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Abstract of the Dissertation

The study of nonequilibrium dissipative quantum
dynamics and applications to energy transport

and quantum information processes

by

Zhedong Zhang

Doctor of Philosophy

in

Physics

Stony Brook University

2016

Nonequilibrium quantum physics is of fundamental importance and in-
terest. It is still an extremely hard issue even in today’s theoretical physics
because of the lack of the knowledge on the basic theories, like the nonequilib-
rium quantum statistical mechanics. The recent advances on theory and ex-
periments reveal the essentiality of nonequilibrium quantum dynamics on ex-
plaining as well as understanding many interesting phenomenon, i.e., the ul-
trafast energy transfer & long-survived quantum coherence in organic molecules,
quantum phase transition and the novel transport properties of superfluid gas
at low temperature. Here we will focus on the nonequilibrium quantum dy-
namics relaxing towards the steady state breaking the detailed balance, since
this still remains elusive especially at far-from-equilibrium regime.

Firstly we establish a theoretical framework in terms of curl quantum flux
to uncover and profoundly understand the intrinsic relation between quan-
tum coherence in systems and nonequilibriumness. This provides the micro-
scopic explanation for the enhancement of coherence in molecular junctions at
far-from-equilibrium. Secondly we explore the dynamical relaxation process
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towards the nonequilibrium steady state and study the important contribu-
tion of coherence to the dephasing time scale as well as dynamical energy
transport. Moreover we also uncover the mechanism to explain long-lived co-
herence by effective field theory: the discrete molecular vibrations effectively
weaken the exciton-environment interaction, due to the polaron effect. This
subsequently demonstrates the role of vibrational coherence which greatly
contributes to long-lived feature of the excitonic coherence observed in fem-
tosecond experiments.

As inspired by the quantum information process, we finally study the
dynamics of spin arrays coupled to nuclear spin environments via the hyper-
fine interaction. This uncovers the rapid coherent oscillations of coherence
and entanglement under detailed-balance-breaking, which has never been ob-
served before, i.e., Overhauser noise.
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Chapter 1

Introduction

Nonequilibrium quantum physics is of fundamental importance and interest
[2, 3, 4, 5, 6]. It is still an extremely hard issue even in today’s theoretical
physics because of the lack of the knowledge on the basic theories, like the
nonequilibrium quantum statistical mechanics. The recent advances on both
theory and experiments reveal the fact that the nonequilibrium quantum dy-
namics plays an essential role on explaining as well as understanding many
interesting phenomenons, i.e., the ultrafast energy transfer [7, 8, 9, 10] &
long-survived quantum coherence in organic molecules [11, 12, 13, 14, 15],
quantum phase transition [16, 17, 18, 19, 20] and the novel transport prop-
erties of superfluid gas at low temperature. On the other hand, the nonequi-
librium quantum dynamics with detailed-balance-breaking at steady state
still remains elusive due to the relationship between the far-from-equilibrium
and quantum nature, i.e., coherence and entanglement. Recently it has been
shown that in molecular junctions the charge transport can be promoted
by steady-state coherence as the system deviates from equilibrium. As is
known, the environmental fluctuations always cause the dissipation and loss
of coherence in quantum systems [21, 22], which has been widely reflected in
spin-qubit dynamics in the study of quantum information. This motivates the
exploration of the nonequilibriumness generated by multiple environments in
mitigating or eliminating the decoherence.

The role of coherence in nonequilibrium quantum dynamics is inher-
ently significant and has non-trivial physical features. For example, the
solar cells and photosynthetic process have shown the evidence of quantum
coherence which strongly correlates to the energy conversion and transfer
[12, 13, 14, 15, 23]. The remarkably efficient energy transfer accompanied by
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the long-lived coherence was observed in two-dimensional femtosecond elec-
tronic spectroscopy [23, 24, 25]. This motivates the further investigations
of the quantum nature in the molecular aggregates with detailed-balance-
breaking. As we discuss in more details in the following chapters, the long-
surviving time scale of coherence is related to some discrete intramolecu-
lar vibrations [26, 27, 28]. This subsequently results in the breakdown of
Born-Oppenheimer adiabatic approximation [29, 30] and the conventional
approaches to the problems may need to be abandoned or generalized.

In Chapter 2, we establish a theoretical framework in terms of curl flux for
the nonequilibrium quantum dynamical systems at steady state [31, 32, 33].
The nonequilibriumness is realized by connecting the system to two envi-
ronments with temperature or chemical potential gradient. We find that the
coherence can be dramatically enhanced by nonequilibriumness quantified by
the curl flux. This provides the microscopic explanation for the enhancement
of coherence in molecular junctions at far-from-equilibrium. In addition to
the steady-state behavior with detailed-balance-breaking, the relaxation pro-
cess towards the nonequilibrium steady-state recently attracted much atten-
tion, which is studied in Chapter 3 [34, 35]. We demonstrate the non-trivial
contribution of coherence to the dephasing timescale and dynamical energy
transport, by showing the failure of secular approximation introduced before.
Contrary to the previous work [36, 37], a coherent process with t1 < t2 is ex-
actly elucidated, where t1 and t2 are the relaxation timescales of population
and coherence dynamics, respectively.

Another important issue in the dynamical relaxation of open quantum
systems is the long-lived coherence in some molecular aggregates, recently
observed in two-dimensional femtosecond spectroscopy [23, 24, 25]. Despite
of the numerical simulations which can recover such phenomenon by includ-
ing the molecular vibrations [27], we further uncover the mechanism in a
general scenario to explain the phenomenon based on effective field theory:
the discrete molecular vibrations effectively weaken the exciton-environment
interaction, due to the polarons formed by exciton-vibration interaction. This
subsequently demonstrates that the vibrational coherence cannot be ignored
for understanding the long-lived feature of excitonic coherence, which was
debated for a long period before.

As inspired by the recent progress of quantum information sciences [38,
39, 40, 41], we also study in the chapter 4 the dynamical relaxation of spin
arrays immersed in the noise produced by nuclear spins. We uncover a novel
rapid oscillation of the coherence, fidelity of the collective quantum states of
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spin qubits and quantum entanglement, along with large gradient of chemical
potential in nuclear spins. This is lacking to be predicted previously and orig-
inates intrinsically from the nonequilibrium-induced net current, which quan-
tifies the degree of deviation from equilibrium [31, 33]. Such nonequilibrium-
induced coherent oscillation can be feasible in the experiments, by means of
the cold-ion-based quantum simulations as eventually pointed out in chapter
4.
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Chapter 2

Curl flux, coherence and
population landscape of
nonequlibrium quantum
dynamics

The contents in this chapter are based on Ref.[1, 31, 33].

2.1 General framework of nonequilibrium clas-

sical dynamics

Nonequilibrium dynamics with detailed-balance-breaking plays an important
role in many processes including the energy dissipation by environments,
e.g., charge transport in molecular junction, ultracold gas flowing between
two atomic reservoirs and even the energy transport in biological systems.
Classically, a wide range of systems can be dynamically governed by Fokker-
Planck equation [42]. In three-dimensional space, it is of the form

∂

∂t
P (r, t) = −∇ · (FP (r, t)) +∇ · ∇ · (DP (r, t)) (2.1.0.1)

where P (r, t) is the spacial probability density satisfying the normalization
condition

∫

P (r, t)d3r = 1. F is the drift force produced by random collision
with environments and D is the diffusion tensor describing the fluctuations
during the diffusion. To further elucidate the configuration described by the
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Fokker-Planck equation, it is convenient to work in terms of Langevin equa-
tion, corresponding to the probability description by Fokker-Planck equation
above

ṙ = F(r) + f(t) (2.1.0.2)

where f(t) is the so-called stochastic force, which quantifies the random
system-environment collisions and subsequently leads to the random trajec-
tories. Usually only the statistical properties of this stochastic force can be
obtained: 〈f(t)〉 = 0, 〈f(t)f(t′)〉 = 2Dδ(t− t′) under the white noise assump-
tion. This reveals that the diffusion matrix D describes the random effect of
stochastic force on the system, including the magnitude and orientation. It
can be precisely shown that the two descriptions by probability and stochas-
tic trajectories are equivalent on predicting the statistical behaviors of the
system, under the approximation of weak noise [42]. For our purpose of ob-
taining the general theoretical framework, we will focus on the probability
description here and after.

In most circumstance, the steady state behaviors are what people are
mostly interested, namely, the case ∂tP = 0. For this case one has∇·J(r, t) =
0 where

J(r, t) = FPss(r, t)−∇ · (DPss(r, t)) (2.1.0.3)

by writing the Fokker-Planck equation in the form of continuity equation
∂tP + ∇ · J = 0 and J is the curl flux of probability. This indicates two
different processes: (1) J = 0 and (2) J = ∇×A where A is another vector
field. As we know, (1) means the protection of detailed balance, indicating
the equilibrium processes while (2) results in the detailed-balance-breaking,
leading to the nonequilibrium feature. The latter one is recently shown to be
the origin of many important phenomenons, such as the robust limit cycle
oscillation [43, 44, 45, 1, 46]. In terms of the curl flux J, the driving force
can be written as [1]

F̃ = −D · ∇Uss +
Jss

Pss

(2.1.0.4)

where the effective driving force is F̃ = F−∇·D. For the constant diffusion
F̃ = F. Uss = −lnPss is defined as potential landscape. The force decom-
position in Eq.(2.1.0.4) shows that the driving force acting on the system is
contributed by two parts: the gradient of landscape and the curl flux. For
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Figure 2.1: (Color online) Potential energy landscape with Mexican hat like
closed ring valley shape [1]. The blue arrows represent the flux, and the white
arrows represent the force from negative gradient of the energy landscape.

the equilibrium processes (reversal) the force is only determined by land-
scape F̃ = −D ·∇Uss, which reflects that the potential landscape completely
governs the dynamics of the system. This is in analogy to the Hamilton
dynamics [47] in conserved force field. When it comes to the irreversible pro-
cesses with detailed-balance-breaking, the full dynamics of system can not
only be governed by potential landscape, but indeed is also determined by
the curl flux breaking the detailed balance. Such residue part of the force, for
example, leads to the robust limit cycle oscillation in many chemical systems
with the Mexican-hat-like landscape, which cannot be predicted by consid-
ering the landscape only. As shown in Fig.2.1, the landscape attracts the
system heading to the local minimums of the landscape surface while the
curl flux drives the unidirectional motion of the system in the valley of the
landscape. In contrast, the system will reside at the valley of landscape in
the equilibrium case without the additional driving force.

Besides the Fokker-Planck equation in continuous space, it is also signifi-
cant to study the dynamics in discrete space, which is alternatively governed
by Master Equation

Ṗm = −
∑

n 6=m

MnmPm +
∑

n 6=m

MmnPn (2.1.0.5)

where the matrix elementMmn describes the transition probability from state
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n to statem and it satisfies
∑

nMnm = 0 due to the probability conservation.
This M matrix is determined by the intrinsic information of the interactions
of system with environments. As similar as the continuous case, the steady
state leads to (under Markovian approximation)

∑

n 6=m

MmnPn −
∑

n 6=m

MnmPm = 0 (2.1.0.6)

which indicates two processes as well: (1)MmnPn =MnmPm and (2)MmnPn−
MnmPm 6= 0. The former recovers the standard detailed-balance condition
in statistical mechanics and the latter results in the nonequilibrium pro-
cesses with detailed-balance-breaking which goes beyond the framework of
conventional statistical mechanics. It is straightforward to show that (1) is
definitely satisfied at thermal equilibrium. In general it is proper to introduce
the net-flux matrix

Cmn =MnmP
ss
m − αMnmP

ss
m (2.1.0.7)

where αMnmP
ss
m = min(MnmP

ss
m ,MmnP

ss
n ). Cmn is called net flux from state

m to state n and obviously Cmn vanishes at equilibrium. For the nonequi-
librium case, Cmn 6= 0 also quantifies the degree of the deviation from equi-
librium at microscopic level [31, 48]. Mathematically the net flux can be
decomposed into the superposition of various closed loops if the following
theorem is satisfied [48]:

Theorem 1 The net flux matrix C can be decomposed into C =
∑Q

v=1R
(v)

where R(v) is the v-th closed curl matrix (circular and divergent free), if the
following conditions are satisfied

(1). Cmn ≥ 0 for m 6= n and Cnn = 0;

(2). CmnCnm = 0 for m 6= n;

(3).
∑

m

Cmn =
∑

n

Cmn

This theorem can be understood as follow: The condition (2) in theorem
actually means the unidirection of the flux (e.g., C12C21 = 0 indicates only
one direction of the flow can survive !), based on the requirement in condition
(1); condition (3) is equivalent to the stationary distribution of population
at steady state and the conservation of total population as well. The above

7



flux-decomposition theorem was mathematically proven at classical level [48].
It is, however, also applicable for the quantum processes at steady state, as
what will be elucidated later.

So far, we obtained the theoretical framework for describing in a gen-
eral scenario the nonequilibrium classical dynamics with detailed-balance-
breaking, in both continuous and discrete spaces. The curl flux (continuous)
and net flux (discrete) play an important role on governing the full dynam-
ics. As we will see later, these two types of descriptions can be generalized to
quantum systems to describe the irreversible dynamics in microscopic world.
The flux deviating from equilibrium will be shown to strongly correlate to
the quantum coherence and entanglement.

2.2 General framework for nonequilibrium quan-

tum dynamics

Here we will establish a general framework and formal description on the
quantum non-equilibrium steady state, the curl flux for quantifying the de-
gree of nonequilibriumness as well as the quantum transport. In the forth-
coming section more details of such theoretical framework will be illustrated
by investigating the energy (charge) transport and thermodynamics of molec-
ular systems. The general Hamiltonian of a quantum system interacting with
M environments is of the form

H0 =
∑

n,m

hnm|ψn〉〈ψm|+
M
∑

i=1

∑

k,σ

~ωa
(i),†
kσ a

(i)
kσ (2.2.0.1)

Hint =
∑

i,〈n,m〉

∑

k,σ

g
(i),nm
kσ

(

|ψn〉〈ψm|a(i),†kσ + |ψm〉〈ψn|a(i)kσ

)

(2.2.0.2)

where 〈n,m〉 indicates that only the pairs of states n, m with energies
En < Em are considered. H0 represents the free Hamiltonian of the entire
system (system + environments) and Hint represents the couplings or inter-
actions between the system and environments. Here only the single-quanta
process is included owing to the low probability of higher order processes.
Under the assumption that the environments are of much larger size than
the system, the environments can be approximately treated as the static en-
semble at thermal equilibrium and we can then study the dynamics of the
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system by tracing out the environments (or reservoirs), which leads to the
master equation of the reduced density matrix:

dρ

dt
=
i

~
[ρ,HS]−

1

2~2

∑

ωµ

∑

ων

γµν(ωµ)

(

A†(ωµ)A(ων)ρ (2.2.0.3)

− A(ων)ρA
†(ωµ)

)

+ h.c. +O
(

g2
)

(2.2.0.4)

where the density matrix can be expanded in terms of the coupling strength
between system and environments: ρt(t) = ρ(t)⊗ρR(0)+ρc(t). In the regime
of weak coupling, the Markovian approximation where the environments re-
lax in very fast timescale compared to system so that system is memoryless
is valid and the operator master equation above can be properly truncated
up to the 2nd order of system-environment coupling. It is usually convenient
to write the quantum master equation (QME) into Liouville space in which
the matrix forms a vector and subsequently the QME reads |ρ̇〉 = M̂|ρ〉.
In such superspace the inner product of two matrices (vectors) is defined
as 〈A|B〉 = Tr(A†B). For simplicity, we write the the matrix M̂ as block
form, by separating the population (diagonal elements) and coherence terms
(off-diagonal elements) of density matrix

∂

∂t

(

ρp

ρc

)

=

(

Mp Mpc

Mcp Mc

)(

ρp

ρc

)

(2.2.0.5)

Here, Mp represents the transition matrix in population space. Mc repre-
sents entanglement between coherence dynamics. Mpc and Mcp describe the
entanglement between population and coherence dynamics, which in some
circumstance, has non-trivial effect to the population dynamics.

To study the population dynamics we apply the Laplace transform to the
coherence components

%c(s) = (s−Mc)
−1 Mcp%p(s) + (s−Mc)

−1 Mc%c(0) (2.2.0.6)

and the inverse Laplace transform to which gives

ρc(t) =

∫ t

0

eMc(t−τ)Mcpρp(τ)dτ + eMctρc(0) (2.2.0.7)
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By substituting Eq.(2.2.0.7) into the dynamical equation for population part
in Eq.(2.2.0.5) we obtain the reduced QME in population space

∂ρp
∂t

= Mpρp +

∫ t

0

[

Mpce
Mc(t−τ)Mcp

]

ρp(τ)dτ +Mpce
Mctρc(0) (2.2.0.8)

which indicates that the quantum dynamics results in a memory effect other
than the random collisions. Thus the dynamical equations of quantum sys-
tems in population space follow integral-differential equations. This signifi-
cantly increases the complexity for solving them, even on the numerical level.
For the quantum steady state at long times, however, a simple form of these
equations can be derived, by exactly evaluating the integrals in time domain

lim
t→∞

∫ t

0

eMc(t−τ)dτ = −M−1
c (2.2.0.9)

which leads to the reduced QME at steady state

(

Mp −MpcM−1
c Mcp

)

ρssp = 0 (2.2.0.10)

Notice that the condition of negativity of the eigenvalues of matrix Mc is es-
sential, in order to ensure the convergence of the limit in Eq.(2.2.0.9). There-
fore we can define the transfer matrix as Tmn = Ap

nn,mmρ
p
mm for m 6= n where

Ap = Mp −MpcM−1
c Mcp and Tmn = 0 for m = n. The transfer matrix can

then be decomposed into symmetric and asymmetric parts Tmn = T s
mn+T

as
mn

where T s
mn = αAp

nmρ
p
m = min(Ap

nmρ
p
m,Ap

mnρ
p
n) and T

as
mn = Ap

nmρ
p
m−αAp

nmρ
p
m.

We can see immediately that the symmetric transfer matrix T s preserves the
detailed balance and then governs the equilibrium part of full dynamics. On
the other hand, it can be also seen that the asymmetric transfer matrix T as

leads to the breakdown of detailed balance, giving the time-irreversibility
and nonvanishing net quantum flux at steady state. Since the transfer ma-
trix in some sense controls the dynamics of the quantum system, it is shown
that the full quantum dynamics can be decomposed into the contributions
by two driving forces. One from T s preserves the detailed balance govern-
ing the equilibrium part of dynamics while the other from T as causes the
detailed-balance-breaking, giving the flux contribution to driving force and
governing the nonequilibrium part of dynamics. This is in similar spirit as
the classical case [1, 48] discussed before. Moreover, the driving force obey-
ing detailed balance largely depends on the steady-state populations while

10



the other one is mainly determined by the population imbalance reflected by
T as. We will further investigate the properties of nonvanishing flux produced
by anti-symmetric transfer matrix T as, as a character of nonequilibriumness.

Alternatively, the asymmetric transfer matrix gives rise to the net quan-
tum flux between different pairs of states

Jmn = Ap
nmρ

p
m − αAp

nmρ
p
m (2.2.0.11)

which obviously satisfies the condition in the Theorem mentioned before.
Hence it can be decomposed into superposition of closed loop fluxes. Fur-
thermore we should notice that although the Markov chain looks similar as
the classical case, the coefficient Ap

nn,mm and populations ρpm are significantly
affected by quantum coherence lacking in classical systems. This is because
of the existence of Mpc and Mcp in the form of Ap. We will focus our at-
tention in the following study on the relation between net quantum flux and
quantum coherence.

2.3 Energy and charge transport in molecu-

lar system

We will illustrate our ideas presented above by the energy (charge) transport
process in single molecules. The contents in this section are based on Ref.[31].

2.3.1 Hamiltonian and quantum master equation

Coupled to heat (bosonic) reservoirs

Energy transfer in molecules happens between donor and acceptor sites, after
being excited from ground state. To be simple, we assume the excitation
energies of these two sites are of a small difference, namely, |ε1 − ε2| �
min(ε1, ε2). In the language of excitons, this system can be modeled as
asymmetric double wells, as shown schematically in Fig. 1. Since we would
discuss the transport between different sites in molecules, it is clearer to
describe the system in local representation. The subspace relevant to our
discussion is spanned by the ground state and two additional excitations

|Ω〉 = B†
g|0〉, |1〉 = B†

1Bg|Ω〉, |2〉 = B†
2Bg|Ω〉 (2.3.1.1)
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where |0〉 stands for the vacuum, Bi and B
†
j are the annihilation and creation

operators for electrons in molecules. The transport in molecules can be
modeled by the system interacting with two identical reservoirs with different
temperatures. The free and interaction Hamiltonian then read

HS = Eg|Ω〉〈Ω|+ ε1η
†
1η1 + ε2η

†
2η2 +∆(η†1η2 + η†2η2) (2.3.1.2)

HR =
∑

k,σ

~ωkσa
†
kσakσ +

∑

q,s

~ωqsa
†
qsaqs (2.3.1.3)

Hint =
∑

k,σ

λkσ(η
†
2akσ + η2a

†
kσ) +

∑

q,s

λqs(η
†
1bqs + η1a

†
qs) (2.3.1.4)

where η and η† are the annihilation and creation operators for excitons which
obey the Fermi-Dirac statistics {ηa, η†b} = δab, {ηa, ηb} = 0. The scat-
tering between excitons is neglected here. The annihilation and creation
operators for the environments (reservoirs) satisfy Bose-Einstein relations:
[akσ, a

†
k′σ′ ] = δk,k′δσσ′ , [akσ, ak′σ′ ] = 0. ∆ represents the electronic cou-

pling (tunneling strength) between the two sites. Here we do not include
the vibrational degree of freedoms of the nuclei, due to their fast relaxation
within ∼ 1ps, which is much shorter than the time scale of electronic exci-
tation. However, the electric dephasing occurs on a comparable timescale
to vibrational relaxation in the light-harvesting and Fenna-Matthews-Olson
complexes, therefore we will include this effect in our future work, since this
effect goes beyond the scope of current paper. p and s denote the polar-
izations of the boson (either radiation or phonon) field. In Eq.(2.2.0.6) the
rotating-wave approximation [49] was applied to exciton-photon interaction
term due to the dominant contribution by real absorption and emission. Only
the single-exciton process is important to energy transport and then in the
single-exciton manifold the Hamiltonians (2.2.0.4) and (2.2.0.6) are taken the
forms of HS = Eg|Ω〉〈Ω|+ ε1|1〉〈1|+ ε2|2〉〈2|+∆(|1〉〈2|+ |2〉〈1|) and

Hint =
∑

k,p

λkp

(

σ+
2gakp + σ−

2ga
†
kp

)

+
∑

q,s

λqs
(

σ+
1gbqs + σ−

1gb
†
qs

)

(2.3.1.5)

where the creation and annihilation of excitons were replaced by transition,
namely, η†i → σ+

ig ≡ |i〉〈Ω| and ηi → σ−
ig ≡ |Ω〉〈i| (i = 1, 2), in the single-

exciton manifold. The quantum mechanical tunneling between different sites
delocalizes the wave function over the diameter of molecule, which provides
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Figure 2.2: (Color online) Schematic illustration of the Energy Transport in
Single Molecules and Chemical Reaction AB ↔ C, as discussed in details
in our paper. The two reservoirs keep their own temperatures or chemical
potentials, respectively. The energy or charge (chemical species) will flow
from state |2〉 (the intermediate |AB∗〉) to state |1〉 (|C〉)

an intuitive understanding at first step of effects of quantum coherence on
transport. Using Bogoliubov transformation [50] the system Hamiltonian
in Eq.(2.3.1.4) is diagonalized by switching into delocalized representation.
Therefore it is convenient for us to do the further derivation for the quantum
master equation with the help of the interaction picture [21, 22] (This is
because only the interaction term will appear in the total Hamiltonian and
the calculation can then be simplified).

Since we are interested in the evolution of the variables associated with
the system only, the equation for the reduced density matrix in the subspace
need to be obtained, by performing a partial trace over the reservoir freedoms.
As the coupling strength in Quantum Electrodynamics is of the order of fine
structure constant, the whole solution of density operator can be written as
ρSR (t) = ρS (t)⊗ ρR1(0)⊗ ρR2(0) + ρc (t) with the traceless term in a higher
order of coupling, and the system is assumed to be memoryless, which is so-
called the Markovian approximation. This is valid when the correlation time
scale of reservoirs is much shorter than the time scale for the dynamics of the
system. In other words, the reservoirs have the white noise feature, which is
applicable for the system maintaining in thermal equilibrium. Therefore the
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master equation for reduced density matrix reads

dρS
dt

=
i

~
[ρS, HS]−

1

~2
e−iHSt/~TrR1R2

∫ t

0

ds
[

H̃int(s),
[

H̃int(t), ρ̃S(t)⊗ ρR(0)
]]

eiHSt/~ (2.3.1.6)

On inserting the energy in the interaction picture into the equation of motion
Eq.(2.3.1.6), then tracing out the environments, the QME in our model is
arrived, in the localized representation

ρ̇S =
i

~
[ρS, HS]−

1

2~2
D (ρS) (2.3.1.7)

where the form of superoperator D will be given in detail in appendix A in

Ref.[31]. nω =
[

exp
(

~ω
kBT

)

− 1
]−1

is the Bose average occupation on fre-

quency ω at temperature T . The Weisskopf-Wigner approximation that the
upper limit of integral over time can be extended to infinity due to the rapid
oscillation of the integrand for s� t was used in deriving Eq.(2.3.1.7). Hence
the decay rates induced by photon reservoirs are Γa/~

2 = V
4π2~2

∫

d3k λ2kδ
(

ωk − ω′
ag

)

=

4π2λ
~

ω′3
agr

3
m

8π3c3
, a = 1, 2 where rm ∼ 30nm is the separation between the com-

plex molecules, such as mesobiliverdin (MBV) & dihydrobiliverdin (DBV)
molecules in light harvesting complex [13]. The spectral density J(ω) =

4π2
~λ ω3r3m

8π3c3
and λ is the reorganization energy. After some mathematical

procedures, we can derive the compact form of QME in Liouville space:
∂t|ρ〉 = M|ρ〉, by writing the density matrix as a super-vector: |ρ〉 =
(ρgg, ρ11, ρ22, ρ12, ρ21)

T where M11
22 = M22

11 = 0, M12
21 = M21

12 = 0. Matrix
M is determined by Eq.(3.1.2.10). The analytical expressions for the ele-
ments in M will be given in Appendix A in Ref.[31]. It is easy to verify
that

∑2
a=g Maa

kl = 0 which reveals the charge conservation. Moreover, the
coherence terms quantified by the non-zero off diagonal elements of the den-
sity matrix ρg1 and ρg2 as well as their complex conjugates are absent from
QME in that they are only entangled to themselves in the equations of dy-
namical evolution. Therefore only the coherence between excitations (ρ12
and ρ21) contributes to our goal and the discussion can be restricted into the
5-dimensional space.
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Coupled to chemical (fermionic) reservoirs

To describe the transport of chemical recombination dissociation reaction
AB ↔ C with the vibrationally excited intermediate AB∗, we model the
quantum system interacting with two chemical reservoirs or leads with dif-
ferent chemical potentials which provide the effective chemical pumping for
the system through collisions [51]. The three quantum states are denoted by
|AB〉, |AB∗〉 and |C〉 as schematically shown in Fig.4.3. The Hamiltonian is
of the similar form as the one with bosonic reservoirs

HS = Eg|Ω〉〈Ω|+ ε1c
†
1c1 + ε2c

†
2c2 +∆(c†1c2 + c†2c1)

HR =
∑

k

~νka
†
kak +

∑

q

~νqb
†
qbq

Hint =
∑

k

fk

(

c†2ak + c2a
†
k

)

+
∑

q

fq

(

c†1bq + c1b
†
q

)

(2.3.1.8)

where the operators for chemical reservoirs obey the Fermi-Dirac statistics:
{ak, a†k′} = δkk′ and {bq, b†q′} = δqq′ . ∆ describes the conversion between
states |AB∗〉 and |C〉 by the tunneling through the barrier. The rotating-
wave approximation was applied as well and the occupation will be replaced

by fermionic type: nµ
ω =

[

exp
(

~ω−µ
kBT

)

+ 1
]−1

. Instead of the linear depen-

dence on wave vector in radiation fields, the dispersion relation in solvent
or semiconductor lead can be approximated by a parabolic law, namely,
εk ' ~

2k2

2m∗ where m∗ is the effective mass. Therefore the decay rate reads
Γa/~

2 = 1
~2

∫

dνD(ν)f 2
ν δ(ν − ω′

ag) where D(ν) ∼ √
ν is the density of states,

and the spectrum density is J(ν) = D(ν)f 2
ν = ~λ

2π
ϕ(ν), where ϕ(ν) is a

smooth and dimensionless function, with the magnitude on the order of ∼ 1.
Hence the remaining procedures are the same as the bosonic reservoir case
above and we will skip the details to avoid redundancy. Finally the reduced
QME for fermionic baths can be derived: ∂t|ρ〉 = M|ρ〉 in Liouville space.
Based on these preparations we are able to develop the quantum curl flux
decomposition which will be shown in next section.
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2.3.2 Curl decomposition and nonequilibrium quan-
tum flux

After deriving the QME in detail in last section, we will, in this section,
introduce the curl flux decomposition for quantum steady state which is
crucial because it generates a novel quantum flux quantifying the quantum
transport and the flux directly reflects the detailed balance breaking and
time-irreversibility. The similar decomposition for classical open chemical
system at steady state was discussed before [52, 53]. By eliminating the
off-diagonal components in density matrix from the reduced QME through
Laplace transform we can map the reduced QME into population space, i.e.,
∂t|ρ〉 = H|ρ〉 where H is a matrix with integral kernel (shown in Appendix
B in Ref.[31]) in Liouville space which is the extended Hilbert space and
density matrix elements form a supervector. Consequently the quantum
effects on transport is somewhat equivalent to the memory effect, which has
nothing to do with the mechanisms of collision. This is absent in classical
theory described by classical master equation (CME). In this study, we are
interested in the quantum non-equilibrium steady state so that we evaluate
the integrals by extending the upper limit to ∞ to obtain the reduced QME
at steady state









Mgg
gg − 2Cgg

gg Mgg
11 − 2Cgg

11 Mgg
22 − 2Cgg

22

M11
gg − 2C11

gg M11
11 − 2C11

11 −2C11
22

M22
gg − 2C22

gg −2C22
11 M22

22 − 2C22
22

















ρgg

ρ11

ρ22









= 0 (2.3.2.1)

where Cmn
kl ≡ Re (Mmn

12 M12
kl /M12

12) and M are defined before. As M12
12 gov-

erns the decay rate in the integral kernel, such memorable effect is significant
for large |Re (M12

12) | while it becomes tiny for small |Re (M12
12) |. The reduced

QME in Eq.(2.3.2.1) is of the same form as the CME within Markovian ap-
proximation, but with a different explanation: the quantum effect has already
been contained and reflected through C-matrix by the exact evaluation of the
integral kernel for memory in our QME, in contrast to previous work with
the additional second Markovian approximation [54, 55]. In classical open
systems the C-matrix vanishes.
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Curl quantum flux determined by the non-equilibriumness and tun-
neling

Next we need to introduce the non-equilibrium quantum flux in order to
investigate the quantum transport. First the transfer matrix has to be de-
fined: Tmn

kl = Akl
mnρmn with zero diagonal element. Then this T -matrix can

be decomposed into the following form

T =





0 A11
ggρgg Agg

22ρ22
A11

ggρgg 0 A22
11ρ11

Agg
22ρ22 A22

11ρ11 0



+





0 0 Jq

Jq 0 0
0 Jq 0



 (2.3.2.2)

The reduced QME in population space directly gives the expression Jq =
A11

22ρ22−A22
11ρ11. In Eq.(2.3.2.2) the 1st term of the transfer matrix describes

the equilibrium with detailed balance. The 2nd term is circular that we call
“non-equilibrium quantum flux”, which plays a crucial role in determining
the transport properties of open quantum systems, such as entropy produc-
tion (EPR), dissipation and efficiency. Moreover, the curl flux matrix in
Eq.(2.3.2.2) is closed at steady state, by the application of Theorem 1 be-
fore. By solving the QME at steady state under the further approximation
|∆| � min(ε1, ε2), nε ' 1

2
(nω′

1g
+ nω′

2g
) and Γ = 1

2
(Γ1 + Γ2), we can obtain

the expression for quantum flux in our model (~ω ≡ ε2 − ε1)

J b
q =

2Γ

~2

vb ∆2

~2ω2

1 + 4ub ∆2

~2ω2

, J f
q =

2Γ

~2

vf ∆2

~2ω2

1 + 4uf ∆2

~2ω2

(2.3.2.3)

and

vb =

(

nT2
ε − nT1

ε

)

(n̄ε + 2)
(

1 + 2n̄ε + 3nT1
ε n

T2
ε

) [

1 + Γ2

~4ω2 (n̄ε + 2)2
]

ub =
(n̄ε + 2) (3n̄ε + 2)

4
(

1 + 2n̄ε + 3nT1
ε n

T2
ε

) [

1 + Γ2

~4ω2 (n̄ε + 2)2
]

vf =
(nµ2

ε − nµ1
ε ) (2− n̄ε)

[

1 + Γ2

~4ω2 (2− n̄ε)
2] (1− nµ1

ε n
µ2
ε )

uf =

(

1− n̄2
ε

4

)

[

1 + Γ2

~4ω2 (2− n̄ε)
2] (1− nµ1

ε n
µ2
ε )

(2.3.2.4)
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Figure 2.3: (Color online) Analytical and numerical results for quantum
flux with (a) bosonic and (b) fermionic reservoirs as a function of bias volt-
age. Blue(solid) and red(dashed) lines are for analytical and numerical so-
lutions, respectively. Standard parameters are ε1 = 0.798eV, ε2 = 0.8eV,
λ = 21cm−1, ∆ = 2meV and (a) T1 = 500K, (b) T = 700K

where the function v provides a measure for the effective voltage and de-
tailed balance breaking induced from environments. The flux describes how
much probability flows in a uni-direction from one site to another in unit
time. Therefore, the function v quantifies the degree of non-equilibriumness
away from the equilibrium. Then from the expressions of quantum flux
in Eq.(2.3.2.3), we can see the quantum transport quantified by the non-
equilibrium quantum flux is determined by two factors: non-equilibriumness
quantified by the effective voltage away from equilibrium and the quantum
tunneling. When the effective voltage is zero, the system is at quantum equi-
librium with no quantum flux or quantum transport. On the other hand,
when the effective voltage increases, the quantum flux increases. The degree
of non-equilibriumness drives the quantum transport. In this model, the
quantum transport is realized by tunneling from one site to another. When
∆ = 0, the flux is zero and there is no quantum transport. The quantum flux
increases as the tunneling increases until the tunneling becomes big and the
quantum flux reaches a plateau. The quantum tunneling promotes the quan-
tum transport at moderate regime, in that there is no effective barrier any
more. The further increasing tunneling will not increase the quantum trans-
port further at very large tunneling strength. See next section for further
detailed explanations in a different angle.

Fig.2.3(a) and 2.3(b) give the comparison between our analytical formula
for quantum flux Eq.(2.3.2.3) and the results from numerical simulation,
as functions of bias (for bosonic bath it is temperature difference while for
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fermionic bath it is chemical potential difference). Fig.4.2 shows the varia-
tions of quantum flux for bosonic and fermionic reservoirs with respect to
voltage as well as tunneling strength. Qualitatively, it is known that the
quantum tunneling gives rise to the so-called dark states which is the super-
position of two excited states to make the transfer of energy or charge being
enhanced, but such contribution will reach the saturation at large value of
tunneling. On the other hand it is found that large bias leads to significant
enhancement of flux, which indicates that far-from-equilibrium rather than
near-to-equilibrium is crucial for the enhancement of quantum flux and the
transport. Furthermore, compared to bosonic case, a sharp increase of flux
occurs after a particular value of bias, which is about 0.8eV in our plot. This
is because of the Fermi-Dirac distribution, where the density of excitations
will be much suppressed as the energy becomes larger than Fermi energy.
Another distinction is that for bosonic baths the increase of flux becomes
sharper as the system deviates from equilibrium while for fermionic baths
the flux reaches saturation as the system deviates very far from equilibrium.
This is due to the Pauli exclusion principle that for fermions the occupation
for each frequency is no more than one.

The nontrivial relationships among coherence, tunneling, non-equilibriumness
and quantum flux

Based on QME and the approximation above, we can obtain the quantum
coherence. Furthermore the connection of quantum flux to coherence reads
J b(f)

q = 2∆
~

× |Imρ12|. Notice that the environmental effect was included
in the coherence. Right now we can conclude that coherence enhances the
non-equilibrium flux through a linear law when fixing the tunneling strength,
which reveals the important distinction of the properties of non-equilibrium
quantum system from classical description. In order to see how environments
and quantum coherence affect the flux as well as ETE (CRE), we can write
the coherence in terms of the tunneling strength

|Imρ12| =
Γv

~2ω

∆
~ω

1 + 4u ∆2

~2ω2

(2.3.2.5)

As we can see the coherence has a non-trivial non-monotonic dependence
on tunneling as shown in Fig.4.1(a) and moreover the quantum coherence
is also promoted by voltage when fixing the tunneling. There is a peak of
coherence at ∆c =

~ω
2
√
u
. Then for large ∆ (which indicates a large coupling
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Figure 2.4: (Color online) Quantum flux varies for (a,b)bosonic and
(c,d)fermionic reservoirs with (a,c)voltage and (b,d)tunneling strength. (a,c)
Brown, blue, purple and red curves correspond to ∆ = 3meV, 2meV,
1meV and 0, respectively; (b) Blue, red and purple curves correspond to
T2 = 3000K, 2650K and 2300K, respectively; (d) Blue, purple and red curves
correspond to µ2 = 1.0eV, 0.8eV and 0.6eV, respectively. Standard parame-
ters are ε1 = 0.798eV, ε2 = 0.8eV, λ = 21cm−1, (a,b) T1 = 1000K and (c,d)
T = 900K, µ1 = 0
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Figure 2.5: (Color online) Quantum flux varies as a function of (a) coherence
and (c) voltage function v for both bosonic and fermionic cases. Flux and
coherence are scaled by Γv

4~2u
and Γv

4~2ω
√
u
, respectively. Blue and red curves

correspond to ∆ < ~ω
2
√
u
and ∆ > ~ω

2
√
u
, respectively; (b) Imaginary part

of quantum coherence as a function of tunneling, represented by 2∆
~ω
; (d)

Quantum flux varies as a function of chemical potential difference. Purple,
blue and red lines are for T = 130K, 900K and 1800K, respectively. Standard
parameters are ε1 = 0.9eV, ε2 = 1.2eV, ∆ = 0.2eV, λ = 21cm−1 and µ1 = 0
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and transport between the molecules) the height of barrier in the middle is
effectively lowered. The state |2〉 is switched to |2′〉 with excitation energy
ε′2 ' ε̄ + ∆ where ε̄ ≡ 1

2
(ε1 + ε2) and further the distribution of bosons

(fermions)∼ e−β∆. From the quantum-classical correspondence we know that
|2′〉 is approaching the classical limit, which means the behavior of particles
at this state is close to classical motion. Thus in fact |2′〉 becomes a quasi-
classical state, which leads to the reduction of coherence for large tunneling.
On the other hand, there is an upper limit for tunneling, roughly ∆ ∼ ε̄,
since the lowering of barrier gives rise to the shallowness of the first well,
which as a result, leads to the vanishing of bound state if ∆ � ε̄.

We next explore the relationship between coherence and quantum flux.
By eliminating ∆ in Eq.(2.3.2.3) and (2.3.2.5) it leads to the alternative
expression of flux

J b(f)
q =

Γv

4~2u

(

1±
√

1− 16~4ω2u|Imρ12|2
Γ2v2

)

(2.3.2.6)

where − and + correspond to 0 < ∆ < ~ω
2
√
u
and ∆ > ~ω

2
√
u
, respectively. For

the small tunneling the flux has the asymptotic form J ' 2~2ω2

Γv
|Imρ12|2. The

behavior of flux with respect to coherence is plotted in Fig.4.1(b).
As is shown, J first monotonically increases by the improvement of coher-

ence, but then the reduction of the coherence gives rise to the enhancement
of the flux. This is mainly because of the non-monotonic behavior of co-
herence as a function of quantum tunneling discussed above. In the second
regime, the increasing tunneling still improves quantum transport but the
quasi-classical limit reduces the coherence.

As shown in Eq.(2.3.2.6) and Fig.4.1(c), we see the non-monotonic behav-
ior of the flux with respect to the non-equilibriumness characterized by the
voltage at fixed coherence. Again, this non-trivial relationship of flux versus
non-equilibriumness quantified by the effective voltage is from the non-trivial
relationship between the tunneling and coherence discussed before. Physi-
cally Fig.4.1(c) can be explained as the consumption of the energy is used
for keeping the coherence such that at small tunneling ∆ needs to reduce
in order to balance out the improvement of coherence by voltage since ∆
enhances coherence. Hence equivalently much energy absorbed from envi-
ronments is used to fix the coherence but less to improve flux. In contrast, at
large tunneling ∆ needs to increase, in order to balance out the improvement
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of coherence by voltage, therefore much more energy is used to enhance the
flux instead of keeping coherence.

We should note that tunneling and voltage are easier to control in the
experiment. Therefore, our predictions of dependence of the quantum trans-
port quantified by the flux and tunneling as well as voltage can be tested
in the experiment. By the interference techniques developed from quantum
optics, researchers have began to have the control of the coherence. Our
predictions of nontrivial dependence of the tunneling and coherence at fixed
voltage, the flux and effective voltage at fixed coherence, as well as flux and
coherence at fixed voltage, should be tested in the upcoming experiments.

Before leaving this subsection, the non-equilibriumness of quantum sys-
tems with non-resonance (shown in Fig.2(d)) will be discussed in detail in
appendix B. As the flux decomposition has been carried out at the classical
level, we will discuss the comparison of our quantum results to the classical
limit in following section.

The Eq.(2.3.2.3)-(2.3.2.6) & discussion above and the comparison to clas-
sical description will be carried out in next section and Eq.(2.3.4.1). These,
together with (2.3.4.5) and (2.3.4.8) on efficiency and non-equilibrium quan-
tum thermodynamics, construct the main achievements (concepts) and theo-
retical framework put forward in this paper.

2.3.3 Comparison with classical description

Here we will discuss the classical correspondence. The non-trivial classical
limit in this model is that (a) Ω � ω and (b) high temperature where (a) keeps
the non-vanishing transition rate and also effectively suppress the height of
the barrier to ensure one energy level being closed to the top of barrier, (b)
is somewhat equivalent to ~ → 0. Therefore the flux and coherence can be
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expanded in terms of ω/Ω and ε/kBT (γ ≡ Γ/~2, ∆ ≡ ~Ω)

J b
q =

2γ

3

T2 − T1
T1 + T2

+O
(

ε1 + ε2
kBT1

,
ε1 + ε2
kBT2

,
ω

Ω

)

J f
q =

γ

6

µ2 − µ1

kBT
+O

(

ε1 − µ1

kBT
,
ε2 − µ2

kBT
,
ω

Ω

)

|Imρb12| =
γ

3ω

T2 − T1
T1 + T2

(ω

Ω

)

+O
(

ε1 + ε2
kBT1

,
ε1 + ε2
kBT2

,
ω2

Ω2

)

|Imρf12| =
γ

12ω

µ2 − µ1

kBT

(ω

Ω

)

+O
(

ε1 − µ1

kBT
,
ε2 − µ2

kBT
,
ω2

Ω2

)

(2.3.3.1)

The leading order term in flux is the classical correspondence where ~ disap-
peared and it is also proportional to the voltage. Quantum effect is attributed
to the higher order terms. On the other hand, we can also see that coherence
effect comes in since the order of ω/Ω.

On the other hand, by the measurement of coherence the quantum flux
shows a non-monotonic behavior as a function of coherence, according to
Eq.(2.3.2.6). This is due to the up-hill and down-hill behaviors of coherence
as explained in detail in Fig.4.1(a) and 4.1(b) before. From this point, it
should be noted that in open quantum systems the coherence does not always
enhance the flux and transport, but sometimes it can inhibit them, due to
the mixture of classical behavior of motion.

Furthermore, as we know that classical flux monotonically increases as
external voltage, shown in Eq.(2.3.3.1). In quantum case, however, it can
be clearly illustrated from Eq.(2.3.2.6) that external voltage leads to the
decrease of the flux for small tunneling and increase of the flux for large
tunneling, by fixing the value of coherence as shown in Fig.4.1(c). The ex-
planations of the behavior is given already in the previous subsection. In
next section we will discuss the macroscopic quantum transport relevant to
experiments.
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2.3.4 Quantum transport and non-equilibrium ther-
modynamics

Transfer Efficiency

From the definition of our quantum flux we know that it provides a mea-
surement on how much energy (chemical species) is transported from one
site to another. Therefore the energy transfer efficiency (ETE) and chemical
reaction efficiency (or charge transfer efficiency) CRE can be introduced in
terms of flux, so that η = Jq/(Jq +Agg

22ρ22). After some mathematical steps
we have

ηb =

(

nT2
ε − nT1

ε

)

∆2

~2ω2

nT2
ε

[

B (T1, T2, ω) + (n̄ε + 2) ∆2

~2ω2

]

ηf =
(nµ2

ε − nµ1
ε ) ∆2

~2ω2

nµ2
ε

[

F (µ1, µ2, T, ω) + (2− n̄ε)
∆2

~2ω2

] (2.3.4.1)

where the two functions B and F are defined as

B (T1, T2, ω) =

(

nT1
ε + 1

) (

nT2
ε + 1

)

[

1 + Γ2

~4ω2 (n̄ε + 2)2
]

n̄ε + 2

F (µ1, µ2, T, ω) =
(1− nµ1

ε ) (1− nµ2
ε )
[

1 + Γ2

~4ω2 (2− n̄ε)
2
]

2− n̄ε

(2.3.4.2)

As shown in Fig.10 in Appendix in Ref.[31], there are two plateaus in CRE,
in contrast to flux. The second one is easy to understand which is due
to the Pauli exclusion principle as the same as in flux, the reason for the
first plateau is that at the beginning there is an improvement of CRE due
to the non-vanishing flux in the non-equilibrium regime. As voltage from
environments is below the excitation energy gap ε2 the excitations absorbed
by the molecular system is suppressed until reaching the gap, then it leads
to an abrupt increase to another higher plateau. This is because of the
significant improvement of excitations, based on Fermi-Dirac statistics.

In terms of the voltage (temperature difference for heat transport and
chemical potential difference for chemical reactions) and quantum coherence,
we can use Eq.(2.3.2.5) and (2.3.4.1) to eliminate the tunneling and then ob-
tain the dependence of ETE and CRE (CTE) on voltage and coherence. In
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Figure 2.6: (Color online) ETE for bosons and CRE(CTE) for fermions vary
with coherence, by fixing the voltage. (a) Brown, blue and red lines are for
T2 = 1100K, 1400K and 1800K, respectively; (b) Red, purple and blue lines
are for µ2 = 0.74eV, 0.87eV and 1.0eV, respectively. Standard parameters are
ε1 = 0.798eV, ε2 = 0.8eV, λ = 21cm−1, (a) T1 = 1000K and (b) T = 900K,
µ1 = 0

principle, the effect of coherence can be observed from the interference ex-
periments, such as Hamburg-Brown-Twist setup [21]. Fig.2.6(a) and 2.6(b)
collect the behavior of the ETE as well as the CRE as functions of coherence
at several fixed voltages. For energy transport process in molecules, we found
that by fixing the voltage, the increase of the coherence leads to a significant
improvement of ETE while in the large tunneling regime ETE is significantly
promoted by the reduction of the coherence. For the chemical reaction pro-
cess and the charge transport in molecules, the coherence plays a crucial
role on enhancing the CRE or CTE, as shown in Fig.2.6(b). In the large
tunneling regime the influence of coherence is weak, since it approaches the
quasi-classical regime. Furthermore, for both bosonic and fermionic reser-
voirs the voltage from external environments leads to further improvement
of transfer efficiency, in addition to coherence.

In order to see how the quantum tunneling and environments affect the
ETE and CRE through the bridge of coherence, the ETE and CRE as func-
tions of ∆ as well as voltage, for both bosonic and fermionic baths, are
plotted in Fig.2.7. The tunneling strength and environments characterized
by the effective non-equilibrium voltage are shown to have competition on
improving the ETE(CRE) and they can compensate for each other. Namely,
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Figure 2.7: (Color online) (a,b)ETE and (c,d)CRE for bosonic and fermionic
reservoirs, respectively, vary with tunneling strength and voltage. (a,c) Red,
purple, blue and brown lines are for ∆ = 0meV, 1meV, 2meV and 3meV,
respectively; (b) Red, purple and blue lines are for T2 = 1050K, 1150K and
1300K, respectively; (d) Blue, purple and red lines are for µ2 = 1.00eV,
0.87eV and 0.74eV, respectively. Standard parameters are ε1 = 0.798eV,
ε2 = 0.8eV, λ = 21cm−1, (a,b) T1 = 1000K and (c,d) T = 900K, µ1 = 0

the environments can lead to further enhancement when the hopping leads
to saturation, and vice versa. Obviously, the optimization of ETE(CRE)
cannot be achieved if any of those two aspects contributes too weakly.

Moreover, we can also see that the transfer efficiency of quantum systems
coupled to fermionic environments (CRE) is much better than that for be-
ing coupled to heat baths (ETE), since the optimization of CRE is almost
a perfect value of 100% from Eq.(2.3.4.1) by µ2 → ∞, while ETE’s is only
about 42% in our model. On the other hand, this indicates that there is
little dissipation-decay present in the transport (decay back to ground state
in molecule coupled to the bath with higher chemical potential) when the
open quantum system is at far-from-equilibrium, in the chemical reaction

27



process. This kind of high efficiency of 70% was recently observed in the
measurement of conductance of a ferrocene-based organometallic molecular
wire [56]. In contrast, the heat dissipation is much larger in the quantum
heat engine (QHE). This can be understood as follows: from the Fermi dis-
tribution we know each mode of the reservoirs with higher chemical potential
is fully occupied, thus Pauli exclusion principle causes the emission of one
quasi-electron from the molecule back to high-chemical potential reservoir
to be forbidden, hence almost all of the excitations are transported to other
states. But for bosonic baths, the dissipation is unavoidable since emission
of particles is always allowed, without the restriction by Pauli principle.

Finally, as we can see from the discussion above, the large voltage is often
necessary and reasonable for optimizing the transport properties, such as
ETE and CRE. In particular, in the light-harvesting complex, the radiation
bath from the Sun which serves as an energy source is at 5870K [57]. The
cooler surrounding, which is originated from the vibrations of proteins in
chlorophyll, is at around 200∼300K [58]. Consequently the temperature
gradient becomes larger than 1000K.

Macroscopic Currents and Energy Dissipation

In the experiments, the observables provide direct measures of energy dissipa-
tion (heat current) and chemical current on the macroscopic level. Therefore
we need to explore the connection of the quantum flux and voltage to these
macroscopic quantities. First the total entropy production rate (EPR) is

introduced Ṡt = kBJqlog
A22

ggAgg
11A11

22

A22
11A11

ggA22
gg

where coherence effect has been already

contained in matrix A. Within the near-resonant approximation above, EPR
reads

Ṡb
t =

ε1 + ε2
2

(

1

T1
− 1

T2

)

J b
q

Ṡf
t = kBJ f

q log
nµ2
ε (1− nµ1

ε )

nµ1
ε

(

1− nµ2
ε − ∆2a1/~2ω2√

1+4∆2/~2ω2

) (2.3.4.3)

where a1 ≡ nµ2
ε2

− nµ1
ε1

− (nµ2
ε1

− nµ1
ε2
) and b, f correspond to bosonic and

fermionic reservoirs, respectively. In heat transport, the 1st and 2nd laws in
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Figure 2.8: (Color online) (a) EPR and (b) heat current vary as functions
of temperature difference; (c) Energy dissipation and (d) electric current
vary as functions of chemical voltage. (a,b,c,d) Brown, blue, purple and red
lines correspond to ∆ = 3meV, 2meV, 1mev and 0, respectively. Standard
parameters are ε1 = 0.798eV, ε2 = 0.8eV, λ = 21cm−1, T1 = 1000K, T =
900K and µ1 = 0
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thermodynamics give

Q̇b
2 − Q̇b

1 − Ė = 0, −Q̇
b
2

T2
+
Q̇b

1

T1
+ Ṡ = Ṡb

t (2.3.4.4)

Here 1 or 2 refers to the site 1 or 2 with each coupled with different bosonic
bath respectively. Q denotes the magnitude of energy flowing into reservoir.
Notice the entropy production rate Ṡ of system vanishes at steady state so
that we have the energy dissipation by using Eq.(2.3.4.3) and Eq.(2.3.4.4)

Q̇b
1 =

ε1 + ε2
2

J b
q (2.3.4.5)

which gives Q̇b
1 = −2εt

~
Imρ12 in the limit θ → −π

2
. This recovers the result

in Ref.[59] so that our introduction of EPR for quantum steady state has its
physical rational. In high temperature limit the asymptotic behaviors of EPR
and energy dissipation are shown to be: Ṡb

t ∼ (T2 − T1)
2 and Q̇1 ∼ T2 − T1,

which coincides with Fourier’s law. For fermionic reservoirs, the chemical
pumping is contributed by chemical flows, carried by the currents flowing
into and out from the system

I(2)m − I(1)m = 0,
µ2I

(2)
m

T
− µ1I

(1)
m

T
+ Ṡ = Ṡf

t (2.3.4.6)

which leads to the chemical current at steady state

is =
qkBT

µ2 − µ1

J f
q log

nµ2
ε (1− nµ1

ε )

nµ1
ε

(

1− nµ2
ε − ∆2a1/~2ω2√

1+4∆2/~2ω2

) (2.3.4.7)

where is = qI
(2)
m and the energy dissipation reads

Q̇f
1 = µ2I

(2)
m − µ1I

(1)
m

= kBTJ f
q log

nµ2
ε (1− nµ1

ε )

nµ1
ε

(

1− nµ2
ε − ∆2a1/~2ω2√

1+4∆2/~2ω2

)

(2.3.4.8)

Notice that the mathematical forms and analysis for system coupled to
fermionic reservoirs Eq.(2.3.2.3), (2.3.4.1), (2.3.4.6)-(2.3.4.8) can also be di-
rectly applied to charge transport in single molecules, i.e. electric current
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Figure 2.9: (Color online) (a) EPR for energy transport and (b) chemical
(electric) current for chemical reaction (charge transport) vary as functions
of coherence; (a) Large dashed, medium dashed and solid lines are for T2 =
3200K, 2850K and 2500K, respectively; (b) Tiny dashed, medium dashed
and solid lines are for µ2 = 1.0eV, 1.6eV and 2.2eV, respectively. Standard
parameters are ε1 = 0.798eV, ε2 = 0.8eV, λ = 21cm−1, T1 = 1000K, T =
900K and µ1 = 0

with I−V relationship, where ie = eIm, which will be addressed later on the
correlation to the experiments. Eq.(2.3.4.3), (2.3.4.5), (2.3.4.7) and (2.3.4.8)
show that the nonequilibrium quantum flux serves as a driving force for
the macroscopic energy dissipation and chemical (electric) current directly
measured in experiments.The physical currents are generated and detailed
balance condition is broken when the energy pump emerges (T1 6= T2 or
µ1 6= µ2). This furthermore reveals the robustness of the connection between
non-equilibriumness and quantum transport and provides a measurement on
how non-equilibriumness controls the transport properties.

Fig.2.8 collects the voltage dependence of transport coupled to both
bosonic and fermionic environments. The heat current shows a monotonic
increase with respect to temperature difference, which is reasonable due to
the large energy pumping with increasing temperature and large dissipation
at far-from-equilibrium. Due to the Pauli principle for fermions in recombi-
nation dissociation reactions in chemical process, there is an upper limit for
the pumping work at steady state illustrated in Fig.2.8(c). Thus the chemical
current will drop at high voltage (shown by large µ2 limit in Eq.(2.3.4.7) and
Fig.2.8(d)). This has been observed for electric current in the experiments
on I − V curve of electron transfer in single molecules [60].
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To see the coherence effect on the macroscopic EPR, heat current, chem-
ical (electric) current and energy dissipation, we apply Eq.(2.3.2.3)-(2.3.2.6)
to Eq.(2.3.4.3), (2.3.4.5), (2.3.4.7) and (2.3.4.8) by eliminating the tunneling
∆, similar to the transfer efficiency studied in the previous subsection. These
behaviors are shown in Fig.2.9(a) and 2.9(b) by fixing voltages, for energy
transport and chemical reaction (charge transport), respectively. Due to the
fixed voltage, those macroscopic observables are different from each other up
to just a scaled factor, so that we only display the EPR and chemical (elec-
tric) current here. As shown in Fig.2.9(a) and 2.9(b), the non-monotonic
behaviors of those macroscopic observables in terms of the coherence indi-
cate that the coherence does not always promote the transport. In the large
tunneling regime coherence inhibits the quantum transport. This is distinct
from the behavior of these macroscopic observables with respect to tunneling
which always enhances the quantum transport. The non-monotonic behav-
iors in Fig.2.9 are due to the non-monotonic dependence of the coherence
with respect to the tunneling, as discussed in the flux section.

2.3.5 Conclusion and remarks

In this section, we systematically developed the concept and quantification
of curl flux for non-equilibrium quantum processes at steady state. The curl
quantum flux measures the degree of non-equilibriumness via detailed bal-
ance breaking and time-irreversibility. It also reflects the degree of quantum
coherence. We further applied our theoretical framework to the quantum
transport in energy (charge) transfer in single molecules and the chemical
recombination dissociation reactions. More significantly, the quantum flux is
also sensitively affected by coherence which could be observed by quantum in-
terference experiments. The coherence leads to the non-monotonic behavior
of the flux, depending on the magnitude of quantum mechanical tunneling.
Furthermore we investigated quantum transport and thermodynamics of the
system in terms of our quantum flux. We found that the non-equilibrium
quantum flux serves as an intrinsic driving force for the macroscopic observ-
ables such as currents in quantum transport. These are the main innovation
and achievements in this paper, mathematically illustrated in Eq.(2.3.2.3)-
(2.3.2.6), Eq. (2.3.4.1), Eq. (2.3.4.3), Eq.(2.3.4.5), Eq.(2.3.4.7) and Eq.
(2.3.4.8).
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Figure 2.10: (Color online) (Left) Schematic of vibrational energy transport
in molecular system. Multi-level in each potential well represents the eigen-
states of harmonic oscillator; (Right) Rotation of the ellipse to its principal
axis.

2.4 Curl quantum flux in continuous space

and vibrational energy transport

We will alternatively develop the formalism for describing nonequilibrium
behaviors of quantum system in continuous space, based on the investigation
of coupled harmonic oscillators connecting to multiple energy sources. This
model can be used to study the vibrational energy transport in molecules
surrounded by solvent. The curl quantum flux breaking detailed balance will
be explored in coherent representation, by taking advantage of the bosonic
features of the considered system.

The contents in this section are based on Ref.[33].

2.4.1 Model and Hamiltonian

We consider the molecular vibrations (i.e., C=O stretching) described by
two quantum-mechanically coupled oscillators with different frequency ω1

and ω2 which are immersed into the solvent environment at the interface.
The free Hamiltonian for the system and solvent environment in terms of the
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displacements of oscillations reads

Hssf =
2
∑

j=1

(

p2j
2mj

+
1

2
mjω

2
jx

2
j

)

+ κ

(√
m1m2ω1ω2x1x2 +

1√
m1m2

p1p2

)

+
∑

f,σ

(

p̃2fσ
2m̃f

+
1

2
m̃fω

2
fσx̃

2
fσ

)

(2.4.1.1)

where the low-energy fluctuation solvent environment is treated as a set of
harmonic oscillators, neglecting the anharmonic effect hereafter. Actually
this effect becomes important under some conditions which goes beyond the
scope of this article and we would address this issue in the forthcoming stud-
ies. mj and m̃k are the effective masses of the molecular-vibrations and
environmental vibration mode k, respectively; pj and xj are the canonical
momentum and coordinate (describing the displacement of the oscillation),
respectively. κ is dimensionless that characterizes the coupling strength be-
tween two oscillators. In Eq.(2.4.1.1) we only pick up the minimal coupling
between oscillation modes, in order to elucidate our model. It is in general
replaced by the dipole-dipole interaction in many chemical systems. The in-
teraction between the system and solvent environment is in similar form as
that between the vibrations

Hss
int =

2
∑

i=1

∑

f,σ

λssfσ

(

√

mim̃fωiωfσxix̃fσ +
1√
mim̃f

pip̃fσ

)

(2.4.1.2)

Additionally one oscillator interacts with a heat source characterizing the
energy pump from the chemical reactions, and the other one interacts with a
cooler environment which harvests the energy transfered by molecular vibra-
tions, as shown in Fig.2.10. The quantum-mechanically effective couplings of
system to these reservoirs can be realized by exchanging the energy quanta.
Generally the interaction between molecule stretching is mediated via the
dipole-dipole coupling, therefore in the formalism of Quantum Field Theory,
the free Hamiltonian of system+reservoirs+environment is

H0 = ε̄1a
†
1a1 + ε̄2a

†
2a2 + ∆̄(a†1a2 + a†2a1) +

3
∑

ν=1

∑

k,σ

~ωkσb
(ν),†
kσ b

(ν)
kσ (2.4.1.3)
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and the interactions are

Hint =
2
∑

i=1

∑

k,p

gkp

(

a†ib
(i)
kp + aib

(i),†
kp

)

+
∑

q,σ

gqσ
(

c†b(3)qσ + c b(3),†qσ

)

(2.4.1.4)

where c ≡ a1 + a2 and b
(1)
kσ , b

(2)
kσ and b

(3)
kσ are the bosonic annihilation opera-

tors for heat source, cool reservoir and solvent environment, respectively. σ
and p denote the polarizations of bosons in the reservoirs. The rotating-wave
approximation (RWA) [21, 22] has been applied to the vibration-bath interac-
tions, owing to the dominant contribution by real absorption and emission of
quanta in long time limit. The effect of vibron-phonon interaction (VP) can
be approximately described by the renormalized frequency gap δε̄ = ε̄1 − ε̄2
and coupling strength ∆̄ of the molecular vibrations [61]. This in particular,
indicates that the tuning between frequencies δε̄ � ∆̄ (strong VP) makes
the wave packet of vibrations extended while the large detuning between
frequencies δε̄ � ∆̄ (weak VP) makes the wave packet localized, as elabo-
rately illustrated in Anderson localization mechanism [62, 63], in which the
disorder (both diagonal and off-diagonal) is imaged to be connected with the
presence of impurities, vacancies and dislocations in an ideal crystal lattice,
or the random distributions of atoms and molecules [64].

2.4.2 Quantum Master Equation in coherent space

The dynamics of the system is governed by the reduced quantum master
equation (RQME), which is obtained by tracing out the degree of freedoms
(DOF) of the baths. As we pointed out above and also discussed in previous
papers [12, 58, 61], the strong interactions between the system and some
discrete vibrational modes (i.e., the hydrogen bond) owing to the quasi-
resonance between frequencies, leads to the comparable time scales between
the vibrational modes and system, which subsequently acquires us to include
the dynamics of these discrete vibrational modes together with the system.
In other words, these vibrational modes must be separated from the reser-
voirs. Thereby the remaining modes consisting of the low-energy fluctuations
can be reasonably treated as the baths, which are effectively in weak coupling
to the systems due to the mismatch of frequencies between these continuous
modes and the system. On the basis of perturbation theory, the whole solu-
tion of the density operator can be written as ρSR = ρs(t)⊗ρR(0)+ρδ(t) with
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the traceless term in higher orders of couplings between system and reser-
voirs. Because the time scale associated with the environmental correlations
is much smaller than that of system over which the state varies appreciably,
the RQME for the reduced density matrix of the systems in the interaction
picture can be derived under the so-called Markoff approximation

dρs
dt

=
1

2~2

{ 2
∑

ν=1

2
∑

p=1

[

γTν ,+
p

(

apρsa
†
ν − a†νapρs

)

+ γTν ,−
p

(

a†pρsaν − aνa
†
pρs
)]

+
2
∑

j=1

2
∑

p=1

[

γT3,+
p

(

apρsa
†
j − a†japρs

)

+ γT3,−
p

(

a†pρsaj − aja
†
pρs
)

]

}

+ h.c.

(2.4.2.1)

where the reservoirs and solvent environment are in thermal equilibrium. The
dissipation rates γ... are given in Appendix A in Ref.[33]. nT

ω = [exp(~ω/kBT )− 1]−1

is the Bose occupation on frequency ω at temperature T . The mixture angle
reads

cos2θ =
ε̄2 − ε̄1

√

(ε̄1 − ε̄2)2 + 4∆̄2
; sin2θ = − 2∆̄

√

(ε̄1 − ε̄2)2 + 4∆̄2
(2.4.2.2)

Conventionally the QME in Eq.(2.4.2.1) was solved in Liouville space
[3, 65] , by writing the density matrix as a supervector. This strategy how-
ever, seems to be unrealizable due to the infinite dimension of Fock space
for bosons. Here we will solve the QME in the coherent representation,
which was first developed by Glauber [66]. It is alternatively named as P-
representation, according to the terminology in quantum optics [21, 22, 67].
As is known, the eigenstate of the annihilation operators is |α1, α2〉 where
the eigenequation aj|α1, α2〉 = αj|α1, α2〉 is satisfied. In terms of these com-
ponents, the density matrix can be expanded into the following form [21]

ρs(t) =

∫

P (αβ, α
∗
β, t)|α1, α2〉〈α1, α2|d2α1d

2α2 (2.4.2.3)

where P (αβ, α
∗
β, t) is called the quasi-probability, due to the overcomplete-

ness of the coherent basis and the non-positive definition of P (αβ, α
∗
β, t). But

this quasi-probability is always non-negative everywhere if the quantum sys-
tem has classical analog [68]. Using Eq.(2.4.2.3) we can project the QME
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into coherent space and then obtain the following dynamical equation for
P (αβ, α

∗
β, t)

∂

∂t
P (αβ, α

∗
β) = γ

[

2

(

∂

∂α1

α1 +
∂

∂α2

α2

)

+
∂

∂α1

α2 +
∂

∂α2

α1 + c.c.

]

P (αβ, α
∗
β)

+ γ

[

2Y1
1

∂2

∂α∗
1∂α1

+ 2Y2
2

∂2

∂α∗
2∂α2

+Y21
12

(

∂2

∂α∗
1∂α2

+
∂2

∂α1∂α∗
2

)]

P (αβ, α
∗
β)

(2.4.2.4)

where the coefficients Y... are given in Appendix A in Ref.[33]. Eq.(2.4.2.4)
is of the same formalism as the classical Fokker-Planck equation [42], apart
from the complex variables. Moreover, this equation describes the Ornstein-
Uhlenbeck process in the phase space, so that it is exactly solvable. Now we
focus on the steady-state case with t → ∞, and therefore the steady-state
solution is of Guassian type

Pss(αβ, α
∗
β) =

1

Z
e−[a|α1|2+b|α2|2+2cRe(α∗

1α2)] (2.4.2.5)

with the a, b and c being

a =
4
(

Y1
1 + 7Y2

2 − 2Y21
12

)

(Y1
1 +Y2

2)
2 + 4

[

3Y1
1Y

2
2 − (Y21

12)
2
] , b =

4
(

7Y1
1 +Y2

2 − 2Y21
12

)

(Y1
1 +Y2

2)
2 + 4

[

3Y1
1Y

2
2 − (Y21

12)
2
]

c =
8
(

Y1
1 +Y2

2 − 2Y21
12

)

(Y1
1 +Y2

2)
2 + 4

[

3Y1
1Y

2
2 − (Y21

12)
2
] , Z =

π2

12

{

(Y1
1 +Y2

2)
2 + 4

[

3Y1
1Y

2
2 − (Y21

12)
2
]

}

(2.4.2.6)

In the forthcoming sections, we will discuss the nonequilibrium behaviors
and heat transport based on this steady-state solution of quasi-probability
in Eq.(2.4.2.5) and (2.4.2.6).

2.4.3 Shape and orientation of the curl flux and vi-
bration correlations in non-equilibrium quantum
systems

Shape and orientation of curl flux

The quantitative description of nonequilibriumness, especially the far-from-
equilibrium case in quantum systems was devoid, although it is known that
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macroscopical current would be observed if the system deviates from equilib-
rium. Recently the curl flux in discrete space was developed to describe the
nonequilibrium behaviors in quantum systems [31, 32]. Here we will alter-
natively develop a curl quantum flux in the continuous space, in analogous
with the classical case [1]. We are able to write the probabilistic evolution of
diffusion equation (2.2.0.9) covering the whole coherent space into the form
of ∂tP + ∇α · J = 0 which gives the steady-state case ∇α · J = 0. For the
nonequilibrium systems at steady state in general, this does not necessarily
mean that the flux J has to vanish, due to the detailed-balance-breaking.
Instead, the divergence-free nature implies that the flux is a rotational curl
field in coherent space. To further elucidate the nonequilibrium nature of
the curl quantum flux, we will reduce our discussion into the space spanned
by (x1, x2) where xj = Re[αj ]. On the other hand, the issue of even and odd
variables then does not arise, because of the time-reversibility of xj.

Assuming αj = xj + ipj where xj =
√

2mjωj/~〈α1, α2|x̂j|α1, α2〉 are the
dimensionless means of the displacements of the oscillators in coherent space,
the dynamical equation of probability in (x1, x2) space becomes

∂

∂t
P (x1, x2) = γ

(

2
∂

∂x1
x1 + 2

∂

∂x2
x2 +

∂

∂x1
x2 +

∂

∂x2
x1

)

P (x1, x2)

+
γ

2

(

Y1
1

∂2

∂x21
+Y2

2

∂2

∂x22
+Y21

12

∂2

∂x1∂x2

)

P (x1, x2)

(2.4.3.1)

the steady-state solution to which reads

Pss(x1, x2) =

√
ab− c2

π
e−(ax2

1+bx2
2+2cx1x2) (2.4.3.2)

Thus the curl quantum flux is of the form

Jx1 =
γ
(

Y1
1 − Y2

2

)

Pss

(Y1
1 +Y2

2)
2 + 4

[

3Y1
1Y

2
2 − (Y21

12)
2
] (2.4.3.3)

×
[

2
(

Y1
1 +Y2

2 − 2Y21
12

)

x1 +
(

7Y1
1 +Y2

2 − 2Y21
12

)

x2
]

Jx2 = − γ
(

Y1
1 − Y2

2

)

Pss

(Y1
1 +Y2

2)
2 + 4

[

3Y1
1Y

2
2 − (Y21

12)
2
] (2.4.3.4)

×
[(

Y1
1 + 7Y2

2 − 2Y21
12

)

x1 + 2
(

Y1
1 +Y2

2 − 2Y21
12

)

x2
]

(2.4.3.5)

38



The behaviors of curl quantum flux are illustrated in Fig.2.12, which pro-
vides a description of nonequilibriumness on microscopic level. It is straight-
forward to prove that the stream lines of the curl flux in 2D space in our case
form a set of ellipses, with the major axis in the vicinity of the anti-diagonal
line. Therefore the polarization of the curl flux can be quantified in terms of
geometric language, namely the eccentricity ē and rotation angle β/2

ē =

√

2
√

(a− b)2 + 4c2

a+ b+
√

(a− b)2 + 4c2
, sinβ = − 2c

√

(a− b)2 + 4c2
(2.4.3.6)

In particular, based on Eq.(2.4.3.1) and (2.4.3.2) we know that the shape and
orientation of curl flux is governed by the eccentricity ē and rotation angle
β/2 where the polarization is in slender-cigar shape along the vicinity of the
line |x1| = |x2| as ē increases and β/2 approaches π/4.

Fig.2.12(a) and 2.12(b) show the effect of vibron-phonon coupling (VP)
on the curl flux with the eccentricities ē = 0.978 and ē = 0.957, respectively.
As we can see, the strong-VP-bond-contributed delocalization of the excited
vibrational modes causes the flux to be more polarized in the vicinity of
anti-diagonal than the weak-VP-bond-contributed localization does, which
as explored later, means that the correlation between the molecular vibra-
tions is much stronger as quasi-particles become delocalized, rather than the
localization of quasi-particles. The quality of heat transport will be promoted
as the correlation between vibrations becomes strong, as shown in the follow-
ing discussion. Fig.2.12(c) and 2.12(d) show that the thermal fluctuations in
heat source which in some sense dictates the effective thermal voltage, can
definitely strengthen the molecular-vibration correlation, which will consid-
erably raise the heat transport, as will be shown in Fig.2.13(c). Fig.2.12(e)
and 2.12(f) illustrate the effect of solvent environment on the curl flux, which
shows that the correlation between molecular vibrations is unavoidably sup-
pressed by the thermal fluctuations induced by solvent environment.

Measure of magnitude of curl flux

Due to the vector feature of the curl flux, here we will use the Wilson loop
to quantify the value of the curl flux, based on the integral of curl flux along
a specific closed path

W =
1

L

∫

Σ

Jx1dx1 + Jx2dx2 (2.4.3.7)
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Figure 2.11: (Color online) (a) Rotation angle and (b) eccentricity as a
function of T1; (c) Rotation angle and (d) eccentricity as a function of
the coherence-population entanglement; (e) density-density correlation C4

(large) via T1 as well as 3D illustration of C4 via eccentricity and rotation
angle (small) according to Eq.(2.4.3.9), (f) density-density correlation vary as
a function of the coupling strength between coherence and population dynam-
ics; (g) Wilson loop of curl flux as a function of ∆̄; (h) Relationship between
Wilson loop of curl flux and C4 by controlling ∆̄. The blue (dashed), purple
(solid) and red (dotdashed) lines in correspond to δε̄ = 0.3, 0.1, 0.01eV,
respectively; In (c,d,g,h) T1 = 5000K. Other parameters are ∆̄ = 0.1eV,
T2 = 2000K and T3 = 1000K. 40



where L represents the length of closed path Σ. Currently we choose the
closed path as one of the stream lines of curl flux in 2D space, to maximize
the quantity W in Eq.(2.4.3.7). After some manipulations the Wilson loop
of curl flux reads

W =
γ|Y1

1 − Y2
2|(a+ b)

16E(π
2
|ē2)√e

√

ab− c2

a+ b+
√

(a− b)2 + 4c2
(2.4.3.8)

Notice that e = 2.71828... is the Euler’s number and E(φ|k2) is the elliptic
integral of the second kind. As is shown in Fig.2.11(g), the detailed-balance
is more broken as the two molecules approaches each other, governed by the
increase of ∆̄

δε̄
. This can be understood by an extreme case that the two

molecular vibrations will equilibrate individually with the environments as
they becomes infinitely distanced with no correlation between each other
(∆̄ = 0).

Relationship between curl flux and vibration correlation

The correlations between the molecular vibrations are measured by the corre-
lation functions. In particular, we mainly focus on the four-point correlation
function here, which corresponds to the density-density correlations

C4 =
〈a†1a1a†2a2〉
〈a†1a1〉〈a†2a2〉

− 1 =
ē4sin2β

4(1− ē2) + ē4sin2β
(2.4.3.9)

where ē shares the same definition of the eccentricity as before, and β/2 is the
angle between the major axis of the ellipse and x-axis. Eq.(2.4.3.9) follows the
definition of density-density correlation function in the site basis, as given in
Ref.[21]. C4 = 0 indicates that the occupations on the two vibrational modes
are uncorrelated. Eq.(2.4.3.9) in fact uncovers the connection between the
microscopic nonequilibriumness (flux) and the macroscopic observables in a
geometric manner. Hence it is evident to say that the correlations between
molecular vibrations are characterized by the polarization of the curl flux in
coherent space, where the slender-cigar type of polarization of flux along the
anti-diagonal means the strong vibrational correlations while the cake type
of polarization with tiny inhomogeneity or polarization along the axis means
the weak vibrational correlations. Possibly the microscopic curl quantum flux
can be explored in experiments, by measuring these geometric parameters
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Figure 2.12: (Color online) 2D Illustration of curl quantum flux. (a) ∆̄ =
0.1eV, δε̄ = 0.01eV and (b) ∆̄ = 0.1eV, δε̄ = 0.35eV where T1 = 5000K and
T3 = 1000K; (c) T1 = 2000K, T3 = 1000K and (d) T1 = 5000K, T3 = 1000K
where ∆̄ = 0.1eV, δε̄ = 0.15eV; (e) T1 = 5000K, T3 = 1000K and (f)
T1 = 5000K, T3 = 2000K where ∆̄ = 0.1eV, δε̄ = 0.15eV. Other parameters
are ε̄1 = 1eV and T2 = 2000K. Notice that (d) and (e) are the same. However,
the reason why we keep (e) here is to provide a control to (f), showing the
effect of solvent. In these figures, the eccentricity is denoted by e.
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through the measurement of density-density correlation function, which has
been recently probed in degenerate quantum gas [69, 70].

The large figure in Fig.2.11(e) show that (i) the thermal fluctuations in
the heat source do strengthen the vibration correlations and (ii) the detun-
ing between the frequencies of molecular vibrations distroys the vibration
correlations, as long as the heat transport is on track (this will be examined
in detail in the section of heat transport). These properties are also micro-
scopically reflected by curl flux, as shown in Fig.2.11(a), Fig.2.11(b) and the
paths (dashed lines) on the landscape of density-density correlation C4 in the
small figure in Fig.2.11(e), in spite of the reduction of the contribution by
rotation angle. Besides the geometry of the curl flux, the promotion of the
magnitude of curl flux (quantified by Wilson loop) is also strongly correlated
to the increase of correlation function, by improving the coupling strength
between vibrational modes, as shown in Fig.2.11(h).

As will show later in the section of coherence effect, the site-basis coher-
ence has no contribution to the heat transport in the secular approximation
since it is decoupled from the population dynamics. As approaching this
regime, one can easily demonstrate that lim

ε→0
c̃ = 0 in Eq.(2.4.5.4), which sub-

sequently gives β → 0. Hence lim
ε→0

C4 = 0, which is physically reasonable

owing to the polarization of flux at the moment orientatied in the vicinity of
x1-axis. As the entanglement between coherence and population dynamics
adiabatically increases, the macroscopic correlation C4 is considerably pro-
moted by coherence from the microscopic curl flux as it becomes significantly
polarized with the angle approaching −π

4
, as illustrated in Fig.2.11(c,d) and

Fig.2.11(f). Therefore we can conclude that the coherence generates and
considerably improves the correlation between the molecular vibrations.

2.4.4 Heat transport intermediated by molecular vi-
brations

To uncover the behaviors of vibrational energy transport in the molecules,
one essentially needs to study the macroscopic heat current flowing through
the molecular chain, output work in the view of the system as a quantum
heat engine (QHE) and the efficiency quantifying the quality of this QHE.
On the other hand, the correlation between the heat currents are also useful
to measure to heat transport.
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Heat current and working efficiency

We first introduce the heat-current operators J1, J2 for the heat currents
pumping into and flowing out from the system, respectively. By ignoring the
back influence of system to reservoirs, the current operators are defined as
Jν = 1

i~
[Hs, H

(ν)
int ], and furthermore in our system

J1 =
1

i~

∑

k,σ

gkσ

[(

ε̄1a
†
1 + ∆̄a†2

)

b
(1)
kσ − h.c.

]

J2 =
i

~

∑

k,σ

gkσ

[(

ε̄2a
†
2 + ∆̄a†1

)

b
(2)
kσ − h.c.

]

(2.4.4.1)

To calculate the heat current up to the 2nd order of coupling strength, we
need to carry out the 1st order correction to the density matrix so that ρs(t) =
ρs(0) +

i
~

∫ t

0
[ρs(t), H̃int(τ)]dτ . Substituting this into the product ρs(t)J̃1(t)

and after a lengthy derivation shown in SM of Ref.[33] the subsequent heat
current pumping into the molecules is

〈J1〉ss = lim
t→∞

Tr[ρs(t)J̃1(t)]

= (−γ)
[

2ε̄1〈a†1a1〉+ ∆̄〈a†1a2 + a†2a1〉 − 2
(

E1n
T1
ν1
cos2θ + E2n

T1
ν2
sin2θ

)

]

= −γ
6

{

[

E1

(

7cos2θ − 2sinθcosθ
)

+ E2

(

7sin2θ + 2sinθcosθ
)]

Y1
1

+
[

E1

(

cos2θ − 2sincosθ
)

+ E2

(

sin2θ + 2sincosθ
)] (

Y2
2 − 2Y21

12

)

− 12
(

E1n
T1
ν1
cos2θ + E2n

T2
ν2
sin2θ

)

}

(2.4.4.2)

where ~ν1 =
1
2

[

ε̄1 + ε̄2 −
√

(ε̄1 − ε̄2)2 + 4∆̄2
]

and ~ν2 =
1
2

[

ε̄1 + ε̄2 +
√

(ε̄1 − ε̄2)2 + 4∆̄2
]

are the eigenenergies of the coupled oscillators. Moreover the coherence
contribution to heat currents J1, J2 is governed by the term 〈a†1a2 + a†2a1〉
which will vanishes in secular approximation as shown later. 〈a†1a2〉 =
∑

n1,n2

√
n1n2 〈n1 − 1, n2|ρs|n1, n2 − 1〉. The similar manner for calculating

the heat current mediated by the molecular vibrations and we can simply
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replace the H̃
(1)
int by H̃

(2)
int in J1, to reach the following result

〈J2〉ss =
γ

6

{

[

E1

(

sin2θ − 2sinθcosθ
)

+ E2

(

cos2θ + 2sinθcosθ
)] (

Y1
1 − 2Y21

12

)

+
[

E1

(

7sin2θ − 2sinθcosθ
)

+ E2

(

7cos2θ + 2sinθcosθ
)]

Y2
2

− 12
(

E1n
T2
ν1
sin2θ + E2n

T2
ν2
cos2θ

)

}

(2.4.4.3)

As a QHE, the stationary working efficiency of the vibrational energy
transport is naturally defined as η = 〈J2〉ss

〈J1〉ss . Fig.2.13(a) shows the effect of ex-

ternal pumping on the heat flowing into the system according to Eq.(2.4.4.2),
which demonstrates the improvement of energy pumping into system by the
activity of external heat source. Since the excitation energy in our system
is around 1eV, the considerable excitation with respect to this energy scale
needs the effective temperature of the environment to be around 5000 K. On
the other hand, the analog is the light-harvesting complex in which the tem-
perature of radiations is around 5800K. Fig.2.13(c) and 2.13(e) illustrate the
heat flow (quantifying the vibrational energy transfer) and working efficiency
η under the influence of external energy pumping by heat source, according to
Eq.(2.4.4.2) and (2.4.4.3). As seen first, the thermal fluctuation and pumping
of the external heat source causes a considerable improvement of the energy
transfered by the molecular vibrations and the working efficiency reflected in
Fig.2.13(e) as well. More importantly, it is also shown in Fig.2.13(c) that the
energy transport relates to a critical value of (δε̄, T1), under which the vibra-
tional energy transport is suspended. The critical points are determined by
acquiring 〈J2〉ss = 0 which will be shown in Supplementary Materials (SM)
of Ref.[33]. In Fig.2.13(c) the critical values of T1 are 3372K, 2514K and
2257K with respect to δε̄ = 0.3, 0.1, 0.01eV, respectively. Above the critical
point, the promotion of energy current flowing through molecules and the
efficiency by thermal fluctuation of the heat source and also the frequency
detuning between molecular vibrations can be critically demonstrated by the
polarization of the curl flux, illustrated in Fig.2.12(c,d) and Fig.2.12(a,b), re-
spectively, since the correlation between the molecular vibrations is enhanced
which will be reached later. Therefore we can evidently claim that the curl
quantum flux in Eq.(2.4.2.5) and (2.4.2.6) on microscopic level significantly
correlates to and characterizes the vibrational energy transport on macro-
scopic level. We will come back to this issue when discussing the correlation
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Figure 2.13: (Color online) (a,b) Energy pumping into molecules from heat
source, (c,d) heat current flowing through the molecules into cool reservoir
and (e,f) working efficiency vary as a function of T1; Blue, purple and red
curves in (a,c,e) correspond to δε̄ = 0.3, 0.1, 0.01eV, respectively, where
other parameters are ∆̄ = 0.1eV, ε̄1 = 1eV, T2 = 2000K and T3 = 1000K.
The dashed black curve in (a,c,e) is for ∆̄ = 0.1eV, T3 = 500K with other
parameters being the same as other curves in (a,c,e); Red and blue (dashed)
curves in (b,d,f) correspond to the cases without and with secular approx-
imation, respectively, where the parameters are ∆̄ = 0.1eV, δε̄ = 0.15eV,
ε̄1 = 1eV, T2 = 2000K and T3 = 1000K
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functions later.

Current-current correlation

To explore the statistical distribution of heat current, one dose not only
necessarily calculate the mean heat current as what we did above, but also
need to uncover the higher order properties, i.e., the correlations between the
currents. By replacing the summation over different modes in reservoir by
the integration

∑

k,σ

g2kσ〈b
(2),†
kσ b

(2)
kσ〉ei(ν−ωkσ)∆t

−→ γsin(ν∆t)

∫ ∞

0

sin(ωkσ∆t)

e~ωkσ/kT − 1
dωkσ =

πγ

2
sin(ν∆t)

(

coth
π∆t

β~
− β~

π∆t

)

(2.4.4.4)

and after a lengthy calculation we arrive at the current-current correlation
function at steady state

Re
[

〈J̃2(t)J̃2(t′)〉ss
]

=
πγ

~2

{

(

E2
1〈η†1η1〉sin2θ + E2

2〈η†2η2〉cos2θ + E1E2〈η†1η2 + η†2η1〉sinθcosθ
)

δ(∆t)

+
1

2

[

E2
1sin(ν1∆t)〈2η†1η1 + 1〉sin2θ + E2

2sin(ν2∆t)〈2η†2η2 + 1〉cos2θ

+ E1E2

(

sin(ν1∆t) + sin(ν2∆t)
)

〈η†1η2 + η†2η1〉sinθcosθ
](

coth
π∆t

β1~
− β1~

π∆t

)

}

(2.4.4.5)

where ∆t ≡ t − t′, βi ≡ 1
kTi

. Eq.(2.4.4.5) roughly illustrates the beat os-
cillation will occur if the detuning between the frequencies of vibrations is
suppressed. To demonstrate this, in Fig.2.14 we show both the cases δε̄� ∆̄
and δε̄ � ∆̄ in current-current correlation function (apart from the cusp
peak described by the δ-function). The former one characterizing the strong
vibrational coupling of molecular chain to the molecule stretching (i.e., C=O
stretching) reveals the beat oscillation and subsequently a coherent regime
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Figure 2.14: (Color online) The smooth part of current-current correlation
function as a function of t− t′. Red and blue curves correspond to δε̄ = 0.01
and 0.3eV, respectively, where other parameters are ∆̄ = 0.1eV, T1 = 4000K,
T2 = 2000K and T3 = 1000K; The black (dashed) curve are for δε̄ = 0.15eV
and T1 = 2000K, where other parameters are the same.

of correlation, in which the correlation is strong. This is in contrast to the
latter one characterizing the weak vibrational coupling of molecular chain to
the molecule stretching, with an incoherent way of correlation in which the
correlation is much weaker.

2.4.5 Coherence effect on curl flux and heat transport

In order to uncover how the entanglement of site-coherence terms to pop-
ulation dynamics gradually affects the nonequilibrium quantites (i.e., curl
flux and heat transport), we essentially introduce an adiabatic parameter
ε into the coupling coefficients between coherence and populations, which
originally as shown in Eq.(2.4.2.1) gives rise to the entanglement between
coherence and population dynamics. The case ε = 0 is so-called secular ap-
proximation popularly applied to Lindblad equation before [71, 72, 73, 74],
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which will be carried out as a comparison to our results with ε = 1.

dρs
dt

=
1

2~2

{ 2
∑

ν=1

[

γTν ,+
ν

(

aνρsa
†
ν − a†νaνρs

)

+ γTν ,−
ν

(

a†νρsaν − aνa
†
νρs
)]

+
2
∑

p=1

[

γT3,+
p

(

apρsa
†
p − a†papρs

)

+ γT3,−
p

(

a†pρsap − apa
†
pρs
)]

+ ε

2
∑

ν 6=p=1

[

γTν ,+
p

(

apρsa
†
ν − a†νapρs

)

+ γTν ,−
p

(

a†pρsaν − aνa
†
pρs
)]

+ ε

2
∑

j 6=p=1

[

γT3,+
p

(

apρsa
†
j − a†japρs

)

+ γT3,+
p

(

a†pρsaj − aja
†
pρs
)

]

}

+ h.c.

(2.4.5.1)

in which the ε-terms describe the behaviors of the dynamics when the coher-
ence adiabatically comes into the system. Correspondingly the dynamical
equation in the coherent representation is of the form

∂

∂t
P (αβ, α

∗
β) = γ

[

2

(

∂

∂α1

α1 +
∂

∂α2

α2

)

+ ε

(

∂

∂α1

α2 +
∂

∂α2

α1

)

+ c.c.

]

P (αβ, α
∗
β)

+ γ

[

2Y1
1

∂2

∂α∗
1∂α1

+ 2Y2
2

∂2

∂α∗
2∂α2

+ εY21
12

(

∂2

∂α∗
1∂α2

+
∂2

∂α1∂α∗
2

)]

P (αβ, α
∗
β)

(2.4.5.2)

thus the drift and diffusion matrices are (in the order of {1, 2, 1∗, 2∗})

Σ = γ











2 + η ε 0 0

ε 2− η 0 0

0 0 2 + η ε

0 0 ε 2− η











, D = γ











0 0 Y1
1

ε
2
Y21

12

0 0 ε
2
Y21

12 Y2
2

Y1
1

ε
2
Y21

12 0 0
ε
2
Y21

12 Y2
2 0 0











(2.4.5.3)

where η is a small and positive number, which ensures the uniqueness of the
solution to Eq.(2.4.5.2). Finally we will carry out the limit η → 0+. By

introducing f± =
√

1 + η2

ε2
± η

ε
, the steady-state solution to Eq.(2.4.5.2) can
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Figure 2.15: (Color online) The contribution of coherence to heat transport.
(a) The heat flow pumping from the heat source (small) as well as the heat
current intermediated by molecular vibrations (large), (b) working efficiency
of the QHE. The blue, purple and red lines are for δε̄ = 0.3, 0.15 and 0.01eV,
respectively. Other parameters are ∆̄ = 0.1eV, T1 = 5000K, T2 = 2000K,
T3 = 1000K and η = 0.0001.

be written as Pss =
ãb̃−c̃2

π2 exp{−[ã|α1|2 + b̃|α2|2 + 2c̃Re(α∗
1α2)]} where

ã =
A24

11Y
1
1 +A24

22Y
2
2 +A24

1221Y
21
12

det(B)
, b̃ =

A13
11Y

1
1 +A13

22Y
2
2 +A13

1221Y
21
12

det(B)
,

c̃ = −A14
11Y

1
1 +A14

22Y
2
2 +A14

1221Y
21
12

det(B)

B =

(

A13
11Y

1
1 +A13

22Y
2
2 +A13

1221Y
21
12 A14

11Y
1
1 +A14

22Y
2
2 +A14

1221Y
21
12

A14
11Y

1
1 +A14

22Y
2
2 +A14

1221Y
21
12 A24

11Y
1
1 +A24

22Y
2
2 +A24

1221Y
21
12

)

(2.4.5.4)

where the expressions of A... are provided in Appendix C in Ref.[33]. Since
lim
η→0

lim
ε→1

f± = 1 and lim
η→0

lim
ε→0

f+ = +∞, lim
η→0

lim
ε→0

f− = 0, it is straightforward to

verify that Eq.(2.4.5.4) will reduce to Eq.(2.4.2.6) and ā, b̄ in the forthcom-
ing P ss

sec, respectively. Therefore the heat currents transfered by molecular
vibrations is

50



〈J2〉ss = 2γ

{

[

E1

(

A24
11sin

2θ +A14
11sinθcosθ

)

+ E2

(

A24
11cos

2θ − A14
11sinθcosθ

)]

Y1
1

+
[

E1

(

A24
22sin

2θ +A14
22sinθcosθ

)

+ E2

(

A24
22cos

2θ − A14
22sinθcosθ

)]

Y2
2

+
[

E1

(

A24
1221sin

2θ +A14
1221sinθcosθ

)

+ E2

(

A24
1221cos

2θ − A14
1221sinθcosθ

)]

Y21
12

− E1n
T2
ν1
sin2θ − E2n

T2
ν2
cos2θ

}

(2.4.5.5)

and the heat current pumping by the thermal fluctuations in heat source can
be reached by the replacement cosθ → sinθ, sinθ → −cosθ in the expression
of J2. The density-density correlation function is

C̃4 =
ẽ4sin2β

4(1− ẽ2) + ẽ4sin2β
, ẽ =

√

√

√

√

√

2
√

(ã− b̃)2 + 4c̃2

ã+ b̃+
√

(ã− b̃)2 + 4c̃2
(2.4.5.6)

Now within the secular approximation, the entanglement between coher-
ence and populations in Eq.(2.4.5.2) dies as reflected by the disappearance of
the mixed differentials with respect to α1, α2. Then the steady-state solution
is simplified to P ss

sec(αβ, α
∗
β) = āb̄

π2 e−(ā|α1|2+b̄|α2|2), with ā = 2
Y1

1
, b̄ = 2

Y2
2
.

By reducing to the (x1, x2) domain, the polarization of curl flux is along the
x1-axis, since

lim
η→0

lim
ε→0

β = 0 ⇒ lim
η→0

lim
ε→0

C̃4 = 0 (2.4.5.7)

as firstly mentioned before. Therefore the secular approximation leads to
the death of correlation between molecular vibrations (numerical verification
refers to Fig.2 in Appendix C in Ref.[32]).

Eq.(2.4.5.6), Eq.(2.4.5.7), Fig.2.11(c,d) and Fig.2.11(f) illustrate the co-
herence effect on the curl quantum flux that the site-basis coherence causes
the correlations between the molecular vibrations, which is determined by the
polarization and orientation of the curl flux in coherence space, as uncovered
before. Hence the shape and orientation of flux provides a quantification to
the coherence contribution to nonequilibrium-related quantities.
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As is shown in Fig.2.13(b,d,e), the coherence terms considerably con-
tribute to heat current flowing through the molecules and the efficiency
for the vibrational energy transport. This is because of the promotion of
density-density correlation originated from the coherence quantified by the
polarization and orientation of the curl flux, as illustrated in Eq.(2.4.5.6),
(2.4.5.7) and Fig.2.11(c,d) and Fig.2.11(f) before. Consequently it is evident
that the site-basis coherence is critical and non-trivial for the nonequilibrium
behaviors on microscopic level and the quantum transport on macroscopic
level. Experimentally this coherence effect can be observed by the high-
resolution multidimensional laser spectroscopy, as being applied in the study
of long-lived coherence in photosynthesis. On the other hand, the vibrational
interfacial energy transfer can be investigated using surface-specific 2D-IR
sum-frequency generation (2D-SFG) spectroscopy, by studying the effect of
widely tunable excitation pulses (2100-3000cm−1) in heavy water (D2O) [75].

As is shown in Fig.3.1.2.9(a), the heat pumping into the molecules by
the thermal fluctuations in the heat source (small figure) is suppressed while
the heat transfered by the molecular vibrations (large figure) is considerably
improved, as the coupling between site-coherence and population dynamics
increases adiabatically. This results in the significant promotion of working
efficiency, as illustrated in Fig.3.1.2.9(b). More importantly, it is noted that
the slight increase of coupling between coherence and population dynamics
beyond ε = 1 causes a surprising improvement of efficiency to ≥ 42%, in
comparison to the result in Fig.2.13(f) (blue line). This demonstrates the
possibility for optimizing the quality of QHE in the regime of large interaction
with coherence. Fig.2.11(d) and 2.11(f) support the conclusion in above that
the correlation between the occupations in different molecules is generated
and further strengthened by the contribution of coherence, as quantified by
Eq.(2.4.5.6).

2.4.6 Conclusion and remarks

In this section we develop a theoretical framework of curl quantum flux in
continuous space, to study the microscopic nonequilibrium behaviors and the
macroscopic vibrational energy transport in molecules. It was found in an
analytical manner of the connection between the microscopic curl flux and
the macroscopic quantum transport (i.e., correlation function) from the ge-
ometric and magnitude perspectives. By adiabatically tuning the coupling
of site-coherence to the population dynamics and further comparing to the
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secular approximation, the coherence is demonstrated to be essential to gen-
erate the density-density correlations and further facilitate the heat transport
process by a considerable improvement. These non-trivial coherence effects
originate from the microscopic channel, in which coherence-population en-
tanglement results in the slender-cigar shape of curl flux polarized in the
vicinity of anti-diagonal, quantified by its geometric parameters. By explor-
ing the current-current correlation, the beat oscillation feature with strong
correlation characterizes the delocalization of vibrations induced by large VP
coupling, contrary to weak VP coupling where the vibrations are kept local-
ized. Our investigation provides the possibility of probing the microscopic
quantum flux in experiments and also the insights for the exploration of the
nonequilibrium heat transport in more general quantum systems, i.e., the
molecular chain with several vibrational modes.
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Chapter 3

Energy transport and
coherence dynamics: relaxation
process I

The contents in this chapter are based on Ref.[34, 35].

3.1 Vibration and coherence dynamics in molecules

The relaxation processes of quantum systems recently attracted much at-
tention, because of the experimental advances on monitoring the quantum
dynamics [76, 77, 78]. The quantum dynamical behaviors cannot be com-
pletely determined by the steady-state properties, which differs from that
in classical stochastic processes where the steady-state behavior governs the
driving force [1, 42]. This is due to the decoherence and dephasing in dissi-
pative quantum dynamics, which are not presented in classical case.

Studies of the relaxation of quantum systems is motivated by the idea
that how to combat decoherence remains the central role on processing quan-
tum information and computing. The details of dynamical decoherence and
dephasing could provide some clues for people to figure out the way to ef-
fectively suppress or eliminate the influence from the environmental fluctu-
ations. Usually the relaxation refers to two different scenarios: relaxing to-
wards equilibrium and nonequilibrium steady states (NESS). The latter one is
much non-trivial since the detailed-balance-breaking considerably promotes
the amplitude of coherence, based on recent studies [31, 34]. Furthmore the
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properties of NESS were much explored in recent experiments on quantum
transport using the ultracold Fermi and Bose gases [79, 80, 81, 82].

One of the objectives in this chapter is to study the vibrational and co-
herence dynamics in intermolecular vibrational energy transport by exploring
the two typical time scales t1, t2. These characterize the vibrational dynam-
ics of molecules associated with the population (longitudinal, t1) and phase
relaxations (decoherence, t2). First we find that the phase relaxation is much
slower than the population, namely, t1 < t2. This, in other words, gives rise
to the coherent energy transfer, in contrast to the incoherent one predicted
by Förster theory [83, 84]. Secondly the environment-induced coherence is
found to considerably improve the phase-surviving time t2 and amplify the
amplitude of the coherence dynamics, by comparing to the secular approxi-
mation where the coherence dynamics is decoupled to the populations [22].
This result can be further applied to the processes (including both the bosonic
and fermionic cases) described by quantum master equation in general [85].
Under the secular approximation, the quantum master equation reduces to

∂

∂t

(

ρp

ρc

)

=

(

Mp 0

0 Mc

)(

ρp

ρc

)

(3.1.0.1)

which shows that the coherence has no contribution to the population dy-
namics and vice versa. This keeps its validity for predicting the excitation
energy transfer and coherence dynamics when the system is individually cou-
pled to environments. However, as we will show later such approximation
will fail on predicting the coherence dynamics when the collective coupling
between system and environment is considered. This, as will be shown later,
reveals that the environmental contribution can enhance the coherence.

3.1.1 Vibrational energy transfer in molecules

Owing to the complexity of molecular degree of freedoms reflected by the
spectroscopy, the energy can be transfered mediated by the molecular vibra-
tions besides the electronic excitations. One of the widely-known example
is the relaxation of OH-stretching of the water molecules dissolved in D2O
[86, 87]. The motions of molecular vibrations can be theoretically described
by several coupled quantum oscillators. To capture the key features, we
model the vibrational energy transfer as two quantum-mechanically coupled
oscillators. In order to realize the energy transfer, the two-oscillator system
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needs to interact with two independent environments, one of which provides
the excitations in molecules and the other harvests the dissipation energy.
Moreover, both vibrational modes interact with the energy source which gives
rise to the collective coupling to the environment. The dissipation environ-
ment only connects to one vibrational mode since in the water some of the
surface OH groups couple to bulk water which is described by the harmonic
oscillation bath. Therefore the free and interaction Hamiltonian of system
and environments read

H0 = ε1a
†
1a1 + ε2a

†
2a2 +∆(a†1a2 + a†2a1) +

2
∑

ν=1

∑

k,σ

b
(ν),†
kσ b

(ν)
kσ

Hint =
∑

k,σ

gkσ

(

c†b
(1)
kσ + c b

(1),†
kσ

)

+
∑

q,s

fqs

(

a†2b
(2)
kσ + a2b

(2),†
kσ

)

(3.1.1.1)

where c ≡ a1 + a2 and b
(1)
kσ , b

(2)
kσ are the bosonic annihilation operators of

environments. The rotating-wave approximation has been applied to the
vibration-bath interactions, owing to ignorance of virtual-process in long time
limit. The first term in Hint above describes the collective coupling of vibra-
tional modes to environment, which as shown later, leads to the strong en-
tanglement between coherence and population dynamics. This considerably
promotes both the dynamical and steady-state coherence. In realistic sys-
tems, the two vibrational modes do interact with other discrete vibrations,
i.e., the stretching of OH bond in other molecules [88, 89], which in some
sense, can be treated as the vibron-phonon (VP) interaction. As pointed
out previously [58, 61], the strong interactions between the system and some
discrete vibrational modes due to the quasi-resonance between frequencies,
leads to the comparable time scales of system and these vibrational modes,
which subsequently acquires us to include the dynamics of these modes to-
gether with the system. In other words, these vibrational modes must be
separated from the bath degree of freedoms. They cause the renormalization
of the coupling strength ∆ between the excitations in the system. The re-
maining modes consisting of low-energy fluctuations can then be reasonably
treated as the baths, which are in weak coupling to the systems owing to the
mismatch of the frequencies between these continuous modes and system.
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3.1.2 Quantum Master Equation

Based on the perturbation theory with the rational given in last subsection,
the whole solution of the density operator can be written as ρSR = ρs(t) ⊗
ρR(0)+ρδ(t) with the traceless term in higher orders of system-bath coupling.
From the Born-Markoff approximation where the time scale associated with
the environmental correlations is much smaller than that of system over which
the state varies appreciably, the dynamics of the reduced density matrix of
the systems can be achieved by substituting Hs, Hint into Eq.(2.3.1.6) with
Hs = ε1a

†
1a1 + ε2a

†
2a2 + ∆(a†1a2 + a†2a1). Then one has the operator master

equation ρ̇s =
i
~
[ρs, Hs] +

1
2~2

D(ρs) and

D(ρs) =
2
∑

j,p=1

[

γT1,+
p

(

apρsa
†
j − a†japρs

)

+ γT1,−
p

(

a†pρsaj − aja
†
pρs
)

]

+
2
∑

p=1

[

γT2,+
p

(

apρsa
†
2 − a†2apρs

)

+ γT2,−
p

(

a†pρsa2 − a2a
†
pρs
)

]

+ h.c.

(3.1.2.1)

where the reservoirs are assumed to be in thermal equilibrium. The expres-
sions of dissipation rates γTν ,±

p are of the form

γT1,+
1 = γ~2

[

nT1
ν1
cos2θ + nT1

ν2
sin2θ + 1 +

(

nT1
ν1

− nT2
ν2

)

sinθcosθ
]

γT1,+
2 = γ~2

[

nT1
ν1
sin2θ + nT1

ν2
cos2θ + 1 +

(

nT1
ν1

− nT2
ν2

)

sinθcosθ
]

γT1,−
1 = γ~2

[

nT1
ν1
cos2θ + nT1

ν2
sin2θ +

(

nT1
ν1

− nT2
ν2

)

sinθcosθ
]

γT1,−
2 = γ~2

[

nT1
ν1
sin2θ + nT1

ν2
cos2θ +

(

nT1
ν1

− nT2
ν2

)

sinθcosθ
]

γT2,+
1 = γ~2

(

nT2
ν1

− nT2
ν2

)

sinθcosθ, γT2,+
2 = γ~2

(

nT2
ν1
sin2θ + nT2

ν2
cos2θ + 1

)

γT2,−
1 = γ~2

(

nT2
ν1

− nT2
ν2

)

sinθcosθ, γT2,−
2 = γ~2

(

nT2
ν1
sin2θ + nT2

ν2
cos2θ

)

(3.1.2.2)

and Tν ’s are the temperatures of environments. The mixture angle is

θ =
1

2
tan−1

(

2∆

ε1 − ε2

)

,
π

2
< θ <

3π

4
(3.1.2.3)

We will solve the dynamics governed by the QME in coherent representa-
tion which differs from the conventional way in Liouville space. This method
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was first developed by Glauber [66]. It is alternatively named as Glauber-
Sudarshan P representation in quantum optics. As is known the density
matrix is expanded in terms of the eigenstates of the annihilation operators
[90]

ρs(t) =

∫

P (αµ, α
∗
µ, t)|α1, α2〉〈α1, α2|d2α1d

2α2 (3.1.2.4)

where âj|α1, α2〉 = αj|α1, α2〉 and P (αµ, α
∗
µ, t) is called quasi-probability, due

to the overcompleteness of the coherent basis. By projecting into the coherent
representation, the QME is in the form of PDE

∂

∂t
P (αµ, α

∗
µ, t) =

[

(iω1 + γ)
∂

∂α1

α1 + (iω2 + 2γ)
∂

∂α2

α2 + (iu+ εγ)×

(

∂

∂α1

α2 +
∂

∂α2

α1

)

+ c.c.

]

P (αµ, α
∗
µ, t) + γ

[

2Y1
1

∂2

∂α∗
1∂α1

+ 2Y2
2

∂2

∂α∗
2∂α2

+ εY21
12

(

∂2

∂α∗
1α2

+
∂2

∂α1∂α∗
2

)]

P (αµ, α
∗
µ, t) (3.1.2.5)

with ωj = εj/~, u = ∆/~. γ = πD(ν̄)g2ν̄/~
2 and D(ε) is the density of states

(DOS) which is a smooth function. The coupling between the coherence and
population dynamics is governed by the adiabatic parameter ε, whose impor-
tance will be uncovered later. To solve the dynamical equation Eq.(3.1.2.5)
we adopt the approach illustrated in the literature for Ornstein-Uhlenbeck
process [42] and then write down the drift as well as diffusion matrices

Σ =

(

Γ 0

0 Γ†

)

, D = γ

(

0 M

M 0

)

(3.1.2.6)

where

Γ =

(

iω1 + γ iu+ εγ

iu+ εγ iω2 + 2γ

)

, M =

(

Y1
1

ε
2
Y21

12
ε
2
Y21

12 Y2
2

)

(3.1.2.7)

To solve the PDE in Eq.(3.1.2.5) above, we need to get the eigenvalues and
biorthogonal eigenvectors of the drift matrix, which will be shown in detail
in Supporting Information (SI) in Ref.[34]. Here two quantities F and G are

58



introduced

F =

√

1

2

[

1 + 4ε− 4d2 − w2 +
√

(1 + 4ε− 4d2 − w2)2 + 4(w − 4εd)2
]

G =
4εd− w

F
, F 2 +G2 =

√

(1 + 4ε− 4d2 − w2)2 + 4(w − 4εd)2

(3.1.2.8)

where p± = 1 ± F, q± = G ∓ w, d = ∆
~γ

and w = ω1−ω2

γ
. Initially the

system is properly assumed to stay at the ground state ρ0 = |0, 0〉〈0, 0|, since
there is no excitation at the beginning. To solve the PDE above, one needs
to obtain the Glauber representation of the initial state ρ0. First we get
the matrix element 〈−α1,−α2|ρ0|α1, α2〉 = e−(|α1|2+|α2|2), which leads to the
Glauber representation of the initial state based on the Fourier transform in
the complex domain

P (αµ, α
∗
µ, 0) =

e|α1|2+|α2|2

π4

∫ ∫

d2β1d
2β2〈−β1,−β2|ρ0|β1, β2〉

× e|β1|2+|β2|2e2iIm(β∗
1α1+β∗

2α2) = δ(2)(α1)δ
(2)(α2)

(3.1.2.9)

Notice that the measure we used is d2α = d(Reα)d(Imα). Therefore un-
der the initial condition (3.1.2.9), the full solution to the dynamical equa-

tion Eq.(3.1.2.5) is P (αµ, α
∗
µ, t) = a(t)b(t)−|c(t)|2

π2 exp{−[a(t)|α1|2 + b(t)|α2|2 +
c(t)α∗

1α2 + c∗(t)α1α
∗
2]} and

a(t) =
A24

11Y
1
1 +A24

22Y
2
2 +A24

1221Y
21
12

det(B)

b(t) =
A13

11Y
1
1 +A13

22Y
2
2 +A13

1221Y
21
12

det(B)

c(t) = −A14
11Y

1
1 +A14

22Y
2
2 +A14

1221Y
21
12

det(B)

(3.1.2.10)

The coefficients A...
... are given in SI in Ref.[34].

3.1.3 Coherence and population dynamics

Given a density matrix representing the state of the molecular vibrations,
we wish to evaluate the amount of entanglement in the state, which refers to
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non-local correlations between the vibrational modes of spatially separated
molecules. The mixed-state entanglement entropy quantifying the degree of
entanglement of mixture ensemble is still an open question, despite the fact
that it is well defined for the pure state. Another measure of entanglement
is the concurrence, which is computable for only two qubits. Here we choose
the coherence

C[ρ] = Tr(ρsa
†
1a2) =

∞
∑

n1=1

∞
∑

n2=1

√
n1n2 〈n1 − 1, n2|ρs|n1, n2 − 1〉 (3.1.3.1)

to quantify the entanglement between different vibrational modes, from the
combination of off-diagonal elements of density matrix in Fock space. First
this quantity is basis-independent while the conventional description is not.
Secondly as reflected in the operator master equation Eq.(3.1.2.1) the C[ρ]
introduced here interacts with the populations, which in other words, may
have significant contribution to the population dynamics. In analogy with the
NMR experiment, the population dynamics is governed by the polarization

Mz =
n1 − n2

n1 + n2
(3.1.3.2)

or alternativelyMz can be also called population imbalance. n1 = Tr(ρsa
†
1a1), n2 =

Tr(ρsa
†
2a2). In our model, these two observables are written as

C[ρ] = A14,∗
11 Y1

1 +A14,∗
22 Y2

2 +A14,∗
1221Y

21
12

Mz =
(A13

11 − A24
11)Y

1
1 + (A13

22 − A24
22)Y

2
2 + (A13

1221 − A24
1221)Y

21
12

(A13
11 +A24

11)Y
1
1 + (A13

22 +A24
22)Y

2
2 + (A13

1221 +A24
1221)Y

21
12

(3.1.3.3)

The first column of Fig.3.8 illustrates the coherence dynamics. It is com-
monly shown that the coherence is generated by the environments, before
the dephasing takes place. Fig.3.8(a,b) show that (i) the sharp increase of
both coherence as well as population imbalance and (ii) the considerable
promotion of the amplitude of both coherence as well as population imbal-
ance contributed from the thermal fluctuations in environments. In other
words, these results elucidate that the environments do not only cause the
dephasing process, but can also considerably enhance the quantum coher-
ence, especially at the beginning of the dynamics. In fact the origination of
(ii) is from the improvement of steady-state coherence in far-from-equilibrium
regime, as uncovered before [31, 32].
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Figure 3.1: (Color online) Time evolution of coherence and magnetization
(population imbalance) under various (a,b) T1 measuring the thermal fluctu-
ations of environments, (c,d) vibron-vibron interactions and (e,f) coherence-
population entanglement; In (a,b) the blue, red and purple lines are for
T1 = 8000K, 5600K and 3500K, respectively. ∆ = 0.1eV; In (c,d) the blue,
red and purple lines are for ∆ = 0.3eV, 0.08eV and 5meV, respectively.
T1 = 5600K; In (e,f) the blue and red curves correspond to the cases with-
out and with secular approximation. Other paramters are δε = 0.15eV,
T2 = 2100K and γ = 10ps−1.
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T1(K) t1(fs) t2(fs) t2/t1

3500 36 71.6 1.98
5600 35.8 70.4 1.97
8000 35.6 80 2.25

Table 3.1: Time constants t1 and t2 with different temperatures. ∆ = 0.1eV,
δε = 0.15eV, T2 = 2100K and γ = 10ps−1.

It is widely known that the intramolecular relaxation process is governed
by two distinct time scale t1 and t2 where t1 refers to the time constant of
longitudinal relaxation or relaxation in z-direction and t2 refers to the trans-
verse relaxation or phase relaxation. Physically t1 relaxation describes the
process of re-establishing the normal Guassian distribution of populations
in states in the presence of environments. t2 is the loss of phase correla-
tion among molecules. Classically t1 ≥ t2. In quantum systems, however
as shown later, t2 can be larger than t1, which indicates a strong coherent
nature and further means that the coherence will survive during the process
of energy or charge transfer. Roughly by comparing the decay tails between
the two columns in Fig.3.8 it seems apparent that the relaxation of phase
coherence is slower than the longitudinal relaxation. This is reflected by the
tail of decay which is smooth for coherence while it is of sharp decrease for
population. To quantify this issue in detail, we need to estimate the time
length of relaxation by e−1 decay, since the behavior of time evolutions of
population and coherence is of exponential feature as reflected in A...

... and
Eq.(3.1.3.3). Both Table I and II show that the longitudinal relaxation is
faster than the coherence relaxation, namely, t1 < t2 which is contrary to the
usual cases [37, 91]. On the other hand, both of longitudinal and coherence
relaxations are nearly not affected by the thermal fluctuations in reservoirs
while they are sensitive to the vibron-vibron interaction. This is because the
F, G defined before are independent of the bath parameters. In particular,
the longitudinal relaxation becomes faster while the coherence relaxation be-
comes slower, as the vibron-vibron coupling increases. This originates from
the vibron-phonon interaction (i.e., hydrogen bond) which leads to the renor-
malization of vibron-vibron couplings. Furthermore, the slower relaxation of
phase coherence indicates that the dynamical energy transport process is
more coherent at large vibron-vibron couplings.

By applying our model to the OH-stretching mode of HDO dissolved in
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∆(eV) t1(fs) t2(fs) t2/t1

0.005 −− 14.6 −−
0.08 28.3 79.1 2.8
0.3 28.3 112 3.96

Table 3.2: Time constants t1 and t2 with various vibron-vibron couplings.
δε = 0.15eV, T1 = 5600K, T2 = 2100K and γ = 10ps−1.
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Figure 3.2: (Color online) (Left) Orientation (coherence) dynamics for the

OH-stretching mode of HDO dissolved in D2O and (right) 2D plot of 3−F |ε=0

3−F |ε=1

as a function of ∆ and δε. (Left) The blue and purple lines correspond to
∆ = 0.0112eV and 0.5meV, respectively. Other parameters are T1 = 5600K
and T2 = 2100K

D2O, the parameters are ε1 = 3500cm−1, ε2 = 3320cm−1 and γ = 0.3ps−1

according to Ref.[87]. The vibrational and orientational dynamics of OH-
stretching mode of HDO molecules was measured by the femtosecond mid-
infrared pump-probe study. Here, the orientational dynamics refers to the
coherence dynamics in our terminology. Our theoretical investigation illus-
trates the coherence (orientation) dynamics in Fig.3.7(left).

The e−1-decay-estimation of the time constant for coherence-surviving
gives τ ' 2.6ps associated with strongly hydrogen-bonded water molecules,
whereas τ ' 0.7ps for the weakly hydrogen-bonded water molecules. These
are in good agreement (at least qualitatively, except the minor deviation
caused by the simplification of theoretical model) with the measurements in
recent experiments [86, 87], where the measurement of the time constants
gives τ ' 13ps and 0.7ps, respectively.

63



3.1.4 Quantification of coherence effect

There was long debate on the coherence contribution to the vibrational and
coherence dynamics, and also the energy (charge) transport. By introduc-
ing an adiabatic parameter ε in Eq.(3.1.2.1) and (3.1.2.5) before, here we will
study how the coherence-population entanglement gradually affects the relax-
ation process. Notice that the coherence-population entanglement is mainly
generated by the environments. We will further perform a comparison be-
tween our full quantum dynamics (ε = 1) and the one within the secular
approximation (ε = 0), in which the coherence and population dynamics
are unentangled. The secular approximation has been popularly applied to
the Lindblad equation describing the chemical reactions and light-harvesting
complex, so that its validity should be examined hereafter. The dissipation
term in Eq.(3.1.2.1) reduces to

D̄(ρs) =
2
∑

j=1

[

γT1,+
j

(

ajρsa
†
j − a†jajρs

)

+ γT1,−
j

(

a†jρsaj − aja
†
jρs

)]

+ γT2,+
2

(

a2ρsa
†
2 − a†2a2ρs

)

+ γT2,−
2

(

a†2ρsa2 − a2a
†
2ρs

)

+ h.c.

(3.1.4.1)

which leads to the case ε = 0 in Eq.(3.1.2.5). Correspondingly the solu-
tion shares the same expression as Eq.(3.1.2.5) by setting ε = 0. Therefore
the population imbalance (magnetization) and coherence are in the same
formalisms as the ones previously in Eq.(3.1.3.3), under the limit ε → 0+.
Moreover the residue coherence in long time limit even under secular ap-
proximation (shown in Fig.3.8(e)) is due to the coupling between vibrational
modes (vibron-vibron interaction as mentioned before), although in the dis-
sipation part the coherence is decoupled from population dynamics.

As is shown in Fig.3.8(e) and 3.8(f), for phase coherence we found that
(i) the amplitude is considerably improved and (ii) the time constant for
decay is significantly extended (see the tail of decay), by the coherence-
population entanglement. Quantitative analysis gives rise to t2 ' 81fs and
37.3fs for including coherence-population entanglement and not, respectively.
This behavior is attributed to the reduction of drift force quantified by eigen-
values of the drift matrix Σ, by adding the coherence. Quantitatively it is
3 − F |ε=1 < 3 − F |ε=0 in the region 2∆ ≥ ε1 − ε2, as estimated in the right
figure in Fig.3.7. To elucidate this, we adopt the Langevin-Heisenberg the-
ory [21] to develop the dynamical equation for the system operators aν from
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Figure 3.3: (Color online) (Left) The parameter 3−F varies as a function of ε.
The blue, red and purple lines are for ∆ = 0.35eV, 0.1eV and 0, respectively;
(Right) Energy consumption as a function of ε, where blue and red lines are
for ∆ = 0.1eV and 0.05eV, respectively. Other parameters are δε = 0.15eV
and γ = 10ps−1.

ȧν = 1
i~
[aν , H] and thus we have

ȧ1 = −iω1a1 − iua2 +
1

i~

∑

k,σ

gkσb
(1)
kσ

ȧ2 = −iua1 − iω2a2 +
1

i~

∑

k,σ

(

gkσb
(1)
kσ + fkσb

(2)
kσ

)

ḃ
(1)
kσ = −iωkσb

(1)
kσ +

gkσ
i~

(a1 + a2)

ḃ
(2)
kσ = −iωkσb

(2)
kσ +

fkσ
i~
a2

(3.1.4.2)

Eliminate the bath freedom by formally solving the last two equations in
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Eq.(3.1.4.2) above

(

ȧ1

ȧ2

)

= −
(

iω1 + γ iu+ γ

iu+ γ iω2 + 2γ

)(

a1

a2

)

+

(

F1(t)

F2(t)

)

F1(t) =
1

i~

∑

k,σ

gkσb
(1)
kσ(0)e

−iωkσt

F2(t) =
1

i~

∑

k,σ

[

gkσb
(1)
kσ(0) + fkσb

(2)
kσ(0)

]

e−iωkσt

(3.1.4.3)

which indeed is the quantum Langevin equation. Fj(t) on the right hand side
of Eq.(3.1.4.3) stands for the stochastic force. As is known, the left hand side
of Eq.(3.1.4.3) represents the drift force in phase space and then the right
hand side recovers the drift matrix defined before as quantifying the drift
force induced by the environments. Therefore, the dephasing originates from
the drift force induced by the random scattering between the system and en-
vironmental modes. The effect of environment-induced coherence-population
entanglement is to reduce the drift force and the coherence subsequently sur-
vives much longer. On the other hand, it elucidates here that the envi-
ronments have non-trivial contribution to the long-lived coherence in the
excitation energy transport, contrary to the previous statements.

To explore the gradual effect of coherence-population entanglement on the
drift force and the relaxation process, we need to further study the response
of quantity F to the adiabatic variation of the strength of the environment-
induced coherence-population entanglement in QME. As shown in Fig.3.3,
the dephasing becomes rapid in the weak ε regime (ε� 1) while it is reduced
in the strong ε regime (ε ∼ 1), as the coherence-population entanglement
increases. Physically this indicates that the coherence can reduce the envi-
ronmental diffusion only when its coupling to population dynamics becomes
significant. Such behavior can be understood in general by the following
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expansion of F about ε = 0 and 1

F = F |ε=0 +

(

1 +
1− (2d+ w)2

√

(1− 4d2 − w2)2 + 4w2

)

ε

F |ε=0

+ o(ε2)

F = F |ε=1 +

(

1 +
5 + (6d+ w)(2d− w)

√

(5− 4d2 − w2)2 + 4(4d− w)2

)

ε− 1

F |ε=1

+ o
[

(ε− 1)2
]

(3.1.4.4)

In our regime of parameters for vibrational energy transport, ∂F/∂ε|ε=0 is
always negative while ∂F/∂ε|ε=1 is always positive.

Before leaving this section, it is worthwhile to point out that the mech-
anism of the increase of lifetime of coherence is not only restricted to the
molecular vibrations as discussed here, but can also be applied to the exci-
ton process in photosynthesis [85] described by the Redfield equation [22],
where the coherence-population entanglement (beyond secular approxima-
tion) led to the enhancement of coherence lifetime as well. In this sense the
reduction of decoherence caused by the environmental-induced coherence-
population coupling is a general feature based on the structure of quantum
master equation.

3.1.5 Heat current

Macroscopically, the energy transfer should be affected by the quantum in-
terference, as being much debated in the excitation energy transport in
light-harvesting complex. Here we will carefully explore the contribution
by the non-local correlation originated from coherence, to the heat cur-
rent. The transient process, or in other words, the relaxation, demands
the non-vanishing energy consumption for the molecular machine to reach
the nonequilibrium steady state. The energy consumption in our model is
therefore Q =

∫∞
0
(〈J1〉 − 〈J2〉)dt =

∫∞
0
[〈J1〉 − 〈J∞

1 〉 − (〈J2〉 − 〈J∞
2 〉)]dt and
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after some algebra the energy consumption reads

Q = Qp − 4∆

∫ ∞

0

Re
(

C̄[ρ]
)

dt

Qp

2
= −

2
∑

i=1

(

ε1I13
ii + ε2I24

ii

)

Yi
i +
(

ε1I13
1221 + ε2I24

1221

)

Y21
12

∫ ∞

0

Re
(

C̄[ρ]
)

dt = Re[I14
11 ]Y

1
1 +Re[I14

22 ]Y
2
2 + Re[I14

1221]Y
21
12

(3.1.5.1)

where C̄[ρ] = C[ρ](t) − C[ρ](∞). I ...
... = γ

∫∞
0

A...
...dt and their expressions

will be given in SI in Ref.[34]. In general the 2nd term in Eq.(3.1.5.1) origi-
nates from the coherence, which demonstrates the non-negligible contribution
from the coherence. To support this point numerically, Fig.3.3(b) shows the
non-trivial contribution of coherence-population entanglement to the energy
consumption of the QHE. Moreover the coherence leads to the overall sup-
pression of the energy consumption which in other words, indicates that the
energy transport efficiency is effectively enhanced by adding the quantum
interference.

3.1.6 Conclusion and remarks

We have studied the dynamical energy transport mediated by the molecu-
lar vibrations. It was found that the decoherence is much slower than the
population relaxation, which suggests the coherent energy transfer, contrary
to the one described by Förster theory. Since the quantum interference sup-
presses the drift force originated from the environments, the environment-
induced coherence-population entanglement leads the coherence to survive
much longer than the case with population involving only. Moreover the
amplitudes of both coherence and population dynamics are also considerably
amplified by the coherence-population entanglement. These demonstrate the
significance of the environment-assisted coherence effect on the vibrational re-
laxation process. Our theoretical exploration further provides the prediction
of the time scale of orientational relaxation of OH-stretching mode, with good
agreement with the experimental measurements in HDO molecules dissolved
in D2O. On the macroscopic level, the coherence is shown to have non-trivial
contribution to the enhancement of the quantum yield of vibrational energy
transfer, as reflected by the suppression of the energy consumption.
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3.2 Origin of long-lived quantum coherence

and excitation dynamics in pigment-protein

complexes

3.2.1 Breakdown of adiabatic approximation and electron-
phonon interaction

In molecular aggregates, the energy transfer can be mediated by the elec-
tronic excitations, besides the vibrational modes investigated before. The
wide interest in exploring this excitation energy transfer in solar cell and
photosynthetic process was recently triggered by experimental investigations
of excitonic dynamics in light-harvesting and Fenna-Matthews-Olson (FMO)
complexes [8, 92, 93]. The transport of excitation energy in the antenna
is remarkably fast and efficient, usually with quantum yields close to 100%
[9], which is conjectured to correlate with the quantum nature of the aggre-
gates. Even with the knowledge on electronic structure in antenna and the
advances in spectroscopy that uncovered the long-lived quantum coherence
in noisy environment [11, 94], the full understanding of the role of coherence
and mechanism of excitation energy transfer has still remained mysterious.

Conventionally, either in Förster theory [83, 84] or the advanced models
including dephasing [12, 15, 95, 96], the excitonic energy transfer is consid-
ered in adiabatic framework under Born-Oppenheimer approximation [97]
where only the degrees of freedoms of the electrons are included. In such
adiabatic regime, it has been realized that the electronic coherence has no
contribution to the energy transfer in pigment-protein complexes, since the
dynamics of electronic coherence and populations are unentangled. Although
the models under this approximation were somehow successful in describ-
ing the population dynamics of excitons in a quasi-classical way, it shows
its failure on explaining the long-lived coherence oscillations [95, 98] ob-
served in 2D femtosecond electronic spectroscopy [13, 14, 23, 24, 25]. In
fact, some discrete intramolecular vibrations are of comparable time scale
of relaxation with the exciton, which subsequently leads to the breakdown
of adiabatic approximation [27, 29, 30]. This in other words, reveals the
deviation of equilibrium configurations on the energy surface of excitons, as
illustrated in Fig.3.4. Thus this phonon dynamics often has crucial effect
on the energy transport when the energy quanta of vibrational modes are in
resonance with the energy splitting of excitons [26, 28, 99, 100]. Here the
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Figure 3.4: (Color online) Schematic of the deviation of equilibrium of energy
surface of excitons, caused by the intramolecular vibrations. The excitonic
wave packet relaxes to the new equilibrium position after the electronic ex-
citation. This results in the breakdown of Condon approximation.

non-adiabaticity explicitly refers to the case including the phonon dynamics
owing to the comparable relaxation of phonons with the excitons. Quan-
titatively, the deviation of the equilibrium positions of exciton energy sur-
face is reflected by the defect of the lattice formed by nucleis in molecules.
This subsequently results in the displacement of equilibrium positions of
the electron potential energy V (r) ≡ V (r − R1, r − R2, · · · , r − RN) and
V (r) → V (r+ s) = V (r− R1 − s1, r− R2 − s2, · · · , r− RN − sN) where the
vectors Ri and si represents the original equilibrium positions and displace-
ment from original equilibrium positions, respectively. Assuming s is small,
one can expand the electron potential in powers of deviations and break off
after the linear term

V (r+ s) = V (r)−
N
∑

i=1

si · ∇iV

∇iV ≡ ∂

∂(r−Ri)
V (r− R1 − s1, r− R2 − s2, · · · , r− RN − sN)

(3.2.1.1)

The 2nd term is the exciton-phonon interaction which quantifies the cou-
pling between exciton and molecular vibrational motions. The displacement
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can be written in terms of the normal coordinates of vibrational modes

si = −
∑

k,σ

Q
(i)
kσekσ

(

akσ + a†−k,σ

)

(3.2.1.2)

and the electron potential is of the form

V (r+ s) = V (r) +
N
∑

i=1

∑

k,σ

Q
(i)
kσ (ekσ · ∇iV ) (akσ + a†−k,σ) (3.2.1.3)

where akσ is the annihilation operator of phonons associated with wave vector
k and polarization σ. Q

(i)
kσ and ekσ are the amplitude of the normal coordinate

with (k, σ) and unit vector of polarization, respectively. Q
(i),∗
kσ = Q

(i)
−k,σ is to

ensure the reality of the displacement si. From the second quantization
formalism, the Hamiltonian of excitons and vibrational modes (phonons)
takes the form of

H =

∫

ψ†
[

p2

2m
+ V (r+ s)

]

ψ d3r+
∑

k,σ

~ωkσa
†
kσakσ (3.2.1.4)

By expanding the field operator in terms of single electron orbitals ψ(r) =
∑

n cnφn(r) and using Eq.(3.2.1.3) we obtain the expression of Hamiltonian
governing electron-phonon interaction

H =
N
∑

n=1

εnc
†
ncn +

∑

k,σ

~ωkσa
†
kσakσ +

N
∑

n,m=1

∑

k,σ

Mkσ
nmc

†
ncm(akσ + a†−k,σ)

Mkσ
nm =

N
∑

i=1

Q
(i)
kσekσ · 〈φn|∇iV |φm〉 (3.2.1.5)

where cn is the fermionic annihilation operator of electrons and εn is the
energy of the n-th level of single electron which satisfies the eigenequation

[

p2

2m
+ V (r)

]

|φn〉 = εn|φn〉 (3.2.1.6)

3.2.2 Organization of the section

In this section, we develop an effective theory to uncover in a general scenario
the underlying mechanism for long-lived quantum coherence, while other in-
vestigations numerically show the existence of such effect without illustrat-
ing the mechanism [27, 99]. The bare electron is surrounded by discrete
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vibrational modes. As a result, the new composite called polaron emerges,
resulting in the suppression of system-reservoir coupling and therefore the
screening of the exciton-bath interaction. This leads to much longer survival
of quantum coherence than that with bare excitons only. Our general the-
ory, on the other hand, suggests a physical mechanism for slowing down the
dynamical decoherence, which is potentially applicable in quantum compu-
tation. Our motivation is to understand the role of vibrational coherence
on the long-lived coherence and also the efficient energy transfer measured
in recent experiments [13, 14, 23]. Our general effective theory is verified in
the pigment-protein complex by uncovering the long-lived electronic and ex-
citonic coherences caused by vibrational coherence. Moreover such a system
the ground-state coherence contributed by incoherent environment is found
to give rise to the considerable enhancement of excitation energy transfer.
This, however, fails to be predicted by the previous model without incoherent
radiations.

3.2.3 Model and Hamiltonian

For the general consideration of the coupling of molecular excitations to the
motions of molecular vibrations, we introduce the N -site fermionic system
coupled to the phonons. From the electron-phonon interaction introduced in
Eq.(3.2.1.5) the subsequent Hamiltonian is

H =
N
∑

n=1

εna
†
nan +

∑

n<m

Jnm(a
†
nam + a†man) +

∑

q,s

~ωqsb
†
qsbqs

+
∑

q,s

N
∑

n=1

fqs~ωqsγna
†
nan

(

bqs + b†−q,s

)

(3.2.3.1)

where εn and Jnm are the on-site energy and electronic coupling of excitons,
respectively. In the last term fqs governs the strength of electron-phonon
interaction and γn quantifies the diagonal disorder of the system, leading to
the renormalization of the on-site energies as shown later. ωqs stands for the
dispersion relation of phonons as a function of wave vector q and s denotes the
phonon polarization. an and bqs are the fermionic and bosonic annihilation
operators of excitons and phonons, respectively. To take into account the
effect of discrete vibrational modes, we need to reach the effective theory,
by applying the polaron transform to the entire system with the generating
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function

S =
N
∑

m=1

∑

q,s

fqsγma
†
mam(b

†
−q,s − bqs) (3.2.3.2)

Because of some phonon modes being quasi-resonance with excitonic energy
gap which leads them to strongly couple to excitons, these discrete modes
should be separated from others and then the remaining phonon modes
weakly interact with the excitons. This results in the effective Hamiltonian
H̃ = HS +Hph +Hint and

HS =
N
∑

i=1

(

εi − γ2i V0
)

a†iai + 2V0
∑

i<j

γiγja
†
ia

†
jaiaj

+
∑

n

~ωnd
†
ndn +

∑

i<j

Jij

[

∏

n

eλn(γi−γj)(d
†
n−dn)a†iaj + h.c.

]

Hint =
∑

q,s

∑

i<j

(γi − γj)Jij
∏

m

e−λ2
m(γi−γj)

2/2fqs

×
(

a†iaj
∏

n

χn
ij − a†jai

∏

n

χn,†
ij

)(

b†−q,s − bqs

)

Hph =
∑

q,s

′
~ωqsb

†
qsbqs (3.2.3.3)

where the on-site energy of excitons is renormalized by phonons reflected by
the 1st term of HS and V0 =

∑

q,s f
2
qs~ωqs. The 2nd and 3rd terms are the

exciton-exciton interaction (intermediated by phonons) and the free Hamil-
tonian of discrete vibrational modes, respectively. The last term in HS

quantifies the electronic coupling renormalized by exciton-vibrational (dis-
crete phonon modes) coupling. The exciton-phonon interaction strength
fqs is replaced by λn where λn = fq′s′ for those discrete modes. |λnγi|
refers to the Huang-Rhys or Frank-Condon factor [101] which quantifies the
overlap between the vibrational wavefunctions. The vibrational operator is

χn
ij = eλn(γi−γj)d

†
ne−λn(γi−γj)dn . Those discrete vibrational modes are denoted

by the operator dn’s. Hint above is obtained up to the 1st order of fqs and it
describes the coupling of excitons to the remaining phonon modes, other than
the discrete phonon modes. Eq.(3.2.3.3) shows that the effective coupling
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Figure 3.5: (Color online) The schematic of exciton-environment interaction.
(a) The coupling between bare exciton and environment; (b) The exciton-
vibration coupling forms a new composite called polaron. In (b) the bare ex-
citon (red) is surrounded by a cloud consisting of discrete vibrational modes
(blue), which leads to the suppression of the coupling strength between ex-
citon and environment.

strength between exciton and phonon is renormalized by the polaron effect,
which leads to the weak interaction of the new composite (exciton+vibron)
with the environmental modes, as will be illustrated in details later.

3.2.4 General mechanism for long-lived quantum co-
herence

Based on Eq.(3.2.3.3), the discrete phonon modes are glued to excitons and
the whole system forms the polarons, which weakly couple to the quasi-
continuous phonon modes. This results in the renormalization of the effec-
tive coupling strength between exciton and phonon, as illustrated in Fig.3.5.
Because the energy gap of excitons is in quasi-resonance with the vibrational
energy, the dynamics of those vibrations can therefore be restricted to the
space spanned by |{mn}〉, |{mn + 1}〉 where mn = 〈{mn}|d†ndn|{mn}〉 rep-
resents the occupation number of phonons on each vibrational mode. In
most circumstance, the molecular vibrations are always excited from the
ground state so that only the eigenstates |{0}〉, |{1}〉 are included. There-
fore by taking into account the matrix elements of the vibrational oper-
ator χn

ij: 〈{mn}|χn
ij|{mn}〉 = Lmn

(λ2n(γi − γj)
2) , 〈{mn}|χn

ij|{mn + 1}〉 =

−(γi−γj)λn
√
mn + 11F1

(

−mn; 2;λ
2
n(γi−γj)

2
)

, which are of order ∼1 espe-
cially for the case mn = 0, the effective coupling between system and phonon
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environment is renormalized as

f̄ ij
qs = (γi − γj)

∏

n

e−λ2
n(γi−γj)

2/2fqs (3.2.4.1)

which shows that the system-bath interaction is suppressed by a factor of
∏

m e
−λ2

m(γi−γj)
2/2. In the framework of weak system-reservoir interaction, the

typical dephasing rate Γ is determined by the square of system-bath coupling,
namely, Γ ∼ f 2

qs [22]. This leads to the reduction of the dephasing rate in-

duced by phonon environment, namely, Γ̄ = (γi−γj)2
〈J2

ij〉
~2〈ω̄〉2

∏

n e
−λ2

n(γi−γj)
2
Γ '

∏

n e
−λ2

n(γi−γj)
2
Γ and then the typical lifetime of coherence is elongated

τ̄

τ
'
∏

n

eλ
2
n(γi−γj)

2

(γi − γj)2
(3.2.4.2)

Notice that in the matrix elements of χn
ij, Ln(z) is the Laguerre polynomial

and 1F1(a; b; z) is the Hypergeometric function of order (1,1). Eq.(3.2.4.2)
demonstrates that the lifetime of coherence of the system is exponentially
improved by the exciton-vibration coupling. In pigment-protein complexes
such as FMO systems, |γi − γj| ∼ 2 and λn ∼ 1 so that τ̄2 & 10τ2 if n = 1,
namely, only one discrete vibrational mode is included. Furthermore it should
be noticed that the amplification factor of the typical lifetime of coherence
will be eλ

2(γi−γj)
2M when considering M discrete vibrational modes in quasi-

resonance with exciton energetic gap. As a brief summary, this demonstrates
the mechanism in a general scenario: some modes of molecular vibrations sur-
rounding the exciton form the new quasiparticle called polaron which results
in the screening of interaction between bare exciton and environment. Hence
we suggest that the consequent weak coupling of polarons to the environment
is the origin of the long-lived quantum coherence. It is also worthy to point
out that based on this mechanism, the vibrational coherence generated by
vibrational modes will play a significant role in understanding the long-lived
excitonic coherence.

3.2.5 Pigment-protein Complex

As an example for elucidating the general mechanism proposed in the last
section, we will study in detail the coherence dynamics of the pigment-protein
complex, as illustrated in Fig.3.6. By considering a prototype dimer strongly
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Figure 3.6: Schematic of a dimer in pigment-protein complex. The excitons
in pigments couple to a vibrational mode and the radiation energy with
temperature T1 is absorbed by such joint system and then dissipated into
the noisy protein environment with temperature T2.

coupled to intramolecular vibration of frequency ω, the interaction between
exciton and vibrational modes reads

Hpp
ex−vib = (η~ω/21/2) (|A〉〈A| − |B〉〈B|) (d− + d†−) (3.2.5.1)

for the non-adiabatic treatment and total Hamiltonian is Hpp
S = Hpp

0 +Hvib+
Hpp

ex−vib, where H
pp
0 = εA|A〉〈A|+εB|B〉〈B|+J (|A〉〈B|+ |B〉〈A|) and Hvib =

~ωd†−d−. |A〉 and |B〉 denote the electronic states of pigments A and B,
respectively. The minus sign in Eq.(3.2.5.1) is due to the relative motion
between the vibrational modes [61]. η is the Franck-Condon factor of the
vibrations. The energy gap between the localized excitons is ∆ = εA−εB > 0.

In pigment-protein complexes, the excitons interact with both the inco-
herent radiations and the low-frequency fluctuations of protein (phonons),
to funnel the unidirectional energy transfer. The interaction with radiations
takes the dipolar form of p·A in quantum electrodynamics, where p andA are
the exciton momentum and vector potential, respectively. The interaction
then reads

Hpp
int =

2
∑

n=1

∑

m=2,4

∑

k,p

gkp
(

σ−
n,n+m + σ+

n,n+m

)

(

akp + a†−k,p

)

+
6
∑

n=3

∑

q,s

fqsγnσnn

(

bqs + b†−q,s

)

(3.2.5.2)

where σ−
ij = |i〉〈j|, σ+

ji = |j〉〈i| (i < j) are the lowering and raising operators
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of excitons, and σii = |i〉〈i|. akp and bqs are the bosonic annihilation oper-
ators of the radiation and low-frequency fluctuation environments, respec-
tively. The free Hamiltonian of the reservoirs is Hbath =

∑

k,p ~νkpa
†
kpakp +

∑

q,s ~ωqsb
†
qsbqs. Usually the low-frequency fluctuations are effectively de-

scribed by the Debye spectral density S(ω) = (2ER/π~)(ωωd/(ω
2 + ω2

d))
where ER is the so-called reorganization energy and it governs the coupling
strength between system and low-energy fluctuations. ωd refers to the Debye
cut-off frequency. Owing to fast relaxation of the environments and weak
system-bath interaction as pointed out in our model, the quantum master
equation (QME) for the reduced density matrix of the systems can be derived
by tracing out the degree of freedoms of the environments. In Liouville space
the QME can be further formulated as two-component form

∂

∂t

(

ρp
ρc

)

=

(Lp Lpc

Lcp Lc

)(

ρp
ρc

)

(3.2.5.3)

where ρp and ρc represent the population and coherence components of the
density matrix, respectively. Lpc and Lcp quantify the non-trivial entan-
glement between the dynamics of population and electronic coherence, be-
yond the secular approximation. Their forms can be directly obtained from
Eq.(S20) in Supporting Information (SI) in Ref.[35] and the details are omit-
ted here to avoid redundancy.

3.2.6 Coherence dynamics and excitation energy trans-
fer

As is known, the excitation energy transfer is reflected by the transient be-
havior of the population on pigment B. This is quantified by the scaled
probability

P̄B(t) =

m+1
∑

ν=m

〈B, ν|ρ|B, ν〉

∑

i=A,B

m+1
∑

ν=m

〈i, ν|ρ|i, ν〉
(3.2.6.1)

To clarify the contribution of quantum coherence, we denote the coherence in
the localized basis into two groups: electronic and vibronic coherences. The
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former and latter ones are defined as

Cele = Im〈A,m|ρ|B,m〉+ Im〈A,m+ 1|ρ|B,m+ 1〉

C
(i)
vib = Im〈i,m|ρ|i,m+ 1〉; i = A,B (3.2.6.2)

Moreover the ground-state coherence takes the form of Cgs = Im〈0,m|ρ|0,m+
1〉. As will be shown later, these vibronic coherences will dramatically affect
the behaviors of energy transfer and decoherence process. In our calcula-
tions, the vibrational mode is assumed to be excited at ground state, namely,
m = 0.

Long-lived coherence

To explore the effect of molecular vibrations on the decoherence process,
we will study the coherence dynamics, for both the cases including exciton-
vibrational coupling (non-adiabatic regime) or not (adiabatic regime). Fig.3.7(a)
shows the dynamical behavoir of the electronic coherences in both the adia-
batic (purple) and non-adiabatic (blue) regimes. Obviously the non-adiabatic
framework makes the electronic wavepacket Cele become long-lived in oscil-
lation, comparing to the case in adiabatic regime. Quantitatively, the time
constant of beating of the electronic wave packet with exciton-vibron coupling
is τna ∼ 0.024t0 while it is τa ∼ 0.005t0 without exciton-vibron coupling. Tak-
ing FMO complex as example ∆ ' 150cm−1, ω ' 200cm−1, J ' 66cm−1 and
γ ' 0.1ps−1 [29, 102], thus τna ∼ 2.2ps and τa ∼ 500fs. This confirms the
mechanism given by Eq.(3.2.4.1) and (3.2.4.2) in our model such that the
weak coupling of polaron to environment by including exciton-vibrational
interaction serves as the origin for the long-lived electronic coherence. The
structure of QME in Eq.(3.2.5.3) reveals that the environments are forbidden
to generate the direct transition between vibrational states, namely, between
|f, 0〉, |f, 1〉; f = A,B. This, in other words, will lead to the long surviving
time of vibrational wave packet oscillation at excited states, as reflected in
Fig.3.7(b). The ground-state vibronic coherence Cgs holds extremely long-
lived oscillation of ground-state wave packet, compared to the vibrations of
excited-state wave packet (the time scale for GS wave packet is ≥ 0.2t0 while
it is ∼ 0.024t0 for excited-state wave packet), as shown in Fig.3.7(c). Such
extremely long surviving time is attributed to the fact that there is no chance
for exciton to decay when the wave packet is oscillating in the ground state.

In 2D femtosecond experiments, coherence dephasing appears as the de-
cay of oscillations in the amplitudes of the cross peaks, which describes the
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Figure 3.7: (Color online) Time evolution of (a) electronic wave packet, (b)
excited-state vibrational wave packet and (c) ground-state vibrational wave
packet. In (a,c), blue lines are for our model in non-adiabtic regime; In (b)
the blue and red lines correspond to excited-state vibrational wave packets
〈A, 0|ρ|A, 1〉 and 〈B, 0|ρ|B, 1〉, respectively. Time evolution of the excitonic
coherence in delocalized basis, where blue lines correspond to non-adiabatic
regime. Purple lines in (a,b,c) electronic and (d,e,f) excitonic coherences are
for adiabatic regime, respectively. The parameters are: Frank-Condon factor
η ' 1, ∆ = 0.023εA, electronic coupling J = 0.01εA, frequency of vibrational
mode ~ω = 1.33∆, kBT1 = 0.63εA, kBT2 = 1.4∆, Debye frequency ~ωd =
0.7∆, typical decay rate hγ = 0.0005εA, reorganization energy ER = 0.23∆
and t0 = 10γ−1.
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superpositions of excitonic states (localized). Thereby the position (ωτ , ωt)
of the cross-peak refers to the delocalized excitonic states rather than the
localized ones. In such spirit, we should therefore investigate the excitonic
coherence as shown in delocalized basis, in distinction from the electronic
as well as vibronic coherences in localized basis before. From Fig.3.7(d) we
can see that the oscillation of the excitonic coherence is long-lived with the
surviving time τ̄na ∼ 0.024t0 being at least ∼ 5 times than τ̄a ∼ 0.005t0
in adiabatic regime, because of the long-lived oscillations of vibrational and
electronic wave packets as shown in Fig.3.7(a) and 3.7(b). This numerical
evaluation of the lifetime of excitonic coherence illustrates the validity of
the mechanism of long-lived coherence shown in Eq.(3.2.4.1) and (3.2.4.2),
as suggested by our model. For FMO complex from green sulfur bacteria,
τ̄na ∼ 2.4ps and τ̄a ∼ 500fs, which are almost identical to the measurements
in recent experiments [13, 14, 23]. This consequently leads excitation energy
transfer on the paths (|A, 0〉; |B, 0〉) and (|A, 1〉; |B, 1〉) to be coherent while
on the other paths it is still incoherent, due to the short-lived oscillation of
wave packet between other states, as shown in Fig.3.7(e) and 3.7(f).

Population dynamics and energy transfer

To uncover the effect of incoherent radiations on energy transfer, we need
to study the time evolution of population on pigment B, for both adiabatic
and non-adiabatic regimes, as shown in Fig.3.8, where the incoherent radia-
tions are included in 3.8(a) but not in 3.8(b). The initial conditions are: (a)
ρ(0) = |0, 0〉〈0, 0| for blue and ρ(0) = |0〉〈0| for purple; (b) ρ(0) = |A, 0〉〈A, 0|
for blue and ρ(0) = |A〉〈A| for purple. By comparing Fig.3.8(a) and 3.8(b),
one can conclude that the vibrational coherence, especially ground-state vi-
brational coherence facilitates the excitation energy transport by including
the incoherent radiations (blue line is higher than purple in Fig.3.8(a)). Oth-
erwise, it is unable to promote the energy transfer process (blue line is lower
than purple in Fig.3.8(b)). In particular, the excitation energy transfer to
pigment B is considerably promoted by the ground-state vibrational coher-
ence while including the incoherent environment (in Fig.3.8(a) blue line is of
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Figure 3.8: (Color online) The dynamics of scaled population on pigment
B for (a) including and (b) NOT including the incoherent radiation envi-
ronment. In both (a,b), the blue and purple curves correspond to the non-
adiabatic and adiabatic regimes, respectively. (c) Steady-state population
on pigment B with respect to the temperature of low-frequency fluctuations;
(d) Steady-state quantum coherence varies as a function of the temperature
of low-frequency fluctuations. In (d) the purple and blue lines are for elec-
tronic (localized) and excitonic (delocalized) coherences, respectively. The
parameters are the same as in Fig.3.7.
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much larger value than purple line), due to the nonvanishing coefficients

Lii,12 =
6
∑

ν=3

γnT1
ω2ν

(U4ν + U6ν)U
T
νi

Ljj,12 =
6
∑

ν=3

γnT1
ω1ν

(U3ν + U5ν)U
T
νj, i = 3, 5; j = 4, 6 (3.2.6.3)

in Eq.(S20) in SI in Ref.[35]. This physically indicates that the excitation
energy transfer is entangled with the ground-state vibrational coherence by
absorbing photons from incoherent radiations. In contrast, the excited-state
vibrational coherences themselves are unable to enhance the excitation en-
ergy transfer from pigment A to B as shown in Fig.3.8(b), if only the low-
energy noise by protein is included. This is because of the fact that the dy-
namics of populations is decoupled to that of vibrational coherence, namely,
Lnn,n±1n = 0 based on the analysis of the structure of QME in Eq.(3.2.5.3)
and (S20)(SI in Ref.[35]). Furthermore, Fig.3.8(a) shows that the cumula-
tive population on pigment B:

∫

P̄Bdt is much larger than the one without
including exciton-vibrational coupling. This means that the total energy
transport is much enhanced by the vibrational coherence, when including
the radiations. This promotion of energy transport, in fact, is natural from
the view of point of nonequilibriumness, which will be illustrated later.

Moreover, because the lifetime of the enhancement of excitation energy
transfer is almost identical to the surviving time of the excitonic coherence
oscillation as shown in Fig.3.7(d) and 3.8(a), our results lead to the conclusion
that the optimization of the energy transfer is always assisted by the wave-like
behavior of coherence, when the time-reversibility is broken at steady state.
This is consistent with the measurements in ultrafast spectroscopy where
the coherent wave-like motion of excitations was conjectured to facilitate the
excitonic energy transfer.

3.2.7 Nonequilibriumness, steady-state coherence and
energy transfer

It is important to note that the nonvanishing steady-state coherence is reached
for both of the localized and delocalized cases, as shown in Fig.3.7. To eluci-
date this in detail, we explore the nonequilibrium effect (induced by two heat
sources, one is from radiations and the other is from phonons) on steady-state
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Figure 3.9: (Color online) Time evolution of electronic coherence for the cases
including two vibrational modes. (b) and (c) are the zooming-in of coherence
dynamics in different subintervals of time. The parameters are the same as
in Fig.1 in main text.

83



coherence, as shown in Fig.3.8(d). It shows that both electronic and excitonic
coherences are enhanced by decreasing the temperature of low-frequency fluc-
tuations (phonons). This with the fixing temperature of incoherent radi-
ations effectively increases the degree of nonequilibriumness characterized
by detailed-balance-breaking. It indicates that the enhancement of steady-
state quantum coherence can be attributed to the time-irreversibility (from
nonequilibriumness by detailed-balance-breaking) of the whole system. It is
also demonstrated that the steady-state coherence is considerably promoted
in the far-from-equilibrium regime [31, 34].

Moreover, the promotion of energy transfer discussed above can be under-
stood from the underlying nonequilibrium feature with the detailed-balance-
breaking at steady state as we suggested [31, 32, 34, 61, 65], since the nonequi-
libriumness generated by two heat sources can funnel the path and subse-
quently facilitate the unidirectional energy transfer, as shown in Fig.3.8(c).
As pointed out above, the breakdown of time-reversal symmetry at steady
state from the violation of the detailed balance plays an essential role for
long-survived oscillation of coherence to assist the enhancement of energy
transfer.

On the other hand, the general mechanism uncovered in our model demon-
strates that the slowing-down of dynamical decoherence is dominated by
the suppression of exciton-environment interaction, rather than the time-
irreversibility. Hence from Lindblad equation, it is important to emphasize
that the typical time scale for decoherence is mainly governed by the system-
environment interaction, while the time-irreversibility from the detailed-balance-
breaking is mostly responsible for efficient energy transport and the improve-
ment of coherence at steady state [31, 34, 65], shown in Fig.3.8(c).

3.2.8 Effect of multiple vibrational modes

It is worthy to point out that multiple vibrational modes will considerably
elongate the surviving time of excitonic coherence, as generally elucidated in
our model. As shown in Fig.3.9, the electronic coherence by including two
vibrational modes survives much longer than that by including one mode
only (Fig.3.7). Quantitatively τ̄2/τ̄1 ∼ 10, which agrees with our theoretical
estimation at the beginning.
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3.2.9 Discussion and conclusion

In this section we uncover a mechanism in a general scenario for the long-
lived coherence. The bare exciton is surrounded by a cloud consisting of
discrete vibrational modes. This forms a new composite called polaron. The
interactions between the system and the environments are consequently sup-
pressed with respect to that of the bare excitons. This suggests that vi-
brational coherences generated by exciton-vibron coupling play a significant
role in improving greatly the surviving time of the electronic and the exci-
tonic coherences. This general mechanism has never been uncovered before
to the best of our knowledge, although some investigations show the exis-
tence of the long-lived coherence, at numerical level [27, 99]. Besides, the
role of the ground-state coherence was also uncovered, which was elucidated
to be non-trivial and essential for promoting the excitation energy trans-
fer in pigment-protein complexes. The approaches popularly applied before
were also shown to fail in predicting the role of vibrational coherence, es-
pecially the ground-state coherence on dynamical excitonic energy transfer.
We also illustrated the nonvanishing steady-state coherence is promoted by
the time-irreversibility originated from the detailed-balance-breaking of the
system. Furthermore our results on the slowing-down of dynamical deco-
herence from weaker coupling to environment and nonvanishing steady-state
coherence from detailed-balance-breaking leading to efficient energy transfer
provide a possible way to optimize the quantum information process.
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Chapter 4

Quantum dynamics in ultracold
gas and quantum information:
relaxation process II

The contents in this chapter are based on Ref.[103, 104].

4.1 Breakdown of scale invariance in the vicin-

ity of the Tonks-Girardeau limit

4.1.1 Lieb-Liniger model

The one-dimensional Bose gas with contact interactions is a simple and im-
portant model for the study of many-body physics. The recent progress in the
trap, laser cooling have made it experimentally realizable and also have led
to a renewed interest in quasi-one-dimensional ultracold bosons with short-
range interactions. One of the most significant results in previous decades
relevant to this field was the Lieb-Liniger (LL) gas [105, 106], in which
point interactions were described by Dirac delta functions: U(xn − xm) =
gBδ(xn − xm). The recent development of Bose-Einstein condensate pro-
vides the feasibility to transversally confine the spinless bosons by tight har-
monic potentials and thus to allow the longitudinal s-wave scattering only.
Therefore the effective coupling strength between bosons in 1D could be
achieved by the 3D scattering length a3D [49] and the characteristic length
scale `⊥ =

√

~/mω⊥ of transverse motion where ω⊥ designates the transverse
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trapping frequency. As is known, the interaction between bosons in 3D can
be simply governed by one parameter called scattering length, in low energy
limit (s-wave approximation). Hence the 3D pseudopotential between two
bosons is

U(r, r′) =
4π~2a3D

m
δ(r− r′)

∂

∂|r− r′| |r− r′| (4.1.1.1)

which was also called Lee-Huang-Yang potential [107, 108, 109]. m is the
mass of the atom. The scattering length a3D can be successfully tuned in a
wide range by Feshbach resonance [110]. For quasi-1D case, by considering
the effects of transverse confinement it was found that gB = 2~2/(ma). Here
a refers to the effective 1D s-wave scattering length [111, 112] and

a = − `2⊥
2a3D

(

1− C
a3D
`⊥

)

(4.1.1.2)

where C = 1.4603... [111]. This result show that the 1D coupling strength
between bosons can be tuned by adjusting the 3D scattering length in the
experiments. Hence the Hamiltonian of Lieb-Liniger model is of the form

HLL = − ~
2

2m

N
∑

i=1

∂2

∂x2i
+

2~2

ma

∑

i<j

δ(xi − xj) (4.1.1.3)

which is exactly solvable by Bethe ansatz [105, 106]. One can see that in
Tonks-Girardeau limit (gB → ∞) the system is scale invariant [113, 114, 115].
This in other words, indicates that the many-body interaction will lead to
the breakdown of scale invariance, which may be testable in experiments.

4.1.2 Scale invariance

In scale-invariant systems, the Hamiltonian is of a homogeneous function:
H(λr) = λβH(r), which indicates the rescaling of system energy by an arbi-
trary dimensionless constant. This in other words, means no bound state in
the system, since the scale invariance is always associated with an inability of
the interaction potential to introduce a distinct length scale. Several exam-
ples emerged recently in the physics of quantum gases. In three dimensions,
the δ-interaction with infinite coupling strength (the Tonks-Girardeau gas),
even when properly regularized, ensures the scale invariance of the unitary
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gases [116, 117, 118, 119, 120]. In 2D, the unregularized δ-potential, for arbi-
trary coupling strength, induces the scale invariance of two-dimensional Bose
[121, 122] and spin-1/2 Fermi [123] gases at the classical field level, which is
however broken by quantization. Scale invariance enables a robust frequency
gauge: when a scale-invariant gas is placed in a symmetric harmonic trap of
frequency ω and a monopole oscillation is produced, the signal shows neither
damping nor amplitude-dependent frequency shiftsits frequency is fixed to
2ω, for all scale invariant systems and for all spatial dimensions [124]. As
a consequence, monopole excitations in scale-invariant systems are very sen-
sitive to changes in the equation of state, whether produced by a quantum
anomaly [125, 126, 127], by an influence of the confining dimension [128], or
just by a small shift in the coupling constant away from the scale-invariant
point. Later on we will elucidate this point by studying both the microscopic
and macroscopic excitations of the harmonically trapped Lieb-Liniger gas.

4.1.3 Lieb-Liniger gas in a trapping potential

The Lieb-Liniger model for a homogeneous Bose gas is too idealized to study
close to most experiments which involve a longitudinal confinement. There-
fore it is natural and nessecary to generalize this model to the situation with
an external trap [129, 130, 131]. The simplest and most commonly applied
one is the harmonic trap V (x) = 1

2
mω2x2, experimentally produced by mag-

netic quadrapole interaction [110]. Then the Hamiltonian for a harmonically
trapped Lieb-Liniger gas is

HB =
N
∑

i=1

(

− ~
2

2m

∂2

∂x2i
+

1

2
mω2x2i

)

+
2~2

ma

∑

i<j

δ(xi − xj) (4.1.3.1)

where a refers to the 1D scattering length and ω stands for the trapping
frequency of harmonic potential.

Unfortunately, this harmonically trapped Lieb-Liniger model is difficult
to investigate for general values of the particle number N and interaction
strength gB, even though it still remains solvable in certain limits, e.g., TG
gas of infinite repulsion (gB → ∞) [113]. This is because the external trap
breaks the translational symmetry of the system, which furthermore gives
rise to the position-dependence of the two-body scattering phase. Thus the
integrability of the system is destroyed. On the other hand, for the situation
away from the TG limit-even remaining infinitesimally close to it-there exists
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conceptual difficulties in interpreting the resulting system as one governed by
a Hamiltonian for free fermions plus a small correction [132]. Despite of this,
as inspired by recent experiments associated with ultradilute gas [114, 115],
the ground state and low-lying excitations have been studied in the strongly-
coupling regime [133] and Thomas-Fermi limit by a numerical way [129, 130,
134, 135, 136]. In the forthcoming section we will analytically obtain the
monopole excitation with microscopically small amplitude and will show its
suprising agreement with the macroscopic excitation with microscopical large
but macroscopic small amplitude [103].

4.1.4 Bose-Fermi duality

The Bose-Fermi duality in one dimension can establish the mapping between
the bosonic and fermionic models with the same energy spectrum and the
inversed coupling strength [137, 138]. Particularly the spinless bosons with
contact coupling strength c can be mapped into a scalar fermionic model
with interaction of strength ∼ 1/c [139]. Specifically the duality between
the spinless bosons and its fermionic counterpart is written as the following
correspondence

ΦB(x1, x2, · · · , xN ) = AΦF (x1, x2, · · · , xN) (4.1.4.1)

where the function A =
∏

j<l sgn(xj − xl). From the δ-barrier scatter-
ing in quantum mechanics we know that the bosonic wave function ΦB for
Eq.(4.1.3.1) is continuous at the boundary xi = xj but has a jump on deriva-
tive
(

∂

∂xi
− ∂

∂xj

)

ΦB

∣

∣

∣

∣

xi→x+
j

−
(

∂

∂xi
− ∂

∂xj

)

ΦB

∣

∣

∣

∣

xi→x−
j

=
2

a
ΦB|xi=xj

(4.1.4.2)

Correspondingly it is straightforward to show that the fermionic wave func-
tion itself has a jump at the boundary xi = xj but is continuous on derivative

ΦF |xi→x+
j
− ΦF |xi→x−

j
= 2a

(

∂

∂xi
− ∂

∂xj

)

ΦF

∣

∣

∣

∣

xi→xj

(4.1.4.3)

Thus ΦF becomes continuous as approaching the TG limit of infinite repul-
sion (gB → +∞). As a result of Bose-Fermi mapping, all of the physical
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quantities that are functions of the local density of the particles are identi-
cal in both systems in that only the absolute values of wave functions are
involved, which are the same for both systems [140, 141].

For our purpose, the interaction produced by mapping to fermionic system
needs to be found. It has explicitly constructed the interaction potential by
considering the boundary conditions in Eq.(4.1.4.3) [139, 142]. Thus the
fermionic interaction can be written in terms of an integral kernel [139, 141]

UF (x1, x2; x
′
1, x

′
2) = − 4~4

m2gB
δ

(

x1 + x2 − x′1 − x′2
2

)

δ′(x1 − x2)δ
′(x′1 − x′2)

(4.1.4.4)

The HamiltonianHF for fermionic counterpart is of the same form of Eq.(4.1.3.1)
but with a different interaction term

∑

i<j UF (xi, xj; x
′
i, x

′
j). ΦF obeys the

eigenequation of HF if ΦB obeys the eigenequation for HB, with the identical
eigenvalues.

From the formalism of quantum field theory, the Hamiltonian for the
scalar fermions can be written in a compact form using the fermionic field
operators Ψ̂(x) and Ψ̂†(x)

ĤF =
~
2

2m
(∂xΨ̂

†∂xΨ̂) +
mx2

2
x2Ψ̂†Ψ̂− 2~4

m2gB
(∂xΨ̂

†)Ψ̂†Ψ̂(∂xΨ̂) (4.1.4.5)

and ĤF =
∫ +∞
−∞ ĤFdx. The fermionic field operators obey the anti-commutation

relation

{Ψ(x),Ψ†(y)} = δ(x− y), {Ψ(x),Ψ(y)} = {Ψ†(x),Ψ†(y)} = 0 (4.1.4.6)

This effective fermionic Hamiltonian enables us to work in the regime of
strongly repulsive coupling, based on the perturbation expansion, in that the
strongly repulsive bosons are mapped into the weakly attractive fermions.

4.1.5 Monopole excitaiton of a microscopically small
amplitude

The fermionic field in Eq.(4.1.4.5) can be expanded into a series over the
single atom orbitals of the harmonic trap

Ψ̂F (x) =
∑

n

b̂nϕn(x), ϕn(x) =

(

1

2nn!
√
π`

) 1
2

e−x2/(2`2)Hn(x/`) (4.1.5.1)
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where Hn(ξ) is the n-th Hermite polynomial and ` ≡
√

~/mω. The operator

b̂n is the fermionic annihilation operator that removes one particle from the
n-th eigenstate. The operators b̂n obey the standard fermionic commutation
relations and the Hamiltonian in Fock space is of the form

ĤF =
N

2
~ω +

∞
∑

n=0

n~ωb̂†nb̂n −
~
4

m2gB`3

∞
∑

n<m

∞
∑

k<l
n+m+k+l=even

Ωnm
kl b̂

†
nb̂

†
mb̂kb̂l (4.1.5.2)

where Ωnm
kl = 2

∫∞
−∞ dξ (ϕ′

nϕm − ϕnϕ
′
m) (ϕ

′
lϕk − ϕlϕ

′
k). The ground state of

whole system is

|Ψ0〉 =
(

N−1
∏

n=0

b̂†n

)

|vac〉 (4.1.5.3)

where |vac〉 stands for the vacuum with no particle at all. The energy correc-
tion of ground state is analyzed in section of derivation in Ref.[103], where
we will show our result recovers the formula in Ref.[133].

Now we will come to the 2nd excitations. The unperturbed manifold of en-
ergy E

(0)
0 +2~ω is of two-fold degeneracy. The set of unperturbed eigenstates

is
{

|Ψ2a〉 = b̂†N+1b̂N−1|Ψ0〉, |Ψ2b〉 = b̂†N b̂N−2|Ψ0〉
}

. Based on the perturbation

theory, corrections to the energies are represented by the spectrum of the
2× 2 matrix of the perturbation term in the space spanned by the members
of the manifold

V̂ =
~
4

m2g1D`3

(

I
(2a)
N ΩN

ΩN I
(2b)
N

)

(4.1.5.4)

with ΩN ≡ ΩN−2,N+1
N−1,N , I

(2a)
N =

∑N+1(a)
m=1

∑m−1
n=0 υnm, and I

(2b)
N =

∑N(b)
m=1

∑m−1
n=0 υnm.

Hence the transition frequencies for microscopically small amplitude read

~ω2±, 0 = 2~ω +
1

2

~
4

m2g1D`3

[

I
(2a)
N + I

(2b)
N − 2I

(0)
N

±
√

(

I
(2a)
N − I

(2b)
N

)2
+ 4Ω2

N

]

+O(1/(g1D)
2)

(4.1.5.5)

where I
(0)
N ≡

N−1
∑

m=1

m−1
∑

n=0

υnm and υnm takes the form of

υnm =

√

2

π3

(m− n)2Γ
(

m− 1
2

)

Γ (m+ 1)

Γ
(

n− 1
2

)

Γ (n+ 1)
3F2

[ 3
2
,−n,−m

3
2
− n, 3

2
−m

; 1

]

(4.1.5.6)
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After a lengthy but straightforward calculation (see the Appendices in Ref.[103]),
we obtain the analytical form of 1/g1D corrections to the relevant transition
frequencies:

~ω2+, 0 ≡ 2 ~ΩD =

(

2 +O(
1

γ20(N)
)

)

~ω (4.1.5.7)

~ω2−,0 ≡ ~ΩM =

(

2− 6√
π

√
NΓ

(

N − 5
2

)

Γ
(

N + 1
2

)

Γ (N) Γ (N + 2)

×3F2

[ 3
2
, 1−N,−N

7
2
−N, 1

2
−N

; 1

]

1

γ0(N)
+O(

1

γ20(N)
)

)

~ω , (4.1.5.8)

where ~ω2±, 0 = E2± − E0, are the transition frequencies, E0 is the ground
state energy, and E2± are the energies of the states that, in the strict TG
limit, form a two-fold degenerate manifold, 2~ω above the ground state. The
effective Lieb-Liniger parameter γ0(N) ≡ (mg1D)/(nTF~

2) [106] uses the TG
(i.e. g1D → ∞) density in the center of the trap, nTF ≡ (

√
2/π)

√
N
√

mω/~,
instead of the true density. Here, 3F2 [a1, a2, a3; b1, b2; z] is the generalized
hypergeometric function of order (3, 2).

The interpretation of the 2± eigenstates can be inferred from the cor-
responding transition frequencies. The first one (2+) is the second state
of an infinite ~ω-spaced “dipole” ladder: coherent wave packets formed out
of the members of the ladder represent finite amplitude dipole excitations;
their frequency ΩD is equal to the frequency of the trap exactly, interac-
tions notwithstanding [143]. The zeroth state is the ground state. The first
state of the ladder corresponds to the unique state |Ψ1〉 = b̂†N b̂N−1|Ψ0〉 in
the first excited state manifold, and thus the correction to the energy is
E

(1)
1 = 〈Ψ1|V̂|Ψ1〉. The formula for the transition frequency, ~ω1, 0 ≡ E1−E0

, assumes a compact form, and it reads

~ω1, 0 ≡ ~ΩD = ~ω +O(
1

γ0(N)2
) (4.1.5.9)

We interpret the state |Ψ1〉 as the first state of an infinite ~ω-spaced “dipole”
ladder: coherent wave packets formed out of the members of the ladder
represent finite-amplitude dipole excitations (i.e. oscillations of the center
of mass); their frequency ΩD is equal to the frequency of the trap exactly,
interactions notwithstanding. The zeroth state of the ladder is the ground
state.
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The second eigenstate (2−) in the E
(0)
0 +2~ω manifold, is the first (ground

state being the zeroth) step in the “monopole” ladder, that corresponds to
the breathing excitations of frequency ΩM. In the noninteracting case, the
ladder (exactly 2~ω-spaced) can be obtained by a recurring application of the
creation operator L̂+ of an appropriate SO(2, 1) group to the ground state
[124]. The excitation dynamics consists of a periodic scaling transformation
of frequency 2ω. The existence of this structure is a direct consequence of
the scale invariance of the TG gas and its free-fermionic counterpart in the
harmonic potential.

A deviation from the TG limit (and the corresponding fermion-fermion
interactions (4.1.4.5)) breaks the scale invariance weakly. The goal of this
work is to assess the impact that this effect has on the excitations of a
microscopic amplitude and compare it to the corresponding predictions for
the microscopically large but macroscopically small excitations.

As far as the microscopic amplitude excitations are concerned, our pro-
gram is already fulfilled. Indeed, a linear combination of the ground state
and a small admixture of the state 2− is already a small amplitude monopole
excitation. Its frequency is given by the formula (4.1.5.8) that constitutes the
central result of this work.

4.1.6 Comparison to the other few-body results

We verified that for two atoms (N = 2), the formula (4.1.5.8) for the fre-
quency of the small amplitude monopole excitations coincides with the known
exact results [144].

In the three-body case (N = 3) we perform a Diffusion Monte Carlo
simulation of the imaginary time evolution and extract the ω2−, 0 transition
frequency from the inverse Laplace transform components of the imaginary-
time dynamic structure factor.

In Fig. 4.1 we compare our (non-perturbative) numerical three-body re-
sults with the perturbative prediction (4.1.5.8). In Fig. 4.2, the dominant
corrections to the monopole frequency for N = 2 and N = 3, extracted from
the non-perturbative data, are also compared to formula (4.1.5.8).
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Figure 4.1: (Color online). The frequency of a small amplitude monopole
excitation forN = 3 one-dimensional bosons in a harmonic trap, as a function
of the inverse of the effective Lieb-Liniger parameter γ0 (see text). Solid line
(red online): the prediction of the formula (4.1.5.8) for the first two terms
of the expansion of frequency in powers of 1/γ0. Open squares (blue online):
the ab initio Diffusion Monte Carlo simulation.

4.1.7 Large-N asymptotics and a comparison with the
sum-rule predictions

The frequency of the monopole excitations of a microscopically small ampli-
tude can be bounded from above using the sum rules [130] (see Fig. 4.3).
The order 1/g1D correction to this bound can also be computed analytically,
for large atom numbers [145]:

~ΩM
N�1
=

(

2− 64

15π

1

γ0(N)
+O(

1

γ20(N)
)

)

~ω (4.1.7.1)

We conjecture that the upper bound (4.1.7.1) actually equals the exact pre-
diction (4.1.5.8) in the limit of large N . To test this conjecture, we multiplied
the 1

γ0(N)
-term in the the bound (4.1.7.1) by ANσ, with A and σ being free

parameters to be used to fit the 1
γ0(N)

term in the series (4.1.5.8). Indeed
we found the values that support our conjecture, namely A = 1.000 and
σ = 0.0003.
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Figure 4.2: (Color online). The magnitude of the dominant correction, in a
power-series expansion in 1/γ0, to the result predicted by the scale invari-
ance, ΩM = 2ω. Filled squares (red online): the analytic formula (4.1.5.8).
Open circle (blue online): the exact nonperturbative solution for N = 2.
Open square (blue online): the Diffusion Monte Carlo simulation for N = 3.
Dotted line (purple online): the N � 1 limit of the sum-rule prediction (also
Eq. (4.1.7.1)).
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Figure 4.3: (Color online). The frequency of both the microscopically small
and microscopically large but macroscopically small monopole excitations,
in the limit of N � 1. Solid line (red online): the formula (4.1.5.8). Dotted
line (purple online): the sum-rule upper bound (courtesy of Chiara Menotti
and Sandro Stringari). Filled squares (green online): the numerically exact
hydrodynamic simulation of the motion of a macroscopic motion of small
amplitude. Dashed line (blue online): the hydrodynamic perturbation theory
for the latter. For definition of γ0, see text.
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4.1.8 Comparison to the frequencies of the excitations
of a microscopically large but macroscopically
small amplitude

The monopole frequencies obtained above correspond to excitations of micro-
scopically small amplitude: there the many-body energy of the excited atomic
cloud is only a few one-body harmonic quanta above the ground state en-
ergy. A priori it is not obvious if the microscopic predictions will remain
valid for microscopically large but macroscopically small excitations, whose
spatial amplitude is smaller than but comparable to the size of the cloud.

To compare the two frequencies, we investigate the time dynamics using
the hydrodynamic equations (see e.g. Eqs. (1) and (2) of Ref.[146]). We
use the well-known thermodynamic limit for the dependence of the zero-
temperature chemical potential µ(n) on the one-dimensional particle density
n, for a uniform one-dimensional δ-interacting Bose gas; this equation of state
was obtained by Lieb and Liniger, using Bethe Ansatz [106]. We propagate
the hydrodynamic equations numerically. To excite the monopole mode, we
quench the trapping frequency. Fig. 4.3 shows a good agreement with the
large-N asymptotics for the frequency of the microscopically small excitations
(4.1.7.1).

In order to obtain an analytic expression for the frequency shift, we apply
the perturbation theory developed by Pitaevskii and Stringari in Ref.[146]
(with more technical details worked out in Ref.[128], for the purpose of com-
puting an analytic expression for the dominant beyond-mean-field correction
to the monopole frequency of a BEC. Here we use the TG equation of state
(EoS), µ0(n) = (π2

~
2/2m)n2 as the unperturbed EoS, and the first-order (in

γ(n)−1) correction to the EoS, ∆µ(n) = (8π2
~
2/3m)n2γ(n)−1, as a perturba-

tion. The function γ(n) ≡ (mg1D)/(n~
2) is the so-called Lieb-Liniger param-

eter [106]. While most of the outlined steps of the study in Ref.[128, 146] are
universally applicable to any EoS, the boundary conditions for the density
mode functions δn(z) at the edge of the atomic cloud |z| = RTF are typically
dictated by the specific physical properties of the system at hand. (Here
RTF is the Thomas-Fermi radius.) In the TG case, with or without further
beyond-the-TG corrections to the EoS, those are given by

δn(z) = A(RTF − |r|)−1/2 +B +O((RTF − |r|)1/2)
B = 0 . (4.1.8.1)

Indeed, following the analysis developed in Ref.[128], one can show (i) that
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the first two terms in (4.1.8.1) correspond to the near-edge asymptotic of
the two linearly independent solutions of the mode equation, and (ii) that
when rewritten in Lagrange form [147], the solutions that violate condition
(4.1.8.1) lead to the appearance of crossing particle trajectories, incompatible
with hydrodynamics.

To our surprise, we found that the macroscopic perturbation theory leads
to a frequency shift that is 9/4 times greater in magnitude than its micro-
scopic counterpart Eq. (4.1.7.1) (see Fig. 4.3). This is definitely an artifact
of the perturbative treatment of the macroscopic theory rather than of the
macroscopic theory per se. Indeed, our macroscopic nonperturbative nu-
merical results are consistent with the microscopic theory. We attribute the
failure of the perturbation theory to the divergence of the spatial derivative
of the steady-state density at the edge of the cloud: in a monopole excita-
tion this will lead to an infinite time derivative of the density itself, possibly
invalidating the perturbation theory.

In the same plot, we also present the sum-rule bound [130]. At weak
fermion-fermion interactions, it reproduces well the perturbative prediction
Eq. (4.1.7.1).

4.1.9 Conclusion and outlook

In this work, we obtained an analytic expression, Eq. (4.1.5.8) for the lead-
ing behavior of the deviation of the frequency of the microscopically small
monopole excitations of a strongly-interacting one-dimensional Bose gas from
the value predicted by the scale invariance in the TG limit.

We further compare this prediction with (a) the known non-perturbative
analytic expressions for two atoms [144] and to (b) the Diffusion Monte
Carlo predictions for three atoms. For large numbers of atoms, the pre-
diction in Eq. (4.1.5.8) stands in excellent agreement with (c) the sum-rule
bound (4.1.7.1) [130, 145]. It was not a priori obvious to us if our formula
will also apply to microscopically large but macroscopically small excitations:
they correspond to a large number of atoms (still covered by the formula
(4.1.5.8)), and have a macroscopic magnitude (that is formally beyond the
scope of Eq. (4.1.5.8)). We found that (d) the numerically propagated hydro-
dynamic equations produce the same leading-order frequency correction as
the large-N limit of Eq. (4.1.5.8). Finally, we find that (e) the hydrodynamic
perturbation theory, which was so successful in predicting the beyond-mean-
field corrections to the monopole frequency in both the three-dimensional
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[146] and the two-dimensional [128] Bose gases, fails to predict the analogous
beyond-TG correction in our case: the hydrodynamic perturbative predic-
tion turns out to be approximately 9/4 higher than the ab initio numerical
value it was designed to approximate. We conjecture that the sharp bound-
ary of the TG cloud, characterized by an infinite density gradient, renders
the perturbation theory inapplicable.

Experimentally, the monopole excitation frequency of the Lieb-Liniger
gas has been already studied, in Ref.[131]. In the range of parameters our
article is devoted to, the beyond-scale-invariance shifts are too small to be
reliably compared with the experimental data. However, we plan to extend
our study of the frequency of microscopically large but macroscopically small
monopole excitations to the whole range of the interaction strengths. One
can already observe that in the intermediate range, the experimental frequen-
cies [131] depart from the sum-rule upper bound [130]. It appears to be of
interest to verify that the numerically propagated hydrodynamic equations
can reproduce the experimental points.

A study of the finite amplitude beyond-TG corrections to the monopole
frequency may be of interest. Another possible direction is computing the
higher orders of the perturbation theory for the frequency correction. This
step is challenging, however: the odd-wave fermion-fermion interaction po-
tential in Eq. (4.1.4.5) cannot be used as such, and it requires a prior reg-
ularization [132], similar to the Fermi-Huang regularization of the three-
dimensional δ-potential.

Results of our work directly apply to another system: the spin-polarized
p-wave-interacting fermions in a wave-guide [148]. The mapping between
this system and the Lieb-Liniger gas of δ-interacting bosons is provided by
Granger and Blume, in the final formula of Ref.[149]. In the case of 40K
atoms, the p-wave scattering volume Vp can be controlled at will, using an
accessible l = 1, ml = 0 Feshbach resonance at 198.8G [150]. When atoms
are confined to a one-dimensional harmonic waveguide, the position of the
resonance is further shifted [148] due to the presence of a confinement-induced
resonance (CIR) [149]. For example, an ensemble of N = 500 40K atoms,
transversally frozen to a harmonic waveguide of a confining frequency of 2π×
25 kHz and longitudinally trapped by a harmonic potential of frequency 2π×
5Hz, will show a ω2−, 0/ω−2 = −4.7% p-wave-interaction-induced shift of the
monopole frequency, for the p-wave scattering volume of Vp = −(1000 aB)

3

(with the CIR value situated at (Vp)CIR = −(2004 aB)
3). To relate this

value of the scattering volume to the detuning from the Feshbach resonance,
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note that the above value of the scattering volume would correspond to a
binding energy of the three-dimensional p-wave dimers [149, 151] of Edimer ≡
−~

2/2µ̃(Vp)
2/3 = h × 92.3kHz; the later value occurs if the magnetic field

is detuned by 0.49G below the l = 1, ml = 0 resonance (see a the caption
to Fig. 2 in Ref.[151] for the slope of the binding energy vs. magnetic field
curve). In general, the slope of the dimer energy as a function of the magnetic
field is measured to be h × 188 ± 2 kHz/G. Here, µ̃ = m/2 is the reduced
mass, and h = 2π × ~ is Plank’s constant.

4.2 Nonequilibrium-induced enhancement of

dynamical quantum coherence of spin ar-

rays

Quantum information and computing attracted much focus due to its great
potential and perspective in the application of teleportation. To experi-
mentally realize the quantum computing, the solid-state-based devices are
shown to take much advantage, comparing to the optical devices widely used
before. This is because of the experimental accessibility to control and con-
fine the information carriers by solid-state systems, rather than optical de-
vices. Recently the quantum-dot-based spin qubits as a solid-state method
is demonstrated to be successful in quantum information processing, such
as the control of electron-spin qubits in GaAs quantum dots [38, 39, 40, 41]
and sentitive metrology [152]. The singlet and unpolarized triplet states of
two electrons are experimentally realized by singlet-triplet (ST) qubits con-
fined in a double quantum dot [41, 153, 154, 155]. This makes the system
controllable by tuning the spin-exchange coupling associated with the gate
voltage, allowing the qubits to access the control operations. Despite the
controllability, the decoherence owing to the influence of nuclei spins in the
host materials still remains challenging for maintaining a high fidelity during
the quantum computing. Understanding the dynamics of this process is of
fundamental importance.

In the materials the spins are subjected to the noise, due to the random
magnetic field from the nuclear spins, which is so-called Overhauser noise.
This practically results in the dynamics of coherence in a typical timescale.
Although the random noise induced by nuclear spins can be artificially mit-
igated or even eliminated by considerable works, including the Hahn echo
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through electron-spin flipping [154], dynamical decoupling [156, 157], how
to considerably suppress the decoherence arising from nuclear spins still re-
mains the central role of the study of spin dynamics, owing to the fact that
the random magnetic fields from nuclear spins is unavoidable under the nat-
ural conditions.

So far, the dynamics of spin arrays has been mostly explored under the
influence of Overhauser fields owing to the nuclear hyperfine interactions.
However, the natural environments like the nuclei spins around GaAs quan-
tum dots always show the inhomogenous charge density, which implies the
gradient of chemical potentials. It produces an effective voltage, causing the
breakdown of detailed-balance (time-reversal symmetry). Hence the system
will relax to a nonequilibrium state with time-reversal-breaking, rather than
being thermalized as behaved before. Such nonequilibruim effect is lacking to
be explored in the previous works, even though under the Overhauser noise
certain collective quantum states of spin arrays were shown to be preserved
for a long lifetime [158]. In this section, we will deal with this effect by
considering the detailed-balance-breaking, and will further uncover a new as
well as significant phenomenon of rapid beat oscillation.

4.2.1 Spin-chain model

The spin arrays of quantum-dot-based qubits are usually described by the
Heisenberg spin chain model of spin-1

2
and the Hamiltonian is

HXY Z =
∑

n

hnσ
+
n σ

−
n −

∑

(m,n)

(Jx
mnσ

x
mσ

x
n + Jy

mnσ
y
mσ

y
n + Jz

mnσ
z
mσ

z
n) (4.2.1.1)

where hn is local magnetic field felt by the single spin. J i
mn, i = x, y, z

are the spin-spin interaction strength along the three spacial directions. In
the most general case, J i

mn are not equal to each other, which is the so-called
XYZ model [159]. However, the one-dimensional XXZ model associated with
Jx
mn = Jy

mn 6= Jz
mn and nearest-neighbour coupling is what people are mostly

interested in, since the difference between longitudinal and transversal coul-
ings always dominates. Hence

HXXZ =
∑

n

hnσ
+
n σ

−
n −

∑

m

Jm
(

σx
mσ

x
m+1 + σy

mσ
y
m+1 +∆σz

mσ
z
m+1

)

(4.2.1.2)
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and notice that ∆ denotes the difference in z-directional coupling. In this
circumstance the 1D XXZ model is exactly solvable by Bethe ansatz [160].
We will focus on this XXZ model hereafter.

As is known, an exact duality between one-dimensional XXZ model and
Fermi-Hubbard model with long-range interaction can be established [161].
As inspired by Wigner-Jordan transformation, one can introduce the follow-
ing operators

an = σz ⊗ σz ⊗ · · · ⊗ σz ⊗ σ− ⊗ 1⊗ · · · ⊗ 1

a†n = σz ⊗ σz ⊗ · · · ⊗ σz ⊗ σ+ ⊗ 1⊗ · · · ⊗ 1
(4.2.1.3)

where σz, σ± are the standard Pauli matrices. By using the definition of
raising and lowering operators σ± = 1

2
(σx∓iσy) and substituting Eq.(4.2.1.3)

into the Hamiltonian of XXZ model Eq.(4.2.1.2), HXXZ can be written as

Hf =
∑

n

εna
†
nan − 2

∑

m

Jm(a
†
mam+1 + a†m+1am)−

∑

m

Umnmnm+1 (4.2.1.4)

and εn ≡ hn + 4∆Jn, Un ≡ 4∆Jn. Obviously we can verify that an’s are
the annihilation operators of fermions at the site n which satisfy the anti-
commutation relation

{an, a†m} = δnm, {an, am} = {a†n, a†m} = 0 (4.2.1.5)

Hf is the standard Fermi-Hubbard model and the last term in Eq.(4.2.1.4)
describes the long-range many-body interaction, which originates from the
z-directional coupling in the 1D spin chain. Experimentally this interaction
can be tuned to be repulsive or attractive by Feshbach resonance based on
ultracold quantum gas [162, 163]. The 1D spin chain alternatively provides a
tool to investigate the quantum many-body physics with long-range interac-
tion, going beyond the Hubbard model including only the contact interaction
simulated by cold atoms in optical lattice [161, 164, 165, 166]. Moreover the
spin chain also establishes the bridge for the communication between con-
densed matter and AMO physics, especially on the quantum phase transition
[110, 166, 167] and quantum information process [168].

4.2.2 Model of spin arrays in random magnetic field
from nuclear spins

We consider the arrays of two quantum dots where each contains one electron
spin (qubit) subject to its own random magnetic field produced by nuclear
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spins via hyperfine interactions. By assuming that the nucleis are described
by 1D spin chains, two spin chains of nucleis are included and thus the
Hamiltonian is

Har = −Jσ1 · σ2 − t

2
∑

i=1

N
∑

n=1

Sn,i · Sn+1,i +
2
∑

i=1

N
∑

n=1

fσz
i S

z
n,i +Hbg

Hbg = ε
(

σ+
1 σ

−
1 + σ+

2 σ
−
2 +

2
∑

i=1

N
∑

n=1

S+
n,iSn,i

)

(4.2.2.1)

where J, t are the spin-spin coupling strengths for electron and nuclear spins,
respectively. σ

+(−)
n and S

+(−)
n,i are the raising (lowering) operators of qubits

and nuclear spins, respectively. Hbg is the background contribution to the
entire Hamiltonian. In our setup, the spin qubits and nuclear spins are
modeled as XY model including the transverse coupling only, namely Sn,i ·
Sn+1,i = Sx

n,iS
x
n+1,i + Sy

n,iS
y
n+1,i, σ1 · σ2 = σx

1σ
x
2 + σy

1σ
y
2 . The qubit-nuclear

interaction is encoded as Ising type, owing to the charge fluctuations [158,
169]. To further solve the dynamics, the free Hamiltonians firstly need to
be diagonalized as H0 = 2J(I+1 I

−
1 − I+2 I

−
2 )− 4t

∑2
i=1

∑

k coska S
+
k,iS

−
k,i where

the collective operators are introduced I±i =
∑2

j=1Oijσ
±
j and

O =
1√
2

(

1 −1

1 1

)

S±
k,i =

1√
N

N
∑

n=1

S±
n,ie

inka, k =

(

2m

N
− 1

)

π

a
; m = 1, 2, · · · , N (4.2.2.2)

in momentum space. σ±
1 = σ± ⊗ 1, σ±

2 = σz ⊗ σ± and S±
n,i = Sz ⊗Sz ⊗ · · · ⊗

Sz ⊗S± ⊗ 1⊗ · · · ⊗ 1, based on the mapping between XXZ spin-1
2
chain and

1D Fermi-Hubbard model [161], and σ± = 1
2
(σx ∓ iσy), S± = 1

2
(Sx ∓ iSy)

are the standard Pauli matrices. Therefore σ±
n , S

±
n,i satisfy the fermionic

anti-commutation relation {σ−
n , σ

+
m} = δnm, {σ±

n , σ
±
m} = 0, {S−

n,i, S
+
m,i} =

δnm, {S±
n,i, S

±
m,i} = 0.
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4.2.3 Time evolution

Dynamics of entire system

In order to evaluate the time evolution operator, one can start from qubit-
nuclear interaction Vint(t) = V

(1)
int (t) + V

(2)
int (t) in the interaction picture

V
(n)
int (t) = f

2
∑

i,j=1

∑

k

O−1
ni O

−1
nj e

−i(ωi−ωj)t
(

I−i I
+
j − I+j I

−
i

)

⊗ Sz
k,n (4.2.3.1)

by utilizing the identity
∑N

n=1 e
i(k−k′)na = Nδk,k′ and Sz

k,n = (S−
k,nS

+
k,n −

S+
k,nS

−
k,n). Notice that the operators I−i I

+
j − I+j I

−
i generate a closed algebra.

We then find the operators

l =
1

2

(

I−1 I
+
1 − I+1 I

−
1 + I−2 I

+
2 − I+2 I

−
2

)

η1 =
1

2

(

I−1 I
+
2 − I+2 I

−
1 + I−2 I

+
1 − I+1 I

−
2

)

η2 =
1

2i

(

I−1 I
+
2 − I+2 I

−
1 − I−2 I

+
1 + I+1 I

−
2

)

η3 =
1

2

(

I−1 I
+
1 − I+1 I

−
1 − I−2 I

+
2 + I+2 I

−
2

)

(4.2.3.2)

satisfy [l, ηj ] = 0, [ηi, ηj] = 2iεijkηk, which gives rise to the Lie algebra
su(2) ⊕ u(1). Thereby the qubit-nuclear interaction in Eq.(4.2.3.1) does
transform according to the irreducible representation D0⊕D 1

2
⊕D0 of the Lie

group SU(2)×U(1). As inspired by the recent experiments [154, 169] the spin
qubits are initially engineered at the state |S〉 = cosφ

2
|1〉⊗|0〉+eiθsinφ

2
|0〉⊗|1〉,

which means the dynamical evolution of qubits according to the irreducible
representation D 1

2
of group SU(2) × U(1) with l = 0. ηj take the form of

2× 2 representation

η1 =

(

0 −1

−1 0

)

, η2 =

(

0 −i
i 0

)

, η3 =

(−1 0

0 1

)

, (4.2.3.3)
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Hence by rewriting Eq.(4.2.3.1) in terms of l and ηj, we obtain the time-
evolution operator in the following compact form

U(t) = e−
i
~

∫ t

0 V
(1)
int (τ)dτe−

i
~

∫ t

0 V
(2)
int (τ)dτ

=
∏

k

[

cos2
(

2f

~ω
sin

β

2

)

+ Sz
k,1S

z
k,2sin

2

(

2f

~ω
sin

β

2

)

− i (η1sinβ − η2(cosβ − 1)) (Sz
k,1 − Sz

k,2)
sin
(

4f
~ω
sinβ

2

)

4sinβ
2

]

= AN + iBN (σxRe(p)− σyIm(p)) (4.2.3.4)

where β ≡ ωt = 4Jt/~ and Cv ≡ Sz
v,1S

z
v,2, Dv ≡ Sz

v,1 − Sz
v,2.

AN =
1

2

[

N
∏

v=1

(a+ Cvb+ i|p|Dv) + h.c.

]

BN =
1

2i|p|

[

N
∏

v=1

(a+ Cvb+ i|p|Dv)− h.c.

]

(4.2.3.5)

and

a ≡ cos2
(

f

2J
sin

β

2

)

, b ≡ sin2

(

f

2J
sin

β

2

)

, p ≡ 1

2
ei

β
2 sin

(

f

J
sin

β

2

)

(4.2.3.6)

Thus the dynamics of the entire system consisting of spin qubits and
nuclear spins can be obtained ρ(t) = e−iH0t/~U(t)ρ(0)U †(t)eiH0t/~.

4.2.4 Dynamics of spin qubits

In many situations, the dynamics of spin qubits is what people are mostly
interested. Therefore we need to trace out the degree of freedoms of nuclear
spins to obtain the non-unitary time evolution of spin qubits. Suppose that
initially the qubits are engineered at state |Ψ(0)〉 = 1√

2
(|1〉⊗|0〉+e−iθ|0〉⊗|1〉)

and the nuclear spins are at thermal equilibrium with different chemical
potentials (fermi energies). In other words, the initial condition takes the
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product form

ρ(0) = |Ψ(0)〉〈Ψ(0)| ⊗ ρµ1
nc ⊗ ρµ2

nc

ρµi
nc =

1

Zi

e−β̄(H
(i)
nc−µiNi); β̄ ≡ 1

kBT
, i = 1, 2 (4.2.4.1)

After a lengthy but straightforward calculation one can reach the den-
sity matrix of spin qubits at moment t, by tracing out the nuclear spins
as environments: ρs(t) = TrB[ρ(t)]. Thus ρs(t) = ρ10,10(t)|1, 0〉〈1, 0| +
ρ01,01(t)|0, 1〉〈0, 1|+ ρ10,01(t)|1, 0〉〈0, 1|+ ρ∗10,01(t)|0, 1〉〈1, 0| and the matrix el-
ements are of the form

Reρ10,01(t) =

(

N
∏

v=1

Kv + Fe(µ1, µ2, t)

)

cosθ

2
+ Fo (µ1, µ2, t) sinθcos

β

2

Imρ10,01(t) =

(

cos2
β

2

N
∏

v=1

Kv − sin2β

2
+ Fe(µ1, µ2, t)cos

2β

2

)

sinθ

2

−Fo (µ1, µ2, t) cosθcos
β

2

ρ10,10(t)− ρ01,01(t) =

(

1 +
N
∏

v=1

Kv + Fe(µ1, µ2, t)

)

sinθ

2
sinβ

− 2Fo(µ1, µ2, t)cosθsin
β

2
(4.2.4.2)

where

Kv = 1− 2 [fµ1
v (1− fµ2

v ) + fµ2
v (1− fµ1

v )] sin2

(

f

J
sin

β

2

)

(4.2.4.3)

Fe (µ1, µ2, t) =
∑

{me}
(−4)

c(me)
2 sinc(me)

(

2f

J
sin

β

2

)

∏

v∈m̄e

Kv

∏

q∈me

(

fµ1
q − fµ2

q

)

Fo (µ1, µ2, t) =
∑

{mo}
(−4)

c(mo)−1
2 sinc(mo)

(

2f

J
sin

β

2

)

∏

v∈m̄o

Kv

∏

q∈mo

(

fµ1
q − fµ2

q

)

and m = (m1,m2, · · · ,ms), s = 1, 2, · · · , N is a non-empty subset of the
set r = (1, 2, · · · , N); c(m) is the number of elements of subset m. me, mo
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correspond to the m’s with even and odd numbers of elements, respectively.

m̄ = r−m. fµi
n =

[

exp
(

~νn−µi

kBT

)

+ 1
]−1

, ~νn = ε+4tcos (2nπ/N). So far, we

have obtained the exact dynamics of spin qubits beyond the Markovian and
weak qubit-bath coupling approximations. In the forthcoming discussion, we
will focus on the non-Markovian and detailed-balance-breaking effects, re-
flected by the functions Fe and Fo which vanish under equilibrium condition
µ1 = µ2.

4.2.5 Non-Markovian and nonequilibrium effects

Based on our exact dynamics obtained above, we are able to explicitly ex-
plore the non-Markovian process beyond the memorylessness under Marko-
vian approximation. This becomes inapplicable when the following case is en-
countered: evolution of environment comparable to the subsystem timescale,
which indicates that the back influence of system to bath is unignorable
and the correlation function of the environment is colour rather than the
white one. It recently attracted much attention in the study of dissipative
quantum dynamics because the experimental measurements revealed the non-
Markovian noise from the nonexponential decay of echo signal [169].

Non-Markovian mechanism

To measure the preservation of the quantum state, one can use the fidelity
of the state defined as F (t) =

√

〈Ψ(0)|ρs(t)|Ψ(0)〉 if the system is initially in
pure ensemble. Equivalently, the fidelity can be written as

F (t) =

√

1

2
+ cosθRe〈1, 0|ρs|0, 1〉+ sinθIm〈1, 0|ρs|0, 1〉 (4.2.5.1)

which shows a strong correlation to the quantum coherence. According to
recent experiments [154], the spin qubits is initially prepared at singlet state
|Ψπ(0)〉 = 1√

2
(|1〉 ⊗ |0〉 − |0〉 ⊗ |1〉), (θ = π) in the regime of strong qubit-

nuclear interaction, whose dynamical behaviors are illustrated in Fig.4.4. As
is shown, the preservation of quantum state and revival of coherence are per-
fectly elucidated. Here we only show the behavior of the real part of coher-
ence because it contributes to the preservation of state, based on Eq.(4.2.5.1).
Physically the recovery of quantum coherence can be attributed to the non-
Markovian effect, since the timescale of correlations in the environment is
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Figure 4.4: (Color online) Dynamics of (left) fidelity of quantum state
|Ψπ(0)〉 = 1√

2
(|1〉 ⊗ |0〉 − |0〉 ⊗ |1〉) and (right) the real part of coherence

Re〈1, 0|ρs|0, 1〉. The red and black lines are for µ1 = 1.7, µ2 = 0.5 (far-
from-equilibrium) and µ1 ' µ2 = 0.5 (equilibrium), respectively. Other
parameters are ε = 1, t = 0.2, kBT = 0.1, N = 100 and f = 8J .
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comparable to that of system and the phase correlation of the system has
high chance to reconstruct. In contrast, the no-memory feature of system un-
der Markovian approximation has no chance to recover its phase correlation
in that the typical correlation time of environment is zero. The coherence
always globally shows a monotonic decay until reaching the stationary value.
Furthermore it is worthy to note that the system shows a perfect preservation
of quantum state with fidelity of 100%. This feature can be alternatively un-
derstood from the coherence dynamics Re〈1, 0|ρs|0, 1〉, shown in Fig.4.4(b), in
which the magnitude of coherence periodically recovers to its initially value.
The type of state protection we discuss here is completely different from what
has been achieved by dynamical decoupling and other control methods. It is
instead an intrinsic entanglement induced by slow relaxation of baths causing
the non-Markovian process. This means no need to artificially control over
the spin-spin interaction to combat decoherence.

Moreover, no global decay occurs for the local peaks of both coherence
and fidelity with initially being engineered at Bell state, as compared to
that in the case |Ψπ

2
(0)〉 = 1√

2
(|1〉 ⊗ |0〉 − i|0〉 ⊗ |1〉), (θ = π

2
) as shown

in Supplementary Materials (SM) where such global decay does exist. This
is because of the conservation of the total angular momentum in the case
θ = π: [Lz, H] = 0 (|Ψπ(0)〉 is the eigenstate of total angular momentum
Lz = σz

1 + σz
2).

To show the generality of the non-Markovian effect, we also perform the
dynamics of fidelity and coherence as the spin qubits relax from another state
|Ψπ

2
(0)〉 = 1√

2
(|1〉⊗|0〉− i|0〉⊗|1〉), (θ = π

2
), whose dynamics is illustrated in

SM. As is shown, the memory effect arising from the non-Markovian process
always shows up, no matter which initial state is prepared. The generality
of such non-Markovian effect is further demonstrated by letting the qubits
to relax from other states, e.g., |Ψπ

4
(0)〉 = 1√

2
(|1〉 ⊗ |0〉 + e−iπ/4|0〉 ⊗ |1〉) as

shown in SM as well.

Enhancement of dynamical coherence from detailed-balance-breaking

Now let us turn to the nonequilibrium effect with the detailed-balance-
breaking induced by the gradient of chemical potential of nuclear spins. From
our analytical solution to the density matrix we know that the nonequilib-
rium contribution is quantified by the factor

∏

(fµ1
q − fµ2

q ) in the imbalance
functions Fe and Fo which vanish under the detailed-balance. The time evo-
lution shown in Fig.4.4 and the figure in SM in Ref.[104] illustrates that the
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Figure 4.5: (Color online) (Large) Oscillation period and (Small) oscillation
frequency vary as a function of effective voltage V , for (a) strong (f = 8J)
and (b) weak (f = 0.4J) qubit-nuclear interactions; The triangle and square
markers are for the numerical calculations of oscillation period and frequency,
respectively. The smooth curves are obtained from the analytical result in
Eq.(4.2.5.5). Other parameters are ε = 1, t = 0.2, kBT = 0.1 and N = 100.

nonequilibriumness causes the rapid oscillation, by comparing the red and
black lines for far-from-equilibrium and equilibrium regimes, respectively.
This in other words, reveals that the far-from-equilibrium is essential for
observing the considerably coherent oscillation of spin qubits in the experi-
ments. Later we will propose an experiment based on quantum simulation
to simulate such effect.

To understand and explain the oscillation feature produced by the detailed-
balance-breaking, we need to introduce the net current between the spin
qubits which provides a measure to the degree of deviation from equilibrium.
The current conservation gives d

dt
σ†
2σ2 = Î1→2− Î2→bath. In our model the cur-

rent from system to spin environment vanishes because of the Ising coupling
between qubits and nuclear spins. Thus the net current reads

I1→2 =
d

dt
〈σ†

2σ2〉 =
4J

~
Im〈1, 0|ρs|0, 1〉 (4.2.5.2)

based on Heisenberg’s equation. This coincides with curl quantum flux in our
former work [31, 34], in that microscopically the current strongly correlates to
the curl quantum flux, vanishing under detailed-balance-protection at steady
state. However it does not necessarily vanish during the dynamical process
owing to the self-consumption of energy or information in the system. As is
shown by Eq.(4.2.5.2), the net current governed by the nonequilibriumness
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generates the fast oscillation of coherence and fidelity of quantum state. This
can be understood as follow: the rapid oscillation of net current leads to the
back and forth motion of spin wave between qubtis, which results in the fast
oscillation feature of coherence. For an analogy, this is in the similar spirit
of limit cycle behavior in classical stochastic processes [43, 44], driven by
the curl flux breaking the detailed-balance at steady state, where a robust
oscillation network can be observed [1, 45, 46].

To further explore such nonequilibrium effect, we will work under certain
approximation where the nuclear spin environments evolve sufficiently slowly
so that they can be well approximated by quasistatic ensembles, namely
dSz

v,i

dt
' 0 on the typical timescales of electron spin dynamics, around a mi-

crosecond or less [170, 171, 172]. This gives rise to a highly non-Markovian
bath comprised by the nuclear spins. Then the entire system can be approx-
imately described by product state ρ(t) ' ρs(t)⊗ρµ1

nc⊗ρµ2
nc. From Heisenberg

equation one has

d

dt

(

σ+
1 σ

−
2

)

=
2J

i~

(

σ+
1 σ

−
1 − σ+

2 σ
−
2

)

+
2f

i~

N
∑

v=1

σ+
1 σ

−
2

(

Sz
v,1 − Sz

v,2

)

d

dt

(

σ+
1 σ

−
1

)

=
2J

i~

(

σ+
1 σ

−
2 − σ+

2 σ
−
1

)

d

dt

(

σ+
2 σ

−
2

)

= −2J

i~

(

σ+
1 σ

−
2 − σ+

2 σ
−
1

)

(4.2.5.3)

which gives rise to the following oscillation

d2

dt2
Im〈σ+

1 σ
−
2 〉+

16J2

~2

(

1 +
f 2V 2

4J2

)

Im〈σ+
1 σ

−
2 〉 = 0

V =
N
∑

v=1

(

〈Sz
v,1〉 − 〈Sz

v,2〉
)

= 2
N
∑

v=1

(

fµ1
ωv

− fµ2
ωv

)

(4.2.5.4)

where V serves as an “effective voltage” vanishing under detailed-balance.
Therefore the oscillation frequency of coherence is

Ω =
4J

~

√

1 +
f 2V 2

4J2
(4.2.5.5)

which uncovers the relation between the coherent oscillation and the nonequi-
librium effect in a quantitative manner. It explicitly demonstrates that the
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detailed-balance-breaking is intrinsic for the rapid oscillation of coherence
and subsequently the fidelity of quantum state, which confirms our argu-
ment above. To verify the validity of our formula for Ω, we propagate a
numerical calculation of the oscillation period and frequency with respect to
voltage V , illustrated in Fig.4.5, which shows a perfect agreement with our
analytical formula Eq.(4.2.5.5).

It is worthy to point out that the fast coherent oscillation feature produced
by nonequilibriumness is not only restricted into non-Markovian regime, but
is also a phenomenon in general scenario. This is because the procedure for
reaching Eq.(4.2.5.5) can be naively applied to the case under Markovian
approximation. Hence in other words, one can conclude that the rapid co-
herent oscillation of quantum-state fidelity is a nonequilibrium phenomenon
in general to be observed in spin arrays.

4.2.6 Proposed experiment for realizing the dynamics
of spin qubits

In order to observe the non-Markovian and nonequilibrium effects investi-
gated before, ultracold trapped ions seems to be a good candidate to engi-
neer our setup, since they are recently used for the spin chain simulations
[173, 174, 175, 168].

The ions are usually confined by a linear RF trap with three-dimensional
electrodes, which subsequently produces the internal levels of ions. The spin-
1
2
structure is realized by choosing two nearly degenerate sublevels of the

ground state, splitted by Zeeman field. On the other hand, the ions reside on
individual lattice sites due to the strong Coulomb repulsion, which still leads
to the common motional modes of ions described by phonons. Such phonons
allow long-range interactions to be mediated between spins associated with
the ions. To engineer the long-range spin-spin interactions, two detuning
laser beams with different frequencies ω1, ω2 are required to perform stim-
ulated two-photon Raman transition between the sublevels, through a third
level with higher energy, as shown in Fig.4.6(right). Here the two particular
processes are crucial: (a) the transition | ↑〉|n′〉 ⇔ | ↓〉|n〉 (n′ 6= n) with two
laser beams detuned by the frequency difference between these two states; (b)
the transitions | ↑〉|n′〉 ⇔ | ↑〉|n〉 (n′ 6= n) and | ↓〉|n′〉 ⇔ | ↓〉|n〉 (n′ 6= n) with
the two beams detuned by approximately the frequency of a motional mode.
Here n′, n denote the energy levels of ions. It can be directly shown that (a)
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Figure 4.6: (Color online) (a) Schematics of (Left) our setup and (Right)
the stimulated two-photon Raman transition for realizing (Red and blue)
σx⊗ σx+ σy ⊗ σy and (Orange) σz ⊗ σz interactions; (b) Dynamics of coher-
ence Im〈1, 0|ρs|0, 1〉 with the initial condition |Ψ(0)〉 = 1√

2
(|1〉⊗|0〉−|0〉⊗|1〉)

and (c) the period (small for frequency) of coherent oscillation as a function
of voltage V . The red and black lines in (a) are for µ1 = 2.22GHz, µ2 =
0.65GHz (far-from-equilibrium) and µ1 ' µ2 = 0.65GHz (equilibrium), re-
spectively; The triangle and square markers are for the numerical calcual-
tions of oscillation period and frequency, respectively. The smooth curves
are obtained from Eq.(4.2.5.5). Other parameters are ε ' 1.31GHz, t '
0.26GHz, T ' 1mK, J ' 0.22GHz, f ' 1.76GHz and N = 16.
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generates the transversed long-range interactions between spins, σx⊗σx and
σy ⊗ σy depending on the polarization of electric field, while (b) generates
the Ising type of interaction, σz ⊗ σz [176, 177].

The array of nuclear spins can be implemented by an array of N trapped
ions, showing a dipolar decay of spin-spin interaction Jij ∼ 1

|i−j|3 . In order
to realize the XY couplings, the spin array is manipulated to interact with
detuning laser beams in terms of process (a) above. We now prepare other
two ions trapped by linear RF trap, with the same splitting between the
sublevels of ground state as that in arrays of nuclear spins. The same tech-
nique is employed as before to produce the transversal spin-spin interaction
between these two ions. To engineer the interaction between spin arrays and
the two ions, the process (b) can be used to generate the individual coupling
of ion 1(2) to each ion in the spin array 1(2), by choosing the ẑ-polarization
of the electric field in the laser beams, illustrated by Fig.4.6(left). This in
other words, indicates that 2N pairs of detuning beams with ẑ-polarization
are demanded in total, to simulate the qubit-nuclear interactions.

We use 16 trapped ions to simulate each nuclear spin environment, by tak-
ing into account the conditions in recent experiments [168, 174, 175]. The two
arrays of ions are prepared initially with different fermi energies and the two
ions (qubits) are engineered at singlet state |Ψ(0)〉 = 1√

2
(|1〉 ⊗ |0〉 − |0〉 ⊗ |1〉).

By choosing the parameters ε ' 1.31GHz, t ' 0.26GHz, T ' 1mK, J '
0.22GHz, f ' 1.76GHz, µ2 ' 0.65GHz and N = 16, Fig.4.6 shows the dy-
namics of coherence and also the behavior of frequency of coherent oscillation
with respect to effective voltage as introduced before. The non-Markovian ef-
fect is clearly shown by the revival of the coherence in Fig.4.6(b). Moreover, it
also shows the nonequilibrium effect (detailed-balance-breaking) which pro-
duces the fast coherent oscillation feature, by comparing the red and black
curves. The dependence of oscillation period (frequency) is further illustrated
in Fig.4.6(c), which is measurable in the proposed experiment.

4.2.7 Conclusion

In summary, we exactly and analytically solved the dynamics of spin qubits
surrounded by the charge noise produced by nuclear spins. We found that
the detailed-balance-breaking caused the rapid coherent oscillation in spin
dynamics, which was lack in the conventional static ensemble of nuclear
bath preserving detailed-balance, i.e., Overhauser noise. The analytical re-
lationship between coherent oscillation frequency and effective voltage was
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further obtained, which as a quantitative measure of the nonequilibrium ef-
fect, would be accessible in experiments. On the other hand, our results have
the advantage of previous work in purely numerical manner for describing
the non-Markovian process and thus predicting the recovery of coherence
and the subsequent quantum-state preservation in a general scenario. These
novel and spectacular effects we predict, especially the coherent oscillation
arising from detailed-balance-breaking, can be observed in ultracold trapped
ions we proposed in details in spirit of quantum simulation in the laboratory.

115



Chapter 5

Summary and conclusion

In this thesis, we first established a theoretical framework in terms of curl
flux, to understand the relation between quantum nature, i.e., quantum co-
herence & entanglement, and nonequilibriumness. It was found that the far-
from-equilibrium regime takes the advantage of promoting the steady-state
coherence, rather than the near-to-equilibrium regime. For the dynamical
relaxations, we demonstrated that the coherence has significant contribution
to the typical timescales of both energy transport and dephasing, by examin-
ing the applicability of secular approximation. Furthermore we uncovered a
general mechanism of how vibrational modes lead to the long-survived coher-
ence, based on the effective field theory. This provides the explanation in the
sense of generality to the long-lived electronic coherence recently observed in
some molecular aggregates.

Finally we investigated the relaxation of electronic spin arrays coupled
to nuclear-spin baths with chemical potential gradient. This is motivated by
the recent exploration of decoherence mechanism in the solid-device based
quantum computation. The nonequilibrium-induced rapid oscillation of co-
herence and quantum entanglement was uncovered and the origin of this
phenomenon was further analyzed.
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