## Stony Brook University



## 

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.
© All Rights Reserved by Author.

# The Census of Warm Debris Disks in the Solar Neighborhood from WISE and Hipparcos 

A Dissertation Presented<br>by<br>Rahul Indrakant Patel<br>to<br>The Graduate School<br>in Partial Fulfillment of the Requirements<br>for the Degree of<br>\title{ Doctor of Philosophy }<br>in<br>Physics<br>Stony Brook University

December 2015

Stony Brook University<br>The Graduate School<br>Rahul Indrakant Patel

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend acceptance of this dissertation

Stanimir Metchev - Dissertation Advisor
Adjunct Professor, Department of Physics and Astronomy

Michael Zingale - Chairperson of Defense
Associate Professor, Department of Physics and Astronomy
Matthew Dawber - Committee Member
Associate Professor, Department of Physics and Astronomy

Rebecca Oppenheimer - External Member
Curator, Professor, and Chair, American Museum of Natural History

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

# The Census of Warm Debris Disks in the Solar Neighborhood from WISE and Hipparcos 

by<br>Rahul Indrakant Patel<br>Doctor of Philosophy

in

## Physics

Stony Brook University
2015

Debris disks are optically thin circumstellar disks around mainsequence stars, comprised of micron-sized grains. The dust is generated from destructive collisions of planetesimals, induced from gravitational perturbations by large planets. Debris disks can as signposts for planetary systems, through which, a universal picture can be obtained that encompasses the evolution and architecture of the Solar System's own dust disk and planetary system. The dust in these disks can be detected by their thermal infrared flux, measured as an excess above the photospheric emission. Dust at different circumstellar locations, inferred from the peak wavelength of the detected emission, can act as a probe for local dynamical activity in the system. Over the last thirty years, cold disks, analogous to the Kuiper Belt, have constituted the bulk of debris disk detections. Warm disks, analogous to the Main Asteroid belt, can act as signposts for dynamical activity in the terrestrial planet
zone, but are rare in contrast. The Wide-Field Infrared Survey Explorer (WISE) space telescope mapped the entire sky in two near-IR and two mid-IR bands in 2012. The two mid-IR bands are well placed to probe dust emission in the terrestrial planet zone of these stars, at sensitivities greater than the last all-sky IR survey in 1983. WISE also provides us for the first time an opportunity to contemporaneously measure the photospheric and IR excess wavelengths of the entire sky, increasing sensitivity to fainter levels of dust.

In this thesis, I present an unbiased survey of warm disks around main-sequence Hipparcos stars in the solar neighborhood, detected using data from the WISE All-Sky Database. Our series of surveys builds upon each other to find previously undetected faint, warm debris disks by including bright photometrically saturated stars in WISE, using empirical photospheric colors, removing several non-trivial false-positive sources, and verifying and validating these detected excesses. This thesis adds a substantial number of new disk targets to the census of debris disks, as well as an assessment of the incidence rate of WISE disks in the solar neighborhood. The number and rate of detections can ultimately aid in enhancing our understanding of the formation and evolution of planetary systems.

To my family.

## Contents

List of Figures ..... ix
List of Tables ..... xii
1 Introduction ..... 1
1.1 Solar System Context ..... 1
1.2 The Solar System's Debris Disk ..... 4
1.2.1 Current Configuration ..... 4
1.2.2 Dynamical Evolution Of Our Planetary System ..... 6
1.3 Circumstellar Disk Evolution ..... 7
1.3.1 Protoplanetary Disk Evolution ..... 7
1.3.2 Debris Disk Evolution ..... 10
1.4 Detecting Debris Disks ..... 14
1.4.1 Dust Thermal Emission ..... 14
1.4.2 Infrared Excess and Resolved Imaging ..... 16
1.4.3 Is It A Protoplanetary Or A Debris Disk? ..... 18
1.5 Debris Disks as Signposts for Planets ..... 19
1.6 Evolving Picture of Debris Disks Over Thirty Years ..... 23
1.6.1 Cold Disk Detections ..... 24
1.6.2 Warm Disk Detections ..... 28
1.6.3 Disk Evolution: Stochastic or Steady-State? ..... 30
1.7 What Is Missing? ..... 31
2 Detecting Debris Disks with the Wide-Field Infrared Survey Explorer ..... 33
2.1 Limitation of Past Surveys ..... 33
2.2 The Wide-Field Infrared Survey Explorer Mission ..... 35
2.2.1 Mission Overview ..... 35
2.2.2 WISE Bands ..... 37
2.2.3 WISE Data Releases ..... 37
2.2.4 Cautionary Tales of WISE Data ..... 39
2.2.5 Advantages Of Using WISE Over Other Space Telescopes To Find Debris Disks ..... 43
2.3 Detecting Thermal Emission From Debris Disks with WISE ..... 45
2.3.1 The WISE Color Excess Technique and its Advantages ..... 45
2.4 Previous WISE Debris Disk Studies ..... 48
3 Identification of Warm Debris Disks Within 75 pc ..... 50
4 Improved Methods to Verify WISE Debris Disks With Weighted Colors and unWISE Images ..... 77
4.1 Introduction ..... 77
4.2 Sample Definition ..... 80
4.3 Single-Color and Weighted Color Excesses ..... 81
4.3.1 Improved Detection of Single-Color Excesses ..... 81
4.3.2 Defining A New Weighted IR Excess Metric ..... 84
4.3.3 Weighted Color Excesses ..... 85
4.4 Automated Rejection of Contaminated Stars Using Reprocessed WISE Images ..... 86
4.4.1 Checking for Contaminants In unWISE Images ..... 86
4.4.2 Rejecting Astrometric Contaminants ..... 87
4.4.3 Rejection Fidelity ..... 90
4.5 Results ..... 94
4.5.1 New Candidate Debris Disks ..... 95
4.5.2 Confirmations of Previously Known $22 \mu \mathrm{~m}$ Faint Debris Disks ..... 98
4.6 Discussion ..... 100
4.6.1 Single vs. Weighted Color Excess Search ..... 100
4.7 Conclusion ..... 102
5 Identification of Warm Debris Disks in the Galactic Plane and Out to 120 pc ..... 110
5.1 Introduction ..... 110
5.2 Sample Selection ..... 111
5.2.1 Culling the Parent Sample via unWISE Images ..... 112
5.3 IR Excess Identification ..... 115
5.4 Results ..... 116
5.5 Discussion ..... 118
5.5.1 Survey Sensitivity ..... 118
5.5.2 Overall Expansion of Disk Census ..... 120
5.5.3 Excesses at False-Discovery Rates $>0.5 \%$ ..... 122
5.6 Conclusion ..... 123
6 Discussion ..... 138
6.1 Characterization of Excesses ..... 138
6.1.1 Evidence of Warm Dust ..... 138
6.2 Comparison To Other WISE Surveys ..... 139
6.3 Lessons Learned ..... 141
6.3.1 Empirical vs. Synthetic WISE Colors ..... 141
7 Conclusion \& Future Directions ..... 144
7.1 Summary ..... 144
7.2 Future Directions ..... 145
7.2.1 WISE Disk Evolution Survey ..... 145
A Gemini Planet Imager Exoplanet Survey Detection of 51 Eri b ..... 154
B Tables ..... 160
B. 1 Tables for Chapter 1 ..... 160
B. 2 Tables for Chapter 3 ..... 163
C Derivations ..... 177
C. 1 The Weighted Excess Metric ..... 177
D Figures ..... 180
D. 1 Extended Figures in Chapter 3 ..... 180
D. 2 Extended Figures of Chapter 5 ..... 200

## List of Figures

1.1 Exoplanet Statistics ..... 2
1.2 First Resolved Debris Disk: $\beta$ Pictoris ..... 3
1.3 Illustration of the Solar System Architecture ..... 4
1.4 Zodiacal Light Emission From Planck ..... 5
1.5 Zodiacal Light From Earth ..... 5
1.6 Protoplanetary and Debris Disk Masses Over Time ..... 8
1.7 Evolution of a Disk ..... 9
1.8 Evolution of Protoplanetary Disk Fraction ..... 11
1.9 Poynting-Robertson Drag Timescales ..... 12
1.10 SED of Generic Disk System ..... 17
$1.11 \beta$ Pictoris Disk and Planet ..... 21
1.12 Simulation of Giant Planets Imprinted on Solar System Disk ..... 22
1.13 Illustrating Dust Location and Wavelength ..... 23
1.14 SEDs of Fab Four Disks ..... 26
1.15 Evolution of $24 \mu \mathrm{~m}$ Excesses ..... 29
2.1 Sensitivity Limits of Cold Disk Surveys ..... 34
2.2 WISE Satellite ..... 36
2.3 WISE Sky Coverage ..... 37
2.4 WISE Bands ..... 38
2.5 Contamination from 2MASS Extended Source ..... 40
2.6 Contamination from Optical Artifacts ..... 41
2.7 Contamination from Scattered Moon Light ..... 42
2.8 All-Sky IR Sensitivities ..... 44
2.9 Resolution of WISE vs. IRAS ..... 45
2.10 Survey Disk Detection Limits ..... 46
4.1 Wighted $W 3$ and $W 4$ Color Excess Distributions. ..... 82
4.2 Improved Method To Determine $\Sigma_{E_{C L}}$ and $\Sigma_{\overline{E_{C L}}}$ ..... 83
4.3 W3 vs. W4 Astrometric Analysis with unWISE ..... 88
$4.4 W 4$ vs. $W 4$ Astrometric Analysis with unWISE ..... 89
4.5 Postage Stamp Images of Stars Rejected from $W 3$ vs $W 4$ As- trometric Analysis ..... 92
4.6 Postage Stamp Images of Stars Rejected from $W 4$ vs $W 4$ As- trometric Analysis ..... 93
4.7 SEDs of Newly Detected Excesses ..... 96
4.8 Venn Diagram Comparing Single-Color and Weighted-Color De- tections. ..... 100
4.9 Distribution of WISE Photometric Uncertainties. ..... 101
4.10 Excess Significances for Stars with Single-Color Excesses and Insignificant Weighted-Color Excesses ..... 103
5.1 Rejected unWISE Stars Using $W 3$-to-W4 Offsets ..... 113
5.2 Rejected unWISE Stars Using $W 4$ to $W 4$ Oiffsets ..... 114
5.3 Distribution of $\Sigma_{E[W 3-W 4]}$ in 120 pc ..... 117
5.4 Our Survey Flux Sensitivity ..... 119
5.5 Incidence of Excesses Within 120 pc ..... 120
5.6 Comparison of All Known Debris Disks To Those Detected by WISE ..... 121
6.1 My WISE Disks vs. Other WISE Disks ..... 140
6.2 WISE All-Sky Synthetic vs. Empirical Colors. ..... 142
D. 1 SEDs of Excesses for Stars in 75 pc. I ..... 181
D. 2 SEDs of Excesses for Stars in 75 pc. II ..... 182
D. 2 SEDs of Excesses for Stars in 75 pc. III. ..... 183
D. 2 SEDs of Excesses for Stars in 75 pc. IV. ..... 184
D. 2 SEDs of Excesses for Stars in 75 pc. V. ..... 185
D. 2 SEDs of Excesses for Stars in 75 pc. VI. ..... 186
D. 2 SEDs of Excesses for Stars in 75 pc. VII. ..... 187
D. 2 SEDs of Excesses for Stars in 75 pc. VIII. ..... 188
D. 2 SEDs of Excesses for Stars in 75 pc. IX. ..... 189
D. 2 SEDs of Excesses for Stars in 75 pc. X. ..... 190
D. 2 SEDs of Excesses for Stars in 75 pc. XI. ..... 191
D. 2 SEDs of Excesses for Stars in 75 pc. XII. ..... 192
D. 2 SEDs of Excesses for Stars in 75 pc. XIII. ..... 193
D. 2 SEDs of Excesses for Stars in 75 pc. XIV. ..... 194
D. 2 SEDs of Excesses for Stars in 75 pc. XV. ..... 195
D. 2 SEDs of Excesses for Stars in 75 pc. XVI. ..... 196
D. 2 SEDs of Excesses for Stars in 75 pc. XVII. ..... 197
D. 2 SEDs of Excesses for Stars in 75 pc. XVIII. ..... 198
D. 2 SEDs of Excesses for Stars in 75 pc. XIX. ..... 199
D. 3 SEDs of Excesses for Stars from 75-120 pc. I. ..... 201
D. 3 SEDs of Excesses for Stars from 75-120 pc. II ..... 202
D. 3 SEDs of Excesses for Stars from 75-120 pc. III. ..... 203
D. 3 SEDs of Excesses for Stars from 75-120 pc. IV. ..... 204
D. 3 SEDs of Excesses for Stars from 75-120 pc. V. ..... 205
D. 3 SEDs of Excesses for Stars from 75-120 pc. VI. ..... 206
D. 3 SEDs of Excesses for Stars from 75-120 pc. VII. ..... 207
D. 3 SEDs of Excesses for Stars from 75-120 pc. VIII. ..... 208
D. 3 SEDs of Excesses for Stars from 75-120 pc. IX. ..... 209
D. 3 SEDs of Excesses for Stars from $75-120$ pc. X. ..... 210
D. 3 SEDs of Excesses for Stars from 75-120 pc. XI. ..... 211
D. 3 SEDs of Excesses for Stars from 75-120 pc. XII. ..... 212
D. 3 SEDs of Excesses for Stars from 75-120 pc. XIII. ..... 213
D. 3 SEDs of Excesses for Stars from 75-120 pc. XIV. ..... 214
D. 3 SEDs of Excesses for Stars from 75-120 pc. XV. ..... 215
D. 3 SEDs of Excesses for Stars from 75-120 pc. XVI. ..... 216
D. 3 SEDs of Excesses for Stars from 75-120 pc. XVII. ..... 217
D. 3 SEDs of Excesses for Stars from 75-120 pc. XVIII. ..... 218
D. 3 SEDs of Excesses for Stars from 75-120 pc. XIX. ..... 219

## List of Tables

1.1 Spitzer Specifications: 85 cm Primary Mirror. ..... 24
1.2 Herschel Space Observatory Specifications: 3.5 m Primary Mirror. ..... 25
1.3 IRAS specifications: 0.6 m primary mirror. ..... 25
4.1 Single- and Weighted-Color Excess Selection Summary ..... 105
4.2 IR Excess Information for Newly Identified Debris Disk Candi- dates from WISE ..... 106
4.3 Rejected WISE Excesses ..... 107
4.4 Stellar Parameters of New Excess Stars from Improved Methods ..... 108
4.5 Disk Parameters from Blackbody Fits of Excesses from Im- proved Methods in 75 pc . ..... 109
5.1 Rejected WISE Excesses in 75-120 pc Volume ..... 124
5.1 Rejected WISE Excesses in 75-120 pc Volume ..... 125
5.2 Stellar Parameters of W4 Excess Hosts within 120 pc ..... 126
5.2 Stellar Parameters of W4 Excess Hosts within 120 pc ..... 127
5.2 Stellar Parameters of W4 Excess Hosts within 120 pc ..... 128
5.2 Stellar Parameters of W4 Excess Hosts within 120 pc ..... 129
5.2 Stellar Parameters of W4 Excess Hosts within 120 pc ..... 130
5.2 Stellar Parameters of W4 Excess Hosts within 120 pc ..... 131
5.2 Stellar Parameters of W4 Excess Hosts within 120 pc ..... 132
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ..... 133
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ..... 134
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ..... 135
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ..... 136
5.3 Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc ..... 137
B. 1 Major Debris Disk Studies ..... 161
B. 1 Major Debris Disk Studies - continued. ..... 162
B. 2 Stellar Parameters of Stars with IR Excesses - Cont. of Table 5 in Chapter 3 ..... 164
B. 2 Stellar Parameters of Stars with IR Excesses - Cont. of Table 5 in Chapter 3 ..... 165
B. 2 Stellar Parameters of Stars with IR Excesses - Cont. of Table 5 in Chapter 3 ..... 166
B. 2 Stellar Parameters of Stars with IR Excesses - Cont. of Table 5 in Chapter 3 ..... 167
B. 2 Stellar Parameters of Stars with IR Excesses - Cont. of Table 5 in Chapter 3 ..... 168
B. 3 IR Excess Information - Cont. of Table 6 in Chapter 3 ..... 169
B. 3 IR Excess Information - Cont. of Table 6 in Chapter 3 ..... 170
B. 3 IR Excess Information - Cont. of Table 6 in Chapter 3 ..... 171
B. 3 IR Excess Information - Cont. of Table 6 in Chapter 3 ..... 172
B. 4 Disk Parameters from Blackbody Fits - Cont. of Table 7 in Chapter 3 ..... 173
B. 4 Disk Parameters from Blackbody Fits - Cont. of Table 7 in Chapter 3 ..... 174
B. 4 Disk Parameters from Blackbody Fits - Cont. of Table 7 in Chapter 3 ..... 175
B. 4 Disk Parameters from Blackbody Fits - Cont. of Table 7 in Chapter 3 ..... 176

## Acknowledgements

Deshi Basara Basara, Deshi Basara Basara.

- The Dark Knight Rises.

I have determined that I would rather write five more theses than another sentence in the acknowledgements. It has taken me much longer to finish this section - which I started after defending - than to write the entirety of Chapter 5. This is not because I don't want to get sentimental or that I have too many people to thank, though both are true. It's because writing the words "supportive" and "thankful" became repetitive and I started perusing the thesaurus too often. However, I then remembered that Mike Simon once said that "if a fifty cent word works, then don't use a fifty dollar one." So, what you will read here are plain words of the gratitude I feel toward all those who have shared in my triumphs and tribulations these past few years.

First and foremost, I would be ridden with Canadian guilt if I did not thank my advisor, Stanimir Metchev. Stan's guidance, encouragement, patience, and passion for astronomy have sculpted me into the astronomer and scientist I am today - though I know I still have much to learn. He has shown me that there are no shortcuts, and hard work bears its own fruit. At the same time, he has also shown me that it is important to relax, especially when encountering border patrol agents in Arizona after an observing run. I would also like to thank Aren Heinze and Joe Trollo, both of whom have provided insightful ideas, and helped me improve my analytical and statistical skills. Their expertise, insight and constant willingness to help have been invaluable to me throughout this thesis.

I would like to thank all of my committee members for reading my thesis and guiding me to the final product. I want to thank Michael Zingale for acting as chair of my committee, helping me improve in areas where I was weak, for all the fun morning discussions and letting me graduate even though I was not able to discover five new planets. I would also like to thank Rebecca Oppenheimer for serving on my committee, her invaluable guidance, and tremendous amount of encouragement and support over these last few years. I would also like to thank Matthew Dawber for serving on my committee, as well as making first year bearable in the TA labs. I would like to thank Tom Weinacht for his support, and serving on my committee early on. In addition, I would like to especially thank Bruce Macintosh for his support and allowing me to take part
in the outstanding work being done by the Gemini Planet Imager Exoplanet Survey.

The astronomy group at Stony Brook has been especially welcoming and supportive during my time there. This includes Alan Calder for all the helpful life lessons, Mike Simon for all the Yiddish tutorials, and Jin Koda for somehow predicting where I would end up for my first postdoc. I would also like to give many thanks to Josh S . who helped me navigate my way through my first year of research, Brendan who was constantly willing to share his expertise in both academics and sci-fi lore and Chris who kept me on my feet about all the good music of which I had never heard. Without these three, I would have had a much more difficult time staying afloat. My friends in the astronomy group also deserve my appreciation and thanks. Mel, Mathew, Don, Stephka, Adam, Kendra, Max, and Melissa were responsible for making the workplace a lot of fun to be in, and I am grateful for the support they have shown me, and their immeasurable tolerance in dealing with me. This includes all of my office singing, desk drumming (sorry Melissa), and the inane arguments that Max and I would find ourselves in.

Graduate school is a long and arduous road, which is why I am grateful that I did not have to travel it by myself. I would first like to thank Socoro, Sara and the wonderful staff in the physics department. Never again will I have the opportunity nor privilege of working with such a friendly and helpful group of people. To Jeremy, Omer, Josh I., Shawn, and Humed - I could not have asked for a crazier, kinder, and better set of friends/roommates than you guys. I would definitely have lost my mind had it not been for all the late-night homework parties, P90X "parties", and just plain old awkward social parties. I would like to make sure that David knows that had it not been for him I would not have applied to Stony Brook. In a sense, David, all of this is thanks to you. I think that also means that if I mess up, I can blame you for it too. I am also grateful for having met so many wonderful people whom I can continue to call friends and whose support has been unwavering. Among them is my "adopted" cousin Betül, Cip, Karen, Ahsan, Oumarou, Aungshuman, Morgan, Nathan, Heli, Kim, and Wendy.

Of course, thanks to my family and their upbringing and encouragement, I would not have had the courage to undertake this insane yet rewarding endeavor. To my brother Pranav, though we are in different places right now, I want to thank you for showing me the worst is not enough to bring you down. I have also found purpose in my work whenever I see the awe and wonderment in the eyes of Calen, Ella, and Nithya. I want to thank Shaunbhai for all the experienced advice while I was applying for jobs. I would also like to thank Shaunbhai, Roshniben, Sheetalben, Niravjija, Mehuljija, and Mithubhabhi for
their love, support, and being there to talk when I needed it. To my sister and brother-in-law, Vaishali and Suraj, and my parents, Indrakant, Daxa, Ghanshyam and, Jyoshna: no words can describe the heartfelt gratitude I have for all that you have done for me and the unwavering and unconditional love and support you have given me, especially when I didn't want it but totally needed it. Last of all, to Yuki - thank you for being by my side these last two years and for sharing in my joys, childish antics, and absorbing my over-inflated imposter syndrome. They tell me that I'm a scientist now, so I intend to test out how much more of my insanity you can handle in the future.

I would also like to thank the McNair Fellowship program at FIU, in particular to Dr. Simms for the opportunity of pursuing a graduate career. This thesis makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We also use data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory. Most of the original figures in this work were created using Matplotlib, a Python graphics environment (Hunter, 2007). This research also made use of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.com (Robitaille \& Bressert, 2012). This work is partially supported by NASA Origins of Solar Systems through subcontract No. 1467483 to Dr. Stanimir Metchev at Stony Brook University, and by an NSERC Discovery award to Dr. Stanimir Metchev at the University of Western Ontario. I would also like to thank the Astrophysical Journal, Astronomy and Astrophysics Journal, the Journal Science, and the Annual Reviews in Astronomy and Astrophysics for allowing me to reproduce figures from some of their copyrighted publications.

## Chapter 1

## Introduction

### 1.1 Solar System Context

Since the discovery of the first extrasolar planets (exoplanets) around a mainsequence star, (HD 114762 b and 51 Pegasi b, Latham et al., 1989; Mayor \& Queloz, 1995, respectively), a revolution has occurred in our understanding of planetary formation and evolution. We have seen exoplanets of a variety of flavors: gas giants at fractions of an astronomical unit (AU) from their star, binary planetary systems and even compact multi-planet systems. Giant planets are found with eccentricities ranging from $0-0.9$, with sometimes large mutual inclinations. And roughly $50 \%$ of solar type stars have a chance of hosting a compact multi-planet system with periods shorter than a year (see review by Winn \& Fabrycky, 2015).

In contrast, the planets in our Solar System follow nearly circular, low inclination orbits at distances such that terrestrial and gas giants are separated by the snow-line (see § 1.2.2). Since this Solar System is the only one we know of where a planet can sustain life, perhaps the key to finding another is to search for systems with similar architecture. Of course there are a few exoplanetary systems that may seem architecturally similar to our own. The HR 8799 multi-planet system is an excellent example, where the system's four gas giant planets are at the same equilibrium temperature as our gas giants are to our Sun (Marois et al., 2010).

But this is one in a multitude of over a thousand planets we have uncovered. And if the majority of planets we are finding do not resemble the architecture of the Solar System, we have to ask: Is the existence of another habitable planet likely? If so, how can we identify a system whose interplanetary environment would increase the habitability of an Earth analog?

Over the last thirty years, we have seen that exoplanetary systems can also


Figure 1.1: Distribution of exoplanet masses vs. their estimated orbital distance and color coded based on the technique used to detect them. This plot only shows exoplanets detected as of June 2015. Only planets with catalogued masses and orbital distances were plotted. $M \sin (i)$ values were used when exact values for the planet mass were unavailable. Solar System data is also plotted. Data was downloaded from http://exoplanetarchive.ipac. caltech.edu/. Credit: R. Patel.


Figure 1.2: Resolved disk emission around the $\beta$ Pictoris star. First ever resolved image of a debris disk. The image was taken using a coronagraph at the Las Campanas observatory in Chile. The disk is edge-on and composed of solid particles. The flattened shape, rather than a spherical shell of particles is circumstantial evidence of planet formation. The circular shape in the center is due to the coronagraph and imperfect subtraction of the standard star. Image credit: Smith \& Terrile (1984). Reprinted with permission from AAAS.
be identified by the presence of any dusty disks orbiting a main-sequence star. The first unresolved detection of extrasolar debris disks was by the Infrared Astronomical Satellite (IRAS) in 1983 of the Vega debris disk (Aumann et al., 1984). Further evidence from resolved images was taken by Smith \& Terrile (1984) of the debris disks around the $\beta$ Pictoris system and galvanized the idea of these disks, which are created from the collisional grinding of planetesimals, are stirred by large planets (see Figure 1.2). Given that evidence exists that our own Solar System is a result of the concurrent evolution of our circumsolar disk and planets, then perhaps similarities can be drawn between what our circumsolar disk looked like at different stages in its evolution and the extrasolar debris disks astronomers have detected over the last thirty years. Another way to investigate this is to ask: is the likelihood of a system like ours - and hence the possibility of life - linked with the evolution of the disk and planets as a whole?

This thesis takes a step toward investigating these questions by identifying additional systems which have previously been overlooked and may hold a wealth of information with which to place our Solar System in context.

### 1.2 The Solar System's Debris Disk

### 1.2.1 Current Configuration

The eight planets in the Solar System follow a relatively ordered configuration. With the exception of Mercury, the orbits are close to circular, and are closely inclined to the invariable plane, where inclination angles range from $0.33^{\circ}$ $2.19^{\circ}$. The four rocky planets are located interior to 1.7 AU , while the four gas giant planets are located beyond the snow-line - the point in relation to the Sun beyond which volatile molecules (e.g., $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$ ) condense - and all the way out to 30 AU .

The inner and outer planets are also segregated by a disk of material known as the Main Asteroid Belt (MAB). Located between the orbits of Mars and Jupiter, the MAB is composed of over a million kilometer-sized objects that can be metallic, stony or even carbon rich in composition.

It has been estimated that the mass of the MAB is $\sim 0.04 M_{\text {moon }}$, but was much larger in the early Solar System (see § 1.2.2). Beyond the orbit of Neptune lies a large reservoir or minor planets composed of icy, volatile, cometary material with sizes greater than 1 km . These minor bodies, distributed in a thin belt the width of 20 AU , are known as the Edgeworth-Kuiper Belt (EKB).


Figure 1.3: An illustration of the Solar System's planets, and major dust belts. Rough equilibrium temperatures are indicated at distances from Earth, Jupiter, and the inner edge of the EKB. The vertical positions of the planets relative to the Earth-Sun plane indicate rough inclinations. Distances and sizes are not to scale. Image credit: R. Patel.

In addition to the rings of large rocky bodies, a population of $10-100 \mu \mathrm{~m}$ sized cometary and silicate grains inhabits the Solar System. This disk, known as the Zodiacal Cloud, has been seen in scattered light observations (Hahn et al., 2002), thermal emission from the Planck (Maris et al., 2006; Planck Collaboration et al., 2014), COBE (Kelsall et al., 1998), and the IRAS (Sykes,


Figure 1.4: Galactic coordinate projection of the sky in the 850 GHz band from the Planck Satellite. The Zodiacal light emission is seen passing diagonally from the lower left to the top right, crossing the middle of the galactic plane. The top and bottom arcs are due to instrumental far side lobes. Image credit: (Planck Collaboration et al., 2014).


Figure 1.5: A faint glow seen along the ecliptic reveals the presence of $100 \mu \mathrm{~m}$ sized grains that comprise the Zodiacal Light. Image credit to the European Southern Observatory. Image was taken at Cerro Paranal, Chile http://www. eso.org/public/unitedkingdom/images/zodiacal-light/
1990) missions, as well as inferred from spacecraft impact experiments. From the ground, the Zodiacal Cloud can be seen only on the darkest of nights, as a faint glow along the ecliptic (see Figure 1.5). The inner Zodiacal Cloud extends from the orbit of Venus all the way out to Jupiter. From most recent studies, it is thought that $\mathrm{mm}-\mathrm{cm}$ sized grains are ejected from Jupiter Family Comets (JFC) as they approach the large tidal forces of Jupiter's gravity. The smaller sub-mm sized grains, which comprise the disk are thought to be created from the grinding down of the larger mm- cm sized ejected grains. The overall mass of the inner Zodiacal Cloud has been estimated to be $\sim 1-2 \times 10^{19} \mathrm{~g}$ (Nesvorný et al., 2010). The Zodiacal Cloud's density is so low that the overall disk brightness, when compared to the total emission of the Sun at all wavelengths (bolometric luminosity) is $L_{\mathrm{ZODY}} / L_{\odot} \sim 2 \times 10^{-7}$ (Nesvorný et al., 2010).

### 1.2.2 Dynamical Evolution Of Our Planetary System

The combined evolution of the planets, asteroidal and cometary disks are responsible for the current state of the Solar System. It is generally accepted that all the planets formed within the first 100 Myr (upper limit based on the final accretion time to create Earth; Allègre et al., 2008), after the Sun reached its place on the main-sequence. During this time, it has been hypothesized that the planets were in a compact configuration, all of them residing within 15 AU of the Sun (Batygin \& Brown, 2010). Roughly 4.0-3.7 Gyr ago, scattering of the planetesimal populations that lay outside the orbit of Neptune at 15 AU resulted in angular momentum exchange between the gas giants and the disk. This led to a period of instability in which Jupiter and Saturn's orbits diverged, and eventually crossed their mutual 1:2 mean motion resonance. From this, Jupiter migrated inward by $<0.5$ AU (Morbidelli et al., 2010), and pushed Saturn, Uranus and Neptune further out into the Solar System (Tsiganis et al., 2005).

This migration led to a period known as the Late Heavy Bombardment (LHB). During this time, Jupiter's short migration would have depleted the MAB by a factor or 10 , while $97 \%$ of the EKB was probably removed as a result of Neptune's outward migration. The scattered comets and asteroids during this period are most likely responsible for the Lunar craters we see today (Gomes et al., 2005). It is also thought that a fraction of Earth's water supply was transported during the LHB either from the EKB or from water rich asteroids. In addition, the depletion of the MAB by Jupiter has implications for the emergence of life on Earth, as a massive MAB today might have resulted in a higher frequency of Terrestrial impacts. In essence, we would like to investigate the relationships a planetary system may have with its environment, similar to the evolution due to dynamical friction in our planet-disk
system, around other star systems.

### 1.3 Circumstellar Disk Evolution

Understanding the physical nature and processes governing the evolution of circumstellar disks is important if we are to understand the similarities between other systems and our own disk throughout its lifetime. In this section, I briefly outline the properties and characteristics of young gas-rich protoplanetary disks and their evolution into a dusty debris disk.

### 1.3.1 Protoplanetary Disk Evolution

The paradigm of planet formation begins with a nascent protoplanetary disk (PPD), composed of primordial gas and dust that remains post-star formation. The primordial material forms into a circumstellar disk, as a consequence of angular momentum conservation. The final radial extent of the disk is heavily sensitive to the angular rotation of the central star $\left(\Omega^{2}\right)$ and even more sensitive to the infall time of the primordial material ( $t_{\text {infall }}^{3}$; Terebey et al., 1984). It is well accepted that $90-99 \%$ of a PPD is composed of gas, while the rest is made of micron to millimeter sized-dust grains.

The bulk of the gas is comprised of neutral $\mathrm{H}_{2}$. Though difficult to measure, mid-IR rotational lines have been observed from hot ( $>600 \mathrm{~K}$ ) $\mathrm{H}_{2}$ from the ground in systems like AB Aurigae (Bitner et al., 2007). Typically, however, tracers such as CO, and HCN line emissions are observed at sub-mm wavelengths to detect the gas in PPDs (e.g., for stars in young associations such as Ophiuchus and Taurus-Auriga, Andre \& Montmerle, 1994; Beckwith et al., 1990, respectively). These observations have shown that the size of these disks can range from $10-100 \mathrm{AU}$, with masses $>0.005 M_{\odot}$ (Osterloh \& Beckwith, 1995). Dust masses are typically derived from dust thermal emission at mm-wavelengths, which probe the large grain population. The masses are typically derived by assuming an upper limit to the grain size (usually around mm sizes) and some assumed opacity values (Beckwith et al., 1990). Figure 1.6 shows the masses of observed PPDs (ages $<10 \mathrm{Myr}$ ), indicating disk masses on the order of a few hundred $M_{\text {earth }}$.

The majority of the primordial gas and dust dissipates within the first $\sim 10 \mathrm{Myr}$. Viscous accretion of gas and dust onto the star has been attributed to the clearing of the inner regions (a few AU ) of the star, which is supported by a lack of near-IR flux $(2-5 \mu \mathrm{~m})$ and the presence of forbidden line accretion signatures (e.g., OI, SII; Hartigan et al., 1995). Photoevaporation from the central star will also carve out the outer disk. In this process, high-energy UV


Figure 1.6: Disk masses vs. age taken from Wyatt (2008). Disk masses were derived using sub-mm observations of disks. Different symbols represent different stellar masses (spectral types). The upper limit mass of the Kuiper Belt has also been plotted for contextual purposes. Figure Credit: Wyatt (2008).


Figure 1.7: Illustration that depicts the evolution of a disk, from a gas-rich PPD to a dust-rich debris disk (from a-d). Blue and red indicate regions of gas and dust, respectively. The different stages indicate the predominant disk dissipation mechanisms, until the debris disk phase. Image credit: (Williams \& Cieza, 2011).
and X-Ray photons can excite gas and dust molecules enough so that they are no longer bound to the system, and simply evaporate into interstellar space. The replenishment of material into the inner disk after viscous accretion has halted, is inhibited by extreme-UV photons from the central star. The disk can also be dissipated via external sources. Usually, young stars are found in clusters with thousands of stars. A few of these will be O stars, that irradiate the surrounding environment in intense ionizing UV radiation (Adams et al., 2004). From this, mass loss of the disk will be expedited.

During this entire process, grain growth becomes important, as it not only removes mass from the gas-rich disk, but also provides the seeds for future planetary creation. Micron sized grains will typically feel a pressure gradient, since the gas rotates at sub-Keplerian speeds. As a result, grains will eventually collide, increase in mass and size, and be dragged to the mid-plane of the disk, where they can further grow to form asteroids, comets and even the cores of giant planets. The presence of any fully formed planets within this time can start sculpting the disk. Figure 1.7 illustrates these different processes.

Observations have shown that once the inner disk ( $<5 \mathrm{AU}$ ) is depleted, the outer disk quickly loses the majority of its mass (Williams \& Cieza, 2011). Thus, after about 6-10 Myr, most stars have lost their inner disks, as determined from the stars near-IR excess emission (Wyatt, 2008). Figure 1.8 shows the rapid decline in disk fraction as a function of age for a number of different young stellar clusters and associations, illustrating that the fraction of stars with near-IR excesses dwindles down to $\sim 0 \%$.

### 1.3.2 Debris Disk Evolution

## Dust Removal Mechanims

What remains from the remnant PPD after the bulk of the gas has dissipated, is typically a disk composed of planetesimals and a population of dust (illustrated in Figure 1.7). From studies (e.g., Lisse et al., 2009, 2012; de Vries et al., 2012; Rodigas et al., 2015) we know that the dust in a circumstellar disk can be composed of solid particles, ranging in sizes from $<100 \mu \mathrm{~m}$ to mm in size and heterogeneously composed of various minerals: silicates, other dielectric and refractory particles, and ices (e.g., ice, carbon monoxide). We know from observations of debris disks at sub-mm wavelengths that dust masses are orders of magnitudes lower than in the gas-rich PPD phase; typically on the order of less than an Earth mass (see Figure 1.6).

The motions of grains larger than $\sim 1 \mathrm{~mm}$ (e.g., large grains, small planetesimals), are governed by the gravitational force from the central star. However, the thermal emission seen from these disks is due to smaller grains of order $s<1 \mathrm{~mm}$. Since the mass of these disks is low compared to their PPD counterparts, the amount of thermal emission typically observed (further discussed in § 1.4.3) can only be explained by small grains with a surface density great enough to intercept a large cross-section of stellar light. For these smaller grains stellar radiation and stellar wind play an important role in the dynamical behavior of the dust. The force exerted on a particle from radiation pressure $\vec{F}_{r}$ counteracts the radial gravitational force, giving rise to the photo-gravitational force

$$
\begin{equation*}
\left|\vec{F}_{\mathrm{pg}}\right|=\frac{G M_{\star} m_{d}(1-\beta)}{r_{d}^{2}}, \tag{1.1}
\end{equation*}
$$

where $\beta$ is the ratio of the radiation to gravitational pressure, and is inversely proportional to the stellar luminosity, grain density and size (Burns et al., 1979). In other words, smaller particles will be influenced largely by radiative forces, rather than gravitational ones. Grains whose bulk and optical properties produce $\beta=0.5$ experience equal gravitational and radiation pressure


Figure 1.8: Fraction of young stars in different associations, groups, with protoplanetary disks as detected via their near-IR excess flux. By around 610 Myr , the fraction of stars with a protoplanetary disk is almost zero. Image credit: Wyatt (2008).


Figure 1.9: A plot of the time it takes for dust at a distance $r_{d}$ to spiral into the star due to P-R drag. The model for these curves are based on the derivations of Burns et al. (1979): $t_{\mathrm{pr}}=400\left(r_{d}^{2} / M_{\star}\right) \beta^{-1}$. This relationship can be derived from Equation 1.2. Large values of $\beta$ represent smaller particles, and vice-versa. I have plotted the curves for different values of $\beta$ and for different spectral types (stellar masses).
and represent the minimum size $s$ below which grains will be ejected from the system (blow-out size). In the Solar System, this corresponds to sub-micron sized grains. In addition to radiation pressure, stellar wind pressure created from high velocity plasma, aids in counteracting the gravitational force on the dust grains.

Drag forces will cause the dust to slow down and spiral out of its orbit and eventually into the star. The tangential component (i.e., along the motion vector of the grain), of the stellar wind, or corpuscular drag, is one such drag force. This becomes more important for grains smaller than $0.001 \mu \mathrm{~m}$ around Sun-like stars (Burns et al., 1979). The tangential component of the stellar radiation also creates a drag-force on the particle known as PoyntingRobertson (P-R) drag. The P-R drag force is defined as

$$
\begin{equation*}
\left|\vec{F}_{\mathrm{PR}}\right|=\frac{S \pi a^{2} Q_{\mathrm{PR}} r_{d}^{2} v}{c^{2}}, \tag{1.2}
\end{equation*}
$$

where $S$ is the stellar flux density, $Q_{\mathrm{PR}}$ is the radiation pressure coefficient, and $v$ is the velocity of the grain in the direction normal to the radiation vector, i.e., orbital direction (Burns et al., 1979). P-R drag relies on the change in a particle's momentum due to the acceleration it feels from the stellar radiation perpendicular to its motion vector, and the deceleration it feels from re-radiating the absorbed stellar radiation along the particle's velocity vector.

Figure 1.9 shows that dust around most main-sequence stars at $r_{d}<40 \mathrm{AU}$ will spiral into the star on timescales $\lesssim 100 \mathrm{Myr}$. It will take longer for grains at larger distances to spiral into the star, in which case radiation pressure and stellar wind will throw grains out of the system. However, in most detected debris disks (discussed in § 1.6), collisions grind down grains on shorter timescales than P-R drag can remove them from the system (e.g., Wyatt, 2008). Grains, once ground down to smaller sizes can then be removed from the system more easily by radiation pressure and stellar winds. For instance, $100 \mu \mathrm{~m}$ grains at 90 AU from the star Vega will spiral into the star within 15 Myr. With collisions, these grains will be removed in roughly 2 Myr (Backman \& Paresce, 1993).

## Dust Replenishment And Planetary Stirring

We now know that any initial population of dust in a circumstellar environment will not last the lifetime of the star. The larger main-sequence stars, of spectral type ( SpT ) A2V and later, live for $>500 \mathrm{Myr}$. Dust, on the other hand, is only stable around a star for timescales $\lesssim 1-10 \mathrm{Myr}$ (dependent on the luminosity of the star; see Figure 1.9). Over the last thirty years, over a thousand debris disks have been discovered. These debris disk systems have been detected around stars of all main-sequence spectral types, as well as ages well beyond the timescale of dust dissipation (see Figure 1.15 in this thesis, and Figure 6 in Wyatt, 2008).

A well accepted explanation for the existence of dust around main-sequence stars is that it is replenished from the destructive collisions of larger oligarchs, planetesimals, asteroids, and comets, where a lot of the dust mass is locked up. These collisions may be governed by a steady state evolution, whereby larger bodies and grains are ground into smaller sizes, eventually being thrown out of the system through one of the dissipative forces described earlier. Thus, a collisional cascade ensues, creating a size distribution of particles. Smaller particles will be removed from the system quickly, while larger particles replenish the smaller grain population. This cycle removes mass from the disk
on timescales $\propto t^{-1}$ (Wyatt et al., 2007). Stochastic evolution may also be responsible for dust replenishment, where dust is ejected into the system from sudden collisions. The LHB event in the early Solar System is an example of this type of dust generation.

Grains and planetesimals must have sufficient kinetic energy for collisions to occur. It is possible that disks evolving from the PPD phase are self-stirred to generate a collisional cascade. Delayed and self-stirring models, whereby the planetesimal disk is stirred from the influence of larger bodies once they have grown to sizes $>2000 \mathrm{~km}$, have also been successfully used to explain the presence of dust. As stated by Wyatt (2008), for continuous belts between 1-200 AU, differences between self- and pre-stirred models are insignificant, but are most apparent when there is a clearing in the inner regions.

Though there are a number of collisional models which can adequately explain the dust production in observed systems, the details of each model are beyond the scope of this dissertation. Suffice it to say that the presence of circumstellar dust around main-sequence stars is due to the collisional cascade of planetesimals that ensues from dynamical perturbations.

### 1.4 Detecting Debris Disks

### 1.4.1 Dust Thermal Emission

Circumstellar dust immersed in the radiation field of its host star will both scatter and absorb incoming radiation. Though most types of grains are efficient scatterers in the optical and near-IR (see § 1.4.2), a fraction of that light is absorbed and heats the dust. Smaller grains will heat up faster and hence radiate more efficiently than larger grains of the same composition and at the same distance (Krivov, 2010). However, differentiating scattered versus stellar radiation becomes difficult since main-sequence stars at $T_{\star}>3000 \mathrm{~K}$ have peak emission in the optical and near-IR ( $0.4-2.5 \mu \mathrm{~m}$ ), thus decreasing the contrast between scattered and stellar light in these regimes. Reprocessed thermal emission is easier to detect, as emission from the dust peaks in the mid $(10-30 \mu \mathrm{~m})$ and far-IR ( $>30 \mu \mathrm{~m}$ ) wavelengths - regimes where the stellar photospheric emission can be orders of magnitudes fainter than the observed thermal emission.

Small dust grains, on the order of tens of microns, are largely responsible for thermal emission seen from a star in the mid- and far-IR, given their efficient emission properties. It is typically assumed that the grains are in thermal equilibrium with the stellar radiation field. The amount of energy a grain absorbs (mainly in the UV and optical) $E_{\text {abs }}$, is dependent on its size $a$, radial
distance from the star $r_{d}$, stellar luminosity $L_{\star}$ and the absorption efficiency $Q_{\text {abs }}(a, \lambda)$

$$
\begin{align*}
E_{\mathrm{abs}} & =\left(\frac{\pi a^{2}}{4 \pi r_{d}^{2}}\right) \int_{0}^{\infty} L_{\lambda} Q_{\mathrm{abs}}(a, \lambda) d \lambda  \tag{1.3}\\
& =\frac{a^{2}}{4 r_{d}^{2}} L_{\star}\left\langle Q_{\mathrm{abs}}\right\rangle_{\mathrm{UV}} \tag{1.4}
\end{align*}
$$

The energy emitted by the grain $E_{\mathrm{r}}$ depends on the grain size, the radiative efficiency $Q_{\mathrm{r}}(a, \lambda)$, and is approximated by

$$
\begin{align*}
E_{\mathrm{r}} & =4 \pi a^{2} \int_{0}^{\infty} \pi Q_{\mathrm{r}}(a, \lambda) B\left(\lambda, T_{d}\right) d \lambda  \tag{1.5}\\
& \approx(2 \pi a)^{2} \sigma T_{d}^{4}\left\langle Q_{\mathrm{r}}\right\rangle_{\mathrm{IR}} \tag{1.6}
\end{align*}
$$

As standard practice, I've assumed an average absorption and emitting efficiency for the grain, which can be derived using Mie Theory. If we assume the grain emits as a blackbody, the expression derived in equation 1.6 naturally falls into place. Conservation of energy dictates that

$$
\begin{equation*}
\frac{a^{2}}{4 r_{d}^{2}} L_{\star}\left\langle Q_{\mathrm{abs}}\right\rangle_{\mathrm{UV}} \approx(2 \pi a)^{2} \sigma T_{d}^{4}\left\langle Q_{\mathrm{r}}\right\rangle_{\mathrm{IR}} \tag{1.7}
\end{equation*}
$$

which leads to an approximate expression to calculate the dust temperature

$$
\begin{equation*}
T_{d} \approx\left(\frac{\left\langle Q_{\mathrm{abs}}\right\rangle_{\mathrm{UV}}}{\left\langle Q_{\mathrm{r}}\right\rangle_{\mathrm{IR}}} \frac{L_{\star}}{16 \sigma \pi^{2} r_{d}^{2}}\right)^{1 / 4} \tag{1.8}
\end{equation*}
$$

In most cases, the amount of information obtained from the dust emission is only sufficient to satisfy the simplest emission models: grains that emit as blackbodies. In the blackbody assumption, equation 1.8 reduces to

$$
\begin{equation*}
T_{d}=278 \frac{\left(L_{\star} / L_{\odot}\right)^{1 / 4}}{\sqrt{r_{d}}}[K] . \tag{1.9}
\end{equation*}
$$

assuming that $\left\langle Q_{\mathrm{abs}}\right\rangle_{\mathrm{UV}} \approx\left\langle Q_{\mathrm{r}}\right\rangle_{\mathrm{IR}}$. In a more general sense, the grain equilibrium temperature can vary as it depends on the composition and size of the grain (Draine, 2003). Grains that deviate from the blackbody approximation will have non-zero absorption and emission efficiencies, and moderate the slope of the Wien and Rayleigh-Jeans tails of the grain emission spectrum. Around a Sun-like star, unless the dust orbits at $r_{d}<0.1 \mathrm{AU}$, the grain temperatures will
typically be $T_{d} \lesssim 300 \mathrm{~K}$. Following Wien's approximation, this means that the dust emission spectrum will peak in the mid- and far-IR wavelengths. Thus, astronomers will usually search for the presence of dust at IR wavelengths.

### 1.4.2 Infrared Excess and Resolved Imaging

The majority of disk systems are identified through unresolved emission via photometric imaging techniques. The IR emission from a star with dust is comprised of both stellar and dust flux. To characterize the dust emission, astronomers must accurately measure and subtract the flux from the star. Fits to stellar models use photometric or spectroscopic data collected in the optical and near-IR $(0.9-5 \mu \mathrm{~m})$, where the luminosity of the star is large enough to overwhelm the thermal emission from dust at temperatures $<300 \mathrm{~K}$. The fitted photospheric emission is then extrapolated to the IR. Thus, the excess flux at a particular wavelength is a simple subtraction

$$
\begin{equation*}
F_{\mathrm{E}, \lambda}=F_{\mathrm{m}, \lambda}-F_{\star, \lambda}, \tag{1.10}
\end{equation*}
$$

where $F_{\mathrm{m}, \lambda}$ and $F_{\star, \lambda}$ are the measured and photospheric fluxes, respectively. The amount of excess flux at a particular wavelength can be characterized by the measured flux to the photospheric emission, or the relative flux of the excess

$$
\begin{equation*}
R_{\lambda}=F_{\lambda} / F_{\star, \lambda} \tag{1.11}
\end{equation*}
$$

The fractional luminosity of the IR excess $f_{d}$ characterizes the total emission spectrum, or bolometric luminosity, of the dust with respect to the bolometric stellar luminosity

$$
\begin{equation*}
f_{d}=L_{\mathrm{IR}} / L_{\star} . \tag{1.12}
\end{equation*}
$$

The fractional luminosity can provide a rough estimate of the mass of the dust in the system. This calculation is proportional to $f_{d}$ as well as the bulk density, grain size, and location from the star (Beckwith et al., 2000). We can see, from Figure 1.10, what a simplified SED looks like for a solar type star that has circumstellar dust with different $f_{d}$ values.

However, attributing IR excesses based on unresolved fluxes to be circumstellar in nature is not an easy task. There are numerous astrophysical and systematic sources that can contaminate or mimic an IR excess. Background extragalactic sources (e.g., active galactic nuclei, IR bright galaxies), unresolved projected stellar companions and thin patches of infrared bright interstellar clouds of dust are only a few sources that can mimic and bias the


Figure 1.10: Illustrated are the combined SEDs for a star and circumstellar dust thermal emission. The stellar spectrum is approximated by a blackbody with a temperature of 5600 K . In both panels, the dust is assumed to be at a temperature of 150 K , which peaks at $\sim 20 \mu \mathrm{~m}$. The amount of dust in the system is reflected in the $20 \mu \mathrm{~m}$ emission amplitude. This directly relates to $f_{d}$.
detection of an IR excess. Screening of potential contaminants must be done with great care; follow up studies of potential disk systems are also required to verify the observed thermal excess emission is associated with circumstellar dust.

Resolved images of a debris disk can verify and validate the circumstellar presence of an excess by revealing the structure of the disk. High-contrast optical and near-IR observations trace scattered light, rather than thermal emission, from the dust. It is in these wavelengths that most resolved disks ${ }^{1}$ have been imaged. Since the star is orders of magnitudes brighter than the scattered emission from the dust in these wavelength regimes, high-contrast imaging techniques must be employed. This is usually done by using an opaque disk, known as a coronagraph, to attenuate or block the on-axis stellar light. Coronagraphic techniques reduce the glare from the star and allow faint, nearby structure to be imaged. The first resolved image of $\beta$ Pic (Figure 1.2, taken from Smith \& Terrile, 1984) was taken using a coronagraph and imaged in the optical at the Las Campanas Observatory.

Current high-contrast imaging instruments at most ground based observatories also require an adaptive optics ( AO ) instrument to correct for the refractive distortions imprinted on the stellar wavefront as it passes through our turbulent atmosphere. New extreme-AO systems (e.g., Gemini Planet Imager introduced in Macintosh et al., 2006) are well equipped to image separations as close as 10 AU to some of the closest stars. Information from resolved disks is important as it elucidates degenerate disk parameters obtained from simply analyzing unresolved dust emission. For instance, modelling the SED of the IR excess can be done by either assuming small grains further from the star, or large grains close to the star (Krivov, 2010). Thus, the location of the dust that is causing the emission is important to break the degeneracy (e.g., Figure 13 in Su et al., 2006).

### 1.4.3 Is It A Protoplanetary Or A Debris Disk?

As illustrated in Figure 1.7, the transition out of a PPD, broadly speaking, occurs with the dissipation of the primordial gas. The remnant circumstellar environment can be composed of planets, minor bodies (asteroids and comets), and micron- to mm-sized dust grains, which may have formed during the PPD phase. This post-PPD, gas-depleted, dust-rich disk is known as a debris disk.

However, there is no clear dividing line between the waning of a PPD and the waxing of a debris disk. Age can act as one metric, though there are examples of PPDs that are older than 30 Myr (De Marchi et al., 2013; Scicluna

[^0]et al., 2014), and debris disks that have been found in young clusters. The mass of the disk can also be an indicator, as PPDs are usually a couple of orders of magnitudes more massive than a debris disk, as shown in Figure 1.6. A debris disk, unlike a primordial disk, has a smaller gas to dust ratio. Since these disks are primarily optically thin, their IR excesses, and consequently their fractional luminosities, are smaller. Therefore, a debris disk can be characterized by $f_{d}<10^{-2}$ (Zuckerman, 2001; Wyatt, 2008).

Although there are clear physical traits that debris disks possess, it is important to note that there can be ambiguities in the disk status of a certain system. Guidelines, like those listed in Wyatt et al. (2015), can aid in clearing such distinctions. However such effort will not be discussed here as it is beyond the scope of this thesis.

### 1.5 Debris Disks as Signposts for Planets

The self-stirred models, which I briefly touched upon in § 1.3.2, have vast implications for concurrent belt and planetary evolution. Although other mechanisms, such as pre-stirring or close-stellar encounters are possible for generating the necessary perturbations to start a collisional cascade, there is evidence, both theoretical and observational, of dust generation due to the influence of planets (e.g., the HD 141569 system, Wyatt, 2005). With the large number of exoplanets discovered every year, and statistical inferences that almost every star is host to a planetary system (Cassan et al., 2012), dust generation via planetary perturbations is likely a significant phenomenon. This presents an opportunity: if dust in debris disks is generated from collisions due to the influence of larger planetary objects, then the dust may act as a signpost for undiscovered planetary systems.

Unresolved debris disk detection can reveal much about the activity in a planetary system. Any excess flux attributed to the star can be used to roughly determine the amount of dust in that system. For stars that are a few hundred million years old, large excess fluxes imply recent collisions, as primordial dust from young systems would have been dissipated millions of years prior (e.g., $\mathrm{BD}+20$ 307; Song et al., 2005). In addition, a number of studies have attempted to determine the correlation between systems with known disks and detected planets. The likelihood of a disk being found with known directly imaged systems is relatively high (e.g., systems like $\beta$ Pic and HR 8799), studies that have tried to find correlations between planet hosts and disk hosts have found conflicting results with strong to no correlation between the two (mainly seen with Spitzer studies; Beichman et al., 2005; Bryden et al., 2009). More recent studies with Herschel seem to provide more
evidence of a positive correlation between cold disks with the presence of low mass planets (see references in Matthews et al., 2014). In essence, a broader characterization of dust around known planet hosts, or vice versa, is necessary to discern the true correlation of this relationship.

Resolved images can reveal structure in the observed debris disk such as gaps, warps, brightness peaks, etc., which can clarify the dust composition, as well as act as fingerprints for possible planetary activity. For instance the shape of the disk in scattered light can be used to place upper limits on the mass of giant planets sculpting the disk (e.g., Kalas et al., 2005; Rodigas et al., 2014). The warp and secondary dust ring seen in scattered light in the $\beta$ Pic system was evidence for a possible planet sculpting the ring, as seen in Figure 1.11 (Heap et al., 2000). Later observations in 2010 confirmed the existence of a $9 \pm 2.5 M_{J}$ planet via direct imaging (Lagrange et al., 2010; Marleau \& Cumming, 2014). The recent CO gas clumps seen in this system by the Atacama Large Millimeter/submillimeter Array (ALMA) ${ }^{2}$ in Chile are thought to be the result of spiral density waves of dust, created in from the gravitational influence of $\beta$ Pic b (Nesvold \& Kuchner, 2015).

Using multi-wavelength modeling of resolved images from the Herschel Space Observatory of the Fomalhaut debris disk system, Acke et al. (2012) showed that cometary collisions were responsible for the dust seen in the disk. The planet in the Fomalhaut system (Kalas et al., 2008) was discovered from direct imaging observations after the dust ring in the system was thought to have been sculpted by a planet. Although the detected planet is not responsible for the current architecture of the ring (Kalas et al., 2013), it leaves the door open to additional discoveries. And recently, Rodigas et al. (2014) derived an analytical expression to determine the mass of a planet interior to any debris ring scattered light observations.

As discussed in § 1.2.2, the architecture of the circumsolar debris disk also contains clues on the influence the planets have had. Gaps in the MAB, known as the Kirkwood gaps, are the result of the unstable resonant structures due to Jupiter's orbit. Both the MAB and EKB are due to the influence of Jupiter and Neptune, respectively, and also responsible for the interplanetary dust (e.g., Morbidelli et al., 2010). An alien observer looking at our dust disk might infer the presence of Jupiter, Saturn and Neptune in the Solar System. Using the simulation results of the distribution of $24 \mu \mathrm{~m}$ dust from Liou \& Zook (1999) shown in Figure 1.12, the three giant planets could be identified by observing the non-uniform radial distribution of dust Jupiter and Saturn scatter dust inward from the EKB, ringlike structure along Neptune's orbit, a dark spot that moves along with Neptune, and time varied observations of the

[^1]

Figure 1.11: A composite image of the $\beta$ Pic debris disk over plotted with the discovery image of the gas giant planet $\beta$ Pic b (Lagrange et al., 2010). The warp and secondary inclined disk were evidence of the influence of the planet found in 2008 and later confirmed in 2010. Image credit:European Space Agency.


Figure 1.12: Simulation of the brightness distribution due to $23 \mu \mathrm{~m}$ interplanetary dust in a face-on view of the Solar System. Shown are the four giant planets in the Solar System, with Neptune's orbit and gravitational influencing the outer architecture of the EKB, and Jupiter and Saturn ejecting particles that are gravitating inwards. From this image, the existence of at least 2 planets can be discerned. Image credit: Liou \& Zook (1999).


Figure 1.13: Illustration of the various circumstellar regions of interest, the temperature of any dust and the standard wavelengths at which the dust emission may peak. Image credit: R. Patel.
dynamical behavior of the disk structure. What is clear at this is that point once dust is discovered by its unresolved thermal IR excess signature, it can be scrutinized in greater depth with high-contrast and/or high-angular resolution imaging systems to determine the overall architecture of the system.

### 1.6 Evolving Picture of Debris Disks Over Thirty Years

The majority of debris disks are discovered from the IR excess flux from the star, as opposed to resolved imaging which is typically done as followup to further characterize the disk properties. A number of different surveys have been responsible for the plethora of debris disks discovered to date. Here, I will give a brief summary of what we have learned over last thirty years of debris disk observations, focusing largely on detections from unresolved IR excesses, statistics from various surveys as well as the evolutionary context they provide. The focus will be on detections from space based surveys such as IRAS, the Spitzer Space Telescope, and Herschel Space Observatory telescope specifications for which can be found in Tables 1.1, 1.2, and 1.3. In addition, I have listed a summary of major studies in Table B.1. Beyond what I discuss here, excellent reviews can be found in Backman \& Paresce (1993); Zuckerman (2001); Wyatt (2008); Matthews et al. (2014).

It is useful to keep in mind the relationship between the wavelength of

Table 1.1. Spitzer Specifications: 85 cm Primary Mirror.

| Instrument | Mode of Observations | Wavelength Range | Band, spectral range ( $\mu \mathrm{m}$ ) | Beam ( ${ }^{\prime \prime}$ ) or Spectral Resolution |
| :---: | :---: | :---: | :---: | :---: |
| IRAC | Imaging | near-IR | $3.6,4.5,5.8,8.0$ | 1.44, 1.43, 1.49, 1.71 |
| MIPS | Imaging | mid-IR, far-IR | 24, 70, 160 | 6, 18, 40 |
| IRS SL | Spectroscopy | near to mid-IR | 5.2-14.5 | $60<R<128$ |
| IRS SH | Echelle Spectrograph | mid-IR | 9.9-19.6 | $R \sim 600$ |
| IRS LL | Spectroscopy | mid-IR | 14.0-38.0 | $57<R<126$ |
| IRS LH | Spectroscopy | mid-IR | 18.7-37.2 | $R \sim 600$ |

Note. - Spitzer Space Telescope Specifications of Relevant Instruments.
IRAC: Infared Array Camera.
IRS: Infrared Spectrograph.
MIPS: Multiband Imaging Photometer for SIRTF.
detected dust emission to where the dust may be located as well as its temperature to first order. Figure 1.13 provides a cartoon picture of these relationships.

### 1.6.1 Cold Disk Detections

In 1983, the Infrared Astronomical Satellite (IRAS) was launched through a joint initiative between NASA in the United States, the Netherlands Agency for Aerospace Programmes and the Science and Engineering Research Council in the United Kingdom. By the end of its 10 month mission, IRAS had mapped $96 \%$ of the sky at $12,25,60$ and $100 \mu \mathrm{~m}$. This was the first time the entire sky had been imaged in the IR.

Measurements of a few standard stars revealed a peculiar behavior: where they expected a Rayleigh-Jeans trend in the flux as a function of wavelength, they found instead that the measured fluxes of several stars like Vega ( $\alpha \mathrm{Lyr}$ ), Fomalhaut (HD 216956), $\beta$ Pic (HD 39060), and $\epsilon$ Eridani (HD 22049) revealed an excess of flux several orders of magnitude above the predicted photospheric flux at two or more of the longer wavelength bands. This has since been attributed to "a shell or ring of relatively large particles" at distances and that the grain equilibrium temperatures are $\sim 90 \mathrm{~K}$ (Aumann et al., 1984; Backman \& Paresce, 1993). Figure 1.14 shows the predicted spectral energy distributions (SED) of these four stars in the Rayleigh-Jeans regime, along with the measured fluxes from $I R A S$. Thus, the $I R A S$ team identified the first debris disks, aptly named "The Fab Four."

Since the discovery of "The Fab Four", roughly a hundred or so debris disks

Table 1.2. Herschel Space Observatory Specifications: 3.5 m Primary Mirror.

| Instrument | Mode of <br> Observations | Wavelength <br> Range | Band, spectral range <br> $(\mu \mathrm{m})$ | Beam $\left({ }^{\prime \prime}\right)$ or Spectral <br> Resolution |
| :--- | :--- | :--- | :--- | :--- |
| PACS | Imaging | Far-IR | $70,100,160$ | $5.6,6.8,11.3$ |
| SPIRE | Imaging | far-IR | $250,350,500$ | $17.6,23.9,35.2$ |
| SPIRE - SSW | Spectroscopy | far-IR | $194-313$ | $40<R<1000$ |
| SPIRE- SLW | Spectroscopy | far-IR | $303-671$ | $40<R<1000$ |

Note. - Herschel Space Observatory specifications of relevant instruments. SPIRE: Spectral and Photometric Imaging Receiver. SSW: SPIRE Short Wavelength Spectrometer Array. SLW: SPIRE Long Wavelength Spectrometer Array.
PACS: Photodetector Array Camera and Spectrograph.

Table 1.3. IRAS specifications: 0.6 m primary mirror.

| Instrument | Mode of <br> Observations | Wavelength <br> Range | Band, spectral range <br> $(\mu \mathrm{m})$ | Beam $\left(^{\prime \prime}\right)$ <br> Resolution |
| :--- | :--- | :--- | :---: | :--- |
| IRAS12 | Imaging | mid-IR | 12 |  |
| IRAS25 | Imaging | mid-IR | 25 | $30^{\prime \prime}-120^{\prime \prime}$ |
| IRAS60 | Imaging | far-IR | 60 |  |
| IRAS100 | Imaging | far-IR | 100 |  |

Note. - IRAS specifications of relevant instruments. SPIRE: Spectral and Photometric Imaging Receiver. SSW: SPIRE Short Wavelength Spectrometer Array. SLW: SPIRE Long Wavelength Spectrometer Array. PACS: Photodetector Array Camera and Spectrograph.


Figure 1.14: The SEDs of The Fab Four stars - the first four disks discovered around main-sequence stars - taken from Backman \& Paresce (1993). Starting from top-left and moving clockwise: Vega ( $\alpha$ Lyr), Fomalhaut ( $\alpha$ PsA), $\epsilon$ Eridani, and $\beta$ Pictoris. The IRAS fluxes of these stars are shown at $12,25,60$ and $100 \mu \mathrm{~m}$ with the Rayleigh-Jeans photospheric flux over-plotted. The large excess flux measured for these stars indicates optically thin circumstellar disks of cold micron sized grains. Image credit: Backman \& Paresce (1993)
using IRAS were detected via their far-IR ( $60-100 \mu \mathrm{~m}$ ) excesses showed that these systems possess circumstellar dust in optically thin disks at relatively cold temperatures ( $\sim 20-100 \mathrm{~K}$ ). These temperatures, are derived from blackbody fits to the SED of the excess. The dust in these systems is analogous to dust in the EKB ( $\left.T_{d} \sim 50 \mathrm{~K}\right)$. Hence, the cold dust in these systems are signposts for dynamical planetary activity in the outer regions of these systems, in much the same way the cold dust in our system betrays the existence of Neptune, as it sculpts the cold planetesimal population in the EKB.

The early $\operatorname{IRAS}$ detections mostly found dust around hotter A and B type stars and that roughly $15 \%$ of these main-sequence stars are host to cold dust populations, detected at the $I R A S 60 \mu \mathrm{~m}$ band. Later studies that used improved versions of the original $I R A S$ database (Faint Source Catalog), identified a handful of new debris disk host stars, and increased the incidence of cold dust detections to $20 \%$ around A stars (Rhee et al., 2007). However, a number of these detections could be false, due to the low resolution of the IRAS beam (Moór et al., 2011). The launch of the Spitzer Space Telescope in 2003 commenced a series of surveys to understand the evolution and existence of dust around nearby stars. The Formation and Evolution of Planetary Systems ${ }^{3}$ (FEPS; Meyer et al., 2006) surveyed $\sim 300$ stars between FGK spectral types at ages from 3 Myr to 3 Gyr. These studies found that cold dust, or excesses at the Spitzer/MIPS $70 \mu \mathrm{~m}$ band, was present around $33 \%$ of A stars at all ages, and at relatively bright dust brightnesses (Su et al., 2006). The DEBRIS collaboration ${ }^{4}$ recently published their results after conducting a survey for cold dust around 86 main-sequence A stars using the Herschel Space Observatory. They found that roughly $25 \% \pm 5 \%$ of A stars possess far-IR excess emission at $100 \mu \mathrm{~m}$ (Thureau et al., 2014).

A similar search for cold dust around solar-type stars (F, G, and K spectral type) revealed something different. The incidence of excesses in the far-IR are lower and a stronger function of the stellar age than for the incidence of excesses around A stars. A number of Spitzer/MIPS $70 \mu \mathrm{~m}$ surveys (e.g., Trilling et al., 2008; Bryden et al., 2006; Beichman et al., 2006; Hillenbrand et al., 2008) have found that on average, the incidence of $70 \mu \mathrm{~m}$ excesses is $\sim 15 \%$. Trilling et al. (2008) found $\sim 16 \%$ of older stars in the field possess far-IR excesses, while these numbers are consistent, but lower ( $\sim 10-13 \%$ ) from other studies of field objects (Beichman et al., 2006; Bryden et al., 2006). The Herschel DUNES ${ }^{5}$ survey searched for cold dust around a sample of stars with ages between 100 Myr to 8 Gyr and found that $20 \%$ of solar type stars possess

[^2]$100 \mu \mathrm{~m}$ excesses in this age range (Eiroa et al., 2013). Figure 6 in Wyatt (2008) shows a relatively shallow decline for the measured $70 \mu \mathrm{~m}$ relative flux ( $R_{70}$; Equation 1.11) of stars at a few Myr up to 800 Myr , in terms of both the number of stars with far-IR excesses, and to the magnitude of the detected excess.

### 1.6.2 Warm Disk Detections

As depicted, in Figure 1.13, mid-IR excesses from $10-30 \mu \mathrm{~m}$ are typically associated with warm dust assuming peak emission at these wavelengths. Though this is not always the case (as the emission at these wavelengths could be due to the Wien tail of colder dust that peaks at longer wavelengths), understanding the IR excess at these wavelengths is still crucial in understanding the evolution of dust in these systems. For the moment, we will assume that these mid-IR excesses are caused by dust in regions analogous to the MAB. This type of dust can act as a signpost for activity in the inner regions of planetary systems, as seen from formation of the Zodiacal cloud in our own system, or the formation of terrestrial planets in others (Song et al., 2005).

The majority of known mid-IR excesses were discovered from surveys using the Spitzer/MIPS at $24 \mu \mathrm{~m}$ and the Spitzer/IRS instruments. Unlike excesses in the far-IR, the incidence of excesses in the mid-IR range were found to be a strong function of age. For B and A stars, the incidence of $24 \mu \mathrm{~m}$ excesses from Spitzer/MIPS detections is roughly $1 / 3$ for most ages (Wyatt, 2008) with slight variations. Siegler et al. (2007) found this incidence to be $10_{-3}^{+17} \%$ for A stars in the 50 Myr IC 2391 open cluster. Chen et al. (2012) found this rate to vary slightly between stars in Upper Scorpius Centaurus (11 Myr; $25_{-5}^{+6} \%$ ), Upper Centaurus Lupus ( $15 \mathrm{Myr} ; 27 \pm 4 \%$ ), and the Lower Centarus Crux ( $17 \mathrm{Myr} ; 24 \pm 5 \%$ ) star forming regions. The study performed by Rieke et al. (2005), which combined data from Spitzer, ISO, and the IRAS missions, found that at young ages, roughly $50 \%$ of A stars possess mid-IR excesses. They also found that although these excesses persist at later ages, the incidence of stars with strong excesses declines much more rapidly than for excesses with more intermediate excesses ${ }^{6}$.

For solar type stars, the incidence of warm excesses is a much stronger function of stellar age. At the youngest ages between 5-50 Myr, the incidence of $24 \mu \mathrm{~m}$ excesses has been reported to be between $44 \%$ and $22 \%$ (Siegler et al., 2007; Chen et al., 2012). At later ages, this incidence rate drops to $10 \%$ for stars at ages $\sim 300 \mathrm{Myr}$ (Meyer et al., 2008) and $<4 \%$ for stars older than

[^3]

Figure 1.15: Top: Compiled incidence of $24 \mu \mathrm{~m}$ excesses from different, spectral types, and ages. Data here was compiled from Meyer et al. (2008) and Siegler et al. (2007). Bottom: Relative $24 \mu \mathrm{~m}$ ratios for stars plotted against the stellar age for Solar type stars. The horizontal dotted lines show the relative flux thresholds equal to 1 and 1.15. The data were taken from Siegler et al. (2007). Image credit: Wyatt (2008).

1 Gyr (Trilling et al., 2008). A good summary that encompasses most of these statistics can be found in the top panel of Figure 1.15, which shows the fraction of stars with $24 \mu \mathrm{~m}$ excesses for different spectral types, stellar clusters and in different age bins. The bottom panel of the same figure shows how the magnitude of the detected $24 \mu \mathrm{~m}$ excess evolves for stars at different ages, with the strongest excess at earlier ages, and relatively no detected excess flux at Gyr ages.

If we assume that the detected excess emission corresponds to dust at a particular temperature, and hence a particular radius, as shown in Equation 1.9, then the wavelength dependent decay in excess fraction might be explained by inferring that dust closer to the star would decay more rapidly than dust further away. This is similar to the dust distribution in our own Solar System, where the mass of the MAB is lower than that of the EKB.

### 1.6.3 Disk Evolution: Stochastic or Steady-State?

One thing that can definitively be inferred from observations is the decrease in excess emission as stars age. In other words, though dust is replenished from collisions, the total disk mass is not conserved due to dissipative forces discussed in § 1.3.2. This trend persists across excesses detected at different wavelengths, although excesses in the far-IR decay slower than those in the mid-IR excesses, and at different rates around different types of stars.

The large spread of mid- and far-IR excesses for A stars of different ages can be explained by a steady state interpretation, where the dust evolves through collisions from a stirred belt (Su et al., 2006; Wyatt, 2008), losing material due to photo-radiative forces. A similar interpretation is typically invoked for the evolution of $24 \mu \mathrm{~m}$ and $70 \mu \mathrm{~m}$ detected dust for Solar type stars, as the dust persists for billions of years at a steady pace. The collisional evolution of MABlike dust can explain the steady decay of observed warm dust excesses (Wyatt, 2008). The small number of $70 \mu \mathrm{~m}$ (far-IR) excesses detected for FGK stars might be indicative of less massive disks around these type of stars compared to A stars, which would in turn reduce the observed fractional excess (Wyatt, 2008).

However, stochastic evolution cannot be discounted as it can explain the observed excess emission from a number of systems. Stochastic processes must be at work in stars like Vega, where the inferred mass loss rate is too high to be explained from steady state evolution (Su et al., 2006). Massive collisions of large objects and density wave perturbations are likely responsible for the large amount of gas and dust seen in the $\beta$ Pic system (Telesco et al., 2005; Nesvold \& Kuchner, 2015). Stochastic evolution might also be responsible for the observed warm dust excesses around solar type stars, rather than the
steady state MAB evolution. The rapid decay of $24 \mu \mathrm{~m}$ excess incidences for FGK stars is circumstantial evidence of terrestrial planet formation as large planetesimals may induce collisions amongst the smaller $\sim 1000 \mathrm{~km}$ sized bodies or a destruction of fully grown planetoids (Meyer et al., 2008; Wyatt, 2008).

### 1.7 What Is Missing?

Unfortunately, the degeneracy of the dominant physical process governing the dust - and subsequent planetary - evolution can only be broken by learning about the presence of dust throughout the system. Characterization of debris disks is not an easy task, as multiple surveys are required to determine the presence of dust at different wavelengths - and hence different temperatures. However, the majority of disk detections have occurred in the far-IR. The cold dust surveys have no doubt pushed the threshold of dust detection and characterization to fainter levels, in some cases as faint as the Solar System's dust disk.

However, the relatively small incidence of warm dust detections, in comparison with cold dust detections needs to be addressed, given the sample sizes and instrument sensitivity of the past surveys (discussed in detail in § 2.1. Recent work using reprocessed Spitzer/IRS data has shown that a large number of previously detected cold dust systems also posses a warm dust component (Chen et al., 2014). Whether these are separate disks or different co-located dust populations can be ambiguous. What is certain is that identification and characterization of more warm dust systems will aid in determining the ubiquity of solar system analogs, and perhaps even the prospects of searching for a system whose inner regions are hospitable for conditions seen here on Earth.

In hopes of furthering our understanding of warm dust systems, and their role in understanding our own Solar System's evolution, I conducted a series of surveys to identify and characterize previously undetected warm dust hosts in the solar neighborhood. I continue this thesis in $\S 2$, by introducing the WISE space-based telescope, how the data from this survey can be used to identify warm disks, how the WISE mission supersedes the last all-sky IR survey, and how it complements the past pointed space based surveys. In Chapter 3, I present a survey to identify disks around Hipparcos stars within the solar neighborhood, from their WISE color excesses. I show how the WISE data can be refined and precisely calibrated to include saturated stars, eliminate major contaminants, and accurately determine the photospheric WISE colors, with which to identify faint excesses. In Chapter 4, I enhance the first survey by verifying and validating the excesses we previously found through improved methods to calibrate our confidence levels and the photospheric flux,
as well as remove additional contaminants from high-resolution WISE images. In chapter 5, I expand on the first two studies by presenting a preliminary analysis, with which I identify a larger sample of debris disks between 75 and 120 pc . The importance of these three studies are discussed in chapter 6 , after which I conclude by outlining how I plan to build upon this work to study the evolution of warm disks in the solar neighborhood.

## Chapter 2

## Detecting Debris Disks with the Wide-Field Infrared Survey Explorer

### 2.1 Limitation of Past Surveys

What is apparent from the plethora of debris disk studies over the last three decades is the differences in the reported incidence rate of excesses. Though there is a consensus in terms of typical rates for a given spectral type at various stellar ages, the differences, even within these different bins, require further consideration.

There are a few reasons why these differences exist. The first is instrument sensitivity. Different instruments aboard these satellites are sensitive to different degrees. A good review can be found in Wyatt (2008), where he describes the limiting fractional excess $R_{\lambda, \text { lim }}$ above which a disk is detectable, typically calculated based on the limits of the faintest disk detected in the survey. Equation 11 in Wyatt (2008) defines the lowest fractional luminosity above which a disk is detectable

$$
\begin{equation*}
f_{\mathrm{det}}=6 \times 10^{9} X_{\lambda} \frac{R_{\lambda, \lim } L_{\star}}{r^{2} T_{\star}^{4}} \frac{B_{\lambda}\left(T_{\star}\right)}{B_{\lambda}\left(T_{d}\right)} \tag{2.1}
\end{equation*}
$$

Figure 2.1 shows the limiting fractional luminosity from a few different surveys as a function of orbital separation. From IRAS to Spitzer, improvements in both detector technology and an increase in mirror size have allowed for the detection of fainter and fainter dust populations. Hence, the increase of incidence rates from $\operatorname{IRAS}$ to Herschel does not come as much of a surprise given that Spitzer and Herschel are sensitive to fainter dust (cold or warm).


Figure 2.1: This plot shows the limiting fractional luminosity as a function of distance from the star based on data from the DEBRIS survey. Above these lines, $25 \%$ of the stars in DEBRIS were detected by surveys conducted by IRAS, Spitzer/MIPS ( 24 and $70 \mu \mathrm{~m}$ ) and Herschel/PACS (100 and $160 \mu \mathrm{~m}$ ) (Image credit: Grant Kennedy in Matthews et al., 2014)

Differences in incidence rates can also arise due to the threshold of an excess some studies may adopt compared to others. As explained in § 1.4.2, the excess flux is determined from the measured IR flux subtracted from the photospheric flux, which is extrapolated from model fits to optical and near-IR flux measurements. Studies may determine the significance of an excess detection from this subtraction on a case-by-case basis. Other studies may identify excesses based on their statistical significance in a distribution of photosphericsubtracted excesses. However, stellar variability, and more importantly poor calibration of survey systematics of the optical and near-IR data - which is taken over multiple epochs and by various instruments - result in a greater incidence of false detections, as well as a decrease in survey sensitivity.

Studies that used pointed observations with Herschel or Spitzer were limited to sample sizes of $\sim 500$ stars, due to the pointed nature of the satellite. And although $\operatorname{IRAS}$ was an all-sky mission, it produced only a couple hundred excess sources, the majority of which were detected at $\lambda \geq 60 \mu \mathrm{~m}$. The study by Rhee et al. (2007) searched for excesses around $\sim 622$ Hipparcos mainsequence stars, and produced roughly 50 new excesses, the majority of which were still cold disk detections. We have seen that cold dust is easier to detect due to the large contrast with the photosphere in the far-IR. Low contrast
becomes an issue in the mid-IR, where there are a relatively small number of warm dust detections.

The small number of warm dust detections is due to the small coverage of very sensitive pointed satellites like Spitzer and Herschel, and the relatively low resolution and sensitivity of the last all-sky mission, $I R A S$, where the resolution of the $I R A S$ beam was $30^{\prime \prime}$ at $12 \mu \mathrm{~m}$. To address these limitations, in this thesis, I aim to detect warm dust systems with the latest all-sky infrared mission: the space-based Wide-Field Infrared Survey Explorer.

### 2.2 The Wide-Field Infrared Survey Explorer Mission

The success of the $\operatorname{IRAS}$ mission was one of the motivations for launching another new and improved infrared all-sky mission. The goals of the Wide-Field Infrared Survey Explorer mission (WISE; Wright et al., 2010) were to observe the entire sky at two near-IR and two mid-IR wavelengths, thus improving and complementing the achievements of $I R A S$. In this section, I discuss the details of the WISE mission. Analysis of data from the WISE survey constitutes the bulk of my thesis. In the following section, I will summarize the WISE mission, explain its purpose and technical specifications, and discuss how data from the mission can be used to identify circumstellar dust.

### 2.2.1 Mission Overview

WISE is an Earth orbiting observatory, 525 km above the Earth's surface. WISE is funded by NASA/JPL and launched on December 14th, 2009. It is a medium-class explorer mission weighing 750 kg . The satellite consists of a 40 cm diameter telescope and four detectors which are cooled by solid hydrogen cryostats. Two of the detectors are designed to image the sky in the near-infrared wavelengths ( $3.5 \mu \mathrm{~m}$ and $4.6 \mu \mathrm{~m}$ ) and two in the mid-infrared $(12 \mu \mathrm{~m}$ and $22 \mu \mathrm{~m})$. Figure 2.2 shows an illustration of the physical satellite.

The mission was successful in scanning $99.9 \%$ of the entire sky in the aforementioned IR bands. WISE's detector field of view is $47^{\prime}$ on a side. During its continual orbit around the Earth, overlapping frames were observed at 11 second cadences ( 8.8 s of integration). The overlap of frames, over multiple orbits, ensures greater depth of coverage. In one day, the satellite performs 15 orbits. Figure 2.3 shows the overlapping frames as the satellite orbits the Earth. Further details of the entire mission can be found online ${ }^{1}$ or in Wright

[^4]

Figure 2.2: Illustration of the WISE satellite. Image credit: Wright et al. (2010).


Figure 2.3: WISE coverage evolution over many orbits of the satellite around Earth. Each frame is a cadence of 11 s , and subsequent observations provide overlapping regions between frames. Lighter to darker shades of gray indicate increasing depth of coverage. Image credit: Wright et al. (2010).
et al. (2010).

### 2.2.2 WISE Bands

The two near-IR channels image the sky at band centered wavelengths of $3.4 \mu \mathrm{~m}$ and $4.6 \mu \mathrm{~m}$ using HgCdTe arrays, each with $18 \mu \mathrm{~m} 1024 \times 1024$ pixels. Both of these detectors are cooled to 32 K . The mid-IR channel detectors image the sky at band centered wavelengths of $12 \mu \mathrm{~m}$ and $22 \mu \mathrm{~m}$ and are made from $\mathrm{Si}: A s$ BIB arrays of the same structure as the near-IR channels. These arrays are cooled to a temperature of 8.2 K . For the remainder of this thesis, I will refer to each of these bands as $W 1(3.4 \mu \mathrm{~m}), W 2(4.6 \mu \mathrm{~m}), W 3(12 \mu \mathrm{~m})$ and $W 4(22 \mu \mathrm{~m})$. Figure 2.4 shows the relative spectral response of each of the detectors.

### 2.2.3 WISE Data Releases

The WISE mission has produced several different data releases. The first release, called the WISE Preliminary Release was made public on April 14, $2011^{3}$ and contained data that covered only $57 \%$ of the sky. The next public release

[^5]

Figure 2.4: Relative spectral response curves for all four WISE bands. Plot was taken from the WISE Explanatory Supplement ${ }^{2}$.
of WISE data was made on March 14, 2012. This data set was called the All-Sky Data Release ${ }^{4}$ and covered the entire sky in all four bands. After the cryostats were depleted, WISE began its "warm" mission, and only collected data in the two near-IR $W 1$ and $W 2$ bands. This commenced the Near-Earth Object WISE (NEOWISE) mission. A subsequent all-sky data release by WISE came on November 13, 2013 called the All-WISE Data Release ${ }^{5}$. For the work I present in the rest of this dissertation, I only use measurements from the All-Sky Data Release, except in comparison with other release.

Since the WISE data are in the public domain, it can easily be accessed online. The online database consists of measurements for over half a billion objects in all four bands. These measurements consist of photometric data for each band, as well as meta-data pertaining to the quality of the data product. The database also consists of Atlas images of the processed data. The Atlas images were created for each WISE band, and are created from the coadded frames, and structured as $1.564^{\circ} \times 1.564^{\circ}$ tiles. The Atlas images can be viewed at http://irsa.ipac.caltech.edu/applications/wise/.

[^6]
### 2.2.4 Cautionary Tales of WISE Data

Before using the WISE data products, it is important to understand all the nuances and aspects of what one might encounter. For instance, the WISE team implemented profile-fitting algorithms to extract photometric flux measurements and uncertainties. The WISE data also provide several meta-data tags for each source to characterize the quality of the measurement. Here I will summarize some of the more important meta-data tags found in the WISE database. All of these pertain to identifying sources whose photometry has a high probability of contamination from artificial and astrophysical sources, and hence are likely to bias the presence of an IR excess (i.e., debris disk).

## Extended Source Contamination

The Two Micron All-Sky Survey (2MASS ; Skrutskie et al., 2006) is a ground based all-sky survey that has mapped the entire sky in three near-IR bands: $J(1.25 \mu \mathrm{~m}), H(1.6 \mu \mathrm{~m})$, and $K_{s}(2.17 \mu \mathrm{~m})$. As a result, the location of known extragalactic extended sources is well known in the near-IR. Stars whose photometry might be contaminated by the flux from a nearby $2 M A S S$ extended source are flagged in WISE using ext_flg meta-data tag. Figure 2.5 shows clearly how the photometry of one example star, HIP 3293, is contaminated from the isophotal footprint of a nearby $2 M A S S$ galaxy.

## Diffraction and Internal Reflection Artifacts from Bright Stars

Source photometry can also be contaminated by optical artifacts. Diffraction spikes from nearby bright sources, scattered light halos from the edge of a bright source's PSF, optical ghosts caused by internal reflections of the telescope optics, and latent images can all contaminate a real source or give rise to a spurious detection. The level of contamination for a source in each of the four WISE bands is given the confusion flag cc_flg - a four character string. For instance, the star HIP 32362's cc_flg=hhdd, implying that the $W 1$ and $W 2$ bands are predominantly contaminated by halo artifacts from a nearby bright star, while the $W 3$ and $W 4$ bands are contaminated by diffraction spikes from a nearby bright source. Figure 2.6 shows locations of spurious sources caused by the different artifacts around an example stars, HIP 32362. A full description of these artifacts can be found in Section IV.4.g of the WISE Explanatory Supplement ${ }^{6}$.

[^7]

Figure 2.5: An example of a star contaminated due to a $2 M A S S$ extended source object. This $W 4$ band image shows the star, HIP 3293, indicated by the blue circle, within the vicinity of a background extragalactic source. The photometry of this star is flagged with extflg=2, indicating that it is within the isophotal footprint of this galaxy, and is likely to be contaminated. Image from WISE All-Sky Atlas Server.

## Moon Contamination

The geocentric orbit of WISE unfortunately meant it had to contend with scattered light from the Moon. WISE's observing pattern was such that it attempted to avoid this scattered light. However, complete avoidance was impossible, and the scattered light from the Moon heavily affected a small fraction of the frames in $W 3$ and $W 4$ relative to the near-IR bands. Figure 2.7 shows the structure of this effect in the $W 3$ and $W 4$ band images, with the star HIP 114340 marked for reference. The level of the contamination is given by the moon_flg and provides the percentage of single frames that are contaminated by the moon for each band. Additional information on Moon contamination in WISE can be found at http://wise2.ipac.caltech.edu/ docs/release/allsky/expsup/sec6_2.html.

## Saturated WISE Photometry

The detectors aboard the WISE spacecraft saturate for relatively bright sources: $8.1 \mathrm{mag}, 6.7 \mathrm{mag}, 3.8 \mathrm{mag}$, and -0.4 mag in $W 1, W 2, W 3$, and $W 4$, respectively. It is important to keep these limits in mind, as the photometry for sources brighter than these saturation limits is unreliable. Additional infor-


Figure 2.6: WISE four band image centered on HIP 32362. The confusion flag for this star is $c c f l g=h h d d$. These flags, one character per band, indicate that the source is real but is most likely contaminated spurious sources resulting from diffraction spikes (d) and halo flux (h) from the nearby bright star. Diffraction spikes and halo flux are marked by red circles and yellow squares, respectively. Image from WISE All-Sky Atlas Server.


Figure 2.7: WISE $W 3$ and $W 4$ images that show structured scattered light contamination from the Moon. The blue marker indicates the location of the star, HIP 114340. The moon flag for this star indicates that $80 \%$ of its frames are heavily affected by scattered Moon light. Image from WISE All-Sky Atlas Server.
mation on the saturation of WISE sources can be found in Section VI.3.d of the WISE Explanatory Supplement ${ }^{7}$.

The profile-fitting algorithm attempts to obtain measurements of saturated sources by using non-saturated pixels in the wings of the source's PSF. Figure 17 in Section IV.4.a.vi. 1 of the Explanatory Supplement shows the WISE magnitudes as a function of their $2 M A S S K_{s}-W I S E$ color. These plots show a different systematic trend for each WISE band. This trend is stronger in $W 1$ and $W 2$, which are the limiting bands in searching for excesses. As I will show in Chapter 3, these trends can be corrected, and thus allow for brighter stars to be used in a large survey.

## Internally Inconsistent Variability

The variability flag in the WISE database var_flg indicates the probability that the flux in a particular band is changes as a function of time. The variability may be due to intrinsic astrophysical processes, as is for example chracteristic of pre-main sequence stars. The variability may also be due to a number of different factors pertaining to instrumental artifacts between subsequent single frame observations by WISE, in particular when a star is saturated. Saturation, and other spurious sources may cause variability to arise in one or more, but not all of the WISE bands. These WISE related variabilities are non-physical and must be addressed before searching for excesses.

[^8]Additional information for the variability flag can be found at http://wise2. ipac.caltech.edu/docs/release/allsky/expsup/sec4_4ciii6.html

## Internally Inconsistent Photometry

During the course of this project, we found a peculiar behavior in the WISE data. In some very rare cases, the final reported flux measurement in the All-Sky database - after all relevant single frames for that particular star were coadded by the WISE internal algorithms - significantly differed from the averaged single-frame measured fluxes for the same star. In other words, there seemed to be internal WISE inconsistencies in the measurements of a small percentage of stars, manifesting itself such that the reported coadded photometry was brighter compared to the averaged single frame measurement.

Since we are looking for peculiar (i.e., excesses), we are sensitive to finding these stars. Although there is no reported reason for this phenomenon, we have found a way to deal with this inconsistency and detail it in $\S 2.3$ of Chapter 3.

### 2.2.5 Advantages Of Using WISE Over Other Space Telescopes To Find Debris Disks

$I R A S^{\prime}$ all-sky design made it ideal to to search for excesses around a large number of stars. And though it found a few hundred excesses, its successor WISE - is capable of advancing this search. This is due to two reasons. The first is that WISE is a more sensitive survey compared to $I R A S$. IRAS was sensitive down to $\sim 0.2 \mathrm{Jy}$ in its 12 and $25 \mu \mathrm{~m}$ bands. In comparison, WISE is $160-200 \times$ more sensitive in its $W 3$ and $W 4$ bands. Figure 2.8 shows the absolute sensitivity of both $\operatorname{IRAS}$ and WISE for each of their IR detectors. The second reason why WISE has the ability to outperform $I R A S$ in the midIR is due to WISE's relatively high resolution compared to IRAS. WISE's angular resolution for $W 1-W 4$ is $6.1^{\prime \prime}, 6.4^{\prime \prime}, 6.5^{\prime \prime}$, and $12^{\prime \prime}$, respectively, with an astrometric accuracy of $0.2^{\prime \prime}$. In comparison, the angular resolution of the $12 \mu \mathrm{~m}$ detector on $\operatorname{IRAS}$ is $30^{\prime \prime}$ but has a positional accuracy of $20^{\prime \prime}$. Figure 2.9 shows the same patch of sky seen by $I R A S$ at $25 \mu \mathrm{~m}$ and WISE at $22 \mu \mathrm{~m}$. The comparison images clearly show that with the superior angular resolution, WISE has the ability to identify a plethora of unconfused debris disks from their IR excesses. This is also reflected in the sheer number of point sources catalogued in the WISE All-Sky Database ( $\sim 600,000,000$ ), compared to those in the IRAS database ( $\sim 270,000$ ).

The size of the WISE All-Sky Database is also important because it provides an advantage over surveys that use Spitzer or Herschel to search for excesses. Figure 2.10 compares the projected sensitivity of instruments on board


Figure 2.8: Sensitivity of different IR surveys. Plotted are the WISE, IRAS, and $2 M A S S$. The plotted WISE limits are $5 \sigma$ point source sensitivities, calculated in unconfused ecliptic regions. These estimates improve at the galactic poles.


Figure 2.9: Images from $I R A S$ at $25 \mu \mathrm{~m}$ (left panel) and WISE $22 \mu \mathrm{~m}$ (right panel), centered on $\mathrm{RA}=10 \mathrm{~h} 09 \mathrm{~m} 39.5 \mathrm{~s}$, $\mathrm{DEC}=-60^{\circ} 14^{\prime} 47^{\prime \prime}$ sky coordinates. The difference in resolution and sensitivity is apparent between the two. Image from WISE All-Sky Atlas Server and IRAS Atlas Server.

WISE, Spitzer, and $I R A S$ in the mid-IR. While it is clear that WISE is able to detect fainter dust than $\operatorname{IRAS}$ at similar wavelengths, the Spitzer/MIPS and IRS instruments have been used to find fainter dust populations. This is no surprise because Spitzer is a pointed survey, with higher angular resolution than WISE and can hence increase its sensitivity to fainter dust through longer observing times. But, since pointed surveys can only observe a tiny fraction of the sky, the data products from an all-sky survey, like WISE can search for excesses around stars which have never been observed.

### 2.3 Detecting Thermal Emission From Debris Disks with WISE

### 2.3.1 The WISE Color Excess Technique and its Advantages

Most debris disks have been found from the subtraction of the measured IR flux from the modelled photospheric flux, as described in §1.4.2. An alternative to photospheric modelling of individual stars is to derive an estimate of the excess empirically by calculating star's "color excess". The astronomical magnitude system defines the color of a star by the logarithmic ratio of fluxes at two


Figure 2.10: Disk brightness sensitivities for dust at different radial locations for various surveys. The curves are calculated by using Equation 2.1, assuming a stellar temperature for an A0 star at $T_{\star}=9000$ K. $R_{\lambda}$ for Spitzer/IRS is 0.024 (Chen et al., 2006), 0.1 for Spitzer/MIPS $24 \mu \mathrm{~m}$ (Rieke et al., 2005) and 0.12 for WISE W4 (derived from Patel et al., 2014a). Disks can only be detected if they fall above these curves. The location of the Asteroid belt and EKB are plotted for context.
different wavelengths

$$
\begin{equation*}
m_{\lambda_{1}}-m_{\lambda_{2}}=-2.5 \log F_{\lambda_{1}} / F_{\lambda_{2}}, \tag{2.2}
\end{equation*}
$$

where $\lambda_{1}<\lambda_{2}$. For our purposes, we will assume that $\lambda_{1}$ is between $2-5 \mu \mathrm{~m}$ and $\lambda_{2}>10 \mu \mathrm{~m}$. If we knew the "photospheric color", (i.e., color of the dustfree star) $\left(m_{\lambda_{1}}-m_{\lambda_{2}}\right)_{\star}$, then we can determine the color excess, by subtracting the photospheric color from the measured color $\left(m_{\lambda_{1}}-m_{\lambda_{2}}\right)_{m}$

$$
\begin{align*}
E\left[m_{\lambda_{1}}-m_{\lambda_{2}}\right] & =\left(m_{\lambda_{1}}-m_{\lambda_{2}}\right)_{m}-\left(m_{\lambda_{1}}-m_{\lambda_{2}}\right)_{\star}  \tag{2.3}\\
& =m_{\lambda_{2 \star}}-m_{\lambda_{2 m}}, \tag{2.4}
\end{align*}
$$

where we assume that $m_{\lambda_{1 \star}}=m_{\lambda_{1 m}}$, and that the photospheric color is estimated empirically from the average or median value of a large set of measurements of similar stars. For photospheric colors consistent with a RayleighJeans slope, $E\left[m_{\lambda_{1}}-m_{\lambda_{2}}\right]=0$. Thus, stars with excesses can be identified by positive, non-zero color excesses such that $E\left[m_{\lambda_{1}}-m_{\lambda_{2}}\right]>0$.

Searching for excesses by using color can be advantageous over searching for excesses from photospheric fitting. The latter technique can introduce inherent biases in measuring the dust emission. The photospheric emission in the IR is estimated from fitting a photospheric model using photometric or spectroscopic data from observations at different epochs. Intrinsic stellar variability will offset any predicted IR flux, subsequently over- or underestimating the amount of IR excess flux. But more importantly, by using data from multiple epochs and different instruments, the relative systematic uncertainties between the flux measurements will reduce the survey sensitivity, and subsequently the significance of the dust emission one is trying to extract.

However, if the photospheric flux is determined by fitting contemporaneously obtained data from the same instrument, the relative systematic uncertainties disappear. For example, Lawler et al. (2009) conducted a study that used Spitzer/IRS spectra, which span shorter near-IR wavelengths, as well as mid-IR wavelengths of interest to detecting excesses. By using the shorter wavelength end of the spectra as an anchor for the photospheric emission, they were then able to predict the photospheric flux at in the mid-IR. Most surveys do not have the capability to simultaneously measure flux in short and long wavelength bands. This limitation makes SED fitting the primary method to identify excesses. The difference in the flux of the detected excess between "color excesses" and "photospheric fitting" is small and only becomes relevant when searching for faint excesses $\left(f_{d}<10^{-4}-10^{-7}\right)$. Though when the goal is to attain greater sensitivity to solar system like dust $\left(f_{d} \sim 10^{-7}\right)$,
the additional sensitivity becomes invaluable.
It is in this regime that WISE has the largest advantage. For the first time, WISE has afforded astronomers the ability to conduct an IR excess search of debris disks through photometric data obtained contemporaneously at both photospheric and dust thermal emission wavelengths of the entire sky. Thus, it only makes sense to take advantage of the properties of this data and search for IR excesses using the more sensitive color excess search technique. In this case, equation 2.3 will look like

$$
\begin{equation*}
E[W i-W j]=(W i-W j)_{m}-(W i-W j)_{\star}, \tag{2.5}
\end{equation*}
$$

where $W i$ and $W j$ are the WISE bands described in $\S 2.2 .2$, such that $W i=$ $W 1, W 2$, or $W 3$ and $W j=W 3$ or $W 4$ with the constraint that $W i<W j$. The work that I will present in the rest of this thesis is based on the measurements defined in equation 2.5. By using the color excess technique in conjunction with the all-sky coverage data from WISE, I will not only be able to identify a large number of excesses but, also gain sensitivity to fainter warm disks around stars that were previously missed due to either lack of resolution or coverage.

### 2.4 Previous WISE Debris Disk Studies

The series of studies that I will be presenting in the subsequent chapters are by no means the first or only studies that have searched for debris disks using data from WISE. Here, I will summarize the current literature of WISE studies to detect debris disks.

Studies have used data from different data releases on a variety of different data sets to search for debris disks. In particular, a number of studies have searched for excesses around different sets of exoplanet populations to study the relationship between debris disks and planets. Krivov et al. (2011) and Morales et al. (2012) determined that $\sim 2 \%$ of known exoplanet transiting hosts possess warm dust based on having WISE W3 or $W 4$ excesses. Kennedy et al. (2012), Ribas et al. (2012), and Lawler \& Gladman (2012) searched for excesses around the large number of potential planet host stars in the Kepler field. Altogether, roughly two dozen stars with $W 3$ or $W 4$ excesses were identified.

Other experiments aimed to study the evolution of disks around a younger set of stars. The Scorpius-Centaurus OB association was heavily scrutinized by Rizzuto et al. (2012), Luhman \& Mamajek (2012), and Riaz et al. (2012). About 150 stars with excesses were identified from these studies. Other studies focused on WISE debris disk searches around subsets of solar neighborhood stars within certain spectral type ranges. Avenhaus et al. (2012) found no
significant WISE excess flux around 103 M-dwarfs, while Vican \& Schneider (2014) identified 98 excesses from a sample of $\sim 8800$ solar type stars.

Wu et al. (2013) and Kennedy \& Wyatt (2013) searched for excesses around a larger, unbiased sample of stars. The latter study searched for $W 3$ excesses, around main-sequence Hipparcos stars, while the former study searched for W4 excesses around the same set of stars. Kennedy \& Wyatt (2013) found 7 new $W 3$ excesses with an incidence rate of $<1 \%$ for warm dust in the habitable zone of main sequence stars. Wu et al. (2013) identified roughly 70 new bright $W 4$ excesses for stars out to 200 pc . In total, roughly 250 new excesses were identified by all these studies using data from WISE. These studies have increased our understanding of warm dust, and how it relates to systems of different ages, as well as systems with known planets.

There are a number of biases inherent in all these surveys. The first is that due to the saturation limits of WISE, relatively nearby stars were not included in these surveys. A number of these studies have self identified or have since been shown to have reported false excesses. Certain false-excesses were identified by Kennedy \& Wyatt (2013) in their own study, while we have identified a number of false-excesses from studies such as Vican \& Schneider (2014) in the subsequent chapters. All of these studies used SED fitting or color thresholds without subtracting the photospheric color to identify an excess both methods which can introduce false excesses (see § 2.3.1). False-positives can also be introduced due to caveats in the WISE data (some of which are discussed in $\S 2.2 .4$ ). In fact, none of these past studies have taken a full account of all these false-positive sources. These false-positive sources not only contaminate the literature, but also decrease a survey's sensitivity. Therefore, the full potential of WISE's sensitivity in searching for mid-IR excesses has not been realized.

In the following chapters, I will address these biases and present a set of studies that complements, as well as improves upon the search for warm dust with WISE. I utilize the WISE data to accurately understand the systematic behavior of the WISE data and identify warm dust around nearby main-sequence stars through the use of empirically identified WISE colors in addition to incorporating bright, saturated WISE photometry. Thus, not only are we able to find faint warm dust in some of these systems, relative to published studies, it will search for undetected excesses around nearby bright stars.

## Chapter 3

## Identification of Warm Debris Disks Within 75 pc

The study presented here is the first in a series of three to identify mid-IR excesses with WISE at W3 and W4. This study has been published in the Astrophysical Journal Supplement Series, volume 212, on April 24, 2014. Only a portion of Figure 6 is shown in this paper. The full set can be found in §D.1. In addition, only a portion of Tables 5, 6, and 7 are shown in this article. The complete tables can be found in § B. 2.

# A SENSITIVE IDENTIFICATION OF WARM DEBRIS DISKS IN THE SOLAR NEIGHBORHOOD THROUGH PRECISE CALIBRATION OF SATURATED WISE PHOTOMETRY 

Rahul I. Patel ${ }^{1}$, Stanimir A. Metchev ${ }^{1,2}$, and Aren Heinze ${ }^{1}$<br>${ }^{1}$ Department of Physics \& Astronomy, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-3800, USA; rahul.patel. 1 @stonybrook.edu<br>${ }^{2}$ Department of Physics \& Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada Received 2014 January 12; accepted 2014 March 10; published 2014 April 24


#### Abstract

We present a sensitive search for WISE $W 3(12 \mu \mathrm{~m})$ and $W 4(22 \mu \mathrm{~m})$ excesses from warm optically thin dust around Hipparcos main sequence stars within 75 pc from the Sun. We use contemporaneously measured photometry from WISE, remove sources of contamination, and derive and apply corrections to saturated fluxes to attain optimal sensitivity to $>10 \mu \mathrm{~m}$ excesses. We use data from the WISE All-Sky Survey Catalog rather than the AllWISE release because we find that its saturated photometry is better behaved, allowing us to detect small excesses even around saturated stars in WISE. Our new discoveries increase by $45 \%$ the number of stars with warm dusty excesses and expand the number of known debris disks (with excess at any wavelength) within 75 pc by $29 \%$. We identify 220 Hipparcos debris disk host stars, 108 of which are new detections at any wavelength. We present the first measurement of a $12 \mu \mathrm{~m}$ and/or $22 \mu \mathrm{~m}$ excess for 10 stars with previously known cold ( $50-100 \mathrm{~K}$ ) disks. We also find five new stars with small but significant $W 3$ excesses, adding to the small population of known exozodi, and we detect evidence for a $W 2$ excess around HIP 96562 (F2V), indicative of tenuous hot ( 780 K ) dust. As a result of our WISE study, the number of debris disks with known 10-30 $\mu \mathrm{m}$ excesses within 75 pc (379) has now surpassed the number of disks with known $>30 \mu \mathrm{~m}$ excesses ( 289 , with 171 in common), even if the latter have been found to have a higher occurrence rate in unbiased samples.


Key words: infrared: planetary systems - planetary systems - protoplanetary disks - stars: statistics zodiacal dust

Online-only material: color figures, extended figure, machine-readable tables

## 1. INTRODUCTION

Numerous surveys have been conducted to search for dusty disks around main sequence stars over the last three decades. The all-sky survey performed by the Infrared Astronomical Satellite (IRAS) was the first to detect infrared (IR) excess emission from circumstellar dust disks at 25 and $60 \mu \mathrm{~m}$, with $\sim 170$ disks identified in all. Subsequent pointed surveys with the Infrared Space Observatory (ISO), the Spitzer Space Telescope, and the Herschel Space Observatory, and the recent all-sky survey by the AKARI satellite have greatly increased the number of disks discovered. To date, over 350 debris disks are known around main sequence stars within 75 pc (e.g., Su et al. 2006; Moór et al. 2006, 2009, 2011; Bryden et al. 2006; Rhee et al. 2007b; Trilling et al. 2008; Hillenbrand et al. 2008; Carpenter et al. 2009; Mizusawa et al. 2012; Fujiwara et al. 2013; Eiroa et al. 2013; Wu et al. 2013; Cruz-Saenz de Miera et al. 2014, and references therein), and several hundred more around more distant stars, including open cluster members, out to $\sim 1 \mathrm{kpc}$ (e.g., Siegler et al. 2007; Currie et al. 2008a, 2008b).

Most ( $\sim 85 \%$ ) of the known debris disks in the solar neighborhood are comprised of cold ( $<100 \mathrm{~K}$ ) circumstellar dust. These have been identified through their characteristically strong emission at wavelengths longer than $30 \mu \mathrm{~m}$, at which the disks are often orders of magnitude brighter than the stellar photosphere. This cold dust is analogous to debris produced from destructive collisions in the solar system Edgeworth-Kuiper Belt (EKB). The dust has to be continually produced in such collisions because its lifetime in the system is short: large grains spiral into the star due to Poynting-Robertson drag, and small grains are blown outward by radiation pressure. Both processes remove dust on characteristic time scale shorter than one million years
(Backman \& Paresce 1993): much less than the ages of stars in the solar neighborhood. Except in cases of stars with obvious signatures of youth, the detection of cold circumstellar dust demonstrates the presence of a belt of colliding planetesimals which, like the dust, are likely located in the cold outer reaches of the system (i.e., $>10 \mathrm{AU}$ from the star).

Most known, faint warm debris disks have been discovered from pointed surveys with Spitzer (e.g., Su et al. 2006; Trilling et al. 2008; Carpenter et al. 2009). Deep targeted observations with the Spitzer Infrared Spectrograph (IRS; Houck et al. 2004), in particular, have allowed the measurement of excesses peaking in the $10-30 \mu \mathrm{~m}$ range at only $3 \%$ of the photospheric flux at the same wavelengths (Carpenter et al. 2009; Lawler et al. 2009). The advantage in using $5-30 \mu \mathrm{~m}$ mid-IR spectroscopy is that it allows an accurate calibration of the stellar photospheric flux-essential for detecting small excesses. However, pointed surveys by design are limited in scope, and the data interpretation is subject to biases in the sample selection.

WISE offers an opportunity to search for warm debris disks over the entire sky in an unbiased fashion. Though not as sensitive as deep, pointed Spitzer observations, WISE is 100-600 times more sensitive than IRAS and 10-50 times more sensitive than $A K A R I$ in the mid-IR-making it by far the most sensitive all-sky survey at these wavelengths. Through nearsimultaneous and uniform 3-30 $\mu \mathrm{m}$ photometry, WISE also enables accurate calibration of the stellar photospheres, and hence good sensitivity to faint mid-IR excesses with $<10 \%$ of the $10-30 \mu \mathrm{~m}$ photospheric flux.
Numerous searches of the WISE catalog have already been conducted to identify debris disks. Krivov et al. (2011), Morales et al. (2012), Ribas et al. (2012), Lawler \& Gladman (2012), and Kennedy \& Wyatt (2012) sought W3 and W4 excesses
among known extrasolar planet hosts. Approximately two dozen distinct planet-host stars with possible $W 3$ or $W 4$ excesses are found among these studies. Rizzuto et al. (2012), Riaz et al. (2012), Luhman \& Mamajek (2012), and Dawson et al. (2013) sought WISE excesses in the young Scorpius-Centaurus association. The total number of disks identified in these studies is $\approx 160$, with some duplications and/or non-confirmations among the three teams (note that not all of these were debris disks). Finally, Avenhaus et al. (2012), Kennedy \& Wyatt (2013), Wu et al. (2013), Cruz-Saenz de Miera et al. (2014), and Vican \& Schneider (2014) sought debris disks among solar neighborhood stars. Avenhaus et al. (2012) find no new W3 or $W 4$ excesses around the 100 nearest M dwarfs. Kennedy \& Wyatt (2013) identify 15 known and 7 new W3 excesses around Hipparcos stars within 150 pc . An excess at such relatively short wavelengths may indicate the presence of an exozodi: a dust population at a similar temperature to the solar system's zodiacal dust.

The recent studies of Wu et al. (2013) and Cruz-Saenz de Miera et al. (2014) are most similar to ours in design. Wu et al. (2013) seek W4 excesses around Hipparcos stars of all spectral types within 200 pc , while Cruz-Saenz de Miera et al. (2014) seek $W 4$ excesses around F2-K0 stars brighter than $V=15 \mathrm{mag}$. As we discuss in Sections 5.2 and 5.3, our results are mostly complementary to the results from these studies. Importantly, through a careful calibration of WISE photometric systematics, we are able to detect excesses that are fainter than those reported in Wu et al. (2013) and Cruz-Saenz de Miera et al. (2014). Our newly identified disk host stars are also often either brighter (saturated in WISE) than those considered in Wu et al. (2013) and Cruz-Saenz de Miera et al. (2014), or fainter (with $W 4 \mathrm{~S} / \mathrm{N}$ less than 20) than those considered in Wu et al. (2013).

An accurate understanding of WISE photometry systematics is essential to reliable identification of dust excesses. The strongest systematic effect is the over-estimation of the W2 fluxes of bright ( $W 2<6.7 \mathrm{mag}$ ) stars from profile-fit photometry (see Section VI.3.c.i.4. of Cutri et al. 2012), but Kennedy \& Wyatt (2013) and several additional studies also note remnant offsets in the WISE photometry and colors that render some previously reported tenuous excesses uncertain. We address this and other more subtle flux-dependent trends in the WISE photometry in Section 2.4.

Other reasons for mis-identifications include confusion with background IR-bright sources seen in projected proximity, contamination from interstellar cirrus, and unknown amounts of interstellar extinction. Various approaches have been adopted to mitigate these effects, including source position comparisons between the short- and long-wavelength WISE filters, exclusion of extended IR-bright regions in IRAS, confirmation of excesses through spectral energy distribution (SED) fitting, and, importantly, visual inspection of the stellar images (e.g., Kennedy \& Wyatt 2013). We have incorporated all of these techniques, and others, in our approach (Section 2.2), and furthermore have only selected candidates at confidence levels greater than $99.5 \%$ or $98 \%$ at $W 4$ or $W 3$ respectively, based on the empirical scatter in WISE photometry. Importantly, we identify debris disk candidates using only WISE colors: the fact that these are homogeneous and simultaneous set of measurements reduces our vulnerability to stellar variability and other sources of error. Our results therefore present an opportunity for an unbiased analysis of the occurrence and evolution of warm circumstellar dusty disks.

We describe the method we used to identify IR excesses in Section 2. We present our cross-match with the entire Hipparcos
catalog (Perryman et al. 1997; van Leeuwen 2007) with the WISE All-Sky Catalog (ASC; Wright et al. 2010) and define our working sample of stars in Sections 2.1 and 2.2, respectively. Section 2.3 addresses a previously unknown issue that we discovered with the reliability of WISE ASC photometry on certain stars. In Section 2.4 , we outline how we precisely calibrated the WISE photometric systematics to produce a set of reliable debris disk detections for stars in our sample. Section 2.5 describes our IR excess identification procedure. Section 2.6 describes our test with identifying IR excesses in the more recent, AllWISE data release, and presents our arguments for the higher reliability of bright-star photometry in the preceding All-Sky data release. In Section 3, we describe our procedure for quantifying basic disk characteristics. Section 4 offers an analysis of the inferred circumstellar locations of the detected excesses: whether they belong to exozodi, asteroid belt analogs, or previously known colder EKB analogs. Section 5 discusses our results in the context of previous surveys with IRAS, Spitzer, AKARI, and WISE.

## 2. INFRARED EXCESS IDENTIFICATION AT $W 2, W 3$, AND $W 4$

Our goal is to determine the number of Hipparcos stars with circumstellar debris disks, confined to within 75 pc of the Sun and without consideration for youth or the existence of known planets. We search for mid-IR excesses using all WISE color combinations, and select stars with significant IR excesses. Here we detail our infrared excess and debris disk candidate selection procedure.

### 2.1. WISE and Hipparcos Cross-match

We used the Hipparcos catalog, which has photometric and parallactic measurements for 117,955 stars, as our starting sample. We updated the stellar positions from the J1991.25 catalog epoch to J2010.54 (the mean epoch of WISE observations), using the Hipparcos proper motions. We positionally matched the Hipparcos stars to detections from the WISE ASC using the NASA Infrared Science Archive cross-match service ${ }^{3}$ and a 1". 0 matching radius.

Following the cross-match, 159 Hipparcos stars remained unmatched in WISE. We recovered 116 of these stars in the WISE All-Sky Reject Table, which lists objects that were extracted from the WISE Atlas images, but were not included in the AllSky Release Source Catalog because they did not meet the WISE Catalog source selection quality criteria (see Cutri et al. 2012). We performed this experiment only to account for unmatched Hipparcos stars: we did not include objects with rejected WISE extractions in our final analysis.

The remaining 43 unmatched stars are listed in Table 1 along with reasons for their omission. In the end, a total of 117,912 of the original 117,955 Hipparcos stars were positionally matched with WISE sources, and no unexplained match-failures remained.

### 2.2. Sample Definition

We define two samples of stars from Hipparcos: a parent sample and a science sample. The parent sample consists of Hipparcos stars within 120 pc of the Sun with parallaxes accurate to better than $20 \%$. This provides us with a large enough population of stars to determine the photospheric WISE color

[^9]Table 1
Unmatched Hipparcos Stars in the WISE All-Sky Source Catalog

| Object | Reason | Object | Reason |
| :--- | :---: | :---: | :---: |
| HIP 4773 | 1 | HIP 35744 | 2 |
| HIP 24003 | 2 | HIP 35925 | 2 |
| HIP 24188 | 2 | HIP 36051 | 2 |
| HIP 26218 | 1 | HIP 36113 | 2 |
| HIP 26220 | 3 | HIP 40215 | 2 |
| HIP 26221 | 3 | HIP 46675 | 1 |
| HIP 26224 | 3 | HIP 52133 | 1 |
| HIP 26235 | 3 | HIP 52541 | 1 |
| HIP 28868 | 2 | HIP 67207 | 1 |
| HIP 29303 | 2 | HIP 73471 | 1 |
| HIP 29402 | 2 | HIP 85148 | 1 |
| HIP 29669 | 2 | HIP 86512 | 1 |
| HIP 29761 | 2 | HIP 87022 | 1 |
| HIP 30164 | 1 | HIP 88833 | 1 |
| HIP 30616 | 2 | HIP 97589 | 1 |
| HIP 30794 | 2 | HIP 99001 | 1 |
| HIP 30964 | 2 | HIP 107094 | 1 |
| HIP 31423 | 2 | HIP 114110 | 4 |
| HIP 33296 | 1 | HIP 114176 | 4 |
| HIP 35007 | 2 | HIP 118182 | 1 |
| HIP 35681 | 2 |  |  |

Notes. Reasons: 1. Tenuous or no detections in WISE $W 2, W 3$, and $W 4$ images, and a non-existent entry in the WISE All-Sky Source Catalog. 2. Partial or no WISE coverage. 3. Extensive $W 3$ and $W 4$ saturation because of an IR-bright surrounding nebulosity. 4. Not an astrophysical object: a Hipparcos object identified as an artifact, produced by scattered light from a nearby star.
dependencies. These stars are mainly within the Local Bubble (Lallement et al. 2003), have little line-of-sight interstellar extinction ( $A_{V} \lesssim 0.5 \mathrm{mag}$ ), and are suitable for correlating optical and infrared colors. The science sample is a subset of the parent sample limited to 75 pc . These are stars with accurate parallaxes, giving a clear volume limit to our study. In this study we report and analyze detections of debris disks only around stars in the 75 pc science sample.

For improved reliability of our debris disk host candidate selection, we applied a number of selection criteria to the parent and science samples. These are described in detail below, and summarized at the end of this section.

### 2.2.1. Parent Sample: Stars within 120 pc

We first eliminated stars within $5^{\circ}$ of the galactic plane. Despite angular resolution 2.5-5 times better than that of IRAS at 12 and $25 \mu \mathrm{~m}$, WISE images still face strong contamination from interstellar cirrus close to the plane of the Galaxy. In addition, the local background for WISE photometry is estimated from a $50^{\prime \prime}-70^{\prime \prime}$ annulus around each target, which can result in erroneous flux measurements when the surrounding sky brightness varies on these scales.

We further removed classes of stars in which mid-IR excesses are unlikely to be caused by circumstellar debris disks. We followed a procedure similar to the one described in Rhee et al. (2007b) to remove giant stars from our sample, by placing an absolute magnitude restriction: we retained only stars fainter than $M_{V}=6.0(B-V)-1.5 \mathrm{mag}$ (Figure 1). We removed stars with SIMBAD luminosity classes of I, II, or III that were missed during the color cut, and other non-main sequence stellar objects: post-asymptotic giant branch stars, white dwarfs,


Figure 1. All Hipparcos stars in our $\leqslant 120$ pc parent sample fall below the prescribed absolute magnitude cut to remove giant stars. The parent sample is restricted to stars with $d \leqslant 120 \mathrm{pc}$ to reduce the effects of reddening from interstellar cirrus. Stars are also restricted to positions outside the galactic plane $\left(|b| \geqslant 5^{\circ}\right)$ to minimize photometric contamination from confusion or interstellar cirrus.
carbon stars, novae, cepheids, cataclysmic variables, high-mass X-ray binaries, planetary nebulae, and Wolf-Rayet stars. Similar to Rhee et al. (2007b), we threw out O-B7 stars ( $B_{T}-V_{T} \leqslant$ -0.17 mag ) to avoid contamination in our IR excess selection from free-free emission associated with strong stellar winds. We also removed stars redder than $B_{T}-V_{T}=1.4$ mag. These stars were removed because of the wider dispersion of photospheric WISE colors at late spectral types. Some late-type (K and M) stars did possess non-photospherically blue $\left(B_{T}-V_{T}<1.0\right.$ mag) colors, likely because of chromospheric activity. A star whose $B_{T}-V_{T}$ color was $>0.3$ mag discrepant from the mean of its spectral type (Pecaut \& Mamajek 2013) was assigned the mean spectral type color (converted from $B-V$ using the relations in Mamajek et al. 2002).

During the course of this study, we also discovered discrepancies in the photometry between the combined WISE Atlas images and the mean of the single-frame images in the $W 1, W 2$ and $W 3$ bands. In some cases, these measurements would differ by over a magnitude. Since a definitive solution had not yet been issued by the WISE team at the time of this writing, we have removed from our sample stars whose ASC photometry deviates from the mean single exposure measurements by more than $2 \sigma$. Our discovery of this problem and removal of affected stars are detailed in Section 2.3.

We further limited our photometric candidate selection to the magnitude ranges where WISE photometry is reliable. Aperture photometry is not dependable for stars brighter than $W 1=$ $8.5 \mathrm{mag}, W 2=6.7 \mathrm{mag}, W 3=3.8 \mathrm{mag}$ and $W 4=-0.4 \mathrm{mag}$. However, Cutri et al. (2012) show that profile-fitting photometry, which relies on unsaturated pixels in the stellar halo, can consistently extract objects as bright as $W 1 \approx 4.5 \mathrm{mag}$ and $W 2 \approx 2.8$ mag. We therefore apply these brighter $W 1$ and $W 2$ limits in our candidate selection. In Section 2.4 we discuss corrections for systematics in the WISE photometry that are particularly pronounced for saturated point sources. We retain the saturation levels in $W 3$ and $W 4$ as the brightness limits for candidate selection, since profile-fitting is not as well behaved on saturated sources in these bands.

Finally, we applied several additional criteria that ensured good quality photometry-unconfused, uncontaminated, and

Table 2
WISE IR Excess Selection Summary

| Color | $\Sigma_{E_{\mathrm{CL}}}$ | Stars in <br> Parent Sample $(<120 \mathrm{pc})$ | Stars in <br> Science Sample $(<75 \mathrm{pc})$ | Excesses in <br> Science Sample $(<75 \mathrm{pc})$ | Final Disk Candidates <br> $(<75 \mathrm{pc})$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $W 1-W 4$ | 3.19 | 12942 | 6294 | 133 | 121 |
| $W 2-W 4$ | 3.26 | 13203 | 6507 | 164 | 155 |
| $W 3-W 4$ | 3.16 | 14434 | 7198 | 208 | 198 |
| $W 1-W 3$ | 2.82 | 15017 | 6788 | 9 | 8 |
| $W 2-W 3$ | 3.70 | 15245 | 6962 | 4 | 4 |
| $W 1-W 2$ | 2.03 | 15053 | 6804 | 8 | $6^{\text {a }}$ |
| Total | $\ldots$ | 16960 | 7937 | 243 | 220 |

Notes. Summary of the results from our WISE excess and debris disk candidate identification. $\Sigma_{E_{\mathrm{CL}}}$ is the confidence level CL threshold adopted for any given color $\mathrm{S} / \mathrm{N} . \mathrm{CL}=99.5 \%$ for $W 4$ excesses, $98 \%$ for $W 3$ excesses, and $95 \%$ for $W 2$ excesses (Section 2.5). The number of stars in the parent and science samples are those that pass the selection criteria in Section 2.2. The excesses in the science sample are for stars that pass the corresponding excess selection criteria at confidence $\geqslant C L$. The final debris disk candidates are the subset of excesses that survive visual inspection. Rejected sources are listed in Table 4. The last row lists the total number of unique stars in each applicable column.
${ }^{\text {a }}$ The six stars with detected $W 1-W 2$ excesses are not included in the total number of disk candidates in this study, as described in Section 4.3 .
with adequate $\mathrm{S} / \mathrm{N}$-including checking of the detection significance, contamination by nearby resolved companions or extended sources in Two Micron All Sky Survey (2MASS) and consistent variability flagging in $W 1$ and $W 2$.

In summary, our study samples included only stars with:

1. upper limits to their Hipparcos trigonometric distances that place them within 120 pc for the parent sample or within 75 pc for the science sample, and parallax accuracy better than $20 \%$;
2. galactic latitudes $|b|>5^{\circ}$;
3. available $B_{T}-V_{T}$ colors and $\sigma_{B_{T}-V_{T}}<0.15 \mathrm{mag}$ from the Tycho-2 catalog;
4. $V$-band absolute magnitudes $M_{V}>6.0(B-V)-1.5 \mathrm{mag}$ and spectral classes excluding I, II, and III;
5. $-0.17 \mathrm{mag}<B_{T}-V_{T}<1.4 \mathrm{mag}$ and spectral type B8 or later;
6. SIMBAD object descriptions excluding non-main sequence stellar objects: post-AGB stars, white dwarfs, carbon stars, novae, cepheids, cataclysmic variables, high-mass X-ray binaries, planetary nebulae, or Wolf-Rayet stars;
7. no $\Delta K_{s} \leqslant 5 \mathrm{mag}$ projected companions within $16^{\prime \prime}$ from 2MASS: applied to exclude unresolved sources in WISE;
8. no projected companions within $5^{\prime \prime}$ from the Visual Double Stars in Hipparcos Catalog (Dommanget \& Nys 2000): applied to exclude unresolved sources in WISE;
9. photometry that is not contaminated by known 2MASS extended sources, i.e., including only stars with WISE ext_flg $=0$ or 1 ;
10. flux limits of $W 1>4.5$ mag or $W 2>2.8$ mag, corresponding to the limits of self-consistent profile-fitting photometry on saturated stars;
11. unsaturated detections in at least one of $W 3$ ( $>3.8 \mathrm{mag}$ ) and $W 4$ ( $>-0.4 \mathrm{mag}$ ), with $\mathrm{S} / \mathrm{N} \geqslant 5$;
12. WISE confusion flags indicative of unconfused photometry: i.e., only stars with cc_flg $[W i]=0$;
13. consistent variability detections in $W 1$ and $W 2$, where we excluded stars whose var_flag $[W 1]>8$ and var_flag[W2] < 5 or var_flag[W1] $<5$ and var_flag[W2] > 8 .
14. photometry that is not severely contaminated by scattered moonlight in the $W 3$ or $W 4$ bands, i.e., excluding stars with moon_lev[Wi] $\geqslant 8$ corresponding to $>80 \%$ frames being contaminated by scattered moonlight in these bands;
15. $W 1$ or $W 2$ ASC profile-fit photometry is $<2 \sigma$ discrepant from the mean photometry of the All-Sky Single Exposure (L1b) Source Table. We detail this in Section 2.3.

The total number of Hipparcos stars that passed criteria 1-9 was 17,499: $15 \%$ of the full Hipparcos catalog, but $63 \%$ of all Hipparcos stars within 120 pc and more than $5^{\circ}$ from the galactic plane, and $71 \%$ of main-sequence stars within the $-0.17<B_{T}-V_{T}<1.4$ color range. Our study thus includes the majority of Hipparcos main sequence stars in the solar neighborhood.

Criteria 10-15 are band-dependent: the numbers of stars that passed all the criteria in each band with distances less than 120 pc are between 12,942 and 15,245 (Table 2). A total of 16,960 unique stars passed all our selection criteria for a sufficient subset of the WISE bands that we could meaningfully probe them for IR excesses at $W 3, W 4$, or (most often) both.

### 2.2.2. Science Sample: Stars within 75 pc

The science sample is further limited to stars within 75 pc , with a fractional completeness similar to that of the parent sample. It includes 8,370 stars, constituting $67 \%$ of Hipparcos main sequence stars at $|b|>5^{\circ}$ with $-0.17<B_{T}-V_{T}<$ 1.4 within 75 pc . Here also, band-dependent constraints cause the total number of stars to vary between WISE bands (see Table 2). Since not all the stars in our science sample have valid photometry in all four WISE bands, we make use of all possible WISE color combinations to probe for excesses. Stars with debris disks reveal themselves by exhibiting anomalously red values for some subset of these colors, depending on the dust temperature-and probing all possible colors allows us to maintain sensitivity to disks at a wide range of plausible temperatures even when one band is missing.

### 2.3. Discrepancy between WISE Single Exposure and Atlas Photometry

Data in the ASC are created by co-adding frames from the All-Sky Single Exposure (L1b) Source Table, using the individual frame exposures acquired through each pass of the satellite in its orbit on the same part of the sky. The details of this process can be found in Section VI of the WISE All-Sky Explanatory Supplement (R. Cutri 2013, private communication). The mean of profile-fit photometric measurements from the


Figure 2. 2MASS $K_{s}-W I S E$ vs. WISE relations used for correcting systematics in saturated $W 1$ (a) and $W 2$ (b) photometry. The empirical $K_{s}-W I S E$ vs. WISE distributions are a combination of bright B8-A9 dwarf stars from our science sample with fainter $B-V<0.10 \mathrm{mag}$ A0 stars from the Tycho-2 Spectral Type Catalog (Wright et al. 2003). Saturation limits for each WISE band are shown with vertical dashed lines. Polynomials were fit to the saturated portions of the $K_{s}-W 1$ vs. $W 1$ and $K_{s}-W 2$ vs. and $W 2$ distributions to model the systematic trends and correct the saturation. Two overlapping polynomials were fit to the saturated $W 2$ data to account for the knee between 5.4 mag and 6.7 mag : a quadratic-fit between $2.8 \mathrm{mag} \leqslant W 2 \leqslant 5.8 \mathrm{mag}$ and applied between $2.8 \mathrm{mag} \leqslant W 2 \leqslant 5.3 \mathrm{mag}$-and a cubic-fit between $5.0 \mathrm{mag} \leqslant W 2 \leqslant 7.0 \mathrm{mag}$ and applied between $5.3 \mathrm{mag} \leqslant W 2 \leqslant 6.7 \mathrm{mag}$. The $W 3$ (c) and the $W 4$ (d) photometry appears self-consistent throughout and does not require correction.

Single Exposure Source Table is generally very consistent with the ASC measurements made from co-adding the same frames.

However, we have found some unexpected instances of large discrepancies between the two values, for individual objects in the $W 1, W 2$ and $W 3$ bands. As an example, for HIP 3505, the ASC gives $W 1=5.118 \pm 0.023 \mathrm{mag}$, but the mean magnitude measured from 13 individual exposures is $W 1=4.3 \mathrm{mag}$ (this is after clipping any deviant individual measurements). Similarly, $\sim 0.9$ mag discrepancies exist for the $W 2$ and $W 3$ photometry on the same object. The 2MASS $K_{s}$ magnitude for this star is $4.359 \pm 0.016 \mathrm{mag}$ : consistent with the $W 1$ mean Single Exposure measurement but not with the ASC. We note that Mizusawa et al. (2012) did already independently conclude that the WISE photometry for HIP 3505 is in error. We found similarly erroneous data for HIP 47007 and HIP 111278. All of these stars are saturated in one or more of the WISE bands, but the WISE Explanatory Supplement indicates their profile-fitting photometry should still be reliable and consistent. The reason for these occasional discrepancies of up to $\sim 1 \mathrm{mag}$ is at present unclear. For the WISE $W 1-3$ bands, this issue affects only a tiny fraction of the photometry $(\sim 0.4 \%-0.9 \%)$; it affects $\sim 10 \%$ of the $W 4$ photometry.

Since the goal of this study is to search for outlying photometric measurements due to debris disk emission, spurious outliers (even if rare) are a problem that must be addressed. We were faced with the choice of using mean single-exposure fluxes for our analysis, or proceeding with ASC fluxes but removing from our sample all stars with significantly discrepant ASC versus mean single-exposure measurements. We chose to retain the ASC fluxes, since in the vast majority of cases these are reliable. However, we opted to reject from our sample all stars with $>2 \sigma$ discrepancies between the two flux estimates.

### 2.4. Correction of WISE Photometric Systematics on Saturated Stars

WISE photometry on faint ( $11 \mathrm{mag} \lesssim W 1 \lesssim 14 \mathrm{mag}$, $9 \mathrm{mag} \lesssim W 2 \lesssim 13 \mathrm{mag}$ ) stars is highly consistent with Spitzer IRAC channels 1 and 2 photometry. However, Cutri et al. (2012, Section VI.3.c.i.4.) note that the WISE profile-fitting photometry on bright stars displays systematic trends when compared to the 2MASS $K_{s}$ magnitudes of the same stars. The effect is strongest for saturated ( $<6.7 \mathrm{mag}$ ) stars in $W 2$, and is present at smaller levels in $W 1$. While the photometry on saturated stars can a priori be expected to be less reliable, the WISE profile-fitting algorithm is designed to produce a flux estimate using the unsaturated pixels around the periphery. Profile fitting indeed produces consistent results without increase in scatter up to 4 magnitudes beyond saturation ( 8.5 mag ) in $W 1$ (Figure 2(a)). For $W 2$, however, a systematic trend of flux over-estimation starts about 0.5 mag beyond saturation and continues to some of the brightest measured stars (Figure 2(b)).

Cutri et al. (2012) illustrate the WISE photometric bias on bright stars using plots of the $K_{s}-$ WISE colors of $<10 \mathrm{mag}$ point sources in the WISE (ASC). We reproduce this analysis using the B8-A9 stars in our science sample and $B-V<$ 0.10 mag A0 stars from the Tycho-2 Spectral Type Catalog (Wright et al. 2003). This sample of stars was chosen to reduce any shift of the $K_{s}-$ WISE color locus to the red.

While most of the $K_{s}-W i$ colors are close to the 0.0 mag expectation for unextincted main sequence stars of spectral type B8-A9 or earlier, we note the following effects:

1. The $K_{s}-W 1$ colors are systematically offset by +0.031 mag from zero color in unsaturated stars ( $W 1>8 \mathrm{mag}$ ).
2. The $K_{s}-W 2$ colors scatter around -0.004 mag for $W 2>6.7 \mathrm{mag}$; below 6.7 mag the $W 2$ magnitudes are
systematically over-estimated, following a well-defined trend with $W 2$ magnitude up to $W 2 \approx 2.8$ mag.
3. In saturated stars brighter than approximately $W 1=$ 4.5 mag or $W 2=2.8 \mathrm{mag}$ the scatter in the photometry is very substantial, and there are few data points available to establish reliable trends. We have therefore rejected from our sample all stars brighter than these limits.
4. There are no significant systematic trends in $K_{s}-W 3$ or $K_{s}-W 4$. $W 3$ photometry on saturated stars shows a large scatter, and we have excluded these altogether. There is also an increase in scatter toward the faint end of $W 4$ because the fluxes of plotted stars approach the $W 4 \sim 8$ mag detection limit of WISE (Cutri et al. 2012).

To obtain self-consistent WISE colors regardless of source brightness, we correct for the biases in the $K_{s}-W i$ versus $W i$ color-magnitude distributions for $W 1>4.5 \mathrm{mag}$ and $W 2>$ 2.8 mag. We fit polynomials to the two-sigma clipped $K_{s}-W i$ versus $W i$ distributions (these fits are shown in Figure 2), and add the fitted values to correct the Wi measurement for each star. We subtract the respective zero-point offsets $(+0.031 \mathrm{mag}$ for $W 1$ and -0.004 mag to $W 2$ ) from the corrected saturated photometry to preserve the calibration of the WISE photometric system. As an estimate of the uncertainty of the saturation corrections, we use the standard error of the residuals from the fits in 0.2 mag wide bins centered on each data point.

For the remainder of the analysis, we use the corrected WISE $W 1$ and $W 2$ photometry. We do not apply corrections to the $W 3$ and $W 4$ photometry, which do not display systematic trends with $K_{s}$ magnitudes (Figures 2(c) and (d)). The W3 and $W 4$ photometric distributions also show good agreement with Spitzer IRAC $8 \mu \mathrm{~m}$ and MIPS $24 \mu \mathrm{~m}$ respectively for bright ( $W 4<9 \mathrm{mag}$ and $W 3<12 \mathrm{mag}$ ) point sources (Section VI.3.c.i. of Cutri et al. 2012).

### 2.5. Debris Disk Candidate Selection

We identified debris disk host candidates by selecting stars with the reddest infrared colors in color-color diagrams. Excesses were sought in the $W 2, W 3$, and $W 4$ passbands, so our analysis is sensitive to stars with excesses between 4-28 $\mu \mathrm{m}$. The excesses were identified based purely on the WISE colors, without relying on photospheric fits to the spectral energy distributions. If a star displayed a significant excess in any of the six WISE color combinations, it was considered a debris disk candidate. SED fits were used at a later stage to confirm the validity of debris disk candidate identifications, and to determine the dust temperatures of high-probability debris disks.

The photospheric colors of main sequence stars vary over the WISE bands, mostly as a function of stellar effective temperature. We calibrated this dependence to avoid mistaking stars with intrinsically red WISE colors for debris disks (Figure 3). $B_{T}-V_{T}$ color measurements exist for all our sample stars by design, and are not biased by the presence of debris disks. We used a trimmed mean to determine the mean locus of the $W i-W j$ versus $B_{T}-V_{T}$ relations from the parent sample. We iteratively removed the largest $W i-W j$ color outlier in 0.1 mag wide $B_{T}-V_{T}$ color bins until half of the data points in the bin were rejected, leaving only the data clustered near the mode of the bin. This removed the dependence of the relation on outliers, most notably mid-IR-excess debris disk hosts. We traced the $W i-W j$ versus $B_{T}-V_{T}$ relations in step sizes of 0.02 mag in $B_{T}-V_{T}$. We refer to the mean $W i-W j$ corresponding to a given $B_{T}-V_{T}$ color as $W_{i j}\left(B_{T}-V_{T}\right)$. Table 3 lists the $W_{i j}\left(B_{T}-V_{T}\right)$
trimmed mean and its standard error (based on the surviving $50 \%$ of data points) for all WISE color combinations.

We are now in position to determine whether the WISE colors of any particular star reveal a significant excess. We define the excess $E[W i-W j]$ in the $W i-W j$ color of a star with a given value of $B_{T}-V_{T}$ as:

$$
\begin{equation*}
E[W i-W j]=W i-W j-W_{i j}\left(B_{T}-V_{T}\right) \tag{1}
\end{equation*}
$$

We then define the $\mathrm{S} / \mathrm{N}$ of the excess as the ratio of $E[W i-W j]$ to the uncertainty $\sigma_{i j}$,

$$
\begin{equation*}
\Sigma_{E[W i-W j]}=\frac{E[W i-W j]}{\sigma_{i j}}=\frac{W i-W j-W_{i j}\left(B_{T}-V_{T}\right)}{\sigma_{i j}} \tag{2}
\end{equation*}
$$

where $\sigma_{i j}$ combines the $W i$ and $W j$ photometric uncertainties, and the standard error on $W_{i j}\left(B_{T}-V_{T}\right)$ :

$$
\begin{equation*}
\sigma_{i j}=\sqrt{\sigma_{W i}^{2}+\sigma_{W j}^{2}+\sigma_{W_{i j}}^{2}} \tag{3}
\end{equation*}
$$

For shorthand, we use $\Sigma_{E}$ throughout the rest of the paper when the discussion does not refer to any specific color. $\Sigma_{E}$ is plotted against $B_{T}-V_{T}$ for each color in the bottom halves of the panels in Figure 3.

Figure 4 shows the $\Sigma_{E}$ distributions for each set of WISE colors with solid histograms. The distributions are characterized by sharp cores and long tails to higher $\mathrm{S} / \mathrm{Ns}$. The cores of the histograms represent the random scatter around zero excess (black data points in the lower halves of the panels of Figure 3), corresponding to measurement and calibration uncertainties. We estimate the rate of low-S/N false-positive excesses by mirroring (dashed histograms) the distribution of negative excesses into the positive wing. We thus empirically construct a distribution that represents the measurement uncertainties, both random and systematic.

Using the empirically determined uncertainty distribution, we can calculate the false-positive rate (FPR) for detecting excesses as a function of the threshold beyond which red outliers are designated as bona fide excesses. The FPR is simply the number of outliers beyond the threshold in the uncertainty distribution divided by the number of red excesses beyond the threshold. For example, based on the histogram of our $W 1-W 4$ uncertainty distribution (see top left panel of Figure 3), we expect only two false positives beyond our chosen threshold of $\Sigma_{E[W 1-W 4]}=3.19$ (vertical dashed line in the figure). As there are 429 excesses in the actual $W 1-W 4$ color distribution redward of the same limit, the empirical FPR is $2 / 429=0.47 \%$. Choosing a lower threshold for excess identification would produce more excesses but would increase the FPR, while choosing a higher threshold would reduce the FPR further. Our objective in general is to obtain $\mathrm{FPR}<0.5 \%$.

Empirically, however, we can not determine the FPR beyond the threshold value at which the number of false positives drops to zero. This sets an upper bound to our ability to empirically set the confidence level for excess identification. For color distributions involving $W 4$ this upper bound is between $99.8 \%-99.9 \%$. However, the $W 1-W 2, W 1-W 3$, and $W 2-W 3$ distributions do not possess $>200$ excesses with even a single false positive (such that $\mathrm{FPR} \leqslant 0.5 \%$ ) at any value for $\Sigma_{E}$. Our empirical confidence level for the $W 1-W 3$ and $W 2-W 3$ excess selection in $\gtrsim 98 \%$, and for $W 1-W 2$ it is $\gtrsim 95 \%$. We note that these confidence thresholds do not assume Gaussian error statistics, only that the distribution of uncertainties is symmetric around zero.


Figure 3. Top half of each panel: WISE vs. Tycho-2 $B_{T}-V_{T}$ color-color diagrams of our parent sample stars (red). The green diamonds in each panel follow the running mean of the parent sample. We eliminated stars outside the $-0.17 \mathrm{mag}<B_{T}-V_{T}<1.4 \mathrm{mag}$ range from all of our analysis. Bottom half of each panel: Plots of the significance $\Sigma_{E}$ of the color excess as a function of $B_{T}-V_{T}$. These are residuals of the subtraction of the photospheric running mean, normalized to the $1 \sigma$ scatter. The stars selected as debris disk candidates in the parent sample are denoted by open blue circles. These are more significant than the confidence limit CL thresholds shown by the dashed purple lines. CL $=99.5 \%$ for $W 4$ excesses, $98 \%$ for $W 3$ excesses, and $95 \%$ for $W 2$ excesses.
(A color version of this figure is available in the online journal.)

We denote the minimum excess $\mathrm{S} / \mathrm{N} \Sigma_{E}$ at the $99.5 \%$ confidence level for the $W i-W 4$ colors as $\Sigma_{E_{\mathrm{CL}}}=\Sigma_{E_{99.5}}$. Accordingly, the $98 \% \Sigma_{E}$ confidence threshold for the $W i-W 3$ colors is $=\Sigma_{E_{98}}$, and the $95 \%$ confidence threshold for $W 1-W 2$ is $=\Sigma_{E_{95}}$. All $\Sigma_{E_{\mathrm{CL}}}$ thresholds are listed in Table 2 and are marked with vertical dotted lines in Figure 4.

We note that our definition of the empirical FPR and the associated confidence level CL $=1-$ FPR are not identical to the definition of a Gaussian confidence level. In the context of our data the latter would be defined as the ratio of the number of outliers beyond the threshold in the uncertainty distribution and the total number of stars in the uncertainty
distribution. In our case, the uncertainty distributions total between 12,300-15,000 stars in each of the WISE colors (equal to twice the number of stars with negative $\Sigma_{E}$ values for each color). With $\leqslant 2$ false-positive outliers in any of our color excess distributions, the effective Gaussian confidence level is $\geqslant 1-2 / 12,300=99.98 \%$, or nearly $4 \sigma$ (one-tailed). It is the latter threshold, in units of Gaussian $\sigma$, that is directly comparable to our empirical $\Sigma_{E_{\mathrm{CL}}}$ thresholds.

We observe that for all of our color distributions the empirical $\Sigma_{E_{\mathrm{CL}}}$ thresholds are $\lesssim 4$ even if the effective Gaussian confidence level is $\geqslant 99.98 \%$. We conclude that the strategies that we employed to mitigate systematics (Sections 2.3-2.5) have been


Figure 4. Distributions of the significance of the color excess $\Sigma_{E}$ for the stars in our parent sample for each WISE color. We assume that the negative excesses, where $\Sigma_{E}<0$, are representative of the intrinsic random and systematic noise in the data. A reflection of the negative excess histogram around 0 (dashed histogram) is thus representative of the false positive excess expectation. We define the FPR at a given $\Sigma_{E}$ as the ratio of the cumulative numbers of $>\Sigma_{E}$ excesses in the positive tails of the dashed and solid histograms. The vertical dashed lines indicate the FPR thresholds for each $W i-W j$ color, above which we identify all stars as probable debris disk hosts. The insets show the FPR for each distribution.
(A color version of this figure is available in the online journal.)
successful to the point where the uncertainty distributions can be explained entirely by random photometric errors. In particular, judging by the low $\Sigma_{E_{\mathrm{CL}}}=2.03$ threshold for the $W 1-W 2$ distribution, we believe that our clean sample of single Hipparcos stars has a factor of $\sim 2$ better internal photometric consistency in $W 1$ and $W 2$ than the ASC photometric errors indicate.

We identified 243 stars with significant excesses within 75 pc of the Sun, the vast majority (231) of which are in $W 4$. Among which we expect only $0.5 \% \times 231=1.2$ false excesses. However, IR excesses can in principle be caused by contamination from other IR sources in the WISE beam (mainly

IR cirrus and unresolved late-type binary companions) rather than circumstellar dust. We screen our excesses for these types of contamination, and eliminate 23 of them (mostly due to line-of-sight IR cirrus visible in the WISE images), leaving 220 candidate debris disks with excesses at $W 2, W 3$, or $W 4$ within 75 pc of the Sun.

A summary of the number of identified mid-IR excesses, contaminated sources, and candidate debris disks for each color selection criterion is given in Table 2. Stars that were rejected after being identified as candidate debris disk hosts are listed in Table 4. The host star properties of all our identified debris disk systems are shown in Table 5. Table 6 lists the information on

Table 3
Photospheric WISE Colors of $-0.15 \mathrm{mag}<B_{T}-V_{T}<1.4 \mathrm{mag}$ Main Sequence Stars

| $\begin{aligned} & B_{T}-V_{T} \\ & (\mathrm{mag}) \end{aligned}$ | $\begin{gathered} W 1-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 2-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 3-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 1-W 3 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 2-W 3 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 1-W 2 \\ (\mathrm{mag}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.16 | $-0.070 \pm 0.006$ | $-0.001 \pm 0.005$ | $0.050 \pm 0.004$ | $-0.117 \pm 0.004$ | $-0.059 \pm 0.003$ | $-0.045 \pm 0.004$ |
| -0.14 | $-0.070 \pm 0.006$ | $-0.001 \pm 0.005$ | $0.050 \pm 0.004$ | $-0.117 \pm 0.004$ | $-0.059 \pm 0.003$ | $-0.045 \pm 0.004$ |
| -0.12 | $-0.070 \pm 0.006$ | $-0.001 \pm 0.005$ | $0.050 \pm 0.004$ | $-0.117 \pm 0.004$ | $-0.059 \pm 0.003$ | $-0.045 \pm 0.004$ |
| -0.10 | $-0.065 \pm 0.005$ | $-0.006 \pm 0.004$ | $0.046 \pm 0.004$ | $-0.115 \pm 0.003$ | $-0.059 \pm 0.002$ | $-0.047 \pm 0.003$ |
| -0.08 | $-0.056 \pm 0.004$ | $-0.003 \pm 0.004$ | $0.044 \pm 0.003$ | $-0.105 \pm 0.002$ | $-0.056 \pm 0.002$ | $-0.049 \pm 0.002$ |
| -0.06 | $-0.054 \pm 0.004$ | $-0.001 \pm 0.004$ | $0.043 \pm 0.003$ | $-0.104 \pm 0.002$ | $-0.051 \pm 0.002$ | $-0.050 \pm 0.002$ |
| -0.04 | $-0.043 \pm 0.005$ | $0.009 \pm 0.004$ | $0.049 \pm 0.003$ | $-0.091 \pm 0.002$ | $-0.044 \pm 0.001$ | $-0.044 \pm 0.002$ |
| -0.02 | $-0.035 \pm 0.005$ | $0.011 \pm 0.004$ | $0.051 \pm 0.003$ | $-0.087 \pm 0.002$ | $-0.041 \pm 0.001$ | $-0.047 \pm 0.002$ |
| -0.00 | $-0.026 \pm 0.005$ | $0.018 \pm 0.004$ | $0.054 \pm 0.003$ | $-0.078 \pm 0.002$ | $-0.037 \pm 0.001$ | $-0.042 \pm 0.001$ |
| 0.02 | $-0.019 \pm 0.005$ | $0.023 \pm 0.005$ | $0.059 \pm 0.004$ | $-0.071 \pm 0.002$ | $-0.038 \pm 0.001$ | $-0.041 \pm 0.001$ |
| 0.04 | $-0.019 \pm 0.005$ | $0.018 \pm 0.004$ | $0.056 \pm 0.003$ | $-0.070 \pm 0.002$ | $-0.036 \pm 0.001$ | $-0.035 \pm 0.001$ |
| 0.06 | $-0.024 \pm 0.005$ | $0.009 \pm 0.004$ | $0.049 \pm 0.003$ | $-0.067 \pm 0.002$ | $-0.036 \pm 0.001$ | $-0.036 \pm 0.001$ |
| 0.08 | $-0.026 \pm 0.004$ | $0.009 \pm 0.004$ | $0.045 \pm 0.003$ | $-0.068 \pm 0.001$ | $-0.034 \pm 0.001$ | $-0.035 \pm 0.001$ |
| 0.10 | $-0.032 \pm 0.004$ | $0.002 \pm 0.003$ | $0.043 \pm 0.003$ | $-0.067 \pm 0.001$ | $-0.034 \pm 0.001$ | $-0.034 \pm 0.001$ |
| 0.12 | $-0.026 \pm 0.003$ | $0.003 \pm 0.003$ | $0.047 \pm 0.003$ | $-0.064 \pm 0.001$ | $-0.034 \pm 0.001$ | $-0.032 \pm 0.001$ |
| 0.14 | $-0.027 \pm 0.003$ | $0.005 \pm 0.003$ | $0.045 \pm 0.002$ | $-0.060 \pm 0.001$ | $-0.032 \pm 0.001$ | $-0.033 \pm 0.001$ |
| 0.16 | $-0.021 \pm 0.003$ | $0.006 \pm 0.003$ | $0.049 \pm 0.002$ | $-0.059 \pm 0.001$ | $-0.035 \pm 0.001$ | $-0.031 \pm 0.001$ |
| 0.18 | $-0.022 \pm 0.003$ | $0.004 \pm 0.003$ | $0.045 \pm 0.002$ | $-0.058 \pm 0.001$ | $-0.032 \pm 0.001$ | $-0.030 \pm 0.001$ |
| 0.20 | $-0.017 \pm 0.003$ | $0.012 \pm 0.003$ | $0.049 \pm 0.002$ | $-0.056 \pm 0.001$ | $-0.031 \pm 0.001$ | $-0.030 \pm 0.001$ |
| 0.22 | $-0.018 \pm 0.002$ | $0.011 \pm 0.002$ | $0.048 \pm 0.002$ | $-0.055 \pm 0.001$ | $-0.030 \pm 0.001$ | $-0.031 \pm 0.001$ |
| 0.24 | $-0.017 \pm 0.002$ | $0.015 \pm 0.002$ | $0.048 \pm 0.002$ | $-0.057 \pm 0.001$ | $-0.030 \pm 0.001$ | $-0.030 \pm 0.001$ |
| 0.26 | $-0.012 \pm 0.002$ | $0.019 \pm 0.002$ | $0.049 \pm 0.002$ | $-0.056 \pm 0.001$ | $-0.028 \pm 0.001$ | $-0.029 \pm 0.001$ |
| 0.28 | $-0.007 \pm 0.002$ | $0.025 \pm 0.002$ | $0.052 \pm 0.002$ | $-0.055 \pm 0.001$ | $-0.027 \pm 0.001$ | $-0.028 \pm 0.001$ |
| 0.30 | $-0.004 \pm 0.002$ | $0.025 \pm 0.002$ | $0.056 \pm 0.001$ | $-0.054 \pm 0.001$ | $-0.026 \pm 0.000$ | $-0.027 \pm 0.001$ |
| 0.32 | $0.004 \pm 0.002$ | $0.033 \pm 0.002$ | $0.061 \pm 0.001$ | $-0.049 \pm 0.001$ | $-0.025 \pm 0.000$ | $-0.026 \pm 0.001$ |
| 0.34 | $0.009 \pm 0.002$ | $0.037 \pm 0.002$ | $0.065 \pm 0.001$ | $-0.047 \pm 0.001$ | $-0.023 \pm 0.000$ | $-0.026 \pm 0.000$ |
| 0.36 | $0.009 \pm 0.001$ | $0.038 \pm 0.001$ | $0.065 \pm 0.001$ | $-0.047 \pm 0.001$ | $-0.021 \pm 0.000$ | $-0.027 \pm 0.000$ |
| 0.38 | $0.012 \pm 0.001$ | $0.039 \pm 0.001$ | $0.066 \pm 0.001$ | $-0.046 \pm 0.000$ | $-0.020 \pm 0.000$ | $-0.027 \pm 0.000$ |
| 0.40 | $0.010 \pm 0.001$ | $0.039 \pm 0.001$ | $0.065 \pm 0.001$ | $-0.046 \pm 0.000$ | $-0.020 \pm 0.000$ | $-0.028 \pm 0.000$ |
| 0.42 | $0.001 \pm 0.001$ | $0.034 \pm 0.001$ | $0.059 \pm 0.001$ | $-0.046 \pm 0.000$ | $-0.019 \pm 0.000$ | $-0.029 \pm 0.000$ |
| 0.44 | $-0.002 \pm 0.001$ | $0.030 \pm 0.001$ | $0.054 \pm 0.001$ | $-0.045 \pm 0.000$ | $-0.019 \pm 0.000$ | $-0.029 \pm 0.000$ |
| 0.46 | $-0.005 \pm 0.001$ | $0.028 \pm 0.001$ | $0.051 \pm 0.001$ | $-0.045 \pm 0.000$ | $-0.018 \pm 0.000$ | $-0.030 \pm 0.000$ |
| 0.48 | $-0.010 \pm 0.001$ | $0.024 \pm 0.001$ | $0.047 \pm 0.001$ | $-0.045 \pm 0.000$ | $-0.016 \pm 0.000$ | $-0.032 \pm 0.000$ |
| 0.50 | $-0.012 \pm 0.001$ | $0.023 \pm 0.001$ | $0.046 \pm 0.001$ | $-0.045 \pm 0.000$ | $-0.015 \pm 0.000$ | $-0.033 \pm 0.000$ |
| 0.52 | $-0.012 \pm 0.001$ | $0.023 \pm 0.001$ | $0.045 \pm 0.001$ | $-0.046 \pm 0.000$ | $-0.014 \pm 0.000$ | $-0.035 \pm 0.000$ |
| 0.54 | $-0.014 \pm 0.001$ | $0.024 \pm 0.001$ | $0.043 \pm 0.001$ | $-0.044 \pm 0.000$ | $-0.012 \pm 0.000$ | $-0.037 \pm 0.000$ |
| 0.56 | $-0.016 \pm 0.001$ | $0.023 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.044 \pm 0.000$ | $-0.011 \pm 0.000$ | $-0.039 \pm 0.000$ |
| 0.58 | $-0.015 \pm 0.001$ | $0.025 \pm 0.001$ | $0.042 \pm 0.001$ | $-0.044 \pm 0.000$ | $-0.009 \pm 0.000$ | $-0.040 \pm 0.000$ |
| 0.60 | $-0.013 \pm 0.001$ | $0.027 \pm 0.001$ | $0.042 \pm 0.001$ | $-0.043 \pm 0.000$ | $-0.007 \pm 0.000$ | $-0.042 \pm 0.000$ |
| 0.62 | $-0.011 \pm 0.001$ | $0.029 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.043 \pm 0.000$ | $-0.005 \pm 0.000$ | $-0.042 \pm 0.000$ |
| 0.64 | $-0.010 \pm 0.001$ | $0.029 \pm 0.001$ | $0.042 \pm 0.001$ | $-0.043 \pm 0.000$ | $-0.004 \pm 0.000$ | $-0.043 \pm 0.000$ |
| 0.66 | $-0.010 \pm 0.001$ | $0.034 \pm 0.001$ | $0.044 \pm 0.001$ | $-0.042 \pm 0.000$ | $-0.002 \pm 0.000$ | $-0.044 \pm 0.000$ |
| 0.68 | $-0.011 \pm 0.001$ | $0.034 \pm 0.001$ | $0.042 \pm 0.001$ | $-0.042 \pm 0.000$ | $0.000 \pm 0.000$ | $-0.046 \pm 0.000$ |
| 0.70 | $-0.015 \pm 0.001$ | $0.035 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.041 \pm 0.000$ | $0.002 \pm 0.000$ | $-0.047 \pm 0.000$ |
| 0.72 | $-0.016 \pm 0.001$ | $0.036 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.040 \pm 0.000$ | $0.003 \pm 0.000$ | $-0.050 \pm 0.000$ |
| 0.74 | $-0.014 \pm 0.001$ | $0.039 \pm 0.001$ | $0.042 \pm 0.001$ | $-0.040 \pm 0.000$ | $0.005 \pm 0.000$ | $-0.050 \pm 0.000$ |
| 0.76 | $-0.014 \pm 0.001$ | $0.040 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.041 \pm 0.000$ | $0.005 \pm 0.000$ | $-0.052 \pm 0.000$ |
| 0.78 | $-0.012 \pm 0.001$ | $0.043 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.040 \pm 0.000$ | $0.006 \pm 0.000$ | $-0.053 \pm 0.000$ |
| 0.80 | $-0.012 \pm 0.001$ | $0.044 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.040 \pm 0.000$ | $0.008 \pm 0.000$ | $-0.053 \pm 0.000$ |
| 0.82 | $-0.014 \pm 0.002$ | $0.042 \pm 0.001$ | $0.039 \pm 0.001$ | $-0.040 \pm 0.000$ | $0.010 \pm 0.000$ | $-0.055 \pm 0.000$ |
| 0.84 | $-0.018 \pm 0.002$ | $0.040 \pm 0.002$ | $0.038 \pm 0.001$ | $-0.039 \pm 0.000$ | $0.012 \pm 0.000$ | $-0.057 \pm 0.000$ |
| 0.86 | $-0.019 \pm 0.002$ | $0.041 \pm 0.002$ | $0.039 \pm 0.001$ | $-0.038 \pm 0.000$ | $0.014 \pm 0.000$ | $-0.058 \pm 0.000$ |
| 0.88 | $-0.019 \pm 0.002$ | $0.042 \pm 0.002$ | $0.040 \pm 0.002$ | $-0.038 \pm 0.001$ | $0.017 \pm 0.000$ | $-0.059 \pm 0.000$ |
| 0.90 | $-0.018 \pm 0.002$ | $0.045 \pm 0.002$ | $0.041 \pm 0.002$ | $-0.038 \pm 0.001$ | $0.020 \pm 0.000$ | $-0.061 \pm 0.000$ |
| 0.92 | $-0.018 \pm 0.002$ | $0.048 \pm 0.002$ | $0.038 \pm 0.003$ | $-0.037 \pm 0.001$ | $0.020 \pm 0.000$ | $-0.062 \pm 0.000$ |
| 0.94 | $-0.014 \pm 0.002$ | $0.054 \pm 0.002$ | $0.043 \pm 0.002$ | $-0.037 \pm 0.001$ | $0.023 \pm 0.000$ | $-0.063 \pm 0.000$ |
| 0.96 | $-0.019 \pm 0.002$ | $0.047 \pm 0.002$ | $0.035 \pm 0.002$ | $-0.038 \pm 0.001$ | $0.022 \pm 0.000$ | $-0.064 \pm 0.000$ |
| 0.98 | $-0.013 \pm 0.002$ | $0.054 \pm 0.002$ | $0.035 \pm 0.002$ | $-0.038 \pm 0.001$ | $0.022 \pm 0.001$ | $-0.064 \pm 0.000$ |
| 1.00 | $-0.016 \pm 0.002$ | $0.051 \pm 0.002$ | $0.034 \pm 0.002$ | $-0.037 \pm 0.001$ | $0.024 \pm 0.001$ | $-0.063 \pm 0.000$ |
| 1.02 | $-0.011 \pm 0.003$ | $0.056 \pm 0.002$ | $0.033 \pm 0.002$ | $-0.038 \pm 0.001$ | $0.025 \pm 0.001$ | $-0.065 \pm 0.001$ |
| 1.04 | $-0.008 \pm 0.003$ | $0.060 \pm 0.002$ | $0.040 \pm 0.002$ | $-0.036 \pm 0.001$ | $0.026 \pm 0.001$ | $-0.067 \pm 0.001$ |
| 1.06 | $-0.005 \pm 0.003$ | $0.064 \pm 0.002$ | $0.045 \pm 0.002$ | $-0.033 \pm 0.001$ | $0.026 \pm 0.001$ | $-0.070 \pm 0.001$ |
| 1.08 | $-0.005 \pm 0.003$ | $0.066 \pm 0.003$ | $0.050 \pm 0.002$ | $-0.032 \pm 0.001$ | $0.030 \pm 0.001$ | $-0.070 \pm 0.001$ |
| 1.10 | $-0.006 \pm 0.003$ | $0.067 \pm 0.003$ | $0.050 \pm 0.002$ | $-0.032 \pm 0.001$ | $0.031 \pm 0.001$ | $-0.071 \pm 0.001$ |
| 1.12 | $-0.005 \pm 0.003$ | $0.063 \pm 0.003$ | $0.050 \pm 0.003$ | $-0.031 \pm 0.001$ | $0.031 \pm 0.001$ | $-0.072 \pm 0.001$ |

Table 3
(Continued)

| $B_{T}-V_{T}$ <br> $(\mathrm{mag})$ | $W 1-W 4$ <br> $(\mathrm{mag})$ | $W 2-W 4$ <br> $(\mathrm{mag})$ | $W 3-W 4$ <br> $(\mathrm{mag})$ | $W 1-W 3$ <br> $(\mathrm{mag})$ | $W 2-W 3$ <br> $(\mathrm{mag})$ | $W 1-W 2$ <br> $(\mathrm{mag})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 . 1 4}$ | $-0.011 \pm 0.004$ | $0.060 \pm 0.003$ | $0.040 \pm 0.003$ | $-0.031 \pm 0.001$ | $0.032 \pm 0.001$ |  |
| $\mathbf{1 . 1 6}$ | $-0.005 \pm 0.004$ | $0.063 \pm 0.004$ | $0.041 \pm 0.003$ | $-0.031 \pm 0.001$ | $0.032 \pm 0.001$ | $-0.071 \pm 0.001$ |
| $\mathbf{1 . 1 8}$ | $-0.002 \pm 0.004$ | $0.062 \pm 0.004$ | $0.035 \pm 0.003$ | $-0.030 \pm 0.001$ | $0.034 \pm 0.001$ | $-0.071 \pm 0.001$ |
| $\mathbf{1 . 2 0}$ | $-0.003 \pm 0.004$ | $0.065 \pm 0.004$ | $0.037 \pm 0.003$ | $-0.030 \pm 0.001$ | $0.037 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 2 2}$ | $-0.003 \pm 0.004$ | $0.067 \pm 0.004$ | $0.036 \pm 0.003$ | $-0.030 \pm 0.001$ | $0.038 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 2 4}$ | $-0.005 \pm 0.004$ | $0.069 \pm 0.003$ | $0.038 \pm 0.003$ | $-0.031 \pm 0.001$ | $0.043 \pm 0.001$ | $-0.074 \pm 0.001$ |
| $\mathbf{1 . 2 6}$ | $-0.004 \pm 0.004$ | $0.069 \pm 0.004$ | $0.037 \pm 0.003$ | $-0.030 \pm 0.001$ | $0.046 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 2 8}$ | $0.003 \pm 0.004$ | $0.073 \pm 0.004$ | $0.042 \pm 0.003$ | $-0.032 \pm 0.001$ | $0.044 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 3 0}$ | $0.006 \pm 0.004$ | $0.073 \pm 0.004$ | $0.046 \pm 0.004$ | $-0.032 \pm 0.001$ | $0.047 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 3 2}$ | $0.015 \pm 0.005$ | $0.085 \pm 0.005$ | $0.048 \pm 0.004$ | $-0.030 \pm 0.001$ | $0.048 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 3 4}$ | $0.019 \pm 0.005$ | $0.098 \pm 0.005$ | $0.053 \pm 0.004$ | $-0.029 \pm 0.001$ | $0.046 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 3 6}$ | $0.019 \pm 0.005$ | $0.098 \pm 0.005$ | $0.053 \pm 0.004$ | $-0.029 \pm 0.001$ | $0.046 \pm 0.001$ | $-0.073 \pm 0.001$ |
| $\mathbf{1 . 3 8}$ | $0.019 \pm 0.005$ | $0.098 \pm 0.005$ | $0.053 \pm 0.004$ | $-0.029 \pm 0.001$ | $0.046 \pm 0.001$ | $-0.073 \pm 0.001$ |

Notes. Empirically determined WISE vs. $B_{T}-V_{T}$ photospheric color-color trends for all six WISE colors obtained from the parent sample as described in Section 2.5 and shown in Figure 3. The standard error of the mean for the distribution of stars in each WISE vs. $B_{T}-V_{T}$ bin is listed. These trends were used to correct for the photospheric color variation over the WISE bands and to obtain a population of colors independent of stellar temperature. Bold values denote stars with a significant detection of both $W 3$ and $W 4$ excess. Dust parameters are exact calculations.

Table 4
Rejected WISE Excesses

| HIP ID | WISE ID | Rejection <br> Reason |
| :--- | :---: | :---: |
| HIP 999 | J001230.54+143348.0 | 2 |
| HIP 3121 | J003942.53+103911.7 | 2 |
| HIP 3729 | J004752.96-324520.6 | 2 |
| HIP 4016 | J005129.22+563005.5 | 1 |
| HIP 13631 | J025532.50+184624.2 | 1 |
| HIP 27114 | J054500.36-023534.3 | 1 |
| HIP 40122 | J081144.04-440200.9 | 1 |
| HIP 60689 | J122617.82-512146.6 | 1 |
| HIP 71262 | J143426.35-541637.8 | 1 |
| HIP 74045 | J150755.93+761204.2 | 2 |
| HIP 76907 | J154214.76-404922.9 | 1 |
| HIP 79741 | J161628.20-364453.2 | 1 |
| HIP 79969 | J161922.47-254538.9 | 1 |
| HIP 81181 | J163453.29-253445.3 | 1 |
| HIP 82384 | J165003.66-152534.0 | 1 |
| HIP 83251 | J170055.98-314640.2 | 1 |
| HIP 83875 | J170833.23-231338.7 | 1 |
| HIP 99542 | J201205.89+461804.8 | 1 |

Notes. Rejection reasons: 1. Contamination by nearby infrared source. 2. Contamination by spectroscopic secondary component.
the significance of the excess $\Sigma_{E}$ for each color. Since debris disk-bearing stars often have an excess in multiple WISE color combinations, a six character flag indicating the color excess each star has also been provided. The dust properties determined from SED fitting (Section 3) are given in Table 7.

### 2.6. All-Sky versus AllWISE Data Release

Since the inception of this study, WISE has released an updated version of the all-sky survey, called the AllWISE Data Release $^{4}$ (AWR). The AWR incorporates data products taken during the NEOWISE Post-Cryo phase of the mission, and is a significant improvement over the WISE ASC. We incorporated

[^10]the WISE AWR into our IR excess search in an attempt at more reliable debris disk identification.

However, we identified two issues that make the AWR less suitable than the ASC for precise identification of IR excesses. First, the $W 1$ and $W 2$ AWR photometry behaves less well in the saturated regimes of these bands. In particular, we find that the behavior of the $K_{s}-W I S E$ versus WISE relations for saturated $W 1$ and $W 2$ AWR photometry is not monotonic, unlike in the ASC. This is indeed seen in Figures 10(a) and (b) in Section II.1.d.i of the AWR explanatory supplement, which compares the ASC data to the AWR for $W 1$ and $W 2$. Consistent with these observations, the AWR explanatory supplement states that "The WISE ASC may provide better photometry than in the AWR for objects brighter than [ $W 1<8 \mathrm{mag}$ and $W 2<7$ mag]." Therefore, we abandon using the AWR $W 1$ and $W 2$ photometry for our analysis.

We noticed a similar issue when we attempted to identify excesses using only $W 3-W 4$ colors constructed from the AWR data products. Here, we found more stars with negative $\Sigma_{E[W 3-W 4]}$ values, that widened the $\Sigma_{E}$ distribution and pushed the $99.5 \%$ confidence threshold for $W 4$ excesses to $\Sigma_{E[W 3-W 4] \mathrm{cL}}=9.4$. This is in stark contrast with the much tighter distribution we found using the ASC data $\left(\Sigma_{E[W 3-W 4] \mathrm{cL}}=3.2\right)$. After closer inspection of the negative $\Sigma_{E}$ valued stars, we found that the AWR W3 photometry was intrinsically brighter than the same ASC photometric measurement for the same star. HIP 51933 is one such example, where its AWR W3 profile fit photometric measurement is 0.25 mag brighter than the corresponding ASC photometry. This intrinsic brightening is seen in the majority of our negative $\Sigma_{E}$ stars. We can see similar brightening of the AWR $W 3$ photometry relative to the ASC in Figure 10(c) in Section II.1.d.i of the AWR explanatory supplement between AllWISE $W 3$ magnitude at $7.5 \mathrm{mag}<W 3<9 \mathrm{mag}$. The surplus of stars with negative $\Sigma_{E}$ incurs a non-Gaussian component to the $\Sigma_{E[W 3-W 4]}$ distribution, and makes the AWR $W 3$ photometry less reliable in searching for IR excesses.

Hence, after performing the same set of procedures outlined in Sections 2-2.5 on data from the AWR, we determined that the ASC data are better suited for identifying IR excesses through the method outlined in the preceding sections.

Table 5
Stellar Parameters of Stars with IR Excesses

| $\begin{aligned} & \text { HIP } \\ & \text { ID } \end{aligned}$ | WISE <br> ID | SpT ${ }^{\text {a }}$ | Dist. ${ }^{\text {b }}$ <br> (pc) | $\begin{gathered} \hline T_{*} \\ (\mathrm{~K}) \end{gathered}$ | $\begin{gathered} R_{*} \\ \left(R_{\odot}\right) \end{gathered}$ | $\chi_{*}^{2}$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{aligned} & F_{W 3, *} \\ & (\mathrm{mJy}) \end{aligned}$ | $\begin{gathered} \hline \hline F_{W 4} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{aligned} & F_{W 4, *} \\ & (\mathrm{mJy}) \end{aligned}$ | $\Delta_{F_{W 3}} / F_{W 3}{ }^{\text {d }}$ | $\Delta_{F_{W 4}} / F_{W 4}{ }^{\text {d }}$ | $\begin{gathered} W 1_{\text {corr }}{ }^{\mathrm{e}} \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 2_{\text {corr }}{ }_{( }^{\mathrm{e}} \\ (\mathrm{mag}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 544 | J000637.09+290115.4 | K0V | 14 | 5493 | 0.86 | 3.3 | $536 \pm 7$ | 550 | $186 \pm 4$ | 153 | -0.026 | 0.178 | $4.260 \pm 0.082$ | $4.290 \pm 0.051$ |
| 560 | J000650.16-230627.5 | F2IV | 39 | 6789 | 1.5 | 0.38 | $234 \pm 3$ | 234 | $130 \pm 3$ | 64.7 | -0.001 | 0.501 | $5.220 \pm 0.072$ | $5.240 \pm 0.037$ |
| 682 | J000825.79+063700.6 | G2V | 39 | 5845 | 1.1 | 1.2 | $106 \pm 1$ | 108 | $41.6 \pm 2$ | 29.9 | -0.019 | 0.281 | $6.050 \pm 0.051$ | $6.100 \pm 0.022$ |
| 1473 | J001819.60+364706.3 | A2V | 41 | 8987 | 2 | 0.62 | $527 \pm 7$ | 524 | $182 \pm 3$ | 144 | 0.006 | 0.208 | $4.260 \pm 0.097$ | $4.330 \pm 0.050$ |
| 1481 | J001826.25-632839.6 | F8/G0V | 42 | 6138 | 1.1 | 0.73 | $102 \pm 1$ | 102 | $41.7 \pm 1$ | 28.4 | -0.003 | 0.319 | $6.130 \pm 0.048$ | $6.150 \pm 0.023$ |
| 1866 | J002338.01-034548.9 | K: | 47 | 4527 | 0.65 | 1.7 | $21.1 \pm 0.4$ | 21.4 | $9.22 \pm 1$ | 5.99 | -0.012 | 0.350 | $7.830 \pm 0.022$ | $7.910 \pm 0.021$ |
| 2472 | J003125.12-484812.7 | A0V | 53 | 9489 | 2.1 | 1.2 | $377 \pm 6$ | 374 | $130 \pm 4$ | 103 | 0.010 | 0.209 | $4.760 \pm 0.075$ | $4.790 \pm 0.046$ |
| 2710 | J003427.10-063014.9 | F2 | 41 | 6428 | 1.2 | 1.2 | $142 \pm 2$ | 145 | $48.3 \pm 2$ | 40.0 | -0.019 | 0.171 | $5.680 \pm 0.061$ | $5.740 \pm 0.027$ |
| 3210 | J004051.69-531236.1 | F7V | 45 | 6197 | 1.2 | 1.4 | $107 \pm 1$ | 107 | $37 \pm 1$ | 29.6 | 0.006 | 0.200 | $6.070 \pm 0.050$ | $6.090 \pm 0.022$ |
| 3279 | J004147.56+554056.2 | G5 | 69 | 5807 | 1.2 | 1.3 | $41.4 \pm 0.6$ | 42.1 | $14.4 \pm 0.6$ | 11.7 | -0.015 | 0.188 | $7.070 \pm 0.030$ | $7.120 \pm 0.020$ |

Notes. Hipparcos stars with detected mid-IR excesses at either $W 2, W 3$ and/or $W 4$. Unless otherwise noted, the stellar temperature and radius were obtained from photometric fits as described in Section 3. The $\chi_{*}^{2}$ column gives the goodness of the photospheric fit.
${ }^{\text {a }}$ Spectral types for stars downloaded from Hipparcos database. Stars marked with asterisks had their spectral types estimated from their $B_{T}-V_{T}$ colors using empirical color relations from Pecaut \& Mamajek (2013).
${ }^{\mathrm{b}}$ Parallactic distances from Hipparcos.
${ }^{\text {c }}$ Stellar temperature and radius were estimated from empirical color relations from Pecaut \& Mamajek (2013) using the listed Hipparcos spectral type.
${ }^{\mathrm{d}}$ The quoted fractional excesses in $W 3$ and $W 4$ represent the ratios of the measured excess and the estimated stellar photospheric flux in these bands. They have not been color-corrected for the filter response, although such corrections have been applied to the estimates of the fractional bolometric luminosities $f_{d}$ of the dust (Section 3, Table 7).
${ }^{\text {e }}$ Saturation corrected $W 1$ and $W 2$ photometry (see Section 2.4).
(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 6
IR Excess Information

| HIP | Excess | New? |  | Excess Significance $\left(\Sigma_{E}\right)$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | Flag | $(12 \mid 22 \mu \mathrm{~m})$ | $W 1-W 4$ | $W 2-W 4$ | $W 3-W 4$ | $W 1-W 3$ | $W 2-W 3$ | $W 1-W 2$ |
| 544 | UNYUNU | -N | $\ldots$ | 2.26 | 6.47 | $\ldots$ | -1.16 | $\ldots$ |
| 560 | YYYNNN | -N | 9.22 | 15.98 | 24.30 | 0.47 | 0.77 | 0.08 |
| 682 | YYYNNN | -N | 4.67 | 6.46 | 6.81 | -0.24 | -0.18 | -0.06 |
| 1473 | UYYUNU | -N | $\ldots$ | 3.29 | 6.70 | $\ldots$ | 0.20 | $\ldots$ |
| 1481 | YYYNNN | -N | 6.97 | 9.63 | 10.17 | 0.72 | 0.57 | 0.48 |
| 1866 | YYYNNN | -Y | 3.43 | 3.48 | 3.16 | 0.43 | 1.03 | -0.27 |
| 2472 | YYYNNN | $-Y$ | 3.29 | 4.64 | 4.17 | 1.46 | 2.24 | 0.12 |
| 2710 | NNYNNN | -N | 1.51 | 2.96 | 3.61 | -0.78 | -0.54 | -0.43 |
| 3210 | YYYNNN | $-Y$ | 3.28 | 4.43 | 4.05 | 0.53 | 0.83 | 0.20 |
| 3279 | NYYNNN | $-Y$ | 3.19 | 3.61 | 3.43 | -0.27 | 0.27 | -0.26 |

Notes. Summary of the properties of the IR excesses attributed to circumstellar excess disks at $W 2, W 3$ and/or $W 4$ for the stars in our science sample. The WISE Excess Flag indicates the combination of detections from the various colors. Each flag is a six character string that identifies whether the star has a statistically probable $(\mathrm{Y})$ or insignificant $(\mathrm{N})$ excess based on the order of the color analyses: $W 1-W 4, W 2-W 4, W 3-W 4, W 1-W 3, W 2-W 3$ and $W 1-W 2$. Any stars can have unlisted (U) values, indicating that the star was rejected by the selection criteria for that particular color (Section 2.2). "U" entries correspond to null entries in the corresponding $W i-W j \Sigma_{E}$ column. Column 3 lists whether or not the star is a new detection at the $W 3$ and/or $W 4$ bands ( 12 or $22 \mu \mathrm{~m}$ ). The last six columns lists the significance of the excess $\Sigma_{E}$ for each color.
(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

## 3. DEBRIS DISK BRIGHTNESS AND TEMPERATURE DETERMINATION

We fit the photometry of our debris disk candidates using model photospheres for the stellar contribution and singletemperature blackbodies for the dust. To constrain the photospheric fits, we use optical $B \& V$ Johnson photometry taken from the Hipparcos catalog, $J H K_{s}$ photometry from 2MASS, $W 1$, and in the lack of significant excesses $\left(\Sigma_{E}<\Sigma_{E_{\mathrm{CL}}}\right)$, also $W 2$ and $W 3$ photometry from WISE. The photometry was converted from magnitudes to $\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ using the Johnson,

2MASS and WISE zero-point fluxes (Johnson \& Morgan 1953; Cohen et al. 2003; Wright et al. 2010). The isophotal wavelength was adopted as the central wavelength for each bandpass.

We used NextGen (Hauschildt et al. 1999) photospheric models for stars of A-K spectral types, and Kurucz (1993) models for the few late-B stars in our candidate list. The models were fit to the calculated integrated fluxes over the bandpasses using $\chi^{2}$ minimization with MPFIT (Markwardt 2009). The photospheric temperature $\left(T_{*}\right)$, and flux scaling (i.e., stellar radius) were kept as free parameters. The surface gravity

Table 7
Debris Disk Parameters from Single-Temperature Blackbody Fits

| HIP ID | $T_{\mathrm{BB}}$ <br> $(\mathrm{K})$ | $T_{\mathrm{BB}_{\text {lim }}}$ <br> $(\mathrm{K})$ | $R_{\mathrm{BB}}$ <br> $(\mathrm{AU})$ | $R_{\mathrm{BB}_{\text {lim }}}$ <br> $(\mathrm{AU})$ | $\theta$ <br> $\left({ }^{\prime \prime}\right)$ | $f_{d}$ <br> $\left(10^{-5}\right)$ | $f_{d_{\text {lim }}}$ <br> $\left(10^{-5}\right)$ | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 544 | $\ldots$ | $<162$ | $\ldots$ | $>2.3$ | $>0.17$ | 6.0 | $>0.23$ | $\mathrm{~b}, \mathrm{e}$ |
| 560 | $\ldots$ | $<138$ | $\ldots$ | $>8.1$ | $>0.21$ | 16 | $>0.57$ | $\mathrm{~b}, \mathrm{e}$ |
| 682 | $\ldots$ | $<160$ | $\ldots$ | $>3.2$ | $>0.083$ | 9.1 | $>0.35$ | $\mathrm{~b}, \mathrm{e}$ |
| 1473 | 112 | $<263$ | 28 | $>5.1$ | $0.12-0.68$ | 2.5 | $>0.064$ | $\mathrm{c}, \mathrm{e}$ |
| 1481 | $\ldots$ | $<185$ | $\ldots$ | $>2.7$ | $>0.065$ | 9.6 | $>0.36$ | $\mathrm{~b}, \mathrm{e}$ |
| 1866 | $\ldots$ | $<177$ | $\ldots$ | $>0.99$ | $>0.021$ | 27 | $>1.0$ | $\mathrm{~b}, \mathrm{e}$ |
| 2472 | 137 | $<311$ | 22 | $>4.2$ | $0.08-0.42$ | 1.7 | $>0.055$ | $\mathrm{c}, \mathrm{e}$ |
| 2710 | $\ldots$ | $<208$ | $\ldots$ | $>2.7$ | $>0.065$ | 3.9 | $>0.14$ | $\mathrm{~b}, \mathrm{e}$ |
| 3210 | 117 | $<276$ | 7.6 | $>1.3$ | $0.03-0.17$ | 6.3 | $>0.19$ | $\mathrm{c}, \mathrm{e}$ |
| 3279 | $\ldots$ | $<215$ | $\ldots$ | $>1.9$ | $>0.028$ | 6.0 | $>0.21$ | $\mathrm{~b}, \mathrm{e}$ |

Notes. A summary of the calculated disk properties of stars with $W 2, W 3$ and $W 4$ excesses. Blackbody temperatures for the dust are listed alongside the calculated circumstellar location, projected angular extent of the dust and the fractional bolometric luminosity.
a. $W 4$-only excess: The $W 3$ excess flux in this case was either saturated or $>3 \sigma$ below the photosphere. A limiting temperature and radius for the dust cannot be determined.
b. W4-only excess: The $W 3$ excess flux is formally negative and an upper limit to the excess flux is used to place a $3 \sigma$ limit to the dust temperature and radius. c. $W 4$-only excess: The $W 3$ positive excess flux in this case was used to calculate a dust temperature and radius. An upper limit to the $W 3$ excess flux was used to calculate a $3 \sigma$ limit to the dust temperature and radius.
d. W3-only excess: The $W 4$ positive excess flux in this case was used to calculate a dust temperature and radius. An upper limit to the $W 4$ excess flux was used to calculate a $3 \sigma$ limit to the dust temperature and radius.
e. Lower limit to the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=12 \mu \mathrm{~m}$ as described in Section 3 .
f. Lower limit to the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=22 \mu \mathrm{~m}$ as described in Section 3 .
g. Significant $W 3$ and $W 4$ excess found in these stars. Dust parameters are exact calculations.
h. W3-only excess: The $W 4$ excess significance in this case was undetermined as the measurement was ignored in all $W 4$ analyses as its ASC measurement was $>2 \sigma$ discrepant from the mean Single Frame measurement.
(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)
was kept constant at empirically determined values for main sequence stars from Schmidt-Kaler (1982). ${ }^{5}$

In some cases our fits produced poor matches to the stellar photosphere $\left(\chi^{2}>4\right)$. In each of these cases, the 2MASS measurements were systematically offset compared to WISE $W 1$ and $W 2$. In such situations we used only $W 1$ and $W 2$ to fit the Raleigh-Jeans tail of the stellar photosphere; the stellar temperature was estimated from the SIMBAD spectral type listing and comparing it to Table 5 from Pecaut \& Mamajek (2013).

We calculate the dust excess fluxes in each WISE band by subtracting the photospheric flux integrated over that band $\left(F_{*}\left(\lambda_{\text {iso }}\right)\right)$ from the measured values ( $F_{\text {obs }}\left(\lambda_{\text {iso }}\right)$ ), thereby obtaining a value for the dust flux at $\lambda_{\text {iso }}$, the isophotal wavelength of the band in question:

$$
\begin{equation*}
F_{d}^{o}\left(\lambda_{\mathrm{iso}}\right)=F_{\mathrm{obs}}\left(\lambda_{\mathrm{iso}}\right)-F_{*}\left(\lambda_{\mathrm{iso}}\right) \tag{4}
\end{equation*}
$$

Where a significant excess is detected in both $W 3$ and $W 4$, we fit the measured flux excesses using a single-temperature ( $T_{\mathrm{BB}}$ ) blackbody model of the dust. While the dust is not expected to be actually concentrated in a thin ring at uniform temperature and

[^11]radius from the star, the calculated temperature and circumstellar radius constitute useful estimates of the debris disk's average properties.

Most of our excess detections are at $W 4$ only. In these cases, we use the upper limit on the $W 3$ excess flux to set a $3 \sigma$ upper limit on the dust temperature. In many of these cases, the W3 excess, though formally insignificant, is positive. We use these marginal $W 3$ excesses to calculate a unique temperature for the dust, in addition to the upper limit already mentioned. The data in these cases are formally consistent with arbitrarily low temperatures, but nevertheless the calculated temperature is of some value, especially when the $W 3$ excess has a significance more than $2 \sigma$ and is only just below our threshold. Both the calculated and upper-limit temperatures are given in Table 7, and the reader should bear in mind that only the latter are guaranteed to be physically meaningful.

We proceed in an exactly analogous way for the few disks where we have significant detections only in $W 3$. Here, we use upper limits on the $W 4$ flux to set $3 \sigma$ lower limits on the temperatures. In every case, the nominal $W 4$ excess is positive though not significant. Thus, just as for the $W 4$-only excesses with positive non-significant $W 3$ excesses, we calculate unique temperatures in addition to the limits. These values and the limits are given in Table 7.

In addition to dust temperatures, we derive and tabulate the values of $f_{d}$, the ratio of the bolometric luminosity of the dust to that of the star-and also the circumstellar radii corresponding to dust temperatures. We will now describe how we use measured flux excesses (or limits) in $W 4$ and $W 3$, obtained using Equation (4), to calculate the dust temperature (or limit), the value of $f_{d}$, and the circumstellar radius of the dust (or limit thereon).

The WISE magnitude-to-flux conversion assumes that the spectral slope of the excess is akin to a Vega-like spectrum (i.e., a Rayleigh-Jeans slope) at the WISE wavelengths. The excess monochromatic flux from Equation (4) therefore needs to be color-corrected for the response of WISE to an emission from a cool blackbody source:

$$
\begin{equation*}
F_{d}\left(\lambda_{\mathrm{iso}}\right)=\frac{F_{d}^{o}\left(\lambda_{\mathrm{iso}}\right)}{f_{c}\left(W i ; T_{\mathrm{BB}}\right)}, \tag{5}
\end{equation*}
$$

where $f_{c}\left(W i ; T_{\mathrm{BB}}\right)$ are the flux correction factors like those found in Table 6 in Section IV.3.g.vi of the WISE Explanatory Supplement. We have duplicated the calculations that produced these and created a lookup table of $f_{c}\left(W i ; T_{\mathrm{BB}}\right)$ that spans a wider and much more finely sampled range of temperatures than that in the Explanatory Supplement.

Since we do not know a priori the temperature of the dust, we use this lookup table to perform a grid search to find the blackbody temperature that matches our observed fluxes. This gives us the spectrum of the dust. As we already have the photospheric model of the star, the bolometric luminosity ratio $f_{d}$ may easily be found:

$$
\begin{equation*}
f_{d}=\frac{\int F_{\lambda, d} d \lambda}{\int F_{\lambda, *} d \lambda} \tag{6}
\end{equation*}
$$

The disk radius is then calculated assuming that the dust ring is in thermal equilibrium with the stellar radiation:

$$
\begin{equation*}
R_{\mathrm{BB}}=\left(278.3 / T_{\mathrm{BB}}\right)^{2} \sqrt{L_{*}}(\mathrm{AU}) \tag{7}
\end{equation*}
$$

Where one of the fluxes is an upper limit, the temperature will also be a limit (upper limit for a $W 4$-only excess; lower limit
for a $W 3$-only excess). A temperature limit converts easily into a limit on $R_{\mathrm{BB}}$, but not into a limit on $f_{d}$ : in general, the value of $f_{d}$ obtained using the equations above in the case where one of the fluxes is an upper limit will be neither the lowest nor the highest value of $f_{d}$ permitted by the data.

However, we can set a meaningful lower limit on $f_{d}$ in every case of single-band excess. This is because the lowest value of $f_{d}$ consistent with the data corresponds to the case where the largest possible fraction of the disk luminosity comes out in the one band we have measured-in other words, where the blackbody emission peaks at the band's isophotal wavelength. This corresponds to a temperature of 131 K in the case of $W 4$-only excesses or 272 K for $W 3$-only excesses. We can therefore adopt as our dust model a blackbody having whichever of these temperatures is appropriate, normalized to match the measured excess in the relevant band. Equation (6) then gives the minimum $f_{d}$ that is consistent with the data. This limit is given in Table 7 for all of our single-band excesses.

For some $W 4$-only excesses, the $W 3$ flux measurement fails to pass our selection criteria. For these, we cannot place any constraints on the dust temperature, but we can still place a lower limit on $f_{d}$ as described in the preceding paragraph. For these cases, the temperature given in Table 7 is the one corresponding to the lower-limit $f_{d}(131 \mathrm{~K})$ and has no independent physical meaning.

For disks with excesses at both $W 3$ and $W 4$, Table 7 gives values for the dust temperature, its circumstellar radius, and its bolometric flux fraction $f_{d}$. For single-band disks, the table gives limiting values for all these quantities, as well as tentative calculated values in cases where the formally non-detected band showed a positive though non-significant excess. The SEDs of all stars with WISE $W 3$ or $W 4$ excesses, including our blackbody fits to the dust emission, are plotted in Figure 5.

## 4. ANALYSIS OF EXCESSES AND LOCATION OF THE DUST

We divide the analysis of our candidate debris disks according to the wavelengths at which they were detected. We first discuss our $W 4$-only detections, which in most cases represent the shortwavelength tail of blackbody emission from cold dust peaking at longer wavelengths, although in a few cases we find evidence of multi-temperature dust. We then discuss detections of excesses at both $W 3$ and $W 4$ bands that may be explained by warm dust alone. Finally, we discuss the likelihood of hot dust orbiting a few stars that show significant excesses at $W 2$.

### 4.1. W4-only Excesses: Kuiper Belt Analogs and Multi-temperature Dust Disks

Stars with dust emission detected at $W 4$, but not in any of the three colors that do not include $W 4$, make up $96 \%$ of our total detections, or 211 of 220 . Of these 211 stars, just over $50 \%$ have been previously published as excess detections, and $36 \%$ have published dust temperatures, mostly based on IR excess measurements at multiple wavelengths including $\lambda \gtrsim 60 \mu \mathrm{~m}$. None exhibits an excess detected at shorter wavelengths comparable to the $W 3$ band $(12 \mu \mathrm{~m})$.

However, the dust in these systems must necessarily emit some flux at shorter wavelengths, even though it is not above our W3 detection threshold. The existence of such flux, undetectable from any individual star, can nonetheless be divined from the distributions of $E[W 1-W 3]$ and $E[W 2-W 3]$ (defined in Equation (1)). If there were no $W 3$ flux from the dust,
these distributions would be symmetric around zero, with the numbers of positive and negative values equal to within statistical uncertainties. Instead, we find that they are strongly skewed toward positive values. This observation suggests that we can measure the $W 3$ excess flux, in aggregate, for these nominally $W 4$-only systems. Such measurements allow us to determine the averaged dust temperature of various subsets of the $W 4$-only systems, even though only an upper limit can be placed on the temperature of each dust-disk individually.

Because the distances and dust-luminosities of stars in our sample vary widely, we perform such analyses by calculating the $W 3 / W 4$ excess flux ratios, rather than simply the $W 3$ excess flux. We have a $W 3$ measurement that meets the selection criteria given in Section 2.2 for 183 of our 211 W 4 -only detections. The weighted mean of the uncorrected $W 3 / W 4$ flux ratio for all 183 stars is $0.174 \pm 0.026$. Thus we have a highly significant detection of the aggregate $W 3$ excess, even though none of these stars had individual $W 3$ excesses above our detection threshold. This calculation can be repeated for specific subsets of these 183 stars, with interesting implications for the characteristic dust temperatures. We perform these calculations below in Sections 4.1.1 and 4.1.2.

### 4.1.1. W4-only Excesses with Prior Longer Wavelength Detections

Of our 183 stars with $W 4$-only excesses and $W 3$ fluxes passing our selection criteria, 95 were previously known to exhibit IR flux excess, in many cases due to measurements at wavelengths longer than $30 \mu \mathrm{~m}$. Of these 95 stars, 46 have published dust temperatures below $130 \mathrm{~K}, 20$ have published dust temperatures of 130 K or higher, and 29 have no previously published dust temperatures. For convenience, in this section we will refer to these three samples of stars as the "known cold disks," the "known warm disks," and the "published disks of unknown temperature."

The published dust temperatures of the 46 known cold disks, by construction, all correspond to dust colder than the asteroid belt in our own solar system. They range down to 50 K , just slightly warmer than the solar system's EKB. For these 46 stars, we find an aggregate $W 3 / W 4$ excess flux ratio of $0.122 \pm 0.028$. The fact that this ratio is not statistically consistent with zero means that we have detected a statistically significant W3 excess in the aggregate of these systems, though not in any one individually. This is the first indication of excess flux at wavelengths shorter than $18 \mu \mathrm{~m}$ for any of these systems.

We convert this aggregate $W 3 / W 4$ excess flux ratio to a blackbody temperature, which will approximate the fluxweighted mean temperature of dust in the known cold disks. The correction factors $f_{c}\left(W i ; T_{\mathrm{BB}}\right)$ must be taken into account in this conversion, and we do not know their values a priori since they depend on the temperature we seek to determine. Since it is easy to solve the inverse problem of predicting the uncorrected $W 3 / W 4$ excess flux ratio for dust at a given blackbody temperature, we perform the conversion by a simple grid search in temperature space, finding that the uncorrected excess flux ratio $W 3 / W 4=0.122 \pm 0.028$ corresponds to a blackbody temperature of $90 \pm 6 \mathrm{~K}$. For comparison, the median published dust temperature for these disks is 85 K (see Section 5 and Figure 6 references). Our $90 \pm 6 \mathrm{~K}$ aggregate temperature, which was measured using shorter wavelengths than any of the published temperatures, is consistent with this result: it appears that at $W 4$ and $W 3$, we are measuring the Wien tail of blackbody emission from the same cold dust seen at longer wavelengths.


Figure 5. SEDs of probable debris disk host stars in our science sample. The dashed lines and solid data points correspond to the fitted model NextGen photosphere and to $B V J H K_{s}$ photometry from the Hipparcos Catalogue and 2MASS Point Source Catalog. Fluxes plotted as closed circles were used in the fit, and fluxes plotted as stars-excesses above the photosphere-were not used in the fit. Cool blackbody curves (dash-dotted line) were fitted to the excess fluxes (open diamonds) at the $W 3$ and/or $W 4$ wavelengths. The combined photosphere and excess emission for each star is plotted as a solid black line.
(An extended version of this figure is available in the online journal.)

The known warm disks have published temperatures ranging from 130 K to 276 K (with one outlier at 1700 K ; Matranga et al. 2010). This dust could be analogous to the asteroid belt and even the zodiacal dust in our solar system. Our aggregate $W 3 / W 4$ excess flux ratio from these 20 stars is $0.68 \pm 0.21$. This much higher result relative to the known cold disks is expected given that the warm dust will emit more at shorter wavelengths. Our $W 3 / W 4$ excess flux ratio corresponds to an aggregate dust temperature of $154 \pm 19 \mathrm{~K}$. This is consistent with the median published dust temperature of 178 K for these disks,corresponding to a disk brightness of $f_{d}=3.93 \times 10^{-5}$. This aggregate temperature also indicates a weak contribution
from any exozodi ( 300 K ) dust emission in these systems. We calculate the contribution of any such exozodiacal dust in the aggregate by assuming the $W 3$ excess aggregate flux is arises from 300 K dust. Using the $2 \sigma$ upper limit on the $W 3$ excess aggregate flux, we calculate an upper limit dust brightness $f_{d}=2.48 \times 10^{-5}$. This is $37 \%$ smaller than the actual disk brightness for the aggregate. Consequently, the W4 excess produced from this dust emission is $80 \%$ fainter than that of the derived aggregate, evidence of non exozodi dust emission in the aggregate.

For the 29 previously published disks of unknown temperature, we find an aggregate $W 3 / W 4$ excess flux ratio of


Figure 6. Comparison between excess detections in this study and previously reported excesses at mid-IR $(10-30 \mu \mathrm{~m})$ and far-IR $(\lambda \geqslant 30 \mu \mathrm{~m})$ wavelengths. Only stars that are within 75 pc of the Sun with galactic latitudes $5^{\circ}$ above or below the galactic plane are included in this comparison. Our study is focused on Hipparcos stars, while the previous studies include non-Hipparcos stars, too. Data for these stars was obtained from the following sources: Sylvester \& Mannings (2000), Habing et al. (2001), Metchev et al. (2004), Beichman et al. (2005), Chen et al. (2005a), Chen et al. (2005b), Low et al. (2005), Beichman et al. (2006a), Beichman et al. (2006b), Chen et al. (2006), Moór et al. (2006), Smith et al. (2006), Su et al. (2006), Rhee et al. (2007b), Rhee et al. (2007a), Trilling et al. (2007), Wyatt et al. (2007), Hillenbrand et al. (2008), Meyer et al. (2008), Rebull et al. (2008), Rhee et al. (2008), Roberge \& Weinberger (2008), Trilling et al. (2008), Bryden et al. (2009), Carpenter et al. (2009), Dahm \& Carpenter (2009), Kóspál et al. (2009), Lawler et al. (2009), Moór et al. (2009), Morales et al. (2009), Plavchan et al. (2009), Su et al. (2009), Koerner et al. (2010), Moerchen et al. (2010), Smith \& Wyatt (2010), Dodson-Robinson et al. (2011), Eiroa et al. (2011), Moór et al. (2011), Morales et al. (2011), Zuckerman et al. (2011), Kennedy et al. (2012), Urban et al. (2012) and Wu et al. (2013).
$0.30 \pm 0.14$. As this value is too uncertain to be useful, we combine the published disks of unknown temperature with our own newly discovered disks in Section 4.1.2 below.

### 4.1.2. New W4-only Excesses

Of our 183 stars with $W 4$-only excesses and $W 3$ fluxes passing our selection criteria, 88 have not been previously published as IR excesses at any wavelength. These excesses are too tenuous $(<10 \%)$ to have been accurately measured with IRAS or AKARI, and the stars have not been targeted with Spitzer or Herschel. They have not been identified as excesses in previous analyses of the WISE data.

Calculating the aggregate $W 3 / W 4$ excess flux ratio is of particular importance for these systems, because if the systems correspond to real dust disks at physically plausible temperatures, a detectable aggregate $W 3$ excess must be present. Lack of such a detection would falsify the $W 4$ excesses, suggesting that they were due to imperfectly understood systematics in $W 4$ rather than to genuine dusty disks.

The aggregate $W 3 / W 4$ excess flux ratio for these is $0.508 \pm$ 0.082 , corresponding to a highly significant detection of the aggregate $W 3$ excess flux. This ratio maps to an aggregate temperature of $139 \pm 8 \mathrm{~K}$. These significant, consistent, and physically reasonable results constitute a useful check, and confirm that our new $W 4$-only excesses are real dust disks not identified by previous studies.

We can also add the sample of previously published disks of unknown temperature, mentioned in Section 4.1.1 above, to the sample of 88 new disks, and calculate the aggregate ratio of the combined samples. This is interesting because most of the 29 previously published disks of unknown temperature were also identified using WISE and thus the result will yield an estimate of the characteristic dust temperature of disks that were not detected in previous surveys (ISO, IRAS, AKARI), but have recently been identified using WISE. The aggregate $W 3 / W 4$ excess flux ratio for this combined sample of 117 disks is $0.458 \pm 0.071$, which corresponds to a temperature of $134 \pm 8 \mathrm{~K}$. This temperature is comparable to the outer edge of our own asteroid belt.

### 4.1.3. Summary

We have found conclusive evidence for an aggregate $W 3$ excess from stars that individually have significant excesses only at $W 4$. Known cold disks have aggregate $W 3 / W 4$ excess flux ratios implying cold dust and known warm disks have aggregate excess flux ratios consistent with warm dust. Disks recently discovered in this work and other studies using WISE W4 photometry show intermediate flux ratios that correspond, interestingly, to the temperature of dust located near the frost line and emitting its peak blackbody flux in the $W 4$ bandpass. This aggregate temperature is only the mean of a potentially very wide distribution, but it is nonetheless possible that most of the newly discovered disks are warm (i.e., $>100 \mathrm{~K}$ ): if the $W 4$ excesses measured for these systems were all merely the Wien tails of cold-dust emission, the cold dust in at least some cases would likely have already have been detected at $60 \mu \mathrm{~m}$ by IRAS.

### 4.2. W3 and W4 Excesses: Asteroid Belts and Exozodi

We find four stars with significant excesses in both W3 and $W 4$ but not in $W 2$ : HIP 7345 (49 Cet), HIP 24528 (HD 34324), HIP 41081 (HD 71043) and HIP 95261 ( $\eta$ Tel). Their blackbody dust temperatures can be determined exactly and reliably, and are given in bold in Table 7. All of these are known debris disk host stars with $24 \mu \mathrm{~m}$ excesses from Spitzer, $25 \mu \mathrm{~m}$ excesses from IRAS, or $22 \mu \mathrm{~m}$ excesses from the recent WISE study by Wu et al. (2013), and with longer-wavelength detections at either $60 \mu \mathrm{~m}$ (IRAS), or $70 \mu \mathrm{~m}$ (Spitzer). Their published dust temperatures based on the longer-wavelength results range 80 K to 150 K . Our measured dust temperatures are higher in every case, ranging from 133 K to 199 K . These temperatures are wellmatched to the $130-190 \mathrm{~K}$ temperature range corresponding to the asteroid belt in our own solar system; by contrast, the published temperatures mostly correspond to dust much colder than our asteroid belt, though not at the $30-55 \mathrm{~K}$ temperatures characteristic of solar system Kuiper Belt objects.

The discrepancies between our dust temperatures for these objects and the published ones based on longer-wavelength excesses demonstrates the existence of dust at multiple temperatures. HIP 95261 has the lowest discrepancy ( 177 K versus 150 K) and HIP 41081 the greatest ( 199 K versus 91 K). Even for HIP 95261, the discrepancy is likely real and points to a dust distribution spanning a wide range in circumstellar radius. The much larger discrepancy seen for HIP 41081 could even indicate two distinct dust populations at different radii and temperatures, separated by a gap-however, detailed modeling to distinguish this possibility from a single dust distribution spanning a wide range in circumstellar radius and temperature is beyond the scope of this work. In any case, all of these objects
are extremely interesting as targets for further study and observations, both to map the dust in more detail and to search for possible associated planets.

We also find five stars with excesses that are significant only at W3: HIP 19610, HIP 51793, HIP 80781, HIP 102238 and HIP 109656. All are new discoveries of our survey, with no previously published IR excess detection at any wavelength. All five have positive though formally non-significant $W 4$ excesses, a statistical result which strongly suggests that the dust is emitting flux at $W 4$, even though it is below our detection threshold.

We use upper limits on the $W 4$ excess in these systems to calculate $3 \sigma$ lower limits on the temperatures. These range from 174 K (HIP 80781) to 274 K (HIP 19610), although we caution that for HIP 80781 and HIP 109656 the W4 fluxes are suspect due to the discrepancy between the ASC and single-exposure photometry discussed in Section 2.3, and were therefore not used in our search for excesses within the science sample. Nevertheless, the fluxes may be accurate for these objects, and certainly are for the other three stars. Thus our $3 \sigma$ lower limits on the dust temperatures conclusively demonstrate (at least for the three stars with good $W 4$ photometry) that we are not merely measuring the Wien tail of blackbody emission from cold dust. Rather, dust exists at asteroidal (130-190 K) or, more likely, even warmer temperatures in these systems.

It is highly likely that the dust in these systems overlaps the habitable zone, which corresponds to temperatures of $230-330 \mathrm{~K}$. This dust is likely produced by mutual collisions between asteroidal objects warmer and far more abundant than those in our solar system-objects that could be leftovers from the formation of one or more potentially habitable planets. Interestingly, however, the lack of significant excess detections at wavelengths greater than $12 \mu \mathrm{~m}$ suggests there is no Kuiper Belt analog in these systems, and therefore the overall system architecture may be very different from that of our own solar system. Such systems could serve as a probe of the diverse evolutionary pathways the process of planet formation can follow.

### 4.3. W2 Excesses: Hot Dust or Signs of Chromospheric Activity

Our $W 3$ and $W 4$ analyses are naturally extendable to $W 2$, and we sought hot-dust excesses from the $W 1-W 2$ color distribution. We found eight stars within 75 pc with significant W2 excesses. As discussed in Section 2.5, our empirical calibration of false positives does not allow us to push our confidence threshold beyond $95 \%$ for the $W 1-W 2$ excesses. Nonetheless, this still implies that among the eight $W 2$ excesses we expect less than one to be caused by random error.

We exclude two of the excesses from further consideration, as they are associated with unresolved binary stars with disparate spectral types: HIP 999 (G8V+K5; composite spectral type of K0 in Hipparcos) and HIP 3121 (K5V+M3V). That is, in these two cases an inaccurate estimate of the joint photospheric $W 1-W 2$ color of the binaries is indeed the likely cause for the small $W 2$ excesses. This conclusion is supported by the fact that these stars also possess small, sometimes significant, $W 1-W 3$ and $W 1-W 4$ excesses: that is, a blackbody slightly cooler than the $B V J H K_{s} W 1$ photospheric fit-the secondary component-is needed to explain the WISE SED. A third W2 excess star, HIP 3729 (K2Ve), is a suspected doublelined spectroscopic binary, although according to Torres et al. (2006) that classification is uncertain because of the star's large
$v \sin i\left(75 \mathrm{~km} \mathrm{~s}^{-1}\right)$. We observe that this star shows marginal excesses at all WISE wavelengths, including $W 1$ : a signature of variability between the 2MASS and WISE epochs, rather than a bona-fide excess. It is possible that the WISE excesses are caused by geometric factors affecting the combined flux from an unresolved close binary: e.g., grazing eclipses or ellipsoidal variations. Therefore, we also exclude HIP 3729.

The remaining five stars are not known to be in binary systems: HIP 30893 (K2V), HIP 74235 (K2V), HIP 74926 (K5Vp), HIP 96562 (F2V), and HIP 109941 (K5V). Their SEDs stars are shown in Figure 7. Four of the five stars show small, sometimes significant $W 1-W 3$ and $W 1-W 4$ excesses (Table 6), and for three of them the $W 1$ data point is also marginally above the fitted photosphere. Previously unknown close companions could account for these, in much the same way as for HIP 999, HIP 3121, and HIP 3729. However, being within 75 pc and relatively cool, these stars have been prime targets for radial velocity monitoring and planet searches. Therefore, we assume that the excesses from these four stars are not caused by unknown stellar companions. The remaining $W 2$ excess star, HIP 74235 (K2V), exhibits no excess at any other wavelength. All of its non- $W 1-W 2$ excesses are negative-most marginally, except for $W 2-W 3$-indicating that the apparent excess is localized to the $W 2$ band.

A potential clue to the nature of the detected $W 2$ excesses is the fact that four of the five stars have K spectral types, and only one is hotter (F type). This may suggest that an inaccurate photospheric correction of the $W 1-W 2$ color may be to blame for the large fraction of K-star $W 2$ excesses in our science ( 75 pc ) sample. However, the larger parent ( 120 pc ) sample selection also contains A through G-type W2-excess stars, with no additional $W 2$ excesses from K stars. This is evident from the distribution of $W 1-W 2$ excesses as a function of $B_{T}-V_{T}$ in the bottom right panel of Figure 3: the $W 1-W 2$ excesses do not cluster at red $B_{T}-V_{T}$ colors. The dominance of K star excesses in the 75 pc sample may therefore be attributable to the higher photometric precision that can be attained on faint K dwarfs near the Sun. We conclude that these excesses are real.

All five of the detected $W 2$-excess systems may possess small amounts of hot dust, between $\sim 400$ K -900 K . Such dust would be in close proximity to the star, and would be expected to be very short-lived: potentially indicative of the recent planetesimal activity in the innermost reaches of these systems. The excess from the one F star (HIP 96562) is fully consistent with a $T_{\text {eff }}=780 \mathrm{~K}$ black body. The remainder of the excesses, around the four K stars, require steeper than Raleigh-Jeans SEDs to fit the lower $W 3$ and $W 4$ excesses. Such SEDs would be representative of sub-micron dust grains with low emissivity at $>5 \mu \mathrm{~m}$ wavelengths. We use modified blackbodies to model these:

$$
\begin{equation*}
B_{\lambda}\left(T_{\mathrm{BB}}\right)_{m}=B_{\lambda}\left(T_{\mathrm{BB}}\right)\left(\frac{\lambda_{0}}{\lambda}\right)^{\beta} \tag{8}
\end{equation*}
$$

where $\beta$ is the power index of the grain emissivity: typically between 0 and 3 for ideal dielectric materials (Helou 1989). In two of the cases (HIP 74235 and HIP 74926) we have set the excesses to peak at $W 2$, since the information from the other WISE bands is not sufficient to constrain the temperatures. For the other two stars we have sought fits that satisfy all of the WISE excesses and upper limits.

HIP 30893 and HIP 109941 are the only stars for which $\beta$ falls between 0 and 3, in agreement with thermal emission from dust with low emissivity. HIP 74235 and HIP 74926 have grain emissivity indices $\beta>3$ that exceed physical values and


Figure 7. SEDs of stars with $W 2$ excesses above the $95 \%$ confidence level. The stellar photosphere (dashed line) was fit to the $B V J H K_{s}$ photometry only. A blackbody was fit to the excess around the F star HIP 96562. In the cases of the four K stars, we fit modified blackbody functions (dot-dashed lines) to the WISE excess fluxes (diamonds), or to the WISE $3 \sigma$ upper limit fluxes (open circles with downward arrows) when the excesses were negative. The K-star SEDs require a wide range of grain-emissivity index values $(\beta)$, some of which are unphysical. The nature of these excesses remains uncertain at this time.
are difficult to interpret. We therefore can not conclude with confidence that dust is at the origin of any of the four K-star W2 excesses.

It is possible that the $W 2$ excesses from the four K stars are related to their late spectral types, but not for reasons of inaccurate calibration of the photospheric $W 1-W 2$ color. Instead, the responsible mechanism may be chromospheric activity. One of the stars, HIP 109941, is included in the ROSAT Bright Survey catalog (Fischer et al. 1998) and possesses $\mathrm{H} \alpha$ in emission. More generally, K stars have relatively active chromospheres compared to earlier-type stars, driven by deep convection. W2 spans the CO fundamental vibration-rotation bands, which are prominent in K stars. CO could conceivably be observed in emission under the right circumstances. CO emission at $4.7 \mu \mathrm{~m}$ is indeed observed in the Sun's lower chromosphere, within 1000 km of the Sun's limb, at gas temperatures of $3000-3500 \mathrm{~K}$ (Solanki et al. 1994). However, the emission does not contribute a significant portion of the Sun's bolometric flux. K dwarfs are more chromospherically active than the Sun, although it remains to be seen whether their entire $W 2$-band fluxes can be raised by $5 \%-8 \%$ through CO line emission.

Because the nature of the $W 2$ excesses remains speculative, and because the confidence threshold for the detections is lower ( $\gtrsim 95 \%$ ), we do not count the five stars discussed in this section toward the overall number of debris disks detected in our study. We single out only the F2V star HIP 96562 as a potential host of hot $(780 \mathrm{~K})$ circumstellar dust. If this excess is real, it would be among the most tenuous debris disks detected around any star.

### 4.4. Circumbinary Dust

The majority of studies looking for IR excesses from circumstellar disk material limit themselves to single stars, as the possibility of photometric confusion or contamination from closely separated stars is a concern. This is also the case in our study, as
we aimed to remove all visual binary systems in which a companion may affect the photometry in the different WISE bands differently (see Section 2.2). However, a small number of stars, mostly in very wide binary or multiple systems passed all of our contamination checks and have bona-fide IR excesses. Only a few close binaries were allowed: those for which the component spectral types were very similar and so the composite $B_{T}-V_{T}$ color of the system is representative of the component's colors.

Using information from the Washington Double Star Catalog ${ }^{6}$ (Mason et al. 2013) and from the literature, we identified 25 stars from our debris disk candidates that are part of binary or multiple star systems. Projected orbital separations are listed in Table 8. Three of these stars have companions projected separations $<12^{\prime \prime}$-HIP 9141, HIP 16908 and HIP 95261—placing them within the $W 4$ beam. Thus the flux from these companions might mimic and IR excess attributed to the primary target. However we find this is not the case: HIP 9141 has an equal mass companion (Biller et al. 2007) and the SED for this star does not show an excess attributed to a binary component. HIP 95261 has an M7/8 spectral type companion, but the $W 4$ flux for this star is $\sim 20 \%$ above the photosphere and does not possess a significant $W 3$ excess. The inferred dust temperature is thus inconsistent with this star's companion. HIP 16908 has an M1/ 3 V companion but the inferred dust temperature, along with the slope of the SED and an insignificant $W 3$ excess is inconsistent with the IR flux of an M-type stellar companion.

We compare the calculated circumstellar dust radius (Table 7) and the binary separation to infer the location of the dust with respect to the stellar components.

Most (23) of the projected separations between the stellar binary components are larger than the inferred dust orbital radius, and the dust is therefore circumstellar. Given sufficiently wide angular separations between the stellar components in

[^12]Table 8
Excesses Detected in Binary Systems

| Star | Dist. <br> (pc) | Binary Separation (") | Binary Separation <br> (AU) | Dust Radius <br> (AU) | Dust State ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HIP 544 | 42 | 189.7 | 7900 | 2.7 | cs |
| HIP 1481 | 47 | 12.6 | 590 | 36 | cs |
| HIP 2472 | 60 | SB | . . . | 2.7 | cb |
| HIP 4016 | 44 | 40 | 1800 | 2.9 | cs |
| HIP 6679 | 29 | 132.9 | 3900 | 5.5 | cs |
| HIP 7576 | 53 | 612 | 32000 | 22 | cs |
| HIP 9141 | 61 | 0.15 | 9.2 | 3.4 | cs |
| HIP 9902 | 29 | 52.4 | 1500 | 2.8 | cs |
| HIP 11477 | 43 | 391.2 | 17000 | 10 | cs |
| HIP 12489 | 71 | 29 | 2100 | 11 | cs |
| HIP 13209 | 47 | 15.2 | 710 | 33 | cs |
| HIP 16908 | 71 | 0.8 | 57 | 8.2 | cs |
| HIP 21547 | 49 | 28.9 | 1400 | 4.3 | cs |
| HIP 22394 | 41 | SB | $\ldots$ | 1.5 | cb |
| HIP 25183 | 51 | 17.2 | 870 | 14 | cs |
| HIP 61960 | 40 | 12.7 | 500 | 0.71 | cs |
| HIP 65728 | 24 | 181.7 | 4400 | 2.4 | cs |
| HIP 69281 | 50 | 12.6 | 630 | 5.9 | cs |
| HIP 82587 | 72 | 74.7 | 5300 | 4.2 | cs |
| HIP 94184 | 14 | 50.5 | 690 | 2.3 | cs |
| HIP 95261 | 36 | 4.2 | 150 | 15 | cs |
| HIP 102655 | 54 | 391.4 | 21000 | 2.7 | cs |
| HIP 105388 | 53 | 13.6 | 730 | 6.3 | cs |
| HIP 113477 | 48 | 21.6 | 1000 | 11 | cs |
| HIP 115738 | 41 | 176.8 | 7200 | 1.1 | cs |

Notes. Science sample stars with debris disks in known binary systems. The binary separation was calculated using the parallactic distance and angular separations from the Washington Double Star Catalog. Spectroscopic binaries are listed as SB with no known projected separation information available.
a Orbital state of the dust: "cs" means the dust is in a circumstellar location around the primary star; "cb" means the dust is in a circumbinary configuration.
most of these systems, we are confident that the debris disk is co-located with the component identified in the Hipparcos catalog.

The remaining two stars, HIP 2472 (A0V) and HIP 22394 (K3V) are part of spectroscopic binary systems. There is no information in the literature for the orbital elements or spectral type for the binary component of HIP 2472. The binary component for HIP 22394 has a published orbital period of 11.9 days. The average separation of the stars would $\sim 0^{\prime \prime} 1$. The radius for the dust in both these systems is estimated to be at 2.7 and 1.5 AU respectively. Since our assumption of blackbody dust properties is simplistic, and in reality circumstellar dust grains have poorer emissivity, our inferred dust orbital radii may be too small by a factor of up to two. Therefore, in these two cases, we conclude that the dust is in circumbinary configuration.

## 5. DISCUSSION

### 5.1. Comparison to Previous Work

We compare our sample of Hipparcos debris disks discovered in WISE to those previously reported in published work. The literature sample consists of excesses detected at multiple reference wavelengths, from IR surveys with IRAS, ISO, Spitzer, AKARI, WISE, and Herschel and includes stars not in Hipparcos. Our compilation of published results contains a total of 449 bona-fide debris disks within 75 pc , most (389) of which satisfy the spatial and color constraints that we placed on our science sample: i.e., $|b|>5^{\circ}$ and $-0.17<B_{T}-V_{T} \leqslant 1.40$. Among
these, 261 have known warm component excess emission ( $10-30 \mu \mathrm{~m}$ ).

We have identified 220 debris disks within $75 \mathrm{pc}, 108$ of which are new detections, and 114 have previously reported mid-IR and/or far-IR excesses $(\lambda>10 \mu \mathrm{~m})$. That is, our study has expanded the overall 75 pc debris disk census by $108 / 388=$ $28 \%$. Ten of the 114 previously known disks were not known to possess excesses at $\lambda<30 \mu \mathrm{~m}$, so the total number of new $10-30 \mu \mathrm{~m}$ disk identifications from our study is $108+10=118$ : a $118 / 262=45 \%$ increase. The third column of Table 6 lists whether our WISE-detected debris disks have previous detections at wavelengths similar to $12 \mu \mathrm{~m}$ or $22 \mu \mathrm{~m}$. The Venn diagram in Figure 5 compares the number of detections in our survey to those stars with IR excesses discovered from past surveys at $10-30 \mu \mathrm{~m}$ and at $\lambda \geqslant 30 \mu \mathrm{~m}$.

Our very strict photometric selection criteria and binarity checks have excluded a significant fraction (33\%) of the overall 75 pc Hipparcos sample. The fact that over half of our 220 debris disk identifications are new indicates that previous searches for debris disks in all-sky surveys are only $\lesssim 50 \%$ complete to the precision limits of WISE. Hence, there is a potential to further double the number of known warm debris disks outside of the 75 pc Hipparcos sample.

We can also estimate the completeness of our own debris disk identification method by comparing the fraction of Hipparcos stars included in our science sample to the fraction of known $10-30 \mu \mathrm{~m}$ debris disks that we recover. As discussed in Section 2.2.2, our science sample includes $67 \%$ of $|b|>5^{\circ} \mathrm{Hip}$ parcos 75 pc main sequence stars with $-0.17<B_{T}-V_{T}<1.4$.

Within the same constraints we confirm $78 \%$ of the disks known from WISE and AKARI, and $38 \%$ of the disks known from Spitzer. We do miss most (14/23) of the few known 10-30 $\mu \mathrm{m}$ debris disks from IRAS and $I S O$, only because these stars exceed our $W 2>2.8$ mag brightness threshold.

Therefore, our selection is at least as, or more sensitive than any of the previously published work that uses data from all-sky infrared survey telescopes. We achieve this without compromising confidence in our reported detections, as our overall $W 4$ excess selection has $99.5 \%$ reliability. The reason for the lower fraction of recovered Spitzer $10-30 \mu \mathrm{~m}$ excesses is the greater sensitivity of targeted Spitzer observations, and the improved ability to remove the stellar photospheric contribution in Spitzer IRS observations. The missed warm excesses known from Spitzer are indeed all tenuous, below the sensitivity or precision limits of WISE.

Our search for 5-22 $\mu \mathrm{m}$ excesses from warm debris disks in the solar neighborhood is the most comprehensive and sensitive one to date, with a sample of nearly 8000 stars within 75 pc . Nevertheless, several recent $W 4$-only studies have reported substantial numbers of new debris disk identifications in WISE, with samples that in some cases have significant overlap with ours. In the following, we compare our findings to these particular ones, and identify areas in which our work represents an improvement.

### 5.2. Comparison to the WISE W4 Debris Disk Study of Wu et al. (2013)

Wu et al. (2013) performed a search for $W 4$ excesses from bright ( $V<10.27 \mathrm{mag}$ ) Hipparcos stars, identifying 112 excesses, 70 of which were considered new candidate debris disks. While similar to ours, their analysis differs in ways that make the two studies complementary, with ours being sensitive to excesses around brighter stars (saturated in WISE), and to altogether fainter excesses around stars within 75 pc .

Wu et al. (2013) use a sample of 7624 stars within 200 pc , comprised of sources detected at $\mathrm{S} / \mathrm{N}>20$ in $W 4$, parallactic precision better than $10 \%$, photometric precision better than $2.5 \%$ in $B-V$ colors, 2MASS $\sigma_{K_{s}}<0.1 \mathrm{mag}$, and unsaturated photometry in $K_{s}, W 3$, and $W 4$. Their excess candidates are defined as stars with $K_{s}-W 4$ colors at least $4 \sigma$ redward of the mean, where the mean and $\sigma$ are calculated in four bins based on the $J-H$ colors of stars. This is analogous to our analysis using $B_{T}-V_{T}$ rather than $J-H$, and a running mean rather than four bins. Wu et al. (2013) removed sources contaminated by IR cirrus or confusion after their excess candidates were selected.

The Wu et al. (2013) approach results in several important differences in the results. First, Wu et al. (2013) probe stars out to much larger distances than we do, but they confine their analysis to the brightest unsaturated objects, with highsignificance $W 4$ detections and precise optical photometry. This allows the detection of disks with low fractional luminosity around any star in their sample, but at the same time rejects both the brightest saturated stars and fainter stars with G or K spectral types, around which we have detected significant excesses. If we compare the $W 4$-excess disks in our science sample ( $<75 \mathrm{pc}$ ) to their selection criteria, we find that $180 / 220=82 \%$ of our science sample disks are removed from their study: mostly because of saturation in $K_{s}$ or because their $B-V$ color errors are $>2.5 \%$.

Second, Wu et al. (2013) choose to eliminate some sources of contamination after performing their color selection. On the one hand, this allows them to retain a larger statistical sample
of stars to characterize the full $K_{s}-W 4$ distribution. On the other hand, it results in a higher probability of missing faint excesses: including stars with WISE photometry contaminated by line-of-sight IR cirrus systematically increases the width of the $K_{s}-W 4$ distribution. Our stricter selection criteria result in a cleaner sample, with $W i-W j$ distribution widths almost entirely accounted for by the photometric uncertainties (Section 2.5).

Our use of WISE-only colors and our treatment of the photometric systematics (Sections 2.3-2.5) also allows us to potentially detect fainter excesses. Wu et al. (2013) use 2MASS $K_{s}$ photometry where the observations were conducted years prior to the launch of WISE. 2MASS minus WISE photometry is vulnerable to precision limitations induced by stellar variability or cross-platform systematics. These also increase the width of the $K_{s}-W 4$ color distribution and can result in missed excesses.

Finally, we note that the tenuous excesses reported in Wu et al. (2013) from six F stars within 75 pc- HIP 22531, HIP 29888, HIP 42753, HIP 67953, HIP 70386, and HIP 72138—are likely not caused by circumstellar dust, but are the result of the stars' known binary companions. Wu et al. (2013) do note the presence of known companions in all of these cases, although do not rule out debris disks. We observe that the $K_{s}-W 4$ excesses for these stars are similar to their respective $K_{s}-W 1, K_{s}-W 2$, and $K_{s}-W 3$ excesses. In most of these cases the wider WISE beam has not resolved close visual binaries that are otherwise partially resolved in the seeing-limited 2MASS observations. In the case of the eclipsing binary HIP 72138 the 2MASS and WISE observations have likely seen the system at different orbital phases, such that the measurements are discrepant and a small excess appears to exist at WISE wavelengths.

While we do not address $M$ stars in our study, we also note that two of the three M stars within 75 pc , HIP 21765 and HIP 63942, identified as candidate debris disk hosts in Wu et al. (2013) are also close ( $1.4-2$.". 0 ) visual binaries. These are partially resolved in 2MASS and their $K_{s}-W 4$ excesses are similar to those at the rest of the $K_{s}-$ WISE colors. That is, the excesses are most likely not from dust.

We do not recover every single reported debris disk in Wu et al. (2013). Within 75 pc we recover 37 of the 47 bona-fide debris disks reported in Wu et al. (2013), where we have excluded the eight F- and M-star binaries discussed above. The remaining 10 stars did not pass our selection criteria (Section 2.5), designed to remove objects for which the photospheric calibration of WISE colors is uncertain, and which may produce false-positive detections. HIP 12351 is an M star, excluded by our $B_{T}-V_{T}<1.4$ mag criterion. HIP 11360 has contaminated WISE photometry (WISE confusion flag set to "dddd," indicative of contamination from a diffraction spike in each band by a closely separated $\operatorname{star}^{7}$ ), although the $W 4$ excess does appear real. HIP 20713 has a companion within 5" listed in the Hipparcos Visual Double Database. Lastly, seven of the stars within 75 pc in Wu et al. (2013) are giants (HIP 12361, HIP 15039, HIP 26309, HIP 43970, HIP 53824, HIP 55700, and HIP 100787), whereas we have focused only on main sequence stars.

Altogether, because of the greater emphasis on uncontaminated photometry, our analysis has resulted in greater sensitivity to debris disks and a larger detection rate within 75 pc . We have missed only one of the bona-fide main sequence $B-K$ star debris disks from Wu et al. (2013)—HIP 11360, excluded because of contamination flagging in WISE. That is, we are $100 \%$ complete

[^13]to debris disks within our overall set of constraints. Conversely, the Wu et al. (2013) study encompasses a larger volume and identifies more distant debris disk systems. However, it does not include stars brighter than the $K_{s} \approx 4.2 \mathrm{mag}$ saturation limit in 2MASS, whereas we are able to. In addition, extra scrutiny is required to remove spurious excess identifications associated with double star systems.

### 5.3. Comparison to WISE W4 Debris Disk Study of Cruz-Saenz de Miera et al. (2014)

Cruz-Saenz de Miera et al. (2014, henceforth CS14) also carried out a search to find $W 4$ excesses around main-sequence stars, finding 197 disk candidates. Their method to search for excesses is similar to ours, in that they relied solely on WISE photometry (the W2-W4 color) to identify excesses while avoiding external systematics and stellar variability. CS14 focused on unsaturated F2-K0 stars with $V<15 \mathrm{mag}$ that were free of contamination in WISE.

Because of the elimination of saturated stars in CS14 and our focus on stars within 75 pc , the two studies are almost entirely complementary. In particular, there is no overlap in the reported detections. This is because their parent sample is generated from SIMBAD, and most of their stars are not in the Hipparcos database: only 68 of their 197 disk host stars have Hipparcos parallaxes. Only three of these are within $<75 \mathrm{pc}$. We confirm two of these: HIP 5462 and HIP 93412. The remaining star, HIP 63880, is within $5^{\circ}$ of the galactic plane, and so is not included in our selection, although the excess reported in CS14 is likely real.

### 5.4. Comparison to Vican \& Schneider (2014)

Recently, a study of the age dependence of $W 4$ excesses was published by Vican \& Schneider (2014). In a sample of 2820 Hipparcos field FGK stars with ages estimated from chromospheric activity, Vican \& Schneider (2014) report 98 excesses, 74 of which are identified as new, for a detection rate of $3.5 \%$. The authors use photospheric fitting of the stellar SED, from the $B V J H K_{s}$ photometry, which they then compare to the measured $W 4$ flux and error. The quality of the photospheric fits is inspected visually, and in the absence of nearby contamination evident from the WISE images, excesses with $\mathrm{S} / \mathrm{N}>5$ are deemed significant.

Eighty-one of the 98 excesses reported in Vican \& Schneider (2014) are from stars within 75 pc from the Sun, and would therefore be expected to be within our science sample, modulo the set of constraints that we impose to retain stars with clean WISE photometry. Among these we recover 24 of the reported excesses, we miss 11 stars because of our selection criteria, and do not confirm the remaining 46 excesses, even though those stars are included in our analysis.

We find that the 46 unconfirmed excesses from Vican \& Schneider (2014) have $\Sigma_{E}$ values that are often well below the $99.5 \%$ confidence threshold in our $W 1-W 4, W 2-W 4$, and $W 3-W 4$ color distributions. A select few are even negative: e.g., HIP 117247, identified as a $6 \sigma W 4$ excess in Vican \& Schneider (2014), or HIP 10977, which has a negative $\Sigma_{E[W 1-W 4]}$ and $\Sigma_{E[W 2-W 4]}$ along with a positive but insignificant $\Sigma_{E[W 3-W 4]}=0.49$.

We believe that our empirically determined $99.5 \%$ confidence threshold in $W 4$ is robust, and is as aggressive as the data allow: evidenced by our $100 \%$ recovery rate of $\mathrm{B}-\mathrm{K}$ main sequence star debris disks within 75 pc reported in Wu et al. (2013). Conversely, it is likely that the excess selection technique employed


Figure 8. Distribution of excesses detected as a function of spectral type using WISE (this paper) compared to IR excess stars detected by pointed surveys and other all-sky surveys. All the excesses are compared at wavelengths between $10-30 \mu \mathrm{~m}$, for stars that are outside the galactic plane $|b| \geqslant 5^{\circ}$ and within 75 pc of the Sun.
by Vican \& Schneider (2014) is subject to unrecognized stellar variability between the multiple epochs that span the collection of the $B V J H K_{s}$ and WISE photometry. The fitting of stellar photospheres from the $B V J H K_{s}$ photometry, independently of any of the WISE measurements, and the subsequent selection of $W 4$ excesses above the fitted photosphere, biases the excess candidate selection toward stars that are overall slightly brighter during the WISE epoch. In addition, such an approach should incorporate the overall $1.5 \%$ uncertainty in the WISE W4 calibration (Wright et al. 2010). Our empirical calibration of the stellar photospheric colors in WISE and our use of WISE-only photometry for excess selection allows us to calibrate both of these sources of systematic error.

Overall, we find that the $10-30 \mu \mathrm{~m}$ excess rate for field FGK stars in the Vican \& Schneider (2014) study is approximately $1 / 3$ of their reported one, and so more in agreement with the rate that we estimate in Section 5.5 below.

### 5.5. Stellar Spectral Type and Warm Disk Fraction

As detailed in Sections 5.1-5.3, because of our strict selection criteria, our study is not complete to all warm debris disks around Hipparcos stars within 75 pc. Nonetheless, within our carefully selected and unbiased science sample, we have performed the most sensitive and complete photometric identification of $10-30 \mu \mathrm{~m}$ excesses around main sequence stars using WISE. In the following, we use this result to study the relative occurrence of warm debris disks in the solar neighborhood.

Figure 8 plots the distribution of detected $10-30 \mu \mathrm{~m}$ excesses from WISE and previous surveys as a function of spectral type, within the spatial and color constraints of our science sample. We find that WISE detects approximately five times as many warm debris disks as IRAS and AKARI combined. Our particular study also increases by $45 \%$ the number of known warm dust excesses within 75 pc . Notably, we detect a substantial number of disks around cool stars, where the disks are intrinsically fainter. The discovery of these fainter disks is a consequence of both the increased sensitivity of WISE compared to IRAS and AKARI, and of our careful calibration of WISE systematics.

We present the distribution of WISE excess occurrence rate as a function of stellar $B_{T}-V_{T}$ color and spectral type in Figure 9. We find that B8-A9 stars show a $21.6 \% \pm 2.5 \%$ incidence


Figure 9. Fraction of WISE excesses detected in this survey as a function of spectral type from our science sample. To determine the excess fraction at each wavelength, we chose the most sensitive color combination.
of significant $W 4$ excesses, and a $1.0 \% \pm 0.5 \%$ incidence of W3 excesses. Solar-type FGK stars have much lower excess occurrence rates: $1.8 \% \pm 0.2 \%$ at $W 4$ and $0.08 \% \pm 0.04 \%$ at $W 3$. The occurrence rates represent the results for the most sensitive among the different color combinations.

Our findings are in broad agreement with previous searches for $W 4$ excesses on WISE, although we have had to point out several caveats with previous such studies. Thus, Wu et al. (2013) report that $6.9 \%$ of main-sequence FGK stars possess $W 4$ excesses detected at the $3 \sigma$ level. However, without detailed attention to photometric systematics they have adopted a higher working threshold for excess detection- $4 \sigma-$ at which level only $2.2 \%$ of their FGK stars have $W 4$ excesses. We also discussed that a fraction $(\approx 25 \%$; Section 5.2) of the excesses identified in Wu et al. (2013) do not originate from dust, or are not associated with main sequence stars. That is, the actual rate of identifications of main sequence debris disks in Wu et al. (2013) is $\approx 1.6 \%$. Similarly, CS14 report that $2 \%$ of all their FKG mainsequence stars possess $3 \sigma W 4$ excesses, while our correction to the FGK debris disk rate found in Vican \& Schneider (2014) is $1.2 \%$. All of these warm-disk $(\lesssim 150 \mathrm{~K})$ excess rates are consistent with our own findings for incidence of $W 4$ excesses around FGK stars.

Compared to previous unbiased studies of warm debris disks with Spitzer our WISE analysis produces a factor of 1.5-3 lower detection rates. Su et al. (2006) determine a $32 \%$ rate of debris disks among A stars at $24 \mu \mathrm{~m}$, while Carpenter et al. (2009) find debris disks with $10-70 \mu \mathrm{~m}$ excesses around $3 \%$ of $>300 \mathrm{Myr}$ old FGK stars. The discrepancies with the Spitzer studies are attributable to the higher sensitivity of pointed Spitzer observations.

Finally, our $0.08 \%-1.0 \% 12 \mu \mathrm{~m}$ excess rate from exozodi $(\sim 300 \mathrm{~K})$ among field stars is in agreement with an estimate from WISE in Kennedy \& Wyatt $(0.01 \%$; 2013) and with findings from Spitzer ( $1 \%$; Lawler et al. 2009). We note that our calibration and sample selection approach have enabled a somewhat better sensitivity to exozodi than the previous WISE study. In addition, our large-scale study has now for the first time provided a sufficient sample size to establish the relative frequency of exozodi between A and FGK stars: bright ( $f_{d}>10^{-4}$ ) exozodi are a factor of $\sim 10$ more common around hot stars than around solar analogs.

## 6. CONCLUSION

We identify a volume-limited sample of Hipparcos stars within 75 pc that show infrared excess fluxes based on photometry contained in the WISE All-Sky Data Release. We carefully screen the WISE photometry for various sources of falsepositives both astrophysical and instrumental. One such issue, newly identified in our work, is that in a tiny fraction of WISE photometry, the median of single-exposure fluxes is inconsistent with the WISE All Sky Catalog flux, and neither is reliable. We reject photometry compromised by this and other issues; precisely calibrate flux-dependent systematic effects in saturated photometry; and correct for the dependence of WISE colors on photospheric temperature. Using the blue wing of the resulting color distributions to empirically evaluate our FPR for the red outliers that correspond to dusty circumstellar disks, we robustly detect 215 such disks at $22 \mu \mathrm{~m}$ with FPR $<0.5 \%$ and 5 additional disks at $12 \mu \mathrm{~m}$ with $\mathrm{FPR}<2 \%$.

Our careful screening and precise calibration of the WISE photometry enables us to identify faint circumstellar dust disks that had gone unnoticed in previous analyses, in addition to confirming disks that had been previously detected using photometry from WISE and other missions. Our new detections represent, in total, an increase of $45 \%$ in the number of stars within 75 pc known to have flux excesses at mid-IR wavelengths. In contrast to IRAS and ISO, which produced many detections of cold circumstellar dust, the WISE mid-infrared bands have enhanced sensitivity to warmer dust in regions analogous to our own solar system's asteroid belt and zodiacal cloud-regions most likely responsible for terrestrial planet formation. We report the following detections:

1. 220 stars with $\mathrm{FPR}<0.5 \%$ mid-IR excesses at $22 \mu \mathrm{~m}$ and/or FPR $<2 \%$ excesses at $12 \mu \mathrm{~m}$. For 113 of these we present the first detection of a debris disk at any wavelength, and for a further 10 that have known longer-wavelength excesses, we present the first measurement of an excess at $12 \mu \mathrm{~m}$ and/or $22 \mu \mathrm{~m}$.
2. A subset of 211 of our disks are detected with significant excesses in $22 \mu \mathrm{~m}$ only. Aggregate $12 \mu \mathrm{~m}$ excesses can be detected by weighted averages of the $12 / 22 \mu \mathrm{~m}$ excess flux ratio over different subsets of this sample, and these aggregate $12 \mu \mathrm{~m}$ detections are highly significant. The subset with previously published low ( $50-120 \mathrm{~K}$ ) dust temperatures has an aggregate $12 / 22 \mu \mathrm{~m}$ excess flux ratio consistent with low-temperature dust, while the aggregate flux ratio for the previously unknown disks indicates that many of them have dust at asteroidal temperatures ( $>130 \mathrm{~K}$ ).
3. A subset of four stars possess significant excess detections at both 12 and $22 \mu \mathrm{~m}$, with a flux ratio indicative of dust temperatures ranging from $\sim 130 \mathrm{~K}$ to $\sim 200 \mathrm{~K}$. All of these systems are known to possess long-wavelength ( $>60 \mu \mathrm{~m}$ ) excesses well fit by colder dust, and none were suspected to have $>100 \mathrm{~K}$ dust. Hence, our results indicate the presence of dust at multiple temperatures in these systems.
4. A subset of five disks are detected with significant excesses only at $12 \mu \mathrm{~m}$. Upper limits to the $22 \mu \mathrm{~m}$ excesses in these systems yield $3 \sigma$ lower limits on the temperature ranging from $\sim 175 \mathrm{~K}$ to $\sim 275 \mathrm{~K}$. While the coolest of these limits would permit asteroidal-temperature dust, the data are more consistent with warmer dust. Such dust would overlap with the habitable zones in these systems and could come from
planetesimals left over from the formation of terrestrial planets.
5. Five additional stars, not included in our count of 220 detected dust disks, possess shorter-wavelength excesses at $4.6 \mu \mathrm{~m}$ with FPR $<5 \%$. One of these excesses, around the F2V star HIP 96562, is suspected to be caused by hot ( 780 K ) dust. The origin of the remaining four excesses, all associated with K dwarfs, remains speculative. It is possible that in two of the cases the thermal emission is caused by tenuous amounts of hot, short-lived, sub-micron-sized dust. However, this scenario can not account for all four cases of $W 2$ emission from K stars. We therefore suggest an alternate explanation involving chromospheric activity.
6. $1.8 \% \pm 0.2 \%$ of solar type (FGK) stars and $21.6 \% \pm 2.5 \%$ of A stars possess mid-infrared excesses at $22 \mu \mathrm{~m}$, and the median lower limit to the fractional dust luminosity is $L_{\text {dust }} / L_{*} \gtrsim 1.2 \times 10^{-6}$ for the A stars. At $12 \mu \mathrm{~m}$, the occurrence rate of excesses is $0.08 \% \pm 0.04 \%$ for solar type stars and $1.0 \% \pm 0.5 \%$ for A stars.
7. As a result of our study, the number of debris disks with known $10-30 \mu \mathrm{~m}$ excesses within 75 pc (379) has now surpassed the number of disks with known $>30 \mu \mathrm{~m}$ excesses ( 289 , with 171 in common), even if the latter are known to have a higher occurrence rate in unbiased samples.

In addition to the scientific results, notable numerical and tabular references from the present study include:

1. the determination of photospheric WISE colors from $-0.15<B_{T}-V_{T}<1.4$ mag main sequence stars (Table 3)
2. polynomial relations for correcting saturated WISE $4.5<$ $W 1<8.4 \mathrm{mag}$ and $2.8<W 2<7.0 \mathrm{mag}$ photometry (Figure 2)

WISE has rekindled the search for new disk bearing stars due to its enhanced resolving power compared to previous all-sky surveys like IRAS, combined with its wider coverage relative to pointed surveys using Spitzer. Although WISE cannot detect disks as faint as Spitzer, for that very reason the brighter, WISEselected systems are excellent targets for resolved imaging observations, e.g., with the Gemini Planet Imager, ALMA, the LBTI nuller, or the James Webb Space Telescope. Such observations would further constrain the structure of the disks and the properties of the dust grains that reside in them, expanding our knowledge of the range of planetary system architectures in the galaxy.

This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. We also use data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory. We would also like to thank Kendra Kellogg for her help in visually inspecting the WISE images in the initial stages of this study as well as Joe Trollo for his help in the development phase of the SED plotting algorithm. Most of the figures in this work were created using Matplotlib, a Python
graphics environment (Hunter 2007). This work is partially supported by NASA Origins of Solar Systems through subcontract No. 1467483.

## REFERENCES

Avenhaus, H., Schmid, H. M., \& Meyer, M. R. 2012, A\&A, 548, A105
Backman, D. E., \& Paresce, F. 1993, in Protostars and Planets III, ed. V. Mannings, A. P. Boss, \& S. S. Russell (Tucson, AZ: Univ. Arizona Press), 1253
Beichman, C. A., Bryden, G., Rieke, G. H., et al. 2005, ApJ, 622, 1160
Beichman, C. A., Bryden, G., Stapelfeldt, K. R., et al. 2006a, ApJ, 652, 1674
Beichman, C. A., Tanner, A., Bryden, G., et al. 2006b, ApJ, 639, 1166
Biller, B. A., Close, L. M., Masciadri, E., et al. 2007, ApJS, 173, 143
Bryden, G., Beichman, C. A., Carpenter, J. M., et al. 2009, ApJ, 705, 1226
Bryden, G., Beichman, C. A., Trilling, D. E., et al. 2006, ApJ, 636, 1098
Carpenter, J. M., Bouwman, J., Mamajek, E. E., et al. 2009, ApJS, 181, 197
Chen, C. H., Jura, M., Gordon, K. D., \& Blaylock, M. 2005a, ApJ, 623, 493
Chen, C. H., Patten, B. M., Werner, M. W., et al. 2005b, ApJ, 634, 1372
Chen, C. H., Sargent, B. A., Bohac, C., et al. 2006, ApJS, 166, 351
Cohen, M., Wheaton, W. A., \& Megeath, S. T. 2003, AJ, 126, 1090
Cruz-Saenz de Miera, F., Chavez, M., Bertone, E., \& Vega, O. 2014, MNRAS, 437, 391
Currie, T., Kenyon, S. J., Balog, Z., et al. 2008a, ApJ, 672, 558
Currie, T., Plavchan, P., \& Kenyon, S. J. 2008b, ApJ, 688, 597
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2012, Explanatory Supplement to the WISE All-Sky Data Release Products, Tech. Rep., NASA-IPAC
Dahm, S. E., \& Carpenter, J. M. 2009, AJ, 137, 4024
Dawson, P., Scholz, A., Ray, T. P., et al. 2013, MNRAS, 429, 903
Dodson-Robinson, S. E., Beichman, C. A., Carpenter, J. M., \& Bryden, G. 2011, AJ, 141, 11
Dommanget, J., \& Nys, O. 2000, A\&A, 363, 991
Eiroa, C., Marshall, J. P., Mora, A., et al. 2011, A\&A, 536, L4
Eiroa, C., Marshall, J. P., Mora, A., et al. 2013, A\&A, 555, A11
Fischer, J.-U., Hasinger, G., Schwope, A. D., et al. 1998, AN, 319, 347
Fujiwara, H., Ishihara, D., Onaka, T., et al. 2013, A\&A, 550, A45
Habing, H. J., Dominik, C., Jourdain de Muizon, M., et al. 2001, A\&A, 365, 545
Hauschildt, P. H., Allard, F., \& Baron, E. 1999, ApJ, 512, 377
Helou, G. 1989, in IAU Symp. 135, Interstellar Dust, ed. L. J. Allamandola \& A. G. G. M. Tielens (Dordrecht: Kluwer), 285

Hillenbrand, L. A., Carpenter, J. M., Kim, J. S., et al. 2008, ApJ, 677, 630
Houck, J. R., Roellig, T. L., van Cleve, J., et al. 2004, ApJS, 154, 18
Hunter, J. D. 2007, CSE, 9, 90
Johnson, H. L., \& Morgan, W. W. 1953, ApJ, 117, 313
Kennedy, G. M., \& Wyatt, M. C. 2012, MNRAS, 426, 91
Kennedy, G. M., \& Wyatt, M. C. 2013, MNRAS, 433, 2334
Kennedy, G. M., Wyatt, M. C., Sibthorpe, B., et al. 2012, MNRAS, 426, 2115
Koerner, D. W., Kim, S., Trilling, D. E., et al. 2010, ApJL, 710, L26
Kóspál, Á., Ardila, D. R., Moór, A., \& Ábrahám, P. 2009, ApJL, 700, L73
Krivov, A. V., Reidemeister, M., Fiedler, S., Löhne, T., \& Neuhäuser, R. 2011, MNRAS, 418, L15
Kurucz, R. L. 1993, yCat, 6039, 0
Lallement, R., Welsh, B. Y., Vergely, J. L., Crifo, F., \& Sfeir, D. 2003, A\&A, 411, 447
Lawler, S. M., Beichman, C. A., Bryden, G., et al. 2009, ApJ, 705, 89
Lawler, S. M., \& Gladman, B. 2012, ApJ, 752, 53
Low, F. J., Smith, P. S., Werner, M., et al. 2005, ApJ, 631, 1170
Luhman, K. L., \& Mamajek, E. E. 2012, ApJ, 758, 31
Mamajek, E. E., Meyer, M. R., \& Liebert, J. 2002, AJ, 124, 1670
Markwardt, C. B. 2009, in ASP Conf. Ser. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, \& P. Dowler (San Francisco, CA: ASP), 251
Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., \& Worley, C. E. 2013, yCat, 1, 2026
Matranga, M., Drake, J. J., Kashyap, V. L., Marengo, M., \& Kuchner, M. J. 2010, ApJL, 720, L164
Metchev, S. A., Hillenbrand, L. A., \& Meyer, M. R. 2004, ApJ, 600, 435
Meyer, M. R., Carpenter, J. M., Mamajek, E. E., et al. 2008, ApJL, 673, L181
Mizusawa, T. F., Rebull, L. M., Stauffer, J. R., et al. 2012, AJ, 144, 135
Moerchen, M. M., Telesco, C. M., \& Packham, C. 2010, ApJ, 723, 1418
Moór, A., Ábrahám, P., Derekas, A., et al. 2006, ApJ, 644, 525
Moór, A., Apai, D., Pascucci, I., et al. 2009, ApJL, 700, L25
Moór, A., Pascucci, I., Kóspál, Á., et al. 2011, ApJS, 193, 4
Morales, F. Y., Padgett, D. L., Bryden, G., Werner, M. W., \& Furlan, E. 2012, ApJ, 757, 7

Morales, F. Y., Rieke, G. H., Werner, M. W., et al. 2011, ApJL, 730, L29
Morales, F. Y., Werner, M. W., Bryden, G., et al. 2009, ApJ, 699, 1067
Pecaut, M. J., \& Mamajek, E. E. 2013, ApJS, 208, 9
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A\&A, 323, L49
Plavchan, P., Werner, M. W., Chen, C. H., et al. 2009, ApJ, 698, 1068
Rebull, L. M., Stapelfeldt, K. R., Werner, M. W., et al. 2008, ApJ, 681, 1484
Rhee, J. H., Song, I., \& Zuckerman, B. 2007a, ApJ, 671, 616
Rhee, J. H., Song, I., \& Zuckerman, B. 2008, ApJ, 675, 777
Rhee, J. H., Song, I., Zuckerman, B., \& McElwain, M. 2007b, ApJ, 660, 1556
Riaz, B., Lodieu, N., Goodwin, S., Stamatellos, D., \& Thompson, M. 2012, MNRAS, 420, 2497
Ribas, Ả., Merín, B., Ardila, D. R., \& Bouy, H. 2012, A\&A, 541, A38
Rizzuto, A. C., Ireland, M. J., \& Zucker, D. B. 2012, MNRAS, 421, L97
Roberge, A., \& Weinberger, A. J. 2008, ApJ, 676, 509
Schmidt-Kaler, T. 1982, BICDS, 23, 2
Siegler, N., Muzerolle, J., Young, E. T., et al. 2007, ApJ, 654, 580
Smith, P. S., Hines, D. C., Low, F. J., et al. 2006, ApJL, 644, L125

Smith, R., \& Wyatt, M. C. 2010, A\&A, 515, A95
Solanki, S. K., Livingston, W., \& Ayres, T. 1994, Sci, 263, 64
Su, K. Y. L., Rieke, G. H., Stansberry, J. A., et al. 2006, ApJ, 653, 675
Su, K. Y. L., Rieke, G. H., Stapelfeldt, K. R., et al. 2009, ApJ, 705, 314
Sylvester, R. J., \& Mannings, V. 2000, MNRAS, 313, 73
Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, A\&A, 460, 695
Trilling, D. E., Bryden, G., Beichman, C. A., et al. 2008, ApJ, 674, 1086
Trilling, D. E., Stansberry, J. A., Stapelfeldt, K. R., et al. 2007, ApJ, 658, 1289
Urban, L. E., Rieke, G., Su, K., \& Trilling, D. E. 2012, ApJ, 750, 98
van Leeuwen, F. 2007, A\&A, 474, 653
Vican, L., \& Schneider, A. 2014, ApJ, 780, 154
Wright, C. O., Egan, M. P., Kraemer, K. E., \& Price, S. D. 2003, AJ, 125, 359
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Wu, C.-J., Wu, H., Lam, M.-I., et al. 2013, ApJS, 208, 29
Wyatt, M. C., Smith, R., Su, K. Y. L., et al. 2007, ApJ, 663, 365
Zuckerman, B., Rhee, J. H., Song, I., \& Bessell, M. S. 2011, ApJ, 732, 61

# ERRATUM: "A SENSITIVE IDENTIFICATION OF WARM DEBRIS DISKS IN THE SOLAR NEIGHBORHOOD THROUGH PRECISE CALIBRATION OF SATURATED WISE PHOTOMETRY" (2014, ApJS, 212, 10) 

Rahul I. Patel ${ }^{1}$, Stanimir A. Metchev ${ }^{1,2}$, and Aren Heinze ${ }^{1}$<br>${ }^{1}$ Department of Physics and Astronomy, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-3800, USA<br>${ }^{2}$ Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada Received 2014 July 30; published 2014 September 3

In Section 2.5, we used the surviving $2 / 3$ of data points in the trimmed mean to calculate the $W_{i j}\left(B_{T}-V_{T}\right)$ relations instead of the stated $50 \%$ of data points. The uncertainties in the $W_{i j}\left(B_{T}-V_{T}\right)$ relations in Table 3 were underestimated because we did not include a systematic component. The systematic errors for the relations are calculated by rms-deviation of trimmed means from a combination of three $B_{T}-V_{T}$ bin sizes ( $0.05 \mathrm{mag}, 0.1 \mathrm{mag}$, and 0.2 mag ) and three data rejection fractions ( $30 \%, 40 \%$, and $50 \%$ ), and are added in quadrature to the standard error. A corrected version of Table 3 is included below.

Table 3
Photospheric WISE Colors of $-0.17<B_{T}-V_{T}<1.4$ mag Main Sequence Stars

| $\begin{aligned} & B_{T}-V_{T} \\ & (\mathrm{mag}) \end{aligned}$ | $\begin{gathered} W 1-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 2-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 3-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 1-W 3 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 2-W 3 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 1-W 2 \\ (\mathrm{mag}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.16 | $-0.070 \pm 0.013$ | $-0.001 \pm 0.010$ | $0.050 \pm 0.007$ | $-0.117 \pm 0.011$ | $-0.059 \pm 0.011$ | $-0.045 \pm 0.007$ |
| -0.14 | $-0.070 \pm 0.013$ | $-0.001 \pm 0.010$ | $0.050 \pm 0.007$ | $-0.117 \pm 0.011$ | $-0.059 \pm 0.011$ | $-0.045 \pm 0.007$ |
| -0.12 | $-0.070 \pm 0.014$ | $-0.001 \pm 0.007$ | $0.050 \pm 0.007$ | $-0.117 \pm 0.011$ | $-0.059 \pm 0.010$ | $-0.045 \pm 0.007$ |
| -0.10 | $-0.065 \pm 0.011$ | $-0.006 \pm 0.008$ | $0.046 \pm 0.006$ | $-0.115 \pm 0.010$ | $-0.059 \pm 0.009$ | $-0.047 \pm 0.007$ |
| -0.08 | $-0.056 \pm 0.012$ | $-0.003 \pm 0.006$ | $0.044 \pm 0.006$ | $-0.105 \pm 0.009$ | $-0.056 \pm 0.007$ | $-0.049 \pm 0.003$ |
| -0.06 | $-0.054 \pm 0.010$ | $-0.001 \pm 0.008$ | $0.043 \pm 0.007$ | $-0.104 \pm 0.008$ | $-0.051 \pm 0.006$ | $-0.050 \pm 0.004$ |
| -0.04 | $-0.043 \pm 0.009$ | $0.009 \pm 0.010$ | $0.049 \pm 0.008$ | $-0.091 \pm 0.008$ | $-0.044 \pm 0.005$ | $-0.044 \pm 0.007$ |
| -0.02 | $-0.035 \pm 0.008$ | $0.011 \pm 0.010$ | $0.051 \pm 0.008$ | $-0.087 \pm 0.007$ | $-0.041 \pm 0.002$ | $-0.047 \pm 0.005$ |
| 0.00 | $-0.026 \pm 0.011$ | $0.018 \pm 0.012$ | $0.054 \pm 0.009$ | $-0.078 \pm 0.009$ | $-0.037 \pm 0.002$ | $-0.042 \pm 0.003$ |
| 0.02 | $-0.019 \pm 0.013$ | $0.023 \pm 0.014$ | $0.059 \pm 0.010$ | $-0.071 \pm 0.005$ | $-0.038 \pm 0.002$ | $-0.041 \pm 0.003$ |
| 0.04 | $-0.019 \pm 0.012$ | $0.018 \pm 0.011$ | $0.056 \pm 0.008$ | $-0.070 \pm 0.006$ | $-0.036 \pm 0.002$ | $-0.035 \pm 0.003$ |
| 0.06 | $-0.024 \pm 0.013$ | $0.009 \pm 0.011$ | $0.049 \pm 0.009$ | $-0.067 \pm 0.005$ | $-0.036 \pm 0.002$ | $-0.036 \pm 0.004$ |
| 0.08 | $-0.026 \pm 0.008$ | $0.009 \pm 0.007$ | $0.045 \pm 0.006$ | $-0.068 \pm 0.006$ | $-0.034 \pm 0.002$ | $-0.035 \pm 0.002$ |
| 0.10 | $-0.032 \pm 0.005$ | $0.002 \pm 0.005$ | $0.043 \pm 0.004$ | $-0.067 \pm 0.004$ | $-0.034 \pm 0.002$ | $-0.034 \pm 0.002$ |
| 0.12 | $-0.026 \pm 0.006$ | $0.003 \pm 0.005$ | $0.047 \pm 0.004$ | $-0.064 \pm 0.003$ | $-0.034 \pm 0.001$ | $-0.032 \pm 0.003$ |
| 0.14 | $-0.027 \pm 0.005$ | $0.005 \pm 0.005$ | $0.045 \pm 0.004$ | $-0.060 \pm 0.003$ | $-0.032 \pm 0.002$ | $-0.033 \pm 0.002$ |
| 0.16 | $-0.021 \pm 0.005$ | $0.006 \pm 0.006$ | $0.049 \pm 0.005$ | $-0.059 \pm 0.002$ | $-0.035 \pm 0.002$ | $-0.031 \pm 0.002$ |
| 0.18 | $-0.022 \pm 0.005$ | $0.004 \pm 0.007$ | $0.045 \pm 0.005$ | $-0.058 \pm 0.002$ | $-0.032 \pm 0.002$ | $-0.030 \pm 0.002$ |
| 0.20 | $-0.017 \pm 0.004$ | $0.012 \pm 0.004$ | $0.049 \pm 0.003$ | $-0.056 \pm 0.002$ | $-0.031 \pm 0.002$ | $-0.030 \pm 0.001$ |
| 0.22 | $-0.018 \pm 0.005$ | $0.011 \pm 0.003$ | $0.048 \pm 0.003$ | $-0.055 \pm 0.002$ | $-0.030 \pm 0.002$ | $-0.031 \pm 0.002$ |
| 0.24 | $-0.017 \pm 0.006$ | $0.015 \pm 0.004$ | $0.048 \pm 0.003$ | $-0.057 \pm 0.002$ | $-0.030 \pm 0.001$ | $-0.030 \pm 0.002$ |
| 0.26 | $-0.012 \pm 0.004$ | $0.019 \pm 0.003$ | $0.049 \pm 0.003$ | $-0.056 \pm 0.002$ | $-0.028 \pm 0.001$ | $-0.029 \pm 0.002$ |
| 0.28 | $-0.007 \pm 0.006$ | $0.025 \pm 0.005$ | $0.052 \pm 0.003$ | $-0.055 \pm 0.004$ | $-0.027 \pm 0.001$ | $-0.028 \pm 0.002$ |
| 0.30 | $-0.004 \pm 0.003$ | $0.025 \pm 0.003$ | $0.056 \pm 0.003$ | $-0.054 \pm 0.002$ | $-0.026 \pm 0.001$ | $-0.027 \pm 0.001$ |
| 0.32 | $0.004 \pm 0.004$ | $0.033 \pm 0.003$ | $0.061 \pm 0.002$ | $-0.049 \pm 0.002$ | $-0.025 \pm 0.001$ | $-0.026 \pm 0.001$ |
| 0.34 | $0.009 \pm 0.005$ | $0.037 \pm 0.004$ | $0.065 \pm 0.002$ | $-0.047 \pm 0.001$ | $-0.023 \pm 0.001$ | $-0.026 \pm 0.001$ |
| 0.36 | $0.009 \pm 0.006$ | $0.038 \pm 0.005$ | $0.065 \pm 0.003$ | $-0.047 \pm 0.001$ | $-0.021 \pm 0.001$ | $-0.027 \pm 0.001$ |
| 0.38 | $0.012 \pm 0.006$ | $0.039 \pm 0.005$ | $0.066 \pm 0.003$ | $-0.046 \pm 0.001$ | $-0.020 \pm 0.001$ | $-0.027 \pm 0.001$ |
| 0.40 | $0.010 \pm 0.005$ | $0.039 \pm 0.004$ | $0.065 \pm 0.003$ | $-0.046 \pm 0.001$ | $-0.020 \pm 0.001$ | $-0.028 \pm 0.001$ |
| 0.42 | $0.001 \pm 0.003$ | $0.034 \pm 0.002$ | $0.059 \pm 0.003$ | $-0.046 \pm 0.001$ | $-0.019 \pm 0.001$ | $-0.029 \pm 0.001$ |
| 0.44 | $-0.002 \pm 0.002$ | $0.030 \pm 0.002$ | $0.054 \pm 0.002$ | $-0.045 \pm 0.001$ | $-0.019 \pm 0.001$ | $-0.029 \pm 0.001$ |
| 0.46 | $-0.005 \pm 0.003$ | $0.028 \pm 0.002$ | $0.051 \pm 0.002$ | $-0.045 \pm 0.001$ | $-0.018 \pm 0.001$ | $-0.030 \pm 0.001$ |
| 0.48 | $-0.010 \pm 0.002$ | $0.024 \pm 0.002$ | $0.047 \pm 0.002$ | $-0.045 \pm 0.002$ | $-0.016 \pm 0.001$ | $-0.032 \pm 0.001$ |
| 0.50 | $-0.012 \pm 0.002$ | $0.023 \pm 0.002$ | $0.046 \pm 0.002$ | $-0.045 \pm 0.002$ | $-0.015 \pm 0.000$ | $-0.033 \pm 0.001$ |
| 0.52 | $-0.012 \pm 0.002$ | $0.023 \pm 0.001$ | $0.045 \pm 0.001$ | $-0.046 \pm 0.002$ | $-0.014 \pm 0.001$ | $-0.035 \pm 0.000$ |
| 0.54 | $-0.014 \pm 0.003$ | $0.024 \pm 0.002$ | $0.043 \pm 0.001$ | $-0.044 \pm 0.002$ | $-0.012 \pm 0.001$ | $-0.037 \pm 0.000$ |
| 0.56 | $-0.016 \pm 0.003$ | $0.023 \pm 0.002$ | $0.041 \pm 0.002$ | $-0.044 \pm 0.002$ | $-0.011 \pm 0.000$ | $-0.039 \pm 0.001$ |
| 0.58 | $-0.015 \pm 0.003$ | $0.025 \pm 0.002$ | $0.042 \pm 0.002$ | $-0.044 \pm 0.001$ | $-0.009 \pm 0.001$ | $-0.040 \pm 0.001$ |
| 0.60 | $-0.013 \pm 0.002$ | $0.027 \pm 0.001$ | $0.042 \pm 0.002$ | $-0.043 \pm 0.001$ | $-0.007 \pm 0.001$ | $-0.042 \pm 0.001$ |
| 0.62 | $-0.011 \pm 0.002$ | $0.029 \pm 0.002$ | $0.041 \pm 0.001$ | $-0.043 \pm 0.002$ | $-0.005 \pm 0.001$ | $-0.042 \pm 0.001$ |
| 0.64 | $-0.010 \pm 0.004$ | $0.029 \pm 0.003$ | $0.042 \pm 0.001$ | $-0.043 \pm 0.002$ | $-0.004 \pm 0.001$ | $-0.043 \pm 0.001$ |
| 0.66 | $-0.010 \pm 0.003$ | $0.034 \pm 0.003$ | $0.044 \pm 0.001$ | $-0.042 \pm 0.002$ | $-0.002 \pm 0.001$ | $-0.044 \pm 0.000$ |
| 0.68 | $-0.011 \pm 0.002$ | $0.034 \pm 0.003$ | $0.042 \pm 0.001$ | $-0.042 \pm 0.001$ | $0.000 \pm 0.001$ | $-0.046 \pm 0.001$ |

Table 3
(Continued)

| $\begin{aligned} & B_{T}-V_{T} \\ & (\mathrm{mag}) \end{aligned}$ | $\begin{gathered} W 1-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 2-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 3-W 4 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 1-W 3 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 2-W 3 \\ (\mathrm{mag}) \end{gathered}$ | $\begin{gathered} W 1-W 2 \\ (\mathrm{mag}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.70 | $-0.015 \pm 0.002$ | $0.035 \pm 0.002$ | $0.041 \pm 0.001$ | $-0.041 \pm 0.001$ | $0.002 \pm 0.001$ | $-0.047 \pm 0.001$ |
| 0.72 | $-0.016 \pm 0.004$ | $0.036 \pm 0.001$ | $0.041 \pm 0.001$ | $-0.040 \pm 0.001$ | $0.003 \pm 0.001$ | $-0.050 \pm 0.001$ |
| 0.74 | $-0.014 \pm 0.003$ | $0.039 \pm 0.002$ | $0.042 \pm 0.002$ | $-0.040 \pm 0.001$ | $0.005 \pm 0.001$ | $-0.050 \pm 0.002$ |
| 0.76 | $-0.014 \pm 0.002$ | $0.040 \pm 0.003$ | $0.041 \pm 0.001$ | $-0.041 \pm 0.001$ | $0.005 \pm 0.001$ | $-0.052 \pm 0.001$ |
| 0.78 | $-0.012 \pm 0.004$ | $0.043 \pm 0.004$ | $0.041 \pm 0.002$ | $-0.040 \pm 0.001$ | $0.006 \pm 0.001$ | $-0.053 \pm 0.001$ |
| 0.80 | $-0.012 \pm 0.005$ | $0.044 \pm 0.004$ | $0.041 \pm 0.003$ | $-0.040 \pm 0.001$ | $0.008 \pm 0.001$ | $-0.053 \pm 0.001$ |
| 0.82 | $-0.014 \pm 0.003$ | $0.042 \pm 0.003$ | $0.039 \pm 0.005$ | $-0.040 \pm 0.001$ | $0.010 \pm 0.001$ | $-0.055 \pm 0.001$ |
| 0.84 | $-0.018 \pm 0.004$ | $0.040 \pm 0.003$ | $0.038 \pm 0.002$ | $-0.039 \pm 0.001$ | $0.012 \pm 0.001$ | $-0.057 \pm 0.001$ |
| 0.86 | $-0.019 \pm 0.005$ | $0.041 \pm 0.004$ | $0.039 \pm 0.003$ | $-0.038 \pm 0.001$ | $0.014 \pm 0.002$ | $-0.058 \pm 0.001$ |
| 0.88 | $-0.019 \pm 0.004$ | $0.042 \pm 0.004$ | $0.040 \pm 0.003$ | $-0.038 \pm 0.001$ | $0.017 \pm 0.002$ | $-0.059 \pm 0.001$ |
| 0.90 | $-0.018 \pm 0.002$ | $0.045 \pm 0.003$ | $0.041 \pm 0.002$ | $-0.038 \pm 0.001$ | $0.020 \pm 0.002$ | $-0.061 \pm 0.001$ |
| 0.92 | $-0.018 \pm 0.005$ | $0.048 \pm 0.005$ | $0.038 \pm 0.003$ | $-0.037 \pm 0.002$ | $0.020 \pm 0.004$ | $-0.062 \pm 0.001$ |
| 0.94 | $-0.014 \pm 0.006$ | $0.054 \pm 0.005$ | $0.043 \pm 0.002$ | $-0.037 \pm 0.001$ | $0.023 \pm 0.002$ | $-0.063 \pm 0.001$ |
| 0.96 | $-0.019 \pm 0.008$ | $0.047 \pm 0.007$ | $0.035 \pm 0.004$ | $-0.038 \pm 0.002$ | $0.022 \pm 0.001$ | $-0.064 \pm 0.001$ |
| 0.98 | $-0.013 \pm 0.004$ | $0.054 \pm 0.004$ | $0.035 \pm 0.003$ | $-0.038 \pm 0.001$ | $0.022 \pm 0.001$ | $-0.064 \pm 0.001$ |
| 1.00 | $-0.016 \pm 0.005$ | $0.051 \pm 0.005$ | $0.034 \pm 0.006$ | $-0.037 \pm 0.003$ | $0.024 \pm 0.001$ | $-0.063 \pm 0.001$ |
| 1.02 | $-0.011 \pm 0.005$ | $0.056 \pm 0.006$ | $0.033 \pm 0.006$ | $-0.038 \pm 0.002$ | $0.025 \pm 0.001$ | $-0.065 \pm 0.001$ |
| 1.04 | $-0.008 \pm 0.006$ | $0.060 \pm 0.006$ | $0.040 \pm 0.006$ | $-0.036 \pm 0.001$ | $0.026 \pm 0.002$ | $-0.067 \pm 0.002$ |
| 1.06 | $-0.005 \pm 0.004$ | $0.064 \pm 0.007$ | $0.045 \pm 0.004$ | $-0.033 \pm 0.001$ | $0.026 \pm 0.001$ | $-0.070 \pm 0.002$ |
| 1.08 | $-0.005 \pm 0.005$ | $0.066 \pm 0.007$ | $0.050 \pm 0.005$ | $-0.032 \pm 0.002$ | $0.030 \pm 0.002$ | $-0.070 \pm 0.002$ |
| 1.10 | $-0.006 \pm 0.008$ | $0.067 \pm 0.008$ | $0.050 \pm 0.005$ | $-0.032 \pm 0.002$ | $0.031 \pm 0.002$ | $-0.071 \pm 0.003$ |
| 1.12 | $-0.005 \pm 0.008$ | $0.063 \pm 0.006$ | $0.050 \pm 0.006$ | $-0.031 \pm 0.001$ | $0.031 \pm 0.001$ | $-0.072 \pm 0.002$ |
| 1.14 | $-0.011 \pm 0.007$ | $0.060 \pm 0.005$ | $0.040 \pm 0.007$ | $-0.031 \pm 0.001$ | $0.032 \pm 0.001$ | $-0.071 \pm 0.002$ |
| 1.16 | $-0.005 \pm 0.008$ | $0.063 \pm 0.008$ | $0.041 \pm 0.007$ | $-0.031 \pm 0.002$ | $0.032 \pm 0.001$ | $-0.071 \pm 0.003$ |
| 1.18 | $-0.002 \pm 0.006$ | $0.062 \pm 0.006$ | $0.035 \pm 0.007$ | $-0.030 \pm 0.002$ | $0.034 \pm 0.001$ | $-0.071 \pm 0.004$ |
| 1.20 | $-0.003 \pm 0.006$ | $0.065 \pm 0.005$ | $0.037 \pm 0.007$ | $-0.030 \pm 0.002$ | $0.037 \pm 0.001$ | $-0.073 \pm 0.004$ |
| 1.22 | $-0.003 \pm 0.006$ | $0.067 \pm 0.005$ | $0.036 \pm 0.004$ | $-0.030 \pm 0.002$ | $0.038 \pm 0.002$ | $-0.073 \pm 0.002$ |
| 1.24 | $-0.005 \pm 0.007$ | $0.069 \pm 0.005$ | $0.038 \pm 0.004$ | $-0.031 \pm 0.003$ | $0.043 \pm 0.002$ | $-0.074 \pm 0.002$ |
| 1.26 | $-0.004 \pm 0.007$ | $0.069 \pm 0.005$ | $0.037 \pm 0.006$ | $-0.030 \pm 0.002$ | $0.046 \pm 0.004$ | $-0.073 \pm 0.002$ |
| 1.28 | $0.003 \pm 0.008$ | $0.073 \pm 0.005$ | $0.042 \pm 0.005$ | $-0.032 \pm 0.002$ | $0.044 \pm 0.004$ | $-0.073 \pm 0.002$ |
| 1.30 | $0.006 \pm 0.008$ | $0.073 \pm 0.005$ | $0.046 \pm 0.005$ | $-0.032 \pm 0.002$ | $0.047 \pm 0.004$ | $-0.073 \pm 0.002$ |
| 1.32 | $0.015 \pm 0.008$ | $0.085 \pm 0.006$ | $0.048 \pm 0.005$ | $-0.030 \pm 0.002$ | $0.048 \pm 0.003$ | $-0.073 \pm 0.002$ |
| 1.34 | $0.019 \pm 0.013$ | $0.098 \pm 0.011$ | $0.053 \pm 0.011$ | $-0.029 \pm 0.003$ | $0.046 \pm 0.003$ | $-0.073 \pm 0.002$ |
| 1.36 | $0.019 \pm 0.011$ | $0.098 \pm 0.010$ | $0.053 \pm 0.009$ | $-0.029 \pm 0.003$ | $0.046 \pm 0.002$ | $-0.073 \pm 0.002$ |
| 1.38 | $0.019 \pm 0.011$ | $0.098 \pm 0.010$ | $0.053 \pm 0.009$ | $-0.029 \pm 0.003$ | $0.046 \pm 0.002$ | $-0.073 \pm 0.002$ |

Note. Empirically determined WISE versus $B_{T}-V_{T}$ photospheric color-color trends for all six WISE colors obtained from the parent sample as described in Section 2.5 and shown in Figure 3.

We apply these corrected $W_{i j}\left(B_{T}-V_{T}\right)$ relations to our analysis, and find that six stars drop slightly below the formal excess thresholds: HIP 6490, HIP 8987, HIP 47792, HIP 66257, HIP 82887, and HIP 105891. However, we find 13 additional excesses. Six of these have 10-30 $\mu \mathrm{m}$ excesses reported in the literature: HIP 2072, HIP 12198, HIP 21091, HIP 42438, HIP 92024, HIP 115527. The remaining seven are new detections: HIP 2852, HIP 18837, HIP 20094, HIP 39947, HIP 50191, HIP 66322, HIP 110365. These 13 stars are not included in the final tally in this paper here but will be discussed in a later study.

In addition, there were several minor numerical inconsistencies in the counting statistics in the abstract, Section 5, and conclusion of the paper. The total number of excesses detected is 214 , not 220 . The total number of new excesses never previously reported at any wavelength is 106 , not 108 . Among the 214 detections, 108 have previously reported mid to far-IR excess emission instead of the stated 114. An additional 10 out of the 214 detections are for the first time found to possess $10-30 \mu \mathrm{~m}$ excesses, although they were already known to have excess emission at longer wavelengths. Therefore, the total number of new $10-30 \mu \mathrm{~m}$ disk identifications is $106+10=116$, instead of $108+10=118$.

The overall scientific conclusions in the original manuscript are unaffected by any changes reported here.

# ERRATUM 2: "A SENSITIVE IDENTIFICATION OF WARM DEBRIS DISKS IN THE SOLAR NEIGHBORHOOD THROUGH PRECISE CALIBRATION OF SATURATED WISE PHOTOMETRY" (2014, ApJS, 212, 10) 

Rahul I. Patel ${ }^{1}$, Stanimir A. Metchev ${ }^{1,2,3}$, and Aren Heinze ${ }^{1}$<br>${ }^{1}$ Department of Physics \& Astronomy, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794-3800<br>${ }^{2}$ Department of Physics \& Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada<br>${ }^{3}$ Centre for Planetary Science and Exploration, 1151 Richmond Street, London, Ontario, N6A 5B8, Canada Received 2015 July 26; accepted 2015 July 28; published 2015 September 28

Five stars were erroneously identified as infrared excess sources at $12 \mu \mathrm{~m}$ and $22 \mu \mathrm{~m}$. The new excess associated with HIP 85523 was overestimated because its $B_{T}-V_{T}$ color was corrected according to empirical tables based on its Hipparcos spectral type of K7. Multiple references however have confirmed its spectral type to be M2.5/3 V (e.g., Riaz et al. 2006; Cushing et al. 2006; Torres et al. 2006). Therefore our photospheric color was underestimated, and the excess was overestimated. The W4 photometry for HIP 69281 is likely contaminated by nearby projected companions with a similar assessment provided by Wu et al. (2013). HIP 32435 is likely contaminated by a star $\sim 15^{\prime \prime}$ away and a galaxy that is $25^{\prime \prime}$ away, as noted by Donaldson et al. (2012). HIP 106914 might be a false-positive star based on MIPS $24 \mu$ m measurements reported in Moór et al. (2011), and the presence of a bright nearby source seen in MIPS $70 \mu$ m images. HIP 69682 was reported to have an excess at $60 \mu \mathrm{~m}$ by Rhee et al. (2007), and identified by us as a W4 excess. However, the presence of a red companion $21!.4$ from the primary is likely responsible for the $60 \mu \mathrm{~m}$ excess, as the two would be blended in the $60^{\prime \prime}$ IRAS beam. We remove HIP 69682 from our list of excesses as the PSF tail of the red companion is also most likely responsible for the W4 excess flux of HIP 69682.

The above reduction brings the total number of detected excesses to 209 instead of 214 , and the total number of new $10-30 \mu$ m excesses to 113 instead of 116 . Our tally of new excesses constitutes a $25 \%$ increase in the census of debris disks within 75 pc and a $35 \%$ increase of debris disks with $10-30 \mu$ m excesses within this volume.

In Section 4.4, we discuss the state of circumbinary dust in 26 binary systems. Several of these systems were erroneously identified as binary systems. We have removed HIP 544, HIP 1481, HIP 2472, HIP 61960, HIP 95261, and HIP 115738 from our list of binaries. In addition, we have revised Table 8, the entries in which were inadvertently scrambled during submission. The new Table 8 reflects the true characteristics of these binary excess hosts.

The overall scientific conclusions in the original manuscript are unaffected by the changes reported here.

Table 8
Excesses Detected in Binary Systems

| Star | Dist. <br> (pc) | Binary Separation (") | Binary Separation <br> (AU) | Dust Radius (AU) | $\begin{gathered} \text { Dust } \\ \text { State } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HIP4016 | 61 | 40.0 | 2456 | 3.4 | cs |
| HIP6679 | 49 | 132.9 | 6512 | 4.3 | cs |
| HIP7576 | 24 | 612.0 | 14688 | 2.4 | cs |
| HIP9141 | 41 | 0.2 | 6 | 1.5 | cs |
| HIP9902 | 44 | 52.4 | 2316 | 2.9 | cs |
| HIP11477 | 47 | 391.2 | 18230 | 32.8 | cs |
| HIP12489 | 71 | 29.0 | 2059 | 8.2 | cs |
| HIP13209 | 51 | 0.3 | 15 | 13.9 | cs |
| HIP16908 | 40 | 0.8 | 32 | 0.7 | cs |
| HIP21547 | 29 | 66.7 | 1961 | 5.5 | cs |
| HIP22394 | 50 | SB | $\ldots$ | 5.9 | cb |
| HIP25183 | 72 | 17.2 | 1232 | 4.2 | cs |
| HIP65728 | 71 | 181.7 | 12973 | 11.1 | cs |
| HIP69281 | 61 | 12.6 | 762 | 2.7 | cs |
| HIP82587 | 29 | 74.7 | 2181 | 2.8 | cs |
| HIP94184 | 53 | 50.5 | 2697 | 6.3 | cs |
| HIP95261 | 48 | 4.2 | 202 | 10.6 | cs |
| HIP102655 | 54 | 391.4 | 21057 | 2.7 | cs |
| HIP105388 | 43 | 13.6 | 585 | 10.2 | cs |
| HIP113477 | 41 | 21.6 | 886 | 1.1 | cs |

[^14]
## REFERENCES

Cushing, M. C., Roellig, T. L., Marley, M. S., et al. 2006, ApJ, 648, 614 Donaldson, J. K., Roberge, A., Chen, C. H., et al. 2012, ApJ, 753, 147 Moór, A., Pascucci, I., Kóspál, Á., et al. 2011, ApJS, 193, 4 Rhee, J. H., Song, I., Zuckerman, B., \& McElwain, M. 2007, ApJ, 660, 1556 Riaz, B., Gizis, J. E., \& Harvin, J. 2006, AJ, 132, 866
Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, A\&A, 460, 695 Wu, C.-J., Wu, H., Lam, M.-I., et al. 2013, ApJS, 208, 29

## Chapter 4

## Improved Methods to Verify WISE Debris Disks With Weighted Colors and unWISE <br> Images

The work presented in this chapter is to be submitted to the Astrophysical Journal. This study is the second in a series of three, and was done in collaboration with Dr. Stanimir Metchev, Dr. Aren Heinze, and Joseph Trollo, where I will be the primary author.

### 4.1 Introduction

Dust orbiting within several tens of AU around main sequence stars is unstable: the combination of radiative and gravitational effects eliminate it on timescales of a hundred to a few million years. The presence of such dust implies its continual generation by collisions among larger bodies (e.g., asteroids or comets) that may be dynamically stirred by unseen planets. Identifying stars with dusty disks helps us probe the diversity of planetary system architectures and choose targets for future planet-imaging campaigns.

Main sequence stars with debris disks are typically identified first by their infrared (IR) dust excesses: their IR fluxes at $\lambda \gtrsim 5 \mu \mathrm{~m}$ are significantly higher than would be expected from photospheric emission alone. A debris disk can be detected by fitting a photospheric model to the shorter-wavelength (visible and near-IR) photometry, and subtracting the fitted photosphere to check for $\mathrm{a} \gtrsim 5 \mu \mathrm{~m}$ excess. A large number of stars with IR excesses have been found this way, using data from $\operatorname{IRAS}$ (e.g., Moór et al., 2006; Rhee et al.,

2007; Zuckerman, 2001, and references therein), Spitzer (e.g., Su et al., 2006; Bryden et al., 2006; Trilling et al., 2008; Carpenter et al., 2009a), AKARI (e.g., Fujiwara et al., 2013), and WISE (e.g., Cruz-Saenz de Miera et al., 2014; McDonald et al., 2012).

A limitation of this approach is the normalization of the underlying stellar photosphere. Flux comparisons across wide wavelength ranges-optical/nearIR for the photosphere and mid-IR for the excess - can be uncertain by several per cent. The combination of photometric data from different surveys (e.g., Tycho-2, SDSS, 2MASS, WISE, IRAS) incorporates often unknown systematic uncertainties in the photometric calibration of the survey filters. Any stellar variability between the various epochs of the observations also adds an unknown contribution. Thus, while the systematic color uncertainties of photospheric models are generally very small, the accurate normalization of the model in the mid-IR can be uncertain by a few per cent. Adding to these factors other potential data systematics, most common of which can be uncertainties in the mid-IR filter profiles and the corresponding color corrections, the precision of mid-IR excess determination is generally limited to $10 \%(1 \sigma)$.

Notable exceptions are the Spitzer/IRS surveys of Carpenter et al. (2009a), Lawler et al. (2009), and Dodson-Robinson et al. (2011), who demonstrate that the IRS has been the most sensitive instrument ever for detecting $10-40 \mu \mathrm{~m}$ photometric excesses from debris disks, with nearly twice as many detections as MIPS at $24 \mu \mathrm{~m}$. The advantage of the IRS lies in the ability to locally calibrate the stellar photospheric model over a spectral range that is close to the excess wavelengths, and in the fact that the entire $5-40 \mu \mathrm{~m}$ spectrum can be obtained nearly simultaneously.

With its better sensitivity than $\operatorname{IRAS}$, a wavelength range that samples both the $3-5 \mu \mathrm{~m}$ stellar photosphere and potential $10-30 \mu \mathrm{~m}$ excesses simultaneously, and with the advantage of full-sky coverage over Spitzer, WISE (Wright et al., 2010) presents an opportunity to find unprecedentedly faint mid-IR excesses over the entire sky. In particular, greatest sensitivity to faint mid-IR excesses is obtained by analyzing the distributions of stellar colors formed from combinations of short- and long-wavelength WISE bands: e.g., $W 1-W 3$ or $W 2-W 4$.

For the reasons detailed above, using broader-wavelength coverage to fit stellar photospheric models can introduce contaminants. During this postprocessing phase of the analysis, contaminants can arise from an inaccurate estimate of the photospheric emission. This usually occurs when determining the photospheric flux by photospheric modelling. The fitting approach is limited in that it can be affected by non-simultaneity of the various photometric observations and by discrepancies among the zero-points of the various photo-
metric systems. This problem is avoided when all of the data used to estimate the photospheric and the excess emission are measured concurrently. But for most bright stars there is no contemporaneous, precise photometry that spans a wide enough range in wavelength to produce a well-constrained photospheric fit. Contaminants introduced during the acquisition phase, in contrast, can arise from a number of astrophysical and instrumental sources: imaging artifacts (ghosts, halos, etc.), large patches of non-uniformly distributed infrared cirrus, scattered light from the Moon, closely separated projected extragalactic sources, projected optical companions blended into the WISE beam, and undiscovered Active Galactic Nuclei or Luminous Infrared Galaxies.

There are, however, methods to address contaminants introduced at both phases. For instance, the photospheric emission can be calibrated empirically, rather than using a model fit that will introduce additional post-processing contamination. This approach has been applied successfully to the WISE data: Rizzuto et al. (2012) used it to search for excesses around Sco-Cen stars based on their $W 1-W 3$ and $W 1-W 4$ colors from the WISE Preliminary Release Data Release ${ }^{1}$ and Theissen \& West (2014) applied a similar approach to search for excesses around M dwarfs using the Sloan Digital Sky Survey Data Release 7 and the AllWISE Data Release ${ }^{2}$. In Patel et al. (2014a, henceforth as PMH14), we used the WISE All-Sky Survey Data Release ${ }^{3}$ and the Hipparcos catalog (Perryman et al., 1997) to determine the frequency of debris disk hosts stars within 75 pc of the Sun. To reduce contaminants accumulated from the acquisition phase, one can take advantage of survey meta-data to place filters or use crowd-sourced citizen science tools ${ }^{4}$ to remove contaminated stars.

In PMH14, we identified stars with infrared excesses in the W3 and W4 bands by first filtering out 15 major sources of contaminants, seeking anomalously red WISE colors ( $W 1-W 3, W 2-W 3, W 1-W 4, W 2-W 4$ or $W 3-W 4$ ) compared to the mean photospheric values for stars with the same Tycho $B_{T}-V_{T}$ colors, and finally removing any contaminated excess by checking their WISE images for background IR cirrus. We evaluated the statistical distributions of each of these WISE colors independently. This approach was effective, and had the advantage of not excluding stars without valid measurements in some of the WISE bands: for example, if $W 1$ was excessively saturated, a star could still be determined to have an excess based on its $W 2-W 4$ or $W 3-W 4$ color. However, where valid measurements exist for all WISE bands - the majority of cases - an optimally weighted combination of colors should have lower noise and potentially deliver greater sensitivity to

[^15]faint excesses.
In this study we seek to identify high-fidelity faint IR excesses around main sequence Hipparcos stars within 75 pc by 1) using the combined weight of multiple WISE colors to assess a star's $W 3$ or $W 4$ excess, and 2) by rejecting excesses that may be contaminated from unrelated IR sources at small angular separations from our stars. We motivate the selection of our sample of stars in Section 4.2. In Section 4.3, we describe techniques for improved accuracy in the confidence threshold determination and for seeking IR excesses using weighted combinations of WISE colors. In Section 4.4, we describe and apply our method for rejecting contaminated sources based on their relative positional offsets. We use these techniques to confirm previously discovered IR excesses and to find new ones. We summarize the results of the excesses we have newly identified, verified and rejected in Section 4.5. In Section 4.6, we discuss our interpretation of the weighted color excess search results and compare them to the single-color approach in WISE.

### 4.2 Sample Definition

Our sample consists of main-sequence Hipparcos stars with reliable WISE AllSky Catalog photometry in all four WISE bands. The details of the selection process are outlined in PMH14. In short, we first created a parent sample of Hipparcos stars within 120 pc , outside the galactic plane $\left(|b|>5^{\circ}\right)$, and constrained to the $-0.17 \mathrm{mag}<B_{T}-V_{T}<1.4 \mathrm{mag}$ Tycho color range. We performed additional automated screening to ensure photometric quality, consistency, and minimal contamination. We then corrected saturated photometry in the $W 1$ and $W 2$ bands using relations derived in PMH14. Unlike in PMH14, however, we included only stars that had valid photometry in $W 1$, $W 2$ and $W 3$ bands when seeking weighted $W 3$ excesses and valid photometry in all four bands when seeking weighted $W 4$ excesses.

The parent ( 120 pc ) sample provides us with a large population of stars to calibrate the photospheric WISE colors as a function of $B_{T}-V_{T}$ (PMH14; Patel et al., 2014b). These stars are mostly within the Local Bubble (Lallement et al., 2003), and have little line-of-sight interstellar extinction ( $A_{V}<$ $0.05 \mathrm{mag})$. The science sample is a 75 pc sub-sample of the parent sample, whose stars stars have accurate parallaxes. As in PMH14, we only report and analyze detections of IR excesses from stars in the science sample. However we iterate on the excess selection and contamination checking approaches for better detection sensitivity and fidelity.

### 4.3 Single-Color and Weighted Color Excesses

### 4.3.1 Improved Detection of Single-Color Excesses

We identify single-color WISE excesses based on the significance of their color excess as defined in Equation 2 of PMH14

$$
\begin{equation*}
\Sigma_{E[W i-W j]}=\frac{W i-W j-W_{i j}\left(B_{T}-V_{T}\right)}{\sigma_{i j}} \tag{4.1}
\end{equation*}
$$

where the numerator determines the excess in the measured $W i-W j$ color by subtracting the mean $W i-W j$ color of the photosphere. We denote the photospheric $W i-W j$ color by $W_{i j}\left(B_{T}-V_{T}\right)$, as it is a function of the optical $B_{T}-V_{T}$ color of the star. We use the tabulated photospheric $W_{i j}\left(B_{T}-V_{T}\right)$ relations for $-0.17 \mathrm{mag}<B_{T}-V_{T}<1.4 \mathrm{mag}$ from Patel et al. (2014b). Throughout the rest of this paper, the significance of a single-color excess is denoted with $\Sigma_{E}$.

The single-color WISE excesses are selected by seeking stars with $\Sigma_{E}$ values above a certain confidence threshold. We denote the $\Sigma_{E}$ value at the confidence threshold CL as $\Sigma_{E_{C L}}$ : CL=98\% at $W 3$ and $\mathrm{CL}=99.5 \%$ at $W 4$. In PMH14 we used the excess and the uncertainty distributions as a function of $\Sigma_{E}$ to determine the values $\Sigma_{E_{C L}}$ for the various colors. Given a set falsediscovery rate ( FDR ), and that $\mathrm{CL}=1-\mathrm{FDR}$, we seek the value of $\Sigma_{E}$, where the FDR drops below $2 \%$ for $W 3$ excesses, or below $0.5 \%$ for $W 4$ excesses ${ }^{5}$. The FDR can be determined directly from the ratio of the counts of stars in the uncertainty and excess distributions. To form the uncertainty distribution for a given color, we assume that the effect of random errors on $\Sigma_{E}$ is symmetric with respect to $\Sigma_{E}=0$. The various $\Sigma_{E}$ distributions do indeed peak close to zero (PMH14), which supports this supposition. We hence assume that the negative sides of the $\Sigma_{E}$ distributions are representative of the negative halves of the uncertainty distributions, and so we mirror the negative $\Sigma_{E}$ values around the distribution peaks to obtain the full uncertainty distributions. The shapes of the combined uncertainty distributions are consistent with a Gaussian of standard deviation $\sim 1$, as we might expect in the absence of unknown systematics when we have weighted each color measurement by its error. This indicates that our analysis is not limited by residual calibration systematics. We show an illustration of the above method in Figure 4.1, albeit not for the single-color excess $\Sigma_{E}$ metrics discussed here and in PMH14, but for the weighted color $\Sigma_{\bar{E}}$ metrics introduced in Section 4.3.2.

[^16]

Figure 4.1: Distributions of the weighted excess metrics, $\Sigma_{\overline{E[W 3]}}$ (left) and $\Sigma_{\overline{E[W 4]}}$ (right) for all stars in our parent sample. We have assumed that the negative portion of each $\Sigma_{\bar{E}}$ distribution is representative of the intrinsic random and systematic noise in the data (Section 4.3.1). The mode of the full distribution is shown by a vertical black dashed-dot line. A reflection (dashed histogram) of the negative portion of the $\Sigma_{\bar{E}}$ histogram around the mode is thus representative of the false positive excess expectation. We define the FDR at a given $\Sigma_{\bar{E}}$ as the ratio of the cumulative numbers of $>\Sigma_{\bar{E}}$ excesses in the positive tails of the dashed and solid histograms. The vertical dotted lines indicate the FDR thresholds for each weighted $W j$ excess, $2 \%$ for $W 3$ and $0.5 \%$ for $W 4$, above which we identify all stars as probable debris disk hosts. Each inset shows a log-log fit of a line to the last ten points in the reverse cumulative distribution function of the uncertainties (see Section 4.3.1). Assuming exponential behavior in the tail of the uncertainty distribution, this fit smoothes over the stochasticity in this sparsely populated region of the uncertainty distribution to attain a more accurate estimate of the FDR threshold.


Figure 4.2: A reverse cumulative distribution function (rCDF, Section 4.3.1) of the uncertainty (black) and excess (red) distributions of $\Sigma_{E[W 1-W 4]}$. We use the rCDF to estimate the FDR at any $\Sigma_{E}$ : as the ratio of the black and red rCDFs. The vertical dash-dotted line shows the more conservative $\Sigma_{E_{99.5}}$ estimate of the confidence threshold from PMH14, set half-way between the last two points. The vertical dashed line shows the present, more accurate, $\Sigma_{E_{99.5}}$ estimate, based on a fit (solid green line) to the last ten data points in the tail of the rCDF (magenta squares). The left panel shows the full rCDFs, while the right panel zooms in near the $\Sigma_{E_{C L}}$ threshold.

The empirical estimate of the FDR described above and adopted in PMH14 offers a straightforward method to assess the reliability of candidate excesses. However, the exact value of the $\Sigma_{E_{C L}}$ threshold tends to rely only on the one or two most-outlying stars in the (negative wing of the) $\Sigma_{E}$ distribution (Figure 4.1), and so is uncertain. In PMH14 we purposefully overestimated $\Sigma_{E_{C L}}$ by the half distance to the star prior to the one that satisfied the FDR threshold. Our estimate of the $\Sigma_{E_{C L}}$ was conservative, not very accurate, and may have excluded potentially significant excesses.

Here we iterate on this approach by taking advantage of the near-Gaussian behavior of each uncertainty distribution. To circumvent the small-number sampling in the tail, we average the functional behavior by fitting an exponential curve to the last ten points in the rCDF of the uncertainty distribution (Figure 4.2). This continuous form of the tail of the uncertainty distribution enables a more accurate estimate of the FDR.

We used the improved confidence threshold determination procedure to search for additional single-color excesses using the same set of stars and colors ( $W 1-W 4, W 2-W 4, W 3-W 4, W 1-W 3$ and $W 2-W 3$ ) as in PMH14. $W 3$ and $W 4$ excesses were again identified at the $98 \%$ and $99.5 \%$ confidence levels, respectively. In addition to the excesses already identified in PMH14, we found 39 additional single-color excess candidates. After inspecting and removing stars that seemed to be contaminated by background cirrus emission, we were left with 27 single-color excess candidates, 19 of which do not have IR excess detections reported in the literature. Of these 19, 18 are newly detected single-color excesses at $W 4$, and one has a significant single-color excess only at $W 3$, with a marginal excess at $W 4$. The excess detection statistics are summarized in Table 4.1. The newly detected excesses and their significances are listed individually in Table 4.2.

### 4.3.2 Defining A New Weighted IR Excess Metric

In PMH14 and Section 4.3.1, we identified debris disk-host candidates by selecting stars with individual anomalously red WISE Wi-Wj colors, where $i=1,2,3, j=3,4$, and $i<j$. However, it may be possible to attain more reliable excess detections at $W j$ by combining all relevant $W i-W j$ colors. Herein we define this new "weighted excess" Wj metric.

As in Equation 4.1, we first remove the contribution from the photospheric emission. Thus the single-color excess is:

$$
\begin{equation*}
E[W i-W j]=W i-W j-W_{i j}\left(B_{T}-V_{T}\right) \tag{4.2}
\end{equation*}
$$

Since we want to use the strength of all possible WISE color combinations for band $W j$, we constructed the weighted average of the color excesses as

$$
\begin{equation*}
\overline{E[W j]}=\frac{1}{A} \sum_{i=1}^{j-1} \frac{E[W i-W j]}{\sigma_{W i}^{2}} \tag{4.3}
\end{equation*}
$$

where $\sigma_{W i}$ is the photometric uncertainity of $W i$ and $j \in[3,4]$. Here, $A=$ $\sum_{i=1}^{j-1} \frac{1}{\sigma_{i}^{2}}$ is a normalization constant. Our definition for the significance $\left(\Sigma_{\overline{E[W j]}}\right)$ of the weighted excess at $W j$ is the ratio of the weighted average of all color excesses (Equation 4.3) to the uncertainty in the weighted average ( $\left.\sigma_{\overline{E\left[W_{j}\right]}}\right)$ :

$$
\begin{align*}
\Sigma_{\overline{E[W j]}} & =\overline{E[W j]} / \sigma \overline{\overline{E[W j]}}  \tag{4.4}\\
& =\frac{\frac{1}{A} \sum_{i=1}^{j-1} \frac{E[W i-W j]}{\sigma_{i}^{2}}}{\sqrt{\sigma_{j}^{2}+1 / A}} \tag{4.5}
\end{align*}
$$

The full derivation of this metric can be found in Appendix C.1. We use $\Sigma_{\bar{E}}$ through the rest of the paper as shorthand for the significance of the weighted excess for either $W 3$ or $W 4$, as appropriate, and $\Sigma_{E}$ as shorthand for the significance of the single-color excess when the discussion does not refer to any specific color.

### 4.3.3 Weighted Color Excesses

We extend the same procedure used to identify stars with single-color excesses in Section 4.3 .1 to search for optimally weighted excesses in $W 3$ or $W 4$ using Equation 4.4. When discussing weighted excesses, we denote the confidence threshold as $\Sigma_{\overline{E_{C L}}}$. In Figure 4.1, we plot the $\Sigma_{\bar{E}}$ distributions as solid red histograms for both $W 3$ and $W 4$. The positive wings of the uncertainty distributions, defined analogously to those for the single-color uncertainty distributions, are shown as dashed blue histograms. The $\Sigma_{\overline{E_{C L}}}$ threshold is shown as the vertical dotted green line. We claim that a star has a significant weighted excess if its $\Sigma_{\bar{E}} \geq \Sigma_{\overline{E_{C L}}}$.

We identify 6 stars with $98 \%$ significant weighted $W 3$ excesses within 75 pc of the Sun, among which we expect $2 \% \times 6=0.12$ to be false positives. We identify 184 stars with $99.5 \%$ significant weighted $W 4$ excesses within 75 pc of the Sun, among which we expect $0.5 \% \times 184=0.92$ to be false positives. However, these FDRs do not account for spurious excesses caused by contamination from IR cirrus or unresolved binary companions. Hence, we checked the four-band WISE images for this type of contamination for all of our detections. We removed 11 of the 184 weighted $W 4$ excess sources that were deemed to be contaminated. Ten of these 11 have single-color excess detections, which we rejected as debris disk candidates in PMH14. The other one, HIP 111136, is a new candidate; however, its $W 4$ images reveal line-ofsight IR cirrus contamination, for which we reject this stars. All 11 rejected sources are listed in Table 4.3. We were then left with $173 W 4$ excess stars. None of our weighted $W 3$ excesses seem to be contaminated based on their WISE images. A summary of these detections can be found in Tables 4.1 and 4.2.

### 4.4 Automated Rejection of Contaminated Stars Using Reprocessed WISE Images

WISE offers higher angular resolution than IRAS. However, source photometry it is still prone to contamination by unrelated astrophysical sources seen in projection. Possible contaminants may include nearby point sources, at angular separations comparable to the WISE W3 and W4 PSFs. Even if the AllSky Catalogue provides resolved photometry for such objects, the deblending algorithm may introduce systematic offsets in the flux that are not characteristic of isolated point sources. Other possible contamination can be caused by nearby extended emission: e.g., from interstellar cirrus or from the PSF wings of a nearby bright source. We expect that both types of contamination may manifest themselves in discrepant source positions: either between the $W 3$ and $W 4$ images, or among $W 4$ positional measurements that use different centering region sizes.

The All-Sky and the AllWISE Catalogues do not list individual positions in each of the filters. Therefore, we downloaded individual $W 3$ and $W 4$-band images for all stars in our parent sample. As we describe below, we also used the higher angular resolution raw WISE images, rather than the smoothed ones accessible directly from the WISE All-Sky or AllWISE Data Releases.

### 4.4.1 Checking for Contaminants In unWISE Images

Instead of using the All-Sky Atlas images, we used the higher angular resolution unWISE images, which can be retrieved from the unWISE image service ${ }^{6}$ (Lang, 2014). Images from the All-Sky and AllWISE catalog were created by stacking individual exposures and then convolving each stack with a model of the detector's point-spread function (PSF). By not including this last step to create the unWISE images, Lang (2014) preserves the nominal resolution of the original stacked images. Hence, the unWISE PSF is a factor of $\sqrt{2}$ narrower than for the All-Sky Catalog images ( $6^{\prime \prime}$ for $W 1, W 2$, and $W 3$ and $12^{\prime \prime}$ for $W 4$ ). We downloaded $150^{\prime \prime} \times 150^{\prime \prime} W 3$ and $W 4$ images from the unWISE website for all of our excess stars, each centered on the stellar coordinates at the mean WISE observational epoch. We also downloaded images for the vast majority of our 16960 parent ( 120 pc ) sample stars. These stars are the union of all the stars that comprised the parent samples for the five different color excess searches in PMH14: $W 1-W 3, W 2-W 3, W 1-W 4, W 2-W 4$, and $W 3-W 4$. This amalgamated sample will be used as a statistical basis for

[^17]determining significant outliers amongst our excesses based on their relative positional offsets.

We use the unWISE $W 3$ and $W 4$ images of the parent sample stars to test for astrometric contamination by line-of-sight neighbors. We hypothesized that point-source contaminants can be identified through large relative positional offsets between the centroids of the $W 3$ and $W 4$-band unWISE images. Thus, for all our stars, we extracted centroid positions for our W3 and W4 images $\left(\vec{r}_{W 3}\right.$ and $\vec{r}_{W 4}$ respectively). The vectors $\vec{r}_{W 3}$ and $\vec{r}_{W 4}$ were calculated using Gaussian centroiding in a 3.06 pixel radius aperture using a Gaussian of $\sigma=1.02$ pixels. This value of $\sigma$ was chosen to yield a full width at half maximum (FWHM) of 2.4 pixels, thus matching the FWHM of the $W 3$ images. We also hypothesized that extended source contaminants could be identified by comparing the $W 4$ centroid calculated in an $r=3.06$ pixel aperture to a $W 4$ centroid calculated in a wider $r=10$ pixel aperture. The $W 4$ centroid calculated using the wide aperture radius is denoted as $\vec{r}_{W 4}$, wide . The 10 pixel radius ( $\sim 25^{\prime \prime}$ ) extends to roughly twice the FWHM of the $W 4$ PSF, and incorporates the radial distance of the first Airy ring. This ensures that any flux from the wings of the PSF from a nearby source will be flagged as a contamination source.

The density clouds in Figures 4.3 and 4.4 show the distributions of our stars' $W 4$ SNRs as a function of the $W 3$ to $W 4$ relative centroid offsets $\left(\Delta r_{W 3, W 4}=\left|\vec{r}_{W 3}-\vec{r}_{W 4}\right|\right)$ as well as a function of the $W 4$ to wide- $W 4$ centroid offsets $\left(\Delta r_{W 4}=\mid \vec{r}_{W 4}-\vec{r}_{W 4}\right.$,wide $\left.\mid\right)$. Contaminated stars will therefore be located at larger separations compared to the majority of the (uncontaminated) stars that populate the cores of the centroid offset distributions.

### 4.4.2 Rejecting Astrometric Contaminants

We aimed to find the separation threshold beyond which stars can be considered contaminated. Since the spread of separations varies as a function of $W 4 \mathrm{SNR}$, we performed this analysis using logarithmically spaced bins in $W 4$ SNR space. Assuming that the core of the $j^{\text {th }}$ SNR bin was normally distributed, we defined the maximum allowed separation in each bin $\Delta r_{j, \max }$ such that

$$
\begin{equation*}
\Delta r_{j, \max }=3 \sigma_{j} \tag{4.6}
\end{equation*}
$$

where $\sigma_{j}$ is the standard deviation of the azimuthally symmetric 2D Gaussian $\Delta x$ vs. $\Delta y$ distribution in the $j^{t h} W 4$ SNR bin (i.e., $\sigma_{j}=\sigma_{\Delta x}=\sigma_{\Delta y}$ ). To calculate $\sigma_{j}$, we assumed first that the $\Delta x$ and $\Delta y$ offsets (used to create $\Delta r$ ) are distributed as a circular 2-dimensional Gaussian. A fit to this multi-variate


Figure 4.3: Distribution of relative positional offsets of stellar centroids between $W 3$ and $W 4$ using images from the unWISE image service, plotted with respect to the $W 4$ SNR calculated from the unWISE images. The black/gray density cloud represents the density of 16927 Hipparcos stars from the parent 120 pc sample, while the light-blue dots show the locations of our excess stars. The black-dotted line represents our separation cut-off ( $1 / 3$ pixels) below which stars are not rejected. Our rejection threshold (solid orange line) was fit to $\left\{\Delta r_{j, \max }\right\}$ (dark-blue diamonds), calculated as described in Section 4.4.2. Stars to the right of the vertical dotted black line and above the orange line (red squares) are deemed to be contaminated by an unrelated nearby point or extended source. The contaminated objects include four candidate debris disk excesses identified in this study or in PMH14.


Figure 4.4: Distribution of relative positional offsets of stellar centroids between a narrow 2.5 pixel radius and wide 10 pixel radius apertures, as described in Section 4.4.1. The plot elements are the same as those described in Figure 4.3. Stars to the right of the vertical dotted black line and above the orange line (red squares, circles, and triangles) are deemed to be contaminated by an unrelated nearby point or extended source.

Gaussian would then yield $\sigma_{j}$.
According to the WISE Explanatory Supplement, however, the major and minor axes of the WISE PSF differ: FWHMs of $7.4^{\prime \prime}$ and $6.1^{\prime \prime}$ for the major and minor axes for $W 3$, and $12.0^{\prime \prime}$ and $11.7^{\prime \prime}$ for $W 4$. Therefore, the morphologies of the 2-D $\Delta x$ vs. $\Delta y$ distributions are also elliptical. To simplify calculations, we opted to circularize the elliptically distributed data: by scaling the major axis by the ratio of the standard deviations along the minor to major-axes of the $\Delta x$ vs. $\Delta y$ distributions.
We then fit a circular 2-D Gaussian to a $2 \sigma$-clipped portion of the circularized data to obtain the standard deviations of the sample in $\Delta x\left(\sigma_{\Delta x}\right)$ and $\Delta y\left(\sigma_{\Delta y}\right)$. This central part of the offset distribution was expected to be representative of the random positional scatter among point source coordinates for sources that were not contaminated. Since $\sigma_{\Delta x}=\sigma_{\Delta y}$, the final form of the Gaussian has only radial dependence, such that:

$$
\begin{equation*}
\exp \left[-\left(\frac{\Delta x^{2}}{2 \sigma_{\Delta x}^{2}}+\frac{\Delta y^{2}}{2 \sigma_{\Delta y}^{2}}\right)\right]=\exp \frac{\Delta r^{2}}{2 \sigma_{j}^{2}} \tag{4.7}
\end{equation*}
$$

The radial form in Equation 4.7 allows us to use $\sigma_{j}$ and place the rejection threshold in $\Delta r$ space.

The above procedure is used for every $j^{\text {th }}$ SNR bin to calculate $\Delta r_{j, \max }$. We then fit an exponential curve to the $\Delta r_{j, \max }$ points in log-log space, as seen in Figures 4.3 and 4.4. The exponential form was selected as it fit the $\Delta r_{j, \max }$ data adequately with the smallest number of parameters. The fit averages out the small-scale deviations between the SNR bins and provides a smooth upper envelope. We also added a fixed lower limit at $1 / 3$ pixel, for both the point- and extended source analyses. We do not reject any stars below this separation, as we do not trust pixel centroids to better than $1 / 3$ pixel accuracy in the unWISE images, which are barely Nyquist-sampled. Stars with measured offsets shown in Figure 4.4 are susceptible to flux variations in the first Airy ring of the PSF, as the wider 10 pixel radius ( $25^{\prime \prime}$ ) centroiding region is sufficiently large to encompass the Airy ring.

### 4.4.3 Rejection Fidelity

We would like to determine whether stars rejected based on the unWISE analyses are indeed contaminated. The hypothesis is that if a point-source or extended emission can randomly offset the centroid positions (and hence contaminate the photometry) of a star, then the fraction of rejected (hence contaminated) stars among our candidate excesses should be higher than the fraction of rejected stars in the parent sample. This is because if a contaminat-
ing source is bright enough to influence the photocenter of the star, it is likely to increase the flux of the star as well. We compared the percentage of rejected excesses (which include all stars identified as excesses, prior to rejection by visual inspection of the WISE images) to the percentage of rejected science sample stars ( $\mathrm{d}<75 \mathrm{pc}$ ). We limited the comparison to the science sample because all our reported excesses are within this volume. The total number of stars in the science sample is 8179 . Figures 4.3 and 4.4 show that the majority of rejected stars are at low SNR values ( $\mathrm{W} 4 \mathrm{SNR}<30$ ), while the majority of our excesses $(\sim 85 \%)$ have $W 4$ SNR values $>30$. Therefore, we limited our comparison to stars with $W 4$ SNR $>30$. This SNR cut further reduced the science sample to 4973 stars. We found that $3.10 \% \pm 0.25 \%(=154 / 4973)$ of the $\mathrm{SNR}>30$ parent sample stars and $5.14 \% \pm 1.54 \%(=11 / 214)$ of stars with excesses were rejected. The fraction of rejected excesses is marginally larger than the fraction of rejected science sample stars. The precision of the comparison is likely hindered by the small number of rejected candidate excesses. Nonetheless, it suggests that we are likely correctly rejecting contaminated stars.

Another indication that our astrometric analysis is rejecting contaminated sources are shown in Figure 4.4. This plot shows three stars that we had previously rejected based on contaminating sources that we identified using WISE and Herschel data (Donaldson et al., 2012; Patel et al., 2015): HIP 32435, HIP 69682, and HIP 106914. Nearby bright sources to these stars are clearly responsible for the $\Delta r_{W 4}>0.5$ pixel offsets. Postage stamp images of these three stars can be seen in Figures 4.5 and 4.6. Aside from these three, our astrometric unWISE analysis rejected eight other excesses. From our W3 vs. W4 centroid astrometric analysis, we rejected four contaminated excesses: HIP 35198, HIP 78010, HIP 68755, and HIP 55057. Figure 4.5 shows elongated and irregular images for the first three stars, indicative of a blended contaminant. From our extended emission contamination identification analysis, we rejected four excesses which are most likely contaminated: HIP 63973, HIP 21091, HIP 79881, HIP 20998. In total, we rejected a total of eight excesses based on the relative positions of their centroids.

For the majority of these stars, the contaminating source can be easily identified from visual inspection. In other cases, the contamination is subtle. For instance, the contaminating source is difficult to pinpoint based on the shape of the PSFs for HIP 68755 and HIP 21091. HIP 21091 was also previously identified as a $W 4$ excess by Vican \& Schneider (2014) and we have identified HIP 21091 as a new $W 3-W 4$ and weighted $W 4$ excess, though we cannot say to what level a background object may be affecting the excess flux for this star. However, if a contaminant is truly blended with the star, the positional offset is


Figure 4.5: $150^{\prime \prime} \times 150^{\prime \prime}$ unWISE $W 3$ and $W 4$ postage stamp images of stars rejected by our point-source contamination ( $\Delta r_{W 4}$ vs. $W 4$ SNR) analysis. The images are displayed using an ArcSinh scale.


Figure 4.6: $150^{\prime \prime} \times 150^{\prime \prime}$ unWISE $W 4$ postage stamp images of stars rejected from our extended emission contamination ( $\Delta r_{W 4}$ vs. $W 4$ SNR) analysis. The images are displayed using an ArcSinh scale.
the only objective way to identify it. For instance, the profiles of HIP 68755 in Figure 4.5 do not "appear" to be contaminated. But subtle astrometric shifts due to blended contamination will not be apparent from visual inspection. Thus it is important to incorporate such checks, in addition to visual checks for contamination.

### 4.5 Results

Our improved WISE IR excess identification procedure has uncovered 28 excesses that we did not report in PMH14. In Section 4.5.1 we argue that one of the new excesses, associated with HIP 910, is likely spurious, which leaves 27 new excess identifications. The 27 new excesses include new single-color only excesses (12 at $W 4$ and one at $W 3$ ), new weighted color only excesses (one at $W 3$ and one at $W 4$ ), and excesses that have both new single-color and weighted color detections (12 at $W 4$ ). The specifics of the new excesses detections and their significance in the different WISE color combinations are given in Table 4.2. An inspection of the single-color excess significances $\Sigma_{E}$ for each star shows that all of the new detections are fainter than those found in PMH14: mainly because of the decrease of $\Sigma_{E_{C L}}$ in our updated determination of the FDR thresholds.

The stellar and dust properties of the newly discovered IR excesses are listed in Tables 4.4 and 4.5. These parameters are derived from photospheric model fits to the optical and near-IR photometry from Hipparcos and the Two Micron All-Sky Sky Survey (2MASS) using a similar procedure as outlined in PMH14. The only update with respect to PMH14 is that after fitting the optical/IR SED with a photospheric model to determine the best stellar effective temperature, we then scale the model to the weighted mean of the $W 1$, and $W 2$ fluxes for consistency with our weighted excess search methodology. In most cases we used the $W 4$ excess and the 3- $\sigma$ upper limits to the $W 3$ excess to calculate upper limits to the blackbody dust temperatures. In cases with significant or marginal W3 excesses, we calculated the actual blackbody dust temperatures. However, we note that without additional longer-wavelength observations, our estimates of the circumstellar dust temperatures are only approximate.

In Section 4.6 we discuss the new excesses in the context of the published literature to assess their reliability and, wherever possible, to elucidate their nature.

### 4.5.1 New Candidate Debris Disks

Out of the 27 WISE excesses discovered since PMH14, 19 are completely new detections, with no previously reported excesses at any wavelength. Eighteen of these are $W 4$ excesses, and are indicated with 'Y-' in the column labeled 'New?' in Table 4.2. These are new excesses at $22 \mu \mathrm{~m}$, but have no significant $12 \mu \mathrm{~m}$ excesses. Seventeen are detected through the single-color excess search, although they are often independently confirmed in several single-color combinations. Eight of the 17 also display a weighted color $W 4$ excess, while nine do not. In Section 4.6.1 we discuss two reasons for which a single-color excess may not be confirmed through the weighted color excess metric, even if the single-color excess is real. Only one new $W 4$ excess, HIP 13932, is revealed only through its weighted color combination, without showing any significant single-color excesses.

One of the new excesses, from HIP 117972, is significant only at W3. The excess is present in the $W 1-W 3$ color at $\Sigma_{E[W 1-W 3]}=2.73$, just above the $\Sigma_{E[W 1-W 3] 98}=2.6698 \%$ confidence level threshold. It is not confirmed as a weighted excess at $W 3$ because the weighted $W 3$ excess confidence threshold is higher: at $\Sigma_{\overline{E[W 3] 98}}=3.28$. Given our adoption of a lower confidence level (98\%) for detecting $W 3$ excesses, it is possible that the excess from HIP 117792 may be spurious. Nonetheless, the star does show a marginal excess also in the $W 1-W 4$ and $W 2-W 4$ colors. The combined evidence for faint $W 3$ and $W 4$ excesses suggests that they may be real, and that HIP 117972 may host a warm zodiacal dust-like debris disk. A joint SED fit to the shorter-wavelength and WISE photometry indicates a $\sim 530 \mathrm{~K}$ dust excess (third panel, Figure 4.7) at $f_{d}=1.92 \times 10^{-4}$ of the stellar bolometric luminosity (Table 4.5).

## New Disk Candidates with Archival IR Observations

While none of the 19 stars with new excess detections discussed here have been previously identified as debris disk hosts in the literature, perusal of archival observations from Spitzer and Herschel reveals data for HIP 21783 and HIP 67837. The SED for HIP 20507 can be seen in the fourth panel of Figure 4.7. HIP 20507 has an $\operatorname{IRAS} 25 \mu \mathrm{~m}$ detection, although it is too noisy to place useful constraints. Finally, one of our initially identified excesses, HIP 910, has extensive Spitzer and Herschel observations discussed in the published literature, in addition to detections by $I R A S$ at $25 \mu \mathrm{~m}$ and by $A K A R I$ at $18 \mu \mathrm{~m}$. Our consideration of the ensemble of these data shows that the small HIP 910 WISE W4 excess is likely spurious. Hence, the total number of new WISE excesses is 18 .


Figure 4.7: Example SEDs representative of newly detected excesses from this study. In each plot, the blue dashed lines correspond to the fitted NextGen photosphere models using photometry indicated by the green circles. The photospheric fit was performed using the BVJHKs photometry from the Hipparcos Catalogue and the 2MASS Point Source Catalog, as well as the $W 1$ and $W 2$ fluxes. After fitting, the photosphere was scaled to the weighted average of the $W 1$ and $W 2$ fluxes. The $W 1$ and $W 2$ photometry were corrected using saturation correction trends derived in PMH14. W3 and W4 All-Sky photometry are green stars at 12 and $22 \mu \mathrm{~m}$ in each plot. We fit blackbody curves (magenta dashed-dot curves) to excess fluxes (open magenta diamonds) and $3 \sigma$ upper limits (red arrows) red-ward of $W 3$. The combined photosphere and excess emission for each star is plotted as solid black line. HIP 21783 and HIP 67837 are new $W 4$ excesses we identified from the significance of their $W 2-W 4$ and $W 3-W 4$ color, respectively. We also use archival Spitzer/MIPS $70 \mu \mathrm{~m}$ and Herschel/PACS $70 \mu$ m fluxes to further constrain the dust temperature fits for HIP 21783 and HIP 67837, respectively. The Spitzer and Herschel fluxes were obtained as described in Section 4.5.1. In addition, HIP 117972 is a new $W 3$-only excess which we identified from the significance of its $W 1-W 3$ color, while HIP 20507 is a new weighted $W 4$ excess.

HIP 21783. This star is serendipitously included in a single MIPS $70 \mu \mathrm{~m}$ pointing in Spitzer program GO 54777 (PI: T. Bourke). We measure a flux of $26 \pm 2 \mathrm{mJy}$ by performing $r=16^{\prime \prime}$ aperture photometry on the post-basic calibrated data (PBCD) images, and apply an aperture correction of 2.04 , according to Table 4.14 of the MIPS Instrument Handbook v. 3.0. ${ }^{7}$ The MIPS70 measurement confirms the presence of a thermal excess. A fit to the optical-IR SED (panel 1, Figure 4.7) reveals that the associated circumstellar dust has a temperature of 84 K and a fractional luminosity of $f_{d}=1.34 \times 10^{-4}$.

HIP 67837. HIP 67837 is included in a Herschel/PACS $70 \mu \mathrm{~m}$ and $160 \mu \mathrm{~m}$ Open Time program (PI: D. Padgett). Its $70 \mu \mathrm{~m}$ flux is $24 \pm 4 \mathrm{mJy}$, where we have performed $r=5^{\prime \prime}$ aperture photometry on the Level 2.5 -processed images, and applied an aperture correction of $1 / 0.577=1.733$, according to Table 2 of Balog et al. (2014). The PACS $70 \mu \mathrm{~m}$ measurement also confirms the presence of a thermal excess (panel 2, Figure 4.7). The star is not detected at $160 \mu \mathrm{~m}$. The inferred dust temperature is 76 K and the fractional dust luminosity is $f_{d}=3.12 \times 10^{-4}$.

HIP 910. Among the four stars for which archival mid-IR data exist, only HIP 910 has been discussed in the debris disk literature, where it has received considerable scrutiny as a nearby (19 pc; van Leeuwen, 2007) near-solar analog (F8V; Gray et al., 2006). Independent analyses of Spitzer/IRS low-resolution spectra (Beichman et al., 2006), MIPS $24 \mu \mathrm{~m}$ and $70 \mu \mathrm{~m}$ photometry (Trilling et al., 2008), and Herschel PACS $100 \mu \mathrm{~m}$ and $160 \mu \mathrm{~m}$ photometry (Eiroa et al., 2013) all conclude that HIP 910 does not possess an excess. We find that HIP 910 has a small $W 2-W 4$ excess $(0.19 \pm 0.06 \mathrm{mag})$ and $W 2-W 3$ excess $(0.15 \pm 0.04 \mathrm{mag})$ excesses above the photosphere. As such, it would be a candidate for an exozodiacal debris disk. A $19 \%$ excess at W4 would have only been $\sim 2 \sigma$ significant in the MIPS24 observations of Trilling et al. (2008), hence the non-confirmation in MIPS is not surprising. However, a $15 \%-19 \%$ excess at $10-30 \mu \mathrm{~m}$ would have been detected at $\sim 10 \sigma$ significance in the Spitzer/IRS analysis of Beichman et al. (2006). Their low-resolution Spitzer/IRS observations cover a wide wavelength range, $6-38 \mu \mathrm{~m}$, and have superior sensitivity to faint excesses compared to WISE photometry: because of the better stellar photospheric estimation possible from the larger number of independent short-wavelength data points. Given the lack of confirmation from the Spitzer/IRS observations, we conclude that the candidate $W 4$ excess from HIP 910 is probably spurious: representative of the very few false-positive excesses beyond our $99.5 \%$ confidence threshold.

[^18]It is worth noting that HIP 910 is the only newly-identified excess candidate in the present study for which published mid-IR observations exist. Because it is also unique in that it is not confirmed as a debris disk in the more sensitive Spitzer/IRS data, this raises the question whether some of our other candidates discussed here and in PMH14 may also be spurious. To determine whether the non-confirmation of WISE excesses from Spitzer/IRS observations is a common occurrence for any of our reported excesses, we searched the recent literature for all of the new excess stars discovered in PMH14. Nineteen of these have had Spitzer/IRS observations published since, all in Chen et al. (2014).

All are confirmed to have Spitzer/IRS excesses. ${ }^{8}$ Hence, we can conclude that the non-confirmation of HIP 910 is not typical of our WISE excess detections, and that the remaining 19 new candidate debris disks reported here and the 104 new candidates in PMH14 remain viable.

## New Disk Candidates in Binary Systems

Two of our new excess stars, HIP 2852 and HIP 70022, have recently discovered M-dwarf companions (De Rosa et al., 2014). This may be a cause for concern, as these companions might be responsible for the $W 4$ excesses from these two stars. HIP 2852 has a physical $0.30 M_{\odot}$ companion, which corresponds to an M3/4 spectral type, at a separation of $0.93^{\prime \prime} \pm 0.01^{\prime \prime}(45.6 \pm 0.49 \mathrm{AU})$. HIP 70022 has a $0.18 M_{\odot}$ (M5/6) companion which is likely physical (De Rosa et al., 2014), separated by $1.84^{\prime \prime}(116 \mathrm{AU})$ from the central star. Given $\Delta K_{s} \geq 5 \mathrm{mag}$ contrasts between the primary and the companion in each case, the flux from each of the M-dwarf companions is not enough to produce the observed $13 \%-16 \%$ excesses at $W 4$. Therefore, we conclude that both stars possess real mid-IR excesses that are likely associated with debris disks. After factoring the companion separation for both of these stars, the dust in each system is expected to be circumstellar and not circumbinary.

### 4.5.2 Confirmations of Previously Known $22 \mu \mathrm{~m}$ Faint Debris Disks

Out of our 27 additional $W 3$ or $W 4$ excess detections not reported in PMH14, 19 represent completely new discoveries: 18 at $W 4$ and one at $W 3$. An additional star (HIP 26395) was found to possess a $W 4$ excess in PMH14, but we

[^19]now report a new excess detection at $W 3$. The remaining eight have previously reported excess in the literature. We detected $W 4$ excesses associated with seven of these eight stars, while one possesses a $W 3$ excess. Here we examine the literature data on the nine previously reported excesses - form PMH14 or elsewhere - in context of our WISE detections.

Five of our eight $W 4$ excesses were previously reported as WISE W4 excesses. Vican \& Schneider (2014) reported 200 K upper limit blackbody temperatures based on non-detections of excesses at W3 for four of these stars: HIP 12198, HIP 21091, HIP 78466 and HIP 115527. We use the $3-\sigma$ upper limits on the $W 3$ excess fluxes of these four stars to determine dust temperature the upper limits. The dust temperature upper limits are between 131 K and 203 K, consistent with the estimates found by Vican \& Schneider (2014). The fifth star (HIP 92270) was reported as a W4 excess by Mizusawa et al. (2012), although no other relevant information exists for this star.

The remaining three $W 4$ excess hosts (HIP 42333, HIP 42438, and HIP 100469) have published mid- and far-IR excess detections from Spitzer, thus providing greater constraint on the dust properties in these systems. Plavchan et al. (2009) reported $24 \mu \mathrm{~m}$ and $70 \mu \mathrm{~m}$ excess detections for HIP 42333 and calculated the dust temperature of the excess to be $T<91 \mathrm{~K}$. Our estimates to the blackbody temperature from the $W 4$ excesses and the $W 33-\sigma$ upper limits yield a hotter, yet consistent result ( $T_{B B}<344 \mathrm{~K}$ ). HIP 42438 and HIP 100469 are stars with previously detected Spitzer/IRS excesses between $8-30 \mu \mathrm{~m}$ and Spitzer/MIPS excesses at $70 \mu \mathrm{~m}$. Chen et al. (2014) report multitemperature debris disks for both these stars, where the cold dust component is $\sim 70-80 \mathrm{~K}$ while the hot dust component is constrained to 499 K for each system. Our single-population dust temperatures for HIP 42438 ( $T_{B B}<432 \mathrm{~K}$ ) and HIP $100469\left(T_{B B}=131 \mathrm{~K}\right)$ are consistent with the estimates from Chen et al. (2014).

Our last new excess detection, from HIP 26395, was already included in PMH14 as a $W 4$ excess. In this study, we report the detection of a weighted $W 3$ excess. A $10-30 \mu \mathrm{~m}$ excess for this star was also reported by Chen et al. (2014), using Spitzer/IRS data. Chen et al. (2014) found that HIP 26395 has a multi-temperature debris disk, similar to HIP 42438 and HIP 100469; a cold component at $\mathrm{T}=94 \mathrm{~K}$ and a hot component at $\mathrm{T}=399 \mathrm{~K}$. Again, our singlepopulation dust temperature ( 146 K ) is consistent with the two-population dust model of Chen et al. (2014). Notably, our detection of the weighted W3 excess shows that our improved technique can detect as faint a population of excesses as detectable by Spitzer/IRS thanks to our increased precision in pinpointing the level of the photosphere.

## a)


b)


Figure 4.8: Venn diagrams comparing the candidate excesses from our weighted excess analysis (right circles) and from our single-color excess (left circles). Stars from the single-color excess sets were selected only if they had good quality photometry in $W 1, W 2$ and $W 3$ for our $W 3$ excesses (a) and good quality photometry in all four bands for our $W 4$ excesses (b).

### 4.6 Discussion

### 4.6.1 Single vs. Weighted Color Excess Search

We compare the number of IR-excess stars detected from the weighted $W 3$ and $W 4$ searches to the corresponding single-color excess detections from PMH14 and to the additional single-color excesses from the improved detection procedures outlined in Sections 4.3.1 and 4.3.2. For consistency, we limit the comparison set of the single-color excess sample only to stars with valid WISE photometry in all four bands. The Venn diagrams in Figure 4.8 show the comparison of stars detected from the weighted $W 3$ and weighted $W 4$ searches to their respective samples of single-color excess detections. The weighted excess metrics confirm all five of the single-color $W 3$ excesses, and 174/184 (=94.6\%) of the single-color $W 4$ excesses from PMH14 and from Section 4.3.1. Surprisingly, we only find one new weighted $W 3$ and one new weighted $W 4$ excess that had not been reported in our single-color analysis (PMH14).

Our initial expectation was that by averaging down the photometric uncertainties, with a weighted color search we might have been able to detect at higher significance previously marginal single-excesses. In reality, all of the individual color components in our weighted excess measure are correlated through their common use of the same longer-wavelength filter. For example, the three individual $W i-W 4$ colors are correlated, and do not give independent assessments of the presence of a $W 4$ excess. Consequently, the averaging in the weighted color combination does not substantially improve our sensitivity. Moreover, a consideration of the WISE photometric uncertainty distributions (Figure 4.9) shows that the $W 4$ photometric errors dominate. As a


Figure 4.9: Distributions of photometric uncertainties for all four WISE bands for 12654 stars in the weighted $W 4$ parent sample, including stars with saturated and then corrected $W 1$ and $W 2$ photometry. The large spread in $\sigma_{W 4}$ is expected because of the lower absolute flux levels in $W 4$. It is evident that the mean $\sigma_{W 1}$ is larger than the means of $\sigma_{W 2}$ or $\sigma_{W 3}$. This systematic trend of increasing photometric uncertainty from $W 3$ down to $W 1$ dominates the determination of a significant excess when the $E[W i-W j]$ are comparable.
result of the large $W 4$ photometric errors, the weighted color combination only marginally improves the accuracy of our $W 4$ excess measurement. Hence, the weighted excess metric produces somewhat higher-fidelity excesses, but only slightly so.

Conversely, if a star's excess is not detected from its weighted color, then any excess identified from individual colors might be considered suspect. Thus, the 10 stars that were not detected in our weighted $W 4$ excess search (Figure 4.8 b ), might be false detections. There are two reasons, however, that a star may not have a weighted $W 4$ excess but still be a bona-fide detection based on its single-color excess.

The first is that the presence of a small but positive $W 3$ excess can decrease
the overall significance $\Sigma_{\overline{E[W 4]}}$ of the $W 4$ three-color-weighted excess. Five out of ten unrecovered stars in the weighted $W 4$ search have small but positive $W 1-W 3$ or $W 2-W 3$ excesses (HIP 8987, HIP 13932, HIP 21918, HIP 43273, HIP 82887, and HIP 85354). In view of potentially increasing the number of new detections, we then ran a two-color weighted search by excluding the $W 3-W 4$ color and only using $W 1-W 4$ and $W 2-W 4$ in the weighted metric (equation 4.4). However, the two-color weighted $W 4$ excess search did not bear any new fruit; it produced just as many new stars when compared to the set of single-color detections as the three-color weighted search produced. We attribute the lack of an increase in detections from the two-color weighted search to the fact that the W3 photometric errors are on average smaller than the $W 1$ and $W 2$ photometric errors (Figure 4.9). That is, the removal of the contribution of some marginally significant $W 3$ excesses by eliminating $W 3$ $W 4$ from the weighted excess calculation is offset by the greater uncertainty in the $W 1$ and $W 2$ photometry. In other words, by excluding $W 3-W 4$ we are excluding more of the "excess signal", and leaving more of the noise (Figure 4.10).

The fact that the $W 3$ photometric errors are on average the smallest indicates that some bona-fide faint $W 3-W 4$ excesses may not be confirmed in $W 1-W 4$ and $W 2-W 4$, and even in the weighted $W 4$ excess. This is the second reason for which some of the single-color candidate $W 3-W 4$ excesses are probably caused by real debris disks, even if they are not confirmed in the weighted $W 4$ analysis. Such is the case for the remaining four of the ten unrecovered stars (HIP 1893, HIP 70022, HIP 92270, and HIP 100469), all of which are $W 3$ - $W 4$-only single-color excess detections, and have much larger photometric uncertainties in $W 1$ and $W 2$ than in $W 3$ : not surprising as all four stars are saturated in $W 1$ and $W 2$. Even though we correct the saturated photometry of these stars, the resulting photometric uncertainties will always be larger than those of unsaturated stars.

### 4.7 Conclusion

We have presented a series of techniques that improve upon our WISE debris disk-search methods in PMH14 to 1) identify new WISE excesses within 75 pc, 2) verify single-color WISE excesses, and 3) reject contaminated excesses.

In Section 4.3, we implemented an improved assessment of the confidence threshold beyond which we select candidate excesses, which reveals 19 previously unreported candidate WISE single-color $W 3$ and $W 4$ excesses associated with main-sequence Hipparcos stars within 75 pc . We also presented a method that uses an optimally-weighted average of multiple WISE colors to identify


Figure 4.10: The excess significances for the nine stars with single-color $W 4$ excesses in PMH14 that were not recovered with the weighted $W 4$ excess metric in this study (see Figure 4.8b). Each vertical colored line corresponds to the current $99.5 \%$ detection threshold for each color listed in the legend. We see that the weighted $W 4$ excess threshold ( $\Sigma_{\overline{E[W 4]}}$ ) effectively averages the individual single-color detection thresholds.
$W 3$ and $W 4$ excesses from main sequence stars in the attempt to attain greater accuracy compared to using individual WISE colors (PMH14). While the color weighting approach also has the potential to identify fainter IR excesses, most of the excesses are expressed only at $W 4$, and the $W 4$ photometric uncertainties are the largest. Hence, we are unable to uncover a substantial new population of debris disks. Instead we mostly confirm the already identified single-color excesses, and add only two new weighted-excess detections. Both of these, one at $W 3$ and one at $W 4$, were already known as debris disk hosts from previously published longer-wavelength observations.

None of the candidate $W 4$ excess stars found on the same sample as in the same 75 pc sample as in PMH14, plus one new single-color $W 4$ excess found in this study, are not confirmed in the weighted $W 4$ analysis. In six of the cases, the reason can be traced to the presence of a marginal $W 3$ excess, which diminishes the overall significance of the weighted $W 4$ excess. All six of these are detected as excesses in $W 1-W 4$ or in $W 2-W 4$ in PMH14, but not in $W 3-W 4$. Hence, their $W 4$ excesses are likely real. The non-confirmation of the remaining four is linked to their poor $W 1$ and $W 2$ photometry and to having $W 3-W 4$ excesses that are only marginally above the significance threshold. These are also possibly real, although we can not confirm this with the present analysis.

In addition, we further refined our sample of excesses by removing stars which are likely contaminated by blended point-sources or by extended emission. We rejected eight excess-bearing stars by assessing their $W 3$ and $W 4$ centroids in the higher-resolution unWISE image data set. Though we perform "by-eye" checks of the WISE All-Sky images post excess selection, the automated assessment of the stellar centroid offsets provides a sensitive and objective metric to assess contamination from unrelated objects.

Overall, the use of a weighted combination of WISE colors improves the reliability of candidate IR excess detections from individual WISE colors at the cost of potentially overlooking a small population of faint W4 excesses. In addition, an objective assessment of contamination from unWISE centroid offsets complements visual inspection of WISE images. And even though the fraction of debris disk-bearing stars within 75 pc does not change significantly from the findings in our previous study, the verification through weighted colors and the positional checks using higher angular resolution images provide confidence that the 19 new disks discovered here are real, and not spurious or contaminated. Thus, combined with the PMH14 results, we find a total of 9 $W 3$ and 229 significant $W 4$ excesses from $<75$ pc Hipparcos stars in WISE. As of the current study, 107 of these represent previously unreported $10-30 \mu \mathrm{~m}$ excesses from stars known to host debris disks.
Table 4.1. Single- and Weighted-Color Excess Selection Summary

| Color | $\begin{gathered} \Sigma_{E_{\mathrm{CL}}}{ }^{\mathrm{a}} \\ \text { or } \Sigma \frac{\overline{E_{\mathrm{CL}}}}{} \end{gathered}$ | $\begin{gathered} \text { Stars in } \\ \text { Parent Sample }(<120 \mathrm{pc}) \end{gathered}$ | Stars in Science sample ( $<75 \mathrm{pc}$ ) | Excesses in Science Sample | Debris Disk Candidates | New Excesses |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W1-W4 | 3.13 | 12942 | 6294 | 135 | 120 | 0 |
| W2-W4 | 3.06 | 13203 | 6507 | 192 | 177 | 13 |
| $W 3-W 4$ | 2.89 | 14434 | 7198 | 239 | 222 | 18 |
| $W 1-W 3$ | 2.66 | 15017 | 6788 | 13 | 9 | 1 |
| W2-W3 | 3.83 | 15245 | 6962 | 3 | 3 | 0 |
| Weighted W4 | 3.04 | 12654 | 6140 | 188 | 175 | 1 |
| Weighted W3 | 3.28 | 14808 | 6684 | 6 | 6 | 1 |
| Total | $\ldots$ | 16960 | 7937 | 282 | 245 | 27 |

[^20]${ }^{\text {a}}$ Excess significance threshold for single-color excesses $\left(\Sigma_{E_{C L}}\right)$ or weighted color excesses $\left(\Sigma_{\overline{E_{C L}}}\right)$
Table 4.2. IR Excess Information for Newly Identified Debris Disk

| $\underset{\text { ID }}{\text { HIP }}$ | Single Color Excess Flag | WeightedExcess Flag | $\begin{gathered} \text { New? } \\ (22 \mid 12 \mu \mathrm{~m}) \end{gathered}$ | $\Sigma_{E}$ |  |  |  |  | $\Sigma_{\bar{E}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | W1-W4 | $W 2-W 4$ | W3-W4 | W $1-W 3$ | W2-W3 | Weighted W 4 | Weighted $W 3$ |
| 1893 | NNYNN | NN | Y- | 2.44 | 3.04 | 2.90 | -0.87 | 0.35 | 2.97 | -0.16 |
| 2852 | NNYNN | YN | Y- | 0.72 | 2.28 | 3.07 | -0.97 | -0.21 | 3.05 | -0.60 |
| 12198 | NYYNN | YN | N- | 2.87 | 3.24 | 3.06 | -0.41 | 0.28 | 3.18 | 0.06 |
| 13932 | NYNNN | NN | Y- | 3.05 | 3.14 | 2.52 | 1.83 | 2.54 | 2.90 | 2.61 |
| 18837 | NYYNN | YN | Y- | 2.67 | 3.16 | 3.03 | -0.24 | 0.15 | 3.15 | 0.04 |
| 20094 | NYYNN | YN | Y- | 2.86 | 3.13 | 3.03 | -0.07 | 0.15 | 3.14 | 0.10 |
| 20507 | NnNnN | YN | Y- | 1.63 | 2.21 | 2.85 | 0.57 | 0.46 | 3.08 | 0.66 |
| 21783 | NYUUU | UU | Y- | 2.86 | 3.21 |  |  |  |  |  |
| 21918 | NYNNN | NN | Y- | 1.05 | 3.11 | 2.42 | -0.86 | 1.07 | 2.72 | 0.58 |
| 26395 | YYYNN | YY | NN | 13.08 | 21.07 | 20.61 | 1.00 | 3.31 | 23.18 | 3.28 |
| 39947 | NNYNN | YN | Y- | 0.83 | 2.55 | 3.07 | -0.55 | 0.29 | 3.20 | 0.04 |
| 42333 | NYNNN | YN | N- | 0.96 | 3.12 | 2.89 | -0.40 | 1.02 | 3.15 | 0.77 |
| 42438 | UNYUN | UU | N- |  | 2.02 | 3.07 |  | 0.71 |  |  |
| 43273 | NYNNN | NN | Y- | 2.69 | 3.09 | 2.63 | 0.08 | 1.28 | 2.82 | 0.96 |
| 58083 | NYYNN | YN | Y- | 3.08 | 3.23 | 3.05 | -0.05 | 0.46 | 3.17 | 0.32 |
| 66322 | NNYNN | YN | Y- | 1.95 | 2.72 | 3.10 | -0.12 | -0.19 | 3.19 | -0.21 |
| 67837 | UUYUU | UU | Y- |  |  | 2.99 |  |  |  |  |
| 70022 | NNYNN | NN | Y- | 1.75 | 2.47 | 2.94 | -0.02 | -0.30 | 3.01 | -0.27 |
| 72066 | UUYUU | UU | Y- |  |  | 2.92 |  |  |  |  |
| 73772 | NYYNN | YN | Y- | 3.03 | 3.14 | 2.99 | 0.17 | 0.18 | 3.14 | 0.21 |
| 78466 | NYYNN | YN | N- | 2.94 | 3.15 | 2.92 | ${ }^{0.71}$ | ${ }^{0.40}$ | 3.15 | 0.59 |
| 85354 | NYNNN | NN | Y- | 3.10 1.37 | 3.19 | 2.73 | 1.01 | 1.74 | 3.00 284 | 1.70 |
| 92270 | NNYNN | NN | N- | 1.37 | 1.07 | 2.91 | -0.02 | $-1.02$ | 2.84 | -0.86 |
| 100469 | NNYNN | NN | NN | 1.79 | 1.41 | 2.99 | 0.10 | -1.60 | 2.88 | -1.38 |
| 110365 | NYYNN | YN | Y- | 3.08 | 3.17 286 | ${ }_{3}^{3.01}$ | 0.04 | 0.41 | 3.12 | 0.29 |
| 115527 | NNYNN | YN | N- | 1.88 | ${ }^{2.86}$ | 3.13 | -0.24 | -0.10 | 3.20 | -0.18 |
| 117972 | NNNYN | NN | -Y | 2.64 | 1.78 | 0.50 | 2.73 | 2.21 | 1.20 | 2.87 |

Note. - Summary of the properties of the single-color and weighted-color IR excesses attributed to debris disks at $W 3$ and/or $W 4$ for the stars in our
science sample. The second column indicates the combination of detections from individual colors. Each flag is a five character string that identifies whether science sample. The second column indicates the combination of detections from individual colors. Each flag is a five character string that identifies whether
the star has a statistically probable (Y) or insignificant (N) single-color excess in the following order: $W 1-W 4$, $W 2-W 4, W 3-W 4, W 1-W 3$ and $W 2-W 3$. Any star can have an unlisted (U) value, indicating that the star was rejected by the selection criteria for that particular color (Section 2.2 in PMH14). "U" weighted excess in the following order: weighted $W 4$ excess and weighted $W 3$ excess. Column 4 lists whether or not the star has a new excess detection in
the $W 4$ or $W 3$ bands ( 22 or $12 \mu \mathrm{~m}$ ), or not. Dashed entries ("-") indicate no detected excess in that band. The last seven columns list the significance of the excess for each color or weighted metric.

Table 4.3. Rejected WISE Excesses


Note. - Rejection reasons:

1. Contamination by line-of-sight interstellar cirrus based on visual "by-eye" inspection.
2. Spurious excess. See Section 4.5.1.
3. Contaminated by extended emission contaminants based on $\Delta r_{W 4}$ vs. W4 SNR analysis.
4. Contaminated by point-source contaminants based on $\Delta r_{W 3, W 4}$ vs. W4 SNR analysis.
Table 4.4. Stellar Parameters of New Excess Stars from Improved Methods

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $\begin{gathered} \text { WISE } \\ \text { ID } \end{gathered}$ | $\mathrm{SpT} \mathrm{T}^{\text {a }}$ | $\begin{aligned} & \text { Dist. }{ }^{\text {b }} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{aligned} & T_{*} \\ & (\mathrm{~K}) \end{aligned}$ | $\begin{gathered} R_{*} \\ \left(R_{\odot}\right) \end{gathered}$ | $\chi_{*}^{2}$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{gathered} F_{W 3, *} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{gathered} F_{W 4} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{aligned} & F_{W 4, *} \\ & (\mathrm{mJy}) \end{aligned}$ | $\Delta_{F_{W 3}} / F_{W 3}{ }^{\text {c }}$ | $\Delta_{F_{W 4}} / F_{W 4}{ }^{\text {c }}$ | $\begin{gathered} W 1_{\text {corr }}{ }^{\mathrm{d}} \\ (\mathrm{mag}) \end{gathered}$ | ${\underset{(\mathrm{mag})}{W} 2_{\text {corr }}}^{\mathrm{d}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1893 | J002356.52-142047.4 | G6V | 53 | 5468 | 1.0 | 1.9 | $48.6 \pm 0.8$ | 50.4 | $17.3 \pm 1$ | 14 | -0.036 | 0.188 | $6.868 \pm 0.032$ | $6.958 \pm 0.023$ |
| 2852 | J003606.78-225032.9 | A5m... | 49 | 7448 | 1.6 | 1.4 | $194 \pm 3$ | 202 | $64.3 \pm 2$ | 55.7 | -0.040 | 0.133 | $5.321 \pm 0.062$ | $5.403 \pm 0.033$ |
| 12198 | J023705.64+125406.0 | G5 | 71 | 5834 | 1.2 | 2.1 | $39.4 \pm 0.6$ | 40.3 | $14.3 \pm 0.9$ | 11.2 | -0.021 | 0.215 | $7.113 \pm 0.032$ | $7.178 \pm 0.019$ |
| 13932 | J025930.69+062022.5 | G0 | 65 | 5950 | 0.8 | 1.1 | $21.5 \pm 0.4$ | 20.9 | $8.48 \pm 1$ | 5.81 | 0.028 | 0.315 | $7.838 \pm 0.023$ | $7.886 \pm 0.020$ |
| 18837 | J040217.21-013757.9 | F5 | 68 | 6472 | 1.4 | 1.0 | $64.7 \pm 1$ | 66 | $23 \pm 1$ | 18.2 | -0.019 | 0.206 | $6.575 \pm 0.039$ | $6.619 \pm 0.020$ |
| 20094 | J041829.43+355926.6 | F5 | 43 | 5550 | 0.9 | 2.5 | $63 \pm 1$ | 66.5 | $23.2 \pm 2$ | 18.4 | -0.055 | 0.207 | $6.611 \pm 0.038$ | $6.645 \pm 0.021$ |
| 20507 | J042340.81-034444.0 | A2V | 64 | 8842 | 2.3 | 5.8 | $303 \pm 4$ | 306 | $97.6 \pm 2$ | 84.4 | -0.009 | 0.135 | $4.930 \pm 0.077$ | $4.939 \pm 0.041$ |
| 21783 | J044046.82+301728.9 | F5 | 64 | 6365 | 1.2 | 0.3 | $51.1 \pm 0.8$ | 52 | $18.1 \pm 1$ | 14.4 | -0.018 | 0.207 | $6.843 \pm 0.038$ | $6.879 \pm 0.021$ |
| 21918 | J044248.88+121233.0 | G5 | 56 | 5642 | 1.8 | 3.7 | $138 \pm 2$ | 138 | $44.7 \pm 2$ | 38.5 | -0.002 | 0.139 | $5.720 \pm 0.054$ | $5.855 \pm 0.028$ |
| 26395 | J053708.78-114632.0 | A2V | 63 | 9099 | 1.4 | 0.5 | $124 \pm 2$ | 120 | $73.4 \pm 2$ | 33 | 0.036 | 0.551 | $5.910 \pm 0.051$ | $5.978 \pm 0.022$ |
| 39947 | J080930.03-515033.6 | G0V | 57 | 5959 | 2.4 | 2.0 | $259 \pm 4$ | 264 | $84.1 \pm 2$ | 73.5 | -0.019 | 0.126 | $5.040 \pm 0.074$ | $5.132 \pm 0.036$ |
| 42333 | J083750.09-064824.2 | G0 | 24 | 5817 | 1.0 | 0.9 | $235 \pm 3$ | 234 | $76.2 \pm 2$ | 65.1 | 0.004 | 0.145 | $5.156 \pm 0.079$ | $5.271 \pm 0.035$ |
| 42438 | J083911.67+650116.5 | $\mathrm{G1.5Vb}$ | 14 | 5902 | 0.9 | 0.8 | $626 \pm 8$ | 614 | $199 \pm 4$ | 171 | 0.019 | 0.142 | $4.098 \pm 0.106$ | $4.210 \pm 0.059$ |
| 43273 | J084855.82+724034.7 | G0 | 67 | 5997 | 1.1 | 1.5 | $38.1 \pm 0.5$ | 38.2 | $13.8 \pm 1$ | 10.6 | -0.002 | 0.229 | $7.163 \pm 0.028$ | $7.231 \pm 0.022$ |
| 58083 | J115442.60+030837.0 | K2 | 40 | 4728 | 0.7 | 1.5 | $34.2 \pm 0.5$ | 36.2 | $13.2 \pm 1$ | 10.1 | -0.059 | 0.238 | $7.284 \pm 0.029$ | $7.359 \pm 0.020$ |
| 66322 | J133531.56-220128.7 | F7/F8V | 49 | 6374 | 1.4 | 1.4 | $122 \pm 2$ | 125 | $40.3 \pm 1$ | 34.8 | -0.028 | 0.137 | $5.892 \pm 0.053$ | $5.924 \pm 0.026$ |
| 67837 | J135343.46-782450.1 | G5V | 56 | 5474 | 0.8 | 3.5 | $28.4 \pm 0.4$ | 29.2 | $10.3 \pm 0.7$ | 8.13 | -0.029 | 0.214 | $7.485 \pm 0.025$ | $7.546 \pm 0.019$ |
| 70022 | J141940.92+002303.6 | A7V | 63 | 7950 | 1.7 | 0.6 | $147 \pm 2$ | 153 | $48.9 \pm 2$ | 42.1 | -0.035 | 0.138 | $5.680 \pm 0.061$ | $5.697 \pm 0.028$ |
| 72066 | J144428.29+451109.4 | F0 | 62 | 7233 | 1.6 | 0.3 | $118 \pm 2$ | 119 | $39.1 \pm 1$ | 32.8 | -0.007 | 0.160 | $5.930 \pm 0.051$ | $5.972 \pm 0.024$ |
| 73772 | J150447.01-511505.2 | G3V | 71 | 5966 | 1.1 | 0.5 | $35.9 \pm 0.6$ | 36.7 | $13.1 \pm 0.9$ | 10.2 | -0.022 | 0.221 | $7.233 \pm 0.030$ | $7.271 \pm 0.021$ |
| 78466 | J160105.03-324145.9 | G3V | 47 | 5652 | 1.1 | 1.8 | $84.6 \pm 1$ | 86.4 | $28.7 \pm 1$ | 24 | -0.021 | 0.162 | $6.332 \pm 0.046$ | $6.351 \pm 0.021$ |
| 85354 | J172630.24-130924.7 | K2* | 57 | 4708 | 0.8 | 0.7 | $23 \pm 0.4$ | 23.5 | $9.38 \pm 1$ | 6.54 | -0.020 | 0.303 | $7.752 \pm 0.024$ | $7.832 \pm 0.020$ |
| 92270 | J184816.42+233053.0 | F8V | 29 | 6318 | 1.2 | 0.9 | $294 \pm 4$ | 312 | $94.9 \pm 2$ | 86.7 | -0.060 | 0.086 | $4.940 \pm 0.069$ | $4.929 \pm 0.041$ |
| 100469 | J202227.53-420259.2 | A0V | 66 | 9641 | 1.7 | 2.1 | $164 \pm 2$ | 177 | $55.4 \pm 2$ | 48.7 | -0.078 | 0.121 | $5.550 \pm 0.066$ | $5.528 \pm 0.032$ |
| 110365 | J222112.66+084051.9 | G0 | 71 | 5843 | 0.9 | 1.6 | $24.2 \pm 0.4$ | 24.8 | $9.61 \pm 0.9$ | 6.89 | -0.024 | 0.282 | $7.656 \pm 0.023$ | $7.704 \pm 0.020$ |
| 115527 | J232406.43-073302.6 | G5 | 30 | 5654 | 0.9 | 1.3 | $116 \pm 2$ | 120 | $38.9 \pm 1$ | 33.4 | -0.032 | 0.140 | $5.939 \pm 0.056$ | $5.998 \pm 0.024$ |
| 117972 | J235541.67+250838.8 | G5 | 50 | 4653 | 1.4 | 4.6 | $85.6 \pm 1$ | 87.8 | $26 \pm 1$ | 24.5 | -0.026 | 0.057 | $6.418 \pm 0.045$ | $6.391 \pm 0.021$ |

[^21]Table 4.5. Disk Parameters from Blackbody Fits of Excesses from Improved Methods in 75 pc.

| HIP ID | $T_{B B}$ <br> $(\mathrm{~K})$ | $T_{B B_{l i m}}$ <br> $(\mathrm{~K})$ | $R_{B B}$ <br> $(\mathrm{AU})$ | $R_{B B_{l i m}}$ <br> $(\mathrm{AU})$ | $\theta$ <br> $(")$ | $f_{d}$ <br> $\left(10^{-5}\right)$ | $f_{d_{l i m}}$ <br> $\left(10^{-5}\right)$ | Notes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1893 | $\ldots$ | $<145$ | $\ldots$ | $>3.4$ | $>0.063$ | 6.6 | $>0.25$ | $\mathrm{~b}, \mathrm{f}$ |
| 2852 | $\ldots$ | $<99$ | $\ldots$ | $>21$ | $>0.43$ | 3.1 | $>0.066$ | $\mathrm{~b}, \mathrm{f}$ |
| 12198 | $\ldots$ | $<185$ | $\ldots$ | $>2.7$ | $>0.038$ | 6.3 | $>0.25$ | $\mathrm{~b}, \mathrm{f}$ |
| 13932 | 166 | $<264$ | 2.3 | $>0.9$ | $0.014-0.035$ | 10 | $>0.39$ | $\mathrm{c}, \mathrm{f}$ |
| 18837 | $\ldots$ | $<197$ | $\ldots$ | $>3.4$ | $>0.05$ | 4.5 | $>0.17$ | $\mathrm{~b}, \mathrm{f}$ |
| 20094 | 131 | $\ldots$ | 3.9 | $\ldots$ | 0.091 | 7.6 | $>0.27$ | $\mathrm{a}, \mathrm{f}$ |
| 20507 | $\ldots$ | $<279$ | $\ldots$ | $>5.3$ | $>0.083$ | 1.6 | $>0.04$ | $\mathrm{~b}, \mathrm{f}$ |
| 21783 | $\ldots$ | $<202$ | $\ldots$ | $>2.7$ | $>0.042$ | 4.8 | $>0.18$ | $\mathrm{~b}, \mathrm{f}$ |
| 21918 | $\ldots$ | $<339$ | $\ldots$ | $>1.1$ | $>0.02$ | 7.9 | $>0.16$ | $\mathrm{~b}, \mathrm{f}$ |
| 26395 | 146 | $\ldots$ | 13 | $\ldots$ | 0.2 | 8.5 | $\cdots$ | g |
| 39947 | $\ldots$ | $<248$ | $\ldots$ | $>3.2$ | $>0.057$ | 3.9 | $>0.12$ | $\mathrm{~b}, \mathrm{f}$ |
| 42333 | 117 | $<344$ | 5.5 | $>0.64$ | $0.027-0.23$ | 5 | $>0.15$ | $\mathrm{c}, \mathrm{f}$ |
| 42438 | 219 | $<432$ | 1.6 | $>0.4$ | $0.028-0.11$ | 4 | $>0.14$ | $\mathrm{c}, \mathrm{f}$ |
| 43273 | $\ldots$ | $<229$ | $\ldots$ | $>1.7$ | $>0.025$ | 7.1 | $>0.24$ | $\mathrm{~b}, \mathrm{f}$ |
| 58083 | 131 | $\ldots$ | 2.1 | $\ldots$ | 0.053 | 15 | $>0.53$ | $\mathrm{a}, \mathrm{f}$ |
| 66322 | $\ldots$ | $<188$ | $\ldots$ | $>3.6$ | $>0.074$ | 2.8 | $>0.11$ | $\mathrm{~b}, \mathrm{f}$ |
| 67837 | $\ldots$ | $<145$ | $\ldots$ | $>2.7$ | $>0.048$ | 7.8 | $>0.3$ | $\mathrm{~b}, \mathrm{f}$ |
| 70022 | $\ldots$ | $<140$ | $\ldots$ | $>13$ | $>0.2$ | 1.6 | $>0.057$ | $\mathrm{~b}, \mathrm{f}$ |
| 72066 | $\ldots$ | $<258$ | $\ldots$ | $>2.9$ | $>0.046$ | 3 | $>0.089$ | $\mathrm{~b}, \mathrm{f}$ |
| 73772 | $\ldots$ | $<199$ | $\ldots$ | $>2.3$ | $>0.033$ | 6.3 | $>0.24$ | $\mathrm{~b}, \mathrm{f}$ |
| 78466 | $\ldots$ | $<204$ | $\ldots$ | $>2.1$ | $>0.044$ | 5.1 | $>0.19$ | $\mathrm{~b}, \mathrm{f}$ |
| 85354 | $\ldots$ | $<170$ | $\ldots$ | $>1.4$ | $>0.025$ | 19 | $>0.74$ | $\mathrm{~b}, \mathrm{f}$ |
| 92270 | 131 | $\ldots$ | 6.9 | $\ldots$ | 0.24 | 1.9 | $>0.067$ | $\mathrm{a}, \mathrm{f}$ |
| 100469 | 131 | $\ldots$ | 21 | $\ldots$ | 0.32 | 0.88 | $>0.027$ | $\mathrm{a}, \mathrm{f}$ |
| 110365 | $\ldots$ | $<166$ | $\ldots$ | $>2.7$ | $>0.037$ | 9 | $>0.35$ | $\mathrm{~b}, \mathrm{f}$ |
| 115527 | $\ldots$ | $<140$ | $\ldots$ | $>3.3$ | $>0.11$ | 4.3 | $>0.16$ | $\mathrm{~b}, \mathrm{f}$ |
| 117972 | 367 | $>283$ | 0.31 | $<0.87$ | 0.0062 | 23 | $>19$ | $\mathrm{~d}, \mathrm{e}$ |
|  |  |  |  |  |  |  |  |  |

Note. - The columns list blackbody temperatures of thermal excesses, inferred seperations from the star and fractional bolometric luminosities.
Notes:
a. $W 4$-only excess: The $W 3$ excess flux in this case was either saturated or $>3 \sigma$ below the photosphere. A limiting temperature and radius for the dust cannot be determined.
b. W4-only excess: The $W 3$ excess flux is formally negative and an upper limit on the excess flux is used to place a $3 \sigma$ limit on the dust temperature and radius.
c. W4-only excess: Both the $W 3$ and the $W 4$ excesses were used to calculate a dust temperature and radius. An upper limit on the $W 3$ excess flux was used to calculate a $3 \sigma$ limit on the dust temperature and radius.
d. $W 3$-only excess: Both the $W 3$ and the $W 4$ excesses were used to calculate a dust temperature and radius. An upper limit on the $W 4$ excess flux was used to calculate a $3 \sigma$ limit on the dust temperature and radius.
e. A lower limit on the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=12 \mu \mathrm{~m}$ as described in Section 3 in PMH14.
f. A lower limit on the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=22 \mu \mathrm{~m}$ as described in Section 3 in PMH14
g. Significant excesses were found both at $W 3$ and $W 4$. The dust parameters are calculated exactly using a blackbody for the excess.

## Chapter 5

## Identification of Warm Debris Disks in the Galactic Plane and Out to 120 pc

The work presented here is a preliminary analysis of the census of warm debris disks in Hipparcos beyond 75 pc, identified from their $W 3-W 4$ color excess. This work is built upon the last two chapters, and is done in collaboration with Dr. Stanimir Metchev, Dr. Aren Heinze, and Joseph Trollo

### 5.1 Introduction

Up until now, we have restricted the identification of excesses to within a 75 pc volume around the Sun. This is because stars within this volume have accurate parallaxes, and make excellent targets for further disk characterization through high-contrast imaging techniques. These stars also have very little to no line-of-sight extinction from interstellar dust, as they located within a structure known as the Local Bubble (Lallement et al., 2003).

However, the nearby solar neighborhood has been heavily scrutinized for debris disks by the last thirty years of disk detections, by missions including IRAS, Spitzer, and now WISE. If one considers the census of debris disks within 120 pc , roughly $80 \%$ reside within a volume 75 pc , while only $\sim 20 \%$ are within the volume between 75 and 120 pc . However, by looking at the distribution of Hipparcos main-sequence stars within 120 pc , the ratio of stars between $0-75 \mathrm{pc}$ and $75-120 \mathrm{pc}$ is nearly $50 / 50$. In addition, the density of stars increases at lower galactic lattitudes. However, only $\sim 8 \%$ of known debris disks are within the galactic plane. Usually, the galactic plane is avoided because of the density of stars, which can cause source confusion and false detections. But if we are
to believe the incidence rate of disks derived by the last thirty years of disk detections, there are a vast number of new debris disks that have yet to be identified, both beyond 75 pc , and within the galatic plane.

Since we already have the necessary tools in place, and our parent sample of stars (see § 2.2.1 in Chapter 3) already extends out to 120 pc, it may seem like a relatively simple matter to merge the science and parent samples and identify excesses of the entire parent sample. Unfortunately, stars beyond 75 pc are more likely to be affected by line-of-sight extinction. The interstellar dust will decrease the intensity of shorter wavelength light from a star, thereby artificially boosting any measured mid-IR excess flux. Thus, an accurate assessment of an excess beyond 75 pc , for a large sample of stars, requires a priori knowledge of the extinction level for all our stars at the various WISE bands.

Nonetheless, one can largely avoid the effects of interstellar extinction, by using the $W 3$ and $W 4$ bands to search for $W 3-W 4$ single color excesses. Interstellar extinction is greater at the $W 1$ and $W 2$ bands than at $W 3$. In addition, the data show a relatively flat slope for the IR extinction curve between 10 and $20 \mu \mathrm{~m}$ (Wang et al., 2014). From Kitchin (2004), the extinction from 12 and $25 \mu \mathrm{~m}$ is $\frac{A_{[12]}-A_{[25]}}{A_{V}}=0.014 \mathrm{mag}$. Attributing the $W 3$ and $W 4$ bands to be analogous to the Spitzer IRAC and MIPS bands indicates that the magnitude of the extinction will be small and any extinction felt by W3 will be roughly of the same magnitude felt by $W 4$, preserving the measured infrared excess flux. In this study, we investigate the presence of warm and faint excesses at $W 4$ all the way out to 120 pc , by identifying significant $W 3-W 4$ color excesses. In addition, we include stars within the galactic plane by first removing stars contaminated from blended sources by using our astrometric offset analysis, which we introduced in § 4.4.

### 5.2 Sample Selection

We used a subset of the sample of Hipparcos stars used in § 2 of Chapter 3. To summarize, we selected main sequence Hipparcos stars with well behaved WISE All-Sky photometry in the $W 3$ and $W 4$ bands. Our parent sample consists of stars within 120 pc with optical Tycho colors constrained to $-0.17 \mathrm{mag}<\mathrm{B}_{\mathrm{T}}-\mathrm{V}_{\mathrm{T}}<1.4 \mathrm{mag}$ (late B to K spectral types). Since we are only interested in the $W 3-W 4$ colors for this study, saturation corrections to the $W 1$ and $W 2$ photometry were not necessary. Filters from $\S 2.2 .1$ in Chapter 3, that are relevant to the $W 3$ and $W 4$ bands, were placed on our parent sample of stars.

In contrast to the last two studies, here we include stars within the galactic
plane. This adds an additional 766 Hipparcos stars with well behaved $W 3$ and $W 4$ photometry to our parent sample, bringing the number of stars in our $W 3-W 4$ parent sample to 15199 . We would also like to point out that in this study, we increase our science sample out to 120 pc. Since in this study we seek excesses from Hipparcos stars out to 120 pc , our science and parent samples are identical.

### 5.2.1 Culling the Parent Sample via unWISE Images

The higher angular resolution WISE images from the unWISE image service Lang (2014) afford us the opportunity to identify sources that are potentially contaminated from blended point sources (e.g., active galactic nuclei, luminous infrared galaxies, other stars, etc.) or extended emission from interstellar IR nebulosity. Contaminated sources will manifest themselves as astrometric offsets, calculated from the centroid positions between the $W 3$ and $W 4$ images or by using different sized apertures in the $W 4$ band to calculate the star's astrometric offset. In Chapter 4, our goal was to identify contaminants amongst the excesses we had already discovered. In contrast, here we aim to reject potentially contaminated stars prior to excess identification.

In short, we aimed to identify point source contamination by rejecting stars with significant $W 3$-to- $W 4$ relative centroid offsets $\left(\Delta r_{W 3, W 4}=\left|\vec{r}_{W 3}-\vec{r}_{W 4}\right|\right)$, as well as identify and reject stars contaminated from extend source emission from their $W 4$-narrow to $W 4$-wide centroid offsets $\left(\Delta r_{W 4}=\left|\vec{r}_{W 4}-\vec{r}_{W 4, w i d e}\right|\right)$. For this analysis, we extracted centroids for all the stars from their unWISE $W 3$ and $W 4$ images. A detailed description of these procedures is given in § 4.4.2.

We looked for contaminated sources by identifying stars with statistically significant offsets. The density clouds in Figures 5.1 and 5.2 show the distributions of 15304 stars from our $W 3-W 4$ parent sample, prior to applying the filters we placed in $\S 2.2 .1$ of Chapter 3 . The plots show the distribution of our stars' $W 4$ SNRs as a function of the $W 3$-to- $W 4$ relative centroid offsets $\left(\Delta r_{W 3, W 4}\right)$ as well as a function of the $W 4$-narrow to $W 4$-wide centroid offsets $\left(\Delta r_{W 4}\right)$. Low $W 4$ SNR stars will be larely affected by small scale background variations, thus shifting the distribution at lower SNRs toward larger separations, while the opposite effect will occur for stars at higher SNRs. Thus, a natural upper envelope to the distribution arises, where stars above that envelope will be rejected.

The upper envelopes in both distributions were calculated by fitting an exponential curve to the $\Delta r_{j, \max }$ points in log-log space, and using the same techniques outlined in $\S 4.4 .2$ to calculate $\Delta r_{j, \max }$. We also kept the same fixed $1 / 3$ pixel lower limit for both analyses. In other words, stars are not


Figure 5.1: Distribution of relative positional offsets of stellar centroids between $W 3$ and $W 4$ using images from the unWISE image service, plotted with respect to the $W 4$ SNR calculated from the unWISE images. The black/gray density cloud represents the density of 15304 Hipparcos stars from the parent 120 pc sample. The black-dotted line represents our separation cut-off ( $1 / 3$ pixels) below which stars are not rejected. Our rejection threshold (orange dotted line) was fit to $\left\{\Delta r_{j, \max }\right\}$ (dark-blue diamonds), calculated as described in Section 4.4.2. Rejected stars to the right of the vertical dotted black line and above the orange dotted line are shown as red dots. These are deemed to be contaminated by an unrelated nearby point or extended source seen in projection.


Figure 5.2: Distribution of relative positional offsets of stellar centroids between a narrow 2.5 pixel radius and wide 10 pixel radius apertures, as described in Section 4.4.1. The plot elements are the same as those described in Figure 5.1. Rejected parent sample stars are marked as red dots.
rejected below this separation. The red points in Figures 5.1 and 5.2 show stars from the parent sample that are likely contaminated by blended point sources or extended emission. Two hundred and twenty stars were rejected from the $\Delta r_{W 3, W 4} \mathrm{vs}$. $W 4$ SNR analysis, and 738 stars were rejected from the $\Delta r_{W 4}$ vs. $W 4$ SNR analysis. The union of these two sets show that a total of 897 stars should be rejected. Out of the 897 rejected stars, 174 reside in the galactic plane, leaving 592 galactic plane stars in our parent sample. Our final $W 3-W 4$ parent sample is comprised of 14302 main-sequence Hipparcos stars with well behaved $W 3$ and $W 4$ photometry.

The 897 rejected stars account for $6.27 \%$ of the original parent sample. Based on our assumptions, the photometry of all these stars must be contaminated by either extended emission or nearby blended point sources. Although it is difficult to verify this claim, we show in the following section that the distribution of excess significances are much better behaved after removing these stars, implying to some extent that our analysis is doing a good job of cleaning the parent sample of stars.

### 5.3 IR Excess Identification

Our excesses are selected using the same procedures described in § 2.5 in Chapter 3 and the improved methods for identifying single-color excesses in $\S$ 4.3.1. We use Equation 4.1 to determine the significance of the color excess for each star. Since we wish to identify excesses with $W 3-W 4$ colors only, the excess significance takes on the form of

$$
\begin{equation*}
\Sigma_{E[W 3-W 4]}=\frac{W 3-W 4-W_{34}\left(B_{T}-V_{T}\right)}{\sigma_{34}} \tag{5.1}
\end{equation*}
$$

where $W_{34}\left(B_{T}-V_{T}\right)$ is the empirically derived $W 3-W 4$ photospheric color, and $\sigma_{34}$ is the total error term which includes the photometric and photospheric uncertainties. Both of these quantities are derived in § 2.5 in Chapter 3.

Figure 5.3 shows the distribution of $\Sigma_{E[W 3-W 4]}$ for our parent sample of stars. We selected excesses such that their $\Sigma_{E[W 3-W 4]} \geq \Sigma_{E[W 3-W 4] 99.5}$. $\Sigma_{E[W 3-W 4] 99.5}$ is our $99.5 \%$ confidence threshold, beyond which $0.5 \%$ of stars are false-positive detections. In other words, our analysis is set to identify excesses up to a $0.5 \%$ false-discovery rate (FDR). $\Sigma_{E[W 3-W 4] 99.5}$ was calculated using the same procedures that we described in $\S 4.3$. For this analysis, we determined $\Sigma_{E[W 3-W 4]_{C L}}=2.894$, marked as the dotted black line in Figure 5.3.

We also performed the same analysis for a subset of the parent sample which contained the stars we rejected due to their astrometric offsets, as described in $\S$ 5.2.1. From the $\Sigma_{E}$ distribution that included these rejected stars,
we calculated a threshold of $\Sigma_{E[W 3-W 4]_{C L}}=3.701$ - a threshold larger than the one obtained when we exclude these rejected stars. The smaller cut off obtained after rejecting the contaminated stars is due to the removal of stars in the uncertainty distribution. This gives us a little bit of an indication that our rejection of astrometric outliers is working to increase our detection to a larger set of real excesses.

Our selection process identified 640 stars with significant $W 4$ excesses. Out of the 640 , we expect $3.2(=640 \times 0.5 \%)$ of our excesses to be spurious falsepositives. In addition, we still need to remove excesses which may be contaminated from interstellar cirrus clouds. Our astrometric offset rejection in § 5.2.1 does not guarantee rejection of all such contaminated stars, as large patches of extended interstellar cirrus may appear as uniform background emission to our centroiding algorithm. Thus, we visually inspected the four band WISE Atlas images and removed 119 sources that appear to be contaminated from interstellar cirrus. This is a significant number of stars which are being rejected from visual screening, even though we are using astrometric offsets to identify similar contaminants. However, the visual checks are quite subjective, and as a result, exclude stars that may not be contaminated. However, such a conservative analysis aids in decreasing the population of false excesses.

Since we are using a subset of the parent sample from Patel et al. (2014a), contaminated excesses we rejected in that study appear in this one as well. Therefore, we list the rejected sources in Table 5.1, excluding those which we listed in Chapters 3 and 4. In total, we identified 522 significant $W 3-W 4$ excesses out to 120 pc . Out of these, 210 are within 75 pc and were were identified by our previous two studies in Chapter 3 and 4. This leaves 312 stars, of which 301 are beyond 75 pc. The 11 new $<75$ pc excess stars are within the galactic plane $\left(|b|<5^{\circ}\right)$.

### 5.4 Results

From the 522 debris disks we identified in this study, 16 reside within the galactic plane $|b|<5^{\circ}$. Out of the $312 W 4$ excesses that we had not identified in our previous studies, 225 stars are new $22 \mu$ m excesses, previously unreported in the literature. Of these, 222 stars do not have previous detection of an excess at any other wavelength, either. In addition, eight of the 225 new excesses reside within 75 pc , all in the galactic plane.

We also determined the stellar and dust properties of the 522 excess stars, which are listed in Tables 5.2 and 5.3, respectively. We performed the same analysis as in § 4.5 to derive these parameters by performing photospheric model fits. We used NextGen grid models from Hauschildt et al. (1999) to fit


Figure 5.3: Distribution of $\Sigma_{E[W 3-W 4]}$ for all our stars in the parent sample (solid red histogram). The blue dashed histogram is the uncertainty distribution, created by reflecting all the values of $\Sigma_{E[W 3-W 4]}<0$ about the mode of the red distribution. Excesses are selected to the right of our FDR threshold of $0.5 \%\left(\Sigma_{E[W 3-W 4]_{99.5}}\right)$, denoted by the vertical dashed green line. The inset shows a semi-log fit of a line to the last ten points in the reverse cumulative distribution function of the uncertainties. The fit smoothes over the stochasticity in this sparely populated region of the uncertainty distribution to attain a more accurate estimate of the FDR threshold.
the optical and near-IR photometry from Hipparcos and 2MASS. We scaled the derived photospheric model to the mean of the $W 1$, and $W 2$ photometry, where we have again applied the saturation corrections determined in § 2.4 in Chapter 3. We used the $W 4$ excess flux and $W 3$ or $3 \sigma$ upper limit to the $W 3$ excess flux to determine the best fit blackbody temperature for the dust emission. We have also placed upper limits to all of our dust temperature estimates using the $3 \sigma$ upper limit to the $W 3$ excess flux. This allows us to constrain the dust properties to some extent, since we do not have longer wavelength information for all of our stars. Without this information it is difficult to ascertain whether the dust is emitting from warm grains, or whether the excess we measure is the Wien emission of much colder dust.

### 5.5 Discussion

### 5.5.1 Survey Sensitivity

A goal of this study was to identify faint warm debris disks with WISE, although our detections need to be placed in context to literature excesses. We cannot characterize the full extent of the disk brightness $f_{d}$ (Equation 1.12) since we only have excess flux information at $W 3$ and $W 4$. However, we compare the relative flux at $W 4\left(R_{22}\right.$; Equation 1.11) of the candidate debris disk hosts from our survey to the relative flux of disks detected at similar wavelengths with Spitzer. Although it would make sense to compare the relative flux of our disks at $22 \mu \mathrm{~m}$ to those detected by $I R A S$ at $25 \mu \mathrm{~m}$, the latter sample is rather small given that the majority of $\operatorname{IRAS}$ disks were detected in the far-IR.

Chen et al. (2014) conducted a study to characterize the SEDs of of 571 stars with archival Spitzer/IRS observations, supplemented with data from observations using Spitzer/MIPS at $24 \mu \mathrm{~m}$. In addition, Lawler et al. (2009) conducted an unbiased survey to detect Zodiacal light emission from 152 solar type stars in both the Spitzer/IRS short ( $8.5-12 \mu \mathrm{~m}$ ) and long ( $30-34 \mu \mathrm{~m}$ ) bands. We test our sensitivity limits in context to these two surveys: using the relative $24 \mu \mathrm{~m}$ flux from Chen et al. (2014) and the relative $32 \mu \mathrm{~m}$ flux from Lawler et al. (2009).

Figure 5.4 shows the relative fluxes of the excesses detected from our surveys at $22 \mu \mathrm{~m}$, excesses with Spitzer/MIPS24 measurements from Chen et al. (2014), and excesses from Lawler et al. (2009) at $32 \mu \mathrm{~m}$ - all of them as a function of $2 M A S S K_{s}$ magnitude. What is easily evident is that the Spitzer surveys are sensitive to fainter mid-IR excesses compared to WISE. This does not come as a surprise, because Spitzer is a pointed telescope. The Spitzer/IRS


Figure 5.4: The relative fluxes plotted as a function of their 2MASS $K_{s}$ magnitudes. The relative fluxes are plotted for our WISE excesses from Chapters 3, 4 , and this study, in addition to stars with $24 \mu \mathrm{~m}$ excesses from Chen et al. (2014), and $32 \mu \mathrm{~m}$ Spitzer/IRS excesses from Lawler et al. (2009). Data in the figure extend beyond the top of the y-axis boundary. The boundary is set to focus on the faint-excess detections, near the sensitivity limits of each survey.


Figure 5.5: Fraction of WISE W4 excesses detected as a function of spectral type in different distance volumes.
survey detected dust at levels $1.5 \times$ fainter than surveys performed with the Spitzer/MIPS instrument ( $4 \%$ and $6 \%$ above the photosphere, respectively), mainly because the short wavelength end of the IRS spectra can be used to calibrate the photospheric flux, and the contemporaneously obtained longer wavelength flux can be used to measure the photospheric flux.

Our WISE survey, on the other hand, seems to find excesses down to no less than $\sim 10 \%$ of the photospheric emission. This is also only for the brightest stars. At fainter stellar magnitudes, the detection sensitivity deteriorates further. This is mainly due to the fact that WISE is a flux limited survey, and for fainter stars, the photometric uncertainties increase, thereby decreasing the significance of any IR excess. Even though our sensitivity with WISE is a factor of $2-2.5 \times$ poorer than with Spitzer, the much larger volume sampled by WISE compared to the individual pointed surveys with Spitzer allows a much more complete census of solar neighborhood debris disks.

### 5.5.2 Overall Expansion of Disk Census

With our large sample size, we can robustly determine the incidence rate of $22 \mu \mathrm{~m}$ excesses for a given spectral type. Figure 5.5 shows the incidence rate of our excesses as a function of $B_{T}-V_{T}$ (spectral type), plotted alongside $1 \sigma$ error bars. We show three different curves, corresponding to the incidence rates for three different volumes, from which we conclude that there does not seem to


Figure 5.6: $B_{T}-V_{T}$ colors as a function of distance for all new $W 4$ excesses from our three studies, along with debris disks detected at any wavelength in the literature. Marginalized distributions are also plotted on the top and right for each parameter. The grey shaded areas indicate the regions of the parameter space that our surveys do not explore.
be any statistically significant deviation as a function of distance. We report a $18.0 \pm 1.0 \%$ incidence rate of $W 4$ excesses for B and A stars, $2.2 \pm 0.2 \%$ for F stars, $1.2 \pm 0.2 \%$ for G stars and $1.6 \pm 0.3 \%$ for K stars.

What is interesting is how this incidence translates into a total census of disks based on expanding our search to a larger volume. In Figure 5.6, we plot the $B_{T}-V_{T}$ of our new WISE disks alongside those found in literature (detected at any wavelength) as a function of their distances. The collapsed distance distribution are independent of each other. At distances $<75 \mathrm{pc}$, there are clearly a greater number of disks which have been found by other surveys, although our past studies have contributed significantly to the census in this volume. By expanding to 120 pc , we see that within this full volume, we have increased the census of disks by $40 \%$. However, if we only take the volume of space between 75 and 120 pc , we see that our surveys have increased the census of debris disks by $130 \%$.

### 5.5.3 Excesses at False-Discovery Rates $>0.5 \%$

We select excesses above $\Sigma_{E[W 3-W 4]_{34}}$, such that $99.5 \%$ of our stars are bonafide IR excesses, and not caused by a statistical fluke. However, below this threshold, there are still a substantial number of potential excesses, even if the FDR is higher than $0.5 \%$. The problem is that one cannot claim with high confidence that any particular star above the $0.5 \% \mathrm{FDR}$ is a bona-fide excess, give the high rate of contamination. What we can ascertain is how many bonafide excesses exist below $\Sigma_{E[W 3-W 4] 99.5}$, by calculating the false omission rate (FOR). The FOR is defined as the number of stars in the uncertainty distribution below $\Sigma_{E[W 3-W 4]_{99.5}}$ over the number of stars in the full $\Sigma_{E}$ distribution below $\Sigma_{E[W 3-W 4] 99.5}$, but greater than 0 . For this study, the FOR $=89.2 \%$. In other words, $10.8 \%$ of the stars below our threshold, but with $\Sigma_{E[W 3-W 4]}>0$, likely possess IR excess emission.

The $10.8 \%$ FOR corresponds to 724 low-significance excesses, although it is likely that some of these may still suffer from contamination by interstellar cirrus. In $\S 5.3$ we removed $18 \%$ of candidate excesses because of cirrus contamination. It is possible that the contaminated fraction among the lower-SNR excesses is higher. Nonetheless, we still expect that a debris disk population of roughly twice the number of our WISE/Hipparcos-identified disks exists in WISE. That is, the overall debris disk occurrence fractions are a factor of $\sim 2$ higher when one accounts for $2-3 \times$ fainter, marginal excesses: $\sim 40 \%$ for B and A stars, and $\sim 4-5 \%$ for FGk stars. This conclusion agrees well with the Spitzer/MIPS findings on B and A stars by Su et al. (2006) and the Spitzer/IRS results on field-aged FGK stars by Carpenter et al. (2009a).

### 5.6 Conclusion

In this preliminary study, we expanded upon the study done in Chapter 3, and incorporated improvements and verifications techniques in Chapter 4 to identify $22 \mu \mathrm{~m}$ excesses around Hipparcos main-sequence stars out to 120 pc and within the galactic plane. The relatively low count of disks in the $75-120 \mathrm{pc}$ volume compared with the tally of disks within 75 pc , warrants an investigation of the census of disks beyond 75 pc , which has been left incomplete to date.

We use $W 3-W 4$ color excesses - mid-IR colors that are minimally affected by interstellar extinction - to search for these excesses. Due to the past calibrations imposed upon our sample of stars, including the astrometric offset rejection of potentially contaminated stars, we identify 522 significant W3$W 4$ excesses at $<0.5 \%$ FDR, 225 of which are new $10-30 \mu$ mexcesses. Our study also finds 8 excesses within the galactic plane. The sensitivity of our survey is shown to be clearly dependent on the apparent brightness of the star, and dominated by the $W 4$ photometric uncertainties. However, we are able to probe to sensitivities down to $\sim 10 \%$ of the photospheric flux, and have increased the census of disks in the solar neighborhood by $40 \%$ within 120 pc and $130 \%$ within the volume between 75 and 120 pc.

Table 5.1. Rejected WISE Excesses in 75-120 pc Volume

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | WISE ID | Rejection Reason |
| :---: | :---: | :---: |
| HIP58 | J000041.57+621032.7 | 1 |
| HIP2046 | J002556.62+035531.2 | 1 |
| HIP2415 | J003047.12+160215.4 | 3 |
| HIP5333 | J010811.69+550920.5 | 1 |
| HIP7248 | J013323.57+713316.0 | 1 |
| HIP9018 | J015607.61+575801.1 | 1 |
| HIP9278 | J015914.97+670236.4 | 1 |
| HIP10690 | J021733.88+580111.4 | 1 |
| HIP13460 | J025318.68+605110.9 | 1 |
| HIP14592 | J030825.93+570045.5 | 1 |
| HIP15902 | J032448.99+283908.6 | 1 |
| HIP16459 | J033201.49+673508.0 | 3 |
| HIP16612 | J033347.74+521716.5 | 1 |
| HIP16689 | J033442.86+065035.5 | 1 |
| HIP17575 | J034550.58+550349.5 | 1 |
| HIP17675 | J034710.70+514222.3 | 1 |
| HIP17704 | J034729.46+241717.7 | 1 |
| HIP17886 | J034932.67+330529.0 | 1 |
| HIP 20861 | J042813.46+450244.6 | 1 |
| HIP21586 | J043808.01+511009.9 | 1 |
| HIP 22306 | J044815.73+234545.9 | 1 |
| HIP24403 | J051405.75+211325.3 | 1 |
| HIP25006 | J052114.72-072847.9 | 1 |
| HIP 25197 | J052327.87+573239.4 | 1 |
| HIP25419 | J052614.03+164153.6 | 1 |
| HIP 25453 | J052638.83+065206.9 | 1 |
| HIP26560 | J053852.54+350441.1 | 1 |
| HIP26588 | J053905.54-055351.3 | 1 |
| HIP 28224 | J055748.66+020356.4 | 1 |
| HIP41690 | J082955.70-451104.6 | 1 |
| HIP43701 | J085400.46+201349.4 | 1 |
| HIP48376 | J095141.32-543935.9 | 1 |
| HIP48627 | J095457.89-444839.2 | 1 |
| HIP49131 | J100139.00-552905.8 | 1 |
| HIP54846 | J111342.81-632411.3 | 1 |
| HIP54854 | J111350.78-525121.7 | 1 |
| HIP55069 | J111628.56-603403.8 | 1 |
| HIP55606 | J112331.01-091521.3 | 1 |
| HIP55909 | J112735.13-555414.5 | 1 |
| HIP57022 | J114127.88+005701.0 | 1 |
| HIP57285 | J114447.30-581553.3 | 1 |
| HIP57291 | J114450.39-584214.1 | 1 |
| HIP59502 | J121210.23-632714.8 | 1 |
| HIP59960 | J121753.15-555831.9 | 1 |
| HIP60068 | J121903.99-663934.7 | 1 |
| HIP62026 | J124249.72-555649.2 | 1 |
| HIP62403 | J124718.84-661414.7 | 1 |
| HIP62538 | J124853.12-565111.4 | 1 |
| HIP62576 | J124917.39+273308.9 | 2 |
| HIP63205 | J125658.67-600835.0 | 1 |
| HIP65100 | J132030.06-663202.5 | 1 |
| HIP65783 | J132907.80-644032.9 | 1 |
| HIP66075 | J133242.44-554939.4 | 1 |
| HIP66632 | J133928.24-571750.0 | 1 |
| HIP66963 | J134328.49-543643.7 | 1 |
| HIP67189 | J134609.32-683357.2 | 3 |
| HIP69011 | J140740.78-484214.7 | 3 |
| HIP70035 | J141951.26-611623.5 | 1 |
| HIP70050 | J142008.31-280256.6 | 3 |
| HIP71585 | J143824.86-351635.8 | 3 |
| HIP71645 | J143915.59-642456.9 | 1 |
| HIP74511 | J151334.72-625639.0 | 1 |
| HIP75134 | J152112.66-541730.6 | 1 |
| HIP75778 | J152849.17-535536.4 | 1 |
| HIP76234 | J153420.83-392057.4 | 3 |
| HIP76782 | J154037.80-253533.3 | 1 |
| HIP76801 | J154051.88-292403.2 | 1 |
| HIP77394 | J154756.48-255913.0 | 1 |
| HIP78085 | J155639.02-423347.5 | 1 |
| HIP78532 | J160158.33-465414.2 | 1 |
| HIP78533 | J160158.85-373203.9 | 1 |

Table 5.1 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | WISE ID | Rejection Reason |
| :---: | :---: | :---: |
| HIP 79026 | J160747.76-370036.1 | 1 |
| HIP80025 | J162008.82-361717.1 | 1 |
| HIP80171 | J162155.29-245929.7 | 1 |
| HIP80770 | J162927.55-331913.4 | 1 |
| HIP80799 | J162954.56-245846.5 | 1 |
| HIP81106 | J163355.15-425320.9 | 1 |
| HIP81467 | J163820.66-491334.9 | 1 |
| HIP81673 | J164104.61+361204.1 | 3 |
| HIP83522 | J170409.70-303936.1 | 1 |
| HIP83711 | J170629.53-104823.0 | 3 |
| HIP84055 | J171103.45-313458.7 | 1 |
| HIP84164 | J171221.84-463352.9 | 3 |
| HIP84359 | J171448.66-484229.2 | 1 |
| HIP84445 | J171551.34-301239.1 | 1 |
| HIP86124 | J173604.59-171822.4 | 3 |
| HIP88460 | J180341.50-455145.8 | 1 |
| HIP88924 | J180906.63-092654.7 | 1 |
| HIP89583 | J181649.60-112423.3 | 1 |
| HIP92973 | J185627.75-432104.8 | 3 |
| HIP94371 | J191227.61+165058.4 | 1 |
| HIP95002 | J191953.09 + 113206.2 | 1 |
| HIP95696 | J192751.84+085811.6 | 1 |
| HIP95717 | J192806.33 + 175047.7 | 1 |
| HIP98894 | J200455.18+260311.2 | 1 |
| HIP100767 | J202551.22+393753.2 | 1 |
| HIP101449 | J203338.48 + 532805.6 | 1 |
| HIP103213 | J205439.94+461352.2 | 1 |
| HIP103269 | J205516.80+421756.6 | 1 |
| HIP103614 | J205934.78+611654.4 | 1 |
| HIP103648 | J210000.36+425552.7 | 1 |
| HIP103994 | J210411.92-290855.8 | 1 |
| HIP104900 | J211456.52+642953.3 | 1 |
| HIP105169 | J211816.29-752048.6 | 1 |
| HIP108414 | J215747.44-150724.1 | 3 |
| HIP108689 | J220103.44+555955.3 | 1 |
| HIP109713 | J221323.87+530914.9 | 1 |
| HIP110214 | J221931.54+644718.2 | 1 |
| HIP110327 | J222045.72+560649.6 | 1 |
| HIP116085 | J233123.69+590957.0 | 1 |

Note. - Rejection reasons:

1. Contamination by line-of-sight interstellar cirrus based on visual "by-eye" inspection.
2. Rejected on basis of potential spectroscopic component. Warning raised by Wu et al. (2013).
3 . Confusion due to nearby WISE source.
Table 5.2. $\quad$ Stellar Parameters of $W 4$ Excess Hosts within 120 pc

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | WISE ID | $\mathrm{SpT}^{\text {a }}$ | $\begin{aligned} & \text { Dist. }{ }^{\text {b }} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{aligned} & T_{\star} \\ & (\mathrm{K}) \end{aligned}$ | $\begin{gathered} R_{\star} \\ \left(R_{\odot}\right) \end{gathered}$ | $\begin{gathered} F_{W}{ }_{(\mathrm{mJy})} \end{gathered}$ | $F_{W 3, \star}$ <br> (mJy) | $\begin{gathered} F_{W}{ }_{(0,}^{4} \\ (\mathrm{mJy}) \end{gathered}$ | $F_{W 4, *}$ (mJy) | $F_{W 3} / F_{W 3,{ }^{\text {c }}}{ }^{\text {c }}$ | $F_{W 4} / F_{W 4, \star}{ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | Jo00344.39-172009.4 | B9IVn | 83 | 9840 | 3.5 | $437 \pm 6$ | 449 | $170 \pm 4$ | 128 | 0.974 | 1.32 |
| 1829 | J002311.98+200509.1 | F0 | 105 | 7245 | 1.2 | $24.5 \pm 0.4$ | 24 | $12.3 \pm 0.9$ | 6.88 | 1.02 | 1.79 |
| 2496 | J003140.75-014737.2 | A0 | 107 | 8762 | 1.6 | $54.7 \pm 0.8$ | 49.6 | $39.9 \pm 1$ | 14.2 | 1.1 | 2.81 |
| 2539 | J003214.05+345937.8 | A5IV | 96 | 8089 | 1.9 | $81.7 \pm 1$ | 82.4 | $30.6 \pm 1$ | 23.6 | 0.992 | 1.3 |
| 4303 | J005508.13+165435.7 | A5 | 107 | 7411 | 1.5 | $35.3 \pm 0.5$ | 36.3 | $14.3 \pm 1$ | 10.4 | 0.973 | 1.37 |
| 4366 | J005558.49+271233.8 | A5IV | 78 | 8308 | 2.0 | $142 \pm 2$ | 144 | $63.7 \pm 2$ | 41.1 | 0.987 | 1.55 |
| 4630 | J005926.25+400918.2 | A0 | 110 | 8185 | 1.5 | $38 \pm 0.5$ | 38.2 | $17.7 \pm 0.9$ | 10.9 | ${ }^{0.996}$ | 1.62 |
| 5233 | J010655.27+705552.9 | A2 | 113 | 8238 | 2.3 | $85.2 \pm 1$ | 86.4 | $36.1 \pm 1$ | 24.8 | 0.986 | 1.46 |
| 5626 | J011217.17+794026.2 | A3V | 83 | 9273 | 2.3 | $179 \pm 2$ | 174 | $114 \pm 2$ | 49.8 | 1.03 | 2.29 |
| 7051 | J013053.11+341026.1 | A3 | 120 | 7506 | 1.4 | $25.1 \pm 0.4$ | 24.9 | $12.6 \pm 0.8$ | 7.14 | 1.01 | 1.77 |
| 7283 | J013352.80+890056.0 | A3V | 103 | 8632 | 2.1 | $90.7 \pm 1$ | 90.4 | $33.8 \pm 1$ | 25.9 | 1.0 | 1.31 |
| 7943 | J014203.52+351444.3 | B9IV-V | 84 | 10000 | 2.1 | $141 \pm 2$ | 131 | $80.6 \pm 2$ | 37.6 | 1.07 | 2.14 |
| 7965 | J014220.62+680234.8 | $\mathrm{A}_{0} \mathrm{pSiSr}$ | 119 | 10000 | 3.0 | $142 \pm 2$ | 141 | $64.9 \pm 2$ | 40.5 | 1.0 | 1.6 |
| 8250 | J014611.92-451728.3 | F5V | 99 | 6571 | 1.4 | $33.6 \pm 0.5$ | 34 | $12.9 \pm 0.9$ | 9.76 | 0.987 | 1.32 |
| 8417 | J014835.89-261513.1 | Fov | 103 | 7339 | 2.1 | $77 \pm 1$ | 78.3 | $27.9 \pm 1$ | 22.4 | 0.983 | 1.25 |
| 8920 | J015450.36+211822.3 | G0 | 96 | 5792 | 1.4 | $655 \pm 8$ | 33.2 | $547 \pm 9$ | 9.6 | 19.7 | 57 |
| 9285 | J015919.63-262555.8 | A0V | 114 | 9396 | 1.8 | $56.5 \pm 0.8$ | 58.1 | $21.8 \pm 1$ | 16.6 | 0.974 | 1.31 |
| 10320 | J021254.47-304325.5 | A0V | 98 | 9175 | 3.2 | $263 \pm 4$ | 245 | $114 \pm 3$ | 70 | 1.07 | 1.63 |
| 10355 | J021329.33+404724.6 | A3 | 109 | 8279 | 1.6 | $42.5 \pm 0.6$ | 42.9 | $16.4 \pm 1$ | 12.3 | 0.989 | 1.33 |
| 11522 | J022834.46+135235.0 | F5 | 112 | 6900 | 1.3 | $23.8 \pm 0.4$ | 24.1 | $11.6 \pm 1$ | 6.92 | 0.987 | 1.67 |
| 11696 | J023050.75+553253.3 | F3V | 55 | 6078 | 1.8 | $621 \pm 9$ | 185 | $403 \pm 9$ | 53.1 | 3.36 | 7.59 |
| 11821 | J023230.04-270010.9 | A4V | 95 | 7754 | 1.5 | $49.7 \pm 0.7$ | 50.7 | $18.6 \pm 0.9$ | 14.5 | 0.981 | 1.28 |
| 12876 | J024532.75-673659.4 | A2IV/V | 87 | 8775 | 3.7 | $402 \pm 5$ | 404 | $136 \pm 3$ | 116 | 0.995 | 1.17 |
| 13063 | J024755.37+553648.5 | A0 | 106 | 8377 | 1.8 | $63.6 \pm 0.9$ | 63.8 | $28.6 \pm 1$ | 18.3 | 0.996 | 1.57 |
| 13394 | J025223.08+632434.1 | G0 | 31 | 6060 | 1.1 | $188 \pm 2$ | 197 | $70 \pm 2$ | 57 | 0.953 | 1.23 |
| 13682 | J025614.04+040254.3 | A0 | 116 | 9396 | 1.2 | $26.4 \pm 0.4$ | 23.9 | $18.4 \pm 1$ | 6.84 | 1.1 | 2.68 |
| 13872 | J025839.71-041231.4 | A2 | 103 | 7757 | 1.3 | $32.1 \pm 0.5$ | 32 | $12.6 \pm 0.7$ | 9.16 | 1.0 | 1.37 |
| 15152 | J031517.13-370230.1 | F5V | 98 | 6355 | 1.3 | $28.6 \pm 0.4$ | 28.6 | $11 \pm 0.7$ | 8.22 | 0.999 | 1.34 |
| 15870 | J032426.11+204812.5 | A1V | 96 | 10000 | 1.9 | $91.7 \pm 1$ | 93.5 | $33.8 \pm 1$ | 26.8 | 0.981 | 1.26 |
| 15922 | J032504.59+105835.1 | A0 | 119 | 8341 | 1.8 | $47.2 \pm 0.7$ | 44.6 | $22.2 \pm 1$ | 12.8 | 1.06 | 1.74 |
| 15933 | J032512.84-370909.6 | A4V | 101 | 8351 | 1.6 | $52.4 \pm 0.8$ | 52.3 | $19.2 \pm 0.8$ | 15 | 1.0 | 1.28 |
| 15987 | J032555.86-355515.2 | A1IV | 108 | 8724 | 2.2 | $98.3 \pm 1$ | 95.7 | $48.6 \pm 1$ | 27.4 | 1.03 | 1.77 |
| 16028 | J032622.54+370047.3 | F2 | 111 | 6328 | 2.0 | $49.5 \pm 0.7$ | 49.1 | $19.4 \pm 1$ | 14.1 | 1.01 | 1.38 |
| 16322 | J033024.45+112011.1 | A 0 V n | 111 | 10000 | 3.4 | $225 \pm 3$ | 240 | $77.1 \pm 2$ | 68.6 | 0.938 | 1.12 |
| 16386 | J033103.48+274353.3 | B9 | 120 | 8980 | 1.5 | $34 \pm 0.5$ | 34.5 | $15.3 \pm 1$ | 9.88 | 0.987 | 1.55 |
| 16425 | J033130.31+404535.4 | A5 | 116 | 7517 | 3.0 | $127 \pm 2$ | 125 | $47.1 \pm 2$ | 35.9 | 1.01 | 1.31 |
| 16511 | J033235.96+092224.0 | B9IV | 107 | 10000 | 2.5 | $114 \pm 2$ | 120 | $40.6 \pm 1$ | 34.2 | 0.951 | 1.19 |
| 16671 | J033433.33+141033.3 | F8 | 118 | 5610 | 2.1 | $43.3 \pm 0.7$ | 42.7 | $20.7 \pm 1$ | 12.3 | 1.01 | 1.68 |
| 16876 | J033709.08-294948.5 | A1V | 119 | 8982 | 1.6 | $39.4 \pm 0.5$ | 38.4 | $18 \pm 0.8$ | 11 | 1.03 | 1.64 |
| 17091 | J033941.18+231726.8 | G | 85 | 6041 | 0.7 | $12.3 \pm 0.3$ | 10.4 | $9.81 \pm 1$ | 3 | 1.18 | 3.27 |
| 17256 | J034145.51-474632.3 | A4V | 100 | 7865 | 1.9 | $72.6 \pm 1$ | 74.2 | $25.6 \pm 0.9$ | 21.3 | 0.978 | 1.2 |
| 17391 | J034327.90-333008.1 | F2V | 112 | 6787 | 1.5 | $30.5 \pm 0.4$ | 30.1 | $13.9 \pm 0.7$ | 8.64 | 1.01 | 1.61 |
| 17707 | J034732.19+555518.7 | B9Vnn | 110 | 9310 | 2.4 | $113 \pm 2$ | 115 | $48.2 \pm 1$ | 32.8 | 0.986 | 1.47 |
| 17900 | J034943.54+234242.4 | B8V | 115 | 10000 | 2.2 | $101 \pm 1$ | 87.6 | $52.2 \pm 2$ | 25.1 | 1.15 | 2.08 |
| 18217 | J035343.41+575829.7 | A5m | 51 | 8030 | 1.6 | $199 \pm 3$ | 205 | $78.3 \pm 2$ | 58.6 | 0.971 | 1.34 |
| 18297 | J035445.53+091039.1 | A0 | 119 | 8736 | 1.5 | $37.3 \pm 0.6$ | 36.4 | $16 \pm 1$ | 10.4 | 1.02 | 1.53 |
| 18437 | J035629.39-385743.7 | Aov | 106 | 9373 | 1.6 | $58.6 \pm 0.8$ | 49.9 | $74.7 \pm 2$ | 14.3 | 1.17 | 5.23 |

Table 5.2 (cont'd)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { HIP } \\
\& \text { ID }
\end{aligned}
\] \& \[
\begin{gathered}
\text { WISE } \\
\text { ID }
\end{gathered}
\] \& SpT \({ }^{\text {a }}\) \& \[
\begin{aligned}
\& \text { Dist. } \\
\& (\mathrm{pc})
\end{aligned}
\] \& \[
\begin{aligned}
\& T_{\star} \\
\& (\mathrm{K})
\end{aligned}
\] \& \[
\begin{gathered}
R_{\star}^{R_{\star}}\left(R_{\odot}\right.
\end{gathered}
\] \& \[
\begin{gathered}
F_{W 3} \\
(\mathrm{mJy}) \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& F_{W} \text { (mJy } \\
\& (\text { may }
\end{aligned}
\] \&  \& \[
\begin{aligned}
\& F_{W 4,4} \\
\& (\text { mJJy }
\end{aligned}
\] \& \(F_{W 3} / F_{W 3,{ }^{*}}{ }^{\text {c }}\) \& \(F_{W 4 / F_{W 4,{ }^{*}}{ }^{\text {c }} \text { d }}\) \\
\hline 18671 \& J035954.17-540939.9 \& \(\mathrm{FsF}^{\text {V }}\) \& \({ }^{93}\) \& 6539 \& 1.8 \& \(58 \pm 0.8\) \& 58.9 \& \(20.9 \pm 0.8\) \& 16.9 \& 0.984 \& \({ }_{1}^{1.23}\) \\
\hline \({ }_{1}^{18729}\) \& J040043.70-711000.2 \& A1/A2V \& 100 \& \({ }_{8706}^{8731}\) \& 1.9 \& \(79.2 \pm 1\) \& \({ }_{79} 7.3\) \& 29.9 \({ }^{29}\) \& \({ }_{12}^{22.7}\) \& \({ }^{0.999}\) \& \begin{tabular}{l}
1.31 \\
1.88 \\
\hline
\end{tabular} \\
\hline 18215 \& \({ }_{\text {jo400707.77-382715.0 }}\) \& \({ }_{\text {F0 }}\) \& 118 \& 9931
6959 \& \({ }_{1.1}^{1.7}\) \& \(50.8 \pm 0.7\)
\(17.6 \pm 0.3\) \& \({ }_{16}\) \& \({ }_{\text {cke }}^{27.6 \pm 1}\) \& \({ }_{14.6}^{14.7}\) \& \({ }_{1}^{0.198}\) \&  \\
\hline 20171 \& J041926.12+210831.9 \& B9IV \& 83 \& 10000 \& 2.1 \& \(152 \pm 2\) \& 151 \& \(56.1 \pm 2\) \& 43.3 \& 1.0 \& 1.3 \\
\hline 20279 \& J042047.11+645310.2 \& F5 \& 112 \& 6567 \& 1.5 \& \(29.1 \pm\) \& 27.9 \& \(11.8 \pm\) \& \& 1.04 \& \\
\hline \& \& \& \& 65 \& 1.5 \& \(87.6 \pm 1\) \& 81.6 \& \(58.3 \pm 2\) \& 23.4 \& 1.07 \& \\
\hline \& J043828.81-193827. \& A9IV \& \& 473 \& 2.0 \& \(72.2 \pm\) \& \& \& \& 1.0 \& \\
\hline \& J044628.06-020415.0 \& \& \& \& 1.2 \& \(17.5 \pm 0.3\) \& \& \(23.2 \pm 1\) \& 4.94 \& 1.02 \& \\
\hline 22226 \& J044649.54-261808.9 \& F3V \& 80 \& 6754 \& 1.4 \& \(50.1 \pm 0.7\) \& 50.4 \& \(31.6 \pm 1\) \& 14.4 \& 0.995 \& 2.19 \\
\hline 22410 \& J044920.28+301822.9 \& \({ }^{\text {F88 }}\) \& 113 \& 5139 \& \({ }^{1.6}\) \& \(25.6 \pm 0.4\) \& \({ }^{25.4}\) \& \({ }^{13.9 \pm 1}\) \& \({ }^{7} .35\) \& 1.0 \& \\
\hline 22776 \& J045356.21+364526.9 \& G5 \& \({ }^{28}\) \& 5398 \& 0.9 \& \(120 \pm 2\) \& 125 \& \(46.1 \pm 2\) \& 36.2 \& 0.959 \& 1.27 \\
\hline 23088 \& J045809.41+250301.0 \& Aov \& 87 \& 9734 \& 2.1 \& \({ }^{128 \pm 2}\) \& \({ }^{140}\) \& \(55.2 \pm 2\) \& 40.1 \& \({ }^{0.912}\) \& 1.38 \\
\hline 23451 \& J050227.43+072739.5 \& A0 \& 112 \& 7594 \& 1.4 \& \({ }_{78 \pm 0.7}^{48}\) \& \({ }_{7}^{25.3}\) \& \({ }_{2}^{220}\) \& 24 \& 1.9 \& \\
\hline 23621 \& J050411.80+145132.2 \& Asp \& 91 \& 8329 \& 1.7 \& 72.4土 \& 74.7 \&  \& \& .97 \& \\
\hline \& J052120.13-452020. \& \& 102 \&  \& 1.4 \& S1.870.4 \& 179 \& \(14.8 \pm 0.7\) \& \& \& \\
\hline 25638 \& Jo52834.78+134044.3 \& A4V \& \({ }_{94}\) \& 8032 \& 2.3 \& \(118 \pm 2\) \& 124 \& \(43.7 \pm 2\) \& 35.5 \& \({ }_{0}^{0.953}\) \& \({ }_{1.23}\) \\
\hline 25998 \& J053256.39-474121.3 \& A3v \& 109 \& 8248 \& 1.4 \& \(33.4 \pm 0.5\) \& 33.4 \& \(35.2 \pm\) \& 9.56 \& 1.0 \& 3.68 \\
\hline 26062 \& J053330.76+243743.3 \& \({ }^{\text {B8 }}\) \& 114 \& 8615 \& 1.9 \& \({ }^{251 \pm 3}\) \& 55.1 \& \(1020 \pm 20\) \& 15.8 \& 4.55 \& 64.7 \\
\hline \({ }^{26330}\) \& J053628.33+253516.3 \& \({ }^{\text {G0 }}\) \& \({ }^{68}\) \& \({ }_{6281}\) \& 1.0 \& \({ }^{32.3 \pm 0.5}\) \& \({ }_{33.2}\) \& \(13.7 \pm 1\) \& \({ }^{9.57}\) \& \({ }^{0.973}\) \& 1.43 \\
\hline 26621 \& Ј053930.48-404102.4 \& \({ }^{\text {B8V }}\) \& 104 \& 6737 \& 1.7 \& \(43.8 \pm 0.6\) \& 41.9 \& \(22.8 \pm 0.9\) \& 12 \& 1.05 \& 1.9 \\
\hline 26625 \& J053932.56+120013.5 \& Fov \& 81 \& 6864 \& 1.8 \& 50.870.7 \& \({ }^{50.6}\) \& 22.141 \& 14.5 \& 1.0 \& \\
\hline \& 50564120013613530 \& Aov \& 95 \& 9849 \& 1.8 \& \(158 \pm 2\) \& 135 \& \& \& 1.18 \& \\
\hline 27698 \& Jo55154.31-251309.5 \& Aiv \& 100 \& 8759 \& 1.5 \& \({ }_{\text {che }} \mathbf{6 1 . 8 \pm \pm 0 . 7}\) \& \({ }_{53.3}\) \& \({ }^{\text {a }}\) \& 5, 3 \& \({ }_{0} 1.971\) \& \\
\hline 27713 \& J055207.73-090230.4 \& \(\mathrm{A}_{2} \mathrm{~V}\) n \& 99 \& 8483 \& \({ }_{2.6}\) \& \(155 \pm 2\) \& 151 \& \(64.3 \pm 2\) \& 43.4 \& 1.02 \& 1.48 \\
\hline 28230 \& J055752.60-342834.2 \& AsIVm. \& 81 \& 7372 \& 1.3 \& \(52 \pm 0.7\) \& 51.2 \& \(43 \pm 1\) \& 14.7 \& 1.02 \& 2.93 \\
\hline 28385 \& J055945.83+551914.3 \& A5m \& 101 \& \({ }^{7216}\) \& 3.0 \& \(147 \pm 2\) \& 157 \& \({ }^{51.6 \pm 2}\) \& 45 \& \({ }^{0.939}\) \& 1.15 \\
\hline 28778 \& J060435.05-140157.3 \& AgV \& 96 \& 7219 \& 1.6 \& \({ }_{52 \pm 0.8}\) \& 52 \& \({ }^{21.9 \pm 1}\) \& 14.9 \& 1.0 \& 147 \\
\hline 29487 \& J061244.57-02307.2 \& A2V \& 118 \& 9021 \& 2.1 \& \({ }^{70.7 \pm 1}\) \& \({ }^{73.2}\) \& \({ }^{26.9 \pm 1}\) \& 21 \& \({ }^{0.965}\) \& 128 \\
\hline 29510 \& J061300.62+272754.2 \& F2 \& -103 \& -6824 \& \({ }_{1.3}^{1.3}\) \& \begin{tabular}{|c}
\(30.3 \pm 0.5\) \\
33
\end{tabular} \& \({ }_{3,4}^{29.4}\) \& \({ }_{12}^{12.5 \pm 1}\) \& 年 \& \({ }^{1.03}\) \& 148 \\
\hline 300 \& J064195736-135934 \& Bov \& 109 \& 8977 \& 1.5 \& \({ }_{53} 51.1 \pm 0.5\) \& \& \& \& \& \\
\hline 30291 \& J062218.67-295134.6 \& F3V \& 98 \& 6725 \& 1.4 \& \({ }_{33 \pm 0.5}\) \& \({ }_{32.8}\) \& \({ }_{15.3 \pm 0.7}\) \& 9.41 \& 1.01 \& \({ }_{1.62}\) \\
\hline 30685 \& J062653.73-533454.9 \& Fov \& 102 \& 6717 \& 1.3 \& \(26.3 \pm 0.4\) \& 26.2 \& 10. \& 7.51 \& 1.0 \& \\
\hline 30760 \& J062748.62-620859.5 \& \({ }_{\text {a }}\) \& 84 \& 8639 \& 1.6 \& \({ }^{79.4 \pm 1}\) \& 80.4 \& \(28.7 \pm 0.8\) \& \({ }^{23}\) \& \({ }^{0.988}\) \& \({ }_{1}^{1.25}\) \\
\hline 30939 \& J062936.87 +082932.6 \& F8 \& \({ }^{48}\) \& 6137 \& 1.1 \& \(83.5 \pm 1\) \& 85.7 \& \(30.1 \pm 1\) \& \({ }^{24.7}\) \& 0.974 \& \({ }^{22}\) \\
\hline \({ }^{31386}\) \& J063446.90-631543.8 \& \({ }_{\text {ATV }}\) \& 89 \& \({ }^{7265}\) \& 1.4 \& \({ }_{\text {43.8 }}{ }^{\text {a }}\) \& \({ }^{43.8}\) \& \({ }_{16.8 \pm 0.7}^{1.80}\) \& \({ }_{12.5}^{12.5}\) \& 1.0 \& \\
\hline 3323 \& J065450.56+031413.8 \& \(\stackrel{\text { F0 }}{ }\) \& \({ }^{86}\) \& \({ }_{8322}^{6952}\) \& 1.5
3.8
1 \& \({ }_{\text {5 }} 53.4 \pm 0.7\) \& - \({ }_{281}^{58.6}\) \& 23.771 \& 15.4
80.6

l \& ${ }_{0}^{0.9973}$ \& , 54 <br>
\hline ${ }_{33476}$ \& J065731.89-165321.9 \& ATV \& 111 \& ${ }_{7915}$ \& 3.8
1.9 \& $54.7 \pm 0.8$ \& ${ }_{55.6} 881$ \& ${ }^{95} 23 \pm 1$ \& 80.6
15.9 \& ${ }_{0}^{0.984}$ \& ${ }_{1}^{1.44}$ <br>
\hline 33477 \& J065733.27+194343.0 \& A5 \& 99 \& 24 \& 1.6 \& \& 52.2 \& $20.9 \pm 1$ \& 14.9 \& \& 1.4 <br>
\hline 33788 \& 0057.19- \& F5V \& 107 \& 24 \& 1.8 \& $44.6 \pm 0.7$ \& 45.6 \& 50.7 \& ${ }^{13.1}$ \& \& 1.42 <br>
\hline 276 \& 0620.93-433638.6 \& \& 102 \& 9570 \& 1.8 \& $71.2 \pm 1$ \& 72.1 \& $37 \pm 1$ \& 20.6 \& \& <br>
\hline ${ }_{36312}^{35572}$ \&  \& $\stackrel{\text { G5 }}{\text { F7V }}$ \& ${ }_{84}^{110}$ \& 5873
6192 \& \& 77.51
$28.3 \pm 0.4$ \& \& chers
$13 \pm 0.8$ \& \& ${ }^{0} 1.92$ \& ${ }_{1}^{1.621}$ <br>
\hline
\end{tabular}

Table 5.2 （cont＇d）

| $\begin{aligned} & \text { HiP } \\ & \text { ID } \end{aligned}$ | $\begin{gathered} \text { WISE } \\ \text { IID } \end{gathered}$ | SpT ${ }^{\text {a }}$ | $\begin{gathered} \text { Dist.b. } \\ \text { (pc) } \end{gathered}$ | $\begin{aligned} & \boldsymbol{c}_{\star} \\ & (\mathrm{K} \end{aligned}$ | $\left.\begin{array}{c} R_{\star} \\ \left(R_{\odot}^{*}\right. \end{array}\right)$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{gathered} \begin{array}{c} \left.F_{W 3}{ }^{( }\right) \\ (\mathrm{m} J y) \end{array} \end{gathered}$ | $\begin{gathered} F_{W 4} \\ (\mathrm{mJy}) \end{gathered}$ |  | $F_{W 3 / F_{W 3, \chi^{c}}{ }^{\text {c }} \text { c }}$ | $F_{W 4 / F_{W 4, \chi^{*}}{ }^{\text {c }} \text { c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{36624}$ | Jo73155．60＋385345．7 | A2V | 81 | ${ }^{8949}$ | 1.5 | ${ }^{77.4 \pm 1}$ | ${ }^{76.6}$ | ${ }^{38.4 \pm 2}$ | ${ }^{21.9}$ | ${ }^{1.01}$ | ${ }^{1.75}$ |
| ${ }^{36837}$ | Jo73428．83－260701．0 | ${ }_{\text {a }}^{\text {a }}$ | 115 | ${ }_{9796}^{9790}$ | ${ }_{1.8}^{1.8}$ | ¢2．2土0．9 | ${ }_{20}^{60.6}$ | $32.1 \pm 1$ 10.7 10706 | ${ }_{8}^{17.3}$ | ${ }_{1}^{1.03}$ | ${ }_{1}^{1.85}$ |
| ${ }_{38403}^{3741}$ | ${ }^{\text {Jo74050．88－7711141．6．}}$ | ${ }_{\text {A3 }}{ }_{\text {A }}$ | 91 104 104 | 6120 7880 | ${ }_{2.4}^{1.2}$ | $28.2 \pm 0.4$ $109+2$ | 28 108 | ${ }_{\text {10，}}^{10.7 \pm 0.6} 44.9+2$ | 8.07 31 | 1.01 1.01 1.01 | 1.752 1.45 1.4 |
| ${ }_{39510}^{38403}$ | ${ }_{\text {Jo8043137－671229．4 }}$ | ${ }_{\text {As }}$ |  | ${ }_{7641}$ |  |  | ${ }_{42.3}$ | $18 \pm 0$ | ${ }_{121} 1$ | 1.099 0.999 | ${ }_{1.49}^{1.45}$ |
| 39535 | J080445．28＋185031．2 | B9V | 107 | 10000 | 2.0 | $84.4 \pm 1$ | 83.9 | $36 \pm 2$ |  | 1.01 | 1.5 |
| ${ }^{407065}$ | ${ }^{\text {Jo81833．23－363932．3 }}$ | ${ }_{\text {A4m．}}$ ． | ${ }^{29}$ |  | 1.8 | ${ }_{770 \pm 10}$ | ${ }_{768}^{768}$ | ${ }^{289 \pm 6}$ | ${ }^{220}$ | 1.0 | ${ }_{1.31}^{1.35}$ |
| 41765 | Jo83100．44＋185806．1 | ${ }^{\text {A3 }}$ | 83 | 7588 | 1.4 | $51 \pm 0.8$ | 52.3 | ${ }^{22.8 \pm 2}$ | 15 | ${ }^{0.975}$ | 1.52 |
| ${ }_{41891}^{41890}$ |  | $\mathrm{GO}^{\text {O }}$ | ${ }_{112}^{112}$ | 5570 <br> 8894 <br> 890 | ${ }_{2}^{1.7}$ | $30.8 \pm 0.5$ $163+2$ 180 | 31.3 169 169 | －${ }_{\text {13，}}^{13.6 \pm 1}$ | ${ }_{\text {9，}}^{4.05}$ | － 0.983 | ${ }_{1.23}^{1.51}$ |
| ${ }_{421290}^{42097}$ | J083443．86＋362510．2 | $\mathrm{A}^{2 \mathrm{Vnn}}$ | 109 | 8894 | 2.9 | $163 \pm 2$ | ${ }_{169}^{169}$ | $59.7 \pm$ | ${ }^{48.4}$ | ${ }_{0}^{0.966}$ | ${ }_{1}^{123}$ |
| ${ }_{42293}^{4297}$ | ${ }^{\text {J }}$ O8361515．57＋423447．5 | ${ }^{\text {A } 2}$ | 83 112 | 7907 | 1．6 | $70.8 \pm 1$ $65.9+0$ | 70 |  | 20 19 | 1.01 0.991 0.95 | ＋1．51 |
| ${ }_{42637}^{42337}$ | Jo84119．45－7557478．8 | Agiv | ${ }_{95}^{112}$ | ${ }_{1} 97900$ | ${ }_{2.5}^{1.9}$ | ${ }_{\substack{65.9 \pm 0.9 \\ 215 \pm 3}}$ | ${ }_{143}$ | ${ }_{1147 \pm 3}^{25.8 \pm 1}$ | ${ }_{41}^{19}$ | ${ }_{1}^{0.591}$ | 1.35 <br> 3.58 <br> 1.9 |
| ${ }^{42928}$ | J084455．13－211004．0 | AsV | 84 | 7852 | 2.4 | $160 \pm 2$ | 167 | $60.2 \pm 2$ | 47.9 | 0.957 | 1.26 |
| 42994 | J084546．93－485243．5 | ${ }_{\text {A0 }}$ | 111 |  | 1.4 | $38.1 \pm 0.6$ | ${ }^{37.1}$ | $21.1 \pm 1$ | 10.6 | 1.03 | ${ }^{99}$ |
| 43620 | J085303．76－563857． | Aov | 92 | 9971 | 1.9 | $106 \pm 1$ | 105 | $52 \pm 1$ | 30.1 | 1.01 | 73 |
| 44078 | J085845．37＋235800．4 | ${ }^{\text {A2 }}$ | 120 | 7928 | 1.7 | $39 \pm 0.6$ | 40 | $16.7 \pm 1$ | 11.5 | ${ }^{0.974}$ | 1．46 |
| 44272 | J090055．12＋0903033．9 | G0 | 79 | 6121 | 1.0 | 22．8⒏0．4 | ${ }^{22.7}$ | $11.3 \pm 1$ | ${ }^{6.55}$ | 1.0 | ${ }_{1}^{1.73}$ |
| ${ }_{4}^{44393}$ | J090234．51－3110103．6 | ATV | ${ }^{96}$ | ${ }^{7159}$ | ${ }_{3.5}^{1.5}$ | ${ }^{45.2 \pm 0.7}$ | 44.2 <br> 158 <br> 1 | 17．7\＃0．9 | ${ }^{12.7}$ | － 1.022 | ． 39 |
| ${ }_{44923}^{44904}$ |  | $\xrightarrow{\text { at }}$ A1v | $\begin{array}{r}120 \\ 84 \\ \hline\end{array}$ | ${ }_{9480}$ | 3.1 2.1 2.1 | （155＋2 | 158 149 | （7．972 | ${ }_{42.7}^{45.4}$ | －${ }_{\text {1．927 }}^{1.097}$ | （1．51 |
| ${ }_{45167}$ | Jo91212．85＋035201．1 | Aov | ${ }_{99}$ | 9684 | ${ }_{2.0}$ | ${ }_{102 \pm 1}$ | 98.2 | $54.3 \pm 2$ | 28.1 | 1.04 | 1.93 |
| 45424 | J091524．94－150129．7 | Aov | 112 | 9433 | 2.2 | $86.5 \pm 1$ | 87.4 | $31.9 \pm 1$ | 25 | 0.99 | 1.27 |
| 45511 | J091627．51－135002．5 | A3V | 92 | 7869 | 1.9 | $82.9 \pm 1$ | ${ }^{83.6}$ | $29.7 \pm 1$ | ${ }^{23.9}$ | ${ }^{0.992}$ | ${ }^{24}$ |
| 45585 | J091727．49－744404．1 | Aov | 82 | 9636 | 1.9 | ${ }^{147 \pm 2}$ | 125 | ${ }^{132 \pm 3}$ | 35.8 | 1.18 | 69 |
| ${ }_{45667}$ | J091831．89－390237．5 | AIV | 94 | 9048 | 1.5 | $58.7 \pm 0.9$ | ${ }^{54.6}$ | ${ }^{47.6 \pm 1}$ | ${ }^{15.6}$ | 1.07 | ${ }^{3.04}$ |
| ${ }^{46546}$ | J092933．01－622139．0 | ${ }_{\text {ar }}^{\text {av }}$ | 101 | ${ }_{8526}$ | 2.0 | $85.9 \pm 1$ | 88.1 | ${ }^{15.7 \pm 1}$ | ${ }^{25.2}$ | ${ }^{0.975}$ | ${ }_{1}^{1.26}$ |
| ${ }_{4}^{46679}$ | J093059．85－740911．3 | ${ }_{\text {F3，}}$ | ${ }_{80}$ | 6845 | 1.5 | $34.9 \pm 0.5$ $129+2$ | 34.2 132 13 | 15．9＋0．6 $51.3+2$ | 9.82 37.7 | 1.02 0.975 | ， |
| ${ }_{47115}$ | ${ }_{\text {Jo93605．13－645700．5 }}$ | ${ }_{\text {A2V }}$ | ${ }_{80}^{80}$ | ${ }_{8534} 9264$ | ${ }_{1.6}^{1.9}$ | ${ }_{89}^{129 \pm \pm 1}$ | ${ }_{86.3}^{132}$ |  | ${ }_{24.7}$ | ${ }_{1}^{1.04}$ | ${ }_{1}^{1.95}$ |
| ${ }^{47335}$ | Jо93845．17－665132．2 | A9IV／V | 81 | 7398 | 1.4 | $57.7 \pm 0.8$ | 57.5 | 24．6さ0．8 | 16.5 | 1.0 | 析 |
| ${ }_{47571}^{47382}$ | Jo9394201．36－421657．2 | A 2 V |  | ${ }_{8712}^{7246}$ | ${ }_{1.6}^{2.1}$ | ${ }_{\text {cke }}^{70.2 \pm \pm 1}$ | ${ }_{52.4}^{73.1}$ |  | ${ }_{15}^{21}$ | ${ }^{0.963}$ |  |
| ${ }_{48164}^{4781}$ | Jo94902．83＋340506．9 | A3 | 88 | 7692 | ${ }_{1.6}^{1.6}$ | （50．9\＃0．9 | ${ }_{62.3}^{52.4}$ | ${ }^{27.9 \pm 1}$ | 17.9 | ${ }_{0}^{0.976}$ | ${ }_{1.56}^{1.51}$ |
| 48212 | Jo94946．73＋310436．9 | A5 | ${ }^{76}$ | 7727 | 1.6 | ${ }^{85.8 \pm 1}$ | 86.8 | $31.7 \pm 1$ | 24.9 | 0.989 | 1.27 |
| 48541 | J095359．12＋274143．6 | ${ }_{\text {A }}$ | 107 | 8037 | 1.5 | ${ }^{40.6 \pm 0.6}$ | 38.7 | $30.4 \pm 1$ | 11.1 | 1.05 | 74 |
| ${ }_{48880}^{4813}$ | Jo95451．19－501438．1 | Aov | ${ }_{78}$ | 9665 | ${ }_{2.2}^{2.3}$ | $153 \pm 2$ | ${ }_{135}^{145}$ | $126 \pm 3$ | 41．4 | 1.06 | 03 |
| 48302 |  | Bry | 96 | 17000 |  |  |  | 48．7\＃2 |  |  |  |
| ${ }_{49582}^{4902}$ | ${ }_{\text {J100719．82－152718．8 }}$ | Fov | ${ }_{107}$ | ${ }_{6868}$ | ${ }_{1.6}$ |  | 355 35.9 | ${ }_{27 \pm 1}$ | ${ }_{10.3}$ | ${ }_{1} 1.099$ | ${ }_{2.62}^{1.88}$ |
| 50070 | J101322．83－511358．7 | ATV | 52 | 758 | 2.4 | $398 \pm 5$ | 411 | $139 \pm 4$ | 118 | 0.969 | 18 |
| 50605 | J102012．94－863324．2 | Fsiv | 78 | 6649 | 1.4 | $53.8 \pm 0.7$ | 55.5 | $19.7 \pm 0.9$ | 15.9 | 0.97 | 124 |
| 50658 | J102044．25－052255．4 | ${ }^{\text {A2 }}$ | 106 | 8412 | 1.8 | $58.1 \pm 0.8$ | 59.1 | ${ }^{23.4 \pm 1}$ | 16.9 | ${ }^{0.982}$ | 1.38 |
| ${ }_{51259}$ | ${ }_{\text {J102814．56－361312．9 }}$ | ${ }_{\text {F3V }}$ | 105 | ${ }_{6} 6720$ | ${ }_{1.6}^{1.9}$ | ${ }^{44.1+0.6}$ | ${ }_{74}^{44.2}$ | （15．8\＃0．7 | 12.8 <br> 212 <br> 2.8 | ${ }_{0}^{0.9978}$ | 1.24 1.26 1.2 1 |
| 51556 | J103151．39＋322246．7 | AoIV | ${ }^{78}$ | ${ }^{8265}$ | ${ }^{2.2}$ | $171 \pm 2$ | 176 | $59.2 \pm 2$ | 50.3 | ${ }_{0}^{0.973}$ | 1.18 |
|  |  |  |  |  |  | $56.7 \pm$ |  |  |  |  |  |

Table 5.2 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $\begin{gathered} \text { WISE } \\ \text { ID } \end{gathered}$ | $\mathrm{SpT}^{\text {a }}$ | $\begin{aligned} & \text { Dist. }{ }^{\text {b }} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{gathered} T_{\star} \\ (\mathrm{K}) \end{gathered}$ | $\begin{gathered} R_{\star} \\ \left(R_{\odot}\right) \end{gathered}$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{aligned} & F_{\text {W } 3, \star} \\ & (\mathrm{mJy}) \end{aligned}$ | $\begin{aligned} & F_{W 4} \\ & (\text { mJy } \end{aligned}$ | $\begin{aligned} & F_{W 4, \star}, \\ & (\mathrm{mJy}) \end{aligned}$ | $F_{W 3} / F_{W 3,{ }^{\text {c }}}{ }^{\text {c }}$ | $F_{W 4} / F_{W 4, *}{ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52911 | J104915.43+103242.6 | A2V | 117 | 8942 | 3.9 | $241 \pm 3$ | 252 | $86 \pm 2$ | 72.2 | 0.956 | 1.19 |
| 53484 | J105629.47-481955.3 | F0V | 97 | 7150 | 1.4 | $46.6 \pm 0.7$ | 36.9 | $95.8 \pm 2$ | 10.6 | 1.27 | 9.06 |
| 53605 | J105758.95-420221.9 | A7V | 112 | 8186 | 1.9 | $57.9 \pm 0.8$ | 59.1 | $22.9 \pm 1$ | 16.9 | 0.979 | 1.36 |
| 54778 | J111252.43+293216.6 | G5 | 92 | 5941 | 1.1 | $19.2 \pm 0.3$ | 19.9 | $8.61 \pm 0.9$ | 5.76 | 0.961 | 1.5 |
| 55081 | J111636.47-035800.4 | A3 | 89 | 8146 | 1.8 | $77.5 \pm 1$ | 79.7 | $27.7 \pm 1$ | 22.8 | 0.973 | 1.21 |
| 55485 | J112149.22+570429.7 | A 7 Vn | 81 | 8051 | 1.9 | $113 \pm 2$ | 112 | $49.9 \pm 2$ | 32.1 | 1.01 | 1.55 |
| 55570 | J112256.99-203731.7 | A7V | 111 | 7920 | 1.6 | $44.4 \pm 0.7$ | 44 | $20.3 \pm 1$ | 12.6 | 1.01 | 1.61 |
| 55802 | J112601.95-203456.5 | A5IV/V | 104 | 7955 | 2.2 | $87.1 \pm 1$ | 88.1 | $31.4 \pm 1$ | 25.2 | 0.988 | 1.24 |
| 57524 | J114724.52-495303.1 | G3/G5Vp | 92 | 5670 | 1.4 | $31.1 \pm 0.4$ | 30.6 | $13.5 \pm 0.7$ | 8.83 | 1.02 | 1.53 |
| 58361 | J115802.26-823124.4 | G3V | 87 | 5767 | 1.4 | $38.6 \pm 0.5$ | 38.2 | $14.1 \pm 0.7$ | 11 | 1.01 | 1.28 |
| 58580 | J120048.14-372844.9 | F3V | 120 | 6513 | 1.8 | $37.2 \pm 0.5$ | 38.4 | $14.6 \pm 1$ | 11 | 0.968 | 1.32 |
| 58720 | J120237.63-691132.2 | B9V | 106 | 10000 | 2.3 | $120 \pm 2$ | 100 | $124 \pm 3$ | 28.7 | 1.2 | 4.33 |
| 58851 | J120412.78+012743.2 | Am | 112 | 7884 | 1.5 | $36.8 \pm 0.6$ | 37.5 | $15.3 \pm 1$ | 10.7 | 0.982 | 1.43 |
| 59282 | J120938.74-582058.8 | A3V | 104 | 8080 | 1.6 | $50.5 \pm 0.8$ | 44.9 | $27.1 \pm 1$ | 12.9 | 1.12 | 2.11 |
| 59397 | J121105.83-562404.9 | A2V | 113 | 8281 | 1.7 | $50.9 \pm 0.7$ | 44.3 | $42.3 \pm 1$ | 12.7 | 1.15 | 3.33 |
| 59676 | J121415.40-054258.3 | Am | 78 | 7439 | 2.0 | $122 \pm 2$ | 125 | $42.9 \pm 2$ | 35.8 | 0.977 | 1.2 |
| 60561 | J122451.85-723614.0 | AOV | 91 | 9459 | 1.5 | $77.4 \pm 1$ | 64.4 | $50.7 \pm 1$ | 18.4 | 1.2 | 2.75 |
| 60746 | J122659.30+264932.6 | A4V | 85 | 8475 | 3.6 | $383 \pm 5$ | 378 | $140 \pm 3$ | 108 | 1.01 | 1.29 |
| 61240 | J123258.83-001623.7 | F0 | 105 | 6588 | 1.5 | $34.9 \pm 0.5$ | 35.7 | $14.7 \pm 1$ | 10.3 | 0.976 | 1.43 |
| 61593 | J123715.02-350606.0 | A8IV | 96 | 7342 | 1.4 | $39.3 \pm 0.6$ | 38.4 | $19.6 \pm 0.9$ | 11 | 1.02 | 1.78 |
| 61782 | J123946.17-491155.6 | A0V | 107 | 7869 | 1.3 | $42.2 \pm 0.6$ | 26.7 | $227 \pm 5$ | 7.65 | 1.58 | 29.7 |
| 62209 | J124500.33-690147.7 | A3V | 99 | 8590 | 1.4 | $40.7 \pm 0.6$ | 40.6 | $17.9 \pm 0.9$ | 11.6 | 1.0 | 1.54 |
| 63013 | J125448.23+305955.2 | F8 | 116 | 5946 | 1.0 | $9.72 \pm 0.2$ | 9.96 | $5.64 \pm 0.8$ | 2.87 | 0.976 | 1.96 |
| 63123 | J125601.45-312855.5 | A0V | 104 | 8664 | 1.6 | $54.4 \pm 0.8$ | 55.5 | $21.4 \pm 0.9$ | 15.9 | 0.981 | 1.35 |
| 63236 | J125726.12-675738.6 | A2IV/V | 111 | 8804 | 1.9 | $77.2 \pm 1$ | 62.3 | $57 \pm 2$ | 17.8 | 1.24 | 3.19 |
| 63836 | J130459.42-472348.6 | F7 | 107 | 6385 | 1.2 | $21.9 \pm 0.3$ | 21.1 | $9.94 \pm 0.8$ | 6.08 | 1.04 | 1.63 |
| 64574 | J131409.22-141655.5 | G1V | 113 | 5930 | 2.5 | $72.8 \pm 1$ | 73.7 | $25.6 \pm 0.9$ | 21.3 | 0.988 | 1.2 |
| 64837 | J131728.92-425558.8 | F3V | 89 | 6387 | 1.4 | $43.6 \pm 0.6$ | 39 | $24.5 \pm 1$ | 11.2 | 1.12 | 2.19 |
| 64882 | J131759.53-732040.8 | A1m.. | 85 | 7535 | 1.7 | $75.2 \pm 1$ | 76.4 | $28.6 \pm 1$ | 21.9 | 0.985 | 1.31 |
| 65089 | J132026.79-491325.3 | A7/A8V | 97 | 7496 | 1.3 | $35.1 \pm 0.5$ | 33 | $22.8 \pm 0.9$ | 9.45 | 1.06 | 2.42 |
| 65678 | J132759.52+524443.9 | F0 | 98 | 7449 | 2.8 | $149 \pm 2$ | 148 | $52.9 \pm 2$ | 42.3 | 1.01 | 1.25 |
| 65969 | J133133.11-280645.8 | A1V | 100 | 8788 | 2.0 | $83.7 \pm 1$ | 86.3 | $31.2 \pm 1$ | 24.7 | 0.97 | 1.26 |
| 66198 | J133407.30+552054.3 | A0V | 92 | 9996 | 2.3 | $155 \pm 2$ | 152 | $53.8 \pm 2$ | 43.6 | 1.02 | 1.23 |
| 66837 | J134152.75-185905.4 | F0V | 77 | 6972 | 1.4 | $60.4 \pm 0.8$ | 59.3 | $31.1 \pm 1$ | 17 | 1.02 | 1.83 |
| 67005 | J134354.76+520351.9 | A1V | 96 | 9591 | 2.1 | $110 \pm 2$ | 110 | $45.6 \pm 1$ | 31.5 | 1.0 | 1.45 |
| 67495 | J134952.38+131131.3 | A2 | 107 | 7971 | 2.3 | $91.4 \pm 1$ | 91.8 | $37.9 \pm 1$ | 26.3 | 0.995 | 1.44 |
| 67497 | J134954.48-501424.0 | F0V | 107 | 6816 | 1.4 | $32.9 \pm 0.5$ | 28.3 | $93.3 \pm 2$ | 8.1 | 1.16 | 11.5 |
| 67596 | J135104.57+344621.0 | A5IV | 89 | 8448 | 1.7 | $79.1 \pm 1$ | 78.8 | $33.2 \pm 1$ | 22.6 | 1.0 | 1.47 |
| 67714 | J135218.43+120954.5 | A1V | 104 | 9101 | 2.3 | $112 \pm 1$ | 113 | $41.6 \pm 1$ | 32.4 | 0.992 | 1.29 |
| 67970 | J135509.97-504443.0 | F3V | 119 | 6538 | 1.5 | $28.1 \pm 0.4$ | 24.9 | $30.8 \pm 1$ | 7.15 | 1.13 | 4.3 |
| 67973 | J135512.12-520939.0 | B8V | 108 | 10000 | 2.6 | $127 \pm 2$ | 125 | $46.2 \pm 1$ | 35.8 | 1.02 | 1.29 |
| 68764 | J140427.32+263605.9 | F8 | 105 | 6090 | 0.8 | $9.46 \pm 0.2$ | 8.89 | $6.49 \pm 0.9$ | 2.56 | 1.06 | 2.53 |
| 68781 | J140442.13-500417.2 | A2V | 113 | 8419 | 1.4 | $34.5 \pm 0.5$ | 31.9 | $17 \pm 0.9$ | 9.12 | 1.08 | 1.86 |
| 68890 | J140618.35+232318.3 | F5 | 105 | 6346 | 1.6 | $34.7 \pm 0.5$ | 35.3 | $13.1 \pm 0.8$ | 10.1 | 0.984 | 1.3 |
| 69658 | J141524.06-181202.5 | A0V | 76 | 9924 | 2.0 | $161 \pm 2$ | 168 | $55.9 \pm 2$ | 48 | 0.962 | 1.17 |
| 69758 | J141636.16-072800.2 | A0 | 108 | 7528 | 1.5 | $35.1 \pm 0.5$ | 35.8 | $13.9 \pm 0.8$ | 10.3 | 0.98 | 1.36 |
| 69917 | J141831.14+520159.9 | A2 | 97 | 8243 | 1.7 | $67 \pm 0.9$ | 67.1 | $26.9 \pm 1$ | 19.2 | 0.999 | 1.4 |

Table 5.2 (cont'd)

| HIP | $\begin{gathered} \text { wise } \\ \text { IID } \end{gathered}$ | SpT ${ }^{\text {a }}$ | $\begin{aligned} & \text { Dist.b } \\ & \text { (pc) } \end{aligned}$ | $\begin{aligned} & T_{\star} \\ & (\mathrm{K}) \end{aligned}$ | $\begin{gathered} R_{\star} \\ \left(R_{\odot}\right) \end{gathered}$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{gathered} F_{W 3, *} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{gathered} F_{W 4} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{aligned} & F_{W_{4}, \pm} \\ & (\text { mJy }) \end{aligned}$ | $F_{W 3} / F_{W 3,{ }^{*}}{ }^{\text {c }}$ | $F_{W 4} / F_{W 4, \chi^{c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70090 | J142033.37-375307.1 | Aoiv | 79 | 10000 | 4.1 | $645 \pm 9$ | ${ }^{622}$ | ${ }^{228 \pm 4}$ | 178 | 1.04 | 1.28 |
| ${ }_{70441}$ | ${ }^{J 142436.98-471040.0} \mathrm{~J} 14255.86$ | ${ }_{\text {A } 12 \mathrm{~V}}$ | 110 106 | 8946 10000 | 1.3 1.3 | ${ }_{\substack{36.1 \pm 0.6 \\ 37.6 \pm 0.5}}^{\text {a }}$ | 33.3 <br> 38.6 | $26.7 \pm 1$ $15.6 \pm 0.8$ 1. | ${ }_{11.1}{ }^{9.55}$ | 1.08 0.974 0.9 | 2.8 1.41 1 |
| 70790 | J142835.44-221605.7 | Fov | 118 | 7051 | 1.6 |  | ${ }_{31}{ }_{31}$ | (12.110.8 | 8.9 |  | 1.36 |
| 70894 | J142950.53+004944.2 | AsIV | 79 | 8177 | 2.2 | $163 \pm 2$ | 166 | 57.4土1 | 47.5 | 0.983 | ${ }_{1.21}$ |
| 71911 | J144231.58+601351.4 | F0 | 108 | 6964 | 1.6 | $35.2 \pm 0.5$ | 35.6 | $13 \pm 0.7$ | 10.2 | 0.99 | 1.28 |
| ${ }_{71933}$ | ${ }^{1144243.53-484758.9}$ | F7/F8V | 84 | ${ }_{5891}^{5891}$ | 1.5 | $45.6 \pm 0.7$ | ${ }^{45}$ | 17.3m0.9 | 13 | 1.01 | ${ }_{1}^{1.33}$ |
| ${ }_{7}^{72529}$ | ${ }^{1144958.42+283657.1}$ | A4V | 98 | ${ }_{8781}^{8781}$ | ${ }^{2.7}$ | $167+2$ $23 \pm \pm$ | ${ }^{166}$ | 79.5\#2 | ${ }_{77}^{47.6}$ | 1.0 | ${ }_{1.67}^{1.67}$ |
| 73049 | ${ }^{\text {J145544.73-335120.7 }}$ | ${ }_{\text {a }} \mathrm{N}$ | 78 | 9002 | ${ }^{2.5}$ | ${ }^{236 \pm 3}$ | ${ }_{619}^{249}$ | $80.7 \pm 2$ $26.5 \pm 1$ | ${ }_{71.3}^{71.3}$ | ${ }^{0.947}$ | ${ }_{1.13}^{1.13}$ |
| 73249 73483 |  | $\xrightarrow[\text { A9/Forl } / \mathrm{V}]{\text { AlV }}$ | 109 118 | ${ }_{7129}^{9440}$ | ${ }_{3.3}^{1.8}$ | 67.6\#0.9 $138 \pm 2$ | 66.8 144 14. | 26.5+1 | 19.1 41.2 | ${ }^{1.01}$ | 1.38 1.33 1.3 1.5 |
| 73730 | J150417.61+593206.2 | ${ }_{\text {a }}{ }^{\text {a }}$ | 100 | ${ }_{8030}^{129}$ | 1.5 | ${ }_{46.1 \pm 0.6}$ | ${ }_{46.6}^{144}$ | 18.750.8 | ${ }_{13.4}^{41.2}$ | $\underset{0.989}{0.902}$ | 1.4 |
| 74144 | J150902.28-383203.4 | Asm... | 81 | 7578 | 1.5 | $62.1 \pm 0.8$ | 62.6 | ${ }_{28.2 \pm 1}$ | 17.9 | ${ }_{0} 0.992$ | 1.57 |
| 74359 74499 | ${ }^{\mathrm{J} 151147727.67+1012929.8}$ |  | 113 90 | 9075 6412 | 1.8 <br> 1.1 <br> 1 | $57.8 \pm 0.8$ 26.110 .4 | ${ }_{25.3}^{55.2}$ | $25.2 \pm 1$ $24.2 \pm 1$ | 15.8 7.26 | 1.05 1.03 | 1.59 <br> 3.33 <br> 1.8 |
| 74553 | J151359.16+430253.6 | A5 | 100 | 7689 | 2.3 | $106 \pm 1$ | 103 | $46.6 \pm 1$ | 29.5 | 1.03 | 1.58 |
| 74596 | J151429.11+290951.8 | A2V | 77 | 8931 | 2.6 | ${ }^{248 \pm 3}$ | 259 | ${ }^{88 \pm 2}$ | 74.3 | 0.956 | 1.18 |
| 74923 | J151837.62-250001.8 | A1/A2V | 116 | 7850 | 1.6 | $37.7 \pm 0.6$ | 37.6 | $17.5 \pm 1$ | 10.8 | 1.0 | 1.62 |
| ${ }_{75684}^{75164}$ | ${ }^{\text {J }}$ | ${ }_{\text {FF6V }}^{\text {A1V }}$ | 109 92 | 8785 6252 | 2.4 1.2 | - $\begin{gathered}110 \pm 2 \\ 26.1 \pm 0.5\end{gathered}$ | 112 27.2 | 41+1 $11.4+1$ |  | ${ }_{0}^{0.984} 0$ | 1.28 1.45 1 |
| 75729 | J152813.79-112655.8 | ${ }_{\text {a }}$ | 89 | ${ }_{7270}$ | 1.4 | ${ }_{43.8 \pm 0.6}$ | 45 | $18 \pm 1$ | ${ }_{12.9}$ | ${ }_{0.973}$ | 1.39 |
| 75788 | $\mathrm{J}^{1528566.82+551142.1}$ | A3m | 94 | 8866 | 1.8 | ${ }^{87.1 \pm 1}$ | 86.2 | ${ }^{32.8 \pm 1}$ | 24.7 | 1.01 | ${ }^{1.33}$ |
| 75848 75939 |  | ${ }_{\text {A }}^{\text {Ap }}$ | 89 80 | 7695 8063 | ${ }_{2.1}^{1.9}$ | - $\begin{aligned} & 89 \pm 1 \\ & 133 \pm 2\end{aligned}$ | 89.4 137 | $\begin{aligned} & 35.3 \pm 2 \\ & 51.4 \pm 2\end{aligned}$ | ${ }_{39.4}^{25.6}$ | 0.996 0.969 | 1.38 1.31 1.3 |
| ${ }_{75953}$ | J153046.06+342756.3 | ${ }_{\text {AO }}$ | 108 | ${ }_{9143}$ | 1.7 | ${ }^{193 \pm 1 \pm 0.8}$ | 59.9 | ${ }_{30.8 \pm 1}^{51.42}$ | ${ }_{17.2}$ | ${ }_{0}^{0.986}$ | ${ }_{1.79}$ |
| 76217 | J153410.07-331017.1 | aov | 102 | 9550 | 1.4 | $46.6 \pm 0.7$ | 46.9 | $19.8 \pm 1$ | 13.4 | ${ }^{0.994}$ | 1.48 |
| 76305 | ${ }^{\text {J153514.07+651640.2 }}$ | $\mathrm{A}^{2}$ | 114 | ${ }_{9592}$ | ${ }^{1.5}$ |  | 37.1 | ${ }_{1}^{16.3 \pm 0.7}$ | 10.6 | ${ }^{0.987}$ | ${ }^{1.53}$ |
| 76666 76712 | ${ }^{\text {J }}$ | ${ }_{\substack{\text { B93V }}}^{\text {ci. }}$ | 1100 115 | 9244 6659 | 2.0 1.3 1 | $89+1$ $20.9+0.4$ | 90.8 21.3 |  | ${ }_{6.1}^{26}$ | ${ }_{\substack{0.981 \\ 0.985}}^{0.991}$ | 1.52 1.5 1.5 |
| 76736 | J154011.47-701440.9 | AsV | 78 | 8774 | 1.6 | ${ }_{97.3 \pm 1}$ | 87 | ${ }_{83.6 \pm 2}$ | 24.9 | 1.12 | 3.36 |
| 7711 | J154442.11+171551.3 | Aov | 114 | 9555 | 2.3 | $100 \pm 1$ | 101 | $35.1 \pm 1$ | 28.9 | 0.993 | ${ }_{1.21}$ |
| 77163 | J154523.49+052650.2 | Alv | 113 | 9080 | 3.3 | $190 \pm 2$ |  | $85.6 \pm 2$ | 55.8 | 0.974 | 1.53 |
| 77170 | J154526.29-261758.0 | Gov | 116 | 5813 | 1.7 | $31.9 \pm 0.6$ | 32.7 | $16.6 \pm 1$ | 9.44 | 0.976 | 1.76 |
| 77432 | J154824.76-423705.2 | F5V | 96 | 6435 | 1.1 | $22.8 \pm 0.4$ | ${ }^{21}$ | $13.2 \pm 0.9$ | 6.03 | 1.08 | 2.19 |
| 77435 | J154826.59-235002.6 | A2IV/V | ${ }_{8} 8$ | 8540 | 1.6 | ${ }^{72.2 \pm 1}$ | 74.7 | $27.9 \pm 2$ | 21.4 | ${ }^{0.967}$ | 1.3 |
| 77910 | ${ }^{1155440.27+083449.2}$ | ${ }_{\text {ATVn }}^{\text {F7V }}$ | 79 | ${ }^{7871}$ | ${ }^{2.1}$ | ${ }_{136 \pm 2}^{136 \pm 2}$ | ${ }_{1}^{136}$ | ${ }^{57.9 \pm 2}$ | 39 | 1.079 | 1.48 |
| 778359 | ${ }^{\mathrm{J} 155528.15-171523.2}$ | ${ }_{\text {FTOV }}$ | 116 105 | ${ }_{9219}^{5577}$ | 1.2 <br> 1.6 <br> 1 | $14.6 \pm 0.3$ $57.6 \pm 0.8$ | 14.9 57.1 | $7.84 \pm 1$ $23.9 \pm 1$ | 4.31 16.4 16. | 0.979 1.01 1 | 1.82 1.46 1 |
| 78596 | ${ }^{1660249.37-743344.0}$ | F2/F3V | 104 | ${ }_{6802}^{680}$ | 1.4 | ${ }^{32 \pm 0.4}$ | 31.3 | $18.5 \pm 0.9$ | 8.99 | 1.02 | ${ }^{2.05}$ |
| 78995 78996 |  | A90 | 77 108 | ${ }_{6373}^{5896}$ | 0.9 1.7 | $19.1 \pm 0.4$ $48 \pm 0.8$ | 19 37.4 | 9,93土1 $41.8 \pm 2$ | 5.48 10.7 | 1.01 1.28 1 | 1.81 3.89 |
| 79044 | J160804.36-361354.8 | B9V | 103 | 10000 | 1.5 | ${ }^{46.2 \pm 0.7}$ | 47.1 | $17.4 \pm 1$ | ${ }^{13.5}$ | 0.98 | 1.29 |
| 79835 | J161745.30-374514.6 | F3V | 79 | 6508 | 1.6 | $66.4 \pm 0.9$ | 68.6 | $25.8 \pm 1$ | 19.7 | 0.967 | 1.31 |
| 80427 | J162500.27+514300.0 | ${ }_{\text {A }}$ | 117 | 7750 6585 | 1.9 | ${ }_{51.9 \pm 0.7}^{51.90 .7}$ | ${ }_{52.3}^{52.3}$ | ${ }^{20.1 \pm 0.7}$ | 15 | ${ }^{0.992}$ | ${ }_{1}^{1.34}$ |
| 81160 81393 |  | ${ }_{\text {G55 }}^{\text {F5 }}$ | 110 88 | 6548 5005 | 1.3 <br> 1.4 | ${ }_{\substack{21.9 \pm 0.3 \\ 29.10 .5}}^{\text {ato }}$ | 21.5 30.5 | $\underset{\substack{9.11 \pm 0.8 \\ 13.6 \pm 1}}{ }$ | 6.18 8.82 | 1.02 0.954 1 | 1.48 1.54 1.41 |
|  | J163729.90-115211.6 | F2 | 119 |  | 2.4 | $59.4 \pm 0.9$ | 57.3 | $34.8 \pm 2$ | 16.5 | 1.04 | 2.11 |

Table 5.2 (cont'd)

| HIP <br> ID | WISE <br> ID | SpT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 5.2 (cont'd)

| $\begin{aligned} & \text { HIP } \\ & \text { HIP } \end{aligned}$ | $\begin{aligned} & \text { WISE } \\ & \text { ID } \end{aligned}$ | $\mathrm{SpT}{ }^{\text {a }}$ | $\begin{aligned} & \text { Dist. }^{\text {b }} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{aligned} & T_{\star} \\ & (\mathrm{K}) \end{aligned}$ | $\begin{gathered} R_{\star} \\ \left(R_{\odot}\right) \end{gathered}$ | $\begin{aligned} & F_{W 3} \\ & (\mathrm{mJy}) \end{aligned}$ | $\begin{gathered} F_{W 3, \star} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{aligned} & F_{W_{4}} \\ & (\mathrm{mJy}) \end{aligned}$ | $F_{W 4, \star}$ ( mJy ) | $F_{W 3} / F_{W 3, \star^{\text {c }}}{ }^{\text {c }}$ | $F_{W 4} / F_{W 4, \star}{ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103777 | J210145.28-265251.7 | A3V | 93 | 9117 | 2.1 | $117 \pm 2$ | 119 | $41.5 \pm 1$ | 33.9 | 0.989 | 1.22 |
| 104430 | J210916.04-001405.6 | A3 | 101 | 8078 | 2.1 | $92.5 \pm 1$ | 89.9 | $47.2 \pm 2$ | 25.8 | 1.03 | 1.83 |
| 105570 | J212253.65+064840.2 | A3V | 101 | 8792 | 3.7 | $293 \pm 4$ | 294 | $102 \pm 3$ | 84.1 | 0.996 | 1.21 |
| 106313 | J213155.33-584500.4 | Fov | 111 | 6678 | 1.6 | $33.2 \pm 0.5$ | 33.7 | $13.3 \pm 0.9$ | 9.65 | 0.986 | 1.38 |
| 106783 | J213743.68+063706.2 | A2V | 88 | 9336 | 1.8 | $99.1 \pm 1$ | 99 | $41.2 \pm 1$ | 28.3 | 1.0 | 1.45 |
| 107063 | J214102.27+050114.3 | A5 | 115 | 8132 | 1.8 | $51 \pm 0.7$ | 53 | $19.4 \pm 1$ | 15.2 | 0.962 | 1.27 |
| 107336 | J214423.84-044351.2 | A2 | 111 | 8625 | 2.1 | $78 \pm 1$ | 79.4 | $29.6 \pm 1$ | 22.7 | 0.983 | 1.3 |
| 107517 | J214632.11-112157.4 | A1V | 86 | 9814 | 2.2 | $161 \pm 2$ | 164 | $61.8 \pm 2$ | 47 | 0.979 | 1.31 |
| 107585 | J214724.82-043631.2 | A2 | 97 | 8898 | 1.6 | $62.1 \pm 0.9$ | 59.4 | $41 \pm 2$ | 17 | 1.05 | 2.41 |
| 107697 | J214858.23-512158.5 | A8V | 116 | 7716 | 1.8 | $46 \pm 0.6$ | 46.4 | $18.6 \pm 1$ | 13.3 | 0.993 | 1.4 |
| 108570 | J215934.54+565316.5 | F0 | 110 | 7321 | 2.0 | $59.9 \pm 0.8$ | 60.3 | $23.1 \pm 0.9$ | 17.3 | 0.993 | 1.33 |
| 109198 | J220714.87-740510.7 | F7V | 100 | 6258 | 1.2 | $22.5 \pm 0.4$ | 22.3 | $9.67 \pm 0.8$ | 6.44 | 1.01 | 1.5 |
| 110739 | J222606.81-051040.3 | F0 | 79 | 7256 | 1.5 | $67.3 \pm 1$ | 68.6 | $29.2 \pm 1$ | 19.7 | 0.981 | 1.48 |
| 110786 | J222641.68-111341.5 | A3 | 78 | 7481 | 1.6 | $82.2 \pm 1$ | 81.7 | $39 \pm 2$ | 23.4 | 1.01 | 1.67 |
| 111264 | J223227.75+291355.9 | G5 | 98 | 5607 | 1.2 | $19.1 \pm 0.3$ | 19 | $8.65 \pm 0.9$ | 5.48 | 1.01 | 1.58 |
| 111822 | J223857.61-100607.7 | G0 | 118 | 5970 | 2.3 | $52.5 \pm 0.7$ | 54.2 | $19.9 \pm 1$ | 15.7 | 0.967 | 1.27 |
| 112694 | J224917.46-702052.3 | A2V | 105 | 8828 | 2.2 | $97.7 \pm 1$ | 96.8 | $34.3 \pm 1$ | 27.7 | 1.01 | 1.24 |
| 112835 | J225103.84+521605.5 | F0 | 93 | 7435 | 1.6 | $55.4 \pm 0.8$ | 56.3 | $20.4 \pm 1$ | 16.1 | 0.985 | 1.27 |
| 113195 | J225524.99+701750.3 | A5 | 79 | 7209 | 1.4 | $57.4 \pm 1$ | 58 | $21.9 \pm 1$ | 16.6 | 0.99 | 1.31 |
| 113981 | J230500.76+183752.5 | F0 | 79 | 6884 | 1.7 | $80.6 \pm 1$ | 83 | $29.3 \pm 1$ | 23.8 | 0.972 | 1.23 |
| 114031 | J230533.05+145732.6 | A0 | 106 | 9604 | 1.6 | $54 \pm 0.8$ | 54.8 | $29.9 \pm 1$ | 15.7 | 0.985 | 1.91 |
| 114371 | J230949.56-143038.0 | A0V | 104 | 9432 | 1.9 | $81 \pm 1$ | 78.3 | $31.9 \pm 2$ | 22.4 | 1.03 | 1.42 |
| 114802 | J231519.30-245106.3 | A5IV | 111 | 8079 | 1.8 | $49.2 \pm 0.7$ | 51.4 | $19.3 \pm 1$ | 14.7 | 0.958 | 1.31 |
| 114868 | J231600.69+352358.2 | F0 | 79 | 7246 | 1.9 | $99.3 \pm 1$ | 99.7 | $35.1 \pm 1$ | 28.6 | 0.996 | 1.23 |
| 115806 | J232740.40+251001.9 | A0MNp... | 111 | 10000 | 2.3 | $99.3 \pm 1$ | 96.2 | $40.5 \pm 1$ | 27.5 | 1.03 | 1.47 |
| 116479 | J233605.82+030903.4 | F0 | 101 | 7106 | 1.5 | $40 \pm 0.6$ | 40.7 | $16.8 \pm 1$ | 11.7 | 0.983 | 1.44 |
| 117352 | J234739.24-042741.7 | A2 | 107 | 7599 | 1.7 | $44.8 \pm 0.7$ | 46.9 | $17.9 \pm 1$ | 13.4 | 0.956 | 1.33 |
| 118022 | J235624.75+560158.5 | F8 | 102 | 6248 | 1.7 | $43.3 \pm 0.6$ | 44.9 | $16.5 \pm 0.8$ | 12.9 | 0.964 | 1.27 |
| 118027 | J235628.07+831128.0 | A3V | 91 | 8975 | 1.7 | $76.8 \pm 1$ | 75.6 | $53.4 \pm 1$ | 21.6 | 1.02 | 2.47 |
| 118133 | J235746.21+112827.7 | B9V | 95 | 9346 | 1.6 | $65.5 \pm 1$ | 64.5 | $30.2 \pm 1$ | 18.5 | 1.02 | 1.63 |

[^22]Table 5.3. Disk Parameters from Blackbody Fits and Excess Information for Stars within 120 pc

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $\begin{gathered} T_{d} \\ (\mathrm{~K}) \end{gathered}$ | $T_{d, \lim }$ <br> (K) | $\begin{gathered} R_{d} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} R_{d, \lim } \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\begin{gathered} f_{d, \lim } \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\Sigma_{E[W 3-W 4]}$ | New? | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 301 | . | <144 | . . | >36 | $>0.43$ | 1.8 | $>0.061$ | 8.67 | N | b |
| 1829 | 123 | <190 | 9.7 | $>4.1$ | 0.039-0.092 | 11 | $>0.37$ | 6.17 | Y | c |
| 2496 | 162 | <190 | 10 | $>7.6$ | 0.071-0.098 | 13 | $>0.48$ | 22.00 | N | c |
| 2539 | . . | $<206$ | . . | $>6.8$ | >0.071 | 2.8 | $>0.1$ | 4.52 | Y | b |
| 4303 | . . . | <144 | $\ldots$ | $>9.1$ | $>0.085$ | 4.4 | $>0.16$ | 3.20 | Y | b |
| 4366 | . . . | $<150$ | . . . | >14 | $>0.18$ | 4.6 | $>0.17$ | 12.20 | N | b |
| 4630 | ... | $<162$ | . . | $>8.7$ | $>0.079$ | 5.3 | $>0.2$ | 7.87 | Y | b |
| 5233 | . $\cdot$ | <169 | $\cdots$ | $>13$ | $>0.11$ | 3.9 | $>0.15$ | 7.79 | Y | b |
| 5626 | 114 | $<156$ | 33 | $>18$ | 0.21-0.4 | 11 | $>0.29$ | 28.70 | N | c |
| 7051 | 89.8 | <169 | 22 | $>6.3$ | 0.052-0.19 | 20 | $>0.31$ | 7.39 | Y | c |
| 7283 | 97.2 | $<241$ | 37 | $>6.1$ | 0.059-0.36 | 4.4 | $>0.083$ | 4.65 | Y | c |
| 7943 | 162 | <206 | 16 | $>9.9$ | 0.12-0.19 | 5.9 | $>0.2$ | 21.90 | N | c |
| 7965 | 93.4 | $<183$ | 70 | $>18$ | 0.15-0.59 | 6.7 | $>0.1$ | 12.40 | Y | c |
| 8250 | . . | <198 | . . | $>3.7$ | $>0.037$ | 5.4 | $>0.2$ | 3.05 | Y | b |
| 8417 | . . | <198 | . . | $>6.8$ | $>0.066$ | 3 | $>0.11$ | 3.18 | Y | b |
| 8920 | 403 | <419 | 0.7 | $>0.65$ | 0.0068-0.0073 | 3400 | $>51$ | 48.90 | N | c |
| 9285 | . . | $<150$ | . . | $>15$ | $>0.14$ | 1.9 | $>0.067$ | 4.04 | Y | b |
| 10320 | 223 | $<282$ | 12 | $>7.5$ | 0.076-0.12 | 4.6 | $>0.15$ | 12.00 | N | c |
| 10355 | , | <198 | . . | $>6.2$ | $>0.057$ | 3 | $>0.11$ | 3.22 | Y | b |
| 11522 | . . | <162 | . . | $>5.6$ | $>0.05$ | 9.4 | $>0.37$ | 4.84 | Y | b |
| 11696 | 436 | $<454$ | 0.87 | $>0.8$ | 0.015-0.016 | 400 | $>5.2$ | 28.40 | N | c |
| 11821 | . . | <190 | . . | $>5.9$ | $>0.062$ | 2.8 | $>0.11$ | 3.61 | Y | b |
| 12876 | . $\cdot$ | $<282$ | . . . | $>8.1$ | $>0.093$ | 1.8 | $>0.045$ | 3.30 | Y | b |
| 13063 |  | <176 |  | $>9.5$ | $>0.09$ | 4.6 | $>0.17$ | 7.35 | Y | b |
| 13394 | 131 | . | 5.5 | . | 0.180 | . | $>5.2$ | 5.74 | Y | a |
| 13682 | 169 | <198 | 8 | $>5.8$ | 0.05-0.069 | 10 | $>0.36$ | 13.40 | Y | c |
| 13872 | 97.2 | $<232$ | 19 | $>3.4$ | 0.033-0.19 | 7.1 | $>0.14$ | 3.90 | Y | c |
| 15152 | \% | $<223$ | \% | $>2.5$ | $>0.026$ | 6.7 | $>0.23$ | 3.35 | Y | b |
| 15870 | $\cdots$ | <183 |  | $>12$ | $>0.13$ | 1.4 | $>0.047$ | 3.76 | Y | b |
| 15922 | 183 | $<241$ | 8.2 | $>4.7$ | 0.04-0.069 | 6.2 | $>0.23$ | 7.97 | Y | c |
| 15933 | 89.8 | $<251$ | 31 | $>4$ | 0.04-0.31 | 5.6 | $>0.084$ | 3.65 | N | c |
| 15987 | 133 | <190 | 22 | $>11$ | 0.099-0.2 | 6.2 | $>0.21$ | 15.30 | Y | c |
| 16028 | 114 | $<232$ | 14 | $>3.4$ | 0.031-0.13 | 9 | $>0.26$ | 4.15 | Y | c |
| 16322 | 131 | . . | 43 | . . | 0.389 | . . | $>0.72$ | 2.94 | Y | a |
| 16386 | , | <162 | , | $>10$ | $>0.084$ | 3.8 | $>0.13$ | 4.81 | Y | b |
| 16425 | 150 | $<271$ | 17 | $>5.3$ | 0.046-0.15 | 3.4 | $>0.13$ | 4.54 | Y | c |
| 16511 | 131 | . . | 30 |  | 0.274745041 | . . | $>1.1$ | 3.75 | Y | a |
| 16671 | 114 | <190 | 12 | $>4.2$ | 0.035-0.099 | 23 | $>0.68$ | 6.70 | Y | c |
| 16876 | 144 | $<214$ | 13 | $>6.1$ | 0.051-0.11 | 4.5 | $>0.16$ | 8.61 | Y | c |
| 17091 | 183 | $<214$ | 1.8 | $>1.3$ | 0.015-0.021 | 48 | $>1.8$ | 7.48 | Y | c |
| 17256 | . . | <198 | . . | $>7$ | >0.07 | 2 | $>0.075$ | 3.37 | Y | b |
| 17391 | 109 | <198 | 13 | $>4.1$ | 0.036-0.12 | 13 | $>0.35$ | 7.38 | Y | c |
| 17707 | . . | <162 | . $\cdot$ | $>18$ | $>0.16$ | 2.9 | $>0.1$ | 9.23 | Y | b |
| 17900 | 232 | $<271$ | 8.6 | $>6.3$ | 0.055-0.075 | 6.7 | $>0.19$ | 11.80 | Y | c |
| 18217 |  | <128 | . . . | $>14$ | >0.29 | 3.5 | $>0.12$ | 8.14 | N | b |
| 18297 | 144 | $<232$ | 13 | $>4.9$ | 0.041-0.11 | 4 | $>0.14$ | 4.53 | Y | c |
| 18437 | 144 | <156 | 14 | $>12$ | 0.12-0.14 | 27 | $>0.92$ | 51.90 | N | c |
| 18671 | . . | <206 | . . | $>4.1$ | $>0.045$ | 4 | $>0.15$ | 3.72 | N | b |
| 18729 | $\cdots$ | $<223$ | $\ldots$ | $>6.6$ | $>0.065$ | 2.6 | $>0.085$ | 5.54 | Y | b |
| 18863 |  | <139 | $\cdots$ | $>17$ | $>0.15$ | 5.8 | $>0.19$ | 12.00 | Y | b |
| 19215 | 139 | <169 | 6.6 | $>4.5$ | 0.038-0.056 | 37 | $>1.3$ | 14.80 | Y | c |
| 20171 | 101 | $<251$ | 43 | $>7$ | 0.085-0.52 | 2.7 | $>0.052$ | 4.73 | Y | c |
| 20279 | 190 | $<271$ | 4.1 | $>2$ | 0.018-0.036 | 8 | $>0.3$ | 3.78 | Y | c |
| 21238 | 150 | <183 | 9.1 | $>6.1$ | 0.086-0.13 | 15 | $>0.55$ | 22.70 | Y | c |
| 21618 | 86.3 | $<214$ | 34 | $>5.6$ | 0.055-0.34 | 11 | $>0.15$ | 5.46 | N | c |
| 22200 | 83 | <109 | 15 | $>8.7$ | 0.076-0.13 | 240 | $>2.8$ | 24.80 | Y | c |
| 22226 | . . | <128 | $\cdots$ | $>9$ | >0.11 | 20 | $>0.69$ | 16.00 | N | b |
| 22410 | 93.4 | $<169$ | 11 | $>3.4$ | 0.03-0.099 | 64 | $>1.1$ | 7.22 | Y | c |
| 22776 | 131 | . . | 3.4 | . . | 0.121 | $\cdots$ | $>8.7$ | 5.84 | Y | a |
| 23088 | 131 | . . | 25 | $\cdots$ | 0.28786817 | . . | $>2.3$ | 9.68 | Y | a |
| 23451 | 123 | $<128$ | 11 | >10 | 0.093-0.1 | 410 | $>12$ | 104.00 | N | c |
| 23621 | . . | <133 | . . | $>15$ | $>0.17$ | 4.2 | $>0.14$ | 6.49 | Y | b |
| 25020 | 86.3 | $<176$ | 19 | $>4.7$ | 0.046-0.19 | 26 | $>0.36$ | 7.82 | Y | c |
| 25608 | $\cdots$ | $<156$ | . . | $>19$ | $>0.22$ | 2 | $>0.07$ | 7.48 | N | b |
| 25638 | 131 | -15 | 20 | . | 0.213 | $\cdot$ | $>2.3$ | 4.41 | Y | a |
| 25998 | 79.7 | $<105$ | 34 | $>19$ | 0.18-0.31 | 85 | $>0.81$ | 35.40 | N | c |
| 26062 | 156 | <162 | 12 | $>12$ | 0.1-0.11 | 530 | $>18$ | 119.00 | N | c |
| 26330 | . | <144 | $\cdots$ | $>4.4$ | $>0.064$ | 8.2 | $>0.31$ | 4.06 | Y | b |
| 26621 | 156 | $<206$ | 7.1 | $>4.1$ | 0.039-0.068 | 13 | $>0.53$ | 11.90 | N | c |
| 26625 | 89.8 | <183 | 19 | $>4.5$ | 0.056-0.23 | 18 | $>0.28$ | 5.21 | Y | c |
| 26966 | 183 | <206 | 11 | $>8.7$ | 0.12-0.15 | 12 | $>0.43$ | 32.20 | N | c |

Table 5.3 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $\begin{gathered} T_{d} \\ (\mathrm{~K}) \end{gathered}$ | $\begin{gathered} T_{d, \lim } \\ (\mathrm{~K}) \end{gathered}$ | $\begin{gathered} R_{d} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} R_{d, \lim } \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\begin{gathered} f_{d, \lim } \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\Sigma_{E[W 3-W 4]}$ | New? | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27259 | 86.3 | <150 | 37 | >12 | 0.13-0.39 | 20 | $>0.25$ | 16.00 | N | c |
| 27698 |  | $<139$ |  | $>14$ | $>0.14$ | 2.4 | $>0.082$ | 4.08 | Y | b |
| 27713 | 150 | $<223$ | 19 | $>8.7$ | 0.088-0.19 | 3.8 | $>0.14$ | 10.00 | Y | c |
| 28230 | 89.8 | <128 | 21 | $>10$ | 0.13-0.26 | 53 | $>0.83$ | 28.90 | N | c |
| 28385 | 131 | ... | 21 | ... | 0.207 | . | $>2$ | 2.91 | Y | a |
| 28778 | 83 | <206 | 29 | >4.7 | 0.048-0.3 | 18 | $>0.21$ | 5.38 | Y | c |
| 29487 |  | <133 |  | $>22$ | $>0.18$ | 2.1 | $>0.068$ | 4.26 | Y | b |
| 29510 | 162 | <251 | 5.3 | $>2.2$ | 0.023-0.054 | 7 | $>0.27$ | 3.40 | Y | c |
| 29606 | ... | <190 | ... | >5.6 | $>0.054$ | 3.7 | $>0.14$ | 3.62 | Y | b |
| 30088 | 83 | <144 | 47 | $>16$ | 0.16-0.48 | 16 | $>0.17$ | 14.90 | Y | c |
| 30291 | 97.2 | <183 | 15 | $>4.3$ | 0.044-0.16 | 18 | $>0.36$ | 7.88 | Y | c |
| 30685 | 89.8 | <214 | 17 | $>2.9$ | 0.029-0.16 | 15 | $>0.24$ | 4.55 | Y | c |
| 30760 |  | <214 |  | >5.9 | $>0.07$ | 2 | $>0.068$ | 4.78 | N | b |
| 30939 | ... | <169 | .. | $>3.5$ | $>0.073$ | 4.2 | $>0.17$ | 3.42 | Y | b |
| 31386 | 86.3 | <214 | 23 | $>3.7$ | 0.041-0.25 | 11 | $>0.15$ | 4.79 | N | c |
| 33227 | $\ldots$ | <176 | $\ldots$ | $>5.5$ | $>0.064$ | 7.3 | $>0.29$ | 6.23 | Y | b |
| 33384 | $\ldots$ | <190 | $\ldots$ | $>17$ | $>0.16$ | 1.4 | $>0.05$ | 3.30 | Y | b |
| 33476 | $\ldots$ | <162 | $\ldots$ | $>10$ | >0.091 | 4.2 | $>0.16$ | 5.86 | Y | b |
| 33477 | $\cdots$ | <150 | $\ldots$ | >9.7 | $>0.098$ | 4.2 | $>0.16$ | 4.04 | Y | b |
| 33788 | $\cdots$ | <156 | $\cdots$ | $>7.6$ | $>0.071$ | 6.2 | $>0.24$ | 7.19 | Y | b |
| 34276 | $\ldots$ | <139 | $\cdots$ | >19 | $>0.18$ | 4.9 | $>0.16$ | 13.80 | N | b |
| 35572 | $\cdots$ | <176 |  | $>6.7$ | $>0.061$ | 4.6 | $>0.18$ | 3.39 | Y | b |
| 36312 | 123 | <198 | 6.6 | >2.6 | 0.031-0.079 | 14 | $>0.47$ | 6.50 | N | c |
| 36624 | 101 | <176 | 26 | >8.6 | 0.11-0.32 | 8.9 | $>0.18$ | 10.90 | N | c |
| 36837 | 128 | <190 | 23 | $>10$ | 0.091-0.2 | 5.3 | $>0.16$ | 11.20 | Y | c |
| 37411 | 114 | <241 | 8.4 | >1.9 | 0.02-0.091 | 8.5 | $>0.25$ | 3.80 | Y | c |
| 38403 | 109 | <214 | 29 | $>7.5$ | 0.073-0.28 | 6.2 | $>0.16$ | 7.46 | N | c |
| 39510 |  | <183 |  | >6.5 | $>0.06$ | 5.1 | $>0.2$ | 8.28 | Y | b |
| 39535 | 97.2 | <198 | 45 | $>11$ | 0.1-0.42 | 5 | $>0.087$ | 6.80 | N | c |
| 40706 | 101 | <241 | 24 | $>4.3$ | 0.15-0.85 | 5.4 | $>0.12$ | 7.50 | Y | c |
| 41765 | $\ldots$ | <133 | $\ldots$ | $>10$ | $>0.12$ | 6.1 | $>0.21$ | 5.30 | Y | b |
| 41891 | $\ldots$ | <169 | $\ldots$ | $>4.3$ | $>0.038$ | 13 | $>0.52$ | 3.87 | Y | b |
| 42090 | $\ldots$ | <118 |  | >38 | $>0.35$ | 2 | $>0.059$ | 4.37 | Y | b |
| 42197 | 118 | $<214$ | 16 | $>4.9$ | 0.059-0.19 | 6.1 | $>0.18$ | 6.70 | $\stackrel{N}{\mathrm{~N}}$ | c |
| 42353 |  | <198 |  | >9.8 | $>0.088$ | 2 | $>0.068$ | 4.29 | Y | b |
| 42637 | 282 | <306 | 6.2 | $>5.3$ | 0.055-0.065 | 20 | $>0.46$ | 28.70 | N | c |
| 42928 | 131 | . | 20 | . | 0.240 | . | $>2.7$ | 6.64 | Y | a |
| 42994 | 123 | $<176$ | 16 | > 7.9 | 0.071-0.14 | 9 | $>0.28$ | 11.20 | Y | c |
| 43620 | 105 | <176 | 37 | $>13$ | 0.14-0.4 | 6 | $>0.13$ | 14.30 | Y | c |
| 44078 | . | <139 |  | $>13$ | $>0.11$ | 4.6 | $>0.16$ | 3.94 | Y | b |
| 44272 | 79.7 | <176 | 13 | $>2.7$ | 0.035-0.17 | 54 | $>0.54$ | 5.55 | Y | c |
| 44393 | 162 | <261 | 6.8 | $>2.6$ | 0.027-0.071 | 4.9 | $>0.19$ | 4.22 | Y | c |
| 44504 | , | <169 |  | $>21$ | $>0.17$ | 1.7 | $>0.063$ | 5.38 | Y | b |
| 44923 | 133 | $<214$ | 23 | $>9$ | 0.11-0.28 | 3.3 | $>0.11$ | 9.92 | N | c |
| 45167 | 150 | <198 | 18 | $>10$ | 0.11-0.18 | 5.3 | $>0.18$ | 16.10 | N | c |
| 45424 | . . | <223 | . . | >8.5 | $>0.076$ | 1.9 | $>0.058$ | 3.33 | Y | b |
| 45511 | $\cdots$ | $<223$ | $\cdots$ | $>5.4$ | $>0.059$ | 2.6 | $>0.089$ | 3.56 | Y | b |
| 45585 | 169 | <183 | 13 | $>11$ | 0.14-0.16 | 15 | $>0.54$ | 42.40 | N | c |
| 45667 | 139 | <162 | 14 | $>10$ | 0.11-0.15 | 14 | $>0.49$ | 28.90 | Y | c |
| 46546 | . . | <162 | $\cdots$ | >13 | $>0.13$ | 2 | $>0.074$ | 4.65 | Y | b |
| 46679 | 128 | <198 | 9.9 | $>4.1$ | 0.039-0.094 | 10 | $>0.34$ | 9.21 | Y | c |
| 46897 | ... | <133 | $\ldots$ | $>20$ | $>0.25$ | 2.5 | $>0.081$ | 6.90 | N | b |
| 47115 | 144 | <190 | 13 | $>7.3$ | $0.091-0.16$ | 7.6 | $>0.27$ | 18.50 | Y | c |
| 47335 | 93.4 | <198 | 21 | $>4.6$ | 0.057-0.26 | 12 | $>0.21$ | 8.74 | Y | c |
| 47382 | ... | <105 | $\ldots$ | $>23$ | $>0.22$ | 4.2 | $>0.1$ | 2.89 | Y | b |
| 47571 | $\ldots$ | <183 | ... | $>8.2$ | $>0.079$ | 3.8 | $>0.14$ | 7.06 | Y | b |
| 48164 | $\cdots$ | <133 | $\cdots$ | $>12$ | $>0.14$ | 6.2 | $>0.22$ | 8.33 | N | b |
| 48212 | ... | <198 | $\ldots$ | >5.6 | $>0.074$ | 2.9 | $>0.11$ | 3.85 | Y | b |
| 48541 | 123 | <156 | 14 | >9 | 0.084-0.14 | 19 | $>0.6$ | 20.00 | N | c |
| 48613 | 128 | $<150$ | 28 | $>21$ | 0.22-0.3 | 13 | $>0.4$ | 36.70 | $\stackrel{\mathrm{N}}{ }$ | c |
| 48830 | 131 | . . | 15 | . . | 0.188 | $\cdots$ | $>3.6$ | 5.06 | Y | a |
| 49402 | ... | $<214$ | ... | $>17$ | $>0.18$ | 2.2 | $>0.067$ | 7.22 | Y | b |
| 49582 | 156 | <183 | 7 | $>5.1$ | 0.047-0.065 | 23 | $>0.89$ | 17.90 | N | c |
| 50070 | . . | <139 | $\cdots$ | $>16$ | $>0.32$ | 2 | $>0.074$ | 3.85 | N | b |
| 50605 | . . | <144 | . . | $>7$ | $>0.09$ | 3.8 | $>0.14$ | 3.52 | Y | b |
| 50658 | $\ldots$ | <162 | $\ldots$ | >11 | $>0.1$ | 3.1 | $>0.12$ | 5.05 | Y | b |
| 50777 | $\ldots$ | <261 | $\ldots$ | $>2.1$ | $>0.02$ | 7.4 | $>0.22$ | 3.16 | Y | b |
| 51259 | ... | <176 | . | $>5.5$ | $>0.071$ | 3.9 | $>0.15$ | 3.54 | N | b |
| 51556 | $\cdots$ | <176 | . . | $>11$ | $>0.15$ | 1.5 | $>0.056$ | 2.95 | Y | b |
| 52324 | $\ldots$ | <190 | $\cdots$ | $>9.4$ | $>0.082$ | 2.2 | $>0.077$ | 4.17 | Y | b |
| 52911 | 131 | ... | 41 | ... | 0.347 |  | >1.5 | 4.42 | Y | a |

Table 5.3 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $\begin{aligned} & T_{d} \\ & (\mathrm{~K}) \end{aligned}$ | $\begin{gathered} T_{d, \text { lim }} \\ (\mathrm{K}) \end{gathered}$ | $\begin{gathered} R_{d} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} R_{d, \lim } \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\underset{\left(\times 10^{-5}\right)}{f_{d, \lim }}$ | $\Sigma_{E[W 3-W 4]}$ | New? | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53484 | 133 | <139 | 9.3 | >8.6 | 0.089-0.096 | 110 | >3.9 | 72.60 | Y | c |
| 53605 | $\cdots$ | <156 | $\cdots$ | $>12$ | $>0.11$ | 3.1 | $>0.12$ | 5.18 | Y | b |
| 54778 | $\ldots$ | <114 | $\cdots$ | $>6.8$ | $>0.074$ | 14 | $>0.42$ | 3.57 | Y | b |
| 55081 | $\ldots$ | <162 | $\cdots$ | $>10$ | $>0.11$ | 1.8 | $>0.07$ | 2.96 | Y | b |
| 55485 | 97.2 | <190 | 30 | $>7.8$ | 0.097-0.37 | 9.5 | $>0.18$ | 9.87 | N | c |
| 55570 | 101 | <198 | 23 | >6.1 | 0.055-0.21 | 9.8 | $>0.21$ | 5.83 | Y | c |
| 55802 |  | <214 |  | >6.9 | >0.066 | 2.5 | $>0.087$ | 3.47 | Y | b |
| 57524 | 133 | <214 | 5.7 | $>2.2$ | 0.024-0.062 | 14 | $>0.52$ | 6.14 | N | c |
| 58361 | 139 | <271 | 5.7 | $>1.5$ | 0.017-0.066 | 7 | $>0.26$ | 3.24 | Y | c |
| 58580 | ... | $<123$ | $\ldots$ | $>12$ | >0.1 | 6.3 | $>0.21$ | 3.41 | Y | b |
| 58720 | 162 | <176 | 17 | $>15$ | 0.14-0.16 | 18 | $>0.6$ | 47.50 | N | c |
| 58851 | ... | <176 | $\ldots$ | > 7.2 | >0.064 | 4.1 | $>0.16$ | 4.00 | Y | b |
| 59282 | 214 | <251 | 5 | > 3.7 | 0.035-0.048 | 11 | $>0.38$ | 11.90 | N | c |
| 59397 | 169 | <190 | 9 | $>7.1$ | 0.063-0.08 | 19 | $>0.73$ | 29.80 | N | c |
| 59676 | $\ldots$ | <198 | . | >6.6 | $>0.085$ | 2.3 | $>0.086$ | 2.93 | Y | b |
| 60561 | 214 | <241 | 6.4 | >5.1 | 0.056-0.071 | 12 | $>0.37$ | 23.90 | N | c |
| 60746 | 144 | $<271$ | 28 | $>7.9$ | 0.093-0.33 | 2.4 | $>0.086$ | 7.31 | Y | c |
| 61240 | ... | $<150$ | ... | $>6.9$ | $>0.066$ | 7 | $>0.27$ | 4.00 | Y | b |
| 61593 | 128 | <190 | 11 | $>4.8$ | 0.05-0.11 | 10 | $>0.35$ | 9.33 | Y | c |
| 61782 | 109 | <114 | 15 | $>14$ | 0.13-0.14 | 430 | $>10$ | 114.00 | N | c |
| 62209 | 86.3 | <190 | 30 | >6.3 | 0.063-0.31 | 11 | $>0.15$ | 6.68 | Y | c |
| 63013 | ... | $<133$ | $\cdots$ | $>4.4$ | $>0.038$ | 24 | $>0.82$ | 4.31 | Y | b |
| 63123 | $\cdots$ | <176 | $\cdots$ | >9.1 | $>0.087$ | 2.6 | $>0.096$ | 5.44 | Y | b |
| 63236 | 214 | <232 | 7 | $>6$ | 0.054-0.064 | 17 | $>0.57$ | 21.40 | N | c |
| 63836 | 156 | <232 | 4.8 | $>2.2$ | 0.02-0.045 | 11 | $>0.44$ | 4.93 | N | c |
| 64574 | ... | <241 | $\cdots$ | >3.6 | $>0.032$ | 5.3 | $>0.17$ | 3.45 | Y | b |
| 64837 | 198 | <232 | 3.4 | $>2.5$ | 0.028-0.038 | 22 | $>0.82$ | 13.30 | N | c |
| 64882 |  | <198 |  | $>5.7$ | $>0.067$ | 3.4 | $>0.13$ | 4.85 | Y | b |
| 65089 | 144 | <183 | 8 | >5 | 0.051-0.083 | 16 | $>0.6$ | 16.80 | N | c |
| 65678 | 128 | <282 | 21 | >4.4 | 0.045-0.22 | 3.2 | $>0.11$ | 4.26 | Y | c |
| 65969 | ... | <128 | $\cdots$ | $>21$ | $>0.21$ | 2.2 | $>0.069$ | 4.90 | Y | b |
| 66198 | 169 | <331 | 17 | $>4.5$ | 0.049-0.19 | 1.2 | $>0.042$ | 3.27 | Y | c |
| 66837 | 114 | <176 | 12 | >5.2 | 0.067-0.16 | 15 | $>0.43$ | 12.20 | Y | c |
| 67005 | 93.4 | <206 | 48 | $>9.8$ | 0.1-0.49 | 5.5 | $>0.088$ | 7.96 | N | c |
| 67495 | ... | <183 | $\cdots$ | $>10$ | $>0.093$ | 4.1 | $>0.16$ | 7.74 | N | b |
| 67497 | 105 | <114 | 14 | $>12$ | 0.11-0.13 | 240 | $>5.8$ | 77.70 | N | c |
| 67596 | 89.8 | <198 | 34 | $>7.1$ | 0.08-0.39 | 9 | $>0.13$ | 7.72 | N | c |
| 67714 |  | <206 |  | $>10$ | $>0.097$ | 2 | $>0.068$ | 5.25 | Y | b |
| 67970 | 139 | <156 | 7.6 | $>6$ | 0.051-0.064 | 57 | >2.1 | 35.40 | N | c |
| 67973 | 169 | <306 | 18 | $>5.6$ | 0.052-0.17 | 1.5 | $>0.052$ | 4.81 | Y | c |
| 68764 | 144 | <190 | 3.3 | >1.9 | 0.018-0.032 | 33 | $>1.2$ | 5.71 | Y | c |
| 68781 | 198 | $<251$ | 5.7 | $>3.5$ | 0.031-0.05 | 7.3 | $>0.26$ | 8.75 | N | c |
| 68890 | . . | <198 | . | $>3.8$ | >0.036 | 5.4 | $>0.21$ | 3.20 | Y | b |
| 69658 | 131 | $\cdots$ | 24 | $\cdots$ | 0.322 | $\ldots$ | $>0.98$ | 3.26 | Y | a |
| 69758 | $\ldots$ | <169 | $\cdots$ | >6.8 | $>0.063$ | 3.8 | $>0.15$ | 3.86 | Y | b |
| 69917 | $\cdots$ | <198 | $\cdots$ | >6.9 | $>0.071$ | 3.5 | $>0.13$ | 6.51 | N | b |
| 70090 | 232 | <358 | 16 | >6.7 | 0.084-0.2 | 1.7 | $>0.05$ | 5.44 | N | c |
| 70441 | 150 | $<176$ | 11 | $>7.8$ | 0.07-0.097 | 13 | $>0.45$ | 19.90 | $\stackrel{\mathrm{N}}{ }$ | c |
| 70553 | ... | $<133$ | $\ldots$ | $>16$ | >0.15 | 2.3 | $>0.072$ | 5.03 | Y | b |
| 70790 | 86.3 | <223 | 24 | > 3.6 | $0.031-0.21$ | 13 | $>0.18$ | 3.12 | Y | c |
| 70894 | $\cdots$ | <206 | $\cdots$ | >8.1 | $>0.1$ | 1.9 | $>0.068$ | 4.57 | Y | b |
| 71911 | $\cdots$ | <214 | $\cdots$ | $>3.8$ | $>0.035$ | 4.1 | $>0.15$ | 2.90 | Y | b |
| 71933 | 133 | <261 | 6.7 | $>1.7$ | 0.021-0.08 | 8 | $>0.29$ | 3.71 | Y | c |
| 72552 | 89.8 | <169 | 58 | $>16$ | 0.17-0.59 | 12 | $>0.17$ | 15.80 | N | c |
| 73049 | 131 | ... | 27 | $\cdots$ | 0.348 | $\ldots$ | $>0.99$ | 3.03 | N | a |
| 73249 | 128 | $<232$ | 22 | $>6.7$ | 0.061-0.2 | 2.6 | $>0.081$ | 4.83 | Y | c |
| 73483 | ... | <114 | $\cdots$ | $>30$ | $>0.26$ | 5.6 | $>0.16$ | 6.54 | Y | b |
| 73730 | . $\cdot$ | $<183$ | . $\cdot$. | $>6.7$ | $>0.067$ | 3.6 | $>0.14$ | 5.92 | $\stackrel{\mathrm{N}}{ }$ | b |
| 74144 | $\cdots$ | <156 | $\cdots$ | $>8$ | $>0.099$ | 6.1 | $>0.24$ | 8.68 | Y | b |
| 74359 | 183 | <251 | 9.6 | $>5.1$ | 0.045-0.085 | 4 | $>0.14$ | 8.07 | Y | c |
| 74499 | 97.2 | $<133$ | 11 | $>6.1$ | 0.068-0.13 | 76 | $>1.5$ | 19.90 | N | c |
| 74553 | 156 | $<223$ | 13 | >6.4 | 0.063-0.13 | 5.9 | $>0.23$ | 10.70 | N | c |
| 74596 | 131 |  | 27 | $\cdots$ | 0.352 |  | $>1.4$ | 4.80 | Y | a |
| 74923 | 83 | $<176$ | 33 | $>7.4$ | 0.063-0.28 | 19 | $>0.22$ | 6.23 | Y | c |
| 75164 | . . | <190 | $\ldots$ | $>12$ | $>0.11$ | 2.1 | $>0.073$ | 5.04 | Y | b |
| 75684 | ... | <114 | $\ldots$ | $>8.6$ | $>0.093$ | 11 | $>0.33$ | 3.49 | Y | b |
| 75729 | $\cdots$ | <144 | $\ldots$ | $>8.3$ | $>0.092$ | 4.9 | $>0.18$ | 4.30 | Y | b |
| 75788 | 128 | $<241$ | 20 | $>5.6$ | 0.06-0.21 | 2.6 | $>0.084$ | 5.84 | Y | c |
| 75848 | ... | <198 | ... | $>6.6$ | $>0.075$ | 4 | $>0.15$ | 5.18 | Y | b |
| 75939 | $\ldots$ | <114 | $\ldots$ | $>24$ | $>0.3$ | 3.7 | $>0.1$ | 5.43 | Y | b |
| 75953 | $\ldots$ | <128 | $\cdots$ | $>20$ | $>0.18$ | 5.9 | $>0.18$ | 13.50 | N | b |

Table 5.3 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $\begin{gathered} T_{d} \\ (\mathrm{~K}) \end{gathered}$ | $\begin{gathered} T_{d, \lim } \\ (\mathrm{~K}) \end{gathered}$ | $\begin{gathered} R_{d} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} R_{d, \lim } \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\begin{gathered} f_{d, \lim } \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\Sigma_{E[W 3-W 4]}$ | New? | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 76217 | . . | <190 | . $\cdot$ | $>7.9$ | $>0.077$ | 2.9 | $>0.098$ | 4.75 | Y | b |
| 76305 | . . | <156 | . . . | $>10$ | $>0.09$ | 4.1 | $>0.15$ | 8.05 | N | b |
| 76666 | -. | <150 | $\ldots$ | $>17$ | $>0.17$ | 3.3 | $>0.12$ | 7.01 | Y | b |
| 76712 | . . | $<176$ | $\cdots$ | $>4.4$ | $>0.038$ | 7.8 | $>0.3$ | 3.17 | Y | b |
| 76736 | 150 | <176 | 12 | $>8.7$ | 0.11-0.15 | 18 | $>0.63$ | 38.30 | N | c |
| 77111 | . . | <241 | . . | >8 | $>0.071$ | 1.5 | $>0.044$ | 3.19 | Y | b |
| 77163 | . . | $<114$ | . . | $>47$ | $>0.41$ | 4.7 | $>0.13$ | 12.00 | N | b |
| 77170 |  | <139 |  | $>7.1$ | $>0.062$ | 19 | $>0.69$ | 7.58 | Y | b |
| 77432 | 176 | $<214$ | 3.4 | $>2.3$ | 0.024-0.036 | 20 | $>0.8$ | 8.42 | N | c |
| 77435 |  | $<118$ | - | >19 | > 0.22 | 3 | $>0.086$ | 3.86 | Y | b |
| 77910 | 86.3 | <190 | 40 | $>8.1$ | 0.1-0.5 | 13 | $>0.17$ | 7.58 | Y | c |
| 77979 | . | <144 | . . | $>4.2$ | $>0.036$ | 23 | $>0.84$ | 4.13 | Y | b |
| 78359 | 109 | $<214$ | 26 | $>6.8$ | 0.065-0.25 | 4.2 | $>0.1$ | 5.47 | Y | c |
| 78596 | 109 | <162 | 13 | $>5.8$ | 0.055-0.12 | 22 | $>0.59$ | 11.70 | Y | c |
| 78975 | 86.3 | $<183$ | 9.5 | $>2.1$ | 0.028-0.12 | 49 | $>0.68$ | 4.52 | Y | c |
| 78996 | 198 | $<214$ | 4 | $>3.4$ | 0.032-0.037 | 53 | $>2$ | 21.50 | N | c |
| 79044 | , | <183 | . | $>9.1$ | $>0.089$ | 1.6 | $>0.052$ | 3.27 | Y | b |
| 79835 | . . | <118 | . . | $>12$ | $>0.14$ | 6.4 | $>0.2$ | 4.90 | Y | b |
| 80427 | . $\cdot$ | <206 | . . | $>6.2$ | $>0.053$ | 3.6 | $>0.13$ | 5.68 | N | b |
| 81160 | 139 | $<232$ | 6.6 | $>2.4$ | 0.021-0.06 | 8.2 | $>0.3$ | 3.25 | Y | c |
| 81393 | 131 | - | 4.7 | , | 0.0530 | . | $>22$ | 5.36 | Y | a |
| 81400 | 133 | $<176$ | 10 | $>5.9$ | 0.05-0.086 | 29 | $>1.1$ | 13.50 | Y | c |
| 81560 | . . | $<214$ | . . | $>4.8$ | $>0.052$ | 3.6 | $>0.13$ | 4.62 | Y | b |
| 81572 | 133 | $<261$ | 11 | $>3$ | 0.032-0.12 | 5.2 | $>0.19$ | 3.74 | Y | c |
| 81641 | 89.8 | $<176$ | 55 | $>14$ | 0.16-0.61 | 7.7 | $>0.11$ | 10.50 | N | c |
| 81659 | 123 | $<282$ | 26 | $>5$ | 0.052-0.27 | 2 | $>0.06$ | 3.78 | Y | c |
| 81812 | ... | <93.4 | . . | $>25$ | $>0.26$ | 11 | $>0.19$ | 5.63 | Y | b |
| 81971 | 79.7 | $<133$ | 31 | $>11$ | 0.12-0.34 | 44 | $>0.43$ | 15.10 | Y | c |
| 82069 | 156 | $<183$ | 12 | $>8.6$ | 0.08-0.11 | 12 | $>0.42$ | 17.30 | N | c |
| 82253 | . . . | $<183$ | . . | $>7.6$ | $>0.068$ | 3.2 | $>0.12$ | 3.10 | Y | b |
| 82673 | 176 | $<232$ | 22 | $>12$ | 0.17-0.29 | 3.3 | $>0.12$ | 14.40 | Y | c |
| 83402 | 169 | <241 | 8.2 | $>4$ | 0.044-0.089 | 4.3 | $>0.17$ | 6.37 | Y | c |
| 83478 | 162 | <206 | 13 | $>8.2$ | 0.11-0.17 | 4.7 | $>0.16$ | 13.60 | Y | c |
| 83796 | . . | $<214$ | . $\cdot$ | $>3.3$ | $>0.037$ | 6.1 | $>0.22$ | 3.68 | Y | b |
| 83911 |  | <190 | . . | >4 | $>0.046$ | 6.7 | $>0.26$ | 4.26 | Y | b |
| 83946 | 79.7 | $<214$ | 27 | $>3.7$ | 0.034-0.25 | 17 | $>0.17$ | 3.32 | Y | c |
| 84163 | 123 | <241 | 7 | $>1.8$ | 0.021-0.081 | 8.4 | $>0.28$ | 3.08 | Y | c |
| 84299 | 144 | $<214$ | 6.3 | $>2.9$ | 0.026-0.056 | 14 | $>0.52$ | 5.28 | Y | c |
| 84510 | . . | <198 | $\cdots$ | $>11$ | >0.1 | 1.5 | $>0.05$ | 3.86 | Y | b |
| 84819 | 105 | <190 | 14 | $>4.2$ | 0.042-0.14 | 14 | $>0.35$ | 6.92 | Y | c |
| 84881 | 150 | $<150$ | 12 | $>12$ | 0.11-0.11 | 410 | >14 | 119.00 | N | c |
| 85224 | 86.3 | <105 | 20 | $>13$ | 0.12-0.18 | 260 | $>3.7$ | 48.90 | Y | c |
| 85290 | 97.2 | $<282$ | 52 | $>6.2$ | 0.064-0.54 | 2.8 | $>0.053$ | 3.59 | N | c |
| 85721 | 93.4 | <241 | 19 | $>2.8$ | 0.025-0.17 | 14 | $>0.25$ | 3.15 | Y | c |
| 85759 | . . | $<241$ | . . | $>4.6$ | >0.042 | 2.6 | $>0.081$ | 3.35 | Y | b |
| 85790 | 89.8 | <198 | 52 | $>11$ | 0.13-0.64 | 6.6 | $>0.093$ | 10.40 | N | c |
| 86853 | 190 | <206 | 4.1 | $>3.5$ | 0.03-0.036 | 91 | $>3.4$ | 34.80 | N | c |
| 87435 | . . . | <190 | . . . | $>4.3$ | $>0.057$ | 4.1 | $>0.16$ | 3.55 | Y | b |
| 88349 | $\cdots$ | <156 | $\cdots$ | $>10$ | $>0.12$ | 4.4 | $>0.17$ | 10.40 | N | b |
| 89342 | . . | <176 | . . | $>11$ | $>0.096$ | 3 | $>0.11$ | 5.44 | Y | b |
| 90176 | . . . | <169 | . . . | $>8.5$ | $>0.11$ | 4.6 | $>0.18$ | 7.49 | Y | b |
| 90563 | . . | <183 | . . | $>2.3$ | $>0.03$ | 12 | $>0.48$ | 4.10 | Y | b |
| 90806 | . . . | $<101$ | . . . | $>45$ | $>0.65$ | 7.1 | $>0.14$ | 15.60 | Y | b |
| 91656 | $\cdots$ | <198 | $\cdots$ | $>4.9$ | $>0.055$ | 4.7 | $>0.18$ | 5.12 | Y | b |
| 92346 | 156 | <251 | 13 | $>4.9$ | 0.048-0.12 | 3 | $>0.11$ | 6.20 | Y | c |
| 92676 | 156 | <206 | 13 | $>7.6$ | 0.092-0.16 | 7.3 | $>0.27$ | 15.00 | N | c |
| 93327 | 97.2 | <223 | 18 | $>3.4$ | 0.039-0.21 | 10 | $>0.21$ | 4.85 | Y | c |
| 93743 |  | $<251$ | . . . | $>2.4$ | $>0.054$ | 3.5 | $>0.11$ | 3.13 | Y | b |
| 96440 | . . | <109 | $\cdots$ | $>27$ | $>0.34$ | 6.3 | $>0.17$ | 9.07 | Y | b |
| 96610 | 109 | $<183$ | 25 | $>9$ | 0.089-0.25 | 6.7 | $>0.17$ | 10.70 | Y | c |
| 96718 | , | $<183$ | . | $>6.7$ | $>0.062$ | 4.4 | $>0.17$ | 4.17 | Y | b |
| 97028 | $\cdots$ | <206 | $\cdots$ | $>11$ | >0.1 | 2.3 | $>0.076$ | 6.34 | Y | b |
| 98304 | 93.4 | <144 | 12 | $>4.9$ | 0.043-0.1 | 81 | $>1.5$ | 10.70 | Y | c |
| 98579 | . | <162 | $\cdots$ | $>14$ | $>0.14$ | 2 | $>0.072$ | 4.14 | Y | b |
| 100464 | 169 | <190 | 6.3 | $>5$ | 0.042-0.053 | 29 | $>1.1$ | 27.10 | Y | c |
| 102880 | 162 | <190 | 9.1 | $>6.6$ | 0.055-0.076 | 15 | $>0.57$ | 18.00 | Y | c |
| 103224 | . . | $<223$ | $\cdots$ | $>6.4$ | $>0.063$ | 3.6 | $>0.13$ | 4.27 | Y | b |
| 103456 | 131 | - | 10 | - | 0.091 | $\cdots$ | $>6.7$ | 3.76 | Y | a |
| 103602 | . . | $<241$ | . . . | $>2.2$ | $>0.026$ | 4.8 | $>0.16$ | 2.90 | Y | b |
| 103777 | . | $<251$ | . $\cdot$ | $>6.2$ | $>0.067$ | 1.9 | $>0.052$ | 3.62 | Y | b |
| 104430 | 133 | <198 | 18 | $>8.1$ | 0.08-0.18 | 8.1 | $>0.28$ | 12.50 | Y | c |

Table 5.3 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $\begin{gathered} T_{d} \\ (\mathrm{~K}) \end{gathered}$ | $T_{d, \lim }$ <br> (K) | $\begin{gathered} R_{d} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} R_{d, \lim } \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\begin{gathered} f_{d, \lim } \\ \left(\times 10^{-5}\right) \end{gathered}$ | $\Sigma_{E[W 3-W 4]}$ | New? | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 105570 | . . | <271 | . . | $>8.7$ | $>0.086$ | 2.1 | $>0.055$ | 3.79 | Y | b |
| 106313 | . . | <190 | $\cdots$ | $>4.5$ | $>0.041$ | 5.9 | $>0.23$ | 3.83 | Y | b |
| 106783 | 86.3 | <198 | 47 | $>8.9$ | 0.1-0.53 | 7.7 | $>0.096$ | 7.42 | N | c |
| 107063 | . . | <89.8 | . . | $>35$ | $>0.3$ | 5.8 | $>0.088$ | 3.50 | Y | b |
| 107336 | . . | <190 | . . . | $>9.8$ | $>0.089$ | 2.3 | $>0.084$ | 4.22 | N | b |
| 107517 | . . | <156 | $\cdots$ | $>19$ | $>0.22$ | 1.7 | $>0.059$ | 5.71 | Y | b |
| 107585 | 133 | <169 | 16 | $>9.8$ | 0.1-0.16 | 11 | $>0.36$ | 16.50 | N | c |
| 107697 | . . | <190 | . | $>6.8$ | $>0.059$ | 4.2 | $>0.16$ | 4.31 | Y | b |
| 108570 | . . | <206 | . . | $>5.8$ | $>0.053$ | 4.2 | $>0.15$ | 4.94 | Y | b |
| 109198 | 105 | <214 | 9.9 | $>2.4$ | 0.024-0.099 | 15 | $>0.36$ | 3.80 | Y | c |
| 110739 | . . | $<150$ | $\cdots$ | $>8.3$ | $>0.11$ | 5.9 | $>0.23$ | 6.85 | N | b |
| 110786 | 89.8 | $<176$ | 26 | $>6.8$ | 0.087-0.33 | 18 | $>0.28$ | 9.45 | N | c |
| 111264 | 97.2 | <198 | 8.9 | $>2.1$ | 0.022-0.091 | 28 | $>0.57$ | 3.64 | Y | c |
| 111822 | . . | $<123$ | . . | >12 | >0.1 | 6.9 | $>0.23$ | 3.17 | Y | b |
| 112694 | 139 | <306 | 20 | $>4.1$ | 0.039-0.19 | 1.8 | $>0.061$ | 3.33 | Y | c |
| 112835 | . . | <206 | . | $>4.8$ | $>0.052$ | 3.2 | $>0.12$ | 3.07 | Y | b |
| 113195 | . . . | $<223$ | . . . | $>3.4$ | $>0.044$ | 4.3 | $>0.15$ | 3.44 | Y | b |
| 113981 | $\cdots$ | $<156$ | . . | $>7.9$ | $>0.099$ | 3.2 | $>0.13$ | 3.13 | Y | b |
| 114031 | . . | $<128$ | . | $>20$ | $>0.19$ | 6 | $>0.18$ | 12.00 | Y | b |
| 114371 | 183 | $<271$ | 11 | $>5$ | 0.048-0.11 | 2.6 | $>0.09$ | 4.50 | Y | c |
| 114802 | $\cdots$ | <83 | $\cdots$ | $>38$ | $>0.35$ | 8.8 | $>0.1$ | 3.67 | Y | b |
| 114868 | . . | <261 | . . | $>3.3$ | $>0.042$ | 3.6 | $>0.11$ | 3.22 | Y | b |
| 115806 | 169 | $<251$ | 16 | $>7.5$ | 0.067-0.15 | 2.5 | $>0.085$ | 7.68 | Y | c |
| 116479 | . . | <169 | . . | $>6.3$ | >0.062 | 5.6 | $>0.22$ | 4.31 | Y | b |
| 117352 | 131 | . . | 13 | . . | 0.121 | . . | $>3.8$ | 3.82 | Y | a |
| 118022 | . . | $<118$ | . . | $>11$ | $>0.11$ | 6.3 | $>0.2$ | 4.24 | Y | b |
| 118027 | 97.2 | <139 | 32 | $>16$ | 0.17-0.35 | 19 | $>0.35$ | 25.80 | Y | c |
| 118133 | 118 | <198 | 22 | $>7.7$ | 0.082-0.23 | 4.9 | $>0.14$ | 7.94 | N | c |

Note. - A summary of the calculated disk properties of stars with $W 3-W 4$ excesses not identified in Chapters 3 and 4 Blackbody temperatures for the dust are listed alongside calculated circumstellar locations, projected angular extent of the dust and the fractional bolometric luminosity. We also list the $W 3-W 4$ excess significance of each star, along side whether the star is a new detection (Y) or not (N).
a. W4-only excess: The W3 excess flux in this case was either saturated or $>3 \sigma$ below the photosphere. A limiting temperature and radius for the dust cannot be determined. Lower limit on the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=22 \mu \mathrm{~m}$ as described in $\S 3$ in Chapter 3 .
b.The $W 3$ excess flux is formally negative and an upper limit on the excess flux is used to place a $3 \sigma$ limit on the dust temperature and radius. Lower limit on the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=22 \mu \mathrm{~m}$ as described in $\S 3$ in Chapter 3.
c. Both the $W 3$ and the $W 4$ excesses were used to calculate a dust temperature and radius. An upper limit on the $W 3$ excess flux was used to calculate a $3 \sigma$ limit on the dust temperature and radius. Lower limit on the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=22 \mu \mathrm{~m}$ as described in § 3 in Chapter 3.

## Chapter 6

## Discussion

### 6.1 Characterization of Excesses

### 6.1.1 Evidence of Warm Dust

One of the goals of this study was to ascertain the census of systems which harbor dust at circumstellar distances analogous with the terrestrial planet zone or asteroid belt regions. This means the dust would be located at temperatures between 130-300 K. Because the thermal emission we detect is unresolved, the degeneracies between dust size and temperature make it difficult to correctly ascertain the dust location.

The SED fitting I have conducted allows for an estimate of the dust temperature. Since I use the $W 4$ excess flux and any marginal $W 3$ excess flux (or $3 \sigma$ upper limit to the $W 3$ excess), I can better constrain the dust temperature, from which an estimate of the dust location can be determined. There is a possibility that dust may exist at colder temperatures in these systems, given the higher incidence of cold dust systems. As such, the excess flux we are detecting at $W 4$ for most of our debris disk candidates may be due to the Wien emission from a colder population of dust, at distances analogous to the EKB. The only way to truly lift this degeneracy is to observe these disks in the far-IR. Unfortunately, there is currently no mission which has the capability of performing these observations.

Our analysis in $\S 4$ of Chapter 3 shows that the average of the ratio between the excess $W 3$ and $W 4$ flux from our newly detected disk candidates within 75 pc , translates to an aggregate temperature of $134 \pm 8 \mathrm{~K}$, analogous to the outer edge of the MAB. We also found that this same analysis, when done for the W4 detections with previously reported cold and warm disks showed an aggregate temperature of $90 \pm 6 \mathrm{~K}$ and $154 \pm 19 \mathrm{~K}$, respectively. In other words, the aggregate of known cold disks indicates a $W 4$ excess flux consistent with

EKB dust, while the aggregate of known warm disks indicates a $W 4$ excess flux consistent with asteroid belt dust. This then implies that the average new $W 4$ excess detection is likely to be host to asteroid belt dust as well.

This analysis was possible because we were able to accurately measure the $W 3$ excess flux, independent of the photospheric fits. This analysis has yet to be undertaken beyond 75 pc , and hence at present I cannot assess the aggregate dust temperature for the entire 120 pc sample. However, if the aggregate of our 75 pc sample of new $W 4$ excesses indicates a warm excess (which is on average $T_{d} \sim 150 \mathrm{~K}$ ), then we can extrapolate this result to stars beyond 75 pc , and infer that a non-significant fraction of new $W 4$ excesses are host to warm dust.

### 6.2 Comparison To Other WISE Surveys

It is important to place our survey of WISE debris disks in context with those in the literature to determine whether we are improving upon the design of other studies. In Figure 6.1, I plot the $B_{T}-V_{T}$ color for the 222 new disk candidates we identified from this survey alone, as a function of their $W 3-W 4$ color excess. In addition, I plot the same parameters for Hipparcos stars that were identified as $W 4$ excesses by Vican \& Schneider (2014) or Wu et al. (2013) along with the condition that they pass our selection criteria in § 2.2.1 in Chapter 3. The division in $B_{T}-V_{T}$ between these two surveys is inherent to each, as Vican \& Schneider (2014) searched for excesses around late F to K stars, while Wu et al. (2013) was sensitive to excesses around bright stars A F stars.

What is evident is that the excesses we detect are larger in number, and are detected at fainter levels compared to the other surveys. We cannot rely on the survey results from Vican \& Schneider (2014), as a number of their stars show negative color excesses or small excesses such that their $\Sigma_{E[W 3-W 4]}$ are less than our $\Sigma_{E[W 3-W 4] 99.5}$ threshold. Their excesses were detected by subtracting the photospheric flux after fitting near-IR and optical data to photospheric models. As we discussed in $\S 2.3 .1$, this introduces biases in measuring the excess, and introduces false-positives into the survey. In contrast, our survey is complementary, though larger in scope, to Wu et al. (2013), as they are preferentially sensitive to brighter excesses.


Figure 6.1: Plot of the $B_{T}-V_{T}$ colors as a function of the $W 3-W 4$ color excess $(E[W 3-W 4])$, for all previously unreported WISE W4 excesses from our survey, the WISE survey by Vican \& Schneider (2014), and the WISE survey by Wu et al. (2013). The top and right panels show the marginalized distributions of both parameters for all three sets of stars. Excesses that our surveys also detect from the other two are indicated by open magenta circles, which are not included in the magenta marginalized distributions.

### 6.3 Lessons Learned

The success of the surveys I present in this thesis is primarily due to our new methods to filter and calibrate the WISE photometry. This includes the plethora of data filters we used to cleanse the sample of contaminants as well as the added sensitivity gained by empirically deriving photospheric colors with which to identify excesses.

The filters we placed on our samples were refined over the course of a couple of years. The struggle to gain a better handle on the WISE systematics each time revealed a new quirk in the data, allowing us to increase our understanding on how to better handle the WISE data. Caveats such as removing stars contaminated from WISE internally inconsistent data, scattered moon light, closely projected companions, etc., became apparent after each iteration of the analysis. These and other filters have been discussed extensively in § 2.2.1 in Chapter 3, and in $\S 5.2 .1$. However, the importance of using empirical colors rather than SED fits to identify excesses has not been discussed in great detail. In the following section, I quickly describe these caveats.

### 6.3.1 Empirical vs. Synthetic WISE Colors

When determining the integrated photospheric flux $(S)$ for a broadband filter, one typically convolves the filter's spectral response curve $R_{\lambda}$ (similar to the ones in Figure 2.4) with the photospheric emission $F_{\star}(\lambda)$, typically interpolated from a grid of photospheric models

$$
\begin{equation*}
S=\frac{\int \lambda F_{*}(\lambda) R_{\lambda} d \lambda}{\int \lambda R_{\lambda} d \lambda} . \tag{6.1}
\end{equation*}
$$

At times, however, the empirical flux from a particular filter may differ from the filter-convolved "synthetic" flux over a photospheric model. This may be because the filter's band-centered wavelength was misreported, certain systematics are not included in the filter response curves, or perhaps the models do not reflect the true emission spectrum of the observed star.

Whichever the case, if there is any difference between the empirical flux and the synthetic flux, then the latter will misrepresent the former. For excess identification, this difference can introduce false discoveries or even decrease a survey's sensitivity to excesses - if it's primary detection method is SED fit subtraction.

In Figure 6.2, I have plotted the synthetic and empirical WISE colors as a function of their $B_{T}-V_{T}$ to represent different spectral types. What is immediately clear is that, if one ignores the small scale fluctuations in the empirical trends, there is a significant systematic offset for all WISE colors


Figure 6.2: Plots of WISE photospheric colors. The empirical colors were derived using a running mean approach to the trimmed parent sample of each color described in $\S 2.5$ of Chapter 3. The synthetic colors were derived by convolving the WISE filter profiles over a set of models at stellar temperatures corresponding to different $B_{T}-V_{T}$ (Pecaut \& Mamajek, 2013). All photospheric models were obtained at solar metallicity and $\log (\mathrm{g})=4.5$.
with the exception of $W 1-W 4$. From the $W 4$ colors, the synthetic colors are underestimated, and are typically negative for the most part. Thus, any excess based on simply deriving the photospheric flux from filter convolution will overestimate the excess flux at $W 4$. The opposite is true for the $W 3$ colors, which 1) show that the synthetic colors are overestimated and 2) that the empirical $W 1-W 3$ colors are primarily negative, systematically offset from the synthetic colors by +0.06 mags. In other words, the excess derived from the filter-convolved flux will be underestimated, and there will be too few W3 excesses detected by SED fitting - as has been the case before our studies.

To correctly identify an excess using filter-convolved photospheric fluxes, a correction in the star's synthetic colors is required, derived from the empirical ones. Otherwise, studies will always be biased to misidentifying excesses at an alarmingly large rate (seen by the $\sim 60 \%$ false-positive rate in Vican \& Schneider (2014); see § 5.4 in Chapter 3).

Color corrections would also be needed to properly derive the thermal properties of any circumstellar dust. Our study currently does not use any color corrections when deriving the synthetic fluxes in calculating our dust temperatures. Given the large uncertainties in the temperature determinations from only one or two excess data points, our omission of color-corrections is a second-order effect.

## Chapter 7

## Conclusion \& Future Directions

### 7.1 Summary

Debris disks play an integral part in understanding the dynamical activity in planetary systems, and how they relate to the evolution of the Solar System. The dust we observe, from both resolved and unresolved thermal emission, can act as a signpost for planetary systems. The majority of the observed dust has been from unresolved thermal emission from space-based observatories performing large surveys to identify debris disks. The advancement in our understanding of how dust evolves is largely due to these surveys over the last thirty years. The majority of disks detected thus far are analogous to EKB, with cold dust detected from their far-IR excess emission.

However, the incidence of systems with warm dust, analogous to the MAB is much smaller in comparison. Since warm dust acts as a signpost for dynamical activity in the terrestrial planet zone, identification and characterization of more of these type of systems will aid in understanding how the inner regions of these systems evolve and determine the ubiquity of solar system analogs.

In this thesis, I presented a set of studies which take advantage of the data products from the WISE All-Sky database to search for mid-IR excess flux at $12 \mu \mathrm{~m}$ and $22 \mu \mathrm{~m}$. The higher resolution and sensitivity of WISE compared to $\operatorname{IRAS}$, along with the increased coverage compared to other pointed observatories allow for detection of warm dust around a larger set of stars than previously possible.

Although WISE has been previously used to detect mid-IR excesses around nearby stars, our studies take full advantage of the WISE sensitivity envelope. We searched for excess flux around main-sequence Hipparcos stars, by using the full suite of WISE colors for stars within 75 pc , and the $W 3-W 4$ color for stars out to 120 pc. Our careful removal of contaminants, accurate determination
of the empirical photospheric colors, and improvements made to accurately determine our confidence levels, have yielded $22 \mu \mathrm{~m}$ excesses as faint as $8 \%$ above the photospheric emission at a false discovery rate of $<0.5 \%$, and $W 3$ excesses as low as $6 \%$ above the photosphere, at a false-discovery rate of $<2 \%$.

The saturation corrections we implemented to the $W 1$ and $W 2$ photometry have allowed us to identify excesses around brighter stars in the WISE database, while our unWISE rejection analysis allows us to remove astrometrically contaminated sources prior to excess selection. As a result, we have identified a total of 338 new $10-30 \mu \mathrm{~m}$ excesses out to 120 pc . This increases the known sample of $10-30 \mu \mathrm{~m}$ excesses by $35 \%$ for stars within 75 pc , by $130 \%$ for stars between $75-120 \mathrm{pc}$, and by $40 \%$ overall.

The large number of new detections presented in this thesis, and the conclusions which can be drawn from the set of studies, not only provide a census of warm disks in the solar neighborhood, but also enhance our understanding of planetary systems that have yet to be discovered and that have already been discovered within the solar neighborhood. Planetary systems that are host to bright debris disks (i.e., HR 8799, $\beta$ Pic) have been shown to have analogous architecture to the Solar System. Our detection of faint warm dust around the 51 Eridani system, provides context for the newly discovered 51 Eridani b planet (see § A; Macintosh et al., 2015). The architecture of the $2 M_{\mathrm{J}}$ exoplanet, between a warm and cold belt in this young 20 Myr system, echoes similarities to perhaps a younger Solar System. Hence, the new, fainter population of WISE disks that we have provided for the community, can help un understand the ubiquity and evolution of our own Solar System.

### 7.2 Future Directions

### 7.2.1 WISE Disk Evolution Survey

The next step to this study is to provide an evolutionary analysis of our WISE detected disks. Since the excess flux levels we are detecting are relatively faint (down to $\sim 10 \%$ above the photosphere, and on average $30 \%$ above the photosphere), it would be interesting to know how these systems relate back to the Solar Sytem: are they evolved systems perhaps as old as the solar system, yet able to produce copious amounts of dust? Or are they much younger, at dust levels similar to what was hypothesized for the Solar System in its infancy?

The study we performed was done using an unbiased sample of Hippar$\cos$ field stars, most of which do not have age information. A quick way to determine ages for stars is to use theoretical isochrones on a color-magnitude


Figure 7.1: A color-magnitude diagram of the newly identified debris diskhost stars from our Hipparcos-WISE cross-match. Theoretical isochrones from Siess et al. (2000, 1-100 Myr) have been overplotted. The clustering of stars near the main-sequence, along with the uncertainties in their $B-V$ colors, prevents accurate age determination for stars older than the zero age mainsequence.
diagram (CMD) for stars with known distances. Figure 7.1 hows our excess stars in a CMD overplotted theoretical isochrones.

However, for stars on the zero-age main sequence ${ }^{1}$ or older ( $>10-50 \mathrm{Myr}$ ), isochrone fitting becomes very insensitive to age. For FGK stars, chromospheric and coronal activity, and lithium abundance indicators are much better discriminants of stellar age between $0.1-10 \mathrm{Gyr}$ and can be readily measured from high-resolution spectra. A-star ages are more difficult to pin down, but even for these, high-resolution spectra can aid in removing ambiguity in their placement on the CMD.

In an effort to ascertain the ages for our stars, we are undertaking a highresolution optical spectroscopic survey of our excess host stars. These observations are designed to measure the age-dependent spectroscopic features for the solar type stars in our excess sample, as well as identify any line-of-sight circumstellar Na I absorption, which is evidence of gas in the system (Redfield, 2007).

We have used the echelle spectroscopic instruments on the Mayall 4 m telescope to observe our northern targets $\left(\delta>-30^{\circ}\right)$, and the 3.9 m Anglo Australian Telescope for our southern targets. Time was awarded to us for one or both of these telescopes in the 2012B, 2013A, 2013B, 2014A, and 2014B semesters. During this time, we obtained the spectra for $85 \%$ of the targets in our sample that did not have archival echelle spectra observations.

The analysis of these data will open a new direction enabled by our excesssearch survey: determining the evolution of warm dust around the largest to-date sample of debris disk-host stars in the solar neighborhood.

[^23]
## Bibliography

Acke, B. et al. 2012, A\&A, 540, A125
Adams, F.C. et al. 2004, ApJ, 611, 360
Allègre, C.J., Manhès, G. and Göpel, C. 2008, Earth and Planetary Science Letters, 267, 386

Andre, P. and Montmerle, T. 1994, ApJ, 420, 837
Aumann, H.H. et al. 1984, ApJL, 278, L23
Avenhaus, H., Schmid, H.M. and Meyer, M.R. 2012, A\&A, 548, A105
Backman, D.E. and Paresce, F. 1993, in Protostars and Planets III, ed. E. H. Levy \& J. I. Lunine, 1253

Ballering, N.P. et al. 2013, ApJ, 775, 55
Balog, Z. et al. 2014, Experimental Astronomy, 37, 129
Batygin, K. and Brown, M.E. 2010, ApJ, 716, 1323
Beckwith, S.V.W., Henning, T. and Nakagawa, Y. 2000, Protostars and Planets IV, 533

Beckwith, S.V.W. et al. 1990, AJ, 99, 924
Beichman, C.A. et al. 2005, ApJ, 622, 1160
Beichman, C.A. et al. 2006, ApJ, 652, 1674
Bitner, M.A. et al. 2007, ApJL, 661, L69
Bryden, G. et al. 2009, ApJ, 705, 1226
Bryden, G. et al. 2006, ApJ, 636, 1098

Burns, J.A., Lamy, P.L. and Soter, S. 1979, Icarus, 40, 1
Carpenter, J.M. et al. 2009a, ApJS, 181, 197
Carpenter, J.M. et al. 2009b, ApJ, 705, 1646
Cassan, A. et al. 2012, Nature, 481, 167
Chen, C.H. et al. 2005, ApJ, 623, 493
Chen, C.H. et al. 2011, ApJ, 738, 122
Chen, C.H. et al. 2014, ApJS, 211, 25
Chen, C.H. et al. 2012, ApJ, 756, 133
Chen, C.H. et al. 2006, ApJ, 166, 351
Cruz-Saenz de Miera, F. et al. 2014, MNRAS, 437, 391
Currie, T. et al. 2008, ApJ, 672, 558
De Marchi, G. et al. 2013, MNRAS, 435, 3058
De Rosa, R.J. et al. 2014, MNRAS, 437, 1216
de Vries, B.L. et al. 2012, Nature, 490, 74
Dodson-Robinson, S.E. et al. 2011, AJ, 141, 11
Donaldson, J.K. et al. 2012, ApJ, 753, 147
Draine, B.T. 2003, ARA\&A, 41, 241
Eiroa, C. et al. 2013, A\&A, 555, A11
Fujiwara, H. et al. 2013, A\&A, 550, A45
Gomes, R. et al. 2005, Nature, 435, 466
Gorlova, N. et al. 2006, ApJ, 649, 1028
Gray, R.O. et al. 2006, AJ, 132, 161
Hahn, J.M. et al. 2002, Icarus, 158, 360
Hartigan, P., Edwards, S. and Ghandour, L. 1995, ApJ, 452, 736

Hauschildt, P.H., Allard, F. and Baron, E. 1999, ApJ, 512, 377
Heap, S.R. et al. 2000, ApJ, 539, 435
Hillenbrand, L.A. et al. 2008, ApJ, 677, 630
Hunter, J.D. 2007, Computing In Science \& Engineering, 9, 90
Kalas, P. et al. 2008, Science, 322, 1345
Kalas, P., Graham, J.R. and Clampin, M. 2005, Nature, 435, 1067
Kalas, P. et al. 2013, ApJ, 775, 56
Kelsall, T. et al. 1998, ApJ, 508, 44
Kennedy, G.M. and Wyatt, M.C. 2013, MNRAS, 433, 2334
Kennedy, G.M. et al. 2012, MNRAS, 2384
Kitchin, C.R. 2004, Astronomy Now, 18, 24
Koerner, D.W. et al. 2010, ApJL, 710, L26
Krivov, A.V. 2010, Research in Astronomy and Astrophysics, 10, 383
Krivov, A.V. et al. 2011, MNRAS, 418, L15
Lagrange, A.M. et al. 2010, Science, 329, 57
Lallement, R. et al. 2003, A\&A, 411, 447
Lang, D. 2014, AJ, 147, 108
Latham, D.W. et al. 1989, Nature, 339, 38
Lawler, S.M. et al. 2009, ApJ, 705, 89
Lawler, S.M. and Gladman, B. 2012, ApJ, 752, 53
Liou, J.C. and Zook, H.A. 1999, AJ, 118, 580
Lisse, C.M. et al. 2009, ApJ, 701, 2019
Lisse, C.M. et al. 2012, ApJ, 747, 93
Luhman, K.L. and Mamajek, E.E. 2012, ApJ, 758, 31

Macintosh, B. et al. 2006, in SPIE Conference Series, Vol. 6272, SPIE Conference Series

Macintosh, B. et al. 2015, Science, 350, 64
Maris, M., Burigana, C. and Fogliani, S. 2006, A\&A, 452, 685
Marleau, G.D. and Cumming, A. 2014, MNRAS, 437, 1378
Marois, C. et al. 2010, Nature, 468, 1080
Matthews, B.C. et al. 2014, Protostars and Planets VI, 521
Mayor, M. and Queloz, D. 1995, Nature, 378, 355
McDonald, I., Zijlstra, A.A. and Boyer, M.L. 2012, MNRAS, 427, 343
Meyer, M.R. et al. 2008, ApJL, 673, L181
Meyer, M.R. et al. 2006, PASP, 118, 1690
Mizusawa, T.F. et al. 2012, AJ, 144, 135
Moór, A. et al. 2006, ApJ, 644, 525
Moór, A. et al. 2011, ApJS, 193, 4
Morales, F.Y. et al. 2012, ApJ, 757, 7
Morales, F.Y. et al. 2011, ApJL, 730, L29
Morbidelli, A. et al. 2010, AJ, 140, 1391
Nesvold, E.R. and Kuchner, M.J. 2015, ArXiv e-prints
Nesvorný, D. et al. 2010, ApJ, 713, 816
Osterloh, M. and Beckwith, S.V.W. 1995, ApJ, 439, 288
Patel, R.I., Metchev, S.A. and Heinze, A. 2014a, ApJS, 212, 10
Patel, R.I., Metchev, S.A. and Heinze, A. 2014b, ApJS, 214, 14
Patel, R.I., Metchev, S.A. and Heinze, A. 2015, submitted, ApJS
Pecaut, M.J. and Mamajek, E.E. 2013, ApJS, 208, 9
Perryman, M.A.C. et al. 1997, A\&A, 323, L49

Planck Collaboration et al. 2014, A\&A, 571, A14
Plavchan, P. et al. 2009, ApJ, 698, 1068
Rebull, L.M. et al. 2008, ApJ, 681, 1484
Redfield, S. 2007, ApJL, 656, L97
Rhee, J.H. et al. 2007, ApJ, 660, 1556
Riaz, B. et al. 2012, MNRAS, 420, 2497
Ribas, Á. et al. 2012, A\&A, 541, A38
Rieke, G.H. et al. 2005, ApJ, 620, 1010
Rizzuto, A.C., Ireland, M.J. and Zucker, D.B. 2012, MNRAS, 421, L97
Robitaille, T. and Bressert, E. 2012, APLpy: Astronomical Plotting Library in Python, Astrophysics Source Code Library

Rodigas, T.J., Malhotra, R. and Hinz, P.M. 2014, ApJ, 780, 65
Rodigas, T.J. et al. 2015, ApJ, 798, 96
Scicluna, P. et al. 2014, A\&A, 566, L3
Siegler, N. et al. 2007, ApJ, 654, 580
Siess, L., Dufour, E. and Forestini, M. 2000, A\&A, 358, 593
Skrutskie, M.F. et al. 2006, AJ, 131, 1163
Smith, B.A. and Terrile, R.J. 1984, Science, 226, 1421
Song, I. et al. 2005, Nature, 436, 363
Spangler, C. et al. 2001, ApJ, 555, 932
Su, K.Y.L. et al. 2006, ApJ, 653, 675
Sykes, M.V. 1990, Icarus, 85, 267
Telesco, C.M. et al. 2005, Nature, 433, 133
Terebey, S., Shu, F.H. and Cassen, P. 1984, ApJ, 286, 529
Theissen, C.A. and West, A.A. 2014, ApJ, 794, 146

Thureau, N.D. et al. 2014, MNRAS, 445, 2558
Trilling, D.E. et al. 2008, ApJ, 674, 1086
Trilling, D.E. et al. 2007, ApJ, 658, 1289
Tsiganis, K. et al. 2005, Nature, 435, 459
Urban, L.E. et al. 2012, The Astrophysical Journal, 750, 98
van Leeuwen, F. 2007, A\&A, 474, 653
Vican, L. and Schneider, A. 2014, ApJ, 780, 154
Wahhaj, Z. et al. 2015, ArXiv e-prints
Wang, S., Li, A. and Jiang, B.W. 2014, Planet. Space Sci., 100, 32
Williams, J.P. and Cieza, L.A. 2011, ARA\&A, 49, 67
Winn, J.N. and Fabrycky, D.C. 2015, ARA\&A, 53, null
Wright, E.L. et al. 2010, AJ, 140, 1868
Wu, C.J. et al. 2013, ApJS, 208, 29
Wyatt, M.C. 2005, A\&A, 440, 937
Wyatt, M.C. 2008, ARA\&A, 46, 339
Wyatt, M.C. et al. 2015, Ap\&SS, 357, 103
Wyatt, M.C. et al. 2007, ApJ, 663, 365
Zuckerman, B. 2001, ARA\&A, 39, 549

## Appendix A

## Gemini Planet Imager Exoplanet Survey Detection of 51 Eri b

The Gemini Planet Imager (GPI; Macintosh et al., 2006) is a state of the art high-contrast imaging instrument, currently installed on the 8 m Gemini South Telescope in Chile. GPI was designed primarily to identify and characterize young, faint Jovian mass exoplanets at small angular separations from their host stars.

For the last two years, I have been a part of the Gemini Planet Imager Exoplanet Survey team (GPIES). GPIES' goal is to conduct a survey of $\sim 300$ nearby, young stars to identify young Jovian mass exoplanets. GPIES' first discovery was of the $2 M_{J}$ exoplanet 51 Eridani b (HIP 21547) around its 20 Myr host star. The paper of the discovery was published in the journal Science on August $13^{\text {th }}$, 2015. In this chapter, I include this paper with the citation of Macintosh et al. (2015). This article has been reprinted here with permission from AAAS. Although my efforts did not lead to this discovery, the system does possess a warm disk which we identified in Chapter 3, which provides context for the discovery and its relationship to the Solar System.

Stanford Synchrotron Radiation Lightsource (SSRL) Beamline 12-2, the National Institute of General Medical Sciences and National Cancer Institute Structural Biology Facility (GM/CA) at the Advanced Photon Source (APS), and the Advanced Light Source (ALS) beamline 8.2.1 for support with $x$-ray diffraction measurements. We acknowledge the Gordon and Betty Moore Foundation, the Beckman Institute, and the Sanofi-Aventis Bioengineering Research Program for support of the Molecular Observatory at the California Institute of Technology (Caltech). The operations at the SSRL, ALS, and APS are supported by the U.S. Department of Energy and the NIH. GM/CA has been funded in whole or in part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006). T.S. was supported by a Postdoctoral Fellowship of the Deutsche Forschungsgemeinschaft. S.P. and D.H.L are Amgen Graduate Fellows, supported through the Caltech-Amgen Research Collaboration. F.M.H. was supported by a Ph.D. student fellowship of the Boehringer Ingelheim Fonds. S.K. was supported by NIH Awards

R01-GM090324 and U54-GM087519 and by the University of Chicago Comprehensive Cancer Center (P30-CA014599). A.A.K. was supported by NIH awards U01-GM094588 and U54-GM087519 and by Searle Funds at The Chicago Community Trust. A.H. was supported by Caltech startup funds, the Albert Wyrick V Scholar Award of the V Foundation for Cancer Research, the 54th Mallinckrodt Scholar Award of the Edward Mallinckrodt Jr. Foundation, a Kimmel Scholar Award of the Sidney Kimmel Foundation for Cancer Research, a Camille-Dreyfus Teacher Scholar Award of The Camille and Henry Dreyfus Foundation, and NHH grant R01-GM111461. The coordinates and structure factors have been deposited with the Protein Data
 4JQ5 (hsNup49 ${ }^{\text {ccs2 } 2+3 *), ~ 4 J N V ~ a n d ~ 4 J N U ~(h s N u p 57 ~}{ }^{\text {ccs3* }}$ ), 5CWT (Nup57 ${ }^{\text {CCS3* }}$ ), 4J07 (hsNup49 ${ }^{\text {CCS2 } 2+3 *} \cdot$ hsNup57 $7^{\text {CCS3** }}$ 2:2 stoichiometry), $4 \mathrm{JO9}$ (hsNup49 ${ }^{\text {CCS2 } 2+3 *} \cdot$ hsNup $57^{\text {CCS3* }}, 1: 2$
 5 CWS (CNT•Nic $96{ }^{\mathrm{R1}} \cdot \mathrm{SAB}-158$ ). The authors declare no financial
conflicts of interest. S.K. and A.K. are inventors on a patent application filed by the University of Chicago that covers a design of monobody libraries (US 13/813,409). Monobodies are available from S.K. under a material transfer agreement with the University of Chicago

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/350/6256/56/suppl/DC1
Materials and Methods
Figs. S1 to S38
Tables S1 to S9
Movies S1 to S4
References (42-65)

29 June 2015; accepted 12 August 2015
Published online 27 August 2015
10.1126/science.aac9176

## REPORTS

## PLANETARY SCIENCE

# Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager 

B. Macintosh, ${ }^{1,2 *}$ J. R. Graham, ${ }^{3}$ T. Barman, ${ }^{4}$ R. J. De Rosa, ${ }^{3}$ Q. Konopacky, ${ }^{5}$ M. S. Marley, ${ }^{6}$ C. Marois, ${ }^{7,8}$ E. L. Nielsen, ${ }^{9,1}$ L. Pueyo, ${ }^{10}$ A. Rajan, ${ }^{11}$ J. Rameau, ${ }^{12}$ D. Saumon, ${ }^{13}$ J. J. Wang, ${ }^{3}$ J. Patience, ${ }^{11}$ M. Ammons, ${ }^{2}$ P. Arriaga, ${ }^{14}$ E. Artigau, ${ }^{12}$ S. Beckwith, ${ }^{3}$ J. Brewster, ${ }^{9}$ S. Bruzzone, ${ }^{15}$ J. Bulger, ${ }^{11,16}$ B. Burningham, ${ }^{6,17}$ A. S. Burrows, ${ }^{18}$ C. Chen, ${ }^{10}$ E. Chiang, ${ }^{3}$ J. K. Chilcote, ${ }^{19}$ R. I. Dawson, ${ }^{3}$ R. Dong, ${ }^{3}$ R. Doyon, ${ }^{12}$ Z. H. Draper, ${ }^{8,7}$ G. Duchêne, ${ }^{3,20}$ T. M. Esposito, ${ }^{14}$ D. Fabrycky, ${ }^{21}$ M. P. Fitzgerald, ${ }^{14}$ K. B. Follette, ${ }^{1}$ J. J. Fortney, ${ }^{22}$ B. Gerard, ${ }^{8,7}$ S. Goodsell, ${ }^{23,24}$ A. Z. Greenbaum, ${ }^{25,10}$ P. Hibon, ${ }^{24}$ S. Hinkley, ${ }^{26}$ T. H. Cotten, ${ }^{27}$ L.-W. Hung, ${ }^{14}$ P. Ingraham, ${ }^{28}$ M. Johnson-Groh, ${ }^{8,7}$ P. Kalas, ${ }^{3,9}$ D. Lafreniere, ${ }^{12}$ J. E. Larkin, ${ }^{14}$ J. Lee, ${ }^{27}$ M. Line, ${ }^{22}$ D. Long, ${ }^{10}$ J. Maire, ${ }^{19}$ F. Marchis, ${ }^{9}$ B. C. Matthews, ${ }^{7,8}$ C. E. Max, ${ }^{22}$ S. Metchev, ${ }^{15,29}$ M. A. Millar-Blanchaer, ${ }^{30}$ T. Mittal, ${ }^{3}$ C. V. Morley, ${ }^{22}$ K. M. Morzinski, ${ }^{31}$ R. Murray-Clay, ${ }^{32}$ R. Oppenheimer, ${ }^{33}$ D. W. Palmer, ${ }^{2}$ R. Patel, ${ }^{29}$ M. D. Perrin, ${ }^{10}$ L. A. Poyneer, ${ }^{2}$ R. R. Rafikov, ${ }^{18}$ F. T. Rantakyrö, ${ }^{24}$ E. L. Rice, ${ }^{34,33}$ P. Rojo, ${ }^{35}$ A. R. Rudy, ${ }^{22}$ J.-B. Ruffio, ${ }^{1,9}$ M. T. Ruiz, ${ }^{35}$ N. Sadakuni, ${ }^{36,24}$ L. Saddlemyer, ${ }^{7}$ M. Salama, ${ }^{3}$ D. Savransky, ${ }^{37}$ A. C. Schneider, ${ }^{38}$ A. Sivaramakrishnan, ${ }^{10}$ I. Song, ${ }^{27}$ R. Soummer, ${ }^{10}$ S. Thomas, ${ }^{28}$ G. Vasisht, ${ }^{39}$ J. K. Wallace, ${ }^{39}$ K. Ward-Duong, ${ }^{11}$ S. J. Wiktorowicz, ${ }^{22}$ S. G. Wolff, ${ }^{25,10}$ B. Zuckerman ${ }^{14}$<br>Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to $4.0 \times 10^{-6}$ and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.

Several young, self-luminous extrasolar planets have been directly imaged at infrared (IR) wavelengths (1-8). The planets directly imaged to date are massive [(estimated at 5 to 13 Jupiter masses $\left(M_{\mathrm{J}}\right)$ ] and positioned at large separations [ 9 to 650 astronomical units
(AU)] from their host star, compared with planets in our solar system. Photometry and spectroscopy can be used to probe the atmospheres of these young jovian planets, providing clues about their formation. Several unexpected results have emerged. The near-IR colors of these planets are
mostly red, indicating cloudy atmospheres similar to those of brown dwarfs of spectral type L. Methane absorption features are prominent in the near-IR spectra of T dwarfs [effective temperature $\left.\left(T_{\text {eff }}\right)<1100 \mathrm{~K}\right]$, as well as in the giant planets of our solar system, but such features are weak or absent in the directly imaged exoplanets (4, 9-11). Most young planets appear to be methane-free, even at temperatures where equivalent brown dwarfs show evidence of methane, suggesting nonequilibrium chemistry and persistent clouds that are probably age- and massdependent (1, 12-15).
In spite of uncertainties about their atmospheric properties, the luminosities of these planets are well constrained. Luminosity is a function of age, mass, and initial conditions ( 16,17 ) and hence can provide insights into a planet's formation. Rapid formation (e.g., through global disk instabilities acting on a dynamical time scale) yields highentropy planets that are bright at young ages ("hot start"). Alternatively, two-stage formation-in which the development of a dense solid core is followed by gas accretion through a shock, as is likely in the case of Jupiter-can produce a range of states, including lower-entropy planets that are cooler and slightly smaller in radius ("cold start"). The young directly imaged planets are almost all too bright for the cold-start model to apply, except for specific accretion shock properties; however, their formation is also difficult to explain by global instability, which should operate preferentially at higher masses and at large semimajor axis separations $(18,19)$. In addition, these planets are close to the limit of sensitivity for firstgeneration large-telescope adaptive optics (AO) systems. The goal of the latest generation of surveys, which use dedicated high-contrast AO coronagraphs (20-23) such as the Gemini Planet Imager (GPI) and its counterparts, is to expand the sample of directly imaged planets to include closer separations, lower masses, and lower temperatures, a crucial empirical step toward investigating the above modes of formation.
The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young nearby stars with the GPI instrument. The star 51 Eridani (51 Eri) was chosen as an early target for the survey because of its youth and proximity. Its stellar properties are given in Table 1. The star exhibits
weak mid- and far-IR excess emission, indicating low-mass inner ( 5.5 AU ) and outer ( 82 AU ) dust belts (24, 25). It also has two distant ( $\sim 2000 \mathrm{AU}$ ) stellar companions, which constitute the 6-AUseparation M-dwarf binary system GJ 3305 (26). 51 Eri and GJ 3305 were classified in 2001 as
${ }^{1}$ Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA.
${ }^{2}$ Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040, USA. ${ }^{3}$ Department of Astronomy, University of California-Berkeley, Berkeley, CA 94720, USA. ${ }^{4}$ Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA. ${ }^{5}$ Center for Astrophysics and Space Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. ${ }^{6}$ NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA.
${ }^{7}$ National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7, Canada. ${ }^{8}$ Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada. ${ }^{9}$ Search for Extraterrestrial Intelligence Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043, USA. ${ }^{10}$ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA. ${ }^{11}$ School of Earth and Space Exploration, Arizona State University, Post Office Box 871404, Tempe, AZ 85287, USA. ${ }^{12}$ Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal, Québec H3C 3J7, Canada. ${ }^{13}$ Los Alamos National Laboratory, Post Office Box 1663, MS F663, Los Alamos, NM 87545, USA.
${ }^{14}$ Department of Physics and Astronomy, University of California-Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USA. ${ }^{15}$ Department of Physics and Astronomy, Centre for Planetary Science and Exploration, The University of Western Ontario, London, Ontario N6A 3K7, Canada. ${ }^{16}$ Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720, USA. ${ }^{17}$ Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB, UK. ${ }^{18}$ Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA. ${ }^{19}$ Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4, Canada. ${ }^{20}$ Institut de Planétologie et d'Astrophysique de Grenoble, Université Grenoble Alpes, Centre National de la Recherche Scientifique, 38000 Grenoble, France. ${ }^{21}$ Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA. ${ }^{22}$ Department of Astronomy and Astrophysics, University of California-Santa Cruz, Santa Cruz, CA 95064, USA. ${ }^{23}$ Department of Physics, Durham University, Stockton Road, Durham DH1, UK. ${ }^{24}$ Gemini Observatory, Casilla 603, La Serena, Chile. ${ }^{25}$ Department of Physics and Astronomy, Johns Hopkins University, 3600 North Charles Street, Baltimore, MD 21218, USA. ${ }^{26}$ University of Exeter, Astrophysics Group, Physics Building, Stocker Road, Exeter EX4 4QL, UK. ${ }^{27}$ Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA. ${ }^{28}$ Large Synoptic Survey Telescope, 950 North Cherry Avenue, Tucson, AZ 85719, USA.
${ }^{29}$ Department of Physics and Astronomy, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-3800, USA. ${ }^{30}$ Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario M5S 3H4, Canada. ${ }^{31}$ Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721, USA. ${ }^{32}$ Department of Physics, University of California-Santa Barbara, Broida Hall, Santa Barbara, CA 93106-9530, USA. ${ }^{33}$ Department of Astrophysics, American Museum of Natural History, New York, NY 10024, USA.
${ }^{34}$ Department of Engineering Science and Physics, College of Staten Island, City University of New York, Staten Island, NY 10314, USA. ${ }^{35}$ Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Casilla 36-D, Las Condes, Santiago, Chile. ${ }^{36}$ Stratospheric Observatory for Infrared Astronomy, Universities Space Research Association, NASA Armstrong Flight Research Center, 2825 East Avenue P, Palmdale, CA 93550, USA. ${ }^{37}$ Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA. ${ }^{38}$ Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA. ${ }^{39}$ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
*Corresponding author. E-mail: bmacintosh@stanford.edu
members of the $\beta$ Pictoris moving group (27), and subsequent measurements support this identification (28). The estimated age of the $\beta$ Pictoris moving group ranges from 12 to 23 million years (My) (27, 29-32). Giving strong weight to the group's lithium-depletion boundary age, we adopted an age of $20 \pm 6 \mathrm{My}$ for all four components of the 51 Eri system (28).
We observed 51 Eri in the $H$ band $(1.65 \mu \mathrm{~m})$ in December 2014, as the 44th target in the GPIES campaign. GPI observations produce spectroscopic cubes with a spectral-resolving power of 45 over the entire field of view. A companion planet designated 51 Eri b, was apparent after subtraction of the point spread function (PSF). The planet is located at a projected separation of 13 AU , and its spectra exhibit distinctive strong methane and water-vapor absorption (Figs. 1 and 2). We observed 51 Eri again in January 2015 to broaden the wavelength coverage, using GPI (J band, $1.25 \mu \mathrm{~m}$ ) and the W. M. Keck Observatory's Near Infrared Camera 2 (NIRC2; Lp band, $3.8 \mu \mathrm{~m}$ ). The observed spectra are highly similar to those of a field brown dwarf of spectral type T4.5 to T6 (Fig. 2). The J-band spectrum confirmed methane absorption at this wavelength, and the extremely red H-Lp color is similar to that of other cool, low-mass objects (Fig. 3). The signal-to-noise ratio at J-band wavelengths is inferior to that at H -band wavelengths, and extraction introduces additional systematic effects. The J -band detection is reliable ( $>6 \sigma$ ), but the fluxes in individual spectral channels are less certain. However, the methane feature was robustly detected at both bands (28).
Demonstrating common proper motion (33), or showing that the probability of a foreground or background contaminant is extremely low, establishes the nature of directly imaged planets. The interval between the December 2014 and January 2015 observations is too brief, given our astrometric accuracy (28), to show that 51 Eri b
and 51 Eri share proper motion and parallax. However, nondetection of 51 Eri b in archival data from 2003 (28) excludes a stationary background source and requires proper motion within $\sim 0.1 \mathrm{arc} \mathrm{sec} /$ year of 51 Eri. The strong methane absorption that is evident for 51 Eri b is found only in T-type or later brown dwarfs. We determined the probability of finding a T dwarf in our field by merging the observed T-dwarf luminosity functions $(27,28)$ and adopting the spectral types and absolute magnitudes for T dwarfs (34), from which we calculated a false alarm rate of $1.72 \times 10^{-7}$ methane objects (i.e., types T0 to T8.5) per GPI field $(>5 \sigma)$. The proper motion constraint eliminates a further $66 \%$ of likely background T-dwarf proper motions. The total false alarm probability after observing 44 targets is the probability of a T-spectrum object appearing in 44 Bernoulli trials, given by the binomial distribution, which yields a final probability of $2.4 \times 10^{-6}$. Although the occurrence rate of planetary companions is not known with precision, the detection of planetary objects at similar physical separations to 51 Eri b, such as $\beta$ Pic b and HR8799 e , indicates that the rate is $>10^{-3}$ per star. Hence, with the high-quality spectrum available to us, it is much more likely that 51 Eri b is a bound planetary companion than a chance alignment.
We used planetary atmosphere and evolution models to estimate the properties of 51 Eri b. We first fitted the observed J - and H -band spectra using standard cloud-free equilibrium-chemistry models, with radii constrained based on mass as given by evolutionary tracks, similar to those in (35). This constrained fit gives an effective temperature of 750 K , with a radius [0.76 Jupiter radius $\left.\left(R_{\mathrm{J}}\right)\right]$ and surface gravity similar to those of an old (10 billion years), high-mass brown dwarf. A similar, though less extreme, result (small radii and hence high masses and old ages) is associated with several model fits to observations of the HR8799 planets ( $13,15,16$ ), even though high

Table 1. Properties of 51 Eridani and 51 Eridani b.

| 51 Eridani |  |
| :---: | :---: |
| Spectral type | FOIV |
| Mass (solar masses) | $1.75 \pm 0.05$ |
| Luminosity ( $L / L_{\text {¢ }}$ ) | $7.1 \pm 1$ |
| Distance (pc) | $29.4 \pm 0.3$ |
| Proper motion (milli-arc sec/year) | $44.22 \pm 0.34$ (east), $-64.39 \pm 0.27$ (north) (44). |
| Age (My) | $20 \pm 6$ |
| Metallicity (metal abundance over hydrogen abundance) | -0.027 (45) |
| J, H, Ks, Lp (magnitudes) | $4.74 \pm 0.04,4.77 \pm 0.08,4.54 \pm 0.02,4.54 \pm 0.21$ |
| Dust luminosity divided by bolometric luminosity | $\cdots$ |
| 51 Eri b |  |
| Projected separation (milli-arc sec) | $449 \pm 7$ (31 January 2015) |
| Projected separation (AU) | $13.2 \pm 0.2$ (31 January 2015) |
| Absolute J-band magnitude | $16.75 \pm 0.40$ |
| Absolute H-band magnitude | $16.86 \pm 0.21$ |
| Absolute Lp-band magnitude | $13.82 \pm 0.27$ |



Fig. 1. Images of 51 Eri and 51 Eri b (indicated by the arrow) after PSF subtraction. (A) H-band GPI image from December 2014. (B) J-band GPI image from January 2015. (C) Lp-band NIRC2 image from Januarv 2015.


Fig. 2. J- and H-band spectra for 51 Eri b from GPI data, after PSF subtraction. Strong methane absorption, similar to that of Jupiter, is apparent. (Top) Spectra for the hotter young planetary object 2M 1207 b (purple) and a high-mass-field T6 brown dwarf from the SpeX library (orange) (43) are overplotted. (Bottom) Observed J and H spectra and Lp photometry with two model fits overlaid: a young, low-mass, partly cloudy object (TB-700K, green) and a higher-mass cloud-free object (SM-750K, pink). The main source of error in the extracted spectra is residual speckle artifacts, so errors in neighboring spectral channels are strongly correlated; error estimation is discussed in (28). $\lambda F_{\lambda}$, flux.
masses are excluded by dynamical stability considerations (36). This model was not constrained to fit the Lp-band observation but does so within $1.6 \sigma$.

We next fitted a model to the J-H spectra and Lp photometry using a linear combination of cloudy and cloud-free surfaces and nonequilibrium chemistry, and we allowed the planet's radius to vary independently of the radii given by evolutionary tracks. Models of this type generally produce reasonable fits to other directly imaged planets (11-13, 15, 37, 38). This model produced a slightly lower effective temperature. The spectral shape and colors only weakly constrain gravity but favor lower masses, and the radius ( $\sim 1 R_{\mathrm{J}}$ ) is con-
sistent with evolutionary tracks, given the age of the system. Table 2 summarizes the results of the modeling. With the spectral and atmospheric uncertainties, a wide range of other models (including those with temperatures as high as $\sim 1000 \mathrm{~K}$ ) are also broadly consistent with the observations. The low temperature is supported by the evidence of strong methane absorption that is not observed for other planets of similar age.
The value of $\log \left(L / L_{\odot}\right),-5.4$ to -5.8 (where $L / L_{\odot}$ is the planet's luminosity normalized by that of the Sun), is similar in all models, regardless of temperature or clouds. Combined with the age, the luminosity can be used to estimate the mass of
the planet. For a hot-start model, this corresponds to a mass of $\sim 2(t / 20 \mathrm{My})^{0.65}\left[\left(L / 2 \times 10^{-6} L_{\odot}\right)^{0.54}\right.$ $M_{\mathrm{J}}$, the lowest-mass self-luminous planet directly imaged to date ( $t$, age of the planet). 51 Eri b, unlike other young (<100 million-year-old) planetarymass companions, has a low enough luminosity to be consistent with cold-start core-accretion scenarios. In cold-start evolution, luminosity at an age of 20 My is nearly independent of mass, so the mass of 51 Eri b would be between 2 and $12 M_{\mathrm{J}}$.

51 Eri b and the GJ 3305 binary system form a hierarchical triple configuration (28), but the companion pair is far enough away that the planet is expected to be dynamically stable in its current

Fig. 3. Colormagnitude diagram of brown dwarfs (gray and black) and planetary-mass objects (colors). 51 Eri $b$ is indicated with a red star, distinct from most other planets in the methanedominated T-dwarf region of the diagram. The Lp photometry for field brown dwarfs is taken from $(45,46)$ or converted from the Wide-field Infrared Survey Explorer W1 band (47) using an Lp-versus-W1 linear fit. Parallaxes are available for all objects plotted (46). $M_{\llcorner p}$. Lp-band absolute magnitude.

Table 2. Modeling results for 51 Eri b.

|  | Cloud-free equilibrium model SM-750K | Partial-cloud model TB-700K |
| :---: | :---: | :---: |
| Absolute J-band magnitude | 16.82 | 16.64 |
| Absolute H -band magnitude | 17.02 | 16.88 |
| Absolute Lp-band magnitude | 14.3 | 13.96 |
| $T_{\text {eff }}(\mathrm{K})$ | 750 | 700 |
| Radius ( $R_{\mathrm{J}}$ ) | 0.76 | 1 |
| $\log \left(L / L_{\text {。 }}\right)$ | -5.8 | -5.6 |
| Log(surface gravity) | 5.5 | 3.5 |
| Age (My) | 10,000 | 20 (assumed to match stellar age) |
| Mass ( $M_{J}$ ) | 67 | 2 (from luminosity, assuming a high-entropy start) |

orbit (26). Moreover, the young age of the system suggests that although long-term dynamical effects, such as secular Lidov-Kozai oscillations, might have altered the planet's eccentricity and inclination, it is unlikely that they have had time to produce the extreme eccentricities required for tidal friction to alter the planet's semimajor axis (39). The formation of a $\sim 2-M_{\mathrm{J}}$ planet at an orbital distance of $\sim 15 \mathrm{AU}$ around a Sun-like star can be explained by modest extensions to the coreaccretion theory. Early versions of the theory found that accretion of the core at larger orbital distances is in danger of taking too long, failing to capture the natal gas before it dissipates (40). 51 Eri b is close enough to the star that this may be less of a problem, and the addition of migration (41) or pebbles that experience gas drag (42) also helps overcome this time-scale difficulty.

The transition from L-type to T-type planets appears to occur over a narrow range of temperatures, between $\sim 1000 \mathrm{~K}$ (HR8799 b and PSO J318.5-22) (42) and 700 K ( 51 Eri b). Direct determination of an object's mass, either through spectral surface gravity indicators or reflex astrometry of the primary star, could determine wheth-
er it formed through hot- or cold-start processes. 51 Eri b provides an opportunity to study in detail a planet that is still influenced by the initial conditions of its formation. With a methane-dominated spectrum, low luminosity, and a potentially lowentropy start, 51 Eri b is a bridge between widerorbit, hotter, more massive planets and planets at Jupiter-like scales.

## REFERENCES AND NOTES

1. C. Marois et al., Science 322, 1348-1352 (2008),
2. P. Kalas et al., Science 322, 1345-1348 (2008).
3. A.-M. Lagrange et al., Science 329, 57-59 (2010)
4. M. Kuzuhara et al., Astrophys. J. 774, 11 (2013).
5. J. C. Carson et al., Astrophys. J. 763, L32 (2013).
6. J. Rameau et al., Astrophys. J. 772, L15 (2013).
7. V. Bailey et al., Astrophys. J. 780, L4 (2014).
8. D. Lafrenière, R. Jayawardhana, M. H. van Kerkwijk, Astrophys. J. 689, L153-L156 (2008)
9. M. Janson et al., Astrophys. J. 778, L4 (2013).
10. M.-E. Naud et al., Astrophys. J. 787, 5 (2014)
11. T. S. Barman, Q. M. Konopacky, B. Macintosh, C. Marois, Simultaneous detection of water, methane and carbon monoxide in the atmosphere of exoplanet HR8799b, http://xxx.lanl.gov/abs/1503.03539.
12. T. S. Barman, B. Macintosh, Q. M. Konopacky, C. Marois, Astrophys. J. 733, 65 (2011)
13. A. J. Skemer et al., Astrophys. J. 792, 17 (2014).
14. M. S. Marley et al., Astrophys. J. 754, 135 (2012)
15. N. Madhusudhan, A. Burrows, T. Currie, Astrophys. J. 737, 34 (2011). 16. M. S. Marley, J. J. Fortney, O. Hubickyj, P. Bodenheimer, J. J. Lissauer, Astrophys. J. 655, 541-549 (2007).
16. D. S. Spiegel, A. Burrows, Astrophys. J. 745, 174 (2012)
17. R. R. Rafikov, Astrophys. J. 648, 666-682 (2006).
18. K. M. Kratter, R. Murray-Clay, A. N. Youdin, Astrophys. J. 710 1375-1386 (2010)
19. J.-L. Beuzit et al., SPHERE Consortium, paper presented at In the Spirit of Lyot 2010: Direct Detection of Exoplanets and Circumstellar Disks, Paris, 25 to 29 October 2010; abstract available at http://adsabs.harvard.edu/abs/2010lyot.confE.44B.
20. N. Jovanovic et al., The Subaru Coronagraphic Extreme Adaptive Optics system: Enabling high-contrast imaging on solar-system scales, http://xxx.lanl.gov/abs/1507.00017
21. B. R. Oppenheimer et al., Proc. SPIE 8447, 844720 (2012)
22. B. Macintosh et al., Proc. Natl. Acad. Sci. U.S.A. 111 12661-12666 (2014)
23. R. I. Patel, S. A. Metchev, A. Heinze, Astrophys. J. Suppl. Ser. 212, 10 (2014).
24. P. Riviere-Marichalar et al., Astron. Astrophys. 565, A68 (2014).
25. M. Janson et al., Astrophys. J. Suppl. Ser. 214, 17 (2014)
26. B. Zuckerman, I. Song, M. S. Bessell, R. A. Webb, Astrophys. J. 562, L87-L90 (2001).
27. Material and methods are available as supplementary materials on Science Online.
28. M. Simon, G. H. Schaefer, Astrophys. J. 743, 158 (2011)
29. A. S. Binks, R. D. Jeffries, Mon. Not. R. Astron. Soc. Lett. 438 L11-L15 (2014)
30. E. E. Mamajek, C. P. M. Bell, Mon. Not. R. Astron. Soc. 445 2169-2180 (2014).
31. T. D. Brandt et al., Astrophys. J. 786, 1 (2014)
32. G. Chauvin et al., Astron. Astrophys. 438, L25-L28 (2005)
33. J. D. Kirkpatrick, et al., Astrophys. J. 753, 156 (2012)
34. D. Saumon, M. S. Marley, Astrophys. J. 689, 1327-1344 (2008),
35. D. C. Fabrycky, R. A. Murray-Clay, Astrophys. J. 710, 1408-1421 (2010),
36. J. Chilcote et al., Astrophys. J. 798, L3 (2015)
37. T. Currie et al., Astrophys. J. 795, 133 (2014).
38. D. Fabrycky, S. Tremaine, Astrophys. J. 669, 1298-1315 (2007).
39. J. B. Pollack et al., Icarus 124, 62-85 (1996).
40. Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Astron. Astrophys. 434, 343-353 (2005).
41. M. Lambrechts, A. Johansen, Astron. Astrophys. 544, A32 (2012)
42. This research has benefitted from the SpeX Prism Spectral Libraries, maintained by A. Burgasser at http://pono.ucsd edu/~adam/browndwarfs/spexprism
43. F. van Leeuwen, Astron. Astrophys. 474, 653-664 (2007)
44. E. R. Houdebine, C. J. Butler, D. Garcia-Alvarez, J. Telting, Mon. Not. R. Astron. Soc. 426, 1591-1605 (2012)
45. B. A. Macintosh et al., Proc. SPIE 7015, 701518 (2008). 47. J. K. Chilcote et al., Proc. SPIE 8446, 84468W (2012)

## ACKNOWLEDGMENTS

This work is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy under a cooperative agreement with NSF on behalf of the Gemini partnership, whose membership includes: NSF (United States): the National Research Council (Canada); the Comisión Nacional de Investigación Cientifica y Tecnológica (Chile); the Australian Research Council (Australia); the Ministério da Ciência, Tecnologia e Inovação (Brazil); and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). The research was supported by grants from NSF, including AST-1411868 (B.M., K.F., J.P., and A.R.), AST-0909188 and AST-1313718 (J.R.G., P.K., R.D.R., and J.W.), AST-1413718 (M.P.F. and G.D.), and AST-1405505 (T.B.). Support was also provided by grants from NASA, including NNX14AJ80G (B.M., F.M., E.N., and M.P.), NNH15AZ591 (D.S. and M.M.), NNX15AD95G (J.R.G. and P.K.), NNX11AD21G (J.R.G. and P.K.), and NNH11ZDA001N (S.M. and R.P.). J.R., R.D., and D.L. acknowledge support from the Fonds de Recherche du Quebec. Support is acknowledged from NSF fellowships DGE123825 (A.Z.G.), DGE-1311230 (K.W.-D.), DGE-1232825 (S.G.W.), and DGE-1144087 (L.W.H.). Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. GPI data are archived at the Gemini Science Archive: www.cadc-ccda.hia-iha. nrc-cnrc.gc.ca/en/gsa/

## SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/350/6256/64/suppl/DC1
Materials and Methods
Figs. S1 to S3
Tables S1 to S3
References (48-90)
17 May 2015; accepted 3 August 2015
Published online 13 August 2015
10.1126/science.aac589

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.
Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 1, 2015 ):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/350/6256/64.full.html
Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2015/08/13/science.aac5891.DC1.html
A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/350/6256/64.full.html\#related
This article cites 81 articles, 8 of which can be accessed free: http://www.sciencemag.org/content/350/6256/64.full.html\#ref-list-1
This article appears in the following subject collections:
Astronomy
http://www.sciencemag.org/cgi/collection/astronomy Planetary Science
http://www.sciencemag.org/cgi/collection/planet_sci

## Appendix B

## Tables

## B. 1 Tables for Chapter 1

Table B.1. Major Debris Disk Studies

| Study Citation | Primary Instruments | Sample Age (Myr) | Sample Description | Study <br> Summary |
| :---: | :---: | :---: | :---: | :---: |
| Spangler et al. (2001) | ISO60, ISO90 | 1-630 | $150 \mathrm{~A}-\mathrm{K}$ stars | ISO survey to study evolution of dust. |
| Chen et al. (2005) | SM24, SM70 | 5-20 | 40 FG Sco Cen stars | Fourteen $24 \mu \mathrm{~m}$ and seven $70 \mu$ mexcesses detected. |
| Rieke et al. (2005) | $\begin{aligned} & \text { SM24, IRAS25, } \\ & \text { ISO25 } \end{aligned}$ | 5-850 | 266 A Stars | Evolution of debris disks around A stars. |
| Beichman et al. (2006) | SM24, SM70 | 150-1500 | 88 FGK Stars | Search for good direct imaging planet targets. $70 \mu \mathrm{~m}$ incidence rate of $\sim 13 \%$. |
| Bryden et al. (2006) | SM70 | Median 4000 | 69 FGK Stars | Low frequency of disks for old solar type stars. |
| Chen et al. (2006) | SIRS 5.5-35 $\mu \mathrm{m}$ | 10-10000 | $50 \mathrm{~B}-\mathrm{M}$ stars | Spectra suggest multiple dust populations. |
| Gorlova et al. (2006) | SM24 | 100-120 | $54 \mathrm{~B} 8-\mathrm{K} 6$ | Survey of Pleiades show $25 \%$ of $\mathrm{B}-\mathrm{A} \& 10 \%$ of $\mathrm{F}-\mathrm{K} 3$ stars have $24 \mu \mathrm{~m}$ excesses. |
| Su et al. (2006) | SM24, SM70 | 5-850 | 160 A stars | Study of dust evolution around A stars ( $\sim 33 \%$ incidence). |
| Rhee et al. (2007) | IRAS12, IRAS25, IRAS60, IRAS100 | 5-5000 | $622 \mathrm{~B}-\mathrm{F}$ stars | Study of IRAS FSC to study evolution of disks in Hipparcos |
| Siegler et al. (2007) | SM24 | 50 | 34 B3-M5 | Activity in terrestrial region of FGK stars is common at 50 Myr and decays $\tau \sim 100 \mathrm{Myr}$. |
| Trilling et al. (2007) | SM24, SM70 | 50-10000 | $\begin{aligned} & 69 \text { A3-F8 Bina- } \\ & \text { ries } \end{aligned}$ | Incidence of disks around binaries is higher than for singles. |
| Currie et al. (2008) | SI $3.6-8 \mu \mathrm{~m}$, <br> SM24  | 25 | 209 B-K stars | Survey of disks in NGC 2232. Incidence of $25 \%$ at 5 Myr , $50-$ $60 \%$ at $20-25 \%$. Results suggest most A stars produce icy planets. |
| Hillenbrand et al. (2008) | SM70 | 3-3000 | 328 FGK stars | $>1 / 3$ of disks may have multitemperature components; $\sim 10 \%$ of stars possess $70 \mu \mathrm{~m}$ excesses. |
| Meyer et al. (2008) | SM24 | 3-3000 | 309 FGK | $\begin{aligned} & 30 \text { disks. Incidence of } 8.5 \%- \\ & 19 \% \text { for }<300 \mathrm{Myr},<4 \% \text { for } \\ & \text { older stars. } \end{aligned}$ |
| Rebull et al. (2008) | SM24, SM70 | 22 | $42 \mathrm{~A}-\mathrm{K}$ | Study of disks in $\beta$ Pictoris moving group. Incidence rates of $23 \%$ for $24 \mu \mathrm{~m}$ excesses and $>37 \%$ for $70 \mu \mathrm{~m}$ excesses. |
| Trilling et al. (2008) | SM24, SM70 | 190-11000 | $350 \mathrm{~A}-\mathrm{M}$ stars | Incidence of $\sim 4.2 \%$ for $24 \mu \mathrm{~m}$, and $\sim 16.4 \% 70 \mu \mathrm{~m}$ excesses. |
| Carpenter et al. (2009b) | SM24, SM70 | 5-17 | 205 B0-M5 stars | 54 disks identified in Upper Sco. Magnitude of F star $24 \mu \mathrm{~m}$ excesses increases from 5-17 Myr with weak confidence. |
| Bryden et al. (2009) | SM24,SM70 | 100-12000 | 104 $\mathrm{~F}-\mathrm{M}$ RV <br> planet hosts   | No significant difference between incidence rates of disks around stars with and without planets. |
| Carpenter et al. (2009a) | SM24, SM70, <br> SI8.6, SIRS <br> $8-35 \mu \mathrm{~m}$  | 3-3000 | 314 FGK stars | Dust around solar type stars; $15 \%$ incidence at $<300 \mathrm{Myr}$ down to $2.5 \%$ at Gyr for $24 \mu$ mexcesses. Similar decline for $70 \mu \mathrm{~m}$ excess upper envelope. |
| Lawler et al. (2009) | $\begin{aligned} & \hline \text { SIRS } 8.5-12 \mu \mathrm{~m}, \\ & \text { SIRS } 30-34 \mu \mathrm{~m} \end{aligned}$ | 100-10000 | 152 FGK stars | $11.8 \%$ incidence rate for 30 $34 \mu \mathrm{~m}$ excesses ( $100 \times$ Zodiacal Dust) $;<1 \%$ for $8.5-12 \mu \mathrm{~m}$ excesses ( $1000 \times$ Zodiacal Dust). |
| Plavchan et al. (2009) | SM24, SM70 | 8-1100 | $70 \mathrm{~A}-\mathrm{M}$ stars | $70 \mu \mathrm{~m}$ incidence rates of $\sim 4 \%$ for GK stars, \& $21 \%$ for FG stars. |
| Koerner et al. (2010) | SM24, SM70 |  | 634 B-K stars | $4.6 \%$ incidence rate at $24 \mu \mathrm{~m}$ and $4.8 \%$ incidence for $70 \mu \mathrm{~m}$ excesses. |
| Chen et al. (2011) | SM24,SM70, <br> 3500-10500 <br> spectralin | 11-17 | $\begin{aligned} & 182 \mathrm{~F}-\mathrm{G} \text { Sco Cen } \\ & \text { stars } \end{aligned}$ | Incidence of $\sim 30 \%$ at $24 \mu \mathrm{~m}$ with 41 new discoveries of PPDs and debris disks. |
| Dodson-Robinson et al. (2011) | SIRS $32 \mu \mathrm{~m}$ | $\cdots$ | 111 FGKM stars | 11 debris disks around planet hosts; planets detected by RV searches formed within 240 AU of their stars. |

Table B.1. Major Debris Disk Studies - continued.

| Study Citation | Primary <br> Instruments | Sample Age (Myr) | Sample Description | Study Summary |
| :---: | :---: | :---: | :---: | :---: |
| Morales et al. (2011) | SIRS $7.5-35 \mu \mathrm{~m}$, SIRS $5.2-35 \mu \mathrm{~m}$ | <1000 | 69 disk stars (AK) | Observations of stars with SM data. Common warm dust in stars suggest dust not found at same location around all stars. |
| Chen et al. (2012) | SM24, SM70 | 11-17 | $\begin{aligned} & 215 \text { B-A Sco Cen } \\ & \text { stars } \end{aligned}$ | 51 new discoveries and fractions of $24-27 \%$. |
| Donaldson et al. (2012) | $\begin{aligned} & \text { HP70, } \\ & \text { HP160 } \end{aligned}$ | 30 | $17 \mathrm{~B}-\mathrm{M}$ | 6 targets show excesses. |
| Luhman \& Mamajek (2012) | SM24, $\quad$ SM70, $\quad$ SI $3.6 \mu \mathrm{~m}$, $5.8 \mu \mathrm{~m}$, $8.0 \mu \mathrm{~m}$ | 11 | 863 B-M USco Stars | 50 new transitional, evolved \& debris disks. $<10 \%$ of $\mathrm{B}-$ G stars show inner primordial disks, \& $\sim 25 \%$ at earlier than M5. Disk lifetime longer for lower mass stars. |
| Urban et al. (2012) | SM24 | 670 | $122 \mathrm{~A}-\mathrm{M}$ stars | Study of disks at LHB ages; detection of excesses at $10 \%$ of photosphere flux. |
| Eiroa et al. (2013) | HP70, HP100, <br> HP160, HS250, <br> HS350, HS500 | 100-10000 | 133 FGK stars | DUNES Survey; Disks detected at $f_{d}$ a several times that of EKB dust at $\sim 20 \%$ incidence rates. A number of disks are resolved. |
| Chen et al. (2014) | SM24, $\quad$ SM70, SIRS $31 \mu \mathrm{~m}$ | 1-10000 | 571 B-K | Analysis of SIRS spectra for large disk sample that show double disk temperatures and spectral features for a number of disks. |
| Thureau et al. (2014) | HP100, HP160 | 30-1000 | 86 A stars | DEBRIS Survey; with $24 \pm 5 \%$. |

Note. - I have tabulated the results from major disk studies over the last couple of decades. Studies with a significant number of detections have been listed $>30$, along with those that have had a significant impact on the field.
ISO25, ISO60, ISO90: ISO at $25 \mu \mathrm{~m}, 60 \mu \mathrm{~m}$, and $90 \mu \mathrm{~m}$, respectively.
SM24, SM70: Spitzer/MIPS at $24 \mu \mathrm{~m}$, and $70 \mu \mathrm{~m}$, respectively.
IRAS12, IRAS25, IRAS60, IRAS100: IRAS at $12 \mu \mathrm{~m}, 25 \mu \mathrm{~m}, 60 \mu \mathrm{~m}, 100 \mu \mathrm{~m}$.
SIRS: Spitzer/IRS SI8.6: Spitzer/IRAC at $8.6 \mu \mathrm{~m}$
HP70, HP100, HP160: Herschel/PACS $70 \mu \mathrm{~m}, 100 \mu \mathrm{~m}$, and $160 \mu \mathrm{~m}$, respectively.
HS250, HS350, HS500: Herschel/SPIRES $250 \mu \mathrm{~m}, 350 \mu \mathrm{~m}$, and $500 \mu \mathrm{~m}$, respectively.

## B. 2 Tables for Chapter 3

Table B．2．Stellar Parameters of Stars with IR Excesses－Cont．of Table 5

| HIP | $\begin{gathered} \text { WISE } \\ \text { ID } \end{gathered}$ | $\mathrm{SpT}^{\text {a }}$ | $\begin{aligned} & \text { Dist. }^{\text {b }} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{aligned} & T_{*} \\ & (\mathrm{~K}) \end{aligned}$ | $\begin{gathered} R_{*} \\ \left(R_{\odot}\right) \end{gathered}$ | $\chi_{*}^{2}$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{gathered} F_{W 3, *} \\ (\mathrm{mJy}) \end{gathered}$ | $\begin{aligned} & F_{W 4} \\ & (\mathrm{mJy}) \end{aligned}$ | $\begin{aligned} & F_{W 4, *} \\ & (\mathrm{mJy}) \end{aligned}$ | $\Delta_{F_{W 3}} / F_{W 3}$ | $W_{4} / F_{W 4}{ }^{\text {d }}$ | $\mathrm{d}_{\underset{(\mathrm{mag})}{\mathrm{d}} \mathrm{l}_{\text {corr }}{ }^{\mathrm{e}}}$ | $\begin{aligned} & W 2_{\text {corr }}{ }^{\text {e }} \\ & (\mathrm{mag}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 544 | Joo |  | 14 | 5 | 0.86 | 3.3 | $\pm 7$ | 550 | $186 \pm 4$ | 153 | －0．026 | 0.178 | $4.260 \pm 0.082$ | $4.290 \pm 0.051$ |
| 560 | J000650．16－230627 | F2IV | 39 | 6789 | 1.5 | 0.38 | $234 \pm 3$ | 234 | $130 \pm 3$ | 64.7 | －0．001 | 0.501 | $5.220 \pm 0.072$ | $5.240 \pm 0.037$ |
| 682 | J000825．79＋063700．6 | G2V | 39 | 5845 | 1.1 | 1.2 | 106 $\pm 1$ | 108 | $41.6 \pm 2$ | 29.9 | －0．019 | 0.281 | $6.050 \pm 0.051$ | $6.100 \pm 0.022$ |
| 1473 | J001819．60＋364706．3 |  | 41 | 87 |  | 0.62 | $527 \pm 7$ | 524 | $182 \pm 3$ | 144 | 0.006 | 0.208 | $4.260 \pm 0.097$ | $4.330 \pm 0.050$ |
| 1481 | J001826．25－632839．6 | F8／G0V | 42 | 6138 | 1.1 | 0.73 | 102 $\pm 1$ | 102 | $41.7 \pm 1$ | 28.4 | －0．003 | 0.319 | $6.130 \pm 0.048$ | $6.150 \pm 0.023$ |
| 1866 | J002338．01－034548．9 | K | 47 | 4527 | 0.65 | 1.7 | $21.1 \pm 0.4$ | 21.4 | $9.22 \pm 1$ | 5.99 | －0．012 | 0.350 | $7.830 \pm 0.02$ | $7.910 \pm 0.021$ |
| 2472 | Joo3125．12－484812．7 | AOV | 53 | 9489 | 2.1 | 1.2 | $377 \pm 6$ | 374 | $130 \pm 4$ | 103 | 0.010 | 0.209 | $4.760 \pm 0.075$ | $4.790 \pm 0.046$ |
| 2710 | J003427．10－063014．9 | F2 | 41 | 6428 | 1.2 | 1.2 | $142 \pm 2$ | 145 | $48.3 \pm$ | 40.0 | －0．019 | 0.171 | $5.680 \pm 0.06$ | $5.740 \pm 0.027$ |
| 3210 | J004051．69－531236．1 | F7V | 45 | 6197 | 1.2 | 1.4 | $107 \pm 1$ | 107 | $37 \pm 1$ | 29.6 | 0.006 | 0.200 | $6.070 \pm 0.050$ | $6.090 \pm 0.022$ |
| 3279 | J004147．56＋554056．2 |  | 69 | 5807 | 1.2 | 1.3 | $41.4 \pm 0.6$ | 42.1 | $14.4 \pm 0.6$ | 11.7 | －0．015 | 0.188 | $7.070 \pm 0.03$ | $7.120 \pm 0.020$ |
| 3965 | J005057．54＋513029．0 | F2IV | 67 | 7374 | 1.9 | 1.3 | $150 \pm 2$ | 152 | $54.1 \pm 1$ | 41.8 | －0．010 | 0.227 | $5.630 \pm 0.06$ | $5.720 \pm 0.028$ |
| 5462 | J010956．58－642133．0 | G5V | 47 | 5608 | 0.81 | 0.94 | $42 \pm 0.6$ | 41.7 | $16.6 \pm 0.9$ | 11.6 | 0.006 | 0.301 | $7.100 \pm 0.031$ | $7.140 \pm 0.019$ |
| 5631 | J011219．08＋121654．1 | F5 | 34 | 6267 | 1.1 | 3.1 | $156 \pm 2$ | 161 | $51.3 \pm 2$ | 44.4 | －0．033 | 0.133 | $5.620 \pm 0.054$ | $5.630 \pm 0.029$ |
| 5709 | J011326．63－393223．9 | F3／F5 | 55 | 6627 | 1.3 | 0.81 | $92.7 \pm 1$ | 94.5 | $32 \pm 1$ | 26.1 | －0．020 | 0.184 | $6.190 \pm 0.047$ | $6.210 \pm 0.023$ |
| 6490 | J012323．64＋064427．1 |  | 72 | 6142 | 1.1 | 0.97 | $33.3 \pm 0.5$ | 33.5 | $12.5 \pm 1$ | 9.31 | －0．008 | 0.258 | $7.340 \pm 0.02$ | $7.360 \pm 0.021$ |
| 6494 | J012326．11－763642．6 | G5V | 46 | 5711 | 0.93 | 0.25 | $57.2 \pm 0.8$ | 57.5 | $20.8 \pm 0.9$ | 16.0 | －0．006 | 0.233 | $6.750 \pm 0.03$ | $6.800 \pm 0.021$ |
| 6679 | J012540．67＋025819．4 | F0 | 49 | 6552 | 1.3 | 1.4 | $124 \pm 2$ | 126 | $47.6 \pm 1$ | 34.7 | －0．012 | 0.270 | $5.830 \pm 0.05$ | $5.910 \pm 0.026$ |
| 7345 | J013437．83－154034．8 | 1 V | 59 | 9006 | 1.7 | 1.2 | $213 \pm 3$ | 186 | $265 \pm 6$ | 51.3 | 0.124 | 0.806 | $5.440 \pm 0.060$ | $5.470 \pm 0.028$ |
| 7576 | J013735．57－064538．4 | Gs | 24 | 5322 | 0.79 | 3 | $142 \pm 2$ | 146 | $48.7 \pm 1$ | 40.8 | －0．030 | 0.163 | $5.720 \pm 0.056$ | $5.760 \pm 0.028$ |
| 7699 | J013907．72－562546．0 | F5V | 48 | 6474 | 1.3 | 1.7 | $121 \pm 2$ | 120 | $54.9 \pm 2$ | 33.1 | 0.007 | 0.398 | $5.930 \pm 0.05$ | $5.950 \pm 0.023$ |
| 7805 | J014024．13－605956．7 | F2IV／V | 67 | 6679 | 1.3 | 0.46 | $66.6 \pm 0.9$ | 66 | $31.4 \pm 1$ | 18.2 | 0.009 | 0.419 | $6.610 \pm 0.040$ | $6.620 \pm 0.021$ |
| 7978 | J014229．49－534428．1 | F8V | 17 | 6097 | 1.1 | 0.82 | $600 \pm 8$ | 622 | $218 \pm 4$ | 173 | －0．036 | 0.207 | $4.200 \pm 0.09$ | $4.180 \pm 0.060$ |
| 8109 | J014414．01＋545311．1 | F8 | 44 | 5956 | 1.3 | 0.98 | $134 \pm 2$ | 134 | $47.2 \pm 1$ | 37.2 | －0．002 | 0.211 | $5.910 \pm 0.05$ | $5.850 \pm 0.027$ |
| 8122 | J014422．85＋323056．5 |  | 69 | 7664 | 1.6 | 0.72 | 97．6土1 | 99.1 | $45.3 \pm 1$ | 27.3 | －0．015 | 0.397 | $6.110 \pm 0.04$ | $6.180 \pm 0.021$ |
| 8241 | J014606．39－533118．7 | A1V | 62 | 9413 | 2.2 | 0.91 | $295 \pm 4$ | 291 | $120 \pm 3$ | 80.2 | 0.014 | 0.333 | $4.970 \pm 0.0$ | $4.940 \pm 0.041$ |
| 8987 | J015549．61－525026．4 | K4／K5V | 40 | 4496 | 0.81 | 1.6 | $45.3 \pm 0.6$ | 45.2 | $15.7 \pm 0.9$ | 12.7 | 0.002 | 0.192 | $7.030 \pm 0.031$ | $7.100 \pm 0.020$ |
| 9052 | J015638．21－812956．9 | F3IV／V | 72 | 6797 | 1.9 | 0.73 | $121 \pm 2$ | 118 | $40.5 \pm 1$ | 32.7 | 0.025 | 0.192 | $6.020 \pm 0.048$ | $5.980 \pm 0.025$ |
| 9141 | J015749．04－215405．7 | G3／G5V | 41 | 5682 | 0.95 | 1.2 | $77.4 \pm 1$ | 77.7 | $28.5 \pm 1$ | 21.6 | －0．004 | 0.241 | $6.380 \pm 0.045$ | $6.450 \pm 0.020$ |
| 9902 | J020726．23－594046．1 | F8V | 44 | 6156 | 1.1 | 1.6 | 104土1 | 96.9 | $53.8 \pm 1$ | 26.9 | 0.072 | 0.499 | 6． $200 \pm 0.046$ | $6.180 \pm 0.022$ |
| 10054 | J020925．16＋811745．5 | A1V | 71 | 8311 | 1.9 | 2.3 | $154 \pm 2$ | 152 | $52.7 \pm 2$ | 41.8 | 0.013 | 0.208 | $5.670 \pm 0.05$ | $5.700 \pm 0.025$ |
| 10670 | J021718．90＋335049．4 | A1Vnn | 34 | 9430 | 1.9 | 0.79 | $743 \pm 10$ | 740 | $327 \pm 5$ | 204 | 0.004 | 0.376 | $3.850 \pm 0.10$ | $4.030 \pm 0.066$ |
| 11157 | J022332．30＋193755．5 | G5 | 55 | 5648 | 0.86 | 1.1 | $33.8 \pm 0.7$ | 34.6 | $14.1 \pm 1$ | 9.63 | －0．023 | 0.316 | $7.300 \pm 0.0$ | $7.340 \pm 0.020$ |
| 11477 | J022801．71－334839．5 | A2／A3V | 47 | 8925 | 1.7 | 1.4 | $297 \pm 4$ | 296 | $124 \pm 3$ | 81.5 | 0.004 | 0.345 | $4.890 \pm 0.0$ | $4.960 \pm 0.041$ |
| 11847 | J023255．85＋372000．6 | F0 | 63 | 6834 | 1.3 | 2.7 | $73 \pm 1$ | 71.3 | $169 \pm 4$ | 19.7 | 0.024 | 0.883 | $6.500 \pm 0.040$ | $6.550 \pm 0.021$ |
| 12489 | J024041．12＋270339．2 | A3V | 71 | 8722 | 2.4 | 0.92 | $268 \pm 3$ | 269 | $93.1 \pm 3$ | 74.2 | －0．004 | 0.203 | $4.990 \pm 0.073$ | $5.060 \pm 0.043$ |
| 13141 | J024901．61－624823．3 | A2V | 50 | 8614 | 1.8 | 3.3 | $289 \pm 4$ | 289 | $101 \pm 2$ | 79.5 | 0.002 | 0.215 | $4.980 \pm 0.074$ | $4.950 \pm 0.038$ |
| 13209 | J024959．08＋271536．8 | B8Vn | 51 | 12190 | 2.7 | 0.28 | $828 \pm 10$ | 778 | $313 \pm 7$ | 213 | 0.060 | 0.320 | $3.790 \pm 0.09$ | $3.900 \pm 0.075$ |
| 13569 | J025449．55－333129．3 | A3m． | 73 | 7403 | 1.6 | 1.7 | $95 \pm 1$ | 94.7 | $37 \pm 1$ | 26.1 | 0.004 | 0.295 | $6.140 \pm 0.047$ | $6.200 \pm 0.020$ |
| 13679 | J025613．80＋082252．8 | F7IV | 43 | 6516 | 1.9 | 2.3 | $318 \pm 4$ | 326 | $109 \pm 3$ | 90.6 | －0．028 | 0.168 | $4.830 \pm 0.072$ | $4.900 \pm 0.037$ |
| 14684 | J030942．33－093447．6 | G0 | 37 | 5405 | 0.81 | 1.3 | $62.6 \pm 0.9$ | 63.3 | $21.3 \pm 0.9$ | 17.6 | －0．010 | 0.173 | $6.640 \pm 0.038$ | $6.680 \pm 0.022$ |
| 15929 | J032510．63－064408．3 | IV | 73 | ${ }^{6346}$ | 1.1 | 1.2 | $37 \pm 0.6$ | 36.8 | $18.6 \pm 1$ | 10.2 | 0.005 | 0.451 | $7.220 \pm 0.032$ | $7.230 \pm 0.022$ |
| 16449 | J033153．68－253651．0 | A3IV／V | 72 | 8508 | 1.6 | 0.43 | 104土1 | 104 | $57.9 \pm 2$ | 28.8 | －0．002 | 0.503 | $6.050 \pm 0.051$ | $6.120 \pm 0.023$ |
| 16908 | J033735．06＋212035．2 | G5 | 40 | 4942 | 0.75 | 2 | $44.2 \pm 0.7$ | 44.4 | $15.9 \pm 1$ | 12.4 | －0．003 | 0.225 | $7.070 \pm 0.033$ | $7.080 \pm 0.020$ |
| 17338 | J034239．79－203243．3 | 8 V | 50 | 5211 | 0.89 | 3.6 | $41.3 \pm 0.6$ | 41 | $18 \pm 1$ | 11.4 | 0.007 | 0.365 | $7.120 \pm 0.032$ | $7.140 \pm 0.019$ |
| 17395 | J034333．82－102908．4 | A5m | 42 | 7821 | 1.5 | 0.73 | $270 \pm 3$ | 268 | $113 \pm 3$ | 74.0 | 0.006 | 0.347 | $5.030 \pm 0.071$ | $5.120 \pm 0.035$ |
| 17764 | J034811．61－744138．6 | F3IV／V | 54 | 6706 | 1.3 | 0.41 | $103 \pm 1$ | 103 | $49.4 \pm 1$ | 28.4 | 0.001 | 0.425 | 6．100 $\pm 0$ | $6.140 \pm 0.022$ |
| 18187 | J035327．23－411321．1 | F6V | 41 | 6225 | 1.1 | 1.8 | $121 \pm 2$ | 121 | $45.8 \pm 1$ | 33.5 | 0.001 | 0.267 | $5.930 \pm 0.051$ | 5．95 |

Table B. 2 (cont'd)

| $\begin{array}{lc} \hline \text { HIP } & \text { WISE } \\ \text { ID } & \text { ID } \end{array}$ | $\mathrm{SpT}^{\text {a }}$ | $\begin{aligned} & \text { Dist. }^{\text {b }} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{aligned} & \mathrm{b}^{T_{*}} \\ & (\mathrm{~K}) \end{aligned}$ | $\begin{gathered} R_{*} \\ \left(R_{\odot}\right) \end{gathered}$ | $\chi_{*}^{2}$ | $\begin{aligned} & F_{W 3} \\ & (\mathrm{mJy}) \end{aligned}$ | $F_{W 3, *}$ (mJy) | $\begin{gathered} F_{W 4} \\ (\mathrm{mJy}) \end{gathered}$ | $F_{W 4, *}$ (mJy) | $\Delta_{F_{W 3}} / F_{W 3}{ }^{\text {d }} \Delta^{\text {a }}$ | $W_{W 4} / F_{W 4}{ }^{\text {d }}$ | $\mathrm{d}_{\underset{(\mathrm{mag})}{\mathrm{d}} \mathrm{l}_{\text {corr }}{ }^{\mathrm{e}}}$ | $\begin{aligned} & W 2_{\text {corr }}{ }^{\mathrm{e}} \\ & (\mathrm{mag}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18481 J035701.73+ | A2Vn | 70 | 8919 | 1.6 | 1.4 | $\pm 2$ | 124 | $52.7 \pm 2$ | 34.2 | 0.0 | 0.351 | $5.910 \pm 0.051$ | 27 |
| 19610 ${ }^{\text {c Jo41208.76-102811.1 }}$ | G5+G5 | 61 | 5660 | 0.98 | 4.8 | $63.7 \pm 0.9$ | 59.4 | $19.3 \pm 1$ | 16.5 | 0.066 | 0.143 | $6.740 \pm 0.041$ | $6.700 \pm 0.023$ |
| 19793 J041432.39+233429.4 | G3V | 47 | 5788 | 1.1 | 1.5 | $70.8 \pm 1$ | 72.4 | $28 \pm 1$ | 20.1 | -0.021 | 0.280 | $6.500 \pm 0.039$ | $6.520 \pm 0.022$ |
| 19796 J041434.42+104205.1 | V | 45 | 6238 | 1.3 | 0.69 | $127 \pm 2$ | 134 | $44 \pm 2$ | 37.1 | -0.048 | 0.156 | $5.820 \pm 0.053$ | $5.870 \pm 0.025$ |
| 20261 J042036.38+150543.7 | F0V | 47 | 7739 | , | 2.6 | $365 \pm 5$ | 375 | $119 \pm 3$ | 103 | -0.029 | 0.133 | $4.710 \pm 0.076$ | $4.730 \pm 0.047$ |
| 20693 J042557.39+050900.6 | F5 | 50 | 6242 | 1.3 | 0.81 | 103土2 | 105 | $41.9 \pm 1$ | 29.0 | -0.017 | 0.307 | $6.120 \pm 0.049$ | $6.100 \pm 0.022$ |
| 20737 J042638.62-285708.0 | K0v | 38 | 5150 | 0.82 | 1.3 | $60.9 \pm 0.8$ | 61.1 | $24.1 \pm 1$ | 17.0 | -0.004 | 0.293 | $6.690 \pm 0.039$ | $6.740 \pm 0.021$ |
| 20794 J042722.22+070344.9 | F5 | 74 | 6771 | 1.4 | 3.1 | $63.1 \pm 1$ | 65.5 | $24 \pm 1$ | 18.1 | -0.039 | 0.245 | $6.570 \pm 0.039$ | $6.620 \pm 0.020$ |
| 20901 J042850.24+130251.3 | A7V | 49 | 7919 | 2.3 | 0.69 | $433 \pm 6$ | 437 | $160 \pm 4$ | 120 | -0.008 | 0.247 | $4.540 \pm 0.079$ | $4.470 \pm 0.057$ |
| 20998 J043011.60-675234.8 | G5V | 52 | 5652 | 1.4 | 2.4 | $112 \pm 1$ | 111 | $36.8 \pm 1$ | 30.8 | 0.015 | 0.163 | $5.960 \pm 0.051$ | $6.060 \pm 0.025$ |
| 21547 J043736.16-022825.2 | FOV | 29 | 7416 | 1.4 | 2.8 | $445 \pm 6$ | 438 | $146 \pm 3$ | 121 | 0.015 | 0.171 | $4.450 \pm 0.081$ | $4.510 \pm 0.052$ |
| 21983 J044331.80+111000.4 | K8 | 47 | 4610 | 0.77 | 1.6 | $30.2 \pm 0.5$ | 30.3 | $12.2 \pm 1$ | 8.48 | -0.005 | 0.307 | 7.460 0 0.027 | $7.540 \pm 0.019$ |
| 22152 J044600.82+763638.4 | F7V | 32 | 6327 | 1.2 | 1 | $229 \pm 3$ | 230 | $83.2 \pm 2$ | 63.8 | -0.005 | 0.233 | $5.190 \pm 0.068$ | $5.230 \pm 0.032$ |
| 22192 J044625.75-280514.5 | A2IV/V | 56 | 7962 | 1.5 | 0.64 | $149 \pm 2$ | 150 | $54 \pm 2$ | 41.2 | -0.004 | 0.237 | $5.750 \pm 0.052$ | $5.710 \pm 0.028$ |
| $22295{ }^{\text {C J }} 044805.35-804645.0$ | F7V | 61 | 6240 | 1.3 | 4.4 | $54.1 \pm 0.7$ | 54.2 | $19.4 \pm 0.8$ | 15.5 | -0.002 | 0.199 | $6.780 \pm 0.038$ | $6.820 \pm 0.019$ |
| 22312 J044819.63+674547.2 | F0 | 69 | 7186 | 1.5 | 0.97 | $92.1 \pm 1$ | 93.2 | $34.2 \pm 1$ | 25.7 | -0.012 | 0.247 | $6.270 \pm 0.045$ | $6.250 \pm 0.020$ |
| $22394{ }^{\text {c }}$ J044913.04+244809.7 | K3V | 50 | 4840 | 0.73 | 4.4 | $50.7 \pm 0.7$ | 50.7 | $20.4 \pm 1$ | 14.8 | 0.000 | 0.275 | $6.830 \pm 0.036$ | $6.920 \pm 0.020$ |
| $22509^{\text {c }}$ J045036.73+085400.5 | A 1 Vn | 69 | 9200 | , | 4.3 | $599 \pm 9$ | 598 | $199 \pm 4$ | 177 | 0.001 | 0.113 | $4.130 \pm 0.101$ | $4.250 \pm 0.060$ |
| 22845 J045453.76+100901.8 | AOV | 36 | 8736 | 1.7 | 1.7 | $496 \pm 6$ | 492 | $197 \pm 5$ | 135 | 0.009 | 0.314 | $4.370 \pm 0.081$ | $4.380 \pm 0.058$ |
| 23443 J050220.30+135435.8 | G0 | 39 | 5916 | 1.1 | 0.75 | $109 \pm 2$ | 110 | $38.9 \pm 2$ | 30.6 | -0.007 | 0.213 | $6.010 \pm 0.051$ | $6.070 \pm 0.023$ |
| 23497 J050305.80+213523.4 | A7V | 53 | 8187 | 2.8 | 0.59 | $584 \pm 9$ | 582 | $200 \pm 4$ | 161 | 0.003 | 0.196 | $4.180 \pm 0.088$ | $4.190 \pm 0.057$ |
| 23871 J050748.35+202505.8 | A5V | 58 | 8650 | 2 | 0.33 | $273 \pm 4$ | 275 | $108 \pm 3$ | 75.9 | -0.009 | 0.300 | $5.010 \pm 0.074$ | $5.070 \pm 0.041$ |
| 24528 J051543.88-225339.5 | A3V | 75 | 8304 | 1.4 | 0.57 | $83.2 \pm 1$ | 78.1 | $48.2 \pm 2$ | 21.5 | 0.061 | 0.553 | $6.380 \pm 0.043$ | $6.420 \pm 0.021$ |
| 24947 J052038.08-394517.7 | F6V | 48 | 6219 | 1.2 | 0.97 | $105 \pm 1$ | 105 | $37.3 \pm 1$ | 29.1 | 0.007 | 0.222 | $6.100 \pm 0.053$ | $6.110 \pm 0.024$ |
| 25183 J052312.24-314456.3 | F3V | 72 | 6530 | 1.6 | 2.7 | $79.3 \pm 1$ | 79.5 | $31.2 \pm 1$ | 22.0 | -0.002 | 0.297 | $6.390 \pm 0.043$ | $6.390 \pm 0.021$ |
| 25376 J052542.62-532849.8 | F7V | 59 | 6243 | 1.2 | 1.4 | $65.3 \pm 0.9$ | 66.3 | $21.6 \pm 0.7$ | 18.3 | -0.016 | 0.153 | $6.560 \pm 0.044$ | $6.600 \pm 0.021$ |
| 26395 J053708.78-114632.0 | A2V | 63 | 9033 | 1.4 | 1.9 | $124 \pm 2$ | 120 | $73.4 \pm 2$ | 33.0 | 0.036 | 0.551 | $5.910 \pm 0.051$ | $5.980 \pm 0.022$ |
| 26453 J053739.64-283734.7 | F3V | 57 | 6666 | 1.3 | 0.59 | $94.9 \pm 1$ | 93.2 | $60.7 \pm 2$ | 25.7 | 0.018 | 0.576 | 6.230 0.050 | $6.240 \pm 0.023$ |
| 26563 J053853.07-071246.5 | A4V | 45 | 8307 | 2.1 | 1.7 | $492 \pm 6$ | 488 | $181 \pm 4$ | 135 | 0.008 | 0.255 | $4.350 \pm 0.082$ | $4.450 \pm 0.059$ |
| 26990 J054335.83-395524.6 | G0v | 55 | 5971 | 1.1 | 1.1 | $59.7 \pm 0.8$ | 59.8 | $23.1 \pm 0.8$ | 16.6 | -0.002 | 0.279 | $6.710 \pm 0.036$ | $6.730 \pm 0.019$ |
| 28498 J060055.38-545704.7 | F5V | 56 | 6442 | 1.3 | 0.99 | $90 \pm 1$ | 91 | $30.5 \pm 1$ | 25.2 | -0.011 | 0.174 | 6.200 0 0.049 | $6.260 \pm 0.021$ |
| 30252 J062150.07-511415.7 | A5V | 71 | 7757 | 1.6 | 0.82 | $97 \pm 1$ | 95.1 | $66 \pm 2$ | 26.2 | 0.019 | 0.603 | $6.190 \pm 0.047$ | $6.220 \pm 0.023$ |
| 30893 J062905.35+270027.7 | K2V | 30 | 5007 | 0.77 | 3.1 | $80.6 \pm 1$ | 83.3 | $23.1 \pm 1$ | 23.2 | -0.033 | -0.005 | 6.430 0 0.037 | $6.400 \pm 0.021$ |
| 32435 J064613.60-835928.8 | F5V | 56 | 6396 | 1.3 | 0.88 | $89.5 \pm 1$ | 88.8 | $41.1 \pm 1$ | 24.6 | 0.008 | 0.403 | $6.300 \pm 0.046$ | $6.300 \pm 0.021$ |
| 33690 J065959.41-612007.5 | Koiv-V | 18 | 5396 | 0.86 | 1 | $296 \pm 4$ | 300 | $111 \pm 3$ | 83.6 | -0.015 | 0.249 | $4.950 \pm 0.072$ | $4.990 \pm 0.041$ |
| 34334 J070702.53-554614.3 | G6/G8V | 72 | 5563 | 0.98 | 0.9 | $26.1 \pm 0.4$ | 26.2 | $9.4 \pm 0.6$ | 7.28 | -0.004 | 0.225 | $7.610 \pm 0.026$ | $7.650 \pm 0.021$ |
| 35198 J071625.22+350102.8 | G5 | 36 | 5389 | 0.78 | 0.84 | $63.9 \pm 0.9$ | 64.1 | $23.7 \pm 1$ | 17.8 | -0.003 | 0.248 | $6.670 \pm 0.036$ | $6.690 \pm 0.022$ |
| 35567 J072022.92-561740.1 | A1V | 71 | 8515 | 1.4 | 2.5 | $98 \pm 1$ | 87.7 | $103 \pm 2$ | 24.2 | 0.105 | 0.765 | 6. $220 \pm \pm 0.048$ | $6.260 \pm 0.022$ |
| 36515 ${ }^{\text {c Jo73042.45-372021.1 }}$ | G3V | 22 | 5794 | 0.92 | 4 | $265 \pm 4$ | 261 | $87.5 \pm 2$ | 72.5 | 0.015 | 0.171 | $5.020 \pm 0.075$ | $5.100 \pm 0.038$ |
| 36827 Jo73426.11-065348.5 | K2V | 25 | 5067 | 0.74 | 2.8 | $113 \pm 2$ | 116 | $40.7 \pm 1$ | 32.3 | -0.024 | 0.206 | $5.950 \pm 0.041$ | $6.040 \pm 0.022$ |
| 36927 J073526.70-522630.4 | K3IV-V | 25 | 4714 | 0.71 | 2.7 | $90.3 \pm 1$ | 92.7 | $30.5 \pm 1$ | 25.9 | -0.027 | 0.151 | $6.220 \pm 0.045$ | $6.300 \pm 0.021$ |
| 36948 J073547.42-321213.3 | G3/G5V | 35 | 5453 | 0.85 | 0.84 | $78.4 \pm 1$ | 78.6 | $44.3 \pm 2$ | 21.9 | -0.002 | 0.506 | 6.430 0.042 | $6.450 \pm 0.022$ |
| 38369 J075139.41-400414.7 | F5V | 65 | 6199 | 1.1 | 1.5 | $45.2 \pm 0.7$ | 46.1 | $17 \pm 0.8$ | 12.8 | -0.022 | 0.249 | $6.980 \pm 0.035$ | $7.010 \pm 0.020$ |
| 38538 J075329.80+264556.5 | A3V | 68 | 8533 | 2.8 | 1.5 | $382 \pm 5$ | 383 | $127 \pm 3$ | 105 | -0.002 | 0.167 | $4.640 \pm 0.082$ | $4.750 \pm 0.041$ |
| 40693 J081824.16-123805.9 | Kov | 12 | 5398 | 0.88 | 0.87 | $671 \pm 9$ | 667 | $278 \pm 5$ | 186 | 0.006 | 0.332 | $4.080 \pm 0.094$ | $4.130 \pm 0.069$ |
| 41081 J082255.15-520725.2 | A0V | 70 | 9610 | 1.6 | 0.067 | $143 \pm 2$ | 129 | $75.1 \pm 2$ | 35.5 | 0.097 | 0.528 | $5.870 \pm 0.05$ | $5.880 \pm 0.026$ |
| 41152 J082348.49+531310.1 | A3V | 50 | 8509 | 1.6 | 1.1 | $227 \pm 3$ | 230 | $95.4 \pm 2$ | 63.4 | -0.012 | 0.336 | $5.200 \pm 0.073$ | $5.250 \pm 0.033$ |

Table B． 2 （cont＇d）

| $\begin{array}{lc} \text { HIP } & \text { WISE } \\ \text { ID } \end{array}$ | $\mathrm{SpT}^{\text {a }}$ | $\begin{aligned} & \text { Dist.b } \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{gathered} T_{*} \\ (\mathrm{~K}) \end{gathered}$ | $\begin{gathered} R_{*} \\ \left(R_{\odot}\right) \end{gathered}$ | $\chi_{*}^{2}$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \\ \hline \end{gathered}$ | $\begin{aligned} & F_{W 3, *} \\ & (\mathrm{mJy}) \end{aligned}$ | $\begin{gathered} F_{W 4} \\ (\mathrm{mJy}) \\ \hline \end{gathered}$ | $\begin{aligned} & F_{W 4, *} \\ & (\mathrm{mJy}) \end{aligned}$ | $\Delta_{F_{W 3}} / F_{W 3}{ }^{\text {d }} \Delta^{\prime}$ | ${ }_{W 4} / F_{W 4}{ }^{\text {d }}$ | $\mathrm{d}_{(\mathrm{mag})}^{W 1_{\text {corr }} \mathrm{e}}$ | $\begin{aligned} & W 2_{\text {cor }}{ }^{\mathrm{e}} \\ & (\mathrm{mag}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{41277}{ }^{\text {c }}$ ， |  | 44 | 3970 | 0.58 | 13 | $32.1 \pm 0.6$ | 32 | $12.9 \pm 1$ | 9.52 |  | 0.261 | $7.410 \pm 0.026$ |  |
| 41307 J082539．61－035423．2 | A0V | 38 | 9752 | 2.1 | 1.3 | $794 \pm 10$ | 786 | $353 \pm 6$ | 217 | 0.010 | 0.386 | $3.820 \pm 0.104$ | $3.890 \pm 0.080$ |
| 41373 J082625．17－524827．0 | A0V | 69 | 8945 | 1.6 | 0.58 | $129 \pm 2$ | 128 | $62.8 \pm 2$ | 35.2 | ${ }^{0.012}$ | ${ }^{0.439}$ | $5.850 \pm 0.054$ | $5.890 \pm 0.025$ |
| 43121 J084655．98＋120635．4 | A1V | 54 | 8342 | 1.5 | 1.9 | $174 \pm 2$ | 173 | $78.7 \pm 2$ | 47.7 | 0.005 | 0.393 | $5.490 \pm 0.059$ | $5.540 \pm 0.031$ |
| 43414 J085034．99－664733．7 | F5IV | 52 | 6575 | 3 | 0.9 | $579 \pm 8$ | 571 | $225 \pm 4$ | 158 | 0.013 | 0.300 | $4.190 \pm 0.096$ | $4.290 \pm 0.058$ |
| 46843 J093243．65＋265916．4 | K0 | 18 | 5311 | 0.79 | 2.8 | $256 \pm 3$ | 262 | $85.2 \pm 2$ | 73.1 | －0．024 | 0.143 | $5.130 \pm 0.063$ | $5.150 \pm 0.036$ |
| 47135 Jo93617．61－782041．1 | G2V | 68 | 5924 | 1.1 | 0.75 | $41 \pm 0.6$ | 40.9 | $14.4 \pm 0.7$ | 11.4 | 0.002 | 0.210 | $7.120 \pm 0.032$ | $7.160 \pm 0.020$ |
| 47792 J094436．47－621442．0 | K3／4V | 58 | 4620 | 0.82 | 1.2 | $23.2 \pm 0.4$ | 23.1 | $8.48 \pm 0.7$ | 6.46 | 0.002 | 0.238 | $7.750 \pm 0.023$ | $7.830 \pm 0.021$ |
| 47990 J094653．90－041753．3 | K0 | 69 | 5738 | 1.2 | 1.6 | $41.2 \pm 0.6$ | 41.8 | $14.9 \pm 0.9$ | 11.6 | －0．013 | ${ }^{0.220}$ | $7.090 \pm 0.031$ | $7.110 \pm 0.020$ |
| 48423 J095216．55＋491126．2 | G5 | 33 | 5607 | 0.91 | 1.2 | $107 \pm 1$ | 109 | $43.1 \pm 2$ | 30.3 | －0．018 | 0.297 | $6.110 \pm 0.044$ | $6.110 \pm 0.023$ |
| $49593 \mathrm{~J} 100725.82+351441.5$ | A7V | 28 | 8006 | 1.6 | 1.2 | $692 \pm 10$ | 695 | $251 \pm 6$ | 191 | －0．003 | 0.236 | $4.040 \pm 0.108$ | $4.120 \pm 0.064$ |
| 49809 J101005．80－124858．2 | F2／F3IV／V | 28 | 6901 | 1.5 | 0.9 | $497 \pm 6$ | 505 | $166 \pm 3$ | 139 | －0．016 | 0.161 | $4.390 \pm 0.089$ | $4.350 \pm 0.059$ |
| 50155 J101419．21＋150418．4 | G5 | 53 | 5187 | 0.85 | 1.6 | $32.3 \pm 0.5$ | 33 | $12.2 \pm 1$ | 9.19 | －0．020 | 0.248 | $7.350 \pm 0.028$ | $7.430 \pm 0.020$ |
| 50860 J102306．33＋335429．4 | A6V | 74 | 8201 | 2.2 | 1.3 | $180 \pm 2$ | 180 | $60.7 \pm 2$ | 49.7 | －0．003 | 0.180 | $5.420 \pm 0.072$ | $5.490 \pm 0.032$ |
| 51194 J102725．15－654216．5 | 2 V | 68 | 8752 | 1.7 | 0.67 | $139 \pm 2$ | 139 | $47.5 \pm 1$ | 38.4 | －0．004 | 0.192 | $5.740 \pm 0.059$ | $5.780 \pm 0.028$ |
| 51793 J103455．79－742141．0 | K2／3V | 55 | 4584 | 0.72 | 3.4 | $20.3 \pm 0.3$ | 19.4 | $6.54 \pm 0.5$ | 5.41 | 0.045 | 0.172 | $7.950 \pm 0.023$ | $7.990 \pm 0.020$ |
| 52457 J104324．88＋231118．3 | A 3 Vn | 70 | 9070 | 2.5 | 1.8 | $301 \pm 4$ | 305 | $107 \pm 2$ | 84.0 | －0．014 | 0.212 | $4.900 \pm 0.066$ | $4.980 \pm 0.036$ |
| 52709 J104637．16－431134．2 | A4IV | 72 | 7952 | 1.9 | 1.1 | $133 \pm 2$ | 135 | $47.2 \pm 1$ | 37.2 | －0．010 | 0.213 | $5.820 \pm 0.055$ | $5.800 \pm 0.029$ |
| 52947 J104941．85－713914．7 | F0／F2V | 74 | 6850 | 1.4 | 1.5 | $64.1 \pm 0.9$ | 64.7 | $25.3 \pm 0.9$ | 17.9 | －0．009 | 0.294 | $6.600 \pm 0.042$ | $6.620 \pm 0.021$ |
| 53954 J110219．79＋201047．8 | A1m | 39 | 9064 | 1.9 | 0.45 | $560 \pm 8$ | 556 | $253 \pm 4$ | 153 | 0.007 | 0.394 | $4.280 \pm 0.101$ | $4.240 \pm 0.062$ |
| 55057 J111616．56－034541．8 |  | 55 | 5554 | 0.91 | 1.2 | $37.3 \pm 0.6$ | 37.5 | $14.2 \pm 1$ | 10.4 | －0．006 | 0.262 | 7． $200 \pm 0.028$ | $7.270 \pm 0.020$ |
| 55130 J111711．95－380051．5 | A1V | 73 | 8637 | 1.6 | 0.86 | $115 \pm 2$ | 115 | $39.7 \pm 1$ | 31.7 | 0.004 | 0.202 | $5.930 \pm 0.048$ | $6.010 \pm 0.024$ |
| $56253 \mathrm{~J} 113149.95+810738.4$ | A2m | 59 | 7671 | 1.7 | 1.3 | $168 \pm 2$ | 172 | $55.2 \pm 1$ | 47.4 | －0．022 | 0.141 | $5.520 \pm 0.060$ | $5.560 \pm 0.030$ |
| 57971 J115326．75－350400．2 | A2V | 74 | 8794 | 1.7 | 0.32 | $117 \pm 2$ | 118 | $48 \pm 1$ | 32.5 | －0．003 | 0.323 | $5.930 \pm 0.056$ | $5.970 \pm 0.023$ |
| 59394 J121103．79－233608．9 | A1V | 59 | 9077 | 1.8 | 0.28 | $216 \pm 3$ | 215 | $94.5 \pm 2$ | 59.2 | 0.003 | 0.374 | $5.290 \pm 0.065$ | $5.320 \pm 0.034$ |
| 59422 J121121．74－034644．4 | F5 | 50 | 6597 | 1.4 | 1.6 | $123 \pm 2$ | 126 | $51.3 \pm 2$ | 34.9 | －0．023 | 0.320 | $5.810 \pm 0.055$ | $5.910 \pm 0.025$ |
| $59608 \mathrm{~J} 121325.88+101544.4$ | A2m | 50 | 7580 | 1.7 | 1.1 | $228 \pm 3$ | 229 | $83.7 \pm 2$ | 63.3 | －0．007 | 0.244 | $5.230 \pm 0.063$ | $5.260 \pm 0.030$ |
| 59893 J121702．77－041503．9 | K2 | 68 | 5058 | 0.86 | 0.77 | $19.9 \pm 0.4$ | 20 | $8.87 \pm 1$ | 5.57 | －0．004 | 0.372 | $7.910 \pm 0.023$ | $7.960 \pm 0.020$ |
| 60074 J121906．38＋163252．4 | G2V | 27 | 5853 | 0.96 | 1.6 | 176さ2 | 179 | $69.5 \pm 2$ | 49.8 | －0．016 | 0.283 | $5.520 \pm 0.064$ | $5.520 \pm 0.030$ |
| 61558 J123647．35－054954．9 | A3V | 69 | 8927 | 1.7 | 1.1 | $151 \pm 2$ | 149 | $69.9 \pm 2$ | 41.2 | 0.008 | 0.411 | $5.660 \pm 0.057$ | $5.740 \pm 0.028$ |
| 61960 J124153．12＋101407．6 | A0V | 36 | 8919 | 1.5 | 1.7 | $383 \pm 5$ | 376 | $163 \pm 3$ | 103 | 0.018 | 0.364 | $4.700 \pm 0.077$ | $4.660 \pm 0.047$ |
| $62492 \mathrm{~J} 124821.96+304602.1$ | F7V | 68 | 6390 | 1.2 | 1 | $52.1 \pm 0.7$ | 52.8 | $20.9 \pm 1$ | 14.7 | －0．014 | 0.297 | $6.830 \pm 0.036$ | $6.860 \pm 0.019$ |
| 63076 J125528．55＋652618．3 | A5n | 29 | 7175 | 1.5 | 2.4 | 476 ${ }^{\text {6 }}$ | 482 | $154 \pm 3$ | 133 | －0．012 | 0.138 | $4.380 \pm 0.092$ | $4.550 \pm 0.049$ |
| 63286 J125809．71－230318．5 | F2V | 61 | 6971 | 1.5 | 0.64 | 106 $\pm 1$ | 108 | $38.9 \pm 1$ | 29.7 | －0．015 | 0.236 | $6.030 \pm 0.053$ | 6．060 $\pm 0.024$ |
| 63404 J125932．76－381313．2 | K3V | 43 | 4676 | 0.93 | ， | $53.3 \pm 0.7$ | 54.6 | $18.8 \pm 0.8$ | 15.2 | －0．024 | 0.190 | $6.800 \pm 0.037$ | $6.870 \pm 0.020$ |
| 63973 J130634．58－494111．0 | K0V | 33 | 5267 | 0.78 | 1.2 | $73.4 \pm 1$ | 72.1 | $27.6 \pm 1$ | 20.1 | 0.018 | 0.271 | $6.500 \pm 0.042$ | $6.560 \pm 0.022$ |
| 64461 J131246．24＋343140．8 | F5 | ${ }^{62}$ | 6102 | 1.2 | 1.6 | $57.2 \pm 0.8$ | 58.5 | $20.9 \pm 0.9$ | 16.2 | －0．023 | 0.227 | $6.730 \pm 0.039$ | $6.750 \pm 0.020$ |
| 65728 J132827．00＋595645．3 | A1Vn | 71 | 10000 | ${ }^{2}$ | 0.64 | 185士3 | 189 | $63.7 \pm 2$ | 52.0 | －0．021 | 0.184 | $5.460 \pm 0.064$ | $5.460 \pm 0.032$ |
| 66065 J133235．83－284134．0 | A0／A1V | 72 | 9279 | 1.9 | 1.5 | $165 \pm 2$ | 165 | $55.7 \pm 2$ | 45.4 | －0．001 | 0.186 | $5.530 \pm 0.063$ | $5.580 \pm 0.025$ |
| $66234{ }^{\text {c }}$ J133427．12＋490058．0 | A5V | 55 | 8080 | 1.9 | 4.1 | 546土8 | 476 | $182 \pm 3$ | 132 | 0.128 | 0.277 | $4.320 \pm 0.089$ | $4.420 \pm 0.052$ |
| 66257 J133447．91＋371056．5 | F2IVSB | 46 | 6553 | 3.3 |  | $1300 \pm 10$ | 866 | $399 \pm 7$ | 239 | 0.332 | 0.400 | $3.350 \pm 0.132$ | $3.580 \pm 0.074$ |
| 66634 J133930．29＋525517．0 | A 3 Vn | 54 | 8498 | 1.8 | 0.86 | $242 \pm 3$ | 245 | $82.3 \pm 2$ | 67.6 | －0．012 | 0.179 | $5.110 \pm 0.067$ | $5.150 \pm 0.039$ |
| 66765 J134104．34－342752．6 | K1V | 16 | 5209 | 0.77 | 2.1 | $311 \pm 4$ | 316 | $104 \pm 2$ | 88.1 | －0．018 | 0.153 | $4.870 \pm 0.075$ | $4.950 \pm 0.042$ |
| 66901 J134235．62－120512．9 | ${ }_{\text {F8 }}$ | 52 | 6548 | 1.2 | 1.1 | $80.7 \pm 1$ | ${ }_{5}^{82.6}$ | $28.1 \pm 1$ | 22.8 | －0．023 | 0.189 | ${ }^{6.300} 00.046$ | $6.370 \pm 0.021$ |
| 67682 ${ }^{\text {c J }} 135155.64-363725.4$ | F8 | 63 | 6150 |  | 5.8 | $54.4 \pm 0.8$ | 54.4 | $18.7 \pm 0.9$ | 15.9 | 0.000 | 0.149 | $6.820 \pm 0.036$ | $6.840 \pm 0.020$ |
| $67782 \mathrm{~J} 135310.20+283853.6$ | A7V | 66 | 7977 | 2 | 0.28 | 189土3 | 189 | $61.9 \pm 2$ | 52.2 | －0．004 | 0.156 | 5.450 | $5.450 \pm 0.032$ |
| 68593 J140231．57 | F8 |  | 6159 | 1.1 | 1.5 | $129 \pm 2$ | 131 | 42 | 36.4 | 15 | 149 | 5.82 | $5.880 \pm 0.02$ |

Table B. 2 (cont'd)

| HIP | WISE | SpT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | Dist. |  |
| ID |  |  |

Table B． 2 （cont＇d）

| $\begin{aligned} & \text { HIP } \\ & \text { ID } \end{aligned}$ | $\begin{gathered} \text { WISE } \\ \text { ID } \end{gathered}$ | $\mathrm{SpT}^{\text {a }}$ | $\begin{aligned} & \text { Dist. }^{\text {b }} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{aligned} & T_{*} \\ & (\mathrm{~K}) \end{aligned}$ | $\begin{gathered} R_{*} \\ \left(R_{\odot}\right) \end{gathered}$ | $\chi_{*}^{2}$ | $\begin{gathered} F_{W 3} \\ (\mathrm{mJy}) \end{gathered}$ | $F_{W 3, *}$ <br> （mJy） | $\begin{gathered} F_{W 4} \\ (\mathrm{mJy}) \end{gathered}$ | $F_{W 4, *}$ <br> （mJy） | $\Delta_{F_{W 3} / F_{W 3}{ }^{\text {d }}{ }^{\text {a }} \text { ，}{ }^{\text {a }} \text { ，}}$ | $\Delta_{F_{W 4} / F_{W 4}}$ | $\begin{gathered} W 1_{\text {corr }}{ }^{\mathrm{e}} \\ (\mathrm{mag}) \end{gathered}$ | $\begin{aligned} & W 2_{\text {corr }}{ }^{\mathrm{e}} \\ & (\mathrm{mag}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95938 | J193040．05＋350610．0 | F5 | 55 | 6104 | 1.2 | 1.3 | $74.7 \pm 1$ | 74.5 | $35 \pm 1$ | 20.6 | 0.003 | 0.411 | $6.430 \pm 0.043$ | $6.500 \pm 0.021$ |
| 96562 | J193751．77－301743．3 | F2V | 65 |  |  |  | $50.7 \pm 0.7$ | 50.6 | $17.4 \pm 1$ | 14 | 0.001 | 0.195 | $6.940 \pm 0.032$ | $6.870 \pm 0.020$ |
| 99273 | J200905．24－261327．1 | F5V | 52 | 6406 | 1.4 | 1.2 | $116 \pm 2$ | 113 | $196 \pm 4$ | 31.3 | 0.025 | 0.840 | $6.030 \pm 0.051$ | $6.050 \pm 0.025$ |
| 99742 | J201416．65＋151152．0 | A2V | 46 | 8889 | 1.8 | 0.36 | $359 \pm 5$ | 359 | $153 \pm 3$ | 99.0 | ${ }^{0.001}$ | 0.351 | $4.690 \pm 0.078$ | $4.750 \pm 0.041$ |
| 100526 | J202301．40＋544022．3 | A2 | 72 | 7863 | 1.6 | 0.33 | $96.3 \pm 1$ | 97 | $41.2 \pm 1$ | 26.7 | －0．007 | 0.351 | $6.160 \pm 0.047$ | $6.200 \pm 0.021$ |
| 101070 | J202921．13＋200515．8 | A3m | 70 | 7725 | 1.7 | 0.72 | $111 \pm 2$ | 112 | $43.8 \pm 2$ | 30.8 | －0．008 | 0.297 | $6.040 \pm 0.052$ | $6.040 \pm 0.023$ |
| 101163 | ${ }^{\text {c }}$ J203018．89＋544052．6 | F5 | 57 | 6510 | 1.5 | 4.2 | $90.4 \pm 1$ | 90.7 | $31.3 \pm 1$ | 25.8 | －0．003 | 0.174 | $6.190 \pm 0.049$ | $6.250 \pm 0.022$ |
| 101800 | J203749．14＋112239．5 | A2V | 58 | 9266 | 1.7 | 2 | $212 \pm 3$ | 210 | $85.9 \pm 2$ | 57.9 | 0.007 | 0.326 | $5.310 \pm 0.065$ | $5.340 \pm 0.036$ |
| $102238{ }^{\circ}$ | ${ }^{\text {c }}$ J204300．07 +264831.1 | K3 | 65 | 4840 | 0.73 | 8.4 | $23.9 \pm 0.4$ | 22.1 | $7.05 \pm 0.9$ | 6.21 | 0.075 | 0.120 | $7.820 \pm 0.024$ | $7.830 \pm 0.021$ |
| 102419 | J204515．03－154753．6 | F2／F3IV／V | 59 | 6985 | 1.4 | 0.77 | $102 \pm 1$ | 103 | $39.8 \pm 2$ | 28.4 | －0．013 | 0.285 | $6.080 \pm 0.046$ | $6.120 \pm 0.022$ |
| 102655 | J204810．79－060122．0 | G0 | 54 | 5872 | 0.97 | 2.8 | $47.9 \pm 0.7$ | 48.3 | $21 \pm 1$ | 13.4 | －0．009 | 0.360 | $6.880 \pm 0.034$ | $6.950 \pm 0.020$ |
| 102727 | J204857．35＋610707．1 | F8 | 67 | 6373 | 1.3 | 1 | $58.1 \pm 0.9$ | 58.9 | $20.1 \pm 0.7$ | 16.4 | －0．014 | 0.185 | $6.710 \pm 0.038$ | $6.750 \pm 0.020$ |
| 103048 | J205241．66－531624．7 | F5／F6V | 70 | 6430 | 1.5 | 0.82 | $70.1 \pm 1$ | 70.2 | $31.5 \pm 1$ | 19.4 | －0．001 | 0.383 | $6.540 \pm 0.043$ | $6.550 \pm 0.021$ |
| 103131 | J205341．67＋360747．0 | G5IV－V | 58 | 5550 | 1.6 | 0.86 | $109 \pm 1$ | 109 | $36.3 \pm 1$ | 30.3 | 0.004 | 0.166 | $6.060 \pm 0.048$ | $6.130 \pm 0.023$ |
| 105388 | c J212049．98－530204．0 | G5V | 43 | 5660 | 0.98 | 4.3 | $52.9 \pm 0.8$ | 52.9 | $19.8 \pm 1$ | 15.5 | 0.000 | 0.220 | $6.810 \pm 0.035$ | $6.870 \pm 0.020$ |
| 105819 | J212551．61＋003203．9 | A1IV | 74 | 7955 | 1.8 |  | $118 \pm 2$ | 118 | $39.8 \pm 2$ | 32.5 | 0.001 | 0.184 | $5.910 \pm 0.055$ | $5.960 \pm 0.025$ |
| 105966 | J212740．08＋273631．2 | A1V | 58 | 9311 | 1.7 | 1.6 | $212 \pm 3$ | 214 | $68.4 \pm 2$ | 59.0 | －0．012 | 0.137 | $5.290 \pm 0.065$ | $5.370 \pm 0.031$ |
| 106741 | J213721．15－182629．2 | F3／F5IV | 52 | 6686 | 1.2 | 0.86 | 97．5土1 | 98.7 | $35.2 \pm 1$ | 27.3 | －0．012 | 0.225 | $6.170 \pm 0.047$ | $6.170 \pm 0.023$ |
| 106914 | J213910．33＋711831．0 | F5 | 66 | 6432 | 1.8 | 1.3 | $118 \pm 2$ | 118 | $38.4 \pm 0.9$ | 32.7 | －0．001 | 0.150 | $5.920 \pm 0.051$ | $5.950 \pm 0.025$ |
| 107457 | J214552．88＋702053．8 | G5 | 39 | 5672 | 0.92 | 3 | $80.6 \pm 1$ | 80.8 | $27.3 \pm 0.8$ | 22.5 | －0．003 | 0.175 | $6.350 \pm 0.045$ | $6.390 \pm 0.019$ |
| 107596 | J214738．27－055500．2 | A7V | 70 | 7686 | 2 | 1.1 | $164 \pm 2$ | 166 | $67.5 \pm 3$ | 45.7 | －0．011 | 0.324 | $5.530 \pm 0.058$ | $5.550 \pm 0.030$ |
| 107919 | J215151．96＋110528．8 | A5 | 70 | 7557 | 1.7 | 0.89 | 109土1 | 109 | $49.8 \pm 2$ | 30.1 | －0．005 | 0.396 | $6.000 \pm 0.049$ | $6.070 \pm 0.023$ |
| 107947 | J215209．76－620309．4 | F6V | 45 | 6350 | 1.2 | 2.5 | $111 \pm 2$ | 112 | $37.4 \pm 1$ | 31.2 | －0．008 | 0.168 | $6.000 \pm 0.052$ | $6.020 \pm 0.024$ |
| 109656 | J221250．94－105533．1 | K3 | 72 | 4814 | 0.79 | 1.3 | $15.1 \pm 0.3$ | 14.1 | $5.42 \pm 0.8$ | 3.93 | 0.067 | 0.274 | $8.280 \pm 0.023$ | $8.350 \pm 0.021$ |
| 109941 | J221600．66－141101．8 | K5V | 56 | 4439 | 0.96 | 6.4 | $33.1 \pm 0.5$ | 32.7 | $10.5 \pm 1$ | 10.5 | 0.012 | －0．005 | $7.400 \pm 0.027$ | $7.400 \pm 0.019$ |
| 111188 | J223130．35－322046．1 | A1V | 44 | 9638 | 2.1 | 0.28 | 576 $\pm 8$ | 561 | $204 \pm 5$ | 154 | 0.026 | 0.242 | $4.190 \pm 0.099$ | $4.270 \pm 0.055$ |
| 113477 | J225854．95＋690153．2 | K0V | 41 | 5304 | 0.83 | 1.1 | $53.6 \pm 0.7$ | 54.5 | $18.3 \pm 0.6$ | 15.2 | －0．017 | 0.170 | $6.790 \pm 0.037$ | $6.870 \pm 0.020$ |
| 114189 | J230728．78＋210802．8 | A5V | 39 | 7308 | 1.4 | 1.1 | $237 \pm 3$ | 233 | $93.8 \pm 3$ | 64.2 | 0.016 | 0.315 | $5.170 \pm 0.068$ | $5.230 \pm 0.035$ |
| 114822 | J231534．23－032946．8 | A3V | 71 | 9019 | 2.1 | 0.63 | 195 $\pm 3$ | 197 | $75.7 \pm 2$ | 54.2 | －0．007 | 0.284 | $5.400 \pm 0.067$ | $5.390 \pm 0.028$ |
| 114948 | J231657．93－620004．5 | F7V | 21 | 6281 | 1.2 | 1.2 | $500 \pm 6$ | 501 | $164 \pm 3$ | 139 | －0．001 | 0.151 | $4.390 \pm 0.088$ | $4.390 \pm 0.063$ |
| 115738 | $\mathrm{J} 232656.02+011519.5$ | A0p | 47 | 9623 | 1.7 | 2.5 | 304土4 | 302 | $128 \pm 3$ | 83.3 | 0.005 | 0.351 | $4.920 \pm 0.079$ | $4.970 \pm 0.039$ |
| 115819 | ${ }^{\text {c }}$ J232748．68＋045125．8 | K7V： | 66 | 4050 | 0.61 | 13 | $38.8 \pm 0.6$ | 38.6 | $14.9 \pm 1$ | 11.7 | 0.004 | 0.218 | $7.220 \pm 0.029$ | $7.260 \pm 0.020$ |
| 116431 | J233536．19＋082257．0 | F0 | 68 | 6776 | 1.5 | 2.1 | $79.2 \pm 1$ | 80.9 | $82.3 \pm 2$ | 22.3 | －0．021 | 0.729 | $6.360 \pm 0.040$ | $6.400 \pm 0.023$ |
| 116973 | J234243．63－195300．1 | K3／K4 | 45 | 4574 | 0.79 | 3.9 | $33.3 \pm 0.5$ | 33.8 | $13.5 \pm 1$ | 9.44 | －0．015 | 0.302 | $7.310 \pm 0.025$ | $7.390 \pm 0.020$ |
| 117481 | J234919．44－275115．8 | F6／F7V | 34 | 6282 | 1 | 0.63 | $150 \pm 2$ | 151 | $55.2 \pm 2$ | 41.9 | －0．003 | 0.241 | $5.710 \pm 0.051$ | $5.730 \pm 0.028$ |
| 117915 | ${ }^{\text {c }}$ J235504．53＋283801．5 | K0vsb | 40 | 5280 | 0.82 | 51 | $520 \pm 7$ | 515 | $170 \pm 4$ | 162 | 0.009 | 0.049 | $4.520 \pm 0.088$ | $4.490 \pm 0.054$ |
| 118008 | J235610．84－390310．2 | K3V | 22 | 4868 | 0.72 | 1.2 | $127 \pm 2$ | 130 | $43.8 \pm 1$ | 36.2 | －0．021 | 0.174 | $5.850 \pm 0.051$ | $5.940 \pm 0.023$ |

[^24][^25]Table B.3. IR Excess Information - Cont. of Table 6 in Chapter 3

|  |  |  | Excess Significance ( $\Sigma_{\bar{E}}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | Excess Flag | $\begin{gathered} \text { New? } \\ (12 \mid 22 \mu m) \end{gathered}$ | $W 1-W 4$ | $W 2-W 4$ | $W 3-W 4$ | $W 1-W 3$ | $W 2-W 3$ | $W 1-W 2$ |
| 544 | UNYUNU | -N |  | 2.26 | 6.47 |  | -1.16 |  |
| 560 | YYYNNN | -N | 9.22 | 15.98 | 24.30 | 0.47 | 0.77 | 0.08 |
| 682 | YYYNNN | -N | 4.67 | 6.46 | 6.81 | -0.24 | -0.18 | -0.06 |
| 1473 | UYYUNU | -N |  | 3.29 | 6.70 |  | 0.20 |  |
| 1481 | YYYNNN | -N | 6.97 | 9.63 | 10.17 | 0.72 | 0.57 | 0.48 |
| 1866 | YYYNNN | -Y | 3.43 | 3.48 | 3.16 | 0.43 | 1.03 | -0.27 |
| 2472 | YYYNNN | -Y | 3.29 | 4.64 | 4.17 | 1.46 | 2.24 | 0.12 |
| 2710 | NNYNNN | -N | 1.51 | 2.96 | 3.61 | -0.78 | -0.54 | -0.43 |
| 3210 | YYYNNN | -Y | 3.28 | 4.43 | 4.05 | 0.53 | 0.83 | 0.20 |
| 3279 | NYYNNN | -Y | 3.19 | 3.61 | 3.43 | -0.27 | 0.27 | -0.26 |
| 3965 | NYYNNN | -Y | 2.43 | 5.80 | 6.28 | -0.62 | 0.86 | -0.96 |
| 5462 | YYYNNN | -N | 5.66 | 6.03 | 5.31 | 1.03 | 1.6 | 0.08 |
| 5631 | NNYNNN | -N | 1.69 | 2.08 | 3.20 | -0.31 | -0.97 | 0.27 |
| 5709 | NNYNNN | -Y | 2.48 | 3.13 | 3.42 | -0.18 | -0.31 | 0.04 |
| 6490 | YNNNNN | -Y | 3.26 | 3.08 | 2.87 | 1.05 | 0.57 | 0.69 |
| 6494 | YYYNNN | -Y | 4.46 | 5.15 | 4.67 | 0.70 | 1.08 | 0.17 |
| 6679 | YYYNNN | -N | 3.54 | 6.77 | 7.62 | -0.81 | 0.22 | -0.82 |
| 7345 | YYYNYN | NN | 26.76 | 47.78 | 56.35 | 2.73 | 5.33 | 0.06 |
| 7576 | NNYNNN | -N | 2.43 | 3.22 | 4.58 | -0.39 | -1.13 | 0.26 |
| 7699 | YYYNNN | -Y | 7.93 | 12.40 | 13.25 | 0.36 | 0.44 | 0.19 |
| 7805 | YYYNNN | -N | 10.24 | 12.80 | 12.45 | 1.28 | 1.54 | 0.40 |
| 7978 | UUYUUU | -N |  |  | 9.06 |  |  |  |
| 8109 | YYYNNN | -Y | 4.92 | 4.80 | 5.09 | 2.04 | 0.33 | 1.80 |
| 8122 | YYYNNN | -N | 7.75 | 12.25 | 12.60 | -0.33 | 0.78 | -0.68 |
| 8241 | UUYUUU | -N |  |  | 11.62 |  |  |  |
| 8987 | YYNNNN | -Y | 3.21 | 3.35 | 2.60 | 1.34 | 1.73 | 0.10 |
| 9052 | YYUUUN | -Y | 4.00 | 4.09 | . . | ... | ... | 1.17 |
| 9141 | YYYNNN | -N | 3.90 | 5.56 | 5.39 | -0.27 | 0.43 | -0.36 |
| 9902 | UUYUUU | -N | . . ${ }^{\text {c }}$ | . . | 17.89 | . $\cdot$. | . . | . . |
| 10054 | NYYNNN | -Y | 3.12 | 5.10 | 4.56 | 0.67 | 1.38 | 0.11 |
| 10670 | UYYUNU | -N |  | 7.28 | 17.77 |  | 1.30 |  |
| 11157 | YYYNNN | -Y | 4.01 | 3.94 | 3.87 | 0.15 | -0.07 | 0.39 |
| 11477 | YYYNNN | -N | 4.89 | 8.56 | 13.56 | -0.27 | 0.47 | -0.48 |
| 11847 | YYYNNN | -N | 47.57 | 70.28 | 72.89 | 1.02 | 2.50 | -0.46 |
| 12489 | UUYUUU | -N | . . | . . | 4.78 | . . | . . | . . |
| 13141 | UUYUUU | -Y | . . . |  | 6.13 |  |  |  |
| 13209 | UUYUUU | -Y | $\cdots$ | $\cdots$ | 9.42 | $\cdots$ | . $\cdot$ |  |
| 13569 | YYYNNN | -N | 4.55 | 7.57 | 7.61 | -0.48 | 0.46 | -0.70 |
| 13679 | NYYNNN | -Y | 1.80 | 3.73 | 4.72 | -0.36 | 0.36 | -0.47 |
| 14684 | NYYNNN | -N | 3.14 | 3.37 | 3.26 | 0.26 | -0.04 | 0.35 |
| 15929 | YYYNNN | -Y | 7.98 | 8.10 | 8.00 | 0.73 | 0.41 | 0.48 |
| 16449 | YYYNNN | -N | 11.62 | 19.04 | 20.18 | -0.01 | 1.39 | -0.60 |
| 16908 | YNNNNN | -Y | 3.51 | 3.19 | 2.69 | 1.76 | 1.31 | 0.96 |
| 17338 | YYYNNN | -Y | 6.76 | 6.60 | 6.37 | 1.20 | 0.23 | 1.10 |
| 17395 | YYYNNN | -N | 5.11 | 10.17 | 12.19 | 0.11 | 1.86 | -0.70 |
| 17764 | YYYNNN | -N | 9.29 | 14.85 | 15.51 | 0.38 | 1.15 | -0.16 |
| 18187 | YYYNNN | -N | 5.12 | 7.65 | 8.71 | 0.34 | 0.23 | 0.29 |
| 18481 | YYYNNN | -N | 7.25 | 9.72 | 9.78 | 1.55 | 2.05 | 0.37 |
| 19610 | NNNYNN | Y- | 2.2 | 1.13 | 0.39 | 2.93 | 1.63 | 1.92 |
| 19793 | YYYNNN | -N | 5.32 | 5.61 | 5.96 | 0.26 | -0.48 | 0.66 |
| 19796 | UUYUUU | -Y | . |  | 3.94 | . . | . . |  |
| 20261 | NNYNNN | -Y | 1.55 | 2.13 | 3.53 | 0.20 | 0.19 | 0.10 |
| 20693 | YYYNNN | -N | 6.36 | 7.90 | 8.50 | 0.71 | -0.30 | 0.93 |
| 20737 | YYYNNN | -N | 5.85 | 6.50 | 6.24 | 0.77 | 0.65 | 0.42 |
| 20794 | YYYNNN | -Y | 3.21 | 3.95 | 4.33 | -1.05 | -0.93 | -0.41 |
| 20901 | YNYNNN | -N | 3.27 | 2.65 | 7.85 | 0.41 | -1.16 | 1.07 |
| 20998 | UUYUUU | -Y | . . | $\cdots$ | 3.27 | . . | $\cdots$ | $\cdots$ |
| 21547 | UUYUUU | -Y | . . | . . | 3.76 | $\cdots$ | $\cdots$ | . . |
| 21983 | YYNNNN | -Y | 3.36 | 3.37 | 3.08 | 0.96 | 1.19 | -0.07 |
| 22152 | NYYNNN | -Y | 2.76 | 5.02 | 6.91 | -0.41 | -0.46 | -0.13 |
| 22192 | YYYNNN | -N | 4.92 | 5.61 | 6.16 | 1.42 | 0.50 | 1.14 |
| 22295 | YYYNNN | -N | 3.83 | 4.64 | 4.45 | 0.07 | 0.34 | -0.01 |
| 22312 | UUYUUU | -Y | . | . . | 5.12 | . . | . . . | . |
| 22394 | YUYNUU | -Y | 3.99 | . . | 4.82 | -0.92 | $\cdots$ | $\ldots$ |
| 22509 | UNYUNU | -Y | . | 2.80 | 4.12 | $\cdots$ | 1.16 | $\cdots$ |
| 22845 | UYYUNU | -N | . . | 4.88 | 10.99 | . . | -0.14 | . . |
| 23443 | NYYNNN | -Y | 2.77 | 4.02 | 3.86 | -0.25 | 0.43 | -0.38 |
| 23497 | UNYUNU | -Y | . $\cdot$ | 2.20 | 5.28 | . . | -0.31 | . |
| 23871 | YYYNNN | -N | 4.14 | 7.41 | 10.40 | 0.05 | 0.81 | -0.35 |

Table B. 3 (cont'd)

|  |  |  | Excess Significance ( $\Sigma_{\bar{E}}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | Excess Flag | $\begin{gathered} \text { New? } \\ (12 \mid 22 \mu m) \end{gathered}$ | $W 1-W 4$ | $W 2-W 4$ | $W 3-W 4$ | $W 1-W 3$ | $W 2-W 3$ | $W 1-W 2$ |
| 24528 | YYYNYN | NN | 14.16 | 19.33 | 17.82 | 1.67 | 3.74 | -0.32 |
| 24947 | YYYNNN | -N | 3.95 | 5.29 | 5.38 | 0.75 | 0.59 | 0.50 |
| 25183 | UUYUUU | -N |  |  | 7.52 |  |  |  |
| 25376 | NNYNNN | -Y | 2.02 | 2.90 | 3.17 | -0.43 | -0.4 | -0.11 |
| 26395 | YYYNNN | -Y | 13.35 | 21.74 | 21.20 | 0.99 | 3.30 | -0.59 |
| 26453 | YYYNNN | -N | 14.80 | 21.69 | 22.73 | 1.06 | 1.70 | 0.20 |
| 26563 | UYUUUU | -Y | 1.8 | 4.49 |  |  |  |  |
| 26990 | YYYNNN | -N | 6.21 | 7.02 | 6.72 | 0.99 | 0.63 | 0.69 |
| 28498 | UUYUUU | -Y |  |  | 3.77 |  |  |  |
| 30252 | YYYNNN | -Y | 17.32 | 25.68 | 27.42 | 1.15 | 2.09 | 0.04 |
| 30893 | NNNNNY | - | 0.70 | -0.65 | -0.38 | 1.87 | -0.82 | 2.35 |
| 32435 | YUYNUU | -N | 10.05 | . | 14.29 | 1.44 |  |  |
| 33690 | YYYNNN | -N | 3.77 | 5.49 | 8.96 | 0.08 | -0.26 | 0.26 |
| 34334 | YNNNNN | -Y | 3.42 | 3.25 | 2.93 | 0.96 | 0.69 | 0.49 |
| 35198 | YYYNNN | -Y | 5.18 | 5.11 | 4.49 | 1.65 | 1.25 | 0.90 |
| 35567 | UUYUUU | -Y | ... | ... | 48.21 |  |  |  |
| 36515 | UUYUUU | -N | $\ldots$ | $\cdots$ | 3.86 |  |  |  |
| 36827 | YYYNNN | -N | 3.47 | 4.74 | 5.14 | -0.73 | -0.38 | -0.44 |
| 36927 | UYYUNU | -Y |  | 3.41 | 3.52 |  | -0.29 |  |
| 36948 | YYYNNN | -N | 13.42 | 16.73 | 17.23 | 0.95 | 0.66 | 0.64 |
| 38369 | YYYNNN | -Y | 4.35 | 4.67 | 4.70 | 0.09 | -0.12 | 0.28 |
| 38538 | NYYNNN | -N | 1.46 | 3.98 | 3.48 | 0.02 | 1.74 | -0.79 |
| 40693 | UYYUNU | -N |  | 5.54 | 15.07 |  | 0.26 |  |
| 41081 | YUYYUU | NN | 13.06 |  | 21.28 | 2.89 |  |  |
| 41152 | YYYNNN | -N | 4.85 | 9.77 | 13.03 | -0.16 | 0.55 | -0.33 |
| 41277 | YNNNNN | -Y | 3.40 | 2.97 | 2.96 | 1.49 | 0.04 | 1.33 |
| 41307 | UYYUNU | -Y |  | 5.41 | 17.52 |  | 0.26 |  |
| 41373 | YYYNNN | -N | 8.73 | 12.87 | 13.09 | 0.68 | 1.42 | 0.02 |
| 43121 | YYYNNN | -N | 6.76 | 10.79 | 12.94 | -0.1 | 0.45 | -0.29 |
| 43414 | UYYUNU | -Y | , | 5.58 | 11.01 | ... | 0.93 |  |
| 46843 | NNYNNN | -Y | 2.55 | 2.95 | 3.9 | 0.46 | -0.17 | 0.55 |
| 47135 | YYYNNN | -N | 3.57 | 3.86 | 3.23 | 0.96 | 1.33 | 0.14 |
| 47792 | NYNNNN | -Y | 3.19 | 3.31 | 2.69 | 1.30 | 1.59 | -0.28 |
| 47990 | YNYNNN | -N | 3.47 | 3.16 | 3.36 | 0.28 | -0.65 | 0.87 |
| 48423 | YYYNNN | -N | 7.04 | 8.06 | 8.27 | 1.36 | 0.70 | 0.98 |
| 49593 | UYYUNU | -N | ... | 4.51 | 6.80 | . . . | 1.48 | ... |
| 49809 | UNYUNU | -N |  | 1.06 | 4.06 |  | -0.76 |  |
| 50155 | YYNNNN | -Y | 3.24 | 3.57 | 3.04 | 0.29 | 1.50 | -0.73 |
| 50860 | NNYNNN | -Y | 1.32 | 3.08 | 3.56 | -0.52 | 0.07 | -0.43 |
| 51194 | UUYUUU | -Y | $\cdots$ | $\ldots$ | 4.81 | ... | ... | ... |
| 51793 | NNNYNN | Y- | 2.15 | 1.90 | 1.02 | 3.39 | 2.97 | 0.79 |
| 52457 | NYYNNN | -Y | 2.73 | 5.57 | 6.80 | 0.09 | 1.45 | -0.63 |
| 52709 | YYYNNN | -Y | 3.60 | 4.19 | 5.27 | 0.58 | -0.39 | 0.83 |
| 52947 | YYYNNN | -Y | 5.17 | 6.66 | 6.86 | 0.04 | 0.00 | 0.06 |
| 53954 | UYYUNU | -Y | . | 6.83 | 18.03 | . | -0.17 | . |
| 55057 | YYYNNN | -Y | 3.45 | 3.69 | 3.24 | 0.46 | 1.31 | -0.41 |
| 55130 | NYYNNN | -Y | 2.56 | 4.45 | 3.64 | -0.11 | 1.42 | -0.83 |
| 56253 | NNYNNN | -Y | 1.25 | 2.20 | 3.17 | -0.34 | -0.35 | -0.16 |
| 57971 | UUYUUU | -Y | ... | , | 10.17 | ... | $\cdots$ |  |
| 59394 | YYYNNN | -Y | 6.53 | 10.44 | 13.48 | 0.55 | 0.86 | 0.13 |
| 59422 | YYYNNN | -N | 4.22 | 7.56 | 8.32 | -1.35 | -0.16 | -1.15 |
| 59608 | YYYNNN | -Y | 3.50 | 5.60 | 6.37 | 0.33 | 0.67 | -0.01 |
| 59893 | YYYNNN | -Y | 4.15 | 4.02 | 3.74 | 1.29 | 0.94 | 0.46 |
| 60074 | YYYNNN | -N | 4.80 | 7.08 | 9.21 | 0.29 | -0.58 | 0.60 |
| 61558 | YYYNNN | -N | 7.45 | 12.05 | 12.37 | 0.29 | 2.02 | -0.70 |
| 61960 | UUYUUU | -N |  | . | 14.07 |  |  |  |
| 62492 | YYYNNN | -Y | 5.27 | 5.91 | 5.77 | 0.17 | 0.24 | 0.09 |
| 63076 | UYYUNU | -N | . | 3.62 | 3.27 | $\ldots$ | 2.15 |  |
| 63286 | NYYNNN | -Y | 2.94 | 4.28 | 4.97 | -0.41 | -0.59 | -0.08 |
| 63404 | NYYNNN | -Y | 3.07 | 3.49 | 3.72 | -0.21 | -0.76 | 0.20 |
| 63973 | YYYNNN | -Y | 5.75 | 7.29 | 6.34 | 1.07 | 1.85 | 0.08 |
| 64461 | YYYNNN | -N | 3.94 | 4.30 | 4.45 | 0.16 | -0.35 | 0.47 |
| 65728 | NYYNNN | -Y | 2.87 | 3.74 | 4.85 | 0.73 | 0.25 | 0.55 |
| 66065 | NNYNNN | -Y | 1.64 | 2.95 | 3.47 | -0.27 | -0.20 | -0.15 |
| 66234 | UUYUUU | -N | ... | ... | 4.84 | . | , | . |
| 66257 | UYUUUU | -N | $\cdots$ | 3.32 |  | ... |  |  |
| 66634 | NNYNNN | -Y | 1.77 | 2.93 | 4.49 | -0.33 | -0.32 | -0.09 |
| 66765 | NNYNNN | -N | 1.57 | 3.02 | 4.75 | -0.31 | 0.09 | -0.29 |
| 66901 | NYYNNN | -Y | 2.26 | 3.68 | 3.91 | -0.88 | -0.30 | -0.63 |

Table B. 3 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | Excess Flag | New?$(12 \mid 22 \mu m)$ | Excess Significance ( $\Sigma_{\bar{E}}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $W 1-W 4$ | $W 2-W 4$ | $W 3-W 4$ | $W 1-W 3$ | $W 2-W 3$ | $W 1-W 2$ |
| 67682 | UYNUNU | -Y | . . | 3.52 | 3.09 | $\cdots$ | 0.82 | $\ldots$ |
| 67782 | UNYUNU | -Y |  | 2.73 | 3.19 |  | 0.23 |  |
| 68593 | NNYNNN | -Y | 1.82 | 3.19 | 3.27 | -0.28 | 0.29 | -0.33 |
| 68755 | YYYNNN | -Y | 3.51 | 3.60 | 3.51 | -0.22 | 0.13 | -0.11 |
| 69281 | YYYNNN | -N | 6.30 | 7.21 | 6.78 | 0.84 | 0.97 | 0.40 |
| 69508 | NYYNNN | -Y | 3.07 | 3.68 | 3.76 | 0.25 | -0.07 | 0.30 |
| 69682 | YYYNNN | -N | 6.88 | 7.23 | 7.34 | -0.03 | 0.02 | 0.14 |
| 70239 | NYYNNN | -Y | 2.30 | 3.99 | 3.46 | -0.45 | 1.04 | -0.89 |
| 71602 | YYYNNN | -N | 3.63 | 5.20 | 4.98 | -0.22 | 0.58 | -0.46 |
| 71718 | YYYNNN | -Y | 3.87 | 5.34 | 4.95 | 0.02 | 0.84 | -0.32 |
| 72104 | NYYNNN | -Y | 2.38 | 4.63 | 6.99 | -0.13 | 0.51 | -0.37 |
| 73798 | YYYNNN | -Y | 3.82 | 3.77 | 3.68 | 0.34 | 0.17 | 0.35 |
| 74235 | NNNNNY | - | -0.05 | -1.11 | -0.26 | -0.08 | -3.63 | 2.48 |
| 74926 | NNNNNY | - | 1.37 | 0.23 | 0.43 | 2.48 | -1.11 | 2.96 |
| 75158 | YYYNNN | -Y | 7.06 | 8.16 | 7.51 | 1.62 | 1.54 | 0.82 |
| 76280 | NNYNNN | -N | 2.68 | 3.14 | 3.37 | -0.05 | -0.30 | 0.23 |
| 76757 | YYYNNN | -N | 3.67 | 4.10 | 3.93 | -0.01 | 0.21 | -0.03 |
| 77094 | YYYNNN | -N | 4.31 | 4.97 | 5.51 | -0.24 | -0.73 | 0.24 |
| 77464 | YYYNNN | -N | 5.02 | 7.25 | 10.34 | 0.21 | -0.86 | 0.70 |
| 78010 | YYYNNN | -Y | 3.52 | 3.93 | 3.80 | 0.41 | 0.26 | 0.35 |
| 78045 | YYYNNN | -N | 7.22 | 8.66 | 9.89 | 1.62 | 0.64 | 1.16 |
| 78979 | YYNNNN | -Y | 3.40 | 3.33 | 2.92 | 1.13 | 1.18 | 0.16 |
| 79797 | YUYNUU | -Y | 4.66 | . . | 7.42 | 1.03 | . . |  |
| 79881 | NYYNNN | -Y | 2.50 | 5.00 | 5.74 | -0.12 | 1.37 | -0.73 |
| 80781 | UUUYNN | Y- | , | \% |  | 2.90 | 2.09 | 1.09 |
| 81800 | NNYNNN | -Y | 1.89 | 2.06 | 3.37 | 0.30 | -0.37 | 0.53 |
| 82587 | NNYNNN | -N | 2.72 | 2.74 | 5.54 | 0.58 | -0.1 | 0.56 |
| 82887 | NYNNNN | -Y | 3.13 | 3.32 | 2.57 | 0.94 | 1.38 | -0.10 |
| 83494 | YYYNNN | -Y | 3.49 | 4.37 | 4.28 | 1.09 | 0.91 | 0.66 |
| 84183 | NYYNNN | -Y | 2.42 | 4.63 | 6.06 | 0.35 | 1.00 | -0.09 |
| 85157 | YYYNNN | -N | 15.32 | 27.92 | 40.11 | -0.31 | 0.88 | -0.68 |
| 85523 | YNYNNN | -Y | 4.03 | 3.09 | 3.87 | 2.60 | 0.68 | 1.82 |
| 85537 | UUYUUU | -N | . . | . . | 5.44 | . . ${ }^{\text {a }}$ | . . | . . |
| 85699 | NYYNNN | -Y | 1.73 | 4.15 | 4.93 | -0.39 | 0.51 | -0.55 |
| 85922 | YYYNNN | -N | 5.69 | 6.99 | 8.73 | 1.77 | 0.82 | 1.25 |
| 86178 | NYYNNN | -Y | 2.43 | 3.91 | 4.65 | -0.08 | 0.03 | -0.03 |
| 86305 | YYYNNN | -N | 11.32 | 16.33 | 28.52 | 0.79 | 0.27 | 0.62 |
| 86598 | YYYNNN | -Y | 3.46 | 3.77 | 3.25 | 0.63 | 1.33 | -0.12 |
| 87108 | UYUUUU | -Y |  | 7.70 |  | . . . | . . |  |
| 87558 | UUYUUU | -Y |  |  | 3.16 |  |  |  |
| 89770 | UUYUUU | -N | $\cdots$ |  | 27.40 | $\cdots$ | $\cdots$ |  |
| 92858 | NNYNNN | -Y | 2.39 | 3.04 | 3.99 | -0.11 | -0.77 | 0.33 |
| 93412 | UYYUNU | -N | . $\cdot$. | 5.30 | 4.96 | . . | 0.73 | - . |
| 93542 | YYYNNN | -N | 10.47 | 18.19 | 28.98 | 0.60 | 1.64 | -0.26 |
| 94184 | NYYNNN | -Y | 2.45 | 3.98 | 5.94 | -0.64 | -1.11 | -0.02 |
| 94491 | YYYNNN | -Y | 9.78 | 16.32 | 15.50 | -0.44 | 2.22 | -1.47 |
| 95261 | YYYYYN | NN | 23.82 | 41.60 | 59.95 | 3.93 | 6.61 | 0.39 |
| 95270 | YYYNNN | -N | 33.06 | 57.44 | 68.85 | 0.28 | 0.03 | 0.31 |
| 95619 | YYYNNN | -Y | 14.77 | 27.74 | 32.36 | 0.32 | 3.24 | -1.23 |
| 95793 | NYYNNN | -N | 1.76 | 3.44 | 3.75 | -0.17 | 0.42 | -0.34 |
| 95938 | YYYNNN | -Y | 8.40 | 11.50 | 11.15 | -0.07 | 1.31 | -0.66 |
| 96562 | NNNNNY | - | 3.04 | 1.87 | 1.94 | 2.47 | -0.42 | 2.71 |
| 99273 | YYYNNN | -N | 35.23 | 57.17 | 68.53 | 1.54 | 2.38 | 0.26 |
| 99742 | YYYNNN | -N | 4.62 | 8.32 | 13.59 | -0.14 | 0.23 | -0.23 |
| 100526 | YYYNNN | -Y | 7.44 | 11.45 | 11.71 | 0.32 | 0.99 | -0.14 |
| 101070 | YYYNNN | -Y | 5.39 | 6.89 | 6.86 | 0.93 | 0.84 | 0.48 |
| 101163 | NYYNNN | -Y | 2.33 | 4.03 | 4.25 | -0.71 | -0.09 | -0.55 |
| 101800 | YYYNNN | -N | 5.33 | 8.23 | 11.08 | 0.51 | 0.71 | 0.15 |
| 102238 | NUNYUU | Y- | 1.03 | $\cdots$ | 0.00 | 4.49 | . $\cdot$ | $\cdots$ |
| 102419 | YYYNNN | -N | 4.15 | 5.53 | 5.70 | -0.32 | -0.03 | -0.27 |
| 102655 | YYYNNN | -Y | 5.80 | 6.83 | 6.82 | -0.88 | -0.06 | -0.69 |
| 102727 | YYYNNN | -Y | 3.37 | 4.33 | 3.96 | 0.15 | 0.59 | -0.13 |
| 103048 | YYYNNN | -N | 7.88 | 9.34 | 9.22 | 0.84 | 0.67 | 0.52 |
| 103131 | NYYNNN | -Y | 3.13 | 4.51 | 3.36 | 0.79 | 1.88 | -0.10 |
| 105388 | YYYNNN | -N | 4.14 | 4.72 | 4.47 | 0.05 | 0.58 | -0.19 |
| 105819 | NYNNNN | -Y | 1.92 | 3.27 | 2.99 | -0.19 | 0.66 | -0.39 |
| 105966 | NYNNNN | -Y | 1.51 | 3.58 | 2.56 | 0.24 | 1.89 | -0.61 |
| 106741 | YYYNNN | -N | 3.64 | 4.03 | 4.16 | 0.59 | 0.06 | 0.57 |
| 106914 | NNYNNN | -Y | 1.66 | 2.40 | 3.18 | -0.23 | -0.52 | 0.11 |

Table B. 3 (cont'd)

|  |  |  | Excess Significance ( $\left.\Sigma_{\bar{E}}\right)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | Excess Flag | $\begin{gathered} \text { New? } \\ (12 \mid 22 \mu m) \end{gathered}$ | $W 1-W 4$ | $W 2-W 4$ | $W 3-W 4$ | $W 1-W 3$ | $W 2-W 3$ | $W 1-W 2$ |
| 107457 | NYYNNN | -N | 2.84 | 3.93 | 4.17 | -0.02 | -0.16 | 0.20 |
| 107596 | YYYNNN | -N | 4.55 | 6.04 | 7.89 | -0.55 | -1.36 | 0.23 |
| 107919 | YYYNNN | -N | 7.33 | 11.33 | 11.84 | -0.34 | 1.18 | -0.91 |
| 107947 | NNYNNN | -N | 2.42 | 3.00 | 3.48 | 0.08 | -0.44 | 0.37 |
| 109656 | UUUYYN | Y- | . . |  | . . . | 3.60 | 4.12 | -0.23 |
| 109941 | NNNNNY | - | 1.29 | 0.69 | 0.51 | 2.32 | 0.21 | 2.37 |
| 111188 | UUYUUU | -Y | . . . |  | 5.90 | . . |  | . . |
| 113477 | UUYUUU | -Y | $\cdots$ | $\cdots$ | 3.78 | $\ldots$ | $\cdots$ | $\cdots$ |
| 114189 | UUYUUU | -N |  |  | 8.64 |  |  | . . |
| 114822 | YYYNNN | -N | 4.37 | 6.76 | 8.25 | 0.47 | -0.17 | 0.58 |
| 114948 | UNYUNU | -N | . . | 1.51 | 3.97 | . . | -0.19 | . |
| 115738 | YYYNNN | -N | 5.13 | 9.72 | 14.11 | 0.46 | 1.26 | -0.12 |
| 115819 | YYYNNN | -Y | 3.91 | 3.53 | 3.29 | 1.78 | 0.84 | 1.00 |
| 116431 | YYYNNN | -N | 26.56 | 35.19 | 39.69 | -0.21 | 0.33 | -0.33 |
| 116973 | YYYNNN | -Y | 3.52 | 3.69 | 3.57 | -0.42 | 0.19 | -0.30 |
| 117481 | YYYNNN | -N | 4.40 | 5.83 | 5.84 | 0.65 | 1.01 | 0.13 |
| 117915 | YYYNNN | -N | 3.23 | 3.41 | 3.59 | 1.98 | 1.55 | 0.93 |
| 118008 | NYYNNN | -N | 2.57 | 4.45 | 4.16 | -0.39 | 0.42 | -0.40 |

Note. - Summary of the properties of the IR excesses attributed to circumstellar excess disks at $W 2, W 3$ and/or $W 4$ for the stars in our science sample. The WISE Excess Flag indicates the combination of detections from the various colors. Each flag is a six character string that identifies whether the star has a statistically probable (Y) or insignificant (N) excess based on the order of the color analyses: $W 1-W 4, W 2-W 4, W 3-W 4, W 1-W 3, W 2-W 3$ and $W 1-W 2$. Any stars can have unlisted (U) values, indicating that the star was rejected by the selection criteria for that particular color (§ 2.2 in Chapter 3). ' $U$ ' entires correspond to null entries in the corresponding $W i-W j \Sigma_{\bar{E}}$ column. Column 3 lists whether or not the star is a new detection at the $W 3$ and/or $W 4$ bands (12 or $22 \mu \mathrm{~m})$. The last six columns lists the significance of the excess $\Sigma_{\bar{E}}$ for each color.

Table B.4. Disk Parameters from Blackbody Fits - Cont. of Table 7 in Chapter 3

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $T_{B B}$ <br> (K) | $T_{B B_{l i m}}$ <br> (K) | $\begin{aligned} & R_{B B} \\ & (\mathrm{AU}) \end{aligned}$ | $\begin{gathered} R_{B B_{l i m}} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(10^{-5}\right) \end{gathered}$ | $f_{d_{l i n}}\left(10^{-5}\right)$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 544 |  | <162 | . . | $>2.3$ | $>0.17$ | 6.0 | $>0.23$ | b, e |
| 560 |  | <138 | ... | $>8.1$ | $>0.21$ | 16 | $>0.57$ | b, e |
| 682 |  | <160 |  | $>3.2$ | $>0.083$ | 9.1 | $>0.35$ | b, e |
| 1473 | 112 | <263 | 28 | $>5.1$ | 0.12-0.68 | 2.5 | $>0.064$ | c, e |
| 1481 |  | <185 |  | $>2.7$ | $>0.065$ | 9.6 | $>0.36$ | b, e |
| 1866 |  | $<177$ |  | $>0.99$ | $>0.021$ | 27 | $>1.0$ | b, e |
| 2472 | 137 | $<311$ | 22 | $>4.2$ | 0.08-0.42 | 1.7 | $>0.055$ | c, e |
| 2710 |  | <208 |  | $>2.7$ | $>0.065$ | 3.9 | $>0.14$ | b, e |
| 3210 | 117 | <276 | 7.6 | $>1.3$ | 0.03-0.17 | 6.3 | $>0.19$ | c, e |
| 3279 |  | <215 |  | $>1.9$ | $>0.028$ | 6.0 | $>0.21$ | b, e |
| 3965 |  | $<207$ |  | $>5.5$ | $>0.082$ | 3.7 | $>0.13$ | b, e |
| 5462 | 101 | $<216$ | 5.7 | $>1.2$ | 0.027-0.12 | 19 | $>0.43$ | c, e |
| 5631 |  | <134 |  | $>5.4$ | $>0.16$ | 3.1 | $>0.11$ | b, e |
| 5709 |  | <199 |  | $>3.3$ | $>0.06$ | 3.8 | $>0.14$ | b, e |
| 6490 |  | <205 |  | $>2.2$ | $>0.03$ | 7.5 | $>0.27$ | b, e |
| 6494 |  | $<217$ |  | $>1.5$ | $>0.032$ | 8.4 | $>0.29$ | b, e |
| 6679 |  | <175 | . | $>4.3$ | $>0.088$ | 6.1 | $>0.24$ | b, e |
| 7345 | 133 |  | 17 |  | 0.29 | 31 |  | g |
| 7576 | . . . | <146 | . . . | $>2.4$ | $>0.1$ | 6.1 | $>0.23$ | b, e |
| 7699 | 97.5 | <183 | 13 | $>3.7$ | 0.078-0.27 | 21 | $>0.43$ | c, e |
| 7805 | 98.2 | <174 | 14 | $>4.5$ | 0.067-0.21 | 21 | $>0.42$ | c, e |
| 7978 |  | $<96.7$ | . . . | $>10$ | $>0.58$ | 10 | $>0.20$ | b, e |
| 8109 | . . | <244 | . . | $>1.8$ | $>0.041$ | 7.3 | $>0.23$ | b, e |
| 8122 |  | <140 |  | $>11$ | $>0.15$ | 7.3 | $>0.26$ | b, e |
| 8241 | 123 | <213 | 28 | $>9.3$ | 0.15-0.45 | 3.6 | $>0.11$ | c, e |
| 8987 | 94.4 | <269 | 4.2 | $>0.52$ | 0.013-0.11 | 24 | $>0.46$ | c, e |
| 9052 | 210 | <374 | 4.5 | $>1.4$ | 0.02-0.063 | 3.8 | $>0.14$ | c, e |
| 9141 | . . | $<217$ | . . | $>1.5$ | $>0.037$ | 8.9 | $>0.31$ | b, e |
| 9902 | 181 | <221 | 2.9 | $>2$ | 0.045-0.066 | 20 | $>0.77$ | c, e |
| 10054 | 155 | <288 | 12 | $>3.5$ | 0.05-0.17 | 2.2 | $>0.082$ | c, e |
| 10670 | 94.4 | <175 | 42 | $>12$ | 0.35-1.2 | 7.5 | $>0.13$ | c, e |
| 11157 |  | <182 | . . | $>1.9$ | $>0.034$ | 12 | $>0.46$ | b, e |
| 11477 | 95.2 | <190 | 33 | $>8.2$ | 0.18-0.7 | 7.4 | $>0.13$ | c, e |
| 11847 | 78.9 | $<91.7$ | 22 | $>16$ | 0.26-0.35 | 430 | $>4.0$ | c, e |
| 12489 |  | $<225$ |  | $>8.2$ | $>0.12$ | 2.2 | $>0.069$ | b, e |
| 13141 | 95.2 | <245 | 33 | $>5$ | 0.1-0.66 | 4.2 | $>0.075$ | c, e |
| 13209 | 234 | <314 | 14 | $>7.8$ | 0.15-0.27 | 1.8 | $>0.046$ | c, e |
| 13569 | 94.4 | <210 | 23 | $>4.7$ | 0.064-0.31 | 10 | $>0.18$ | c, e |
| 13679 | . . . | <170 | . . | $>6.4$ | $>0.15$ | 3.4 | $>0.13$ | b, e |
| 14684 |  | <242 |  | $>0.92$ | $>0.025$ | 7.5 | $>0.24$ | b, e |
| 15929 | 86.6 | <167 | 14 | $>3.7$ | 0.05-0.19 | 41 | $>0.55$ | c, e |
| 16449 |  | <140 |  | $>13$ | $>0.18$ | 8.4 | $>0.29$ | b, e |
| 16908 |  | <244 |  | $>0.71$ | $>0.018$ | 13 | $>0.43$ | b, e |
| 17338 | 96.7 | <192 | 5.9 | $>1.5$ | 0.03-0.12 | 36 | $>0.71$ | c, e |
| 17395 | 99 | <189 | 22 | $>6$ | 0.14-0.52 | 9.6 | $>0.19$ | c, e |
| 17764 | 87.3 | <161 | 18 | $>5.3$ | 0.098-0.33 | 30 | $>0.42$ | c, e |
| 18187 | 90.8 | $<210$ | 12 | $>2.3$ | 0.056-0.3 | 16 | $>0.26$ | c, e |
| 18481 | 146 | $<218$ | 14 | $>6.1$ | 0.087-0.19 | 3.9 | $>0.14$ | c, e |
| 19610 | 522 | $>274$ | 0.27 | $<0.97$ | 0.0044-0.016 | 25 | $>0.078$ | d,f |
| 19793 |  | $<152$ |  | $>3.5$ | $>0.074$ | 9.5 | $>0.36$ | b, e |
| 19796 | 131 | $\cdots$ | 6.8 | . | 0.15 | . . | $>0.14$ | a, e |
| 20261 | . . . | <169 | . . | $>9.8$ | $>0.21$ | 1.6 | $>0.059$ | b, e |
| 20693 | $\ldots$ | <163 | $\cdots$ | $>4.3$ | $>0.086$ | 8.4 | $>0.33$ | b, e |
| 20737 | $\ldots$ | <194 | $\ldots$ | $>1.3$ | $>0.035$ | 15 | $>0.54$ | b, e |
| 20794 |  | <119 |  | $>11$ | $>0.15$ | 6.1 | $>0.19$ | b, e |
| 20901 | $\cdots$ | <196 | $\cdots$ | $>8.4$ | $>0.17$ | 3.3 | $>0.12$ | b, e |
| 20998 | 181 | <353 | 3.2 | $>0.84$ | 0.016-0.062 | 5.0 | $>0.19$ | c, e |
| 21547 | 180 | <344 | 5.5 | $>1.5$ | 0.051-0.19 | 2.4 | $>0.091$ | c, e |
| 21983 | . . . | <202 | . . | $>0.93$ | $>0.02$ | 22 | $>0.81$ | b, e |
| 22152 |  | <219 |  | $>2.4$ | $>0.073$ | 6.2 | $>0.21$ | b, e |
| 22192 | $\cdots$ | $<220$ | $\ldots$ | $>4.5$ | $>0.08$ | 3.3 | $>0.11$ | b, e |
| 22295 | . . | <246 | $\ldots$ | $>1.9$ | $>0.032$ | 4.5 | $>0.18$ | b, e |
| 22312 | $\cdots$ | <200 | . $\cdot$ | $>4.6$ | $>0.066$ | 4.3 | $>0.16$ | b, e |
| 22394 | 82 | <212 | 5.9 | $>0.89$ | 0.018-0.12 | 110 | $>0.57$ | c, e |
| 22509 | 99 | <410 | 40 | $>2.3$ | 0.034-0.58 | 4.7 | $>0.029$ | c, e |
| 22845 | 110 | <207 | 24 | $>6.6$ | 0.19-0.66 | 4.9 | $>0.12$ | c, e |
| 23443 | . . | <224 | . . | $>1.7$ | $>0.044$ | 6.9 | $>0.23$ | b, e |
| 23497 | 99 | <282 | 43 | $>5.3$ | 0.1-0.82 | 3.9 | $>0.078$ | c, e |
| 23871 | . . | $<178$ |  | $>11$ | $>0.19$ | 3.3 | $>0.12$ | b, e |
| 24528 | 156 | . . | 9.1 | $\cdots$ | 0.12 | 10 | . . | g |
| 24947 | 119 | $<254$ | 7.7 | $>1.7$ | 0.035-0.16 | 6.9 | $>0.21$ | c, e |

Table B. 4 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $T_{B B}$ <br> (K) | $T_{B B_{l i m}}$ <br> (K) | $\begin{aligned} & R_{B B} \\ & (\mathrm{AU}) \end{aligned}$ | $\begin{gathered} R_{B B_{l i m}} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(10^{-5}\right) \end{gathered}$ | $\begin{gathered} f_{d_{l i m}} \\ \left(10^{-5}\right) \end{gathered}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25183 | . . | <191 | . . | $>4.2$ | $>0.059$ | 7.2 | $>0.27$ | b, e |
| 25376 |  | $<236$ |  | $>1.9$ | $>0.033$ | 4.1 | $>0.13$ | b,e |
| 26395 | 128 | $<173$ | 16 | $>8.7$ | 0.14-0.25 | 9.4 | $>0.30$ | c, e |
| 26453 | 99.8 | <146 | 14 | $>6.4$ | 0.11-0.24 | 38 | $>0.80$ | c, e |
| 26563 | 118 | $<235$ | 24 | $>6$ | 0.14-0.54 | 3.7 | $>0.11$ | c, e |
| 26990 |  | <205 |  | $>2.1$ | $>0.039$ | 9.0 | $>0.32$ | $\mathrm{b}, \mathrm{e}$ |
| 28498 |  | $<227$ |  | $>2.4$ | $>0.044$ | 4.2 | $>0.14$ | b,e |
| 30252 | 99.8 | $<142$ | 22 | $>11$ | 0.15-0.3 | 27 | $>0.57$ | c, e |
| 32435 | 97.5 | <178 | 13 | $>3.9$ | 0.07-0.23 | 23 | $>0.45$ | c, e |
| 33690 | . . | <182 | . . | $>1.7$ | $>0.094$ | 9.9 | $>0.38$ | b,e |
| 34334 |  | $<234$ |  | $>1.3$ | $>0.018$ | 9.2 | $>0.30$ | b, e |
| 35198 |  | $<215$ |  | $>1.1$ | $>0.031$ | 11 | $>0.38$ | b,e |
| 35567 | 135 | <153 | 13 | $>9.9$ | 0.14-0.18 | 28 | $>0.94$ | c, e |
| 36515 | 177 | <351 | 2.3 | $>0.58$ | 0.026-0.1 | 4.9 | $>0.19$ | c, e |
| 36827 |  | <180 |  | $>1.4$ | $>0.055$ | 9.2 | $>0.36$ | b,e |
| 36927 |  | <194 |  | $>0.97$ | $>0.038$ | 7.9 | $>0.30$ | b, e |
| 36948 |  | <139 |  | $>3$ | $>0.085$ | 31 | $>1.1$ | b,e |
| 38369 |  | $<170$ |  | $>3.4$ | $>0.052$ | 6.5 | $>0.25$ | b,e |
| 38538 |  | <283 |  | $>5.8$ | $>0.085$ | 2.3 | $>0.058$ | b, e |
| 40693 | 101 | <199 | 5.8 | $>1.5$ | 0.12-0.46 | 26 | $>0.55$ | c, e |
| 41081 | 199 |  | 8.2 |  | 0.12 | 6.7 |  | g |
| 41152 |  | <155 |  | $>11$ | $>0.22$ | 4.0 | $>0.15$ | b, e |
| 41277 | 86.6 | $<238$ | 2.8 | $>0.38$ | 0.0086-0.065 | 140 | $>0.97$ | c, e |
| 41307 | 104 | <186 | 41 | $>13$ | 0.34-1.1 | 5.7 | $>0.12$ | c, e |
| 41373 | 103 | <176 | 28 | $>9.4$ | 0.14-0.4 | 9.0 | $>0.19$ | c, e |
| 43121 | 93 | <171 | 28 | $>8.2$ | 0.15-0.52 | 12 | $>0.19$ | c, e |
| 43414 | 128 | $<229$ | 18 | $>5.8$ | 0.11-0.35 | 7.9 | $>0.27$ | c, e |
| 46843 |  | <190 |  | $>1.4$ | $>0.08$ | 5.3 | $>0.20$ | b,e |
| 47135 | 88.7 | <254 | 11 | $>1.4$ | 0.021-0.17 | 15 | $>0.22$ | c, e |
| 47792 | 88.7 | <249 | 5.2 | $>0.66$ | 0.011-0.089 | 36 | $>0.55$ | c, e |
| 47990 |  | $<210$ |  | $>2$ | $>0.029$ | 7.5 | $>0.27$ | b,e |
| 48423 |  | <150 |  | $>2.9$ | $>0.089$ | 11 | $>0.43$ | b, e |
| 49593 |  | <224 |  | $>4.8$ | $>0.17$ | 3.3 | $>0.11$ | b,e |
| 49809 | . . | $<219$ |  | $>3.4$ | $>0.12$ | 3.0 | $>0.10$ | b,e |
| 50155 | $\ldots$ | <190 | $\cdots$ | $>1.5$ | $>0.027$ | 11 | $>0.42$ | b,e |
| 50860 |  | <266 |  | $>4.7$ | $>0.063$ | 2.6 | $>0.071$ | b,e |
| 51194 |  | <244 |  | $>4.9$ | $>0.072$ | 2.2 | $>0.063$ | b, e |
| 51793 | 301 | $>196$ | 0.38 | $<0.9$ | 0.007-0.017 | 15 | $>0.10$ | d,f |
| 52457 |  | <184 |  | $>14$ | $>0.2$ | 1.8 | $>0.065$ | b, e |
| 52709 | $\cdots$ | $<217$ | $\cdots$ | $>5.7$ | $>0.079$ | 2.9 | $>0.096$ | b, e |
| 52947 |  | <181 |  | $>4.7$ | $>0.063$ | 6.1 | $>0.23$ | b, e |
| 53954 | 98.2 | <183 | 36 | $>10$ | 0.27-0.93 | 8.1 | $>0.15$ | c,e |
| 55057 |  | $<215$ | . . | $>1.4$ | $>0.025$ | 11 | $>0.37$ | b,e |
| 55130 | 104 | $<278$ | 26 | $>3.6$ | 0.049-0.35 | 3.1 | $>0.069$ | c, e |
| 56253 | $\ldots$ | $<215$ | . . | $>5.1$ | $>0.086$ | 1.9 | $>0.065$ | b, e |
| 57971 |  | <178 |  | $>9.2$ | $>0.12$ | 3.5 | $>0.13$ | b, e |
| 59394 | 92.2 | <179 | 38 | $>10$ | 0.17-0.65 | 8.8 | $>0.14$ | c, e |
| 59422 | . . | <140 | . . | $>7$ | $>0.14$ | 8.0 | $>0.29$ | b,e |
| 59608 |  | <200 |  | $>5.6$ | $>0.11$ | 3.7 | $>0.13$ | b, e |
| 59893 | $\ldots$ | <188 | $\cdots$ | $>1.4$ | $>0.021$ | 22 | $>0.82$ | b,e |
| 60074 |  | $<167$ |  | $>2.7$ | $>0.098$ | 9.1 | $>0.35$ | b,e |
| 61558 | 97.5 | <175 | 33 | $>10$ | 0.15-0.48 | 9.2 | $>0.17$ | c, e |
| 61960 | 130 | <209 | 15 | $>6$ | 0.16-0.42 | 4.5 | $>0.14$ | c, e |
| 62492 |  | <167 |  | $>4.1$ | $>0.06$ | 7.5 | $>0.29$ | b, e |
| 63076 | $\cdots$ | <258 | $\cdots$ | $>2.7$ | $>0.091$ | 2.7 | $>0.077$ | b, e |
| 63286 | . . | <188 | . . . | $>4.7$ | $>0.077$ | 4.3 | $>0.16$ | b,e |
| 63404 | $\ldots$ | $<177$ | $\cdots$ | $>1.5$ | $>0.035$ | 10 | $>0.41$ | b,e |
| 63973 | 150 | <254 | 2.2 | $>0.77$ | 0.023-0.066 | 12 | $>0.45$ | c, e |
| 64461 | . . | $<175$ | . . | $>3.3$ | $>0.054$ | 6.0 | $>0.23$ | b, e |
| 65728 | . . | <194 | $\cdots$ | $>11$ | $>0.16$ | 1.2 | $>0.04$ | b,e |
| 66065 | 4 | <258 | 1. | $>5.4$ | $>0.076$ | 1.9 | $>0.051$ | b,e |
| 66234 | 464 | <633 | 1.4 | $>0.73$ | 0.013-0.025 | 23 | $>0.13$ | c, e |
| 66257 | 131 | $\cdots$ | 19 | $\ldots$ | 0.41 | $\cdots$ | $>0.42$ | a, e |
| 66634 | . . . | $<231$ | . . . | $>5.5$ | $>0.1$ | 2.0 | $>0.063$ | b, e |
| 66765 | $\cdots$ | $<227$ | . $\cdot$ | $>0.93$ | $>0.059$ | 6.9 | $>0.23$ | b,e |
| 66901 | . . | <182 | $\cdots$ | $>3.4$ | $>0.066$ | 3.9 | $>0.15$ | b,e |
| 67682 | 86 | <305 | 15 | $>1.2$ | 0.019-0.24 | 8.6 | $>0.13$ | c, e |
| 67782 | . . | <288 | . | $>3.5$ | $>0.053$ | 2.6 | $>0.065$ | b, e |
| 68593 |  | $<244$ |  | $>1.7$ | $>0.042$ | 4.3 | $>0.13$ | b, e |
| 68755 |  | $<150$ |  | $>1.9$ | $>0.03$ | 20 | $>0.73$ | b, e |
| 69281 | $\cdots$ | <187 | $\cdots$ | $>2.7$ | $>0.045$ | 11 | $>0.42$ | b, e |

Table B. 4 (cont'd)

| $\begin{gathered} \text { HIP } \\ \text { ID } \end{gathered}$ | $T_{B B}$ <br> (K) | $T_{B B_{l i m}}$ <br> (K) | $\begin{aligned} & R_{B B} \\ & (\mathrm{AU}) \end{aligned}$ | $\begin{gathered} R_{B B_{l i m}} \\ (\mathrm{AU}) \end{gathered}$ | $\begin{gathered} \theta \\ \left({ }^{\prime \prime}\right) \end{gathered}$ | $\begin{gathered} f_{d} \\ \left(10^{-5}\right) \end{gathered}$ | $\begin{gathered} f_{d_{l i m}} \\ \left(10^{-5}\right) \end{gathered}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 69508 | . . | $<212$ | . . | $>3.7$ | $>0.052$ | 4.1 | $>0.14$ | b, e |
| 69682 |  | <160 |  | $>2.9$ | $>0.046$ | 15 | $>0.57$ | b, e |
| 70239 |  | <238 |  | $>2.3$ | $>0.04$ | 4.7 | $>0.15$ | b, e |
| 71602 |  | $<212$ |  | $>3.2$ | $>0.049$ | 5.4 | $>0.19$ | b, e |
| 71718 |  | <210 |  | $>2.2$ | $>0.042$ | 6.1 | $>0.22$ | b, e |
| 72104 | 95.2 | <238 | 52 | $>8.3$ | 0.13-0.79 | 4.3 | $>0.074$ | c, e |
| 73798 |  | <149 |  | $>2.4$ | $>0.034$ | 21 | $>0.74$ | b, e |
| 75158 |  | <191 |  | $>4.5$ | $>0.06$ | 8.1 | $>0.30$ | b, e |
| 76280 |  | <193 |  | $>2$ | $>0.047$ | 5.2 | $>0.20$ | b, e |
| 76757 |  | <196 |  | $>2.3$ | $>0.033$ | 6.7 | $>0.25$ | b, e |
| 77094 |  | <175 |  | $>4.6$ | $>0.077$ | 5.4 | $>0.21$ | b, e |
| 77464 |  | <160 |  | $>11$ | $>0.21$ | 3.1 | $>0.11$ | b, e |
| 78010 |  | <193 |  | $>3.2$ | $>0.052$ | 5.9 | $>0.22$ | b, e |
| 78045 |  | $<171$ |  | $>11$ | $>0.16$ | 3.5 | $>0.13$ | b, e |
| 78979 |  | <208 |  | $>1.2$ | $>0.02$ | 14 | $>0.50$ | b, e |
| 79797 | 177 | $<271$ | 7.2 | $>3.1$ | 0.059-0.14 | 3.1 | $>0.12$ | c, e |
| 79881 |  | $<210$ |  | $>7.2$ | $>0.17$ | 1.8 | $>0.057$ | b, e |
| 80781 | 272 | $>174$ | 6.4 | $<1.5$ | 0.094-0.022 | 0.15 | $>0.039$ | d,f,h |
| 81800 |  | $<219$ |  | $>2.1$ | $>0.073$ | 3.1 | $>0.11$ | b, e |
| 82587 |  | <244 |  | $>2.8$ | $>0.097$ | 4.5 | $>0.14$ | b, e |
| 82887 |  | $<272$ |  | $>0.82$ | $>0.013$ | 9.2 | $>0.26$ | b, e |
| 83494 |  | $<234$ |  | $>4.1$ | $>0.074$ | 2.8 | $>0.088$ | b, e |
| 84183 |  | <242 |  | $>3.8$ | $>0.089$ | 3.0 | $>0.091$ | b, e |
| 85157 |  | $<112$ |  | $>16$ | >0.38 | 28 | $>0.76$ | b, e |
| 85523 | 160 | <590 | 1.3 | $>0.094$ | 0.021-0.28 | 0.84 | $>0.18$ | c, e |
| 85537 | 131 |  | 14 |  | 0.23 | . . . | $>0.051$ | a,e |
| 85699 |  | <197 |  | $>5.6$ | $>0.12$ | 2.3 | $>0.082$ | b, e |
| 85922 | 146 | $<242$ | 11 | $>4.2$ | 0.087-0.24 | 4.4 | $>0.16$ | c, e |
| 86178 |  | <185 |  | $>8.4$ | $>0.12$ | 1.9 | $>0.071$ | b, e |
| 86305 | 126 | <164 | 17 | $>9.9$ | 0.22-0.37 | 14 | $>0.46$ | c, e |
| 86598 | 122 | <249 | 7.2 | $>1.7$ | 0.024-0.099 | 8.6 | $>0.27$ | c, e |
| 87108 | 131 |  | 22 |  | 0.71 |  | $>0.17$ | a, e |
| 87558 | 109 | $<334$ | 13 | $>1.3$ | 0.043-0.4 | 4.2 | $>0.11$ | c, e |
| 89770 | 123 | <165 | 11 | $>6.1$ | 0.11-0.21 | 24 | $>0.78$ | c, e |
| 92858 | . . | $<272$ | . $\cdot$ | $>0.64$ | $>0.027$ | 11 | $>0.30$ | b, e |
| 93412 | 90.8 | $<216$ | 12 | $>2.1$ | 0.033-0.19 | 19 | $>0.31$ | c, e |
| 93542 | 109 | <130 | 62 | $>27$ | 0.45-1 | 12 | $>0.24$ | c, e |
| 94184 |  | <169 |  | $>6.3$ | $>0.12$ | 5.0 | $>0.19$ | b, e |
| 94491 | 85.3 | <155 | 23 | $>6.9$ | 0.11-0.37 | 360 | $>0.47$ | c, e |
| 95261 | 177 | . | 11 | . | 0.22 | 25 | . | g |
| 95270 |  | $<88.7$ |  | $>18$ | >0.34 | 220 | $>3.3$ | b, e |
| 95619 | 86 | <126 | 140 | $>65$ | 0.92-2 | 12 | $>0.13$ | c, e |
| 95793 |  | <266 |  | $>4.1$ | $>0.067$ | 2.3 | $>0.06$ | b,e |
| 95938 | 86.6 | <167 | 14 | $>3.7$ | 0.068-0.25 | 39 | $>0.53$ | c, e |
| 99273 | 83.3 | $<99.1$ | 19 | >13 | 0.25-0.36 | 290 | $>3.4$ | c, e |
| 99742 | 90.8 | <181 | 39 | $>9.8$ | 0.21-0.85 | 8.9 | $>0.13$ | c, e |
| 100526 |  | <166 |  | $>8$ | $>0.11$ | 5.3 | $>0.20$ | b, e |
| 101070 |  | <182 | . | $>6.8$ | $>0.097$ | 4.4 | $>0.16$ | b, e |
| 101163 |  | <266 |  | $>2$ | $>0.036$ | 4.1 | $>0.14$ | b, e |
| 101800 | 103 | <204 | 31 | $>7.9$ | 0.14-0.53 | 5.0 | $>0.11$ | c, e |
| 102238 | 500 | $>235$ | 0.17 | $<0.72$ | 0.0026-0.011 | 33 | $>0.14$ | d,f |
| 102419 |  | <181 | . . | $>4.8$ | $>0.082$ | 5.5 | $>0.21$ | b, e |
| 102655 |  | $<170$ | . $\cdot$ | $>2.7$ | $>0.049$ | 13 | $>0.50$ | b, e |
| 102727 |  | $<227$ |  | $>2.3$ | $>0.034$ | 4.7 | $>0.16$ | b, e |
| 103048 | . . | <169 | $\cdots$ | $>4.8$ | $>0.069$ | 11 | $>0.42$ | b, e |
| 103131 | 111 | <299 | 9.1 | $>1.3$ | 0.022-0.16 | 7.6 | $>0.21$ | c, e |
| 105388 | 84.6 | <244 | 10 | $>1.2$ | 0.029-0.24 | 16 | $>0.27$ | c, e |
| 105819 | 90.8 | <276 | 31 | $>3.4$ | 0.045-0.42 | 5.0 | $>0.078$ | c, e |
| 105966 |  | $<272$ | . . . | $>4.5$ | $>0.078$ | 1.4 | $>0.035$ | b, e |
| 106741 | . | <202 | . | $>3.1$ | $>0.061$ | 4.8 | $>0.17$ | b, e |
| 106914 | . . | $<313$ | $\ldots$ | $>1.7$ | $>0.026$ | 5.3 | $>0.12$ | b, e |
| 107457 |  | <270 |  | $>0.93$ | $>0.024$ | 7.5 | $>0.21$ | b, e |
| 107596 | . . | <167 | . $\cdot$ | $>9.7$ | $>0.14$ | 5.0 | $>0.19$ | $\mathrm{b}, \mathrm{e}$ |
| 107919 |  | <150 | . . . | $>9.6$ | $>0.14$ | 7.3 | $>0.27$ | b, e |
| 107947 | . . | $<258$ | . . | $>1.7$ | $>0.037$ | 4.8 | $>0.14$ | b, e |
| 109656 | 268 | $>175$ | 0.59 | $<1.4$ | 0.0081-0.019 | 21 | $>0.13$ | d,f,h |
| 111188 | 188 | <303 | 12 | $>4.6$ | 0.11-0.27 | 1.9 | $>0.064$ | c,e |
| 113477 | ... | <219 |  | $>1.1$ | $>0.027$ | 7.1 | $>0.24$ | b, e |
| 114189 | 134 | $<225$ | 9.4 | $>3.3$ | 0.085-0.24 | 6.0 | $>0.21$ | c, e |
| 114822 |  | <188 |  | >11 | $>0.15$ | 2.7 | $>0.097$ | b, e |
| 114948 |  | <297 |  | $>1.2$ | $>0.058$ | 5.3 | $>0.13$ | b, e |

Table B. 4 (cont'd)

| HIP <br> ID | $T_{B B}$ <br> $(\mathrm{~K})$ | $T_{B B_{l i m}}$ <br> $(\mathrm{~K})$ | $R_{B B}$ <br> $(\mathrm{AU})$ | $R_{B B_{l i m}}$ <br> $(\mathrm{AU})$ | $\theta$ <br> $\left({ }^{\prime \prime}\right)$ | $f_{d}$ <br> $\left(10^{-5}\right)$ | $f_{d_{l i m}}$ <br> $\left(10^{-5}\right)$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 115738 | 96.7 | $<189$ | 36 | $>9.4$ | $0.2-0.76$ | 6.0 | $>0.11$ | $\mathrm{c}, \mathrm{e}$ |
| 115819 | 102 | $<258$ | 2.2 | $>0.35$ | $0.0054-0.034$ | 160 | $>0.74$ | $\mathrm{c}, \mathrm{e}$ |
| 116431 | $\cdots$ | $<86$ | $\cdots$ | $>21$ | $>0.31$ | 110 | $>1.5$ | $\mathrm{~b}, \mathrm{e}$ |
| 116973 | $\cdots$ | $<169$ | $\cdots$ | $>1.3$ | $>0.029$ | 21 | $>0.81$ | $\mathrm{~b}, \mathrm{e}$ |
| 11781 | $\cdots$ | $<212$ | $\cdots$ | $>2.1$ | $>0.062$ | 6.5 | $>0.23$ | $\mathrm{~b}, \mathrm{e}$ |
| 117915 | 248 | $<1000$ | 0.86 | $>0.053$ | $0.0013-0.022$ | 21 | $>0.063$ | $\mathrm{c}, \mathrm{e}$ |
| 118008 | $\cdots$ | $<197$ | $\cdots$ | $>1$ | $>0.046$ | 8.7 | $>0.33$ | $\mathrm{~b}, \mathrm{e}$ |

Note. - A summary of the calculated disk properties of stars with $W 2$, W3 and $W 4$ excesses. Blackbody temperatures for the dust are listed alongside the calculated circumstellar location, projected angular extent of the dust and the fractional bolometric luminosity.
Notes:
a. $W 4$-only excess: The $W 3$ excess flux in this case was either saturated or $>3 \sigma$ below the photosphere. A limiting temperature and radius for the dust cannot be determined.
b. $W 4$-only excess: The $W 3$ excess flux is formally negative and an upper limit to the excess flux is used to place a $3 \sigma$ limit to the dust temperature and radius. c. $W 4$-only excess: The $W 3$ positive excess flux in this case was used to calculate a dust temperature and radius. An upper limit to the $W 3$ excess flux was used to calculate a $3 \sigma$ limit to the dust temperature and radius.
d. $W 3$-only excess: The $W 4$ positive excess flux in this case was used to calculate a dust temperature and radius. An upper limit to the $W 4$ excess flux was used to calculate a $3 \sigma$ limit to the dust temperature and radius.
e. Lower limit to the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=12 \mu \mathrm{~m}$ as described in $\S 3$ in chapter 3.
f. Lower limit to the fractional luminosity was calculated for a blackbody with peak emission at $\lambda=22 \mu m$ as described in § 3 in chapter 3. g. Significant $W 3$ and $W 4$ excess found in these stars. Dust parameters are exact calculations
h. $W 3$-only excess: The $W 4$ excess significance in this case was undetermined as the measurement was ignored in all $W 4$ analyses as its ASC measurement was $>2 \sigma$ discrepant from the mean Single Frame measurement.

## Appendix C

## Derivations

## C. 1 The Weighted Excess Metric

We present the full derivation of $\Sigma_{\overline{E[W j]}}$ for a star at a WISE mid-IR band $W j$, where $j=3$ or 4 . Starting with Equation 4.2, we arrive at a general form for the weighted excess by adding the individual color excess terms, and multiplying by weights $a_{i}$

$$
\begin{align*}
\overline{E[W j]} & =\sum_{i=1}^{j-1} a_{i} E[W i-W j]  \tag{C.1}\\
& =\sum_{i=1}^{j-1} a_{i}\left(W i-W j-W_{i j}\left(B_{T}-V_{T}\right)\right) . \tag{C.2}
\end{align*}
$$

The weights $a_{i}$ are normalized and are unknown:

$$
\begin{equation*}
\sum_{i=1}^{j-1} a_{i} \equiv 1 \tag{C.3}
\end{equation*}
$$

Our general form for the $\mathrm{S} / \mathrm{N}$ of the weighted average of the excess at $W j$ is calculated by dividing equation C. 1 by the uncertainty in the weighted average, $\sigma_{\overline{E\left[W_{j}\right]}}$. The uncertainty is defined as the quadrature sum of each entry of the Jacobian matrix of $\overline{E[W j]}$ weighted by its respective uncertainty. The variance of the weighted average is

$$
\begin{equation*}
\sigma_{\overline{E[W j]}}^{2}=\sum_{\alpha} \sigma_{\alpha}^{2}\left(\frac{\partial \overline{E[W j]}}{\partial \alpha}\right)^{2}+O\left(\sigma_{W i, W i j}\right)+O\left(\sigma_{W i, W j}\right), \tag{C.4}
\end{equation*}
$$

where $\alpha \in\left\{W i, W j, W i j\left(B_{T}-V_{T}\right)\right\}$ are the terms on the right hand side of Equation C.2. The cross terms in the Jacobian matrix, $O\left(\sigma_{W i, W i j}\right)$ and $O\left(\sigma_{W i, W j}\right)$ are proportional to the covariance of the uncertainties in the WISE photometry and the mean WISE colors. We ignore the first term, $O\left(\sigma_{W i, W i j}\right)$, because $\sigma_{W i j} \sim 0.1 \sigma_{W i}$ and $W_{i j}$ is only a shallow function of $B_{T}-V_{T}$. We also ignore $O\left(\sigma_{W i, W j}\right)$ because the errors on $W i$ and $W j$ are not correlated and hence $\sigma_{W i, W j} \sim 0$. Thus, Equation C. 4 reduces to

$$
\begin{equation*}
\sigma_{\overline{E[W j]}}^{2} \simeq \sum_{\alpha} \sigma_{\alpha}^{2}\left(\frac{\partial \overline{E[W j]}}{\partial \alpha}\right)^{2} \tag{C.5}
\end{equation*}
$$

where $\alpha \in\{W i, W j\}$, after removing the photospheric uncertainties from the calculation. We define the significance of the weighted excess at $W j$ in the same form as in Equation 4.4:

$$
\begin{equation*}
\Sigma_{\overline{E[W j]}}=\frac{\overline{E[W j]}}{\sigma_{\overline{E[W j]}}} . \tag{C.6}
\end{equation*}
$$

We proceed with solving for the weights in equation C.1. Using $j=4$ as an example, we can expand equation C. 1 as

$$
\begin{align*}
& \overline{E[W 4]}=a_{1} E[W 1-W 4]+a_{2} E[W 2-W 4]+a_{3} E[W 3-W 4]  \tag{C.7}\\
&=a_{1}\left(W 1-W 4-W_{14}\right)+a_{2}\left(W 2-W 4-W_{24}\right)+a_{3}(W 3-W 4-(\mathrm{C} .7)  \tag{3,4}\\
&\left.\left.C_{3} .8\right)\right)
\end{align*}
$$

Inserting $a_{3}=1-a_{1}-a_{2}$ into Equation C. 7 produces

$$
\begin{equation*}
\overline{E[W 4]}=a_{1} W 1-a_{1} W_{14}+a_{2} W 2-a_{2} W_{24}+W 3-W 4-W_{34}-a_{1} W 3+a_{1} W_{34}-a_{2} W 3+a_{2} W_{34} . \tag{C.9}
\end{equation*}
$$

The variance of $\overline{E[W 4]}$ is calculated using Equation C.5,

$$
\begin{equation*}
\sigma_{E[W 4]}^{2}=a_{1}^{2} \sigma_{W 1}^{2}+a_{2}^{2} \sigma_{W 2}^{2}+\left(1-a_{1}-a_{2}\right)^{2} \sigma_{W 3}^{2}+\sigma_{W 4}^{2} \tag{C.10}
\end{equation*}
$$

Next we seek solutions for $a_{1}$ and $a_{2}$ that minimize the dependence of $\sigma_{\overline{E[W 4]}}^{2}$ on these weights. Thus, by calculating

$$
\begin{align*}
& \left(\frac{\partial \sigma_{\overline{E[W 4]}}^{2}}{\partial a_{1}}\right)=0=2 a_{1} \sigma_{W 1}^{2}-2 \sigma_{W 3}^{2}+2 a_{2} \sigma_{W 3}^{2}+2 a_{1} \sigma_{W 3}^{2}  \tag{C.11}\\
& \left(\frac{\partial \sigma_{\overline{E[W 4]}}^{2}}{\partial a_{2}}\right)=0=2 a_{2} \sigma_{W 2}^{2}-2 \sigma_{W 3}^{2}+2 a_{2} \sigma_{W 3}^{2}+2 a_{1} \sigma_{W 3}^{2} \tag{C.12}
\end{align*}
$$

We solve for $a_{1}$ and $a_{2}$

$$
\begin{align*}
& a_{1}=\frac{\sigma_{W 3}^{2} \sigma_{W 2}^{2}}{\sigma_{W 2}^{2} \sigma_{W 1}^{2}+\sigma_{W 2}^{2} \sigma_{W 3}^{2}+\sigma_{W 3}^{2} \sigma_{W 1}^{2}},  \tag{C.13}\\
& a_{2}=\frac{\sigma_{W 3}^{2} \sigma_{W 1}^{2}}{\sigma_{W 2}^{2} \sigma_{W 1}^{2}+\sigma_{W 2}^{2} \sigma_{W 3}^{2}+\sigma_{W 3}^{2} \sigma_{W 1}^{2}} \tag{C.14}
\end{align*}
$$

Now, using Equations C. 13 and C.14, we recover $a_{3}$,

$$
\begin{equation*}
a_{3}=\frac{\sigma_{W 2}^{2} \sigma_{W 1}^{2}}{\sigma_{W 2}^{2} \sigma_{W 1}^{2}+\sigma_{W 2}^{2} \sigma_{W 3}^{2}+\sigma_{W 3}^{2} \sigma_{W 1}^{2}} \tag{C.15}
\end{equation*}
$$

To reduce the form of these weights, we multiply and divide each by $\sigma_{W 1}^{2} \sigma_{W 2}^{2} \sigma_{W 3}^{2}$, to finally obtain the general form for each weight

$$
\begin{equation*}
a_{i}=\frac{1 / \sigma_{W i}^{2}}{\sum_{i=1}^{j-1} 1 / \sigma_{W i}^{2}} \tag{C.16}
\end{equation*}
$$

This is valid for either weighted $W 3(j=3)$ or weighted $W 4(j=4)$ excesses. We then set $A=\sum_{i=1}^{j-1} 1 / \sigma_{W i}^{2}$, substitute equation C. 16 into equation C. 10 to obtain a reduced expression for the variance of the excess $\left(\sigma_{\overline{E[W 4]}}\right)$, and then place that expression into Equation C.6. This gives us the final form for the significance of the weighted excess, which when generalized for $j=3$ or $j=4$ is

$$
\begin{equation*}
\Sigma_{\overline{E[W j]}}=\frac{\frac{1}{A} \sum_{i=1}^{j-1} \frac{E\left[W i-W_{j}\right]}{\sigma_{i}^{2}}}{\sqrt{\sigma_{j}^{2}+1 / A}} \tag{C.17}
\end{equation*}
$$

Equation C. 17 is the same result for $\Sigma_{\overline{E\left[W_{j}\right]}}$ as presented in equation 4.4.

## Appendix D

## Figures

## D. 1 Extended Figures in Chapter 3

In chapter 3, we showed an example plot of the SEDs (Figure 6) for all the excess stars we identified within 75 pc . Here, I show the SEDs for all the excess stars within this sample.


Figure D.1: SEDs of probable debris disk-host stars in our science sample. The dashed lines and solid data points correspond to the fitted model NextGen photosphere and to $B V J H K_{s}$ photometry from the Hipparcos Catalogue and 2MASS Point Source Catalog. Fluxes plotted as closed circles were used in the fit, and fluxes plotted as stars - excesses above the photosphere - were not used in the fit. Cool blackbody curves (dash-dotted line) were fitted to the excess fluxes (open diamonds) at the $W 3$ and/or $W 4$ wavelengths. The combined photosphere and excess emission for each star is plotted as a solid black line.


Figure D.2: continued.


Figure D.2: continued.

## D. 2 Extended Figures of Chapter 5

In chapter 5 , I identified $312 W 3-W 4$ excesses, that were not reported from our surveys in Chapters 3 and 4. Here, I plot the SEDs of all these stars.


Figure D.3: SEDs of probable debris disk-host stars within 120 pc , identified via their $W 3-W 4$ excess color. The dashed lines and solid data points correspond to the fitted model NextGen photosphere and to $B V J H K_{s}$ photometry from the Hipparcos Catalogue and 2MASS Point Source Catalog. Fluxes plotted as closed circles were used in the fit, and fluxes plotted as stars- excesses above the photosphere - were not used in the fit. Cool blackbody curves (dashdotted line) were fitted to the excess fluxes (open diamonds) at the W3 and/or $W 4$ wavelengths. The combined photosphere and excess emission for each star is plotted as a solid black line. Upper ${ }_{2}$ limits are shown as red arrows pointing down.


Figure D.3: continued.


[^0]:    ${ }^{1}$ See http://www.circumstellardisks.org for a compilation of resolved disks.

[^1]:    ${ }^{2}$ http://www.almaobservatory.org/

[^2]:    ${ }^{3}$ http://feps.as.arizona.edu/science.html
    ${ }^{4}$ Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre
    ${ }^{5}$ DUst around NEarby Stars

[^3]:    ${ }^{6}$ Rieke et al. (2005) define intermediate and strong excesses as $R_{24}=1.25-2$ and $R_{24}>2$ respectively, as defined in Equation 1.11

[^4]:    ${ }^{1}$ http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/

[^5]:    ${ }^{3}$ http://wise2.ipac.caltech.edu/docs/release/prelim/preview.html

[^6]:    ${ }^{4}$ http://wise2.ipac.caltech.edu/docs/release/allsky/
    ${ }^{5}$ http://wise2.ipac.caltech.edu/docs/release/allwise/

[^7]:    ${ }^{6}$ http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4g.html

[^8]:    ${ }^{7}$ http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec6_3d.html

[^9]:    3 http://irsa.ipac.caltech.edu/

[^10]:    4 http://wise2.ipac.caltech.edu/docs/release/allwise/expsup/index.html

[^11]:    5 Available on-line at the STScI Calibration Database System,
    http://www.stsci.edu/hst/observatory/cdbs/castelli_kurucz_atlas.html.

[^12]:    6 http://ad.usno.navy.mil/wds/

[^13]:    7 http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec2_2a.html

[^14]:    Notes. Science sample stars with debris disks in known binary systems. The binary separation was calculated using the parallactic distance and angular separations from the Washington Double Star Catalog.
    ${ }^{\text {a }}$ Orbital state of the dust: "cs" means the dust is in a circumstellar location around the primary star, "cb" means the dust is in a circumbinary configuration

[^15]:    ${ }^{1}$ http://wise2.ipac.caltech.edu/docs/release/prelim/
    ${ }^{2}$ http://wise2.ipac.caltech.edu/docs/release/allwise/
    ${ }^{3}$ http://wise2.ipac.caltech.edu/docs/release/allsky/
    ${ }^{4}$ Check out http://www.diskdetective.org/

[^16]:    ${ }^{5}$ in PMH14, we incorrectly called the FDR the false-positive rate. See Figure 4 in Wahhaj et al. (2015), which illustrates the difference between the two terms.

[^17]:    ${ }^{6}$ http://unwise.me

[^18]:    ${ }^{7}$ http://irsa.ipac.caltech.edu/data/SPITZER/docs/mips/mipsinstrumenthandbook/

[^19]:    ${ }^{8}$ After the publication of PMH14 we recognized that some of the excesses that we reported as new had already been identified as candidate debris disks from Spitzer/IRS spectra by Ballering et al. (2013). There are 14 such excesses: a subsample of the 19 new PMH14 W4 excesses that are confirmed in Chen et al. (2014).

[^20]:    Note. - Summary of the results from our WISE single-color and weighted $W 3$ and $W 4$ excess identification, using the more accurate determination of the $\Sigma_{E_{C L}}$ outlined in Section 4.3.1. $\Sigma_{E_{C L}}$ is the threshold $\Sigma_{E}$ above which we select an excess at a confidence level those that pass the sample selection criteria of PMH14 (see also Section 4.2). The final debris disk candidates are the subset of excesses that survive visual inspection for contamination. The last column indicates the number of new detections from the sample of stars over the ones already reported in PMH14.

[^21]:    Note. - Hipparcos stars with detected mid-IR excesses at either $W 3$ or $W 4$. Unless otherwise noted, the stellar temperature and radius were obtained from photospheric model fits ot the
    optical through $4.5 \mu \mathrm{~m}$ photometry, as described in Section 3 of PMH14. optical through $4.5 \mu \mathrm{~m}$ photometry, as described in Section 3 of PMH14 a Spectral types are from the Hipparcos database. Stars marked with asterisks have had their spectral types estimated from their $B_{T}-V_{T}$ colors using empirical color relations from Pecaut \&
    Mamajek 2013 .
    ${ }^{\mathrm{b}}$ Parallactic distances from Hipparcos.
    c The quoted fractional excesses in $W 3$ and $W 4$ represent the ratios of the measured excess and the total fluxes in these bands. They have not been color-corrected for the filter response,
    although such corrections have been applied to the estimates of the fractional bolometric luminosities $f_{d}$ of the dust (Table 4.2; see Section 3 of PMH14). ${ }^{\mathrm{d}}$ Saturation corrected $W 1$ and $W 2$ photometry (see Section 2.4 in PMH14)

[^22]:    Note. - Hipparcos stars with detected mid-IR excesses out to 120 pc at $W 4$ using $W 3-W 4$ colors. The stellar temperature and radius for each stars were
    obtained from photometric fits as described in $\S 3$ and $\S 4.5$.

[^23]:    ${ }^{1}$ The location on the CMD when the star reaches the main-sequence; i.e., when the star starts burning hydrogen at its core.

[^24]:    Note．－Hipparcos stars with detected mid－IR excesses at either $W 2, W 3$ and／or $W 4$ ．Unless otherwise noted，the stellar temperature and radius were
    obtained from photometric fits as described in $\S 3$ in Chapter 3．The $\chi_{*}^{2}$ column gives the goodness of the photospheric fit． a Spectral types for stars downloaded from Hipparcos database．Stars marked with asterisks had their spectral types estimated from their $B_{T}-V_{T}$ colors
    using empirical color relations from Pecaut \＆Mamajek（2013）． ${ }^{\mathrm{b}}$ Parallactic distances from Hipparcos．
    ${ }^{\mathrm{c}}$ Stellar temperature and radius were estimated from empirical color relations from Pecaut \＆Mamajek（2013）using the listed Hipparcos spectral type ${ }^{\mathrm{d}}$ The quoted fractional excesses in $W 3$ and $W 4$ represent the ratios of the measured excess and the estimated stellar photospheric flux in these bands．They
    have not been color－corrected for the filter response，although such corrections have been applied to the estimates of the fractional bolometric luminosities $f_{d}$ of the dust（ $\S 3$ in Chapter 3），Table B．4）．

[^25]:    ${ }^{\mathrm{e}}$ Saturation corrected $W 1$ and $W 2$ photometry（see § 2.4 in Chapter 3）

