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Abstract of the Dissertation 

Quantum transport in ballistic graphene devices 

by 

Piranavan Kumaravadivel 

Doctor of Philosophy 

in 

Physics 

Stony Brook University 

2015 

Graphene is a zero gap 2-D semiconductor having chiral charge carriers described by the 

massless relativistic Dirac-like Hamiltonian. In this thesis, unique transport properties that emerge 

from this energy spectrum are studied by using ballistic graphene and coupling its charge carriers 

with superconducting pair potentials and electrostatic gates.  

Superconducting correlations can be induced in graphene by bringing it in contact with a 

superconductor. This superconducting proximity effect (PE) provides a way of exploring transport 

phenomena such as pseudo-diffusive behavior of ballistic carriers, specular Andreev reflections 

and unconventional quantum Hall effect with Andreev edge states. Hitherto, experimental 

realizations were limited by diffusive devices coupled to superconductors with low critical fields.  

In the first part of this work, in order to study these phenomena, we develop ballistic suspended 

graphene (G)-Niobium type–II superconductor(S) Josephson junctions. Our devices exhibit long 

mean free paths, small potential fluctuations near the charge neutrality point (CNP) and transparent 

SG interfaces that support ballistic supercurrents. In such a device, when the gate voltage is tuned 

very close to the CNP, unlike in diffusive junctions, we observe a strong density dependence of 

the multiple Andreev reflection features and normalized excess current. The observations 

qualitatively agree with a longstanding theoretical prediction for emergence of evanescent mode 

mediated pseudo diffusive transport. Next studying magneto-transport in these devices we find 

that PE is suppressed at very low fields even as the contacts remain superconducting. Further study 

reveals that distribution of vortices in the superconducting contacts affects the strength of the PE 

at the S-G interface.  

The final part of the thesis searches for analogues of Klein tunneling in ballistic graphene 

by studying charge transport through an electrostatically created potential barrier. To this end, 

different device fabrication methods are developed to create ballistic heterojunctions on suspended 

graphene and graphene on hexagonal boron nitride using contactless ‘air’ local gates. 
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Chapter 1 

Introduction 
 

 

1.1. Overview and outline of the thesis 
 

Research in graphene has broadened in scope since the first experiments were reported in 

2004-5[1, 2]. There is now a great interest in graphene optoelectronics[3] and plasmonics. 

Together with electronic properties, the thermal and mechanical properties of graphene have 

inspired possibilities for diverse applications ranging from mobile phones, energy storage[4, 5] to 

cancer treatment[6] and bio sensing[7].  Despite all this commercial prowess, the appeal of this 

material, for me, is its relatively simple structure and the capability it provides in studying 

relativistic quantum phenomena in benchtop experiments. So as a graduate student starting 

research in 2010 (coincidently the year in which the Nobel prize was awarded for the discovery of 

graphene) my natural choice was to work on projects that directly probe the fundamental properties 

of the Dirac fermions in graphene. 

Unlike semiconductor 2D electron gas systems (2DEGs) and other Dirac materials, the 

massless Dirac charge carriers in graphene are easily accessible to experiments. It is convenient to 

tune graphene’s carrier density and switch the carrier type by designing electrostatic gate 

potentials. The electrons in graphene can also be directly coupled to a wide range of materials, 

from metals to layered semiconductors [8-10]. But to study the intrinsic electronic properties 

arising from its gapless relativistic-like spectrum requires disorder-free samples with low energy 

fluctuations. One of the major steps in achieving this is by suspending graphene and relieving it 

from the coarse substrate (silicon dioxide) that it sits on[11, 12].  Still, maintaining these qualities 

while coupling it to various materials and electrostatic potentials, is technically challenging. The 

very fact of the ease in accessibility of the electrons also makes it vulnerable to even the slightest 

of extrinsic charges and impurities.  
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This theses work is on overcoming these challenges to study ballistic quantum transport of 

Dirac fermions in graphene when 1) in contact with a superconductor and 2) under the influence 

of engineered electrostatic barriers.  In both these cases the process that reveals the interesting 

physics involves electron-hole conversion. In the first case, the conversion occurs when scattering 

from a superconducting pair potential and in the second case, the conversion occurs during head 

on collisions on repulsive electrostatic barriers. In graphene the electron hole symmetry and 

chirality makes these processes unique compared to those in normal metals and semiconductors.  

Coupling two types of electron systems – the relativistic charge carriers in graphene with 

strongly interacting Cooper pair condensates in a superconductor provides opportunities to test 

various longstanding phenomena such as specular Andreev reflection[13], pseudo-diffusive 

dynamics of ballistic carriers[14, 15] and to study graphene’s anomalous quantum Hall effects 

infused with superconducting correlations[16, 17]. Chapters 2 and 3 focus on work on these topics 

using graphene with transparent superconducting contacts.  Chapter 2 presents a brief theoretical 

overview of the superconducting proximity effect (and Andreev reflection processes), the 

mechanism by which superconducting correlations are infused in graphene (and other normal 

metals) from the superconducting leads. The unique Andreev reflection processes in graphene 

especially near the Dirac point are highlighted.  The rest of the chapter discusses the fabrication of 

ballistic suspended graphene- type II superconductor devices with transparent interfaces. Even 

though diffusive graphene-superconductor devices were studied almost six years ago [18-21], the 

fabrication of ballistic superconductor junctions have remained challenging. The procedures 

employed to free graphene from disorder posed challenges to the transparency of the 

superconductor-graphene interface. Effectively combating such challenges culminated in the 

development of the fabrication procedure described in the chapter.  This is a crucial part of the 

work that made possible the experiment presented in chapter 3 and potentially can form the basis 

for many interesting studies in the future.  

Chapter 3 of the thesis discusses work based on ballistic suspended graphene Niobium 

superconductor devices. Here we explore intrinsic transport near graphene’s charge neutrality 

point where carrier density almost vanishes.  Inducing superconducting correlations in ballistic 

graphene, we demonstrate evidence for transition from ballistic, propagating mode transport at 

high carrier densities to pseudo-diffusive, evanescent mode transport at low carrier densities (near 



 

3 
 

the neutrality point). Also we probe inter-band (specular) Andreev reflections i.e., superconductor 

induced reflection processes that couple electrons and holes from the conduction and valence band 

of the Dirac cone. 

Type II superconductors with a transparent interface on ballistic graphene provides the 

opportunity to study induced superconductivity in the quantum hall regime (Andreev edge states). 

But, intriguingly, even as the superconductor retains its properties to very high fields, the expected 

evidence for Andreev edge states in graphene[22] is lacking[23, 24]. The devices studied in this 

thesis work also show similar results. In Chapter 4 we explore this issue by performing low field 

magneto-transport measurements in superconducting NbN- graphene junctions. By changing the 

way the magnetic field penetrates the superconductor, we reveal that the vortex screening currents 

in the superconducting NbN affect the Andreev reflection probability at the graphene-

superconductor interface. According to our present understanding this suppression is significant 

when a reduced superconducting gap is present at the interface.  

Chapter 5 of this thesis deals with the subject of transmission of massless Dirac particles 

through potential barriers. Charge carriers governed by non-relativistic quantum mechanics, when 

incident on a potential barrier, have a small probability of tunneling through. But the massless 

Dirac-like quasiparticles of graphene have perfect transmission at normal incidence[25], a property 

that has parallels to the Klein tunneling of spin ½ particles described by quantum 

electrodynamics[26]. In graphene this is a consequence of conversation of pseudospin – a quantity 

arising from the sub-lattice symmetry in graphene. The perfect transmission at normal incidence 

through electrostatic barriers can be used to collimate randomly oriented electron trajectories and 

guide them in a desired direction.  Sharper potentials can also be used in negative index of 

refraction experiments [27, 28]. The first part of chapter 5 presents a brief theoretical overview of 

Klein tunneling and discusses previous experimental work on the subject.  The rest of the chapter 

is dedicated to the fabrication procedures and preliminary experiments that attempt to study Klein 

tunneling in suspended graphene and hexagonal boron nitride (h-BN) supported graphene devices 

with contactless local top gates. Contactless top gates are like bridges that cross over the 

(suspended) graphene and are used to create the local electrostatic barrier. The h-BN supported 

graphene devices are known to display almost the same ballistic properties as suspended graphene 

devices and have no size limitations[29]. Therefore they are ideal for these electron collimation 
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experiments. The chapter also includes details of the transfer setup and procedure that was 

developed to make the h-BN supported graphene devices.  

In the rest of this chapter I provide a brief overview of the theoretical aspects of graphene and 

its transport properties. The intention is to provide some background relevant to the experiments 

discussed in chapters 3, 4 and 5.  Further details on the topics discussed in this chapter and in the 

beginning of chapter 2 can be found in a number of review papers [30-33]. 

 

1.2. Theoretical overview of the properties of graphene 
 

1.2.1. The band structure of graphene using the tight binding approximation 

 

Graphene is a single sheet of identical carbon atoms arranged periodically to form a two-

dimensional hexagonal lattice structure. Each carbon atom with four valence orbitals forms two 

kinds of bonds with their three nearest neighbors.  One is the strong in-plane σ bonds formed by 

sp2 hybridization of the s, px and py electron orbitals. The other is the π-bond formed by nearest 

neighbor covalent bonding of the delocalized pz orbitals. The σ bonds are responsible for the 

strength and stability of graphene whereas the π bonds govern the unique low energy electronic 

properties of graphene. The honeycomb lattice by itself is not a Bravais lattice but can be visualized 

as two part triangular Bravais sub-lattices, labelled A (red) and B (blue) in figure 1.1. Each carbon 

atom in one sub-lattice is surrounded by indistinguishable carbon atoms from the other. This 

symmetry, as we will see later, has interesting implications to the dynamics of charge carriers in 

graphene. 
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Figure 1.1: Atomic structure of graphene. (left) Hexagonal lattice graphene showing the two 

sub lattices A and B. (right) First Brillouin zone with the symmetry points Γ, M, K (and K’).  

 

The unit vectors of one of the Bravais lattices (sub lattice A in figure 1.1) and the corresponding 

reciprocal lattice vectors can be written as, 
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and the vectors to the nearest neighbor (B sub-lattice) atoms are given by, 
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Here a=1.46A0 –is the lattice separation. The first Brillouin zone is hexagonal and is shown in 

figure (1.1(b)). Γ, Κ and Μ represent the high symmetry points. Although there are six K-points 

corresponding to the six corners of the Brillouin zone only two are inequivalent. The others are 

displaced by reciprocal lattice vectors. The two distinct K points, commonly labelled K and K’, 
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are called ‘valleys’ or ‘Dirac points (DPs)’. This is because of their unique position in graphene’s 

linear energy spectrum. The coordinates in reciprocal space for the two valleys are 
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The covalent bonding of the π-orbitals is sufficiently strong to use the tight binding approach for 

evaluating graphene’s energy spectrum.  The nearest neighbor tight binding Hamiltonian, in the 

basis of the π orbital wave functions  BA  ,  of sub lattices A and B, is given by 
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Here t ~3eV is the nearest neighbor hopping parameter. The eigenvalues of the Hamiltonian is 

given by,          
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and the plot of the band structure is shown in figure 1.2. It can be seen that the above energy 

spectrum is electron-hole symmetric very close to the two K points with vanishing energies:

0)()(  KEKE


. This degeneracy is robust due to time reversal and C3 symmetry of the lattice. 

Breaking this symmetry requires a periodic potential that acts on the sub lattice space.  
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Figure 1.2: Band structure of graphene with the low energy Dirac spectrum near the K 

valleys. The π and π* band are bonding and antibonding orbitals and represent valence and 

conduction bands near the K valley. Figure on left obtained from [34]. 

 

Now expanding equation (1.4) at the K point for small values of  kKq


  the low energy 

Hamiltonian can be written as 
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each valley is a linear function of momentum: 
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Equation (1.6) resembles the Dirac[35] equation in 2D for ultra-relativistic massless fermions with 

a velocity vF =c/300 where   c- the speed of light in vacuum. The ± values correspond to the π and 
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π* bonds and refer respectively, electron and hole-like excitations near the K valley (see Figure 

1.2). The corresponding eigenfunctions describing the Dirac like quasi particle excitations at K 

and K’ are: 
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where 














y

x

q

q
arctan .  Note that the above wave functions at K and K’ are related by a time 

reversal symmetry with a reflection in k-space along kx about the M-point in figure 1.1.  The wave 

functions are two component spinors – they have a Berry phase of π.  The two components, 

however, do not represent the real spin of electrons but from the two sub lattices. The Pauli matrix 

operators in equation (1.6) are therefore referred to as ‘pseudospin’ operators. They operate on the 

sub-lattice degree of freedom.  

 

1.2.2. Chirality and the absence of backscattering 

 

The Dirac-Weyl equation (massless Dirac equation) in QED describes two types of 

particles described by a quantity known as chirality (or helicity for massless spin ½ particles). The 

chirality operator is defined as: ph ˆ.
2

1ˆ 


 where p̂ is the unit vector in the direction of 

momentum. For graphene’s Hamiltonian in (1.6),  hH ˆ,ˆ =0. Therefore chirality is a conserved 

quantity. It describes the projection of pseudospin on the direction of momentum. The chirality 

operator acting on the wave functions at K and K’ gives 

 

 

      KKh
2

1ˆ          (1.9.a) 
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    

  '

2

1ˆ
KKh          (1.9.b) 

   

  

In the K valley the electrons have right handed (positive) chirality whereas the K’ valley has 

negative chirality. Electrons and holes of the same valley have also opposite chirality (see figure 

1.3).  

 

 

 

Figure 1.3: Illustration of the absence of intra-band elastic back scattering in graphene for 

electrons. The electron momentum for backscattering flips from q to –q (along direction). Here 

h represents chirality and σ represents pseudospin (colored to represent the sub-lattices A and B). 

The intra-valley back scattering (light blue curled arrow) cannot happen since the electron has to 

flip pseudospin i.e., blue branch to red branch of the spectrum. Inter-valley scattering (purple 

arrow) cannot happen because it will violate chiral conservation.  

 

Pseudospin and chirality have important consequences on scattering in graphene. Consider 

Hamiltonian (1.6) with a scatter potential IrVrV ˆ)()(ˆ   where Î  - unit matrix. This potential does 

not operate on the sub lattice space i.e., it does not couple the sub lattices. Then the probability for 
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intra-valley elastic back-scattering ( qq


 ) is zero since the pseudospin that is coupled to the 

momentum cannot be flipped. For K valley this can be shown from equation (1.8.a) as 

 

        0()(()()(    qqiqrVq KKKK


.   (1.10) 

 

More generally using the first Born approximation, for ri qq


 , the scattering probability as a 

function of the angle between the incident and scattered electron φ can be written as  

 

       2
2

cos
~

)()(
riqqrKiK VqrVqP 


       (1.11) 

 

Similarly for potentials that do not act on the valley space, inter-valley backscattering is prohibited 

because of chiral conservation (Figure 1.3). From equation (1.8) 

 

        0()(()()( '    qqiqrVq KKKK


   (1.12) 

 

Suppression of backscattering gives rise to weak anti-localization in graphene [36-38].  It also has 

interesting consequences on the ballistic propagation of electrons across a pn junction: The 

transmission across a potential is perfect similar to the Klein tunneling of relativistic particles 

across a strong repulsive electrostatic barrier[25]. The experiments exploring this phenomena are 

discussed in Chapter 5. 

 

1.2.3. Density of states in graphene 

 
Using equation (1.7) and accounting for spin and valley degeneracy, the number of states in the 

reciprocal space in graphene is given by: 

 

2

2
)( 















Fv

E
qn


        (1.13) 

 

which gives the density of states per unit area:   
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 2
21

)(
FF v

E

dq

dn

v
ED

 









       (1.14) 

 

The density of states in graphene is linear in energy and vanishes at DP. This is different from the 

energy-independent D(E) in non-relativistic 2DEG systems. Even though the carrier density 

vanishes at the DP, the conductivity has a quantum limited universal value of the order 4e2/h. 

 

1.3. Overview of transport properties in graphene devices  

 

1.3.1. Graphene field effect gating  

 
One of the conveniences in studying electronic properties of graphene is the capability of 

using a single gate electrode to create a field on the surface electrons and tune the Fermi energy 

(EF) from conduction to valence band and vice versa. The relation between EF and the carrier 

density (n) follows from equations (1.7) and (1.13) and is given by 

 

  nvE FF         (1.15)  

 

where nkF  . Graphene devices are made by deposition of graphite flakes on Si/SiO2 

substrates.  The Si is electron doped and serves as the gate electrode. The SiO2 is the gate dielectric. 

In the case of suspended graphene the gate dielectric is vacuum. The gate voltage is applied 

between the gate and one of the grounded electrodes in contact with the graphene flake (see figure 

1.4).The relationship between the gate voltage (Vg) and n is given by edVVeACn grgg /)/( 0  

where Cg is the gate capacitance, A is the gate area, εr is the relative dielectric constant and d is the 

thickness of the gate dielectric. The gate capacitance is usually the geometric capacitance (when 

the gate dielectric is thin, the quantum capacitance should be considered in series with the 

geometric capacitance). 
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Figure 1.4 : Graphene field effect gating. a. Schematics of a device showing the gate capacitance 

and the ambipolar resistance vs. gate voltage. b. Conductivity σ as a function of carrier density (n) 

for a ballistic sample (plotted on a log-log scale) showing n1/2 behavior at high carrier density and 

saturates to a constant below the minimum carrier density nsat. 

 

The gate voltage dependence of the resistance of an undoped ballistic device is shown in 

figure 1.4.  The DP is at Vg=0V where the resistance is maximum. Also the resistance is symmetric 

about the CNP reflecting the electron-hole symmetry of the low energy spectrum in equation (1.7). 

In experiments doping from impurities from the fabrication process can result in a non-zero gate 

voltage. This value varies from sample to sample and can be either positive or negative i.e., 

electron or hole doped.  The metal contact leads can also infuse additional charge carriers in 

graphene forming a gate tunable pn junction near the leads[39]. This can cause the gating curve to 

become asymmetric.  
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1.3.2. Ballistic and diffusive transport in graphene  

 

 

The conductance in a pristine graphene sheet can be calculated using the Landauer formula 

 nT
h

e
G

24
 . Here the factor of 4 is for the spin and valley degeneracy in graphene. 

Transmission in the ballistic regime is given by  N
h

e
G

24
   where N~W/λF is the number of modes 

at large Fermi energies. Here λF – is the Fermi wavelength and W- width of the graphene sheet.  

Using equation (1.15), the ballistic conductivity has the following relation: 

 

nEF ~~          (1.16) 

 

  This relation breaks down when n 0 at the DP. This is because, close to the DP, 

evanescent mode transport dominates over the propagating modes. Theoretically, this regime is 

identified as pseudo-diffusive where, even when the charge carriers are classically ballistic, their 

quantum transport is indistinguishable from that in diffusive metals. At DP, under certain 

conditions, evanescent transport alone prevails. Also the transmission is unity- a characteristic that 

can be related to the absence of backscattering in graphene. Several proposals exist that have 

highlighted on transport signatures relating to this unique behavior in graphene but several 

technical challenges have made experimental observations difficult. Details on this topic and some 

experiment evidence that shows the first hints of the transition from ballistic to pseudo diffusive 

like behavior is the subject of chapter 3. 

 

Equation (1.16) implies that the mobility in ballistic graphene, 
nne

1
~~


 is density 

dependent. Due to the same reasons as mentioned above, the mobility at low n diverges due to the 

vanishing DOS and cannot be used for estimations near the DP. Also in real samples the ballistic 

relation fails due to the presence of small, but finite, potential fluctuations (electron-hole puddles) 

close to DP.  Potential fluctuations are strongly enhanced due to topological corrugations and 

charge impurities [40, 41]. So the maximum mobility reported in ballistic sample is at the 

minimum carrier density n=ns, where the slope of the μ vs. n curve begins to deviate from -1/2 (see 
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figure 1.4). Alternatively mobility and minimum carrier density (ns) can be estimated by quantum 

Hall (QH) measurements. The ballistic mean free path lm =
Fke

h
22

 is also defined for densities above 

ns. In ballistic samples the mean free path is only limited by the length of the sample.  

 

In diffusive samples the conductivity is calculated using the Boltzmann equation:  

 

2

)()(22

FFFF kEDve 
         (1.17) 

      

Here kF is the Fermi wave vector and D(EF) and τ(EF) are the density of states and scattering time 

at the Fermi level respectively. Several sources of impurities and defects contribute to diffusive 

transport in graphene. The most common type of scattering in graphene devices is charge impurity 

Coulomb scattering. Due to the presence of Coulomb scatterers it can be shown that, n  [42-

44] making the mobility independent of n and the mean free path increase with n. This is what is 

usually seen in graphene on SiO2 samples including the earliest experiments [45, 46].  For short 

range scatterers, such as lattice scale defects, conductance does not significantly depend on n.  

Other sources for diffusive transport include phonon scattering and formation of mid gap states by 

defect induced bound states[47]. Since the time scale of the scattering mechanisms is dependent 

on Fermi energy, their influence on the gating curves will vary at different Vg. The overall effect 

from the different mechanisms on the experimental R(Vg) can be fitted using the Mathiesson’s rule. 

Mean free path and mobility are estimated by the Drude model.  

 

1.3.3. Substrate induced charge inhomogeneity 

  

Long range Coulomb scattering from trapped charged contaminants between the substrate 

and graphene[40], the substrate roughness[48], dangling bonds[49] and defects can dope graphene 

and split the zero density DP into puddles of electrons and  holes. This DP regime is commonly 

known as the charge neutrality point (CNP) to distinguish it from the ideal DP. Due to the 

fluctuating puddle densities, in the commonly used substrate SiO2 the energy smear at CNP (δES) 

~ 30meV to 100meV.  This makes it impossible to study ballistic transport at low n and intrinsic 

physics at the DP. Two popular techniques have emerged over the years that attempted to reduce 
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the effect of the substrate with great success. One is to suspend graphene between the metallic 

contacts by etching away the substrate underneath [11, 12]. The other is by using hexagonal boron 

nitride (h-BN), a 2-D substrate with reduced surface roughness and hexagonal lattice structure 

similar to graphene. Suspended graphene shows high mobility and low ns after current annealing 

(see 2.3.3). And to this date, suspended graphene is best for studying transport near the CNP at 

densities ns ~ 108- 109 cm-2[12] (potential fluctuations ~5meV). The main limitation of suspended 

graphene samples is the size. Suspending graphene for electronic devices with large dimensions 

and different geometries with non-invasive electrodes (like Hall Bar geometries) is technically 

challenging.  Fabrication of graphene on h-BN has improved over the years since it was first 

developed and generally it can attain high nobilities and long mean free paths[50]. And since 

graphene is substrate supported there are no device-size limitations.  But generally in graphene/h-

BN the potential fluctuations ~10meV, slightly higher than suspended graphene.  

 

1.3.4. Quantum Hall effect in graphene 

 

Given the linear gapless spectrum and chiral nature of the quasiparticles in graphene, the 

QH effect has anomalous features distinguishable from conventional semiconductor 2D electron 

gas (2DEG) systems [46, 51]. In the presence of a field B, replacing Aepp


  in equation (1.6) 

and using the Landau gauge for writing the vector potential xByA


  , the eigenenergies of the 

Landau levels can be obtained. It is written as: 

 

  BjvejsignE Fn

22)(   where  ...3,2,1,0j     (1.18) 

    

The Landau spectrum is j , which is unlike the 2D semiconductor Landau level spectrum:

)2/1(  jE cn  , where ωc is the cyclotron frequency. Also, in graphene there is a zero energy, 

electron-hole degenerate Landau level. The electron excited Landau edge states above E=0 share 

their energy with hole edge states below E=0, resulting in the characteristic half-integer QH effect.  

The Hall conductance  in monolayer graphene is 
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,..2,1,0;)
2

1
(4

2

 j
h

e
jGxy        (1.19) 

 

The filling factor ...10,6,2)
2

1
(4  j

eB

nh
 , where h- Planck constant and n- carrier density. The 

quantized values in bilayer graphene: ,..2,1,0;)1(4
2

 j
h

e
jGxy . This difference can be used to 

identify graphite flake is single or bilayer graphene. 

 

  From equation (1.18), the requirement to see at least one QH plateau in pristine graphene 

is set by the following: )(3501 TBmeVEE  . Therefore for B>1T, integer QH effect can 

emerge at room temperature for samples with a maximum δES ~30 meV. But disorder smears the 

Landau levels and fields around 30T are normally required[45]. In suspended graphene with δES 

<5 meV, QH features should be easily observable ~ 1T. At low temperatures, in the best suspended 

samples, QH plateaus can fully develop at a few hundred mTesla.   For fractional QH effect, the 

separation between Lambda levels is smaller: <5meVs for B=1T [52-54] and with currently 

available magnetic fields, ballistic samples are normally required.  

Other than thermal effects, for QH plateaus to develop the scattering time (τ) > the time 

required to complete one cyclotron orbit: ωcτ >1 (or equivalently, the mean free path lm> magnetic 

length
eB

h
). In most SiO2 based graphene devices, even at low temperatures, the required fields 

to observe well developed QH plateaus are higher than the theoretical values because of impurity 

scattering and substrate inhomogeneity.   

So it is clear that ballistic graphene devices with high mobility, long mean free path and 

low potential fluctuations are essential to study intrinsic properties near the Dirac point as well as 

QH effect at low fields. Low field QH and fractional QH effect are ideal to study the coexistence 

of superconductivity with the Landau spectrum since most superconductors that can be used as 

contacts on graphene and 2DEGs lose their superconductivity at few Tesla (for example Nb the 

upper critical field is ~3.5-4T).    
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Chapter 2 

Superconductor-graphene junctions  
 

 

Superconductivity can be induced in normal metals by bringing them in contact with a 

superconducting material so that the coherence of the Cooper pair condensate diffuses into and 

survives in the normal material. Merging the relativistic Dirac fermions in graphene with 

superconducting correlations can lead to many interesting phenomena. Pseudo-diffusive dynamics 

of ballistic charges[14, 15], specular Andreev reflection[13], induced superconductivity under 

magnetic fields and in the QH regime[22] are some of the interesting phenomena that remain to 

be observed experimentally. In Chapters 3 and 4 many of these phenomena will be explored using 

graphene -type II superconductor devices.  As a prelude, the first half of this chapter will briefly 

outline the basic features of superconducting proximity effect, and highlight features that are 

unique to graphene. The fabrication of ballistic superconductor graphene devices is crucial for 

observing many of the phenomena stated above. Even though most of these were predicted within 

years after the discovery of graphene in 2004, several technical challenges have made experimental 

realization impossible. The latter half of the chapter will detail how such samples are fabricated 

using suspended graphene. At the end of this chapter the experimental measurement setup used to 

characterize these devices is presented. 

 

2.1. Superconducting proximity effect – A brief overview 
 

2.1.1. Andreev reflection  

 
When a superconductor (S) is in perfect contact with a normal metal (N), an electron with 

energy (E) above EF but within the superconducting gap (Δ) cannot transmit since there are no 

quasi-particle states within the gap. In such cases charge transmission occurs by a process called 

Andreev reflection (AR) where an electron (hole) entering the superconductor (S) from the normal 

metal (N) gets reflected as a hole (electron) so that a Cooper pair can form inside S. So effectively 
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a charge of 2e gets transferred across the SN interface. The electron and hole excitations involved 

in AR are from the conduction band (CB). Since a CB hole moves opposite to the direction of its 

wave vector, the hole retraces the path of the incident electron and hence the reflection is retro 

(Figure 2.1)1.  

 The Andreev quasiparticle  excited states at the SN interface are described by the 

Bogoliubov deGennes (BdG) equation [55], 

 

    (2.1) 

 

where H –is the free electron Hamiltonian for the N-side and (u,v) – represents the electron-like 

and hole wave functions and T is the time reversal operator. The reflected quasiparticle state is a 

time reversed state of the incident quasiparticle with a fixed phase relation determined by their 

energy with respect to Δ. If the superconductor used is an s-wave superconductor the net spin of 

the Cooper pair is zero and the Andreev quasiparticles will have opposite spins. 

 

The phase conjugated Andreev pair can propagate into the N region extending up to a 

distance known as the coherence length (ξ)


Fv
~ . The spilling of this coherence from the 

superconductor across the interface and into the normal metal is commonly known as the 

superconducting proximity effect(PE)[33]. By the Andreev process the superconductor draws a 

charge of 2e for each incident charge e. So it follows that when E<Δ, the conductance of the 

interface is twice of that when the superconductors become normal.   

 

                                                           
1 Note that in the illustration in figure 2.1 a step like function for the gap is used at the SN interface. 

This assumption is only valid in cases where ‘bulk’ superconducting contacts are directly in contact with a 

normal metal. 
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Figure 2.1: An illustration of Andreev reflection at a Superconductor-Normal interface.  

 

 
2.1.2. The Blonder, Tinkham and Klapwijk model (BTK model) 

 

 In experiments the SN interface is not ideal for complete AR. Even when the E<Δ, normal 

scattering processes can happen. The BTK model is a widely used microscopic theory that in-

cooperates  the elastic scattering processes due to Fermi velocity mismatch and impurities to 

calculate the current-voltage (IV) characteristics of the SN interface [56]. The scattering potential 

is modelled by a delta function potential  at the interface.  Here Z is known as 

the dimensionless barrier strength.  

Solving the BdG equations with V(x) [33], the current flow through the SN interface can 

be written as,  

 

)()( xvZxV F
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    (2.2) 

 

Here A(E) and B(E) are Andreev and the normal reflection probabilities respectively. f(E) 

is the Fermi Dirac distribution . GN is the normal state conductance of the interface i.e., when the 

superconductors are just above Tc. Vbias – is the bias voltage applied across the interface. The values 

of A and B are a function of E, Z and can be tuned by the bias voltage. From  [33], 

 

For E<Δ: 

      (2.3) 

 

For E>Δ: 

       (2.4) 

 

with parameters  

     (2.5) 

 
 
 

In experiments the quantity that is usually of interest is the differential resistance. The 

expression for the differential resistance follows from equation (2.2) and is given by: 

 

)()(1()( biasbiasNbias eVBeVAGV
dV

dI
       (2.6) 

 

It is clear that when eVbias< Δ, since A (eVbias) increases, )(
bias

V
dV

dI  increases from the 

normal state value GN. For an ideal interface (Z=0), A=1, B=0 and the conductance below the gap 

is constant and twice the normal value. For intermediate Z, the conductance enhancement becomes 
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weaker and less abrupt. This is because the increase in A(E) is mitigated by finite normal scattering 

probability B(E). For higher Z (strong barrier or tunnel junctions) A(E) is completely suppressed 

and )(
bias

V
dV

dI below Δ can decrease substantially reaching zero in ideal tunnel barriers with no 

thermal induced hopping.  The differential conductance for different Z calculated by BTK is 

presented in figure 2.2,  

 

 

 

Figure 2.2: Normalized differential conductance curves for different values of Z based on 

the BTK model. The plots are from [56]. 

 

2.1.3. Excess current 

 

The DC current voltage (IV) curve of a transparent SN junction does not follow a linear 

Ohmic relation V=IRN where GN=1/RN.   This is because additional current flows through the SN 

interface due to the proximity effect when eV<< Δ. The linear fit for the IV curve for eVbias>> Δ, 

has a slope GN with a non-zero intercept at V=0. The value of the intercept is the excess current 

(Iexc). The expression for the excess current can be written as[56]  
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 ,   (2.7) 

where . For a fixed temperature is only a function of Z.  The dependence 

of Iexc on Z for T=0 is shown in Figure 2.3(a) and the method to calculate excess current from an 

IV plot is shown in Fig 2.3 (b). Using the value of the excess current, the strength of the proximity 

effect of a junction can be evaluated.  

 

 

 

Figure 2.3: Excess current (Iexc) in SN junctions: a. Iexc as a function of Z.  b. IV curves for 

junctions with different Z at T=0K. The red dotted line is a linear fit for curve Z=0.5.  The black 

dotted line represents the Ohmic curve with zero intercept. Both lines have a slope of RN.  The 

plots were adapted from reference [56]. 

 
 
2.1.4. SNS junctions: Multiple Andreev reflections (Sub harmonic gap structures) 

 

In a normal metal separated by two superconducting contacts (SNS junctions), the excess 

current is almost twice of that of the SN junction[57]. In SNS junctions close to zero bias and when 

ξ> L-length of N channel, a Josephson supercurrent flows through the channel. This current has a 

phase that is related to the phase difference of the two superconductors and is an AC current (The 

excess current is a DC current and does not include the dissipationless AC current at zero bias).   
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The AR processes takes place at finite biases and for SNS junctions this can happen when eVbias< 

2Δ.  The dip in  occurs at Vbias= 2Δ/e(see figure 2.4 right).  

Unlike in SN junctions, in SNS junctions when eVbias<2Δ, in the absence of any 

decoherence mechanisms in the normal metal, the Andreev pair can traverse from the left 

superconducting lead to the right and undergoes an AR again. The number of times the AR happens 

reflect as harmonic oscillatory features in the DC IV characteristics. To understand the harmonics, 

a simple way is to focus on the transport of a single electron in N between the two S-leads. Let 

Vbias be the voltage bias between the two S-leads. When │eVbias│> 2Δ there is no Andreev process 

and an electron just normally escapes from the left lead to the right lead. But if │eVbias│ = 2Δ then 

at least a single AR becomes possible and an effective charge of 2e is transferred through the 

junction. If 2│eVbias│ = 2Δ, AR happens twice, one at each lead. The charge transfer is now with 

2x2e into the superconductors. This is illustrated in Figure 2.4. Decreasing Vbias further, more ARs 

take place at the superconducting leads leading to more charge transfer in multiples of 2e. The Vbias 

and the number of ARs (n) are related by the following equation: 

 

n
eVbias




2
 , where n=1,2,3 etc.,     (2.8) 

 

The coherent sum of many such multiple AR (MARs) results in proximity effect with a 

sharp dip in dV/dI at values of Vbias given by equation 2.8. These oscillatory signatures from MARs 

are also known as sub harmonic gap structures (SHGS). Figure 2.4 shows an experimental curve 

for an Al-graphene Josephson device at T=270mK. At-least three SHGS are discernible. The 

vanishing dip at Vbias=0 is due to the onset of supercurrent. The number of SHGS that are 

experimentally observable depends on thermal noise and the transparency of the interface. 

The MAR dip features and normalized supercurrent (IcRN) are gate (density) independent 

in diffusive samples.  It was shown that the magnitude of the MAR dips were dependent on L/ξ, 

where L- is the length of the junction and



D

 – the coherence length in N. Here
2

mF lv
D  is 

the diffusive constant. This was confirmed with graphene-Al SNS junctions [20].  

 

 

)( biasV
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Figure 2.4: Sub harmonic gap structures due to multiple Andreev reflections (MARs): (left) 

Illustration for double AR i.e., 2Δ=2eVbias. (right) An experimentally measured normalized 

differential resistance vs. Vbias curve showing dips associated with MARs.  

 
2.1.5. Andreev reflections in graphene – Retro and specular 

 

Proximity effect in graphene can be described in the same way as in other metals by using 

the BTK model. But replacing the Schrodinger equation with the Dirac Hamiltonian in the BdG 

equation presents some additional properties that differ from normal metals.  

As mentioned earlier, Andreev electron and holes are time reversed. So the 

superconducting pair potential will couple states in graphene from the time reversed valleys – K 

and K’.  The quasiparticle electron-hole states (u,v) should then be described by the four component 

spinor wave functions (u1,u2,v1,v2)= ),,,( *

,

*

,,, KBKAKBKA    . The time reversal operator 

CT
z

z











0

0




 where C- charge conjugation operator[58].  In ballistic systems, the two valley 

transport is intrinsic to graphene while in the normal state it is single valley transport. Although 

presence of certain scatterers can couple valleys in diffusive systems, the resulting transport is not 

intrinsic to graphene and is sample (or impurity) dependent [19].  The phase coherent two valley 

transport has led to interesting proposals in the detection of valley polarization in ballistic graphene 

[17].  
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Unlike in normal metals, in graphene the AR probability is unity even when Z is finite. 

This is because AR does not flip pseudospin i.e., Andreev electrons and holes in graphene belong 

to the same sub lattice. Backscattering without AR would require scattering to a different sub-

lattice. This will violate chiral conservation. Therefore the quasiparticle has no other way but to 

undergo AR.  

Another interesting phenomenon which is unique to a zero gap semiconductor like 

graphene is that the ARs can be inter-band i.e., the electrons from the conduction band can Andreev 

scatter as a hole in the valence band. This requires the Fermi energy (EF) < superconducting gap 

(Δ). Since a valence band hole moves in the same direction as its wave vector, unlike in retro 

reflection, only the velocity component perpendicular to the interface is flipped. As a result the 

reflection becomes specular[13] (Figure 2.5). Exploring this experimentally is challenging since 

it requires ultra clean samples with less energy smearing at CNP compared to the superconducting 

gap which is typically a few meVs. Specular AR is explored experimentally at the end of Chapter 

3.  

 

 

 

Figure 2.5: Illustration of retro and specular Andreev reflection at a Superconductor (S) 

graphene (G) interface. C.B- conduction band, V.B valence band. v and k are group velocity 

and wave vector respectively. Here E=eVbias. 



 

26 
 

 
2.1.6. Andreev reflection in magnetic fields  

 

With a type-II superconductor coupled to a normal metal, it is possible to retain the 

superconducting properties of the lead at higher fields, up to the upper critical field of Hc2, while 

studying the response of the Andreev pair in the normal metal. In retro AR the electron and hole 

are from the same (say conduction) band. With negative mass and opposite charge, the cyclotron 

orbit of the hole in a magnetic field has the same rotation as the electron. The situation is different 

in graphene for specular (inter-band) AR, where the cyclotron orbits are opposite for electrons 

and holes. Experiments can be designed in large scale ballistic devices that can detect these 

spatially different cyclotron trajectories. The trajectories can be switched back and forth by tuning 

the Fermi energy towards and away from the Dirac point. This is illustrated in figure 2.6.  

 

 

Figure 2.6: Illustration of Andreev reflection in magnetic fields: a. and b. In low magnetic 

fields: Direction of electron and hole cyclotron orbits for specular (a) and retro (b) Andreev 

reflection. c. Formation of (Retro) Andreev edge states in the QH regime (high magnetic fields). 

Magnetic field is directed out of the paper. 
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Thin film type II superconductors support vortices at low magnetic fields. Their effect on 

the Andreev pair at the interface is also an interesting question. This is discussed in Chapter 4. At 

high magnetic fields when the bulk becomes insulating, alternating Andreev electron and hole 

skipping orbits are formed at the superconducting interface. These are known as “Andreev edge 

states”. Depending on the phase coherence of the Andreev pair on the normal side and the quality 

of the interface, the presence of these Andreev edge states is expected to change the QH 

conductance from conventional values. In the ideal case it is expected that the quantized 

conductance values should double[22]. The effect of specular AR in the QH conductance and the 

proximity effect in graphene’s fractional QH regime are other prospective studies that can be 

initiated using ballistic graphene superconductor devices. 

 

2.2. Fabrication of superconducting graphene (SGS) junctions 

 

The study of proximity induced effects in electron gas system requires a transparent SN 

interface.  Graphene practically is a semimetal and is well known for forming good Ohmic contacts 

with various metals and induced superconductivity in graphene was reported in 2007[19-21]. But 

studying ballistic transport properties in such Josephson devices has remained challenging. This 

requires improved fabrication schemes that can produce a transparent interface. Also such interface 

should remain robust after current/thermal annealing and other pre-processing procedures, 

typically required for producing a pristine graphene strip. Moreover studying Andreev edge states 

and intrinsic transport near the CNP such as specular AR requires type II superconductors with 

higher Hc2 and a large superconducting gap. These superconductors are typically sputter deposited 

and pose additional challenges.  In this section a method to successfully fabricate ballistic-

suspended and graphene with type II superconductors (Nb and NbN) is presented. Such samples 

are used to observe pseudo-diffusive behavior in graphene near Dirac point, which will be the 

subject of Chapter 3.  

2.2.1. Suspended graphene superconductor junctions 

 

Our approach to make ballistic devices is to use suspended graphene. The most common 

way to suspend graphene for electronic characterization is by clamping the graphene by contact 

leads and to use etchants such as buffered HF to remove the SiO2 underneath. Details of this 
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method will be explained in Chapter 5. Since commonly used superconductors like Nb and NbN 

are reactive to etchants, an etch-free technique is required. We achieve this by using two layers 

of contrasting e-beam resist with the graphene sandwiched in between. Then by careful control 

of the e-beam dose and the developing procedure the graphene is eventually suspended over the 

SiO2 substrate. The details of the procedure are outlined below.  

A. Deposition of graphene by mechanical exfoliation 

1. A Si/SiO2 substrate with 300 nm of SiO2 and predefined alignment marks is washed in 

acetone/IPA and is cleaned in UV-ozone for 20 minutes. The Si is n-doped and serves as 

the back electrode.  

2. Immediately before graphene deposition the substrate is baked for 2 minutes at 4000 C and 

then spin-coated with MicrochemTM  Polymethyl methacrylate (PMMA) - A4 at 3000 rpm. 

The resulting thickness of the film is 220 nm. The substrate is baked for 90s on a hot plate 

set at 1800C. To ensure a good thermal contact with the plate, the back of the substrate is 

carefully wiped clean of PMMA using an acetone soaked Q-tip and the sample is covered 

with an aluminum lid during the baking. 

3. Blow press method: Thin highly oriented pyrolytic graphite (HOPG) flakes are peeled from 

the bulk using a sharp tweezer and placed carefully on the PMMA surface. Then it is “blow 

pressed “using clean and dry N2 gas through a needle, ~0.7 mm in diameter for 3-5s. The 

deposition works well when liquid N2 pressure is maintained between 20-30 psi and the 

humidity around 20-30%. The single layers left behind are identified under an optical 

microscope. Since graphene is deposited on the PMMA resist, the contrast may not be 

sufficient to identify graphene. But by adjusting the aperture of the objective lens or 

employing digital color filters the contrast is improved. The green and luminescence filters 

provide the best contrast. 

Other variations used in depositing graphene: For deposition on the PMMA resist the 

typical scotch tape method is not preferred as it leaves irremovable glue residues that can 

get on the graphene piece while processing in solvents. An alternative is using the silicone 

free ‘blue tape’ from Ultron Systems R 1007 (Here residues can be washed away by warm 

acetone). Also flakes exfoliated from a flat monochromatic graphite by the blue tape 

produce small single layer pieces on PMMA with a slightly higher yield than the blow 

press method. 
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4. Once a suitable single layer flake (straight edged flat rectangular flakes gave better results) 

is identified the second layer of resist – Methyl methacrylate (MMA) 8.5 EL 8.5 is spun 

on the substrate. The spinning speed is slowly ramped from 0 to 3000 rpm to minimize the 

rolling up of deposited graphene flakes. Then the substrate is baked at 1500 C on a hotplate 

for 90s, same care as before (Figure 2.7 (a)). 

 

 

 

 

Figure 2.7: Etch free – double resist fabrication for suspended graphene – Superconductor 

junctions: a. before EBL b. after EBL c. EBL design showing the different exposure region d. 

Optical image of device after EBL and developing e. after metal deposition and lift off f. SEM 

image of final device (top view).  
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B. E-beam lithography (EBL) 

EBL is performed using carefully controlled doses on the two different resists sandwiching 

graphene. Suspended graphene is usually supported by metallic contacts. But since no part of 

graphene is in contact with the substrate, a pill-box support structure is designed as shown in   

figure 2.7 (c).  In the ‘inner’ rectangular region low dose is used so that only MMA gets developed. 

This inner region, after metal deposition, will form a suspended contact to the suspended graphene 

channel. Towards the ‘outer’ region the dose is gradually increased so that the PMMA layer also 

gets developed. Eventually the dose for the outer leads reaches a value that enables both PMMA 

and MMA to be completely developed. The NPGS design of the gradual dose region is shown in 

figure 2.7(c). It is composed of closely spaced C- shaped enclosures with a width of 10 nm. Here 

the dose is increased in steps of 10μCcm-2.The gradual increase of dose ensures a smooth transition 

of the metal contacts from the suspended region to the substrate.  This technique is also economical 

in the use of metals especially in cases where the PMMA layer needs to be thick.  

After EBL, the sample is developed in Methyl isobutyl ketone (MIBK): isopropyl alcohol 

(IPA) = 1:3 for 45s, followed by a minute in cold deionized (DI) water: IPA (1:3) and a final rinse 

in IPA for 35 s before blow drying with dry N2 gas.  During this procedure the sample is held with 

a tweezer and gently swayed in the developers for effective results. The cold DI water + IPA help 

to remove the fine PMMA residue, which is typically difficult to remove using MIBK alone. A 

sample after developing is shown in figure 2.7 (d). Right before metal deposition, the developed 

samples are exposed to UV ozone for 1.2 minutes to remove any remaining organic residue. 

 

C. Thin film metal deposition  

The superconductor contacts are defined by DC magnetron sputtering. But due to the 

intrinsic strain of sputtered films, direct sputtering on graphene damages it, creating a bad 

interface. Therefore prior to sputtering buffer layers of very thin normal metal are deposited by e-

beam physical vapor deposition (EBPVD). The samples are kept pumped for at least 10 hours in a 

UHV chamber equipped with the apparatus for both EBPVD and DC magnetron sputtering. The 

long pumping helps to remove desorbed impurities and water on the sample and chamber surface.  
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i. e-beam physical vapor deposition (EBPVD) 

In EBPVD, accelerated electrons hit a crucible containing the metals evaporating them. 

The metal vapor rises and coats the sample directly facing the crucible at a distance.  

 For a good S-G interface it was found that a pressure of ~ 2x10-8 Torr or lower is required 

before evaporation onto the sample. The vacuum conditions are further improved by briefly 

preheating the Ti crucible an hour before deposition (with the sample facing away). This allows 

for the Ti vapor to trap residual gases and seal sources of outgassing in the walls of the chamber. 

When all these conditions are met, the first layer, Ti ~1.5nm is evaporated quickly followed by Pd 

~1nm. Ti forms a very good sticking layer while Pd acts as a protective layer sealing Ti from any 

unwanted exposure. This is especially important in the reactive sputtering of NbN, where N2 gas 

is used (see next section). Each metal pocket is preheated to establish a steady base pressure and 

growth rate (2A0/s) before exposing it to the sample. Slower growth rate can leave the coated metal 

layers vulnerable to impurities. 

ii. Sputter deposition 

After EBPVD, the sample is sputter deposited with the superconductor material in the same 

UHV chamber. Sputter deposition is a physical vapor deposition technique where free electrons 

from a negatively charged target (made of the material of interest, here Nb) ionize the gas medium 

(typically Argon) in the deposition chamber. These positively ionized atoms (plasma) are 

accelerated back to the negatively charged target and a cascade of collision results in atoms being 

sputtered from the target surface. These atoms then get deposited on the sample facing the target. 

A constant flow of the gas is maintained in the chamber during the process. In DC magnetron 

sputtering used here, the magnetic field controls the sputter rate. In this thesis work, two kinds of 

superconducting films were used – Nb and NbN. And in both cases a 3” circular Nb target is used. 

Nb sputtering is a non-reactive process using the inert gas Ar for the plasma.  NbN is reactive 

sputtering where a mixture of Ar and N2 is used on the Nb target. During the sputter process the 

bombarded Nb target reacts with nitrogen ions forming NbN. 

A crucial challenge in sputter deposition on graphene is stress. The use of buffer metals 

alone is not sufficient to protect graphene from tear or damage due to stress. To determine the type 

of stress, the film is sputtered on stress free Al pre-evaporated on PMMA and lifted off in acetone 

which slowly dissolves the PMMA releasing the bimetallic Nb/Al (or NbN/Al) film. This process 

is observed under an optical microscope. In the case of compressive stress, the film bubble that 
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detaches forms a “flowery” or wrinkled rim as the detached film tries to increase the surface area 

and minimize the elastic energy. When the film bubble breaks they curl downwards. A tensile film, 

on the other hand, forms a spherical bubble with a sharp rim and when broken curls upwards (see 

figure 2.8).   

 

 

 

Figure 2.8: Stress tests for sputtered Nb films. Optical images of Nb/Al bimetallic film when 

lifted off in acetone from PMMA/Si substrate. a. Films with compressive stress b. Films with 

tensile stress c. SEM image showing a graphene channel torn apart (top) and cracks (bottom) due 

to stress from the sputtered film.  

 

The stress in both reactive and non-reactive sputtered NbN and Nb depends on the flow 

rate, the pressure of the gases, the sputter gun power and the distance of the sample from the target. 

So to find the best combination of parameters, initially the target-sample distance and the power 

were determined to give the best possible results for Tc with a reasonable contact on graphene. 

Then the ‘lift off tests’ were performed by tuning the flow rate and the pressure of the gases each 

time until the minimum stress condition is found. Finer tuning of the parameters is normally 

required as the minimum stress values did not provide the best results on graphene. This might be 

because the lift off test only shows the effective stress of the whole film. But stress can vary across 

the layers. The stress of the first few deposited layers on graphene can be slightly different from 
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the results from the lift off tests. On graphene the resistance drop below Tc and the value of the 

induced gap were used as gauges for the quality of the sputtered film.   

Reactive sputtering for NbN: For reactive sputtering, consistent with literature,  high 

Ar/N2 pressure causes tensile stress while a low Ar/N2 pressure causes compressive stress [59]. 

The stoichiometric changes in Nb and N2 near the target can cause the intrinsic stress between each 

layer of the film during sputtering. To reduce this, the flow rate of the gas mixture is increased 

while adjusting the shutter valve to maintain a steady pressure. It was found that the Ti buffer layer 

can also react with the Ar/N2 plasma causing bad contact resistance even at stress free sputter 

conditions. To eliminate this, the Ti was covered with thin layer of Pd, as mentioned earlier.  

After all parameters are determined, the sputtering procedure used is as follows:  After 

EBPVD on sample, the chamber is partially closed from the cryopump using a shutter valve and 

Argon gas is introduced into the chamber. The flow controller and the shutter valve are adjusted 

so that a steady flow rate and a constant chamber pressure of 8.4 mTorr (Ar - 7.5mTorr + N2 - 

0.9mTorr) is achieved. Right before sputtering on the sample, the target surface is made fresh by 

pre-sputtering for 80 seconds with the sample facing away.  A constant power of 470W is provided 

to the Nb target at the time of sputtering. The voltage and current values typically vary from 378-

380V and 1.23-1.25A. While in operation, the pressure changes from 7.6 to 7.4mTorr indicating 

the use of N2 in the reaction. This value was found to be ideal for stress free films and is often used 

as a check-parameter for instabilities in chamber or target conditions. After pre-sputtering the 

sample is rotated so that it faces the target. Then 70-80 nm of the superconductor at the rate of 

1nm/s is sputtered. The distance between the target and the sample holder is ~10 cm.  

Non -reactive sputtering for Nb: In the case of non-reactive sputtering, a similar trend in 

stress is seen: high Ar pressure shows tensile stress while low Ar pressure shows compressive 

stress.  Here changes in Ar pressure and rate of deposition can cause the intrinsic stress.  The 

established procedure used in this thesis is as follows: After EBPVD, the chamber is partially 

closed from the cryo-pump using a shutter valve and Ar gas is introduced into the chamber. The 

flow controller and the shutter valve are adjusted so that a stable flow rate with a chamber pressure 

of Ar (8.17 mTorr)) is achieved.  Right before sputtering on the sample, the target surface is made 

fresh by pre-sputtering for 80 seconds with the sample facing away.  A constant power of 400W 

is provided to the 3” Nb target at the time of sputtering. The voltage and current values typically 

vary from 321-326V and 1.19-1.24A. While in proper operation the pressure is stable varying by 
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only by 0.025mTorr. If the change of pressure during growth exceeds 0.05 mTorr, it results in 

intrinsic strain and poor transparency of the contacts.  After pre-sputtering the sample is rotated so 

that it faces the target and 60-65 nm of the superconductor at the rate of 1nm/s was deposited. The 

distance between the target and the sample holder during sputtering is ~10 cm.  

 

D. Lift-off  

After sputtering the sample is unloaded from the chamber. A small scratch is made on the 

corner of the substrate to expose Si for gate wire bonding before liftoff2. For the lift off process, 

the sample is immersed in warm acetone (700C). The acetone dissolves the resist layers lifting off 

the metals with it.  During the first 30s of lift off, the sample is swayed gently in the solvent so 

that the detached metal films do not have a chance to stick back onto the substrate. After 10 minutes 

the sample is quickly transferred to a fresh batch of acetone and kept covered for 10-15 minutes at 

the same temperature. This ensures a more thorough removal of the resist layers. (Note: At this 

stage the graphene is now suspended in acetone. So from here on, when handling the substrate, 

utmost care is taken to avoid collapse of graphene static charges. Also the substrate should not be 

directly taken out to air. This is because change in surface tension will force the suspended 

graphene to collapse).   Next, acetone is diluted with IPA and then the sample is quickly transferred 

to a fresh beaker of pure IPA and kept for 10 minutes. To take the sample safely out to air, a beaker 

of IPA is boiled on a hotplate until bubbles emerge and then is allowed to cool briefly for ~`10-15 

s. Once the IPA is ~800C (and not boiling!), the sample is quickly transferred and gently stirred 

for 5s to equilibrate with IPA temperature. Then it is taken out and held vertically to dry3. Since 

warm IPA has a reduced surface tension and dries off quickly, this method serves as an effective 

substitute to critical point drying. Hexane is also used at times as a substitute to IPA. The advantage 

with hexane is the boiling point is lower (680C) and therefore the sample does not have to undergo 

a huge thermal gradient. The SEM image of a sample after liftoff is shown in figure 2.7(f). 

 

 

                                                           
2 This process may induce momentary electrostatic charges on the substrate and if graphene is already suspended 

electrostatic force may force it to collapse. So as a precaution this is done before liftoff.   
3 Note: IPA should vaporize immediately and the surface should be dry within a couple of seconds. Any IPA trapped 
in the tweezers should be allowed to dry thoroughly or should be wiped off carefully so that it does not get on to 
the sample 
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2.2.2. Non-suspended superconductor- graphene devices 

 

For non-suspended sample there are only a few differences in the procedure. PMMA A4 

at 3000 rpm is the only resist used. EBL is straightforward with a single dose of 420 µC/cm2. The 

sample is developed for 2 minutes in cold water: IPA (1:3) and then rinsed in IPA for 35 s before 

blow drying in dry N2.  Metal leads are made of Ti (2nm), Pd (1.5nm) and the superconducting 

film (~40 nm).  

 

2.3. Measurement setup and techniques 
 

Although a variety of different instruments and setups were used over the course of this 

dissertation work a few of the most commonly used instruments and measurement setups are 

summarized below.  

 

2.3.1. He-3 Insert design and operation  

 
All the superconductor-graphene devices presented in this thesis are measured in a home 

built He-3 refrigerator placed in the Variable Temperature insert (VTI) space of the Oxford 

superconducting magnet Dewar. The He-3 refrigerator is designed without a 1 K plot as seen in 

figure 2.8. So to achieve sub Kelvin temperatures, first the He-3 gas stored in a can at the top of 

the insert is completely condensed, at a stable temperature of 1.5K, into the He-3 pot located right 

above the sample. The stable temperature of 1.5 K is maintained by controlled pump-flow of He-

4 gas through a capillary in the VTI space of the Oxford superconducting magnet Dewar. This 

process plays the role of the 1-K plot. During this condensing process, the sorb is heated at 40 K 

to release any trapped He-3 gas and ensure complete condensation. Sorb heat and temperature is 

provided by CryoCon 22 Temperature controller.  After sufficient time (~ 45min) is allowed to 

condense the entire He-3 gas in the condenser, the sorb heater is switched off. Once the sorb 

reaches a temperature of 1.5K it pumps on the He-3 cooling the He-3 pot and sample further down 

to 300mK. Baffles are deployed to isolate the He-3 pot and sample from high temperature 

elements. Stainless steel tubes are used for the pumping lines. The sample sits in vacuum in good 

thermal contact with the He-3 pot but is sealed off from the He-4 bath by a brass can. A common 

problem encountered in the design is super-leak. This may be due to minute imperfections when 
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machining the conical seal of the brass can. Various greases like Apiezon N and Bluestar CAF 1 

red silicone elastomer were used to reduce the leak but a redesign of the seal is necessary for long 

term operation.  

 

 

 

Figure 2.9: Components of the bottom end of the He-3 insert.  

 

2.3.2. Measurement setup 
 

 

Figure 2.10: The typical setup used for low temperature measurement of differential 

resistance as a function of Vbias at different gate voltages. 
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i. For differential resistance measurements the device is ramped with a DC current riding on 

a small AC current (10 or 20 nA) at a frequency of 47Hz. The output signals from the 

sample is amplified using a SIM 900 scaling amplifier. The SR 830 lock in amplifier 

measures the voltage response to the AC current modulation that is used to calculate the 

differential resistance (dV/dI). The DC bias voltage across the source and drain leads (Vbias) 

is measured using a Keithley 2001 Voltmeter.  

ii. The gate voltage is supplied by a Keithley 2400 voltage source.  

iii. For superconductor DC IV measurements Keithley 6221 current source and Keithley 2001 

voltmeter are used.  

iv. Filters – Two stage cryogenic RC filters with a cutoff frequency of ~ 3 kHz are used close 

to the sample (on the sample holder as shown in figure 2.9). On the outside, at room 

temperature, EMI π filters and ferrite bead filters in series with RF chokes4 are used.  

 

2.3.3. Current annealing of suspended devices 

 

Immediately after fabrication, suspended graphene almost always has some e-beam resist 

impurities that cannot be completely removed by solvents like acetone or resist strippers like 

NanoTM Remover PG. Even very small amount of solvents and water can dope graphene. This 

prevents from observing the expected ballistic properties  To remove such  impurities the graphene 

channel is heated by passing a huge current through the device[60]. The heat desorbs the impurities 

in the channel. The technique works effectively for suspended graphene compared to graphene on 

SiO2 since both sides of suspended sheet are free to desorb and there are no trapped impurities or 

heat dissipation through the substrate. Current annealing can heat the center of the suspended 

graphene strip to almost 6000C or above [11, 12]. Generally, for the suspended samples described 

in the thesis current annealing is performed at 10K either in He gas flow or in vacuum environment. 

But for superconducting junctions current annealing in a vacuum environment, below Tc, produced 

the best results.  Gate voltage Vg is kept at zero.  

                                                           
4 The ferrite bead high frequency filters are built following the scheme by Brain D’Urso and Jim Mac Arthur at 
Harvard. The link for the recipe  is 
http://users.physics.harvard.edu/~coldwell/marcus/how_to/Ferrite_Bead_Filter.pdf 
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During the procedure, current is ramped through the sample from zero to finite values while 

measuring the voltage. If a reasonable change is noticed in voltage for a fixed current, then the 

current is held at that value for a while until no further changes are observed. Then its ramped back 

down to zero and a gating curve is obtained to evaluate the improvement. The process is repeated 

until best results (for mobility or mean free path) are obtained. The minimum current typically 

required for annealing is ~0.3mA/µm. Sometimes abrupt changes in the voltage happens during 

annealing due to an external impurity landing on the sample or other accidents. This can lead to 

an unexpected burning of the sample. In order to prevent these abrupt the compliance of the current 

source (Keithley 6221) is set to the minimum value and changed in increments when required, 

while ramping the current. 
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Chapter 3 

Signatures of pseudo-diffusive transport in suspended 

ballistic graphene superconductor junctions5 
 

 

In chapter 1 it was pointed out that the conductance of a pristine sheet of graphene, away 

from the Dirac point (DP), is proportional to the number of propagating modes in graphene. This 

fact breaks down close to the DP where the carrier density tends to zero. Theoretical calculations 

predict that pristine graphene displays unexpected  “pseudo-diffusive” behavior in this regime 

[14], i.e.,  even in the absence of defects or impurities, the transport signatures near the DP 

resemble that of a diffusive conductor. The conductance should reach a universal, quantum limited 

value of 
h

e



24
[61]. The origin of these phenomena is the change in the nature of transmission of 

conducting channels. Near the DP, the transmission switches from propagating to evanescent 

mode. In a sufficiently wide ballistic graphene, unlike in normal metals, a sizeable number of 

evanescent modes can have finite transmission. At DP, these perfectly transmitting evanescent 

modes gives rise to the universal conductivity and a conductance proportional to the aspect ratio.    

Pseudo-diffusive behavior has been observed in 2D photonic crystals and photonic lattices 

resembling graphene [62, 63]. In electronic transport a direct measurement of conductivity at DP 

is difficult due to the presence of electron hole puddles, even in the best of samples. But in 

graphene, the capability to tune the carrier density by using a gate electrode provides an 

opportunity to observe the ‘transition’ from ballistic to evanescent mode mediated pseudo 

diffusive transport. Transport signatures that are sensitive to changes in transmission of the 

                                                           
5 An older version of part of the work presented here is available on arXiv: 1504.06338 and is submitted for review.  
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conduction channels, like shot noise and superconducting IV characteristics, are quantities that can 

be measured. Their density dependence in the ‘evanescent regime’ is expected to provide evidence 

to the transition. But several prevailing technical challenges prevented observations of this 

longstanding prediction.  

This chapter discusses one of the first observations that indicate this transition. This was 

made possible by developing superconductor proximity induced suspended ballistic graphene with 

low potential fluctuations near charge neutrality point (CNP).  The transition is observed when 

studying the junction’s IV characteristics. When approaching the CNP (n<1010cm-2), where the 

evanescent mode transport starts to dominate over the conventional propagating modes, the 

multiple Andreev reflection (MAR) related features known as sub-harmonic gap structures 

(SHGS) become more pronounced. The product of normal resistance and excess current, (IexcRN), 

which remains constant at high carrier densities is also suppressed rapidly at low carrier densities 

near the CNP. Both observations are in contrast with previous experimental observations in 

disordered graphene superconductor junctions, where both SHGS and IexcRN show no significant 

gate dependence. The results are in qualitative agreement with the theoretical predictions and 

provide strong evidence for pseudo-diffusive transport in ballistic graphene. 

At the end of the chapter, a very fine scan of the Fermi energy (carrier density) in the 

vicinity of the CNP is presented, exploring the possibility of specular Andreev reflection related 

signatures.  

 

 

3.1. Theoretical Background: The gate dependent transmission in 

pristine graphene  

 

To understand the transition of ballistic to evanescent mode transport, Katsnelson [61] and 

Tworzydlo et al.,[64] calculated the transmission in pristine graphene as a function of the gate 

voltage. The derivation is summarized as follows. Consider a pristine graphene strip of width W 

in contact with leads separated by length L. The graphene underneath the two leads is assumed to 

be heavily doped (chemical potential µ∞) with infinite modes. Then the energy states in the two 

leads can be written as 22

NF qkv   where k- longitudinal momentum. For the graphene strip 

in between the leads, the energy states are: 22~
NF qkv  , where k

~
- longitudinal momentum. 
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Here µ (<<µ∞) is the gate tunable Fermi energy in graphene with µ=0 representing the DP. For 

W>>L, the details of the graphene edge becomes insignificant6.  Allowing the wave functions to 

disappear at the graphene boundaries, y=0 and y=W, the transverse momentum can be shown to 

be quantized as  

 

)
2

1
(  n

W
qn


         (3.1) 

 

where n=0,1,2,3 –representing the modes in the graphene. Solving the Dirac equation and 

matching the solution at the leads, the transmission for each mode in graphene is given by  
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nqk   is real for qn<δ and imaginary for qn>δ.  Therefore the number of 
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order modes) they are evanescent. The transmission probability as a function of qnL for different 

values of the dimensionless Fermi energy 
F

F

v

LE


  is shown in figure 3.1. The computation here 

was done for N = 1000 and W/L=9.  

 

 

 

 

 

                                                           
6 It has been shown that for W/L<4 the transmission will depend on the detail of the graphene edges- armchair or 

zigzag.     
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Figure 3.1: Ballistic and evanescent transport in graphene. a. Transmission as a function of qL 

for various 
F

F

v

LE


  (from equation 3.2) and b. Conductivity (σ) vs  for a pristine graphene 

device.  Dotted line is the naïve ballistic prediction due to propagating modes alone. Solid line is 

the expected curve by using transmission from equation 3.2 and the Landauer formula from 

equation 3.4.  

 

For a fixed L, as κ  0 as δ 0, higher order modes becomes imaginary and transport is carried 

by evanescent modes along with the lower order propagating modes. At the Dirac point δ=0 (EF=0) 

and all the modes are evanescent. The transmission probability at Dirac point for very large N is   

 

    ,..2,1,0;
/cosh

1

cosh

1
22

 n
WLnqL

Tn


      (3.3) 

 

This finite transmission is unlike non-relativistic charge carriers. For normal incidence i.e., when 

the qL0, T= 1, confirming the absence of backscattering discussed in section 1.2.27.As long as 

                                                           
7 This problem is identical to the inter band tunneling of relativistic fermions through a rectangular barrier (as 

discussed in chapter 5) with the left and right contact leads representing conduction band and the graphene representing 

the valence band. When the energy of the electrons are aligned close to the top of the barrier, the transport is evanescent 



 

43 
 

W>>L, close to the Dirac point a finite number of open evanescent channels exist and the 

conductance is calculated using the Landauer formula for    

 

L
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e
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       (3.4)   

where 
h

e




2

0

4
 is the quantum limited minimum conductivity. The conductance near Dirac point 

is dependent on sample dimensions as in diffusive metals. The fluctuations in electrical current 

(shot noise) near the evanescent regime are found to be enhanced with the gate dependent Fano 

factor 
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reaching 1/3 at Dirac point, another similarity with the transmission statistics in diffusive metals. 

This finite noise at Dirac point, without impurities or defects, is associated with the Zitterbewegung 

of ultra-relativistic Dirac particles[61].  

 

 

3.2. Proposals and requirements for experimental observations of 

pseudo-diffusive electronic transport 
 

Several longstanding theoretical proposals have been made as to how the pseudo-diffusive 

behavior can be observed in ballistic graphene devices.  For this purpose, transport characteristics 

that are sensitive to the nature and distribution of charge transmission in the conduction channels 

should be considered. One straightforward way is to measure the shot noise and see how the Fano 

factor changes with the carrier density. At higher carrier densities the Fano factor is low (~0.1) as 

                                                           
and at Dirac point, pseudospin conservation makes the T=1. [58] C.W.J. Beenakker, Andreev reflection and Klein 

tunneling in graphene, (2007) 1-20. 

 



 

44 
 

expected in ballistic transport, but when close to the evanescent regime, as mentioned earlier, the 

Fano noise increases reaching the value of 1/3 at DP.   

Transport in ballistic graphene (G)-superconductor (S) hybrid devices is also expected to 

show pseudo-diffusive signatures [14, 15, 65]. Relevant to the work here is the prediction by 

Cuevas et al.in [15]. They showed that in short ballistic SGS junctions the quasiparticle current-

voltage characteristics such as excess current and SHGS amplitudes should display a strong Fermi 

energy or carrier density dependence near Dirac point, reflecting the crossover from ballistic to 

pseudo-diffusive charge transmission. Previous (experimental and theoretical) work using 

superconductor point contact break-junctions (S-S, S-Insulator-S etc.,) have confirmed the 

sensitivity of SHGS amplitudes to individual transmission of the channels in the point contact. In 

the experimental work the number of channels and their transmission were controlled by adjusting 

(breaking) the contact[66]. But here, in graphene, by using a gate electrode to tune the Fermi 

energy we can control the number of channels and their transmission into the evanescent regime. 

This leads to a direct insight of an intrinsic property of graphene’s energy spectrum!  

In realizing these predictions, the experimental work carried out so far [18-20, 67, 68], has 

been impeded by numerous technical challenges. To reach the energy scale required for evanescent 

transmission, the Fermi wavelength 
F

F

F
E

hv
 should approach the dimensions of the sample. 

Here m/s is the energy independent Fermi velocity and EF is the Fermi energy. Therefore 

the potential fluctuations (δEs) near CNP should be small, a few meVs, even for a sub-micrometer 

long channel. In addition, charge carrier scattering should largely be eliminated, so that the 

transmission of the carriers reflects the intrinsic nature of the transverse modes. This requires the 

devices to be ballistic. Due to the strong substrate-associated disorder, previous observations were 

marred by the presence of large potential fluctuations and short mean free path (usually <<100 

nm) due to the SiO2 substrate (see section 1.3.3). More recently, graphene/h-BN hetero-structures 

have demonstrated ballistic transport [69]. Josephson current has also been observed in these 

structures when coupled with superconductors [23, 24]. However, with these methods achieving 

both very low carrier density and highly transparent S-G interfaces is still under development.  
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3.3. Experimental methods and sample characterization 
 

In order to meet the requirements to explore the pseudo-diffusive regime near DP the 

fabrication method as explained in Chapter 2 was developed. Here the important details are 

presented. The graphene was deposited using mechanically exfoliated highly oriented pyrolytic 

graphite (HOPG). The graphene channel was designed to have a large aspect ratio (W/L) ~9 with 

width W =5.5μm and length L = 0.6μm. Such geometry minimizes any effect from the edges of 

graphene and complies with the theoretical prescription  4/ LW [64]. Moreover, a larger W/L 

improves experimental observation by allowing more evanescent modes (large higher order N) to 

contribute to the conductance. To suspend graphene an etch-free method as outlined in chapter 2 

and previous work is used[70]. The contacts were formed by electron beam evaporation of Ti and 

Pd to form a thin buffer layer ~2nm followed by DC magnetron sputtering of ~60 nm Niobium 

(Tc~9K, Hc2~3.5 T).  The Ti/Pd buffer layer helps in achieving a low contact resistance. The 

sputter conditions and device geometry are determined to minimize the stress on graphene. This is 

essential for a transparent superconductor- graphene interface and also improves the chances of 

getting a ballistic graphene channel by current annealing. All the measurements were performed 

in an Oxford Instruments VTI refrigerator and the He-3 insert (see Chapter 2, section 2.3), with 

room temperature ferrite and π-filters, and cryogenic 2-stage RC filters  

The gating curves of the device after current annealing measured for two different 

temperatures, 9K (~ Tc) and 1.5 K, are presented in figure 3.2(b). At T~9K the device shows a 

maximum mobility of >250,000 cm2/Vs and the mean free path is sample length limited. From the 

smear at the CNP and using QH measurements (see below) to establish the relation between n and 

Vg (see below), the minimum carrier density is 
9104.1~ sn cm-2. This corresponds to a potential 

fluctuation δES~ 4.4meV at CNP, the smallest value observed so far in such devices. To 

characterize the Fermi wavelength, similar to Ref.[15], a dimensionless parameter

is used.  Therefore the maximum δES~ 4.4meV in our sample corresponds to κ~4.0. The resistivity 

at CNP is .  The small discrepancy from the theoretical value of may be 

attributed to the presence of electron hole puddles and finite Coulomb scattering which in practice 

cannot be completely avoided. The excellent quality of the device is also evident from the QH 
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measurements. As shown in figure 3.2(c), at T=1.5K, and in a low magnetic field of B= 300mT, 

pronounced magneto-oscillations are already observed. At B=500mT, the sample displays fully 

developed anomalous QH plateaus at the expected filling factors  ν= ,...6,2  for monolayer 

graphene.
 
From these QH plateaus, the carrier density (n)-gate voltage (Vg) relation is found to be: 

  210 cm [Volt] 1084.1  NPg VVn where V9.0NPV  is the gate voltage at CNP. This is 

consistent with the estimation using the geometrical capacitance considering 285nm SiO2 in series 

with 220nm (thickness of the PMMA spacer) of vacuum. On the higher mobility electron side, 

additional oscillatory features in resistance, R (Vg), at ...8,4,1ν= , etc. are observed which may be 

attributed to the onset of broken symmetry. The resistance at the CNP displays diverging behavior 

with increasing field, starting at a low B~0.3T. All these observations demonstrate that the sample 

is of extremely high quality, with long mean free path and minimal potential fluctuations.  

Next, we study the superconducting proximity effect at T=1.5K in the absence of magnetic 

field. Compared to T>TC, the junction resistance is significantly reduced. For  VV CNPg V3.0 , 

the resistance vanishes reflecting the presence of a finite supercurrent. Figure 3.2(d) shows the 

differential resistance 
dI

dV
 as a function of bias voltage (Vbias) taken at V5.7 CNPg VV  (κ~39). 

From the curve we obtain the superconducting gap on graphene (Δ) ~0.34meV. This value is 

significantly smaller than the BCS gap of Nb,   meVBCS 37.1~764.1~0 cBTk , and varies slightly 

from sample to sample. Similar reduction has also been observed in superconductor-nanowire 

weak links [71, 72] and can be attributed to the impact of the finite-thickness of Ti/Pd buffer layer.  

At finite  2biasV  , the resistance drops down to ~ 40% of the normal resistance (RN) due to 

superconducting proximity effect. Evaluating the value of the normalized excess current 
 

/e~mV4.0~ Nexc RI and using the OTBK model [57] we estimate the dimensionless barrier 

strength of the interface, Z ~0.5.  The SHGS are very weak, consistent with the theoretical 

prediction for ballistic channels with high transmission [73, 74]. Other factors that may affect the 

weak SHGS include the small induced superconducting gap and the relatively high measurement 

temperature. 
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Figure 3. 2: Device characteristics: a. Main panel: Device schematics. Inset: SEM Image of the 

device. Scale bar is 2μm.  The graphene channel is highlighted by the open rectangle b. Resistivity 

in units of (πh/4e2) as a function of gate voltage (Vg) at T=9K (blue) and T (<TC) =1.5K (red). c. 

QH measurements: Conductance versus filling factor for two different magnetic fields 300mT 

(blue) and 500mT (red) at T=1.5K. d. Differential resistance as a function of bias voltage (Vbias) 

at T=1.5K. Gate voltage is 7.5V away from the CNP gate voltage (VCNP). The corresponding κ 

~39(see text) and the induced gap (Δ) =0.34meV. 

 

 

Now we focus on the behavior of the differential resistance as we approach the CNP. Figure 

3.3 (a) shows the normalized differential resistance 
dI

dV

RN

1
 as a function of Vbias obtained at 

various gate voltages. When V6.0 CNPg VV  ( 210 cm10 n  and 9 ), the differential resistance 

curve starts to develop a pronounced dip at mV68.0~/2 eVbias  . As the Vg is ramped further 

towards the CNP, i.e., for V3.0 CNPg VV  ( 29 cm107.5 n and 5.5 ), while the dip at 

eVbias /2  continues to be deeper, other SHGS start to emerge at low Vbias. All the observed 

T=1.5K 
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features appear at neVbias /2  where n=1, 2, 3… as expected for MAR processes and their 

positions in Vbias are independent of Vg. The higher order features are within noise.  The observed 

features are sharpest at CNP where the SHGS at n=1, 2 and 3 are all easily resolvable. But once 

Vg is ramped to the hole side, slightly away from the CNP (ĸ~ -1.9), the SHGS begin to weaken. 

The dip at n=1 shows the most prominent response to the gate voltage. In conjunction with the 

appearance of the pronounced SHGS, the overall shape of the normalized differential resistance 

curve transforms from a “V”-shape to a shallow profile. We note that the observed gate-

dependence of the 
dI

dV
versus biasV  curves is specific to superconductivity. Above Tc the 

“background” 
dI

dV
versus biasV , within the bias voltage range studied here, shows roughly no 

curvature. 

 

 

Figure 3.3: Normalized differential resistance 
dI

dV

RN

1
versus bias Voltage (Vbias) for different 

F

F

v

LE


  . Individual curves are shifted for clarity. Dotted lines indicate SHGS. a. Ballistic SGS: 

Ti/Pd/Nb contacts at T=1.5K. Evolving SHGS at Vbias=±2Δ/ne for n=1, 2 and 3 where 

2Δ=0.68meV.b. Diffusive SGS: Ti/Pd/Nb contacts at T=1.5K. Unchanged Gap feature at 

Vbias=±2Δ/e=±0.3mV. 
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For comparison, we present a similar set of data for diffusive samples with Ti/Pd/Nb 

(Figure 3.2 (b)) contacts. In the diffusive case, graphene channel sits on SiO2 and has a mean free 

path Llm   and meV40~FE . In contrast to the ballistic sample, there is no significant gate 

voltage dependence of the SHGS disordered devices for a large range in κ. The results are no  

different from previous work on diffusive graphene samples with Ti/Al-contacts (see [20]). We 

note that the higher order SHGS are unresolvable in the diffusive Ti/Pd/Nb device, which may be 

attributed to the smaller induced superconducting gap and the relatively high measurement 

temperature.  

To understand the observed gate-dependent SHGS, we consider the Fermi energy 

modulation of charge transmission in a ballistic graphene device in figure 3.1. In general, the 

transmission of Dirac electrons in graphene can be described by a summation of contributions from 

the boundary-defined transverse modes, each satisfying the Dirac-Weyl equation. At high 

densities, the channels in the ballistic graphene strip are propagating with high transmission.  

Approaching the CNP, however, the propagating modes become suppressed and the evanescent 

modes contribute increasingly to the conduction with more channels having a lower transmission. 

With superconducting contacts, it has been shown that the oscillatory amplitude of the SHGS 

increases due to the contribution from the low-transmitting channels [15, 73]. As a result, close to 

the CNP where evanescent modes with low transmitting probability dominate, the SHGS are more 

pronounced than at large gate voltages. The stronger gate-dependence of lower order SHGS, 

especially n=1, is also consistent with the theory. This is because compared to the higher order 

SHGS, the lower order ones are formed by Andreev quasi-particles that traverse the graphene 

channel fewer times and hence involves more contribution from the low transmitting channels.  
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Figure 3.4: Normalized Excess current (IexcRN) as a function of 
F

F

v

LE


  a. Experimental 

data: IexcRN   is calculated from the current-voltage characteristics of the device for different Vg at 

1.5K.The (blue) line is drawn as a guide to the eye. b. Theoretical calculation:  for short ballistic 

SGS junction with W=5.5μm and L=0.6μm at T=0K. 

 

A quantitative comparison with the theoretical predictions for pseudo-diffusive transport 

can be made by characterizing the excess current through the SGS device. Generally in a SNS 

junction when eVbias>>2Δ, the current though the sample consists of a normal ‘Ohmic’ current (IN) 

and an ‘excess’ current (Iexc) due to the superconducting proximity effect. Compared to the 

Josephson current, excess current is much more robust against the influence of the electromagnetic 

environment, and hence provides a reliable parameter for characterizing the proximity effect. In 

SGS junctions the abundance of nearly ballistic modes at large Fermi energies leads to large excess 

current. However, in the vicinity of the CNP the number of highly transmitting propagating modes 

decreases and the charge transport becomes increasingly evanescent thereby decreasing the excess 

current. Figure 3.4 (a) shows the normalized excess current IexcRN in our device (extracted from 

current-voltage curves at various gate voltages) as a function of κ. For κ >9, i.e., in the ballistic 

transport regime IexcRN ~0.4mV~1.2Δ/e whereas for κ <9, there is a clear gate dependence. The 

excess current sharply reduces when approaching the CNP. This reduction coincides with the onset 

of the enhanced SHGS as shown in figure 3.3 (a). For short ( 
L

vF
) ballistic graphene Josephson 
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junctions, the transmission dependence of the excess current been theoretically studied in reference 

[15]. With L=0.6μm, meV
L

vF 1~


  
and since the induced gap meV34.0~  our device 

marginally satisfies the short junction limit. The observed gate modulation of normalized excess 

current is in qualitative agreement with the zero temperature theoretical calculation as shown in 

Figure 3.4 (b).  Using W=5.5μm and L=0.6μm of our sample and following the result in [15],  the 

total excess current in a short Josephson junction is calculated as a sum of its individual 

contribution from all the transverse modes, each determined by the corresponding transmission 

coefficient Tn.  
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The discrepancy between the theory and our observation, especially in the values for normalized 

excess current, may be attributed to a few factors. First, the theory assumes an ideal SN interface 

(Z=0), whereas in our device Z~0.5. Secondly, our measurements were carried out at a base 

temperature of ~ 1.5K while the theory does not consider a finite temperature. Both these factors 

contribute to the reduction of the normalized excess current. In addition, for lowest values of κ, 

the theory does not consider the presence of the electron hole puddles that exists in real devices. 

These, together with temperature smearing, can we explain the slight broadening in the excess 

current dip with an onset at κ~9 compared to the theory (κ~4).   

An imperfect SG interface that may also result in Fermi energy modification of 

transmission coefficients without any direct consequence of the Dirac fermionic nature of 

graphene. Indeed it has been suggested that in graphene-metal junctions, the doping of the metal 

contacts can extend into graphene, forming a p-n junction that imposes the charge carrier 

reflections [75, 76]. A direct evidence of the presence of such interfacial p-n junction is the 

electron-hole asymmetry in the R vs. Vg dependence. As the gate voltage is swept across the CNP, 

the S-G interface changes from p-n to n-n and the asymmetry in the R vs. Vg dependence can be 

associated with the transmission probability across the S-G junction. While the presence of such 

junctions may affect the SHGS and Iexc, the gate voltage dependence will be gradual with no 

particular energy scale. In addition, such contact-doping associated reflection should give rise to 
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asymmetry in the quasi-particle current-voltage characteristics that persists up to large gate 

voltages on both the electron and hole sides[24]. These are apparently not consistent with the 

observation of a sharp dip on the IexcRN vs. EF dependence for EF<8meV, and the qualitatively 

symmetric behavior with respect to the CNP. 

 

3.4. Probing specular Andreev reflection 
 

Applying Dirac BdG equation for the S-G interface, Beenakker[13] showed  that when 

approaching the DP  the switch from retro Andreev reflection (r-AR) to specular Andreev 

reflection (s-AR) will be marked by an inversion in the bias dependence of the sub gap 

conductance-(1/GN) dI/dV. The results are plotted in figure 3.5(a).  The plot for EF/Δ=10 shows 

the typical conductance enhancement due to r-AR when eVbias is below the gap.  A contrasting 

feature is seen for the s-AR curves at EF/Δ = 0.2, 0.4.., 1.4. In the s-AR regime (i.e., EF ~ Δ), when 

eVbias is close to EF, there is a dip in (1/GN) dI/dV which reaches zero at eVbias=EF.  This is because 

when E=eVbias =EF, the reflected quasiparticle has to be at the DP (compare with illustration in 

figure 2.5 in Chapter 2). This is not possible and therefore the AR probability vanishes. Figure 

3.5(b) shows the 2D plot of (1/GN) dI/dV as a function of (Vbias, EF/Δ). 

In experiments studying s-AR, the feature to look for is the sudden appearance of a sub gap 

peak (dip) in the differential resistance (conductance) that is distinguishable from the MAR 

features when EF~Δ.  

With the high quality sample and low potential fluctuations at Dirac point of the order of 

the gap, it is reasonable to expect signatures for specular Andreev processes to also appear in the 

SGS sample presented here. In order to explore this, 
dI

dV
 vs Vbias was measured by a very fine 

scan in gate voltage close to the Dirac point. The 2D version of the experimental data is shown in 

figure 3.6. Each curve that make up this plot is measured at gate voltage increments of 0.005V (Δn 

=9.2 x 10-7 cm-2). For the sample area of 2.5µm2, the number of electrons in graphene changes 

from 100 to 40 and each gate measurement adds 2 electrons. In the low bias regime, when 

EF<2.7meV, (in the range of 0≤Vg-VCNP≤0.02V) an anomalous peak emerges. This peak cannot 

be associated with those accompanying higher MAR processes. So there is a possibility that the 

peak might be related to the onset of s-ARs.  
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There are several factors that need to be considered in confirming this claim. For example, 

the gap 2Δ =0.67meV is smaller than the EF values for which the peak is observed. The peak is 

weak for Vg> 0.02V and there is no clear sign of it moving out towards higher bias, like in the 

theoretical plot 3.5(b). But the theoretical calculations are for SG devices and the devices measured 

here are SGS samples. So finite interference from MAR processes cannot be excluded. The thermal 

smearing of EF/Δ for T=1.5K will also play a role in this energy regime. Also the plots in figure 

3.5, based on [13], assume a step like pair potential at the SG interface. This is not the case in real 

devices. More theoretical calculations for SGS junctions, accounting for a smoother change in pair 

potential across the interface and MARs is required to make a clear comparison of the observations.  

 

 

Figure 3.5: Differential conductance curves for specular Andreev reflection at a 

superconductor-graphene junction –Plots based on theoretical calculations in [13] for T=0K: 

a. Contrast between differential conductance for specular and retro Andreev reflections: Green 

curve (EF/Δ=10) represents retro. For EF/Δ≤1, the curve flips due to specular Andreev reflection. 

b. Differential conductance vs. Vbias and EF. 
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Figure 3.6: Differential resistance vs. Vbias for EF≤5 meV at T=1.5K. Below the white dotted 

line additional peaks appear at low bias (indicated by red arrows). This does not follow the 

harmonics of MAR dip-peak structures (indicated by black arrows). 
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Chapter 4 

Magneto transport in type II superconductor –

graphene Josephson weak links 

 
4.1. Introduction and motivation  
 

Long before the discovery of graphene, it has been predicted that a proximity induced 

2DEG system under a magnetic field can show unconventional QH plateaus due to the presence 

of Andreev bound states at the Superconductor-Normal (SN) interface[22]. These predictions 

hitherto remain unconfirmed. The ability to fabricate ballistic Superconductor-Graphene (SG) 

devices as seen in the last chapter and several other advances in fabrication of ballistic graphene 

devices[50] adds a new dimension to this research with interesting possibilities that may arise 

when merging ultra-relativistic physics with superconductivity. Induced superconductivity in the 

chiral edge states in graphene can also be used to detect valley polarization[17]. Also, more 

recently, it has been predicted that s –wave proximity induced superconducting low dimensional 

materials with large spin orbit coupling (SOC) and Zeeman split energy spectrum can host 

Majorana bound states [77]. Although graphene has a weak SOC, recent advances in fabrication 

has increased hope in engineering devices that can support spin polarized edge states. These edge 

states when coupled with a superconductor can form topological superconductors for observing 

Majorana modes and even other exotic non-abelian states in the fractional QH regime[16].  

Several experiments have been reported in the last decade that studied induced 

superconductivity in the QH regime, but still a ‘clear’ evidence for the existence of Andreev edge 

states and enhanced QH conductance plateaus is lacking [23, 78-80]. In these experimental work 

type II superconductors are used as they have higher upper critical fields. Although the reasons are 

not clear at this stage, one of the common features in type II Superconductor hybrid devices with 

thin buffer normal metal layers between the S and N (like Ti, Pd in the previous chapter) is the 
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presence of a reduced superconducting gap. This can be due to the reverse proximity effect near 

the superconductor or minigap in N due to the presence of Andreev bound states. In AR, since the 

incident/reflected quasiparticles follow the same trajectory on the normal side of the interface and 

do not enclose a flux, they are immune to any phase breaking effect by magnetic fields.  But an 

interesting situation was proposed to occur [81, 82] due to screening currents that form in the 

superconductor in a magnetic field. Screening currents are composed of a moving Cooper pair 

condensate. At the SN interface, in order to accommodate this Cooper pair momentum on the S-

side, the incident and Andreev-reflected quasiparticles acquire a momentum shift. When the 

applied magnetic field is sufficient that the associated energy shift is comparable to the 

superconducting gap at the SN interface, AR probability becomes significantly suppressed, thereby 

weakening the proximity enhanced conductance. This so called “Doppler shift” effect is significant 

when the effective superconducting gap near the SN interface is small. Experimentally, the effect 

of screening currents on proximity-induced superconductivity has been studied in Niobium/2DEG 

junctions [83]. Here, at fields of ~ 200mT, the AR probability is completely suppressed. The 

suppression was accounted for by considering the effect of diamagnetic Meissner currents in the 

superconducting leads.  

But in thin film superconductors vortex currents are more dominant than Meissner 

current[84] . The arrangement of vortices is highly dependent on how the field is introduced and 

ramped through the superconductor. But so far no experimental work has studied the impact of 

vortices and their distribution on the proximity effect.  In this chapter, magneto transport in NbN 

superconductor - non suspended graphene weak links is presented, where the role of the vortices 

on the suppression of the proximity effect is revealed. This is achieved by employing a variety of 

magnetic field ramping techniques and studying their effect on the SGS IV characteristics. Using 

these techniques the suppressed proximity effect is retrieved at magnetic fields, where QH edge 

states are expected to emerge in ballistic graphene (500mT-1T). At the end of the chapter, a 

possible qualitative explanation of these observations is presented within the Doppler-shift 

framework.  
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4.2. Device fabrication and characteristics 
 

This chapter deals mainly with non-suspended graphene Josephson weak links. The details 

of the device fabrication is presented in detail in Chapter 2. For the sake of continuity, some of the 

important aspects of the fabrication procedure is presented here in short. 

Graphene-superconductor weak links (SGS) are fabricated on SiO2/Si substrates, through 

standard mechanical exfoliation and e-beam lithography. For a highly transparent S-G interface, a 

buffer layer of Ti (2nm)/Pd (1.5nm) is thermally (e-beam) evaporated onto the contact area in a 

UHV environment (base pressure ~2 x10-8 Torr). Immediately after the evaporation and without 

breaking vacuum, superconductor NbN is deposited onto the samples via DC magnetron 

sputtering. This reactive DC Magnetron sputtering is carried out in N2/Ar environment. The buffer 

layers are essential to protect graphene from damage during sputtering and reduce the contact 

resistance of the interface. The sputter conditions and the lead geometry are chosen to minimize 

the stress on graphene. The current and voltage pair leads are split close to the contact point on the 

graphene channel to minimize the contribution of contact resistance especially above TC.  Typical 

graphene channels are of L~0.5μm in length and W~1.5-10 μm in width as shown in figure 4.1(a) 

and 4.2 - left inset.  All devices are measured in a He-3 refrigerator, equipped with room 

temperature EMI ferrite beads and π-filters, and cryogenic 2-stage RC filters. The mobility of the 

graphene channel is estimated to be 5000-6000cm2/Vs from gating of the two-terminal resistance 

(Figure 4.1(c) just below the transition temperature of the NbN leads (Tc ~ 11K) and the mean free 

path is calculated to be ~ 50-60nm. The zero-bias resistance below Tc, drops rapidly with 

decreasing temperature and reaches zero at T~1-2K, and the IV curves at T=0.4K in Figure 4.1(b) 

clearly show the existence of critical current IC~75nA . In some of the wider samples which show 

large IC ~1uA (Figure 4.2 right inset) at sub-kelvin temperatures a very sharp, equally spaced 

oscillations in the differential resistance (dV/dI) vs bias voltage (Vbias) is observed. This might be 

due to self–induced Shapiro steps (Figure 4.2) and has been also observed in other 

experiments[85]. All these features demonstrate a transparent S-G interface. 
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Figure 4. 1: Properties of non-suspended NbN-graphene Josephson weak link a. SEM image 

of the device. The graphene channel is highlighted. Scale bar is 1 μm. b. Resistance (R) vs. 

temperature of the SGS junction showing Tc=11K. c. Gating curves R vs Vg at 5K and 110K.  d.  

Current Voltage (IV) charactersitcs of the junction at 0.4K. The switching to critical current IC is 

~ 75nA. T~0.4K. 
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Figure 4. 2: Differential resistance (dV/dI) vs bias voltage (Vbias) of a 10 μm wide graphene- 

NbN Josephson junction. (left inset) SEM image of the device. Scale bar is 2μm. (right inset) 

Current-Voltage (IV) characteristics showing Ic~ 1uA. T~0.4K. 

 

At T=0.4K, a clear evidence of multiple ARs (MARs) in dV/dI vs. Vbias curves is seen, as 

shown in figure 4.3. Here a conductance enhancement is observed when bias voltage is less than 

~1.5mV. At lower bias voltages sub-harmonic gap structures are observed, where the valleys of 

the oscillations agree well with the expected MARs at 𝑉𝑏𝑖𝑎𝑠 =
2𝛥

𝑛𝑒
, with Δ=0.15meV (figure 4.3 

bottom right). As in the last chapter, the gap Δ at the metal-graphene interface is sample dependent 

but is always much less than the bulk gap of NbN (from BCS theory Δ(0)=1.764*kBTc~1.8 meV 

for 11K).  
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Figure 4.3: Multiple Andreev reflections in NbN-graphene Josephson weak links. (left) 

Differential resistance (dV/dI) vs bias voltage (Vbias) at T=1.5K (top right) Plot zoomed in to show 

MAR related resistance dips at Vbias=2Δ/ne (bottom right) Vbias -MAR dips vs 1/N where N-integer 

with a linear fit to extract the gap 2Δ=0.294meV. 

  

4.3. Magnetic field measurements 
 

For the magnetic field measurements first, the typical zero-field-cool (ZFC) procedure is 

used where the sample is cooled below Tc and then the magnetic field B is monotonically ramped 

up to the desired values. The data presented here is taken at a gate voltage of 10V from the Dirac 

point. For each B, the bias dependence of the differential resistance is measured. The ZFC- ramp 

up dV/dI normalized by the normal resistance (RN) of the junction slightly below Tc. (1/RN) (dV/dI) 

vs Vbias is shown in figure 4.4. The measurements are performed at a stable temperature of T=1.5K. 

For B=0, RN drops by 25% at Vbias=2Δ. Since both supercurrent and the oscillatory MARs features 

become completely suppressed under a very small magnetic field of ~1mT, the SGS junction can 
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be treated as two separate SG junctions with single AR at the interface. Further increasing the 

magnetic field, the AR enhancement of conductivity is rapidly suppressed and eventually vanishes 

around B=200mT. Above 200mT the dV/dI remains flat at RN. 
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Figure 4.4: Zero field cool differential resistance measurements. Measurements are taken by 

monotonically increasing field from 0 to 1T at T=1.5K. Vg=20V, 10V from the charge neutrality 

point. 

  

      The effect of B on single ARs at the S-G interface can be better evaluated by calculating 

the excess current Iexc. The normalized excess current (IexcRN) vs B is  shown in figure 4.5(a) and 

it is clear that the excess current drops quickly and eventually reaches and remains zero above B= 

200mT.  A similar rapid suppression of the AR conductance enhancement at low magnetic fields 

is also seen in the Nb-graphene devices figure 4.5(b) at the same temperature and gate voltage 

except that the suppression is not complete and there remains a small non-zero excess current at 
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the higher end of the applied field range.  The suppression, however, irrespective of the 

superconductor does not change with carrier density or with temperature below TC. Also in the 

field range measured the NbN and Nb do not lose their superconductivity (verified to ~ 5T and 

Hc2 of the Nb films ~ 3.5T). Only the proximity effect is suppressed.   
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Figure 4.5: IexcRN vs. applied magnetic field (B) for zero field cool- ramp up measurements: 

for (a) graphene - Nb (b) graphene-NbN junctions at 1.5K. 

 

To explore the possible impact of magnetic flux (vortex) distribution on AR, the 

differential resistance measurements are taken under two other conditions. One is the field-cool 

(FC) process, where each time the magnetic field is applied  above Tc and then device is cooled 

down to T=1.5K; while in the “zero field cool down-ramping” (ZFC ramp down) process, the 

magnetic field is ramped up from zero below Tc first to a high value (>1T) then decreased down 

to the desired values. The schematic of the three field ramp processes is shown in figure 4.6. 
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Figure 4.6: Schematics of the three magnetic field ramping procedures - 1. Zero Field Cool 

(ZFC) ramp up 2. ZFC- ramp Down 3. Field Cool (FC).  

 

The 1/RN (dV/dI) vs Vbias at 200 mT for all three methods is shown in figure 4.7.  The 

conductance enhancement is retrieved when using the FC method whereas an even larger 

enhancement is observed by the ZFC ramp-down method. The differential resistance is also 

measured for various other values of B, in the range 0 to 1T. IexcRN is a good estimate of the strength 

of the single AR probability. Therefore the IexcRN values is obtained from the differential resistance 

curves and is shown as a function of the applied field B in figure 4.8. It is now clear that, in general, 

the excess current is higher for the FC technique compared to the ZFC ramp up technique. For the 

ZFC-ramp down technique the excess current is the highest compared to the other two methods 

for fields above ~40mT. However, below 40 mT, the excess current dips slightly. This means that 

while the S-G interface is below Tc, cycling the field through it from zero to 1T and then back to 

zero does not retrieve the supercurrent. It is also important to note that the excess current obtained 

by the field cool technique overlaps with the ZFC ramp up data in the low field range (0-10 mT).   
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Figure 4.7: Comparison of the differential resistance curves at B=200mT for the three 

magnetic field ramping procedures.  ZFC (blue), ZFC-Ramp down (red) and FC (green) and 

T=1.5K.  
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Figure 4.8: Comparison of excess current vs applied field B for the three field ramp 

procedures. ZFC (blue), ZFC-Ramp down (red) and FC (green) at T=1.5K.  
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4.4. Discussion and future work 
 

The ZFC measurement on the suppression of AR probability in presence of a small 

magnetic field in our devices is qualitatively consistent with the previous theoretical and 

experimental works on superconductor/2DEG systems [83]. In these devices the “Doppler” shift 

of the quasiparticle spectrum was explained considering the Meissner current. At the SN interface 

on the S side, the Meissner current can be considered as a moving Cooper pair condensate with a 

momentum (2ps). Here Aeps


  where A


is the vector potential. The presence of this current shifts 

the momentum of the incoming and reflected Andreev electron (p) and hole (-p) on the N-side to 

p+ps and –p+ps respectively (in the direction of the current). If the resulting energy shift 

Fsvp~ in the quasiparticle excitation spectrum is greater than the reduced gap (Δ)8 the Fermi 

energy of the quasiparticles shifts outside the proximity reduced gap. This suppresses the AR 

probability [81, 82].  

In type II superconductors vortices enter the superconductor above the lower critical field 

(Hc1) << upper critical field (Hc2). In narrow superconducting strips the Hc1 is further reduced. The 

vortices form once the magnetic field is above
2

0~
c

m
L

B


, where eh 2/0   is the superconducting 

flux quantum and Lc is the width of the superconducting thin film[84]. For the dimensions of our 

devices, this gives mTBm 5.0~  which is at the low end of the magnetic field applied in our 

experiments. So the effect of vortices should be considered in explaining the observations. Vortices 

nucleate at the surface of the superconductor and penetrate into the interior of the thin film. Each 

vortex carries a flux quantum  0  in its core of size ξ -the superconducting coherence length. 

Inside the core, the superconducting electron density vanishes. The field is maximum at the core 

and decays over a certain length scale9 determined by the penetration depth λ. Screening currents 

encircle the core in the region where the field decays.  In strong pinning superconductors when a 

magnetic field is applied, the motion and distribution of vortices on the superconductor is 

                                                           
8 Note that Δ is smaller than the bulk superconducting gap of NbN, which, from the Tc should be around 1.8meV. 
So the Doppler shift mechanism is observable in SN interfaces where the gap is reduced at the SN interface.  
9 Length scale over which the field decays differs based on the vortex type.  Pearl vortices that form in thin films 
decay as 1/r within the Pearl length (=2λ2/d, where d- thickness of the film) and 1/r2 outside Pearl length. The scale 
of Abrikosov vortices that form in bulk films is log (λ/r). 
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determined by how the field is applied and hence is different for ZFC vs. FC. It also depends on 

ZFC ramp directions performed below Tc.  The hysteric-like behavior of the excess current with 

ZFC - ramp up and down procedures and the inability to completely retrieve the supercurrent 

through the device after a complete ZFC cycle all indicate that the distribution of vortices has a 

direct impact on the proximity effect. The resultant vortex screening current emerging from the 

distribution should correlate to the observations of the suppression of the proximity effect in the 

same manner as the Doppler shift mechanism with Meissner current.  

Based on results from magneto-optic imaging of vortices reported in work [86, 87], the 

following explanation for the observations is proposed. For the ZFC, above Bm = 0.5mT, the 

vortices penetrate the NbN superconductor from the edges (boundaries). Due to vortex pinning, 

edge defects and vortex-vortex interaction, they pile more on the edges. As the field is increased 

more vortices enter from the edge and slowly nudge the other vortices to the center of the 

superconductor. Eventually, above a certain field a non-uniform distribution of vortices builds up 

in the entire leads. This completely suppresses the proximity effect. On the other hand in the case 

of FC, above TC, the magnetic field penetrates through the superconductor uniformly and when 

cooled below TC the vortices are “frozen” (pinned) in place and the distribution remains uniform. 

In the case of ZFC-down ramp, while ramping down, flux free regions can form due to penetration 

of anti-vortices (vortices of opposite polarity) that annihilate the vortices. These flux free regions 

can explain the increase in excess current. But the annihilation is not complete due to strong 

pinning and non-uniform vortex density. So when the field is ramped back to zero, some vortices 

remain trapped and the proximity enhanced conductance is not fully recovered. This can explain 

the dip in the excess current below ~40mT for ZFC ramp down in figure 4.8.  

The actual distribution of vortices (or the associated screening current distribution) is 

difficult to calculate as it depends on the pinning properties, grain boundaries, defects, film 

roughness and the geometry of the leads. But the observations follow the general predictions of 

the Bean’s critical state model[88] ,which explains the distribution of Abrikosov vortices in bulk 

type - II superconductors with width >> λ. Theoretical calculations are required to see how the 
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model exactly applies for the arrangement of Pearl vortices in thin films of width~ λ 10 (The 

superconducting leads on the sample are of width ~2μm and a rough estimate of  λ for 

NbN~0.5μm).  

The Oxford superconducting magnet also uses the type II superconductor – Nb3Sn and it 

can have trapped flux when a current is ramped back and forth through it. So it is important to 

know whether any hysteresis from ramping the magnet back and forth affects the measurements. 

But from tests performed using FC measurements of differential resistance, the IexcRN vs B curves 

for ramp up and ramp down (figure 4.6) overlap. This eliminates the role of the magnet11 and 

confirms that it is indeed the vortices in the NbN contacts that are responsible for the observed 

suppression of the proximity effect. Typically trapped flux in magnet systems after a complete 

ramp cycle, if present, is found to be low, with a shift in the field around 20-50 gauss. 
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Figure 4.9: IexcRN vs B - for FC ramp up and down to test any impact from trapped flux in 

the superconducting magnet system. 

                                                           
10 A possible way to study the effect of vortices and test it directly with the Bean’s critical model is to make wider, 
thicker leads. But the technical challenge is the total stress of the wide film on the graphene will be larger and 
therefore can affect the interface properties. 
11 The reason for the spike around 65mT, which is seen in all curves, is unknown. But generally the excess current 
for FC Ramp up and down overlap especially for the field range 0-60mT, unlike the ZFC Ramp-down curve.   
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In addition to vortices as the source of the supercurrent, the impact of the current’s spatial 

distribution for the overlap-type SN junctions should be considered. The presence of a distributed 

contact resistance and graphene’s sheet resistance can result in non-uniform current distribution 

across the SN junction. Such non-uniform current will inevitably couple to the distribution of 

supercurrent in determining the total conductance of each SN junction.  

Another important question that has to be answered is how the suppression of proximity 

effect varies when using other type II superconductors. Preliminary results show that the 

suppression indeed takes place in Nb based devices as shown in figure 4.5 (b). But a small finite 

excess current remains even at fields ~1T. This indicates that the properties of the superconductor 

– pinning forces, penetration depth and the coherent length influence the arrangement of the 

vortices and hence its effect on the proximity effect.  

Due to the suppression of proximity effect, evidence for Andreev edge states in the QH 

regime is also suppressed. This can be seen in figure 3.2 (c) where at 200mT and 300mT, even 

though the leads are superconducting, the QH plateaus are no different from a normal graphene 

device without proximity effect. Figure 4.10 illustrates this point further. The data is for suspended 

graphene-Nb superconducting junction. The differential resistance measured at ν=2 (the valley or 

compressible state between ν=2 and ν=6 plateaus) and ν=6 plateau corresponding to 

incompressible state almost overlap for T=1.5K and T=5.8K (~ Tc of Nb at 0.75T).  There is only 

a small increase in the resistance within 2Δ in both cases which is different from the theoretical 

expectations. Even though our Nb- graphene retain some proximity effect in high fields (see figure 

4.5 (c)), the absence of Andreev edge states is no different from the observations of many other 

experiments reported recently [23, 24]. At this stage the reasons for this is not clear. But it is likely 

that a very strong proximity effect is required to generate an Andreev edge state.  In the QH 

incompressible regime, the bulk is insulating and only edge states exist. The electrons/holes in 

these edge states undergo AR on the S-G interface and the reflected charge carriers are bound to 

the edge. So they have chance to undergo AR again and again.  The interference of these AR 

processes determines the effective current that runs parallel to the S-G interface. In a perfect 

interface, the presence of AR bound edge current is expected to enhance the QH conductance by 

a factor of two[22]. But if the interface is not completely transparent (low AR probability), multiple 
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entry into the SN interface can create normally reflected particles along with AR particles. The 

normally reflected particles are still confined to the skipping orbit or edge states. So these normally 

reflected electrons/holes can undergo AR reflection, but now with a compounded probability 

which is even lower. This will greatly reduce the electron-hole composition of the AR bound pairs 

along the S-G interface leading to a suppressed or nullified effect. Other than improving the 

transparency and the gap, whether modifying the sample geometry can mitigate this suppression 

(superconductor point contacts with van der Pauw method measurements) is an open question. 

Understanding the suppression of Andreev reflection and the role of vortices is an 

important step towards studying or using proximity related phenomena in magnetic fields 

especially when the superconducting gap at the interface is reduced. If the effect of vortices has to 

be minimized, interface engineering using appropriate buffer layers to maintain the bulk 

superconducting gap at the S-N (or S-G) interface is required. Some recent work have shown some 

progress in this aspect [24, 89]. 

 

Figure 4. 10: Differential resistance in the quantum hall regime of the suspended graphene 

Nb superconducting junction.  

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

4

6

8

10

12

14

16

18

20

22

24  compressible,1.5K

 compressible,5.8K

  incompressible,1.5K

 incompressible,5.8K

R
e
s
is

ta
n
c
e
(k


)

Vbias(mV)

B=0.75T



 

70 
 

 

 

Chapter 5 

Fabrication of graphene heterostructures for Klein 

tunneling experiments 
 

5.1. Klein tunneling of relativistic particles 
 

Scattering and tunneling of Schrodinger particles on a potential barrier is one of the popular 

concepts in the early days of quantum mechanics. So within a year after Paul Dirac worked out the 

equations for relativistic particles, the scattering problem was worked out for relativistic fermions 

by Oskar Klein[26]. The result was surprising and considered paradoxical. The ‘Klein’ paradox 

(as it was known) is as follows. For a 1-D step potential given by  

0

00

)(















x

x

V

xV       (5.1) 

the transmission across the barrier for the non-relativistic case when particles of energy E <V in 

the x direction is T~ exp (-αx) for α>0. Here α is the kinematic factor and is a function of barrier 

height and energy of the incident particle. But for the relativistic case, the transmission is










 2)1(

4
~




T  for V>>E, where κ >1. Here κ is similar to α but calculated for the Dirac equation.  

The paradox is that the transmission does not decay but propagates through the barrier and is finite 

even for an infinitely tall and wide repulsive potential!  
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Figure 5.1: Tunneling of Dirac particles of mass m across a. Klein (sharp) b. Sauter (smooth) 

potential step. The red dotted show the overlap region of the particle and antiparticle continuum, 

when mc2<E<V-mc2.  

 

This paradox, however, was later understood as due to spontaneous formation of particle 

antiparticle pair from the vacuum at the barrier [90, 91]. As long as the barrier height V~mc2 or 

higher, the particle effectively propagates as an antiparticle inside the barrier as depicted in figure 

5.1 (a). In condensed matter physics this is simply understood as electrons propagating into the 

inverted hole energy states within the barrier (inter-band propagation).  It was also conjectured by 

Bohr that the Klein result is only valid when the potential is sharp on the scale of the Compton 

wavelength
mc

C


 . Sauter later confirmed this by solving the same problem for a smooth 

potential step (Figure 5.1 (b)) and obtained the anticipated exponential decay for transmission[92]. 

So for a potential  
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the transmission 
2

22

~ CS

hc

eT




 . The decaying transmission ensues since the fermions have to 

traverse the classically forbidden evanescent regime i.e., when the momentum 

  22))(( mExVxp  is imaginary. 
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Klein tunneling of relativistic particles across sharp barrier are expected to be observed 

near the event horizon in black holes as Hawking radiation[93] and  positron generation from a 

super critical nucleus and [94].  These extreme physical conditions are required since the barrier 

should be at least equal to mc2 within a scale of the Compton wavelength of an electron which is 

~ 10-12 m. Graphene, however, with its Dirac-like spectrum and m=0 provides an ideal system for 

a table top demonstration for Klein tunneling.  

 

5.2. Klein tunneling in graphene 
 

As seen in chapter 1 the charge particles in graphene are chiral. If there are no mechanisms 

that flip the pseudospin (i.e., no scattering processes that couple the two sub lattices) then the 

particles cannot backscatter as chirality is conserved. Therefore in a bipolar junctions (pn or np) 

the charge particles cross the junction by preserving the pseudospin direction and by a conversion 

of electrons to holes (figure 5.2(a)). This results in perfect transmission at normal incidence. Being 

massless there is also no minimal value for the potential as in the case of relativistic particles with 

finite rest mass in QED.  

For a pn junction which is sharp on the Fermi length scale (kFD <1) but smooth on the 

lattice scale (a~2.46A) there is no inter-valley scattering and the value of transmission can be 

reduced to a simple form by considering the overlap probability of the electron wave function 

 K  outside the barrier and hole wave function   

K  propagating inside the barrier (see 

equation 1.8): 

     2cos 

KKT      (5.3) 

Here θ = arctan (ky/kx) and x is the direction perpendicular to the barrier and y - parallel to the 

barrier.  So for a range of values of θ, the transmission is finite irrespective of the barrier height 

and complies as expected with the Klein calculation. For normal incidence there is perfect 

transmission. The transmission for sharp barriers was also calculated for bipolar 

heterostructures(npn, pnp) by Katsnelson et al [25].  The transmission for a rectangular barrier of 

height V between 0<x<w that extends infinitely along the y axis is shown in figure 5.3(a). Here 
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perfect transmission is observed, not just for normal incidence, but also at larger angles. This is 

due to the resonances inside the barrier set by the condition:  qxw =πN where N=0, ±1, ±2. Here 

qx is the momentum in the x direction inside the barrier.  

 

 

Figure 5.2: Klein tunneling in graphene across a pn junction for a. Sharp barrier b. Smooth 

barrier. The directions of pseudospin σ and momentum vector k are depicted inside and outside 

the barrier. c. Transmission (T) as a function of incident angle θ. 2Θ0 is the angular range for 

propagating transmission smooth barrier. See main text for details. 

 

To observe Klein tunneling, it is necessary to have sharp pn junctions such that kFD <1. In 

experiments potential barriers local gates are used to create a local electric field profile on the 

graphene strip. Based on the best case for the minimum carrier density~ 109 cm-2, typically 

obtained with ballistic suspended graphene,  D~1/kF = 150 nm. This is practically challenging 

when including the extent of the stray fields. Therefore the more realistic pn junctions in 
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experiments is the smooth Sauter-like potential shown in figure 5.2 (b). Cheianov and Falko in 

[95] worked out the transmission for a smooth potential, similar to the one in equation 5.2 but in 

2D with kFD>1, The electrons in graphene that are incident at the center of the barrier with 

22

yxF ppvE   ,will have a momentum 222 /)()( yFx pvxVxp  that becomes imaginary when 

FyvpV  . So within a distance Svp Fy /  from the junction the transmission is via evanescent 

modes. Only close to normal incidence, py=0, the transport is propagating. The transmission turns 

out to be, 

 2sin)(
~

DkFeT


         (5.4) 

which is similar to the form Sauter obtained.  Figure 5.2 (c) illustrates the transmission as a 

function of incident angle for a sharp and a smooth barrier. The sharp barrier has higher 

transmission for a wider spread of incident angles around zero (see equation 5.3), but for the 

smooth potential the spread is reduced by D and kF.  The bipolar heterojunction for the smooth 

potential, shown in figure 5.3 (b), is just an extension of the result for the smooth step potential. 

The problem can be considered as two pn junctions in series (since pn junctions in graphene are 

not rectifiers like semiconductor diodes).  Note that the perfect transmissions at high angle 

resonances seen in sharp bipolar heterostructures in the barrier are no longer present in 

heterostructures with smooth junctions.  

So far the discussion was based on coherent charge carriers with well-defined incident 

angles. But in real devices the incoherent nature of the charge carriers due to the diffusive doping 

near the contact leads[96], a single angle of incidence cannot be considered. The incident electrons 

have a random distribution of angles and hence the effective transmission is the sum of all 

contributions. But from equation (5.4) the pn junction filters out only electrons at angles 

2/1

0 )/(1 DkF   about the normal.  For a pnp (npn) junction electrons incident at 

2/1

0 )2/(1~ DkF  or lower are collimated through. The smoother the junction more the 

collimation. The relation between the transmission through a pn junction and its conductance 

follows from the Landauer formula:    
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Here W- width of the sample. Due to the collimated transmission the resistance of a pn junction 

(Rpn) is higher than a unipolar junction (Rpp or Rnn).  

 

 

Figure 5.3: Transmission as a function of incident angle θ for a bipolar graphene 

heterojunction a. Sharp rectangular barrier b. Smooth rectangular barrier. Figure for (a) was 

adapted from [25].   
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5.3. Experimental Studies of Klein tunneling in graphene 

heterostructures – a short overview of previous work 
 

To study Klein tunneling, previous work have focused on fabricating graphene 

heterostructures with ballistic pn junctions i.e., mean free path lm> D. The heterostructures were 

created by using local gate across a graphene device separated by a high dielectric medium. The 

part of the graphene underneath the gate can be tuned to a different carrier density (p’ or n’) with 

respect to the carrier density of the regions on either side of the gate (n or p respectively) creating 

the required bipolar heterostructures- pn’p or np’n. In-order to meet the ballistic requirement, thin 

layers with high dielectric constants (to reduce D) and/or dielectric materials that do not affect the 

quality of the graphene (for longer lm) were chosen. The common dielectrics used were PMMA, 

atomic layer deposited Al2O3, HSQ, HfO2 and thermal evaporated SiO2 [97-101]. Contactless (air) 

top gates were also used to prevent graphene from any contamination or damage from the dielectric 

[102, 103]. But although in most of these devices the pn junctions were ballistic, the graphene 

channels were not, as they were fabricated on SiO2 substrates. Even within the barrier the transport 

was not phase coherent (lm <w). So a comparison of resistance of the unipolar (Rpp’p) and bipolar 

(Rpn’p) cannot provide sufficient evidence for Klein tunneling. Hence evidence for Klein tunneling 

required extracting the resistance of the pn junctions from the resistance of the entire device. This 

was done by estimating Rpp’p - Rpn’p with '' np   along with the fact of electron hole symmetric 

resistance in graphene, R( 'p )=R( 'n ) (see  [98] for details).  Other evidence using diffusive 

junctions were also indirect and required position dependent resistance modeling to extract 

resistances of a unipolar and bipolar junction[97].  

A more direct evidence for Klein tunneling was provided by Young et al., in [104]. They 

achieved this by fabrication of heterostructures with narrow local gate and thin and high gate 

dielectric (є~12) and demonstrated phase coherent electrons within the barrier. The transmission 

/reflection is exponentially suppressed at oblique angles due to the smooth potential created by the 

local gate. But within the barrier electrons at oblique incidence are reflected back and forth on the 

walls of the barrier. This creates Fabry Perot like interferences and results in oscillations in the 
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conductance of the junction. Theoretically, Shytov et al. [105] showed that, applying small 

magnetic fields, the angle of incidence can be bent to facilitate normal  reflection-less Klein 

tunneling through the barrier. This will be witnessed as a shift in the phase of the interference 

pattern within the barrier. Following this idea and carefully analyzing the corresponding shifts of 

the conductance oscillations in weak fields, Young et al., provided a direct evidence for Klein 

tunneling. It is important to note that this method only required the charge carriers within the 

barrier to be coherent.   

But a more robust evidence for Klein tunneling and other phase coherent phenomena in 

graphene heterostructures require entirely ballistic channels. In such ballistic structures a 

comparison of the conductance of the device in the unipolar and bipolar regime can provide a 

straightforward evidence for Klein tunneling. Moreover in these devices, graphene within the 

barrier as well as the graphene channels between the contacts and local gate will serve as cavities 

for Fabry Perot oscillations. This can provide more possibilities to test the Klein and Sauter effect. 

Extending previous work[99] to explore (fractional) QH physics especially near the CNP in 

combination with the pn junction will also require entirely ballistic heterostructures. And 

eventually for applications retaining quantum coherence phenomena at high temperatures, high 

mobility long mean free path devices will be important. Suspending graphene is a good means to 

achieve low carrier densities. But a local gate on suspended graphene will have to be either 

contactless - over the graphene or substrate supported and defined underneath graphene. In the 

coming sections, I will discuss the work on the fabrication of contactless local gated suspended 

graphene devices. Graphene on hexagonal boron nitride (h-BN) devices provide an alternative to 

suspended graphene heterostructures and they are indeed much more stable and are not limited by 

size. In section 5.4.2 I will describe the fabrication of graphene/h-BN devices that use local gated 

architectures to spatially manipulate electrons using the Klein collimation effect.  
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5.4. Fabrication of ballistic graphene heterostructures  
 

5.4.1. Fabrication of suspended graphene bipolar junctions with contactless gates 
 

In chapter 2 the process for making ballistic samples by suspending graphene was 

discussed. For that purpose a two resist method was used since the superconductor materials were 

reactive buffered HF and KOH - commonly used etchants for removing SiO2 to suspend graphene. 

Here a combination of the two methods is used – the two resist method for creating the contactless 

air top gate and the wet etching using buffered HF acid to suspend graphene. The procedure is as 

follows: 

A. The sample design and EBL 

HOPG graphene is deposited by the dry nitrogen blow press method on clean commercial 

Si wafer with a 285 nm thick SiO2 coating. Then the substrate is spin coated with PMMA A3 at 

4000 rpm (120 nm). After that ~ 2-3nm of SiO2 is e-beam deposited and then the MMA EL 11 at 

4000 rpm (500nm). Baking temperatures and times are the same as explained Chapter 2. For EBL 

the design used is shown in figure 5.4 (a). For defining the four terminal contacts (two for current:  

I+, I- and two for voltage: V+ and V-),   the e-beam dose is chosen so that it exposes both resists. 

To fabricate the bridge like contactless local gate, the dose is carefully selected so that only the 

MMA layer is exposed on the 100-150 nm narrow region over graphene. Then the dose is gradually 

increased on either side of graphene, within a distance of 70 nm, till the dose required to expose 

both the resists is reached. The SiO2 layer is a sacrificial layer and is used to prevent any over-

developing of the PMMA resist. In chapter 2, for the suspended SGS junctions, the graphene is 

sandwiched between the two resists. Therefore the SiO2 layer is not required as graphene screens 

any overexposure by the electron beam.  But when using just the two resists, EBL writing of fine 

features such as the local gate is difficult and a slight overdose or overdeveloping can result in a 

rough and crooked gate structure as seen in Figure 5.4 (d). Having the SiO2 layer provides a leeway 

in choosing the dose. Also, the dose for the contacts is reduced slightly from the value used for 

larger leads that extend away from the top gate, to minimize overdose due to dose-proximity effect.  
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Figure 5.4: Fabrication of suspended graphene with contactless air top gate (TG). a. Design 

of the pseudo four terminal device b. Device after developing. The pink region reveals the SiO2 

/Si substrate. The thin line is in the center between the V+ and V- is MMA which will form the 

TG. c. SEM image of the device. Graphene channel is arched upwards due to electrostatic 

attraction. d. Under written TG, fabricated without using the sacrificial SiO2 layer between PMMA 

and MMA. Scale bar is 1μm. 

 

B. Developing procedure 

 The developing procedure starts with a 35 s rinse in MIBK: IPA (1:3) and then a brief 15s 

rinse in pure IPA to wash away the MIBK. At this stage only the MMA is developed and the SiO2 

protects the PMMA. Next to remove the SiO2, the sample is dipped in 7:1 (NH4OH: HF) buffered 

HF for 10s and then in deionized water to dilute away the HF. After this, to develop the exposed 

PMMA, the sample is introduced to a bath of cold deionized water: IPA (1:3) for 45-50s. These 

parameters are found to work for a top gate dose ~80µC/cm2 and a maximum contact lead dose of 

~230 µC/cm2.The sample after developing is shown in figure 5.4 (b). 
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C. Metal contacts 

Ti/Pd/Au metals are e-beam evaporated with thickness 1nm, 80 nm and 40 nm respectively 

to make the contacts. A thin layer ~ 1nm of Ti serves as the adhesive layer. The 1 nm thin Ti is 

non-uniform, allowing the next metal on top – Pd to come in contact with graphene in patches and 

palladium is known to make good contact with graphene at low temperatures[106]. Palladium 

cannot be used directly as it does not stick to SiO2.  

D. Lift off and procedure for suspending graphene  

The lifted off is carried out in warm acetone and then finally the sample is rinsed in IPA.  

For reducing the risk of collapse of the suspended gate, the same precautions as mentioned in 

chapter 2 are followed and the sample is taken out to air from warm IPA. To suspend graphene, 

the substrate needs to be coated with resist again. The resist is patterned with an etch window so 

that SiO2 underneath graphene will be etched away. Again, to avoid the collapse of the suspended 

gate, anisole diluted PMMA (PMMA A 0.5), which is a less viscous resist, is used. A drop of the 

resist is applied on the substrate without spinning and is baked at 1800C. Then a window is defined 

by EBL just on the region of the graphene strip at a dose 700 µC/cm2. The sample is then developed 

in MIBK/IPA and rinsed with IPA. Next the sample is immersed in buffered HF (7:1) for 300 s 

and then moved into acetone and IPA baths to remove the PMMA mask. As usual, suspended 

samples are never taken out of the solvents. So finally, the sample is taken out by using a critical 

point dryer (Tousimis Samdri-795). The warm IPA method is avoided as the graphene channels 

used are longer 1.5-2µm and the distance from the substrate to the suspended channel is small ~ 

100-120 nm, increasing the likelihood of collapse by surface tension.  

Challenges  

The fabrication scheme above helps to fabricate a sample with an air gate which is closest 

to suspended graphene (~ 120 nm, equal to the PMMA thickness). Also fabrication only requires 

a small number of steps. It does not require rotation or tilting of sample during metal deposition 

[102]. As demonstrated in chapter 3, the carrier density in suspended graphene can be as low as 

~109 cm-2.  So the devices in principle provide a good means to test Klein tunneling with sharp 

barriers.  But since the device comprises two suspended structures and current annealing is always 



 

81 
 

required to remove residues in graphene, the yield for samples that pass all the necessary 

requirements is low. Current annealing of single layer graphene is known to be more difficult than 

bilayer graphene.  In some cases, since the top gate is very close, the graphene film gets attracted 

it by electrostatic attraction creating a top gate leakage (Figure 5.4. (c)).  In 2010, Dean et al., 

demonstrated BN can be used as a substrate to achieve ballistic graphene devices[29]. So this work 

took a new direction – fabricating graphene/BN devices with air top gates.  

 

5.4.2. Graphene/BN based heterostructures with triangular air top gates for Klein 

collimation 
 

Suspended graphene, despite having a few advantages, is limited by its size and the small 

gate range for tuning the carrier density. For experiments in manipulating electrons on the large 

scale, like Klein collimation and Veselago lensing experiments[28], more complex device 

architectures and multi-level fabrication processes are required.  These are not practical with 

suspended graphene. Another way to eliminate the charge trapping effects from the substrate is to 

find a replacement for SiO2 substrate, one which is atomically flat with no dangling bonds. 

Hexagonal boron nitride (h-BN) is ideal for this purpose since the lattice structure is almost 

identical to graphene.  The hexagonal lattice comprises of B and N Bernal stacked sub lattices and 

the lattice mismatch with that of graphene is only 1.7%. Moreover the strong in-plane bonds create 

a relatively inert substrate, free of charge traps.  

Unlike SiO2 substrates the growth of high quality large scale h-BN substrates has not been 

realized yet. The h-BN are grown as crystals12 and they are thin flakes exfoliatable like graphene. 

Therefore the fabrication processes requires a ‘transfer process’ that brings in contact two 

separately exfoliated graphene and BN flakes. In this section I present the transfer process of 

graphene on BN.  The technique also applies for the transfer of BN on graphene, a variety of other 

2D material hetero-structures and for the bottom gated suspended graphene structures that is 

mentioned at the end of this chapter.  

                                                           
12 The h-BN used in this work was grown by Taniguchi and Watanabe from Advanced Materials 

Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan. 
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Procedure for fabricating graphene –BN devices 
 

In-order to create BN- graphene layered devices, in this thesis work, a dry transfer method 

was developed that was inspired and adapted from work in  [107] and [108] . The underlying 

technique uses a transparent stack of materials with a polymer release layer as a substrate for 

exfoliated graphene flakes. The transparent polymer stack with the graphene is then micro-

manipulated and aligned to a target BN piece sitting on a second substrate and made contact. 

Applying heat to the target substrate releases the polymer stack containing the source flakes onto 

the target flakes.  

The setup that is used for transfer at the time of writing this thesis is shown in figure 5.7. 

Several other “transfer machines” were built and tested before this, but they later gave way for this 

particular setup due its efficiency.  Some of the samples reported in this thesis have employed 

older machines which require slightly different fabrication procedures.  But to make the discussion 

concise only the new method is presented. Except for the machine design, the polymer stack used 

and the transfer procedure, the central idea behind all the methods is the same.   

A. Preparation of flakes and substrates 

Here I will use the following terminology– ‘TARGET’ and ‘SOURCE’ substrate or flake.  

Target substrate/flake is the substrate to which the source flake is transferred to. The source 

substrate is transparent with a polymer layer that contains the source flake which is to be pressed 

onto the target flake. The target and source flakes can be any 2D material. In the work discussed 

below the flakes are BN and graphene.  

 

TARGET substrate and flakes (SiO2/Si + h-BN): The target substrate used in this work is 

SiO2/Si. First it is treated in UV/Ozone for 10 minutes and baked on a hotplate at 4000 C. 

Soon after this, freshly exfoliated flakes of h-BN are deposited on the substrate by using the 

silicone free ‘blue tape’ (Ultron Systems R 1007). Suitable thin flakes (20-30 nm) are first 

selected under the microscope. Differential image contrast is used to eliminate buckled steps, 

cracks and any visible defects and bubbles on the flake. Later an AFM image of the flake is 

used to map any fine cracks or small bubbles of height (1-15nm) and  an area which is flat 
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with sub nanometer (200-500 pm) roughness is selected. An optical and AFM image (tapping 

mode) of a very flat piece of h-BN flake of thickness ~12 nm and roughness within 200 pm 

is shown in figure 5.5 (a) and (b).  Once the necessary flake is identified the substrates are 

stored in vacuum and only taken out right before transfer. (Note:  If a graphene/graphite is the 

source flake on which BN is transferred the same procedure is followed. But the blue tape 

deposition of large sized Natural graphite, NGS Naturgraphit, can produce loosely attached 

flakes on the substrate. This is not the case for small sized flakes obtained using HOPG. The 

loose flakes can be removed by sonicating the sample in an acetone bath and cleaning with 

IPA before performing the AFM measurements).  

 

SOURCE substrate (polymer coated PDMS/Glass slide+ graphene): The source substrate 

is a transparent stack made of glass slide, Polydimethylsiloxane or PDMS (Sylgard 184 base 

and elastomer) and a Duck® HD ClearTM tape. It is prepared as follows. 

 A transparent glass slide is cleaned using acetone/IPA and in UV ozone. Hardened PDMS is 

prepared to a 1mm thickness with no air bubbles and is laid carefully on the center of the glass 

slide. The PDMS glass stack is cleaned again under UV/Ozone for 10 minutes. After this, the 

tape is carefully placed flat on top of the PDMS piece. Next, two layers of resist (MMA 8.5 

EL 8.5) is spin coated to get a thickness of ~ 600nm. The coated resist is baked for 10 minutes 

at 1200C. The Duck® tape is preferred over the Scotch tape since it has a lower melting 

temperature. But still, heating above 1500 C can melt the tape. Since the MMA polymer does 

not stick well to the PDMS, the Duck® tape is used as the transparent buffer. The PDMS layer 

is a solid-gel and is flexible. So it conforms well to the target substrate during the transfer.  

All the components here are transparent and target flakes can be seen through this substrate 

during transfer (Figure 5.6(a)). 
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Figure 5.5: AFM image of BN flake on SiO2 -Target substrate.  Height retrace image and height 

vs distance along the red line starting from the blue dot. a. Flake thickness ~12nm (Inset) optical 

image of the flake. b. BN surface roughness on a zoomed in area of the flake.  

 

 

 

Figure 5.6: Source substrate preparation. a. Glass slide with MMA/tape/PDMS b. Graphene on 

blue tape ready for deposition c. peeling off tape after tape is pressed on the MMA/tape/PDMS 

substrate. 

 

Deposition of graphene on the MMA+PDMS stack can be done in two ways. One is to use the 

dry nitrogen cold press method discussed in Chapter 2. The other is to use the blue tape. The 
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tape method is essential for natural graphite as they are in the form of large crystals. The tape is 

therefore prepared by multiple fresh exfoliations of the graphite crystal on the same tape with no 

spacing and with minimal overlap between the peeled layers. Once prepared, the source tape will 

look shiny filled with thin continuous patches of graphite layers. Then a fresh piece of tape is 

pressed on top of it and slowly peeled to obtain a second copy of fresh cleaved flakes(figure 5.6 

(b)). This is directly pressed onto the MMA/PDMS stack using a soft rubber tip with a small 

force for ~ 1 minute. Then, very slowly, the tape is peeled off (figure 5.6(c)). This is quite tricky 

and chances are that the MMA layer gets peeled off with the tape. Clean preparation of the PDMS 

stack, graphite tape and slow peeling is found to increase the chances of getting a large area 

graphene flake on the MMA layer.  

 

B. The transfer setup 

The transfer setup is shown in figure 5.7(a). It consists of a Carl Zeiss optical microscope 

and a micromanipulator stage underneath.  The microscope stage is connected with a transparent 

plexi- glass of ~ 7mm. The plexi-glass is designed with clamps (figure 5.7(b)) that help to fix the 

glass slide source substrate supporting the transparent tape/PDMS stack. The plexi-glass stage is 

manipulated using the focus knobs (Z movement) and the X-Y stage knobs of the microscope. The 

XYZ- micromanipulator underneath the microscope is for the target substrate.  This manipulator 

is attached with an aluminum block. The block is machined carefully so that the top surface is very 

flat. On top of the aluminum block a heater stage is installed (figure 5.7(c)). The heater stage 

contains a Tantalum metal foil carved with a meander design. It is spot welded with wires and 

connected to an external voltage power supply. The heater is thermally isolated from the 

micromanipulator by a glass piece and is securely enclosed using an aluminum frame and capped 

with a flat 3mm thick Aluminum piece (figure 5.7(d)). This serves as the stage for the target 

substrate.  A thin sapphire film is also placed in the aluminum frame between the stage and the 

heater coil to enable good thermal contact. A hole of 1mm in diameter is machined on the target 

stage and a pathway is provided to a mechanical pump to create a suction necessary to fix the target 

substrate on the stage during the transfer.   A calibrated thermocouple is fixed on the top of the 

stage to determine the temperature of the target substrate. 
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Figure 5.7: 2D materials transfer setup a. Overall view of the transfer setup with the Newport 

420 micromanipulator under Zeiss Axio A1 optical microscope b. Stage of the source substrate 

with clamps to hold the glass slide. c. Heater stage and assembly for target substrate d. Heater 

assembly dismantled to show some of the inner components (Upper right corner shows the key for 

the numerical labeling of the major components of the setup). 
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C. Transfer procedure 

Once a suitable flake is identified by using differential image contrast and color extraction 

software the target Si/SiO2 substrate is loaded on the heater substrate and held in place by suction 

(figure 5.8(a)). The source glass slide-substrate is then loaded on the plexi-glass platform located 

on the microscope stage (with the MMA/PDMS facing down) and clamped firmly. Next both the 

flake positions are identified and outlined on the computer screen. Then using the 

micromanipulator knobs both flakes are independently brought to focus and aligned on top of each 

other using the X-Y knobs. This alignment should be verified by bringing the source and target 

substrate close to each other but without touching (to eliminate shifts due to refraction). Next 

weights are added to the plexi-glass platform to hold down its unhinged side during the transfer.  

Once everything is set and the alignments are verified, constantly observing through the 

microscope, the graphene flake is slowly pressed down on the h-BN flake. The temperature of the 

stage is then slowly increased to 1200C. The polymer layer slowly wets the SiO2 substrate. Once 

the substrate is completely and uniformly covered with the MMA polymer, the heater is completely 

turned off and the glass slide is lifted up. In some cases, if the suction is not strong enough, the 

target substrate gets stuck to the tape/PDMS and is lifted up with the glass slide (figure 5.8(d)). To 

separate the SiO2 substrate, the connected source+ target substrate is placed on a hot plate at 1200C. 

It is then is carefully carved out and separated using a razor blade. Eventually the substrate gets 

detached with the polymer layer completely transferred onto the target substrate.  
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Figure 5.8: Transfer procedure a. positioning of the target substrate on heater stage b. aligning 

of the source substrate (clamped glass slide) with graphene/MMA/tape/PDMS to the h-BN target 

substrate on the heater stage. c. Transfer of graphene on h-BN flake. The copper pieces are weights 

to hold down the plexi-glass stage during transfer. d. After transfer: SiO2 substrate stuck to the 

MMA on the tape/PDMS. e. Optical image of a completed transfer. f. AFM image and height plot 

of a transferred mono-bilayer graphene on h-BN. Air and impurity bubbles, ~10nm in height, 

trapped between graphene and BN are also seen. The region indicated between the blue dots 

indicate a monolayer graphene ~ 1 nm.  

 

D. Post transfer 

After transfer the MMA is dissolved in multiple acetone baths for 20 minutes and then 

checked with optical microscope and AFM (figure 5.8(e) and (f) respectively). After this the 

sample is thermally annealed for 3-5 hours in a Thermo Scientific CVD furnace at 3500C in a 1 

inch quartz tube with Ar and H2 (3:1) by volume and again checked under AFM. An area which is 
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flat and free of trapped bubbles is chosen for sample design and the rest is etched away by using a 

plasma etcher. 

E. Plasma etching 

For plasma etching the h-BN/Graphene sample is spin coated with 200 nm of PMMA resist 

and the region to be etched away is exposed using EBL to create an etch mask. After developing 

the sample is exposed to RIE Oxygen (flow rate is 5 standard cubic centimeter per minute) in a RF 

plasma etcher at a power of 19W for 1min. The etch rate for the above parameters is ~ 1 layer 

graphene/15 s. 

F. Metal deposition for contacts on graphene on BN 

Sample leads are defined by EBL and developed in acetone and cold water: IPA (1:3).  E-

beam evaporated titanium (5nm) and gold (35nm) form the contacts. After this again the sample 

is annealed, as before, in Ar/H2 gas for 3 hours.  

 

5.5. Experiment for demonstrating Klein collimation  
 

With size limitation no longer a limiting factor in ballistic graphene/BN devices, by 

designing heterostructures using local gates of different geometries, it is possible to use Klein 

collimation to spatially guide ballistic electrons in 2D.  A schematic of one such device used in 

this work is shown in figure 5.9 (a). The device fabrication and the key idea is explained below. 

A single layer graphene flake transferred on h-BN (~12nm) is plasma etched to a T shape 

and each of the three branches of the ‘T’ is placed with Ti/Au contacts such that two of the branches 

are equal in length. The width (1µm) is the same for all branches.  A second EBL (Figure 5.9 (b) 

left) is used to fabricate a local right angled triangular contactless top gate (TG) which ‘entirely’ 

hovers over just the branches of equal length. The triangular top gate is supported by three legs 

with an arch like structure. This is achieved by fine control of the dose with the double resist 

method. The fabrication combines all techniques and methods as explained in the previous 

sections. The hypotenuse of the triangle faces lead 1 while the right angled sides are suspended 

perpendicular to the other two equal-length branches with the leads 2 and 3. The angle of the vertex 

between 2 and 3 is ~ 300.  The ‘global’ back gate (BG) is the Si substrate with SiO2/BN dielectric. 
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By appropriately tuning the BG and TG a pn, nn or pp junction can be created. Since normal 

incident electrons on a pn interface are filtered through by Klein tunneling, when current is injected 

through lead 1, more current is expected to flow into drain lead 3 than through drain lead 2 as 

illustrated in the figure 5.9 (a).  The SEM image of the device -top view and tilted view is shown 

in figure 5.9 (c) and (d) respectively.  

 

 

Figure 5.9: Device for testing Klein collimation a. An illustration depicting the idea- current 

(blue arrows) being collimated into lead 3 (red arrow) through the triangular TG. b. Optical image 

of the device after (left) EBL definition of the gate. The TG region is only covered with PMMA 

while the green outside region is PMMA and MMA.(right) device after metal deposition. c. SEM 

image of the device. The T shaped graphene is outlined by dotted line. d. SEM image, tilted view 

showing the suspended TG over graphene.  

 

The sample is measured in a He Dewar at 4.2 K with an insert equipped with RC filters 

and room temperature pi filters. Two terminal gating curves of two sections of the T channel 
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labelled as R-Long with leads 1 ,3 (with 3- grounded and 2-free) and R-L with leads 1,2(with 2- 

grounded and 3-free)  are measured separately and is shown in figure 5.10 (a). .Although the two 

sections are of equal length there is a difference in the resistance. This might be due to differences 

in the contact resistance or charge scatterers in the two sections. The mobility of each section is 

around 30,000 cm2/Vs and lm ~90nm. Based on the resist thickness, the air-separation between TG 

and the graphene~ 150 nm. However, the simulation using COMSOL in figure 5.10(b) shows that 

D~ 150nm which is longer than lm. So the pn junction is diffusive to observe the desired collimation 

effect. 

 

 

Figure 5. 10: Device characteristics a. Gating curves – two terminal resistance vs VBG and VTG 

=0 at 4.2K of the two sections of the graphene channel R-Long and R-L shown on the right. b. 

COMSOL simulation depicting the electric field spatial profile for VTG =2V. c, d.  Two terminal 

resistance as a function of top and back gate voltages for R-Long and R-L respectively. The four 

quadrants indicating carrier type outside and underneath the TG are labeled in (b).  
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The measurements of R-Long and R-L vs top gate voltage (VTG) and back gate voltage 

(VBG) are shown in figure 5.10 (c) and (d). The ridges on the 2D plot trace out the Dirac peaks and 

form the outlines of the quadrant representing nn,np,pn and pp. From the slope of the diagonal 

ridge, the ratio of the TG capacitance to the BG capacitance 
BG

TG

C

C
= 0.603 for R-Long and 0.533 

for R-L. The suspended triangular TG is not perfectly flat and can account for these unequal values. 

Similarly, VTG at the intersection point of the ridges, corresponding to p=n=0, is also different: 

VTG= 5V for R-Long and VTG= 0V for R-L.   

 

 

Figure 5. 11: Measurements for current splitting and Klein collimation: a. Illustration of the 

measurement setup. b. A simple circuit model for the experiment setup shown in (a). c. the current 

ratio IL/ILong for VTG = -14V where both arms of the T are in the bipolar regime c. 2D plot of IL/ILong 

as a function of both VTG and VBG.  
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Figure 5. 12: Ratio of resistance of the two sections “Long” and “L” (R-Long/R-L) from 

measurements in figure 5.10 a. for VTG = -14V where both arms of the T are in the bipolar 

regime. b. 2D plot as a function of (VTG,VBG).  

 

The measurement setup to test for the splitting of current is illustrated in figure 5.11(a) and 

a simple circuit model for the setup is shown in figure 5.11 (c). The current is injected to lead 1 

and leads 2 and 3 are connected in series, with a resistance R = 1.5kΩ. In this case terminals 2 and 

3 are both grounded. By tuning VTG and VBG, the voltage drop across R is measured and hence the 

current in each branch is known. A noticeable difference is expected in the current ratios in the 

bipolar (pn) quadrant if collimation takes place.  The ratio of IL/ILong vs. VBG for VTG=-14V, which 

is in this bipolar quadrant, is shown in figure 5.11(c) and a 2D plot of the ratio as a function of 

both VBG and VTG is shown in figure 5.11 (d).  These plots do not show any sign of current being 

collimated and only reflect the asymmetry of the unipolar regimes pp and nn. To verify this further, 

the ratio of independently measured R-Long and R-L was computed from data shown in figure 

5.10. The result is shown in Figure 5.12 (a) for the same fixed VTG=-14V and the 2D plot in figure 

5.12 (b). Irrespective of the gate voltages, both plots are almost identical. This suggests that there 

is no discernible splitting of the current due to Klein tunneling.  

The results of the experiment is due to the diffusive nature of the charge carriers in the 

junction and the device. The circuit model considered although very simple is sufficient to explain 
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the observations. More accurate analysis should consider the geometry of the sections R-L and R- 

Long and use  the method similar to  [97] for extracting the junction resistance .  

5.6. Other approaches to fabrication and future work  
 

With improved fabrication techniques, other approaches to study this phenomena were 

initiated. One way is to use a multilayer BN/Graphene stack and use thin flat graphite flakes as 

gates. For a heterojunction the graphite gate is split with a separation between the gates ~ 20 nm. 

For a sharper potential, thin h-BN flake 5-12nm in thickness is used as the gate dielectric (Figure 

5.13(c)).  

Ionic liquid has been used in studying transport properties in graphene, especially in the 

high carrier density regime. The liquid can form an electric double layer of about 1nm in thickness 

at the liquid-graphene interface creating a high large gate capacitance [109, 110]. If the liquid can 

be confined to create a local gate a sharp potential barrier can be made. This idea motivated 

fabrication of devices as shown in figure 5.13 (a) and (b). 

 

 

Figure 5. 13 : Other possible fabrication approaches for graphene heterostructures - using 

ionic liquid and split gates a. SEM image of the device with SiO2 coating defined with a slit 

opening ~ 140 nm (the bright line between the voltage leads) in the center of graphene 

channel.(Inset) optical image of the device. The light yellowish feature is the SiO2 coating. b. Ionic 

liquid on the device on (a). c. Graphite split gate with a 12 nm thick h-BN on top.  Split opening ~ 

20 nm.  
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The device is made by coating a four terminal device graphene on SiO2/Si substrate by a 

thin insulating layer of SiO2 (~100nm) except at a slit opening  20 nm wide that runs crosses the 

center of the channel. Then a small drop of ionic liquid (1-Ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide, 99% [EMIIm] by STREM chemicals) is applied near the 

graphene area so that it slips into the slit. A gate voltage is applied using a gold wire inserted in 

the drop. The electric double layer is formed - one near the gate wire and the other directly on the 

graphene/liquid interface within the slit. The resultant high electric field in a small region provides 

a sharp barrier for Klein tunneling. A few limitations of this method are as follows.  The gate ramp 

should be done at room temperature as the charge in the ionic liquid becomes frozen at low 

temperatures. Also the ionic liquid spreads outside the slit and on top of the deposited SiO2. So a 

weaker field will also change the carrier density of the graphene sheet outside the slit. Even if the 

electric field strength is stronger within the slit, the range for independent tuning of the local carrier 

density is slightly limited.  

Using the transfer techniques and the double resist method fabrication described in section 

5.4, suspended graphene heterostructures can also be fabricated by a bottom gate instead of the 

contactless top gate. The bottom local gate is predefined on the substrate before transfer. The 

SiO2/Si serve as the global back gate. The sample can also be made with superconducting contacts. 

Figure shows a pseudo 4-terminal suspended graphene heterostructure with NbN contacts. These 

devices can be used to study, not only Klein tunneling phenomena, but also for studying 

superconducting or Josephson effects coupled to Nano mechanical resonators [111].   

 

Figure 5. 14: Pseudo four terminal suspended graphene with superconducting NbN 

contacts over a ~70 nm thin local back gate. 
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More improvements in the above fabrication methods are likely in the future especially 

with the advent of new transfer methods for 2D materials such as the ‘pickup technique’ in [50] 

and the ability to make high quality 1-D contacts on graphene. Once fabrication of high quality 

large scale devices with lm~ size of the sample becomes efficient, an important issue that has to be 

addressed in measurements is the effect of scattering from finite boundaries of the graphene strip 

and diffusive contacts on the trajectory of the ballistic electrons. Addressing these issues is crucial 

for demonstrating the Veselago lensing effect[28]. Use of point contacts for the source and drain 

and potential barriers at the boundaries of the graphene sheet are some of the things that could be 

tried out in future experiments.  
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