left =

j∏
j′

Tj′ = N
(j)
left · Tj, (3.15)

which simply builds upon the result from the previous site. Analogous state-
ments can be made about Heff , with the transfer matrices Tj′ generalized to
include the matrices from the Hamiltonian MPO. Storage of these transfer ma-
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Figure 3.3: (Color online) The structure of the effective operators (a) Heff

and (b) Neff for the case of a system with periodic boundary conditions;
compare to Fig. 3.1. Note also that these structure can be though of as a
product of transfer matrices; one such transfer matrix is highlighted here in
green.

35



trix products can therefore substantially reduce computational effort; naively
constructing the left side of these structures at each site requires j transfer
matrix constructions at step j, for a total of L(L+1)/2 operations in a system
of length L. If, however, we save the previous structures during the sweep, we
need only construct one additional transfer matrix at each site, for a total cost
which is only linear rather than quadratic in L. Furthermore, since the rele-
vant left structure will always be given by the previous left structure times a
newly updated transfer matrix, the number of transfer matrix multiplications
can also be made linear in L throughout the sweep.

The situation is similar with respect to the structure on the right. Here,
since the relevant tensors are not changing during the update sweep, the req-
uisite transfer matrices and products of transfer matrices can all be computed
in advance and simply stored for use a the appropriate step, and the costs
remain similarly linear. Note of course when the algorithm is sweeping “back”
to the left, the same statements apply, but to the right and left sides, respec-
tively. This storage system also provided additional motivation for using a
“back-and-forth” sweep even in the case of periodic systems.

The remaining consideration is the same one which arises in nearly every
numerical method: the choice of a halting condition. Here, we have vaguely
stated that we wish our algorithm to sweep back and forth optimizing the
tensors until the ground state is “converged,” but we have specifically not
defined that notion as there are many criteria one might choose to set to
signal convergence. This choice may depend strongly on the parameters of
the problem at hand, but one common choice is to monitor the energy of our
wavefunction |φ〉. This quantity is available for “free,” since it emerges as λ,
the eigenvalue of the GHEP which must be computed anyway. In principle,
when the algorithm approaches a ground state, the values of λ should be
asymptotically approaching some value from above, and hence the difference
between values of λ after successive steps should get increasingly small. One
can monitor this change in λ between steps j and j+1 either by looking directly
at |λj − λj+1|, or by some more sophisticated method such as by considering
the standard deviation of a some set of the most recent values of λ. This
method is cheapest and highly advisable for cases where the energy itself is a
quantity of primary interest. Its principle drawbacks are the possibility that
convergence can be falsely triggered if the algorithm settles into a point of
metastability, or that some superposition of low-lying states is being reached
with energy close to the ground state. These can be guarded against in part
by looking at the variance of the energy, 〈(∆H)2〉 = 〈H2〉 − 〈H〉2, which
should become vanishingly small for a true eigenstate. More comments on
use of this quantity for convergence are discussed in the context of the iTEBD
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algorithm in Sec. 3.2.5; we provide an efficient method to compute this quantity
in Chapter 4.

An alternative point of view on convergence criteria would be to look at
how the state |φ〉 itself is changing, perhaps by computing the overlap 〈φj|φj+1〉
between steps j and j + 1 and seeking to let the magnitude of this quantity
converge towards 1. Such overlap is more costly and does not resolve the
possibility of false metastability, but can be a stronger convergence criterion if
one wishes to ensure that all observables of the state are as strongly converged
as the energy. As a compromise, one might also consider only the change in
the particular tensors as the states are updated, but must be careful to take
possible gauge freedoms into consideration.

3.1.2 Additional Applications and Extensions

First and foremost, it is important to remark that there is an important
generalization of DMRG to the case of an infinite, translationally invariant
system (represented by the unit cell in an iMPS). This technique is typically
termed iDMRG [32, 111]. Although iDMRG is certainly widely employed, our
implementation of the algorithm was not used for the work presented here,
and hence we refer the reader to the original references for more information;
helpful and approachable overviews of the basic technique can also be found
in Refs. [44, 112].

In our discussion of DMRG, we have also focused specifically on finding
ground state wavefunctions, for two principle reasons. First, these ground
states are guaranteed to admit efficient MPS representation in a manner which
excited states are not. But secondly, and more importantly, the variational
principle as stated above is premised upon properties of the ground state, i.e.
that by definition it has the lowest energy of any state in the energy eigenbasis
with which we expanded our trial wavefunction.

Nevertheless, if one knew the ground state |ψgs〉, one could identify the
first excited state by solving the same optimization problem articulated in
Sec. 3.1.1, but minimizing only over the sector of states |φ̃〉 which satisfy
〈φ̃|ψgs〉 = 0. It is by this process that RG methods and in particular DMRG[14,
26, 87] have traditionally been brought to bear on low-lying excitations even
beyond the first excited state. Indeed, if one knows the first n excitations
{|ψgs〉, |ψ1〉, · · · , |ψn〉}, then one can in principle variationally seek |ψn+1〉 by
solving the optimization problem from among wavefunctions mutually orthog-
onal to the known states.

One can envision the incorporation of this constraint by means of the trans-
formation Heff → P THeffP and Neff → P TNeffP , where P is a projector
onto the appropriate orthogonal subspace. In fact, in the language of MPS,
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such projectors can be efficiently computed and applied, even for multiple
states [87]. Calculation then proceeds as before, subject only to the need for
the resulting wavefunction be projected back. Naturally, however, this projec-
tor is itself going to be an approximation, as the true ground state wavefunc-
tion is unlikely to be known exactly in the cases of interest. Typical practice
is to first compute the approximate ground state |φ0〉 as described above, and
then repeat the method for states orthogonal to this estimation. The pro-
cess can continue to be iterated, with the proviso that error will increasingly
accumulate: the wavefunctions themselves are approximations, and they are
computed subject to increasingly-approximate orthogonality constraint. Note
however that in some cases, if symmetry properties of the low-lying states are
known (and differ from the ground state), then enforcing these symmetries
on the MPS throughout the DMRG algorithm can achieve the same effect
[87, 113, 114].

3.2 TEBD and iTEBD

The second major family of algorithms are based upon a technique re-
ferred to as Time Evolving Block Decimation (TEBD)[27, 81, 115]. As the
name suggests, they were originally introduced as a method to simulate uni-
tary time evolution of a system under a known Hamiltonian, although from
their inception it has been recognized that they could also be used for ground
state preparation be means of evolution in imaginary time. Whereas ordinary
unitary time evolution of a state |φ0〉 = |φ(t = 0)〉 proceeds according to

|φ(t)〉 = e−itH |φ0〉, (3.16)

by taking an “imaginary time” parameter τ = it we can also consider the state

|φ(τ)〉 =
e−τH |φ0〉
||e−τH |φ0〉||

, (3.17)

where here we have explicitly included a normalization since the operator e−τH

is no longer unitary. Let H be a gapped Hamiltonian and, as before, consider
a random initial starting state |φ0〉 expanded in {|ψi〉} the energy eigenbasis
of H, so that |φ0〉 =

∑
i ci|ψi〉 . After application of e−τH , we have up to

normalization

e−τH |φ0〉 =
∑
i

cie
−Eiτ |ψi〉. (3.18)
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It is clear that, as τ → ∞, every term in the right hand side will be expo-
nentially suppressed relative to the ground state |ψgs〉, whose energy is the
smallest and whose coefficient c0e

−E0τ is hence the largest for large τ . This
assumes, of course, that the initial state |φ0〉 has nonzero overlap δ = |〈φ0|ψgs〉|
with the ground state, which in practice will be true for an initial state which
is suitably random. In particular, when the Hamiltonian has a gap of size ∆,
the suppression of the excited states in Eq. 3.18 can be shown to be [27]

|〈φτ |ψgs〉 > 1−O
(
e−2∆τ

δ2

)
. (3.19)

Indeed, while the above equation is explicitly applicable only for systems of
finite length (where nonzero δ has clear meaning) and for gapped Hamiltonians,
in practice it has been consistently shown that the principle of imaginary time
evolution extends well beyond these limitations, as will be discussed below.
The result in general is a powerful method for pursuing the ground state: in
a certain sense, the pursuit of the ground state state by the imaginary time
evolution of Eq. 3.17 is simply an alternative way of attempting to solve the
optimization problem of Eq. 3.4, with the state updated globally according
to the imaginary time evolution operator rather than locally according to the
DMRG method described above.

There are two essential elements to TEBD algorithms for matrix product
states: the truncated SVD, discussed above in Sec. 2.2.1, and the Suzuki-
Trotter decomposition, which we shall discuss below, before synthesizing both
techniques into a complete algorithm.

Suzuki-Trotter Approximations

The need for the Suzuki-Trotter decomposition arises from the fact that,
although we can often efficiently apply the operator H to a matrix product
state when H is bounded and local by means of a compact MPO, there is
unlikely to be a similarly efficient MPO representation of the operator e−τH .
The possibility of a compact description of H comes from the fact that each
of its terms acts only to a finite number of local sites, but the exponentiation
generally mixes the action at each site into a global operation. Imagine, how-
ever, the special case of a (perhaps boring) Hamiltonian H =

∑
i hi, whose

terms each act only at a single site and hence mutually commute, [hi, hj] = 0.
In this case, e−τH =

∏
i e
−τhi separates into a product of pieces which (a) act

only on a single site at a time, and (b) mutually commute. Such pieces could
be applied efficiently to an MPS in a parallel manner, as we will demonstrate
in greater detail in Sec. 4.2.

Of course this compelling property does not exist for the more typical and

39



interesting class of Hamiltonians we generally consider, which might contain
e.g. two-body terms, so thatH =

∑
i hi,i+1. These terms do not by nature have

the pleasant property of mutual commutation. But they can be partitioned
into two classes of terms: those which act first on an odd-numbered site (such
as h1,2, h3,4, etc.) and those who act first on an even-numbered site (such as
h2,3, h4,5). As such, H can be written as

H = Hodd +Heven, (3.20)

with

Hodd =
∑
iodd

hi,i+1 (3.21)

and

Heven =
∑
ieven

hi,i+1. (3.22)

The terms within e−τHeven (and e−τHodd) now individually possess the de-
sirable property of mutual commutation, and can be applied while considering
only local information about the state. Each individual exponential can there-
fore be applied very efficiently (see also further details in Chapter 4). The
only problem that remains is to find an efficient description of e−τH in terms
of e−τHodd and e−τHeven .

This, happily, is exactly the class of problem contemplated (and solved) by
Trotter [116] and subsequently brought to bear on many-body physics prob-
lems by Suzuki [117, 118]. To second order in small δτ , the approximation
which now bears their name has the form

e−δτ(Hodd+Heven) ≈ e
−δτ
2
Hodde−δτHevene

−δτ
2
Hodd . (3.23)

Consequently, one can now imagine applying the entire operator e−δτH as
a sequence of just three steps: e

δτ
2
Heven , e−δτHodd , and e

δτ
2
Heven , with many oper-

ations performed (nearly) in parallel at each step. These steps, are sometimes
called “layers” because of how they appear in graphical notation; see for ex-
ample Fig. 3.4. In any particular “layer,” the parameter δτ will be very small
(it must be, for Eq. 3.23 to hold), but by repeating this sequence of layers
many times, one can achieve imaginary time evolution (or indeed, a real time
evolution) out to large values of total accumulated time. The precise choice
of how many steps to take and corresponding choice of step size δτ becomes
in practice a matter of careful numerical tuning and choice of convergence
criteria. It will be discussed in greater detail in Sec. 3.2.5.
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Figure 3.4: (Color online) Graphical notation demonstrating the application
of e−δτH for H =

∑
Hodd + Heven to an MPS. The evolution operators is de-

composed into three “layers” by a second order Suzuki-Trotter decomposition
(Eq. 3.23). Within each layer, terms are mutually commuting and can be ap-
plied efficiently to the MPS through the “master step” of the TEBD algorithm
(Fig. 3.6). This sequence of layers can then be repeated many times until the
desired amount of imaginary time evolution is achieved.
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Note that while the second-order approximation in Eq. 3.23 is typically
good enough for many applications, higher-order versions exist which minimize
the error relative to the time step. When using TEBD or iTEBD to compute
a ground state, which will inevitably be reached as a result of the exponential
suppression of excited states, this dependence of the so-called “Trotter error”
on the time step may often be of little consequence. But when using these
techniques to perform real time evolution, one may wish to study the wave
function at many intermediate points throughout the evolution, not simply
at the end, and to do so with the largest acceptable timestep to improve
speed and efficiency (the same is also true for comparable algorithms which
consider finite temperature states; see [119, 120]). Thankfully, higher-order
approximations have been widely studied[121, 122] and can be generated to
the desired order with relative ease[123, 124]. One particularly common and
useful higher-order expansion[123] is the fourth-order formula of the form

e−δτHeven+δτHeven ≈ U(α1)U(α1)U(α2)U(α1)U(α1) (3.24)

where the component exponentials U(α) are each themselves second-order de-
compositions; i.e. they are defined as

U(α) = e
ατ
2
HeveneατHodde

ατ
2
Heven (3.25)

and the constants α1, α2 are

α1 =
1

4− 41/3

α2 = 1− 4α1

As can be seen, these higher-order approximations require a greater num-
ber of exponentials, which introduces a tradeoff: each exponential on its own
can be applied to the MPS in parallel, but the different exponentials must
be applied sequentially; hence, the more exponentials in the approximating
product, the slower the cost at any given step. On the other hand, since δτ
can be taken to be larger, fewer steps may be necessary. Striking the right bal-
ance depends entirely on the needs of the problem at hand. The fourth order
approximation given above also has the nice property that its terms are in a
certain sense “symmetric,” in that a sequence of U ’s is first applied and then
applied in reverse. This symmetry can have beneficial properties for numerical
stability [125].
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[1]
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Γ[2] Λ[2]

s1 s2 sL−1 sL

a)
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SVD

Figure 3.5: (Color online) (a) Graphical notation demonstrating the proce-
dure for decomposing a typical matrix product state into the “Γ, Λ” form of
Ref. [81]. The tensor A[1] is decomposed by SVD, with the resulting unitary

matrix V †[1] “pushed” to the right to form a new tensor A[2], as highlighted
in green. The new tensor A[2] is then similarly decomposed and the process
iterates. (b) A complete MPS represented in Γ, Λ form. Note that the entan-
glement entropy across any bond j can be quickly computed by considering
the entries of the diagonal matrix Λ[j].

3.2.1 Basic Algorithm

The TEBD algorithm essentially combines this Suzuki-Trotter technique
with the truncated SVD. To evolve an arbitrary initial state towards the
ground state, we efficiently apply a small imaginary time evolution operators
e−δτH by means of Suzuki-Trotter approximation. For a Hamiltonian with in-
teracting terms, this operation potentially increases the entanglement between
neighboring sites, thereby increasing the Schmidt rank of any given bifurcation.
This in turn would undesirably require an increasingly large bond dimension
for our MPS representation, so to combat this, we consider the various spa-
tial bipartitions of the state as the evolution operators are being applied and
systematically perform truncated SVD operations so that the bond dimension
can stay constant (or at least, grow only in a controlled manner which we can
proscribe).
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We consider first the application to a finite system of length L. As with
DMRG, we initialize with a random starting state represented as an MPS.
This time, however, it is beneficial to choose our state in a particular format.
Because we will be repeatedly performing SVD decompositions between neigh-
boring sites, one may as well begin with a state which is thusly decomposed.
If a particular starting state is desired, one can decompose it via successive
SVD’s by the same process which one would employ to obtain the MPS rep-
resentation in the first place [81]. This time, we wish to keep separate the
unitary portion of the decomposition which contains the physical index and
the diagonal matrix containing the Schmidt coefficients (the remaining unitary
piece from site j can be “pushed” onto the tensor for site j + 1; see Fig. 3.5).
In other words, after appropriately grouping the physical and virtual indices,
we take

Aj1 = Γj1Λ1V
†

1 (3.26)

and then group V †1 onto Aj2 as Aj2 → V †1 A
j2 . From here, we iteratively repeat

these two operations until the entire state is represented by two families of
tensors, {Γj1[1] . . .Γ

jL
[L]} and {Λ[1] . . .Λ[L−1]}. The reason for this grouping in the

context of the algorithm will become subsequently more clear clear, although
one can already foresee one advantage: the Schmidt coefficients (and by exten-
sion the entanglement entropy) across any choice of bipartition between sites
i and i + 1 are immediately accessible from the coefficients of Λ[i]. The MPS
representation for the state itself now takes the form:

|ψ〉 =
∑
s1...sL

Γs1[1]Λ[1]Γ
s2
[2]Λ[2] . . .Γ

sL−1

[L−1]Λ[L−1]Γ
sL
[L]|s1s2 . . . sL〉 (3.27)

which is demonstrated graphically in Fig. 3.5. Here as elsewhere, we typically
suppress labelling of the virtual indices and will explicitly label the physical
spin index at site i as “si”. When necessary for clarity, we will also include the
bracketed label [i] as part of the tensor name to distinguish different types of
tensor, but recall that this label does not represent any kind of tensor index.
Hence Γs1[1] is a the rank-three tensor associated with site one; it has two virtual

indices (not explicitly labelled) and one physical index, s1. By contrast, Λ[1]

is the diagonal matrix associated with site one; it has two implicit virtual
indices and no physical index. Since each tensor is in fact a matrix for fixed
value of its physical index, notation such as Γs1[1]Λ[1] is used to imply ordinary
matrix multiplication in the virtual indices, i.e. that for a fixed value of s1,
the corresponding virtual indices between Γs1[1] and Λ[1] are contracted.

Note that, if indeed we are merely choosing a random initial state, it is not
necessary to first choose random tensors A[i] and subsequently perform this
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decomposition; rather, one can choose simultaneously a random set of tensors
Γ[i] and random matrices Λ, subject to the constraint that

∑
i λ

2
i = 1.

Recall that our goal is to apply the operator e−δτH , which we will do by
means of the Suzuki-Trotter approximation discussed above. Hence at each
stage, we are applying not the global operator e−δτH , but some local piece of
the Suzuki-Trotter decomposition, such as perhaps e−δτh1h2 , which acts only
on the first two sites. Therefore, the central piece of the algorithm, which we
shall subsequently call the “master step”, consists of applying such a local op-
erator to neighboring sites and then recovering an efficient MPS representation
of the resulting state. Here first we consider the very common case where the
Hamiltonian consists of 2-local terms, so that the master step involves apply-
ing two-site operator to a pair of neighboring sites (in principle, longer-range
interactions could be applied by means of swap gates [27]). We present the
method first, followed by a more detailed examination of the principle behind
it.

Let us suppose we wish to apply a two-site operation U to sites j and j+1.
We will now outline the procedure, which is also demonstrated graphically in
Fig. 3.6.

We start by collecting up the tensors surrounding sites j and j+1, namely
Λ[j−1], Γ[j], Λ[j], Γ[j+1], and Λ[j+1]. If the outer tensors Λ[j−1] or Λ[j+1] fail to
exist because we have reached the boundary of the system, they can be set
to the identity. By contracting their virtual indices in sequence, these tensors
group together to form a new tensor Θs1s2

0 with two physical indices open, i.e.

Θ
sjsj+1

0 = Λ[j−1]Γ
si
[j]Λ[j]Γ

sj+1

[j+1]Λj+1]. (3.28)

The evolution operator U can now be applied to the physical indices of Θ0 to
form a new tensor Θ,

Θ =
∑
s′js
′
j+1

U
sjsj+1

s′js
′
j+1

Θ
s′js
′
j+1

0 (3.29)

which contains now information about the original state at sites i and i + 1
under the action of the evolution operator. Care must be taken here with
one’s conventions to ensure consistency with respect to bras and kets; we have
assumed our original MPS represented a ket |ψ〉, so we take the indices s′js

′
j+1

of U to refer to its outgoing indices.
Note in fact (again see Fig. 3.6 that the resulting tensor Θ has two virtual

indices (not labelled above) in addition to its physical indices: the leftmost
virtual index of Λ[j−1] and the rightmost virtual index of Λ[j+1]. Let us now
temporarily give these virtual indices explicit labels, calling them vj−1 and
vj+1 respectively. Then, grouping the indices vj−1 with sj and vj+1 with sj+1,
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Figure 3.6: (Color online) Graphical notation outlining the “master step” of
the TEBD algorithm for the case of a two-body Hamiltonian decomposed into
two-body operators by Suzuki-Trotter. In a single step, one such two-body
operator U is applied to sites j and j+ 1. (a) First, a tensor Θ0 is constructed
from the MPS tensors immediately surrounding the sites in question: Λ[j−1]

Γ[j], Λ[j], Γ[j+1], and Λ[j+1]. The tensors Λ[j−1] and Λ[j+1] are included to
provide information about how this particular two-body subsystem relates to
the “environment” formed by the rest of the chain. (b) Next, this tensor, which
possesses both physical and virtual indices, is updated with the operator U
to give a tensor Θ. (c) By grouping the virtual and physical indices as shown
we can re-interpret Θ as a matrix. This matrix then undergoes a singular
value decomposition (SVD), with the smallest singular values truncated away
to prevent unwanted increase in the bond dimension of the MPS. (d) For
the tensors resulting from the SVD, we “ungroup” the virtual and physical
indices and again interpret them as a set of tensors Γ̃[j], Λ̃[j], and Γ̃[j+1]. (e)
Finally, we update our MPS with a new set of tensors which “undo” the
inclusion of the environment tensors in (a), giving Γ[j new] = Λ−1

[j−1]Γ̃[j] and

Γ[j+1 new] = Γ̃[j]Λ
−1
[j+1]. The updated matrix Λ[j] is simply given by Λ̃[j] (not

pictured).
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we can interpret Θ as a matrix, and perform a singular value decomposition,
yielding new tensors

Θ
(vj−1sj)

(vj+1sj+1) = Γ̃[j]Λ̃[j]Γ̃[j+1]. (3.30)

If the virtual indices of the initial MPS had dimension χ and the physical
indices had dimension d, then the matrices in Eq. 3.30 are all of dimension χd×
χd (we assume here equal bond dimensions throughout the chain for clarity,
but this is not necessary and indeed may be undesirable in practice since the
ends of the chain will likely be more weakly entangled. The generalization to
site-dependent bond dimensions is straightforward). Our intention is to revert
to interpreting Γ̃[j] and Γ̃[j+1] as rank-three tensors with a physical index, by
“ungrouping” it from the composite matrix indices.

Notice, however, that this will leave a noticeably increased bond dimension
between the two tensors. The matrix Λ̃[j] has grown in size by a factor of
d, which is to be expected, given that the application of U will in general
have created some entanglement between the sites. But this increase in bond
dimension would not be sustainable given that we intend to apply many copies
of U in order to evolve out to large imaginary time. Thus, it is here we
employ the second tool in the TEBD toolbox, truncating the SVD by removing
the smallest elements of Λ[j]. It is sensible also at this point to manually
enforce

∑
i λ

2
i = 1; this helps to ensure that the state remains numerically

well-conditioned.
The number of elements to remove during this truncation can depend some-

what on the needs of the problem at hand; a common choice is to remove all
but the χ largest singular values, so that in fact the bond dimension does not
increase at all. Alternatively, sometimes a small, controlled increase (such as
allowing the bond dimension to increase by one or two every time a gate is ap-
plied) may be desirable if the number of gates to be applied is small. A check
can also be performed at this stage by computing the total of all the singular
values which have been truncated away; this number should remain small if
the TEBD algorithm is going to yield a good approximate ground state. We
note that this is also an interesting point of comparison between TEBD and
DMRG. In DMRG, the effect of the finite bond dimension was somewhat ob-
scured; we minimized the energy over all states which could be represented
by a given bond dimension, knowing implicitly that the result would be an
imperfect approximation if the bond dimension was too small, but there was
no natural way to immediately quantify this error, or to optimize the bond
dimension beyond blind trial and error. In TEBD, however, the impact of
our chosen bond dimension can be directly quantified, and one can exercise
considerably more control over this behavior. For example, one might allow
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the bond dimension of the system to increase slightly at a given step if the
alternative is an unacceptably large truncation error.

At this point we can also see why we have used the Γ,Λ representation of
the MPS, and why we have included the matrices Λ[j−1] and Λ[j+1] in the con-
struction of Θ0 (Eq. 3.28). These matrices are sometimes called “environment
tensors,” because they contain information about the entanglement between
the two sites we are currently updating and their relationship to rest of the
chain (their “environment”). Including this information allows us to do our
truncation in an optimal way, because the relative weights of the singular val-
ues in Λ[j−1] and Λ[j+1] will be included when we do the SVD in Eq. 3.30. In
this way our truncation tends to discard information which is neither signifi-
cant in terms of the entanglement between sites j and j+1, nor significant with
respect to the larger system. Note, since we are considering a finite system,
the fully optimal way to incorporate this environment information would be to
include all of the tensors from the surrounding portions of the state, providing
complete information. But including the entire state as environment is quite
numerically costly, and in practice, the information contained in the Λ matrix
is typically quite sufficient.

We now have new, truncated matrices Γ̃[j], Λ̃[j], and Γ̃[j+1], which collec-
tively reflect the action of U . All that remains is to interpret in the context of
the original MPS; that is, we want to recover tensors Γ[j new], etc., which can
take the place of Γ[j] in our updated MPS. The matrix Λ[j new] will simply be

the matrix Λ̃[j]; it is already in the correct, updated form. For the Γ tensors,
two adjustments need to be made. First, the composite matrix indices must
be carefully “ungrouped” so that we can treat the tensor as a rank-three ob-
ject with two virtual indices and a physical index. For example, the truncated
matrix Γ̃[j] has dimension χd×χ; the larger incoming index is still a composite
of the χ-dimensional virtual index vj and the d- dimensional physical index
sj. A similar statement is true for the outgoing index of Γ[j+1]. After thusly
reshaping our interpretation of the index groupings, it only remains to adjust
for the fact that we explicitly included the matrices Λ[j−1] and Λ[j+1]. These
matrices were necessary to take into account information about the environ-
ment, but they themselves are not being updated during this current step. To
undo their inclusion, we thusly take

Γ[j new] = Λ−1
[j−1]Γ̃[j] (3.31)

and
Γ[j+1 new] = Γ̃[j]Λ

−1
[j+1] (3.32)

Note numerically that these inverses are trivial to calculate because the ma-
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trices are diagonal, although in practice, it will be desirable to use a cutoff
value below which tiny numerical values are set to zero, and to use only a
pseudoinverse, computed over the nonzero values of the matrix, which could
otherwise be singular. Replacing the tensors Γ[j], Λ[j] and Γ[j+1] with Γ[j new],
Λ[j new] and Γ[j+1 new] completes the “master step” of the algorithm.

Having updated these tensors, we proceed to the next pair of sites in the
current layer of evolution (for the two-body operator case considered here,
this will be an update to the sites j + 2 and j + 3). Updates continue in this
fashion until all the evolution operators in the layer have been applied across
the chain, and layers are applied repeatedly until the desired amount of time
evolution or imaginary time evolution has been achieved. In summary, the
general outline of the algorithm is as follows:

1. Decompose the imaginary time evolution operator e−δτH according to
one’s desired choice of Suzuki-Trotter approximation; the result will be
n “layers” which need to be applied sequentially.

2. Initialize with a random state |ψ0〉 in Γ,Λ form

3. For each of the n layers of the evolution operator, sweep over neighboring
pairs of sites in the chain. At each pair, the relevant evolution operator is
applied to the pair in accordance with the “master step”, Eqs. 3.28-3.31
and Fig. 3.6. This will update the two tensors Γ[j] and Γ[j+1], as well
as the matrix Λ[j] which lives between them. Once all pairs have been
updated, we proceed to the next layer of the evolution operator

4. When all layers have been applied, the new MPS now represents e−δτH |ψ0〉.
Step 3 is iterated on the new state, until the desired amount of imaginary
time evolution has been performed.

TEBD and Canonical Form

Finally, we remark that, in addition to the explicit analytical methods
referenced above [15, 83], it has been shown that successive Schmidt decom-
positions of the state during an iTEBD algorithm are themselves equivalent to
enforcing canonical form, so long as the operators being applied to the state
are unitary. Of course, when one computes a ground state using imaginary
time evolution, the operators which are used, of the form e−δτH (see Eq. 5.24),
are not in general unitary. But for δτ very small, they will be quite close.
Since a typical iTEBD algorithm ends with a sequence of very small time step
evolutions, the resulting states are also typically “close” to canonical form [85].
To take this to its logical extension, it is a good practice to terminate every
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TEBD algorithm with e.g. 100 steps of evolution in which we apply only the
identity gate (which corresponds to the exact δτ = 0 limit), Of course, this
identity gate evolution is both explicitly unitary and incapable of changing the
underlying state. In this way, one can ensure that the states computed via
iTEBD algorithm are exactly in canonical form [84] (up to numerical precision)
without the need to introduce additional numerical methods.

3.2.2 Two-Site iTEBD

Naively, one might think that extending this finite-system technique to the
thermodynamic limit would involve greater difficulty, or at least (as is the case
with iDMRG) some subtle re-imagining of the technique. But when our system
exhibits some form of translational invariance, we can exploit this symmetry to
extend the TEBD algorithm to the infinite case in a very natural way. Indeed,
the process becomes potentially simpler and more numerically stable without
the need to carefully consider the system boundaries. The infinite TEBD or
“iTEBD” algorithm [28] (whose name was curiously coined just after the start
of Apple’s iProduct craze) has become perhaps even more popular than its
finite older brother, and may be more accurate at determining ground states
than other proposals for studying infinite systems [32]. Indeed, in subsequent
chapters, we have generally employed the DMRG algorithm to study finite
systems and the iTEBD algorithm for systems in the thermodynamic limit.

Recall from the earlier discussion of translationally-invariant matrix prod-
uct states that we can represent an MPS simply by the tensors which form a
“unit cell.” A one-site translationally invariant state can therefore be repre-
sented with a single tensor A, with the understanding that the same tensor
is associated with every site in the chain, A[j] = A ∀ j. When this symme-
try exists (both in the state and in the parent Hamiltonian) we can therefore
consider even the behavior of infinite systems, as represented by their unit cell.

Two-Site Unit Cell

Since it represents the simplest case and also one of the most common for
practical problems, let us consider first the case of a Hamiltonian which is a
sum of two-body interactions. In such a case, it will turn out to be necessary for
the iTEBD algorithm that we work with a two-site representation of our state.
This necessity arises even when we have reason to believe that the ground state
we wish to calculate will have a one-site translation invariance, a point which
will turn out to have particular significance to our work in Chapter 5. For now,
however, we simply note the source of this requirement: the Suzuki-Trotter
decomposition of this Hamiltonian will contain two different types of terms:
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Figure 3.7: (Color online). A graphical representation of a translation-
ally invariant infinite state presented using a two-site unit cell of tensors,
{Γ[A],Λ[A],Γ[B],Λ[B]}. These tensors may be chosen in a two-site represen-
tation because the state possesses only two-site translation invariance. But
even if the state posesses translational invariance on the one-site level, this
format is necessary for the iTEBD algorithm described below.

those acting on odd sites first, and those acting on even sites first. In order
to consider the difference in the action of these operators on our state, we
must be able to distinguish between “odd sites” and “even sites,” which is not
possible unless there are at least two sites in our MPS representation.

Consequently, we imagine our initial state to be represented completely by
the set of tensors {Γ[A],Λ[A],Γ[B],Λ[B]}, where A and B distinguish the odd and
even sites, and we have employed the same Γ, Λ decomposition of the tensors
described above. The structure of the state (and the subsequent steps) are
depicted in Fig. 3.7.

The assumed structure and translation invariance of the Hamiltonian means
that it decomposes as

H =
∑
i

h
sisi+1

[i,i+1] (3.33)

where, hsisi+1 is some operator which acts on two spins at once, and we have
again used the bracketed subscript notation to show the site where the operator
is applied. Unlike the notation “h

sisi+1

i ”, which might imply a collection of
different operators which are index by i, the salient point here is that terms
like h[i,i+1] and h[j,j+1] differ only in the sites at which they are applied.

Thus, all evolution operators in the Suzuki-Trotter decomposition have the
form UA(α) = e−αδτh for some two-body operator h and some coefficients α
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(which depend upon the choice of Suzuki-Trotter and may differ depending
on the “layer” of the decomposition). But while their form is identical, what
differs is the nature of the tensors they act upon. We have assumed also an
MPS represented by two types of tensor, “A” type at odd sites, “B” type at
even sites (see Fig. 3.7). The entire Hamiltonian can therefore be understood
as a sum of identical terms applied to sites in the order “AB”, and a similar
sum of terms applied to sites in the order “BA.”

It follows that all the desired imaginary time evolution can be performed
using only two different instances of the master step described above. Either,
we apply U(α) to the sequence of tensors {Λ[B],Γ[A],Λ[A],Γ[B],Λ[B]}, or we
apply it to the tensors {Λ[A],Γ[B],Λ[B],Γ[A],Λ[A]}. This is depicted in Fig. 3.8;
it is perhaps instructive to compare this to the general master step in Fig. 3.6
above. In any given step, either the matrix Λ[A] is being updated and trun-
cated, with two matrices Λ[B] serving as the environment tensors, or vice verse.

Hence, the iTEBD algorithm, alternating between only two types of steps
which each follow the same master pattern, truly takes advantage of the par-
allelization offered within the layers of a Suzuki-Trotter decomposition. The
result is a robust and computationally efficient algorithm which allows the
infinite, thermodynamic limit of a system to be studied without the need for
finite size scaling.

3.2.3 L-Site iTEBD

By far the most common applications of iTEBD are to Hamiltonians with
two-body terms, but the underlying principle is not so limited. One can cer-
tainly imagine cases where an algorithm based around a two-site unit cell
would be insufficient, such as when studying a system like the cluster state [91],
whose parent Hamiltonian contains three-body terms, or when studying sys-
tems whose ground state translation symmetry may be spontaneously broken
beyond the two site level. A more subtle motivation for such an algorithm will
arise for us in Chapter 5, and hence we wish to give a sensible, general version
of the algorithm which can pursue the ground state of an infinite system with
an arbitrary, L-site unit cell.

In the case of the system with a two-site unit cell, we showed above that
each two-body evolution operator is essentially identical, and what changes is
merely whether they are applied to MPS tensors which are in the order “AB”
or “BA.” Naturally, a similar statement is true for the case of an L-site unit
cell; now, we will have L different types of tensor, and still only a single type of
L-body evolution operator. The different layers of the Suzuki-Trotter decom-
position will correspond to applying this to L different cyclic permutations of
the order of the tensors: (1, 2, . . . L), (2, 3, . . . L, 1), (3, 4, . . . , L, 1, 2), etc. Note
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Γ[A] Λ[A]
!!Λ[B] Λ[B]Γ[B]Θ0 =

Θ

U(α)

=

!Γ[A] !Λ[B]
!!!Γ[A]

Θ0

Θ
Θ

SVD

!!!Γ[A]Λ−1
[B]

Λ−1
[B]

!Γ[B]

c)

d) Γ[A] =

(truncated)

=

(new) (new)
Γ[B]e)

Figure 3.8: (Color online) Graphical notation for an example of the “mas-
ter step” of the iTEBD algorithm. Compare to the case of a finite TEBD
algorithm in Fig. 3.6. The key distinction is simply that, because of the trans-
lational invariance of the state, the environment tensors included in (a) are
both given by Λ[B]. Note that a full iTEBD algorithm will alternate between
steps acting first on odd sites and steps acting first on even sites. The latter
case corresponds to simply exchanging the labels A and B everywhere in this
diagram.
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that the two-term Suzuki-Trotter decomposition contemplated above easily
extends for the L-site case by simply “nesting” a sequence of L− 1 two-term
decompositions.

Hence, just like the two-site case, we need define only one “master step,”
which we will subsequently apply to L − 1 different cyclic permutations of
the tensors. For clarity, we outline the steps here with respect to the tensors
in their “natural” order (1, 2, . . . L), as the generalization from there is quite
simple.

As before, we begin by grouping the tensors around the sites which are to
be acted upon, namely

Θs1s2...sL
0 = Λ[L]Γ

s1
[1]Λ[1] . . .Γ

sL
[L]Λ[L]. (3.34)

The evolution operator is then applied to this tensor, which has L open indices
corresponding to the L physical degrees of freedom. This gives

Θ =
∑
s′1...s

′
L

U s1...sL
s′1...s

′
L

Θ
s′1...s

′
L

0 . (3.35)

Still following the previous cases, we now set out to recover updated tensors
Γ and Λ by singular value decomposition. In this case, all of the tensors in
the cell save for Λ[L] will be updated, as all have been potentially entangled
with their neighbors. But because there are now so many tensors, a single
SVD will not do the trick. Instead, we iteratively apply the following steps
(see Fig. 3.9).

First, we interpret Θ as a matrix by grouping the left virtual index v1 and
the first physical index s1 as the incoming index, and the right virtual index vL
with the remaining physical indices as the outgoing index. In this perspective,
the dimensions of the matrix are χd × χdL−1. Performing an SVD of this
matrix and making our desired truncation gives

Θ
(v1s1)
(vLs2...sL) → Γ̃[1]Λ̃[1]Θ̃[2...L]. (3.36)

The truncated matrix Λ[1] will be the updated matrix for the first site Λ[1 new].
And as before, we ungroup the physical and virtual indices from the incom-
ing index of Γ̃[1], and apply the inverse of matrix we used to represent the
environment to recover our updated tensor, i.e.

Γ[1 new] = Λ−1
[L]Γ̃[1]. (3.37)

Of course, at this point we are not in a position to recover the updated
form of any other tensors; all we have left to work with is the matrix Θ̃[2...L],
which represents the remainder of the state’s unit cell. It is tempting to simply
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e)

Figure 3.9: Graphical notation for an example of the “master step” of the
iTEBD algorithm generalized to an arbitrary unit cell of length L (compare to
the case of a finite TEBD algorithm in Fig. 3.6 and the special two-site case
in Fig. 3.8). The principle difference from the two-site case occurs here in step
(c). The tensor Θ will possess L physical indices, and we perform our SVD by
grouping only the first index to the left, and the remaining indices to the right.
In steps (d) and (e), the result of the SVD gives updated tensors for Γ[1] and
Λ[1], and also gives us an updated version of the tensor Θ which now has only
L − 1 physical indices. The steps (c) through (e) are repeated with this new
tensor Θ until only two physical indices remain, at which point we decompose
Θ into the remaining tensors by the normal two-step process. Note that, as in
the two-site case, the full implementation of this algorithm involves applying
operators which act on the sites of the unit cell in different sequences, which
all differ by circular permutation. Illustrated here the algorithm acts first with
an operator on site 1. The remaining steps look the same, but with the labels
circularly permuted so that 1→ 2, 2→ 3 . . . L→ 1.
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perform another SVD on this matrix, separating out the second physical index
s2 and repeating the steps from Eq. 3.36 onward. And indeed, doing so does
produce a workable version of the algorithm. But it is not optimal. After all,
the tensor Θ̃[2...L] no longer contains the most up-to-date information about
its surrounding environment. This information is now contained in Λ[1 new],
and as such, performing a truncation base upon its SVD does not optimally
reduce the MPS rank until we take it into account. Therefore, we first make
the transformation

Θ̃[2...Lnew] = Λ[1 new]Θ̃[2...L] (3.38)

and then proceed to further decompose this matrix, separating off one more
physical index at a time under Eq. 3.36. This process iterates a total of L− 1
times to reach the final SVD, at which point the remaining decomposition is
simply identical to the standard two-site iTEBD decomposition, giving

Θ
(vLsL−1)

(vRsL) → Γ̃[L−1]Λ̃[L−1]Γ̃[L]. (3.39)

To complete the process, simply take

Γ[L−1 new] = Λ−1
[L−2]Γ̃[L−1] (3.40)

and
Γ[L new] = Γ̃[L]Λ[L]−1, (3.41)

so that we have performed a complete update of all tensors except Λ[L]. At
this point, we circularly shift our tensors one spot to the left, so that they are
ordered (2, 3, . . . L, 1), and repeat the process.

This L-site generalization of the iTEBD algorithm has proven for us to be
surprisingly stable in most cases (we have tested up to six sites) but it must be
used with care. The larger the unit cell, the more opportunity for accumulated
error from the truncations, or from any numerical noise which is introduced.
This is particularly relevant for real-time evolution; when used for imaginary
time evolution these potential instabilities will likely be overcome by the power
of the exponential suppression of everything but the ground state, though the
convergence may be erratic and must be checked carefully. In both cases,
however, there is potentially an even more important concern: the choice of
unit cell must be commensurate with the symmetry properties of the antici-
pated ground state, or the algorithm will not be able to converge a physically
meaningful result. For example, imagine a system whose ground state dis-
plays an alternating magnetization, perhaps polarized “up” in some basis for
odd-numbered sites and “down” for even sites. Attempting to compute such
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a ground state with a three-site iTEBD cell will be impossible. Furstration-
like effects will appear as the algorithm circularly permutes the sites, with the
three types of tensors constantly shifting back and forth between being treated
as representing odd and even sites. Note that such a system could, however,
be studied in principle by an algorithm with a six-site unit cell. Though this
would be unlikely to be of use in practice, it illustrates the point that differ-
ent size unit cells must be used and compared when one does not know the
translational symmetry properties of the ground state.

3.2.4 Two Dimensional Systems

Finally, we note that the steps of the TEBD and iTEBD algorithms out-
lined above can also be applied to systems in two dimensions and higher,
with some important modifications. In two dimensions, for example, one can
consider systems on many different forms of lattice. These and other compli-
cations introduce substantial additional considerations, and a full treatment of
their complexities is beyond the scope of this work; we refer the reader instead
to Refs. [33, 84, 126–129] (note that in the literature, the term “iPEPS” is
used both to refer to an infinite two dimensional tensor network state, and to
the particular class of TEBD-like algorithms which use them to compute the
ground state). For completeness, however, and because we will be employing
a basic version of the TEBD algorithm in Chapter 4, we will briefly comment
on the basic changes that need to be made for the case of a two-dimensional
system on a square lattice. First and foremost, the Suzuki-Trotter approxi-
mation to the evolution operator will require more layers. For example, in the
one dimensional case we partitioned the terms of the Hamiltonian into two
classes, those acting first on an odd site, and those acting first on an even
site. A similar approach can be used for a two dimensional system, but four
classes will be needed to allow for mutually commuting terms: two classes for
the odd/even sites in the horizontal direction, and two similar classes for the
vertical direction. In other words, we first divide the Hamiltonian into two
sets of terms

H2D =
∑
(i,j)

h(i,j)(i+1,j) +
∑
(i,j)

h(i,j)(i,j+1) (3.42)
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where we have used i and j to label the horizontal and vertical location of the
sites, respectively. Each set of terms can then be further broken down as:

H2D =
∑

(i odd,j)

h(i,j)(i+1,j) +
∑

(i even,j)

h(i,j)(i+1,j)

+
∑

(i,j odd)

h(i,j)(i,j+1) +
∑

(i,j even)

h(i,j)(i,j+1).
(3.43)

We then then perform a Suzuki-Trotter decomposition for all for sets of
terms (to do this at the simplest level, the Suzuki-Trotter approximation out-
lined above for two classes of terms can be recursively “nested”). As with the
case for one-dimensional systems, we are left with layers of evolution operators
to apply to the state.

Our PEPS representation for the two dimensional system also looks similar
to the Γ,Λ decomposition used in one dimensional TEBD, though with addi-
tional Λ matrices arising from the fact that we must consider bifurcations in
both the vertical and horizontal directions to separate the classes of commuting
terms. Since the evolution operators still act only pairwise, at first glance the
“master step” for updating tensors may appear unchanged. However, recall
the importance of using the neighboring Λ tensors to form an “environment”
which allows us to more efficiently and accurately perform the truncation in
the one dimensional case. It is here that the algorithm becomes substantially
more complicated in the two dimensional case. Naively, not only do we wish to
include the two environment tensors which appear along the same axis as the
current operator (vertical or horizontal), but there are four additional tensors
along the orthogonal axis which should be considered (see Fig. 3.10). Worse,
these six tensors alone turn out to be insufficient to obtain optimal informa-
tion about the environment, as they will not all be fully updated at the same
time, and the two dimensional environment depends on more than merely the
boundary with the states being updated [84].

The increased complexity of considering the environment has caused the
world of 2D TEBD algorithms to break into essentially two approaches. In
the first case, broader environmental effects can simply be ignored, using only
local information to inform the truncations when the evolution operators are
applied. These approaches (see [126, 127]) are typically termed “simple up-
date” methods, and the name is fitting– although they have had some success
for finite states and relatively simple systems, they have generally been shown
to have stability issues or trouble faithfully reproducing ground states of more
complex Hamiltonians [129]. The other approach, particularly in the case of
infinite systems is to use the entire surrounding state as the environment, but
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Figure 3.10: (Color online) An arbitrary portion of two dimensional tensor
network state (PEPS) on a square lattice, decomposed into Γ,Λ form for a
TEBD-type algorithm. The tensors which will be updated during a TEBD
step are highlighted in green. By contrast to the one-dimensional case, note
the following. First, note that the unit cell for such a system will likely have
many more free virtual indices, with the exact number depending on the co-
ordination number of the lattice. This, along with the difficulties involved
in contracting two-dimensional tensor networks, places sharp restrictions on
the bond dimensions which can be used. Unlike the finite cases, where bond
dimensions typically range into the hundreds, many PEPS systems must be
computed with a bond dimension of only two or three. Additionally, there are
now two types of Λ associated with each site, one in the horizontal direction
Λ[h], and one in the vertical Λ[v] (we have used the convention that the Λ’s
are labelled by the site below them and to the left). Next, note that at a
minimum, six matrices Λ must be included to provide information about the
“environment” of this cell; in fact, as commented in the text, even this is not
sufficient to give complete information in two dimensions. Finally, observe
that in addition to an alternating sequence of operators which will be applied
to a cell like this (acting first on the odd site, then acting first on the even
site, etc) we will also need to consider a different unit cell in the horizontal
direction, and perform updates to that as well in order to achieve a complete
update of the whole system.
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compute the environment tensors through some sort of approximating con-
traction scheme to reduce the costs. These methods, called “full update”
methods[84, 129], appear more promising, but can involve costly calculations
and are sometimes limited to systems with particular symmetry or other prop-
erties. A possible blended approach termed “cluster update” has also been
proposed [128].

In Chapter 4 we shall be considering a simple two-dimensional Ising model
on a square lattice and performing finite-size scaling as a proof-of-principle for
a more general technique. For these purposes, it will be sufficient to employ a
simple update scheme specialized to the case of square lattices.

3.2.5 Comments on Convergence Schemes

When finding a ground state in an algorithm such as TEBD or iTEBD
(and indeed also DMRG and iDMRG), the function of each iteration is to
rotate the current state vector closer to an eigenstate with a lower energy.
It is therefore quite natural and typical to define the halting condition of
such scheme by reference to the energy of the current state. In the simplest
instance, for example, one might set a convergence threshold of ε and then,
after each step i of the algorithm, compute the resulting change in the state’s
energy, ∆E = Ei − Ei+1, with the understanding that the iteration will halt
if ever ∆E ≤ ε. A more sophisticated version of the same idea would be to
compute the standard deviation for the N most recent steps instead, to make
the process less susceptible to small numerical fluctuations.

Depending upon the quantities of interest, however, and the desired levels
of precision, this type of convergence framework may not be optimal. For one
thing, as discussed above, one must be careful of instance of “metastability”
in the energy values, which may produce periods of time during the algorithm
where the energy is changing very slowly and yet is still far from the true
ground state value. This, in part, is the reason why a typical iTEBD conver-
gence scheme consists of a set of sequential iterations, each time with a smaller
imaginary time step δτ [28], since it is quite common to see the energy values
experience a greater change after the step size is reduced (see Fig. 3.11). Even
with decreasing step sizes, however, it is possible for the changes in the energy
to stall into metastability.

In such a case, it can be helpful to consider the variance of the energy,
〈∆H2〉 = 〈H2〉 − 〈H〉2. This quantity measured the quantum fluctuation of
the energy in the state, and hence in a metastable region, where the current
numerical state is not a true eigenstate of the Hamiltonian, we expect a large
value. When it is small, we can rule out the possibility that the current energy
is far from that of an eigenstate, and the exponential suppression of excited
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Figure 3.11: A test of the energy convergence behavior during the iTBED
algorithm, as applied to the spin-1 Heisenberg model with a transverse field.
After each step, the difference in energy compared to the previous step is
plotted. The segments separated by sharp transitions indicate the different
stages of the algorithm, with the size of the imaginary time step, δτ , decreased
for each subsequent stage. Because the changes in the energy can become so
small during the course of any individual stage, one might erroneously believe
that convergence had been achieved, but moving to a smaller time step reveals
that this is not so.

states by the iTEBD algorithm ensures that if we are in an eigenstate, that
eigenstate should be the ground state. A method to efficiently compute 〈∆H2〉
at little additional computational cost will be given in Chapter 4

It is also important to consider, however, that not all quantities will con-
verge at the same rate. In Fig. 3.12, for example, we show the results of a
study of the spin-1 Heisenberg model with a relatively large transverse field.
We consider the observables E and 〈Sx〉, as well as the entanglement entropy
S (note that the state must be put in canonical form before the exact en-
tanglement entropy can be directly calculated from the tensors). After every
100 steps of evolution, we compute for each quantity the coefficient of vari-
ation (the standard deviation divided by the mean, σ(X)/X̄) over a sample
of the previous 300 steps, to determine how much the quantities are currently
being “changed” by the algorithm. Since these coefficients of variation are
dimensionless, different quantities can be compared directly in terms of their
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Figure 3.12: (Color Online) A test of the convergence behavior of E, S, and
〈Sx〉 during the iTBED algorithm, as applied to the spin-1 Heisenberg model
with a transverse field. Every 100 steps, the previous 300 steps are sampled
and the standard deviation is computed, and then divided by the mean. The
resulting coefficient of variation is plotted in the figure above. The curve for
the energy is consistently much lower, indicating that this quantity converges
much more quickly than the others.
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convergence. As can be seen in the figure, the number of steps sufficient to
achieve a stable value of the energy out to a high precision is not at all suf-
ficient to achieve the same accuracy in the other quantities. A study which
focused on the magnetization of ground states, for example, might be better off
using the stability of the magnetizations themselves, rather than the energies,
to certify convergence.

Unfortunately, it does not seem to be the the case that any one particular
quantity is universally more difficult to converge than the others; instead, the
relative convergence rates tend to depend on the Hamiltonian being studied.
Therefore, when precision is required in more than one observable, One option
is to to perform a small convergence study first, to determine which quantity
will produce the strictest convergence across the board. We do note, however,
that since algorithms like iTEBD operate directly on the energy of the state,
the energy is likely to be among the fastest quantities to converge, making it
a poor choice for a convergence criterion if other quantities are desired as well.
Interestingly, however, in our experience the same is not true for the second
cumulant of the energy, 〈∆H2〉, which is often (though likely not always) slower
to converge than the energy (see for example Fig. 3.13) and which frequently
seems not to converge until other observables like the magnetizations have
converged as well. Since this quantity can also be efficiently computed using
an MPO or a cumulant generating function, it may be a good convergence
criterion for a variety of models.

Finally, having chosen which quantity or quantities to monitor for conver-
gence, it remains to decide which sequence of imaginary time steps should be
used. Here, too, the optimal choice may depend on the model being consid-
ered, and perhaps also the bond dimension of the MPS representing it. In
general, however, the precise set of steps sizes chosen is likely less important
than it may initially appear. To see this, consider the possible consequences of
a poor choice of convergence scheme. Either the evolution may “waste time”
with too large a time step if it winds up in a plateau, or, if the time steps
become too small too quickly, it may fail to change the state enough to ever
approach the true ground state. Both of these problems are demonstrated in
Fig. 3.14, in which we compare two different convergence schemes. Both begin
with an initial step size of δτ = 0.1, and in each case, after a fixed number
of steps, the step size is decreased by a constant reduction factor. At early
stages, it seems to be a problem to use a small reduction factor, since the
evolution quickly get stuck in a plateau at each stage. In the later stages,
however, where the time steps are small, we see how a large reduction factor
can cause problems as well, since the step size quickly becomes too small to
produce any meaningful change.
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Figure 3.13: A test comparing the convergence behavior of the energy (left
axis) and 〈∆H2〉 (right axis) during the iTBED algorithm as applied to the
spin-1 Heisenberg model with a transverse field. The underlying data are the
same as Fig. 3.12. Though the energy has converged to the level of one part
in 105 after approximately 1000 steps, the energy cumulant takes much longer
to reach a similar level of precision. In part, this is because the cumulant
requires evolution with smaller time steps, in order to avoid plateaus and fully
converge.

64



0 500 1000 1500 2000 2500 3000
10

−4

10
−3

10
−2

10
−1

10
0

Steps

<
∆

 H
2
>

 

 

Factor of 3

Factor of 10

Figure 3.14: (Color Online) The transverse Ising model on a chain of L =
30 is studied by a basic TEBD algorithm. The initial imaginary time step is
δτ = 0.1. After every 500 steps of evolution, the step size is decreased either
by a factor of 3 (triangles) or a factor of 10 (circles). In the early stages (steps
500-1500) the low-factor scheme is outperformed, because it spends more time
stuck in local plateaus. In the later stages, however, the large-factor scheme
falls behind. The evolution between steps 1000 and 1500 is truncated too early,
before it had locally converged, and the subsequent time steps are too small
to cause a meaningful change in the state.
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Both of these problems, however, can be viewed not as the result of im-
proper step sizing, but rather as the result of the fact that we used a fixed
number of steps at each stage. If we employ a convergence check of the kind
described above (for example, computing the coefficient of variation of the 30
most recent points) and move on to the next size time step whenever the data
have locally converged, the differences in the two algorithms largely disap-
pear (see Fig. 3.15). Time is no longer wasted in plateaus, since a new step
size is triggered whenever the data have stopped changing significantly. On
the other hand, the small time steps are never employed prematurely because
the algorithm does not move on to a smaller step until the current step has
outlived its usefulness. Hence, by requiring local convergence before changing
the size of the time step, the differences between different sets of step sizes
can be largely “smoothed out.” Although there may be small advantages to a
particular scheme in the context of a specific Hamiltonian, in general any set
of step sizes that contains some intermediate-sized points can be successful (in
practice, this likely means reduction factors between roughly 2 and 10).

Finally, we note that of course, in any convergence scheme, it must be
remembered that the calculations involved in a convergence check can them-
selves contribute substantially to an algorithm’s run-time, and one must take
care to balance this against the desire to run in an optimal number of steps.
In practice, the most important feature of an algorithm is likely the amount
of real-world time taken to reach the desired level of precision, and the sophis-
tication and frequency of the convergence checks can be relaxed if they are at
odds with this goal.
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Figure 3.15: (Color Online) The transverse Ising model on a chain of L =
30 is studied by a basic TEBD algorithm. In contrast with the convergence
scheme used in Fig. 3.14, here we use the coefficient of variation from the 30
most recent points to determine when to move on to a smaller step size. The
result is that unnecessary plateaus are largely avoided, and no time step is
terminated before it has finished producing a useful change in the state. As
a result, the energy cumulant 〈∆H2〉 is always quite similar regardless of the
step size. The final energy computed for the ground state differs by less than
one part in 107.
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A principle goal of tensor network algorithms is to obtain precise approx-
imations to ground-state wave functions, which can then be used for many
purposes. One such purpose of central importance to many-body physics is
the detection of phase transitions [130], a goal with which tensor network
methods have already proven enormously useful [19, 41–44]. Here, we present
an additional method by which tensor network can contribute to the study of
phase transitions, both by locating the critical transition points and by helping
to identify critical exponents.
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Chapter 4

Moments and Cumulants with
Tensor Network States

In the symmetry-breaking paradigm for phase transitions, one first looks for
an operator M whose expectation value 〈M〉 can serve as the order parameter,
i.e. a quantity whose behavior changes sharply across a critical point. When
this order parameter is represented by a local operator, it can be computed
efficiently on a tensor network state [14]. But while an expectation value is
the most straightforward piece of information associated with an operator and
a state, there is considerably more information available which one may want
to compute. For instance, one may wish to study the higher moments of the
operator, µn = 〈Mn〉. A related set of quantities called “cumulants,” typically
labelled κn, is also frequently of interest. An obvious example is the variance of
the operator 〈∆M2〉, which is simply the second cumulant κ2 = µ2−µ2

1. Even
more important to the search for phase transitions is the so-called “Binder
cumulant,” first introduced by Kurt Binder in 1981 in a study of the classical
Ising Model [45]. In many settings, such as thermal or disordered systems, it
is considered to be one of the most accurate and reliable means of detecting
a critical point [131–133], and it has since been applied to a wide variety of
models [134–142].

Computing these higher order moments and cumulants, however, is less
straightforward. Direct calculation quickly becomes impractical for large n,
since the number of terms to evaluate can be exponential in n. In a classical
system with a Hamiltonian H0, one might define H(λ) = H0 + λM , and
relate the higher moments of M to the derivatives of an associated partition
function, using 〈Mn〉 = (β ∂

∂λ
)nTr(e−βH(λ)). In quantum systems, however,

this equation only holds when [H0,M ] = 0, which is not true for a wide variety
of physically interesting cases. Because of these barriers to direct calculation,
usage of techniques such as the powerful Binder cumulant has in the past been
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generally confined to studies based on quantum Monte Carlo [134].
Such a powerful technique should not be limited in this way. The question

thus naturally arises whether these quantities can be efficiently and system-
atically evaluated using the elegant structure of tensor network states. In
this chapter, we demonstrate that the answer is yes. The feasibility of using
matrix product states for computing the variance of Hamiltonians has been
previously pointed out in the context of DMRG [26, 143], and is demonstrated
by I. McCulloch in [32] and [87], via the technique of so-called “matrix product
operators” (MPO) [14]. We propose an alternative technique, which gives a
simple and efficient method to evaluate all general moments and cumulants for
tensor network states, based on moment-generating and cumulant-generating
functions. We demonstrate the calculation of moments and cumulants for fi-
nite one-dimensional states, and show that the method can also be used for
per-site cumulants in the case of an infinite system. We also show how the
techniques naturally generalize to finite systems in higher dimensions. These
methods have a variety of useful applications which we demonstrate at length,
including the use of the Binder and other cumulants to detect critical points
to relatively high precision at a low numerical cost (calculation of the Binder
cumulants by MPO methods has also been recently considered in [144] and
[145]). We also apply the second cumulant of the energy to examine the con-
vergence of numerical methods based on imaginary time evolution.

This chapter is organized as follows: In Sec. 4.1 we review moments and
cumulants, in particular presenting the Binder cumulant and some of its ap-
plications. In Sec. 4.3, we demonstrate how to use these expectation values to
efficiently compute the moments and cumulants for a general class of operators
on an MPS. Sec. 4.4 contains examples of the method as applied to three dif-
ferent spin-chain models (the transverse Ising model, the spin-1 Ising model,
and the spin-1 Ising model in a crystal field), as well as a demonstration of the
method as applied to a two dimensional system (the transverse Ising model
on a square lattice). Our results are summarized in Sec. 4.5.

4.1 Moments, Cumulants, and The Binder Cu-

mulant

A state |ψ〉 and an operator M collectively imply a probability distribu-
tion: the probability density function of ψ in M -space. The expectation value
〈M〉 specifies the central value of the distribution, while the complete set of
“Moments” defines the entirety of the shape [146]. The nth moment of the dis-
tribution is defined to be µn = 〈Mn〉; the first moment µ1 is the expectation
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value 〈M〉 itself.
The cumulants of the distribution, κn, form an alternative but equivalent

way of specifying its shape. These cumulants contain, in total, the same
information as the moments; a complete set of either moments or cumulants
completely specifies the distribution. Indeed, the nth cumulant can always
be expressed as a polynomial combination of the first n moments, and vice
versa [147]. For example, as we have noted above, the second cumulant of the
distribution, is the distribution’s variance, defined by

κ2 = µ2 − µ2
1. (4.1)

The third cumulant κ3 gives the distribution’s skewness, and is related to
the first three moments by

κ3 = µ3 − 3µ2µ1 + 2µ3
1. (4.2)

Similarly, the fourth cumulant κ4 is related to the kurtosis, and is given by

κ4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1. (4.3)

Although moments and cumulants are properly defined with respect to a
distribution and hence depend on both M and |ψ〉, when |ψ〉 is general or clear
from context we shall refer to µn (κn) as the “nth moment (cumulant) of M”.

4.1.1 Binder’s Cumulant

The aforementioned Binder Cumulant is a particularly useful quantity in
the study of critical points and phase transitions. For some system with some
known order parameter M , for example a total x-magnetization

∑
j σ

x
j or a

staggered magnetization
∑

j(−1)jσxj , Binder’s cumulant represents a modified
version of that parameter’s 4th cumulant. Though some slight variations exist
in the definition, generally, it is given by

U4 = 1− 〈M4〉
3〈M2〉2

. (4.4)

The utility of the Binder cumulant arises from the special features of its
length dependance. The behavior of the Binder cumulant at a critical point
depends only weakly on the size of the system, and elsewhere, its behavior
with respect to the system size differs depending upon the phase. For example,
below the critical point in a symmetry-breaking magnetic phase the cumulant
will increase with the length of the system, but above the critical point, with
symmetry unbroken, it decreases instead. The result is that, when curves
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of the Binder Cumulant vs temperature are plotted for various lengths, the
critical point is indicated by a simultaneous crossing. Typically, because the
behavior at the critical point is already approximately universal, only a set
of relatively small system sizes need be considered, eliminating the need for
complicated extrapolations of very large systems to the thermodynamic limit.

The Binder cumulant also gives access to the critical exponent of the cor-
relation length, by means of traditional finite size scaling techniques in which
one seeks to “collapse” the data. [45, 148]. Up to some small finite size cor-
rections (which become increasingly suppressed as the system size increases),
the cumulants show a standard functional form, [148]

U4(L,B) = Ũ
(
L1/ν(B −Bc)

)
, (4.5)

where ν is the usual critical exponent. A plot of U4 vs L1/ν(B − Bc) should
therefore appear essentially independent of L, since all of the length-dependance
has been absorbed into the independent variable of the plot. Hence, Bc and ν
can be treated as free parameters, and varied until this length-independence is
optimized; for example, one could seek to minimize the total absolute square
distance between the curves for a variety of lengths L.

4.2 Expectation Values for Product Operators

4.2.1 Finite-Length Chains

To demonstrate how to efficiently compute quantities such as the Binder
cumulant for a system represented by an MPS [149], recall the nature of the
MPS representation itself:

|ψ〉 =
∑
s

Tr(As1[1]A
s2
[2]...A

sL
[L])|s1s2...sL〉. (4.6)

Let us now consider how to calculate the expectation value of a general
family of product operators with respect to a matrix product state, as given
in Eq. 4.6. Consider first the case of a simple operator which is given by a
tensor product of on-site operations. For such an operator, of the form

Q =
⊗
j

Qj, (4.7)

the expectation value 〈Q〉 is given by
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〈ψ|Q|ψ〉 =
∑
sj ,s′j

[
Tr

(
L∏
j=1

A
sj
[j] ⊗ A

∗s′j
[j]

)
L∏
j=1

〈s′j|Qj|sj〉

]
, (4.8)

or equivalently,

= Tr

 L∏
j=1

∑
sj ,s′j

(
A
sj
[j] ⊗ A

∗s′j
[j]

)
〈s′j|Qj|sj〉

 . (4.9)

From this expression, it is clear that, up to normalization, the expectation
value is simply a trace over a set of L generalized transfer matrices (which
extend the definition of the ordinary transfer matrix from Eq. 2.15); i.e.

〈Q〉 =
1

〈ψ|ψ〉
Tr

(
L∏
j=1

Tj

)
, (4.10)

where the T ’s are defined as

Tj ≡
∑
sj ,s′j

(
A
sj
[j] ⊗ A

∗s′j
[j]

)
〈s′j|Qj|sj〉. (4.11)

This procedure is also demonstrated in graphical notation in Fig. 4.1. The
norm of the state can be fixed in a similar fashion, by evaluating a transfer
matrix for the special case where Qj = 1.

Tensor products of few-body operators can be handled in a similar fashion
by grouping the relevant sites. More general operators are simply evaluated
by decomposing them into a sum of tensor products. Considerably more detail
on the general process of taking expectation values can be found in the now-
extensive body of literature on matrix product states, [14, 16, 83]. For our
purposes, however, it will be sufficient to be able to evaluate operators of the
simple form in Eq. (4.7).

4.2.2 Infinite-Length Chains

Recall from Chapter 3 that matrix products can also be used to represent
infinite systems, provided that those systems possess sufficient translation in-
variance. For a state with a unit cell of length `, we require only ` types of
tensors to express it. For example, a state with two-site translation invariance
(` = 2) is specified by only two tensors, A1, A2, and has the form
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Figure 4.1: Graphical notation demonstrating the structures of matrix prod-
uct states. In this notation, a shape represents a tensor, and a line repre-
sents an index. Connected lines between shapes represent contracted indices
between tensors. (a) A finite spin chain state |ψ〉 represented as a matrix
product state. The state is specified by the set of rank-three tensors {Aj},
with the physical degrees of freedom sj left open. (b) The expectation value
of a product operator Q = ⊗jQj with respect to |ψ〉. Each Qj acts locally on
only one site. The total expectation value can be thought of as a trace over
a product of transfer matrices Tj, defined in Eq. (2.15). An example of an
individual transfer matrix, T1 is highlighted.
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|ψ〉 =
∑
s

Tr(As1[1]A
s2
[2]A

s3
[1]A

s4
[2]...)|s1s2s3s4...〉. (4.12)

Of course, because the sums in Eq. 2.11 run over an infinite number of sites,
in general there is no way to specify or compute the coefficients. Certain
expectation values, on the other hand, may still be expressed as the limit of
an infinite product of transfer matrices. It is quite common, for example,
to consider the expectation value of an operator with the same translational
invariance as the state in question, by looking at the per-site behavior. For our
purposes, we will again be concerned with product operators of the form given
in equation 4.7. However, we will now restrict ourselves further by imposing
translation invariance on Q. For an infinite system with a unit cell of length
`, we shall consider only Q with Qj = Qj+`.

In this situation, one can still sensibly define the expectation value as

〈Q〉 =
1

〈ψ|ψ〉
Tr

(
∞∏
j=1

T`

)
. (4.13)

Here, the transfer matrix T` is now “enlarged” to represent an entire unit
cell of the chain

T` ≡
l∏

j=1

Tj. (4.14)

In order to approach the infinite case, we shall first examine the case of
a finite but very long chain of length L, so that the product in Eq. (4.13) is
limited to L/` terms, i.e.

〈Q〉L =
1

〈ψ|ψ〉
Tr

L/`∏
j=1

T`

 . (4.15)

For L sufficiently large, the product can then be approximated by consid-
ering an eigenvalue decomposition of the transfer matrix T` = UΛU−1 and
inserting it into Eq. (4.15) (note that, by construction, the transfer matrix
as defined by Eqs. (2.15) and (4.14) is Hermitian and hence diagonalizable).
By applying the cyclic property of the trace operation, all U matrices can be
made to cancel, leaving us only

〈Q〉L =
1

〈ψ|ψ〉
Tr
(
ΛL/`

)
, (4.16)

or,
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〈Q〉L =
1

〈ψ|ψ〉

χ2∑
j=1

λ
L/`
j , (4.17)

where λj are the diagonal elements of Λ, i.e. the eigenvalues of the matrix
. At this point, it can be observed that in the infinite limit, only the largest
eigenvalue λ1 will contribute to the sum. In other words, we have simply

〈Q〉L =
1

〈ψ|ψ〉
(λ1)L/` . (4.18)

To fix the norm, we consider a particular transfer matrix T̃`, defined as
usual by Eq. (2.15) for the special case where Q =

⊗
j 1j. Then, we calculate

λ̃1, the largest eigenvalue of T̃`, which satisfies

〈ψ|ψ〉 =
(
λ̃1

)L/`
. (4.19)

Substituting, we have

〈Q〉L =

(
λ1

λ̃1

)L/`
. (4.20)

We then gain access to the per-site behavior by means of a logarithm, which
gives

1

L
log〈Q〉L = log

(
λ1

λ̃1

1/`
)
. (4.21)

Eq. (4.21), however, does not depend on having a finite L. Thus, even for
our infinite system, we can consider the limit

lim
L→∞

1

L
log〈Q〉 = log

(
λ1

λ̃1

1/`
)
. (4.22)

Hence, with these procedures (illustrated graphically in Fig. 4.2), we can
extract information about product operators in their infinite limit even though
their expectation values generally diverge. As we will show in Chapter 4, this
information will also allow us to compute the cumulants of operators with
translation invariance even in the infinite case.
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Figure 4.2: (a) An infinite spin chain state |ψinf〉, possessing translation in-
variance with respect to a unit cell of length ` = 2, represented as a matrix
product state. (b) A product operator Q = ⊗jQj which possesses the same
translation symmetry as |ψ〉; i.e. Qj = Qj+` (c) To compute the quantity of
interest, we first construct T`, the transfer matrix containing an entire unit
cell of |ψ〉 and Q, and extract its dominant eigenvalue λ1. (d) To normal-
ize the result, we will also need T̃` (a transfer matrix which contains only
the identity operator) and it’s dominant eigenvalue λ̃1. The desired quantity
limL→∞

1
L

log〈Q〉 is given by log(λ1/λ̃1)1/`.
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4.3 Evaluating Higher-Order Moments and Cu-

mulants

4.3.1 Moment and Cumulant-Generating Functions

For a given operator M and a state |ψ〉, there is an associated function
F which contains all of the non-local information about the higher moments
〈Mn〉, and yet, as we shall subsequently demonstrate, can still be efficiently
evaluated within the framework of a tensor product state. In particular, this
function is given by F (a) ≡ 〈eaM〉.

In probability theory, F (a) is termed the “moment generating function”
of the probability distribution. It is so named because the information about
every moment of the distribution is not only contained, but readily accessible
from this single function. This can be made explicit by considering a Taylor-
expansion of eaM about a = 0 and then computing the expectation value in
F (a) term-by-term

F (a) = 1 + a〈M〉+
a2

2
〈M2〉+ ... (4.23)

From the result, it is clear that every (non-vanishing) moment 〈Mn〉 will
appear in the expansion. Furthermore, these moments can be directly accessed
by computing

F (n)(a) = µn +O(a), (4.24)

where F (n)(a) is as usual the nth derivative of F .
The moment-generating function F is closely related to the so-called “char-

acteristic function” of the distribution, G(a) ≡ 〈eiaM〉 [150]. For typical states
with well-behaved wave functions, these functions will be essentially inter-
changeable (up to a factor of i). Hence in this work, both will be used, some-
times in combination, depending on the particular moment or operator being
computed. It should be noted, however, that for some “pathological” wave
functions, such as those specifying a Lorentzian probability distribution, the
function F (a) may fail to exist. The characteristic function G(a), however,
being the expectation value of a bounded operator, does not suffer from this
complication in any situation [151].

While Eq. (4.24) gives a result for the desired moment which is only
accurate up to first order in the parameter a, the precision can be improved
by instead computing appropriate combinations of the functions F (a), F (−a),
G(a), and G(−a). For example, when seeking to compute an even-ordered
moment; i.e. a moment of the form 〈M2n〉, we construct
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F̃ (a) = F (a) + F (−a) = 2 + a2〈M2〉+
a4

12
〈M4〉+ ... (4.25)

And hence obtain the desired moments from the relation

F̃ (n)(a) ∝ 〈M2n〉+O(a2). (4.26)

Odd-ordered moments can of course be found to higher precision from
F (a) − F (−a). Even greater precision can also be obtained by including the
characteristic functions. The combination F (a) + F (−a)−G(a)−G(−a), for
instance, determines 〈M2〉 up to O(a4).

We employ a similar technique to extract the cumulants of the distribution.
This is done by means of the “cumulant generating function,” defined as

lF (a) ≡ logF (a). (4.27)

To see the utility of this function, observe that

lF (a) ≈ log(1 + a〈M〉+
a2

2
〈M2〉+ ...). (4.28)

For small enough values of a, one can see from the expansion log(1 + x) ≈
x− 1

2
x2 + ... that

lF (a) = a〈M〉+
a2

2
〈M2〉 − a2

2
〈M〉2 +O(a3). (4.29)

Grouping these terms by the powers of a, we find that in fact

lF (a) = aκ1 +
a2

2
κ2 + ... (4.30)

In other words, the derivatives of the function lF (a) give us direct access
to the cumulants in the same manner as the moments in Eq. (4.24)

l
(n)
F (a) = κn +O(a). (4.31)

Of course, as with the moments, appropriate combinations of lF (a), lF (−a)
and the associated complex functions can be used to suppress the higher order
terms and improve the accuracy.
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4.3.2 Evaluating Generating Functions on a Finite Ma-
trix Product State

Evaluating all of these moments and cumulants thus boils down to eval-
uating the expectation values of operators like eaM . It remains to be shown
that these operators, which we term “moment generating operators,” can be
applied in an efficient manner. Fortunately, the exponential structure of the
operator guarantees that this is indeed the case.

We will consider these operators in two cases, depending on the nature of
the operator M . The first, special case is the large class of operators where
M can be written as

∑
j Oj, where j runs over all the sites in the system

and for some arbitrary set of on-site operators {Oj}. Most usefully, this set
of operators contains the traditional magnetization operators such as Mx =∑

j σ
x
j , as well as staggered magnetizations, crystal field magnetizations, etc.

Subsequently, we will examine the more general case where the terms within
M act on more than one site at a time.

Sums of Single-Body Operators

In this case, since the operators Oj all act at separate sites, the combined
operator M is in fact simply a Kronecker sum, M =

⊕
j Oj. From this it

follows that we can write [152]

eaM =
⊗
j

eaOj . (4.32)

In other words, the moment-generating operator can be decomposed into
a set of operators {eaOj}, each acting only at a single site. The moment
generating function, in turn, is just the expectation value of all these operators
applied simultaneously.

Since our moment-generating operator can be written in this tensor product
format, we can compute its expectation value directly through Eqs. (4.10)
and (2.15), with Qj = eaOj (see Fig. 4.3). The calculation of our moment-
generating function F (a) has therefore been reduced to the calculation of L
transfer matrices and a single trace over their product. In practice, to calculate
a higher moment like 〈M2〉, we then need to repeat this procedure and compute
F for slightly different values of a, so that it is possible to evaluate the necessary
derivative numerically. This can be done through any of the wide variety of
standard methods; in this work we have used primarily the classic divided
difference formulas [153]. In general, the more values of a at which F (a) is
computed, the higher the accuracy of the derivative. However, since the initial
a is already chosen to be quite small, in practice it is often the case that only
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a very small number of points needs to be computed (to check the behavior
and accuracy, the procedure can always be repeated with a smaller value of
a).

Let us examine now the performance of the method for the case of 〈M2〉.
A second derivative is necessary, which can be computed to second order in a
from three values of a, centered at a = 0 [153]. Noting that when a = 0 we have
trivially F (a) = 1, it follows that we only have to compute two expectation
values, each involving the construction of (at most) L transfer matrices, which
are then multiplied together and traced over. By comparison, to compute 〈M2〉
directly, as the sum of all correlators 〈OjOk〉, requires the construction of the
same number of transfer matrices (to cover the special case of the correlator
where j = k), but these matrices must be multiplied and traced over up to
L2 separate times. Since some of these products of transfer matrices in these
calculations will appear more than once, the actual computational cost can
be reduced somewhat through use of a suitably “dynamically programmed”
algorithm, where previously calculated products are saved and recycled [14].
Even in this case, however, far more than two solitary products would be
required. Furthermore, as the order of the desired moment µn increases, the
advantage of the moment-generating function method becomes increasingly
pronounced, as the numerical derivative will require only approximately n
expectation values, instead of Ln.

Simply put, the fact that the exponential nature of the moment generating
operator turns long Kronecker sums into simple Kronecker products makes
it ideally suited for use with a matrix product state. In all cases, only a
small number of expectation values must be computed in order to allow the
calculation of a numerical derivative, with each expectation value containing
the operator eaOj at every site j. Moreover, application of these local operators
does not increase the bond dimension of the state.

Such moments can in principle also be computed by means of an MPO
[32, 87]. As a straightforward demonstration of this, consider for example the
MPO given by [154]

Ĉj =

(
1j 0
Oj 1j

)
, (4.33)

coupled with the boundary conditions

〈φL| =
(

0 1
)
, (4.34)

and
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|φR〉 =

(
1
0

)
. (4.35)

To evaluate the moments, one defines the total MPO W to be

W ≡ 〈φL|
L∏
j=1

Ĉj|φR〉

=
L∑
j=1

Oj.

so that

µn = 〈ψ|W n|ψ〉. (4.36)

In this naive implementation, each application of W to |ψ〉 increases the
bond dimension of the state by a factor of two, and thus, to calculate the nth

moment in this way requires a bond dimension exponential in n. This increase
can be overcome, if necessary, by means of a standard truncation approxi-
mation, as done in the TEBD algorithm. Alternatively, a more sophisticated
MPO can be constructed [155] which represents the operator Mn, but with a
bond dimension of just n+1, resulting in a procedure which still scales linearly.

Sums of Many-Body Operators

We now examine the case of calculating the higher-order moments of a more
general set of operators M =

∑
j OjOj+1...Oj+k. In other words, we consider

operators which are a sum of terms acting on at most k sites at a time. So long
as k is finite, it remains possible to evaluate the moment generating functions
with a single expectation value. This can be done by appealing to the same
TEBD technique [27, 81, 115] discussed in Chapter 3.

To begin, we partition the terms of the operator into classes of mutually
commuting operators. This will require at most k classes. For concreteness,
consider as an operator the two-body transverse Ising Hamiltonian

H = −
∑
j

σxj σ
x
j+1 +Bσzj . (4.37)

For simplicity, let us write H in a manner which makes it explicitly a sum
of two-body operators
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H = −
∑
j

σxj σ
x
j+1 +

B

2

(
σzj + σzj+1

)
. (4.38)

Then, the terms can be partitioned between the even and odd pairs of sites,
and H can be written as

H = Heven +Hodd, (4.39)

with

Heven = −
∑
jeven

σxj σ
x
j+1 +

B

2

(
σzj + σzj+1

)
(4.40)

and

Hodd = −
∑
jodd

σxj σ
x
j+1 +

B

2

(
σzj + σzj+1

)
. (4.41)

The moment generating function therefore has the form F (a) = eaHeven+aHodd ,
and thus, as in the case of the iTEBD time evolution operator, it admits a
Suzuki-Trotter approximation [118]. To second order in a, this approximation
has the form

eaHeven+aHodd ≈ e
a
2
HeveneaHodde

a
2
Heven . (4.42)

Higher order versions of the approximation have also been well-documented
and can be easily substituted where greater precision is required [123].

Because Heven and Hodd were explicitly constructed to be sums of mutually
commuting terms, each exponential in the right hand side of Eq. (4.42) is now
in the same Kronecker sum form as we had in the case of on-site operators,
and each can therefore be equivalently expressed as a single tensor product of
operations acting on the entire state at once, in the manner of Eq. (4.32). This
is graphically depicted in Fig. 4.3. Hence, by applying the three exponentials
from Eq. (4.42) in sequence, we can easily calculate the expectation value that
represents the moment-generating function.

From this point, evaluating the expectation value is no different than the
case of on-site operators. The bulk of the numerical costs are therefore es-
sentially the same for both on-site and many-body operator, with only one
difference: applying these layers of exponential operators will increase the
bond dimension of the system, and the size of these bonds may need to be
“truncated” by some approximation scheme to keep the system numerically
tractable. This, however, is a common practice in the field of MPS algorithms,
and is easily done by means of a Schmidt decomposition (see for example [28]).
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Figure 4.3: (a) Graphical representation of the moment-generating func-
tion F (a) = 〈eaO〉 for an operator M =

∑
j Oj. Since each term in M acts

at only one site, the moment-generating operator possesses the same struc-
ture, even though the moments Mn are fundamentally non-local. (b) The
moment-generating function for an operator which is the sum of two-body
terms and which possesses the form H = Hodd +Heven, such as the transverse
Ising Hamiltonian defined in Eq. (4.37). The operator is approximated by
the second-order Suzuki-Trotter formula in Eq. (4.42), which produces three
“layers” of operations. Each layer is a sum of two-body terms.
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While our example considered an operator with k = 2, that is, two-body
interactions which could be partitioned into two internally commuting classes,
the technique easily generalizes to larger interactions. The Suzuki-Trotter ap-
proximations, for example, can be iteratively applied to an operator eA+B+C by
first approximating eA+(B+C) in terms of eA and eB+C , and then approximating
eB+C .

The ability to calculate moments and cumulants for an operator with many-
body terms has a particularly useful application in the world of numerical state
estimation. A common goal of tensor network algorithms is the calculation of
an approximate numerical ground state, from a given Hamiltonian H. These
algorithms are typically iterative in nature, gradually refining the approxima-
tion as the energy E tends towards E0. It is therefore often important to have a
means of actively checking this convergence during the course of the algorithm.
The variance (second cumulant) of the Hamiltonian, 〈∆H2〉 = 〈H2〉 − 〈H〉2
is well-suited to this task [14]. For ε =

√
〈∆H2〉, there will be an exact

eigenvalue Eex within ε of the approximate energy E. In other words

|E − Eex| ≤ ε. (4.43)

In the case of finite systems, the quantity ε can be directly computed from
the methods above, and can therefore be directly used as an error bound on the
calculated energy of the system. For the infinite case, there is a small subtlety:
one does not compute the total energy of the system, since this is infinite, but
rather the energy per site, E/L. Consequently, a proper “error bound” on
the measurement would not be ε, but ε/L =

√
〈∆H2〉/L. This quantity,

unfortunately, is inaccessible using the techniques above, since the cumulant
generating function on the infinite system gives only 〈∆H2〉/L. However, one
would still expect the latter number to be monotonically related to the true
error. Alternatively, as we will discuss in the next section, the related quantity√
〈∆H2

I 〉/` can be evaluated on a finite interval of length `. Hence in either
case, we can derive something which gives a sufficient criterion for halting a
converging algorithm like TEBD or iTEBD. Although ε (in the finite case) or
〈∆H2〉 (for the infinite) are not guaranteed to be small as soon as the energy
has converged, if we iterate our algorithms until they are very small, we can
be assured that the approximate ground state energy is very close to the true
value E0.

In [14], a dynamically programmed algorithm was given for computing
〈∆H2〉 in the context of a finite matrix product state. The method presented
here performs at least as efficiently as that case, with the advantage that it can
also be applied to infinite (or indeed, higher-dimensional) systems. In [32], the
same quantity was presented and evaluated by means of an MPO. As discussed
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above, the MPO technique can in principle be used as an alternative method
to compute other moments and cumulants as well, at the cost of allowing the
bond dimension to increase. The MPO techniques will also have an advantage
in the case of an operator with non-local characteristics or other properties
that make Suzuki-Trotter decomposition impractical.

For the case of the energy cumulant, our method is also particularly well-
suited for use with the TEBD/iTEBD algorithms. We have previously re-
marked that for a Hamiltonian H, the calculation of the associated moment-
generating operator eaH is essentially identical to an imaginary time-evolution
operator with a time step of δt = a. Each iteration of this algorithm therefore
amounts to calculating eaH |ψ〉, from which the moment-generating function
F (a) = 〈eaH〉 can easily be computed. If one also computes F (−a) = 〈e−aH〉,
the error bound can therefore be computed very efficiently up to order a2 in
accordance with Eqs. (4.25) and (4.26).

Performing this check at regular intervals throughout the evolution offers
a halting condition to certify convergence of the energy. In some respects, this
convergence criterion is superior to the typical methods, which often signal
a halt when δE, the change in the approximate energy between two succes-
sive iteration steps, drops below some minimum value. Such a method can
occasionally give a false sense of convergence when the algorithm “stalls out”
and begins evolving only very slowly, despite remaining some distance from
the ground state. The variance of the energy provides information not about
the convergence of the algorithm but of the energy itself, by identifying when
the system is very close to an exact eigenstate (however, in some cases care
must be taken that the nearby eigenstate is in fact the ground state, and not
some excitation). More details about convergence schemes can be found in
Appendix B.

4.3.3 Evaluating Generating Functions on an Infinite
Matrix Product State

At first glance, it may seem that moment-generating techniques discussed
above cannot be applied to infinite systems, since the value of a quantity like
M =

∑∞
j Oj is clearly diverging, and only related limits like

〈M〉 = lim
L→∞

1

L

∞∑
j

〈Oj〉 (4.44)

are well-defined. In this situation, however, while the moment-generating func-
tion F defined above may diverge, one can still define and calculate the related
quantity

86



F∞ = lim
L→∞
〈eaM〉1/L. (4.45)

As discussed in Sec. 4.2.2, quantities of this form can in fact be computed
quite naturally. Using equation 4.20 (see Fig. 4.2), clearly we have

F∞ = lim
L→∞
〈eaM〉1/L =

λ1

λ̃1

. (4.46)

In other words, the desired quantity is simply the largest eigenvalue of the
transfer matrix associated with the state and operator in question. Hence by
defining

lF∞(a) = logF∞(a), (4.47)

we find that we have access to the per-site limits of the cumulants even in the
infinite case. In the same manner as with finite systems, they are given by the
derivatives of lF∞ with respect to a

l
(n)
F∞

(a) = lim
L→∞

1

L
κn +O(a). (4.48)

We shall comment briefly on some practical considerations that are impor-
tant when evaluating lF∞ for a real matrix product state. First, algorithms
for generating the states which are based on the iTEBD principle are likely
to require the use of a two-site unit cell, even if the state is expected to pos-
sess only one-site translation invariance, as a result of the two-body nature of
most parent Hamiltonians. In this case, of course, a two-site transfer matrix
is required (` = 2), and we must take a square root of its largest eigenvalue in
order to recover the correct per-site limit.

Additionally, we observe that for the second cumulant in particular, it can
be particularly desirable to calculate using the characteristic function G =
〈eiaM〉 instead of F . This is because one can then take advantage of the fact
that

lim
L→∞

1

L
κ2 = lG∞(a) + lG∞(−a) +O(a2)

= logG∞(a) + logG∞(−a)

Then, combining the two log terms and observing that G∞(−a) = G∞(a)∗,
we have

lim
L→∞

1

L
κ2 = log

(
|G∞(a)|2

)
+O(a2). (4.49)
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In other words, we can calculate the per-site second cumulant up to second
order in a by evaluating G∞(a) only once, and without directly computing any
numerical derivative.

Note that, although this method gives access to the per-site limit of cu-
mulants on an infinite system out to arbitrary order, the typical definition of
the Binder cumulant, as a rational function of moments, cannot be computed
in this way without encountering a divergence. When the Binder cumulant is
being studied for it’s finite-size scaling properties, this difficulty is often imma-
terial. In other case, however (such as when the limiting value of the Binder
Cumulant itself is the quantity of interest), we refer the reader to a recent and
inventive MPO technique which can be used to access the cumulant directly;
see [156, 157].

It should be noted also that within a system, the moment and cumulant
methods can also be applied to any finite subset of spins, for example, SI ≡∑

i∈I S
z
i , where I is any set of locations. In the infinite case, it can be applied

to any subset of spins in a finite interval. For example, one can apply gates
eiaS

z
1 ...eiaS

z
L to only a segment of L sites in the infinite system. The expectation

value of this, which we denote by fL(a), can be straightforwardly calculated
by the transfer matrix method, in a manner analogous to the case of a finite
state:

fL(a) =
〈
vl|T S

z

L |vr
〉
/λ̃L1 , (4.50)

where as before λ̃1 is the largest eigenvalue of the transfer matrix containing
only the identity, TL, and T SzL is the generalized transfer matrix containing the
operator Sz at each site.

Of particular interest in this case, for example, are the moments given by〈(
L∑
i=1

Szi

)2〉
L

= −f (2)(0), (4.51)

and 〈(
L∑
i=1

Szi

)4〉
L

= f (4)(0), (4.52)

from which the L-dependent Binder cumulant U4(L) can be computed as

U4(L) = 1− f (4)(a = 0)/[3f (2)(0)]2. (4.53)

This is the Binder cumulant for a segment of L spins in an infinite chain.
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Although our example discussed an operator which was a sum of single-
body terms, the technique is not so limited. In a similar fashion, one can
compute the moments and cumulants of some finite subset of the Hamilto-
nian, HI =

∑
i∈I hi. In this case, one would split the chain into two disjoint

segments, I and its complement. Then, in the same manner by which a single
step of the iTEBD algorithm was used to apply required operator eiaH in the
infinite case, so too can the finite TEBD algorithm be used to apply eiaHI

to the finite interval. After this, the interval is recombined with the infinite
remainder of the state, and standard finite and infinite MPS techniques can
be used to evaluate the requisite expectation value.

4.3.4 Higher-Dimensional States

Although in this work we shall be applying these techniques to one-dimensional
systems, there is nothing about the procedures above that cannot be imme-
diately generalized to finite-sized higher dimensional states. Consider for ex-
ample a total magnetization-type operator on a 2 dimensional, L × L square
lattice, given by

M =
∑
j

∑
k

Ojk, (4.54)

where Ojk represents a specific operator acting locally on site (j, k) of the
lattice. Of course by representing both j and k by some composite index J
(now running from 1 to L2) we can immediately see that M is no different
than the magnetization-like operators we considered in the one-dimensional
case

M =
∑
J

OJ , (4.55)

and hence that our earlier analysis goes through: the moment generating op-
erator eaM can still be written as

eaM =
⊗
J

eaOJ . (4.56)

This object is still an operator that acts only locally and whose expectation
value can be evaluated all at once (graphically depicted in Fig. 4.4).

If we consider instead an operator H which contains many-body terms
(but for whom each term acts nontrivially only on a finite number of sites),
one can play the same tricks as in one dimension, first partitioning the terms
into mutually commuting sets of terms H1, H2 + H3..., then expressing the
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moment-generating operator as

eaH = ea(H1+H2+H3...), (4.57)

and finally applying some form of Suzuki-Trotter approximation as described
above to express the operator as a product of exponentials, each of which can
be applied to the state all at once. For nearest-neighbor interaction terms on
a square lattice, the procedure is essentially identical to the one dimensional
case, except that one must use four classes instead of two: two for interactions
in the horizontal direction, and two for the vertical. For operators with more
complicated terms (such as a sum of “plaquettes,”) the number of partitions
may be larger, but in general the costs do not grow rapidly despite the increase
in system dimension.

Hence, in either case, the associated moment-generating operators can
be disentangled into tensor products or sequences of tensor products, even
in higher dimensions. Simply put, the essential “power” of the moment-
generating function method is the fact that the moment-generating operator
eaM of a local operator M is itself a local operator, and this fact is unchanged
regardless of the dimensionality of the system.

Once the moment-generating operator has been expressed as a tensor prod-
uct and applied to the state, it still remains to numerically contract the tensor
network. It is at this stage where things become more difficult than in the
one-dimensional case, since computing the expectation value of any operator
on a higher-dimensional tensor network state can be quite hard. Recall from
Chapter 2 that exact calculation has been shown to be exponentially costly in
L (in particular, it is a #P-hard problem [96]). Nevertheless, a wide variety of
numerical techniques have been developed to approximate these contractions
efficiently with minimal errors, the details of which are outside the scope of
this project (See for example refs. [33, 97–101]). We do caution, however,
that in our experience, the higher the order of the moment, the higher the
sensitivity of the result to the errors introduced by approximate contraction.

4.4 Examples

4.4.1 Spin-1/2 Transverse Ising Model

As has become almost customary, we begin by demonstrating our technique
in the context of the widely-studied transverse Ising model; a chain of spin-1/2
particles governed by the Hamiltonian
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Figure 4.4: The moment-generating operator eaM for an operator of the form
M =

∑
j

∑
k Ojk, applied to a two-dimensional state on a square lattice. As in

the one-dimensional case, the locality of each term in M ensures the locality
of the terms in eaM , and hence, the moment-generating operator can still be
evaluated all at once, by applying the appropriate onsite operator at each
lattice site.
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H = −
L∑
j

σxj σ
x
j+1 +Bσzj . (4.58)

This model is a useful proving ground as it has been extensively studied
and admits a well-known analytical solution [158, 159], as well as possessing
a straightforward order parameter of Mx =

∑
j σ

x
j , the total magnetization

in the x-direction. We can therefore test our techniques by using them to
study the phase transition known to occur exactly at Bc = 1. To apply the
Binder cumulant technique, we first use a numerical method to find the ground
state by solving the generalized eigenvalue problem [14]. We consider system
lengths between L = 10 and L = 45 in steps of five, using a bond dimension
of χ = 10 (we verify that increasing the bond dimension does not change the
results of the methods up to our working precision). For each system length,
ground states of the Hamiltonian in Eq. (4.58) are computed as we sweep over
a range of values for the field coefficient B. Then for each value of L and B,
we compute the Binder cumulant using the methods described above, by first
computing µ2 and µ4 by means of the moment-generating function.

As shown in Fig. 4.5, the crossings of the Binder cumulants at various
lengths are already clustered very close to the transition point, even though the
lengths of the states are relatively short compared to the thermodynamic limit.
But the location of the critical point can be computed to even greater accuracy
by considering the pattern of successive crossings. These crossings show a clear
trend towards a limiting value as the system sizes increase. This limiting value
can be estimated by means of the BST Algorithm [160], which has been found
to be a very powerful tool for estimating the infinite limit of a series of data
based on finite size corrections which obey a power-law, even from a relatively
small number of data points [161]. From this extrapolation, we estimate a
critical point of Bc = 1.001(1). Here and elsewhere, the reported uncertainty
in our extrapolation represent an estimate of the typical uncertainties in the
location of the crossing points, propagated through the BST Algorithm. Much
more detail about the BST technique can be found in Appendix A.

The critical point of the Ising model can be probed directly through the
higher-order cumulants of the order parameter, as well. Through the tech-
niques above, these can be calculated from the finite systems at various sys-
tem sizes. Alternatively, we can calculate a ground state for the infinite system
through the iTEBD algorithm (in this case using a bond dimension of χ = 20)
and then calculating the second cumulant directly. Both procedures are show-
cased in Fig. 4.6. The behavior in the infinite case can be seen to agree with
the limiting trend of the finite systems as the length is increased. The cumu-
lant can be seen to become singular near the critical point, and can also be
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Figure 4.5: (Color online) A Binder cumulant study of the transverse Ising
model. The cumulants are computed for different system sizes across a range
of values for the transverse field B (some intermediate system sizes have been
suppressed for clarity of the figure). Crossing points are interpolated for suc-
cessive pairs of curves, i.e. L = 10 and L = 15. These crossing values can then
be seen to approach the known value of the critical field, Bc = 1 (inset). The
BST algorithm is used to extrapolate these values to the infinite limit, which
gives Bc = 1.001(1).
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used to detect the transition. Using this method, we estimate Bc = 1.00(1)
This technique can also be applied to the magnetization in the transverse

direction, Mz =
∑

j σ
z
j . In this case, it is the derivative of the cumulant which

becomes singular in the thermodynamic limit to signify the critical point.
Again, the results from the finite chains can be seen trending towards the
infinite limit. In this case, the expected behavior in the thermodynamic limit
can also be calculated analytically in this case, by using the known form of the
Ising model wavefunctions. The cumulant as a function of the applied field B
is found to be

〈∆M2
z 〉/L =

{
1 : B ≤ 1

1/B2 : B > 1
. (4.59)

This numerical data (see figure 4.7) are in agreement with this expression
to a very high degree of accuracy.

The critical exponent of the correlation length of the model can also be
studied by means of the Binder cumulant. Once the critical point has been
estimated, the curves of U4 can then be plotted against L1/ν(B − Bc) for
various values of ν. At the true critical exponent, the data should “collapse”
to a single functional form independent of L, as seen in Fig. 4.8.

Additionally, we can use this model to consider the scaling of the Binder
cumulant with the correlation length, by employing the procedure outlined
above to compute moments and cumulants on a finite sub-block of an infinite
state. From this, the so-called “critical Binder cumulant” U∗4 (the limiting
value of the cumulant at the critical point) can be extracted. As suggested
by McCulloch [162], we can evaluate U4(L) close to the critical point with
the choice that L ≈ 10ξ for a number of bond dimensions χ. Choosing a
sub-block of this size should allow us to see the desired scaling behavior while
suppressing the finite-χ corrections to the cumulant. This can then computed
over a range of transverse field values B, and the resulting Binder cumulant
vs. B curves for different bond dimensions should cross approximately near
the critical point and at approximately the value of U∗4 [162].

A simple demonstration of this, using bond dimensions from χ = 2 to
χ = 8, can be seen in figure 4.9. Despite the fact that the bond dimensions
are so small, this alternative scaling already gives a crossing of Bc ≈ 0.998.
The value of the cumulant at the crossing point (the so-called “critical Binder
cumulant”) is U∗4 ≈ 0.57.

Finally, we can use this model on a finite lattice to demonstrate the utility
of the energy variance 〈∆H2〉 in assessing numerical convergence, as described
above. Starting from a random state with L = 10, we apply the TEBD
algorithm with the transverse Ising Hamiltonian and evolve towards the ground
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Figure 4.6: (Color online) Per-site value of the second cumulant of the longi-
tudinal magnetization, 1

L
〈∆M2

x〉 = 1
L

(〈M2
x〉 − 〈Mx〉2), for the transverse Ising

model. The cumulant is plotted for various finite system sizes, plotted against
a range of applied fields. As the system length increases, the behavior tends
towards the infinite limit (inset). In the limit, the cumulant diverges at the
critical point.
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Figure 4.7: (Color online) Second cumulant of the transverse magnetization,
〈∆M2

z 〉 = 〈M2
z 〉 − 〈Mz〉2, for the transverse Ising model (computed per site).

The cumulant is plotted for various finite system sizes, plotted against a range
of applied fields. As the system length increases, the behavior tends towards
the infinite limit (inset) where the derivative of the cumulant shows a discon-
tinuity at the critical point. This behavior is in excellent agreement with the
analytical result for the thermodynamic limit, that 〈∆M2

z 〉/L = 1 for B < 1
and 1/B2 for B > 1.
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Figure 4.8: (Color online) The Binder cumulants for the transverse Ising
model, plotted for a variety of system sizes as a function of L1/ν(B − Bc) for
the known values ν = 1 and Bc = 1. As expected, for these values the curves
are seen to collapse to a functional form essentially independent of the length
scale. This property can be used to estimate the values of the critical point
and the critical exponent by treating them as fit parameters and optimizing
the collapse.
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Figure 4.9: (Color online) The Binder cumulants for a finite sub-block of the
infinite transverse Ising model, plotted for a variety of bond dimensions χ. For
each bond dimension, the apparent correlation length of the ground state, ξ,
is used to set the size of the block. The scaling behavior of these blocks as
χ increases gives an alternative method for identifying the critical point, as
well as allowing an estimate of the critical Binder cumulant (Bc = 0.998 and
U∗4 = 0.57 for this data).
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Figure 4.10: (Color online) The energy of the spin-1/2 transverse Ising model
on a chain of length 10 is calculated using approximate ground states gen-
erated by the TEBD algorithm (χ = 20). The numerical data (points) are
plotted alongside the exact solution (line). Error bars are calculated from
ε =

√
〈∆H2〉, with 〈∆H2〉 the second cumulant of the energies. (a) After 10

steps, the energies are still noisy and the error bars are quite large. (b) After
100 steps, the error bars have clearly decreased, and are largest for the points
with the largest discrepancies from the exact solution. (c) By 1000 steps, most
error bars are within the size of the data points, and the approximate energies
are very close to the known analytical result.

state, over a range of field strengths B. As shown in Fig. 4.10, the results are
initially somewhat noisy when compared to the analytical E vs. B curve,
which is reflected by the large error bars computed from 〈∆H2〉. However,
as the algorithm continues, these error bars shrink and eventually become
essentially zero, signaling the complete convergence of the energies.

4.4.2 Spin-1 Transverse Ising Model

We consider next the spin-1 generalization of the Ising model, with Hamil-
tonian

H = −
L∑
j

Sxj S
x
j+1 +BSzj . (4.60)

Here, we have simply replaced the spin-1/2 Pauli matrices from Eq. (4.58)
with their spin-1 counterparts. This model is of interest because unlike the
spin-1/2 case, it has no exact analytic solution. Nevertheless, in the thermody-
namic limit the magnetization is qualitatively similar to the spin-1/2 case. No-
tably, it still displays a quantum phase transition at a critical value of the trans-
verse field, which has been studied by various numerical methods[163, 164].
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The accepted value for this critical field is Bc = 1.326 [163].
We study this transition point with the same techniques as before, cal-

culating the Binder cumulants from the second and fourth moments of the
x-magnetization for various system sizes (Fig. 4.11). The ground states are
calculated using the same finite MPS technique and with a bond dimension
of χ = 20. The successive crossings are then compared and a limiting value
extrapolated using BST. In this case, we compute an estimate of the transition
at Bc = 1.327(1).

Once again, it is also constructive to consider the second cumulant on its
own. Numerical calculations of the magnetization for this model invariably
show some finite size effects around the transition, producing a finite “tail”
near the transition point, which makes an exact determination difficult using
the order parameter alone [165]. But the transition appears much more sharply
as a singularity when we consider the second cumulant, as in Fig. 4.12 (higher
cumulants such as κ4 can also be used for this purpose). From this quantity,
we obtain Bc = 1.324(2), an estimation which is to within less than 0.2%.

As before, can also study the critical exponent ν, known for this model to
be the same as the spin-1/2 case, ν = 1. As a proof of principle, the “data
collapse” for the known values of ν and Bc are shown in Fig. 4.13. As expected,
for these values the curves are seen to collapse to a functional form essentially
independent of the length scale. This property can be used to estimate the
values of the critical point and the critical exponent by treating them as fit
parameters and optimizing the collapse.

4.4.3 Spin-1 Ising Model in Crystal Field

For another application, we consider also a variation on the spin-1 Ising
model, where the usual transverse field has been replaced by a quadratic,
crystal field term, to give the following Hamiltonian

H = −
L∑
j

Sxj S
x
j+1 +B(Szj )2. (4.61)

This variation of the spin-1 model admits a mapping to the spin-1/2 case
(c.f. [166]), from which the critical point of Bc = 2 can be analytically ob-
tained. To compare our method, we perform the same numerical calculations
as above: first generating ground states at various finite lengths using MPS
methods with a bond dimension of χ = 10, and then computing the Binder
cumulants. From the Binder curves (see Fig 4.14) we once again perform
the BST extrapolation of the successive crossings to arrive at an estimate of
Bc = 1.999(1).
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Figure 4.11: (Color online) A Binder cumulant study of the spin-1 transverse
Ising model. As above, the cumulants are computed for different system sizes
across a range of values for the transverse field B (some intermediate system
sizes have been suppressed for clarity of the figure). Crossing points are inter-
polated for successive pairs of curves, i.e. L = 10 and L = 15, and the BST
algorithm is used to extrapolate these values to the infinite limit, which gives
Bc = 1.327(1).
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Figure 4.12: Per-site value of the second cumulant of the longitudinal magne-
tization, 1

L
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(〈M2
x〉 − 〈Mx〉2), computed for the Spin-1 Ising model.

The cumulant is calculated for an infinite system directly.
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Figure 4.13: (Color online) The Binder cumulants for the spin-1 transverse
Ising model, plotted for a variety of system sizes as a function of L1/ν(B−Bc)
for the known values ν = 1 and Bc = 1.326. The length-independence of the
curves allows this technique to be used as a means to estimate both ν and Bc
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Figure 4.14: (Color online) A Binder cumulant study of the spin-1 trans-
verse Ising model with crystal field. As above, the cumulants are computed
for different system sizes across a range of values for the transverse field B
(some intermediate system sizes have been suppressed for clarity of the fig-
ure). Crossing points are interpolated for successive pairs of curves, i.e. L =
10 and L = 15, and the BST algorithm is used to extrapolate these values to
the infinite limit, which gives Bc = 1.999(1).

Direct examination of the second cumulant in the infinite system is also
still a viable method for estimating the transition point. In this case, the
location of the maximum gives Bc = 1.996(1) (see Fig. 4.15). As before, it
also remains possible to study the critical exponent ν and critical field value
simultaneously by seeking to collapse the data to its universal behavior as a
function of L1/ν(B −Bc) (Fig. 4.16).

4.4.4 Spin-1/2 Ising Model on a 2D Lattice

Finally, as a proof-of-principle, we briefly demonstrate the application of
these methods to a two-dimensional system: the spin-1/2 Ising model on a 2D
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Figure 4.15: Per-site value of the second cumulant of the longitudinal mag-
netization, 1
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x〉− 〈Mx〉2), computed for the spin-1 Ising model

with a transverse crystal field. The cumulant is calculated for an infinite sys-
tem.
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Figure 4.16: (Color online) The Binder cumulants for the spin-1 Ising model
with crystal field, plotted for a variety of system sizes as a function of L1/ν(B−
Bc) for the known values ν = 1 and Bc = 2. As expected, for these values the
curves are seen to collapse to a functional form essentially independent of the
length scale.
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square lattice. This system is described by the Hamiltonian

H = −
∑
j,k

σxj,k(σ
x
j+1,k + σxj,k+1) +BSzj,k, (4.62)

where the subscripts are understood to terminate at the boundary of the sys-
tem. As discussed above, the study of two dimensional systems with tensor
network states is considerably more involved than the study of one-dimensional
systems. More elaborate methods must be undertaken to numerically approxi-
mate the ground states, and elaborate approximation schemes must be used in
order to calculate expectation values, which are otherwise prohibitively costly
in time and memory. A detailed and high-precision study of the critical point
of this model is therefore beyond the scope of this project (see instead [33]).
Nevertheless, we include the following rough estimation in order to demon-
strate how easily the moment-generating function method can be generalized
to higher dimensional states, as well as to underscore the utility of Binder
cumulant techniques even for data calculated relatively cheaply.

To this end, we generate approximate ground states for the model, using
a simple method of local updates (a 2-D generalization of TEBD) and the
smallest nontrivial bond dimension, χ = 2. To check the behavior of our
system, we consider the order parameter

M =
∑
j,k

σxj,k. (4.63)

Then, as in the one-dimensional case, we compute the Binder cumulant of
the order parameter across a range of applied fields, for systems of size L× L
up to L = 12, and observe the crossings (Fig. 4.17). The largest crossing we are
able to compute, between L = 10 and L = 12, occurs at B = 3.11(1), which
is already reasonably accurate compared to the accepted value of Bc = 3.044,
as calculated by quantum Monte Carlo [167]. A BST Extrapolation of the
data gives Bc = 3.3(2), a crude estimation but with relatively large error bars,
owing largely to the fact that only three crossing values have been used in the
extrapolation. We note also that, unlike the case of one-dimensional systems,
the Binder crossings for two-dimensional systems are not necessarily converg-
ing monotonically and hence may not necessarily admit an easy extrapolation.
Instead, greater precision could likely be obtained through the use of more so-
phisticated two-dimensional methods (or additional computational resources)
to study the crossings for slightly larger system sizes.
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Figure 4.17: (Color online) A rough Binder cumulant study of the spin-
1/2 transverse Ising model on a square lattice, using a local-update numerical
algorithm with bond dimension χ = 2. As in the one-dimensional case, the
cumulants are computed for different system sizes across a range of values for
the transverse field B. The largest crossing point, between L = 10 and L = 12,
is at B = 3.11(1). Extrapolating to the infinite limit gives Bc = 3.3(2), though
this cannot be done with high reliability on such a limited dataset (see text).

108



4.5 Summary

In this chapter we have presented a method for efficiently calculating the
higher order moments and cumulants of general operators on systems rep-
resented by tensor network states. For finite systems, this capability has a
variety of applications in the search for phase transitions in quantum systems.
Chief among these is the calculation of the celebrated “Binder cumulant,”
which provides a powerful tool for not only detecting phase transitions, but
determining their location to a high degree of accuracy using only relatively
small finite systems to probe the infinite limit. The finite size scaling of the
Binder cumulant also provides an estimate the critical exponent of the cor-
relation length. Although the second cumulants of Hamiltonians have been
considered in the context of matrix product states, to our knowledge, critical
point detection techniques based on the Binder cumulant (or cumulants in
general) have not generally been put to use in studies based on tensor net-
works, despite being widely applied to classical systems and quantum Monte
Carlo studies. It is our hope that the methods presented in this chapter will
allow them to be embraced by the tensor network community as well.

In the case of infinite systems, we also present a method to calculate the
per-site limits of the cumulants efficiently as well. The higher cumulants of
an order parameter often show sharp behavior at the critical points, which in
many cases allows for easier detect than the changes in the order parameter
itself. In particular, we show how singularities in the second cumulant can pro-
duce a relatively precise (computationally cheap) estimation of the location of
the transition. All the techniques (finite and infinite) are demonstrated in the
context of the transverse Ising model, the spin-1 transverse Ising model, the
Ising model in a crystal field, and could easily be applied to other models. We
also demonstrate a useful application of the second cumulant of the energy.
This quantity, which we calculate for both finite and infinite systems, provides
a useful sufficient condition to determine when a numerical ground-state es-
timation algorithm has converged. As we demonstrate in the context of the
Ising model, it can identify convergence up to a very high level of precision.

Finally, we present a proof-of-principle demonstration of the methods as
applied to the transverse Ising model on a square lattice. Our result demon-
strates that the methods for computing moments and cumulants are easily
generalized to states in two dimensions or higher. Precise calculation of the
moments and cumulants of a such a system may be more difficult, since state
preparation and the process of computing expectation values are themselves
much more complicated in higher dimensions. However, the central idea of
our method on its own remains just as straightforward as in one dimension.

During the preparation of this work, it was brought to our attention that
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the technique based on matrix product operators (described above) has also
been suggested as an alternative method for evaluating cumulants and mo-
ments, particularly in the context of the second cumulant of the energy and
its use as a convergence check. We believe both methods have complimentary
strengths and weaknesses, depending on the context in which they are applied.

110



Chapter 5

Detection of Gapped Phases of
a 1D Spin Chain with Onsite
and Spatial Symmetries

In this chapter, we turn our attention to the second area unique quan-
tum many-body phenomena: the classification of phases of matter beyond the
model of spontaneous symmetry breaking. To that end, we investigate the
phase diagram of a quantum spin-1 chain whose Hamiltonian is invariant un-
der a global onsite A4, translation and lattice inversion symmetries. We detect
different gapped phases characterized by not only symmetry breaking, but also
so-called “symmetry protected topological order,” using a well-established set
of matrix product state order parameters. We observe a rich variety of phases
of matter characterized by a combination of symmetry breaking and symmetry
fractionalization and also the interplay between the onsite and spatial symme-
tries. Examples of continuous phase transitions directly between topologically
nontrivial SPT phases are also observed.

5.1 Introduction

In the previous chapter, we applied tensor network techniques to compute
cumulants of operators, motivated in part by the desire to detect phase tran-
sitions and measure their associated order parameters and critical exponents.
The view of phase transitions presented there followed the approach developed
by Landau and Ginzburg [38–40, 168], which for many years was the prevail-
ing understanding of the concept of a “phase” or “phase transition.” In this
picture, one considers the possible ground-state phases of a Hamiltonian by
considering the global symmetry group G. Ground states may share the sym-
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metry of the Hamiltonian, but may instead spontaneously break some or all of
the symmetry. The symmetry subgroup H which may remain (including per-
haps the trivial subgroup in the case of total symmetry breaking) characterizes
the nature of the ground state phase.

While many of these concepts still hold, we now know that the sponta-
neous symmetry-breaking (SSB) picture, powerful though it may be, is in-
complete [169]. The first evidence of this was provided by the discovery of
the quantum Hall effect and its subsequent study[170–172]. For example, the
fractional quantum Hall states were found clearly to behave as existing in
distinct phases, despite the fact that they all share the same set of symme-
tries [172]. Similar systems with this property subsequently emerged such as
chiral spin states [173, 174], string nets [175] and quantum double models [95].
Such states are referred to as “topological phases,” in that the information
required to characterize such a phase cannot be extracted from a local order
parameter, but instead, in an abstract sense, is encoded in the global topology
of the state.

To understand these new phases, it is beneficial to consider two alternate
definitions of what it means for two ground states to be in “different phases.”
As a concrete example, consider two states |ψ1〉 and |ψ2〉 with associated parent
Hamiltonians H1 and H2. In the traditional perspective on quantum phase
transitions, the ground states are said to be in the same phase if it is impossible
to construct a parameterized Hamiltonian H(λ) that connects H1 and H1

without becoming gapless at some point in between [130]. But it has been
shown to be equivalent to say that the states are in the same phase if they can
be deformed into one another through the action of local unitary operators
alone [176, 177].

In this definition the behavior of topological phases is much more obvious;
local unitary transformations cannot change global entanglement properties,
so states with different global structure can certainly be in different phases,
regardless of whether they share a symmetry group. It has also been shown
that in gapped, one dimensional spin systems, no topological phases can occur,
since any one dimensional state can be deformed to a product state by local
unitary operations [46, 49–53], and therefore any two states can be deformed
to one another. But suppose this deformation is not possible without breaking
the symmetry of the state along the way. This may occur even when the two
states share the same symmetry group! In such case, we can still consider there
to be a phase boundary between the states, but one which must be “protected”
by the symmetry. Since these phase distinctions also cannot be detected by
local order parameters, they are also reminiscent of the true topological phases
found in higher-dimensional systems. In light of these properties, such phases
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are called symmetry protected topological (SPT) phases [46–48]. The “Haldane
Phase” in spin-1 chains [92, 178, 179] is a famous example of a nontrivial SPT
phase.

The classification of phases in one dimensional systems, both SSB and SPT
has been extensively studied, and the formalism of matrix product states can
play a key role in understanding the different phases which are possible [49–53].
In this chapter, we explore the MPS techniques which can be used to numeri-
cally characterize the phases of of a Hamiltonian, building off of the methods
introduced in Ref. [52]. In particular we construct and study the phase di-
agram of a two parameter Hamiltonian in a spin-1 chain which is invariant
under a global onsite (internal) A4 symmetry, lattice translation and lattice
inversion (parity). Through suitable order parameters, we detect both the dif-
ferent SSB and SPT phases and label them using the classification framework
of Ref. [50]. A total of eight distinct phases are identified within the parame-
ter space we consider. In particular, we find among these a direct, continuous
transition between two topologically nontrivial A4-symmetric SPT phases, dis-
tinguished by the 1D representations of the symmetries, as explained below.
Along the way, we also present important numerical techniques which are use-
ful for applying the SPT classification scheme in practice, including a method
to restore one-site translation invariance to an MPS computed by the iTEBD
algorithm (recall that this algorithm necessarily requires at least a two-site
MPS representation; see Sec. 3.2.2).

This chapter is organized as follows. In section 5.2, we described the A4

spin-chain Hamiltonian studied here and present its phase diagram which con-
tains the main results of this work. In section 5.3, we review the classification
of 1D gapped-spin chains and list parameters which can be used to completely
classify phases. In section 5.4, we describe the full details of the phase diagram
of the A4 model, and also enumerate the several possible phases that can in
principle exist given the symmetry group of the parent Hamiltonian. Section
5.5 presents, in detail, the numerical MPS techniques by which the states and
parameters were obtained, and section 5.6 gives a summary of our results.

5.2 Overview of Main Results

5.2.1 The Hamiltonian

We will now describe an A4 and inversion symmetric Hamiltonian whose
phase diagram we study in detail. The Hamiltonian we present here is a
modified version of the one used in Ref [180] where it was found that the there
was an extended region where the ground state is exactly the AKLT state and
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hence useful for single qubit quantum information processing [181]. Here, we
slightly modify the Hamiltonian to retain the essential features only and study
the phase diagram.

The total Hamiltonian consists of three parts. The first is the Hamiltonian
for the spin-1 Heisenberg antiferromagnet which is invariant under the spin-1
representation of SO(3):

HHeis =
∑
i

Si · Si+1, (5.1)

(5.2)

where Si ·Si+1 ≡ Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1. We add two other combinations,

Hq and Hc to the Heisenberg Hamiltonian which breaks the SO(3) symmetry
to A4, the alternating group of degree four and the group of even permutations
on four elements (equivalently, the rotation group of a tetrahedron). These
terms are defined as:

Hq =
∑
i

(Sxi S
x
i+1)2 + (Syi S

y
i+1)2 + (Szi S

z
i+1)2,

and

Hc =
∑
i

[(SxSy)iS
z
i+1 + (SzSx)iS

y
i+1 + (SySz)iS

x
i+1

+ (SySx)iS
z
i+1 + (SxSz)iS

y
i+1 + (SzSy)iS

x
i+1

+ Sxi (SySz)i+1 + Szi (SxSy)i+1 + Syi (SzSx)i+1

+ Sxi (SzSy)i+1 + Szi (SySx)i+1 + Syi (SxSz)i+1]. (5.3)

For details on how the perturbations are constructed, see Refs. [180, 182].
The operators in Hc are symmetrized so that the Hamiltonian is invari-

ant under inversion as well as lattice translation. With this we have a two-
parameter Hamiltonian invariant under an onsite A4 symmetry along with
translation invariance and inversion.

H(λ, µ) = HHeis + λHc + µHq. (5.4)

5.2.2 Summary of Numerical Results

We employ the iTEBD algorithm[28] to numerically analyze the ground
states across a range of parameters µ = [−3, 4], λ = [−2, 2] and find a wide
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Figure 5.1: (Color Online). The phase diagram for a two-parameter Hamil-
tonian constructed to have an A4 onsite symmetry group, as well as parity
symmetry and one-site translation invariance. The symmetries of the Hamil-
tonian break down into five different residual symmetry groups in the ground
states. These break down further when classified according to the relevant
topological parameters, yielding eight distinct phases overall. The diversity of
phases from the comparatively simple Hamiltonian shows the necessity of care-
fully accounting for all possible symmetries and topological parameters when
attempting to characterize the phase of a ground state. For a description of
the phases A-H, see discussions in the main text.
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variety of phases. In the parameter space analyzed, a total of eight distinct
regions can be identified (labeled with letters A-H in Fig. 5.1). These regions
are distinguished both by the symmetries of the ground states, and also by
the classification parameters of Ref [50].

From the symmetry group G of the parent Hamiltonian, which contains A4,
spatial inversion, and translation symmetries, only the inversion and transla-
tion symmetries remain in the ground states of region A. Regions B, C, and
D, by contrast, all respect the full set of symmetries of the parent Hamiltoni-
ans but are differentiated by one of the SPT parameters: namely, the overall
complex phase produced under A4 transformations. These complex phases are
different 1D irreducible representations (irreps) of A4 and correspond to dis-
tinct SPT phases protected by translation and onsite symmetries. In phase E,
the ground state breaks the symmetry to onsite Z2 and parity. The translation
symmetry in this region is broken down from single-site translation invariance
to two-site. This broken, two-site translation symmetry is also present in
regions F and G, but here the remaining symmetries of A4 and parity are
completely preserved. Like regions B, C, and D, regions F and G have the
same symmetry but are distinguished from one another only by the values of
their SPT parameters. Finally, in region H, the residual symmetry group has
an internal Z2 × Z2 symmetry and parity along with an one-site translation
invariance.

Among these eight phases, five correspond to instances of SSB and the
remaining three correspond to SPT phases without symmetry breaking. The
complete set of such parameters classifying these phases will be described in
section 5.3, and the particular values which distinguish them from one another
are presented in section 5.4.

Because the phases B, C, and D are not distinguished by any symmetry-
breaking criteria (and because none of them are topologically trivial), the
boundary lines between them are of particular interest as examples of non-
trivial SPT to non-trivial SPT phase transitions. Such transitions are consid-
ered uncommon and have recently attracted particular interest[183–186], as
compared to the more typical case of a transition between SPT and symmetry
breaking phases, or trivial to non-trivial SPT phase transitions. Our anal-
ysis, however, shows that this model contains direct nontrivial SPT to SPT
transitions, and that the transition is second-order in nature. By directly cal-
culating the ground-state energy and its derivatives, we see sharp divergences
in the second derivative, but a continuous first derivative across the boundary
between these phases. Representative behavior is shown in Fig. 5.2.

The numerical methods employed here also allows us to probe the central
charge of the conformal field theory (CFT) associated with the continuous
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Figure 5.2: (Color Online). Free energy derivatives along the line µ = 2 in the
phase diagram above show the nature of the phase transitions. The continuous
first derivative (blue) contrasts with divergence in the second derivative (red),
showing a second-order transition. All three regions are topologically nontriv-
ial SPT phases. Data shown here were computed with a bond dimension of 30,
and the behavior has been seen to be stable as the bond dimension increases.
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phase transitions. As one approaches the transition, the correlation length
begins to diverge. The central charge of the CFT appears in an important
scaling relation between this diverging correlation length and the mid-bond
entanglement entropy [187, 188]. In particular, it has been shown that up to
an additive constant,

S =
c

6
log ξ (5.5)

where c is the central charge, and ξ is the correlation length measured in
units of lattice spacing. S is the entanglement entropy, given by performing
a Schmidt decomposition between sites and computing the entropy of the
resulting Schmidt coefficients λi,

S = −
∑
i

λi log λi. (5.6)

The MPS algorithms employed here to determine the ground state are not
well-suited to computing ground states at the actual critical points. This is
because the numerical accuracy of these algorithms are controlled by a tunable
numerical parameter, the so called “bond dimension.” The closer we approach
the critical point, the bigger this parameter needs be chosen for the ground
states to be computed faithfully. By gradually increasing the bond dimension
near the critical point, we obtain states with increasingly large correlation
length, allowing us to fit the scaling relation of Eq. 5.5. We can also use this
data to estimate the location of the transition, because away from the critical
point, the scaling relation will not hold, and S will saturate for large enough ξ
(or in practice, for large enough bond dimension). We find the critical lines to
be located at λ = ±0.865(2); fits at multiple points along these lines suggest
a central charge of c = 1.35(1), as shown for example in Fig. 5.3.

5.3 Review of Classification System

We now review the classification of 1D gapped phases of spin chains follow-
ing [50]. Given the group of global symmetries G, the classification gives us a
set of labels whose values distinguishe all possible phases of matter that can
exist. We will systematically list these labels for various types of symmetries.
It is the value of these labels that we extract numerically to determine the
phase diagram presented in Sec 5.2. In keeping with the theme of this disser-
tation, the classification system is cast here entirely in the language of MPS,
which allows us to bring to bear all the numerical MPS techniques which have
been previously discussed.

Two important features of the MPS representation bear relevance to the
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Figure 5.3: (Color Online). Entanglement entropy versus the log of the
correlation length for states very close to the transition point. The slope is
directly proportional to the central charge of the associated CFT, via Eq. 5.5.
Data is generated by computing ground states at the point µ = 2, λ = 0.865,
and increasing the “bond dimension” of the numerical scheme to allow us to
find states closer to the critical point where the correlation length diverges.
The behavior shown here is representative of that seen elsewhere along the lines
λ = ±0.865. Away from these lines, the entanglement entropy saturates at a
finite value of ξ. The best-fit line has a slope of 0.225(1), which corresponds
to a central charge of 1.35(1).
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numerical methods employed in this paper. The first is the bond dimen-
sion of the representation. As discussed in Chapter 3, if the wavefunction is
the ground-state of a gapped Hamiltonian and hence has a finite correlation
length, then it can be efficiently written as an MPS wavefunction whose bond
dimension approaches a constant value that is independent of the size of the
chain [12, 81, 189]. However, as one approaches a critical point, where the
correlation length diverges, an increasingly large bond dimension is required
to faithfully capture the ground states. As a result, even though the ground
states at criticality therefore cannot be accurately represented by an MPS, one
can employ the scaling results discussed above and in Fig. 5.3, where increas-
ingly large correlation lengths are probed by gradually increasing the bond
dimension. Note that while we have typically used the variable “χ” to refer to
the bond dimension of an MPS, in this Chapter we shall use the name “D,”
to avoid confusion with the SPT parameter χ to be introduced below.

The second property to recall is that when a state possesses translation
invariance, the MPS matrices themselves may be chosen to respect the same
symmetry. A state invariant under one-site translations, for example, can
be represented in the form above with the same MPS tensor at each site,
A
sj
[j] = Asj . This, in turn, allows a state with translation invariance of any

length to be represented by d matrices where d is the dimension of the local
Hilbert space. In general, a state with K-site translation invariance requires
Kd MPS matrices to represent it. There are times, however, when a larger
number of matrices may be required, for example, when a state is being studied
by a numerical algorithm which is not itself invariant on an N -site level. This,
indeed, will frequently be the case for our states, as discussed in detail in
sections 5.5.1 and 5.5.2.

5.3.1 Symmetry Breaking

Before considering the possibility of “exotic” SPT phases, we begin by clas-
sifying phases as we would under the old Landau-Ginzburg picture. We ask
whether or not the global symmetry of the Hamiltonian, G, is spontaneously
broken in the ground state to some subgroup H ⊂ G (and note that it is
possible that the whole symmetry is preserved, so that H = G). This “resid-
ual” symmetry group H is sufficient to distinguish some phases, as states with
different residual symmetries are not in the same phase. However, the dis-
tinctions drawn on the basis of residual symmetries are not sufficient to fully
classify the phase diagram, as there may be different SPT phases which share
the same residual symmetry group H. We shall discuss these now, following
the arguments presented in Ref [50].
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5.3.2 Onsite Symmetry

The additional parameters required to classify SPT phases with the same
residual symmetry H depend upon H itself. In particular, when the elements
of H act upon the physical degrees of freedom in a matrix product state,
the equivalent action in the virtual (“bond”) space forms a representation of
H. The different equivalence classes of these representations in virtual space
are the basis for the SPT classification schemes [47, 48, 50–53]. To better
understand this, we first consider the case of a symmetry group Gint which
act directly onsite. For clarity of the examples, we shall also assume one-site
translation invariance.

Let ug be a unitary representation of an element g ∈ Gint, and let U(g) =
u1(g)⊗· · ·⊗uN(g) be an operator on the entire spin chain acting u(g) at each
site. If U(g) is still a symmetry of the ground state |ψ〉 (and hence part of the
residual symmetry group), then U(g)|ψ〉 must leave the state invariant, except
for a possible overall phase factor,

U(g)|ψ〉 = χ(g)N |ψ〉. (5.7)

We have written the overall phase as χ(g)N so that we can compare this
overall factor to the action of u(g) on an individual site. As stated, we wish
to consider |ψ〉 as an MPS and compare the action of the symmetry on the
physical degrees of freedom to the action in the virtual space. Whatever
change is introduced in the virtual space must still leave the state able to
satisfy Eq. 5.7, Given that our MPS has translational invariance, We consider
only a singly type of tensor from the MPS, Aj. The gauge freedoms of the MPS
representation imply that in order to preserve symmetry, we must have [49–52]

u(g)ijA
j = χ(g)V −1(g)AiV (g). (5.8)

i.e., the Aj can undergo a similarity transformation by some matrix V , and
each site can pick up a phase factor χ(g).

Because u is a group representation, the usual group properties must hold,
and we must have u(g1)u(g2) = u(g1g2), etc. But enforcing these properties in
Eq. 5.8 also constrains χ(g) and V (g); for example, if we consider acting u(g1)
and u(g2) on Aj in sequence, a pair of phases and a set of “nested” similarity
transformations will appear, giving us

u(g1)iku(g2)kjA
j = χ(g1)χ(g2)V −1(g1)V −1(g2)AiV (g2)V (g1). (5.9)

But for this to hold at the same time as
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u(g1g2)ijA
j = χ(g1g2)V −1(g1g2)AiV (g1g2), (5.10)

which is simply Eq. 5.8 for the case g = g1g2, then clearly we must have
χ(g1)χ(g2) = χ(g1g2). Similar arguments can verify the remaining group prop-
erties; in fact χ(g) itself is a (one-dimensional) representation of Gint.

The same can be seen to be true of V (g), with one exception: clearly we
could change V (g) by some phase factor ω(g) without affecting the validity
of Eq. 5.8, as the factor will be cancelled by V (g)−1. Hence while the V (g)’s
also form a representation, they form only a projective representation, i.e. a
representation up to an overall complex phase, so that

V (g1)V (g2) = ω(g1, g2)V (g1g2). (5.11)

If we further proceed to enforce associativity on the phases ω(g1, g2), we see
that the relative choices of the ω’s fall only a handful of possible classes. These
classes are precisely those given by the elements of the second cohomology
group of Gint over U(1) phases, H2(Gint, U(1)). In fact, the classes of the phase
factors are distinct, even between states which share a symmetry group, so that
for each element of H2(Gint, U(1)) we have a different SPT phase [50, 190].
The phase corresponding to the identity element corresponds to the case where
there are no relative phases among the V (g), so that the representation they
form is linear rather than projective. This case is called the “trivial phase”;
other phases are called “topologically nontrivial.”

Since we have translation invariance in addition to onsite symmetry Gint,
then the different choices of 1D irreducible representations (irreps) χ(g) that
can appear in Eq (5.8) also correspond to different SPT phases. Note that with-
out translation invariance, however, these phase factors cannot be considered
as labels for different phases; sites could always be grouped together in such
a case until the total phase factor for a group of sites is χ(g) = 1. However,
for the case of G = Gint × LT (where LT is the group of lattice translations),
then the different possible SPT phases are labelled by two quantities, ω and
χ.

5.3.3 Parity

Without Onsite Symmetry

The general term parity refers to both a spatial inversion of the lattice
and a possible onsite operation. We shall refer in particular to parity as Pw,
which is generated by the inversion I, as well as the onsite unitary operation
w at each site. Note the restriction that, since P2 = e, w must be some
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representation of Z2.
The action of I deserves slightly more specificity; it is defined as

I :
∑
i1...iN

ci1...iN |i1 . . . iN〉 →
∑
i1...iN

ci1...iN |iN iN−1 . . . i1〉

=
∑
i1...iN

ciN ...i1 |i1 . . . iN〉. (5.12)

In other words, the ordering of the sites is reversed, or equivalently, the labels
on the expansion coefficients are exchanged, so that

I : ci1...iN → ciN ...i1 , (5.13)

.
In order to produce the transformation in Eq. 5.13, I must act on the MPS

tensors as

I : Tr[Ai1[1]A
i2
[2] . . . A

iN
[N ]]→ Tr[AiN[1]A

iN−1

[2] . . . Ai1[N ]] (5.14)

Where we have once again made explicit use of bracketed subscript labels to
distinguish the tensors. In this case, the label can be interpreted as indicating
the site with which the tensor was originally associated, before the application
of inversion. The subscripts on the physical indices continue as always to
represent the site with which the tensor is currently associated.

Equivalently, since we can insert an overall transpose inside the argument
of the trace, we can view this as

I : Tr[Ai1[1]A
i2
[2] . . . A

iN
[N ]]→ Tr[(Ai1[N ])

T (Ai2[N−1])
T . . . (AiN[1] )

T ]. (5.15)

In terms of the individual tensors at some particular site M , inversion gives

I : Ai[M ] → (Ai[N−M+1])
T , (5.16)

and the full action of parity is

P : Ai[M ] → wij(A
j
[N−M+1])

T (5.17)

As we have done in the case of pure onsite symmetry, we will seek to
reveal the nature of the possible SPT phases by comparing the effect of this
symmetry on the state itself and in the virtual space of the MPS. If GP is
both a symmetry of the Hamiltonian and a part of the ground state residual
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symmetry group, then in terms of the wavefunction itself we must once again
have invariance up to an overall phase, which in this case we term α(P ).

P|ψ〉 = α(P )N |ψ〉. (5.18)

As before, the action in virtual space must take the form of similarity trans-
formation and a complex phase, i.e.

wij(A
j)T = α(P )N−1AiN. (5.19)

But recall again that by definition, P squares to the identity. It follows
from considering two subsequent application of Eq. 5.19 that we must have
α(P ) = ±1. Like χ(g) in the onsite symmetry case, these one dimensional
representations label distinct phases; in this case, they correspond to the cases
of even and odd parity [50].

Similarly, enforcing that P squares to the identity also requires thatN−1NT =
β(P )1, with β(P ) an ambiguous phase factor which can take on the values ±1
(in this manner, β(P ) is somewhat analogous to the relative phase factors ω
which arose between the V (g) in the onsite case). Collectively, the two labels
{α(P ), β(P )} label the 4 distinct SPT phases protected by GP [50].

5.3.4 Parity and Onsite Symmetry

Finally, we consider the case where the residual symmetry group contains
both an onsite symmetry group Gint (see Sec. 5.3.2) as well as parity. In
such a case, we will clearly need all four of the previously identified SPT
parameters (χ, ω, α(P ) and β(P )) to distinguish possible phases. But in fact,
one additional parameter may arise in certain cases. The actions of parity and
an onsite symmetry will often commute with one another, i.e.

U(g)P|ψ〉 = PU(g)|ψ〉, (5.20)

But when this happens, we can consider the actions of the combined sym-
metries in terms of their effect in the virtual MPS space. To do this, we first,
insert Eq. 5.8 into Eq. 5.19, and then conversely Eq. 5.19 into Eq. 5.8, and
compare the results, which should be equal since we are presuming that the
actions commute. By requiring this, one finds the following constraint between
the matrics V (g) and N :

N−1V (g)N = γP (g)V ∗(g). (5.21)

In this case, it turns out once again that the phase factor γP (g) is a one-
dimensional irrep of Gint [50].
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Note that there is a certain redundancy in this parameter γP (g). We can
rephase V (g) 7→ θ(g)V (g) (so long as θ(g) is also a representation of Gint) with
the result that γP (g) 7→ γP (g)/θ2(g) in Eq. 5.21. But this rephasing cannot
have changed anything at the physical level, and therefore, the 1D irreps γP
and γP/θ

2 are equivalent labels (i.e., they label the same phase of matter)
for all the 1D irreps θ of Gint. Hence, to determine the relevance of γP for
a given Gint, we must ask whether the squares of the 1D irreps of Gint are
distinguishible from the 1D irreps themselves. When they are not (as is the
case for several groups relevant to this work, such as Z3, andA4) then there
is effectively only one distinct value for γP , and it is not needed in order to
characterize the SPT phase.

In sum, the different SPT phases of matter protected by G = Gint×GP are
labeled by the set of parameters {ω, χ(g), α(P ), β(P ), γP (g)} [50]. Because our
Hamiltonian is not invariant under time reversal, we do not review the classifi-
cation of SPT phases protected by time-reversal invariance and combinations
with other symmetries here; see instead Refs. [50, 52]. We emphasize however
that the numerical characterization techniques that we we will subsequently
present can be easily extended to the time-reversal case.

5.4 Using the Parameters to Understand the

Phases of the A4 Hamiltonian

5.4.1 Details of the Phase Diagram

Armed with the family of parameters described in the last section, {ω, χ, α, β, γP},
we now describe in detail the different phases of the Hamiltonian of Eq (5.4)
seen in Fig. 5.1. The internal symmetry is A4 which is a group of order 12 and
can be enumerated by two generators with the presentation

〈a, x|a3 = x2 = (ax)3 = e〉. (5.22)

The 3D representation of these generators are

a =

0 1 0
0 0 1
1 0 0

 , x =

1 0 0
0 −1 0
0 0 −1

 (5.23)

This can also be visualized as the rotational symmetry group of the tetrahe-
dron.

First we briefly outline the steps followed:
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1. For every point in parameter space µ = [−3, 4], λ = [−2, 2] of the Hamil-
tonian of Eq (5.4), we use the iTEBD algorithm [28] to compute the
ground state.

2. We determine the residual symmetry H ⊂ G of the full symmetry group
G = A4 × GP that leaves the ground state invariant. This includes
checking the level of translation invariance, which may be broken down
from one-site to two-site or beyond.

3. We determine the labels (subset of {ω, χ(g)α(P ), β(P ), γP (g)}) that char-
acterizes the fractionalization of residual symmetry and measure their
values using the appropriate MPS order parameters.

Several of these steps involve important numerical considerations. Full details
of our implementation of these steps can be found in Sec 5.5.

We find that there are eight different phases in total. These phases, labeled
“A” through “H” as indicated to match the phase diagram in Fig. 5.1, are
characterized as follows:

1. Phase A: Parity and one-site translation only i.e. H = GP (all internal
symmetries are broken). This region is therefore classified by the values
of {α(P ), β(P )} and is found to have values

• {α(P ) = −1, β(P ) = −1}

2. Phases B, C, and D: No unbroken symmetries. The ground state in
these three regions are invariant under the full symmetry group G =
A4 × GP . The relevant labels are {ω, χ(g), α(P ), β(P )} (Since all three
1D irreps of A4 are equivalent under the relation γP ∼ γP/χ

2, γP (g) is
a trivial parameter). The MPS matrices in all three regions transform
projectively i.e. these are non-trivial SPT phases with ω = −1 where
H2(A4, U(1)) ∼= Z2

∼= {1,−1}. Also, α(P ) = −1, β(P ) = −1 for all
three phases. However, they can be distinguished by the values of χ, i.e.
observing that the 1D irrep produced under the A4 symmetry transfor-
mation (Eq (5.7)) in the three regions corresponds to the three different
1D irreps of A4 . The values of the set of parameters which characterize
the regions are as follows.

• Phase B: {ω = −1, χ : {a = e
i2π
3 , x = 1}, α = −1, β = −1}

• Phase C: {ω = −1, χ : {a = 1, x = 1}, α = −1, β = −1}

• Phase D: {ω = −1, χ : {a = e−
i2π
3 , x = 1}, α = −1, β = −1}
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3. Phase E: Parity, Z2 and two-site translation. This region possess a
hybrid parity GP , generated not by inversion alone but rather the com-
bination of inversion and the order 2 element axa2 of A4. Additionally,
there is an unbroken onsite Z2 actions with elements {e, x}. The relevant
labels are {χ(g), α(P ), β(P ), γP (g)} with values

• {χ : {e = 1, x = 1}, α = 1, β = 1, γP = {e = 1, x = 1}}

4. Phases F and G: These regions possess the same parity and onsite
A4 symmetry as phases B, C, and D, but have translation invariance
which is broken down to the two-site level. They are also distinct from
the above phases because the MPS matrices transform under a linear
representaion of A4, and have a trivial representation of parity at the two
site level. The relevant labels are parameters are {ω, χ(g), α(P ), β(P )}
with values

• Phase F: {ω = +1, χ : {a = e−
i2π
3 , x = 1}, α = +1, β = +1}

• Phase G: {ω = +1, χ : {a = e+ i2π
3 , x = 1}, α = +1, β = +1}

5. Phase H: In this final region, the onsite symmetry is broken down to a
Z2×Z2 subgroup with elements {e, x, a2xa, axa2}. Parity and translation
symmetry are both fully retained. It is therefore the only region in our
sample phase diagram which requires all five labels {ω, χ, α, β, γP} to
characterize. The values here are

• {ω = +1, χ = {1,−1, 1,−1}, α = +1, β = +1, γP = {1, 1, 1, 1}}

Note here that for compactness, the set of values given χ and γ refer to the
four elements {e, x, a2xa, axa2}, respectively.

The diversity of phases seen in this phase diagram show the importance of
carefully checking for both conventional symmetry-breaking phases and SPT
phases. The phases present here also underscore the importance of consider-
ing the different possible instances of parity and translation invariance which
can occur, since in addition to traditional one-site translation invariance and
inversion, one might find e.g. translation breaking without inversion break-
ing (phases F and G), or inversion which only exists when hybridized with
an onsite symmetry (phase E). Such phases go well beyond the 26 phases
which could be identified solely by the 26 symmetry-breaking subgroups of
the global symmetry group A4×P . Indeed, even restricting ourselves to cases
which preserve translation invariance, there are hundreds of possible phases
for this model which can be enumerated under the classification scheme re-
viewed in Sec. 5.3. A detailed review of the forms these phases could take is
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provided by our co-author in Ref. [182]. the subsequent section, we show the
wide variety of phases which could potentially exist given the symmetries of
this parent Hamiltonian.

5.5 Numerical Methods for Obtaining the Phase

Diagram

For gapped 1D spin chains, the authors of Ref. [46, 47, 52, 191] describe
ways of numerically determining the SPT parameter described above, and
distinguishing different SPT orders. We build on the technique developed in
Ref. [52] where the authors obtain the SPT labels using the representations
of symmetry at the virtual level. The numerical characterization of the phase
diagram of a general parametrized HamiltonianH(λ, µ, . . .) proceeds according
to the following steps:

1. Identify the group of symmetries of the Hamiltonian, G of the Hamilto-
nian.

2. For each point in parameter space {λ, µ, . . .}, obtain the ground state
|ψ(λ, µ, . . .)〉 of the Hamiltonian H(λ, µ, . . .) numerically as a MPS.

3. For each point in parameter space {λ, µ, . . .}, identify the subgroup of
symmetries H ⊂ G that leaves the ground state |ψ(λ, µ, . . .)〉 invariant.
In our case, this means checking each of the 24 elements of G = A4×P .
We also must explicitly check the translation invariance.

4. Obtain the relevant virtual representations for the elements of H, i.e.
χ, V, α(P ), and N .

5. From the representations and their commutation relations, obtain all
other labels that completely characterize the phase.

In general, this requires calculating the full family {χ, ω, α(P ), β(P ), γ(P )}
for each point in parameter space. However, in some cases, the elements of
H are such that not all such parameters are necessary or even well-defined.
For example, if the subgroup H does not contain the parity operator, then
α(P ), β(P ) and γ(P ) do not exist. Similarly, if H = Z3 or Z2, there is only
one possible value of ω, and hence we do not need it to distinguish the phase.
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5.5.1 Ground State Preparation

Having constructed our Hamiltonian with an explicit symmetry group G =
A4 × P , the next step is to obtain the ground states. For this, we use the
numerical “iTEBD” algorithm [27, 28, 83] to compute the ground states over
a range of parameters, λ ∈ [−2, 2] and µ ∈ [−3, 4] (this range is simply chosen
based on our results to include a large but not necessarily comprehensive
sample of different SPT phases). The algorithm computes the ground state of
a Hamiltonian H through the imaginary time evolution of an arbitrary initial
state |ψ〉, since |ψ〉 can be expanded in the energy eigenbasis of Hamiltonian as
|ψ〉 =

∑
i ci|Ei〉 and hence e−τH |ψ〉 will suppress all such components except

for the ground state |E0〉 in the large-τ limit. Except where otherwise noted,
data in this chapter were prepared with a random initial state represented
as an MPS with bond dimension χ = 24, and evolved according to a fixed
sequence of timesteps which were chosen to be sufficient to converge the energy
to the level of 10−8 at the most numerically “difficult” states. Within each
phase, a random set of points have also been recomputed using states with a
series of larger bond dimensions (χ = 36, 42, and 60) and a longer sequence
of imaginary timesteps, in order to verify that the observed characteristics are
not likely to be artifacts of the numerical parameters.

Recalling the details of the iTEBD algorithm from Sec. 3.2.2, there is one
salient point which must be remarked upon. For a Hamiltonian H with two-
body interactions, the algorithm relies on a decomposition of the Hamiltonian
into two sets of terms, those acting first on an even site (HA) and those acting
first on an odd site (HB), so that H = HA +HB. As such the imaginary time
evolution operator can be approximated by the Suzuki-Trotter decomposition
[118, 123], which, to second order, gives

e−τH ≈ (e−δτHA/2e−δτHBe−δτHA/2)N , (5.24)

with δτ = τ/N . The total operator can then be applied as a sequence of
smaller operators, acting either on an even site first, or an odd site first. This
distinction, then, requires the state to be represented with at least two tensors,
AjA and AjB, even if the the resulting state is expected to possess a one-site
translation invariance (which would generally allow it to be represented by
only a single tensor Aj. This fact will have relevance in later sections, when
the translational invariance of the MPS is explicitly discussed).

We will also make explicitly use of the canonical form conditions for our
MPS; namely, that the dominant eigenvector of the state’s transfer matrix is
a vectorization of the identity matrix, i.e.
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(T )
(αα′)
(ββ′)δ

(ββ′) = δ(αα′) (5.25)

A general iMPS computed via iTEBD will not necessarily be in exactly canon-
ical form. However, because this form is ultimately so useful in the process
of extracting SPT parameters below, it is worthwhile to enforce it for the
ground state representations at the time of their calculation. As described
in Sec. 3.2.2, we have generally achieved this here by means of identity-gate
iTEBD evolution at the end of any ground-state calculation.

5.5.2 Symmetry Detection and Extraction of Order Pa-
rameters

States with One-Site Translation Invariant Representations

The general numerical scheme for extracting the topological order parame-
ters from a numerical MPS was presented in [52], where it was principally used
to study the order parameters ω, β(P ), and β(T ), a parameter for time-reversal
symmetry. Here we emphasize that it can be used to extract other parameters
like the 1D representation χ as well. We consider the situation first for onsite
symmetries and assume that the infinite state possesses one-site translation in-
variance and is represented by a single tensors Aj. The generalization to other
symmetries and to different levels of translation invariance will be considered
subsequently.

To check for symmetry and ultimately access the topological parameters,
we recall the notion of a “generalized” transfer matrix,

Tu ≡ Ajuj,j′(A
∗)j
′
, (5.26)

which extends the definition of the ordinary transfer matrix (Eq. 2.15) to in-
clude the action of some onsite operator u between the physical indices. In the
same manner that the original transfer matrix T represents the contribution
of one site to the overlap 〈ψ|ψ〉, in this case the generalized transfer matrix
Tu represents the contribution of one site to the expectation value 〈ψ|U |ψ〉,
where U =

⊗
j uj represents the application of u to every site on the chain

(see Fig. 5.4). And similarly, just as an iMPS is not normalized unless T has
largest eigenvalue 1, so too is such state only symmetric under U if Tu has
largest eigenvalue with unit modulus.

To study the SPT classification of a state, we thus begin by determining
the symmetry. To check if the state is symmetric under the application of U ,
then we first construct Tu and compute the dominant eigenvector X and the
associated eigenvalue λ1. Note that, when the dimensions of Tu is large, it
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Figure 5.4: (Color Online). The notion of the transfer matrix can be gen-
eralized to include (a) onsite operation U =

⊗
j uj, or (b) a parity operation

Pω. Generalizations to other symmetries are possible, but outside the scope
of this work as they are not present in our model.
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is numerically far easier to use some iterative procedure such as a power or
Lanczos algorithm [192–194] to extract this, since only the largest eigenvalue
is required and not the entire spectrum. If |λ1| < 1, the state is not symmetric
under U because 〈ψ|U |ψ〉 = limN→∞ T (u)N will vanish. If, however, the unique
largest eigenvalue gives |λ1| = 1, then we can proceed with the analysis.

Consider now a normalized iMPS in canonical form, which is invariant
under a set of symmetries u(g) at each site for g in some symmetry group
H ∈ G. Per Eq. 5.8 above, this invariance implies the existence of a set
of matrices V (g), which are generally projective representations, and χ(g), a
one-dimensional representation. As shown in [52], one can extract both the
projective and a 1-dimensional representation parameters directly from the
dominant eigenvector and eigenvalue of the generalized transfer matrix. In
particular, if X is the dominant eigenvector (or more precisely, if Xβ

β′ is a
matrix and it’s vectorization X(ββ′) is the dominant eigenvector), then V =
X−1. The one-dimensional rep χ(g) is simply equal to the dominant eigenvalue
itself. In other words,

(Tu)
(αα′)
(ββ′)(V

−1)(ββ′) = χ · (V −1)(αα′) (5.27)

To see this, consider the left hand side of the equation (In many ways,
this line of argument is clarified when represented by graphical notation; see
also Fig. 5.5.2). Combining the definition of the generalized transfer matrix,
Eq. 5.26, with the symmetry fractionalization condition in Eq. 5.8, we have

(Tu)
(αα′)
(ββ′) = χ · (V −1)αρAjρσV

σβ(A†)jα′β′

= χ · (V −1)αρT
(ρα′)
(σβ′)V

σβ.

When this is inserted in the left hand side of Eq. 5.27, the resulting can-
cellation of V and V −1 gives us

(Tu)
(αα′)
(ββ′)(V

−1)(ββ′) = χ · (V −1)αρT
(ρα′)
(σβ′) δ

σβ′ . (5.28)

Then, relabeling the dummy indices ρ and σ into α and β, we can appeal to
the canonical form condition of Eq. 2.13 to see that

(Tu)
(αα′)
(ββ′)(V

−1)(ββ′) = χ · (V −1)αα
′
, (5.29)

which proves that V −1 (vectorized) is an eigenvector with eigenvalue χ. Fur-
thermore, because the state is normalized and because we required as a condi-
tion for symmetry that|χ| = 1, this proves that V −1 is the dominant eigenvec-
tor, up to an overall phase factor in V . Hence, any procedure to numerically
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Figure 5.5: (Color online).The projective representation V of a symmetry can
be obtained from a state’s generalized transfer matrix because the dominant
eigenvector of said matrix will be the vectorization of, V −1, so long as the
original state is in canonical form. This relation is demonstrated graphically
for the case of an onsite symmetry, but easily generalizes to the parity case.

extract the dominant eigenvector and largest eigenvalue from the generalized
transfer matrix is sufficient to extract both the 1D representation χ and the
projective representation required to compute the projective parameters ω as
defined above.

In the foregoing, we have considered only onsite symmetries applied glob-
ally to every site on the state[52]. To include other types of symmetries, one
simply generalizes further the notion of the already-generalized transfer ma-
trix. For example, the parity symmetry can be studied by means of the matrix

TP ≡ Ajwj,j′(A
†)j
′
. (5.30)

In comparison to Eq. 5.26, we have simply inserted the action of the inver-
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sion operator I by performing a transpose on the virtual indices of the second
MPS tensor (seen graphically in panel (b) of Fig. 5.4). In this way, the result-
ing generalized transfer matrix still represents a one-site portion of the overlap
〈ψ|P|ψ〉. By the same arguments as above, and by analogy between Eq. 5.8
and Eq. 5.19, one can see that the quantities α(P ) and N can be extracted
from the dominant eigenvector and eigenvalue as before, with the latter used
to compute the parity parameter β(P ) as described above.

States Without One-Site Translationally Invariant Representations

Thus far, we have also assumed a state with one-site translation invariance.
However, even when the ground state being studied does possess a one-site
translational symmetry, the tensors in the MPS representation of this state
may not, because the gauge freedom of an MPS is not itself constrained to
be translationally invariant. For example, consider a set of translationally-
invariant tensors {A1, A2, A3 . . . } and the gauge transformation

Aj →


XAjZ−1, j even

ZAjX−1 j odd

(5.31)

for any appropriately-dimensioned matrices X and Z. Such a gauge transfor-
mation results in an MPS representation of the state whose tensors at even
and odd sites may look dramatically different. But both sets of tensors (before
and after the transformation) collectively represent the same, translationally
invariant state. Cases like this are of particular interest here because, as noted
above, the iTEBD method (like other MPS ground-state preparation algo-
rithms) necessarily results in an MPS representation with different tensors at
even and odd sites, regardless of the translational symmetry of the physical
state.

This feature does not affect our numerical calculation of the SPT order
parameters ω and β(P ), which are obtained as eigenvectors of the general-
ized transfer matrices, but has important significance for the one-dimensional
parameters χ, α(P ), and γ(P ). Consider, for example, a state which is repre-
sented by k sets of tensors {Aj1 ...Ajk}, either because the underlying state has
only a k-site symmetry, or perhaps simply because our particular numerical
representation requires it. The symmetry condition of Eq. 5.8 must still hold
on a k-site level; that is, we will have

u(g)IJA
J = χ(g)kV −1(g)AJV (g), (5.32)
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where AJ = Aj1Aj2 · · ·Ajk is now a tensor representing the entire block of
spins which are the unit cell of the translation invariance, and the composite
indices I and J are equal to (i1i2 · · · ik) and (j1j2 · · · jk). Clearly if we now
define a k-site generalized transfer matrix,

T (k)
u ≡ AJuI,J ′(A

∗)J
′

(5.33)

then the arguments from the preceding section show that V −1 can still be
found as the dominant eigenvector of T

(k)
u .

The largest eigenvalue, on the other hand, is now equal not to χ, but to
χk. In the typical case of an iTEBD state, where k = 2, this is problematic
because for many common symmetry groups, the values of χ(g) will be ±1,
so a numerical calculation which gives only χ2 will be unable to distinguish
between the different phases. More generally of course, a k-site representation
will always leave us initially unable to distinguish the cases where χ is a kth

root of unity.
Of course, if the underlying state has a one-site translation invariance (de-

spite being represented by tensors with only a two-site invariance), one ex-
pects that by use of some suitable gauge transformations it should be possi-
ble to transform the representation itself back into a translationally-invariant
form. Here, we show how this can be done in practice. Suppose we have a
translationally-invariant state with, say, a two-site representation {Aj, Bj+1}
and an even number of total spins, such that the state in question is given by
either

|ψ〉 =
∑
j1...

Tr[As1Bs2As3 . . . BsN ]|s1s2 . . . sN〉 (5.34)

or
|ψ〉 =

∑
j1...

Tr[Bs1As2Bs3 . . . AsN ]|s1s2 . . . sN〉 (5.35)

To recover a one-site representation, we first construct a new tensor of the
form:

Ãsj =

(
0 Bsj

Asj 0

)
. (5.36)

This new tensor in fact describes the same wavefunction |ψ〉. This can be
seen by considering the product:∏

j

Ãsj =

(
As1Bs2As3Bs4 · · · 0

0 Bs1As2Bs3As4 · · ·

)
. (5.37)

If we take the Ãsj to be the tensor specifying a new MPS and compute the
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coefficients, we will have

|ψ̃〉 =
∑
s1···

Tr[Ãs1 . . . ÃsN ]|s1 . . . sN〉

=
∑
s1···

Tr

(∏
j

Ã[j]

)
|s1 . . . sN〉

(5.38)

and thus, upon substituting Eq. 5.37, we find

|ψ̃〉 =
∑
s1···

Tr[As1Bs2 · · · ]|s1 . . . sN〉

+
∑
s1···

Tr[Bs1As2 · · · ]|s1 . . . sN〉

= 2|ψ〉

(5.39)

In other words, the state described by the tensor Ãsj is essentially identical
to the state specified by the original tensors {Asj , Bsj+1}. The only difference
is that the correct product of tensors needed to give the coefficients of the state
in Eq. 5.34 will always appear twice, differing only by an irrelevant one-site
translation (because the underlying state has a one-site translation invariance
to begin with, these two copies of the state are still equivalent).

Because the new tensor Ãsj now contains two degenerate descriptions of
the same state, it can be placed in a block diagonal form by appealing to the
procedure given in Ref. [15] for block-diagonalizing an MPS representation
(see also Appendix C in [195]). The resulting blocks will each independently
represent the state, but with one-site translation invariance.

The procedure, briefly outlined, is as follows: first, one must ensure that the
tensor Ãsj is itself in the canonical form, in the sense that it satisfies Eq. 2.13.
To do this, construct the transfer matrix for Ãsj and compute the dominant
eigenvector. This may result in a degenerate manifold of eigenvectors, but by
properties of the transfer matrix, at least one of these will be the vectorization
of some positive matrix X [196]. Since this X is invertible, we can then take
Ãsj → X−1/2ÃsjX1/2. By construction this new definition of Ãsj will satisfy
the canonical form.

From this, we once again construct a transfer matrix and compute its
dominant eigenvector(s). At least one corresponds to a matrix Z which is not
proportional to the identity matrix (up to numerical precision). Furthermore,
since the vectorization of Z† is also an eigenvector of the transfer matrix in
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canonical form, we can take Z → (Z + Z†)/2 so that Z is Hermitian (unless
(Z + Z†)/2 is itself proportional to the identity, in which case one can always
choose instead Z → i(Z −Z†)/2.) Finally, we compute the largest magnitude
eigenvalue z1 of this new matrix Z, so that we can construct a matrix W =
1 − (1/z1)Z to be a matrix which is manifestly not full rank. Let P be a
projector onto the support of W , and P⊥ the projector onto its complement.
We can now decompose Ãsj around theses spaces, as

Ãsj = PÃsjP + P⊥ÃsjP⊥ + PÃsjP⊥ + P⊥ÃsjP. (5.40)

The reason for the construction of the matrix W from a fixed point now
becomes clear, as it has been shown that for such matrix W and its associated
projector P , we have ÃsjP = PÃsjP [15] (for proof, see Appendix B. Conse-
quently, the final term in Eq. 5.40, which represents one of two off-diagonal
blocks in Ãsj , vanishes identically. This, in turn, ensures that the remaining
off-diagonal block cannot mix with either of the diagonal blocks in any prod-
uct Ãsj ˜Asj+1 · · · . It therefore does not participate in the calculation of the
coefficients of the corresponding states, and can be ignored.

The remaining terms, PÃsjP and P⊥ÃsjP⊥, represent the relevant blocks
along the diagonal of the tensor. We remark that in principle, one may need
to carry out the above procedure iteratively for each such block (PÃsjP and
P⊥ÃsjP⊥) to see if further block reduction is possible. But in practice, for the
two-site iTEBD ansatz, a single iteration should suffice. Then, by construction
of Ãsj , each will be an equivalent representation of the same state, and each
can represent the state with only a one-site translation invariance. In other
words, if we simply treat PÃsjP as the tensor representing the state, we can
use all the procedures in the preceding section to directly compute the entire
family of SPT parameters.

An alternative method for extracting the one-dimensional parameters when
their values are kth roots of unity would be to compute the ground state
with a version of the iTEBD algorithm designed to act on an n-site unit
cell, where n does not divide k. In this case, the dominant eigenvalue of the
generalized transfer matrix will be χn, from which χ can now be calculated
without ambiguity. Such generalized iTEBD algorithms have been employed
successfully (see for example [197]), but may be less numerically stable, and
cannot be used for a general state unless one is sure that n is commensurate
with the underlying translation invariance of the state. Nevertheless, both
methods are possible in practice, and we have used both to cross-check one
another in the results presented in this paper.
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States with Broken Translation Invariance

Finally, it may also be the case that a state lacks a one-site translation-
ally invariant representation precisely because the ground state is not one-site
translationally invariant. When this occurs, one can still compute topologi-
cal order parameters for onsite symmetries, but only once they and the as-
sociated symmetries have been suitably redefined to be consistent with the
translational invariance. In other words, if the state has a k-site translation
invariance and is represented by the k tensors {Aj1Aj2 . . . Ajk}, one combines
the tensors in the same manner contemplated above, forming a new tensor
AJ = Aj1Aj2 · · ·Ajk with an enlarged physical index which is given by the
composite index J = (j1j2 . . . jk). We then also re-interpret the onsite symme-
try operation to be uIJ = ui1j1 ⊗ u

i2
j2
⊗ . . . uikjk under the same convention. Once

again, with the tensors merged so they continue to represent an individual
“unit cell” of the state, then the relation of Eq. 5.8 will still hold, and we
can compute the projective representations of the symmetry from the domi-
nant eigenvalue of the transfer matrix. Unlike the situation described above,
however, where the dominant eigenvalue did not give the one-dimensional rep-
resentation χ (but rather χk), in this case the eigenvalue for the merged cell
still gives an order parameter. Indeed, there is no longer a physical meaning
to the kth root of the eigenvalue, because one-site translation is no longer a
symmetry.

For such states, it is also essential to carefully verify the level of any residual
translation symmetry. As discussed above, the traditional iTEBD algorithm
assumes a two-site invariant representation of the state; hence, if this algorithm
produces a state which appears to have translation symmetry which is broken
on the one-site level but present at a two-site level, it cannot be assumed that
two-site translation is a symmetry of the true ground state; such symmetry
may instead have been forced by the algorithm. In this work, whenever one-site
translation symmetry is broken, we recompute the ground state using a version
of iTEBD with a larger (say, four-site) unit cell. If the two-site translation
invariance is still present after such a test, it can then be safely assumed to
be a genuine property of the true ground state, and not a property forced by
the numerical ansatz. In general, an algorithm with an k-site ansatz cannot
by itself confirm translation invariance at the k-site level.

5.5.3 Obtaining the SPT Labels {ω, β(P ), γ(g)}
It is clear how the one-dimensional representations χ and α(P ) can be

used by themselves to label a phase, since each is a single number. Now,
however we must discuss how to extract similar numerical labels from the
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projective representations and other matrices obtained above (e.g. V,N, etc).
The authors of [52] show that the formula

ω =
1

D
Tr
[
V (x1)V (x2)V †(x1)V †(x2)

]
= ±1 (5.41)

provides a satisfying method to compute a single number ω ∈ H2(Gint, U(1))
with which to classify the projective representations V for the case in which
the residual symmetry group is H = Z2 × Z2 (with x1, x2 ∈ Z2 × Z2). In
this construction, the combination of V (x) and V (x)† for each of the elements
x1, X2 ensures that the result is insensitive to any gauge transformation in
the MPS, which could change the projective representations by V 7→ XVX−1

and/or V 7→ eiθV . When the virtual representations are trivial, the product
V (x1)V (x2)V †(x1)V †(x2) will give the identity matrix, and hence Eq. 5.41 will
give ω = +1. For a nontrivial representation, the product picks up an overall
minus sign and the result is instead ω = −1. Thus these two cases, consistent
with ω ∈ H2(Gint, U(1)) = Z2, clearly distinguish the two types of phase
resulting from either linear or projective symmetry representations in virtual
space.

We wish to define formulas similar to Eq. 5.41 for the remaining possible
subgroups which can appear in our model. Thus in addition to Z2 × Z2, we
must consider Z2, Z3, and the full symmetry group A4. Pleasantly, the first
two cases both give rise to trivial second group cohomologies, H2(G,U(1)) =
trivial group. In these cases, there are no projective representations, only
linear, and we need not construct a parameter.

This leaves only the case of A4 to be handled. The formula which we use
to define a parameter in this case is

ω =
1

D
Tr
[
(V (a)V (x)V †(a)V †(x))2

]
= ±1. (5.42)

Like Eq. 5.41, this formula was constructed by considering products of elements
which will give either the identity matrix 1, or −1, depending on whether we
have linear or projective representations, respectively. A similar approach
could generally be used to derive formulas for the parameters for the case of
different symmetry groups in other models.

A somewhat parallel construction, also introduced in Ref. [52], can be used
for the inversion parameter β(P ); namely

β(P ) =
1

D
Tr (NN∗) . (5.43)

Furthermore, from Eq (5.21) we can see that the parameter γ(g) which results
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from the commutation of onsite and parity can be obtained as

γ(g) =
1

D
Tr
[
N−1V (g)NV T (g)

]
(5.44)

Here, however, an important technical point arises. Although eq (5.44)
has a similar form to the equations used to compute ω and β, it differs in
an important respect. Recall that, as calculated above, the matrices V and
N are obtained only up to arbitrary overall phase factors. These phases are
irrelevant to the calculation of ω and β, as both V and V ∗ appear equally in
the equations which define them. In Eq. 5.44, however, the matrix V T will fail
in general to cancel the phase contributed by V .

Since the V (g) can carry a different phase for each g, we must find a way
to self-consistently fix the phase factors of each. In principle, this can always
be done by appealing to the properties of projective representations. The
extracted matrices V should satisfy a set of relationships

V (g1)V (g2) = ω(g1, g2)V (g1g2), (5.45)

with the phases ω(i, j) forming the “factor system” of the representa-
tion. Since the matrices which we numerically extract by the above proce-
dure do not automatically satisfy this relationship, let us label them Ṽ , with
Ṽ (g) = θgV (g) for some phase factor θg. From this, one can conclude that the
numerical matrices obey a similar relation:

Ṽ (g1)Ṽ (g2) =
θg1g2
θg1θg2

ω(g1, g2)Ṽ (g1g2). (5.46)

By analogy to Eq. 5.45, let us define

ω̃(g1, g2) =
θg1g2
θg1θg2

ω(g1, g2). (5.47)

Note that these phases ω̃(g1, g2) can be computed numerically from

(1/D)Tr[Ṽ (g1)Ṽ (g2)Ṽ (g1g2)−1]. (5.48)

Furthermore, since parity is assumed to be a symmetry of the state in question
(if it is not, then the concept of a γ parameter is undefined and the phase
factors θ are irrelevant), then we must have ω(g1g2)2 = 1 [50]. Inverting
Eq. 5.47 and applying this condition tells us that

θ2
g1
θ2
g2
ω̃(g1, g2)2 = θ2

g1g2
. (5.49)
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Since the ω̃ are known, this set of equations, which run over all the group
elements g, are sufficient to solve for the phases θ. In fact, when V is unitary,
it is clear from the definition of γ in Eq. 5.44 that only θ2, and not θ itself, is
needed to correct for the spurious phase factors, which further simplifies the
system of equations which must be solved.

In practice, another convenient way to fix these phase factors is by inter-
preting the projective representations of the group, Ṽ as linear representations
of the covering group (or at least, one of the covering groups). For example,
in the case of Z2 × Z2, the quaternion group Q8 is a covering group. Hence
the elements of the projective representation of Z2 × Z2, V (g) can have their
overall phases fixed so that they obey the structure of this group; in particular,
for the representation of the identity element we must have V (e)2 = 1, and
for all others, V (g)2 = −1.

5.6 Summary and Future Directions

In this chapter, we have presented a numerical study of a one-dimensional
spin-1 Hamiltonian symmetric under one-site translation, lattice inversion, and
an on-site A4 symmetry group. Ground states are generated using the iTEBD
algorithm, and then tested to determine the residual symmetry group at each
point in parameter space. We also describe in detail how the SPT classification
parameters of Ref. [50] can be numerically evaluated. These methods are built
upon the approach of Ref. [52], and we extend them here by demonstrating
how to extract the one-dimensional representations from the two-site MPS
ansatz required by iTEBD, as well as how to remove spurious phase effects
in the evaluation of the SPT parameter γ(P ). Over a range of values of
the Hamiltonian’s two parameters, we identify eight distinct gapped phases,
distinguished by a combination of symmetry breaking and SPT parameters.

Among these phases, we also identify three contiguous, topologically non-
trivial phases (regions B, C and D). By studying the phase transition between
these regions, we provide numerical evidence that the transitions are second-
order in nature with associated CFTs whose central charges are both given
by c ≈ 1.35. This result is consistent with the recent work of Ref. [185], in
which the authors similarly examined continuous phase transitions between
SPT phases and observed that the central charge of the CFT at the transition
should have c ≥ 1.

We note that the phase transitions study here differ from the specific ex-
amples in Ref. [185] in an important respect. Our phases possess a one-site
translation invariance in addition to the onsite A4 symmetry in the ground
state. As a result, we can define order parameters from the one-dimensional
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representations in addition to the projective representations, and in fact, our
phases B, C and D are distinguished not by the projective representations of
the onsite symmetry (which is nontrivial and equivalent in all three phases),
but instead only by the one-dimensional representations.

As a further area of study, we wish to compare our results to the work of
Ref. [183], which conjectures that there can exist no continuous phase transi-
tions from one non-trivial SPT phase to another when the internal symmetry
is discrete at all length scales. Our model appears to contain counterexamples,
and we do not believe these are simply the result of some fine-tuning, as the
same behavior appears across a finite range of the Hamiltonian parameter µ.
However, it remains to be studied whether perhaps the discrete symmetries
we consider become somehow enhanced to continuous symmetries at the phase
transitions. Further study of the properties of SPT-to-SPT phase transitions is
clearly indicated, particularly in the case of models with translation invariance
and of nontrivial to nontrivial SPT phase boundaries.

142



Chapter 6

Many-Body Localization and
Entanglement

The standard treatment of a system of particles with a finite tempera-
ture [198, 199] is to assume that the system is in contact with an external
reservoir, and that, given sufficient time, the system will “thermalize,” reach-
ing an equilibrium where its properties are described by only a few numbers,
such as particle number and the temperature itself. Indeed, even the notion
of a “temperature of the system” is ill-defined except for a system which is
at equilibrium. But while this approximate description has played a power-
ful role in the development of quantum statistical mechanics, the notion of
a system completely isolated from the outside environment is also of great
importance. Such systems can serve as theoretical models to give us unique
insight into quantum dynamics, and are also increasingly being approximated
in real-world experiments, where for example strongly isolated optical lat-
tices and other condensed matter systems serve as our models for rudimentary
quantum computers.

Logically, one must then consider the behavior of closed quantum systems,
i.e. those which are not taken to be in contact with an external reservoir.
In such systems, it is still quite possible to observe a thermalization process,
with the system acting as “its own reservoir” for all subsystems, and reaching
a homogenized state after a sufficient period of time. But this behavior, while
perhaps common, is not the only possibility. Instead, under the right condi-
tions, which we shall discuss below, a closed system can remain “localized,”
with subsystems that do not “talk” to one another in the conventional thermal
sense, as famously observed by Anderson [200] . Clear perturbative [201] and
numerical evidence [54] strongly suggests that this is true even for systems
with interactions, where the phenomenon is called “Many-Body Localization”
(MBL). The field of MBL has recently attracted substantial interest in the
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condensed matter community, as the properties of MBL systems have begun
to be better understood (see for example Refs. [54–58]) and even tested in
practice [202, 203].

As more and more MBL systems are studied, it has become particularly
important to develop reliable indicators which can serve as “order parameters”
to distinguish between instances of localized and more conventional thermal
(“ergodic”) behavior. In fact, in systems where localization may appear as a
function of some tunable parameter (such as the strength of some disordered
field), the transformation from localized to thermal is now regarded as a proper
quantum phase transition (though it must be understood as a dynamic transi-
tion in the spectrum, not a transition of ground states) [58]. One such possibly
MBL indicator is the “concurrence” of the system, an entanglement measure
introduced in in the context of spin-1/2 systems in Ref. [63] and studied quite
recently for MBL systems in [65]. The quantity has many desirably qualities
as an MBL parameter, which we shall discuss below, but it is also strongly
limited. While generalizations to larger system types exist [204–206], a conve-
nient closed-form expression for concurrence exists only for pairs of spin-1/2
particles [204, 207] . Naturally, it would be desirable to study localization be-
havior in systems with higher spin, and to look at entanglement properties in
subsystems of arbitrary size. Fortunately, a related entanglement measure, the
“Negativity” [64], is not subject to the same restrictions. It is natural to ask
whether the negativity can also be used as an indicator of MBL behavior, and
this chapter, we provide numerical evidence that the answer is likely “yes.”

This chapter is organized as follows: In section 6.1, we present a more
detailed explanation of the nature of many-body localization. In section 6.2,
we consider some very recent proposals for algorithms which can generate MPS
representations of MBL states[59–62] , and present our implementation of the
so called “SIMPS” algorithm [59]. Section 6.3 presents our results on the
behavior of concurrence and negativity in MBL systems, using a combination
of exact diagonalization and data from SIMPS. We provide a summary and
discussion of future projects in 6.4.

6.1 Many-Body Localization: an Overview

We first briefly review the current understanding of MBL systems and
identify some some relevant properties which have been used to certify the
presence or absence of localization. For further information on the subject, we
refer readers to the comprehensive review in Ref. [55].
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6.1.1 Thermalization in Closed Quantum Systems

Perhaps the best way to understand localized behavior in a system is to
consider its opposite. We first discuss the “expected” ergodic behavior of a
closed quantum system, with the intent of clarifying by contrast what condi-
tions are violated by localization.

Consider a quantum system S which is “closed” (in the sense that we do not
assume contact with any outside reservoir) and a particular finite subsystem
A, with the extent of S taken to the thermodynamic limit. In particular, A
may be imagined as a particular “pocket” of space within S, but this need not
be the case. For example, instead of considering this spatial pocket, ¢hange
perspective to momentum space. Any finite set of degrees of freedom is equally
acceptable. Define also the complementary subsystem E = S \ A.

We can imagine what this system would look like if it were in contact
with a reservoir at temperature T . The natural state would be described by a
thermal density matrix

ρth(T ) = e−H/kbT/Z (6.1)

for Z the standard partition function. It follows that we could also construct
the state of our subsystem A (when hypothetically thermalized by a reservoir)
by simply tracing over E, i.e.

ρ
(A)
th (T ) = trE

(
e−H/kbT/Z

)
(6.2)

We emphasize again that Eq. 6.1 is not the state we expect to see our closed
system in for large time t; we can see that this cannot be the case because our
system must have evolved by a unitary, i.e. information-preserving process

ρ(t) = e−itHρ(t = 0)eitH . (6.3)

Hence, it cannot simply have arrived in a Boltzmann distribution ρthwherein
all information about the initial state ρ(t = 0) has been lost. So the only
interpretation of the density matrix in Eq. 6.1 is the state which the system
would be in if it were in contact with a reservoir at temperature T .

But while ρth cannot be the correct description of the full system by uni-
tarity, there is no such restriction preventing Eq. 6.4 from holding for our
subsystem. Even if the full, isolated system is not in a thermal distribution,
we might expect

ρ(A)(t) = trE (ρth(T )) . (6.4)

for large values of t. After all, from the perspective of A, the remainder of S,
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i.e., the subsystem E, appears as an infinite reservoir in the thermodynamic
limit.

Thus, we can form a sensible definition of what “thermal equilibrium”
can mean in the context of a closed system: if Eq. 6.4 holds for all choices of
subsystem A, then we can say that as a whole, the closed system thermalizes to
temperature T [208, 209]. Note that, as argued above, such a system must still
contain all of the information about its initial configuration. This information
is simply no longer locally observable, as it has decohered across the entire
state [55].

The Eigenstate Thermalization Hypothesis

An important consequence of this description of thermalization in closed
systems is the so-called “Eigenstate Thermalization Hypothesis,” (ETH)[208–
212] which we can understand as follows. Consider some thermalizing system
governed by a Hamiltonian H, and a particular energy eigenstate |α〉 with
H|α〉 = Eα|α〉. Though likely not possible in practice, suppose we initialize
an isolated system to be a pure state in precisely this eigenstate, i.e.

ρ(t = 0) = |α〉〈α| (6.5)

Now, we allow time to run. But because we are precisely in an eigenstate,
the time evolution of Eq. 6.3 is trivial,

ρ(t) = e−itH |α〉〈α|eitH = |α〉〈α|
= ρ(t = 0).

In other words, systems prepared as eigenstates persist as eigenstates for all t.
Therefore, the only way for the system to be thermal in the sense of Eq. 6.4 is
for it to have been thermal all along ! And because we have not used here any
properties of the initial state besides its status as an eigenstate, it must be the
case that if a system is eventually going to thermalize, its eigenstates must
already be thermalized, and remain so at all times. Initial states which are
not thermal can only appear as special combinations of eigenstates carefully
constructed so that their thermal components destructively interfere; thermal-
ization results because this carefully balanced superposition will eventually
decohere under the unitary evolution.
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6.1.2 Localization

The alternative to this kind of thermal behavior is MBL (we set aside for
now the fine-tuned case of an integrable system, which is localized by its many
explicitly-conserved quantities). We now briefly discuss the behavior and prop-
erties of such systems. In general, we will be discussing localization arising in
systems with strong disorder, though it is important to note that MBL behav-
ior can also arise in quasiperiodic systems where the period of the potential
is incommensurate with the underlying lattice (see e.g. Ref. [213, 214]). Ex-
cept where noted, all comments which follow can apply equally to such cases.
Indeed, for any quasiperiodic potential, a related random model can be con-
structed in which the strength of the potential at site i is randomly drawn
from the distribution [−Wi,Wi], with the distribution widths Wi themselves
varying quasiperiodically. Such systems should have comparable behavior.
For this and other reasons, it is suspected that there are no qualitative differ-
ences in the behavior of MBL arising from disorder versus MBL arising from
quasiperiodicity [215], although this remains an open question.

In an MBL system, the ETH as stated above is explicitly false; states exist
(both eigenstates and general linear combinations of them) for which the whole
system does not act as a reservoir for all of the subsystems. The behavior of
such states seems to defy intuition: in a system with interactions, which one
might reasonably presume would allow every subsystem to “talk” to every
other to the extent that all initial information becomes distributed across the
state. But instead, such systems display a kind of “memory” of their initial
conditions, with some (though likely not all) local observables yielding the
same expectation values out to large timescales.

From this behavior arises the notion of an “l-bit” (for “localized bit”) [216,
217]. Consider a system of noninteracting particles; such a system would natu-
rally be described by a set of conserved charges in some basis. For example, in a
trivial, non-interacting spin chain H =

∑
i σ

z
i , eigenstates can all be described

by the set of local spins {σzi }, which all commute with the Hamiltonian and
hence provide good quantum numbers for a basis of simultaneous eigenstates.
But if this behavior exists for isolated spins (“bits”) which are explicitly not
interacting, then the same behavior should hold for localized systems as well,
so that a new family of conserved charges (the l-bits) emerges. In particular,
it has been shown[216] that these l-bits are simply “dressed” versions of the
pre-existing bits: they are given by products (and sums of products) of the
original bits at nearby sites. Contributions from sites which are far away are
exponentially suppressed, giving rise to a new set of quantum numbers for the
system. This l-bit behavior will form the basis for several of the MPS algo-
rithms for finding MBL states discussed in section 6.2. The l-bit construction
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also helps contextualize the “localized” behavior of fully integrable systems:
such systems can be seen as fine-tuned, exact instances where the l-bits emerge
by construction.

6.1.3 Indicators of Localization

Since the rapid reemergence of interest in MBL systems within the past
decade, a wide variety of quantities have been studied as possible indicators
to detect MBL behavior. We will briefly review now a sampling of these in-
dicators, emphasizing that considerably more information can be found about
each elsewhere in the MBL literature, and that the list is hardly exhaustive.

• Behavior of local observables: If the ETH holds for a state, then one
expects local observables to differ very little between eigenstates which
are close together in energy [208, 209]. Hence, a simple test for whether
the ETH holds for a system (i.e. whether the state is ergodic or MBL) is
to evaluate some local observable (such as the operator σzj at a specific,
arbitrary site j) for many eigenstates within a very narrow range of
energies. In a thermal system, the results should be tightly bunched and
nearly independent of energy; in MBL, they will be much more broadly
distributed. Note however, that one must be careful with the choice
of the energy window to be considered if there is any concern that not
all eigenstates may be localized. Further, it is subject to concerns about
one’s choice of observable; such observable must be chosen to be suitably
“typical” in order to be a valid indicator [218]. See also the interesting
conjecture in Ref. [219].

• Behavior of neighboring eigenstates: A related prediction from
the ETH is that neighboring eigenstates should be locally very simi-
lar. In [220] it was proposed that Kullback-Liebler information [221]
could be used to measure the distance between such wavefunctions. In
particular, different values of the Kullback-Liebler divergence will be ex-
pected in the thermal and MBL regions. Conversely, in Ref. [59], it was
observed that a small local perturbation to an eigenstate should pro-
duce an eigenstate with very similar energy if the system is thermal,
but may produce an eigenstate with dramatically different energy in an
MBL system. Because the MPS structure makes such local perturba-
tions relatively simple to implement (by perturbing only a single tensor
of a state), this heuristic is well-suited to studies using MPS algorithms.

• Level Statistics: Another particularly common and powerful way to
distinguish thermal and MBL systems is to consider the average ratio
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of consecutive level spacings[222]. Let ∆n be the difference between
energy levels, En − En−1, and let r̃n be the ratio ∆n/∆n+1. Further
define rn = min {r̃n, r̃−1

n }, so that rn ≤ 1. The distribution of these
ratios across a representative sampling of the spectrum is well known
from random matrix theory to be quantitatively different in a localized
case (where the distribution is Poisson) versus a thermal case (where
the distribution is the Gaussian orthogonal ensemble). In particular,
these two distributions have markedly different means, so we expect the
average (across states and disorder configurations) to be given by 〈rn〉 =
2 log 2 in localized systems and 〈rn〉 ≈ 0.53 otherwise [223].

• Normalized Participation Ratio: The normalized participation ratio
(NPR) is somewhat unique in that it can be computed and even given
meaning for a single state in the spectrum (though it is still typically used
by averaging over disordered configurations). Consider a general state
|ψ〉 expanded in some configuration basis |i〉 so that |ψ〉 =

∑
i ci|i〉.The

NPR for this state and basis is defined as

P (ψ) =
(
∑

i |ci|2)
2∑

i |ci|4
. (6.6)

Observe that for a normalized vector, this is simply 1/
∑

i p
2
i , where

pi is the probability for |ψ〉 to be in the configuration |i〉. Hence the
NPR ranges from P (ψ) = 1 when the system is completely localized
to a single state, to P (ψ) = N when the state is uniformly distributed
across all N possible configurations with probability pi = 1/N for each.
Note that for instances where the volume of the relevant Hilbert space is
not fixed, one may wish to normalize the NPR by including this factor
before comparing the NPR of different states [213]. It is interesting
historically to note that this method of measuring localization appears
to have its origins in the chemistry of atomic vibrations, Ref. [224]. A
related quantity, the participation entropy [225] has also recently been
employed as an indicator of MBL; see for example Refs. [220, 226].

• Entanglement Scaling Law: For a thermalizing system, a direct con-
sequence of the ETH is that the entanglement entropy between any
choice of subsystem and environment must be equal to the equilibrium
thermal entropy of the subsystem, which in turn will scale with the vol-
ume of the subsystem [208–212]. Hence we have also a volume scaling
law for for the entanglement entropy in such systems. In MBL systems,
however, this equality breaks down along with the ETH. In fact, in local-
ized systems almost all eigenstates obey instead an area law with respect

149



to the boundary of the subsystem [227–229]. A scaling study of the en-
tanglement in a typical subsystem can hence also be used as a strong
diagnostic of MBL behavior, though because it requires finite-size scal-
ing to the point of entanglement saturation it can be costly to compute.
Other related properties of entanglement have also been used as indica-
tors, such as the standard deviation of entanglement entropy across a
disordered average [230], or the growth with time of entanglement in an
initially unentangled state [231, 232].

When considering any of these indicators, it should be remembered as a
note of caution that finite-size effects can strongly impact any determination of
a localized-delocalized transition. All existing evidence points to the idea that
finite size effects tend to increase localization, meaning that the critical value of
the disorder will appear smaller than it may actually be in the thermodynamic
limit [233].

6.2 MBL States with Matrix Product Algo-

rithms

Of the properties of localized states described above, the last item in par-
ticular has special significance in our context. One-dimensional states whose
entanglement obeys an area law are precisely those which can be efficiently
represented as an MPS with finite bond dimension [17]. Indeed under a set
of quite generic assumptions about the Hamiltonian such as nondegeneracy of
energy levels, it has been rigorously shown that all eigenstates (up to possibly
mobility edge [234]) of a localizing Hamiltonian can be represented by an MPS
whose bond dimension is only polynomial in the system size [229].

Thus, it is natural to ask how to obtain MPS representations of such sys-
tems. Several proposals have recently been advanced; we present here our
implementation of the “Shift and Invert MPS” (“SIMPS”) algorithm of Yu,
Pekker, and Clark [59]. Additional algorithms will be briefly compared and
discussed below.

6.2.1 SIMPS

Broadly, the goal of the SIMPS algorithm (discussed here only for open-
boundary systems) is as follows: assume we have a Hamiltonian represented
by an MPO, and we wish to search for an MBL state with energy λ̃ close to
a target value λ. Construct a shifted operator O = H − λ, and observe that
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the state |ψλ̃〉 with energy closest to our target can be found as the dominant
eigenvector of the inverted Hamiltonian

H̃ = (H − λ)−1 = O−1. (6.7)

In principle, it could also be found by seeking the smallest magnitude eigen-
value of (H − λ)2, but the construction in Eq. 6.7 has a notable advantage.
Suppose that we wish to discriminate between the state |ψλ̃〉 with energy λ
and a nearby state |ψλ̃+ε〉 with energy λ + ε. As the size of the system we
consider increases, the size of this ε naturally becomes quite small, and if we
take H → (H − λ)2, the new separation ε2 becomes smaller still. But in the
SIMPS formulation with H̃ = (H − λ)−1, the new separation ε−1 will become
quite large, helping us to isolate what might otherwise be a difficult state to
resolve.

It remains now to numerically find the state |ψλ̃〉. Since this is not the
ground state of H̃, we cannot simply employ traditional MPS algorithms.
Instead, we shall employ the power method for identifying dominant eigenvec-
tors. This method is straightforward and well-known, but we briefly review
the relevant attributes here in order to comment on convergence properties of
the SIMPS algorithm. In the power method, we take a random initial state
|φ0〉 and apply H̃ iteratively, normalizing at each step to preserve stability, so
that

|φn+1〉 =
H̃|φn〉
||H̃|φn〉||

(6.8)

After enough iterations, all that remains will be the dominant eigenvector
which we had targeted, |ψλ̃〉. To see this, let {|i〉} be the eigenbasis of the
new Hamiltonian H̃, with the (somewhat unorthodox) convention that the
eigenvalues Ẽi are ordered from largest to smallest, {Ẽ1 > Ẽ2 > Ẽ3 . . . }. As
we have with other MPS algorithms, we assume that in general this random
choice will have nonzero overlap with our target state, i.e.

|φ0〉 = c1|ψλ̃〉+
R−1∑
i=2

ci|i〉 (6.9)

where R is the rank of H̃ and {ci} are the appropriate expansion coefficients.
As we iteratively apply H̃ to |φn〉 we have

|φn+1〉 ∝ H̃n|φ0〉 = c1Ẽ
n
1

(
|ψλ̃〉+

R∑
i=2

ci
c1

(
Ẽi

Ẽ1

)n

|j〉

)
. (6.10)
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Clearly the coefficients in the sum on the right can be bounded above in

terms of E2, the first subdominant eigenvalue, since
(
Ẽi
Ẽ1

)n
≤
(
Ẽ2

Ẽ1

)n
∀ i.

Hence in the limit of large n, we have

lim
n→∞

|φn〉 = |ψλ̃〉 (6.11)

with the orthogonal terms decaying as |Ẽ2/Ẽ1|n. Hence the convergence of the
power method is controlled by the ratio of the two largest eigenvalues in our
shifted-and-inverted Hamiltonian, or, to put it more naturally in terms of the
eigenvalues {Ei} of the original Hamiltonian,

Ẽ2

Ẽ1

=
|Ẽ1 − λ|
|Ẽ2 − λ|

. (6.12)

In other words, what matters is the ratio of the distance from lambda
to the nearest eigenvalue, and the distance to the next-nearest eigenvalue.
Generally speaking, this is good news, as the Hamiltonian’s spectrum is likely
densely populated near (as we expect for large systems) and a randomly chosen
λ should be much closer to one particular state than to others (which will
be amplified after inversion). The only problems occur when by very poor
fortune our target λ falls almost exactly between true energy levels. These
two equidistant eigenvalues will yield near degeneracies in H̃ and an inefficient
convergence ratio close to unity. This problem can be handled by searching for
states with a range of λ’s using a step size which is sufficiently small compared
to the expected level spacings in H, so that even if a few choices of λ do not
converge, others in the range will converge strongly, and the true set of nearest
states can be analyzed by comparing the state reached for different values of
λ. Alternatively, the choice of λ can also be actively fine-tuned during the
algorithm, introducing a small perturbation in the target energy if the current
the convergence rate seems poor. A precise way to do this by fitting the
convergence profile to extract the convergence ratio is elaborated upon in [59].

Hence, if we can find a way to efficiently apply H̃ to an MPS representation
of our initial state, we will have an algorithm that converges to the desired
result. If H̃ admits a compact MPO representation, we can proceed through
traditional DMRG methods, but in general this will not be the case; the MPO
construction techniques we have outlined previously (see also Refs.[32, 156])
explicitly rely on the sum-of-local-terms structure in an operator. Taking the
inverse of H generally destroys this.

We do, however, have the operator O = H̃−1 = H − λ, which can still be
efficiently represented as an MPO. With this the authors of Ref. [59] reimagine
the optimization problem of traditional DMRG to perform the desired update.
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We seek a state |φn〉 such that (up to normalization), |φn+1〉 = H̃|φn〉. In terms
of O, this state will satisfy

O|φn+1〉 − |φn〉 = 0 (6.13)

so we can build an appropriate cost function with an absolute minimum by
taking an absolute square. The desired state |φn+1〉 will be the state which
minimizes

L = ||O|φn+1〉 − |φn〉|| (6.14)

Expanding Eq. 6.14, we have

L = 〈φn+1|O†O|φn+1〉 − 〈φn|O|φn+1〉 − 〈φn+1|O†|φn〉+ 〈φn|φn〉 (6.15)

As we did in the case of ground-state DMRG, we will seek to solve this
optimization problem through an alternating least-square approach, sweeping
back and forth and optimizing one tensor of our state at a time in search of
global convergence. Recall our notation from Chapter 3 that |A[j]〉 is a vector-
ization of the tensor to be updated at site j, and that more generally, |A[1...j]〉vj
is the state represented by the tensors {A[1] . . . A[j]}, with the subscript vj in-
dicating an uncontracted virtual index at site j. We will be trying to minimize
Eq. 6.15 by considering variation with respect to |A[j]〉. Let us refer to the
tensors representing |φn〉 as A(n). Keeping only the terms which contribute to
the variation, this means solving

δ

δ|A(n+1)
[j] 〉

(
〈φn+1|O†O|φn+1〉 − 〈φn|O|φn+1〉

)
(6.16)

The dependence of the terms here on |A(n+1)
[j] 〉 is not explicit, but by considering

the states here in their MPS representation, it becomes clear. By analogy to
the procedure in traditional DMRG, Eq. 6.16 can be written simply as

Oeff |A[j]〉 = |Beff〉 (6.17)

where Oeff is an effective tensor including the action of O†O and the remaining
state tensors around the current site to be updated,

Oeff = 〈A(n+1)
[1...j−1]|v′j−1

〈A(n+1)
[j+1...L]|v′j−1

O†O|A(n+1)
[1...j−1〉vj−1

|A(n+1)
[j+1...L]〉vj+1

(6.18)

and Beff is a similar “effective vector” for the structure on the right hand side
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of Eq. 6.17 without the tensor A
(n+1)
[j] , i.e.

|Beff〉 = 〈A(n+1)
[1...j−1]|v′j−1

〈A(n+1)
[j+1...L]|v′j−1

O|A(n)
[1...L]〉. (6.19)

As was the case in DMRG, these structures may be much more easily under-
stood in graphical notation, as shown in Fig. 6.1.

Hence to converge to our desired new state, at each site of the chain we
are solving a general linear system as shown in Eq. 6.17. This forms the
bottleneck of the algorithm, as solving such systems can be costly when the
dimensions involved are large. If we use MPS representations of maximal
bond dimension χ and study a system with local physical dimension d, the
tensor Oeff can be as large as χ2d × χ2d. Fortunately, by construction this
matrix is also symmetric and positive-semidefinite. It thus admits a Cholesky
decomposition [235] which we have used in our implementation to optimize
the run-time of this step. In particular, we can always find upper triangular
matrices U such that

Oeff = UTU (6.20)

And hence we can find our desired vector by first solving

UT ˜|A[j]〉 = |Beff〉 (6.21)

and then solving

U |A[j]〉 = ˜|A[j]〉 (6.22)

Note that we have avoided writing explicitly the solution for |A[j]〉 in terms
of matrices like U−1; the most efficient numerical solution will likely not involve
computing a full inverse. Although this procedure requires us to solve two
linear systems instead of one, the triangular matrices involved in this equation
are already factorized and are much easier for a numerical linear solver to
manipulate. Their usage can result in a substantial speedup of this step by
approximately a factor of two [235, 236].

Note also that in some numerical packages, the Cholesky decomposition is
only supported for fully positive definite (not positive semidefinite) matrices,
because otherwise the size of the matrix may change. However, if one carefully
handles the resulting rows of zeros, the decomposition is perfectly well-defined
in the more general semidefinite case [235], and one can always implement by
hand a numerically stable alternative (see Appendix C).

Once we have obtained the new tensor in the form of |A[j]〉, we update the
state, move to the next site, and repeat. As in the case of traditional DMRG,
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Figure 6.1: (Color online) Graphical notation showing the structures of the
SIMPS algorithm, during the optimization step j of Eq. 6.16, where we are
seeking a new state |φn+1〉 = H̃|φn〉. (a) The matrix Oeff , which represents
the optimization of the term 〈φn+1|O†O|φn+1〉 with respect to the tensor at
site j. The operator O has been represented by an MPO with tensors M . Note
that the virtual and physical indices are grouped in the same manner as in
the matrix Heff in traditional DMRG. (b) The vector representing the term
〈φn|O|φn+1〉 during the update of site j. Note the distinctions between the ket

tensors A
(n)
[j] , which represent the state |φn〉 from the previous iteration, and

the tensors A
(n+1)
[j] which represent the state being updated, |φn+1〉.
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the best convergence appears to come from sweeping “back and forth” along
the chain until convergence is reached. The complete algorithm can be thought
of as a pair of nested loops, outlined as follows:

• Initialize a random initial state |φ0〉

• Loop 1: Iteratively apply H̃ to get |φn+1〉 = H̃|φn〉/||H̃|φn〉|| until we
converge to the target state

– Loop 2: For each application of H̃, sweep back and forth across
the state, optimizing tensors as described above until the resulting
state converges

Numerical Considerations and Convergence

The numerical tolerance and convergence in these two loops is controlled in
our implementation by five parameters, with two parameters for the “inner”
loop and three for the outer.

In the inner loop (where we are sweeping across the state to find |φn+1〉 =
H̃|φn〉), we set our convergence based upon the quantity δ1 ≡ |〈φn|O|φn+1〉|,
which clearly should converge to zero when |φn+1〉 is in the desired state be-
cause O = H̃−1. As observed in [59], this quantity can be computed essen-
tially for free, because it is equivalent to the overlap 〈A[j]|Beff〉. Hence, we set
some tolerance ε1 and consider the sweeping process to have converged when
1− δ1 < ε1.

In practice we have observed that in the early stages of the algorithm, this
sweeping back and forth across the state often “stalls” in the sense that δ1 may
asymptotically approach some limit which is strictly less than 1, and hence that
the convergence criterion with respect to δ1 may never be reached. This is likely
due to finite bond-dimension effects: although we are searching for a final state
|φn→∞〉 which we believe can be efficiently represented by an MPS because of
its localized properties, there is no clear reason why the intermediate states
|φn〉 must be similarly expressible. Hence the convergence may stall when the
current MPS does not represent the desired state H̃|φn〉, but rather only the
best approximation availabile at the given bond dimension. To handle this, we
consider after each sweep the quantity δ2 ≡ δ

(k)
1 −δ

(k−1)
1 which simply measures

the change in our convergence quantity between successive sweeps k−1 and k.
We set an accompanying tolerance ε2 and exit the loop, assuming the process to
have stalled, if δ2 drops below this threshold. Typically, this kind of early exit
is tolerable, and may actually improve the speed of the algorithm by avoiding
fruitless sweeping steps. The resulting vector |φn+1〉 will be imperfect, but
will still have greater overlap with the target state than |φn〉, and additional
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applications of H̃ in subsequent steps will continue to rotate us towards the
desired state. In practice, we have seen that as long as the quantity α is
relatively close to 1 (e.g. perhaps δ1 > 0.8) the state will continue converging
towards the desired target, at which point the MPS representation will become
more accurate and the “stalling” problem will vanish.

Having described how one might establish convergence in the inner loop, we
turn out attention to the outer loop, and consider the question of how to decide
how many times H̃ must be applied before the target state has been reached
to a good approximation. We use two additional quantities to measure this.
The first is simply δ3 = |En − En+1|/En, the relative change in the energy of
the state (with respect to the original Hamiltonian) between steps n and n+1.
We also examine the variance of the energy δ4 = 〈∆H2〉 (using methods such
as those proposed in Chapter 4); this can be an important convergence check
for any algorithm and particularly in this context, as we wish to be sure we
are studying proper localized eigenstates(rather than simply a superposition
of such). Since the energy fluctuation should vanish in a true eigenstate, we
can also set a convergence threshold for this quantity, and reject any states
whose variance is too large.

Unfortunately, even with these checks in place, in practice we have oc-
casionally seen the algorithm converge towards what appears to be a super-
position of eigenstates (as judged by comparison to an exact diagonalization
result). This is not entirely uncommon, since two such neighboring states will
both produce large eigenvalues in the shifted-and-inverted spectrum, and al-
though theoretically in the large-n limit only the dominant eigenvector will
remain, it may take many steps before this is the case, and components from
the neighboring state will persist longer than any other. But a superposition
of these states may still show very little change in the energy values after
successive steps of the algorithm, and even a relatively small energy variance.
To avoid being fooled into accepting such a superposition, we use one addi-
tional convergence check: the overlap between states at subsequent steps of
the algorithm, δ5 = 〈φn|φn+1〉. When two states are close to the target energy,
this quantity will tend to decrease at first, but then may begin to increase
temporarily until the algorithm fully settles in to one state. In practice this is
a very strong convergence check.

Note that naturally, one might wonder if the performance of the algorithm
can be improved by simply squaring the MPO (i.e., taking H̃ → H̃2) so that
at each step of the outer loop we apply more than one inverse. Our tests with
this method show that in practice, the required increase in the bond dimension
of the MPO slows the construction of the structures Oeff in a manner which
overcomes the potential advantage. The sweeping procedure also experiences
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more instability and has greater difficulty converging to a result.

6.2.2 Comments on Other Algorithms

The MPS algorithms which have emerged thus far for studying excited
MBL states fall roughly into two categories. Algorithms such as SIMPS (and
less directly, the algorithm given in Ref. [61]) have a tunable parameter which
allows particular energy levels to be targeted. But these algorithms do not
explicitly seek out localized states; instead, they will attempt to converge any
eigenstate near the targeted energy level, with the understanding that, because
only localized states will admit an efficient MPS representation, it is only these
states which will be produced when the algorithm successfully converges.

On the other hand, algorithms like DMRG-X [60] and Es-DMRG [59] ex-
plicitly pursue states with a localized structure. Recall that the typical DMRG
algorithm (see Sec. 3.1) involves sweeping over the sites of an MPS, and at each
site, an updated tensor is chosen from the eigenstates of an effective Hamil-
tonian Heff . For ground state DMRG, we choose the tensor which minimizes
energy of the state as much as possible. In this way, we “greedily” pursue
the global ground state. In these modified MBL algorithms, the optimization
step is changed so that instead of choosing a new tensor which minimizes the
energy, we choose a new tensor which in some way makes the state look as
much as possible like a localized state. In DMRG-X, this is done by choosing
an initial state which is a product state which resembles the l-bit structure
of a localized excitation. Then at each state of the DMRG update, instead
of minimizing the energy we choose from the spectrum of Heff the tensor
which minimizes the change of the current state–i.e., the tensor such that the
new, updated state will have as much overlap as possibly with the previous
state. A similar approach is used in Es-DMRG, choosing the updated tensor
to minimize the change in the energy of the state. In both cases, the overall
goal is to start with a trial wavefunction that looks like a localized state, and
then optimize the tensors to find the eigenstate of the Hamiltonian which is
in some sense “closest” to the starting point. In our experience implementing
these algorithms, individual steps of Es-DMRG can be faster because one can
find the desired tensor directly. If the current energy is E0, the smallest mag-
nitude eigenvalue of (Heff −E0)2 (which can be found efficiently by Lancszos
methods [194]) will give the desired update. In DMRG-X, one must find many
eigenstates of Heff and try each to determine which gives maximum overlap
with the current state. But while individual steps are slower, tests described
in Ref. [60] tend to show that DMRG-X requires far fewer steps to converge,
so that in practice it is often the faster of the two. Our preliminary tests with
the algorithm agree with this conclusion.
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Note that this second family of algorithms has properties exactly reversed
compared to algorithms like SIMPS: by their nature, they aggressively pursue
only states which look localized. Yet as a result, it is difficult if not impossi-
ble to target a particular energy: instead, the energy of the resulting state is
controlled by the properties of the initial product state which was fed into the
algorithm. Fine-tuning this state may allow one some rough control over the
energy of the result, but in general one must simply explore a wide range of
possible initial states in order to broadly sample the MBL states in the Hamil-
tonian. These traits form the principle trade-offs between available MBL MPS
algorithms (though the “En-DMRG” approach of Ref. [62] seeks to somewhat
blend these possibilities). Note also that all algorithms here (but particularly
SIMPS and DMRG-X) seem capable of finding resonances in the spectrum, an
area of particular interest in the study of MBL states [55].

6.3 Entanglement Results

6.3.1 Random-Field Heisenberg Model

Perhaps the most widely-studied example of MBL behavior is the spin-1/2
Heisenberg model with a disordered random field. This model is given by

HW =
∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1 + hiσ

z
i . (6.23)

The important feature of this model is in the field-strength coefficients {hi},
which vary from site to site and at each site are drawn randomly from a uniform
distribution within the interval [−W,W ]. The model parameter W therefore
quantifies the strength of the disorder. A considerable body of work (e.g.
Refs. [54, 220, 230, 237, 238]) using both the MBL indicators discussed above
and other methods has shown that this model appears to have a transition
from ergodic to localized somewhere between W = 3 and W = 4, with most
evidence indicating that it occurs close to W = 3.7 [220]. Some of the variation
in the reported locations of this transition comes from the fact that the tails
of the spectrum are likely to localize before the states in the middle [55, 220],
so that work which looks only at states in the center may report a larger value
of the critical disorder strength Wc than work which averages over the entire
spectrum. In our work below, we will be looking for localization among states
in the middle of the spectrum; if one is to refer to “the” critical disorder value
of the model, it is most sensible to define this as the value which localizes the
entire spectrum.
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6.3.2 Concurrence

We now turn to the question of concurrence and negativity as indicators
of localization, as well as the relationship between these two measures in the
context of an MBL system. The random-field Heisenberg model is also the
model studied in Ref. [65]. In this work, the authors detect evidence of the
transition consistent with previous work by looking at the behavior of the
concurrence, a measure of entanglement introduced in Ref. [63]. We first
briefly review in relevant part the definition and properties of this measure.

Concurrence often arises in the context of entanglement of mixed systems;
in this context, we say that a (mixed) state is unentangled if it can be expressed
as a mixture of unentangled pure states; otherwise it is an entangled state. For
these mixed states, several different general measures of entanglement have
been proposed and their merits debated at length (a topic well beyond the
scope of this work; see instead Refs. [73, 207, 239]). Concurrence appears
as part of an important formula for one such measure (the entanglement of
formation [207]) but has emerged as an important entanglement measure in
its own right.

Originally, concurrence was defined for two-qubit systems (e.g. two spin-
1/2 systems or their equivalent), and although generalizations to higher dimen-
sional systems have been proposed [204–206], this remains the only setting in
which a convenient and closed-form expression has been obtained which would
allow for direct calculation. In this context, the concurrence is given by com-
paring the two-qubit system with a spin-flipped version of itself. If the system
were a pure state in the computational (σz) basis, we could effectuate the
spin-flip with a time-reversal operation, i.e. with complex conjugation and
the Pauli operator σy on each spin. Hence if we have instead a mixed state
described by a density matrix ρ, its spin-flipped counterpart is given by

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) (6.24)

As shown in [204], we can now construct a sensible measure of entanglement
by taking the matrix ρρ̃ and finding its eigenvalues λi. Let these eigenvalues
be in descending order so that λ1 ≥ λ2 ≥ . . . . In this case, the concurrence is
given by

C = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4) (6.25)

Note that the eigenvalues of ρρ̃ are guaranteed to be nonnegative so that
Eq. 6.25 is always well-defined.

As a measure of entanglement in mixed states, concurrence is potentially
well-suited for use in the context of MBL systems, which are defined in terms
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of the properties of their (potentially mixed) subsystems. In particular, con-
currence obeys monogamy of entanglement [240], so that when two spins are
highly entangled with one another, they are less able to be entangled with the
remainder of the system. Intuitively, this suggests that the concurrence be-
tween locally neighboring spins should be closely related to localization within
the system; if subsystems are to be mutually connected in a manner that allows
their environment to act as a reservoir, they cannot be too strongly entangled
as pairs of particles.

This observation motivated our interest in the “total nearest neighbor con-
currence” CtotNN of a spin system as an indicator of localization: we consider
all pairs of nearest-neighbors in a system, calculate the concurrence of each,
and sum the results. The resulting quantity should be small in a delocalizes
system, since few if any pairs of spins have large amounts of entanglement with
each other, preferring instead to entangle with the broader environment. Con-
versely, the presence of even a few highly entangled pairs of neighboring spins,
as in a localized state, can make the quantity grow rapidly. And indeed this
behavior is exactly what we find for the random Heisenberg model (in which we
average the quantity over many different disordered realizations). As shown in
Fig. 6.2, the total concurrence is small for weak values of the disorder W , and
grows rapidly in the region near the known value of the transition to MBL. For
comparison, we also consider the NPR of the state (normalized by the volume
of the Hilbert space), and find that the increase in total concurrence coincides
with the expected decrease of NPR seen in localized systems. It was during the
early stages of this investigation into the concurrence that we became aware
of the work in Ref. [65], which explores the behavior of concurrence in local-
ized systems to a greater depth (including similarly demonstrating that the
increase in concurrence coincides with the onset of localization by comparing
to the average level spacing ratio 〈rn〉).

6.3.3 Negativity

Concurrence is a powerful measure of entanglement for two-qubit systems.
But as previously remarked, it also possesses substantial limitations which
prevent it from addressing the full range of questions which arise in MBL
systems. But an alternate measure of entanglement in mixed systems, the
negativity can be computed directly for subsystems of arbitrary dimension
(not simply qubits) and arbitrary system sizes sizes (not simply two spins). It
has also recently been shown that tensor network techniques can be used to
extract negativity even for large and difficult systems [241], although within
the scope of this work it will suffice to perform the straightforward calculation.

Negativity [64] arose in the wake of the Peres-Horodecki [242, 243] criterion,
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Figure 6.2: (Color online) The total nearest-neighbor concurrence
CtotNN(triangles, left axis) and the normalized participation ratios (asterisks;
right axis) for the random-field spin-1/2 Heisenberg model, shown for three
system sizes. Data are collected using exact diagonalization; 1000 disordered
configurations are computed, and for each we compute 50 eigenstates from
the middle of the spectrum, where the behavior most resembles the thermody-
namic limit. A sharp decrease in the NPR is known to show the transition to
the localized phase (estimated for this model to occur around Wc = 3.7 [220]),
and the concurrence is seen to increase significantly just as the NPR decreases.
Note that the NPR values here have been normalized by the volume of the
Hilbert spaces so that we can compare different system sizes. The crossing
point in the concurrence curves is not considered to precisely identify the
transition point, as it does not persist in any finite-size scaling relation.
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a necessary condition for a density matrix to represent a separable (unentan-
gled) quantum state. To understand this criteron, as well as the associated
concept of negativity, we require the concept of a “partial transpose,” [73] in
which a matrix is transposed only with respect to a particular subsystem. For
example let (α, β) and (γ, δ) be the composite indices of some matrix M , so
that the matrix can be written as

M =
∑
α,β,γ,δ

mαβ
γδ |αβ〉〈γδ|. (6.26)

A full transpose of this matrix is simply given by swapping incoming and
outgoing indices, i.e.

MT =
∑
α,β,γ,δ

m
(αβ)
(γδ) |γδ〉〈αβ|. (6.27)

But if, the indices are truly composite, i.e. |αβ〉 = |α〉⊗|β〉 and |γδ〉 = |γ〉⊗|δ〉,
then we can “ungroup” the composite indices, and could consider the matrix
(now in a certain sense a rank-4 tensor) as comprising two subspaces,

M =
∑
α,β,γ,δ

mαβ
γδ |α〉〈γ| ⊗ |β〉〈δ|. (6.28)

In this perspective we can speak of a “partial transpose” with respect to
only one of these two subspaces. For example, with respect to the |β〉〈δ|
subspace, the partial transpose gives

MTβδ =
∑
α,β,γ,δ

mαβ
γδ |α〉〈γ| ⊗ |δ〉〈β|. (6.29)

The Peres-Horodecki condition states that, if ρ is a density matrix on
a composite space H = HA ⊗ HB, then ρ is separable only if the partial
transpose ρTA has non-negative eigenvalues (we choose subspace A w.l.o.g.
because ρTB = (ρTA)T and the full transpose operation does not change the
eigenvalues). In our case, where we are particularly interested in measuring
entanglement, it is the contrapositive of this statement which holds greater
significance: if ρTA does have negative eigenvalues, ρ must have represented
an entangled state (with respect to the systems HA and HB.

Thus, we define the negativity as a measure of entanglement to represent
the extent to which this criterion is violated: it is the sum of the magnitudes
of all negative eigenvalues which appear after partial transposition. Because
a proper density matrix has unit trace, the size of this sum is inherently
normalized and can be compared between systems. In practice, this recipe
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for the negativity can be compactly written as

N (ρ,A) =
∑
i

|λi| − λi
2

(6.30)

where as always the elements {λi} represent the eigenvalues of ρTA .
Since the negativity shares many properties with the concurrence, and also

displays the monogamy of entanglement [244], it is natural to ask whether it
also serves as an indicator of MBL. By analogue to how we approached the
concurrence, we consider the total nearest-neighbor negativity of a state. For
each pair of nearest neighbors, we construct the (reduced) density matrix for
these two spins, and then partially transpose with respect to one of the spins
to compute the negativity. The sum of these negativities for all neighboring
pairs give us our candidate quantity N tot

NN . We apply this criteria to the same
system as before, and find very similar behavior. As shown in Fig. 6.3, we once
again find that our measure of entanglement remains small until the transition,
at which point it begins to grow rapidly. As was the case with the concurrence,
the total negativity for points in the localized phase grows with the system
size.

in Ref. [65], a scaling relationship was found empirically between the second
derivative of CavgNN and the length of the system, with the scaling collapse used
to extract a specific estimation of the localized-delocalized transition. Note
here that we are using now the per-site average of the concurrence rather than
the total concurrence. In particular, it was shown that there is a universal
scaling function Φ for which data collapse can be observed from, namely

1

La
d2CavgNN

dW 2
= Φ

(
Lb(W −Wc)

)
, (6.31)

with parameters a ≈ 0.5, b ≈ 0.6, and Wc = 3.7. The authors argue that this
scaling of the second concurrence derivative can be used as another method
to identify the location of the localized-delocalized transition.

Naturally, we wish to see if the same holds true for N avg
NN . Since taking

derivatives amplifies noise, our data sets are not yet sufficiently smooth to allow
us to repeat this analysis directly. However, as preliminary evidence that the
behavior of the negativity is indeed comparable, we can perform a numerical
fit of our data, and consider instead the derivatives of the fit. Fortunately, the
data in the relevant domain an be fit very well by a polynomial of degree 9,
as shown in Fig. 6.4. To avoid overfitting, we have compared the result for
various subsets of our data and found it to be relatively stable.

As shown in Fig. 6.5, if we use the same scaling parameters as above
we indeed see evidence of universal scaling. The data collapse is particularly

164



W

NPR

NNN
tot

Figure 6.3: (Color online) The total nearest-neighbor negativity
N tot
NN(inverted triangles, left axis) and the normalized participation ratios (as-

terisks; right axis) for the random-field spin-1/2 Heisenberg model, shown for
three system sizes. Data collection is identical to the concurrence results in
Fig. 6.2. As with the concurrence, a sharp decrease in the NPR near the transi-
tion also coincides with a rapid increase in the negativity. As before, the NPR
values here have been normalized by the volume of the Hilbert spaces, and the
crossing point in the negativity curves is not likely of physical significance, as
in the case of concurrence.
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Figure 6.4: (Color online) L = 10 data for concurrence (triangles) and neg-
ativity (inverted triangles) are presented together, along with numerical fits
from a polynomial of degree 9. The fit is in good agreement with the qualita-
tive behavior of the data, particularly in the transition region.

evident for systems with L > 10, likely because the smallest system is the most
subject to finite-size effects. Since we do not see any evidence of the scaling
relationship except at these particular values of a, b, and Wc, we argue that
our data also support the conclusion that this scaling can be used to locate
the localized-delocalized transition. Furthermore, because we find virtually
identical behavior in the second derivative of the negativity (Fig. 6.6), it seems
that either measure of entanglement may be used for this purpose. Verifying
this result directly–i.e., without using a fit to generate the derivatives–should
be possible once we have compiled additional disordered samples to increase
the statistics of our states. This will be an important part of our future work
in this area.

It was also demonstrated In Ref. [65] that the concurrence between two ar-
bitrary spins (not necessarily nearest neighbors) displays distinctive behavior
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Figure 6.5: (Color online) Total nearest-neighbor concurrence data is shown
for various system sizes, in relation to the scaling function in Eq. 6.31. We
use the values of a ≈ 0.5, b ≈ 0.6, and Wc = 3.7 which were identified in
Ref. [65]. Clear evidence of scaling can be seen for these values, but not for
other choices. The regions where the data “overshoot” one another. Data
collapse is particularly clear when L > 10, since these systems have smaller
finite-size effects.
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Figure 6.6: (Color online) Total nearest-neighbor negativity data is shown for
various system sizes in relation to the scaling function in Eq. 6.31. Comparing
the result here to Fig. 6.5, we see that both the concurrence and the negativity
show very similar scaling behavior, suggesting that both can be used to detect
the localized to delocalized transition point.
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in the localized phase: for two spins at sites i and j, the concurrence C(ρij)
decays exponentially with the distance |i − j| between them. This behav-
ior appears only in the localized phase; in delocalized phase, the concurrence
between two spins is negligible and essentially independent of the distance
between them. Hence, the observation of such exponential behavior is itself
a diagnostic criterion of MBL. Furthermore, the specific nature of the expo-
nential decay can be used to study the nature of the localization. It is shown
in [65] that one can extract a characteristic entanglement length, ξE, from the
decay constant of the exponential, i.e.

C(ρi,i+d) ∝ C(ρi,i+1)e−d/ξE . (6.32)

For the systems we have considered, it appears that the negativity shares not
only a similar exponential form, but the same entanglement length. In Fig. 6.7,
for example, we show (in semilog scale) the concurrence and entanglement (av-
eraged over disorder) for a system of length L = 20, with states computed from
SIMPS. Up to the level of the statistical noise resulting from the disordered
average, the lines have very comparable slope. This is representative of similar
behavior has been seen for shorter systems as well. This further suggests that
the negativity can also be used for the same purposes as the concurrence.

6.3.4 Relationship Between Entanglement Measures

Finally, we briefly make two comments on the relationship between the
negativity and total concurrence. For the case of two-qubit systems, strict
analytical bounds exist for the relationship between these two measures. While
both quantities cover the interval [0, 1], the negativity is always bounded above
by the concurrence, and bounded below by [245]

N >
√

(1− C)2 + C2 − (1− C). (6.33)

From these relations, it is clear why the negativity also displays exponential
decay with distance in the localized phase, since it is bounded above by an
exponentially decaying quantity, although it is not immediately obvious that
the decay constants should be the same. The existence of the lower bound
in this case also helps to motivate the similarity in the qualitative behavior
across the transition. We note (see Fig. 6.8) that states in the delocalized
regime seem more likely to saturate the lower bound, whereas localized states
are more likely to saturate the upper bound where the two quantities are equal.

The other important fact about the relationship between concurrence and
negativity is that the two measures, while closely related, do not share the
same ordering of entanglement. In other words, consider a pair of two-qubit
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Figure 6.7: (Color online) Using Data from SIMPS, we compute the concur-
rence and negativity between sites i and j in a disordered Heisenberg chain of
length 20 in the localized regime (W = 6). Both quantities decay exponen-
tially with the distance d = |i − j| between the sites; note that here we have
plotted the log of each (concurrence in black, negativity in red). Fit lines are
included as a guide to the eye and to demonstrate that the rate of decay is very
similar for both negativity and concurrence, suggesting that both quantities
capture the same characteristic entanglement length. The slope of the concur-
rence fit line is mC = −1.08; for negativity it is mN = −1.12. This behavior is
representative of other system lengths as well, although the slopes appear to
have some weak dependence on the strength of disorder. Note that we show
here only distances out to d = L/2; beyond this point the entanglements are
so close to zero that they are very sensitive to noise and finite size effects, as
discussed in Ref. [65].
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Figure 6.8: (Color online) Negativity and concurrence are compared for differ-
ent disordered samples in an L = 12 system (data from exact diagonalization).
Black lines indicate the analytic bounds on the relationship between concur-
rence and negativity for the two-quibit case; the negativity is never larger than
the concurrence, and always larger than

√
(1− C)2 + C2 − (1 − C). Qualita-

tively, we see that in subsystems from delocalized states (blue circles), both
quantities are relatively small, and the lower bound is more likely to be satu-
rated. In the case of strong disorder (red triangles) the full range of possible
values for each is explored, with the upper bound more likely to be saturated.
The intermediate case near the localized/delocalized transition shows behavior
much more akin to the fully localized case, though this may be the result of
finite size effects which tends to increase localized behavior in small systems.
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states ρ1 and ρ2; if we observe that C(ρ1) > C(ρ2), it does not necessarily imply
that N (ρ1) > N (ρ2) [246, 247]. We have found that, among the two-qubit
subsystems of states in the disorderd Heisenberg model, such “ill-ordering”
are uncommon but hardly rare (see Fig. 6.9). The fraction of the subsystems
showing this property seems relatively constant with disorder strength; this
area is left as a direction for future study.

6.4 Summary and Outlook

In this chapter, we have reviewed the phenomenon of many-body localiza-
tion, in which closed quantum states states fail to thermalize (in the sense of
the ETH) despite the presence of interactions in the system. Systems which
display this localization display a variety of notable, diagnostic properties.
Among these is the fact that MBL states feature an area-law for the growth of
their entanglement entropy with respect to the size of a subsystem. As a re-
sult, these states admit efficient representations as matrix product states, and
we have reviewed the very recent literature proposing algorithms to find these
representations. In particular, we present our implementation of the “SIMPS”
algorithm, including commentary on its various convergence criteria.

We also consider the role that local entanglement measures can play in iden-
tifying MBL systems by looking at the behavior of the total nearest-neighbor
concurrence CtotNN and total nearest-neighbor negativity N tot

NN in the context of
the random-field spin-1/2 Heisenberg model. The former was also recently ex-
amined in Ref. [65], in which it was shown that CtotNN is small for the delocalized
regime, and increases rapidly around the transition until the localized phase
is reached. The behavior there was shown to coincide with the behavior of the
average level spacing ratios; here we have also compared it to the normalized
participation ratio. Furthermore, by making a similar comparison for N tot

NN ,
we provide evidence that the negativity can be used as a comparable indicator
of localization. This could be quite useful, as the negativity is calculable for a
wider variety of systems and subsystems, and hence could be applied to study
localization on a wider array of contexts.

Several major directions remain for future work in this area. First and
foremost, it would be desirable to continue gathering disordered samples to
increase the statistics for the data presented here, so that the behavior of
the derivatives could be analyzed directly. With approximately 10 to 100
times more data, the curves would likely be smooth enough to make this
comparison [248] without using a fit.

Additionally, it would be desirable to test both the concurrence and the
negativity for additional models displaying MBL, to ensure that their diag-
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Figure 6.9: (Color online) The ordering of concurrence and negativity is
considered by comparing equivalent two-qubit subystems from pairs of different
states in the disordered ensemble. The difference between concurrences is
plotted versus the difference in negativities. Thus, data points in quadrants
I and III represent “well-ordered” pairs, in which the state with the larger
concurrence also has the larger negativity. The presence of data points in
quadrants II and IV shows also that “ill-ordered” subsystems are possible,
though not common. Data plotted here are from a system of L = 20 and
W = 6, though the pattern is typical for states, at least in the localized
regime.
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nostic power is not model-dependant. A natural place to start would be the
quasiperiodic Heisenberg model– furthermore, since quasiperiodic models do
not require averaging over large numbers of disorder samples, it may be easier
for such a model to achieve smooth datasets and examine scaling properties
of the derivatives.

Next, having established an argument that the negativity is comparable to
the concurrence in localized systems, it would be desirable to take advantage
of the greater generality and apply the negativity to a disordered (or quasiperi-
odic) spin-1 system. Such systems seem not to have been widely studied nu-
merically in the context of MBL, likely in part because exact diagonalization
for higher spin systems is much more restricted by memory limitations and
chains beyond length 10 can be extremely difficult to compute; with the MPS
algorithms above, however, such systems should still be possible to probe, at
least from the localized side. A disordered version of the spin-1 Heisenberg
model may be a natural place to start. Finally, it would be interesting to
perform further study of the ordering of concurrence and negativity in the
disordered regimes. Data for these and other projects are being pursued for
future work.
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Chapter 7

Conclusions

In this work, we have considered the use of tensor network structures in
quantum many-body physics. These structures can take the place of a general
coefficient tensor in specifying the expansion of a quantum state, and when
they do, they can greatly reduce the amount of information required to specify
the state. For states with the right set of properties, such as an entanglement
area law, these tensor network representations of the states are both efficient
and faithful. Consequently they are well-suited for use in numerical algorithms
which calculate and study quantum states; we have presented details of sev-
eral such algorithms and discussed sound numerical practices to optimize their
performance in the early sections of this dissertation.In the remaining chap-
ters, we have presented applications of these tensor network techniques in the
context of three major areas of interest in many-body quantum physics: lo-
cating phase transitions, characterizing phases beyond the symmetry breaking
paradigm, and detecting many-body localization.

We have showed that the Binder cumulant from quantum Monte Carlo can
also be applied profitably in the language of tensor networks and matrix prod-
uct states, and demonstrated for various models that it can compute both the
location of the phase transitions and the values of certain critical exponents to
a high degree of accuracy. Although most of our techniques were discussed in
the context of one-dimensional states, we also shown that they can be applied
to two-dimensional systems. Our proof-of-concept application to the Ising
model on a square lattice was limited in its accuracy by the use of a simple
“local update” code to compute the states, and by the need to perform approx-
imations in the lattice contractions while computing the cumulants. But with
newly available PEPS algorithms and contraction techniques, a more careful
study of this model with the Binder cumulant might yield a very precise mea-
surement of the critical point. The use of these methods to study transitions
in disordered systems would also be an interesting direction for future work.
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Our study of symmetry protected topological phases presented a two-
parameter Hamiltonian of our construction containing an A4 onsite symmetry
as well as symmetry under lattice translation and inversion. For this model,
we performed a detailed “scan” of the parameter space and created a nu-
merical phase diagram showing eight different types of quantum phase, rang-
ing from traditional symmetry-breaking phases to SPTs distinguished only by
their one-dimensional representation parameters. Along the way we presented
important numerical techniques which allow the necessary order parameters to
be computed directly (and without ambiguity) from an MPS representation of
the ground states, including a method to recover single-site translation invari-
ance in states generated using iTEBD. Within our phase diagram we have also
identified two instances of continuous phase transitions between topologically
nontrivial SPT phases. As the nature of SPT to SPT transitions has recently
attracted increased interest, it would be desirably to study these transitions
further, perhaps to identify the nature of the CFT associated with the transi-
tion, or to determine if the symmetry of the system remains discrete even at
the critical point.

Finally, we have looked at the uniquely phenomenon of many-body local-
ization. Using a combination of MPS techniques and exact diagonalization,
we have studied the concurrence and the negativity as indicators of local-
ization. In particular, we take the total amount of entanglement between
nearest-neighbor pairs of sites (totaled over all such pairs) and find that both
measures of entanglement show promise as methods for identifying localiza-
tion. Furthermore, because they appear to show similar behavior, it is possible
that the negativity could be employed to study localization in systems where
the concurrence cannot be easily computed, such as in systems of higher spin.
Previously, most studies of many-body localization effects have been confined
to spin-1/2 systems, in part because higher spin systems are prohibitively
difficult to compute numerically with exact diagonalization. But since this
difficulty is substantially removed by the use of MPS methods, the evaluation
of such systems with negativity is a very natural future project. Hence, the
future outlook of this works ends almost back where this dissertation began:
with the tantalizing potential of tensor network states to open up previously
intractable problems.
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[16] Román Orús. A practical introduction to tensor networks: Matrix prod-
uct states and projected entangled pair states. Annals of Physics, 349:
117–158, 2014.

[17] M. Fannes, B. Nachtergaele, and R. F. Werner. Finitely correlated states
on quantum spin chains. Communications in Mathematical Physics,
144(3):443–490, 1992. URL http://projecteuclid.org/euclid.cmp/

1104249404.
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[108] Örs Legeza and Gábor Fáth. Accuracy of the density-matrix
renormalization-group method. Physical Review B, 53(21):14349, 1996.

186



[109] Ivan Oseledets. Dmrg approach to fast linear algebra in the tt-format.
Computational Methods in Applied Mathematics Comput. Methods Appl.
Math., 11(3):382–393, 2011.

[110] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk
van der Vorst. Templates for the solution of algebraic eigenvalue prob-
lems: a practical guide, volume 11. Siam, 2000.

[111] Gregory M. Crosswhite, A. C. Doherty, and Guifré Vidal. Applying
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[119] Michael Zwolak and Guifré Vidal. Mixed-state dynamics in one-
dimensional quantum lattice systems: a time-dependent superoperator
renormalization algorithm. Physical review letters, 93(20):207205, 2004.

187

http://link.aps.org/doi/10.1103/PhysRevB.78.035116
http://link.aps.org/doi/10.1103/PhysRevLett.100.167202


[120] Frank Verstraete, Juan J Garcia-Ripoll, and Juan Ignacio Cirac. Matrix
product density operators: simulation of finite-temperature and dissipa-
tive systems. Physical review letters, 93(20):207204, 2004.

[121] W Janke and T Sauer. Properties of higher-order Trotter formulas.
Physics Letters A, 165(3):199–205, 1992.

[122] RM Fye. New results on Trotter-like approximations. Physical Review
B, 33(9):6271, 1986.

[123] IP Omelyan, IM Mryglod, and Reinhard Folk. Optimized forest–ruth-
and suzuki-like algorithms for integration of motion in many-body sys-
tems. Computer Physics Communications, 146(2):188–202, 2002.

[124] Naomichi Hatano and Masuo Suzuki. Finding exponential product for-
mulas of higher orders. In Quantum annealing and other optimization
methods, pages 37–68. Springer, 2005.

[125] Adolfo Avella and Ferdinando Mancini. Strongly correlated systems: nu-
merical methods, volume 176. Springer Science & Business Media, 2013.

[126] HC Jiang, ZY Weng, and T Xiang. Accurate determination of tensor
network state of quantum lattice models in two dimensions. Physical
review letters, 101(9):090603, 2008.

[127] Wei Li, Jan von Delft, and Tao Xiang. Efficient simulation of infinite
tree tensor network states on the bethe lattice. Physical Review B, 86
(19):195137, 2012.

[128] Ling Wang and Frank Verstraete. Cluster update for tensor network
states. arXiv preprint arXiv:1110.4362, 2011.

[129] Ho N. Phien, Johann A. Bengua, Hoang D. Tuan, Philippe Corboz,
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[206] Pranaw Rungta, V. Bužek, Carlton M. Caves, M. Hillery, and G. J. Mil-
burn. Universal state inversion and concurrence in arbitrary dimensions.
Phys. Rev. A, 64:042315, Sep 2001. doi: 10.1103/PhysRevA.64.042315.
URL http://link.aps.org/doi/10.1103/PhysRevA.64.042315.

[207] William K Wootters. Entanglement of formation and concurrence.
Quantum Information & Computation, 1(1):27–44, 2001.

[208] JM Deutsch. Quantum statistical mechanics in a closed system. Physical
Review A, 43(4):2046, 1991.

[209] Mark Srednicki. Chaos and quantum thermalization. Physical Review
E, 50(2):888, 1994.

[210] Mark Srednicki. The approach to thermal equilibrium in quantized
chaotic systems. Journal of Physics A: Mathematical and General, 32
(7):1163, 1999.

195

http://link.aps.org/doi/10.1103/PhysRevA.64.042315


[211] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii. Thermalization and
its mechanism for generic isolated quantum systems. Nature, 452(7189):
854–858, 2008.

[212] Hal Tasaki. From quantum dynamics to the canonical distribution: gen-
eral picture and a rigorous example. Physical review letters, 80(7):1373,
1998.

[213] Shankar Iyer, Vadim Oganesyan, Gil Refael, and David A. Huse. Many-
body localization in a quasiperiodic system. Phys. Rev. B, 87:134202,
Apr 2013. doi: 10.1103/PhysRevB.87.134202. URL http://link.aps.

org/doi/10.1103/PhysRevB.87.134202.

[214] Xiaopeng Li, Sriram Ganeshan, JH Pixley, and S Das Sarma. Many-body
localization and quantum nonergodicity in a model with a single-particle
mobility edge. Physical Review Letters, 115(18):186601, 2015.

[215] D. Huse. private communication.

[216] David A Huse, Rahul Nandkishore, and Vadim Oganesyan. Phenomenol-
ogy of fully many-body-localized systems. Physical Review B, 90(17):
174202, 2014.

[217] Anushya Chandran, Isaac H Kim, Guifre Vidal, and Dmitry A Abanin.
Constructing local integrals of motion in the many-body localized phase.
Physical Review B, 91(8):085425, 2015.

[218] Pavan Hosur and Xiao-Liang Qi. Characterizing eigenstate thermal-
ization via measures in the fock space of operators. arXiv preprint
arXiv:1507.04003, 2015.

[219] James R Garrison and Tarun Grover. Does a single eigenstate encode
the full hamiltonian? arXiv preprint arXiv:1503.00729, 2015.

[220] David J Luitz, Nicolas Laflorencie, and Fabien Alet. Many-body local-
ization edge in the random-field heisenberg chain. Physical Review B
(Condensed Matter), 91:081103, 2015.

[221] Solomon Kullback and Richard A Leibler. On information and suffi-
ciency. The annals of mathematical statistics, 22(1):79–86, 1951.

[222] Vadim Oganesyan and David A. Huse. Localization of interacting
fermions at high temperature. Phys. Rev. B, 75:155111, Apr 2007.
doi: 10.1103/PhysRevB.75.155111. URL http://link.aps.org/doi/

10.1103/PhysRevB.75.155111.

196

http://link.aps.org/doi/10.1103/PhysRevB.87.134202
http://link.aps.org/doi/10.1103/PhysRevB.87.134202
http://link.aps.org/doi/10.1103/PhysRevB.75.155111
http://link.aps.org/doi/10.1103/PhysRevB.75.155111


[223] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux. Distribution of the
ratio of consecutive level spacings in random matrix ensembles. Phys.
Rev. Lett., 110:084101, Feb 2013. doi: 10.1103/PhysRevLett.110.084101.
URL http://link.aps.org/doi/10.1103/PhysRevLett.110.084101.

[224] RJ Bell and P Dean. Atomic vibrations in vitreous silica. Discussions
of the Faraday society, 50:55–61, 1970.

[225] RJ Bell. The dynamics of disordered lattices. Reports on Progress in
Physics, 35(3):1315, 1972.

[226] David J. Luitz, Fabien Alet, and Nicolas Laflorencie. Universal be-
havior beyond multifractality in quantum many-body systems. Phys.
Rev. Lett., 112:057203, Feb 2014. doi: 10.1103/PhysRevLett.112.057203.
URL http://link.aps.org/doi/10.1103/PhysRevLett.112.057203.

[227] Brian Swingle. A simple model of many-body localization. arXiv preprint
arXiv:1307.0507, 2013.

[228] Bela Bauer and Chetan Nayak. Area laws in a many-body localized
state and its implications for topological order. Journal of Statistical
Mechanics: Theory and Experiment, 2013(09):P09005, 2013.

[229] M Friesdorf, AH Werner, W Brown, VB Scholz, and J Eisert. Many-
body localization implies that eigenvectors are matrix-product states.
Physical review letters, 114(17):170505, 2015.

[230] Jonas A Kjäll, Jens H Bardarson, and Frank Pollmann. Many-body
localization in a disordered quantum ising chain. Physical review letters,
113(10):107204, 2014.

[231] Jens H Bardarson, Frank Pollmann, and Joel E Moore. Unbounded
growth of entanglement in models of many-body localization. Physical
review letters, 109(1):017202, 2012.

[232] Arun Nanduri, Hyungwon Kim, and David A. Huse. Entanglement
spreading in a many-body localized system. Phys. Rev. B, 90:064201,
Aug 2014. doi: 10.1103/PhysRevB.90.064201. URL http://link.aps.

org/doi/10.1103/PhysRevB.90.064201.

[233] Trithep Devakul and Rajiv R. P. Singh. Early breakdown of area-law en-
tanglement at the many-body delocalization transition. Phys. Rev. Lett.,
115:187201, Oct 2015. doi: 10.1103/PhysRevLett.115.187201. URL
http://link.aps.org/doi/10.1103/PhysRevLett.115.187201.

197

http://link.aps.org/doi/10.1103/PhysRevLett.110.084101
http://link.aps.org/doi/10.1103/PhysRevLett.112.057203
http://link.aps.org/doi/10.1103/PhysRevB.90.064201
http://link.aps.org/doi/10.1103/PhysRevB.90.064201
http://link.aps.org/doi/10.1103/PhysRevLett.115.187201


[234] Eman Hamza, Robert Sims, and Günter Stolz. Dynamical localization
in disordered quantum spin systems. Communications in Mathematical
Physics, 315(1):215–239, 2012.

[235] James E Gentle. Matrix algebra: theory, computations, and applications
in statistics. Springer Science & Business Media, 2007.

[236] James Hardy Wilkinson, James Hardy Wilkinson, and James Hardy
Wilkinson. The algebraic eigenvalue problem, volume 87. Clarendon
Press Oxford, 1965.

[237] Andrea De Luca and Antonello Scardicchio. Ergodicity breaking in a
model showing many-body localization. EPL (Europhysics Letters), 101
(3):37003, 2013.

[238] Soumya Bera, Henning Schomerus, Fabian Heidrich-Meisner, and
Jens H. Bardarson. Many-body localization characterized from a one-
particle perspective. Phys. Rev. Lett., 115:046603, Jul 2015. doi:
10.1103/PhysRevLett.115.046603. URL http://link.aps.org/doi/

10.1103/PhysRevLett.115.046603.

[239] Luigi Amico, Rosario Fazio, Andreas Osterloh, and Vlatko Vedral. En-
tanglement in many-body systems. Reviews of Modern Physics, 80(2):
517, 2008.

[240] Valerie Coffman, Joydip Kundu, and William K. Wootters. Dis-
tributed entanglement. Phys. Rev. A, 61:052306, Apr 2000. doi:
10.1103/PhysRevA.61.052306. URL http://link.aps.org/doi/10.

1103/PhysRevA.61.052306.

[241] Pasquale Calabrese, Luca Tagliacozzo, and Erik Tonni. Entanglement
negativity in the critical ising chain. Journal of Statistical Mechanics:
Theory and Experiment, 2013(05):P05002, 2013.

[242] Asher Peres. Separability criterion for density matrices. Physical Review
Letters, 77(8):1413, 1996.

[243] Micha l Horodecki, Pawe l Horodecki, and Ryszard Horodecki. Separabil-
ity of mixed states: necessary and sufficient conditions. Physics Letters
A, 223(1):1–8, 1996.

[244] Tobias J. Osborne and Frank Verstraete. General monogamy inequal-
ity for bipartite qubit entanglement. Phys. Rev. Lett., 96:220503, Jun
2006. doi: 10.1103/PhysRevLett.96.220503. URL http://link.aps.

org/doi/10.1103/PhysRevLett.96.220503.

198

http://link.aps.org/doi/10.1103/PhysRevLett.115.046603
http://link.aps.org/doi/10.1103/PhysRevLett.115.046603
http://link.aps.org/doi/10.1103/PhysRevA.61.052306
http://link.aps.org/doi/10.1103/PhysRevA.61.052306
http://link.aps.org/doi/10.1103/PhysRevLett.96.220503
http://link.aps.org/doi/10.1103/PhysRevLett.96.220503


[245] Frank Verstraete, Koenraad Audenaert, Jeroen Dehaene, and Bart
De Moor. A comparison of the entanglement measures negativity and
concurrence. Journal of Physics A: Mathematical and General, 34(47):
10327, 2001.

[246] Adam Miranowicz and Andrzej Grudka. Ordering two-qubit states with
concurrence and negativity. Physical Review A, 70(3):032326, 2004.

[247] Adam Miranowicz and Andrzej Grudka. A comparative study of relative
entropy of entanglement, concurrence and negativity. Journal of Optics
B: Quantum and Semiclassical Optics, 6(12):542, 2004.

[248] S. Bera. private communication.

[249] Thomas Jörg and Helmut G Katzgraber. Universality and universal
finite-size scaling functions in four-dimensional ising spin glasses. Phys-
ical Review B, 77(21):214426, 2008.

[250] H Chamati and DM Dantchev. Renormalization group treatment of the
scaling properties of finite systems with subleading long-range interac-
tion. The European Physical Journal B-Condensed Matter and Complex
Systems, 26(1):89–99, 2002.

[251] Nelson A Alves, JR Drugowich De Felicio, and Ulrich HE Hansmann.
Partition function zeros and leading-order scaling correction of the 3d
ising model from multicanonical simulations. Journal of Physics A:
Mathematical and General, 33(42):7489, 2000.

[252] John A Holbrook, David W Kribs, and Raymond Laflamme. Noiseless
subsystems and the structure of the commutant in quantum error cor-
rection. Quantum Information Processing, 2(5):381–419, 2003.

[253] Nicholas J Higham et al. Analysis of the cholesky decomposition of a
semi-definite matrix. In in Reliable Numerical Computation, 1990.

199



Appendix A

Extrapolation with the BST
Algorithm

We now briefly overview the Bulirsch-Stoer extrapolation scheme, com-
monly referred to as the “BST” Algorithm (the meaning of the “T” in this
acronym has evidently been lost to time). This method was introduced in
[160] in the context of differential equations, but has been widely adopted as
an extrapolation scheme whenever one seeks to project a sequence of data with
unknown functional form to its infinite limit. In particular it has become a
useful tool for finite-size scaling techniques, and was studied extensively in the
context of lattice models in [161].

The BST Algorithm assumes that we are attempting to extrapolate to a
limiting value for an infinite system, which is subject to power-law corrections
when approximated by a finite-size. For example suppose we have a sequence of
critical field values which are approximants to the true value of the critical field
in the infinite system: {B(L1), B(L2)...B(LN)}, which approach B∞ ≡ B(L→
∞). The BST Algorithm applies when, for each estimate B(L), B∞−B(L) =
P (L) for some fixed (but unknown) polynomial P . This pattern of power-law
corrections has generally been found to be true in the case of Binder Cumulants
[249, 250].

The technique works by taking the initial sequence {α(0)
1 , α

(0)
2 , ...α

(0)
N } and

using it to construct a new sequence, {α(1)
1 , α

(1)
2 , ...α

(1)
k−1} whose convergence

towards the infinite limit has been accelerated, so that α
(1)
N−1 is in fact a better

estimate than α
(0)
N . For clarity, note that we are using parenthetical super-

scripts to label the sequence, and subscripts to enumerate the terms within a
sequence.

The terms in this new sequence are defined as follows
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α
(j+1)
k ≡ α

(j)
k+1 +

α
(j)
k+1 − α

(j)
k(

Lk+1

Lk

)ω (
1− α

(j)
k+1−α

(j)
k

α
(j)
k+1−α

(j−1)
k+1

)
− 1

. (A.1)

Note that, since the denominator of equation A.1 makes reference to the
sequence α(j−1), it is necessary to define the sequence {α(−1)} to handle the
initial step of the algorithm in which j = 0. To that end, one simply takes
α

(−1)
k = 0 for all k.

This procedure can then be repeated, taking the sequences α(0) and α(1)

as the inputs to generate α(2), and so on. This iteration can be done at most
N − 1 times, at which point the resulting sequence α(N−1) contains only one
term. This term is the BST algorithm’s best estimation of the infinite limit of
the original sequence.

The parameter “ω”, which appears as the exponent on the length scales,
is a free parameter in the algorithm. The value of ω which gives the best
convergence will depend on the form of the power law corrections in the orig-
inal sequence, which is generally unknown. Hence, in practice, a range of
parameters must be considered, selecting the one which best optimizes the
convergence. To this end, note that a rough estimate of the “precision” of the
sequences can be made by

∆
(j+1)
k = 2|α(j)

k − α
(j)
k+1|. (A.2)

This value should be decreasing with each iteration if the procedure is cor-
rectly accelerating the convergence of each new sequence. The final value of
this estimator, ∆final = ∆

(N−1)
1 gives a convenient way to fix the free param-

eter ω: we simply repeat the algorithm while varying ω, and choose the one
which minimizes ∆final. In practice, it has often been observed [251] that the
dependence of the estimations on ω is rather weak, with large ranges of values
giving comparable results. In other words, it is often more important simply
to avoid a “bad” value of ω than to try to find its absolute “best” value. In our
work, we have used as our procedure a sweep over the range ω ∈ (0, 2], testing
with steps of size 0.1. We also require that our extrapolation be “stable” under
small variations in ω.

We note that the value of ∆final cannot be used as a complete measure of
the error in a final estimation. It is a measure of the internal consistency and
the precision of the acceleration in the BST algorithm, but cannot contain any
information about whether the algorithm has captured the “true” functional
form of the finite-size corrections. Additionally, it does not reflect the propa-
gation of errors on the data which are being extrapolated. A very small and
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stable value of ∆final indicates that the algorithm is extrapolating the data to
the best of it’s capability given its assumptions and the finite number of input
points. It does not necessarily indicate that the result is extremely precise.

In this paper, to estimate the error in a BST extrapolation, we start with
the uncertainties of the input points, and essentially determine the propagated
uncertainty empirically. In our case, the input points are the crossings of
Binder cumulant curves. The crossings are computed by linearly extrapolating
between data points, so we generously assume an uncertainty of one half the
step size between points. The error is then estimated by considering a “worst-
case scenario” in which the first few crossing points are perturbed downward by
this amount, and the later points perturbed upwards. We run these perturbed
points through the BST algorithm and observe the effect on the resulting
extrapolation. The size of this effect is taken to be a rough upper bound on
the total uncertainty.
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Appendix B

Proof of Projector Property for
Unital Quantum Channels

In Sec. 5.5.2, we considered a one-site translationally invariant MPS repre-
sented by the tensor Aj, a constructed a matrix W from the dominant eigen-
vector of this state’s transfer matrix. We further constructed an associated
projector P which projected onto the support of W , and subsequently used
the statement that

AjP = PAjP (B.1)

This statement was crucial to demonstrating how to place a general MPS
tensor in block diagonal form. It is also employed in Refs. [15, 195], but we
wish to provide here a more detailed proof than the motivation which is given
for it in those works.

In Ref. [15]) it is observed that that the dominant eigenvector of the transfer
matrix is equivalent to the fixed point of the quantum channel

ε(X) =
∑
j

AjX(Aj)† (B.2)

In this perspective, the tensors Aj are serving as the so-called “Kraus
Operators” of the channel. Further, the fact that the tensors represent an
MPS in canonical form is equivalent to saying that the channel is “unital,”
i.e. that it preserves the identity matrix [15, 252]. For a unital channel, it is
known that the fixed point W commutes with all the Kraus operators, i.e.

[W,Aj] = 0. (B.3)

See, for example, Ref. [252], Theorem III.4.
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From here, we can prove directly our desired result that AjP = PAjP .
Recall that P is a projector onto the support of W . As such we have trivially
that W = PW . Consequently,

[PW,Aj] = 0. (B.4)

Expanding this commutator, we have

P [W,Aj] + [P,Aj]W = 0. (B.5)

Here, the first term vanishes according to Eq. B.4, so we have also

[P,Aj]W = 0, (B.6)

from which it trivially follows also that

[P,Aj]WW−1 = 0 (B.7)

Naturally, WW−1 is equal to the identity, but crucially, this is only strictly true
within the support space of W. Thus, it is more proper to say that WW−1 =
P .Therefore, from Eq. B.7, we have

[P,Aj]P = 0 (B.8)

or equivalently, writing out the commutator in full,

(PAj − AjP )P = 0. (B.9)

However, since orthogonal projectors are idempotent with P 2 = P , this proves
the original claim, because now we have

PAjP = AjPP = AjP. (B.10)
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Appendix C

Cholesky Decomposition of a
Positive Semidefinite Matrix

In this appendix we briefly describe an efficient algorithm for computing
the uppder-triangular Cholesky decomposition of a matrix M as M = UTU .
The formal requirements for a Cholesky decomposition to exist are simply that
the matrix be symmetric and positive semidefinite; however, it is only when the
matrix is fully positive definite that the decomposition is unique [253]. As a
result of this, and perhaps also an ambiguity about how to handle rows of zeros
which appear in the positive semidefinite case, several commercially available
linear algebra packages contain Cholesky decomposition functions which will
only return a result for a positive definite input. We outline here, based in part
on details provided in Ref[235], a simple alternative implementation which is
flexible enough to handle a semidefinite matrix. When we refer to elements
being “equal to zero” here we imply that they are equal to zero up to machine
precision. In practice it may be necessary to utilize a small cutoff to determine
which values are vanishing.

Let M be an n × n matrix with elements mi,j which is symmetric and
positive semidefinite, i.e. mi,j = mj,i and mi,i ≥ 0. Crucially from this
second property the square root of a diagonal element of M will always be
real, although it may be zero. We will define a new matrix U in terms of its
elements ui,j, with ui,j = 0 ∀ i > j so that the matrix is upper-triangular. The
algorithm proceeds as follows:

1. Since most of the elements will ultimately be zero, initialize U with
ui,j = 0 ∀ i, j.

2. Begin with element m1,1. If this element is equal to zero, then all ele-
ments in the first row and column must also be equal to zero. To see
this, consider the submatrix
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M̃ =

(
0 m1,2

m2,1 m2,2

)
(C.1)

and note that, since m1,2 = m2,1, then the determinant of the submatrix
is det M̃ = 0 − (m1,2)2. If we assume m1,2 6= 0, then the determinant
of the submatrix is negative. But this contradicts the assumption that
M itself is positive-definite, since we could construct acted upon only
by this sub-block which would yield a negative matrix element with M .
Hence we must have m1,2 = m2,1 = 0. This argument applies iteratively
out to m1,n and mn,1, so that the entire row and column must vanish
whenever the diagonal element does.

Thus, in step one, we skip (i.e, leave as zero) the entire first row and
column of the matrix U if we find m1,1 = 0. This continues iteratively
until we find mi0,i0 6= 0 for some i0.

3. Now, for the first nonzero diagonal element mi0,i0 , we set

ui0,i0 =
√
mi0,i0 (C.2)

and then fill in the remainder of the row with

ui0,j =
mi0,j

ui0,i0
. (C.3)

4. For the remaining rows i from i0 + 1 to n, we first construct the new
diagonal element from the preceding rows,

ui,i =

√√√√mi,i −
i−1∑
k=1

u2
k,i (C.4)

If this value is equal to zero, we can save time by setting the remaining
elements of the row to zero as well, ui0,j = 0 for j > i. Note that this
situation only arises in the positive semidefinite case.

If ui,i is nonzero, we fill in the remainder of the row with

ui,j =
mi,i −

∑i−1
k=1 uk,iuk,j
ui,i

(C.5)

for j > i.

In this fashion, the desired matrix U is constructed after n steps.
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