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Abstract of the Thesis

Numerical Study of Periodic Adiabatic Rapid Passage
Sequences

by

He Zhang

Master of Arts

in

Physics and Astronomy

Stony Brook University

2016

Laser cooling refers to the techniques that cool atomic and molecular samples

down to near absolute zero through the interaction with laser fields. Atoms

absorb a photon and the transferred momentum generates force to lower the

atom’s velocity. The Doppler shift is associated with the motion of the atom,

in which a moving atom always observes a slightly different frequency than the

laser at rest.

Based on the two-level system theory, this thesis studied the process of multiple

sequences of adiabatic rapid passage by simulating the process of the interaction

between optical forces and helium atoms. By studying the force map in param-

eter space, trying to understand the relationship between the average force and
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relevant laser parameters Ω0 and δ0 in the Rabi frequency. Furthermore, we

studied the relationship between the average force and velocity by comparing the

dragged atom model and moving atom model. We also studied the process of

multiple sequences of adiabatic rapid passage by changing spontaneous emission,

sweep range, pulse number for the interaction, exploring the distance between

peaks that appear in the velocity distribution. The observational results will be

presented in the thesis as well as the explanation.
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Chapter 1

Introduction

In this chapter brief introductions to laser cooling and Rabi oscillations are given, as

well as an optical forces analysis. Chapter 2 is the description of Adiabatic Rapid Passage

theory. Chapter 3 describes the numerical simulations of the ARP force interpretation and

simulation results. Chapter 4 has a conclusion of these topics.

1.1 Overview

Laser cooling refers to the techniques that cool atomic and molecular samples down to

near absolute zero through the interaction with laser fields. The key idea is that atoms

and molecules are constantly in motion, so cooling them is indeed to reduce their motion

or speed. Atoms absorb light and the transferred momentum generates force to lower the

atom’s velocity. The atom emits spontaneous emission with average velocity change of zero

since the emission direction is random.

The Doppler shift is associated with the motion of the atom. A moving atom always

observes a slightly different frequency than the laser. When the atom is in two laser beams,
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it experiences that the laser light Doppler shifted to a slightly higher frequency toward which

it moving and likewise, at a slightly lower frequency from which it moving away.

Laser cooling provides a starting point for a number of experiments. Bose-Einstein con-

densation in quantum information and computing research is one of them, that is a state of

matter of a dilute gas of bosons cooled to temperatures very close to absolute zero. Laser

cooling also contributes to high-resolution spectroscopic measurements, like frequency stan-

dards in optical clocks based on ultracold ions or atoms. Ultraprecise measurement of gravi-

tational fields based on the Doppler shifts of free-falling cooled atoms is another application,

and lithography with cold atomic beams to form very accurately controlled structures.

1.2 Two-Level Model

Atomic gases at low density show sharp energy eigenspectra. Usually there are infinitely

many energy eigenstates, but in quantum optics it is enough to take into account only two

energy levels of an atom, in the interaction with the laser light, which is related to the laser

transition. This simplified model is called the two-level atom [1].

To describe the semi-classical behaviour of a quantum mechanical two-level system (shown

in Fig. 1.1) driven by resonant radiation, first we need to make some definitions.

• |g〉 and |e〉 form the ground and excited state for the system

• The detuning is δ = ωl − ω0, here ωl is laser frequency, ω0 atomic resonance frequency

The corresponding energies of the eigenstates are Eg and Ee, satisfying the bare Hami-

tonian H0:
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Figure 1.1: Two level model[1], |g〉 and |e〉 represent the ground and excited state for the
system[1]

H0|g〉 = Eg|g〉 (1.1)

H0|e〉 = Ee|e〉 (1.2)

where |g〉 and |e〉 in the presence of a monochromatic light field are governed by the time-

dependent Schrödinger equation:

∂|ψ(t)〉
∂t

= − i
~
∑
j

cj(t)e
−iEjt/~Ej|j〉 (1.3)

the probability of the state |j〉 satisfies
∑

j |cj(t)|2 = 1 all the time, so the two-level quantum
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state can be expressed as |ψ〉 = cg|g〉 + ce|e〉, here cg and ce are complex state amplitudes,

|cg|2 + |ce|2 = 1. The state can be expressed as vector

ψ =

 〈g|ψ〉
〈e|ψ〉

 =

 cg

ce

 (1.4)

1.2.1 Rabi Oscillations

Now we consider the Rabi frequency, the frequency of oscillation for flopping between

the states of the two-level system caused by the resonant light. The coefficients measure the

population between of each level. The total Hamiltonian is the linear combination of bare

Hamiltonian and interaction H = H0 +Hint. The matrix corresponding to the Hamiltonian

is [1]

H =
~
2

 0 Ω(eiωt + e−iωt)

Ω∗(eiωt + e−iωt) −2δ

 (1.5)

with the rotating wave approximation it becomes,

H =
~
2

 0 Ω

Ω∗ −2δ

 (1.6)

Applied 1.4 and 2.12 to Schrödinger equation:

ıċg = ce(t)
Ω

2
(1.7a)

ıċe = cg(t)
Ω∗

2
− ce(ωl − ω0) (1.7b)

cg(0) = 1 (1.7c)

ce(0) = 0 (1.7d)
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The solution to 1.7 is  cg(t)

ce(t)

 =

 (
cos Ω′t

2
+ i δ

Ω′ sin Ω′t
2

)
eıδt/2(

i Ω
Ω′ sin Ω′t

2

)
eıδt/2

 (1.8)

here we have defined the generalized Rabi frequency Ω′ ≡ (Ω2 + δ2)1/2. The corresponding

evolution of the state populations, ρgg(t) = |cg(t)|2 and ρee(t) = |ce(t)|2 are

ρgg(t) =
1

2

[
1 +

(
δ

Ω′

)2
]

+
1

2

(
Ω

Ω′

)2

cos Ω′t (1.9a)

ρee(t) =
1

2

(
Ω

Ω′

)2

[1− cos Ω′t] (1.9b)

From the above equations, the excited state population oscillates at an angular frequency

of Ω′ and has an amplitude of (Ω/Ω′)2. According to Eq. 1.9, when the detuning is not zero,

the population oscillation can not reach the full oscillation. Fig. 1.2 shows how the probability

of the excited state varies in time with various values of Ω and δ.
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Ωt/2π

ee
(t
)

ρ

Figure 1.2: Oscillations of the excited state population for fixed Ω and varying δ. The thick,
thin, and dashed lines correspond to δ = 0, Ω/2, and Ω respectively. The excited state
population oscillates at an angular frequency of Ω′ with an amplitude of (Ω/Ω′)2[2].

1.2.2 Optical Bloch Sphere Projection

The Bloch sphere is a three dimensional projection of the atom interaction with laser

light, geometrically representing the pure state space of a two-level quantum mechanical

model. The pure state |ψ〉 of the two-level model can be represented as a superposition of

the basis vectors |g〉 and |e〉. Furthermore the connection between the Bloch vector and wave

function written in spherical coordinates is the following representation:

|ψ〉 = cos
(
α
2

)
|g〉 + eiφ sin

(
α
2

)
|e〉 (1.10)
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where α is angle between z-axis and the Bloch vector. The phase of the wave function

does not have physical meaning, so we are only left with three free parameters in the solutions

to 1.8. The arbitrary state is given in Cartesian coordinate is

u = 2Re(cg c̃e
∗) v = 2Im(cg c̃e

∗) w = |c̃e|2 − |c̃g|2 (1.11)

where

dcg
dt

= −iΩ
∗

2
c̃e (1.12)

dc̃e
dt

= −iΩ
2
cg + iδc̃e (1.13)

Then we calculate time dependence of the parameters u,v,w, and find

du

dt
= δv − Ωiw (1.14)

dv

dt
= δu− Ωrw (1.15)

dw

dt
= Ωiu + Ωrv (1.16)

here Ω = Ωr + iΩi which is the Rabi frequency. The result is similar to vector cross product,

and we define two vector: the torque vector Ω = (Ωr,Ωi,−δ) and R = (u, v,w). The

evolution for R [3](shown in Fig. 1.3):

dR

dt
= Ω×R (1.17)

Spontaneous emission is considered as inelastic collision where atom may change internal

energy state. Such collision leads to dephasing or decreasing the coherence of interaction.
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When we consider spontaneous emission, the Optical Bloch equations need to be modified

to present the dynamic system [2].

u̇ = Ωiw − δv − (γ/2)u (1.18a)

v̇ = −Ωrw + δu− (γ/2)v (1.18b)

ẇ = Ωrv − Ωiu− γ(w + 1) (1.18c)

here γ is the spontaneous emission rate for the excited state.

From eq. 1.17, we know the time derivative of R is always perpendicular to R, so the

vector magnitude of R is constant, so it moves along the surface of the Bloch sphere. If R

is in the equatorial plane with w = 0 and the mixed state refers to the eq. 1.10.

Fig. 1.3 shows the Bloch Sphere representation.The south pole of the Bloch sphere

represents the ground state of the atom, the north pole corresponds to the excited state. All

other points on the sphere represent various superposition states. Assume Bloch vector at the

beginning is located at the south pole (ground state) with the initial condition R(u,v,w) =

(0, 0,−1). Assume the torque vector Ω, choose δ = 0. Because the time derivative of the

Bloch vector is always perpendicular to torque vector and stays in the surface of Bloch

sphere, The torque vector lies along the u axis and the Bloch vector follows a circular path

in the v, w plane like Fig. 1.4 (a). Choose δ 6= 0, the torque vector begin with south pole

and rotate to north pole, the Bloch vector will always revolves round the torque vector until

they reach north pole show in fig.1.4 (b).
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Figure 1.3: The Bloch sphere projections taken from[4]. The solid and dash line represent
the Bloch vector and torque vector respectively.
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Figure 1.4: Bloch sphere projections of the Bloch and torque vectors with torque vector
beginning on the south pole[5]. Fig. 1.4 (a) shows that when δ = 0, the time derivative of
the Bloch vector is always perpendicular to torque vector and stays in the surface of Bloch
sphere, The torque vector lies along the u axis and the Bloch vector follows a circular path
in the v, w plane. Fig.1.4 (b) shows that when δ 6= 0, the torque vector begin with south
pole and rotate to north pole, the Bloch vector will always revolves round the torque vector
until they reach north pole.
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1.3 Optical Forces and Laser Cooling

When the atom interacts with laser light with frequency close to the resonance frequency,

it makes a transition from the ground state to the excited state, then subsequently comes

back down in two ways: spontaneous emission or stimulated emission. When the intensity

of absorbed light which left the atom still in excited state is very low , the condition is

that the atom returns back to ground state results from spontaneous emission rather than

stimulated emission. One photon comes out during this process, with momentum ~k with

random direction. Such momentum exchange is named the light pressure force. However,

when the detuning is much larger than γ, which indicates spontaneous emission may be

much less frequent than stimulated emission, the atom returns to the ground state more by

stimulated emission. In this process, the exciting light and stimulated light have the same

momentum so there is zero momentum exchange. But if there are beams with two different

k-vectors, absorbing from one beam followed by stimulated emission into the other would

produce non-zero momentum exchange, which is named the dipole force. We particularly

wish to point out that these two fundamental forces are quite different. Dipole forces can

be made very large by high intensity light interaction with atom. By contrast,light pressure

force can not be made strong. It is limited by the spontaneous emission rate [3].

1.3.1 Radiative Force

Spontaneous emission is a process that an atom in an excited state makes a transition

to a lower energy state E1 level with quanta emission of energy. For example, one atom

interacting with the light source absorbs the light energy ~ω reach to energy E2 level. It

may spontaneously decay to a lower level with one photon emitted with energy ~ω emission

11



(shown in fig. 1.5).

E2 − E1 = ~ω (1.19)

here ~ is the reduced Planck constant. The phase of the light in spontaneous emission is

random as is the direction in which the light propagates. So the average overall force is zero.

Figure 1.5: Spontaneous emission process[6] when one photon is absorbed the energy level
goes to the excited state with energy E2, it may spontaneously decay to a lower lying level
(the ground state) with energy E1, releasing the difference in energy between the two states
as a photon.

The momentum changed is

~k = ~ω/c (1.20)

The net force is proportional to the momentum absorbed and the scattering rate of the

process

F = γp~k (1.21)
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here γp = γρee is the scattering rate. From the semiclassical description of the light interac-

tion, the force is defined as the expectation value of force operator F , F = 〈F 〉 = d〈p〉/dt

. Consider operator p can be replaced by −i~(∂/∂z). So the force is operator thus given by

F = −∂H /∂z. [6] Using the dipole approximation, we have the result

F = ~(
∂Ω

∂z
ρ∗eg +

∂Ω∗

∂z
ρeg) (1.22)

where ρ is the density matrix,

ρ = |ψ〉〈ψ| =

 |cg|2 cgc
∗
e

cec
∗
g |ce|2

 (1.23)

Consider that the total scattering rate γp of light from laser field is

γp =
s0γ/2

1 + s0 + (2δ/γ)2
(1.24)

Here s0 is ratio of the laser field intensity to the saturation intensity defined by

s0 ≡ 2
|Ω2|
γ2

=
I

IS
(1.25)

with IS ≡ πhc/(3λ3τ) (λ and τ are the wavelength and lifetime of the atomic transition

respectively). Then we have the force from absorption followed by spontaneous emission,

Fsp =
~ks0γ/2

1 + s0 + (2δ/γ)2
= ~kγp (1.26)

For the previous case, we just consider the stationary atom, and now the Doppler shift

will be considered. For the Doppler shift when the observer moving towards the source,
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the frequency of wave increases. Especially when observer faces the wave, the time to

reach the observer is slightly less; when the observer is moving along the direction of wave

propagation, it will observe a little late arrival. Therefore, when considering one laser,

assume the frequency shift of the light field is k · v, and the effective detuning is δ − k · v.

The corresponding force on a moving atom is

Frad = ~k
s0γ/2

1 + s0 +
(

2
(
δ − k · v

)
/γ
)2 (1.27)

In a common experimental setup, there are two incident light beams tuned below atomic

resonance shining in opposite directions. The atom is slowed down for either direction of

motion because both lasers can cause the atom to lose momentum in the same direction as

the velocity.

F = ~k
γs0/2

1 + s+ (2(δ − k · v))/γ)2
− ~k

γs0/2

1 + s+ (2(δ + k · v))/γ)2

≈
8~k2δs0v

γ(1 + s0 + (2δ/γ)2)2
≡ −βv (1.28)

Here terms of the order (kv/γ)4 and higher have been neglected in the approximation. In the

second line, we may see a very interesting phenomenon called optical molasses, which means

the Doppler shift induces the atom to see different detuning, so the atoms with different

velocities will have different resonance frequency. In red detuned (δ < 0) optical molasses,

the total profile of force is shown in Fig. 1.6, atoms in the middle region with small range

of velocity would be pushed into the middle where the force is close to zero.
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Figure 1.6: Velocity Dependence of Optical damping force in one dimensional picture with
s0 = 2 and δ = −γ. The dotted lines show the force from each beam while the solid line is
the sum of them. The dashed line represents Eq. 1.28 after the approximation.[6]
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1.3.2 Stimulated Emission and Dipole Force

When the detuning δ is much greater than γ, the force derived from the absorption

followed by stimulated emission is not limited by the properties of the atomic transition as

in the radiative force, and can be much higher than the force from spontaneous emission.

The example of a force from stimulated emission to excite an atom is the dipole force.

Under two opposite laser setup, 2~k momentum is transferred in each cycle. However, two

oppositely light traveling beams forms standing wave due to the symmetry. The resulting

dipole force can trap the atoms but not cool or slow down the atoms. When averaging over

the wavelength, the dipole force would vanish.

1.3.3 Bichromatic Force

The bichromatic force is induced by two standing waves with the same detuning but

completely different sign, in other words, the corresponding frequency is ω1,2 = ωl± δ(shown

in fig 1.7).

Figure 1.7: The bichromatic optical force with two frequencies ωr and ωb equally detuned
above and below atomic resonance[7]
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The resulting electric field is

E(t) = E0[cos(ω1t) + cos(ω2t)] = 2E0cos(δt)cos(ωlt) (1.29)

So these two single frequency field can be rewritten as one amplitude modulated field with

modulation period π/δ. To satisfy the π pulse model, the time integral should have the

Rabi frequency Ω = πδ/4. It indicates that a single pulse could excite the atom. So once

with proper relative phase setup, one beam can excite the atom by pulsed absorption, and

another deexcite atom by pulsed stimulated emission. During the entire process, ∆p = 2~k

momentum is transferred to the atom (shown in fig 1.8). Here the Bichromatic force is

F = 2~kδ/π. When the detuning is much larger than the decay rate δ � γ, the bichromatic

force turns out to be much larger than the radiative force. Increasing δ leads to larger force

as long as we keep the π-pulse condition satisfied.

Figure 1.8: Bichromatic force profile: the two freqencies in the bichromatic laser beam create
π-pulses and each excites or de-excites the atom. [2]

.
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Chapter 2

Theory of Adiabatic Rapid Passage

The absorption of radiactive forces is already discussed in the chapter 1. And it relies

on spontaneous emission to push the atom in random direction, which limits the optical

force affecting the atoms. Adiabatic Rapid Passage is the coherent process that a sequence

of counterpropagating pulse pairs of laser light shine on the atom inducing absorption fol-

lowed by stimulated emission. A momentum 2~k is transferred in one cycle of duration T.

This process relies only on stimulated emission rather than spontaneous emission, and the

sweeping time through resonance is much less than life time of spontaneous emission.

2.1 Adiabatic Rapid Passage

The description of Adiabatic Rapid Passage is best done in term of the motion of the

Bloch vector on the Bloch sphere under the influence of a changing torque vector. It is driven

by chirped optical pulses. The optical frequency is swept through the resonance frequency

of a atomic transition through ±δ. The amplitude of the light is pulsed and the detuning

reaches resonance at the maximum value of amplitude-envelope.

18



The Hamiltonian for two level system is described as

Ĥ0 =
1

2
~ωa{|e〉〈e| − |g〉〈g|} (2.1)

We describe the interaction picture between two-level system and a classical oscillating elec-

tric field by Hamiltonian:

Ĥ = Ĥ0 + V̂0cosωt (2.2)

V̂0 = −µEc(r̂) defines the electric dipole. Knowing that |e〉〈e|+ |g〉〈g| = 1, we could rewrite

the Hamiltonian:

V̂0 = −{|e〉〈e|+ |g〉〈g|}µ · Ec(r̂){|e〉〈e|+ |g〉〈g|} (2.3)

= d · Ec(r̂){|e〉〈g|+ |g〉〈e|} (2.4)

where d = −〈e|µ̂|g〉 is the transition dipole moment matrix element. So the Hamitonian can

be expressed as

Ĥ =
1

2
~ωa{|e〉〈e| − |g〉〈g|}+ d · Ec(r̂){|e〉〈g|+ |g〉〈e|}cosωt (2.5)

=
1

2
~ωa{|e〉〈e| − |g〉〈g|}+

1

2
~δ{|e〉〈e| − |g〉〈g|}+ ~Ω{|e〉〈g|+ |g〉〈e|}cosωt (2.6)

where Ω = (d · Ec)/~ and δ is the detuning of the driving field from resonance [8][9]. The

second and third terms can be used to describe the system in terms of the matrix:

H =
~
2

 0 Ω(t)

Ω∗(t) 2δ(t)

 (2.7)
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Figure 2.1: Two sheets represent the dressed energy states and cross at the orignal point.
[4]

Where Ω(t) is time-dependent Rabi frequency with the same definition as in Chapter 1. The

associate eigenenergies are E(t) = ±(~/2)
√

(δ(t))2 + (Ω(t))2.

The alternative explanation is that we could consider the interaction between light field
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and atom is mapping the rotation of the Bloch vector and torque vector.

dR(t)

dt
= Ω(t)×R(t) (2.8)

the detuning is δ(t) = ωl − ωa, the difference between the frequency of laser and atom. The

sweeping process is described as follows. The torque vector [Ωr,Ωi,−δ(t)] begins on the

south pole where the Rabi frequency is 0, it moves slowly and continuously to the north

pole. While going through the sweep, the Rabi frequency reaches its maximum value and

then decreases to zero when it arrives at the north pole. In this process,

δ(t) = δ0 cos(ωmt) (2.9)

Ω(t) = Ω0| sin(ωmt)|

where the sweeping time is π/ωm and sweeping range is 2δ0. Here we need to guarantee δ0 ∼

Ω0 to ensure the best shape of trajectory on the Bloch sphere. And they should both be far

larger than ωm, to ensure that the torque vector is moving slowly enough. A quantitative

description of how slow is it is given by,

|Ω| � dθ(t)

dt
(2.10)

where 2θ(t) ≡ arctan (Ω(t)/δ(t))[10], is called the mixing angle, which is the mixing angle of

the eigenstates in the dressed-atom picture. ARP is typically used in the parameter space

given by

δ0 ∼ Ω0 � ωm � γ, (2.11)

where δ0 is the amplitude of the frequency sweep, Ω0 is the peak Rabi frequency, ωm is the
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(a) (b)

Figure 2.2: Plot of two trajectories. In Part (a), δ0 = 30ωm and Ω0 = 50ωm, R rotated
along Ω with high frequency. In Part (b), δ0 = 1.10ωm and Ω0 = 1.61ωm. R is ∼ 90◦ away
from the path of Ω.[2]

modulation frequency, and γ is the spontaneous decay rate. Once all these conditions are

satisfied, the Bloch vector will track the vector vector adiabatically from the ground state

to the excited state, and back to excited state again. These process is back and forth with

the laser pulse shining.

We change the the interaction picture in the equivalent form that

H =
~
2

 0 Ω(t)e−iδ(t)

Ω(t)e−iδ(t) 0

 (2.12)

where the Torque vector can be expressed as [Ωre
−iδ(t),Ωie

−iδ(t), 0] and the real and imaginary
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part of Rabi frequency is expressed as

Ωr = Ω0| sin(ωmt)| cosα(t)) (2.13a)

Ωi = Ω0| sin(ωmt)| sinα(t)) (2.13b)

where α(t) is

α(t) = −(δ0/ωm)| sin(ωmt)|+ (k · v)t+ φ (2.14)

where the first term comes from the detuning δ(t), the second term is because of the Doppler

shifts, and the last one is referring to the phase difference between pulse pairs. The sign

in front of determines the sweeping directions. Positive means sweeping up while negative

means sweeping down.

Here the frequency detuning δ(t) is included in the complex phase α(t) as−(δ0/ωm)| sin(ωmt)|

along with contributions that come from Doppler shifts, (k · v)t, and unavoidable phase dif-

ferences between pulses in a pair, φrel, as well as between pairs, φpp (see Fig. 2.3). The sign

of δ0 determines the direction of the frequency sweep for a single pulse. A positive δ0 signi-

fies a sweep up in frequency and a negative δ0 signifies a sweep down. In the experimental

setup, we have counter-propagating light fields that interact with the atom. The interaction

duration for each is π/ωm. As in Fig. 2.3, the pulse shape is shown in the top, and the

sweeping frequency with upward direction is represented in the bottom. After a pulse pair,

there is 2π/ωm dead time. All of the above is one period, and we will repeated such period

for many times.
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Figure 2.3: The plot shows how Rabi frequency Ω(t) and the frequency sweep δ(t) change
in one period, two pulse followed by the dead time. [4])

2.2 ARP Force

Under periodic ARP pulses, the optical force, including Doppler shifts, can be calculated

from the Optical Bloch Equation according to the Ehrenfest theorem.

F =< −∇H >= Tr
[
∇Hρ

]
=

~
2

(
u∇Ωr + v∇Ωi

)
, (2.15)

where Ωr,i and u and v are the corresponding components of torque and Bloch vectors. For

two counter-propagating light fields whose wavenumber is k, the resulting force on the atom
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is

F =
~k

2

((
Ω+ −Ω−

)
×R

)
3

(2.16)

where Ω+ and Ω− refer to the right and left propagating fields respectively. In the experi-

mental setup shown in Fig. 2.3, we do not consider the case of temporally overlapping ARP

pulses, so the force can be rewritten as follows

F =
~k

2
(Ω± ×R)3 =

~k

2
ẇ. (2.17)

A momentum of ~k is exchanged between the light field and the atom when the Bloch

vector is driven from one pole to the other. The force of a single pulse expressed through

discretization of ẇ is

F =
~k

2

ωm
π

∆w (2.18)
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Chapter 3

Numerical Study and Result

In this chapter, we will present the nature of the program which simulates the interaction

between the optical field and helium atoms. The process of multiple sequences of adiabatic

rapid passage is simulated by changing sweep range, sweep direction, number of pulses,

making pulse distortion and exploring sensitivity of parameters. It will start from various

initial conditions for an atom and then propagate through the Optical Bloch Equations

(OBEs) to a final landing position on the detector. The influence of the parameters will be

given in the following. A sample program written in Python and a data analysis program in

the R language will be shown in the appendix.

3.1 ARP Force Simulation

The simulation serves for the comparison with the experimental result, in which some

of the parameters cannot adjusted. We try to vary the parameters to explore the nature

behind the experiment. For example, in the experiment, we cannot measure the exact value

of Ω0 and δ0, but in the simulation, we could fix them according to the force map to find

26



the possible strongest force area. And also, for the spontaneous emission, the decay rate is

fixed for the specific atomic transition, but for the simulation, it is easy to vary, in order

to understand how it influences the interaction process. We begin with equation 3.1, the

Optical Bloch equations with spontaneous emission writen as:

u̇ = Ωiw − δv − (γ/2)u (3.1a)

v̇ = −Ωrw + δu− (γ/2)v (3.1b)

ẇ = Ωrv − Ωiu− γ(w + 1) (3.1c)

where u,v,w are the component of ~R = ~R(u, v,w). From the 2.13b and 2.14, we know in

the interaction picture that the torque vector is given as follows.

Ωe−ıα(t) =(Ωreal,Ωimag, 0)

Ωimag =|Ω0 sin(ωmt)| sin(−δ0/ωm sin(ωmt)± k · vt± φ/2)

Ωreal =|Ω0 sin(ωmt)| cos(−δ0/ωm sin(ωmt)± k · vt± φ/2)

we use the torque vector below in the OBE’s. The parameters for the calculations are as

follows: n is the number of pulse pairs which interact with the atom and they are assumed

to be perfectly coherent. Ω0 is the peak Rabi frequency of the pulses, δ0 is the amplitude of

the frequency sweep, γ is the spontaneous emission rate, and φ is the phase of the optical

field, which we average over 25 values equal spaced from 0 to 2π. v is the initial transverse

velocity. Finally, independent of the other parameters, the atom always starts in the ground

state R(u, v,w) = (0, 0,−1).
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3.1.1 Force Maps

From Fig. 2.3, we know each time period is divided into four time units, with two pulses

in opposite directions and two units of dead time. In the simulation, the time units are set

to be π/ωm. After each time unit, we calculate the force. Only in the first two time units

with the pulse pair interacting with the atom, the force changes as

dF = ±(wi − w(i−1))~k/(2tpulse) (3.2)

(3.3)

where we assume that during the dead time, the decay on the atom is negligible and does not

influence the average force. The sign of dF indicate during the pulse pair interaction,if the

atom gets perfectly inversion from ground state to excited state, we have w = wi − wi−1 =

1− (−1) = 2, otherwise, the atom experience gets perfectly inversion from excited state, we

have w = wi − wi−1 = −1− 1 = −2.
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Figure 3.1: The contour plot fo the average force over different velocity equal to -120,-80,-
20,20,80,120 m/s corresponding to plots a,b,c,d,e,f with Ω0 = 5.0ωm and δ0 = 5.0ωm

For the force maps, we vary the relative phase between pulses, and then average these

results for the plots. Fig.3.1 shows the contour plots of the average force calculated over

a range of the parameters under 320 pulses, Ω0 = 5.0ωm and δ0 = 5.0ωm. We take the

velocity at -120, -80, -20, 20, 80, 120 m/s mapping to the plots a,b,c,d,e,f in Fig. 3.1.

First, We can see the color representing from red to blue according to the strength of the
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force. It is much more sensitive to the value of Ω0 and δ0, compared to the force map with

the phase difference between pusle and atom is zero [2]. Second, the velocity’s absolute

value determines the shape of the plots, in other words, whenever the velocity is positive or

negative, as long as they have the same absolute value, the plots are quite similar. Third,

we found for the lower velocity the region of strong force is larger than that with higher

velocity.

3.1.2 Force vs Velocity

The simulation process can be performed in the following two regions, the interaction

region and drift region (shown in fig.3.2).

Vtf

Vl

x

y

L

Figure 3.2: Trajectory of the atom movement[10]: after the atom leaves the interaction
region(L), it will fly with longitudinal velocity(Vl) and transverse velocity (Vtf )

In the drift region, there is no laser interaction, so we analyze this relative easy process

first. In the experiment, there is longitudinal velocity distributes due to the atomic beam

source. That can be measured from the equipment. However, the initial longitudinal velocity

defined as the velocity the atom has before it enters the interaction region, determines the
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number of pulses seen by the atoms because of the fixed interaction region size. This makes

the atoms have different final transverse velocity changes, therefore, causing the atoms to

land at different positions.

Therefore, for the drift region, the final transverse velocity and final longitudinal velocity

depend on the time that the atom has for the interaction with the laser light and are vt and

vl, the drift distance after interaction is x. The landing position is y, L is interaction length,

n is the pulses number for interaction and t is the drift time.

y = vt ∗ t (3.4)

x = vl ∗ t (3.5)

t = T ∗ n = L/vl (3.6)

where T is the period of a pulse pair interaction, so we found the landing position is y =

vt ∗ x ∗ n ∗ T/L.

In the interaction region, the dragged atom model and moving atom model are compared

in this part. The dragged atom picture (v is constant) can tell us about force vs velocity but

cannot be used to simulate an experiment where the velocity change is important. In the

dragged atom model, we ignore the the phase change contributed from the velocity change

of the atom. Such an approximation is applied because the phase change by the velocity due

to the Doppler shift is typically smaller than the natural linewidth of the atomic transition,

but it does not apply for our case[10]. In the moving atom model, the transverse velocity

change in each interaction period is calculated as

∆v =
2dF ∗ T
M

(3.7)
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where M is the mass of the atom. The change of the velocity causes the change of the phase

which can be calculated as:

∆φ = 2π
π

ωm

∆v

λ
(3.8)

Fig.3.3 is the comparison between dragged atom and moving atom, the force vs velocity plot

with the parameters Ω0 = 3.37ωm and δ = 4.11ωm. The x-axis and y-axis represent the initial

transverse velocity and the average force after 320 pulses respectively, where we assume a

single longitudinal velocity. We found there are two significant differences. One is that the

starting velocity for the maximum force shifts from v = 0 to v < 0 in the moving atom

model. The other is the presence of big resonances happening on higher absolute transverse

velocity, disappearing in the moving atom model.

The reason for the shift of the peak in the moving atom picture is because the atom

beginning with v = 0 sees a lower average force than atoms beginning with negative velocity.

The atom beginning with v = 0 and v < 0 would experience the velocity increasing during

the interaction. But with the velocity increasing, the force placed on the atom beginning

with v = 0 would keep decreasing, while the force placed on the atom beginning with v < 0

would increase first to the maximum and then decrease. Therefore, the total average force

of the latter is stronger than on the former one. But in the dragged atom picture, the atoms

beginning with v = 0 are always under the maximum average force. Thus in the graph

there is a shift of the entire curve from zero velocity to negative velocity in the moving atom

model. For the vanishing of the resonances, one possible explanation is that in the moving

atom model, for the velocity change, it is more like a moving average filter which smooths

the curve and smears the resonances.
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Figure 3.3: The force vs velocity plot of dragged atom and moving atom[10] with δ0 = 4.11ωm
and Ω0 = 3.37ωm after 320 pulses interaction.

3.2 Parameter Effects

In this part, we try to vary the parameters to learn the effect on the results. For all the

plots, δ0 and Ω0 are the same values used in the calculation always in units of ωm.

3.2.1 Spontaneous Emission

The optical Bloch equations have the inherent capability to allow relaxation by spon-

taneous emission, and this requires that the frequency sweep rate is much larger than the

atomic decay rate. Otherwise, it would preclude complete atomic inversion. From [11], we

know that when the ratio of ωm/γ ≈ 1, the spontaneous emission returns the atom to the

ground state frequently so that the counterpropagating pulse pairs can not fully transfer

momentum 2~k to atoms, but with the ωm/γ increasing, the coherence between atoms and

light interaction can be preserved and the expected momentum can be transfered to the

atoms before any spontaneous emission occurs. In our simulation, γ = 1.62 × 106 ∗ 2π and

ωm = 160× 106π, so the ratio of ωm/γ ≈ 100.

Fig.3.4 shows the atomic distribution after 540 pulses pairs with Ω0 = 3.39ωm and δ0 =
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4.19ωm. In the experiment the value of spontaneous emission (γ) can not be changed, but

for the calculation we can change the value so that we can better understand its influence on

the average force. We made plots with the ratio of the simulation spontaneous emission to

real spontaneous emission equal to 1 and 0 respectively and with the dead time period, we

found even for ωm/γ � 1, spontaneous emission still influence the atom landing positions.

In the 8 plots in fig.3.4, we vary γ to see gradual change of the influence.
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Figure 3.4: Force vs velocity with different γ with the sweeping direction from up to
down(UD) in the moving atom simulation, where different γ means we manually set up
the spontaneous emission rate into γ,γ/2,γ/4 and so on, where vertical axis is arbitrary
units
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Although we cannot directly compare the simulation result and the experimental result,

we still can compare the characters of the shape. The unexpected result after we compare

the simulation to the experiment result of fig.3.5, we found the experimental result is more

like the simulation whose spontaneous emission is close to zero.

Figure 3.5: The experiment result with Ω0 = 3.70ωm and δ0 = 3.25ωm

3.2.2 Sweeping Direction

Reversing the sweep direction leads to different paths for Bloch vector but does not

change the end points of the trajectory. For example, if an atom starts near the north pole,

such a frequency-swept pulse leaves it near the south pole, and vice versa. In fig.3.6, we

change the sweeping direction of the first pulse and second pulse by down-down, down-up,
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up-down and up-up without spontaneous emission. The laser parameters are kept the same

for all four plots. The results show that there is no big change in the position by changing

the sweeping direction.

Figure 3.6: Sweeping direction in down-down(DD), down-up(DU), up-down(UD) and up-
up(UU) direction without spontaneous emission.

Fig.3.7 shown in the thesis[2], which is asymmetric for the dragged atom model with

twelve and sixty pulse pairs. The explanation for the unexpected asymmetric force is due

to the time difference the atom spends in the excited state. Fig. 3.6 shows symmetric peak

for the moving atom model. With more pulse pairs(320 pulses pairs), the asymmetric force

disappears.
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Figure 3.7: Calculated velocity dependence of the ARP force for two sweep schemes with
δ0 = 4.19ωm and Ω0 = 3.39ωm[2]

3.2.3 Number of Pulses

Fig 3.8 shows that the force changes with different initial transverse velocities for the case

of δ0 = 4.55ωm and Ω0 = 3.37ωm under the pulses number of 20, 160, 320, 540. When more

and more pulses interact with the atoms, the curve begin to split at some specific velocity.

The forces of two selected transverse velocities become stronger and stronger with increasing

the number of pulses compared to fewer. Also we could find out the curve with a little shift

to the left due to the velocity change. Third, the average force acting on the moving atoms

is weaker than dragged atom case in that with the increasing number of the pulses, it is just

like a signal taken through a moving average filter with large enough window. It would be

more smooth with fewer resonances.
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Figure 3.8: Force changing based on the pulses number of 20, 160, 320, 540 with δ0 = 4.19ωm
and Ω0 = 3.39ωm sweeping from up to down.
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3.2.4 Distribution of Peak Distance

As is stated in the previous part that the result split at the specific δ0, and we found the

peak distance increasing with δ0. Therefore, we try to explore the relationship between the

peak separation and δ0. To eliminate personal judgment, the following Lorentzian function

is used to identify the peak position, which is show as following:

f(v, wf ) =
wf

(v + v0)2 + w2
f

for (v + v0) < 0 (3.9)

g(x, wf ) =
wg

(x + x0)2 + w2
g

for (v + v0) ≥ 0 (3.10)

where v0 and x0 are the peak center, and wf and wg are fitting parameters related to the

widths of the peaks. The distance between two peaks can be expressed as ∆v. After trying

different functions to fit the computed results, finally, we found the following function has

the best fitting,

k∆v = µ (δ0 − η)1/ξ (3.11)

where µ, η, and ξ are the fitting parameters. k is the magnitude of the wavevector 2π/λ.

Fig 3.9 shows the fitting for the following parameters[10].

Ω0 (ωm) η (rad/s) ξ (dimensionless) µ (rad/s(1/ξ))
3.27 4.11 2.66 435.1
3.37 4.09 2.51 422.5
3.47 4.08 2.42 431.1

Table 3.1: Table of values for the fits shown in Fig. 3.9.
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Figure 3.9: Plot of the peak splitting in the force vs. velocity calculation results. The curve
from left to right follows the parameters in the table 3.1 from top to down. [10]

3.2.5 Pulse distortion

In this part, because the experimental pulse shape is not always perfect sin wave, we

try to simulate the result. We try pulse distortion that is as close as possible to the source

shape. We use the function: Ω = |Ω0 sin(ωmt)|(1 − ε(ωmt − π
2
)). Fig.3.10 shows that the

force is very sensitive to the distortion of the pulse shape.
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Figure 3.10: Force vs velocity with distortion on ε = 0.001, 0.01, 0.1, 0.25 with δ0 = 4.0ωm
and Ω0 = 2.8ωm
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Figure 3.11: Force vs velocity without distortion with δ0 = 4.0ωm and Ω0 = 2.8ωm

3.2.6 Sensitivity of parameters δ0 & Ω0

In this part, we try to figure out the resolution of the results, in other words, how sensitive

the results are to the parameter changes. From Fig. 3.12, we could find that when δ0 changes

0.04, there is significant shape change in the force vs velocity plot, but there is no big change

when the Ω0 varies.
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Figure 3.12: Resolution detection on force vs velocity plot by varying δ0 and Ω0, the sweeping
direction is from up to down
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Chapter 4

Conclusions

Based on the two-level system theory, this thesis presents a study of the process of mul-

tiple sequence of adiabatic rapid passage by simulating the nature of the process for the

interaction between optical forces and helium atoms. We try to understand the relationship

between the average force and relevant parameters Ω0 and δ0 in the Rabi frequency. Further-

more, we study the relationship between the average force and single velocity by comparing

the dragged atom model and moving atom model.

We also studied the process of multiple sequences of adiabatic rapid passage by chang-

ing spontaneous emission, sweep range, pulse number for interaction, exploring the peak

distance, making pulse distortion, and resolution, trying to compare with the experimental

result. We found several interesting phenomena when spontaneous emission rate is close to

zero. This is more like the experiment result, also with the number of pulses increasing, the

force is split into two peaks and the distance between the two peaks can be fitted into a spe-

cific formula. We could give explanations to some of them, but still cannot fully understand

the cause for others.

In conclusion, the simulation result offers a very good description of the experiment, which

45



helps us to understand the nature of the ARP force but also poses post many questions that

need to be solve.
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Appendix A

Python Code for Position-velocity

Plot Numerical Calculations

# −∗− coding : u t f−8 −∗−

#Created on Mon Jan 19 18 :27 :00 2015

#@author : He Zhang , John Elg in

from numpy import ∗

from s c ipy . i n t e g r a t e import ode int

from pylab import ∗

###################################################

f = open( ”data20150121withgamma . txt ” , ’wb ’ )
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#f . wr i t e ( ’ ph i ’+ ’ , ’+ ’ v s t a r t / v e l f a c t ’+ ’ , ’+ ’FF/(2 .0∗ ( i /4)∗ f o r f a c t )

’+ ’ , ’+ ’n ’+ ’\n ’)

# de f i n e parameters

lambda = 1083.33 e−9

hbar = 1.054571 e−34

k = 2.0∗ pi / lambda

gamma = 1.62 e6 ∗2∗ pi

mass = 6.64648 e−27

wm = 160 e6 ∗2∗ pi

v e l f a c t = gamma/k

f o r f a c t = hbar∗k∗gamma

t p u l s e = 1.0∗ pi /wm

p = 4.0∗ pi /wm

##################################################

# so l v e r parameters

o d e r t o l = 1e−5

o d e a t o l = 1e−5
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#################################################

# user parameters

phasepo ints = 5

print ’ Phasepoints : ’ , phasepo ints

npu l s e s = 20

print ’ pu l s e p a i r s : ’ , npu l s e s

d = 4.19

print ’ d e l t a 0 : ’ , d

d0 = d∗wm

w = 3.39

print ’ Omega 0 : ’ , w

w0 = w∗wm

vmin = −500

print ’Minimim value o f v e l o c i t y (m/ s ) : ’ , vmin

vmax = 500

print ’Maximum value o f v e l o c i t y (m/ s ) : ’ , vmax

dkv = 10

print ’ Steps in v e l o c i t y : ’ , dkv
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vstep = (vmax−vmin ) /dkv

print ’The step s i z e in v e l o c i t y i s : ’ , vstep , ’m/ s ’

#################################################

#

dopo f f = 0

rpar = array ( [ gamma, −gamma/2 , w0 , d0/wm, 0 . 0 , 0 . 0 , wm, dopof f ,

0 . 0 ] )

#################################################

# system func t i on

def f e v a l (u , t0 , p ) :

i f ( int (p [ 8 ] ) %4 == 1) :

a = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ s i n (−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) + (p

[4]−p [ 7 ] ) ∗ t0 + p [ 5 ] / 2 )

b = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ cos(−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) + (p

[4]−p [ 7 ] ) ∗ t0 + p [ 5 ] / 2 )

e l i f ( int (p [ 8 ] ) %4 == 2) :

a = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ s i n (−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) − (p

[4]−p [ 7 ] ) ∗ t0 − p [ 5 ] / 2 )

b = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ cos(−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) − (p

[4]−p [ 7 ] ) ∗ t0 − p [ 5 ] / 2 )
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else :

a = 0 .0

b = 0 .0

du0 = p [ 1 ] ∗ u [ 0 ] − a∗u [ 2 ]

du1 = p [ 1 ] ∗ u [ 1 ] − b∗u [ 2 ]

du2 = a∗u [ 0 ] + b∗u [ 1 ] − p [ 0 ] ∗ ( u [ 2 ] + 1 . 0 )

return array ( [ du0 , du1 , du2 ] )

#################################################

# Main Loop

npa i r s = 4∗ npu l s e s

term0 = −1.0

ph i s t ep = 2.0∗ pi / phasepo ints

for l in range (1 , dkv+2 ,1) :

for j in range (1 , phasepo ints +1 ,1) :

phi = ph i s t ep ∗ j

rpar [ 5 ] = phi

v = vmin + ( l −1)∗ vstep

v s t a r t = v

dF = 0.0

t s t a r t = 0 .0

FF = 0.0

h0 = t p u l s e /100
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term0 = −1.0

u = array ( [ 0 . 0 , 0 . 0 , −1.0]) # i n i t i a l Bloch Vector

for i in range (1 , npa i r s +1 ,1) :

t s top = t s t a r t + t p u l s e

rpar [ 8 ] = i

rpar [ 4 ] = k∗v

y = ode int ( f eva l , u , [ t s t a r t , t s top ] , a rgs=(rpar , ) ,

r t o l=ode r t o l , a t o l=o d e a t o l )

u=y [ 1 , : ]

t s t a r t = ts top

#pr in t ’ [ u , v ,w] = ’ , y [ 1 , : ]

i f ( i%4==1) :

dF = (u[2]− term0 )∗hbar∗k /(2 . 0∗ t p u l s e )

e l i f ( i%4==2) :

dF = −(u [2]− term0 )∗hbar∗k /(2 . 0∗ t p u l s e )

else :

dF = 0 .0

v = ( (dF∗2.0∗ t p u l s e ) /mass + v )

#pr in t ’dF=’ ,dF , ’ v= ’ , v

FF = FF+dF

term0 = u [ 2 ]

i f ( i%4==0) :
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print ’>> ’ , phi , v s t a r t / v e l f a c t , FF/ ( 2 . 0∗ ( i /4)∗

f o r f a c t ) , i /4

#r e s u l t=phi , v s t a r t / v e l f a c t , FF/(2 .0∗ ( i /4)∗ f o r f a c t

) , i /4

f . wr i t e ( str ( phi )+’ , ’+str ( v s t a r t / v e l f a c t )+’ , ’+str (

FF/ ( 2 . 0∗ ( f loat ( i ) /4)∗ f o r f a c t ) )+’ , ’+str ( i /4)+’\n

’ )

f . c l o s e ( ) �
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Appendix B

Python Code for Force Map

Numerical Calculations

# −∗− coding : u t f−8 −∗−

#Created on Mon Jan 19 18 :27 :00 2015

#@author : He Zhang , John Elg in

from numpy import array , s in , cos , p i

from s c ipy . i n t e g r a t e import ode int

#from py lab import ∗

from time import c l o ck

c l o c k s t a r t = c l ock ( )

################################################
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f = open( ” data20150122contour . txt ” , ’wb ’ )

#f . wr i t e ( ’ ph i ’+ ’ , ’+ ’ v s t a r t / v e l f a c t ’+ ’ , ’+ ’FF/(2 .0∗ ( i /4)∗ f o r f a c t )

’+ ’ , ’+ ’n ’+ ’\n ’)

# de f i n e parameters

lambda = 1083.33 e−9

hbar = 1.054571 e−34

k = 2.0∗ pi / lambda

gamma = 1.62 e6 ∗2∗ pi

mass = 6.64648 e−27

wm = 160 e6 ∗2∗ pi

v e l f a c t = gamma/k

f o r f a c t = hbar∗k∗gamma

t p u l s e = 1.0∗ pi /wm

p = 4.0∗ pi /wm

#################################################

# so l v e r parameters

o d e r t o l = 1e−5

o d e a t o l = 1e−5
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################################################

# user parameters

phasepo ints = 5

print ’ Phasepoints : ’ , phasepo ints

npu l s e s = 20

print ’ pu l s e p a i r s : ’ , npu l s e s

wd = 5

print ’wd ’ , wd

maxwd = wd∗wm

print maxwd

step = 0.25

print ’ Omega 0 : ’ , s t ep

wdstep = step ∗wm

print wdstep

print wdstep/wm

vmin = −500

print ’Minimim value o f v e l o c i t y (m/ s ) : ’ , vmin

vmax = 500

print ’Maximum value o f v e l o c i t y (m/ s ) : ’ , vmax
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dkv = 2

print ’ Steps in v e l o c i t y : ’ , dkv

vstep = (vmax−vmin ) /dkv

print ’The step s i z e in v e l o c i t y i s : ’ , vstep , ’m/ s ’

############################################

#

dopo f f = 0

rpar = array ( [ 0 , 0 , 0 , 0 , 0 . 0 , 0 . 0 , wm, dopof f , 0 . 0 ] )

############################################

# system func t i on

def f e v a l (u , t0 , p ) :

i f ( int (p [ 8 ] ) %4 == 1) :

a = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ s i n (−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) + (p

[4]−p [ 7 ] ) ∗ t0 + p [ 5 ] / 2 )

b = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ cos(−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) + (p

[4]−p [ 7 ] ) ∗ t0 + p [ 5 ] / 2 )

e l i f ( int (p [ 8 ] ) %4 == 2) :

a = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ s i n (−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) − (p

[4]−p [ 7 ] ) ∗ t0 − p [ 5 ] / 2 )
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b = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ cos(−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) − (p

[4]−p [ 7 ] ) ∗ t0 − p [ 5 ] / 2 )

else :

a = 0 .0

b = 0 .0

du0 = p [ 1 ] ∗ u [ 0 ] − a∗u [ 2 ]

du1 = p [ 1 ] ∗ u [ 1 ] − b∗u [ 2 ]

du2 = a∗u [ 0 ] + b∗u [ 1 ] − p [ 0 ] ∗ ( u [ 2 ] + 1 . 0 )

return array ( [ du0 , du1 , du2 ] )

#################################################

# Main Loop

npa i r s = 4∗ npu l s e s

term0 = −1.0

ph i s t ep = 2.0∗ pi / phasepo ints

square = wd/ step

print square

for l in range (1 , dkv+2 ,1) :

v = vmin + ( l −1)∗ vstep

for m in range (0 , int ( square )+1) :

rpar [ 2 ] = m∗wdstep

for s in range (0 , int ( square )+1) :
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rpar [ 3 ] = s∗wdstep/wm

for j in range (1 , phasepo ints +1 ,1) :

phi = ph i s t ep ∗ j

rpar [ 5 ] = phi

v = vmin + ( l −1)∗ vstep

v s t a r t = v

dF = 0.0

t s t a r t = 0 .0

FF = 0.0

h0 = t p u l s e /100

term0 = −1.0

u = array ( [ 0 . 0 , 0 . 0 , −1.0]) # i n i t i a l

Bloch Vector

for i in range (1 , npa i r s +1 ,1) :

t s top = t s t a r t + t p u l s e

rpar [ 8 ] = i

rpar [ 4 ] = k∗v

y = ode int ( f eva l , u , [ t s t a r t , t s top ] ,

a rgs=(rpar , ) , r t o l=ode r t o l , a t o l

=o d e a t o l )

u=y [ 1 , : ]

t s t a r t = ts top

#pr in t ’ [ u , v ,w] = ’ , y [ 1 , : ]

i f ( i%4==1) :
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dF = (u[2]− term0 )∗hbar∗k /(2 . 0∗

t p u l s e )

e l i f ( i%4==2) :

dF = −(u [2]− term0 )∗hbar∗k /(2 . 0∗

t p u l s e )

else :

dF = 0 .0

v = ( (dF∗2.0∗ t p u l s e ) /mass + v )

#pr in t ’dF=’ ,dF , ’ v= ’ , v

FF = FF+dF

term0 = u [ 2 ]

dF = 0

i f ( i%4==0) :

#pr in t ’>> ’ , phi , v s t a r t / v e l f a c t ,

FF/(2 .0∗ ( i /4)∗ f o r f a c t ) , i /4

#r e s u l t=phi , v s t a r t / v e l f a c t , FF

/(2 .0∗ ( i /4)∗ f o r f a c t ) , i /4

f . wr i t e ( str ( phi )+’ , ’+str ( v s t a r t )+

’ , ’+str (m∗wdstep/wm)+’ , ’+str ( s

∗wdstep/wm)+’ , ’+str (FF/ ( 2 . 0∗ ( i

/4)∗ f o r f a c t ) )+’ , ’+str ( i /4)+’\n

’ )

#f . wr i t e ( s t r ( y [ 1 , : ] ) +’\n ’)
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f . c l o s e ( )

c l ock end = c lock ( )

print ( ” execut ion time : ” , c lock end−c l o c k s t a r t ) �
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Appendix C

Python Code for Parallel Calculations

# −∗− coding : u t f−8 −∗−

#Created on Mon Jan 19 18 :27 :00 2015

#@author : He Zhang , John Elg in

import sys , time

import pp

from s c ipy . i n t e g r a t e import ode int

from numpy import s in , cos , abs , array

# de f i n e parameters
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pi = 3.1415926

lambda = 1083.33 e−9

hbar = 1.054571 e−34

k = 2.0∗ pi / lambda

gamma = 1.62 e6 ∗2∗ pi

mass = 6.64648 e−27

wm = 160 e6 ∗2∗ pi

v e l f a c t = gamma/k

f o r f a c t = hbar∗k∗gamma

t p u l s e = 1.0∗ pi /wm

p = 4.0∗ pi /wm

#######################################################

# so l v e r parameters

o d e r t o l = 1e−5

o d e a t o l = 1e−5

#######################################################

# user parameters

phasepo ints = 5

npu l s e s = 5

d = 4.19
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d0 = d∗wm

w = 3.39

w0 = w∗wm

vmin = −500

vmax = 500

dkv = 5

vstep = (vmax−vmin ) /dkv

#####################################################

#

dopo f f = 0

######################################################

# system func t i on

def f e v a l (u , t0 , p ) :

s i n = numpy . s i n

cos = numpy . cos

i f ( int (p [ 8 ] ) %4 == 1) :

a = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ s i n (−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) + (p

[4]−p [ 7 ] ) ∗ t0 + p [ 5 ] / 2 )

b = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ cos(−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) + (p

[4]−p [ 7 ] ) ∗ t0 + p [ 5 ] / 2 )
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e l i f ( int (p [ 8 ] ) %4 == 2) :

a = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ s i n (−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) − (p

[4]−p [ 7 ] ) ∗ t0 − p [ 5 ] / 2 )

b = abs (p [ 2 ] ∗ s i n (p [ 6 ] ∗ t0 ) ) ∗ cos(−p [ 3 ] ∗ s i n (p [ 6 ] ∗ t0 ) − (p

[4]−p [ 7 ] ) ∗ t0 − p [ 5 ] / 2 )

else :

a = 0 .0

b = 0 .0

du0 = p [ 1 ] ∗ u [ 0 ] − a∗u [ 2 ]

du1 = p [ 1 ] ∗ u [ 1 ] − b∗u [ 2 ]

du2 = a∗u [ 0 ] + b∗u [ 1 ] − p [ 0 ] ∗ ( u [ 2 ] + 1 . 0 )

return [ du0 , du1 , du2 ]

######################################################

# Main Loop

npa i r s = 4∗ npu l s e s

term0 = −1.0

ph i s t ep = 2.0∗ pi / phasepo ints

def j ob func ( l , j , gamma, w0 , d0 ,wm, dopof f , phistep , vmin , vmax , vstep ,

tpu l se , npairs , k , ode r t o l , ode ato l , term0 , hbar , mass , v e l f a c t ,

f o r f a c t ) :

from s c ipy . i n t e g r a t e import ode int

#for l in range (1 , dkv+2 ,1) :
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#for j in range (1 , phasepo in t s +1 ,1) :

rpar = [gamma, −gamma/2 , w0 , d0/wm, 0 . 0 , 0 . 0 , wm, dopof f , 0 . 0 ]

phi = ph i s t ep ∗ j

rpar [ 5 ] = phi

v = vmin + ( l −1)∗ vstep

v s t a r t = v

dF = 0.0

t s t a r t = 0 .0

FF = 0.0

h0 = t p u l s e /100

term0 = −1.0

u = [ 0 . 0 , 0 . 0 , −1.0] # i n i t i a l Bloch Vector

r e s u l t = [ ]

for i in range (1 , npa i r s +1 ,1) :

t s top = t s t a r t + t p u l s e

rpar [ 8 ] = i

rpar [ 4 ] = k∗v

y = ode int ( f eva l , u , [ t s t a r t , t s top ] , a rgs=(rpar , ) , r t o l=

ode r t o l , a t o l=o d e a t o l )

u=y [ 1 , : ]

t s t a r t = ts top

i f ( i%4==1) :

dF = (u[2]− term0 )∗hbar∗k /(2 . 0∗ t p u l s e )

e l i f ( i%4==2) :
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dF = −(u [2]− term0 )∗hbar∗k /(2 . 0∗ t p u l s e )

else :

dF = 0 .0

v = ( (dF∗2.0∗ t p u l s e ) /mass + v )

#pr in t ’dF=’ ,dF , ’ v= ’ , v

FF = FF+dF

term0 = u [ 2 ]

i f ( i%4==0) :

r e s u l t . append ( [ phi , v s t a r t / v e l f a c t , FF/ ( 2 . 0∗ ( f loat ( i )

/4)∗ f o r f a c t ) , i / 4 ] )

return r e s u l t

# tup l e o f a l l p a r a l l e l python s e r v e r s to connect wi th

ppse rve r s = ( )

#ppserve r s = (”10 . 0 . 0 . 1 ” , )

#######################################

i f name ==’ ma in ’ :

print ’ Phasepoints : ’ , phasepo ints

print ’ pu l s e p a i r s : ’ , npu l s e s

print ’ d e l t a 0 : ’ , d

print ’ Omega 0 : ’ , w
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print ’Minimim value o f v e l o c i t y (m/ s ) : ’ , vmin

print ’Maximum value o f v e l o c i t y (m/ s ) : ’ , vmax

print ’ Steps in v e l o c i t y : ’ , dkv

print ’The step s i z e in v e l o c i t y i s : ’ , vstep , ’m/ s ’

# Construct Job Server

i f len ( sys . argv ) > 1 :

ncpus = int ( sys . argv [ 1 ] )

# Creates j o b s e r v e r wi th ncpus workers

j o b s e r v e r = pp . Server ( ncpus , ppse rve r s=ppse rve r s )

else :

# Creates j o b s e r v e r wi th au t oma t i c a l l y d e t e c t e d number o f

workers

j o b s e r v e r = pp . Server ( ppse rve r s=ppse rve r s )

print ” S ta r t i ng pp with ” , j o b s e r v e r . get ncpus ( ) , ” workers ”

# Construct Jobs

a r g l i s t = [ ( l , j , gamma, w0 , d0 ,wm, dopof f , phistep , vmin , vmax ,

vstep , tpu l se , npairs , k , ode r t o l , ode ato l , term0 , hbar , mass ,

v e l f a c t , f o r f a c t )

for l in range (1 , dkv+2 ,1) for j in range (1 ,

phasepo ints +1 ,1) ]

print ”Number o f Job : ” , len ( a r g l i s t )
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# Submit Jobs

depfuncs = ( odeint , f e v a l )

modules = ( ’numpy ’ , ’ s c ipy . i n t e g r a t e ’ , )

s t a r t t i m e = time . time ( )

jobs = [ j o b s e r v e r . submit ( job func , a , modules=modules ,

depfuncs=depfuncs ) for a in a r g l i s t ]

r e s u l t s = [ j ( ) for j in j obs ]

f = open( ”data20150121withgamma . txt ” , ’wb ’ )

for i in range ( len ( a r g l i s t ) ) :

f . wr i t e ( ’############################################\n ’ )

f . wr i t e ( ’## l=’+str ( a r g l i s t [ i ] [ 0 ] )+’ , j= ’+str ( a r g l i s t [ i

] [ 0 ] )+’\n ’ )

for r in r e s u l t s [ i ] :

f . wr i t e ( str ( r [ 0 ] )+’ , ’+str ( r [ 1 ] )+’ , ’+str ( r [ 2 ] )+’ , ’+str (

r [ 3 ] )+’\n ’ )

f . c l o s e ( )

print ”Time e lapsed : ” , time . time ( ) − s t a r t t ime , ” s ”

j o b s e r v e r . p r i n t s t a t s ( ) �
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Appendix D

R Code for Data Visualization

#@author : He Zhang

setwd ( ”/home/arp/hezhang/SBU/data ” )

data = read . table ( ” data15 . dat” , sep=”” )

#View( data )

#de f i n e parameters

npulse<−320

dkv<−0 #when only one v e l o c i t y , we need to s e t dkv=0.

phasepoint<−25

wd = 5

step = 0.1

#####################
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nmat<−(wd/step+1)

######################################################

sp l 1<− dim(data ) [ 1 ] /npulse #number o f each group by npu l se

data sort n <− data [ order (data [ , 6 ] ) , ]

s p l data=l i s t ( )

for ( j in 1 : npulse ) {

m=(j−1)∗ sp l 1+1

data sort n pha<− data sort n [m: (m+spl1 −1) , ]

data sort n pha<− data sort n pha [ order (data sort n pha [ , 1 ] ) , ]

data sort<−data sort n pha [ , 3 : 5 ]

s p l data<−append( s p l data , data sort )}

#View( s p l data )

ob<−length ( s p l data [ [ 1 ] ] )

matpoint <− ob/ ( dkv+1)/phasepoint #6615/3/5=441

f=as . vector ( 1 : matpoint )

f o r c e=as . vector ( 1 : matpoint )
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#T for c e=0

Force=NULL

i=1

for ( i in 1 : npulse ) {

for (m in 1 : ( matpoint∗( dkv+1) ) ) {

j<−c ( 1 : ob ) #we have 3 v e l o c i t y

f [m]<−sum( s p l data [ [ 3 ∗ i ] ] [ which ( j%%( matpoint∗( dkv+1) )==m) ] )

f [ matpoint∗( dkv+1) ]<−sum( s p l data [ [ 3 ∗ i ] ] [ which ( j%%( matpoint

∗( dkv+1) )==0) ] )

}

f o r c e<−f /phasepoint

#Table<−data . frame ( s p l data [ [ 3∗( i−1)+2] ] , s p l data [ [ 3∗( i−1)+1] ] ,

f o r c e )

Force<−append( Force , f o r c e )

}

save . image ( ”˜/hezhang/SBU/data/data15 . RData” )

##########################################################

#p l o t

i=1

matrix<−matrix ( Force [(1+ matpoint ) : ( matpoint+matpoint ) ] ,nrow=nmat ,

ncol=nmat , byrow = TRUE,dimnames = NULL)
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rownames(matrix ) <− s p l data [ [ 3 ∗( i −1) + 1 ] ] [ 1 : nmat ]

colnames (matrix )<− s p l data [ [ 3 ∗( i −1) + 2 ] ] [ 1 : nmat ]

heatmap (matrix , Rowv=NA, Colv=NA, col = heat . colors (200) , scale=”

none” , margins=c (8 , 10 ) )

################################################

name<−paste ( c ( ” p ic15 ” ) , 1 : npulse , sep=”” )

# ex t r a c t p l o t

for ( i in 1 : npulse ) {

png (name [ i ] ,w=2000 ,h=2000)

matrix2<−matrix ( Force [(1+( i −1)∗matpoint ) : ( i∗matpoint ) ] ,nrow=nmat ,

ncol=nmat , byrow = TRUE,dimnames = NULL)

rownames( matrix2 ) <− s p l data [ [ 3 ∗( i −1) + 1 ] ] [ ( ( i −1)∗nmat+1) : ( i∗nmat)

]

colnames ( matrix2 ) <− s p l data [ [ 3 ∗( i −1) + 2 ] ] [ ( ( i −1)∗nmat+1) : ( i∗nmat)

]

heatmap ( matrix2 , Rowv=NA, Colv=NA, col = heat . colors (200) , scale=”

none” , margins=c (8 , 10 ) )

dev . of f ( )

}
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############################################

#dynamic frame

in s ta l l . packages ( ” grDev ices ” )

l ibrary ( animation )

l ibrary ( grDev ices )

oopt = ani . options ( i n t e r v a l = 0 . 2 , nmax = npulse , an i . type = ”png”

)

#save g i f

in s ta l l . packages ( ” animation ” )

l ibrary ( animation )

saveGIF (

for ( i in 1 : npulse ){

matrix1<−matrix ( Force [(1+( i −1)∗matpoint ) : ( i∗matpoint ) ] ,nrow=

nmat , ncol=nmat , byrow = TRUE,dimnames = NULL)

rownames( matrix1 ) <− s p l data [ [ 3 ∗( i −1) + 1 ] ] [ ( ( i −1)∗nmat+1) : ( i∗

nmat) ]

colnames ( matrix1 ) <− s p l data [ [ 3 ∗( i −1) + 2 ] ] [ ( ( i −1)∗nmat+1) : ( i∗

nmat) ]

heatmap ( matrix1 , Rowv=NA, Colv=NA, col = heat . colors (200) ,

scale=”none” , margins=c (8 , 10 ) )

ani . pause ( ) ## pause f o r a wh i l e ( ’ i n t e r v a l ’ )
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} ,

movie . name = ” pic11 . g i f ”

)

#genera te html wi th but ton

saveHTML(

for ( i in 1 : npulse ){

matrix1<−matrix ( Force [(1+( i −1)∗matpoint ) : ( i∗matpoint ) ] ,nrow=

nmat , ncol=nmat , byrow = TRUE,dimnames = NULL)

rownames( matrix1 ) <− s p l data [ [ 3 ∗( i −1) + 1 ] ] [ ( ( i −1)∗nmat+1) : ( i∗

nmat) ]

colnames ( matrix1 ) <− s p l data [ [ 3 ∗( i −1) + 2 ] ] [ ( ( i −1)∗nmat+1) : ( i∗

nmat) ]

heatmap ( matrix1 , Rowv=NA, Colv=NA, col = heat . colors (200) ,

scale=”none” , margins=c (8 , 10 ) )

ani . pause ( ) ## pause f o r a wh i l e ( ’ i n t e r v a l ’ )

}

, single . opts = ” ’ cont ro l s ’ : [ ’ f i r s t ’ , ’ prev ious ’ , ’ play ’ , ’ next ’ ,

’ l a s t ’ , ’ loop ’ , ’ speed ’ ] , ’ delayMin ’ : 0” , autoplay = TRUE,

i n t e r v a l = 0 . 5 ,

, h t m l f i l e = ” data13 . html” , an i . he ight = 800 , ani . width = 800 ,

t i t l e = ” f o r c e map” )

#change 4 name : i n i t i a l d a t a f i l e , name , s a v e g i f , saveHTML �
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