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Abstract of the Dissertation

Some Studies on Partition Functions

in Quantum Field Theory and Statistical Mechanics

by

Jun Nian

Doctor of Philosophy

in

Physics

Stony Brook University

2015

Quantum �eld theory and statistical mechanics share many common features in their

formulations. A very important example is the similar form of the partition function. Exact

computations of the partition function can help us understand non-perturbative physics and

calculate many physical quantities. In this thesis, we study a number of examples in both

quantum �eld theory and statistical mechanics, in which one can compute the partition

function exactly.

Recently, people have found a consistent way of de�ning supersymmetric theories on curved

backgrounds. This gives interesting deformations to the original supersymmetric theories de-

�ned on the �at spacetime. Using the supersymmetric localization method one is able to

calculate the exact partition functions of some supersymmetric gauge theories on compact

manifolds, which provides us with many more rigorous checks of dualities and many geomet-

rical properties of the models. We discuss the localization of supersymmetric gauge theories

on squashed S3, round S2 and T 2.

Entanglement entropy and Rényi entropy are key concepts in some branches of condensed

matter physics, for instance, quantum phase transition, topological phase and quantum com-

putation. They also play an increasingly important role in high energy physics and black-hole

physics. A generalized and related concept is the supersymmetric Rényi entropy. In the the-
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sis we review these concepts and their relation with the partition function on a sphere. We

also consider the thermal correction to the Rényi entropy at �nite temperature.

Partition functions can also be used to relate two apparently di�erent theories. One

example discussed in the thesis is the Gross-Pitaevskii equation and a string-like nonlinear

sigma model. The Gross-Pitaevskii equation is known as a mean-�eld description of Bose-

Einstein condensates. It has some nontrivial solutions like the vortex line and the dark soliton.

We give a �eld theoretic derivation of these solutions, and discuss recent developments of

the relation between the Gross-Pitaevskii equation and the Kardar-Parisi-Zhang equation.

Moreover, a (2+1)-dimensional system consisting of only vortex solutions can be described by

a statistical model called point-vortex model. We evaluate its partition function exactly, and

�nd a phase transtition at negative temperature. The order parameter, the critical exponent

and the correlation function are also discussed.
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Chapter 1

Introduction

As two cornerstones of modern physics, quantum theory (including quantum mechanics and

quantum �eld theory) and statistical mechanics share many similarities. In this chapter,

we recaptulate some important results along their developments and highlight some of their

common features.

1.1 Historical Developments (before 1980)

1.1.1 Quantum Theory

In this and the next section, I will try to summarize some important developments that are

relevant to our later discussions in this thesis. The list is according to my personal preference

and far from complete.

Let us start with the discussion of the quantum theory. After the era of the old quantum

theory opened by Max Planck, Niels Bohr, Albert Einstein and many others, in 1925 Werner

Heisenberg (with Max Born and Pascual Jordan) and Erwin Schrödinger formulated two

versions of quantum mechanics independently. In modern language, they worked in two

di�erent pictures. In the Heisenberg picture, the operator evolves with time while the wave

function remains unchanged, and the evolution of the operator is governed by the Heisenberg

equation:
dA

dt
=
i

~
[H,A] +

∂A

∂t
, (1.1.1)

where A is an arbitrary operator, and H is the Hamiltonian of the system. In the Schrödinger

picture, the operator remains the same, while the wave function evolves according to the

1



Schrödinger equation:

i~
∂

∂t
ψ(x) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x) . (1.1.2)

Later in 1928, Paul Dirac generalized the non-relativistic quantum mechanics into rela-

tivistic quantum mechanics. Based on some previous work done by Paul Dirac and John

Wheeler, in 1948 Richard Feynman found an ingenious formulation of quantum mechanics

using the path-integral. In this formulation, the transition matrix element is given by

〈q′, t′|q, t〉 ≡ 〈q′, t′|e−iH(t′−t)|q, t〉

= lim
n→∞

(
m

2πi δt

)n/2 ∫ n−1∏
i=1

dqi exp

i n∑
i=1

δt

(
m

2

(
qi − qi−1

δt

)2

− V

)
= N

∫
[dq] exp

[
i

∫ t′

t

dτ

(
m

2
q̇2 − V (q)

)]

= N

∫
[dq] exp

[
i

∫ t′

t

dτ L(q, q̇)

]
. (1.1.3)

It turns out the path integral also provides an excellent framework to formulate quantum

�eld theory. Up to now, there are still some open questions about the foundation of quantum

mechanics. Some attempts to address these issues led to some other formulations of quantum

mechanics, e.g. the de Broglie-Bohm theory, but I would stop our discussion on quantum

mechanics for now and move on to the quantum �eld theory.

Unlike quantum mechanics, quantum �eld theory was founded by many people, and it is

still developing and not in its �nal shape. As a natural generalization of quantum mechanics,

there are actually various ways to start from classical mechanics and arrive at quantum �eld

theory. In the following �gure, we illustrate some possible paths. Di�erent textbooks may

follow di�erent paths, for instance, Ref. [1] introduces quantum �eld theory by generalizing

quantum mechanics to describe in�nite many degrees of freedom, while Ref. [2] starts with

classical �eld theory, e.g. the eletromagnetic �eld, and quantizes it to obtain quantum �eld

theory.

Similar to quantum mechanics, quantum �eld theory also has di�erent formulations. One

is the canonical quantization, which implements the quantization condition by requiring the

equal-time commutation relations:

[π(x, t), φ(x′, t)] = −iδ(x− x′) ,

[π(x, t), π(x′, t)] = [φ(x, t), φ(x′, t)] = 0 . (1.1.4)

2



Figure 1.1: Di�erent Paths from Classical Mechanics to Quantum Field Theory

Another way of quantizing a �eld is in the spirit of Feynman's path integral. The path

integral (or the partition function) in this case is

Z =

∫
Dφ e

i
~S[φ] , (1.1.5)

where

S ≡
∫
dx dtL (φ(x, t), ∂µφ(x, t)) (1.1.6)

is the action of the theory. The expectation value of an operator A is given by

〈A〉 =
1

Z

∫
DφAe

i
~S[φ] . (1.1.7)

By coupling the �eld φ(x, t) to a source J(x, t), one can de�ne a generating functional

W [J ] =

∫
Dφ exp

[
i

~

∫
dx dt

(
L (φ(x, t), ∂µφ(x, t)) + J(x, t)φ(x, t)

)]
. (1.1.8)

By di�erentiatingW [J ] with respect to the source J(x, t), one is able to calculate some phys-

ical quantities, e.g. the correlation function 〈φ(x, t)φ(x′, t)〉. Like for quantum mechanics,

there are also other ways of quantizing a �eld theory, for instance the stochastic quantiza-

tion invented by Edward Nelson and later developed by Giorgio Parisi and Yong-Shi Wu,

which provide some other perspectives of quantum �eld theory. We do not discuss these new

approaches in the thesis.

Now we can see some general features of a quantum �eld theory. The minimum action

corresponds to the classical �eld theory, which provides the most dominant contribution to

a quantum �eld theory. One can use the variational principle to minimize the action and

obtain the classical solution. If we are able to calculate the partition function exactly, the

result should incorporate all the contributions from the classical solution and the quantum

3



corrections. If it is not possible to perform an exact computation, some approximations may

give us useful information about the physics, for instance, one can do a pertubation expansion

for a small coupling constant g or a WKB approximation which is essentially an expansion

in ~.

In the above, we brie�y discussed the general formalism of a quantum �eld theory. In fact,

the quantum �eld theory �nds its applications in almost all the branches of physics. We list

a few of them only in high energy physics:

• Based on the work of Paul Dirac and Hans Bethe, during 1946-1950 several people

including Sin-Itiro Tomonaga, Julian Schwinger, Richard Feynman and Freeman Dyson

proved that Quantum Electrodynamics (QED) is a renormalizable quantum �eld theory.

• In 1954, Chen Ning Yang and Robert Mills found a new gauge theory with non-Abelian

groups, as a generalization of an Abelian gauge theory that describes the electromag-

netism.

• Many people made attemps to quantize the Yang-Mills theory. Today, a well-known

way of quantizing the Yang-Mills theory is to add a gauge-�xing term to the theory

and introduce additional ghost �elds, which was formulated in 1967 by Ludvig Faddeev

and Victor Popov. A modern way of quantizing a gauge theory is to perform a BRST

quantization, which was invented by Becchi, Rouet, Stora and independently by Tyutin

during 1974-1976. An even more general way is the Batalin-Vilkovisky formalism.

• In 1972, Gerard 't Hooft and Martinus Veltman proved that the Yang-Mills theory is

a renormalizable quantum �eld theory.

• In 1973, Frank Wilczek, David Gross and David Politzer showed that the Yang-Mills

theory has a property called asymptotic freedom.

• The theory for the electroweak interaction was formulated by Sheldon Glashow, Steven

Weinberg and Abdus Salam in the 1960's.

• The theory for the strong interaction was suggested by Yoichiro Nambu and many other

people in the 1960's.

• To explain the massive gauge boson, the so-called �Higgs mechanism� was proposed by

Philip Warren Anderson, Robert Brout, Francois Englert, Peter Higgs, Gerald Gural-

nik, Carl Richard Hagen and Thomas Kibble during 1962-1964.

• SUSY: Based on the previouos work by Yu. A. Golfand and some other people, in 1974

Julius Wess and Bruno Zumino found some renormalizable 4-dimensional supersym-

metric quantum �eld theories.

4



• SUGRA: In 1976, Daniel Freedman, Sergio Ferrara and Peter van Nieuwenhuizen dis-

covered the supergravity theory.

• Soliton: In 1974, Gerard 't Hooft and Alexander Polyakov independently found a topo-

logical soliton solution to the Yang-Mills theory coupled to a Higgs �eld, which was

later called the 't Hooft-Polyakov monopole.1

• Instanton: In 1975, Alexander Belavin, Alexander Polyakov, Albert S. Schwartz and

Yu. S. Tyupkin found a classical solution to the self-dual Yang-Mills equation, which

was later called the instanton.

The incomplete list above only selects some developments, which have something to do

with the topics later discussed in this thesis, and it omits many important works especially

in gravitational theory, e.g. Hawking's work on the black-hole radiation.

1.1.2 Statistical Mechanics

In contrast to quantum theory, statistical mechanics had a sophisticated formulation soon

after it was founded, based on the seminal work of Ludwig Boltzmann and Josiah Willard

Gibbs. Let us brie�y review the ensembles often used in physical problems.

For a physical quantity A, its expectation value is given by

〈A〉 =

∫
dq dpA(q, p) ρ(q, p)∫

dq dp ρ(q, p)
(1.1.9)

where ρ(q, p) is the probability density. The partition function of an ensemble is given by

Z =

∫
dq dp ρ(q, p) . (1.1.10)

The microcanonical ensemble has a �xed number of particles N , a given volume V and the

range of energy [E,E + ∆]. The probability density of the microcanonical ensemble is

ρ(q, p) =

{
1 , if E < H(q, p) < E + ∆ ,

0 , otherwise.
(1.1.11)

The canonical ensemble has a �xed number of particles N , a given volume V and the tem-

perature of the system T . The probability density of the canonical ensemble is

ρ(q, p) = e−β H(q,p) , (1.1.12)

1The concept of soliton was introduced by Kruskal and Zabusky in 1965.
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where β ≡ 1/(kB T ). For the grand canonical ensemble, the number of particles can vary,

and the corresponding probability density is given by

ρ(q, p,N) =
1

N !
zN e−β H(q,p) , (1.1.13)

where z ≡ eβµ with the fugacity µ. We see that the formalism of statistical mechanics is very

similar to the one of quantum �eld theory.

Based on the powerful tools of the ensemble theory and the exact results of the partition

functions, one is able to study many physical problems in a rigorous and quantitative way.

The most famous and well-studied model in physics might be the Ising model:

H = −J
2

∑
〈i,j〉

σiσj −B
∑
i

σi (1.1.14)

where σi = ±1 are the spins on the lattice, and 〈i, j〉 denotes the neighbor spins. The 1-

dimensional case was studied by Ernst Ising in 1920s, and he published the results in 1925

based on his PhD study. He showed that the model has no phase transition in 1-dimension.

Later, for the 2-dimensional case without the magnetic �eld people have found many ways

to compute the partition function exactly, and con�rmed the existence of a phase transition

(see Ref. [3] for a summary). The interest to 3-dimensional Ising model has continued even

till now.2

Just like in the d-dimensional Ising model (d ≥ 2), phase transitions in other systems

also attracted much attention, for instance in superconductivity and super�uidity. The exact

and the approximate solutions in these models play crucial roles in the study of critical

phenomena.

1.2 Recent Developments (after 1980)

In recent years, especially after the �rst string theory revolution in 1984, there have been many

more new developments in quantum �eld theory, statistical mechanics and their connections.

Let us list some of them in this section.

Again, we have to omit something. For example, the string theory, especially the topolog-

ical string theory, is also a quantum theory, and it is very interesting on its own. In many

cases, one is also able to compute the partition function of a string theory or a topological

string theory exactly. However, since we will not study these theories later in the thesis, they

are omitted in this section.

2For instance, people have tried to use the conformal bootstrap technique to solve the 3D Ising model [4].
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1.2.1 Quantum Theory

One of the breakthroughs in theoretical physics during 1980s is the �nding of the connec-

tion between certain topological quantum �eld theories and some topological invariants in

mathematics. Among them the most important ones are probably the series of papers by

Edward Witten, who used the equivariant localization technique which was known in math-

ematics long ago and will be brie�y reviewed in Chapter 2, to �nd the exact solutions of the

2-dimensional Yang-Mills theory [5], and the exact solutions of 3-dimensional Chern-Simons

theory on Seifert manifolds with Chris Beasley [6]. Moreover, he applied the topological

twist to N = 2 supersymmetric �eld theories to reproduce the Donaldson invariant for

4-dimensional manifolds [7], and later in 1994 Edward Witten and Nathan Seiberg found

another supersymmetric theory, which can be solved exactly on the physics side and give a

new topological invariant on the mathematics side [8, 9]. As an application, in 1994 Cum-

run Vafa and Edward Witten used the partition function of N = 4 topologically twisted

supersymmetric Yang-Mills theory on 4-manifolds to test the strong-weak duality (S-duality)

[10]. To compute the contribution of the instantons to the Seiberg-Witten theory, in 2002

Nikita Nekrasov introduced new techniques (Ω-deformation, noncommutative �eld theory)

and obtain the exact results.

The next progress came from Vasily Pestun's work in 2007, in which he managed to

de�ne N = 4 and N = 2∗ supersymmetric Yang-Mills theories on S4, and by using the

supersymmetric localization technique he was able to compute their partition functions and

the expectation values of the Wilson loop exactly [11]. Starting from Pestun's work in 2007,

there has been a booming time for the study of supersymmetry on curved spacetime.3 Many

papers and results of supersymmetric theories on various compact manifolds had appeared,

but a natural question is whether one can study these di�erent backgrounds systematically.

A paper by Seiberg and Festuccia �rst started to address this issue [12]. They started with

an o�-shell supergravity theory, and by �xing the metric and the background �elds they were

able to de�ne a theory with rigid supersymmetry on a certain manifold.4 In the following

series of papers, they and their collaborators studied the problem systematically, and found

some conditions on the 3- and 4-dimensional manifolds for the existence of certain amount

of supersymmetries [14, 15, 16]. For instance, for a 4-dimensional manifold, in order to allow

one supercharge the manifold has to be Hermitian. Since the results of supersymmetric

localization are exact, one can use them to check some previously proposed conjectures in a

more rigorous way. For example, Refs. [17, 18, 19, 20] tried to make some tests of the gauge

gravity correspondence in this way.

As we discussed in the previous section, after the supergravity was founded, people paid

3In 1970s there were already some works of Killing spinors on some curved manifolds, e.g. the AdS space.
4The idea of this new method can be applied to more general superspaces, as discussed in Ref. [13].
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more attention to the quantum perspective of the gravity theory. The breakthrough made by

Juan Maldacena in 1997 connects certain gravity theories with gauge theories [21], and brings

more ingredients to the study of the gravity as a quantum theory. Like the 2-dimensional

Yang-Mills theory, the 3-dimensional pure gravity is also a topological theory, hence one

can hope to evaluate its partition function exactly. This work started with E. Witten's

paper, Ref. [22], and continued in Ref. [23]. The exact partition function was worked out

in Refs. [24, 25, 26]. Also in the presence of supersymmetry, one may hope to apply the

supersymemtric localization technique, which we willl discuss in detail in Chapter 2, to

evaluate the partition function of some supergravity theories (see e.g. Refs. [27, 28]).

1.2.2 Statistical Mechanics

As we discussed in the previous section, using the exact results of the partition functions

one can study the phenomena in many statistical models quantitatively, especially critical

phenomena and phase transitions. At the critical point, a statistical system often preserves

the conformal symmetry. Hence, the study of conformal �eld theory �nds many applications

in the real systems. In 1980s, some signi�cant progress has been made in this direction.

The most important ones are the solution of the 2-dimensional Ising model as a conformal

�eld theory by Belavin, Polyakov and Zamolodchikov [29], and also the c-theorem in 2-

dimensions by Zamolodchikov [30], which governs the renormalization group �ow for an

arbitrary conformal �eld theory.

Many exactly solvable statistical models have another property called integrability. For

those models, one can �nd their soliton solutions using the Hamiltonian methods (see Ref. [31]),

and for the second quantized integrable models one can also solve them using the Bethe-

Ansatz equation (see Ref. [32]).

The partition function itself plays a crucial role in the recent study of the statistical models,

especially the conformal �eld theory. An example is Ref. [33] by John Cardy, in which the

exact partition function is evaluated. Together with the modular property, the author was

able to �nd the spectrum of the 2-dimensional Ising model.

Another trend in the study of the statistical mechanics in recent years is that the connec-

tion between statistical models and quantum �eld theory is emphasized and paid more and

more attention. For instance, after the Seiberg-Witten theory was founded in 1994, some

people immediately observed that it can be related to some known solutions in integrable

models [34]. In the last 20 years, some problems in this research �eld have been studied

systematically, and accordingly there are a number of review articles trying to explain these

signi�cant progress in a padagogical way. Let us list them below:
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• Starting from Ref. [35], there are a series of review articles explaining the integrability in

the context of AdS/CFT correspondence. The basic idea is to map some gauge-invariant

operators in N = 4 supersymmetric Yang-Mills theory into a spin chain model. Then

the integrability of the statistical models can be studied in the framework of the string

worldsheet model, i.e. a 2-dimensional nonlinear sigma model on a symmetric coset

space.

• Starting from Ref. [36], there are a series of review articles on di�erent aspects of

the AGT correspondence [37], which states that the partition functions of some 4-

dimensional supersymmetric gauge theories obtained using localization technique [11]

are proportional to the correlation functions of the 2-dimensional Liouville theory, which

is a conformal �eld theory given by

SLiou
b =

1

4π

∫
d2z

[
(∂aφ)2 + 4πµe2bφ

]
. (1.2.1)

To be more precise, the correspondence says that

Z(a,m; τ ; ε1, ε2) ∝ N21(p)N43(p)Fp(q) , (1.2.2)

where Z(a,m; τ ; ε1, ε2) is the instanton partition function appearing in the whole par-

tition function

Z(m; τ ; ε1, ε2) =

∫
da |Z(a,m; τ ; ε1, ε2)|2 , (1.2.3)

while Fp(q) is the conformal block obtained from the correlation function

〈e2α4φ(∞) e2α3φ(1) e2α2φ(q) e2α1φ(0)〉Lioub =

∫
R+

dp

2π
C21(p)C43(−p)

∣∣Fp(q)∣∣2 , (1.2.4)

and |Nij(p)|2 = Cij(p). If we include the loop operators, e.g. the Wilson loop or the 't

Hooft loop, the AGT correspondence states that

〈W〉SYMS4 = 〈Lγs〉Lioub , 〈T 〉SYMS4 = 〈Lγt〉Lioub , (1.2.5)

where 〈·〉 denotes the normalized expectation value of an operator, and

Lγ ≡ tr

P exp

(∫
γ

A

) , (1.2.6)

while γs and γt stand for the simple closed curves encircling the points 0, q and 1, q

on C \ {0, q, 1} respectively. Using the AGT correspondence, one can even check the

S-duality conjecture:

〈W〉Ss = 〈T 〉St , 〈T 〉Ss = 〈W〉St . (1.2.7)
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• Some important work not reviewed in the articles mentioned above includes the recent

progress made by Nikita Nekrasov and Samson Shatashvili [38, 39, 40, 41]. The basic

idea is to identify the e�ective twisted superpotential W̃ of the supersymmetric gauge

theory with the Yang-Yang function of a quantum integrable system. Then the vacuum

equation of the supersymmetric gauge theory

exp

(
∂W̃ e�(σ)

∂σi

)
= 1 (1.2.8)

will correspond to the Bethe-Ansatz equation for the quantum integrable system.

Through the discussions above, we have seen that in the last century the two major

branches of theoretical physics, quantum �eld theory and statistical mechanics, have devel-

oped in a quite parallel way, and their modern formulations are quite similar to each other.

One can often introduce some techniques mutually between these two �elds. The exchange

of ideas and the attempt to connect ideas in both �elds sometimes can lead to important

breakthroughs. Today, one century after General Relativity was found, we believe that in

the next century the fundamental study of quantum �eld theory, statistical mechanics and

gravity will help us understand nature in a better way and unveil more secrets of the universe

hidden in the dark.

1.3 Organization of the Thesis

This thesis is based on my research work during the last three years and some ongoing research

projects. It covers quite diverse subjects in theoretical physics, including supersymmetric

gauge theories, conformal �eld theory, AdS/CFT correspondence, Bose-Einstein condensation

and quantum turbulence. A main theme connecting them is the concept of the partition

function, i.e., the exact result of the partition function was obtained whenever possible. I

summarize the di�erent problems considered in each chapter in the following:

• Chapter 2: SUSY Localization

We �rst review the general principle of localizatin from both physical aspects and

mathematical aspects. After that we consider the localization of some supersymmetric

gauge theories, including N = 2 supersymmetric Chern-Simons theories with matter

on a squahsed S3 and N = (2, 2) supersymmetric theories on S2 and T 2. We compute

the exact partition function for each case and discuss their applications.

• Chapter 3: Entanglement Entropy

The concepts entanglement entropy, Rényi entropy and supersymmetric Rényi entropy

will be introduced, and their relation with the partition on a sphere will also be dis-
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cussed. Moreover, we consider the thermal corrections to the Rényi entropy for a free

scalar theory in higher dimensions.

• Chapter 4: BEC, String Theory and KPZ Equation

The Gross-Pitaevskii equation provides a mean-�eld model for the Bose-Einstein con-

densate. In this chapter, we illustrate the relation between the Gross-Pitaevskii equa-

tion, a string theory-like nonlinear sigma model and the KPZ equation, which describes

the growth of a random surface. Their equivalence in some limits can be shown by

rewriting the partition function.

• Chapter 5: 2-Dimensional Point-Vortex Model

The 2-dimensional point-vortex model is a statistical model in the study of quantum

turbulence. Some numerical simulations suggest a phase transition in this model at

negative temperature. We demonstrate the existence of the phase transition in two

di�erent ways: by the analysis of the bifurcation point of a partial di�erential equation

and by the exact computation of the partition function.

Finally in Chapter 6, we summarize the thesis and discuss some open questions in the

study of quantum �eld theory and statistical mechanics related to the computation of the

partition function.
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Chapter 2

Supersymmetric Localization

As we discussed in the introduction, many important recent developments are obtained using

the supersymmetric (SUSY) localization technique. In this chapter, we �rst discuss the

physical and the mathematical aspect of this technique. As some applications, we will see

some concrete examples of the supersymmetric localization on the squashed S3, the round

S2 and the torus T 2, based on my paper [42] and another paper with Xinyu Zhang [43] as

well as some unpublished notes.

2.1 Introduction to Supersymmetric Localization

Localization is a technique which simpli�es calculations in some quantum �eld theories, e.g.,

supersymmetric gauge theories, and can give non-perturbatively exact results. We follow

Ref. [44] and brie�y review the basic idea of localization. Suppose we have a supersymmetric

Lagrangian, then adding a term that is a supersymmetric invariant does not spoil the super-

symmetry of the new Lagrangian. If the additional term is also exact, i.e., it can be written as

the supersymmetry transformation of some other terms, then the partition function remains

the same after adding this additional term, provided that we do not change the behavior of

the action functional at in�nity in �at space. This can be shown as follows:

1. With a dimensionless coupling constant t, the new action with the additional term

becomes S + th, where h is exact, i.e., h = δg. Provided that supersymmetry is not

broken in the vacuum, i.e., the measure is supersymmetry, the partition function is

independent of t:

∂

∂t

∫
dΦe−S−th =

∂

∂t

∫
dΦe−S−tδg =

∫
dΦδge−S−tδg =

∫
dΦδ

(
ge−S−tδg

)
= 0 .

(2.1.1)
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Hence, we can evaluate the path integral with S + th at any value of t, and the result

should be the same.

2. Moreover, if we take the limit t → ∞, then only h = 0 contributes to the partition

function, or in other words, the theory localizes to the �eld con�guration where h = 0.

Solving the equation h = 0, we obtain the classical values of the �elds.

3. Next, we can separate the classical value and the quantum �uctuation for each �eld,

and only consider the classical and 1-loop contributions to the partition function. In

principle, there should be contributions from higher orders, but in the limit t → ∞,

the result of the classical together with the 1-loop contributions becomes exact. Let us

use Φ to denote all the �elds, then

Φ = Φcl + Φ̃ , (2.1.2)

where Φcl and Φ̃ denote the classical value and the quantum �uctuation of the �eld

respectively. The partition function can be expressed as∫
dΦe−S =

∑
BPS

∫
dΦ̃e−S(Φcl)+t(quadratic terms in Φ̃)

=
∑
BPS

e−S(Φcl)
detferm
detbos

, (2.1.3)

where the sum is taken over the BPS eigenfunctions. By BPS we mean the �eld con-

�gurations where the theory is localized, i.e., all the possible solutions to the equation

h = 0 mentioned above.

2.2 Mathematical Aspects

In this section we review the mathematical aspects of localization, especially the equivariant

localization and the Duistermaat-Heckman formula, which is a special case of the more general

Atiyah�Bott�Berline�Vergne localization formula. The readers who are more interested in

physical aspects can skip this section. We closely follow the note by Antti J. Niemi in

Ref. [45].

Let us start with a brief review of the symplectic geometry. Assume thatM is a symplectic

manifold. Instead of the variables pa and q
a we adopt the local coordinates za (a = 1, · · · , 2n)

onM with the Poisson brackets

{za, zb} = ωab(z) , (2.2.1)

where ωab is nondegenerate and has the inverse

ωac ωcb = δa b . (2.2.2)
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We de�ne a symplectic two-form:

ω ≡ 1

2
ωab dz

a ∧ dzb . (2.2.3)

The Jacobi identity for Poisson brackets implies that the symplectic two-form is closed.

Hence, locally it is also exact, i.e.,

ω = dϑ = ∂aϑb dz
a ∧ dzb . (2.2.4)

The canonical transformations are equivalent to

ϑ→ ϑ+ dψ . (2.2.5)

A natural volume form onM is

ωn = ω ∧ · · · ∧ ω , (2.2.6)

and the classical partition function is then

Z =

∫
ωn e−βH . (2.2.7)

H is a Hamiltonian onM, and its corresponding Hamiltonian vector �eld χH is de�ned by

ω(χH , ·) + dH = 0 ⇔ χaH = ωab ∂bH . (2.2.8)

The Poisson bracket of two Hamiltonians has the expressions

{H,G} = ωab ∂aH ∂bG = χaH ∂aG = iH dG

= ωab χ
a
H χ

b
G = ω(χH , χG) , (2.2.9)

where

iH : Λk → Λk−1 , (iH) 2 = 0 . (2.2.10)

The equivariant exterior derivative is de�ned as

dH ≡ d+ iH , (2.2.11)

which maps Λk → Λk+1 ⊕ Λk−1. At this moment, one probably can realize the similarity

between this mathematical formalism and the physical meaning of supersymmetry algebra.

The Lie derivative is then given by

LH ≡ dH iH + iH dH = d2
H . (2.2.12)

Therefore, the Poisson bracket mentioned above is then

{H,G} = iH dG = (d iH + iH d)G = LH G , (2.2.13)
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because G is a function and iH G = 0.

Next, we move on to the discussion of the equivariant cohomology. Suppose that a compact

group G is acting on the symplectic manifoldM :

G ×M→M . (2.2.14)

If the action of G is free, thenM/G is a manifold, and the G-equivariant cohomology is the

ordinary cohomology

H∗G ∼ H∗(M/G) . (2.2.15)

Assume that the Lie algebra of G is realized by the vector �elds:

[χα, χβ] = fαβγ χγ . (2.2.16)

The Lie derivative Lα = d iα + iα d also satis�es

[Lα,Lβ] = fαβγ Lγ . (2.2.17)

If the group action preserves the symplectic structure, i.e.,

Lαω = 0 , (2.2.18)

and we further assume that

H1(M,R) = 0 , (2.2.19)

then iα ω is exact. Hence, we can de�ne a moment map H : M→ g∗, where g∗ is the dual

Lie algebra with a symplectic basis {φα}. Then

H = φαHα , (2.2.20)

and

iα ω = −dHα . (2.2.21)

The Hα's satisfy

[Hα, Hβ] = fαβγ Hγ + καβ , (2.2.22)

where καβ is a two-cocycle. Take G = U(1) for example. In this case there is only one φ,

which can be viewed as a real parameter. The equivariant exterior derivative is modi�ed as

dH = d+ φ iH , (2.2.23)

and

d2
H = φLH . (2.2.24)

It is also easy to check that

dH(ω + φH) = 0 . (2.2.25)
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To evaluate the classical partition function

Z =

∫
ωn e−βH , (2.2.26)

we apply the Duistermaat-Heckman formula. For simplicity, let us assume that the solutions

to dH = 0 are isolated and nondegenerate points. Then the Duistermaat-Heckman formula

states that only the critical points contribute to the partition function. More precisely,

Z =
∑
dH=0

exp

[
i
π

4
ηH

] √
det‖ωab‖√
det‖∂abH‖

exp(iφH) , (2.2.27)

where

ηH ≡ dimT+
p − dimT−p , (2.2.28)

and T±p are the positive and the negative eigenspace of ∂abH at the critical point p. In the

following we will absorb the phase factor exp
[
iπ

4
ηH
]
into the de�nition of the determinants.

The idea of proving this theorem is to show that

Zλ ≡
∫
ωn exp [iφH + λ dH ψ] (2.2.29)

is independent of λ provided

LH ψ = 0 , (2.2.30)

i.e.,

Zλ = Zλ+δλ . (2.2.31)

When λ → 0 the integral Zλ reduces to the original partition function Z. We skip this

proof, which can be found in Ref. [45], then we demonstrate how to obtain the Duistermaat-

Heckman formula using this fact. First, the integration measure can be rewritten using some

anticommuting variables ca:∫
ωn =

∫
d2nz

√
det‖ωab‖ =

∫
dz dc exp

[
1

2
ca ωab c

b

]
. (2.2.32)

We identify

ca ∼ dza (2.2.33)

and de�ne

ia c
b = δa

b . (2.2.34)

The equivariant exterior derivative and the Lie derivative become

dH = ca∂a + χaH ia , (2.2.35)

LH = χaH∂a + ca∂aχ
b
H ib . (2.2.36)
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If we choose ψ in Zλ to be

ψ = iH g = gab χ
a
H cb , (2.2.37)

then

dH ψ = gab χ
a
H χ

b
H +

1

2
ca
[
∂a(gbc χ

c
H)− ∂b(gac χcH)

]
cb ≡ K + Ω , (2.2.38)

where we call the �rst and the second term K and Ω respectively. Therefore, Zλ now becomes

Zλ =

∫
dz dc exp

[
iφ(H + ω)− λ

2
(K + Ω)

]
. (2.2.39)

Since we can also take the limit λ→∞ without violating Zλ = Z, and in this limit we make

use of the identity similar to

δ(αx) =
1

|α|
δ(x) = lim

λ→∞

√
λ

2π
exp

[
−λ

2
(αx)2

]
, (2.2.40)

then the partition function becomes

Z =

∫
dz dc

√
det‖Ωab‖√
det‖gab‖

δ(χH) eiφ(H+ω) =
∑
dH=0

√
det‖ωab‖√
det‖∂abH‖

exp [iφH] . (2.2.41)

Therefore, we obtain the Duistermaat-Heckman formula.

To generalize the above mentioned Duistermaat-Heckman formula to a path integral, one

needs to consider the integration in a loop space. The partition function is

Z = Tr
(
e−iTH

)
=

∫
PBC

[dza] [dca] exp

[
i

∫ T

0

ϑa ż
a −H +

1

2
ca ωab c

b

]
, (2.2.42)

where T is the period of the loop, and PBC stands for the periodic boundary condition. The

�nal result is

Z =

∫
dz dc exp

[
−iTH + i

T

2
ca ωab c

b

] √
det

[
T (Ωa

b +Ra
b)/2

sinh[T (Ωa
b +Ra

b)]

]
=

∫
Ch(H + ω) Â(Ω +R) , (2.2.43)

where

Ωab ≡ ∂b(gacχ
c
H)− ∂a(gbcχcH) (2.2.44)

is the Riemannian moment map, and

Ra
b ≡ Rabcd c

c
0 c

d
0 (2.2.45)

with the constant modes ca0, while Ch and Â stand for the equivariant Chern class and the

equivariant Â-genus respectively.
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2.3 S3 Localization

2.3.1 Review of Squashed S3

In this section, we brie�y discuss di�erent squashed S3's and the corresponding Killing spinors

that one can de�ne on them. By squashed S3 we mean the continuous deformation of the

round S3 metric by some parameters without changing the global topology. When these

small parameters become zero, the metric of the squashed S3 returns to the one of the round

S3.

The metrics of squashed S3 may have di�erent isometry groups. As reviewed in Appendix

B, the metric of round S3 has SU(2)L × SU(2)R isometry. After squashing, the symmetry

SU(2) is reduced to some smaller group in the left-invariant frame or the right-invariant frame

or both. Both Ref. [46] and Ref. [47] have discussed squashed S3 with isometry group smaller

than SU(2)L × SU(2)R. We adapt their expressions a little according to our convention.

Ref. [46] introduced an example of squashed S3 that preserves an SU(2)L×U(1)R isometry:

ds2 = ˜̀2 µ1µ1 + `2(µ2µ2 + µ3µ3) , (2.3.1)

where in general the constant ˜̀ is di�erent from the constant `, and µa (a = 1, 2, 3) are the

left-invariant forms which are de�ned by

2µaTa = g−1dg , g ∈ SU(2) . (2.3.2)

In the frame

(e1, e2, e3) = (˜̀µ1, `µ2, `µ3) (2.3.3)

the spin connections are

ω23 = (2˜̀−1 − f−1)e1 , ω31 = f−1e2 , ω12 = f−1e3 , (2.3.4)

where f ≡ `2 ˜̀−1. In this case, to de�ne a Killing spinor, one has to turn on a background

gauge �eld V . Then there can be two independent Killing spinors with opposite R-charges:

∇mε =
i

2f
γmε+ iVmε , Dmε̄ =

i

2f
γmε̄− iVmε̄ , (2.3.5)

where

∇mε ≡ ∂mε+
1

4
γabω

ab
m ε , ∇mε̄ ≡ ∂mε̄+

1

4
γmnω

mn
m ε̄ , (2.3.6)

and

Vm = e1
m

(
1
˜̀
− 1

f

)
, ε =

(
1

0

)
, ε̄ =

(
0

1

)
. (2.3.7)
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The same metric with SU(2)L × U(1)R isometry was also considered in Ref. [47]:

ds2 = `2

(
1

v2
µ1µ1 + µ2µ2 + µ3µ3

)
, (2.3.8)

where ` is a constant with dimension of length, and v is the constant squashing parameter.

This metric is related to the previous case of squashed S3 in the following way:

`

v
= ˜̀. (2.3.9)

The vielbeins and the spin connections are the same as in the previous case, i.e., they are

still given by Eq. (2.3.3) and Eq. (2.3.4) respectively. However, Ref. [47] chose a di�erent

background gauge �eld Vm, and the Killing spinor equations are

∇mε = − i

2v`
γmε+

u

v`
V nγmnε , ∇mε̄ = − i

2v`
γmε̄−

u

v`
V nγmnε̄ , (2.3.10)

where again

∇mε ≡ ∂mε+
1

4
γabω

ab
m ε , ∇mε̄ ≡ ∂mε̄+

1

4
γabω

ab
m ε̄ , (2.3.11)

and u is de�ned by

v2 = 1 + u2 , (2.3.12)

while the background gauge �eld is given by

V m = em1 . (2.3.13)

The Killing spinors in this case have the solution:

ε = eθ
σ3
2i g−1ε0 , ε̄ = e−θ

σ3
2i g−1ε̄0 , (2.3.14)

where ε0 and ε̄0 are arbitrary constant spinors, and the angle θ is given by

eiθ =
1 + iu

v
. (2.3.15)

Actually there is another example of squashed S3 discussed in Ref. [46]:

ds2 = `2(dx0
2 + dx1

2) + ˜̀2(dx2
2 + dx3

2) . (2.3.16)

This metric preserves an U(1)×U(1) isometry. Transforming the coordinates (x0, x1, x2, x3)

to (cosθ cosϕ, cosθ sinϕ, sinθ cosχ, sinθ sinχ), we can rewrite the metric as:

ds2 = f(θ)2dθ2 + `2cos2θ dϕ2 + ˜̀2sin2θ dχ2 , (2.3.17)

where

f(θ) ≡
√
`2sin2θ + ˜̀2cos2θ . (2.3.18)

It is discussed in Ref. [46] in great detail. Since we focus on the one with SU(2) × U(1)

isometry, we will not consider this case in the following.
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2.3.2 Some Relevant Formulae

In this section we recall some relevant formulae from Ref. [16], which describes a set of

generalized 3D Killing spinor equations. By adding a �at direction to a 3D manifold one

obtains a 4D manifold, so in principle the 4D formalisms introduced in Refs. [14, 15] can also

be applied to a squashed S3. We will focus on the 3D formalism [16] in the following. The

generalized Killing spinor equations discussed in Ref. [16] are:

(∇µ − iAµ)ζ = −1

2
Hγµζ − iVµζ −

1

2
εµνρV

νγρζ , (2.3.19)

(∇µ + iAµ)ζ̃ = −1

2
Hγµζ̃ + iVµζ̃ +

1

2
εµνρV

νγρζ̃ . (2.3.20)

The Killing spinor equations in Refs. [46, 47] can be viewed as these generalized Killing spinor

equations with special choices of the auxiliary �elds Am, Vm and H. If we choose the metric

(C.0.18) in the left-invariant frame (C.0.19):

ds2 =
`2

v2
µ1µ1 + `2µ2µ2 + `2µ3µ3 , (2.3.21)

e1 =
`

v
µ1 , e2 = `µ2 , e3 = `µ3 ,

then the choice in Ref. [46] is

A1 =
v

`
− 1

v`
, A2 = A3 = 0 ,

Vm = 0 , (m = 1, 2, 3)

H = − i

v`
, (2.3.22)

while Ref. [47] chose

A1 = V1 = −2iu

v`
,

A2 = A3 = V2 = V3 = 0 ,

H =
i

v`
, (2.3.23)

where v is the constant squashing parameter, u ≡
√
v2 − 1, and ` denotes the length scale.

We make use of the formalism described in Ref. [16] to solve for the Killing spinors and

the background auxiliary �elds on the squashed S3 discussed above. We expect that in some

limits the results of Refs. [46, 47] can be reproduced within the framework of Ref. [16]. The

following sketch illustrates the path of calculations:
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De�ne Km ≡ ζγmζ̃ , ηm ≡ Ω−1Km , Φm
n ≡ εm npη

p , Pm ≡ ζγmζ (2.3.24)

⇓

De�ne p ≡ Pz̄ , s ≡ 1√
2
pg−

1
4

√
Ω , Wm ≡ −

1

4
ηmε

npqηn∂pηq (2.3.25)

V m = εmnp∂nηp + κηm (2.3.26)

H = −1

2
∇mη

m +
i

2
εmnpηm∂nηp + iκ (2.3.27)

⇓

Am =
1

8
Φm

n∂nlogg −
i

2
∂mlogs+

1

2
(2δm

n − iΦm
n)Vn −

i

2
ηmH +Wm +

3

2
κηm (2.3.28)

Finally, we obtain the auxiliary �elds Vm, H and Am. We should emphasize that the factor

g appearing in the de�nition of s is the absolute value of the determinant of the metric with

the form

ds2 = Ω2(dψ + adz + ādz̄)2 + c2dzdz̄ , (2.3.29)

and p is de�ned as the z̄-component of Pm in this coordinate system.

As pointed out in Ref. [16], for the Killing spinors and the auxiliary �elds satisfying the

Killing spinor equations (2.3.19), one can shift the auxiliary �elds while preserving the same

Killing spinors:

V µ → V µ + κηµ ,

H → H + iκ ,

Aµ → Aµ +
3

2
κηµ , (2.3.30)

where κ satis�es

Kµ∂µκ = 0 . (2.3.31)

It means that after obtaining a set of solutions of the auxiliary �elds, one can always shift

them to obtain new solutions without changing the Killing spinors, and the new auxiliary

�elds and the Killing spinors formally satisfy the same Killing spinor equations as before.

Let us apply the 3D formalism described in Ref. [16] to solve for the Killing spinors and

the auxiliary �elds for the new class of the squashed 3-spheres again. In this case, we work

with the 3D metric given by

ds2 = F 2(θ) dθ2 + g2(θ) dϕ2 + h2(θ) dχ2 , (2.3.32)

where F (θ) is an arbitrary regular function with de�nite sign, while

g2(θ)u2 + h2(θ) = A2 , (2.3.33)
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where u is a dimensionless positive constant which becomes 1 for the round S3, and A is a

positive constant with dimension of length. We can choose the frame

e1 = gdϕ , e2 = hdχ , e3 = Fdθ , (2.3.34)

and the Killing vector

K = u∂ϕ + ∂χ . (2.3.35)

The Killing spinors have the form

ζα =

√
A

2

(
e
i
2

(ϕ+χ−η)

e
i
2

(ϕ+χ+η)

)
, ζ̃ α̇ =

√
A

2

(
ie−

i
2

(ϕ+χ+η)

−ie− i
2

(ϕ+χ−η)

)
. (2.3.36)

Moreover, the auxiliary �elds are given by

V θ = 0 , V ϕ = −2uη′

AF
, V χ = − 2η′

AF
, (2.3.37)

H = −iη
′

F
, (2.3.38)

Aθ = 0 , Aϕ =
1

2
− 5g2uη′

2AF
+

h2η′

2AFu
, Aχ =

1

2
+
g2u2η′

2AF
− 5h2η′

2AF
. (2.3.39)

The Killing spinors and the auxiliary �elds given above satisfy the Killing spinor equations:

(∇m − iAm)ζ = −1

2
Hγmζ − iVmζ −

1

2
εmnpV

nγpζ ,

(∇m + iAm)ζ̃ = −1

2
Hγmζ̃ + iVmζ̃ +

1

2
εmnpV

nγpζ̃ .

These Killing spinor equations can be rewritten into more familiar forms as follows:

(∇m − iÂm)ζ =
i

2
σmξ , (2.3.40)

(∇m + iÂm)ζ̃ =
i

2
σmξ̃ , (2.3.41)

where

Âm ≡ Am −
3

2
Vm , ξ ≡ iHζ + V mσmζ , ξ̃ ≡ iHζ̃ − V mσmζ̃ . (2.3.42)

In the frame given by Eq. (2.3.34), there is

V mσm = −2η′

F

(
0 e−iη

eiη 0

)
. (2.3.43)

Hence, both ζ and ζ̃ are eigenvectors of V mσm, then ξ and ξ̃ can be computed explicitly and

they have the form:

ξ = −η
′

F
ζ =

1

f
ζ , ξ̃ = −η

′

F
ζ̃ =

1

f
ζ̃ , (2.3.44)
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where

f ≡ −F
η′
. (2.3.45)

Therefore, we obtain:

(∇m − iÂm)ζ =
i

2f
σmζ , (2.3.46)

(∇m + iÂm)ζ̃ =
i

2f
σmζ̃ , (2.3.47)

with

Âθ = 0 , Âϕ =
1

2
+
Aη′

2Fu
, Âχ =

1

2
+
Aη′

2F
. (2.3.48)

We can also use the methods described in Refs. [14, 15], which are applicable for a 4D

manifold, to solve for the Killing spinors and the auxiliary �elds. For the squashed S3, one

has to add a �at direction to the 3D metric (2.3.32):

ds2 = A2dτ 2 + F (θ)2dθ2 + g(θ)2dϕ2 + h(θ)2dχ2 . (2.3.49)

Explicit calculations show that both methods give the same result as the one obtained by

the 3D formalism.

2.3.3 Review of 3D N = 2 Supersymmetry

In this section, we brie�y review the theory and the corresponding supersymmetry transfor-

mations and algebra constructed in Ref. [16], then in the next section, we will try to localize

this theory on a squashed S3 with SU(2)× U(1) isometry.

As discussed in Ref. [16], the 3D N = 2 vector multiplet in the Wess-Zumino gauge

transforms in the following way:

δaµ = −i(ζγµλ̃+ ζ̃γµλ) ,

δσ = −ζλ̃+ ζ̃λ ,

δλ = iζ(D + σH)− i

2
εµνργρζfµν − γµ ζ(i∂µσ − Vµσ) ,

δλ̃ = −iζ̃(D + σH)− i

2
εµνργρζ̃fµν + γµ ζ̃(i∂µσ + Vµσ) ,

δD = Dµ(ζγµλ̃− ζ̃γµλ)− iVµ(ζγµλ̃+ ζ̃γµλ)−H(ζλ̃− ζ̃λ) + ζ[λ̃, σ]− ζ̃[λ, σ] . (2.3.50)
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The transformations of the chiral multiplet and the anti-chiral multiplet are given by

δφ =
√

2ζψ ,

δψ =
√

2ζF −
√

2i(z − qσ − rH)ζ̃φ−
√

2iγµζ̃Dµφ ,

δF =
√

2i(z − qσ − (r − 2)H)ζ̃ψ + 2iqφζ̃λ̃−
√

2iDµ(ζ̃γµψ) ,

δφ̃ = −
√

2ζ̃ψ̃ ,

δψ̃ =
√

2ζ̃F̃ +
√

2i(z − qσ − rH)ζφ̃+
√

2iγµζDµφ̃ ,

δF̃ =
√

2i(z − qσ − (r − 2)H)ζψ̃ + 2iqφ̃ζλ−
√

2iDµ(ζγµψ̃) , (2.3.51)

where z, r and q denote the central charge, the R-charge and the charge under the gauge

group of the chiral multiplet repectively, and

Dµ ≡ ∇µ − ir(Aµ −
1

2
Vµ)− izCµ − iq[aµ, ·] , (2.3.52)

where Cµ satis�es

V µ = −iεµνρ∂νCρ . (2.3.53)

The transformation parameters ζ and ζ̃ satisfy the two Killing spinor equations (2.3.19) with

opposite R-charges respectively. Suppose that ζ and η are two transformation parameters

without tilde, and ζ̃ and η̃ are two transformation parameters with tilde. It is checked

in Ref. [16] that the transformations with only parameters with tilde and only parameters

without tilde satisfy the algebra:

{δζ , δη}ϕ = 0 ,

{δζ̃ , δη̃}ϕ = 0 ,

{δζ , δζ̃}ϕ = −2i
(
L′Kϕ+ ζζ̃(z − rH)ϕ

)
, (2.3.54)

where ϕ denotes an arbitrary �eld, Kµ ≡ ζγµζ̃ and L′K is a modi�ed Lie derivative with the

local R- and z-transformation

L′Kϕ ≡ LKϕ− irKµ(Aµ −
1

2
Vµ)ϕ− izKµCµϕ . (2.3.55)

Under these transformations, the following Lagrangians are supersymmetry invariant:

1. Fayet-Iliopoulos Term (for U(1)-factors of the gauge group):

LFI = ξ(D − aµV µ − σH) . (2.3.56)

2. Gauge-Gauge Chern-Simons Term:

Lgg = Tr

[
kgg
4π

(iεµνρaµ∂νaρ − 2Dσ + 2iλ̃λ)

]
. (2.3.57)
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3. Gauge-R Chern-Simons Term (for U(1)-factors of the gauge group):

Lgr =
kgr
2π

(
iεµνρaµ∂ν(Aρ −

1

2
Vρ)−DH +

1

4
σ(R− 2V µVµ − 2H2)

)
. (2.3.58)

4. Yang-Mills Term:

LYM =Tr

[
1

4e2
fµνfµν +

1

2e2
∂µσ∂µσ −

i

e2
λ̃γµ(Dµ +

i

2
Vµ)λ− i

e2
λ̃[σ, λ]

+
i

2e2
σεµνρVµfνρ −

1

2e2
V µVµσ

2 − 1

2e2
(D + σH)2 +

i

2e2
Hλ̃λ

]
. (2.3.59)

5. Matter Term:

Lmat =Dµφ̃Dµφ− iψ̃γµDµψ − F̃F + q(D + σH)φ̃φ− 2(r − 1)H(z − qσ)φ̃φ(
(z − qσ)2 − r

4
R +

1

2
(r − 1

2
)V µVµ + r(r − 1

2
)H2

)
φ̃φ(

z − qσ(r − 1

2
)H

)
iψ̃ψ +

√
2iq(φ̃λψ + φλ̃ψ̃) , (2.3.60)

where

Dµ ≡ ∇µ − ir(Aµ −
1

2
Vµ) + ir0Vµ − izCµ − iq[aµ, ·] . (2.3.61)

In principle we could also add a superpotential term to the theory:∫
d2θW +

∫
d2θ̄ W , (2.3.62)

which is δ-exact. The superpotential W should be gauge invariant and have R-charge 2,

which imposes contraints on the �elds and consequently a�ects the �nal result of the partition

function. In this thesis, for simplicity we do not consider a superpotential term.

2.3.4 Squashed S3 with U(1)× U(1) Isometry

Kapustin et al. �rst localize N = 2 superconformal Chern-Simons theory with matter on

S3 in Ref. [44]. The partition function of the theory can be expressed into the form of a

matrix model. Then in Refs. [48, 49] similar results are obtained for N = 2 supersymmetric

Chern-Simons theory with matter on S3. The theory is localized to

Aµ = φ = 0 , σ = −`D = constant , (2.3.63)

and the partition function is

Z =
1

|W|

∫
drσZclass Z

1-loop
gauge Z

1-loop
matter , (2.3.64)

25



where |W| and r denote the order of the Weyl group and the rank of the gauge group

respectively. Moreover, Zclass comes from the Chern-Simons term and the Fayet-Iliopoulos

term

Zclass = exp

(
ik

4π

∫
d3x
√
gLCS

)
· exp

(
− iξ
π`

∫
d3x
√
gLFI

)
(2.3.65)

= exp(−ikπ`2 Tr(σ2)) exp(4πiξ`Tr(σ)) , (2.3.66)

where k and ξ denote the Chern-Simons level and the Fayet-Iliopoulos coupling respectively,

and for each U(1) factor of the gauge group there exists a Fayet-Iliopoulos term. The con-

tribution from the gauge multiplet is

Z1-loop
gauge =

∏
α∈∆+

(2 sinh (π`αiσi))
2 , (2.3.67)

where ∆+ denotes the positive roots, and σi and αi are given by

σ =
r∑
i=1

σiHi , [Hi, Eα] = αiEα . (2.3.68)

The contribution from one chiral multiplet of R-charge q in the representation R of the gauge

group is ∏
ρ∈R

sb=1(i− iq − `ρiσi) , (2.3.69)

where ρi denote the weight vector, and sb(x) is the double sine function. Precisely speaking,

the double sine function sb(x) is a special case of the so-called normalized multiple sine

function Sr(x, ω) of period ω = (ω1, · · · , ωr) with ω1, · · · , ωr > 0 (Ref. [50]):

Sr(x, ω) =
(
II∞n1, ··· , nr=0(n1ω1 + · · ·+ nrωr + x)

)
·
(
II∞m1, ··· ,mr=0(m1ω1 + · · ·+mrωr − x)

)(−1)r−1

, (2.3.70)

where II denotes the zeta regularized product. Hence, the double sine function sb(x) and the

normalized multiple sine function Sr(x, ω) are related by

sb(x) = S2

(
−ix, (b,

1

b
)

)
. (2.3.71)

Some properties of the double sine function sb(x) are listed in Appendix A of Ref. [51]. Then

Z1-loop
matter is just the product of the contributions from all the chiral multiplets, i.e.,

Z1-loop
matter =

∏
Φ

∏
ρ∈R

sb=1(i− iq − `ρiσi)

 . (2.3.72)
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For squashed S3, Zclass in the partition function Z, i.e., the contributions from LCS and

LFI , remains almost the same. The only change is that the radius of round S3, i.e., `,

is replaced by the factor f for the squashed S3. Since f depends on the coordinates, we

should calculate Zclass using Eq. (2.3.65). Unlike Zclass, the 1-loop determinants can change

signi�cantly for di�erent squashings. As mentioned before, in Ref. [46] two di�erent squashed

3-spheres are considered. For the one with SU(2)L × U(1)R isometry given by the metric:

ds2 = `2(µ1µ1 + µ2µ2) + ˜̀2µ3µ3

Zclass becomes

Zclass = exp
(
−ikπ ˜̀2 Tr(σ2)

)
exp

(
4πiξ

˜̀2

`
Tr(σ)

)
, (2.3.73)

while the 1-loop determinants for the matter sector and the gauge sector are (after regular-

ization)

Z1-loop
matter =

∏
Φ

∏
ρ∈R

sb=1(i− iq − ˜̀ρiσi)

 (2.3.74)

and

Z1-loop
gauge =

∏
α∈∆+

(
sinh(π ˜̀αiσi)

π ˜̀αiσi

)2

(2.3.75)

respectively, where ∆+ denotes the positive roots. For another squashed S3 with U(1)×U(1)

isometry given by the metric:

ds2 = `2(dx0
2 + dx1

2) + ˜̀2(dx2
2 + dx3

2) = f(θ)2dθ2 + `2cos2(θ)dϕ2 + ˜̀2sin2(θ)dχ2

Zclass and the 1-loop determinants for the matter sector and the gauge sector are given by

Zclass = exp
(
−ikπ`˜̀Tr(σ2)

)
exp

(
4πiξ ˜̀Tr(σ)

)
, (2.3.76)

Z1-loop
matter =

∏
Φ

∏
ρ∈R

sb

(
iQ

2
(1− q)− ρiσ̂i

) , (2.3.77)

Z1-loop
gauge =

∏
α∈∆+

sinh(πbαiσ̂i) sinh(πb−1αiσ̂i)

(παiσ̂i)2
, (2.3.78)

where

b ≡
√

˜̀/` , Q ≡ b+ b−1 , σ̂ ≡
√
`˜̀σ .

We see that the results in two versions of squashed S3 are quite similar, but the main

di�erence is that in the second version of squashed S3 the squashing parameter b can be any

positive number, while in the �rst one b is �xed to be 1.
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We want to emphasize that not every squashed S3 with an SU(2)L×U(1)R isometry has the

feature b = 1; for instance, Ref. [47] has shown that by choosing a di�erent set of background

auxiliary �elds one can have a partition function of N = 2 supersymmetric Chern-Simons

theory with matter de�ned on a squashed S3 with SU(2)L × U(1)R isometry depending on

general values of b. The result of Ref. [47] appears to contradict the one of Ref. [46]. This

puzzle is clari�ed by Imamura and Yokoyama in Ref. [52]: One can �nd supercharges QL

and QR, and one has to preserve at least one of them to do the localization; the di�erence

between Ref. [46] and Ref. [47] is that in the localization they have di�erent choices of

preserved supercharges. Ref. [46] preserves QR, which leaves SU(2)L unchanged, hence it

is natural to expect a result similar to the one for the round S3 given in Refs. [44, 48, 49],

while Ref. [47] preserves QL, for which neither SU(2)L nor SU(2)R has degeneracy any more.

Moreover, to preserve either QL or QR, one has to turn on some background auxiliary �elds,

which can modify the theory and appear in the �nal result. Not surprisingly, di�erent choices

of supercharges and background auxiliary �elds can lead to di�erent results. Therefore, there

is no contradiction to have di�erent partition functions for the same squashed S3 with the

isometry SU(2)L × U(1)R. We will discuss this issue in more detail in the next subsection.

Now we return to the problem of localizing the N = 2 supersymmetric Chern-Simons-

Matter theory on the new class of squashed S3. On the new squashed S3, the Killing spinors

are given by Eq. (2.3.36), which satisfy the 3D Killing spinor equations Eq. (2.3.46) and

Eq. (2.3.47). The background gauge �eld is given by Eq. (2.3.48). Since the Killing spinors

and the background �eld formally obey the same equations as in Ref. [46], they do not

violate the supersymmetry of the original theory, we can use exactly the same method of

Ref. [46] to calculate the partition function. To do it, we only need to consider the 1-loop

determinants from the matter sector and the gauge sector, since the Chern-Simons term and

the Fayet-Iliopoulos term have only contributions from the classical �eld con�guration, which

remain the same as before. There are various ways to compute the 1-loop determinants. One

way is to �nd all the eigenmodes of the operators appearing in the quadratic terms of the

expansion around the background, and then calculate the determinants explicitly. Another

way, which is easier and used in Ref. [46], is to �nd the eigenmodes which are not paired

by supersymmetry. As shown in Eq. (2.1.3), we are only interested in the quotient of two

determinants. According to supersymmetry, most of the bosonic modes and the fermionic

modes are in pairs, hence their contributions in the determinants cancel each other. The net

e�ect is that only those modes not related by supersymmetry in pairs contribute to the �nal

result of the 1-loop determinant. We only need to take these modes into account.

Before we calculate the 1-loop determinants for the matter sector and the gauge sector,

let us �rst do some preparations. We rescale the Killing spinors (2.3.36) by some constant
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factors, and de�ne

ε ≡ 1√
A
ζα =

√
1

2

(
e
i
2

(ϕ+χ−η)

e
i
2

(ϕ+χ+η)

)
, ε̄ ≡ − i√

A
ζ̃ α̇ =

√
1

2

(
e−

i
2

(ϕ+χ+η)

−e− i
2

(ϕ+χ−η)

)
. (2.3.79)

The Killing spinors are Grassmann even, and we have:

ε̄ε = 1 , εε̄ = −1 ,

va ≡ ε̄γaε = εγaε̄ = (cosη, sinη, 0) ,

εγaε = (−i sinη, i cosη, −1) ei(ϕ+χ) ,

ε̄γaε̄ = (−i sinη, i cosη, 1) e−i(ϕ+χ) . (2.3.80)

where a = 1, 2, 3 and γa = σa. Moreover, vm (m = ϕ, χ, θ) satis�es

vmv
m = 1 , vmγ

mε̄ = −ε̄ , Dmv
m = 0 , vm∂

mf = 0 . (2.3.81)

As discussed in Ref. [46], for simplicity we use a Lagrangian for the localization in the mat-

ter sector, which di�ers from Lm mentioned in the previous subsection by a supersymmetry

exact term.

ε̄ε · Lreg = δε̄δε
(
ψ̄ψ − 2iφ̄σφ

)
⇒Lreg = Dmφ̄D

mφ+
2i(q − 1)

f
vmDmφ̄φ+ φ̄σ2φ+ iφ̄

(
σ

f
+D

)
φ+

2q2 − 3q

2f 2
φ̄φ+

q

4
Rφ̄φ

− iψ̄γmDmψ + iψ̄σψ − 1

2f
ψ̄ψ +

q − 1

f
ψ̄γmvmψ + iψ̄λφ− iφ̄λ̄ψ + F̄F , (2.3.82)

where vm ≡ ε̄γmε. Then for the matter sector the kinetic operators are

∆φ = −DmD
m − 2i(q − 1)

f
vmDm + σ2 +

2q2 − 3q

2f 2
+
qR

4
, (2.3.83)

∆ψ = −iγmDm + iσ − 1

2f
+
q − 1

f
γmvm . (2.3.84)

Moreover, it can be checked explicitly that

1. Suppose Ψ is a spinor eigenmode with eigenvalue M , then ε̄Ψ is a scalar eigenmode

with eigenvalue M(M − 2iσ).

2. Suppose Φ is a scalar eigenmode with eigenvalue M(M − 2iσ), then

Ψ1 ≡ εΦ and Ψ2 ≡ iγmεDmΦ + iεσΦ− q

f
εΦ (2.3.85)

form an invariant subspace, i.e.,(
DψΨ1

DψΨ2

)
=

(
2iσ −1

−M(M − 2iσ) 0

) (
Ψ1

Ψ2

)
.

Hence, Ψ1 and Ψ2 contribute a factor M(2iσ −M) to the 1-loop determinant.
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Hence, there are two kinds of modes which are not paired by supersymmetry. The �rst one is

unpaired spinor eigenmodes, i.e., there are no corresponding physical scalar modes Φ with R-

charge −q as superpartners, instead the spinor eigenmodes Ψ with R-charge 1− q are paired
with some auxiliary scalar modes with R-charge 2 − q. The second one is missing spinor

eigenmodes, i.e., Ψ1 and Ψ2 shown above are not independent spinor eigenmodes, instead

they are proportional to each other.

For the unpaired spinor eigenmodes with R-charge 1− q there is

Ψ = ε̄G , (2.3.86)

where G is an auxiliary scalar with R-charge 2− q which is similar to the auxiliary �eld F .

Then we can expand the equation

∆ψΨ = MΨ

as

(−iγmDm + iσ − 1

2f
+
q − 1

f
γmvm)ε̄G = Mε̄G . (2.3.87)

Multiplying ε and ε̄ from the left and using the relations (2.3.80) we obtain{
cosη D1G+ sinη D2G = −i(M − iσ + q−2

f
)G ,

−i sinη D1G+ i cosη D2G+D3G = 0 .

We choose the Ansatz

G = G̃(θ)e−imϕ−inχ . (2.3.88)

Then the �rst equation leads to

M =
mu

A
+
n

A
+

2− q
A

(
1 + u

2

)
+ iσ , (2.3.89)

where A ≡
√
g2u2 + h2 is a positive constant. The second equation can be rewritten as

1

f

d

dη
G = − u sinη

A cosη

[
m+ (2− q)

(
1

2
+
Aη′

2Fu

)]
G+

cosη

A sinη

[
n+ (2− q)

(
1

2
+
Aη′

2F

)]
G .

(2.3.90)

We do not need to solve this equation, instead we only need to know that near η = 0 or π/2

the solution behaves as

G ∼ cosmη sinnη .

The regularity of G requires that there should be no singularity, i.e.,

m ≥ 0 , n ≥ 0 . (2.3.91)

For the missing spinor eigenmodes, due to Eq. (2.3.85) there is

Ψ2 = MΨ1 ⇒ (iγmεDmΦ + iεσΦ− q

f
εΦ) = MεΦ , (2.3.92)
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where Φ is a scalar with R-charge −q. Again, by multiplying ε̄ and ε on both sides and using

the relations (2.3.80) we obtain{
(cosη D1Φ + sinη D2Φ) = i(iσ − q

f
−M)Φ ,

−i sinη D1Φ + i cosη D2Φ−D3Φ = 0 .

We use the Ansatz

Φ = Φ̃(θ)e−imϕ−inχ . (2.3.93)

The �rst equation leads to

M =
mu

A
+
n

A
− q

A

(
1 + u

2

)
+ iσ , (2.3.94)

while the second equation can be brought into the form

1

f

d

dη
Φ =

u sinη

A cosη

[
m− q

(
1

2
+
Aη′

2Fu

)]
Φ− cosη

A sinη

[
n− q

(
1

2
+
Aη′

2F

)]
Φ . (2.3.95)

The regularity of Φ requires that

m ≤ 0 , n ≤ 0 . (2.3.96)

I.e.,

M =
−mu
A

+
−n
A
− q

A

(
1 + u

2

)
+ iσ , (m ≥ 0 , n ≥ 0). (2.3.97)

Combining Eq. (2.3.89) with Eq. (2.3.97) we obtain

det ∆ψ

det ∆φ

=
∏
m,n≥0

mu
A

+ n
A

+ 2−q
A

(
1+u

2

)
+ iσ

−mu
A
− n

A
− q

A

(
1+u

2

)
+ iσ

= −
∏
m,n≥0

mu+ n+ 1+u
2

+
(

(1− q)
(

1+u
2

)
+ iσA

)
mu+ n+ 1+u

2
−
(

(1− q)
(

1+u
2

)
+ iσA

)

= −
∏
m,n≥0

m
√
u+ n√

u
+ 1+u

2
√
u

+

(
(1− q)

(
1+u
2
√
u

)
+ iσA√

u

)
m
√
u+ n√

u
+ 1+u

2
√
u
−
(

(1− q)
(

1+u
2
√
u

)
+ iσA√

u

)
∼ −sb=1/

√
u

(
i(1− q)

(
1 + u

2
√
u

)
− σA√

u

)
. (2.3.98)

In the last step, we have applied a regularization, and sb(x) is the double sine function.
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For the gauge sector, to calculate the 1-loop determinant around the background we only

need to keep the Lagrangian to the quadratic order, which is given by

LYM = LB + LF , (2.3.99)

LB = Tr

(
1

4
F̃mnF̃

mn +
1

2
∂mϕ̃ ∂

mϕ̃− 1

2
[Am, σ][Am, σ]− i[Am, σ]∂mϕ̃

)
, (2.3.100)

LF = Tr

(
i

2
λ̄γmDmλ+

i

2
λ̄[σ, λ]− 1

4f
λ̄λ

)
, (2.3.101)

where F̃mn ≡ ∂mAn − ∂nAm, while σ and ϕ̃ denote the classical value and the quantum

�uctuation of the scalar �eld in the chiral multiplet respectively. It is explained in Ref. [46]

that the spinor eigenmodes Λ and the transverse vector eigenmodes A satisfy

MΛ =

(
iγmDm + iσα− 1

2f

)
Λ , (2.3.102)

MA = iσαA− ∗dA , (2.3.103)

where ∗ denotes the Hodge star operator de�ned by

∗ ∗ = 1 , ∗1 = e1e2e3 , ∗e1 = e2e3 , ∗e2 = e3e1 , ∗e3 = e1e2 . (2.3.104)

The spinor eigenmode and the transverse vector eigenmode are paired in the following way:

A = d(ε̄Λ) + (iM + σα)ε̄γmΛdxm , (2.3.105)

Λ = γmεAm . (2.3.106)

According to Eq. (2.3.105) the unpaired spinor eigenmodes should satisfy

d(ε̄Λ) + (iM + σα)ε̄γmΛdxm = 0 . (2.3.107)

We use the Ansatz

Λ = εΦ0 + ε̄Φ2 , (2.3.108)

where Φ0 and Φ2 are scalars of R-charges 0 and 2. If we apply the Ansatz

Φ0 = ϕ0(θ)e−imϕ−inχ , Φ2 = ϕ2(θ)e−i(m−1)ϕ−i(n−1)χ , (2.3.109)

and use the relations (2.3.80), then the θ-, ϕ- and χ-component of Eq. (2.3.107) become
∂θϕ0 = −(iM + σα)Fϕ2 ,

−imϕ0 + (iM + σα)(A
u

cos2η ϕ0 − iAu cosη sinη ϕ2) = 0 ,

−inϕ0 + (iM + σα)(Asin2η ϕ0 + iAsinη cosη ϕ2) = 0 ,
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where F is a function of θ de�ned in the metric (2.3.32). In order that ϕ0 and ϕ2 have

nonzero solutions, the second and the third equation lead to

(iM + σα)A sinη cosη

(
m+

n

u
+ i(iM + σα)

A

u

)
= 0 . (2.3.110)

Hence,

M =
mu

A
+
n

A
+ iσα . (2.3.111)

Inserting it back into the �rst equation above, we obtain

∂θϕ0 = −iF
(
mu

A
+
n

A

)
ϕ2 . (2.3.112)

To constrain m and n by regularity, we multiply Eq. (2.3.102) by ε from the left. Using the

relations (2.3.80) and the result of M in Eq. (2.3.111) we obtain(
1

f

d

dη
+
mu

A

sinη

cosη
− n

A

cosη

sinη

)
ϕ0 = 0 , (2.3.113)

which implies that

m ≥ 0 , n ≥ 0 . (2.3.114)

But form = n = 0 orM = iσα, ϕ0 and consequently Φ0 are unnormalizable, hencem = n = 0

should be excluded.

From Eq. (2.3.106) the missing spinor should satisfy

Aaγaε = 0 . (2.3.115)

An Ansatz obeying this relation is

A1 = iY sinη , A2 = −iY cosη , A3 = Y , (2.3.116)

where

Y = y(θ)e−imϕ−inχ . (2.3.117)

Inserting this Ansatz into Eq. (2.3.103), we obtain for the e3- and e1-component:

MY = iσαY +
nY

A
+
muY

A
, (2.3.118)

1

fy

dy

dη
−
(
mu

A
+

1

f

)
sinη

cosη
+

(
n

A
+

1

f

)
cosη

sinη
= 0 . (2.3.119)

The �rst equation gives

M =
mu

A
+
n

A
+ iσα , (2.3.120)
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while due to regularity the second equation determines

m ≤ −1 , n ≤ −1 . (2.3.121)

I.e.,

M =
(−m− 1)u

A
+
−n− 1

A
+ iσα , (m ≥ 0 , n ≥ 0). (2.3.122)

Taking both Eq. (2.3.111) and Eq. (2.3.122) into account, we obtain the 1-loop determinant

for the gauge sector: ∏
α∈∆

1

iσα

∏
m,n≥0

mu
A

+ n
A

+ iσα
(−m−1)u

A
+ −n−1

A
+ iσα

=
∏
α∈∆+

∏
n>0

(
n2u2

A2
+ (σα)2

)(
n2

A2
+ (σα)2

)

∼
∏
α∈∆+

u sinh
(
πAσα
u

)
sinh(πAσα)

(πAσα)2
, (2.3.123)

where in the last step we drop a constant factor and use the following formula:

sinh(z) = z
∞∏
n=1

(
1 +

z2

n2π2

)
. (2.3.124)

The denominator in Eq. (2.3.123) will cancel the Vandermonde determinant from the integral

measure in the partition function, as explained in Ref. [46], hence it does not appear in the

�nal expression of the partition function.

Comparing Eq. (2.3.98) and Eq. (2.3.123) with the results in Ref. [46], we �nd similar

features for the metric with U(1) × U(1) isometry. The double sine function sb(x) entering

the 1-loop determinant of the matter sector has b =
√
u, which is in general not equal to

1. Similar modi�cation happens also in the gauge sector. When u → 1, A → L, the results

return to the ones for the round S3, which are the same as the ones given in Refs. [48, 49].

Let us summarize our �nal results in following. We construct a new class of squashed

S3 with U(1)L × U(1)R isometry. The N = 2 supersymmetric Chern-Simons theory with

matter de�ned in Refs. [48, 46, 49] can be localized on this new class of squashed S3, and

the partition function is

Z =
1

|W|

∫
drσZclass Z

1-loop
gauge Z

1-loop
matter , (2.3.125)

where

Zclass = exp

(
−ikπA

2

u
Tr(σ2)

)
exp

(
4πiξ

A

u
Tr(σ)

)
, (2.3.126)
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Z1-loop
gauge =

∏
α∈∆+

u sinh

(
πAαiσi
u

)
sinh(πAαiσi) , (2.3.127)

Z1-loop
matter =

∏
Φ

∏
ρ∈R

sb=1/
√
u

(
i(1− q)

(
1 + u

2
√
u

)
− Aρiσi√

u

) . (2.3.128)

The advantage of our results is that one can construct plenty of new metrics that share the

same structure of partition functions, and without further calculations one can immediately

read o� the parameters relevant to the partition functions directly from the metrics.

2.3.5 Squashed S3 with SU(2)× U(1) Isometry

Solving for Killing Spinors and Auxiliary Fields

Following the path which is summarized in the previous subsection, we solve for the Killing

spinors and the auxiliary �elds for the squashed S3 with SU(2) × U(1) isometry. Starting

from the metric in the left-invariant frame (C.0.18)

ds2 =
`2

v2
µ1µ1 + `2µ2µ2 + `2µ3µ3 ,

as discussed in Appendix C, we can �rst rewrite it into the form of Eq. (C.0.25):

ds2 =
1

4v2
(dψ + adz + ādz̄)2 + c2dz dz̄ ,

where we omit the length scale ` for simplicity, and consequently it will be omitted in the aux-

iliary �elds, but we will bring it back in the end. Comparing this expression with Eq. (2.3.29),

we can read o�

Ω =
1

2v
. (2.3.129)

We choose the Killing spinors to be

ζα =
√
s

(
1

0

)
, ζ̃α =

Ω√
s

(
0

1

)
=

1

2v
√
s

(
0

1

)
, (2.3.130)

and use the matrix

εαβ =

(
0 1

−1 0

)
. (2.3.131)

to raise the indices of ζα and ζ̃α:

ζα =
√
s

(
0

−1

)
, ζ̃α =

1

2v
√
s

(
1

0

)
. (2.3.132)
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Next, we calculate Km in the working frame (ê1, ê2, ê3) (C.0.26) (C.0.27). For practical

reason, we will mainly work in this frame. Only in the end, we will bring the �nal results

into the left-invariant frame (C.0.19). In the following, without special mentioning the index

m = 1, 2, 3 denotes the frame (ê1, ê2, ê3) (C.0.26) (C.0.27).

K1 = ζγ1ζ̃ =
1

2v
,

K2 = ζγ2ζ̃ = 0 ,

K3 = ζγ3ζ̃ = 0 . (2.3.133)

In the coordinates (X, Y, ψ) (C.0.13), Km are given by

KX = − 1

4v2
· X

2 + Y 2 − 1

X2 + Y 2 + 1
· Y

X2 + Y 2
,

KY =
1

4v2
· X

2 + Y 2 − 1

X2 + Y 2 + 1
· X

X2 + Y 2
,

Kψ =
1

4v2
, (2.3.134)

while Km have a relatively simple form:

KX = 0 , KY = 0 , Kψ = 1 . (2.3.135)

They satisfy

KmKm =
1

4v2
= Ω2 . (2.3.136)

ηm can be obtained immediately

ηm =
1

Ω
Km = 2vKm , (2.3.137)

i.e.,

η1 = 1 , η2 = η3 = 0 . (2.3.138)

Then

Φm
n ≡ εm npη

p = εm n1η
1 = εm n1 . (2.3.139)

Similarly,

P1 = ζγ1ζ = 0 ,

P2 = ζγ2ζ = s ,

P3 = ζγ3ζ = −is ,
(2.3.140)
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and

PX =
s

1 +X2 + Y 2
,

PY =
−is

1 +X2 + Y 2
,

Pψ = 0 . (2.3.141)

Since

Pzdz + Pz̄dz̄ = Pz(dX + idY ) + Pz̄(dX − idY ) = (Pz + Pz̄)dX + i(Pz − Pz̄)dY , (2.3.142)

there is

PX = Pz + Pz̄ , PY = i(Pz − Pz̄) , (2.3.143)

or equivalently

Pz =
1

2
(PX − iPY ) , Pz̄ =

1

2
(PX + iPY ) . (2.3.144)

Then in this case

p ≡ Pz̄ =
1

2
(PX + iPY ) =

s

1 +X2 + Y 2
. (2.3.145)

Plugging it into the de�nition of s given by Eq. (2.3.25), we obtain

1√
2
pg−

1
4

√
Ω = s . (2.3.146)

Hence, the results are consistent, and we still have the freedom to choose the function s.

It is straightforward to calculate Vm, H and Wm:

V 1 =
2

v
+ κ , V 2 = 0 , V 3 = 0 , (2.3.147)

H =
i

v
+ iκ , (2.3.148)

W1 = − 1

2v
, W2 = 0 , W3 = 0 . (2.3.149)

To calculate Am, we �rst calculate Âm:

Âm ≡
1

8
Φm

n∂nlogg −
i

2
∂mlogs , (2.3.150)

which is valid only in the coordinates (z, z̄, ψ) (C.0.15). Using the de�nition of Φm
n we

obtain

Φz
z = −i , Φz̄

z̄ = i , Φz
z̄ = Φz̄

z = 0 , (2.3.151)

and

Φn
m = −Φm

n . (2.3.152)
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Therefore,

Âz = − i
2
· z̄

1 + zz̄
− i

2
∂zlogs ,

Âz̄ =
i

2
· z

1 + zz̄
− i

2
∂z̄logs ,

Âψ = − i
2
∂ψlogs . (2.3.153)

Then we obtain

Â1 = Âψe
ψ
1 = −iv∂ψlogs ,

Â2 = Âze
z
2 + Âz̄e

z̄
2 + Âψe

ψ
2

=
i

2
(z − z̄)

[
1 +

i

2
(∂ψlogs)

zz̄ − 1

zz̄

]
− i

2
(1 + zz̄)(∂zlogs+ ∂z̄logs)

=
i

2
(z − z̄)

[
1 +

i

2
(∂ψlogs)

zz̄ − 1

zz̄

]
− i

2
(1 + zz̄)∂X logs ,

Â3 =
1

2
(z + z̄)

[
1 +

i

2
(∂ψlogs)

zz̄ − 1

zz̄

]
+

1

2
(1 + zz̄)(∂zlogs− ∂z̄logs)

=
1

2
(z + z̄)

[
1 +

i

2
(∂ψlogs)

zz̄ − 1

zz̄

]
− i

2
(1 + zz̄)∂Y logs , (2.3.154)

and

A1 = Â1 + V1 −
i

2
Φ1

nVn −
i

2
η1H +W1 +

3

2
κη1

= −iv∂ψlogs+
2

v
− i

2

i

v
− 1

2v
+

3

2
κ

= −iv∂ψlogs+
2

v
+

3

2
κ

A2 = Â2 + V2 −
i

2
Φ2

nVn −
i

2
η2H +W2 +

3

2
κη2

=
i

2
(z − z̄)

[
1 +

i

2
(∂ψlogs)

zz̄ − 1

zz̄

]
− i

2
(1 + zz̄)∂X logs ,

A3 = Â3 + V3 −
i

2
Φ3

nVn −
i

2
η3H +W3 +

3

2
κη3

=
1

2
(z + z̄)

[
1 +

i

2
(∂ψlogs)

zz̄ − 1

zz̄

]
− i

2
(1 + zz̄)∂Y logs , (2.3.155)

where

V1 =
2

v
, H =

i

v
.

Our working frame (ê1, ê2, ê3) (C.0.26) is not the left-invariant frame (e1, e2, e3) (C.0.19).

To transform between di�erent frames, it is convenient to �rst consider the θ-, φ- and ψ-

component of the �elds, because di�erent frames all have the same form of the metric (C.0.23).
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Let us �rst calculate Vµ and Aµ (µ = θ, φ, ψ), then transform them into other frames. Vµ
can be obtained very easily:

Vθ = V1ê
1
θ = 0 ,

Vφ = V1ê
1
φ =

(
2

v
+ κ

)
1

2v
cosθ ,

Vψ = V1ê
1
ψ =

(
2

v
+ κ

)
1

2v
. (2.3.156)

Aµ can also be calculated:

Aθ =
i

2sinθ
(X∂X logs+ Y ∂Y logs) ,

Aφ = (
1

2
+

1

v2
+

3κ

4v
)cosθ +

1

2
+
i

2
(Y ∂X logs−X∂Y logs) ,

Aψ = − i
2
∂ψlogs+

1

v2
+

3κ

4v
, (2.3.157)

where κ should satisfy

Km∂mκ = 0 . (2.3.158)

Obeying this constraint it seems that we can choose any κ and s, but as in Refs. [46, 47] we do

not want to turn on the 2- and 3-component of Vm and Am in the left-invariant frame (C.0.19),

because the deformation of the metric happens only in the 1-direction. For this reason we

always set Aθ = 0, because it is contributed only from A2 and A3 in the left-invariant frame

(C.0.19). Hence, if A2 = A3 = 0, Aθ should also vanish.

Aθ = 0 ⇒ X∂X logs+ Y ∂Y logs = 0 . (2.3.159)

The solution to this equation is still quite general, which is

logs = f(ψ) · g
(
X

Y

)
, (2.3.160)

where f(x) and g(x) can be any regular functions. A possible solution to A2 = 0 and A3 = 0

is

logs = −i arctan
(
Y

X

)
+ iψ ⇒ s = ei(ψ−φ) . (2.3.161)

With this choice there are

Aθ = 0 ,

Aφ = (
1

2
+

1

v2
+

3κ

4v
)cosθ ,

Aψ =
1

2
+

1

v2
+

3κ

4v
. (2.3.162)
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Transforming Vm and Am given above into the left-invariant frame (C.0.19), we obtain:

V1 =
2

v
+ κ ,

V2 = V3 = 0 ,

A1 = v +
2

v
+

3κ

2
,

A2 = A3 = 0 , (2.3.163)

while H has the form:

H =
i

v
+ iκ . (2.3.164)

Now we can try to reproduce the choices of the auxiliary �elds in Refs. [46, 47] using our

results (2.3.163) (2.3.164) obtained above. Ref. [46] made a special choice

κ = −2

v
, (2.3.165)

hence setting ` = 1 they had

A1 = v − 1

v
, (2.3.166)

or equivalently

Aφ = (
1

2
− 1

2v2
)cosθ , Aψ =

1

2
− 1

2v2
, (2.3.167)

and all the other components of Vm and Am vanish.

To reproduce the results in Ref. [47], things are a little involved, because there are no

obvious solutions which can satisfy the conditions

H =
i

v
, V1 = A1 = −2iu

v
,

where u ≡
√
v2 − 1. We have to consider other freedom in the solution. The auxiliary �elds

are given by Eqs. (2.3.163)-(2.3.164) and the Killing spinor is given by Eq. (2.3.130):

ζα =
√
s

(
1

0

)
, ζ̃α =

Ω√
s

(
0

1

)
,

where

s = ei(ψ−φ) , Ω =
1

2v
.

Suppose that we have obtained a set of solutions to the Killing spinor equations (2.3.19), i.e.

Killing spinors and corresponding auxiliary �elds. Then we can rotate the Killing spinors by

a constant angle Θ in the following way:

ζ → eiγ1Θζ , ζ̃ → e−iγ1Θζ̃ . (2.3.168)
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In order that the Killing spinor equations (2.3.19) still hold, the auxiliary �elds have to be

shifted correspondingly:

H → H ′ = H cos(2Θ)− V1 sin(2Θ)− i ω2
31(1− cos(2Θ))

=
i

v
+ iκ cos(2Θ)− (

2

v
+ κ)sin(2Θ) ,

V1 → V ′1 = V1cos (2Θ) +H sin(2Θ) + i ω2
31sin(2Θ)

= (
2

v
+ κ)cos(2Θ) + iκ sin(2Θ) ,

A1 → A′1 = A1 −
i

2
(H ′ −H) + (V ′1 − V1)

= v + (
2

v
+

3

2
κ)cos(2Θ) + (

i

v
+

3i

2
κ)sin(2Θ) . (2.3.169)

where ω2
31 is one of the spin connections (C.0.21) in the left-invariant frame (C.0.19). From

the expressions above, we see that the e�ects of κ and Θ are not the same, i.e., in general

one cannot always make Θ = 0 by choosing an appropriate κ. So we still have the freedom

to choose Θ and κ, where Θ is in general complex. Moreover, until now we have omitted

the length scale `, and actually rescaling ` also leaves the Killing spinor equations (2.3.19)

invariant, hence it is a symmetry. Therefore, by choosing Θ, κ and ` we can make the

conditions required by Ref. [47] valid simultaneously:

V ′1 = A′1 , (2.3.170)

V ′1
H ′

= −2u , (2.3.171)

H ′ =
i

v`0

, (2.3.172)

where u ≡
√
v2 − 1. The constraints above have a solution:

κ = −5v + 7v3 − 4v5 , (2.3.173)

` = `0(1− 2v2) , (2.3.174)

Θ = arctan

(
2i+ iκv − 2

√
−1− κv − v4

κv − 2v2

)
, for 1− 2v2 > 0 ;

= arctan

(
2i+ iκv + 2

√
−1− κv − v4

κv − 2v2

)
, for 1− 2v2 < 0 , (2.3.175)

where ` is the length scale that appears in the solution from the formalism of Ref. [16], while

`0 is the length scale in the �nal expression. Apparently, v =
√

2
2

could be a singularity,

but actually the results can be continued analytically to v =
√

2
2
. Hence, it is not a real
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singularity. With this choice of parameters, we �nd:

A1 = V1 = −2iu

v`0

, (2.3.176)

H =
i

v`0

, (2.3.177)

where

u ≡
√
v2 − 1 , ` = `0(1− 2v2) . (2.3.178)

This is exactly the choice of the background auxiliary �elds in Ref. [47].

Localization

To preserve the supersymmetry given by Eq. (2.3.50) and Eq. (2.3.51), the following BPS

equations should be satis�ed:

Qψ = 0 , Qψ̃ = 0 , Qλ = 0 , Qλ̃ = 0 . (2.3.179)

In Appendix D, we show that these BPS equations lead to the classical solution

aµ = −σCµ + a(0)
µ , ∂µσ = 0 , D = −σH , all other �elds = 0 , (2.3.180)

where a
(0)
µ is a �at connection, and Cµ appears in the new minimal supergravity as an Abelian

gauge �eld, which satis�es V µ = −iεµνρ∂νCρ and still has the background gauge symmetry

in this case:

Cµ → Cµ + ∂µΛ(C) . (2.3.181)

On the squashed S3, a
(0)
µ can be set to 0 by the gauge transformation. Moreover, since we

have obtained Vµ before, we can also solve for Cµ, but the solution is not unique due to

the background gauge symmetry (2.3.181). In the frame (C.0.19), we can set C1 = 0 by a

background gauge transformation (2.3.181). Hence, we have

a1 = 0 ⇒ aµV
µ = 0 ⇒ εµνρaµ∂νaρ ∝ εµνρaµ∂νCρ ∝ aµV

µ = 0 ,

εµνρaµ∂ν(Aρ −
1

2
Vρ) ∝ εµνρaµ∂νηρ ∝ aµ(V µ − κηµ) = 0 ,

(2.3.182)

which will be relevant for later computations. These classical solutions give classical contri-

butions to the partition function. We also need to consider the quantum �uctuation around

these classical solutions, which will give 1-loop determinants to the partition function.

The supersymmetry transformations introduced in the previous section is not nilpotent,

and it is not obvious whether the supersymmetry invariant Lagrangians are also supersymme-

try exact. It is more convenient to use a subset of the whole supersymmetry transformations
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to do the localization. In this thesis we choose the subset to be the transformations without

tilde, i.e. δζ-transformations. For the matter sector the δζ transformations are

Qφ ≡ δζφ =
√

2ζψ ,

Qψ ≡ δζψ =
√

2ζF ,

QF ≡ δζF = 0 ,

Qφ̃ ≡ δζ φ̃ = 0 ,

Qψ̃ ≡ δζψ̃ =
√

2i(z − qσ − rH)ζφ̃+
√

2iγµζDµφ̃ ,

QF̃ ≡ δζF̃ =
√

2i(z − qσ − (r − 2)H)ζψ̃ + 2iqζλφ̃−
√

2iDµ(ζγµψ̃) , (2.3.183)

while for the gauge sector the δζ transformations are

Qaµ ≡ δζaµ = −iζγµλ̃ ,

Qσ ≡ δζσ = −ζλ̃ ,

Qλ ≡ δζλ = iζ(D + σH)− i

2
εµνργρζfµν − γµζ(i∂µσ − Vµσ) ,

Qλ̃ ≡ δζ λ̃ = 0 ,

QD ≡ δζD = ∇µ(ζγµλ̃)− iVµ(ζγµλ̃)−H(ζλ̃) + ζ[λ̃, σ] . (2.3.184)

From the supersymmetry algebra (2.3.54) we see that the δζ-transformations are nilpotent.

Then we can choose some δζ-exact terms to localize the theory discussed in the previous

section. For the matter sector we choose

Vmat ≡ (Qψ̃)†ψ̃ + (Qψ)†ψ (2.3.185)

⇒ QVmat = (Qψ̃)†(Qψ̃) + (Qψ)†(Qψ)− ψ̃(Q(Qψ̃)†) +Q(Qψ)†ψ (2.3.186)

⇒ Q(QVmat) = 0 . (2.3.187)

For the gauge sector we choose

Vg ≡ (Qλ)†λ+ (Qλ̃)†λ̃ = (Qλ)†λ (2.3.188)

⇒ QVg = (Qλ)†(Qλ) +Q(Qλ)†λ (2.3.189)

⇒ Q(QVg) = 0 . (2.3.190)

Precisely speaking, both QVmat and QVg will appear in the Lagrangian of the theory as

Q-exact terms, and both of them contain the bosonic part and the fermionic part, i.e.,

QVmat = (QVmat)B + (QVmat)F , QVg = (QVg)B + (QVg)F , (2.3.191)
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where

(QVmat)B ≡ (Qψ̃)†(Qψ̃) + (Qψ)†(Qψ) ,

(QVmat)F ≡ −ψ̃(Q(Qψ̃)†) +Q(Qψ)†ψ ,

(QVg)B ≡ (Qλ)†(Qλ) ,

(QVg)F ≡ Q(Qλ)†λ . (2.3.192)

For later convenience, we employ a trick similar to Ref. [53] to rewrite theQ-transformations

in the matter sector and QVmat in terms of a few operators. We will see that with the help

of these operators the cancellation of the contributions from di�erent modes to the partition

function will be transparent.

Qφ = −
√

2Sc∗1 ψ ,

Qψ =
√

2S1F ,

QF = 0 ,

Qφ̃ = 0 ,

Qψ̃ =
√

2(Sc2φ)† ,

QF̃ =
√

2(S∗2 ψ̃
†)† (2.3.193)

where φ† ≡ φ̃, and the operators S1, S2, S
c
1, S

c
2 and their corresponding adjoint operators S∗1 ,

S∗2 , S
c∗
1 , Sc∗2 are given by

S1Φ ≡ Φζ ,

S2Φ ≡ −i
[
(z − qσ − (r − 2)H)Φ− /DΦ

]
ζ ,

Sc1Φ ≡ Φζ† ,

Sc2Φ ≡ iζ†
[
(z̄ − qσ̄ − rH̄) + /D

]
Φ ,

S∗1Ψ ≡ ζ†Ψ ,

S∗2Ψ ≡ iζ†
[
(z̄ − qσ̄ − (r − 1

2
)H̄)− i

2
Vµγ

µ + /D

]
Ψ ,

Sc∗1 Ψ ≡ ζΨ ,

Sc∗2 Ψ ≡ −
[
i(z − qσ − (r − 3

2
)H)ζ +

1

2
Vµγ

µζ + iζ /D

]
Ψ (2.3.194)

where Φ denotes an arbitrary bosonic �eld, while Ψ denotes an arbitrary fermionic �eld.

Direct computation shows that these operators satisfy the following orthogonality conditions:

S∗1S
c
1 = 0 = Sc∗1 S1 , S∗2S

c
2 = 0 = Sc∗2 S2 . (2.3.195)

The derivation of the second relation is given in Appendix E. Moreover, the following relation

turns out to be crucial later:

S2S
∗
1 + Sc2S

c∗
1 = S1S

∗
2 + Sc1S

c∗
2 − 2iRe(z − qσ)e−2ImΘΩ , (2.3.196)
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where Θ is the angle that appears in the rotation of the Killing spinor (2.3.168). We prove

the relation above in Appendix E. With these operators, one can show that

φ̃∆φφ ≡ (QVmat)B = 2φ̃Sc∗2 S
c
2φ ,

ψ̃∆ψψ ≡ (QVmat)F = 2ψ̃(S2S
∗
1 + Sc2S

c∗
1 )ψ . (2.3.197)

Hence,

∆ψ = 2(S2S
∗
1 + Sc2S

c∗
1 ) , ∆φ = 2Sc∗2 S

c
2 . (2.3.198)

For the gauge sector, instead of de�ning operators as in the matter sector, we can do direct

computations, and the results are

(QVg)B = e−2ImΘΩ · Tr
[
−1

2
fµνf

µν − (Dµσ)(Dµσ) + (D + σH)2

]
, (2.3.199)

(QVg)F = e−2ImΘΩ · Tr
[
2iλ̃ /Dλ+ 2i[λ̃, σ]λ− iH(λ̃λ)− V1(λ̃λ)− 2Vµ(λ̃γµλ)

]
. (2.3.200)

Classical Contribution

As discussed before, by inserting the classical solutions (2.3.180) of the localization condi-

tion (2.3.179) into the Lagrangians of the theory (2.3.56)-(2.3.60), one obtains the classical

contributions to the partition function. One can see immediately that LYM and Lmat do

not have classical contributions to the partition function. Due to Eq. (2.3.182), the classical

contributions from other Lagrangians also simplify to be

exp

(
i

∫
d3x
√
gLFI

)
= exp

(
iξ

∫
d3x
√
gTr[D − σH]

)
= exp

(
−4iπ2ξ`3

v
H Tr(σ)

)
, (2.3.201)

exp

(
i

∫
d3x
√
gLgg

)
= exp

(
ikgg
4π

∫
d3x
√
gTr[−2Dσ]

)
= exp

(
iπkgg`

3

v
H Tr(σ2)

)
, (2.3.202)

exp

(
i

∫
d3x
√
gLgr

)
= exp

(
ikgr
2π

∫
d3x
√
gTr

[
−DH +

1

4
σ(R− 2V µVµ − 2H2)

])

= exp

(
iπkgr`

3

2v
(H2 +

1

2
R− VµV µ)Tr(σ)

)
, (2.3.203)

whereH and Vµ are in general the auxiliary �elds after shifting which are given by Eq. (2.3.169),

and R = 8
`2
− 2

`2v2 is the Ricci scalar of the squashed S3 considered in this thesis.
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1-Loop Determinant for Matter Sector

The key step of localization is to calculate the 1-loop determinants for the gauge sector and

the matter sector. There are a few methods available to do this step:

• Use the index theorem;

• Expand the Laplacians into spherical harmonics;

• Consider the modes that are not paired and consequently have net contributions to the

partition function.

All three methods have been used in many papers. In our case, it is more convenient to use

the third one, which originated in Ref. [46] and has been done in a more systematic way in

Ref. [53]. In this and next subsection, I will follow closely the method in Ref. [53] and apply

it to our case of interest.

The basic idea is to �rst �nd out how the modes are paired, since paired modes cancel out

exactly and do not have contributions to the partition function. If in a pair the fermionic

partner is missing, which is called missing spinor, then the bosonic partner has a net contri-

bution to the denominator of the 1-loop determinant in the partition function. If in a pair

the bosonic partner is missing, then the fermionic partner is called unpaired spinor, and has

a net contribution to the numerator of the 1-loop determinant in the partition function.

Starting from Eq. (2.3.198), we assume that

1

2
∆φΦ = Sc∗2 S

c
2Φ = µΦ , (2.3.204)

and de�ne

Ψ1 ≡ Sc1Φ , Ψ2 ≡ Sc2Φ , (2.3.205)

then using Eq. (2.3.198) and Eq. (2.3.196) we obtain

1

2
∆ψΨ1 = (S2S

∗
1 + Sc2S

c∗
1 )Sc1Φ

= Sc2S
c∗
1 S

c
1Φ

= −e−2ImΘΩΨ2 , (2.3.206)

1

2
∆ψΨ2 =

[
S1S

∗
2 + Sc1S

c∗
2 − 2iRe(z − qσ)e−2ImΘΩ

]
Sc2Φ

= Sc1µΦ− 2iRe(z − qσ)e−2ImΘΩSc2Φ

= µΨ1 − 2iAe−2ImΘΨ2 , (2.3.207)

where A ≡ Re(z − qσ) · Ω. I.e.,

∆ψ

(
Ψ1

Ψ2

)
=

(
0 −e−2ImΘΩ

µ −2iAe−2ImΘ

)
·

(
Ψ1

Ψ2

)
. (2.3.208)
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The eigenvalues of ∆ψ in this subspace are

λ1,2 = e−2ImΘ
[
−iA±

√
−A2 − µ̃

]
, (2.3.209)

where µ̃ ≡ µΩe2ImΘ. Suppose that µ̃ = −M2 + 2iAM , then

λ1,2 = −e−2ImΘM , e−2ImΘ(M − 2iA) . (2.3.210)

In other words, if there exists a bosonic mode Φ satisfying

∆φΦ = µΦ =
1

Ω
e−2ImΘµ̃Φ

=
1

Ω
e−2ImΘ(−M)(M − 2iA)Φ , (2.3.211)

there are corresponding fermionic modes Ψ1 and Ψ2, which span a subspace, and ∆ψ has

eigenvalues λ1,2 with

λ1 · λ2 = e−4ImΘ(−M)(M − 2iA) . (2.3.212)

To make the modes paired, we can rescale the bosonic mode Φ appropriately, or equivalently

de�ne

∆̂φ ≡ e−2ImΘΩ∆φ , (2.3.213)

then

∆̂φΦ = e−4ImΘ(−M)(M − 2iA)Φ . (2.3.214)

Therefore, if there are no missing spinors or unpaired spinors, the bosonic modes and the

fermionic modes cancel out exactly.

Conversely, if there exists a fermionic mode Ψ satisfying

∆ψΨ = −Me−2ImΘΨ , (2.3.215)

then using Eq. (2.3.196) we can rewrite the condition above as

S1S
∗
2Ψ + Sc1S

c∗
2 Ψ = (2iA−M)e−2ImΘΨ , (2.3.216)

where recall A ≡ Re(z−qσ)·Ω. Acting Sc∗1 from the left and using the orthogonality condition

(2.3.195), we obtain

Sc∗2 Ψ = − 1

Ω
(2iA−M)Φ . (2.3.217)

Acting Sc∗2 from left on the equation

∆ψΨ = (S2S
∗
1 + Sc2S

c∗
1 )Ψ = −Me−2ImΘΨ , (2.3.218)

using the relation (2.3.217) we just obtained, we �nd

∆φΦ = Sc∗2 S
c
2(Sc∗1 Ψ) = − 1

Ω
e−2ImΘM(M − 2iA)Φ . (2.3.219)
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I.e., for a fermionic mode Ψ, the corresponding bosonic mode can be constructed as Φ = Sc∗1 Ψ.

With the preparation above, we can consider the unpaired spinors and the missing spinors.

For the unpaired spinor, there is no corresponding bosonic partner, i.e.,

Φ = Sc∗1 Ψ = 0 .

Based on the orthogonality condition (2.3.195) there should be

Ψ = S1F . (2.3.220)

Then

∆ψΨ = S2S
∗
1Ψ = MψΨ

⇒ S2S
∗
1S1F = MψS1F

⇒ e−2ImΘΩS2F = MψS1F

⇒ e−2ImΘΩS∗1S2F = MψS
∗
1S1F

⇒ Mψ = ie−2ImΘΩ[D1 − z + qσ + (r − 2)H] . (2.3.221)

For the missing spinor, Ψ2 ∝ Ψ1. Suppose that

Ψ2 = aΨ1 , (2.3.222)

where a is a constant. Then from Eq. (2.3.208) we know that

∆ψΨ2 = a∆ψΨ1 = (µ− 2iAe−2ImΘa)Ψ1 (2.3.223)

∆ψΨ1 = −e−2ImΘΩaΨ1 (2.3.224)

⇒ ∆ψΨ1

Ψ1

=
µ− 2iAe−2ImΘa

a
= −e−2ImΘΩa

⇒ µ = 2iAe−2ImΘa− e−2ImΘΩa2 =
1

Ω
e−2ImΘ(−M2 + 2iAM)

⇒ a =
M

Ω
. (2.3.225)

Hence,

Ψ2 =
M

Ω
Ψ1 , (2.3.226)

i.e.,

Sc2Φ =
M

Ω
Sc1Φ . (2.3.227)

Acting Sc∗1 from left, we obtain

Sc∗1 S
c
2Φ =

Mφ

Ω
Sc∗1 S

c
1Φ

⇒ − i(z̄ − qσ̄ − rH̄)(ζ†ζ)φ− i(ζ†γµζ)Dµφ = −Mφ

Ω
(ζ†ζ)φ

⇒ Mφ = Ω[iD1 + i(z̄ − qσ̄ − rH̄)] . (2.3.228)

48



To proceed, we have to �gure out the eigenvalues of the operator D1 in Mψ (2.3.221) and

Mφ (2.3.228). Similar to Ref. [47], we use

|s, sz〉 with sz = −s, −s+ 1, · · · , s− 1, s

as the spin basis, which transforms in the (0, s) representation of SU(2)L × SU(2)R and

|j, m′, m〉 = Y j
m′,m

as the orbital basis, which transforms in the (j, j) representation of SU(2)L×SU(2)R, where

j is the azimuthal quantum number, while m′ and m are the magnetic quantum numbers for

SU(2)L and SU(2)R respectively, and they take values in the following ranges:

j = 0,
1

2
, 1, · · · ;

m′ = −j, −j + 1, · · · , j − 1, j ;

m = −j, −j + 1, · · · , j − 1, j . (2.3.229)

For a group element g ∈ SU(2), a �eld Φ(g) can be expanded as

Φ(g) =
∑

j,m′,m, sz

Φj
m′,m, sz

|j, m′, m〉 ⊗ |s, sz〉 . (2.3.230)

The covariant derivative on S3 can be written as

∇(0) = µ1(2L1 − S1) + µ2(2L2 − S2) + µ3(2L3 − S3) , (2.3.231)

where Lm denote the orbital angular momentum operators on SU(2)R, while Sm are the spin

operators. Similarly, it can also be written in the right-invariant frame as

∇(0) = µ̃ 1(2L′1 + S1) + µ̃ 2(2L′2 + S2) + µ̃ 3(2L′3 + S3) , (2.3.232)

where L′m denote the orbital angular momentum operators on SU(2)L, while Sm are still the

spin operators. More generally, we can write the covariant derivative D(0) as a combination

of the expressions (2.3.231) and (2.3.232):

∇(0) = a
[
µ1(2L1 − S1) + µ2(2L2 − S2) + µ3(2L3 − S3)

]
+ (1− a)

[
µ̃ 1(2L′1 + S1) + µ̃ 2(2L′2 + S2) + µ̃ 3(2L′3 + S3)

]
, (2.3.233)
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where a is an arbitrary constant. For the squashed S3 with SU(2)×U(1) isometry given by

the metric (C.0.18), the covariant derivative also has di�erent expressions as follows:

∇ = µ1

(
2L1 − (2− 1

v2
)S1

)
+ µ2(2L2 − 1

v
S2) + µ3(2L3 − 1

v
S3) (2.3.234)

= µ̃ 1

(
2L′1 + (2− 1

v2
)S1

)
+ µ̃ 2(2L′2 +

1

v
S2) + µ̃ 3(2L′3 +

1

v
S3) (2.3.235)

= a

[
µ1

(
2L1 − (2− 1

v2
)S1

)
+ µ2(2L2 − S2) + µ3(2L3 − S3)

]

+ (1− a)

[
µ̃ 1

(
2L′1 + (2− 1

v2
)S1

)
+ µ̃ 2(2L′2 + S2) + µ̃ 3(2L′3 + S3)

]
, (2.3.236)

where a again can be an arbitrary constant.

Since the squashed S3 that we consider here has SU(2)L×U(1)R isometry, L′mL
′
m, L

′
1 and

L1 + S1 should have well-de�ned eigenvalues as follows:

L′mL
′
m = −j(j + 1) , L′1 = im′ , L1 + S1 = im . (2.3.237)

Knowing this, we can return to the discussion of the eigenvalues of the Laplacians ∆ψ and ∆φ

(2.3.221) (2.3.228). Remember that both expressions are derived from some scalar modes,

hence the spin s = 0, i.e., S1 has vanishing eigenvalues. Then the covariant derivative without

the gauge connection, i.e. ∇1, in both expressions has the form

∇1 =
v

`
· 2L1 =

v

`
· 2im (2.3.238)

on the states |j, m′, m〉 with −j 6 m′, m 6 j and j = 0, 1
2
, 1, · · · of SU(2). Hence, the

eigenvalues of the Laplacians ∆ψ and ∆φ (2.3.221) (2.3.228) can be expressed as

Mψ = ie−2ImΘΩ

[
∇1 − i(r − 2)(A1 −

1

2
V1)− i(z − qσ)C1 − (z − qσ) + (r − 2)H

]
= ie−2ImΘΩ

[
2iv

`
m− i(r − 2)(A1 −

1

2
V1 + iH)− (z − qσ)

]
, (2.3.239)

Mφ = iΩ

[
∇1 − ir(A1 −

1

2
V1)− i(z − qσ)C1 + (z̄ − qσ̄) + rH

]
= iΩ

[
2iv

`
m− ir(A1 −

1

2
V1 + iH) + (z̄ − qσ̄)

]
, (2.3.240)

where we have used the background gauge symmetry (2.3.181) to set C1 = 0, as mentioned

before. In general, z and σ can be complex, which is crucial in some cases [16], in this thesis

for simplicity we assume that

σ̄ = −σ , z̄ = −z . (2.3.241)
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As a check, let us consider a few previously studied cases. For round S3, there are

v = 1 , A1 = V1 = 0 , H = − i
`
, z = 0 ,

then the 1-loop determinant for the matter sector is

Z1−loop
mat =

∏
ρ∈R

∞∏
j=0

 j∏
m=−j

2im
`
− i(r − 2)1

`
+ qρ(σ)

2im
`
− ir 1

`
+ qρ(σ)

2j+1

=
∏
ρ∈R

∞∏
n=0

(
−

n+1−r
`

+ iρ(σ)
n−1+r

`
− iρ(σ)

)n

. (2.3.242)

where ρ denotes the weights in the representation R, and we have set q = −1 and n ≡ 2j+1.

This result is precisely the one obtained in Ref. [44]. Similarly, if we choose

A1 =
v

`
− 1

v`
, V1 = 0 , H = − i

v`
, z = 0 ,

the 1-loop determinant for the matter sector becomes

Z1−loop
mat =

∏
ρ∈R

∞∏
j=0

 j∏
m=−j

2ivm
`
− i(r − 2)v

`
+ qρ(σ)

2ivm
`
− ir v

`
+ qρ(σ)

2j+1

=
∏
ρ∈R

∞∏
j=0

(
−

2j+2−r
˜̀ + iρ(σ)

2j+r
˜̀ − iρ(σ)

)2j+1

, (2.3.243)

where ˜̀≡ `
v
, and this result is the same as the one with SU(2)× U(1) isometry in Ref. [46].

An immediate generalization is to shift the auxiliary �elds by ∼ κ without rotating the Killing

spinors, i.e., for

A1 =
v

`
+

2

v`
+

3κ

2`
, V1 =

2

v`
+
κ

`
, H =

i

v`
+ i

κ

`
, z = 0 ,

the partition function remains the same as Eq. (2.3.243), i.e., the one in Ref. [46]:

Z1−loop
mat =

∏
ρ∈R

∞∏
j=0

(
−

2j+2−r
˜̀ + iρ(σ)

2j+r
˜̀ − iρ(σ)

)2j+1

. (2.3.244)

At this point, we may conclude that the shift κ in the auxiliary �elds does not a�ect the

1-loop determinant of the matter sector, and to obtain a nontrivial result like the one in

Ref. [47] one has to consider the rotation of the Killing spinors (2.3.169), i.e., Θ 6= 0. All the

examples discussed above can be thought of to be Θ = 0.

For the cases with Θ 6= 0, e.g. the case discussed in Ref. [47], the main di�erence is that

A1 −
1

2
V1 + iH 6= v

`
. (2.3.245)
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For Ref. [47] there is

A1 −
1

2
V1 + iH = −1

`

(√
1− v2

v
+

1

v

)
= −1 + iu

v`
. (2.3.246)

This change will a�ect the expressions of Mψ (2.3.221) and Mφ (2.3.228). We can think of

this e�ect as to use the background gauge �elds to twist the connections in the covariant

derivatives, i.e., we want to absorb the background gauge �elds into the covariant derivatives.

For Θ = 0, there is always A1 − 1
2
V1 + iH = v

`
. From Eq. (2.3.238) we can see that the

background �elds can be thought of to only twist the SU(2)L part of the connection, without

a�ecting the SU(2)R part of the connection. For Θ 6= 0, A1− 1
2
V1 + iH is in general not equal

to v
`
, hence cannot be absorbed only in the SU(2)L part of the connection, i.e., it has to twist

also the SU(2)R part. We can use the expression (2.3.236) and �gure out the coe�cients

in the linear combination. The guiding principle is that we still want to require that the

background gauge �elds can be absorbed only in the SU(2)L part of the connection. Hence,

from Eq. (2.3.236) and Eq. (2.3.238) we see that on the states |j, m′, m〉 with the spin s = 0:

∇1−2i(A1−
1

2
V1+iH) =

[
a
v

`
2L1 + (1− a)

v

`
2L′1

]
−2i

v

`1

=

[
a
v

`
2im+ (1− a)

v

`
2im′

]
−2i

v

`1

,

where
v

`1

≡ ±(A1 −
1

2
V1 + iH) . (2.3.247)

Since −j 6 m′, m 6 j, the choice of the sign does not change the �nal result. To combine

2i v
`1
with the term containing L1 implies that

a
v

`
=

v

`1

⇒ a =
`

`1

.

Then

∇1−2i(A1−
1

2
V1 + iH) =

[
v

`1

2L1 + (
v

`
− v

`1

)2L′1
]
−2i

v

`1

=

[
v

`1

2im+ (
v

`
− v

`1

)2im′
]
−2i

v

`1

.

(2.3.248)

For the case discussed in Ref. [47] there is

v

`1

=
1 + iu

v`
=

v

(1− iu)`
(2.3.249)

⇒ v

`
− v

`1

=
v

`
− v

(1− iu)`
=
−iu

1− iu
v

`
= −iu v

`1

. (2.3.250)
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Then the 1-loop determinant for the matter sector has the general expression

Z1−loop
mat =

∏
ρ∈R

∏
j

∏
−j6m,m′6j

e−2ImΘ

2iv
`1

(m− 1) + 2i
(
v
`
− v

`1

)
m′ + ir v

`1
− (z − qρ(σ))

2iv
`1
m+ 2i

(
v
`
− v

`1

)
m′ + ir v

`1
+ (z̄ − qρ(σ̄0))

=
∏
ρ∈R

∏
j

∏
−j6m,m′6j

e−2ImΘ 2i(m− 1) + 2um′ + ir + q`ρ(σ)
b

2im+ 2um′ + ir + q`ρ(σ)
b

=
∏
ρ∈R

∏
j

∏
−j6m′6j

e−2ImΘ 2i(−j − 1) + 2um′ + ir + q`ρ(σ)
b

2ij + 2um′ + ir + q`ρ(σ)
b

=
∏
ρ∈R

∏
j

∏
−j6m′6j

e−2ImΘ

(
−

2j + 2 + 2ium′ − r + iq`ρ(σ)
b

2j − 2ium′ + r − iq`ρ(σ)
b

)
, (2.3.251)

where b ≡ 1+iu
v
, ρ again denotes the weights in the representation R, and we have assumed

z = 0 , σ̄ = −σ .

If we identify r and `
b
with ∆ and r in Ref. [47] respectively, and let q = 1, then up to some

constant this result is the same as the one in Ref. [47].

For the most general auxiliary �elds (2.3.169) on a squashed S3 with SU(2)×U(1) isometry,

the 1-loop determinant for the matter sector is

Z1−loop
mat =

∏
ρ∈R

∏
j

∏
−j6m,m′6j

e−2ImΘ
2i(m− 1) v

`1
+ 2im′

(
v
`
− v

`1

)
+ ir v

`1
− (z − qρ(σ))

2im v
`1

+ 2im′
(
v
`
− v

`1

)
+ ir v

`1
+ (z̄ − qρ(σ̄0))

=
∏
ρ∈R

∏
j

∏
−j6m′6j

e−2ImΘ

−2j + 2− 2m′
v
`
− v
`1
v
`1

− r − i z−qρ(σ)
v
`1

2j + 2m′
v
`
− v
`1
v
`1

+ r + i z−qρ(σ)
v
`1


=
∏
ρ∈R

∞∏
p, q=0

e−2ImΘ

−p+ q + 2− (p− q)W − r − i z−qρ(σ)
v
`1

p+ q + (p− q)W + r + i z−qρ(σ)
v
`1



=
∏
ρ∈R

∞∏
p, q=0

e−2ImΘ

−
(1−W )p+ (1 +W )q + 1− i

(
z−qρ(σ)

v
`1

− ir + i

)
(1 +W )p+ (1−W )q + 1 + i

(
z−qρ(σ)

v
`1

− ir + i

)


=
∏
ρ∈R

∞∏
p, q=0

e−2ImΘ

−
bp+ b−1q + b+b−1

2
− i(b+b−1)

2

(
z−qρ(σ)

v
`1

− ir + i

)
b−1p+ bq + b+b−1

2
+ i(b+b−1)

2

(
z−qρ(σ)

v
`1

− ir + i

)
 , (2.3.252)
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where

j =
p+ q

2
, m′ =

p− q
2

, (2.3.253)

W ≡
v
`
− v

`1
v
`1

, b ≡ 1−W√
1−W 2

=

√
1−W
1 +W

, (2.3.254)

and we have assumed that

z̄ = −z , σ̄ = −σ .

Therefore, up to some constant the 1-loop determinant for the matter sector in the general

background is

Z1−loop
mat =

∏
ρ

sb

Q
2

(
z − qρ(σ)

v
`1

− ir + i

) , (2.3.255)

where

Q ≡ b+ b−1 , b ≡ 1−W√
1−W 2

=

√
1−W
1 +W

, W ≡
v
`
− v

`1
v
`1

, (2.3.256)

and sb(x) is the double-sine function, whose properties are discussed in Ref. [50] and Appendix

A of Ref. [51]. For the general background auxiliary �elds (2.3.169) there is

v

`1

= A1 −
1

2
V1 + iH =

v

`

(
1− 2i

v2
sinΘ e−iΘ

)
, (2.3.257)

which leads to

W =
2

−2 + v2 − iv2cotΘ
, b =

√
1− 2

v2
(1− e−2iΘ) . (2.3.258)

As a quick check, we see that for the round S3 there is v = 1 and Θ = 0, then as expected

W = 0 , b = 1 .

Moreover, for Θ = 0 there is always b = 1, and by choosing di�erent v and ` in v
`1
(2.3.257)

one obtains the result for round S3 [44] and the result in Ref. [46]. If we choose ` and Θ to be

the ones given in Eqs. (2.3.173)-(2.3.175), and use the following identity for the double-sine

function

sb(x) sb(−x) = 1 , (2.3.259)

we obtain the result in Ref. [47]. Hence, the result (2.3.255) incorporates all the previous

results for a squashed S3 with SU(2)× U(1) isometry.

1-Loop Determinant for Gauge Sector

In this section we discuss the 1-loop determinant for the gauge sector. The method is similar

to the matter sector. We will see how the modes are paired, and how the missing spinors
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and the unpaired spinors give rise to the 1-loop determinant. First, the Lagrangians that are

used to do the localization in the gauge sector, also have the bosonic part (2.3.199) and the

fermionic part (2.3.200). We can rescale the �elds in the vector multiplet appropriately, then

the Lagrangians (2.3.199) (2.3.200) become

(QVg)B = Tr

[
−1

2
fµνf

µν − (Dµσ)(Dµσ) + (D + σH)2

]
, (2.3.260)

(QVg)F = Tr
[
2iλ̃ /Dλ+ 2i[λ̃, σ]− iH(λ̃λ)− V1(λ̃λ)− 2Vµ(λ̃γµλ)

]
. (2.3.261)

We follow the same procedure as in Ref. [44]. First, we add a gauge �xing term:

Lgf = Tr
[
c̄∇µ∇µc+ b∇µaµ

]
. (2.3.262)

Integration over b will give the gauge �xing condition

∇µaµ = 0 . (2.3.263)

If we decompose

aµ = ∇µϕ+Bµ (2.3.264)

with

∇µBµ = 0 , (2.3.265)

then the gauge �xing condition becomes

∇µAµ = 0 ⇒ ∇µ∇µϕ = 0 , (2.3.266)

which is equivalent to a δ-function in the Lagrangian:

δ(∇µAµ) = δ(∇2ϕ) =
1√

det(∇2)
δ(ϕ) . (2.3.267)

After Gaussian integration, c and c̄ will contribute a factor to the partition function:

det(∇2) ,

while integration over σ will contribute another factor

1√
det(∇2)

.

Hence, the contributions from c, c̄, σ and ϕ will cancel each other. Hence, around the classical

solution (2.3.180), the bosonic part that contributes to the 1-loop determinant for the gauge

sector, becomes

(QVg)′B = Tr
(
Bµ∆̂BBµ + [Bµ, σ]2

)
, (2.3.268)
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where ∆̂BBµ ≡ ∗d ∗ dBµ.

We see that the Lagrangians (2.3.261) and (2.3.268) are exactly the same as the ones in

Ref. [53], therefore, we follow the same way as Ref. [53] to �gure out the pairing of modes.

Suppose that there is a fermionic mode Λ satisfying

∆λΛ ≡ Ω(iγµDµ + iσα− i

2
H − 1

2
V1 − Vµγµ)Λ = MΛ

⇒ (iM + σαΩ)Λ = Ω(−γµDµ +
1

2
H − i

2
V1 − iVµγµ)Λ . (2.3.269)

Similar to Ref. [53], we can use the equation above to prove the following important relation

by direct computations:

B ≡ Ωd(ζ̃Λ) + (iM + σαΩ)(ζ̃γµΛ)dξµ = −i ∗
(
D(ζ̃γµΛ)dξµ

)
. (2.3.270)

In our case Ω is a constant, and the details of deriving this relation are given in Appendix

E. Then this relation leads to

B ≡ Ωd(ζ̃Λ) + (iM + σαΩ)(ζ̃γµΛ)dξµ = −i ∗ d

(
B − Ωd(ζ̃Λ)

iM + σαΩ

)
⇒ (iM + σαΩ)B = −i ∗ dB (2.3.271)

⇒ ±
√

∆̂B B = ∗dB = −(M − iσαΩ)B = −(M − iσ0α)B , (2.3.272)

with σ0 ≡ σΩ. I.e., if there exists a fermionic mode Λ with eigenvalue M for ∆λ, then there

is a corresponding bosonic mode with eigenvalue −(M − iα(σ0)) for ∗d. Conversely, if the

relation (2.3.272) is true, i.e., there is a bosonic mode with eigenvalue −(M − iα(σ0)) for ∗d,
then the fermionic mode Λ ≡ γµBµζ satis�es

∆λΛ = MΛ . (2.3.273)

In other words, the eigenmodes of
√

∆̂B with eigenvalues ±(M − iα(σ0)) are paired with

the eigenmodes of ∆λ with eigenvalues M, −M + 2iα(σ0). On these paired bosonic modes

∆B ≡ ∆̂B + α2(σ0) has the eigenvalue M(M − 2iα(σ0)). Hence,

∆λ

∆B

=
−M(M − 2iα(σ0))

M(M − 2iα(σ0))
. (2.3.274)

We see that up to some constant the paired modes cancel out exactly and do not have net

contributions to the 1-loop determinant.

Similar to the matter sector, to calculate the 1-loop determinant of the gauge sector, we

still consider the unpaired spinor and the missing spinor. For the unpaired spinor, there is

no corresponding bosonic mode, i.e.,

Ω∂µ(ζ̃Λ) + (iM + α(σ0))ζ̃γµΛ = 0 , (2.3.275)
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and now the fermionic mode Λ is

Λ = ζΦ0 + ζcΦ2 , (2.3.276)

where Φ0 and Φ2 are bosonic �elds with R-charges 0 and 2 respectively. Using the convention

in Appendix A, we obtain for the �rst component of Eq. (2.3.275):

Ω2∂1Φ0 + Ω(iMΛ + α(σ0))Φ0 = 0

⇒ MΛ = iα(σ0) + iΩ∂1 = iΩα(σ) + iΩ∂1 . (2.3.277)

For the missing spinor there is

Λ = γµBµζ = 0 . (2.3.278)

By multiplying ζ† and ζc† from the left, we see that this relation implies that

B1 = 0 , B2 + iB3 = 0 ⇒ B3 = iB2 .

Then

∗ dB = (i∂2B2 − ∂3B2)e1 − iΩ∂1B2e
2 + Ω∂1B2e

3 . (2.3.279)

Combining Eq. (2.3.271) and Eq. (2.3.279), we obtain

− iΩ∂1B2 = −(M − iα(σ0))iB2

⇒ MB = iα(σ0) + iΩ∂1 = iΩα(σ) + iΩ∂1 . (2.3.280)

Actually, as discussed in Refs. [46, 53], there are more conditions that can be deduced, but

for the case studied in this thesis, the additional conditions are irrelevant. Moreover, it seems

that the contributions from the unpaired spinors and the missing spinors (2.3.277) (2.3.280)

cancel each other exactly. This is not the case, because the derivative ∂1 acting on Φ0 and B2

gives the eigenvalues proportional to the third component of the orbital angular momentum,

i.e. L1, while Φ0 and B2 have spin 0 and 1 respectively. To know the precise form of the

eigenvalues of ∂1, i.e. the covariant derivative without spin and gauge connections, we use

the same expression obtained in the matter sector (2.3.248):

∂1 =
v

`1

2L1 + (
v

`
− v

`1

)2L′1 =
v

`1

2(im− S1) + (
v

`
− v

`1

)2im′ , (2.3.281)

where for the mode Φ0 the eigenvalue of S1 is 0, while for the mode B2 the eigenvalue of S1

can be +1 or −1, but since α runs over all the positive roots and negative roots, and m and

m′ run from −j to j, the sign is actually irrelevant.

Considering all the modes contributing to MΛ

MB
in the most general background (2.3.169),
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we obtain the 1-loop determinant for the gauge sector:

Z1−loop
g =

∏
α∈∆

∏
j

∏
−j6m,m′6j

−2 v
`1
m− 2m′

(
v
`
− v

`1

)
+ iα(σ)

−2 v
`1

(m− 1)− 2m′
(
v
`
− v

`1

)
+ iα(σ)

=
∏
α∈∆

∏
j

∏
−j6m′6j

−2 v
`1
j − 2m′

(
v
`
− v

`1

)
+ iα(σ)

−2 v
`1

(−j − 1)− 2m′
(
v
`
− v

`1

)
+ iα(σ)

=
∏
α∈∆

∏
j

∏
−j6m′6j

− 2j + 2m′W − iα(σ)
v
`1

2j + 2− 2m′W + iα(σ)
v
`1


=
∏
α∈∆

∞∏
p, q=0

− p+ q + (p− q)W − iα(σ)
v
`1

p+ q + 2− (p− q)W + iα(σ)
v
`1



=
∏
α∈∆

∞∏
p, q=0

−
(1 +W )p+ (1−W )q + 1− i

(
iα(σ)
v
`1

− i
)

(1−W )p+ (1 +W )q + 1 + i

(
iα(σ)
v
`1

− i
)


=
∏
α∈∆

∞∏
p, q=0

−
b−1p+ bq + Q

2
− iQ

2

(
iα(σ)
v
`1

− i
)

bp+ b−1q + Q
2

+ iQ
2

(
iα(σ)
v
`1

− i
)
 , (2.3.282)

where α denotes the roots, and p, q, W , b and Q are de�ned in the same way as before

(2.3.253) (2.3.254) (2.3.256). Up to some constant, the 1-loop determinant for the gauge

sector can be written as

Z1−loop
g =

∏
α∈∆

sb

Q
2

(
iα(σ)

v
`1

− i

) , (2.3.283)

where sb(x) is the double-sine function, and v
`1

is given by Eq. (2.3.257). By choosing ap-

propriate parameters given by Eqs. (2.3.173)-(2.3.175), we obtain the result of Ref. [47] from

this general result.

To see how the results of other cases emerge from the general one (2.3.283), we need to

rewrite the expression at some intermediate step. If we de�ne

b1 + b2 ≡ −2
v

`1

, b1 − b2 ≡ −2

(
v

`
− v

`1

)
, (2.3.284)
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then

Z1−loop
g =

∏
α∈∆

∏
j

∏
−j6m′6j

−2 v
`1
j − 2m′

(
v
`
− v

`1

)
+ iα(σ)

−2 v
`1

(−j − 1)− 2m′
(
v
`
− v

`1

)
+ iα(σ)

=
∏
α∈∆

∏
j

∏
−j6m′6j

−2 v
`1
j − 2m′

(
v
`
− v

`1

)
+ iα(σ)

−2 v
`1

(−j − 1) + 2m′
(
v
`
− v

`1

)
+ iα(σ)

=
∏
α∈∆

∏
j

∏
−j6m′6j

(b1 + b2)j + (b1 − b2)m′ + iα(σ)

−(b1 + b2)(j + 1)− (b1 − b2)m′ + iα(σ)

=
∏
α∈∆

∏
j

∏
−j6m′6j

b1(j +m′) + b2(j −m′) + iα(σ)

−b1(j +m′ + 1)− b2(j −m′ + 1) + iα(σ)

=
∏
α∈∆

∏
j

∞∏
p, q=0

b1p+ b2q + iα(σ)

−b1(p+ 1)− b2(q + 1) + iα(σ)
, (2.3.285)

which is exactly the result of the 1-loop determinant for the gauge sector in Ref. [53]. From

this result, it is easy to obtain the results for other cases. To see it, we should rewrite the

expression further and restrict α to be positive roots.

Z1−loop
g =

∏
α∈∆+

∏
j

∞∏
p, q=0

(
b1p+ b2q + iα(σ)

−b1(p+ 1)− b2(q + 1) + iα(σ)
· b1p+ b2q − iα(σ)

−b1(p+ 1)− b2(q + 1)− iα(σ)

)

=
∏
α∈∆+

∏
j

∞∏
p, q=0

(
b1p+ b2q + iα(σ)

−b1(p+ 1)− b2(q + 1) + iα(σ)
· −b1p− b2q + iα(σ)

b1(p+ 1) + b2(q + 1) + iα(σ)

)

=
∏
α∈∆+

∏
m>0

(b1m+ iα(σ)) ·
∏
n>0

(b2n+ iα(σ)) ·
∏
m>0

(−b1m+ iα(σ)) ·
∏
n>0

(−b2n+ iα(σ))


=
∏
α∈∆+

∏
m>0

(b2
1m

2 + α2(σ)) ·
∏
n>0

(b2
2n

2 + α2(σ))

=
∏
α∈∆+

∏
n>0

(
(b2

1n
2 + α2(σ)) · (b2

2n
2 + α2(σ))

)
, (2.3.286)

where ∆+ denotes the set of positive roots. For

b1 = b2 =
1

`
,

we obtain the result of round S3 [44], while for

b1 = b2 =
v

`
=

1
˜̀
,

the result becomes the one of the squashed S3 with SU(2) × U(1) isometry discussed in

Ref. [46]. Hence, like in the matter sector, the general result (2.3.283) also incorporates all
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the previous results on a squashed S3 with SU(2) × U(1) isometry, and it does not depend

on the shifts by ∼ κ of the auxiliary �elds, instead the shifts induced by the rotation of the

Killing spinors will a�ect the �nal result.

Finally, putting everything together (2.3.201)-(2.3.203) (2.3.255) (2.3.283), we obtain the

results summarized in the introduction. As we emphasized there, an important feature is

that the 1-loop determinants are independent of the shift κ, while only Θ 6= 0 can give the

results essentially di�erent from the case of the round S3.

2.4 S2 Localization

2.4.1 2D N = (2, 2) Supersymmetry

We begin by reviewing some basic aspects of N = (2, 2) supersymmetry and de�ning our

notation and conventions. We will then discuss gauge theories for semichiral �elds and their

non-linear sigma model (NLSM) description.

The algebra of N = (2, 2) superderivatives is

{D±, D̄±} = ±2i∂±± , (2.4.1)

where ± are spinor indices, D±, D̄± are superderivatives and ∂±± = (∂1∓i∂2)/2 are spacetime

derivatives. The SUSY transformations are generated by

δ = ε̄+Q+ + ε̄−Q− + ε+Q̄+ + ε−Q̄− , (2.4.2)

where ε, ε̄ are anticommuting Dirac spinors. The supercharges Q, Q̄ satisfy the algebra

{Q±, Q̄±} = ∓2i∂±± and anticommute with the spinor derivatives: {Q±,D±} = 0, etc.

The basic matter supermultiplets are chiral, twisted chiral and semichiral �elds. In

Lorentzian signature these �elds are de�ned by the set of constraints:

Chiral : D̄+Φ = 0 , D̄−Φ = 0 , D+Φ̄ = 0 , D−Φ̄ = 0 ,

Twisted Chiral : D̄+χ = 0 , D−χ = 0 , D+χ̄ = 0 , D̄−χ̄ = 0 ,

Left semichiral : D̄+XL = 0 , D+X̄L = 0 ,

Right semichiral : D̄−XR = 0 , D−X̄R = 0 .

(2.4.3)

In Lorentzian signature, complex conjugation acts on superderivatives as D†± = D̄± and on

super�elds as X† = X̄. Thus, the constraints (2.4.3) are compatible with complex conjugation.

In Euclidean signature, however, the conjugation of superderivatives changes helicity,

namely D†± = D̄∓. As a consequence, taking the complex conjugate of the constraints (2.4.3)
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may lead to additional constraints. In the case of a twisted chiral �eld χ, for instance, this

implies that the �eld be constant. The well-known resolution is to complexify the multi-

plet and consider χ and χ̄ as independent �elds. Although this problem does not arise for

semichiral �elds, we nonetheless choose to complexify them.1 That is, we will consider XL

a left semichiral �eld and X̄L an independent left anti-semichiral �eld, and similarly for XR

and X̄R. Thus, the supersymmetric constraints (and their Euclidean conjugates) read:

D̄+XL = 0 , D+X̄L = 0 , D̄−XR = 0 , D−X̄R = 0 ,

D−X†L = 0 , D̄−X̄†L = 0 , D+X†R = 0 , D̄+X̄†R = 0 .
(2.4.4)

The target space geometry of these models is the complexi�cation of the target space geom-

etry of the corresponding models de�ned in Lorentzian signature. See [54] for a discussion of

these issues.

Chiral and twisted chiral �elds are well known. Semichiral �elds, however, are less known

so we review some of their elementary aspects here. They were originally introduced in [55]

and their o�-shell content is

XL : (XL, ψ
L
±, FL, χ̄−,M−+,M−−, η̄−) ,

XR : (XR, ψ
R
±, FR, χ̄+,M+−,M++, η̄+) ,

(2.4.5)

where ψα, χα, ηα are fermionic and X,F,Mαβ are bosonic �elds, all valued in the same repre-

sentation R of a gauge group G. The �eld content of antisemichiral �elds X̄L, X̄R is similarly

given by

X̄L : (X̄L, ψ̄
L
±, F̄L, χ−, M̄−+, M̄−−, η−) ,

X̄R : (X̄R, ψ̄
R
±, F̄R, χ+, M̄+−, M̄++, η+) .

(2.4.6)

Compared to the �eld content of chiral and twisted chiral �elds, semichiral �elds contain

additional bosonic and fermionic components.

To treat left and right semichiral �elds in a uni�ed way, we consider a super�eld X that

satis�es at least one chiral constraint (either D̄+X = 0 or D̄−X = 0, or both), but we do not

specify which one until the end of the calculation. Similarly, X̄ is an independent �eld that

we take to satisfy at least one antichiral constraint (either D+X̄ = 0 or D−X̄ = 0, or both).

The �eld content of the multiplet X is

X : (X,ψα, F, χ̄α,Mαβ, η̄α) , α, β = ± , (2.4.7)

and similarly for X̄. By setting χ̄α = Mαβ = η̄α = 0, the multiplet X describes a chiral �eld

Φ : (X,ψα, F ). By setting χ̄+ = M+− = M++ = η̄+ = 0 it describes a left semichiral �eld,

1One may choose not to do so. Then, a left semichiral �eld YL satis�es D̄+YL = 0 and its (Euclidean)

Hermitian conjugate ȲL satis�es D−ȲL = 0, and similarly for a right semichiral �eld. However, the target

space geometry of these models is not well understood. Since ultimately we are interested in learning about

the target space geometry of models in Lorentzian signature, we choose to complexify semichiral �elds.
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and by setting χ̄− = M−+ = M−− = η̄− = 0 it describes a right semichiral �eld, with the

�eld content in (2.4.5). With appropriate identi�cations, it can also describe a twisted chiral

�eld. However, since we are interested in minimally coupling X to the vector multiplet, we

do not consider the latter case here.

The �eld content of the vector multiplet is (Aµ, σ1, σ2, λ±, D), where σ1, σ2 are real in

Lorentzian but complex in Euclidean signature. We will also use

σ = iσ1 − σ2 , σ̄ = −iσ1 − σ2 . (2.4.8)

The SUSY transformation rules for the multiplet X coupled to the vector multiplet read:

δX = ε̄ψ + εχ̄ , δX̄ = εψ̄ + ε̄χ ,

δψα =
([
iγµDµX + iσ1X + σ2Xγ3

]
ε
)
α
− εβMβα + ε̄αF ,

δψ̄α =
([
iγµDµX̄ − iσ1X̄ + σ2X̄γ3

]
ε̄
)
α
− ε̄βM̄βα + εαF̄ ,

δF =
[
−iσ1ψ − σ2ψγ3 − iλX − i(Dµψ)γµ + η̄

]
ε ,

δF̄ =
[
iσ1ψ̄ − σ2ψ̄γ3 − iλ̄X̄ − i(Dµψ̄)γµ + η

]
ε̄ ,

δχ̄α = ε̄βMαβ , δχα = εβM̄αβ ,

δMαβ = −η̄αε̄β − iσ1χ̄αεβ − σ2χ̄αγ3εβ − i(Dµχ̄α)(γµε)β ,

δM̄αβ = −ηαεβ + iσ1χαε̄β − σ2χαγ3ε̄β − i(Dµχα)(γµε̄)β ,

δη̄α = −i(ελ)χ̄α + i(εγµ)βDµMαβ − iσ1ε
βMαβ − σ2(γ3ε)

βMαβ ,

δηα = −i(ε̄λ̄)χα + i(ε̄γµ)βDµM̄αβ + iσ1ε̄
βM̄αβ − σ2(γ3ε̄)

βM̄αβ ,

(2.4.9)

where Dµ = ∂µ − iAµ is the gauge-covariant derivative. To make the notation compact in

what follows, it is convenient to introduce the operator

Pαβ ≡

(
2iD++ σ

σ̄ −2iD−−

)
.

The kinetic action for the �eld X in �at space is built out of terms of the form:

LR2

X =

∫
d4θ X̄ X

= DµX̄D
µX + X̄

(
σ2

1 + σ2
2

)
X + iX̄DX + F̄F − M̄αβM

βα − X̄PαβMαβ + M̄αβPβαX
− iψ̄γµDµψ + ψ̄ (iσ1 − γ3σ2)ψ + iψ̄λX − iX̄λ̄ψ − ηψ − ψ̄η̄
+ iχ̄γµDµχ− χ̄ (iσ1 − γ3σ2)χ+ iX̄λχ̄− iχλ̄X . (2.4.10)

Setting Mαβ = M̄αβ = ηα = η̄α = χα = χ̄α = 0 reduces (2.4.10) to the usual action for a

chiral multiplet. Setting only some of these �elds to zero�according to the discussion below

(2.4.7)�gives the action for the corresponding semichiral multiplet. If one considers a single
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semichiral �eld, though, this Lagrangian does not describe a sigma model with standard

kinetic term. Taking, for instance, a neutral left semichiral �eld X = XL, X̄ = X̄L, the

equations of motion from (2.4.10) set M−+ = M̄−+ = 0 and ψ+ = ψ̄+ = 0 and

∂++XL = ∂++X̄L = ∂++M−− = ∂++M̄−− = 0 ,

∂++ψ− = ∂++ψ̄− = ∂++χ− = ∂++χ̄− = 0 ,

which describe two left-moving bosonic and two left-moving fermionic modes. Although

interesting, we leave the study of such Lagrangians to future work.

Traditional superpotential terms are not possible for semichiral �elds. Fermionic super-

potential terms (integrals over d3θ) may be possible if any fermionic semichiral multiplet is

present, but this is not the case here.

To obtain sigma models with standard kinetic terms, we consider models with the same

number of left and right semichiral �elds and with an appropriate coupling between them.

In such models, as we shall see, integrating out the auxiliary �elds leads to standard kinetic

terms as well as B-�eld-like couplings. If we restrict ourselves to linear models, the possible

left and right mixing terms are of the form X̄LXR + c.c. or of the form XLXR + c.c.. One can

choose either kind (and in the multi�avor case one may have both types of terms for di�erent

multiplets). However, for these terms to be gauge invariant, left and right semichiral �elds

must be in either the same or conjugate representations of the gauge group, accordingly. Thus,

from now on we restrict ourselves to models containing pairs of semichiral �elds (XL,XR)

either in a representation (R,R) or (R, R̄) of the gauge group.

Consider a pair of semichiral �elds (XL,XR) in a representation (R,R) of a gauge group

G. A gauge-invariant action is given by2

LR2

LR = −
∫
d4θ
[
X̄LXL + X̄RXR + α

(
X̄LXR + X̄RXL

)]
, (2.4.11)

where α is a real non-negative parameter. Notice that with this action the left and right

semichiral �elds must have the same charge under the R-symmetry. As we discussed above,

the cross term proportional to α is crucial if one wishes to obtain a sigma model and from

now on we assume α 6= 0. Before gauging, the action (2.4.11) describes �at space with a

constant B-�eld. For the �at-space metric to be positive de�nite, one �nds that α > 1. As

2One could consider a more general superspace Lagrangian of the form

K = βX̄LXL + γX̄RXR + αX̄LXR + α∗X̄RXL ,

where β, γ are real parameters and α is complex. If β, γ 6= 0, by rescaling the �elds one can set β = ±1 and

γ = ±1. By a further phase rede�nition of the �elds, α can be made real and non-negative. Requiring that

the metric, after integrating out the auxiliary �elds, be positive de�nite leads to β = γ = −1 and in addition

imposes α > 1.
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we shall see below, after gauging and by an appropriate �eld rede�nition, one may take the

limit α→ 1, which becomes a special case.

The general case with multiple pairs of semichiral �elds is very similar. Under the as-

sumption that the metric is positive de�nite, one can always reduce, with �eld rede�nitions,

to the case with multiple copies of (2.4.11).3

We now show that this gauge theory is a deformation of a gauge theory for chiral �elds

(Φ, Φ̃) in conjugate representations (R, R̄) of the gauge group corresponding to turning on

a gauged Wess-Zumino term controlled by the parameter α. To see this one must integrate

out the auxiliary �elds in the semichiral multiplets. Integrating out the auxiliary �elds from

(2.4.11) leads to a constant kinetic term that depends on α. To bring the metric into the

canonical form one needs to introduce the new �elds X, X̃ by

XL =
√

α
4(α+1)

X +
√

α
4(α−1)

¯̃X , XR =
√

α
4(α+1)

X −
√

α
4(α−1)

¯̃X ,

and similarly for the barred �elds. Importantly, note that X and X̃ are in conjugate repre-

sentations of the gauge group. Finally, one has

LR2

LR =
(
gij + bij

)
D++X

iD−−X
j + α

2

(
X̄|σ|2X + ¯̃X|σ|2X̃

)
+ α

2

(
X̄DX + ¯̃XDX̃

)
+ fermions ,

(2.4.12)

where X i = (X, X̄, X̃, ¯̃X) and the metric and B-�eld are given by

gij =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , bij =
√
α2 − 1


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , (2.4.13)

and we have omitted fermionic kinetic terms and Yukawa couplings. Note that at this point

one may take the limit α → 1, for which bij = 0. In this limit, the Lagrangian (2.4.12)

coincides with the component Lagrangian for chiral �elds in conjugate representations. Thus,

the parameter α controls a deformation of such model, corresponding to turning on a (gauged)

3Starting with the superspace Lagrangian

K = βijX̄iLX
j
L + γijX̄iRX

j
R + αijX̄iLX

j
R + (α†)ijX̄iRX

j
L

where β, γ are Hermitian matrices and α is a complex matrix. Again, by �eld rede�nitions one can set β and

γ to be diagonal with entries ±1, 0. Then requiring the metric to be positive de�nite leads to the following

two conditions

−4(α†)−1γα−1 > 0 and 4β(α†)−1γα−1β − 4β > 0.

These force β = γ = −1 and by the singular value decomposition theorem we can, by further unitary �eld

rede�nitions, reduce α to a diagonal matrix with non-negative entries which now have to satisfy αii > 1 as

before.
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B-�eld term. As we shall discuss next, these models give rise to NLSMs on Generalized Kähler

manifolds. The H-�eld and metric in the target are controlled by the parameter α and for

the special value α2 = 1, H = 0 and g becomes a Kähler metric, as one would expect.

Conjugate Representations

For a pair of semichiral �elds (XL,XR) in conjugate representations (R, R̄) of a gauge group

G, a gauge-invariant action is given by

LR2

LR =

∫
d4θ
[
X̄LXL + X̄RXR + β

(
XLXR + X̄RX̄L

)]
. (2.4.14)

In this case the �elds are forced to have opposite R-symmetry charges.

By reducing to components and integrating out the auxiliary �elds, one sees once again

that this is deformation of a gauge theory for chiral �elds in a gauge representation (R, R̄) by

turning on a gauged Wess-Zumino term controlled by the parameter β. In the limit β →∞
this term vanishes. In fact the two gauge theories (2.4.11) (2.4.14) related by a simple �eld

rede�nition which corresponds to a change of coordinates on the target. Thus, without any

loss of generality one may consider only one of these actions, choosing the most appropriate

As mentioned above, one of the main motivations for studying gauge theories for semichiral

�elds is that they realize NLSMs on Generalized Kähler manifolds, as opposed to Kähler

manifolds when only chiral �elds are present. Let us brie�y illustrate this for the case of

G = U(1), although the discussion holds for an arbitrary gauge group.

Consider NF pairs of semichiral �elds (Xi
L,Xi

R), i = 1, .., NF , charged under a U(1) vector

multiplet with charges (Qi,−Qi). A gauge invariant action is given by

L = LVM+

NF∑
i=1

∫
d4θ
[
X̄i
LXi

L + X̄i
RXi

R +
(
βijXi

LX
j
R + β†ijX̄

j
RX̄

i
L

)]
+
i

2

∫
d2θ̃ tΣ+c.c. , (2.4.15)

where

LVM = − 1

2e2

∫
d4θ Σ̄Σ , Σ = D̄+D−V , (2.4.16)

and t = iξ + θ
2π

is the complexi�ed Fayet-Iliopoulos (FI) parameter. The matrix βij is

constrained by gauge invariance and must be invertible in order to obtain a non-trivial kinetic

term. In addition, one may have any number of charged chiral multiplets with their own

kinetic terms and couplings to the semichiral �elds. In the case that only semichiral �elds

are present, a better formulation of these theories is discussed in [56].

Just as in the usual case of GLSMs for chiral �elds [57], in the e → ∞ limit the gauge

�elds become massive and can be integrated out. The e�ective theory is a sigma model on
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the space of vacua, which is determined by the vanishing of the scalar potential U , modulo

the action of the gauge group. For the theory (2.4.15), the space of vacua is given by4

M =
{∑

i
Qi

(∥∥X i
L

∥∥2 −
∥∥X i

R

∥∥2
)
− ξ = 0

}/
U(1) , (2.4.17)

where the U(1) acts by X i
L → eiαQ

i
X i
L, X

i
R → e−iαQ

i
X i
R. The complex dimension of M

is 2NF − 1. Topologically, this space coincides with the moduli space of a GLSM for the

same number of pairs of chiral �elds (Φi, Φ̃i), with charges (Qi,−Qi). However, the geo-

metric structure in the semichiral description is quite di�erent: the space is endowed with a

Generalized Kähler structure, rather than a Kähler structure. In other words, there are two

complex structures J± and, due to the presence of semichiral �elds, [J+, J−] 6= 0.

One may also consider a model with gauge charges (Qi, Qi). However, as discussed above,

this is completely equivalent to the model with charges (Qi,−Qi) and after a simple change

of variables it is easy to see that the moduli space is also (2.4.17). In particular, the moduli

spaces of these type of models are always non-compact, for any choice of gauge charges. The

generalization of this discussion for a generic gauge group G is straightforward.

Before we proceed we would like to make a comment on couplings to other vector mul-

tiplets. Since semichiral �elds are less constrained than chiral or twisted chiral �elds, they

admit minimal couplings to various vector multiplets. In addition to the usual vector mul-

tiplet, they can also couple minimally to the twisted vector multiplet, as well as to the

Semichiral Vector Multiplet (SVM) introduced in [58, 59]. As shown in [60], gauge theories

for semichiral �elds coupled to the SVM realize NLSMs on hyper-kähler manifolds (examples

are Eguchi-Hanson and Taub-NUT). Here we restrict ourselves to the coupling to the vector

multiplet.

2.4.2 Semichiral Fields on S2

The main goal of this section is to place the gauge theories (2.4.11) and (2.4.14) on the round

sphere S2 (neutral semichiral multiplets have already been studied in [61]). We will show

that it is possible to construct such actions while preserving four supercharges, i.e., a sort

of N = (2, 2) supersymmetry. Furthermore, these actions are not only Q-closed but also

Q-exact, and therefore the partition function will not depend on the parameters therein.

4One way to see this is to compute the scalar potential explictly by going down to components and

working, say, in Wess-Zumino gauge. Alternatively, one may work in superspace, by writing X(0) i = Xi

and X̄(0) i = X̄ie−QiV in (2.4.15) to introduce the vector multiplet explicitly (here we are following similar

notation to that in [57]). Then, the lowest component of the equation of motion for V leads to the constraint

below. Note, in particular, that due to the absence of eV terms in the cross terms, the matrix βij does not

enter in the constraint.
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We �rst determine the supersymmetry transformations on S2. We will work in components,

rather than in superspace.

One way to determine the supersymmetry transformations on S2 is by �rst constructing

the N = (2, 2) superconformal transformations and then specializing the transformations

to an SU(2|1) sub-algebra, which is identi�ed as the supersymmetry algebra on S2. The

superconformal transformations can be deduced from the N = (2, 2) super Poincare trans-

formations (2.4.9) by covariantizing them with respect to Weyl transformations, as we now

explain.

Let the scalar X transform under Weyl transformations with a weight q, i.e. under an

in�nitesimal Weyl transformation δX = −qΩX. The supersymmetry transformations (2.4.9)

are not covariant under Weyl transformations, but they can be covariantized by adding

suitable terms proportional to ∇±ε, as explained in [62]. Following this procedure, we �nd

that the Weyl-covariant transformations for the super�elds X and X̄ are:

δX = ε̄ψ + εχ̄ ,

δX̄ = εψ̄ + ε̄χ ,

δψα =
([
i(DµX)γµ + iσ1X + σ2Xγ3 + i q

2
X /∇

]
ε
)
α
− εβMβα + ε̄αF ,

δψ̄α =
([
i(DµX̄)γµ − iσ1X̄ + σ2X̄γ3 + i q

2
X̄ /∇

]
ε̄
)
α
− ε̄βM̄βα + εαF̄ ,

δF =
[
−iσ1ψ − σ2ψγ3 − iλX − i(Dµψ)γµ − i q

2
ψ /∇+ η̄

]
ε ,

δF̄ =
[
iσ1ψ̄ − σ2ψ̄γ3 − iλ̄X̄ − i(Dµψ̄)γµ − i q

2
ψ̄ /∇+ η

]
ε̄ ,

δχ̄α = ε̄βMαβ ,

δχα = εβM̄αβ ,

δMαβ = −η̄αε̄β − iσ1χ̄αεβ − σ2χ̄α(γ3ε)β − i(Dµχ̄α)(γµε)β

− i q+1
2
χ̄α( /∇ε)β + i

2
(γ3 /∇ε)β(γ3χ̄)α ,

δM̄αβ = −ηαεβ + iσ1χαε̄β − σ2χα(γ3ε̄)β − i(Dµχα)(γµε̄)β

− i q+1
2
χα( /∇ε̄)β + i

2
(γ3 /∇ε̄)β(γ3χ)α ,

δη̄α = −i(ελ)χ̄α + i(εγµ)βDµMαβ − iσ1ε
βMαβ − σ2(γ3ε)

βMαβ

+ i q+1
2

(
(∇µε)γ

µ
)β
Mαβ + i

2
(∇µεγ3γ

µ)β(γ3)α
ρMρβ ,

δηα = −i(ε̄λ̄)χα + i(ε̄γµ)βDµM̄αβ + iσ1ε̄
βM̄αβ − σ2(γ3ε̄)

βM̄αβ

+ i q+1
2

(
(∇µε̄)γ

µ
)β
M̄αβ + i

2
(∇µε̄γ3γ

µ)β(γ3)α
ρM̄ρβ ,

(2.4.18)

where Dµ = ∇µ − iAµ is the gauge-covariant derivative on S2. Splitting δ = δε + δε̄ and

imposing the Killing spinor equations ∇µε = γµε̌, ∇µε̄ = γµˇ̄ε for some other spinors ε̌, ˇ̄ε, one
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�nds that the superconformal algebra is realized on semichiral �elds as:

[δε, δε̄]X = ξµ∂µX + iΛX + q
2
ρX + iqαX ,

[δε, δε̄]X̄ = ξµ∂µX̄ − iΛX̄ + q
2
ρX̄ − iqαX̄ ,

[δε, δε̄]ψ = ξµ∂µψ + iΛψ + q+1
2
ρψ + i(q − 1)αψ + 1

4
Θµνγµνψ + iβγ3ψ ,

[δε, δε̄]ψ̄ = ξµ∂µψ̄ − iΛψ̄ + q+1
2
ρψ̄ − i(q − 1)αψ̄ + 1

4
Θµνγµνψ̄ − iβγ3ψ̄ ,

[δε, δε̄]F = ξµ∂µF + iΛF + q+2
2
ρF + i(q − 2)αF ,

[δε, δε̄]F̄ = ξµ∂µF̄ − iΛF̄ + q+2
2
ρF̄ − i(q − 2)αF̄ ,

[δε, δε̄]χ̄α = ξµ∂µχ̄α + iΛχ̄α + q+1
2
ρχ̄α + i(q + 1)αχ̄α + 1

4
Θµνγµνχ̄α − iβ(γ3χ̄)α ,

[δε, δε̄]χα = ξµ∂µχα − iΛχα + q+1
2
ρχα − i(q + 1)αχα + 1

4
Θµνγµνχα + iβ(γ3χ)α ,

[δε, δε̄]Mαβ = ξµ∂µMαβ + iΛMαβ + q+2
2
ρMαβ + iqαMαβ + 1

4
Θµν(γµν)α

ρMρβ

+ 1
4
Θµν(γµν)β

ρMαρ − iβ(γ3)α
ρMρβ + iβ(γ3)β

ρMαρ ,

[δε, δε̄]M̄αβ = ξµ∂µM̄αβ − iΛM̄αβ + q+2
2
ρM̄αβ − iqαM̄αβ + 1

4
Θµν(γµν)α

ρM̄ρβ

+ 1
4
Θµν(γµν)β

ρM̄αρ + iβ(γ3)α
ρM̄ρβ − iβ(γ3)β

ρM̄αρ ,

[δε, δε̄]η̄α = ξµ∂µη̄α + iΛη̄α + q+3
2
ρη̄α + i(q − 1)αη̄α + 1

4
Θµνγµν η̄α − iβ(γ3η̄)α ,

[δε, δε̄]ηα = ξµ∂µηα − iΛηα + q+3
2
ρηα − i(q − 1)αηα + 1

4
Θµνγµνηα + iβ(γ3η)α ,

(2.4.19)

where the parameters are given by

ξµ ≡ i(ε̄γµε) ,
Θµν ≡D[µξν] + ξρωρ

µν ,

α ≡ − 1
4
(Dµε̄γ

µε− ε̄γµDµε) ,

Λ ≡ − ξµAµ + (ε̄ε)σ1 − i(ε̄γ3ε)σ2 ,

ρ ≡ i
2
(Dµε̄γ

µε+ ε̄γµDµε) = 1
2
Dµξ

µ ,

β ≡ 1
4
(Dµε̄γ3γ

µε− ε̄γ3γ
µDµε) ,

and ωρ
µν is the spin connection. Here ξµ parameterizes translations, ρ is a parameter for

dilations, and α, β parameterize vector and axial R-symmetry transformations, respectively.

From here one reads o� the charges of the �elds under these transformations, which are

summarized in Table 2.1. Note that the vector R-charge is twice the Weyl charge, as for

chiral �elds. All other commutators vanish, [δε, δε] = [δε̄, δε̄] = 0, if one imposes the extra

condition �ε = hε, �ε̄ = hε̄ with the same function h.

D+ D− D̄+ D̄− X ψ χ̄ F Mαβ η̄

ω 1
2

1
2

1
2

1
2

q
2

q+1
2

q+1
2

q+2
2

q+2
2

q+3
2

qV −1 −1 1 1 q q − 1 q + 1 q − 2 q q − 1

qA 1 −1 −1 1 0 1 −1 0 −2εαβ −1

Table 2.1: Weyl charge, vector and axial R-charge for the component �elds of the semichiral

multiplet

There are four complex Killing spinors on S2, satisfying ∇µε = ± i
2r
γµε. Restricting the
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transformations (2.4.18) to spinors ε, ε̄ that satisfy

∇µε = i
2r
γµε , ∇µε̄ = i

2r
γµε̄ , (2.4.20)

one �nds that the algebra (2.4.19) does not contain dilations nor axial R-rotations (i.e.

ρ = β = 0). This is an SU(2|1) subalgebra of the superconformal algebra that we identify

as the N = (2, 2) superalgebra on S2, and we denote it by QA. The transformations rules in

(2.4.18) simplify to

δX = ε̄ψ + εχ̄ ,

δX̄ = εψ̄ + ε̄χ ,

δψα = εβ(PβαX −Mβα) + ε̄αF − q
2r
Xεα ,

δψ̄α = ε̄β(PαβX̄ − M̄βα) + εαF̄ − q
2r
X̄ε̄α ,

δF = εαPαβψβ − i(ελ)X + εη̄ + q
2r
εψ ,

δF̄ = ε̄αPβαψ̄β − i(ε̄λ̄)X̄ + ε̄η + q
2r
ε̄ψ̄ ,

δχ̄α = Mαβ ε̄
β ,

δχα = M̄αβε
β ,

δMαβ = εγPγβχ̄α − η̄αε̄β + q−2
2r
χ̄αεβ + 2

r
χ̄(αεβ) ,

δM̄αβ = ε̄γPβγχα − ηαεβ + q−2
2r
χαε̄β + 2

r
χ(αε̄β) ,

δη̄α = εκPκγMαβC
γβ − i(ελ)χ̄α + q

2r
Mαβε

β + 2
r
M[αβ]ε

β ,

δηα = ε̄κPγκM̄αβC
γβ − i(ε̄λ̄)χα + q

2r
M̄αβ ε̄

β + 2
r
M̄[αβ]ε̄

β ,

(2.4.21)

where Cαβ is the antisymmetric tensor with C+− = 1 and [αβ] , (αβ) denotes (anti-)symmetri-

zation of indices, respectively5. Another way to derive these transformation rules is by cou-

pling the theory to background supergravity, along the lines of [12]. Using this method, these

transformations � and their generalization to any compact, orientable Riemann surface with

no boundaries � were given in [61] for neutral semichiral �elds.

The �at-space action (2.4.10) is not invariant under the curved-space transformations

(2.4.21). However, it is possible to add suitable 1
r
and 1

r2 terms to obtain an invariant

Lagrangian:

LS2

X = LR2

X + δL ,

δL = iq
r
X̄σ1X + q(2−q)

4r2 X̄X − q
2r
ψ̄ψ − q

2r
χχ̄− q

2r

(
X̄CαβMαβ + CαβM̄αβX

)
.

(2.4.22)

The �rst three terms in δL are the usual terms needed in the case of a chiral �eld and the

last three terms are additional terms required for semichiral �elds. In fact the action is not

5Here we have written the transformations using explicit representations for the gamma matrices and

properties of spinors. We �nd this convenient for the calculations in the next sections.
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only QA-closed but also QA-exact:

ε̄ε

∫
d2xLS2

X = δεδε̄

∫
d2x

(
ψ̄ψ + χχ̄− 2iX̄σ1X + q−1

r
X̄X + X̄CαβMαβ + CαβM̄αβX

)
.

(2.4.23)

Thus, one can use LS2

X itself for localization, which is an important simpli�cation to evaluate

the one-loop determinant using spherical harmonics.6

Same Representations

Let us consider �rst the case of a pair of semichiral �elds in a representation (R,R), with

�at-space action (2.4.11). Since so far we treated X̄ and X as independent �elds, we can use

the result (2.4.22) for each individual term in (2.4.11) and the action on S2 is given by

LS2

LR = DµX̄
iDµXi + X̄ i

(
σ2

1 + σ2
2

)
Xi + iX̄ iDXi + F̄ iFi

− M̄ i
αβM

βα
i − X̄ iPαβMαβ

i + M̄αβ,iPβαXi

− iψ̄iγµDµψi + ψ̄i (iσ1 − γ3σ2)ψi + iψ̄iλXi − iX̄ iλ̄ψi − ηiψi − ψ̄iη̄i
+ iχ̄iγ

µDµχ
i − χ̄i (iσ1 − γ3σ2)χi + iX̄ iλχ̄i − iχiλ̄Xi

+ iq
r
X̄ iσ1Xi + q(2−q)

4r2 X̄ iXi − q
2r
ψ̄iψi − q

2r
χiχ̄i − q

2r

(
X̄ iCαβMi αβ + CαβM̄ i

αβXi

)
,

(2.4.24)

where the �avor indices i = (L,R) are contracted with

Mīj = −

(
1 α

α 1

)
. (2.4.25)

Clearly the action (2.4.24) is also QA-exact, being a sum of exact terms.

In this simple model with a single pair of semichiral �elds the R-charge q is unphysical, in

the sense that it can be set to the canonical value q = 0 by mixing the R-current with the

gauge current (this is no longer true if we have multiple semichiral pairs charged under the

same U(1)). However, we keep q for now and set it to zero only at the end of the calculation:

as we shall see, this will reduce the number of BPS con�gurations to be taken into account

in the localization.

6Strictly speaking, one should use a Q-exact action which is positive de�nite, so that one localizes to the

zero-locus. LS2

X has positive de�nite real part, provided that 0 ≤ q ≤ 2.
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Conjugate Representations

Let us move to the case of a pair of semichiral �elds in conjugate representations, whose

�at-space action includes the cross-terms of the form XLXR appearing in (2.4.14):

LR2

β = β

∫
d4θ
(
XLXR + X̄LX̄R

)
= β

(
MαβMαβ − η̄χ̄+ M̄αβM̄αβ − ηχ

)
. (2.4.26)

This �at-space action is invariant under the S2 SUSY transformations (2.4.21), with no need

for 1
r
improving terms, i.e., LS2

β = LR2

β . Furthermore, it is also QA-exact:

ε̄ε

∫
d2xLS2

β = δεδε̄

∫
d2x

(
XLM+− −XRM−+ + χ̄−ψ

R
+ + ψL−χ̄+

+ X̄LM̄+− − X̄RM̄−+ + χ−ψ̄
R
+ + ψ̄L−χ+ − 1

r
XRXL − 1

r
X̄LX̄R

)
. (2.4.27)

Note that although 1
r
terms appear inside the integral on the right-hand side, these are

cancelled against 1
r
terms coming from δεδε̄. Summarizing, the generalization of (2.4.14) to

S2 is the sum of (2.4.24) where �avor indices are contracted withMīj = δīj, and (2.4.26).

With the elements we have given here, one can explicitly write the general action on S2

for any number of semichiral �elds and general couplings between them. In the next section

we focus on the simplest case of a single pair of semichiral �elds and perform the localization

on the Coulomb branch.

2.4.3 Localization on the Coulomb Branch

In this section, we compute the S2 partition function of the gauge theories at hand by means

of Coulomb branch localization.

We wish to compute the path integral

ZS2 =

∫
Dϕ e−S[ϕ] ,

where ϕ are all the �elds in the gauge theory, including the vector multiplet, semichiral �elds,

and possibly chiral �elds as well. The action is given by

S =

∫
d2x (LVM + Lchiral + Lsemichiral + LFI) , (2.4.28)

where each term is the appropriate Lagrangian on S2 and LFI = −iξD + iθ
2π
F12 is the

standard FI term (which needs no curvature couplings on S2). We perform localization

with respect to the supercharge QA. Following the usual arguments [63, 64], the partition

function localizes on the BPS con�gurations {QA · fermions = 0} and is given exactly by
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the one-loop determinant around such con�gurations. The contribution from the vector and

chiral multiplets were studied in [65, 62]. Here we study the contribution from semichiral

�elds.

We begin by studying the BPS equations. These follow from setting the variations of all

fermions in (2.4.21) to zero. We show that for a generic value of q 6= 0 the only smooth

solution is

X = X̄ = F = F̄ = Mαβ = M̄αβ = 0 . (2.4.29)

Thus, like in the case of chiral multiplets, the BPS con�guration for generic q is only the

trivial one. The BPS con�gurations for the vector multiplet are given by [65, 62]

0 = F12 −
σ2

r
= D +

σ1

r
= Dµσ1 = Dµσ2 = [σ1, σ2] . (2.4.30)

Flux quantization of F12 implies that σ2 = m/(2r), where m is a co-weight, (i.e. m belongs

to the Cartan subalgebra of the gauge algebra and ρ(m) ∈ Z for any weight ρ of any repre-

sentation R of the gauge group). Thus, the set of BPS con�gurations are parametrized by

the continuous variable σ1 and the discrete �uxes m.

As shown in the previous section, the kinetic actions for semichiral �elds are QA-exact.
Thus, we can use the kinetic actions themselves as a deformation term for localization and we

must compute the one-loop determinants arising from these actions. We now compute these

determinants, both in the case in which the left and right semichiral �elds are in the same

representation of the gauge group, and in the case they are in conjugate representations. The

determinants coincide, as they should since such theories are related by a simple change of

variables.

Consider the action (2.4.24) and expand it at quadratic order around a BPS background.

Let us look at bosonic �elds �rst, using the basis

X =
(
XL, XR,ML

−+,M
L
−−,M

R
++,M

R
+−, F

L, FR
)T

.

The bosonic part of the quadratic action is given by X̄OBX , where OB is the 8× 8 operator

OB =



OX αOX q
2r
− σ 2iD++ −α 2iD−− −α

(
q
2r

+ σ̄
)

0 0

αOX OX α
(
q
2r
− σ

)
α 2iD++ −2iD−− −

(
q
2r

+ σ̄
)

0 0

α
(
− q

2r
+ σ
)
− q

2r
+ σ 0 0 0 −1 0 0

α 2iD−− 2iD−− 0 α 0 0 0 0

−2iD++ −α 2iD++ 0 0 α 0 0 0
q
2r

+ σ̄ α
(
q
2r

+ σ̄
)

−1 0 0 0 0 0

0 0 0 0 0 0 1 α

0 0 0 0 0 0 α 1


,

(2.4.31)
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where

OX = −�+ σ2
1 + σ2

2 + i
(q − 1)σ1

r
+
q(2− q)

4r2
.

All the terms involving σ1, σ2 in this matrix (and all matrices below) are to be understood

as ρ(σ1), ρ(σ2), but we omit this to avoid cluttering. We will reinstate this in the expressions

for the determinants. An analysis of the eigenvalues of (2.4.31) contains di�erent cases,

depending on the angular momentum j on S2. Assuming α 6= 0, and putting all cases

together, the determinant in the bosonic sector is given by:

DetOB =
∏
ρ∈R

α|ρ(m)|−1

α|ρ(m)|+1

∞∏
j=
|ρ(m)|

2

[
j2 + (α2 − 1)

(ρ(m)

2

)2

− α2
(q

2
− irρ(σ1)

)2
]2j+1

×

[
(j + 1)2 + (α2 − 1)

(ρ(m)

2

)2

− α2
(q

2
− irρ(σ1)

)2
]2j+1 ((α2 − 1)2

r4

)2j+1

. (2.4.32)

Now we turn to the fermionic determinant. In the basis

ψ =
(
ψL+, ψL−, ψR+, ψR−, η̄L+, η̄R−, χ̄L+, χ̄R−

)T
,

the fermionic quadratic action is given by ψ̄OFψ where OF reads

−
(
q
2r

+ σ̄
)

2iD−− −α
(
q
2r

+ σ̄
)

2iαD−− −1 0 0 0

−2iD++
q
2r
− σ −2iαD++ α

(
q
2r
− σ

)
0 α 0 0

−α
(
q
2r

+ σ̄
)

2iαD−− −
(
q
2r

+ σ̄
)

2iD−− −α 0 0 0

−2iαD++ α
(
q
2r
− σ

)
−2iD++

q
2r
− σ 0 1 0 0

−α 0 −1 0 0 0 0 0

0 1 0 α 0 0 0 0

0 0 0 0 0 0 −α
(
q
2r
− σ

)
−2iD−−

0 0 0 0 0 0 2iD++ α
(
q
2r

+ σ̄
)


.

(2.4.33)

The analysis of the eigenvalues of this operator gives the determinant

DetOF =
∏
ρ∈R

(
−(α2 − 1)α2

r2

)|ρ(m)| [(ρ(m)

2

)2

−
(q

2
− irρ(σ)

)2
]|ρ(m)|

×

∞∏
j=
|ρ(m)|

2
+ 1

2

(
α2 − 1

r2

)4j+2 [(
j +

1

2

)2

+ (α2 − 1)
(ρ(m)

2

)2

− α2
(q

2
− irρ(σ1)

)2
]4j+2

. (2.4.34)

Putting the bosonic and fermionic determinants together leads to many cancellations and

the �nal result is7

ZLR =
DetOF
DetOB

=
∏
ρ∈R

(−1)|ρ(m)|

ρ(m)2

4
−
(
q
2
− irρ(σ1)

)2 . (2.4.35)

7Here we have ignored overall factors of r2 and (α2 − 1)−1.

73



This expression has simple poles at ρ(σ1) = − i
2r

(
q ± ρ(m)

)
for ρ(m) 6= 0, and a double pole

at ρ(σ1) = − iq
2r

for ρ(m) = 0. Using properties of the Γ-function, (2.4.35) can be written as

ZLR =
∏
ρ∈R

Γ
(
q
2
− irρ(σ1)− ρ(m)

2

)
Γ
(

1− q
2

+ irρ(σ1)− ρ(m)
2

) · Γ
(
− q

2
+ irρ(σ1) + ρ(m)

2

)
Γ
(

1 + q
2
− irρ(σ1) + ρ(m)

2

) . (2.4.36)

In fact (2.4.36) coincides with the one-loop determinant for two chiral �elds in conjugate

representations of the gauge group, opposite R-charges, and no twisted mass parameters

turned on. Each Γ-function in the numerator has an in�nite tower of poles, most of which

though cancel against the poles of the denominator (such a cancellation does not happen for

a pair of chiral multiplets with generic twisted masses and R-charges).

Note that the dependence on α has become an overall normalization, which we have

omitted. This should be expected from the fact that this parameter appears in a QA-exact
term.

The full partition function requires the integration over σ1 as well as a sum over the �ux

sectors m:

ZS2

LR =
1

|W|
∑
m

∫
dσ1

2π
e−4πiξTrσ1−iθTrm Zgauge ZLR , (2.4.37)

where ZLR is given by (2.4.36), Zgauge is the contribution from the vector multiplet given in

[65, 62], and |W| is the order of the Weyl group. The integral is over some contour in the

complex plane which needs to be speci�ed, as we are going to discuss.

For concreteness, consider NF pairs of semichiral �elds coupled to a U(1) gauge �eld,

each pair having charges (1,−1) and R-charges (q,−q). From now on we set r = 1 to avoid

cluttering the formulas. We can simply take the result for each pair and get

ZS2

LR(ξ, θ) =
∑
m

∫
dσ1

2π
e−4πiξσ1−iθm

(
Γ
(
q
2
− iσ1 − m

2

)
Γ
(
1− q

2
+ iσ1 − m

2

) · Γ
(
− q

2
+ iσ1 + m

2

)
Γ
(
1 + q

2
− iσ1 + m

2

))NF

.

2.5 T 2 Localization

The elliptic genus can be computed both using the Hamiltonian formalism [66] and the path

integral formalism [67, 68, 69]. In this section, we will compute the elliptic genus of the

GLSM with semichiral super�elds using both methods.
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2.5.1 Hamiltonian formalism

The elliptic genus is de�ned in the Hamiltonian formalism as a re�ned Witten index,

Z = TrRR(−1)F qHL q̄HRyJ
∏
a

xKaa , (2.5.1)

where the trace is taken in the RR sector, in which fermions have periodic boundary con-

ditions, and F is the fermion number. In Euclidean signature, HL = 1
2
(H + iP ) and

HR = 1
2
(H − iP ) are the left- and the right-moving Hamiltonians. J and Ka are the R-

symmetry and the a-th �avor symmetry generators, respectively. It is standard to also de�ne

q ≡ e2πiτ , xa ≡ e2πiua , y ≡ e2πiz . (2.5.2)

If ua = z = 0 the elliptic genus reduces to the Witten index, and computes the Euler

characteristic of the target space if there is a well-de�ned geometric description.

The contributions from di�erent multiplets can be computed independently, and we will

only consider the unexplored contribution from the semichiral multiplet. As we have seen in

Appendix G, the physical component �elds of the semichiral super�eld X are two complex

scalars XL and XR, and spinors ψ′±, χ
L
− and χR+. All �elds have the same �avor symmetry

charge Q. The R-charges of (XL, XR, ψ
′
+, ψ

′
−χ

L
−, χ

R
+) are (R

2
, R

2
, R

2
− 1, R

2
, R

2
, R

2
+ 1).

Let us consider the fermionic zero modes �rst. We denote the zero modes of ψ′+ and ψ̄′+
as ψ′+,0 and ψ̄

′
+,0, respectively. They satisfy

{ψ′+,0 , ψ̄′+,0} = 1 , (2.5.3)

which can be represented in the space spanned by | ↓〉 and | ↑〉 with

ψ′+,0 | ↓〉 = | ↑〉 , ψ̄′+,0 | ↑〉 = | ↓〉 . (2.5.4)

One of | ↓〉 and | ↑〉 can be chosen to be bosonic, while the other is fermionic. Under the

U(1)R the zero modes transform as

ψ′+,0 → e−iπz(
R
2
−1)ψ′−,0 , ψ̄′+,0 → eiπz(

R
2
−1)ψ̄′−,0 , (2.5.5)

while under U(1)f they transform as

ψ′+,0 → e−iπuQψ′−,0 , ψ̄′+,0 → eiπuQψ̄′−,0 , (2.5.6)

These two states contribute a factor

e−iπz(
R
2
−1) e−iπuQ − eiπz(

R
2
−1) eiπuQ (2.5.7)
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to the elliptic genus. Similarly, the contributions of the other zero modes are

(ψ′−,0, ψ̄
′
−,0) : eiπz

R
2 eiπuQ − e−iπz

R
2 e−iπuQ ,

(χL−,0, χ̄
L
−,0) : eiπz

R
2 eiπuQ − e−iπz

R
2 e−iπuQ ,

(χR+,0, χ̄
R
+,0) : e−iπz(

R
2

+1) e−iπuQ − eiπz(
R
2

+1) eiπuQ . (2.5.8)

The contributions from the bosonic zero modes are relatively simple. They are

1[(
1− eiπzR2 eiπuQ

)
·
(

1− e−iπzR2 e−iπuQ
)]2 . (2.5.9)

Bringing all the factors together, we obtain the zero mode part of the elliptic genus:[
1− eiπ(R−2)z e2iπuQ

]
·
[
1− eiπ(R+2)z e2iπuQ

]
(1− eiπRz e2iπuQ)2 =

(
1− yR2 −1xQ

)
·
(

1− yR2 +1xQ
)

(1− yR2 xQ)2
. (2.5.10)

We then consider the nonzero modes. The contribution from the fermionic sector (ψ′±, χ
L
−, χ

R
+)

is

∞∏
n=1

(
1− qne2iπz(R

2
−1) e2iπuQ

)
·
(

1− qne−2iπz(R
2
−1) e−2iπuQ

)
·
(

1− q̄ne2iπzR
2 e2iπuQ

)
·
(

1− q̄ne−2iπzR
2 e−2iπuQ

)
·
(

1− qne2iπz(R
2

+1) e2iπuQ
)
·
(

1− qne−2iπz(R
2

+1) e−2iπuQ
)

·
(

1− q̄ne2iπzR
2 e2iπuQ

)
·
(

1− q̄ne−2iπzR
2 e−2iπuQ

)
, (2.5.11)

while the contribution from the bosonic sector (XL, XR) is

∞∏
n=1

1(
1− qne2iπzR

2 e2iπuQ
)
·
(

1− qne−2iπzR
2 e−2iπuQ

)
· 1(

1− q̄ne2iπzR
2 e2iπuQ

)
·
(

1− q̄ne−2iπzR
2 e−2iπuQ

)
· 1(

1− qne2iπzR
2 e2iπuQ

)
·
(

1− qne−2iπzR
2 e−2iπuQ

)
· 1(

1− q̄ne2iπzR
2 e2iπuQ

)
·
(

1− q̄ne−2iπzR
2 e−2iπuQ

) . (2.5.12)
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Hence, the nonzero modes contribute to the elliptic genus a factor

∞∏
n=1

(
1− qne2iπz(R

2
−1) e2iπuQ

)
·
(

1− qne−2iπz(R
2
−1) e−2iπuQ

)
(

1− qne2iπzR
2 e2iπuQ

)
·
(

1− qne−2iπzR
2 e−2iπuQ

)
·

(
1− qne2iπz(R

2
+1) e2iπuQ

)
·
(

1− qne−2iπz(R
2

+1) e−2iπuQ
)

(
1− qne2iπzR

2 e2iπuQ
)
·
(

1− qne−2iπzR
2 e−2iπuQ

)
=
∞∏
n=1

(
1− qnyR2 −1xQ

)
·
(

1− qn(y
R
2
−1xQ)−1

)
(

1− qnyR2 xQ
)
·
(

1− qn(y
R
2 xQ)−1

) ·

(
1− qnyR2 +1xQ

)
·
(

1− qn(y
R
2

+1xQ)−1
)

(
1− qnyR2 xQ

)
·
(

1− qn(y
R
2 xQ)−1

) .

(2.5.13)

Taking both the zero modes (2.5.10) and the nonzero modes (2.5.13) into account, we

obtain (
1− yR2 −1xQ

)
·
(

1− yR2 +1xQ
)

(1− yR2 xQ)2
·
∞∏
n=1

(
1− qnyR2 −1xQ

)
·
(

1− qn(y
R
2
−1xQ)−1

)
(

1− qnyR2 xQ
)
·
(

1− qn(y
R
2 xQ)−1

)
·
∞∏
n=1

(
1− qnyR2 +1xQ

)
·
(

1− qn(y
R
2

+1xQ)−1
)

(
1− qnyR2 xQ

)
·
(

1− qn(y
R
2 xQ)−1

) . (2.5.14)

Using the formula

ϑ1(τ, z) = −iy1/2q1/8

∞∏
n=1

(1− qn)
∞∏
n=0

(1− yqn+1)(1− y−1qn) , (2.5.15)

where

q ≡ e2πiτ , y ≡ e2πiz , (2.5.16)

we can rewrite (2.5.14) as

Z1−loop(τ, u, z) =
ϑ1(τ, z

(
R
2

+ 1
)

+ uQ)

ϑ1(τ, zR
2

+ uQ)
·
ϑ1(τ, z

(
R
2
− 1
)

+ uQ)

ϑ1(q, zR
2

+ uQ)
. (2.5.17)

Comparing to the contribution of a chiral super�eld [67, 68], we see that the 1-loop determi-

nant of the elliptic genus for one pair of semichiral super�elds is equal to the product of the

1-loop determinants for two chiral super�elds with the opposite R-charge and the opposite

�avor charge, which is consistent with the result of the semichiral gauged linear sigma model

localized on the two-sphere [70].
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2.5.2 Path integral formalism

The elliptic genus can be equivalently described in the path integral formalism as a twisted

partition function on the torus, we may apply the technique of localization to compute it.

Recall that the Witten index is expressed in the path integral formalism as the partition

function of the theory on a torus, with periodic boundary conditions for both bosons and

fermions. To deform the Witten index into the elliptic genus, we should specify twisted

boundary conditions for all �elds. Equivalently, we can keep the periodic boundary conditions

and introduce background gauge �elds AR and Af,a for the R-symmetry and the a-th �avor-

symmetry, respectively. They are related to the parameters in the de�nition of elliptic genus

via

z ≡
∮
AR1 dx1 − τ

∮
AR2 dx2 , ua ≡

∮
Af,a1 dx1 − τ

∮
Af,a2 dx2 . (2.5.18)

Following the general principle of localization, if we regard the background gauge �elds as

parameters in the theory, we only need the free part of the Lagrangian in order to compute

the elliptic genus. The free part of the Lagrangian in the Euclidean signature is

Lfree = DµX̄
IDµXI + iX̄IDXI + F̄ IFI − M̄++,IM++,I − M̄−−,IM−−,I − M̄+−,IM−+,I − M̄−+,IM+−,I

− M̄++,I(−2iD+XI)− M̄−−,I2iD−XI + X̄I(−2iD+M
++
I ) + X̄I(2iD−M

−−
I )

− iψ̄IγµDµψI − η̄IψI − ψ̄IηI + iχ̄IγµDµχI , (2.5.19)

where the covariant derivative is de�ned as

Dµ ≡ ∂µ − Q̂uµ − R̂zµ , (2.5.20)

and the operators Q̂ and R̂ acting on di�erent �elds give their corresponding U(1)f and

U(1)R charges as follows:

X ψ+ ψ− F χ+ χ− M++ M−− M+− M−+ η+ η−

Q̂ Q Q Q Q Q Q Q Q Q Q Q Q

R̂ R
2

R
2
− 1 R

2
R
2
− 1 R

2
+ 1 R

2
R
2

R
2

R
2

+ 1 R
2
− 1 R

2
R
2
− 1

Table 2.2: Charge assignments of the components of the semichiral multiplets

The BPS equations are obtained by setting the SUSY transformations of fermions to zero.

The solutions to the BPS equtions provide the background that can perserve certain amount

of supersymmetry. In this case, the BPS equations have only trivial solutions, i.e., all the

�elds in the semichiral multiplets are vanishing.
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We adopt the metric on the torus

ds2 = gij dx
i dxj , (2.5.21)

where

gij =
1

τ2

(
1 τ1

τ1 |τ |2

)
, (2.5.22)

and τ = τ1 + iτ2 is the complex structure, and we expand all the �elds in the modes

e2πi(nx1−mx2) ,

where n, m ∈ Z. Then we can integrate out the auxiliary �elds, and calculate the 1-loop

determinant of the free part of the Lagrangian on the torus. The result is

Z1−loop =
∏

m,n∈Z

(
m+ nτ −Qu− (R

2
+ 1)z

)
·
(
m+ nτ −Qu− (R

2
− 1)z

)(
m+ nτ − (Qu+ R

2
z)
)
·
(
m+ nτ − (Qu+ R

2
z)
) . (2.5.23)

After regularization, this expression can be written in terms of theta functions:

Z1−loop(τ, u, z) =
ϑ1(τ, z

(
R
2

+ 1
)

+ uQ)

ϑ1(τ, zR
2

+ uQ)
·
ϑ1(τ, z

(
R
2
− 1
)

+ uQ)

ϑ1(q, zR
2

+ uQ)
. (2.5.24)

The elliptic genus is

Z =
1

|W |
∑

u∗∈M∗sing

JK-Resu∗(Q(u∗), η)Z1−loop(u) , (2.5.25)

where we obtain the Je�rey-Kirwan residue (see also Appendix I), following the discussions

in Refs. [69, 71].

2.5.3 Eguchi-Hanson space

Eguchi-Hanson space is the simplest example of the ALE spaces, and can be constructed via

hyperkähler quotient in terms of semichiral super�elds [60]:

L = − 1

2e2

∫
d4θ(¯̃FF̃− F̄F) +

(
i

∫
d2θΦF + c.c.

)
+

(
i

∫
d2θ̃ t F̃ + c.c.

)
−
∫
d4θ
[
X̄L
i e

QiVL XL
i + X̄R

i e
QiVR XR

i + α(X̄L
i e

iQi
¯̃V XR

i + X̄R
i e
−iQiṼ XL

i )
]
, (2.5.26)

where i = 1, 2, and for simplicity we set t = 0.

The model (2.5.26) has N = (4, 4) supersymmetry, and the R-symmetry is SO(4) ×
SU(2) ∼= SU(2)1 × SU(2)2 × SU(2)3 [71]. Hence, we can assign the R-charges (Q1, Q2, QR),
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where QR corresponds to the U(1)R charge that we discussed in the previous section. Similar

to Ref. [71], we choose the supercharges Q− and Q+ to be in the representation (2, 2, 1) and

(2, 1, 2) respectively under the R-symmetry group. Moreover, the �avor symmetry Qf now

becomes SU(2)f . In this case, the �elds appearing in the model (2.5.26), which are relevant

for the elliptic genus, have the following charge assignments:

XL
1 XR

1 ψ
(2)
1+ ψ

(2)
1− χR1+ χL1− XL

2 XR
2 ψ

(2)
2+ ψ

(2)
2− χR2+ χL2−

Q1 −Q2 −1 −1 0 −1 0 −1 −1 −1 0 −1 0 −1

QR 0 0 −1 0 1 0 0 0 −1 0 1 0

Qf 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

Table 2.3: Charges of the components of the semichiral multiplets under the R-symmetry

The components of the chiral and the twisted chiral �eld strength, F and F̃, have the following
charge assignments:

φ̃ ψ̃+ ψ̃− σ λ̄+ λ− Aµ

Q1 −Q2 1 2 1 −1 0 −1 0

QR 1 0 1 1 0 1 0

Qf 0 0 0 0 0 0 0

Table 2.4: Charges of the components of the �eld strength super�elds under the R-symmetry

As we discussed before, the constrained semichiral vector multiplet and the unconstrained

semichiral vector multiplet di�er by a F-term, which does not show up in the result of

localization, hence we can make use of the 1-loop determinant from the previous section.

Then for the GLSM given by Eq. (2.5.26), the 1-loop determinant is

ZEH
1−loop = ZF̃,F · Z

L,R
1 · ZL,R

2 , (2.5.27)

where

ZF̃,F =
iη(q)3

ϑ1(τ, ξ2 − z)
· ϑ1(τ, 2ξ2)

ϑ1(τ, ξ2 + z)
,

ZL,R
1 =

ϑ1(τ, u+ ξ1 − z)

ϑ1(τ, u+ ξ1 − ξ2)
· ϑ1(τ, u+ ξ1 + z)

ϑ1(τ, u+ ξ1 + ξ2)
,

ZL,R
2 =

ϑ1(τ, u− ξ1 − z)

ϑ1(τ, u− ξ1 − ξ2)
· ϑ1(τ, u− ξ1 + z)

ϑ1(τ, u− ξ1 + ξ2)
. (2.5.28)
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Then the elliptic genus is given by

ZEH(τ ; z, ξ) =
1

|W |
∑

u∗∈M∗sing

JK-Resu∗(Q(u∗), η)Z1−loop(u) , (2.5.29)

where �JK-Res� denotes the Je�rey-Kirwan residue, which is discussed in detail in Refs. [69,

71] and also brie�y reviewed in Appendix I. In practice, the Je�rey-Kirwan residue can be

calculated as follows:

Z = −
∑

uj∈M+
sing

∮
u=uj

duZ1−loop . (2.5.30)

The poles are at

Qiu+
Ri

2
z + Pi(ξ) = 0 (mod Z + τZ) , (2.5.31)

where

Ri ≥ 0 , (2.5.32)

and the poles with Qi > 0 and Qi < 0 are grouped in to M+
sing and M−

sing respectively. In the

Eguchi-Hanson case, for instance for the phase where the intersection of HX = {u+ ξ1− ξ2 =

0} and HY = {u− ξ1 − ξ2 = 0} contributes,

M+
sing = {−ξ1 + ξ2, ξ1 + ξ2} . (2.5.33)

Hence, the elliptic genus equals

ZEH(τ ; z, ξ) =
ϑ1(τ,−2ξ1 + ξ2 − z) · ϑ1(τ, 2ξ1 − ξ2 − z)

ϑ1(τ,−2ξ1) · ϑ(τ, 2ξ1 − 2ξ2)
+
ϑ1(τ, 2ξ1 + ξ2 − z) · ϑ1(τ,−2ξ1 − ξ2 − z)

ϑ1(τ, 2ξ1) · ϑ1(τ,−2ξ1 − 2ξ2)
,

(2.5.34)

which is the same as the result obtained in Ref. [71].

From our construction of the ALE space using semichiral GLSM, it is also clear that the

elliptic genus for the ALE space coincides with the one for the six-dimensional conifold space.

The reason is following. As we discussed before, to obtain an ALE space through a semichiral

GLSM we need the semichiral vector multiplet, which has three real components, while to

construct a conifold (or resolved conifold when the FI parameter t 6= 0) one should use the

constrained semichiral vector multiplet, which has only one real component. However, these

two vector multiplets di�er only by a superpotential term, which does not a�ect the result

of the localization. Hence, the result that we obtained using localization give us the elliptic

genus both for the ALE space and for the conifold.8

8We would like to thank P. Marcos Crichigno for discussing this.
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2.5.4 Taub-NUT space

Taub-NUT space is an example of the ALF space, and can be constructed by semichiral

GLSM as follows [60]:

L =

∫
d4θ
[
− 1

2e2
(¯̃FF̃− F̄F) + X̄L

1 e
VL XL

1 + X̄R
1 e

VR XR
1 + α(X̄L

1 e
i ¯̃V XR

1 + X̄R
1 e
−iṼ XL

1 )

+
1

2

(
XL

2 + X̄L
2 + VL

)2

+
1

2

(
XR

2 + X̄R
2 + VR

)2

+
α

2

(
XL

2 + X̄R
2 − iṼ

)2

+
α

2

(
XR

2 + XL
2 + i ¯̃V

)2 ]
+

(∫
d2θΦF + c.c.

)
−
(∫

d2θ̃ t F̃ + c.c.

)
, (2.5.35)

where for simplicity we set t = 0.

Using the results from the previous section, and assigning the same R-symmetry and the

�avor symmetry charges as in the Eguchi-Hanson case (2.5.27) (2.5.27), we can write down

immediately the 1-loop contribution from the semichiral vector multiplet, F̃ and F, as well
as the one from the semichiral multiplet, XL

1 and XR
1 , of the model (2.5.35):

ZF̃,F =
∏
m,n∈Z

n+ τm− 2ξ2

(n+ τm− ξ2 + z) · (n+ τm− ξ2 − z)
·

∏
(m,n)6=(0,0)

(n+mτ) , (2.5.36)

ZL,R
1 =

ϑ1(τ, u+ ξ1 − z)

ϑ1(τ, u+ ξ1 − ξ2)
· ϑ1(τ, u+ ξ1 + z)

ϑ1(τ, u+ ξ1 + ξ2)
. (2.5.37)

However, to obtain the full 1-loop determinant, we still have to work out the part of the model

from semichiral Stückelberg �elds, and localize it to obtain its contribution to the 1-loop

determinant. Let us start with the Lagrangian for the Stückelberg �eld in the superspace:

LSt =

∫
d4θ
[1

2

(
XL

2 + X̄L
2 + VL

)2

+
1

2

(
XR

2 + X̄R
2 + VR

)2

+
α

2

(
XL

2 + X̄R
2 − iṼ

)2

+
α

2

(
XR

2 + XL
2 + i ¯̃V

)2 ]
. (2.5.38)

Expanding the Lagrangian into components and integrate out auxiliary �elds (see Appendix H),

we obtain

LSt =
α− 1

α
(r̄1�r1 + γ̄1�γ1) +

α + 1

α
(r̄2�r2 + γ̄2�γ2)

+
i

2
(

1

α2
− α2)ψ̄2

+D−ψ
2
+ −

i

2
(

1

α2
− α2)ψ̄2

−D+ψ
2
− + χ̄L−2iD+χ

L
− − χ̄R+2iD−χ

R
+ . (2.5.39)

As discussed in Appendix H, among the real components r1,2 and γ1,2 only r2 transforms

under the gauge transformations. We can assign the following charges to the components of

the Stückelberg �eld:
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r1 r2 γ1 γ2 ψ+ ψ− χ+ χ−

Q1 −Q2 −2 0 −2 0 −1 −2 −1 0

QR 0 0 0 0 −1 0 1 0

Qf 0 0 0 0 0 0 0 0

Table 2.5: Charges of the components of the Stückelberg �eld under the R-symmetry

Taking both the momentum and the winding modes into account, we obtain the contribution

from the Stückelberg �eld to the 1-loop determinant

ZSt =
∏
m,n∈Z

(n+ τm+ ξ2 + z) · (n+ τm+ ξ2 − z)

n+ τm+ 2ξ2

·
∏

(m,n) 6=(0,0)

1

n+mτ
·
∑
v,w∈Z

e
− g

2π
τ2
|u+v+τw|2

.

(2.5.40)

Together with Eq. (2.5.36) and Eq. (2.5.37), we obtain the full 1-loop determinant of the

elliptic genus for the Taub-NUT space

ZTN
1−loop =

ϑ1(τ, u+ ξ1 − z)

ϑ1(τ, u+ ξ1 − ξ2)
· ϑ1(τ, u+ ξ1 + z)

ϑ1(τ, u+ ξ1 + ξ2)
·
∑
v,w∈Z

e
− g

2π
τ2
|u+v+τw|2

. (2.5.41)

The elliptic genus for the Taub-NUT space is given by

ZTN = g2

∫
E(τ)

du dū

τ2

ϑ1(τ, u+ ξ1 − z)

ϑ1(τ, u+ ξ1 − ξ2)
· ϑ1(τ, u+ ξ1 + z)

ϑ1(τ, u+ ξ1 + ξ2)
·
∑
v,w∈Z

e
− g

2π
τ2
|u+v+τw|2

, (2.5.42)

where E(τ) = C/(Z + τZ). This result is the same as the one in Ref. [71] obtained from the

chiral GLSM.

Similar to the ALE space, the elliptic genus for the ALF space should coincide with

the one for some six-dimensional space. In semichiral GLSM language, one is obtained

using the unconstrained semichiral vector multiplet, while the other is constructed using

the constrained semichiral vector multiplet. However, as far as we know, this kind of six-

dimensional space is not well studied in the literature as the conifold. We would like to

investigate it in more detail in the future.
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Chapter 3

Entanglement Entropy

Entanglement entropy plays an increasingly important role in di�erent branches of physics.

Proposed as a useful measure of the quantum entanglement of a system with its environment,

entanglement entropy now features in discussions of black hole physics [72, 73], renormal-

ization group �ow [74, 75], and quantum phase transitions [76, 77]. A closely related set of

quantities are the Rényi entropies and supersymmetric Rényi entropies. In this chapter, we

review these concepts and their relations with the partition function on a sphere. The ther-

mal corrections to Rényi entropies for conformal �eld theory (CFT) will also be discussed.

This chapter is mainly based on my paper with Chris Herzog [78].

3.1 Introduction to Entanglement Entropy

We adopt the conventional de�nition of entanglement and Rényi entropy in this thesis. Sup-

pose the space on which the theory is de�ned can be divided into a piece A and its complement

Ā = B, and correspondingly the Hilbert space factorizes into a tensor product. The density

matrix over the whole Hilbert space is ρ; then the reduced density matrix is de�ned as

ρA ≡ trBρ . (3.1.1)

The entanglement entropy is the von Neumann entropy of ρA,

SE ≡ −trρA log ρA , (3.1.2)

while the Rényi entropies are de�ned to be

Sn ≡
1

1− n
log tr(ρA)n . (3.1.3)
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Assuming a satisfactory analytic continuation of Sn can be obtained, the entanglement en-

tropy can alternately be expressed as a limit of the Rényi entropies:

lim
n→1

Sn = SE . (3.1.4)

The Rényi entropy can also be calculated using the so-called �replica trick�:

Sn =
1

1− n
log

(
Zn

(Z1)n

)
, (3.1.5)

where Zn is the Euclidean partition function on a n-covering space branched along A.

Both the entanglement entropy and the Rényi entropy can be used as the measure of the

entanglement. Although the Rényi entropy can reproduce the entanglement entropy in some

limit, it is not just a trick to calculate the entanglement entropy. One reason is that the

parameter n in the de�nition (3.1.3) introduces a nontrivial deformation, which turns out in

many cases to provide more information of the system.

Based on today's understanding of quantum measurement, one can only perform the

measurement by applying a local unitary operator to the system. In that sense, neither

the entanglement entropy nor the Rényi entropy can be measured directly, since they are

de�ned in a nonlocal way. Nevertheless, one can still compute them and use them as an

order parameter to distinguish di�erent quantum phases.

Another related concept is the supersymmetric Rényi entropy, which was introduced in

Ref. [79]. Let us take the theory on a 3-sphere for example. Similar to the �replica trick� for

the Rényi entropy, the supersymmetric Rényi entropy can be de�ned as

SSUSY
q ≡ 1

1− q

[
log

(
Zsingular space(q)

(ZS3)q

)]
, (3.1.6)

where ZS3 is the partition function of a supersymmetric theory on S3, while Zsingular space(q)

is the partition function on the q-branched sphere S3
q given by the metric

ds2 = `2(dθ2 + q2 sin2θ dτ 2 + cos2θ dφ2) (3.1.7)

with θ ∈ [0, π/2], τ ∈ [0, 2πq) and φ ∈ [0, 2π). For q = 1, the q-branched sphere returns to

the round sphere.

In the last decade, people have calculated the entanglement entropy and the Rényi entropy

for various cases. To calculate them, one can follow the de�nitions above and apply the

replica trick for the Rényi entropy (see e.g. Ref. [80]), or use the heat kernel method (see e.g.

Ref. [81]), or map the entanglement entropy to the modular Hamiltonian and further to the

tt-component of the stress tensor (see e.g. Ref. [82]). Based on the AdS/CFT correspondence,
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Ref. [83] proposed a formula of calculating the entanglement entropy for a conformal �eld

theory on R1,d holographically:

SA =
Area of γA

4Gd+2
N

, (3.1.8)

where γA is the d-dimensional static minimal surface in AdSd+2 whose boundary is by ∂A,

and Gd+2
N is the (d + 2)-dimensional gravitational constant. This formula gives the right

results for the leading terms in the entanglement entropy for many cases that have been

checked, hence provides an alternative to calculate the entanglement entropy.

Independent of the concrete models, the entanglement entropy has the general form

SA = α|∂A| − γ + ε(|∂A|−β) , (3.1.9)

where α, β and γ are real numbers and β > 0, while ∂A stands for the boundary of the

domain A. Usually one is interested in the dominant term α|∂A|, however, as pointed out

by Kitaev and Preskill [84] as well as by Levin and Wen [85], the constant term −γ is also

of physical interest, which indicates the existence of the topological order in the system. Let

us de�ne

Stop = −γ . (3.1.10)

If Stop is zero, there is no topological order. If Stop is nonzero, the system is necessarily

topologically ordered.

Actually not just the term ∼ |∂A| and the constant term in the entanglement entropy

have physical meanings, it was pointed out in Refs. [86, 87] that for an even-dimensional

spacetime the logarithmic term in the entanglement entropy is universial, whose coe�cient

is proportial to the A-type conformal anomaly. Let us brie�y summarize the argument of

Ref. [87] in the following. We know that in an even-dimensional spacetime the conformal

anomaly of a conformal �eld theory can be written as

〈T µ µ〉 =
∑
n

BnIn − 2(−)d/2AEd , (3.1.11)

where Ed is the Euler density, and In are the independent Weyl invariants of weight −d. A
d-dimensional Minkowski space can be mapped into a de Sitter space in the following way:

ds2 = −dt2 + dr2 + r2 dΩ2
d−2

= Ω2
[
−cos2θ dτ 2 +R2(dθ2 + sin2θ dΩ2

d−2)
]
, (3.1.12)

where the coordinate transformation is given by

t = R
cosθ sinh(τ/R)

1 + cosθ cosh(τ/R)
,

r = R
sinθ

1 + cosθ cosh(τ/R)
, (3.1.13)
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and the conformal factor is

Ω =
1

1 + cosθ cosh(τ/R)
. (3.1.14)

For a d-dimensional de Sitter space there is

〈T µ ν〉 = −2(−)d/2A
Ed
d
δµ ν . (3.1.15)

It is shown in Ref. [87] that the entanglement entropy for the sphere of radius R in �at space

is equivalent to the thermodynamic entropy of the thermal state in de Sitter space. Hence,

we consider the thermal density matrix in a de Sitter space

ρ =
eβHτ

tr
(
e−βHτ

) , (3.1.16)

which will lead to

S = −tr(ρ logρ) = β trρHτ + log tr(e−βHτ ) = βE −W , (3.1.17)

where E is the Killing energy, andW = −logZ with Z = tr
(
exp[−2πRHτ ]

)
is the free energy.

After some analysis we �nd that the Killing energy is �nite for the de Sitter space, hence

only the free energy can contribute to the logarithmic part in the entanglement entropy. The

free energy has the general expression

W = −logZ = (non-universal terms) + ad+1 log δ + (�nite terms) , (3.1.18)

where δ is a UV cut-o�. Consider an in�nitesimal transformation of the metric

gµν → (1− 2 δλ)gµν . (3.1.19)

Under the transformation we have

2
√
g

δW

δgµν
= 〈Tµν〉+ (divergent terms) , (3.1.20)

and
δW

δλ
= −

∫
ddx
√
g 〈T µ µ〉+ (divergent terms) . (3.1.21)

On the other hand, we can think of the transformation as a shift of the UV cut-o�

δ → (1− δλ)δ , (3.1.22)

while leaving the metric unchanged, then we obtain

ad+1 =

∫
ddx
√
g 〈T µµ 〉 , (3.1.23)
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which is an integrated conformal anomaly. Since for the de Sitter space all the Weyl invariants

vanish, i.e. In = 0, ad+1 has only contribution from the Eulder density, i.e. the A-type

conformal anomaly. Finally, we obtain for a conformal �eld theory in even dimensions the

universal contribution to the entanglement entropy

Suniv = (−1)
d
2
−1 4A log(R/δ) . (3.1.24)

To apply the theoretical results to a real system, it would be useful to know the thermal

corrections to the entanglement entropy SE and the Rényi entropy Sn. Ref. [88] found

universal thermal corrections to both SE and Sn for a CFT on S1×S1. The CFT is assumed

to be gapped by having placed it on a spatial circle of circumference L, while the circumference

of the second circle is the inverse temperature β. The results are

δSn ≡ Sn(T )− Sn(0) =
g

1− n

 1

n2∆−1

sin2∆
(
π`
L

)
sin2∆

(
π`
nL

) − n
 e−2πβ∆/L + o

(
e−2πβ∆/L

)
, (3.1.25)

δSE ≡ SE(T )− SE(0) = 2g∆

[
1− π`

L
cot

(
π`

L

)]
e−2πβ∆/L + o

(
e−2πβ∆/L

)
, (3.1.26)

where ∆ is the smallest scaling dimension among the set of operators not equal to the identity

and g is their degeneracy. The quantity ` is the length of the interval A.1

To generalize the results of Ref. [88] to higher dimensions, Ref. [82] considered thermal

corrections to the entanglement entropy SE on spheres. More precisely, a conformal �eld

theory on S1 × Sd−1 is considered in Ref. [82], where the radius of S1 and the one of Sd−1

are β/2π and R respectively. The region A ⊂ Sd−1 is chosen to be a cap with polar angle

θ < θ0. Then the thermal correction to the entanglement entropy SE is

δSE = g∆ Id(θ0) e−β∆/R + o
(
e−β∆/R

)
, (3.1.27)

where

Id(θ0) ≡ 2π
Vol(Sd−2)

Vol(Sd−1)

∫ θ0

0

dθ
cosθ − cosθ0

sinθ0

sind−2θ . (3.1.28)

Ref. [82] noticed that this result is sensitive to boundary terms in the action. For a con-

formally coupled scalar, these boundary terms mean that the correction to entanglement

entropy is given not by Eq. (3.1.27) but by Eq. (3.1.27) where Id(θ0) is replaced by Id−2(θ0).

A natural question is how to calculate the thermal corrections to the Rényi entropy in

higher dimensions. We would like to address this issue in this chapter. Our main results are

1The fact that SE(T ) − SE(0) ∼ e−2πβ∆/L is Boltzmann suppressed was conjectured more generally for

gapped theories in Ref. [89]. That SE(T ) − SE(0) might have a universal form for 1+1 dimensional CFTs

was suggested by the speci�c examples worked out in Refs. [90, 91, 92, 93]. See Ref. [94] for higher order

temperature corrections when the �rst excited state is created by the stress tensor.

88



the following. The thermal correction to the Rényi entropy for a cap-like region with opening

angle 2θ0 on the sphere Sd−1 in R× Sd−1 is given by

δSn =
n

1− n

(
〈ψ(z)ψ(z′)〉n
〈ψ(z)ψ(z′)〉1

− 1

)
e−βEψ + o

(
e−βEψ

)
, (3.1.29)

where ψ(z) is the operator that creates the �rst excited state of the CFT and Eψ is its energy.
2

If we assume that ψ(z) has scaling dimension ∆, then we know further that Eψ = ∆/R. The

two point function 〈ψ(z)ψ(z′)〉n is evaluated on an n-fold cover of R×Sd−1 that is branched

over the cap of opening angle 2θ0. Note the result (3.1.29) and the steps leading up to it

are essentially identical to a calculation and intermediate result derived in Ref. [88] in 1+1

dimensions. The di�erence is that in 1+1 dimensions, the two-point function 〈ψ(z)ψ(z′)〉n
can be evaluated for a general CFT through an appropriate conformal transformation, while

in higher dimensions we only know how to evaluate 〈ψ(z)ψ(z′)〉n in some special cases.

In the case of free �elds (and perhaps more generally) it makes sense to map this n-fold

cover of the sphere to Cn×Rd−2 where Cn is a two dimensional cone of opening angle 2πn. In

the case of a free theory, the two-point function 〈ψ(y)ψ(y′)〉1/m, where y, y′ ∈ Cn×Rd−2, can

be evaluated by the method of images on a cone of opening angle 2π/m and then analytically

continued to integer values of 1/m. Ref. [95] made successful use of this trick to calculate

a limit of the mutual information for conformally coupled scalars. We will use this same

trick to look at thermal corrections to Rényi entropies for these scalars. Taking the n → 1

limit, we �nd complete agreement with entanglement entropy corrections computed in Ref.

[82]. (The method of images can also be used to study free fermions, but we leave such a

calculation for future work.) We verify the Rényi entropy corrections numerically by putting

the system on a lattice.

3.2 Thermal Corrections to Rényi Entropy

We start with the thermal density matrix:

ρ =
|0〉〈0|+

∑
i |ψi〉〈ψi| e−βEψ + · · ·

1 + g e−βEψ + · · ·
, (3.2.1)

where |0〉 stands for the ground state, while |ψi〉 (i = 1, · · · , g) denote the �rst excited states.

For a conformal �eld theory on R× Sd−1,

Eψ =
∆

R
, (3.2.2)

2For simplicity, we have assumed that the �rst excited state is unique. For a degenerate �rst excited state,

see the next section.
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where ∆ is the scaling dimension of the operators that create the states |ψi〉, and R is the

radius of the sphere. From this expression one can calculate that

tr (ρA)n =

(
1

1 + g e−βEψ + · · ·

)n
· tr

trB
|0〉〈0|+∑

i

|ψi〉〈ψi|e−βEψ + · · ·



n

= tr
(
trB|0〉〈0|

)n ·
1 +

tr
[
trB
∑

i |ψi〉〈ψi|
(
trB|0〉〈0|

)n−1
]

tr
(
trB|0〉〈0|

)n − g

n e−βEψ + · · ·

 .

(3.2.3)

Then the thermal correction to the Rényi entropy is

δSn ≡ Sn(T )− Sn(0)

=
n

1− n
∑
i

tr
[
trB|ψi〉〈ψi|

(
trB|0〉〈0|

)n−1
]

tr
(
trB|0〉〈0|

)n − 1

 e−βEψ + o
(
e−βEψ

)
. (3.2.4)

Hence, the crucial step is to evaluate the expression

tr
[
trB|ψi〉〈ψi|

(
trB|0〉〈0|

)n−1
]

tr
(
trB|0〉〈0|

)n =
〈ψi(z)ψi(z

′)〉n
〈ψi(z)ψi(z′)〉1

, (3.2.5)

which, using the operator-state correspondence, can be viewed as a two-point function on the

n-fold covering of the space R× Sd−1. (Let zµ be our coordinate system on R× Sd−1.) The

n copies are glued sequentially together along A. Let τ be the time coordinate. To create

the excited state, we insert the operator ψi in the far Euclidean past τ ′ = −i∞ of one of the

copies of R× Sd−1. Similarly, 〈ψi| is created by inserting ψi in the far future τ = i∞ of the

same copy. The two-point function 〈ψi(z)ψi(z
′)〉1 is needed in the denominator in order to

insure that 〈ψi| has the correct normalization relative to |ψi〉.

Our most general result is then

δSn =
n

1− n
∑
i

(
〈ψi(z)ψi(z

′)〉n
〈ψi(z)ψi(z′)〉1

− 1

)
e−βEψ + o

(
e−βEψ

)
. (3.2.6)

Following from the analytic continuation formula (3.1.4), the thermal correction to the en-

tanglement entropy can be determined via

δSE = lim
n→1

δSn . (3.2.7)

Evaluating the two-point function 〈ψi(z)ψi(z
′)〉n on an n-sheeted copy of R× Sd−1 is not

simple for n > 1. Using a trick of Ref. [95], we can evaluate 〈ψi(z)ψi(z
′)〉n for free CFTs.
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The trick is to perform a conformal transformation that relates this two-point function to a

two-point function on a certain conical space where the method of images can be employed.

As interactions spoil the linearity of the theory and hence the principle of superposition, we

expect this method will fail for interacting CFTs.

It is convenient to break the conformal transformation into two pieces. First, it is well

known that R×Sd−1 is conformally related to Minkowski space (see the appendix of Ref. [96]):

ds2 = −dt2 + dr2 + r2dΣ2 (3.2.8)

= Ω2(−dτ 2 + dθ2 + sin2 θdΣ2) , (3.2.9)

where

t± r = tan

(
τ ± θ

2

)
, (3.2.10)

Ω =
1

2
sec

(
τ + θ

2

)
sec

(
τ − θ

2

)
, (3.2.11)

and dΣ2 is a line element on a unit Sd−2 sphere. Note that the surface t = 0 gets mapped to

τ = 0, and on this surface r = tan(θ/2). Thus a cap on the sphere (at τ = 0) of opening angle

2θ is transformed into a ball inside Rd−1 (at t = 0) of radius r = tan(θ/2). This coordinate

transformation takes the operator insertion points τ = ±i∞ in the far past and far future

(with θ = 0) to t = ±i (and r = 0).

Then we should employ the special conformal transformation

yµ =
xµ − bµx2

1− 2b · x+ b2x2
, (3.2.12)

ds2 = dyµdyνδµν =
1

(1− 2b · x+ b2x2)2
dxµdxνδµν . (3.2.13)

We let x0 and y0 correspond to Euclidean times. We consider a sphere of radius r in the

remaining d− 1 dimensions, centered about the origin. If we set b1 = 1/r and the rest of the

bµ = 0, this coordinate transformation will take a point on the sphere to in�nity, speci�cally

the point xµ = (0, r, 0, . . . , 0). The rest of the sphere will get mapped to a hyperplane with

y1 = −r/2. We can think of the total geometry as a cone in the (y0, y1) coordinates formed

by gluing n-spaces together, successively, along the half plane y0 = 0 and y1 < −r/2. Let

us introduce polar coordinates (ρ, φ) on the cone currently parametrized by (y0, y1). The tip

of the cone (y0, y1) = (0,−r/2) will correspond to ρ = 0. The insertion points (±1, 0, . . . , 0)

for the operator ψi get mapped to (±1,−1/r, 0, . . . , 0)/(1 + 1/r2). In polar coordinates, the

insertion points of the ψi are at (r/2,±θ). By a further rescaling and rotation, we can put

the insertion points at (1, 2θ,~0) and (1, 0,~0).
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For primary �elds ψi(x), the e�ect of a conformal transformation on the ratio (3.2.5) is

particulary simple. Let us focus on one of the ψi = ψ and assume that it is a primary scalar

�eld. We have

ψ(x) =

(
1

2
sec

(
τ + θ

2

)
sec

(
τ − θ

2

))−∆

ψ(z) ,

ψ(y) = (1− 2b · x+ b2x2)∆ψ(x) .

We are interested in computing
〈ψ(z)ψ(z′)〉n
〈ψ(z)ψ(z′)〉1

,

where the subscript n indicates this n-fold covering of the sphere, glued along the boundary

of A. In the ratio, the conformal factors relating the z coordinates to the x coordinates and

the x coordinates to the y coordinates will drop out. All we need pay attention to is where

y and y′ are in the cone of opening angle 2πn, which we have already done. For non-scalar

and non-primary operators, the transformation rules are more involved.

For free CFTs, 〈ψ(y)ψ(y′)〉1/m can be evaluated for m = 1, 2, 3, . . . by the method of

images. For n = 1/m, the conical space has opening angle 2π/m. Let us assume we know the

two-point function on Rd: 〈ψ(y1)ψ(y2)〉1 = f(y2
12). Using the parametrization y = (ρ, θ, ~r),

the square of the distance between the points is

y2
12 = ρ2

1 + ρ2
2 − 2ρ1ρ2 cos(θ12) + (~r12)2 . (3.2.14)

By the method of images,

〈ψ(y1)ψ(y2)〉1/m =
m−1∑
k=0

f
(
ρ2

1 + ρ2
2 − 2ρ1ρ2 cos(θ12 + 2πk/m) + (~r12)2

)
. (3.2.15)

We are interested in two particular insertion points y = (1, 2θ,~0) and y′ = (1, 0,~0), for which

the two point function reduces to

〈ψ(y)ψ(y′)〉1/m =
m−1∑
k=0

f
(
2− 2 cos(2θ + 2πk/m)

)
. (3.2.16)

Once we have obtained an analytic expression for all m, we can then evaluate it for integer

n = 1/m.

3.2.1 The Free Scalar Case

We now specialize to the case of a free scalar, for which the scaling form of the Green's

function in �at Euclidean space is f(y2) = y2−d. Our strategy will be to take advantage of
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recurrence relations that relate the Green's function in d dimensions to d+2 dimensions. Let

us de�ne

GB
(n,d)(2θ) ≡ 〈ψ(y)ψ(y′)〉n . (3.2.17)

We need to compute the sum

GB
(1/m,d)(2θ) = 〈ψ(y)ψ(y′)〉1/m =

m−1∑
k=0

1[
2− 2 cos

(
2θ + 2πk

m

)] d−2
2

. (3.2.18)

As can be straightforwardly checked, this sum obeys the recurrence relation

GB
(1/m,d+2)(θ) =

1

(d− 2)(d− 1)

[(
d− 2

2

)2

+
∂2

∂θ2

]
GB

(1/m,d)(θ) . (3.2.19)

The most e�cient computation strategy we found is to compute GB
(n,d) for d = 3 and d = 4

and then to use the recurrence relation to compute the two point function in d > 4. (In

d = 2, the scalar is not gapped and there will be additional entanglement entropy associated

with the degenerate ground state.)

To compute GB
(n,4), and more generally GB

(n,d) when d is even, we introduce the generalized

sum

fa(m, θ, z, z̄) ≡
m−1∑
k=0

1

|z − ei(θ+2πk/m)|2a
, (3.2.20)

With this de�nition, we have the restriction that

lim
z,z̄→1

f(d−2)/2(m, θ, z, z̄) = GB
(1/m,d)(θ) . (3.2.21)

and the recurrence relation
∂2fa
∂z ∂z̄

= a2 fa+1(m, θ, z, z̄) . (3.2.22)

In the case d = 4, we �nd that

f1(m, θ, z, z̄) =
m

|z|2 − 1

[
1

1− z−m eimθ
+

1

1− z̄−m e−imθ
− 1

]
. (3.2.23)

The two-point function can be obtained from Eq. (3.2.23) by taking the limit z, z̄ → 1:

GB
(n,4) (θ) = lim

z,z̄→1
f1

(
1

n
, θ, z, z̄

)
=

1

n2

[
2− 2 cos

(
θ
n

)] . (3.2.24)
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For d = 6 dimensions the two-point function can be obtained by taking the z, z̄ → 1 of

f2(m, θ, z, z̄):

GB
(n,6) (θ) = lim

z,z̄→1
f2

(
1

n
, θ, z, z̄

)
=

1 + 2
n2 + ( 1

n2 − 1) cos( θ
n
)

3n2
[
2− 2 cos( θ

n
)
]2 . (3.2.25)

Applying the recurrence relation (3.2.19) to the four dimensional result (3.2.24) yields the

same answer. It is straightforward to calculate the Green's function in even d > 6.

For d = 3, we do not have as elegant expression for general n. Through a contour integral

argument we will now discuss, for n = 1, 2, and 3 we obtain

GB
(1,3) (θ) =

1

2 sin θ
2

, (3.2.26)

GB
(2,3) (θ) =

1− θ
2π

2 sin θ
2

, (3.2.27)

GB
(3,3) (θ) =

1

2 sin θ
2

[
1− 2√

3
sin

θ

6

]
. (3.2.28)

More general expressions for GB
(n,d)(θ) with d odd can be found in the next section. Tables

of thermal Rényi entropy corrections δSn for some small d and n are in Appendix K.

3.2.2 Odd Dimensions and Contour Integrals

Following Ref. [95], for d an odd integer we express the Green's function in terms of an

integral and evaluate it using the Cauchy residue theorem:

GB
(1/m,d)(θ) =

m−1∑
k=0

1[
2 sin

(
θ
2

+ πk
m

)]d−2

=
1

(2π)d−2

m−1∑
k=0

[∫ ∞
0

dx
x

θ
2π

+ k
m
−1

1 + x

]d−2

=
1

(2π)d−2

∫ ∞
0

dx1 · · ·
∫ ∞

0

dxd−2

d−2∏
i=1

(xi)
θ

2π
−1

1 + xi


m−1∑
k=0

d−2∏
i=1

xi

 k
m



=
1

(2π)d−2

∫ ∞
0

dx1 · · ·
∫ ∞

0

dxd−2

d−2∏
i=1

(xi)
θ

2π
−1

1 + xi


 1−

∏d−2
i=1 xi

1−
(∏d−2

i=1 xi

) 1
m

 . (3.2.29)
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Then GB
(n,d)(θ) is obtained by replacing m with 1

n
. While this integral expression is valid for

all integers d, even and odd, for the even integers d it is easier to evaluate the limit (3.2.21)

or use the recurrence relation (3.2.19) with the (3+1) dimensional result (3.2.24).

Using the integral (3.2.29), the two-point function in d = 3 becomes

GB
(n,3) (θ) =

1

2π

∫ ∞
0

x
θ

2π
−1 (1− x)

(1 + x) (1− xn)
dx , (3.2.30)

This integral can be done analytically. Essentially it is a contour integral with a branch point

at z = 0 and some poles on the unit circle. For convenience, we can choose a branch cut to

be the positive real axis, and a contour shown in Fig. 1. For an even integer n, the poles are

 

z 

-1 

1 

1 

Figure 3.1: The contour for d = 3 dimensions and n = 3

z = −1 is a double pole, z = e2πi `
n (` = 1, · · · , n

2
− 1,

n

2
+ 1, · · · , n− 1) are simple poles.

For an odd integer n, the poles are

z = −1 and z = e2πi `
n (` = 1, · · · , n− 1) are all simple poles.

95



We emphasize that z = 1 is not a pole. Then for an even integer n:

GB
(n,d) =

1

2π

∫ ∞
0

x
θ

2π
−1(1− x)

(1 + x)(1− xn)
dx =

i

1− e2πi( θ
2π
−1)

∑
Poles

Res (3.2.31)

=
i

1− e2πi( θ
2π
−1)

−(−1)
θ

2π
−1

(
θ

nπ
− 1

)
+

n−1∑
`=1, ` 6=n

2

e2πi `
n

( θ
2π
−1)

1 + e2πi `
n

 n−1∏
j=1, j 6=`

1

e2πi `
n − e2πi j

n




=
1

2 sin θ
2

1− θ

πn
− i

n

n−1∑
`=1,` 6=n/2

eiθ(
`
n
− 1

2
) tan

π`

n

 ,
while for an odd integer n:

GB
(n,d) =

1

2π

∫ ∞
0

x
θ

2π
−1(1− x)

(1 + x)(1− xn)
dx =

i

1− e2πi( θ
2π
−1)

∑
Poles

Res (3.2.32)

=
i

1− e2πi( θ
2π
−1)

(−1)
θ

2π
−1 +

n−1∑
`=1

e2πi `
n

( θ
2π
−1)

1 + e2πi `
n

 n−1∏
j=1, j 6=`

1

e2πi `
n − e2πi j

n




=
1

2 sin θ
2

1− i

n

n−1∑
`=1

eiθ(
`
n
− 1

2
) tan

π`

n

 .
Therefore, for d = 3 dimensions the results for n = 1, 2, 3 are Eqs. (3.2.26)�(3.2.28).

Given the results for d = 3 dimensions, the two-point functions for d = 5 dimensions can

be obtained by using the recurrence relation (3.2.19):

GB
(1,5) (θ) =

1(
2 sin θ

2

)3 , (3.2.33)

GB
(2,5) (θ) =

2π − θ + sin θ

2π
(

2 sin θ
2

)3 , (3.2.34)

GB
(3,5) (θ) =

1

108
(

2 sin θ
2

)3

[
108− 70

√
3 sin

(
θ

6

)
+ 7
√

3 sin

(
5θ

6

)
+ 5
√

3 sin

(
7θ

6

)]
.

(3.2.35)

In Appendix J, we also compute the two-point function for d = 5 dimensions and n = 1, 2, 3

by directly evaluating the contour integral

GB
(n,5) (θ) =

1

(2π)3

∫ ∞
0

dx

∫ ∞
0

dy

∫ ∞
0

dz
(xyz)

θ
2π
−1 (1− xyz)

(1 + x) (1 + y) (1 + z)
(
1− (xyz)n

) , (3.2.36)

and the results are exactly the same.
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3.3 Thermal Corrections to Entanglement Entropy

General results for thermal corrections to entanglement entropy were given in Ref. [82]. Here

we will verify these general results in arbitrary dimension for the speci�c case of a conformally

coupled scalar. To perform the check, we will use the fact that the n→ 1 limit of the Rényi

entropies yields the entanglement entropy.

The Green's function GB
(n,d)(θ) has an expansion near n = 1 of the form

GB
(n,d)(θ) = GB

(1,d)(θ) + (n− 1)δGB
(d)(θ) +O(n− 1)2 . (3.3.1)

From the de�nition (3.2.17) and the main result (3.2.6), we have that

δSE = −
δGB

(d)(2θ)

GB
(1,d)(2θ)

e−βEψ + o(e−βEψ) . (3.3.2)

Note that δGB
(d)(θ) will also satisfy the recurrence relation (3.2.19). Thus it is enough to

�gure out the thermal corrections for the smallest dimensions d = 3 and d = 4. The result

in d > 4 will then follow from the recurrence.

Let us check that the expression (3.3.2) agrees with Ref. [82] in the cases d = 3 and d = 4.

In the case d = 3, we can evaluate the relevant contour integral (3.2.30) in the limit n→ 1:

GB
(n,3) (θ) =

1

2π

∫ ∞
0

x
θ

2π
−1

1 + x
dx+

n− 1

2π

∫ ∞
0

x
θ

2π log x

1− x2
+O(n− 1)2

=
1

2

1

sin θ
2

− (n− 1)
π

8

1

cos2 θ
4

+O(n− 1)2 . (3.3.3)

From Eqs. (3.3.2) and (3.3.3), we then have

δSE =
π

2
tan

(
θ

2

)
e−β/2R + o(e−β/2R) . (3.3.4)

For d = 4, we expand Eq. (3.2.24) near n = 1:

GB
(n,4) (θ) =

1

4 sin2 θ
2

(
1 + (n− 1)

(
−2 + θ cot

θ

2

)
+O(n− 1)2

)
. (3.3.5)

We �nd from Eqs. (3.3.2) and (3.3.5) that

δSE = 2(1− θ cot θ)e−β/R + o(e−β/R) . (3.3.6)

The expressions (3.3.4) and (3.3.6) are precisely the results found for the conformally coupled

scalar in Ref. [82] in d = 3 and d = 4 respectively.
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Indeed, for general d, the result in Ref. [82] for the conformally coupled scalar is

δSE =
d− 2

2
Id−2(θ)e−β(d−2)/2R + o(e−β(d−2)/2R) . (3.3.7)

where the de�nition (3.1.28) of Id(θ) was given in the introduction. If our result (3.3.2) for

the thermal correction is correct, we can relate Id(θ) and δG
B
(d)(θ):

δGB
(d)(2θ) = −d− 2

2
(2 sin θ)2−dId−2(θ) , (3.3.8)

where we have used the fact that GB
(1,d)(2θ) = (2 sin θ)2−d.

To check that our thermal corrections are correct for general d, we will use a roundabout

method. In Ref. [82], it was also found that the function Id(θ) satis�es a recurrence relation

Id(θ)− Id−2(θ) = −2π
Vol(Sd−2)

Vol(Sd−1)

sind−2 θ

(d− 1)(d− 2)
. (3.3.9)

We will use our recurrence relation (3.2.19) and the tentative identi�cation (3.3.8) to replace

Id(θ) with Id−2(θ) in the above expression:

Id(θ) = −2

d
(2 sin θ)d δGB

(d+2)(2θ)

= − 2(2 sin θ)d

d(d− 1)(d− 2)

[(
d− 2

2

)2

+
1

4

∂2

∂θ2

]
δGB

(d)(2θ)

=
(2 sin θ)d

4d(d− 1)

[
(d− 2)2 +

∂2

∂θ2

]
(2 sin θ)2−dId−2(θ) . (3.3.10)

Then we have checked that the resulting di�erential equation in Id−2(θ) is solved by the

integral formula (3.1.28).

3.4 Numerical Check

We check numerically the thermal Rényi entropy corrections obtained in section 3.2.1. The

algorithm we use was described in detail in Ref. [82], so we shall be brief. (The method is

essentially that of Ref. [73].) The action for a conformally coupled scalar on R× Sd−1 is

S = −1

2

∫
ddx
√
−g
[
(∂µφ)(∂µφ) + ξRφ2

]
, (3.4.1)

where ξ is the conformal coupling ξ = (d− 2)/4(d− 1) and R is the Ricci scalar curvature.

Given that the region A can be characterized by the polar angle θ on Sd−1, we write the

Hamiltonian as a sum H =
∑

~lH~l, where we have replaced all the other angles on Sd−1
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by corresponding angular momentum quantum numbers |l1| ≤ l2 ≤ · · · ≤ ld−2 ≡ m. The

individual Hamiltonians take the form

H~l =
1

2R2

∫ π

0

{
R2Π2

~l
− Φ~l∂

2
θΦ~l +

1

4
(2m+ d− 2)(2m+ d− 4)

Φ2
~l

sin2 θ

}
dθ . (3.4.2)

It is convenient to discretize H~l. In d ≥ 4, we introduce a lattice in θ, while in d = 3, a

lattice in cos θ appears to work better. The entanglement and Rényi entropies can then be

expressed in terms of two-point functions restricted to the region A. In particular, the Rényi

entropy can be expressed as

Sn(T ) = Sn(0) +
∞∑
m=1

dim(m)S(m)
n , (3.4.3)

where

dim(m) =

(
d+m− 2

d− 2

)
−
(
d+m− 4

d− 2

)
,

and

S(m)
n =

1

1− n
log tr

[(
Cm +

1

2

)n
−
(
Cm −

1

2

)n]
. (3.4.4)

The matrix Cm(θ1, θ2) has a continuum version

Cm(θ1, θ2)2 =

∫ θ0

0

dθ 〈Φ~l(θ1) Φ~l(θ)〉〈Π~l(θ) Π~l(θ2)〉 . (3.4.5)

The thermal two-point functions have the following expressions:

〈Φ~l(θ) Φ~l(θ
′)〉 =

1

2

∞∑
l=m

Ul(θ)
1

ωl
coth

ωl
2T

Ul(θ
′) , (3.4.6)

〈Π~l(θ) Π~l(θ
′)〉 =

1

2

∞∑
l=m

Ul(θ)ωl coth
ωl
2T

Ul(θ
′) , (3.4.7)

where ωl ≡ 1
R

(
l + d−2

2

)
. In the continuum limit, the matrix Ul(θ) is an orthogonal transfor-

mation involving associated Legendre functions whose explicit form is given in Ref. [82]. In

practice, we use the discretized version of Ul(θ) that follows from the discretized H~l.

As discussed in Ref. [88, 82], if the limit θ0 → π is taken �rst, the leading correction to

δSn comes from the thermal Rényi entropy instead of from the entanglement:

δSn =

[
−g n

1− n
+O

(
1− θ0

π

)2∆
]
e−∆/RT + o

(
e−∆/RT

)
. (3.4.8)

Indeed, when π− θ is small compared to RT , the Rényi entropy looks like the thermal Rényi

entropy and approaches it in the limit θ → π. To isolate the e−∆/RT dependence of δSn
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analytically, we can expand the coth-function in the thermal two-point functions (3.4.6) and

(3.4.7). In principle, one can evaluate Eq. (3.4.3) to obtain δSn(T ). Since we are interested in

the low temperature limit, the contributions from S
(m)
n (m > 0) to δSn(T ) are exponentially

suppressed compared with S
(0)
n . Therefore, in the limit of small T , we obtain the expansion

of Eq. (3.4.3):

δSn =
n

2(n− 1)
tr

[
δC0 · C−1

0 ·
(C0 + 1

2
)n−1 − (C0 − 1

2
)n−1

(C0 + 1
2
)n − (C0 − 1

2
)n

]
e−ω0/T + · · · , (3.4.9)

where

δCm(θ1, θ2) ≡
∫ θ0

0

dθ
[
〈Φ~l(θ1) Φ~l(θ)〉 δΠm(θ, θ2) + δΦm(θ1, θ) 〈Π~l(θ) Π~l(θ2)〉

]
, (3.4.10)

δΦm(θ, θ′) ≡ Um(θ)
1

ωm
Um(θ′) , (3.4.11)

δΠm(θ, θ′) ≡ Um(θ)ωm Um(θ′) . (3.4.12)

Some results of δSn in di�erent dimensions are shown in Figs. 2 � 5. To diagonalize the

matrices with enough accuracy, high precision arithmetic is required.
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Figure 3.2: δSn=3 in (2 + 1) D, 400 grid points
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Figure 3.3: δSn=3 in (3 + 1) D, 400 grid points
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Figure 3.4: δSn=3 in (4 + 1) D, 400 grid points
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Figure 3.5: δSn=3 in (5 + 1) D, 400 grid points

3.5 Discussion

Our main result provides a way to calculate the leading thermal correction to a speci�c

kind of Rényi entropy for a CFT. In particular, the CFT should live on R × Sd−1, and the

region is a cap on the sphere with opening angle 2θ. We demonstrated that this correction is

equivalent to knowing the two-point function on a certain conical space of the operator that

creates the �rst excited state. In the case of a conformally coupled free scalar, the scalar

�eld itself creates the �rst excited state, and the two point function can be computed by the

method of images. In the n → 1 limit, the Rényi entropy becomes entanglement entropy,

and we were able to show that our results agree with Ref. [82]. We were also able to check

our thermal corrections for n > 1 numerically, using a method based on Ref. [73].

We would like to make two observations about our results. The �rst is that our thermal

Rényi entropy corrections are often but not always invariant under the replacement θ →
2πn− θ. (The exceptions are δSn for even n and odd d.) A similar observation was made in

Ref. [88] in the 1+1 dimensional case. There, the invariance could be explained by moving

twist operators around the torus (or cylinder). The branch cut joining two twist operators

is the same cut along which the di�erent copies of the torus are glued together. By moving

a twist operator n times around the torus, n branch cuts are equivalent to nothing while

n− 1 branch cuts are equivalent to a single branch cut that moves one down a sheet rather

than up a sheet. Perhaps in higher dimensions the invariance can be explained in terms of

surface operators that glue the n copies of S1 × Sd−1 together. It is not clear to us how to

generalize the argument. It is tempting to speculate that the invariance is spoiled in odd

dimensions (even dimensional spheres) because only (2n+1)-dimensional spheres (n > 1) are

Hopf �brations over projective space.

The second observation is that the leading corrections to δSn for small caps θ � 1 have

a power series expansion that starts with the terms aθd−2 + bθd + . . .. In 1+1 dimensions,
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the power series starts with θ2 [88]. When we bring two twist operators together, the twist

operators can be replaced by their operator product expansion, a leading term of which is the

stress tensor. The θ2 term in δSn comes from a three point function of the stress tensor with

the operators that create and annihilate the �rst excited state. The two in the exponent of

θ2 comes from the scaling dimension of the stress tensor, and the coe�cient of the θ2 can be

related to the scaling dimension of the twist operators [88]. In our higher dimensional case,

we can replace the surface operator along the boundary of the cap by an operator product

expansion at a point. Because of Wick's theorem, the leading operator that can contribute

to δSn will be φ2 which has dimension d − 2. The subleading θd term may come from the

stress tensor and descendants of φ2. A more detailed analysis might shed some light on the

structure of these surface operators.3

In addition to developing the above observations, we give a couple of projects for future

research. One would be to compute these thermal corrections for free fermions. The two

point function on this conical space can quite likely be computed. It would be interesting

to see how the results compare to the scalar. Given the importance of boundary terms for

the scalar, it would also be nice to get further con�rmation of the general story for thermal

corrections to entanglement entropy presented in Ref. [82].

Another interesting project would be to see how to obtain these results holographically. As

the corrections are subleading in a large central charge (or equivalently large N) expansion,

they would not be captured by the Ryu-Takayanagi formula [83]. However, it may be possible

to generalize the computation in d = 2 [92] to d > 2. Finally, it would be interesting to see

what can be said about negativity in higher dimensions. See Refs. [100, 101] for the two

dimensional case.

3See Refs. [95, 97, 98, 99] for related work on higher dimensional analogs of twist operators.
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Chapter 4

BEC, String Theory and KPZ Equation

The Bose-Einstein condensation is a phenomenon in cold atom systems, for instance, a dilute

gaseous system of 87Rb or 23Na atoms at ∼ 100 nK. It is a consequence of the Bose-Einstein

statistics, and happens in a system consisting of only bosons at very low temperature when all

the particles accumulate in the ground state. The theory of the Bose-Einstein condensation

can also be applied to systems like super�uid Helium, superconductors and quasiparticles

(magnons, excitons, polaritons etc.).

The Gross-Pitaevskii equation is known as a mean-�eld description of the Bose-Einstein

condensates. This equation is also known as the nonlinear Schrödinger equation in mathe-

matical physics, which is an integrable model in (1+1)D and has been well studied in the

literature. One can �nd the soliton solutions to the nonlinear Schrödinger equation using the

Hamiltonian methods [31]. If one treats the equation as an operator equation and performs

the second quantization in the beginning, it can be solved by the Bethe Ansatz equation,

and consequently the ground state and the excited states can also be found [32].

The Gross-Pitaevskii equation has some nontrivial solutions, for instance, the vortex line

solution and the dark soliton solution. They behave like the open string and the D-brane

in string theory in the sense that the end of the vortex line can attach to the dark soliton

to form a stable con�guration. In Ref. [102], A. Zee made the �rst attempt to understand

this similarity. He mapped the (2+1)-dimensional Gross-Pitaevskii theory into a nonlinear

sigma model which is quite close to the standard bosonic string theory action. This ap-

proach can easily be generalized to other dimensions, for instance, Ref. [103] mapped the

(3+1)-dimensional Gross-Pitaevskii theory to a string-like nonlinear sigma model. Recently,

some people also found the relation between the Gross-Pitaevskii equation and the so-called

Kardar-Parisi-Zhang equation (KPZ equation) [104], which describes the growth of a random

surface.
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In this chapter, we disucss the connections between the Gross-Pitaevskii equation, the

string-like nonlinear sigma model and the KPZ equation. We will see that they have some

deep connections, and there are still many open questions which can possibly lead to some

exciting discoveries. For instance, if we could understand the dualities among these theories

in a better way, we would be able to calculate physical quantities with higher precision even at

strong coupling and make some interesting quantitative predictions such as the Hawking ra-

diation and the Unruh e�ect in the BEC system, which can possibly be found in experiments.

The discussion in this chapter is mainly based on Ref. [105] and some of my unpublished

notes.

4.1 Gross-Pitaevskii Equation

Let us brie�y review the Gross-Pitaevskii equation in this section. The discussion is mainly

based on Ref. [106]. The equation is following

i~
∂

∂t
Ψ0(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g |Ψ0(r, t)|2

)
Ψ0(r, t) , (4.1.1)

where

g ≡
∫
drVe�(r) . (4.1.2)

It is the nonlinear Schrödinger equation known in mathematical physics. For simplicity, let

us consider only the stationary case, and we also introduce the chemical potential µ, then

the Gross-Pitaevskii equation becomes(
−~2∇2

2m
+ Vext(r)− µ+ g|Ψ0(r)|2

)
Ψ0(r) = 0 . (4.1.3)

It still has various nontrivial solutions. Let us list them in the following.

The so-called vortex line solution emerges in the problem of a gas system con�ned in a

cylindrical vessel of radius R and length L. Due to the symmetry we can employ the Ansatz

Ψ0(r) = eisϕ |Ψ0(r)| , |Ψ0| =
√
n f(η) , (4.1.4)

where

η ≡ r

ξ
, ξ ≡ ~√

2mgn
. (4.1.5)

The stationary Gross-Pitaevskii equation (4.1.3) in this case reduces to

1

η

d

dη

(
η
df

dη

)
+

(
1− s2

η2

)
f − f 3 = 0 (4.1.6)
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with the constraint f(∞) = 1. When η → 0, f behaves as f ∼ η|s|. One can solve this

equation numerically, and the solution gives the pro�le of the vortex line. When the two end

points of the vortex line attach to each other to form a circular ring, this solution is called

the vortex ring.

Besides the vortex line solution, there are also some soliton solutions to the Gross-

Pitaevskii equation or the nonlinear Schrödinger equation. There is a systematical way

to obtain these soliton solutions, which is called the Hamiltonian method and discussed in

great detail in Ref. [31]. In this section, we just follow Ref. [106] to �nd the soliton solution

using an appropriate Ansatz, while in the next section we will rederive these solutions using

the BPS procedure in �eld theory. Let us assume

Ψ0 =
√
n f(η, ζ) e−iµt/~ , (4.1.7)

where

η ≡ r

ξ
, ζ ≡ z − vt

ξ
, (4.1.8)

and v is the velocity of the center of the soliton. Plugging this Ansatz into the Gross-Pitaevskii

equation (4.1.1), we obtain

2iU
∂f

∂ζ
=

1

η

∂

∂η

(
η
∂f

∂η

)
+
∂2f

∂ζ2
+ f(1− |f |2) , (4.1.9)

where

U ≡ mvξ

~
=

v

c
√

2
, (4.1.10)

and c is the speed of sound. Since we are looking for some 1-dimensional solution like a

domain-wall, we assume that the solution is independent of the coordinate r or η, then the

equation above becomes

2iU
df

dζ
=
d2f

dζ2
+ f(1− |f |2) . (4.1.11)

The physical boundary conditions are

|f | → 1 ,
df

dζ
→ 0 , (4.1.12)

when ζ → ±∞. We separate the real and the imaginary part of f as f = f1 + if2, then the

imaginary part of Eq. (4.1.11) becomes

2U
df1

dζ
=
d2f2

dζ2
+ f2(1− f 2

1 − f 2
2 ) . (4.1.13)

After some consistency analysis we �nd that f2 =
√

2U = v
c
, then the equation above becomes

√
2
df1

dζ
= 1− v2

c2
− f 2

1 . (4.1.14)
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It has the solutions

Ψ0(z − vt) =
√
n

iv
c

+

√
1− v2

c2
tanh

[
z − vt√

2ξ

√
1− v2

c2

] . (4.1.15)

The density pro�le n(z − vt) = |Ψ0|2 has the minimum value n(0) = nv2/c2. For v = 0

the density pro�le is equal to zero at the center of the soliton, i.e., it looks �dark� in real

experiments. Hence, the solution with v = 0 is called �dark soliton�, while a solution with

v 6= 0 is called �grey soliton�.

The soliton solutions discussed above are obtained for the repulsive interaction, i.e. g > 0.

Actually, for the attractive interaction (g > 0) there is also a kind of soliton solution, which

is given by

Ψ0(z) = Ψ0(0)
1

cosh(z/
√

2ξ)
. (4.1.16)

One can check that it satis�es the stationary Gross-Pitaevskii equation (4.1.3). Since this

soliton solution has the maximum value of the density pro�le at its center, it is called the

�bright soliton�.

4.2 BEC and String Theory

4.2.1 Derivation of the String Action

In this section we show how to derive the string action from the Gross-Pitaevskii equation

in (1+1)-dimensions. The steps are similar to (2+1)-dimensions [105] or (3+1)-dimensions

[103]. We choose the coordinates (t, z).

Let us start with the Gross-Pitaevskii Lagrangian:

LGP = iφ†∂tφ−
1

2m
(∂zφ

†)(∂zφ)− g

2
(|φ|2 − ρ0)2 . (4.2.1)

Varying it with respect to φ†, we obtain a version of the Gross-Pitaevskii equation:

i ∂tφ+
1

2m
∂2
zφ− g (|φ|2 − ρ0)φ = 0 . (4.2.2)

We parametrize φ as

φ =
√
ρ eiη , (4.2.3)
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where η is the Goldstone boson, and ρ can be thought of as the Higgs boson. It is easy to

derive

φ† =
√
ρ e−iη ,

∂tφ =
ρ̇

2
√
ρ
eiη +

√
ρ i eiηη̇ ,

∂zφ =
1

2
√
ρ
eiη (∂zρ) +

√
ρ i eiη(∂zη) . (4.2.4)

Hence, the original Gross-Pitaevskii Lagrangian (4.2.1) becomes

L =
iρ̇

2
− ρη̇ − ρ

2m
(∂zη)2 − (∂zρ)2

8mρ
− g

2
(ρ− ρ0)2 . (4.2.5)

If we drop out the �rst term as a total derivative, and de�ne

L1 ≡ −ρη̇ −
ρ

2m
(∂zη)2 , (4.2.6)

L2 ≡ −
(∂zρ)2

8mρ
− g

2
(ρ− ρ0)2 , (4.2.7)

then the Lagrangian can be written as

L = L1 + L2 . (4.2.8)

Pay attention to that in Eq. (4.2.3) the �eld η takes values in R/2πZ, but now we temporarily

release this condition, and it has values in R. The constraint will be imposed later, which

will give another piece to the theory.

We see that the term −ρη̇ in L1 is not written in a Lorentz-invariant way. We can complete

ρ to a two-vector fµ = (ρ, f), where ρ is its zeroth component, and f is an auxiliary �eld.

Then one can show the following identity:

L1 +
m

2ρ

(
f − ρ

m
∂zη

)2

= −ρη̇ +
m

2ρ
f 2 − f∂zη = −fµ∂µη +

m

2ρ
f 2 , (4.2.9)

where

fµ = (ρ, f) , (4.2.10)

∂µη = (η̇, ∂zη) . (4.2.11)

If we de�ne the path integral measure to be∫
Df exp

[
i

∫
d2x

m

2ρ
f 2

]
= 1 , (4.2.12)
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then

ei
∫
d2xL1 =

∫
Df exp

i ∫ d2x

(
L1 +

m

2ρ

(
f − ρ

m
∂zη

)2
)

=

∫
D ~f exp

[
i

∫
d2x

(
−fµ∂µη +

m

2ρ
f 2

)]
. (4.2.13)

Integrating η out, we obtain

∂µf
µ = 0 , (4.2.14)

which can be solved locally by

fµ = εµνHν (4.2.15)

with H = dB. Using this expression of fµ we obtain

m

2ρ
f 2 =

m

2ρ
H2

0 . (4.2.16)

To rewrite L2 we �rst split B into the background part and the �uctuation part:

B = B(0) + b , (4.2.17)

and correspondingly,

Hν = H(0)
ν + hν . (4.2.18)

Since

ρ = f 0 = ε01H1 = H1 , (4.2.19)

we can rewrite L2 as

L2 = −(∂zh1)2

8mρ
− g

2
h2

1 . (4.2.20)

Consequently, ∫
DρDη exp

[
i

∫
d2x (L1 + L2)

]

=

∫
DB exp

i ∫ d2x

(
−g

2
ηµνhµhν −

(∂zh1)2

8mρ

) , (4.2.21)

where

ηµν ≡ diag

(
m

ρg
, 1

)
. (4.2.22)

For the BEC system that we are interested in, we can drop the term ∼ (∂zh1)2, because it

contributes to the dispersion relation only in the UV:

ω2 = c2
sk

2 +
∼ k4

m2
. (4.2.23)

108



If we are only interested in IR physics, we can drop the higher-order terms.

Now we return to the point that the theory should be invariant under η → η + 2π, which

we have not taken into account so far. The di�erence comes in Eq. (4.2.13). Now we cannot

simply integrate out η, instead

− fµ∂µη = −fµ∂µηvortex − fµ∂µηsmooth , (4.2.24)

where we can only integrate out ηsmooth, which still induces the constraint

∂µf
µ = 0 . (4.2.25)

For ηvortex there is

−fµ∂µηvortex = −εµν∂νB ∂µηvortex

= B εµν∂µ∂νηvortex

= 2πB δ2
(
Xµ −Xµ(τ, σ)

)
, (4.2.26)

where Xµ denote the position of the vortex. Formally, one can write its integral as

−
∫
d2x fµ∂µηvortex = µ1

∫
d2xB δ2(Xµ −Xµ(τ, σ)) = µ1

∫
Σα

B . (4.2.27)

with µ1 = 2π. Therefore, the theory can be written as∫
DB exp

[
i

∫
d2x

(
−g

2
ηµνhµhν

)
+ iµ1

∫
Σα

B

]
. (4.2.28)

Finally, as in Ref. [103], we add a term by hand to take into account the string tension

induced by the vortices.

Se� =
∑
α

[
−csτ1,bare

∫
Σα

dt dθ |∂θ ~Xα|+ µ1

∫
Σα

B

]
−
∫
d2x

g

2
h2 , (4.2.29)

where α runs over the several separate vortices. One can see that we obtain a string-like action

from the Gross-Pitaevskii equation. The next question is how to �nd D-brane solution and

study its dynamics of this nonlinear sigma model. This is one of my current research projects.

The Gross-Pitaevskii equation, or the nonlinear Schödinger equation, is an integrable

model in (1+1)D. Hence, we expect the integrability also on the nonlinear sigma model

side.1 The proof will be presented in a paper appearing soon.

1I would like to thank Pedro Vieira for discussions on this point.
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4.2.2 Derrick's Theorem, 1D and 2D Solutions

In this section, we would like to see the soliton solutions from purely �eld theoretical point of

view. Before we discuss the explicit solutions, let us �rst make some general considerations.

In �eld theory, there is a well-known so called Derrick's Theorem, which tells us the

existence of the soliton solution based on very simple arguments. The simplest version is to

consider the scalar theory with a potential

L = −(∂µϕ)(∂µϕ)− V (ϕ) (4.2.30)

with

V (ϕ) ≥ 0 . (4.2.31)

The theorem says that there is no stable soliton solution for the dimensions D ≥ 3, while for

D = 2 the soliton solution exists only when V (ϕ) = 0, and for D = 1 the soliton solution

always exists. The Gross-Pitaevskii equation is a theory of this kind, hence the soliton-like

solutions only exist for D = 1 or 2.

One may �nd some dark soliton solutions to the Gross-Pitaevskii equation in 3D, but

according to the Derrick's theorem they must be quasi 1D or 2D. Therefore, we only need

to focus on these two cases. For 2D in order to have a soliton solution, V (ϕ) has to vanish,

then the theory becomes a free theory:

ρ = ρ0 , L = −ρ0η̇ −
ρ0

2m
(∇η)(∇η) , (4.2.32)

where ρ and η are de�ned as

ϕ =
√
ρ eiη . (4.2.33)

According to Chapter 19 of Ref. [107], although this model is quite simple, it indeed has a

D-brane solution on R× S1.

Next, we want to use the BPS procedure to �nd the soliton solutions in 1D. The BPS

procedure can be summarized as follows. Suppose that the energy of the system is given by

E =

∫ ∞
−∞

dx

[
1

2
(∂xφ)2 + (W ′)2

]
, (4.2.34)

where W is a functional of the �eld φ, and

W ′ ≡ ∂W

∂φ
. (4.2.35)
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Then

E =

∫ ∞
−∞

dx

[(
1√
2
∂xφ−W ′

)2

+
√

2W ′∂xφ

]

=

∫ ∞
−∞

dx

[(
1√
2
∂xφ−W ′

)2

+
√

2
∂W

∂x

]

=

∫ ∞
−∞

dx

[(
1√
2
∂xφ−W ′

)2
]

+
√

2
[
W (+∞)−W (−∞)

]
. (4.2.36)

If W (+∞) and W (−∞) correspond to di�erent vacua, the soliton solution is then given by

the solution of the equation

∂xφ =
√

2W ′ . (4.2.37)

A scalar �eld theory is in general given by

L = −1

2
(∂xφ)2 − V (φ) , (4.2.38)

which implies the �eld equation

∂2
xφ− V ′(φ) = 0 . (4.2.39)

If there is the relation

V = (W ′)2 , (4.2.40)

then the BPS equation (4.2.37) implies the �eld equation (4.2.39), since

∂2
xφ = ∂x(

√
2W ′) =

√
2W ′′ ∂φ

∂x
=
√

2W ′′
√

2W ′ = 2W ′W ′′ , (4.2.41)

which is exactly the �eld equation

∂2
xφ = V ′ = 2W ′W ′′ . (4.2.42)

For the Gross-Pitaevskii equation, the energy is given by Eq. (5.58) in the book �Bose-

Einstein Condensation� by Pitaevskii and Stringari:

E =

∫ ∞
−∞

dz

[
~2

2m

∣∣∣∣dΨ0

dz

∣∣∣∣2 +
g

2

(
|Ψ0|2 − n

)2

]
, (4.2.43)

where

Ψ0 =
√
n f exp

[
−iµt

~

]
, (4.2.44)

where f is in general complex

f = f1 + if2 , (4.2.45)
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and we can choose f2 = v
c
. We also de�ne

φ ≡ ~√
m

Ψ0 , (4.2.46)

then the energy becomes

E =

∫ ∞
−∞

dz

[
1

2

∣∣∣∣dφdz
∣∣∣∣2 +

g

2

(
m

~2
|φ|2 − n

)2
]

=

∫ ∞
−∞

dz

[
1

2

(
d|φ|
dz

)2

+
g

2

(
m

~2
|φ|2 − n

)2
]
. (4.2.47)

According to what we discussed before, we can immediately write down the BPS equation

for the soliton:

d|φ|
dz

=
√
g

(
n− m

~2
|φ|2
)

or
d|φ|
dz

=
√
g

(
m

~2
|φ|2 − n

)
. (4.2.48)

The solutions to these two equations only di�er by a minus sign. Let us consider the �rst

equation, which is equivalent to

~√
m

d|Ψ0|
dz

=
√
g
(
n− |Ψ0|2

)
⇒ ~√

m

df

dz
=
√
gn(1− |f |2)

⇒ ~√
m

df1

dz
=
√
gn(1− v2

c2
− f1

2) ,
~√
m

i df2

dz
= 0 . (4.2.49)

For v = 0 the equation above simpli�es to

√
2ξ
df1

dz
= 1− f1

2 , (4.2.50)

which is exactly the dark soliton solution for v = 0 discussed in Ref. [106]. The solution to

this equation is the dark soliton:

Ψ0(z) =
√
n tanh

[
z√
2ξ

]
. (4.2.51)

If we perform a Galilean boost to the �rst one of Eq. (4.2.49) using the method described in

Ref. [108], then it becomes
√

2ξ
df1

dz′
= 1− v2

c2
− f1

2 , (4.2.52)

where z′ ≡ z − vt. This new equation is exactly the same as Eq. (4.1.14) for an arbitrary

constant v that we quoted from Ref. [106], and its solution is

Ψ0(z − vt) =
√
n

iv
c

+

√
1− v2

c2
tanh

[
z − vt√

2ξ

√
1− v2

c2

] , (4.2.53)
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which includes both the dark soliton solution and the grey soliton solution.

On top of the soliton solution, one can do linear perturbations, as Eqs. (5.65) and (5.66)

in the book by Pitaevskii and Stringari:

Ψ0(r, t) =
[
Ψ0(r) + ϑ(r, t)

]
e−iµt/~ , (4.2.54)

ϑ(r, t) =
∑
i

[
ui(r) e

−iωit + v∗i (r) e
iωit
]
, (4.2.55)

which will consequently lead to the Bogoliubov - de Gennes equations, which we omit for the

moment.

4.3 KPZ Equation

4.3.1 Review of the KPZ Equation

The Kardar-Parisi-Zhang equation (KPZ equation) was �rst introduced in Ref. [109]. Re-

cently, people also found that it can be related to the Gross-Pitaevskii equation [104]. In this

section, we review the KPZ equation and its relation with the Gross-Pitaevskii equation, and

some comments about the possible relation between the KPZ equation and the string action

will also be made. We follow closely the discussion about the KPZ equation in Ref. [105].

For a D-dimensional space with coordinates ~x, a random surface grows on top of it with

the height h(~x, t). Then the growth of the surface is governed by the Kardar-Parisi-Zhang

equation
∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + η(~x, t) , (4.3.1)

where the term ν∇2h is similar to a di�usion equation, which tends to smooth out the surface,

and the term λ
2
(∇h)2 makes the equation nonlinear, while η(~x, t) is a random variable. For

a Gaussian random variable, the probability distribution for η(~x, t) is

P (η) ∝ e−
1

2σ2

∫
dDx dt η(~x,t)2

. (4.3.2)

In Ref. [105] it is proven that the KPZ equation can be mapped into a quantum �eld theory.

It works as follows:

Z ≡
∫
Dh

∫
Dη e−

1
2σ2

∫
dDx dt η(~x,t)2

δ

[
∂h

∂t
− ν∇2h− λ

2
(∇h)2 − η(~x, t)

]
=

∫
Dh e−S(h) , (4.3.3)

where

S(h) =
1

2σ2

∫
dD~x dt

[
∂h

∂t
− ν∇2h− λ

2
(∇h)2

]2

. (4.3.4)
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By rescaling t→ t/ν and h→
√
σ2/ν h, we obtain

S(h) =
1

2

∫
dD~x dt

[(
∂

∂t
−∇2

)
h− g

2
(∇h)2

]2

, (4.3.5)

where

g2 ≡ λ2σ2

ν3
. (4.3.6)

We can also expand the action into the powers of h and rewrite it as

S(h) =
1

2

∫
dD~x dt

(( ∂

∂t
−∇2

)
h

)2

− g(∇h)2

(
∂

∂t
−∇2

)
h+

g2

4
(∇h)4

 . (4.3.7)

To calculate some physical quantities like 〈[h(~x, t)− h(~x′, t)]2〉, we should couple the �eld h

to a source and compute the generating functional

Z[J ] =

∫
Dh e−S(h)+

∫
dDx dt J(x,t)h(x,t) . (4.3.8)

If we de�ne a new variable

U ≡ e
1
2
gh , (4.3.9)

we can even rewrite the action (4.3.5) into a nonlinear sigma model

S =
2

g2

∫
dD~x dt

(
U−1 ∂

∂t
U − U−1∇2U

)2

. (4.3.10)

4.3.2 KPZ Equation and GP Equation

Recently, Ref. [104] discussed how to map the Gross-Pitaevskii equation (GP equation) to

the KPZ equation. Strictly speaking, one does not map the GP equation directly to the

KPZ equation, instead one maps the conservation law of the GP equation plus some random

variable (noise) to the KPZ equation. Let us review the approach of Ref. [104] in the following.

Let us recall the Gross-Pitaevskii equation

i∂tψ = − 1

2m
∂2
xψ + g|ψ|2ψ (4.3.11)

and the parametrization

ψ(x, t) =
√
ρ(x, t) eiθ(x,t) . (4.3.12)

The velocity is given by

v(x, t) =
1

m

∂θ(x, t)

∂x
. (4.3.13)
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The continuity equation and the Euler equation of the system are

∂tρ+ ∂x(ρv) = 0 , (4.3.14)

∂tv + ∂x

(
v2

2
+
g

m
ρ

)
= 0 , (4.3.15)

or equivalently written in a compact form as

∂t~u+ ∂xA~u = 0 , (4.3.16)

where

~u =

(
ρ

v

)
, A =

(
0 ρ0
g
m

0

)
. (4.3.17)

Next, we add the di�usion and the noise to the equation above, and obtain

∂t~u+ ∂x

A~u+
1

2

2∑
α,β=1

~Hα,β uα uβ − ∂x(D~u) +B~ξ

 = 0 , (4.3.18)

where D and B are di�usion and noise matrix respectively, while

Hγ
α,β ≡ ∂uα∂uβ j

γ with ~j = (ρv,
1

2
v2) . (4.3.19)

By rotating the vector ~u in the following way:(
φ−

φ+

)
= R

(
ρ

v

)
with R =

1

c
√

2c1

(
−c ρ0

c ρ0

)
, (4.3.20)

where

c ≡
√
gρ0

m
, c1 ≡

∫
dx
(
〈ρ(x, 0) ρ(0, 0)〉 − ρ2

0

)
, (4.3.21)

we obtain

∂tφx

[
σcφσ + 〈~φ,Gσ ~φ− ∂x(Drotφ)σ + (Brotξ)σ

]
= 0 , (4.3.22)

where σ = ±,
Drot = RDR , Brot = RB , (4.3.23)

and

G− =
c

2ρ0

√
c1

2

(
3 1

1 −1

)
, G+ =

c

2ρ0

√
c1

2

(
−1 1

1 3

)
. (4.3.24)

Since in practice the terms φσφ−σ and (φ−σ)2 are negligible compared to (φσ)2, we can drop

them and the remaining equation becomes

∂tφσ + ∂x
[
σcφσ +Gσ

σσφ
2
σ − ∂x(Drotφ)σ + (Brotξ)σ

]
= 0 , (4.3.25)

which is known as the stochastic Burgers equation, or a KPZ equation with h = ∂xφσ. So

�nally we have mapped the Gross-Pitaevskii equation into a KPZ equation.
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4.3.3 KPZ Equation and String Theory

We have seen in the previous sections that a Gross-Pitaevskii equation can be mapped into

a string theory-like nonlinear sigma model and also into a KPZ equation at least in some

limits. A natural question is if one can map the string theory-like nonlinear sigma model

directly into a KPZ equation, and an even further question is if one can understand the

string worldsheet theory as the growth of a random surface. It turns out that for the �rst

question at least in some special limits the answer is yes. We demonstrate how to perform

this mapping in the following.

Let us recall the intermediate expression of the string action (4.2.21):

Z =

∫
DB exp

i ∫ d2x

(
−g

2
ηµνhµhν −

(∂zh1)2

8mρ

) (4.3.26)

=

∫
DB exp

i∫ d2x

(
−g

2

[
−m
ρg

(∂tB)(∂tB) + (∂zB)(∂zB)

]
− (∂2

zB)2

8mρ

) . (4.3.27)

Applying the classical equation of motion ∂tB ∼ ∂2
zB, we can rewrite the term (∂zB)(∂zB)

as a total derivative and hence drop it.

In the KPZ action (4.3.3), if we set the nonlinear term λ
2
(∇h)2 to zero, and apply the

classical equation of motion without the random variable and the nonlinear term, i.e.,

∂

∂t
h = ν∇2h , (4.3.28)

we also obtain a theory given by

Z =

∫
Dh e−S(h) (4.3.29)

with

S(h) =
1

2σ2

∫
dD~x dt

[(
∂h

∂t

)2

−
(
ν∇2h

)2

]
. (4.3.30)

Hence, for the limit λ→ 0 the string theory-like nonlinear sigma model is equivalent to the

KPZ theory at classical level.
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Chapter 5

2-Dimensional Point-Vortex Model

In recent years, the interest in two-dimensional quantum turbulence has revived [110, 111],

partly because of the developments in the experimental technique for the Bose-Einstein con-

densates (BEC).

On the theoretical side, the Gross-Pitaevskii equation provides an e�ective mean-�eld

theory describing BEC systems. As we reviewed in the previous chapter, it has various

nontrivial solutions, e.g. vortex line and dark soliton. If we focus on a system consisting

of only vortex solutions, it can be well described by a statistical model called point-vortex

model. Joyce and Montgomery showed that this model exhibits a negative temperature

phase [112]. This model was further studied by Edwards and Taylor in Ref. [113], and they

found the clustering of vortices at negative temperature. Smith and O'Neil investigated

the single-charge case and pointed out that the transition between the symmetric and the

asymmetric phase resembles a second-order phase transition [114, 115]. Recent results from

Monte Carlo simulations [116] suggest that for the two-charge point-vortex system, there is

also a second-order phase transition at a negative temperature.

Besides the study of the model itself, in mathematical physics the so-called sinh-Poisson

equation or elliptic sinh-Gordon equation, which lies at the center of the model, was studied

by di�erent groups [117, 118, 119], and they found some nontrivial solutions at negative

temperature.

In this chapter, we study the mean-�eld theory of the phase transition at negative tem-

perature of the two-charge point-vortex model. We �rst brie�y review the original model

discussed by Joyce and Montgomery in Ref. [112]. Then we extend the method introduced

by Ref. [115] to study the phase transition of the two-charge system at negative temperature.

For the two-charge system in a square box, we also con�rm the phase transition in the spirit

of Ref. [113]. This chapter is mainly based on some of my unpublished notes and a paper by
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me, X. Yu, T. Billam, M. Reeves and A. Bradley [120], which will appear soon.

5.1 Review of the Model

In this section we review the point-vortex model �rst set up in Ref. [112]. We consider the

following Hamiltonian

H =
1

2

∑
i 6=j

(N+
i −N−i )φij(N

+
j −N−j ) , (5.1.1)

where

φij = −2 e2

`
ln|~ri − ~rj|, (5.1.2)

and ` is a length scale in the model, while N
(±)
i is the number of positive (negative) vortices

in a cell respectively. The particle numbers are �xed∑
i

N+
i = N ,

∑
i

N−i = N . (5.1.3)

The number of states is given by

W =

N !
∏
i

∆N+
i

N+
i !

 ·
N !

∏
i

∆N−i

N−i !

 , (5.1.4)

where ∆ is the cell area. The entropy is S = logW .

The typical state is obtained by maximizing S[{N+
i , N

−
i }] with the �xed number of vortices

N and the total energy E. The target function is

logW+α+

N −∑
i

N+
i

+α−

N −∑
i

N−i

+β

E − 1

2

∑
i 6=j

(N+
i −N−i )φij(N

+
j −N−j )

 ,

(5.1.5)

where α± and β are Lagrange multipliers. In the large N limit, we apply Sterling formula to

the leading order

logN ! ∼ N lnN −N + · · · . (5.1.6)

Varying the expression (5.1.5) with respect to N+
i and N−i gives us

lnN+
i + α+ + β

∑
j

(N+
j −N−j )φij = 0 , (5.1.7)

lnN−i + α− − β
∑
j

(N+
j −N−j )φij = 0 . (5.1.8)
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Taking the sum and the di�erence of the two equations above, we obtain

N+
i N

−
i = e−α

+−α− = const for all i , (5.1.9)

and

N+
i −N−i = e−α

+−β
∑
j φij(N

+
j −N

−
j ) − e−α−+β

∑
j φij(N

+
j −N

−
j ) . (5.1.10)

One can then take the continuous limit

∆→ 0 ,

N+
i −N−i → σ(~r)∆ ,

e−α
±/∆ → n0

∓ ,

±β
∑
j

φij(N
+
j −N−j )→ ±β

∫
d~r′ φ(~r − ~r′)σ(~r′) , (5.1.11)

where

φ(~r − ~r′) = −2e2

`
ln |~r − ~r′|. (5.1.12)

In this limit, Eq. (5.1.10) becomes an integral equation

σ(~r) = n0
+ e
−β
∫
d~r1 φ(~r−~r1)σ(~r1) − n0

− e
+β
∫
d~r1 φ(~r−~r1)σ(~r1) = n+(~r)− n−(~r). (5.1.13)

To obtain a di�erential equation, we de�ne

ψ(~r) ≡
∫
d~r1 φ(~r − ~r1)σ(~r1) , (5.1.14)

which satis�es the Poisson equation

∇2ψ = −4πe2

`
σ(~r) = −4πe2

`

[
n0

+ e
−βψ − n0

− e
βψ
]
. (5.1.15)

The constants n0
± are determined by the constraints∫

d~r n+ ≡ n0
+

∫
d~r e−βψ = N , (5.1.16)∫

d~r n− ≡ n0
−

∫
d~r e+βψ = N , (5.1.17)

while the constant β, which can be interpreted as the inverse temperature, is determined by

`

∫
d~r

(∇ψ)2

8πe2
= E . (5.1.18)

From the last expression we see that the energy of the system is positive de�nite.
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In the limit β2ψ2 � 1, n+ ≈ n− = n0 = N
V
, and Eq. (5.1.13) becomes a well-known

equation in mathematical physics, which is called the sinh-Poisson equation or the elliptic

sinh-Gordon equation. In some cases, it can be solved exactly [117, 118, 119]. Up to leading

order in β, we have

σ(~r) = −2n0β

∫
d~r1 φ(~r − ~r1)σ(~r1) (5.1.19)

⇒ β = − 1

2n0

∫
d~r σ2(~r)∫

d~r
∫
d~r1 σ(~r)φ(~r − ~r1)σ(~r1)

, (5.1.20)

which indicates that the temperature is negative.

5.2 System in a Disc

In this section, we extend the method developed in Ref. [115] to analyze the two-charge

point-vortex system in a disc.

5.2.1 Review of the Approach by Smith and O'Neil

Onset of ordered phase

R is the radius of the disc. We rescale the length r → rR, the density n± by N
R2 , the potential

ψ by Ne2

`
and the energy E by N2e2

`
. Then the radial coordinate r takes values in [0, 1]. The

constraints (5.1.16) - (5.1.18) are normalized to be

1 =

∫
d2r n+ , 1 =

∫
d2r n− , E =

1

2

∫
d2r (n+ − n−)ψ . (5.2.1)

The Poisson equation becomes

∇2ψ = −4πσ(~r) , (5.2.2)

with σ(~r) = n+(~r) − n−(~r) and n±(~r) = n0
± exp

[
∓βψ(~r)

]
= exp

[
∓βψ(~r) + γ±

]
, where

n0
± = exp(γ±) are constants. Eq. (5.2.2) is a nonlinear equation of ψ(~r). We expect that

there is a bifurcation point at certain energy. Before the bifurcation point, Eq.(5.2.2) only

has axisymmetric solutions and after the bifurcation point Eq.(5.2.2) has nonaxisymmetric

solutions which have higher entropy. We therefore associate this bifurcation point as a phase

transition point.

In the following we are going to locate the bifurcation point. We start at one axisymmetric

solution of Eq.(5.2.2) at energy E and consider a nearby solution n± + δn± at E + δE, and
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there are the following relations:

δn+ = n+(−δβ ψ − β δψ + δγ+) +O(δE2) , (5.2.3)

δn− = n−(δβ ψ + β δψ + δγ−) +O(δE2) . (5.2.4)

δγ−, δγ+, δβ are obtained from the constraint Eq. (5.2.1)

0 =

∫
d2r δn+ , (5.2.5)

0 =

∫
d2r δn− , (5.2.6)

δE =

∫
d2r (δn+ − δn−)ψ +O(δE2) . (5.2.7)

Plugging Eq. (5.2.3) and Eq. (5.2.4) into Eqs. (5.2.5)-(5.2.7), we obtain 0

0

δE

+ β

∫
d2r δψ

 n+

n−

(n+ + n−)ψ

 = −M

 δβ

δγ+

δγ−

 , (5.2.8)

where

M ≡

 n+ψ −n+ 0

n−ψ 0 n−

(n+ + n−)ψ2 −n+ψ n−ψ

 . (5.2.9)

Then  δβ

δγ+

δγ−

 = −M−1

 0

0

δE

− βM−1

∫
d2r δψ

 n+

n−

(n+ + n−)ψ



= −M−1

 0

0

δE

+ β

 Lβ(δψ)

Lγ+(δψ)

Lγ−(δψ)

 , (5.2.10)

where  Lβ(δψ)

Lγ+(δψ)

Lγ−(δψ)

 ≡ −M−1

∫
d2r δψ

 n+

n−

(n+ + n−)ψ

 . (5.2.11)

Written in an equivalent expression,

δβ = −(M−1)13 δE + βLβ(δψ) , (5.2.12)

δγ+ = −(M−1)23 δE + βLγ+(δψ) , (5.2.13)

δγ− = −(M−1)33 δE + βLγ−(δψ) . (5.2.14)
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Let us recall Eq. (5.2.2):

∇2ψ = −4πσ(~r) = −4π
[
n+(~r)− n−(~r)

]
.

Variation of this equation gives us

∇2δψ = −4π
[
δn+(~r)− δn−(~r)

]
= 4π(n+ + n−)δβ ψ + 4π(n+ + n−)β δψ − 4πn+ δγ+ + 4πn− δγ− . (5.2.15)

Combining the expression above with Eqs. (5.2.12)-(5.2.14), we obtain[
∇2 − 4π(n+ + n−)β

]
δψ = 4π(n+ + n−)δβ ψ − 4πn+ δγ+ + 4πn− δγ−

= 4π(n+ + n−)ψ
[
−(M−1)13 δE + βLβ(δψ)

]
− 4πn+

[
−(M−1)23 δE + βLγ+(δψ)

]
+ 4πn−

[
−(M−1)33 δE + βLγ−(δψ)

]
. (5.2.16)

⇒
[
∇2 − 4π(n+ + n−)β − 4π(n+ + n−)βψLβ + 4πn+βLγ+ − 4πn−βLγ−

]
δψ

= 4π
[
−(n+ + n−)ψ(M−1)13 + n+(M−1)23 − n−(M−1)33

]
δE . (5.2.17)

Let us de�ne

L ≡ ∇2 − 4π(n+ + n−)β − 4π(n+ + n−)βψLβ + 4πn+βLγ+ − 4πn−βLγ− , (5.2.18)

A(~r) ≡ −(n+ + n−)ψ(M−1)13 + n+(M−1)23 − n−(M−1)33 , (5.2.19)

then the equation above can be written as

L δψ = 4πA(~r) δE . (5.2.20)

Now the problem becomes a linear di�erential equation system. In our case, we know a

priori that at the positive temperature the solution is axisymmetric, while at large negative

temperature a nonaxisymmetric solution is expected. Hence, we anticipate that a bifurcation

point appears in the solution of the di�erential equation above. The condition of the onset

of nonaxisymmetric solutions is given by the zero mode of the operator L , namely,

L δψ = 0 (5.2.21)

on a unit disk D with the boundary condition δψ(∂D) = 0. We can decompose Eq. (5.2.21)

in azimuthal Fourier harmonics with the mode number l. Then a nonaxisymmetric solution

exists only when the linear equation

Ll δψ = 0 (l > 0) (5.2.22)
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has a nonzero solution. Moreover, we can drop Lβ, Lγ+ and Lγ− in the operator L , because

they are proportional to δβ, δγ+ and δγ− respectively, which are higher-order variations as

we will see in the next section. Therefore, to con�rm the existence of the bifurcation point,

we only need to analyze the following di�erential equation:

[
∇2 − 4π(n+ + n−)β

]
|δψ| =

(1

r

d

dr
r
d

dr
− l2

r2

)
− 4π(n+ + n−)β

 |δψ| = 0 , (5.2.23)

satisfying the boundary condition

δψ(r = 1) = 0 , δψ(r = 0) = 0 , (5.2.24)

where

δψ = |δψ| eiθ . (5.2.25)

To estimate the critical temperature Tc for the system in a disc, we assume that at the

critical point the condition n+ + n− = 2n0 holds. This assumption is not true as we will see

from the numerical results, but as a �rst estimate it still gives us an answer quite close to

the accurate result. Under this assumption, Eq. (5.2.23) becomes essentially an eigenvalue

problem, namely, (
1

r

d

dr
r
d

dr
− l2

r2

)
|δψ| = −λ |δψ| (5.2.26)

with the boundary condition |δψ(r = 1)| = 0. We only consider l = 1 due to the thermody-

namic stability discussed in Ref. [115]. For l = 1 we have λ = j2
1,1, and the corresponding

eigenfunction is J1(
√
λr), where j1,1 is the �rst positive zero of of the Bessel function J1(r).

The other zeros j1,n (n > 1) also satisfy the eigenvalue equation and the boundary condition,

but since −∆|δψ| ∼ E|δψ|, we only choose the lowest energy state, which corresponds to j1,1.

Therefore,

|δψ(r)| ∼ J1(
√
λr) , (5.2.27)

and the instability condition of the disordered phase reads

− λ = 8πn0 βc , (5.2.28)

i.e., the bifurcation point is at the temperature given by

Tc = −8πn0

λ
. (5.2.29)

To compare our result with the one in Ref. [116], we identify the units used in this chapter

with the one adopted in Ref. [116]:

T0 ≡
2Ne2

`
=
ρsκ

2N

4πkB
. (5.2.30)
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Then in this unit our result has the value

Tc = − 4π

λV
T0 = − 4π

j2
1,1π

T0 ≈ −0.272T0 , (5.2.31)

which is very close to the value −0.25T0 obtained from simulation in Ref. [116].

A more accurate way of determining Tc is to solve Eq. (5.2.23) for l = 1 numerically.

Eq. (5.2.23) should have a nontrivial solution only at the bifurcation point, while zero solu-

tions elsewhere. By analyzing the numerical results, we can determine the critical tempera-

ture

Tc ≈ −0.267T0 , (5.2.32)

which takes place at

Ec = 0.153E0 , (5.2.33)

with E0 ≡ Ne2

`
. Fig. 5.1 shows the numerical result of β(E), and the dashed line indicates

the branch of the nontrivial solutions.

1 2 3 4
E

-1.95

-1.90

-1.85

β

Figure 5.1: The β-E curve for the system in a disc

Before the bifurcation point, the system follows the solid line as increasing the energy,

and then follow the dashed line after the bifurcation point. Hence, the bifurcation point is

the lowest point of the β-E curve. In canonical ensemble, such a point corresponds to the

divergence of speci�c heat, which is an indication of a phase transition. However, for the

micro-canonical ensemble that we are working with, the physics meaning of the divergence

of speci�c heat is not clear. Nevertheless, the behavior of the system on the two sides of the

bifurcation point are quite di�erent.

124



Higher-Order Analysis

To analyze the branch of the nontrivial solutions deviated from the bifurcation point, we

need to consider higher-order terms in the variation of the Poisson equation (5.2.2) and the

constraints (5.2.1).

We apply the method introduced in Appendix A of Ref. [115] to our case, i.e. the case

with two kinds of charges and without the angular momentum conservation constraint. We

still consider a system in a disc. Recall the Poisson equation (5.2.2)

∇2ψ = −4πσ , (5.2.34)

and its variation

∇2δψ = −4πδσ , (5.2.35)

where

σ(~r) = n+(~r)− n−(~r) (5.2.36)

with n± = e∓βψ+γ± .

Suppose that

δψ = xψ1 + f (2) + f (3) , (5.2.37)

where x is a small parameter, and f (i) (i = 2, 3) is of the order O(xi). Then

1 +
δn+

n+

= e−δβ ψ−β δψ−δβ δψ+δγ+ , (5.2.38)

1 +
δn−
n−

= eδβ ψ+β δψ+δβ δψ+δγ− , (5.2.39)

where δβ and δγ± are of the order O(x2) or higher.

At the order O(x), Eq. (5.2.35) becomes

∇2(xψ1) = −4π(−n+βxψ1 − n−βxψ1) (5.2.40)

⇒
[
∇2 − 4π(n+ + n−)β

]
ψ1 = 0 , (5.2.41)

which is exactly the equation that the bifurcation point should satisfy.

At the order O(x2), Eq. (5.2.35) becomes

∇2f (2) = −4π

[
n+(−δβ ψ +

1

2
β2x2ψ1

2 − βf (2) + δγ+)− n−(δβ ψ +
1

2
β2x2ψ1

2 + βf (2) + δγ−)

]
= −4π

[
−(n+ + n−)(δβ ψ + βf (2)) + (n+ − n−)

1

2
β2x2ψ1

2 + n+ δγ+ − n− δγ−
]
(5.2.42)
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⇒
[
∇2 − 4π(n+ + n−)β

]
f (2) = −4π

[
−(n+ + n−)δβ ψ + (n+ − n−)

1

2
β2x2ψ1

2 + n+ δγ+ − n− δγ−
]
.

(5.2.43)

Suppose

ψ1(r, θ) = ψ̂1(r) eiθ . (5.2.44)

The right-hand side of the equation above has only the zeroth and the second power of eiθ,

hence the Fredholm solubility condition is trivially true.

Next, let us consider the constraints:

1 =

∫
d2r n+ , (5.2.45)

1 =

∫
d2r n− , (5.2.46)

E =
1

2

∫
d2r (n+ − n−)ψ . (5.2.47)

Their variations are

0 =

∫
d2r δn+ , (5.2.48)

0 =

∫
d2r δn− , (5.2.49)

δE =
1

2

∫
d2r

[
(δn+ − δn−)ψ + (n+ − n−)δψ + (δn+ − δn−)δψ

]
. (5.2.50)

Combining the �rst two constraints above, we obtain two equivalent conditions:

0 =

∫
d2r δ(n+ − n−) =

∫
d2r δσ , (5.2.51)

0 =

∫
d2r (δn+ + δn−) . (5.2.52)

At the order O(x2), the constraint (5.2.51) becomes

0 =

∫
d2r

(
− 1

4π

)
∇2δψ = − 1

4π

∫
d2r∇2f (2) (5.2.53)

⇒ 0 =

∫
d2r∇2f (2) =

∫ 2π

0

dθ

∫ 1

0

dr

(
d

dr
r
d

dr
f (2)

)
=

∫ 2π

0

dθ

[
r
d

dr
f (2)

] ∣∣∣∣1
0

(5.2.54)

⇒ 0 =

∫ 2π

0

dθ(f (2))′(1) . (5.2.55)
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At the order O(x2), the constraint (5.2.50) becomes

δE =
1

2

∫
d2r

[
− 1

4π
(∇2δψ)ψ + (n+ − n−)f (2) +

(
n+(−βxψ1)− n−(βxψ1)

)
(xψ1)

]
=

1

2

∫
d2r

[
− 1

4π
δψ(∇2ψ) + σf (2) − (n+ + n−)βx2ψ1

2

]
=

1

2

∫
d2r

[
δψ σ + σf (2) − (n+ + n−)βx2ψ1

2
]

=
1

2

∫
d2r

[
2σf (2) − (n+ + n−)βx2ψ1

2
]

=

∫
d2r σf (2) − 1

2
x2β

∫
d2r (n+ + n−)ψ1

2 . (5.2.56)

Finally, we consider Eq. (5.2.35) at the order O(x3):

∇2f (3) = −4πn+

[
(−δβ ψ − βf (2) + δγ+)(−βxψ1)− δβ xψ1 −

1

3!
β3x3ψ1

3 − βf (3)

]
+ 4πn−

[
(δβ ψ + βf (2) + δγ−)(βxψ1) + δβ xψ1 +

1

3!
β3x3ψ1

3 + βf (3)

]

⇒
[
∇2 − 4π(n+ + n−)β

]
f (3)

= 4πxψ1

[
−(n+ − n−)(δβ ψβ + β2f (2)) + (n+ + n−)(δβ +

1

6
β3x2ψ1

2) + δγ+n+β + δγ−n−β

]
.

(5.2.57)

The Fredholm solubility condition is then

0 =

∫
d2r ψ1

2

[
−(n+ − n−)(δβ ψβ + β2f (2)) + (n+ + n−)(δβ +

1

6
β3x2ψ1

2) + δγ+n+β + δγ−n−β

]
.

(5.2.58)

To rewrite the constraints and the solubility condition, we �rst de�ne(
1

r

d

dr
r
d

dr
− 4π(n+ + n−)β

)
χ1 = 4π(n+ + n−)ψ , (5.2.59)(

1

r

d

dr
r
d

dr
− 4π(n+ + n−)β

)
χ2 = 4πn+ , (5.2.60)(

1

r

d

dr
r
d

dr
− 4π(n+ + n−)β

)
χ3 = 4πn− , (5.2.61)(

1

r

d

dr
r
d

dr
− 4π(n+ + n−)β

)
χ4 = 4π(n+ − n−)β2ψ̂1

2 , (5.2.62)(
1

r

d

dr
r
d

dr
− 4

r2
− 4π(n+ + n−)β

)
χ5 = 4π(n+ − n−)β2ψ̂1

2 , (5.2.63)
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where again

ψ1(r, θ) = ψ̂1(r) cosθ , (5.2.64)

and all the χi's satisfy the boundary condition

χi(r = 1) = 0 , χ′i(r = 0) = 0 . (5.2.65)

Then f (2) can be expressed as

f (2) = χ1 δβ − χ2 δγ+ + χ3 δγ− −
1

4
x2 χ4 −

1

4
x2 χ5 cos(2θ) . (5.2.66)

Since ∫ 2π

0

dθ cos(2θ) = 0 , (5.2.67)

we can rewrite Eq. (5.2.55) as

0 =

∫ 2π

0

dθ

[
χ′1(1) δβ − χ′2(1) δγ+ + χ′3(1) δγ− −

1

4
x2 χ′4(1)

]
= 2πχ′1(1) δβ − 2πχ′2(1) δγ+ + 2πχ′3(1) δγ− − 2π

1

4
x2 χ′4(1) (5.2.68)

⇒ 0 = χ′1(1) δβ − χ′2(1) δγ+ + χ′3(1) δγ− −
1

4
x2 χ′4(1)

=
(
χ′1(1) χ′2(1) χ′3(1) χ′4(1)

)
·


δβ

−δγ+

δγ−

−1
4
x2

 . (5.2.69)

Eq. (5.2.56) can be written as

δE =

∫ 2π

0

dθ

∫ 1

0

dr rσ

(
χ1 δβ − χ2 δγ+ + χ3 δγ− −

1

4
x2 χ4

)
− 1

2
x2β

∫ 2π

0

dθ

∫ 1

0

dr r(n+ + n−)ψ̂1
2 cos2θ

=

∫ 1

0

dr rσ

(
2πχ1 δβ − 2πχ2 δγ+ + 2πχ3 δγ− − 2π

1

4
x2 χ4

)
− π1

2
x2β

∫ 1

0

dr r(n+ + n−)ψ̂1
2 (5.2.70)

⇒ δE

2π
=

∫ 1

0

dr rσ

(
χ1 δβ − χ2 δγ+ + χ3 δγ− −

1

4
x2 χ4

)
− 1

4
x2β

∫ 1

0

dr r(n+ + n−)ψ̂1
2

=

(∫
dr rσχ1

∫
dr rσχ2

∫
dr rσχ3

∫
dr rσχ4 + β

∫
dr r(n+ + n−)ψ̂1

2

)
·


δβ

−δγ+

δγ−

−1
4
x2

 .

(5.2.71)
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At the order O(x2), the constraint (5.2.52) becomes

0 =

∫
d2r (δn+ + δn−)

=

∫
d2r

[
n+(−δβ ψ − βf (2) + δγ+ +

1

2
β2x2ψ2

1) + n−(δβ ψ + βf (2) + δγ− +
1

2
β2x2ψ2

1)

]
=

∫
d2r

[
−(n+ − n−)δβ ψ − (n+ − n−)βf (2) + n+ δγ+ + n− δγ− +

1

2
(n+ + n−)β2x2ψ2

1

]
=

∫
d2r

[
− σ δβ ψ − σβ

(
χ1 δβ − χ2 δγ+ + χ3 δγ− −

1

4
x2 χ4 −

1

4
x2 χ5 cos(2θ)

)
+ n+δγ+ + n−δγ− +

1

2
(n+ + n−)β2x2ψ̂2

1 cos
2θ

]
=

∫ 1

0

dr r

[
− 2πσ(ψ + βχ1)δβ + 2π(n+ + σβχ2)δγ+ + 2π(n− − σβχ3)δγ− + 2π

1

4
x2σβχ4

+
π

2
(n+ + n−)β2x2ψ̂2

1

]
(5.2.72)

⇒ 0 =

∫ 1

0

dr r

[
−σ(ψ + βχ1)δβ + (n+ + σβχ2)δγ+ + (n− − σβχ3)δγ− +

1

4
x2σβχ4

]
=

(
−
∫
dr rσ(ψ + βχ1) −

∫
dr r(n+ + σβχ2)

∫
dr r(n− − σβχ3) −

∫
dr rσβχ4 −

∫
dr r(n+ + n−)β2ψ̂2

1

)
·


δβ

−δγ+

δγ−

−1
4
x2

 .

(5.2.73)

Eq. (5.2.58) leads to

0 =

∫
d2r ψ1

2

[
(n+ − n−)

(
δβ ψ + βf (2)

)
− (n+ + n−)

(
β−1δβ +

1

6
β2x2ψ1

2

)
− n+δγ+ − n−δγ−

]

=

∫ 1

0

dr rψ̂1
2

[
π(n+ − n−) (δβ ψ) + π(n+ − n−)β

(
χ1 δβ − χ2 δγ+ + χ3 δγ− −

1

4
x2 (χ4 +

1

2
χ5)

)
− π(n+ + n−)β−1δβ − πn+δγ+ − πn−δγ−

]
− 1

6
x2β2 3π

4

∫ 1

0

dr rψ̂1
4(n+ + n−)
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⇒ 0 =

∫ 1

0

dr rψ̂1
2

[
(n+ − n−)

(
(ψ + βχ1)δβ − βχ2 δγ+ + βχ3 δγ− −

1

4
βx2 (χ4 +

1

2
χ5)

)
− (n+ + n−)β−1δβ − n+δγ+ − n−δγ−

]
− 1

8
x2β2

∫ 1

0

dr rψ̂1
4(n+ + n−)

=

(∫
dr rψ̂1

2
(
σ(ψ + βχ1)− ρβ−1

) ∫
dr rψ̂1

2(σβχ2 + n+)

∫
dr rψ̂1

2(σβχ3 − n−)

∫
dr rψ̂1

2(σβ(χ4 +
1

2
χ5) +

1

2
ρβ2ψ̂1

2)

)
·


δβ

−δγ+

δγ−

−1
4
x2

 .

(5.2.74)

To summarize, we can rewrite the constraints (5.2.69) (5.2.71) (5.2.73) and the solubility

condition (5.2.74) into a compact form

Q ·


δβ

−δγ+

δγ−

−x2

4

 =


0
δE
2π

0

0

 , (5.2.75)
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where the matrix elements of Q are given by

Q1j = χ′j(1) , j = 1, · · · , 4 , (5.2.76)

Q2j =

∫ 1

0

dr rσχj , j = 1, 2, 3 , (5.2.77)

Q24 =

∫ 1

0

dr rσχ4 + β

∫ 1

0

dr r(n+ + n−)ψ̂1
2 , (5.2.78)

Q31 = −
∫
dr rσ(ψ + βχ1) , (5.2.79)

Q32 = −
∫
dr r(n+ + σβχ2) , (5.2.80)

Q33 =

∫
dr r(n− − σβχ3) , (5.2.81)

Q34 = −
∫
dr rσβχ4 −

∫
dr r(n+ + n−)β2ψ̂2

1 , (5.2.82)

Q41 =

∫
dr rψ̂1

2(σ(ψ + βχ1)− ρβ−1) , (5.2.83)

Q42 =

∫
dr rψ̂1

2(σβχ2 + n+) , (5.2.84)

Q43 =

∫
dr rψ̂1

2(σβχ3 − n−) , (5.2.85)

Q44 =

∫
dr rψ̂1

2(σβ(χ4 +
1

2
χ5) +

1

2
ρβ2ψ̂1

2) . (5.2.86)

Therefore, we have 
δβ

−δγ+

δγ−

−x2

4

 = Q−1 ·


0
δE
2π

0

0

 . (5.2.87)

Q−1 needs to be evaluated numerically. The equation shows that for a given energy change

δE, we can compute the changes in δβ, δγ± and x, and consequently δn±, δσ and δψ. In this

way, we can construct the branch of nonaxisymmetric solutions and compute some physical

quantities along this branch. Note that we construct the nonaxisymmetric solutions from the

bifurcation point, where we assume

ψ1(r, θ) = ψ̂1(r) cosθ

Therefore the solutions constructed using this method only valid when close to the bifurcation

point.
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5.2.2 Results for a System in Disc

In this section, we use the formalism developed in the previous section to calculate some

physical quantities of interest.

S-E Curve

To make sure the branch of the nontrivial solutions has larger entropy than the branch of the

trivial solutions, we plot the entropy vs. energy in Fig. 5.2, where the entropy is de�ned as

S = −
∫
d2r n+ lnn+ −

∫
d2r n− lnn− . (5.2.88)

1 2 3 4
E

-6

-4

-2

2

S

Figure 5.2: The S-E curve for the system in a disc. The dashed line shows the branch of the

nontrivial solutions.

Density Pro�les

As an example, we plot the solution preserving U(1) rotational symmetry at the bifurcation

point Ec = 0.153E0 in Fig. 5.3 - Fig. 5.6. This solution shows that the positive charges

are relatively concentrated in the center, while the negative charges accumulate close to the

edge of the disc. In fact, due to the symmetry between the positive and the negative charge,

interchanging the signs of the charges will give us another possible solution with the same

energy and entropy.
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Figure 5.3: The pro�le of n+(r)
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Figure 5.4: The pro�le of n−(r)
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Figure 5.5: The pro�le of σ(r)
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Figure 5.6: The pro�le of n+(r) + n−(r)

Above Ec two branches of solutions are developed. One preserves the U(1) rotational

symmetry, while the other breaks the U(1) symmetry. The two solutions at E ≈ 0.24E0 are

shown in Fig. 5.7 and Fig. 5.8.
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Figure 5.7: The solution preserving U(1) Figure 5.8: The solution breaking U(1)

Order parameter

The total dipole moment of the system plays the role of the order parameter of the phase

transition, which can be expressed as

〈D〉 = | ~D| =
√
D2
x +D2

y , (5.2.89)

where

Dx ≡
∫
d2r xσ(~r) , Dy ≡

∫
d2r yσ(~r) , (5.2.90)

and σ(~r) = n+(~r) − n−(~r) is obtained from the branch of the nontrivial solutions. Fig. 5.9

shows the dipole moment 〈D〉 as a function of E.
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Figure 5.9: The 〈D〉-E curve for the system in a disc.

Close to the transition point (Ec ' 0.153), we �nd

〈D〉 = A (E − Ec)µ , (5.2.91)

with �tting parameter A = 0.840 and µ ≈ 0.5.

5.3 System in a Box

In this section, we consider the system in a square box. We mainly follow the formalism

developed in Ref. [113]. As advertised in the introduction, we will evaluate the partition

function of the two-charge point-vortex model exactly in this case. From it one can further

calculate many physical quantities and once again recover the phase transition at negative

temperature.

5.3.1 Review of the Approach by Edwards and Taylor

Let us �rst review the formalism introduced in Ref. [113]. The Hamiltonian of the system is

H = −
∑
i<j

2ei ej
`

ln |~ri − ~rj| . (5.3.1)

The Fourier transforms of the positive and the negative charge are

pk =
e

V

∑
+

ei
~k·~ri , qk =

e

V

∑
−

ei
~k·~rj . (5.3.2)

De�ning

ρk ≡ pk − qk , ηk ≡ pk + qk , (5.3.3)
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we obtain

H = 2πV
∑
k

(
|ρk|2 −

4πNe2

V 2

)
1

k2
, (5.3.4)

where k = 2πn
L
. If we drop the second term in the brackets of Eq. (5.3.4), the energy is always

positive, and it returns to the Hamiltonian (5.1.1).

In the micro-canonical ensemble, for a given energy E, the statistical weight is

Ω =

∫
dλ

2π

∏
i

d~ri e
iλ(E−H) , (5.3.5)

where λ is a Lagrange multiplier. Changing from the coordinates {~ri, ~rj} to {ρk, ηk}, and
taking into account the corresponding Jacobian, one obtains

Ω =
V 2N

2π

∫
dλ
∏
k

dr2
k

[
V 2

2Ne2
e−

V 2

2Ne2
r2
k

]
eiλE e

2πiλV
∑
k

(
r2
k−

4πNe2

V 2

)
1
k2
, (5.3.6)

where rk is given by

ρk = rk e
iφk . (5.3.7)

Integrating out rk gives us

Ω =
V 2N

2π

∫
dλ e

iλE−
∑
k

[
ln

(
1+ iα2λ

k2

)
− iα

2λ
k2

]
. (5.3.8)

After we introduce some new variables

ε ≡ E

Ne2
, z ≡ Ne2λ , k2 ≡ 4π2

V
κ2 , (5.3.9)

Ω becomes

Ω =
V 2N

Ne2

∫
dz

2π
exp

izε−∑
κ

(
ln

(
1 +

iz

πκ2

)
− iz

πκ2

) . (5.3.10)

When replacing the sum by the integration, we have to introduce a lower cuto� in the

momentum: ∫
d2κ

[
ln

(
1 +

iz

πκ2

)
− iz

πκ2

]

= 2π

∫ ∞
b

κdκ

[
ln

(
1 +

iz

πκ2

)
− iz

πκ2

]

=π

∫ ∞
b2

dκ2

[
ln

(
1 +

iz

πκ2

)
− iz

πκ2

]

=π

(
iz

π
+ κ2

)
ln

(
1 +

iz

πκ2

) ∣∣∣∣∞
κ2=b2

= iz − πb2

(
1 +

iz

πb2

)
ln

(
1 +

iz

πb2

)
. (5.3.11)
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Therefore,

Ω =
V 2N

Ne2

∫
dz

2π
exp

[
izε− iz + πb2

(
1 +

iz

πb2

)
ln

(
1 +

iz

πb2

)]
. (5.3.12)

A natural choice for the lower cuto� b is

πb2 = 1 , (5.3.13)

i.e., we neglect the modes with

V

4π2
k2 <

1

π
⇐⇒ L

λ
<

1√
π
, (5.3.14)

which means that we do not consider the modes whose wavelengths are larger than the system

size. Finally, after introducing the lower cuto� in momentum (5.3.13), we obtain

Ω =
V 2N

Ne2

∫
dz

2π
exp

[
izε− iz + (1 + iz) ln (1 + iz)

]
=
V 2N

Ne2
g(ε) , (5.3.15)

where

g(ε) ≡
∫

dz

2π
exp

[
izε+ (1 + iz) ln(1 + iz)− iz

]
. (5.3.16)
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Figure 5.10: The contour for the variable z

 
-1 

y 

1 

Figure 5.11: The contour for the variable y

The entropy is given by

S = lnΩ = 2N lnV + ln
(
g(ε)

)
. (5.3.17)

To evaluate g(ε), we observe that it has no poles, but it has a branch point at i. As shown

in Fig. 5.10, we can choose a branch cut from i to i∞, and always close the contour in the
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upper half plane, no matter what the value of ε is. Only the two sides of the branch cut

contribute to the contour integral. Let us de�ne

ix ≡ 1 + iz , (5.3.18)

which corresponds to shifting the complex plane by i. The integral becomes

g(ε) =

∫
dx

2π
exp

[
(ix− 1)(ε− 1) + ix ln(ix)

]
. (5.3.19)

Now x = 0 becomes the branch point, and the branch cut is (0, i∞). If we further de�ne

x ≡ iy ⇒ y = −ix , (5.3.20)

then as shown in Fig. 5.11, y = 0 is still the branch point, but the branch cut becomes (0,∞),

i.e., for y ∈ R the function ln(y) is multiple-valued, and its value depends on which side of

the real axis y lies. The contour integral is now

g(ε) = −
∫ ∞

0

i dy

2π
exp

[
(−y − 1)(ε− 1)

]
exp

[
−y ln(−y)

]
−
∫ 0

∞

i dy

2π
exp

[
(−y − 1)(ε− 1)

]
exp

[
−y ln(−y)

]
.

(5.3.21)

We have to treat the term ln(−y) carefully:

ln(−y) = ln(|y|) + i arg(−y) . (5.3.22)

For y slightly above the positive real axis arg(−y) takes the value −iπ, while for y slightly

below the positive real axis arg(−y) takes the value iπ. Then

g(ε) = −
∫ ∞

0

i dy

2π
exp

[
(−y − 1)(ε− 1)

]
· exp (−y ln y) ·

[
exp(−y(−iπ))− exp(−y(iπ))

]
= −

∫ ∞
0

i dy

2π
e1−ε · e−yε+y · e−y ln y ·

(
2i sin(πy)

)
=

1

π
e1−ε

∫ ∞
0

dy sin(πy) ey−y ln y−εy . (5.3.23)

Next, we consider the correlation function 〈|ρ2
k|〉, which can be expressed as

〈|ρ2
k|〉 =

2Ne2

V

1

Ω

∫
dz

k2V

k2V + 4πiz

∏
κ

[(
1 +

iz

πκ2

)−1
]
exp

(
izε+ iz

∑
κ

1

πκ2

)

=
2Ne2

V

1

Ω

∫
dz

k2V

k2V + 4πiz
exp

izε−∑
κ

(
ln

(
1 +

iz

πκ2

)
− iz 1

πκ2

) , (5.3.24)

where again

ε ≡ E

Ne2
, z ≡ Ne2λ , k2 ≡ 4π2

V
κ2 . (5.3.25)
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One can replace
∑

κ by
V

(2π)2

∫
d2k, but since in this case the error is not small when V →∞,

one has to introduce a lower cut-o� b in the κ integration as before. By taking πb2 = 1, one

obtains

〈|ρ2
k|〉 =

2Ne2

V

1

Ω

∫
dz

k2V

k2V + 4πiz
exp

[
izε+ (1 + iz) ln(1 + iz)− iz

]
=

2Ne2

V

1

Ω

∫
dz
−ia
z − ia

exp
[
(1 + iz) ln(1 + iz)

]
exp

[
iz(ε− 1)

]
, (5.3.26)

where a ≡ k2V
4π

. We see that the contour integral above has a simple pole at z0 = ia and a

branch cut at z = i. Since we have taken a lower cuto� for κ, which is given by

V

4π2
k2 = b2 =

1

π
(5.3.27)

i.e.

a =
k2V

4π
> 1 . (5.3.28)

We can choose the branch cut to be from i to i∞. The pole z0 = ia must lie above the

branch point z = i, hence it lies on the branch cut (see Fig. 5.12).
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Figure 5.12: The new contour for the variable z

Using the residue theorem, one can evaluate the contour integral (5.3.26) explicitly, and

the result is following:

〈|ρ2
k|〉 =

4πNe2

V Ω
a cos[π(a− 1)] (a− 1)−(a−1) e−a(ε−1) +

4Ne2

V Ω
e1−εPF̃ (a, ε) , (5.3.29)
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where

F̃ (a, ε) ≡
∫ ∞

0

dx sin(πx)
−a

x− (a− 1)
ex−x lnx−εx , (5.3.30)

and PF̃ is the principal value of F̃ . Since the inverse Fourier transform of F̃ (k2, s) is

F (s, ε) ≡
∫
d2k F̃ (k2, s) ei

~k·~s , (5.3.31)

we can Fourier transform 〈|ρ2
k|〉 to obtain 〈σ(~r)σ(~r + ~s)〉:

〈σ(~r)σ(~r + ~s)〉

=
1

π

4πNe2

V Ω

∫ ∞
1

k̃ dk̃

∫ 2π

0

dϕ k̃2 cos[π(k̃2 − 1)] (k̃2 − 1)−(k̃2−1) e−k̃
2(ε−1) eik̃s̃ cosϕ

+
1

π

4Ne2

V Ω
e1−ε

∫ ∞
0

dx sin(πx)

[
P
∫
d2k̃

k̃2

k̃2 − (x+ 1)
ei
~̃
k·~̃s −

∫ 1

0

k̃dk̃
k̃2

k̃2 − (x+ 1)
2πJ0(k̃s̃)

]
ex−x lnx−εx ,

(5.3.32)

where

k̃ ≡
√
V

4π
k =
√
a , s̃ ≡

√
4π

V
s . (5.3.33)

Let us evaluate the expression (5.3.32). The principal value part in the second term can

be evaluated analytically.

P

[∫
d2k̃

k̃2

k̃2 − (x+ 1)
ei
~̃
k·~̃s

]
= (2π)2δ(~̃s) + P

[∫ ∞
0

dk̃
k̃(x+ 1)

k̃2 − (x+ 1)
2πJ0(k̃s̃)

]
= (2π)2δ(~̃s)− π2(x+ 1)Y0(

√
x+ 1 s̃) . (5.3.34)

Then 〈σ(~r)σ(~r + ~s)〉 becomes

〈σ(~r)σ(~r + ~s)〉 =
8πNe2

V Ω

∫ ∞
1

dk̃ k̃3 cos[π(k̃2 − 1)] (k̃2 − 1)−(k̃2−1) e−k̃
2(ε−1) J0(k̃s̃)

+
16πNe2

V Ω
δ(~̃s) e1−ε

∫ ∞
0

dx sin(πx)x−x e−x(ε−1)

− 4πNe2

V Ω
e1−ε

∫ ∞
0

dx sin(πx)(x+ 1)Y0(
√
x+ 1 s̃)x−x e−x(ε−1)

− 8Ne2

V Ω
e1−ε

∫ ∞
0

dx sin(πx)

∫ 1

0

dk̃
k̃3

k̃2 − (x+ 1)
J0(k̃s̃)x−xe−x(ε−1) .

(5.3.35)
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The �rst term in Eq. (5.3.35) can be rewritten as

8πNe2

V Ω

∫ ∞
1

dk̃ k̃3 cos[π(k̃2 − 1)] (k̃2 − 1)−(k̃2−1) e−k̃
2(ε−1) J0(k̃s̃)

=
8πNe2

V Ω

∫ ∞
1

1

2
dk̃2 k̃2 cos[π(k̃2 − 1)] (k̃2 − 1)−(k̃2−1) e−k̃

2(ε−1) J0(k̃s̃)

=
4πNe2

V Ω

∫ ∞
0

d(k̃2 − 1) k̃2 cos[π(k̃2 − 1)] (k̃2 − 1)−(k̃2−1) e−k̃
2(ε−1) J0(k̃s̃)

=
4πNe2

V Ω

∫ ∞
0

dx (x+ 1) cos(πx)x−x e−(x+1)(ε−1) J0(
√
x+ 1s̃)

=
4πNe2

V Ω
e1−ε

∫ ∞
0

dx (x+ 1) cos(πx)x−x e−x(ε−1) J0(
√
x+ 1s̃) . (5.3.36)

Therefore, the correlation 〈σ(~r)σ(~r + ~s)〉 can be written as

〈σ(~r)σ(~r + ~s)〉 =
4πNe2

V Ω
e1−ε

∫ ∞
0

dx (x+ 1)x−x e−x(ε−1)
[
cos(πx) J0(

√
x+ 1 s̃)− sin(πx)Y0(

√
x+ 1 s̃)

]
+

16πNe2

V Ω
δ(~̃s) e1−ε

∫ ∞
0

dx sin(πx)x−x e−x(ε−1)

− 8Ne2

V Ω
e1−ε

∫ ∞
0

dx sin(πx)

∫ 1

0

dk̃
k̃3

k̃2 − (x+ 1)
J0(k̃s̃)x−xe−x(ε−1) .

(5.3.37)

For s̃ 6= 0 we can evaluate the expression (5.3.35) numerically. We �nd that for a �xed

value of ε, the correlation 〈σ(~r)σ(~r + ~s)〉 diverges logarithmically when s→ 0.

5.3.2 Results for a System in a Box

Tc, S-E and β-E Curve

First, we can still estimate the critical temperature using the method applied in Section 5.2

for the system in a disc. Now suppose that the region is [0, L] × [0, L], and we still assume

that n+ + n− = 2n0 is constant, then Eq. (5.2.23) can be written as(
∂2

∂x2
+

∂2

∂y2
− 8πn0e

2

`
β

)
|δψ| = 0 . (5.3.38)

To satisfy the Dirichlet boundary conditon

|δψ|(0, y) = |δψ|(L, y) = 0 for y ∈ [0, π] , (5.3.39)

|δψ|(x, 0) = |δψ|(x, L) = 0 for x ∈ [0, π] , (5.3.40)
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|δψ| can take the form

|δψ|(x, y) ∼ sin

(
πm

L
x

)
· sin

(
πn

L
y

)
, (5.3.41)

where m,n ∈ Z. Therefore,

∆|δψ| =

(
∂2

∂x2
+

∂2

∂y2

)
|δψ| = −π

2

L2
(m2 + n2) . (5.3.42)

The nonzero |δψ| with the lowest eigenvalue for −∆ is given by m = n = ±1. For this

solution, Eq. (5.3.38) becomes (
−2π2

L2
− 8πn0e

2

`
β

)
|δψ| = 0 . (5.3.43)

Therefore,

Tc = −4Ne2

π`
≈ −1.273

Ne2

`
≈ −0.637T0 . (5.3.44)

The more accurate way of determining Tc is to evaluate Eq. (5.3.17) and Eq.(5.3.23)

numerically. Then the temperature is de�ned as

β =
1

T
=

(
∂S

∂E

)
V,N

. (5.3.45)

The S-E and the β-E curve are shown in Fig. 5.13 and Fig. 5.14 respectively.
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Figure 5.13: S-E for the system in a box
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Figure 5.14: β-E for the system in a box

From Fig. 5.14 we see that at E ≈ −0.393E0 the temperature of the system changes from

positive to negative, while at E ≈ 3.383E0 there is

∂β

∂E
(E ≈ 3.383E0) = 0 . (5.3.46)
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Similar to the system in a disc, we identify this point as the critical point. Hence, we can

read o� from it

Tc ≈ −0.742
Ne2

`
= −0.371T0 , (5.3.47)

which is not far from the estimate we did before.

Correlation Function

We evaluate Eq. (5.3.37) numerically. Fig. 5.15 shows 〈σ(~r)σ(~r+~s)〉 as a function of s = |~s|
for E = 3.2E0 ' Ec.
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<σ (r )σ (r+s)>

Figure 5.15: The correlation function 〈σ(~r)σ(~r + ~s)〉 as a function of |~s| for E = 3.2E0

We �nd that the correlation function is positive in the ordered phase. In the disordered

phase (but still negative temperature), the correlation function changes sign.

On the other hand, when E < −0.393E0 the temperature of the system becomes positive.

This change can also be seen from the correlation function. Fig. 5.16 shows 〈σ(~r)σ(~r + ~s)〉
as a function of s for E = −0.4E0, which has di�erent behavior for s → 0 compared to

E > −0.393E0.
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Figure 5.16: The correlation function 〈σ(~r)σ(~r + ~s)〉 as a function of |~s| for E = −0.4E0

β〈D2〉-E Curve

From the correlation function 〈σ(~r)σ(~r + ~s)〉, we can calculate 〈D2〉 in the following way:

〈D2〉 =

∫
d2r d2s~r · (~r + ~s) 〈σ(~r)σ(~r + ~s)〉

=

∫ L
2

−L
2

dx

∫ L
2

−L
2

dy

∫ −x+L
2

−x−L
2

dsx

∫ −y+L
2

−y−L
2

dsy
[
x(x+ sx) + y(y + sy)

]
〈σ(x, y)σ(x+ sx, y + sy)〉

= L8

∫ 1
2

− 1
2

dx̃

∫ 1
2

− 1
2

dỹ

∫ −x̃+ 1
2

−x̃− 1
2

ds̃

2
√
π

∫ −ỹ+ 1
2

−ỹ− 1
2

ds̃

2
√
π

[
x̃

(
x̃+

s̃x
2
√
π

)
+ ỹ

(
ỹ +

s̃y
2
√
π

)]
· 〈σ(x, y)σ(x+ sx, y + sy)〉

= 4L8

∫ 1

0

ds̃x
2
√
π

∫ 1

0

ds̃y
2
√
π

∫ −s̃x+ 1
2

− 1
2

dx̃

∫ −s̃y+ 1
2

− 1
2

dỹ

[
x̃

(
x̃+

s̃x
2
√
π

)
+ ỹ

(
ỹ +

s̃y
2
√
π

)]
· 〈σ(x, y)σ(x+ sx, y + sy)〉

=
4V 3Ne2

3
√
πΩ

e1−ε
∫ 1

0

ds̃x
2
√
π

∫ 1

0

ds̃y
2
√
π

(1− s̃x)(1− s̃y)
[
2
√
π − 2

√
π(s̃x + s̃y) + (4

√
π − 3)(s̃2

x + s̃2
y)
]

·

[∫ ∞
0

dx (x+ 1)x−x e−x(ε−1)
[
cos(πx) J0(

√
x+ 1 s̃)− sin(πx)Y0(

√
x+ 1 s̃)

]
+ δ(~̃s)

∫ ∞
0

dx sin(πx)x−x e−x(ε−1)

− 2

π

∫ ∞
0

dx sin(πx)

∫ 1

0

dk̃
k̃3

k̃2 − (x+ 1)
J0(k̃s̃)x−xe−x(ε−1)

]
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=
V 3Ne2

3π
3
2 Ω

e1−ε
∫ 1

0

ds̃x

∫ 1

0

ds̃y (1− s̃x)(1− s̃y)
[
2
√
π − 2

√
π(s̃x + s̃y) + (4

√
π − 3)(s̃2

x + s̃2
y)
]

·

[∫ ∞
0

dx (x+ 1)x−x e−x(ε−1)
[
cos(πx) J0(

√
x+ 1 s̃)− sin(πx)Y0(

√
x+ 1 s̃)

]
− 2

π

∫ ∞
0

dx sin(πx)

∫ 1

0

dk̃
k̃3

k̃2 − (x+ 1)
J0(k̃s̃)x−xe−x(ε−1)

]

+
V 3Ne2

3π
3
2 Ω

2
√
π e1−ε

∫ ∞
0

dx sin(πx)x−x e−x(ε−1) , (5.3.48)

where Ω is obtained by combining Eq. (5.3.15) and Eq. (5.3.23):

Ω =
V 2N

πNe2
e1−ε

∫ ∞
0

dy sin(πy) ey−y ln y−εy . (5.3.49)

We plot |β|〈D2〉 as a function of E in Fig. 5.17.

1 2 3 4 5
ϵ

1

2

3

4

5

6

|β| <D2>

Figure 5.17: The β〈D2〉-E curve

5.4 Discussion

In previous sections, we calculated some physical quantities for the system in a disc or in a

square box at negative temperature. They unambiguously con�rm the existence of a phase

transition. We would like to address some issues, that we have not discussed in the text.

There is the well-known Mermin-Wagner-Hohenberg theorem, which says that continuous

symmetries cannot be spontaneously broken at �nite temperature in systems with su�ciently

short-range interactions in dimensions d ≤ 2. One may worry about that the U(1) rotational
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symmetry for the system in a disc cannot be broken, hence there would not be a bifurcation

point. However, the Mermin-Wagner theorem requires short-range interactions. In the model

discussed in this thesis, we are interested in the Coulomb interaction, which is a long-range

interaction. Therefore, for the system in a disc there can be a bifurcation point without

violating the Mermin-Wagner theorem.

We have discussed in the text the system in a disc and in a square box. In both cases

we have observed phase transitions at negative temperature. An interesting question is how

the geometry a�ects the physical phenomena. For a two-dimensional domain with some

symmetry, e.g. the U(1) symmetry for the disc and the Z4 symmetry for the square box, in

the new phase after the bifurcation the symmetry will be broken. For a domain without any

symmetry, the phase transition still can happen, since the bifurcation point in this model is

determined by an eigenvalue problem for the Laplacian operator, which always has solutions

for a simply-connected domain in two dimensions. Hence, we anticipate a phase transition

without symmetry breaking for a domain without any symmetry.

Besides the number of vortex species, there is another di�erence between the model con-

sidered in this chapter and the one in Ref. [115]. In Ref. [115] there is one more constraint,

which requires the totoal angular momentum to be constant. We have not imposed this

constraint. It would be interesting to impose this additional constraint and see how it a�ects

the result. We would like to postpone this problem to the future research.

Finally, we would like to emphasize that the results of Section 3 is essentially the mean-

�eld result, which can be seen from the critical exponent, which is exactly 1
2
(5.2.91). It is

worth studying the phase transition for the point-vortex model at negative temperature more

carefully. For instance, one can use the renormalization group method to �nd more accurate

values of the critical exponents.
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Chapter 6

Conclusion and Prospect

In the previous chapters, we have studied the partition functions in many concrete models,

including supersymmetric gauge theory, conformal �eld theory, nonlinear sigma model and

some statistical models in the quantum �uid. In all these cases, we see that the partition

function provides us with a powerful tool to investigate the quantum properties of the models

and the dualities among di�erent models. People have learned a lot of techniques in recent

years, but still not completely understood the fascinating but at the same time mysterious

quantum world. Let us list a few important open problems related to the study of the

partition function in the below. I believe that progress on any of these problems can possibly

lead to the next major breakthrough.

• Pure Yang-Mills Theory:

The problems from the pure Yang-Mills theory always lie at the center of modern the-

oretical physics, including the mass gap problem, the con�nement problem, the strong

CP problem and some problems related to the Higgs mechanism, e.g. the naturalness

problem. If one day these problems could be resolved, one would �rst expect the ex-

act or at least a good approximate expression of the partition function of the pure

d-dimensional Yang-Mills theory (d > 2).

• Chern-Simons Theory and Related Theories:

The Chern-Simons theory has abundant applications in mathematics, especially in knot

theory. On the physics side, it is known as a topological �eld theory and provides

an e�ective theory for the quantum Hall e�ect. Starting from late 1980s through

1990s, people found more and deep connections between the Chern-Simons theory and

other theories. First, the quantum Chern-Simons theory was found to be equivalent to

the WZW model [121, 122], which is a conformal �eld theory. Furthermore, Edward

Witten found that a free fermion theory is also equivalent to the WZW model under
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the concept non-Abelian bosonization [123]. Some good reviews on these subjects

and their connection with topological quantum computation are Refs. [124, 125]. The

connection between these di�erent aspects can somehow be understood in the quantum

group theory, which is reviewed in the note by D. Freed in Ref. [45]. A recent trend

of the Chern-Simons theory is to study its implication in the topological phases, which

probably started with Ref. [126]. After the studies I have done in this thesis, a natural

question I would like to ask is whether we can study the topological phases in the

presence of quantum turbulence.

• Pure Gravity:

As we discussed in the introduction, although we have not touched the gravity in

this thesis, some studies on the quantum properties of the gravity using the partition

function have appeared, like the 3-dimensional gravity or some supergravities. The next

question for the future study is if we can obtain more exact results, which probably can

give us some hints of �nding a consistent theory of quantum gravity. Also, there are

some recent works relating the entanglement entropy and the black-hole, e.g. Ref. [127].

Hopefully, these works can help us address the information paradox problem.

• Statistical Mechanics:

Of course, as the origin of the concept partition function, the statistical mechanics

is still worth studying. More importantly, the central problem is still there, i.e. the

3-dimensional Ising model. We discussed before, Ref. [33] made some attempts to

solve the 3-dimensional Ising model by evaluating the partition function exactly plus

generalizing the concept modularity to higher dimensions, but a naive generalization

did not work. Can we give another try?

• String Theory (or Topological String Theory):

String theory is claimed to be the best candidate for quantum gravity and uni�ca-

tion, however, there are still many issues that are not well understood in nonpertur-

bative string theory. One example is the M5-brane and its low energy theory, the

6-dimensional (2, 0) theory. Can the study in the partition function help us understand

these nonperturbative aspects of string theory?

Because of these big unsolved problems, I am quite optimistic about the future develop-

ment in theoretical physics and willing to actively participate in it. I would like to quote

a comment by Arthur Ja�e and Edward Witten in Ref. [128] as the closing remark of this

thesis:

� ... one does not yet have a mathematically complete example of a quantum gauge

theory in four-dimensional space-time, nor even a precise de�nition of quantum gauge
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theory in four dimensions. Will this change in the 21st century? We hope so! �
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Appendix A

Convention in S3 Localization

In this appendix we review our convention and some identities used in the thesis. We mainly

follow the convention of Ref. [16]. The 3D γ-matrices are chosen to be

γ1 = σ3 , γ2 = −σ1 , γ3 = −σ2 , (A.0.1)

where σi are the Pauli matrices. They still satisfy

[γm, γn] = 2iεmnpγ
p . (A.0.2)

This will consequently a�ect the eigenvalues of spherical harmonics de�ned on the squashed

S3. The main di�erence is that for a spin-0 �eld instead of L3 now L1 has the eigenvalues

im with − j 6 m 6 j, j = 0,
1

2
, 1, · · ·

In this thesis, we use commuting spinors. The product of two spinors are de�ned as

ψχ = ψαCαβχ
β , ψγµχ = ψα(Cγµ)αβχ

β , (A.0.3)

where the indices can be raised and lowered using

C =

(
0 1

−1 0

)
is the charge conjugation matrix. The spinor bilinears of commuting spinors satisfy

ψχ = −χψ , ψγµχ = χγµψ . (A.0.4)

The Fierz identity for commuting spinors is

(ψ1χ1)(ψ2χ2) =
1

2
(ψ1χ2)(ψ2χ1) +

1

2
(ψ1γ

µχ2)(ψ2γµχ1) . (A.0.5)
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The Hermitian conjugate of a spinor is given by

(ψ†)α ≡ (ψα) , (A.0.6)

where denotes the complex conjugate. The charge conjugate of a spinor is de�ned as

χc ≡ σ2χ . (A.0.7)

We use ψ and ψ̃ to denote the spinors that are Hermitian conjugate to each other in

Lorentzian signature, while independent in Euclidean signature. In particular, ζ and ζ̃ are

such a kind of spinor pair. They satisfy the generalized Killing spinor equations (2.3.19). Al-

though in Euclidean signature they are independent, one can prove that the charge conjugate

of ζ, i.e., ζc satis�es the same Killing spinor equation as ζ̃. Hence,

ζc ∝ ζ̃ . (A.0.8)
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Appendix B

S3 as an SU(2)-Group Manifold

A convenient way to discuss di�erent ways of squashing is to introduce the left-invariant and

the right-invariant frame. A group element in SU(2) is given by

g ≡ ixµσ
µ =

(
x0 + ix3 x2 + ix1

−x2 + ix1 x0 − ix3

)
, (B.0.1)

where σµ = (−iI, ~σ). Then

µ ≡ g−1dg and µ̃ ≡ dg g−1 (B.0.2)

are left-invariant and right-invariant 1-form respectively, i.e., they are invariant under the

transformations with a constant matrix h

g → h g and g → g h

respectively. It can be checked explicitly that the metric of S3 can be written as

ds2 =
`2

2
tr(dg dg−1) = `2µmµm = `2µ̃m µ̃m =

`2

2
(µmµm + µ̃m µ̃m) , (B.0.3)

with m = 1, 2, 3, if we impose the constraint

det g = x0
2 + x1

2 + x2
2 + x3

2 = 1 , (B.0.4)

where

µm =
i

2
tr(µγm) , µ̃m =

i

2
tr(µ̃ γm) , (B.0.5)

or equivalently,

− 2µmTm = µ = g−1dg , Tm ≡ i
γm
2
, g ∈ SU(2) . (B.0.6)

Hence, the metric of S3 is both left-invariant and right-invariant.
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A 3D Killing spinor is a spinor that satis�es

Dε ≡ dε+
1

4
γmnω

mnε = emγmε̃ , (B.0.7)

where γmn ≡ 1
2
(γmγn − γnγm), and the choice of γm is given in Appendix A, while ωmn is

the spin connection, and ε̃ is another spinor which in general can be di�erent from ε. In this

thesis, sometimes we try to bring the spinors satisfying generalized Killing spinor equations

back into this simple form. Moreover, we can de�ne two Killing vector �elds by their group

actions on a general group element g in SU(2):

Lmg = iγmg , Rmg = igγm . (B.0.8)

As discussed before, the metric of S3 is both left-invariant and right-invariant, hence it is

also invariant under the actions of Lm and Rm given above. By de�nition, a Killing vector

�eld is a vector �eld that preserves the metric. Therefore, Lm and Rm are Killing vector

�elds. Since the actions of Lm and Rm are equivalent to multiplications of iγm from the

left and from the right respectively, after some rescaling they are the same as the generators

of SU(2) algebra, i.e., { 1
2i
Lm} and {− 1

2i
Rm} both satisfy the commutation relation of the

SU(2) algebra.

In the above, we de�ne Lm and Rm as group actions. Sometimes we also use them to

denote the variations caused by the group actions. In this sense, there are

Lm(g−1dg) = 0 ⇒ Lmµn = 0 (B.0.9)

and

Lmµ̃ n = Lm i
2
tr(µ̃γn) = Lm i

2
tr(dg g−1γn)

=
i

2

[
tr(iγmµ̃γn) + tr(µ̃(−iγm)γn)

]
= 2εmnp µ̃ p . (B.0.10)

Similarly, there are

Rm µ̃ n = 0 and Rmµn = −2εmnpµp . (B.0.11)

In other words, Lm acts only on the right-invariant frames, while Rm acts only on the left-

invariant frames. Hence, the round S3 has an SU(2)L × SU(2)R isometry.
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Appendix C

Di�erent Metrics of Squashed S3

There are di�erent expressions of S3 and squashed S3. In this appendix we review some

relevant ones for this thesis. A more thorough discussion can be found in Appendix A of

Ref. [129].

As discussed in Appendix B, the metric of S3 can be written as (B.0.3):

ds2 = `2µmµm = `2µ̃mµ̃m , (C.0.1)

where

g−1dg = −iµmγm , dg′ g′−1 = −iµ̃mγm . (C.0.2)

In general the SU(2) group elements g and g′ can be di�erent. If we choose on S3

g =

 cos
(
θ
2

)
· exp

(
iφ+ψ

2

)
sin
(
θ
2

)
· exp

(
iφ−ψ

2

)
−sin

(
θ
2

)
· exp

(
−iφ−ψ

2

)
cos
(
θ
2

)
· exp

(
−iφ+ψ

2

)
 ,

g′ =

 cos
(
θ
2

)
· exp

(
iφ+ψ

2

)
sin
(
θ
2

)
· exp

(
−iφ−ψ

2

)
−sin

(
θ
2

)
· exp

(
iφ−ψ

2

)
cos
(
θ
2

)
· exp

(
−iφ+ψ

2

)
 ,

then the vielbeins in the left-invariant frame and in the right-invariant frame are given by:

e
(0)
1 ≡ `µ1 = − `

2
(dψ + cosθ dφ) ,

e
(0)
2 ≡ `µ2 = − `

2
(sinψ dθ − sinθ cosψ dφ) ,

e
(0)
3 ≡ `µ3 =

`

2
(cosψ dθ + sinθ sinψ dφ) . (C.0.3)
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ẽ
(0)
1 ≡ ` µ̃ 1 = − `

2
(dψ + cosθ dφ) ,

ẽ
(0)
2 ≡ ` µ̃ 2 =

`

2
(sinψ dθ − sinθ cosψ dφ) ,

ẽ
(0)
3 ≡ ` µ̃ 3 =

`

2
(cosψ dθ + sinθ sinψ dφ) . (C.0.4)

They satisfy

dea(0) +
1

`
εabceb(0) ∧ ec(0) = 0 , d ẽ a(0) −

1

`
εabc ẽ b(0) ∧ ẽ c(0) = 0 , (C.0.5)

i.e., the spin connections are

ωab(0) = −1

`
εabcec(0) , ω̃ ab

(0) =
1

`
εabcẽ c(0) . (C.0.6)

We see explicitly that for this choice of g and g′ there are

e1
(0) = ẽ 1

(0) = − `
2

(dψ + cosθ dφ) , (e2
(0))

2 + (e3
(0))

2 = (ẽ 2
(0))

2 + (ẽ 3
(0))

2 =
`2

4
(dθ2 + sin2θdφ2) .

(C.0.7)

That is the reason why in the thesis we can occasionally interchange between the left-invariant

frame and the right-invariant frame.

Besides the form (B.0.3), the metric of S3 can also be written as a Hopf �bration or a

torus �bration. Both the left-invariant frame (C.0.3) and the right-invariant frame (C.0.4)

can give the Hopf �bration of S3:

ds2 =
`2

4
(dθ2 + sin2θdφ2 + (dψ + cosθ dφ)2) , (C.0.8)

where

0 6 θ 6 π , 0 6 φ 6 2π , 0 6 ψ 6 4π . (C.0.9)

The torus �bration of S3 is

ds2 = `2(dϑ2 + sin2ϑdϕ2
1 + cos2ϑdϕ2

2) , (C.0.10)

where

0 6 ϑ 6
π

2
, 0 6 ϕ1 , ϕ2 6 2π . (C.0.11)

The following conditions relate the coordiantes of the Hopf �bration and the torus �bration

of S3:

θ = 2ϑ , φ = ϕ2 − ϕ1 , ψ = ϕ1 + ϕ2 . (C.0.12)

To apply the method introduced in Ref. [16], we have to rewrite the metric of S3 as a Hopf

�bration (C.0.8) further. Using the stereographic projection

X ≡ cot
θ

2
cosφ , Y ≡ cot

θ

2
sinφ (C.0.13)
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we can rewrite the metric of S2 as

ds2 = dθ2 + sin2θdφ2

=
4

(1 +X2 + Y 2)2
(dX2 + dY 2)

=
4

(1 + zz̄)2
dz dz̄ , (C.0.14)

where

z ≡ X + iY , z̄ ≡ X − iY . (C.0.15)

Consequently, the metric of S3 as a Hopf �bration (C.0.8) has the following forms, if we set

` = 1:

ds2 =
1

4
(dψ + cosθ dφ)2 +

1

4
dθ2 +

1

4
sin2θ dφ2

=
1

4

[
dψ − X2 + Y 2 − 1

X2 + Y 2 + 1
· Y

X2 + Y 2
dX +

X2 + Y 2 − 1

X2 + Y 2 + 1
· X

X2 + Y 2
dY

]2

+
1

(1 +X2 + Y 2)2
(dX2 + dY 2)

=
1

4
(dψ + adz + ādz̄)2 + c2dz dz̄ , (C.0.16)

where

a ≡ − i

2z
· zz̄ − 1

zz̄ + 1
, c ≡ 1

1 + zz̄
. (C.0.17)

Based on our choice of left-invariant frame (C.0.3) and the right-invariant frame (C.0.4),

the metric of the squashed S3 with SU(2)× U(1) isometry has the following expression:

ds2 =
`2

v2
µ1µ1 + `2µ2µ2 + `2µ3µ3 =

`2

v2
µ̃ 1µ̃ 1 + `2µ̃ 2µ̃ 2 + `2µ̃ 3µ̃ 3 , (C.0.18)

where v is a constant squashing parameter. For this squashed S3, we choose the left-invariant

frame and the right-invariant frame to be

e1 ≡
`

v
µ1 = − `

2v
(dψ + cosθ dφ) ,

e2 ≡ `µ2 = − `
2

(sinψ dθ − sinθ cosψ dφ) ,

e3 ≡ `µ3 =
`

2
(cosψ dθ + sinθ sinψ dφ) . (C.0.19)

ẽ1 ≡
`

v
µ̃ 1 = − `

2v
(dψ + cosθ dφ) ,

ẽ2 ≡ ` µ̃ 2 =
`

2
(sinψ dθ − sinθ cosψ dφ) ,

ẽ3 ≡ ` µ̃ 3 =
`

2
(cosψ dθ + sinθ sinψ dφ) . (C.0.20)
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The corresponding spin connections are

ω23 = −(2− 1

v2
)µ1 , ω31 = −1

v
µ2 , ω12 = −1

v
µ3 (C.0.21)

for the left-invariant frame, and

ω̃ 23 = (2− 1

v2
) µ̃ 1 , ω̃ 31 =

1

v
µ̃ 2 , ω̃ 12 =

1

v
µ̃ 3 (C.0.22)

for the right-invariant frame. As for S3, the metric (C.0.18) can also be written in some other

coordinates:

ds2 =
1

4v2
(dψ + cosθ dφ)2 +

1

4
dθ2 +

1

4
sin2θ dφ2 (C.0.23)

=
1

4v2

[
dψ − X2 + Y 2 − 1

X2 + Y 2 + 1
· Y

X2 + Y 2
dX +

X2 + Y 2 − 1

X2 + Y 2 + 1
· X

X2 + Y 2
dY

]2

+
1

(1 +X2 + Y 2)2
(dX2 + dY 2) (C.0.24)

=
1

4v2
(dψ + adz + ādz̄)2 + c2dz dz̄ , (C.0.25)

In practice it is more convenient to choose a frame di�erent from the right-invariant frame

(C.0.20), which is given by

ê1 =
1

2v

[
dψ − X2 + Y 2 − 1

X2 + Y 2 + 1
· Y

X2 + Y 2
dX +

X2 + Y 2 − 1

X2 + Y 2 + 1
· X

X2 + Y 2
dY

]
,

ê2 =
1

1 +X2 + Y 2
dX ,

ê3 =
1

1 +X2 + Y 2
dY . (C.0.26)

In the coordinates (θ, φ, ψ) and (z, z̄, ψ) the vielbeins look like

ê1 =
1

2v
dψ +

1

2v
cosθ dφ =

1

2v
(dψ + adz + ādz̄) ,

ê2 = −1

2
cosφ dθ − 1

2
sinθ sinφ dφ = c

dz + dz̄

2
,

ê3 = −1

2
sinφ dθ +

1

2
sinθ cosφ dφ = c

dz − dz̄
2i

. (C.0.27)
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Appendix D

BPS Solutions in S3 Localization

As we discussed in the text, to preserve the supersymmetry given by Eq. (2.3.50) and

Eq. (2.3.51), the BPS equations (2.3.179) should be satis�ed:

Qψ = 0 , Qψ̃ = 0 , Qλ = 0 , Qλ̃ = 0 , (D.0.1)

or in explicit form

0 =
√

2ζF −
√

2i(z − qσ − rH)ζ̃φ−
√

2iγµζ̃Dµφ , (D.0.2)

0 =
√

2ζ̃F̃ +
√

2i(z − qσ − rH)ζφ̃+
√

2iγµζDµφ̃ , (D.0.3)

0 = iζ(D + σH)− i

2
εµνργρζfµν − γµζ(i∂µσ − Vµσ) , (D.0.4)

0 = −iζ̃(D + σH)− i

2
εµνργρζ̃fµν + γµζ̃(i∂µσ + Vµσ) . (D.0.5)

Using the solutions of the Killing spinor equations (2.3.132)

ζα =
√
s

(
0

−1

)
, ζ̃α =

1

2v
√
s

(
1

0

)
. (D.0.6)

and choosing the frame given by (C.0.26) (C.0.27), we obtain for commuting spinors

ζζ = 0 , ζ̃ ζ̃ = 0 , ζζ̃ = −ζ̃ζ = − 1

2v
, (D.0.7)

ζγmζ = (0, s,−is) , ζ̃γmζ̃ = (0,− 1

4sv2
,− i

4sv2
) , (D.0.8)

ζγmζ̃ = (
1

2v
, 0, 0) , ζ̃γmζ = (

1

2v
, 0, 0) , (D.0.9)

where m = 1, 2, 3.
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Contracting Eq. (D.0.2) with ζ̃ and Eq. (D.0.3) with ζ from the left, one obtains

F = 0 , F̃ = 0 . (D.0.10)

Plugging these solutions into Eq. (D.0.2) and Eq. (D.0.3), can contracting them with ζ and

ζ̃ respectively from the left, one has
√

2i

2v
(z − qσ − rH)φ−

√
2i

2v
D1φ = 0 , (D.0.11)

√
2i

2v
(z − qσ − rH)φ̃+

√
2i

2v
D1φ̃ = 0 . (D.0.12)

Since φ̃ = φ†, for generic values of (z − qσ− rH) the equations above do not have nontrivial

solutions. Hence,

φ = φ̃ = 0 . (D.0.13)

In the gauge sector, we can contract Eq. (D.0.4) and Eq. (D.0.5) with ζ and ζ̃ respectively

from the left, then we obtain

(ζγµζ)

(
− i

2
ερσµfρσ − i∂µσ + V µσ

)
= 0 , (D.0.14)

(ζ̃γµζ̃)

(
− i

2
ερσµfρσ + i∂µσ + V µσ

)
= 0 . (D.0.15)

Taking into account that

ζγ2ζ 6= 0 , ζγ3ζ 6= 0 , ζ̃γ2ζ̃ 6= 0 , ζ̃γ3ζ̃ 6= 0 ,

we obtain that

∂2σ = ∂3σ = 0 . (D.0.16)

Similarly, contracting Eq. (D.0.4) and Eq. (D.0.5) with ζ̃ and ζ respectively from the left will

give

i

2v
(D + σH) + (ζ̃γµζ)

(
− i

2
ερσµfρσ − i∂µσ + V µσ

)
= 0 , (D.0.17)

i

2v
(D + σH) + (ζγµζ̃)

(
− i

2
ερσµfρσ + i∂µσ + V µσ

)
= 0 . (D.0.18)

Then

ζ̃γ1ζ = ζγ1ζ̃ 6= 0

implies that

∂1σ = 0 . (D.0.19)

Therefore, we can conclude that

∂µσ = 0 , (D.0.20)
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i.e., σ is constant. In the above, we prove this condition in a special frame (C.0.26) (C.0.27),

but actually the equations Eqs. (D.0.14) ∼ (D.0.18) are frame-independent, i.e., they are

valid for an arbitrary frame. Hence, in general Eq. (D.0.14) and Eq. (D.0.15) imply that

− i

2
ερσµfρσ + V µσ = 0 , (D.0.21)

which leads to

aµ = −σCµ + a(0)
µ , (D.0.22)

where a
(0)
µ is a �at connection, and Cµ is an Abelian gauge �eld satisfying

V µ = −iεµνρ∂νCρ . (D.0.23)

Under the condition (D.0.21), Eq. (D.0.17) and Eq. (D.0.18) give us

D = −σH . (D.0.24)

We do not want fermionic background, hence the classical solutions of fermions are zero. To

summarize, the classical solutions to the BPS equations in our model are

aµ = −σCµ + a(0)
µ , ∂µσ = 0 , D = −σH , all other �elds = 0 . (D.0.25)
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Appendix E

Some Important Relations in S3

Localization

In this appendix, we prove a few crucial relations in our calculations. The relations include

the second equation of Eq. (2.3.195), Eq. (2.3.196) and Eq. (2.3.270).

To prove the second equation of Eq. (2.3.195), we �rst observe that

〈S∗2Sc2Φ1, Φ2〉 = 〈Φ1, S
c∗
2 S2Φ2〉 . (E.0.1)

Hence, we only need to prove

S∗2S
c
2Φ = 0 .

Plugging in the de�nitions (2.3.194), we can �nd the relation above by a long but direct

calculation. In the intermediate steps we made use of the following relations:

ζ†ζ† = 0 ; (E.0.2)

Vµ(ζ†γµζ†) = 0 since V2 = V3 = 0 and ζ†γ1ζ
† = 0 ; (E.0.3)

Dµζ
† = −1

2
Hγµζ

† +
i

2
Vµζ

† +
1

2
εµνρV

νγρζ† ; (E.0.4)

γµDµζ
† = −3

2
Hζ† − i

2
γµVµζ

† ; (E.0.5)

εµνρ(ζ†γρζ
†)Vµν = εµνρ(ζ†γρζ

†)Aµν = 0 , (E.0.6)

where

Aµν ≡ ∇µAν −∇νAµ , Vµν ≡ ∇µVν −∇νVµ . (E.0.7)

Next, to prove Eq. (2.3.196), we just calculate

Ψ̃(S2S
∗
1 + Sc2S

c∗
1 )Ψ
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and

Ψ̃(S1S
∗
2 + Sc1S

c∗
2 )Ψ ,

and then compare them to �gure out their di�erence. The results are

Ψ̃(S2S
∗
1 + Sc2S

c∗
1 )Ψ = − i

(
z − qσ − (r − 1

2
)H

)
e−2ImΘΩ(Ψ̃P+Ψ)

− i
(
z̄ − qσ̄ + (r − 3

2
)H

)
e−2ImΘΩ(Ψ̃P−Ψ)

+
1

2
e−2ImΘΩV1(Ψ̃Ψ) + i(ζ†γµDµΨ)(Ψ̃ζ)− i(ζγµDµΨ)(Ψ̃ζ†) , (E.0.8)

Ψ̃(S1S
∗
2 + Sc1S

c∗
2 )Ψ = i

(
z̄ − qσ̄ + (r − 1

2
)H

)
e−2ImΘΩ(Ψ̃P+Ψ)

+ i

(
z − qσ − (r − 3

2
)

)
e−2ImΘΩ(Ψ̃P−Ψ)

+
1

2
e−2ImΘΩV1(Ψ̃Ψ) + i(ζ†γµDµΨ)(Ψ̃ζ)− i(ζγµDµΨ)(Ψ̃ζ†) , (E.0.9)

where

P± ≡
1

2
(1± γ1) . (E.0.10)

Hence,

(S2S
∗
1 + Sc2S

c∗
1 )− (S1S

∗
2 + Sc1S

c∗
2 ) = − 2iRe(z − qσ)e−2ImΘΩP+ − 2iRe(z − qσ)e−2ImΘΩP−

= − 2iRe(z − qσ)e−2ImΘΩ , (E.0.11)

which proves Eq. (2.3.196).

Finally, let us show how to prove Eq. (2.3.270). From Eq. (2.3.269) we see that

(iM + σαΩ)Λ = Ω(−γµDµ +
1

2
H − i

2
V1 − iVµγµ)Λ .

Using this relation, one can gradually prove that

Ωd(ζ̃Λ) + (iM + σαΩ)(ζ̃γµΛ)dξµ

= ΩH(ζ̃γµΛ)dξµ − i

2
ΩV1(ζ̃γµΛ)dξµ − i

2
ΩVµ(ζ̃Λ)dξµ

+
1

2
ΩεµνρV

ν(ζ̃γρΛ)dξµ − iεµνρΩ(ζ̃γρDνΛ)dξµ . (E.0.12)

On the other hand, there is

− i ∗
(
D(ζ̃γµΛ)dξµ

)
= −iεµνρΩDν(ζ̃γρΛ)dξµ . (E.0.13)
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After some steps it becomes

− iεµνρΩDν(ζ̃γρΛ)dξµ = ΩH(ζ̃γµΛ)dξµ − iΩVµ(ζ̃Λ)dξµ − iεµνρΩ(ζ̃γρDνΛ)dξµ . (E.0.14)

Then we only need to prove that the expressions in Eq. (E.0.12) and Eq. (E.0.14) are equal,

or equivalently their di�erence vanishes, i.e.,

− i

2
ΩV1(ζ̃γµΛ)dξµ +

i

2
ΩV1(ζ̃Λ)dξ1 − 1

2
Ωε1µνV

1(ζ̃γνΛ)dξµ = 0 , (E.0.15)

where we have used the fact that Vm has only the 1-component non-vanishing. The last

expression can be checked explicitly by using

ζ̃ ∝ (1 0)

⇒ ζ̃γ1 = ζ̃ , iζ̃γ2 = −ζ̃γ3 , iζ̃γ3 = ζ̃γ2 , (E.0.16)

where recall our convention

γ1 = σ3 , γ2 = −σ1 , γ3 = −σ2 .

163



Appendix F

2-Dimensional N = (2, 2) Superspace

The bosonic coordinates of the superspace are xµ, µ = 0, 1. We take the �at Minkowski

metric to be ηµν = diag(−1, 1). The fermionic coordinates of the superspace are θ+, θ−,

θ̄+ and θ̄−, with the complex conjugation relation (θ±)∗ = θ̄±. The indices ± stand for the

chirality under a Lorentz transformation. To raise or lower the spinor index, we use

ψα = εαβ ψ
β , ψα = εαβ ψβ , (F.0.1)

where

εαβ =

(
0 −1

1 0

)
, εαβ =

(
0 1

−1 0

)
, α, β = −,+ . (F.0.2)

Hence, we have ψ+ = ψ−, ψ− = −ψ+.

The supercharges and the supercovariant derivative operators are

Q± =
∂

∂θ±
+ iθ̄±∂± , Q̄± = − ∂

∂θ̄±
− iθ±∂± , (F.0.3)

D± =
∂

∂θ±
− iθ̄±∂± , D̄± = − ∂

∂θ̄±
+ iθ±∂± , (F.0.4)

where

∂± ≡
1

2

(
∂

∂x0
± ∂

∂x1

)
. (F.0.5)

They satisfy the anti-commutation relations

{Q±, Q̄±} = −2i∂± , {D±, D̄±} = 2i∂± , (F.0.6)

with all the other anti-commutators vanishing. In particular,

{Q±, D±} = 0 . (F.0.7)
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Appendix G

Gauged Linear Sigma Model with

Semichiral Super�elds in Components

If we expand the theory in components, we obtain the Lagrangian

LSC = X̄L2iD−2iD+X
L − X̄L(σ2

1 + σ2
2)XL + X̄LDXL + F̄LFL

− M̄L
−+M

L
−+ − M̄L

−−2iD+X
L − X̄L2iD+M

L
−− + M̄L

−+
¯̂σXL + X̄Lσ̂ML

−+

+ ψ̄L−2iD+ψ
L
− + ψ̄L+2iD−ψ

L
+ − ψ̄L−σ̂ψL+ − ψ̄L+ ¯̂σψL−

+ X̄Liλ+ψ
L
− − X̄Liλ−ψ

L
+ + ψ̄L+iλ̄−X

L − ψ̄L−iλ̄+X
L − η̄L−ψL+ − ψ̄L+ηL−

− χ̄L−2iD+χ
L
− + X̄Liλ̄+χ

L
− − χ̄L−iλ+X

L

+ X̄R2iD−2iD+X
R − X̄R(σ2

1 + σ2
2)XR + X̄RDXR + F̄RFR

− M̄R
+−M

R
+− − M̄++2iD−X

R − X̄R2iD−M
R
++ + M̄R

+−σ̂X
R + X̄R ¯̂σMR

+−

+ ψ̄R−2iD+ψ
R
− + ψ̄R+2iD−ψ

R
+ − ψ̄R−σ̂ψR+ − ψ̄R+ ¯̂σψR−

+ X̄Riλ+ψ
R
− − X̄Riλ−ψ

R
+ + ψ̄R+iλ̄−X

R − ψ̄R−iλ̄+X
R + η̄R+ψ

R
− + ψ̄R−η

R
+

− χ̄R+2iD−χ
R
+ − X̄Riλ̄−χ

R
+ + χ̄R+iλ−X

R

+ αX̄L2iD−2iD+X
R − αX̄L(σ2

1 + σ2
2)XR + αX̄LDXR + αF̄LFR

+ αM̄L
−−M

R
++ − αM̄L

−−2iD+X
R − αX̄L2iD−M

R
++ + αM̄L

−+
¯̂σXR + αX̄L ¯̂σMR

+−

+ αψ̄L−2iD+ψ
R
− + αψ̄L+2iD−ψ

R
+ − αψ̄L−σ̂ψR+ − αψ̄L+ ¯̂σψR−

+ αX̄Liλ+ψ
R
− − αX̄Liλ−ψ

R
+ + αψ̄L+iλ̄−X

R − αψ̄L−iλ̄+X
R − αη̄L−ψR+ + αψ̄L−η

R
+

+ αχ̄L−
¯̂σχR+ − αX̄Liλ̄−χ

R
+ − αχ̄L−iλ+X

R

+ αX̄R2iD−2iD+X
L − αX̄R(σ2

1 + σ2
2)XL + αX̄RDXL + αF̄RFL

+ αM̄R
++M

L
−− − αM̄R

++2iD−X
L − αX̄R2iD+M

L
−− + αM̄R

+−σ̂X
L + αX̄Rσ̂ML

−+

+ αψ̄R−2iD+ψ
L
− + αψ̄R+2iD−ψ

L
+ − αψ̄R−σ̂ψL+ − αψ̄R+ ¯̂σψL−

+ αX̄Riλ+ψ
L
− − αX̄Riλ−ψ

L
+ + αψ̄R+iλ̄−X

L − αψ̄R−iλ̄+X
L + αη̄R+ψ

L
− − αψ̄R+ηL−

+ αχ̄R+σ̂χ
L
− + αX̄Riλ̄+χ

L
− + αχ̄R+iλ−X

L . (G.0.1)
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The supersymmetry transformation laws for the abelian vector multiplet are

δAµ =
i

2
εσµλ̄+

i

2
ε̄σµλ ,

δσ̂ = −iε−λ̄+ − iε̄+λ− ,
δ ¯̂σ = −iε+λ̄− − iε̄−λ+ ,

δλ+ = 2ε−∂+
¯̂σ + iε+D − ε+F01 ,

δλ− = 2ε+∂−σ̂ + iε−D + ε−F01 ,

δλ̄+ = 2ε̄−∂+σ̂ − iε̄+D − ε̄+F01 ,

δλ̄− = 2ε̄+∂− ¯̂σ − iε̄−D + ε̄−F01 ,

δD = ε+∂−λ̄+ + ε−∂+λ̄− − ε̄+∂−λ+ − ε̄−∂+λ̄− , (G.0.2)

where F01 = ∂0A1 − ∂1A0, and

σ0 =

(
1 0

0 1

)
, σ1 =

(
1 0

0 −1

)
. (G.0.3)

The supersymmetry transformations for the components of semichiral multiplets X are

δX = εψ + ε̄χ ,

δψ+ = −ε+F − ε̄+ ¯̂σX + ε̄+M−+ + ε̄−2iD+X − ε̄−M++ ,

δψ− = −ε−F − ε̄+2iD−X + ε̄+M−− + ε̄−σ̂X − ε̄−M+− ,

δF = ε̄+2iD−ψ+ + ε̄−2iD+ψ− − ε̄+η− + ε̄−η+ − ε̄+ ¯̂σψ− − ε̄−σ̂ψ+ + iε̄+λ̄−X − iε̄−λ̄+X ,

δχ+ = −ε−M++ + ε+M+− ,

δχ− = −ε−M−+ + ε+M−− ,

δM+− = −ε−η+ + ε̄−σ̂χ+ − ε̄+2iD−χ+ ,

δM−+ = −ε+η− + ε̄−2iD+χ− − ε̄+ ¯̂σχ− ,

δM++ = −ε+η+ + ε̄−2iD+χ+ − ε̄+ ¯̂σχ+ ,

δM−− = −ε−η− + ε̄−σ̂χ− − ε̄+2iD−χ− ,

δη+ = ε̄−2iD+M+− − ε̄−iλ̄+χ+ − ε̄−σ̂M++ − ε̄+ ¯̂σM+− + ε̄+iλ̄−χ+ + ε̄+2iD−M++ ,

δη− = ε̄−2iD+M−− − ε̄−iλ̄+χ− − ε̄−σ̂M−+ − ε̄+ ¯̂σM−− + ε̄+iλ̄−χ− + ε̄+2iD−M−+ ,

(G.0.4)
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and similarly for X̄

δX̄ = εχ̄+ ε̄ψ̄ ,

δψ̄+ = ε−2iD+X̄ + ε−M̄++ − ε+σ̂X̄ − ε+M̄−+ + ε̄+F̄ ,

δψ̄− = ε− ¯̂σX̄ + ε−M̄+− − ε+2iD−X̄ − ε+M̄−− + ε̄−F̄ ,

δF̄ = ε+2iD−ψ̄+ + ε−2iD+ψ̄− + ε+η̄− − ε−η̄+ − ε+σ̂ψ̄− − ε− ¯̂σψ̄+ − ε+iλ−X̄ + ε−iλ+X̄ ,

δχ̄+ = ε̄−M̄++ − ε̄+M̄+− ,

δχ̄− = ε̄−M̄−+ − ε̄+M̄−− ,
δM̄+− = ε− ¯̂σχ̄+ − ε+2iD−χ̄+ + ε̄−η̄+ ,

δM̄−+ = ε−2iD+χ̄− − ε+σ̂χ̄− + ε̄+η̄− ,

δM̄++ = ε−2iD+χ̄+ − ε+σ̂χ̄+ + ε̄+η̄+ ,

δM̄−− = ε− ¯̂σχ̄− − ε+2iD−χ̄− + ε̄−η̄− ,

δη̄+ = ε−2iD+M̄+− − ε−iλ̄+χ̄+ − ε− ¯̂σM̄++ − ε+σ̂M̄+− + ε+iλ̄−χ̄+ + ε+2iD−M̄++ ,

δη̄− = ε−2iD+M̄−− − ε−iλ̄+χ̄− − ε− ¯̂σM̄−+ − ε+σ̂M̄−− + ε+iλ̄−χ̄− + ε+2iD−M̄−+ .

(G.0.5)

The transformation laws are written in the general form, and one should set some �elds to

be zero after imposing the constraints.

Varying the �elds ML
−−, M

L
−+, M

R
++, M

R
+−, M̄

L
−−, M̄

L
−+, M̄

R
++ and M̄R

+−, we obtain

0 = αM̄R
++ + 2iD+X̄

L + α2iD+X̄
R , (G.0.6)

0 = −M̄L
−+ + X̄Lσ̂ + αX̄Rσ̂ , (G.0.7)

0 = αM̄L
−− + 2iD−X̄

R + α2iD−X̄
L , (G.0.8)

0 = −M̄R
+− + X̄R ¯̂σ + αX̄L ¯̂σ , (G.0.9)

0 = αMR
++ − 2iD+X

L − α2iD+X
R , (G.0.10)

0 = −ML
−+ + ¯̂σXL + α¯̂σXR , (G.0.11)

0 = αML
−− − 2iD−X

R − α2iD−X
L , (G.0.12)

0 = −MR
+− + σ̂XR + ασ̂XL . (G.0.13)

Similarly, varying the �elds ηL−, η
R
+, η̄

L
− and η̄R+, we obtain

0 = −ψ̄L+ − αψ̄R+ ≡ −
√
α2 + 1ψ̄1

+ , (G.0.14)

0 = ψ̄R− + αψ̄L− ≡
√
α2 + 1ψ̄1

− , (G.0.15)

0 = −ψL+ − αψR+ ≡ −
√
α2 + 1ψ1

+ , (G.0.16)

0 = ψR− + αψL− ≡
√
α2 + 1ψ1

− . (G.0.17)
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Orthogonal to these �elds, we can de�ne

ψ̄2
+ ≡

1√
α2 + 1

(αψ̄L+ − ψ̄R+) , (G.0.18)

ψ̄2
− ≡

1√
α2 + 1

(ψ̄L− − αψ̄R−) , (G.0.19)

ψ2
+ ≡

1√
α2 + 1

(αψL+ − ψR+) , (G.0.20)

ψ2
− ≡

1√
α2 + 1

(ψL− − αψR−) . (G.0.21)

We can regard them as the physical fermionic �elds. Let us call them ψ′± and ψ̄′±.

Integrating out these auxiliary �elds will give us the on-shell Lagrangian consisting of

three parts, the kinetic terms for the bosons and fermions, and their interaction,

Lbos =
(
X̄L X̄R

)
·

(
�+D + α2|σ̂|2 1

α
�+ αD + α|σ̂|2

1
α
�+ αD + α|σ̂|2 �+D + α2|σ̂|2

)
·

(
XL

XR

)
+ F̄LFL + F̄RFR + αF̄LFR + αF̄RFL , (G.0.22)

Lferm = −α
2 − 1

α2 + 1
ψ̄′−2iD+ψ

′
− −

α2 − 1

α2 + 1
ψ̄′+2iD−ψ

′
+ − χL−2iD+χ̄

L
− − χR+2iD−χ̄

R
+ , (G.0.23)

Lint = −ψ̄L−σ̂ψL+ − ψ̄L+ ¯̂σψL− + X̄Li(λψL)− i(ψ̄Lλ̄)XL + X̄Liλ̄+χ
L
− − χ̄L−iλ+X

L

− ψ̄R−σ̂ψR+ − ψ̄R+ ¯̂σψR− + X̄Ri(λψR)− i(ψ̄Rλ̄)XR − X̄Riλ̄−χ
R
+ + χ̄R+iλ−X

R

− αψ̄L−σ̂ψR+ − αψ̄L+ ¯̂σψR− + αX̄Li(λψR)− αi(ψ̄Lλ̄)XR + αχ̄L−
¯̂σχR+ − αX̄Liλ̄−χ

R
+ − αχ̄L−iλ+X

R

− αψ̄R−σ̂ψL+ − αψ̄R+ ¯̂σψL− + αX̄Ri(λψL)− αi(ψ̄Rλ̄)XL + αχ̄R+σ̂χ
L
− + αX̄Riλ̄+χ

L
− + αχ̄R+iλ−X

L .

(G.0.24)
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Appendix H

Semichiral Stückelberg Field

Expanding the Lagrangian of the semichiral Stückelberg �eld (2.5.38) in components, we

obtain

LSt = −4(D+D−XL)(XL + X̄L)− 4(D−XL)(D+XL)− M̄L
−+M

L
−+ + FLF̄L

+ 2i(D+M
L
−−)(XL + X̄L) +ML

−−2i(D+XL)− M̄L
−−2i(D+XL)

+ ψ̄L+2i(D−ψ
L
+)− ψ̄L−2i(D+ψ

L
−) + χL−2i(D+χ̄

L
−)− η̄L−ψ̄L+ − ηL−ψL+

+ 2iD0r0
L + iλ0

−ψ̄
L0
+ − iλ̄0

−ψ
L0
+

− 4(D−D+XR)(XR + X̄R)− 4(D−XR)(D+XR)− M̄R
+−M

R
+− + FRF̄R

− 2i(D−M
R
++)(XR + X̄R)− 2i(D−XR)MR

++ + 2i(D−XR)M̄R
++

− ψ̄R−2i(D+ψ
R
−) + ψ̄R+2i(D−ψ

R
+)− χR+2i(D−χ̄

R
+) + η̄R+ψ̄

R
− + ηR+ψ

R
−

+ 2iD0r0
R + iλ0

−ψ̄
R0
+ − iλ̄0

−ψ
R0
+

− 4α(D+D−XL)(XL + X̄R) + α(2iD−XL +ML
−−)(2iD+XL + M̄R

++)

+ 2iα(D+M
L
−−)(XL + X̄R) + αFLFR

+ αψ̄R+2i(D−ψ
L
+)− αψ̄R−2i(D+ψ

L
−)− αη̄L−ψ̄R+ − αψL−ηR+

+ iαD0(XL + X̄R)0 + iαλ0
−ψ̄

R0
+

− 4α(D−D+XR)(XR + X̄L) + α(2iD−XR − M̄L
−−)(2iD+XR −MR

++)

− 2iα(D−M
R
++)(XR + X̄L) + αFRF̄L

− αψ̄L−2i(D+ψ
R) + αψ̄L+2i(D−ψ

R
+)− αψ̄L−η̄R+ − αηL−ψR+

+ iαD0(XR + X̄L)0 + iαλ0
−ψ̄

L0
+ . (H.0.1)
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where rL,R stand for the real part of XL,R
2 , and the upper index 0 denotes the zero mode.

Varying the �elds ML
−−, M̄

L
−−, M

R
++ and M̄R

++, we obtain

0 = −2iD+X̄L − 2iαD+X̄R + αM̄R
++ ,

0 = −2iD+XL − 2iαD+XR + αMR
++ ,

0 = 2iD−X̄R + 2iαD−X̄L + αM̄L
−− ,

0 = 2iD−XR + 2iαD−XL + αML
−− . (H.0.2)

Similarly, varying the �elds ηL−, η̄
L
−, η

R
+ and η̄R+ will give us

0 = −ψL+ − αψR+ ≡ −
√

1 + α2ψ1
+ ,

0 = −ψ̄L+ − αψ̄R+ ≡ −
√

1 + α2ψ̄1
+ ,

0 = −ψR− − αψL− ≡ −
√

1 + α2ψ1
− ,

0 = ψ̄R− + αψ̄L− ≡ −
√

1 + α2ψ̄1
− . (H.0.3)

We can de�ne

ψ2
+ ≡

1√
1 + α2

ψL+ − αψR+ ,

ψ̄2
+ ≡

1√
1 + α2

ψ̄L+ − αψ̄R+ ,

ψ2
− ≡

1√
1 + α2

ψR− − αψL− ,

ψ̄2
− ≡

1√
1 + α2

ψ̄R− − αψ̄L− . (H.0.4)

Integrating out the auxiliary �elds, we obtain

LSt =
(
X̄L X̄R

)( � 1
α
�

1
α
� �

)(
XL

XR

)
+
i

2
(

1

α2
− α2)ψ̄2

+D−ψ
2
+ −

i

2
(

1

α2
− α2)ψ̄2

−D+ψ
2
− + χ̄L−2iD+χ

L
− − χ̄R+2iD−χ

R
+

=
α− 1

α
X̄1�X1 +

α + 1

α
X̄2�X2

+
i

2
(

1

α2
− α2)ψ̄2

+D−ψ
2
+ −

i

2
(

1

α2
− α2)ψ̄2

−D+ψ
2
− + χ̄L−2iD+χ

L
− − χ̄R+2iD−χ

R
+

=
α− 1

α
(r̄1�r1 + γ̄1�γ1) +

α + 1

α
(r̄2�r2 + γ̄2�γ2)

+
i

2
(

1

α2
− α2)ψ̄2

+D−ψ
2
+ −

i

2
(

1

α2
− α2)ψ̄2

−D+ψ
2
− + χ̄L−2iD+χ

L
− − χ̄R+2iD−χ

R
+ , (H.0.5)

where

X1 ≡
−XL +XR√

2
, X2 ≡

XL +XR√
2

, (H.0.6)

while r1,2 and γ1,2 denote the real parts and the imaginary parts of X1,2 respectively. Among

these real components only one of them, r2, transforms under the gauge transformations
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Appendix I

Je�rey-Kirwan Residue

In the computation of section 2.5, we need the Je�rey-Kirwan residue. Here we give a brief

discussion following [69, 71] and the references therein.

Suppose n hyperplanes intersect at u∗ = 0 ∈ Cr, which are given by

Hi = {u ∈ Cr|Qi(u) = 0} , (I.0.1)

where i = 1, · · · , n and Qi ∈ (Rr)∗. In the GLSM, Qi correspond to the charges, and

they de�ne the hyperplanes as well as their orientations. Then for a vector η ∈ (Rr)∗, the

Je�rey-Kirwan residue is de�ned as

JK-Resu=0(Q∗, η)
dQj1(u)

Qj1(u)
∧· · ·∧dQjr(u)

Qjr(u)
=

{
sign det(Qj1 · · ·Qjr) , if η ∈ Cone(Qj1 · · ·Qjr)

0 , otherwise ,

(I.0.2)

whereQ∗ = Q(u∗), and Cone(Qj1 · · ·Qjr) denotes the cone spanned by the vectorsQj1 , · · · , Qjr .

For instance, for the case r = 1,

JK-Resu=0({q}, η)
du

u
=

{
sign(q) , if ηq > 0 ,

0 , if ηq < 0 .
(I.0.3)

To obtain the elliptic genus, we still have to evaluate the contour integral over u. Since in

the thesis we often encounter the function ϑ1(τ, u), its residue is very useful in practice:

1

2πi

∮
u=a+bτ

du
1

ϑ1(τ, u)
=

(−1)a+b eiπb
2τ

2π η(q)3
, (I.0.4)

where q = e2πiτ . This relation can be derived by combining the properties

ϑ′1(τ, 0) = 2π η(q)3 , (I.0.5)
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and

ϑ1(τ, u+ a+ bτ) = (−1)a+b e−2πibu−iπb2τϑ1(τ, u) (I.0.6)

for a, b ∈ Z and the fact that ϑ1(τ, u) has only simple zeros at u = Z + τZ but no poles.
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Appendix J

Two-Point Functions in d = (4 + 1)

Dimensions

In this appendix, we compute the two-point function for d = (4 + 1) dimensions given by

Eq. (3.2.36). In contrast to Eq. (3.2.30), Eq. (3.2.36) is a multi-variable contour integral and

we need to do some changes of variables �rst. The procedure used here can be applied in

higher dimensions and for any integer n ≥ 1. In d = 5, we �nd

GB
(n,5) (θ) =

1

(2π)3

∫ ∞
0

dx

∫ ∞
0

dy

∫ ∞
0

dz
(xyz)

θ
2π
−1 (1− xyz)

(1 + x) (1 + y) (1 + z)
(
1− (xyz)n

)
=

1

(2π)3

∫ ∞
0

dx

∫ ∞
0

dy

∫ ∞
0

1

xy
dz′

z′
θ

2π
−1(1− z′)

(1 + x)(1 + y)(1 + z′

xy
)(1− z′n)

=
1

(2π)3

∫ ∞
0

dx

∫ ∞
0

dy

∫ ∞
0

dz′
z′

θ
2π
−1(1− z′)

(1 + x)(1 + y)(xy + z′)(1− z′n)

=
1

(2π)3

∫ ∞
0

dx

∫ ∞
0

1

x
dy′

∫ ∞
0

dz′
z′

θ
2π
−1(1− z′)

(1 + x)(1 + y′

x
)(y′ + z′)(1− z′n)

=
1

(2π)3

∫ ∞
0

dx

∫ ∞
0

dy′
∫ ∞

0

dz′
z′

θ
2π
−1(1− z′)

(1 + x)(x+ y′)(y′ + z′)(1− z′n)

=
1

(2π)3

∫ ∞
0

dx

∫ ∞
0

dy

∫ ∞
0

dz
z
θ

2π
−1(1− z)

(1 + x)(x+ y)(y + z)(1− zn)
, (J.0.1)

where

z′ ≡ xyz , y′ ≡ xy , (J.0.2)

and we drop the ′ in the last line. Performing the integration over x and y in Eq. (J.0.1), we

obtain

GB
(n,5) (θ) =

1

2(2π)3

∫ ∞
0

dz
z
(
π2 + (logz)2

)
(z − 1)

(1 + z)(zn − 1)
. (J.0.3)
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This integral can be done analytically by choosing the same branch cut and contour used in

the d = (2 + 1) dimensional case discussed in Section 3.2.2; the poles are exactly the same.

The result for n = 1 is Eq. (3.2.33). For n = 2 the result is Eq. (3.2.34). To obtain this

result, one needs the following intermediate results∫ ∞
0

dz
z(z − 1)

(1 + z)(z2 − 1)
=

π( θ
2π
− 1)

sin

[
π
(
θ

2π
− 1
)] , (J.0.4)

∫ ∞
0

dz
z log z (z − 1)

(1 + z)(z2 − 1)
=

π

[
1− π( θ

2π
− 1) cot

(
π( θ

2π
− 1)

)]
sin
(
π( θ

2π
− 1)

) . (J.0.5)

Similarly, for n = 3 one can follow exactly the same procedure and �nd Eq. (3.2.35). Again,

one needs some intermediate steps:

∫ ∞
0

dz
z(z − 1)

(1 + z)(z3 − 1)
=

π

[
√

3 cos

(
π
6

(
θ

2π
− 1
))
− 3 sin

(
π
6

(
θ

2π
− 1
))]

3

[
cos

(
π
6

(
θ

2π
− 1
))

+ cos

(
π
2

(
θ

2π
− 1
))

+ cos

(
5π
6

(
θ

2π
− 1
))] ,
(J.0.6)∫ ∞

0

dz
z log z (z − 1)

(1 + z)(z3 − 1)
=

π2

18

[
cos
(

1
6
π( θ

2π
− 1)

)
+ cos

(
1
2
π( θ

2π
− 1)

)
+ cos

(
5
6
π( θ

2π
− 1)

)]2

·

[
− 6 cos

(
1

3
π(

θ

2π
− 1)

)
− 6 cos

(
2

3
π(

θ

2π
− 1)

)
+ 6 cos

(
π(

θ

2π
− 1)

)
+ 2
√

3 sin

(
1

3
π(

θ

2π
− 1)

)
+ 4
√

3 sin

(
2

3
π(

θ

2π
− 1)

)
+ 2
√

3 sin

(
π(

θ

2π
− 1)

)
− 3

]
. (J.0.7)
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Appendix K

Examples of Thermal Corrections to

Rényi Entropies

In this appendix we summarize the thermal corrections to the nth Rényi entropy for the

conformally coupled scalar. The Rényi entropy is calculated with respect to a cap of opening

angle 2θ on Sd−1 for small values of d and n. De�ne the coe�cient f(θ) such that δSn =

Sn(T )− Sn(0) has the form

δSn = f(θ) e−β∆/R + o(e−β∆/R) , (K.0.1)

where ∆ = d−2
2

is the scaling dimension of the free scalar and R is the radius of Sd−1. The

following tables give the form of f(θ). (We also give results for the entanglement entropy,

denoted EE.)

For (2 + 1) dimensions:

EE π
2
tan
(
θ
2

)
n = 2 2θ

π

n = 3
√

3 sin
(
θ
3

)
For (3 + 1) dimensions:

EE 2− 2 θ cot(θ)

n = 2 1− cos(θ)

n = 3 4
3

[
2 + cos

(
2θ
3

)]
sin2

(
θ
3

)
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For (4 + 1) dimensions:

EE 3π csc(θ) sin4
(
θ
2

)
n = 2 1

π

[
2θ − sin(2θ)

]
n = 3 1

6
√

3

[
51 + 44 cos

(
2θ
3

)
+ 10 cos

(
4θ
3

)]
sin3

(
θ
3

)
For (5 + 1) dimensions:

EE 2
3

[
5 + cos(2θ)− 6 θ cot(θ)

]
n = 2 2

[
2 + cos(θ)

]
sin4

(
θ
2

)
n = 3 16

81

[
50 + 60 cos

(
2θ
3

)
+ 21 cos

(
4θ
3

)
+ 4 cos(2θ)

]
sin4

(
θ
3

)
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