
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Towards Single Photon Nonlinearities using Cavity EIT

A Thesis presented

by

Zakary Neumann Burkley

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Arts

in

Physics

Stony Brook University

August 2014



Stony Brook University

The Graduate School

Zakary Neumann Burkley

We, the thesis committee for the above candidate for the

Master of Arts degree, hereby recommend

acceptance of this thesis

Dr. Eden Figueroa - Thesis Advisor
Research Field: Atomic, Molecular, and Optical Physics, Quantum Electronics

Assistant Professor
Department of Physics and Astronomy

Dr. Thomas Allison - Inside Research Field Reader
Research Field: Atomic, Molecular, and Optical Physics, Quantum Electronics

Assistant Professor
Department of Physics and Astronomy

Dr. Rosalba Perna - Outside Research Field Reader
Research Field: Astronomy

Associate Professor
Department of Physics and Astronomy

This thesis is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Thesis

Towards Single Photon Nonlinearities using Cavity EIT

by

Zakary Neumann Burkley

Master of Arts

in

Physics

Stony Brook University

2014

In third order nonlinear mediums, the intensity of one optical field can modify the phase
of another optical field [16]. This is known as cross-phase modulation (XPM) and is im-
portant for Quantum Information Processing (QIP) as phase shifts of single-photons that
exceed π rad can be used to implement two-qubit quantum logic gates [20]. For a conven-
tional XPM scheme, the Kerr nonlinearity responsible for XPM is too small for appreciable
phase shifts to be achieved with low intensity optical fields. However, Electromagnetically
Induced Transparency (EIT) can increase this nonlinearity by several orders of magnitude
[19]. This thesis discusses the experimental construction of a laser-atomic system capable
of EIT modulated XPM. This includes construction of a rubidium magneto-optical trap
(RbMOT), characterization of this RbMOT, demonstration of EIT in the RbMOT, and a
system capable of detecting optical phase shifts produced by EIT. The thesis concludes with
an outlook on further implementations to the experiment that will increase this nonlinearity
such that electric field phase shifts at the single-photon level are possible.
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Chapter 1

Introduction

According to Moore’s Law, the number of transistors capable of being placed on a chip

doubles every 18 months. Extrapolating this data suggests that the one atom-per-bit level

could be reached by 2020 (see Figure 1.1) [1]. At this level classical computers would have to

take into account quantum mechanical effects; quantum information technology (QIT) would

be required to either replace and/or supplement current classical information technology.

Whether or not classical computing can continue to progress without implementing QIT is

debateable. Regardless, in this age of information, new avenues of information processing

should be continually explored; current research illuminates QIT as a very promising avenue

[4].

(a) Confirmation of Moore’s Law from Intel
computer chips

Year

A
to

m
s p

er
 B

it

(b) The number of atoms per bit is approaching
one. At this level quantum mechanical effects

must be considered.

Figure 1.1: The size of classical computer technology is approaching the quantum level.
Taken from [1].

Instead of just supplementing classical information technology, QIT can provide a brand

new avenue of information processing, called quantum information processing (QIP). The
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linearity of the Schrodinger equation requires that any linear combination of particular solu-

tions is also a solution. This leads to the quantum mechanical superposition principle, which

dictates that physical systems can be in a superposition of the system’s possible eigenstates.

So far this is not unique from classical wave equations that are also linear and permit superpo-

sition. What makes quantum superposition states distinguishable is that upon measurement

the state collapses to a single eigenstate. This can be exploited to realize a novel type of

information processing that has the potential to outperform current computer technologies.

This is the motivation for QIP, where classical bits, which are in a definite state of 0 or 1,

are replaced with quantum bits (qubits), which are in any superposition of 0 and 1 at the

same time. To process information in this form would require the creation of a quantum

computer built upon quantum processors. In such a device, the processors could evolve

initial superpositions of qubits into different superpositions. Therefore, all information con-

tained within these qubits is evolved simultaneously, resulting in parallel computation within

a single processor. Classically, such computation could only be achieved with many discrete

processors working in parallel. This ‘quantum parallelism’ enables computational tasks unre-

alistic classically. One prime example of such a task would be a quantum computer’s ability

to factor products of large prime numbers much faster than classical computers, putting the

widely used RSA encryption methods at risk. Another application that emerges from QIP is

quantum cryptography, which allows the unconditional secure transmission of messages by

allowing the presence of an eavesdropper to be detected [2].

Qubits are physically realizable through the polarization states of a single photon, as well

as numerous other physical systems [4]. Analogous to the binary states 0 or 1, photons that

are in a superposition polarization state of Horizontal |H〉 and Vertical |V 〉 can carry the

quantum superpositions states that define a qubit. In this thesis, the term optical qubit will

refer to the quantum information contained by the superposition polarization state of a single

photon. Photons are attractive information carriers for QIP because light is robust in its

ability to transport information. This is due to light’s weak interaction with its surroundings,

allowing it to travel long distances without decohering [5]. However, this strength is also

a weakness. If we want to build a quantum computer with light we will need a quantum

processor and thus quantum logic gates. Such logic gates will require one optical qubit to

manipulate the state of another optical qubit. For optical qubits, this entails selectively

modifying the phase of the electric field of a target qubit with a signal qubit. This could be

envisioned as manipulating the polarization of the target qubit from |H〉+ |V 〉 to |H〉− |V 〉,
i.e., a 90o selective phase shift for the vertical component of the oscillating electric field.

Although light cannot directly manipulate light, there are atom-light interactions that make

this possible.
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Through the optical Kerr effect, the intensity of one light field can change the index of

refraction seen by another light field and hence its phase, this is called cross-phase modulation

(XPM) [16]. This effect; however, is not the only tool needed to develop an optical two-qubit

quantum phase gate. This is because the optical Kerr effect relies on a nonlinear term that

couples light’s interaction to an atomic medium; the coefficient of this term is approximately

10−15m2/V2 for the atomic gases used for optical quantum information. Because of this,

this effect can only been seen with very intense light fields, which are very far away from

the single-photon level we desire. We need an additional tool to exaggerate the optical Kerr

effect. This tool is Electromagnetically Induced Transparency [19].

Electromagnetically Induced Transparency (EIT) uses two coherent light sources, e.g.,

lasers, to prevent excitation to the single excited state of a three level atom. Since atoms in

the ground states cannot be excited to this state, the atoms are transparent to light as they

cannot undergo absorption [3]. On top of this transparency, EIT drastically modifies other

properties of the atomic medium, including increasing nonlinearities. Therefore, combining

EIT with the optical Kerr effect increases electric field phase shifts between two light fields.

An electric field phase shift of π rad between light fields at the single photon level is

the ultimate goal towards which this thesis is working. If achieved, this would enable the

construction of a deterministic two-qubit quantum logic gate [20]. The goal of this thesis

was development of the necessary tools to achieve optically controlled interactions within a

cold atomic ensemble that could be used to manipulate phase shifts between two light fields.

This required four experimental tools:

1. Theoretically: A platform to mediate light-atom-light interactions.

Experimental Implementation: Magneto-optically trapped rubidium atoms.

2. Theoretically: A tool to control light-atom-light interactions.

Experimental Implementation: Electromagnetically induced transparency.

3. Theoretically: A way to implement and enhance optical phase shifts of electric fields.

Experimental Implementation: Modification of electromagnetically induced trans-

parency.

4. Theoretically: A method of measuring electric field phase shifts.

Experimental Implementation: Balanced homodyne tomography.

The structure of this thesis mimics the list above, outlining the basic theory, experi-

mental implementation, and measurements for each tool. Chapter 2 discusses the basic

theory of laser cooling and magneto-optical traps (MOTs). The required tools to experimen-

tally implement these techniques and trap cold atoms are explained. Lastly, measurements
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characterizing the number of cold atoms present in the MOT and their temperature are

presented. Chapter 3 begins with a derivation of the Hamiltonian for Electromagnetically

Induced Transparency. Important consequences of this Hamiltonian are introduced, e.g.,

dark states, linear susceptibility, slow light, and cross-phase modulation. Here we describe

the tools to experimentally achieve EIT and XPM in atomic systems. Measurements dis-

playing our EIT spectrum and its optimization are presented. Chapter 4 introduces the

optical Kerr effect, self-phase modulation and cross-phase modulation (XPM). Improvement

of conventional XPM through modification of EIT is examined. Implementing this improve-

ment is explained and results showing modification of EIT are presented. Lastly, balanced

homodyne tomography as a method of measuring electric field phase shifts is briefly intro-

duced. A phase shift measurement through EIT is shown. Chapter 5 concludes the thesis

by examining the work done and introducing the next set of experimental tools that will be

added to this work in order to achieve electric field phase shifts at the single photon level.
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Chapter 2

MOT Theory

Motivation

An interface between states of light carrying quantum information and matter is essential

for quantum information processing as it enables the storage and processing of this infor-

mation [4]. Atomic ensembles are an attractive candidate for this interface as photons can

interact strongly with systems containing a large number of atoms [5]. An experimental real-

ization of such a system can be achieved with ultra cold alkali atoms. We choose cold atoms

for two reasons. Physically, they have less decoherence than warm atoms as there are less

collisions. Technically they allow easier implementation of cavities and EIT. The first demon-

stration of an ultra cold alkali atom-light interface storing and retrieving optical qubits was

achieved using rubidium ensembles in 2005 [7]. Since this achievement, magneto-optically

trapped alkali atoms have been utilized in a variety of quantum information experiments

regarding storage, retrieval, entanglement and processing of optical single qubits [8]. There-

fore, using cooled rubidium in a magneto-optical trap as our interface for processing optical

qubits through phase shifts, we will be able to build upon the existing research in the field.

We hope to add to this research by developing the first two qubit atom-light interface.

2.1 MOT Theory

2.1.1 Introduction to Laser Cooling

We are taught in early science classes that temperature is determined by the motion of

atoms. For a gas of non-interacting atoms, we only need to consider translational motion.

This leads to the familiar relation between the root-mean-square (r.m.s.) velocity of atoms

in a gas and their temperature
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vrms =

√
3kbT

m
, (2.1)

where kb is Boltzmann’s constant, m is the individual mass of each atom, and T is the

temperature in K. From this it is clear that slowing down atoms will cool them. What

is not obvious is that Lasers can be used for this cooling. This can be accomplished by

utilizing the mechanical force of light on gaseous atoms to slow down their speed. Once

cooled, magnetic coils can trap these atoms at a specific point in space. Although Maxwell

hypothesized that radiation has momentum in the 19th century, and the first experimental

demonstration of light-induced mechanical forces came in 1933, it wasn’t until 1997 that the

Nobel Prize for Physics was awarded for the cooling and trapping of neutral atoms with laser

light [10][11]. The cooling was achieved utilizing the Doppler effect, whereas trapping can be

accomplished through magnetic fields and the Zeeman effect. Combining Doppler Cooling

with magnetic trapping a Magneto-Optical Trap (MOT) can be created. The theoretical

components that are the basis of this MOT follow.

2.1.2 Doppler Cooling: Conceptual Explanation

Consider an atom moving in the +x direction. If we hit this atom head-on with a

counterpropagating laser beam of frequency νL = νo + δ, where νo is the resonant frequency

of the atom’s transition and δ is the laser detuning, we will find that a detuning of zero does

not correspond to a transition for some velocity classes. This is because in the rest frame of

the atom, the laser has a Doppler shifted frequency

ν
′

L = νL

(
1 +

vx
c

)
≈ νo + δ +

vx
c
νo, (2.2)

where we have assumed δ � νo and vx � c [11]. Therefore, tuning our laser off-resonance

such that δ = −vx
c
νo, we can cause our light to be absorbed on-resonance with the atom.

Since our laser beam is travelling in the −x direction, each time the atom absorbs a photon it

will recoil in the propagation direction of the light. However, when the atom spontaneously

emits the photon, the atom’s direction change from this will average out to zero since each

photon will be kicked off in a random direction. This leads to a net momentum change in

the atom of

∆px = −h
λ
. (2.3)

This simple explanation suggests that with enough photon absorptions the atom’s motion

can be completely stopped. However, a more in depth treatment reveals that the recoil from
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spontaneous emission cannot be ignored, putting a bound on the minimum temperature

possible through Doppler Cooling.

2.1.3 Scattering Force and Optical Molasses

As we saw in the previous heuristical explanation, light can lessen the momentum of an

atom moving in a specific direction. For a single atom we saw that this decrease was just

the momentum of a single photon. We are not working with single atoms, and we cannot

assume that all photons are absorbed by each atom. It therefore makes sense to consider a

population of atoms and the rate at which they absorb photons. For a two-level atom, which

we can approximate very closely using the hyperfine levels of rubidium, the scattering rate

is given by

Rscatt =
Γ

2

Ω2/2

δ2 + Ω2/2 + Γ2/4
, (2.4)

where Γ = 1/τ is the radiative decay of the atom (τ is the excited state lifetime), Ω is the

Rabi Frequency (the oscillation of population between the two levels), and δ = ω − ωo + kv

is the doppler accounted detuning between atomic resonance, ωo, and the laser frequency, ω

for an atom with velocity v along the same direction as the photon wave vector k [12]. Using

the useful relation I/Isat = 2Ω2/Γ2, where I is the laser intensity and Isat is the saturation

intensity at which the laser drives the excited state population to equal the ground state, we

can write the scattering force as

Fscatt = (photon momentum) x (Rscatt)

= ~k
Γ

2

I/Isat
1 + I/Isat + 4δ2/Γ2

.
(2.5)

So far this derivation has assumed an atomic beam in a specific direction, slowed down by

a counterpropagating laser beam. However, our system is an atomic gas. This requires three

cooling laser beams along the x, y, and z dimensions, where the beams are retroreflected to

slow atoms from both the positive and negative direction of each dimension. This is called

Optical Molasses in analogy to a particle trapped in a viscous fluid. In our case, light acts as

the fluid, putting a damping mechanical force on our particle (atom) from all directions. For

one specific direction the force is the sum of the scattering force for positively and negatively

doppler shifted atoms

7



Fmolasses = Fscatt(ω − ωo − kv) + Fscatt(ω − ωo + kv)

≈ Fscatt(ω − ωo)− kv
∂Fscatt
∂ω

−
(
Fscatt(ω − ωo) + kv

∂Fscatt
∂ω

)
= −2

∂Fscatt
∂ω

kv

= −αv,

(2.6)

where α = 2k ∂Fscatt

∂ω
is the damping coefficient, which from (2.5) is

α = 4~k2 I

Isat

−2δ/Γ

(1 + I/Isat + 4δ2/Γ2)2 . (2.7)

We see from this molasses force that atoms trying to escape the intersection of all three

beams will experience a scattering force opposite their direction of motion that increases

with their velocity. This leads to the desired result of accumulating slowed atoms at the

intersection of all three beams and their retroreflections.

2.1.4 Doppler Cooling Limit

Although (2.6) implies a velocity of zero for balanced molasses forces, there is a limit

to the temperature attainable via Doppler cooling. This is due to the heating effect of the

spontaneously emitted photons. Since each emission is in a random direction, the atom will

randomly move around the intersection point of the molasses beams. If N is large, then after

N absorption-emission cycles the average momentum of this random movement will be zero,

the momentum squared will be

p̄2
i = 2

(
2N~2k2

)
, (2.8)

where the first 2 accounts for the laser beam and its retroreflection, and the second 2 for

the fact that the atom experiences a momentum change double the momentum of a single

photon [12]. This is because when emitted, the photon and atom recoil in opposite directions.

Therefore, the energy of heating is(
dE

dt

)
heat

=
1

2m

dp̄2
i

dt
=

2~2k2Rscatt

m
. (2.9)

From (2.6) we see that the change in energy from cooling is(
dE

dt

)
cool

= Fivrmsi = −αv2
i . (2.10)
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By conservation of energy, the change in energy from heating and cooling must equal zero.

Therefore we see that the minimum velocity we can reach by Doppler cooling is

v2
i =

2~2k2Rscatt

mα
. (2.11)

From (2.1) we then see that the minimum temperature is:

Tmin =
2~2k2Rscatt

kbα

=
−~Γ

8kb

(1 + I/Isat + 4δ2/Γ2)

δ/Γ
.

(2.12)

In the limit I � Isat we see that the Doppler temperature limit simplifies to

Tmin =
~

2kbτ
, (2.13)

for δ = −Γ/2. For rubidium atoms this is approximately 150µK [9].

2.1.5 Magneto-optical Trapping

The optical molasses force is a function of velocity. This slows down atoms and causes

them to collect near the intersection of all three beams. However, the atoms still diffuse out

over a few seconds in time. To prevent this, there must also be a position dependent force

that pushes the atom back towards the center of the cooling beams’ intersection. This can

be achieved through utilization of the Zeeman effect.

Using a pair of anti-helmholtz coils, where the currents flow in opposite directions, a

quadrupole magnetic field can be created. Because of the opposite currents, the magnetic

field is zero at the center that is surrounded by a uniform field gradient (see Figure 2.1) [11].

For a hypothetical transition of F=0 to F=1, where the F levels are the hyperfine atomic

structure, the gradient will Zeeman split the mf = −1, 0,+1 sublevels in the F=1 state.

For B < 0 the mf = −1 will be shifted up in energy while the mf = +1 will be shifted

down. The reverse is true for B > 0. Therefore, depending on the position of the atom, i.e.,

whether it experiences a B > 0 or B < 0 field, either mf = +1 or mf = −1 will be tuned

closer to resonance with a red-detuned laser. For example, from the Figure 2.1, an atom

moving in the −z direction will be immersed in a B > 0 field. This will detune the mf = −1

sublevel closer to resonance. The opposite case is true for atoms moving in the +z direction.

Now, ∆mf = −1 transitions must be addressed with left-handed circularly polarized light,

σ−, and ∆mf = +1 with right handed polarized light σ+. Therefore, sending a σ− beam in

from the bottom and a σ+ beam from the top creates an imbalance in the radiation force at

9
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Z

X+

Magnetic 
Field Lines

Figure 2.1: The currents cancel their respective magnetic fields at the center of the coils.
Away from this zero point the magnetic field increases positively in the +x, -z directions and
negatively in the -x, +z directions.

points away from B=0. Atoms moving in the −z direction will absorb more light from the

σ− beam than the σ+, resulting in a radiation forces towards B = 0, with the reverse case

for atoms moving in the +z direction. This explanation is depicted in Figure 2.2.

We see that the total force in our MOT is not only from optical molasses anymore, but

also from the imbalanced radiation force caused by Zeeman splitting. This total force can

be calculated similar to that of optical molasses, except that we now need to incorporate the

frequency shift caused by Zeeman splitting:

FMOT = Fmolasses + Fzeeman

= F σ+

scatt(ω − kv − (ωo + βz))− F σ−

scatt(ω + kv − (ωo − βz))

≈ −2
∂F

∂ω
+ 2

∂F

∂ωo
βz = −2

∂F

∂ω
(kv − βz) ,

(2.14)

where βz = gµB
~

dB
dz
z, is the Zeeman frequency shift at displacement z, µB is the Bohr mag-

neton and g the Lande g-factor [12]. From before we know that 2k ∂F
∂ω

= α. Using the fact

that ∂F
∂ωo

= −∂F
∂ω

, since δ = ω − ωo + kv, we see that the total force on the atoms is

FMOT = −αv − αβ

k
z. (2.15)
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F = 1

ħδ
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Force = 0
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Figure 2.2: Schematic of the Zeeman Shift that causes radiation forces to push atoms towards
the center. Sublevels with mf > 0 are shifted up in energy for B > 0 and down in energy
for B < 0. Sublevels with mf < 0 are shifted up in energy for B < 0 and down in energy for
B > 0. Depending on the position and direction of motion of an atom, one of the sublevels
will then be shifted on resonance with the red-detuned laser propagating in the opposite
direction as the atom. This causes an imbalance in the radiation force that pushes the atom
towards the center where B = 0.

The imbalance in the radiation force caused by Zeeman splitting creates a position-dependent

restoring force that pushes the cooled atoms to the center of the MOT. This completes our

magneto-optical trap.

2.2 MOT Implementation

Implementing this theoretical framework and producing a MOT requires several experi-

mental tools. A vacuum system is required to prevent interaction between the atmosphere

molecules and cooled atoms. Anti-Helmholtz coils are needed for magnetic trapping. Atoms

with level schemes that allow cooling are required. After the atoms are chosen, continuous

wave lasers that can address the resonances of these atoms are needed. Along with this,

some way to detune the lasers from resonance is also required. Furthermore, if we wish to

perform measurements on the atoms in the MOT at their natural resonance, we need some

way to pulse our cooling beams and trapping coils on and off, as they perturbate the atomic

levels. Developing these experimental tools was the first several months work of this thesis.

The description of this development follows.
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2.2.1 Vacuum System and Magnetic Coils

Not evident from the main body of this thesis, but briefly explained in the outlook, the

end goal of this experiment on which this thesis is working toward requires a very small

vacuum cell (16mm by 16mm by 60mm). This is because we will build cavities around the

vacuum cell to increase atom-light interaction. For the cavities to do this the vacuum cell

must be a small volume so the distance between the cavities is not too large. Such a small

vacuum system is extremely difficult to engineer. For this reason, we utilized a custom-made

product from the company, ColdQuanta. The vacuum chamber is evacuated using a highly

compact ion pump thus creating an ultra-high vacuum fitting the dimensions we were looking

for. Embedded in the system is a rubidium source, from which we can load more atoms into

the cell, and magnetic trapping anti-Helmholtz coils. Optical elements are added to achieve

a 3-D laser cooling configuration (see Figure 2.3 and Figure 2.4). Additionally to these tools,

the heart of laser cooling lies in developing a laser system able to address the atoms. This

was a main focus of this thesis work.

2.2.2 Atomic Level Scheme

We are working with Rubidium 87 (Rb87). With its first four shells filled, and only a

single electron in its fifth shell, rubidium has a very simple level scheme that can be modeled

well by two,three, and four level-atomic systems. Because of this, the properties of Rubidium

are well understood. This helps explain why technology operating at Rb87transitions is so

robust. This has led to well-engineered lasers operating continuously at Rb87 transition

frequencies. Besides it technological benefits, this atomic level scheme fits the requirements

for laser cooling. Considering these facts, it is no surprise that rubidium is one the more

commonly used atoms for laser cooling.

From the Maxwell-Boltzmann distribution, the root mean square speed of room tem-

perature rubidium is approximately 290 m/s. From Equation 2.3, for Rb87 transitions at

780 nm transitions it would then take approximately 50, 000 photons to cool one rubidium

atom to its Doppler Limit. This means 50, 000 absorption emission cycles. Therefore, for

our cooling process to work we need some way to recycle our atoms, that is, prevent them

from de-exciting to levels not on resonance with the cooling laser. Using the fine and hy-

perfine splitting of Rb87, we create what is called a “closed cycling transition,” as shown in

Figure 2.5.
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Figure 2.3: 2D schematic of 3D trapping configuration. Initially, the cooling/repumping
beam are coupled into the same fiber. Once they exit this fiber they are expanded through a
lens system. Then, through half-wave plate (HWF1), the polarization of the beam is adjusted
so that 33% of the power exits at polarizing beam-splitter 1 (PBS1) to create Beam 1. The
same process follows for Beam 2, except HWP2 is adjusted so that 50% of the remaining
beam power is used. The 33% of the original power remaining is reflected towards the MOT
using mirror 3 (M3) and is Beam 3. After PBS1, PBS2, and M3 a quarter-wave plate (QWP)
is placed to put the beams into the correct circular polarization. Each beam then follows a
path of mirrors to the MOT, where they are reverse direction at retro-reflectors 1,2,3 (RR1,
RR2, RR3), with their polarization reversed in the process.

2.2.3 Laser Locking

We use two a Toptica tunable amplified diode lasers (TA-PRO) to address the F = 2

to F ′ = 2 and F = 1 to F ′ = 2 transitions. Each laser can output a maximum of 1.5 W.

This provides ample power for our cooling beams (25 mW) and repumping beams (5 mW),

phase lock (3 mW), and a large excess of remaining power to construct numerous beam

pathways for further use in the experiment. To lock to the F = 1 to F ′ = 2 frequency we use

a setup that provides a Doppler Free spectrum of Rubidium through saturated absorption

spectroscopy. Inside our compact system is a vapour cell of Rubidium. A small part of

light exiting a side port of the diode-laser is used in the spectroscopy setup. When we can

scan the laser frequency we can obtain an image of the absorption spectrum of rubidium
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Figure 2.4: Photograph of MOT. Beams 2 and 3 are actually vertically higher than Beam 1,
and are reflected into the vacuum cell at a downward angle. Beam 1 comes along near the
bottom of the vacuum system, encounters a mirror, and then another mirror that reflects it
directly vertical into the vacuum cell and eventually to RR1 (Only this reflection off RR1 is
visible in this picture).

on our computer screens (see Figure 2.6). By modifying the laser frequency we can select

our desired Doppler broadened transitions and the resolved hyperfine transition using the

Doppler-free signal from the spectroscopy setup. The laser frequency can then be locked to

this transition through a feedback loop system that continuously adjusts diode current and

the piezo controlling the laser grating, maintaining our desired frequency constant over time.

To lock our second laser to the F=2 to F’=2 transition we use a technique called phase

locking. As seen in Figure 2.7, each laser has some of its light coupled to a fiber. The light

from both these fibers is then coupled into a single fiber. This creates a beat signal at the

frequency difference between the lasers, which is too fast to manipulate with our electronics.

To manipulate this signal we mix it down to the MHz level using a reference signal from

an electronic oscillator at 6.891 GHz. This frequency is 80 MHz away from the difference

between the F=1 and F=2 rubidium hyperfine states of 6.831 GHz. The resulting 80 MHz

signal is then compared to a 80 MHz reference signal. A servo-loop assures that both signals

remain in-phase by providing feedback to the current of the second diode-laser.

The diagram of the two laser set-up is shown in Figure 2.7. Immediately upon exiting

the laser system, the light encounters a half-wave plate (HWP). These devices rotate linearly

polarized light between horizontal, vertical, or a superposition of the two. They are always
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Figure 2.5: For this system the selection rules are ∆F = +/−1, 0 (except a 0 to 0 transition).
Exciting F = 2 to F ′ = 3, the only possible decay state is F = 2. Except for one caveat, this
is our cycling transition. A small percentage of atoms from F = 2 will end up in F ′ = 2,
where they can decay either to F = 2 where they will reenter the cycle, or F = 1 where they
exit the cycle. We therefore need a repumping laser to pump atoms from F = 1 to F ′ = 2
where they will be continually recycled into the cycling transition, closing our system.

.

6.8 GHz

(a) Doppler Broadened Absorption Spectrum of
Rubidium [Red] and Doppler Free Absorption

Spectrum [Yellow] using a scan of ≈ 8GHz.

(b) Doppler Free Absorption spectrum of the
Rubidium 87 F=2 to F’ Transitions.

Figure 2.6: Saturated Absorption Spectroscopy of Rubidium. The time axis corresponds to
the time it takes to pizeo-electrically adjust the diffraction grating which controls the

frequency output of the laser.

found before a polarizing beamsplitter (PBS), as PBSs transmit horizontal polarization and

reflect vertical polarization. Half-wave plates thus serve as way to modulate the power of the
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two beam paths created after a PBS. The light is then reflected into a fiber coupler (FC) into

a polarization maintaining optical fiber (PMF). If aligned correctly, light coupled into this

fiber should not fluctuate in polarization upon exit, which is an issue as this causes power

fluctuations after PBSs. Often, this correct coupling can be obtained by placing a polarizer

in front of the fiber coupler, which only allows a defined polarization to enter.

To AOMs

To AOMs

To PhaselockTo Phaselock

F = 1 to F’=2 F = 2 to F’=2

FCFC

FC

FC

PBS

PBS

PBS

PBS

HWP

HWP HWP

HWP

POL

POL

To Feedback 
Loop

CoSy
Tunable Diode 

Laser
Tunable Diode 

LaserFC

Figure 2.7: Two laser system required to create cooling cycling transition
.

2.2.4 Acousto-optic Modulators

The principle of Doppler Cooling relies on a cooling laser red-detuned from atomic reso-

nance. Using the detuning from Equation 2.2 we get a rough estimate that we need to detune

our lasers from around 10-30 MHz below atomic resonance of the F=2 to F’=3 transition.

However, our phase lock locks our cooling laser frequency to the exact atomic resonance of

the F=2 to F’=2 transition, which is 267 MHz below the F’=3 hyperfine level. We need

a device that can shift the frequency of our lasers on the few hundred MHz level in order

to hit correct transitions required for laser cooling. This is achieved through Acousto-optic

modulation.

Acousto-optic Modulators (AOMs) are ubiquitous in Atomic, Molecular, and Optical

(AMO) physics. AOMs consist of a transparent material, such as quartz, sandwiched between
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an acoustic absorber and a piezo-electric transducer (see Figure 2.8).

Piezo-Electric 
Transducer

Acoustic 
Absorber

AM

FM

m = +1

m = 0

m = -1

Figure 2.8: Sound waves (blue) created by a piezo-electric device pass through a quartz
medium. Light (red) that enters from the left will experience a diffraction shift. The first
order diffraction shifts are shown here as they are the ones relevant to the experiments we
designed. The frequency of the sound wave that doppler shifts each order is controlled by
a frequency modulation (FM) port. The intensity of this sound wave and the intensity of
each order is controlled by an amplitude modulation (AM) port. Saturating the AM port,
the AOM can be aligned such that the intensity of the first order beams reach 80 percent of
the original beam’s intensity.

An oscillating electric signal causes the transducer to vibrate, sending sound waves

through the quartz medium. These waves expand and compress the quartz, changing its

index of refraction. These periodic index modulations cause the light to diffract. Not only

is the light diffracted, but each mode has its frequency doppler shifted by the sound wave

such that fl = fl+mfs, where m is the diffraction mode. This leads to +/− frequency shifts

depending on the propagation direction of the laser relative to the sound wave. Using these

properties we can detune our laser from atomic resonance [16].

2.2.5 Pulsing

The trapping coils and cooling/repumping beams cause Zeeman splitting and an AC Stark

shift for the cooled atoms, respectively. Therefore, as is common, to measure properties of

the MOT atoms, we need some way to pulse our magnetic coils and cooling beams so we

can observe the atomic cloud without these perturbing effects. The device we use to do this

is the 9520 Digital Delay Pulse Generator built by Quantum Composers. This device has

8 independently digitally controlled channels where we can control the delay, width, rate,

and amplitude of our pulses. We can also superimpose certain pulse sequences to create
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more complex sequences. With a resolution of 250 ps, an accuracy of 1 ns, the device easily

satisfies the µs precision requirements we have faced in the lab so far.

Pulsing the magnetic coils is accomplished through an electrical switch capable of switch-

ing a 1 amp current in less than 1 µs. Our coils are continuously on unless the switch receives

a pulse. Pulsing the cooling/repumping beams requires further use of our AOMs. We cannot

simply turn off the lasers, as our laser has been separated in numerous pathways, some that

may still need to be on when the cooling/repumping beams are turned off. However, AOMs

once again display their ubiquity in AMO labs as they can solve this problem.

As seen in Figure 2.9, after each AOM is an iris that only allows the diffraction mode

with the desired frequency to pass through. When the AOM is on, only this diffraction

mode passes through the iris, and the original beam, as it is not diffracted, ends it journey

on the iris. When the AOM is off, no light passes through. Therefore, pulsing the amplitude

modulation of our AOM acts an acousto-optical shutter. In this way we can “turn off” our

laser light without actually turning off the laser. This technique works fine for our cooling

beams, as we are using an AOM to increase our frequency that is locked to the F = 2 to

F ′ = 2 transition so that it almost addresses the F = 2 to F ′ = 3 transition. However, our

repumping beams are already locked to the correct frequency, meaning we can’t use an AOM

as we did with the cooling beams to act as an electrical shutter. There is a way around this

using a double-pass AOM set-up where we shift the frequency of our beam up by taking

the +1 diffraction mode as it passes through originally. Reflecting this mode off a mirror

and back through the AOM we can take the -1 diffraction mode, producing a beam with no

frequency shift. In this way we can still use our AOM as a shutter even if we don’t want to

modulate the frequency of our beam. The set-up of these AOM tracks, along with one used

for absorption imaging, is seen in Figure 2.9.

2.3 MOT Characterization via Absorption Imaging

Absorption imaging is a relatively simple way to characterize the number of atoms and

temperature of the atoms in our MOT. If a laser is on resonance with a cloud of atoms, when

it passes through some light will be absorbed and then scattered in a random direction. If

the beam is larger than the cloud of atoms, then only some area of it will be absorbed.

Imaging this beam on a camera, this absorption creates a shadow on the beam, contrasted

by the light that passes through the atoms without absorption (see Figure 2.10).

From the contrast we can obtain the atom number, while the expansion of this shadow

over time, after releasing the cloud, can tell us the temperature. For both measurements,

we used the same setup, see Figure 2.11, of a beam on resonance with the F = 2 to F ′ = 3
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Figure 2.9: The F=1 to F’=2 laser is passed through AOM1 in a double-pass, no frequency
shift configuration. This is our repumping laser. The F=2 to F’=2 laser undergoes a single
pass, +255 MHz shift through AOM1. This serves as our red-detuned cooling laser. It is
coupled to the same fiber coupler as the repumping laser. These two beams are then put
into the cooling laser system seen in figure (2.3). Using polarizing beamsplitters to create
additional beam pathways, the F=2 to F’=2 laser can passed through another single-pass
plus configuration. This time the shift is 267 MHz through AOM3, which is exactly on
resonance with the F=2 to F’=3 transition, serving as our absorption imaging beam

.

(a) Camera image of beam with absorption. (b) Camera image of beam at full transmission

Figure 2.10: Shadow produced by absorption of beam by atomic cloud compared with full
transmission of beam.
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transition (obtained through the set up in Figure 2.9). We then expanded and collimated

these beam using a Galilean telescope set-up, such that the beam was larger than the cloud

of atoms. Placing a camera after the beam passes through the MOT we image the effects of

absorption on our laser beam.

Vacuum 
Cell

f = -25mm
 

f = 100 mm
75 mm

FC

Atomic 
Cloud

Absorption Beam F=2 to 
F’=3 (from  AOM 3)

Camera

Trigger 
Source

To Computer

Figure 2.11: Using a combination of a plano-concave and plano-convex lens we expand and
collimate our beam to absorption image our cloud of atoms

.

2.3.1 Number of Atoms

If our absorption probe is below saturation intensity of the Rubidium D2 transition

(≈ 3mW/cm2) [9], its intensity after absorption can be determined from

I(ω) = Ioe
− O.D. Γ2

4(ω−ωo)2+Γ2 , (2.16)

where ω is our probe frequency, ωo is resonance frequency, Io is the initial intensity of our

beam, Γ is the linewidth of the excited state, and O.D. is the optical density [12]. Tuning

our absorption beam to resonance gives

ln

(
I(ω)

Io

)
= −O.D. (2.17)

We can also determine this absorption change using Beer’s law

dI

dZ
= −σoρI, (2.18)

where σo = 3λ2

2π
is the atomic cross section on resonance for a two-level atom [12], and ρ the
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atomic density. Integrating this equation leads to

I = Ioe
−σon (2.19)

where n =
∫∞
−∞ ρ(x, y, z)dz is the differential column density of atoms in the z-direction for

a specific point in the xy plane [15]. From these two equations we see that

n =
O.D

σo
(2.20)

Since pixels on a camera are of finite size, we cannot use this infinitesimal formulation.

However, assuming that atomic column density and optical depth is constant over the area

of one pixel, the number of atoms in this pixel is Natom/pix = npixApix, where npix is the

atomic column density of that one pixel and Apixel is the area. Using a sum we can than

determine the total number of atoms as

Natoms =
∑

all pixels

npixApix =
Apix
σo

∑
all pixels

O.Dpix. (2.21)

Both Apix and σo are constants. We just need to calculate O.D.pix = − ln
(
I(ω)
Io

)
pix

. This

reduces to finding the intensity of each pixel during absorption of the beam and during full

transmission when no atoms are present. In our case, the camera records each image in

grayscale. In this scale, each pixel carries intensity information through an assigned value,

with higher values corresponding to higher relative intensities. Therefore, experimentally,

the number of atoms can be calculated by

Natoms =
−Apix
σo

∑
i,j

ln

(
Imabs

i,j − Imback
i,j

Imtrans
i,j − Imback

i,j

)
, (2.22)

where i, j represent each different pixel, and Imabs, Imtrans, Imback the camera images rep-

resenting beam power during absorption, during transmission, and the background light,

respectively [14].

The pulse sequence we used to obtain these images was a simple one (see Figure 2.12).

We left the absorption beam continuously on, and trigger the camera, with a shutter speed

of 0.016 ms, to record an image as we turned off the trapping coils and cooling beams

Through this sequence we can obtain the images like the one above in Figure 2.10. Taking

a transmission and background image, which can be done manually, we can then use the

equation above to create a relative optical depth profile of our atomic cloud (see Figure 2.13).

To increase the number of atoms in our MOT we can turn on our rubidium source, also
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Figure 2.12: We load our MOT for 1 second. At this point we shut off the trapping coils
and cooling/repumping beams and record a camera image

.

(a) Density Image of MOT
(b) Contour diagram of Relative Atomic Density

Figure 2.13: Optical Depth Profile of our Atomic Cloud. The 0-1 scale for each image
corresponds to the relative intensity of the shadow produced by absorption at that point.

The darkest spot would correspond to 1.0. The colors have been inverted for visualization.
The x-y axes on (b) correspond to pixel(i,j). Each pixel is 3.75 µm in width and height

known as a dispenser or oven. This consists of Rubidium Chromate, which releases rubidium

vapor when a current passes through it. We can adjust the current from 0-6 Amps. We were

interested in how much we could increase the number of atoms by turning on the dispenser.

This measurement took images every 30 seconds for 15 minutes of the rubidium dispenser

being turned on. Although it could have been kept on longer, we have experienced issues

possibly related to excessive rubidium in our system that prevented a longer duration. We

see that over the span of 15 minutes the rubidium atoms in our trapped atomic ensemble

increased from 13 million to 20 million atoms (see Figure 2.14).
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Figure 2.14: We can nearly double our atomic number by turning on a rubidium dispenser
that increases the number of atoms linearly over time.

From Figure 2.13b the size of the trapped atomic cloud can be determined. For Fig-

ure 2.13b, the cloud has a diameter of approximately 200 pixels, corresponding to 0.75 mm.

For this trial the number of atoms was 107. Assuming the MOT is approximately spherical

this corresponds to an atom number density of

ρatoms =
Number of Atoms

Volume of Cloud
=

107

4
3
π (0.375mm)3 ≈ 4.5× 107 atoms

mm3
. (2.23)

This thesis is working towards enveloping this atomic cloud of cold rubidium atoms within an

optical cavity (see Figure 2.15). The cavity mode at the center of this cavity will have a width

of approximately 0.1 mm. Aligning the light in the cavity to hit the center of the atoms, we

can approximate this mode as selecting a cylinder of the atomic cloud. The cylinder’s radius

is half of the cavity mode’s width at the center, and the height is the diameter of the atomic

cloud. Therefore, the cavity mode encompasses a number of atoms determined by

NCavAtoms = ρatomsVCavMode ≈
(

4.5× 107 atoms

mm3

)(
π[0.05mm]2[0.75mm]

)
≈ 2.7× 105atoms.

(2.24)

Compared to a similar experimental setup where 3× 104 atoms were coupled in the atomic-

cavity ensemble, our result suggest we could possible couple an order of magnitude larger

number of atoms [17]. Based on this result we believe our cold rubidium cloud is dense

enough to move forward with coupling to an optical cavity.

2.3.2 Temperature

Turning off the trapping coils and cooling/repumping beams, the atoms previously con-

tained in the MOT undergo thermal expansion. On our camera, this corresponds to the
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Figure 2.15: Coupling the atomic ensemble to a cavity. The outlook of this thesis includes
constructing a cavity around the atoms to increase light-matter interaction. We estimate
our cavity mode with will be 0.1 mm at the center, thus selecting a specific volume of our
atomic cloud

.

shadow on our beam expanding. This expansion is Gaussian and the density of the atomic

cloud can be expressed as

n(xi, t) =
1

√
2π
√
σ2
xi,0

+
kBTxi
m

t2
exp

− x2
i

2
(
σ2
xi,0

+
kBTxi
m

t2
)
 , (2.25)

where σxi,0 is the 1/
√
e width of our atomic cloud at t = 0, m the mass of a single rubidium

atom, kB is Boltzmann’s constant, and Txi is the temperature of the atoms along the direction

of the absorption beam [14]. For perfectly balanced optical molasses beams, the trapped

atomic cloud should be spherical and the temperature uniform in all directions. However,

as seen by Figure 2.17, the cold atomic cloud is not spherical, suggesting an imbalance of

the cooling beams and thus differing temperatures along the direction of each cooling beam.

Focusing on the exponential of of Equation 2.25 we see that the 1/
√
e Gaussian width of our

atomic cloud is

σxi(t) =

√
σ2
xi,0

+
kBTxi
m

t2. (2.26)

Taking a sequence of images over time, we can fit their 1/
√
e Gaussian width to this function

to determine the temperature in the direction of the absorption imaging beam.

The pulse sequence in Figure 2.16 was used to image the atomic cloud’s expansion.

Ideally, all 9 images should be taken consecutively. However, the camera could not trigger

fast enough for our 500µs intervals. Therefore, we had to wait for the atoms to reload in
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0.999995 s 1.004 s

Off

On

Trapping Coils and 
Cooling Beams

On for 1.0s

Absorption Imaging

Camera 
On

Off

On
Off0.5ms

0.03ms

0.5ms

0.016ms

Figure 2.16: We load our MOT for 1 second. At this point we shut off the trapping coils
and cooling/repumping beams. At this point, we pulse our absorption beam for 30 µs and
trigger our camera to record an image 5µs after each the beginning of absorption pulse.Each
pulse is separated by 500µs, covering a total expansion time of 4 ms. The shutter speed of
the camera was 16µs

.

the MOT before we captured our next image. To compensate for this we captured several

images for each of the 9 pulse times, and then averaged these images. The results for a trial

following this pulse sequence are below in Figure 2.17 :

0 ms 0.5 ms 1 ms 1.5 ms 2.5 ms 3.0 ms 3.5 ms 4.0 ms2.0 ms

Figure 2.17: The expansion of the atomic cloud for pulsed absorption imaging.

1.0 ms0.5 ms0 ms 1.5 ms 2.0 ms 2.5 ms 3.0 ms 3.5 ms 4.0 ms

Figure 2.18: The expansion of the atomic cloud for continuous absorption imaging.

Directly after this trial was taken, the same measurement was performed, but this time

with a continuous absorption signal (see Figure 2.18). The goal of this measurement was to

understand how the absorption probe affected the atoms. As we see in figures Figure 2.17

and Figure 2.18, the atomic cloud diffuses more quickly with a continuous absorption beam.
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This suggests that the atoms warm up faster as a result of the continuous absorption probe.

Indeed, fitting our data to the theoretical expansion we measured 540µK for the pulsed

trial whereas for the continuous absorption trial we measured 2.2 mK. The theoretical curve

versus our data for both trial are included below in Figure 2.19 and Figure 2.20.
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Figure 2.19: Fitting Equation (2.26) to determine temperature for pulsed absorption imaging
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Figure 2.20: Fitting Equation (2.26) to determine temperature for continuous absorption
imaging

The doppler cooling limit of the D2 line of Rubidium is 145.6 µK [9]. Our pulsed results

give 500 µK. However, as suggested by the differing temperatures obtained through pulsed

and continuous absorption imaging, the absorption beam is heating the atomic cloud. To

obtain an unbiased temperature measurement it could be beneficial to use a technique that

interacts less with the atomic cloud. This should give us a truer temperature measurement.

A description of alternate techniques to measure temperature and lower the temperature can

be found in [14]. Of most importance to this thesis is not how cold we can cool our atoms,

but if their temperature is low enough to coherently control our atoms in an optical cavity.

This will be discussed in the following chapter.
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Chapter 3

Electromagnetically-Induced

Transparency

The previous chapter focused on creating a light-atom interface. Using lasers we were

able to control the motion of atoms and trap them with the assistance of a magnetic field.

Light was also used to characterize the atoms through absorption. These experimental

tools relied purely on light-atom interactions. To construct a quantum phase gate where

one light field modifies another we need light-atom-light interactions. That is, since light

cannot directly manipulate light, we need to mediate the interaction of two light fields with

atoms. Electromagnetically Induced Transparency (EIT) is the tool we will use to control

light-atom-light interactions.

In 1990, Harris showed that laser induced coherence of atomic systems in a 3-level Λ

configuration (see Figure 3.1) could be used to modify the optical response of the medium by

causing quantum interference between the excitation pathways in the system. This coherence

could be accomplished with a strong control laser and much weaker probe laser. Under

the right resonance conditions of both lasers, the linear susceptibility of the medium with

respect to the probe laser can be eliminated. This eliminates the absorption and refraction

experienced by this beam, hence the medium appears transparent. The utility of EIT is that

it allows the coherent optical control of a medium. Therefore, one laser can alter how another

laser interacts with the medium. This not only gives us light-atom-light interactions, but a

method of manipulating the resultant effects. In fact, this control offered by EIT was what

enabled the first storage and retrieval of optical qubits by [7] mentioned in the introduction

of Chapter 2. Light cannot be stopped, and hence stored, without EIT, making it a tool

that can be used to create optical quantum memories [20].

Besides its usefulness for quantum memories, EIT is also able to manipulate the light

induced phase shifts we desire for a quantum logic gate. As will be discussed in Chapter 4, this
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is accomplished through EIT’s affect on the nonlinear susceptibility of an atomic medium. As

with using cold-atoms for our light-atom interface, the use of EIT to mediate light-atom-light

interactions builds upon a strong foundation of research in quantum information science. We

plan to combine EIT in a unique way with optical cavities to create a two-qubit optical phase

gate, adding novel science to this field.

ωp

ωcω31
ω32

|1>
|2>

|3>

Δp
Δc

Г3

Г2

Figure 3.1: An EIT Lambda, Λ, system consists of a ground state |1〉, a metastable state
|2〉, and excited state |3〉. The ground and metastable state do not have a dipole allowed
transition, resulting in a very small decay rate, Γ2, hence the name metastable. However,
both these states have dipole allowed transitions to the excited state. The |1〉 → |3〉 transition
has resonance frequency ω31 and the |2〉 → |3〉 transition has resonance frequency ω32. The
probe laser addresses the former transition and has detuning ∆p = ωp−ω31, while the control
laser addresses the latter transition and has detuning ∆c = ωc − ω32.

3.1 Theoretical Treatment

3.1.1 Deriving the EIT Hamiltonian

Electromagnetically Induced Transparency occurs in three-level atoms, the most common

use is in the Λ configuration seen in Figure 3.1. The Hamiltonian of this system can be written

as

H = Ho +H1, (3.1)

where Ho describes the atomic system with no external fields, and H1 accounts for pertur-
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bation from these applied fields. In our case, the applied fields that interact with our atoms

are the electric fields of the probe and control lasers shown in Figure 3.1.

For a single atom, it is easy to construct Ho as it can only exist in one of the three

possible states |1〉 , |2〉 , |3〉:

Ho =

(∑
n

|n〉 〈n|

)
Ho

(∑
n

|n〉 〈n|

)
=

~ω1 0 0

0 ~ω2 0

0 0 ~ω3

 . (3.2)

It is not as easy to find the perturbing Hamiltonian, caused by the electric field of both the

probe and control lasers:

E = Ep cos(ωpt− kp · r) + Ec cos(ωct− kc · r). (3.3)

However, the wavelength of our light, 7.8 ∗ 10−7m, is three orders of magnitude larger than

the Bohr Radius of approximately 10−10m. Using the trigonometric identity

cos(ωt− k · r) = cos(ωt) cos(−k · r)− sin(ωt) sin(−k · r), (3.4)

we can rewrite the electric field as

E = Ep cos(ωpt) + Ec cos(ωct), (3.5)

since k · r � 1. This is known as the Dipole Approximation, as it assumes the charge

separation of the dipole (in our case the size of the atom) to be much smaller than the

wavelength of light [21].

Assuming the dipole is aligned with the electric field, we can write the perturbing Hamil-

tonian as

H1 = −qEr̂, (3.6)

where q is the charge of our dipole and r the separation. Defining the dipole moment operator

µ = qr, where µnm = µ∗mn = 〈n|µ|m〉, we can write H1 in the same eigenbasis as Ho as

H1 = −µE = −E

(∑
n

|n〉 〈n|

)
H1

(∑
n

|n〉 〈n|

)
= −

 0 0 µ13

0 0 µ23

µ31 µ32 0

E. (3.7)

The absence of µ12 and µ21 assumes that they are dipole forbidden transitions. The absence
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of the diagonal elements assumes that the atoms have no permanent dipole moments.

Although it may look relatively simple, the Hamiltonian in this form still doesn’t phys-

ically illuminate what is happening. We can get closer to a more intuitive Hamiltonian

by transforming to the interaction picture. As the operator for this transformation is

U = eiHot/~, we only need to consider how H1 changes in this picture since U and Ho

commute. Applying this operator to H1 we get:

UH1U
† = −E

 0 0 µ13e
i(ω1−ω3)t

0 0 µ23e
i(ω2−ω3)t

µ31e
i(ω3−ω1)t µ32e

i(ω3−ω2)t 0

 . (3.8)

Writing the electric field in terms of exponentials

E =
Ep

2

(
eiωpt + e−iωpt

)
+

Ec

2

(
eiωct + e−iωct

)
, (3.9)

we see that each of the four non-zero matrix elements in (3.8) consists of several exponential

terms with various sums of ωp, ωc, ω1, ω2, and ω3. We can get rid of many several of

these terms using the Rotating Wave Approximation. This approximation assumes that any

rapidly oscillating term will average out to zero over the span of observation. For example,

ωc is near the transition frequency ω21 = ω2−ω1; therefore, ωc−ω21 � ωc+ω21. This allows

us to get rid of any terms with ωc +ω2−ω1. Following similar logic, several other terms can

also be neglected as they oscillate much more rapidly than the terms we are keeping [21].

This reduces the H1 in the interaction picture to

UH1U
† = −1

2

 0 0 Epµ13e
i(ω1−ω3+ωp)t

0 0 Ecµ23e
i(ω2−ω3+ωc)t

Epµ31e
i(ω3−ω1−ωp)t Ecµ32e

i(ω3−ω2−ωc)t 0

 . (3.10)

Defining the Rabi frequencies as

Ωp = Ep|µ13|/~ (3.11)

Ωc = Ec|µ13|/~ (3.12)

we can return to the Schrodinger picture and add our new form of H1 with Ho to get
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HEIT =
~
2

 2ω1 0 Ωpe
iφpeiωpt

0 2ωc Ωce
iφceiωct

−Ωpe
−iφpe−iωpt −Ωce

−iφce−iωct 2ω3

 . (3.13)

Applying one further approximation the time dependence can be removed, along with

the dipole phase eiφp or eiφc not included in the Rabi frequency definitions as we only took

the magnitude of the dipole operators. This approximation defines the Hamiltonian in a

co-rotating basis with the operation

Ũ(t) =

−e
−iωpte−iφp 0 0

0 e−iωcte−iφc 0

0 0 1

 , (3.14)

with the relationship to the previous space |ψ̃〉 = Ũ(t) |ψ〉. Upon substitution into the

Schrodinger equation, it can be shown that for the Hamiltonian to satisfy the Schrodinger

equation in this new wave space, then

H̃EIT = i~
∂Ũ

∂t
Ũ † + ŨHEIT Ũ

†. (3.15)

This allows us to write our Hamiltonian in this space as

H̃EIT =
~
2

2(ω1 + ωp) 0 −Ωp

0 2(ω2 + ωc) −Ωc

−Ωp −Ωc 2ω3

 . (3.16)

Adding the constant −2(ω1 + ωp), which has no physical effect since we are only concerned

with energy differences between levels, gives the final and most commonly found form of the

EIT Hamiltonian as

H̃EIT = −~
2

 0 0 Ωp

0 2(∆p −∆c) Ωc

Ωp Ωc 2∆p

 , (3.17)

where ∆p = ωp − ω3 + ω1 and ∆c = ωc − ω3 + ω2 are the single-photon detunings (note, for

laser cooling we defined the detuning with δ, for EIT we will use ∆) [21].

3.1.2 Dark States, Linear Susceptibility, and Slow Light

Here we will briefly present some of the important properties derivable from this EIT

Hamiltonian.
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Dark States

Following [20], the eigenstates of the EIT Hamiltonian can be expressed in terms of the

mixing angles

tan(θ) =
Ωp

Ωc

(3.18)

tan(2φ) =

√
Ω2
p + Ω2

c

∆
. (3.19)

Using these definitions, the three eigenstates can succinctly be written as:

|a+〉 = sin θ sinφ |1〉+ cosφ |3〉+ cos θ sinφ |2〉

|ao〉 = cos θ |1〉 − sin θ |2〉

|a−〉 = sin θ cosφ |1〉 − sinφ |3〉+ cos θ cosφ |2〉 ,

(3.20)

where the +,0,- represents an increase, no change, and decrease in energy from the bare atom

states, respectively. Of interest here is |ao〉, also know as the dark state. This name stems

from |ao〉 having no component of the excited state |3〉. Therefore, an atom formed in |ao〉
has no possibility of excitation to |3〉. With no excitation to the excited state of the lambda

system, there can be no emission, hence the atom will remain “dark.” Preparing an atom in

this state can be done with a weak probe Ωp � Ωc, as this causes sin θ → 0 and cos θ → 1,

making the ground state equivalent to the dark state, |ao〉 = |1〉.

Linear Susceptibility

We have stated that EIT drastically modifies the optical properties of our medium. One

example of this is apparent through the effects on dispersion and absorption of the probe

laser. To first order, these properties are described by the linear susceptibility, χ, which is

described by

P = εoχE (3.21)

where P is the dielectric polarization of the medium, E the electric field, and εo the permit-

tivity of free space. Absorption of the laser is described by the imaginary component of χ

and dispersion by the real component.

Although it won’t be shown here, a detailed derivation can be found in [21], the linear

susceptibility for EIT can be found by transforming our Hamiltonian from one that describes

single atom wave functions to one that describes the atomic population of each state with

density operators. Once these density operators are found in the same corotating basis, the
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relation P = Tr(ρµ) can be used to write the polarization in terms of our density operators

ρ and already derived dipole operators. Setting this definition of polarization to the previous

in 3.21, the linear susceptibility can be shown to be:

χ =
2N |µ13|Ωp

Epεo

−2 (Γ12 + i (∆c −∆p)) Ωp

4 (Γ13 − i∆P ) (iΓ12 −∆c + ∆p) + iΩ2
c

. (3.22)

Plotting the imaginary and real parts of this susceptibility as a function of the two

photon-detuning, ∆p−∆c, the absorption and dispersion of an EIT spectrum take the form

in Figure 3.2:

         

With control Field

Without control Field

Figure 3.2: Absorption and Dispersion of EIT probe laser (blue curves) overlayed with
characteristic curves without repumping control laser (dashed red). The y-axis for absorption
corresponds to Im[χ] and for dispersion Re[χ], for Equation 3.22 normalized to one. In units
of Γ the two-photon detuning is ∆ = ∆p−∆c

Γ13
. The relationship between the Rabi frequencies

is Ωc = 100Ωp

.
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From the top graph in Figure 3.2 we see the characteristic transparency peak of EIT as

absorption goes to zero for two-photon detuning equal to zero. The dispersion curve expe-

riences a drastic change in slope near two-photon detuning. This is responsible for a very

remarkable effect of EIT.

Slow Light

The the group velocity of our probe laser can be written as:

vgr =
c

n+ ωp(dn/dωp)
, (3.23)

where n =
√

1 + Re[χ] is the refractive index, dn/dωp the linear dispersion, and c the speed

of light [22]. From our dispersion curve above, we see that near two-photon detuning the

dispersion deviates from its classical negative slope and increases quite rapidly. This creates

a large positive value for dn/dωp. Since this is in the denominator of our group velocity

equation, this results in a reduction of our probe laser’s group velocity. Using this technique

has led to group velocities less than 20m/s and even stopping, and hence storage, of light[20]!

3.2 EIT Implementation

As with laser cooling, EIT requires a specific atomic level scheme. EIT requires a three

level Λ atom system. We can engineer this once again through the use of AOMs and the

hyperfine levels of the rubidium atoms.

3.2.1 Lambda System

From our theoretical Λ system in Figure 3.1, we see that we need a ground state and

metastable state, both with pathways to the same excited state, but with no pathways

between each other. Reexamining the hyperfine transitions of Rb87, (see Figure 3.3), we can

construct this level scheme.

As seen in Figure 3.3, F=1 is the ground state, and so the F=1 to F’=1 transition will be

addressed with our probe laser. Slightly higher in energy, F=2, will serve as the metastable

state since its decay rate to F=1 is very slow. The control laser will address this F=2 to

F’=1 transition.

3.2.2 AOM Setup

As we saw in the theory, the EIT Dark State relies on very specific detuning conditions
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Figure 3.3: Exciting atoms from the F=1 to F’=1, they can only decay to F=1 or F=2.
Therefore, we can continually repump atoms back into the F’=1 state if we have another
beam addressing the F=2 to F’=1 transition.

.

of both the control and probe lasers. As before, we can control our frequencies through the

use of AOMs. However, if we want to quickly and easily observe the effect of our lasers for

different detunings, we cannot use a single-pass AOM setup. As explained in Chapter 2,

every time the frequency is changed on a single-pass AOM, the angle of the diffracted beam

moves, and coupling to the fiber is lost. However, by passing our laser through the AOM

twice, we can overcome this (Figure 3.4).

As we see in Figure 3.4, if we use a double-pass, double-frequency configuration, our final

beam will come out in the same direction for any frequency shift. This allows us to easily

scan the frequency of our probe and control lasers, which is necessary to create EIT [18].

3.3 Measurements

3.3.1 Absorption

Before attempting to see EIT with our lambda system, we wanted to optimize the align-

ment of the F=1 to F’=1 probe beam as it passed through the atomic ensemble (see Fig-

ure 3.6) by maximizing its absorption. However, without the F=2 to F’=1, the atoms will
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+1

+1

-1

-1

0

0

First Pass

Second Pass

AOM
Iris

QWP
Lens Mirror

Figure 3.4: The sign of the frequency shift depends on the propagation direction of the laser.
Therefore, to obtain a double frequency shift configuration,the diffraction mode of each beam
will be in opposite directions, resulting in no angular beam displacement. A lens is used to
guide the returning beam to the same point in the AOM as the original

.

From
F = 1 to F’=2

Laser

From
F = 2 to F’=2

Laser

HWP

HWP

PBS

PBS

PBS

PBS

HWP
FC

FC

POL

POL

HWP

To Absorption 
Imaging

To Cooling 
Beam Setup

To Repumping 
Beam Setup

HWP

POL

Probe Laser on 
F=1 to F’=1

Control Laser 
on F=2 to F’=1

IRIS
IRIS

IRIS

QWP

QWP

AOM 4
Double Pass 
-157 MHz

AOM 5
Double Pass 
-157 MHz

F=2 to F’=2

FC

FC

FC POL HWP

PBS

Lens

Lens

Figure 3.5: From figure 2.9, there were beam paths directed to EIT setup. Here are the
AOM setups these beams encounter. From the F’=1 to F=2 laser, a double pass, -157 MHz
frequency is set up with AOM 4. This creates our probe laser addressing the F=1 to F’=2
laser. From the F’=2 to F=2 laser, another double-pass, -157 MHz is set up with AOM5.
This creates our control laser addressing the F=2 to F’=1 transition.

build up in the F=2 state, resulting in very little absorption on the F=1 to F’=1 probe laser.
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We can avoid this by addressing the F=2 to F’=2. This transition does not create a lambda

system, so we aren’t working with EIT. As seen in the Figure 3.5, we have a beam path

already at this transition, so there was no need to construct any more AOM pathways.

Probe Laser
F = 1 to F’=1

(From AOM 4)

F = 2 to F’=2

PBS

FC

FC

PBS

Focusing 
Lens

Collimating 
Lens

Vacuum 
Cell with 
Atomic 
Cloud

Photodidode

Probe Laser

Figure 3.6: We coalign our probe and F=2 to F’=2 beams using a PBS. The coaligned beams
are then passed through the MOT, using an adjustable focusing lens to optimize alignment.
Afterwards, another lens is used to collimate the beams. Following this, a PBS is used to
separate the two beams, allowing the probe to end its journey at a photodiode connected to
an oscilloscope

.

Absorption imaging utilized the shadow a cloud of atoms creates in a laser beam on

resonance. We again utilize the same principle. If our atoms are on resonance with our

probe beam, then some of the light will be absorbed, resulting in a smaller beam power

upon exiting the atomic cloud. The setup we used for this is in Figure 3.6. Since we are not

concerned with the size of the MOT, but only maximizing absorption, we tightly focus our

beams to precisely hit the most atomically dense region of our atomic cloud.

Triggering our oscilloscope to the quantum composer signal that shuts off our trapping

coils and cooling/repumping beams (for pulse sequence see Figure 3.7), we should then expect

to see a drop in voltage of our probe signal at this is point. This is because the probe beam is

addressing the natural transition frequency of F=1 to F’=1. With the MOT on, the trapping

coils and cooling/repumping beams cause Zeeman splitting and an AC Stark shift moving

this transition away from its natural frequency. Therefore, when the MOT is turned off,

the probe beam will be absorbed causing a decrease in voltage on a photodiode measuring

its intensity. Modulating the frequency of our probe, we should expect this voltage dip to

increase as we move towards resonance and decrease as we move away (see Figure 3.8).

Using the offset voltage of our photodiode plus the voltage of background light as our zero-

point, the absorption can be calculated as follows
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Figure 3.7: The trapping coils and cooling beams are shut off. Since the probe beam and
F=2 to F’=2 are continuously on, if the probe is absorbed once these devices are shut off,
there should be a drop in voltage on the photodiode measuring the probe laser power.
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Cooling Beams Shut Off

Figure 3.8: When the MOT is shut off, the perturbing effects of the trapping coils and cooling
beams disappear. Therefore, the atoms will now absorb light addressing the natural atomic
resonance. In our case, the atoms now absorb our probe laser addressing the F=1 to F’=1
transition. However, as time progresses, the atoms thermally expand. Since the beam is now
hitting less atoms, the absorption will decrease until the atoms have completely diffused

.

Abs =
Peak Voltage−Dip Voltage

Peak Voltage− Background Voltage
. (3.24)

Taking a measurements at numerous frequency values, via adjusting the AOM, we can re-

construct the absorption spectrum of our transition. The results are in Figure 3.9.

The transmission spectrum shown here is simply 1 − Absorption. If we were to plot

absorption it would then take the shape of a Gaussian for room temperature atoms and
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Figure 3.9: Calculating the absorption from the oscilloscope readout spanning a range of
frequencies for our probe laser, we can reconstruct its absorption spectrum

.

approach a Lorentzian as the temperature goes to 0 K. The linewidth of the spectrum is given

by the full width half maximum (FWHM). For room temperature rubidium atoms, Doppler

Broadening gives a linewidth of approximately 500 MHz [23]. The natural linewidth of

rubidium is 6MHz [9]. Figure 3.9 shows a linewidth of approximately 20 MHz. This suggests

that we are close to the cooling limit of our atoms.

We cannot see EIT for probe and control beams that are not coaligned. This suggests

that our atoms are not cold enough. In other words, our linewidth is broadened too much by

Doppler broadening. This results in a larger range of velocity classes for our atoms. Because

of this, the resonance frequency difference for atoms moving towards each beam compared

to atoms moving away will also be larger. This increase in resonance frequency difference

holds true for all in different velocity classes, hence a larger linewidth. Since non-coaligned

probe and control beams will see atoms in different velocity classes, the excited of the EIT

Λ system will exist at different energy levels for both beams. This prevents the necessary

two-photon detuning required for EIT.

With cold enough atoms, the linewidth should be narrow enough to prevent this disparate

velocity spread. This is desirable for the future of the experiment as we plan to couple the

probe field to an optical cavity that surrounds the atoms in order to increase light-matter

interaction(see Figure 2.15). If the control field has to be coaligned with the probe field

then it would also have to be coupled to the optical cavity. This would add unnecessary

complexity to the experiment; it would be much easier to send the control field into the

atoms from another angle than the probe.

3.3.2 EIT

We originally attempted to observe EIT without the probe and control co-aligned as seen
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in Figure 3.10a:
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(a) Moving the beam blocks in front of the
control or the F=2 to F’=2 beams, allowed us to

measure the effect each beam had on the
absorption spectrum of the probe.
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(b) We were only able to see EIT effects when
the control laser was coaligned with the probe

laser.

Figure 3.10: Setups for EIT measurements

Using the same pulsing set-up as the absorption measurements in the previous section, but

with the F=2 to F’=2 replaced with the F=2 to F’=1, we would vary the frequency of the

probe and measure the absorption spectrum. Unlike the previous measurement where the

absorption spectrum continually decrease then increases, if EIT is present we would expect

to see a sharp spike in near the middle of the curve. After numerous attempts, we were only

able to produce a normal absorption curve as seen in Figure 3.11.
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Figure 3.11: Comparison of F=1 to F’=1 absorption with F=2 to F’=2, green, and F=2 to
F’=1, blue, acting as the repumping beams.

The reason behind the design of this failed set-up was being able to measure the absorp-

tion spectrum of our probe with EIT conditions (F=2 to F’=1) and without (F=2 to F’=2)

at the same time, allowing us to compare and look for possible EIT characteristics.
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Thinking that lack of co-alignment was preventing EIT conditions, the F=2 to F’=2 was

removed from its co-aligned position and replaced with the control beam addressing the F=2

to F’=1 transition. With this setup (see Figure 3.10b), it was noticed that at very specific

frequencies of the probe beam, the oscilloscope voltage signal of the probe power displayed

some peculiar behavior. We did not see the sudden drop in voltage as the trapping coils and

cooling beams are turned off, followed by a slowly increasing voltage as the atoms diffuse as

seen in Figure 3.8. Instead, the drop in voltage was followed by a sudden peak in voltage,

followed by a smooth increase in voltage as the atoms thermally expanded (see Figure 3.12).

As explained before, a larger voltage dip corresponds to greater absorption, so this peak

must represent some period of less absorption, i.e., transparency.
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Figure 3.12: A sudden peak in voltage during the absorption process of the atoms suggests
transparency.

Even more interesting was that this peak occurred at two different probe frequencies. To

explore this further, a full absorption spectrum was taken by scanning the probe frequency.

As our scope data suggested, we indeed see two evident transparency peaks in our absorption

spectrum (see Figure 3.13).

The theoretical treatment of EIT shows transparency over a small, yet fixed frequency

range of approximately 1 MHz (see Figure 3.2). However, our oscilloscope data shows trans-

parency only at a specific time even for a fixed frequency (see Figure 3.12). What makes

this transparency also a function of time? This question can be answered by comparing

the linewidth of absorption versus EIT. As the atoms expand their velocity increases. This

slightly expands their linewidth, making them resonant over a larger range of frequencies.

However, compared to the linewidth of absorption, approximately 20 MHz, the majority of
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Figure 3.13: Absorption Spectrum with two clear peaks in transmission.

the atoms still remain on or near resonance with laser. This is shown by the constant level

of absorption seen over the first 0.5 ms Figure 3.12. The linewidth of EIT is much smaller

than the 20MHz linewidth of our absorption. Therefore, only atoms in just the right velocity

class will be on two-photon resonance and experience EIT. In our case, from Figure 3.12,

this velocity corresponds to the expanding atoms at approximately 0.1 ms after the trapping

coils and cooling beams are shut off. In both cases, the absorption decrease later in time

because the optical depth is decreasing as the atoms expand. This our lab’s interpretation

of the EIT peak in time. However, it is speculative and further investigation is needed to

confirm these ideas.

In regards to seeing double peaks, this goes against the theoretical prediction of one

EIT peak (see Figure 3.2)! We were quite perplexed by this for sometime, but eventually

hypothesized that they were caused by Zeeman splitting, as this splitting can lead to more

than one lambda configuration. Since our trapping coils are off during each absorption

measurement, the Zeeman splitting must be a result of spurious magnetic fields. The Zeeman

splitting for the transitions we are addressing is 0.93GHz/Gauss [9]. We believed that this

could correspond to Zeeman states experiencing a magnetic field equivalent to that of the

Earth, ≈ 0.5 Gauss.

Eliminating Double Peak

To explore this hypothesis, we constructed a setup of Helmholtz coils around our setup.

Since a pair of Helmholtz coils produces a relatively constant magnetic field, three pairs of

coils in each dimension are efficient to cancel out any external magnetic fields.
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Our preliminary measurements involved measuring the magnetic field at the center of

the atomic ensemble with a Gaussmeter. Since our entire vacuum system was temporarily

removed at the time, this was easy. These measurements supported our idea that the Earth’s

magnetic field was the culprit, as the major field we measured pointed towards the ground.

The goal of these measurements was to give us a place to start with the currents we applied

to our Helmholtz coils.

Our end goal was to converge the two peaks into one. Ultimately, this would involve recre-

ating the EIT absorption spectrum in figure 3.13 for numerous magnetic field parameters,

and hopefully finding a pattern that decreased the frequency separation between the peaks.

Unfortunately, our old method of manually recording an average oscilloscope readout of the

voltage for a large number of probe frequencies was cumbersome and lengthy. We needed a

quicker way to determine if our magnetic fields were leading us in the right direction. This

was accomplished with a function generator.

Connecting our AOM driver to a wavefunction generator, we could ramp over the voltage

modulating the frequency of our AOM controlling the probe laser. This is analogous to what

we did before manually, except we cover a continuous range of frequencies over a time period

before the atoms thermally expand and we lose absorption. Unlike manually changing the

frequencies, our oscilloscope data doesn’t just tell us the absorption at a fixed frequency

and how this absorption changes as the atoms expand. Since we are ramping the frequency,

the time on the oscilloscope corresponds to different frequencies. Therefore, if we ramp our

frequencies before the atoms expand, we recreate our entire EIT spectrum in Figure 3.13,

but in real time (see results in Figure 3.15). From previous absorption graphs we noticed

that 100µs after the MOT is shut off, there was max absorption for 300− 400µs before the

atoms began to expand and absorption decreased. Therefore, we began our ramp at a delay

of 100µs with length of 400µs, as seen in Figure 3.14.

Doing this for several magnetic fields required readjusting the alignment of the cooling

beams and probe/control beams since the magnetic field moved the position of the atomic

ensemble. Alignment was considered satisfactory when the voltage dip gave an absorption of

≈ 50-60%, as this seemed to be the maximum we could obtain (see Figure 3.13). Focusing on

the z-magnetic field to eliminate the effects of the Earth’s magnetic field we were able to bring

this peaks together and even reverse their positions. These results are seen in Figure 3.15

and Figure 3.16.

From (Figure 2.2), we see that a magnetic field, B, zeeman splits the magnetic states.

For B > 0 this shifts the mf > 0 states higher in energy and the mf states lower. The

opposite is true for B < 0. This splitting in energy increases linearly with magnetic field.

In our case, we are applying an upwards linear magnetic field to cancel the downwards
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Figure 3.14: In the previous EIT measurement the frequency of the probe and control was
fixed for each measurement. Here, the control frequency is fixed but we vary the frequency
of the probe over a span of 400µs. Since the control frequency is near zero-detuning, passing
the probe frequency through zero detuning should reveal EIT somewhere along the frequency
ramp. This allows us to observe any EIT peaks in real time.
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Figure 3.15: Increasing the Magnetic field we were able to cancel out the effect of the earth’s
magnetic field and even reverse field direction.

linear magnetic field of the Earth. Because of this, we should expect to see transitions at

different energies, with separations that decreases linearly as the magnetic field approaches

zero. Because of the dependence of the splitting on direction of the field, with a strong

enough magnetic field we should even be able to reverse the position of the peaks. That

is, the higher frequency peak becomes lower and the lower frequency peak higher. This is
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indeed what we saw (see Figure 3.16) as the separation between the peaks decreases linearly

as the magnetic field increases, with the peaks eventually reversing positions as we went from

an Earth dominating field to a Helmholtz dominating field.
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Figure 3.16: The separation decreases linearly with current in our Helmholtz coils
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Chapter 4

Kerr Nonlinearites and Cross Phase

Modulation

EIT drastically alters how light interacts with an atomic medium. The index of refraction

can be manipulated enough to slow down light to a few meters per second within the medium

[20]. This is a linear effect on the atomic medium and is related to the linear electric

susceptibility χ, defined by P = εoχE, where P is the polarization of the medium and E

the electric field. However, as will be discussed in this chapter, this polarization can be

expanded to include nonlinear terms that also impact the atom’s optical properties. Of

importance here is the optical Kerr effect, which results in one light wave modulating the

phase of another light wave. Slight modification of EIT can enhance this nonlinear effect,

leading to greater cross phase modulation (XPM) between two light fields [19].

4.1 Kerr Nonlinearities

For electric fields E comparable to intraatomic fields the relationship between polarization

and electric field includes nonlinear terms that are not negligible. The polarization of an

atomic medium in such a field can be written as a Taylor series about E = 0 as

P = a1E +
1

2
a2E

2 +
1

6
a3E

3 (4.1)

where a1, a2, a3 are the first, second, and third derivatives of P with respect to E evaluated

at E = 0; these are characteristic constants of the medium. Usually, this is written as

P = εoχE + 2dE2 + 4χ(3)E3 (4.2)

where χ is the linear susceptibility related to dispersion and absorption, 2d = 1
4
a2 and
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4χ(3) = 1
24
a3 are the constants characterizing the strength of the second and third order

nonlinearity, respectively (Here we have treated everything as scalars. In reality, E is a vector

and χ is a tensor.) [16]. Since our rubidium cloud is centrosymmetric, the second order term

vanishes since the polarization must exactly reverse when the electric field reverses. The

polarization therefore becomes

P = εoχE + 4χ(3)E3, (4.3)

leaving χ(3) as the dominant nonlinear term.

To understand how light interacts with this medium we will consider a monochromatic

optical field of angular frequency ω and complex amplitude E(ω) described by

E(t) = Re[E(ω)eiωt] =
1

2
[E(ω)eiωt + E∗(ω)e−iωt]. (4.4)

For this field it can be shown that the nonlinear polarization term in (4.3) contains a fre-

quency component at ω

PNL(ω) = 3χ(3)|E(ω)|2E(ω). (4.5)

The presence of this nonlinear component in turn modifies the linear susceptibility by an

amount

εo∆χ =
PNL(ω)

E(ω)
= 3χ(3)|E(ω)|2 = 6χ(3)I, (4.6)

where I = |E(ω)|2/2η is the optical intensity of our wave in our medium refractive index

n and impedance η = ηo/n where ηo is the impedance of free space. Through the relation

n2 = 1 + χ, this change in susceptibility results in a change of the refractive index of

∆n =
∆χ

2n
=

3η

εon
χ(3)I =

3ηo
n2εo

χ(3)I = n2I (4.7)

where we have defined n2 = 3ηo
n2εo

χ(3), this n2 term is called the Kerr nonlinearity.

We see that the index of refraction seen by a wave in a Kerr Medium is modulated by its

own intensity, such that its index of refraction is described by

n(I) = n+ n2I (4.8)

this is known as the Optical Kerr Effect, and it causes the wave travelling through the

medium to self-modulate its phase. The phase shift incurred by the wave initial wave vector

ko travelling through a Kerr medium of length L is
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φ = −n(I)koL = 2πn(I)L/λo = −2π(n+ n2I)L/λo. (4.9)

From this we see that, compared to a purely linear medium, the nonlinear term results in a

phase shift modulation of

∆φSPM = −2πn2
L

λo
I (4.10)

Of interest to this thesis is not only the phase modulation of one wave, but what happens

when two light waves encounter a Kerr Medium. The results follow a similar derivation.

For two monochromatic fields consisting of frequencies ω1 and ω2 the electric field now

takes the form

E(t) = Re[E(ω1)eiω1t] + Re[E(ω2)eiω2t] (4.11)

As before, substituting this into the nonlinear term of (4.3) the polarization has a nonlinear

component at ω1 of

PNL(ω1) = χ(3)[3|E(ω1)|2 + 6|E(ω2)|2]E(ω1)

= χ(3)[6I1η + 12I2η]
(4.12)

Following the steps from (4.5)-(4.7), with the same definitions of n2 and I, except with waves

of two different intensities, we can then show from (4.12) that our phase shift is

∆n = n2I1 + 2n2I2, (4.13)

where we have assumed both beams experience the same index of refraction.

We see that the first term of our index shift is the same intensity dependent shift expected

from self-phase modulation of our ω1 wave. However, the second term shows that our ω1

wave also experiences an index shift from the intensity of the ω2 wave. This is called cross-

phase modulation (XPM), as the intensity of a second wave can control the phase of another

wave by changing the refractive index seen by wave 1. As expected, the total phase shift

the ω1 wave would experience in this situation includes the traditional linear phase shift, the

phase shift from SPM, and the phase shift from XPM. For two waves of identical initial wave

vector, ko = k1o = k2o , traversing the same length, L = L1 = L2 of the Kerr medium, this

gives a total phase shift of:

φ = −n(I)koL = 2πn(I)L/λo = −2π(n+ n2I1 + 2n2I2)
L

λo
. (4.14)
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Compared to (4.9), we see XPM alters the ω1 wave phase shift expected from linear effects

and SPM by an amount

∆φXPM = −4πn2
L

λo
I2. (4.15)

The two experimentally adjustable factors for increasing or decreasing the size of this phase

shift are the length of the Kerr Medium and the Intensity of the cross-phase modulating

wave, I2. Since the size of experimentally obtained atomic clouds are confined within 1-2

orders of relative magnitude, they do not provide much flexibility in dramatically altering

the size of this phase shift. The leaves the intensity of the second wave as the leading factor

in controlling these phase shifts.

4.2 Increasing XPM Phase Shifts

One of the elusive goals of QIP, and the ultimate motivation of this thesis, is a phase

shift exceeding π rad of a single photon light field by another single photon light field. We

have shown in the last section that XPM can use one light field to modulate the phase of

another light field. However, this is not the final piece of the puzzle. In typical three-level

systems for XPM (see Figure 4.1), the Kerr nonlinearity for gaseous alkali metals is on the

order of 10−15m2/W. From (4.15), the phase shift is proportional to the intensity. For such

a small nonlinearity, significant phase shifts can therefore only be achieved with intense laser

pulses, more than 10 orders of magnitude larger than a single photon light field. Clearly, to

reach the QIP goal above, we must combine with XPM with another tool to increase the

Kerr nonlinearity. This can be accomplished with EIT.

In 1996, Schmidt and Imamoglu [19] proposed EIT as a way to drastically increase Kerr

nonlinearities. Compared to a conventional three-level XPM scheme (see Figure 4.1), they

proposed XPM through an N-type EIT scheme (see Figure 4.2). In an N-type EIT scheme,

a signal field ωs is added addressing a transition between |2〉 of the previous 3-level EIT Λ

scheme to a new state, |4〉, thus transforming the system to a 4-level N-type system. This

signal field is used to modulate the phase of the probe field.

For each system the nonlinear coefficient was determined as

Re[χ(3)]3−level =
N |µgi|2|µiu|2

8εo~3

1

∆ω2
a∆ωb

(4.16)

Re[χ(3)]EIT =
N |µ13|2|µ24|2

2εo~3

Γ4

Ω2
c∆ωs

, (4.17)
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Figure 4.1: Conventional 3-level Scheme for XPM: ωp is the probe laser whose phase will be
modulated by the signal laser, ωs. As defined before, ∆ω represents detuning from atomic
resonance and Γ is the decay rate.
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Figure 4.2: Proposed EIT Scheme for Giant Kerr Nonlinearities: Introducing a new level
|4〉 to the previously defined EIT Lambda, Λ, system creates a 4-level N-type system. The
new level |4〉 is addressed from |2〉 using a signal laser, ωs. This signal laser acts as the
phase-modulator of the probe laser, ωs, creating large Kerr nonlinearities.

where N is the atomic density, µij are the dipole operators, Γ and ∆ω follow the definitions

in the previous figures.

From these two equations the main difference is that for the 3-level scheme the detuning

from the intermediate level ∆ω2
a is replaced in the EIT level scheme by the Rabi frequency Ω2

c .

The Rabi frequency can be chosen to be much smaller than the one-photon detuning, as the

detuning is limited by the linewidth. Because of this, the nonlinear coefficient can drastically

increase [19]. Schmidt and Imamoglu demonstrated this increase through a calculation with a

1-cm long sodium cell with atomic density N = 1012cm−3. Carrying out the same calculation
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for both schemes, they found that obtaining a 10o phase shift for the EIT scheme required

a field intensity of IEIT = 1.0 × 10−7W/cm2. The same phase shift for the conventional

3-level scheme required an intensity I3−level = 3.3 × 102W/cm2. The resulting nonlinearites

(Re[χ(3)]) were 3.3 × 10−6m2/V2 and 1.0 × 10−15m2/V2 for EIT and conventional XPM,

respectively. Comparing the two schemes, the EIT scheme has a nonlinearity increased by 9

orders of magnitude, resulting in the same phase shift for an intensity 9 orders of magnitude

less. This is the motivation for developing an XPM-EIT system.

These equations and calculated values show a large increase in the Kerr nonlinearity, but

do not physically reveal what is occurring. A more intuitive picture can be seen through

the dispersion created by EIT. This is seen in the bottom plot of Figure 3.2, where the

imaginary part of χ determining index of refraction is shown as a function of two-photon

detuning of the probe/control fields. From Figure 3.2 we see very steep dispersion around

zero detuning. This means very small changes in the two-photon detuning can lead to large

changes in the refractive index. From Figure 4.2, we see our signal field coupled to states

|2〉 and |4〉. This causes an AC Stark shift in our |2〉 state. This will slightly modify the

two-photon detuning needed for two-photon resonance, as we are modifying the resonance

frequency of our control field. As we stated, this change in detuning results in a large change

for the refractive index. Therefore, the signal field modifies the control field, which modifies

our EIT properties, which in turn results in the probe field experiencing a large change in

the refractive index. This ultimately leads to the large phase modulation of our probe field

[20].

4.2.1 N-Type Implementation

As shown in Figure 4.2, observing this N-Type XPM requires an addition to our EIT level

scheme. This can be accomplished by addressing the F=2 to F’=3 transition in our rubidium

atoms (see Figure 4.3). Fortunately, the previously constructed absorption imaging setup

using AOM3 (see Figure 2.9) addresses this transition, so no additional AOMs are required.

Using the same beam configuration to image the atoms (see Figure 2.11), our goal was

to observe an effect on our EIT spectrum when the atoms interacted with the F=2 to F’=3

beam. To do this, the same experimental setup for converging the EIT peaks, (see section

3.3.2, Eliminating Double Peaks) was used. As explained before, this setup ramped through

our probe detuning over a span of 400µs, going below and above two photon resonance

by 2 MHz. The motivation for this ramping was to image our characteristic transparency

peaks in the EIT spectrum in real time on an oscilloscope. With a current of 3.5 Amps in

our helmholtz coils, a Z magnetic field converged these peaks to one larger EIT peak. The
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Figure 4.3: Addressing the F=2 to F’=3 transition atomically implements the theoretical
N-Type scheme (see figure 4.2) needed for increased Kerr Nonlinearities

measurement here consisted of observing the converged transparency peak with and without

the presence of the F=2 to F’=3 laser. As we see in Figure 4.4, as the power of the F=2 to

F’=3 beam is increased, there is a noticeable effect on the EIT peak with and without this

beam.
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Figure 4.4: Each plot shows the EIT spectrum obtained via ramping the probe detuning
(see Figure 3.14. The green plot is the spectrum with our F=2 to F’=3 signal field, whereas
the blue plot is the EIT spectrum without the signal field. As the signal power is increased
from 10-90 µW , the effect on the transparency peak becomes larger.

As explained in chapter 3, EIT can be used to greatly reduce the group velocity of light.
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An important consequence of this slowdown is the spatial compression of pulses of light.

This is because when a pulse enters an EIT medium, the front end of the pulse travels more

slowly as it enters the medium first. Still not arrived at the medium, the back end of the

pulse is traveling near the speed of light. The back end thus catches up to the slowly moving

front end, compressing the width of the pulse. Measuring the time pulses sent through the

atomic medium reach a photodetector thus gives us another way to see if EIT conditions

have been modified.

The pulses are Gaussian with a FWHM of 5 µs, created by a wavefunction generator that

modulates the AOM generating the laser at the transition frequency of F=1 to F’=1. They

are sent through the atomic medium at the time the absorption signal of our atoms shows

a maximum transparency peak. To find this time we look at the continuous EIT signal like

that shown in Figure 3.12, and send the signal at the same time we see this peak. However,

this time is not quite correct, as the continuous absorption signal seen in Figure 3.12 heats

up the atoms faster, meaning their velocities will more quickly reach those required for the

atoms to see the light at two-photon resonance. In this measurement, since we are just

sending pulsed signals, the atoms expand more slowly, meaning this condition is not met

until later in time. By increasing the time difference with respect to the triggering point,

we can observe a peak that is larger than the rest as it is more transparent (see Figure 4.7).

This corresponds to our EIT peak in the pulsed regime. As seen in Figure 4.5, the pulse sent

during normal EIT conditions suffers the compression explained previously, with the center

arriving later in time than the pulse experiencing no EIT. We see that sending a pulse while

the F=2 to F’=3 N-type beam is effecting the medium modifies the EIT pulse.
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Figure 4.5: Pulse arrival for no EIT, EIT, and N-type modified EIT. The time is measured
with respect to an arbitrary triggering point that occurs after the MOT trapping coils and
cooling beams are turned off.

The measurements here focused on finding changes in the EIT properties of our system
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by observing the effects the N-type signal beam had on the EIT transparency peak as well as

its effect on the slowdown of pulses. Expected from other experiments [26], an N-type setup

capable of XPM will lessen the height of the transparency peak. As seen in Figure 4.4, this

is what we saw. Lessening of this transparency peak also results in less effect on reduction of

group velocity. Therefore, an N-type pulse should arrive sooner than an EIT pulse. Again,

from Figure 4.5, we believe to see this effect. With these observations, the next logical step

was to characterize the phase shift caused by this modulation of the EIT spectrum through

the signal field.

4.3 Measurement of Phase Shifts

We need some way to characterize our cross-phase modulation. This requires measuring

the phase of the probe field after exiting the atomic ensemble of cold rubidium, where it

undergoes manipulation by the signal field. Comparing this to its phase without passage

through the ensemble tells us the phase modulation imparted by the signal field. This is

possible through a technique known as balanced homodyne tomography.

4.3.1 Electric Field Quadratures

We can define the Hamiltonian for our single-mode electromagnetic field in terms of

annihilation and creation operators as (for a more detailed explanation leading up to this

see references [27], [24], or [25])

H = ~ω
(
â†â+ 1/2

)
. (4.18)

From this we can create an electric field operator:

Ê(z, t) = Eω(â+ â†) sin kz, (4.19)

where Eω = [~ω/εoV ]1/2 is the “electric field per photon” which has a single-mode field

oscillation frequency ω, wave number k, and is in a cavity of volume V [24]. However,

we cannot measure the electric field in this form as â and â† are not Hermitian operators.

Nonetheless, from linear combinations we can form Hermitian operators, X̂1 and X̂2, called

quadratures

X̂1 =
1√
2

(
â+ â†

)
X̂2 =

i√
2

(
â− â†

)
, (4.20)
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which are 90o out of phase with each other. Including the time dependence of our annihilation

and creation operators we can recast the electric field operator as [25]

Ê(z, t) = Eω(âeiωt + â†e−iωt) sin kz (4.21)

=
√

2Eω sin kz[X̂1 cosωt+ X̂2 sinωt]. (4.22)

From this we see that the electric field can be written as two Hermitian, and thus measurable,

quadrature operators, X̂1 and X̂2, that are the in-phase and out-of-phase components of the

electric field amplitude with respect to a reference phase.

4.3.2 Balanced Homodyne Detection

Balanced Homodyne Detection utilizes light of a known phase to “pick out” the compo-

nents of this “in-phase” electric field quadrature of light. In our case, the light field whose

electric field phase we want to measure is the probe field, Ep. This is accomplished through

the use of a large amplitude light wave with the same frequency, hence homodyne not het-

erodyne, as the probe field, but with a defined phase. Combining this large field, called the

local oscillator (LO), at a beam splitter with the probe field gives two output fields [27]

E1 =
1√
2

(
ELOe

iφLO + Ep
)

E2 =
1√
2

(
ELOe

iφLO − Ep
)
.

(4.23)

Splitting the probe field into its two quadrature values Ep = EX1
p + iEX2

p gives

E1 =
1√
2

(
[ELO cosφLO + EX1

p ] + i[ELO sinφLO + EX2
p ]
)

E2 =
1√
2

(
[ELO cosφLO − EX1

p ] + i[ELO sinφLO − EX2
p ]
)
.

(4.24)

Combining these two fields on a photodiode such that their currents subtracts gives an

intensity output

PDoutput ∝ i1 − i2
∝ E1E

∗
1 − E2E

∗
2

∝ 2ELO
(
cosφLOE

X1
p + sinφLOE

X2
p

)
.

(4.25)

The local oscillator thus gives an output proportional to the probe field quadrature at a
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specific phase. If we want the full X1 amplitude we choose φLO = nπ. For full X2 choose

φLO = nπ
2

. For other values of φLO, we obtain linear combinations of X1 and X2 amplitudes

with coefficients determined by the values of cosφLO and sinφLO, respectively.

4.3.3 Phase Shift Caused by EIT

After experimentally constructing the Homodyne system (see Figure 4.6) a measurement

was taken to measure the phase shift caused by EIT. In this case, our local oscillator is given

a defined phase through the position of mirror connected to a piezo electric device. Ramping

the position of this mirror allows us to then select the quadrature values of our probe field

over a continuous range of phases and thus, from Equation 4.25, reconstruct its amplitude

for each phase.

 

ωP 

ωLO 

PBS  

PBS 

Piezo

 

Figure 4.6: The local oscillator is joined with the probe field at a PBS. They then pass
through a NonPBS into a photodiode system that creates two fields that are recorded on
photodiodes. The black box has a circuit designed to subtract these currents and determines
the phase from Equation 4.25

As with the slowdown pulses explained above, we needed to find where EIT existed in

the pulsed regime. Instead of changing the delay as before, we found it easier to send in

a train of pulses. By observing the height of each pulse, we could determine which one

experienced EIT as it would be the tallest peak. As seen in Figure 4.7, this corresponds to

the peak highlighted in black. As with the slowdown pulses the measurement is taken at a

fixed frequency, so the image is not a full EIT spectrum in Figure 4.7, but a peak like the

one in Figure 3.12. The phase of this field is then compared with a pulse passing through the
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system without EIT. Due to the effect of EIT on dispersion of the atoms, we should expect

a phase shift. Through our use of balanced Homodyne detection, we measured a modest

phase shift.
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Figure 4.7: The phase of a pulse before the shut off of the (green) is compared with the
phase of pulse experiencing EIT (black). The difference in phase shifts is seen in Figure 4.8
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Figure 4.8: With respect to the local oscillator phase, the EIT pulses (which experience
slowdown) have a modest phase change from the pulses experiencing no EIT

.

Since the phase shift was so small, we decided not to measure the effect of N-type mod-

ulation on the EIT pulse until we increased the atom-light interaction of the probe field
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through the addition of a cavity. This is one of several future additions planned for this

experiment, which are presented in the Outlook.
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Chapter 5

Outlook

All the concepts required to construct a quantum phase gate have been demonstrated in

this thesis through proof-of-principle experiments. A magneto-optical trap containing cold

atoms with the correct level scheme for 3-level EIT Λ systems and 4-level N-type systems

has been developed. The density of atoms is comparable to other experiments also working

with cavity-atomic ensemble systems. The temperature of the atoms is approaching the

Doppler limit, but should be colder in order to decrease the linewidth. This should allow the

probe and control beams to still create EIT even when they are not coaligned. Nonetheless,

our results suggests that our light-atom interface at its current stage is robust enough of a

platform to mediate our light-atom-light interactions.

Regarding these interactions, we have successfully developed EIT in our atoms. This

allows us to coherently control the optical properties of our medium. Unwanted effects

that cause the EIT spectrum to deviate from theory have been eliminated. Through the

development of an N-type scheme it has been demonstrated that we can manipulate EIT

characteristics. As theory and experiment have shown, correct N-type modulation of EIT

conditions can greatly increase the Kerr nonlinearity responsible for XPM.

A system to measure the phase shifts of this increased XPM has been developed. Us-

ing balanced homodyne detection, we have measured a small phase shift between a pulse

experiencing EIT and a pulse not experiencing EIT. The next step is to measure a phase

shift between a pulse experiencing EIT and one experiencing N-type modulated EIT. As

explained earlier, this N-type setup could increase the Kerr nonlinear coefficient by 9 orders

of magnitude; however, this still is several orders of magnitude away from working with at

single-photon levels. The future of this experiment requires other techniques for increasing

the Kerr nonlinearity such that π level XPM can be achieved between two single-photon

pulses. The tools we will use include optical cavities and additional EIT systems.
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5.1 Additional Tools to Increase XPM

5.1.1 Single-Cavity

The first addition to our current setup is the previously discussed atom-cavity system

that will couple the EIT probe field to our atomic cloud. This will increase light-atom

interaction, which in turn will increase the Kerr nonlinearity. To accomplish this we must

make the length of the cavity equal to an integer number of half wavelengths, m, such that

the length is: L = mλ/2n. This is the resonance condition of the optical cavity, which when

met keeps the light in the cavity in phase during each round trip back and forth between the

mirrors [11].

Maintaining the length of the cavity at resonance will require a feedback loop in which

another laser coupled to the cavity continually provides feedback to a piezo-electric device

that maintains the position of one of the cavity mirrors, and hence the length of the cavity.

To prevent this laser from interacting with the atoms, it will operate at a different frequency

than the probe laser. This adds complexity to the system in two ways. The length of the

cavity must now satisfy resonance for two different wavelengths, and to measure properties

of the transmitted probe laser, the feedback laser must be filtered out. Nonetheless, these

are common requirements for cavity setups. The most challenging aspect of implementing

this cavity will be aligning the lasers such that the cavity mode intersects the center of our

trapped rubidium atoms (see Figure 2.15). If successful, this will bring use one step closer

to our ultimate goal as it should increase our Kerr nonlinearity in addition to the increase

given by the N-type setup.

5.1.2 Double EIT

Theoretically, it has been shown that although N-type modification of EIT can provide

large Kerr nonlinearities, the increase is not large enough to achieve π phase shifts between

single-photon pulses. This is why a cavity coupling our EIT probe to the atomic system

will be implemented on top of our N-type scheme. The reason EIT cannot provide large

enough Kerr nonlinearities is the dramatic velocity difference between the probe field, which

undergoes the phase shift, and the signal field providing the phase shift [20]. This velocity

difference is a result of the probe field experiencing EIT and hence a large reduction in its

group velocity, while the signal field has no reduction. Double EIT can overcome this effect.

Compared to a single EIT system, a double EIT system can provide a larger nonlinear

phase shift. This is because in the latter, the signal field implementing the phase shift can

also undergo EIT [28]. Therefore, it can also have the same ultraslow group velocity as the
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Figure 5.1: Two EIT Λ systems form an M-type scheme. The probe, ωp, and control, ωc = ωc1
address the same transitions as before. However, the signal field addresses transitions at
795 nm. This allows the signal field, ωs to still follow an N-type scheme required for EIT
modification of the probe, but the addition of ωc2 creates an EIT system for our signal field.
In this second EIT Λ setup the signal field is the probe and hence undergoes a reduction in
its group velocity.

probe pulse. This increases the total interaction between the two pulses. Experimentally,

this can be implemented by transforming our 4-level N-type into a double Λ, or M-type

system (see Figure 5.1). This M-type setup will require lasers addressing the D1 = 795

nm line rubidium transition from the 52S1/2 to the 52P1/2 state. We currently already have

lasers operational and locked at frequencies within this transition. As well, the necessary

double-pass AOM setups to address the specific hyperfine levels and find the two-photon
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detuning for EIT have also been constructed.

5.1.3 Dual Cavities

The double EIT setup increases the Kerr nonlinearity over the single EIT system that

is modified by an N-type beam. However, it is still debateable in the field of QIP whether

such a setup can produce π phase shifts between two single-photon pulses. Simulations

undergone by our group have shown than π shifts at this single-photon level are possible

by implementing a dual cavity system for both the probe field and signal field experiencing

EIT. The cavity for the probe field has already been discussed. The last tool needed is then

a cavity coupling the signal field to our atomic system. This would be setup like the process

for the probe cavity, except orthogonal to the probe field. With this tool in place, the final

construction of our phase gate would take the form shown in Figure 5.2.

 

ωC1

ωP

ωS

ωC2

Dual 
Cavities

Cold Rb87 

in a MOT

To Homodyne 
Detection

Figure 5.2: Physical setup of the ultimate design for our quantum phase gate (not yet
operational, for show only). The probe field, ωp, will be coupled to the horizontal cavity
whereas the signal field, ωs, will be coupled to a vertical cavity. With cold enough atoms the
control fields ωc1 and ωc2 can be sent into the atomic system from arbitrary angles. After
undergoing a phase shift in the atomic medium, the probe field will be transmitted through
the cavity and into the homodyne detector.

5.2 Conclusion

This thesis has constructed the necessary components for an N-type atomic scheme capa-
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ble of modifying EIT within a cold atomic ensemble. Using balanced homodyne tomography

to measure phase shifts, this thesis has demonstrated optical control of electric field phase

between a light field experiencing EIT and one that does not. The next step is the addition

of cavities to couple the probe field undergoing EIT to the atomic ensemble. Once this is

completed an M-type system should be constructed to match the group velocities of both the

probe and signal field. The necessary AOM system to change the atomic scheme from N-type

to M-type has been setup, but still needs characterization. The last step will be coupling of

this signal field to a cavity. Such a system will be capable of providing large Kerr nonlin-

earites. We hope these Kerr nonlinearites are large enough such that cross-phase-modulation

on the order of π rad can be achieved between the electric fields of light pulses at the single

photon level. If this is successfully achieved, then once our single-photon source is opera-

tional, we can use these tools to implement a two-optical-qubit quantum logic gate. Never

accomplished, this will be a significant breakthrough for QIP and an important addition for

its continued success.
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