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Abstract of the Dissertation

Applications of Physics and Geometry to
Finance

by

Jaehyung Choi

Doctor of Philosophy

in

Physics

Stony Brook University

2014

Market anomalies in finance are the most interesting topics to aca-

demics and practitioners. The chances of the systematic arbitrage

are not only the counter-examples to the efficient market hypothe-

sis but also the sources of profitable trading strategies to the prac-

titioners. Approaches to finding, predicting, and explaining the

anomalies by using ideas from physics and geometry had not been

permeated.

In the first part, I develop monthly momentum and weekly contrar-

ian strategies with stock selection rules based on various measures

from risk management and analogy of momentum in physics. The
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better performance and risk profile are achieved by the alternative

strategies implemented in diverse asset classes and markets.

The concept of spontaneous symmetry breaking is suggested for

modeling the arbitrage dynamics. In the model, the arbitrage

strategy is considered as being in the symmetry breaking phase

and the phase transition between arbitrage mode and no-arbitrage

mode is triggered by a control parameter. It is also tested with

contrarian strategies in various markets.

In the last part, I prove the correspondence between Kähler man-

ifold and information geometry of signal processing models under

conditions on transfer function. The various advantages of intro-

ducing the Kähler manifold are visited. Several implications to

time series models are also given in the Kählerian information ge-

ometry.
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Chapter 1

Introduction

After Bachelier’s seminal paper [14] and its re-discovery [30], random walk

theory has been the most crucial cornerstone in economics and finance. An

assumption that price dynamics is governed by stochastic process has become

popular and useful in asset valuation theories such as option pricing theory

[18, 74] or interest rate models [31, 103, 104]. However, the assumption also

claims that prices of financial instruments cannot be predicted exactly because

of the nature of Brownian motion. This unpredictable nature of financial

markets helps economists to establish a belief that there are no tools to find

arbitrage opportunities and to make money systematically in the financial

markets. It is also imposed that successful investors are considered nothing

but luckier than others. The idea is crystallized in the form of the efficient

market hypothesis by Eugene Fama [38] and Paul Samuelson [89]. According to

the efficient market hypothesis, financial markets are informationally efficient

and this efficiency cannot make participants systematically achieve excessive

returns over the market portfolio in the long run. Although there are three

slightly different versions of the hypothesis to cover more general cases, what

the hypothesis generally emphasizes has not been changed.
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However, many market practitioners intrinsically believe an idea that the

market could be predictable regardless of their methods used for forecast and

investment because it is partially or totally inefficient. The idea is opposite to

the belief of proponents for the efficient market hypothesis and it is empirically

supported by the fact that there are actual market anomalies which are used

as the sources of systematic arbitrage trading. These anomalies and trading

strategies include fundamental analysis, technical analysis, pair trading, price

momentum, sector momentum, mutual fund arbitrage, volatility arbitrage,

merger arbitrage, January effect, and weekend effect etc. The anomalies let

market participants create profits by utilizing the trading strategies based on

the market inefficiencies. Even if the market is efficient in the long run, prac-

titioners assure that they are able to find opportunities and timings that the

market stays in the inefficient phase within very short time intervals. The ex-

istence of a shortly inefficient market state is guaranteed by the success of high

frequency trading based on quantitative analysis and algorithmic execution in

a short time scale automated by computers. In these cases, the arbitrage does

not have the traditional definition that non-negative profit is gained almost

surely. It can create positive expected return with high probability but there

are also downside risks which make the portfolio underperform. This kind of

arbitrage is called statistical arbitrage and the arbitrage in this paper means

mostly statistical arbitrage.

Not only the practitioners but some academic researchers also have dif-

ferent opinions to the efficient market hypothesis. They have taken two ap-

proaches to check the validity of the efficient market hypothesis. On the one

hand, the market anomalies of which the practitioners believe the existence

2



are empirically scrutinized. Some results on the famous market anomalies

are reported in academic literatures and seem to be statistically significant

while their origins are not clearly revealed yet. For more detailed discussions

on the market anomalies, see Singal [93] or Lo and MacKinlay [67]. On the

other hand, psychological and behavioral aspects of investors begin to be paid

attention in order to find the explanatory theories on the market anomalies

[54, 55, 91]. The behavioral economists focus on cognitive biases such as over-

and under-reaction to news/events and bounded rationality of investors [29].

They claim that those biases can create the inefficiencies in the market. The

cognitive biases lead the investors to group thinking and herding behavior that

most of investors think and behave in the similar ways. The good examples

of herding are speculative bubbles, their collapses, market crashes, and panics

during financial crises.

Among these market anomalies, price momentum has been the most well-

known example to both groups. Since Jegadeesh and Titman’s seminal paper

[53], it has been reported that the prices of financial instruments exhibit the

momentum effect that the future price movement tends to keep the same di-

rection along which it has moved during a given past period. It is also realized

that the momentum strategy, a long-short portfolio based on the momentum

effect, has been a profitable trading strategy in the stock markets of numerous

developed and emerging countries during a few decades even after its discovery

[87, 88]. In addition to the existence in equity markets, the momentum effect

large enough to implement as the trading strategy is also found in other asset

classes such as foreign currency exchange [78], bond [11], futures [11, 76], and

commodities markets [37].
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In spite of its success in profitability over diverse asset classes and markets,

its origin has not been fully understood in the frame of traditional mainstream

finance. This is why the momentum effect is one of the most famous market

anomalies. Attempts to explain the momentum effect with factor analysis

have failed [40] and the reason why the momentum effect has persisted over

decades still remains mysterious. The Fama-French three factor model is able

to explain only parts of the momentum return [40]. The lead-lag effect or auto-

/cross-sectional correlation between equities are one of the possible answers

to the momentum effect [62, 66]. The sector momentum is another partial

interpretation on the anomaly [75]. Additionally, the behavioral aspects of

investors such as collective response to financial news and events have broad-

ened the landscape of understanding on the momentum effect [16, 33, 48, 101].

Transaction cost is also considered a factor caused the momentum effect [61].

Unfortunately, none of these explanations are capable of providing the entire

framework for explaining why the momentum of price dynamics exists in many

financial markets.

Not only demystification on the origins of the price momentum, pursuit

on the profitability and implementability of the momentum effect in financial

markets also has been interesting to academics and practitioners. For example,

although several studies [1, 10, 23, 58, 63] found that the momentum strate-

gies in some Asian markets such as Japanese stock market are not profitable,

Asness et al. [11] discovered that the momentum strategy in Japan becomes

lucrative, when it is combined with other negatively correlated strategies such

as value investment. Not only in several stock markets, the hybrid portfolio

of value and momentum also outperforms each of the value and momentum

4



portfolios across the assets. Their study paid attention to the implementa-

tion of the momentum strategy combining with fundamental value investment

factors such as book-market (BM) ratio1 which also has been used to unveil

the origins of the momentum effect in Fama-French three factor analysis. In

other words, their work can be understood as the construction of the hybrid

portfolio to increase the profitability and stability of the portfolios based on

the momentum strategy. Moreover, the selection criteria for the hybrid port-

folio are considered as the multiple factors related to the momentum returns

whether they are positively correlated or negatively correlated. Academically,

this observation has the important meaning in the sense that these multiple

filters can explain their contributions to the momentum returns. In practical

viewpoint, it is definitely the procedure for generating trading profits in the

markets.

Another method for improving the profitability of the momentum strategy

is introducing various selection rules to the construction of the momentum

portfolio. First of all, simple variation on the original momentum selection

rule can be made. Moskowitz et al. [76] suggested new trading strategies

based on time series momentum which constructs the momentum portfolios

by time series regression theory. It is not simply from cumulative return during

a lookback period as a sorting variable but from an autoregressive model of

order one which can forecast the future returns under given conditions such as

the past returns and volatilities. The forecasted return is used as the selection

criterion for the time series momentum strategy. The time series momentum

1It is also related to price-book (PB) ratio inversely. Many literatures on momentum
mostly use BM ratio as a momentum-driven factor and PB ratio also known as PBR is
frequently mentioned in fundamental analysis of stocks.
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strategy performs very well even during market crisis. It also shares the com-

mon component which drives the momentum return with the cross-sectional

momentum strategy across many asset classes. This fact imposes that the mo-

mentum strategy is improved by the modified cumulative return criterion and

there is a possibility to find the better momentum strategies in performance

and risk.

Besides only considering the cumulative return, the introduction of alter-

native proxies for the portfolio selection rules has been also worth getting

attention. George and Hwang [43] used 52-week high price2 as a selection cri-

terion and the momentum portfolio based on the 52-week high price generated

stronger returns. Additionally, the tests with the momentum portfolios, which

are doubly-sorted by the cumulative return or sector momentum and the 52-

week high price, exhibit the superiority of the 52-week high price criterion.

The factor analysis also shows that the return from the 52-week high price

factor is not only stronger than the traditional or sector momentum factors

but also statistically more significant and important in the momentum return

modeling. The dominance of the 52-week high momentum criterion is also

observed in the various international stock markets [63].

Reward-risk measures are also able to serve as the ranking criteria. Rachev

et al. [79] used the reward-risk measures as the sorting criteria for their mo-

mentum portfolios instead of the cumulative return over the estimation period.

In their work, Value-at-Risk, Sharpe ratio, R-ratio, and STARR ratio were

used as alternative ranking rules. In the S&P 500 universe from 1996 to 2003,

their momentum portfolios constructed by the reward-risk measures provided

2The 52-week high price is the highest price during last 52 weeks, i.e. 1 year.

6



the better risk-adjusted returns than the traditional momentum strategy. In

addition to that, the new momentum portfolios had lower tail indexes for

winner and loser baskets. In other words, these momentum strategies based

on the reward-risk measures obtained the better risk-adjusted returns with

acceptance of the lower tail risk.

Back to physics, the momentum in price dynamics of a financial instrument

is also an intriguing phenomenon because the persistent price dynamics and its

reversion can be understood in terms of inertia and force. The selection rules

of the momentum strategy is directly related to the ways of how to define and

measure “physical” momentum in price dynamics of the instrument. When the

instrument is considered as a particle in an one-dimensional space, the price

momentum is also calculated if mass and velocity are defined. Since the mo-

mentum effect exists, it can be concluded that price of an equity has an inertia

that makes the price keep their direction of movements until external forces

are exerted. In this analogy, the external force corresponds to any exogenous

market events and information such as good/bad news, changes in psychology

and macroeconomic situation, and imbalance in supply and demand. This

idea is also able to explain why the cumulative return based momentum strat-

egy generates the positive expected returns. However, it has been not much

attractive to physicists yet. Most of the econophysics community doesn’t have

been interested in trading strategy and portfolio management so far.

Physicists also have become interested in the characteristics of financial

markets as complex systems. Mainly, econophysics and statistical mechanics

communities have used their methodologies to analyze the financial markets

and several research fields have attracted their interests. In the sense of cor-
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relation, the financial markets are interesting objects. Since there are many

types of interactions between market building blocks such as markets-markets,

instruments-instruments, and investors-investors, correlations and correlation

lengths are important. In other directions, speculation and its collapse are

always hot topics because they are explained as collective behavior in physics.

The analysis on speculation gives some partial answers that speculations have

patterns including the resilience effect. Additionally, market crash or collapse

of a bubble can be understood by the log-periodic pattern. For more details,

see [68, 69, 85, 95, 96] and references therein.

In particular, Sornette introduced the concept of spontaneous symmetry

breaking (SSB) of stock price to explain speculation and to resolve the growth

stock paradox [94]. He pointed out that economic speculation is understood

as price dynamics caused by desirable/undesirable price symmetry. If stocks

of a certain company are desirable to hold, investors try to buy the equities

at extremely high prices which are the spontaneous symmetry breaking mode.

However, when the equities are not desirable any more, the investors do not

want to hold it and try to sell them as soon as possible to avoid damages

from the downslide of price caused by the situation that nobody in the market

prefers the equities. In his paper, the phase transition is induced by riskless

interest rate above risk-adjusted dividend growth rate which also expresses

herding in the sense that large growth rate gets more attention from investors

and it leads to herding. Positive dividend payment breaking the symmetry

makes the price positive and this is why the positive price is observed. These

are the origins of speculation in economic valuation. The result is also re-

lated to the well-known financial valuation theory called the Gordon-Shaprio
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formula. His work is important in speculation modeling not only because sym-

metry breaking concept is applied to finance but also because speculation, its

collapse, and market crash are indispensable parts of the market dynamics.

From the mathematical viewpoint, the financial markets are interesting re-

search topics. The stochastic calculus is one of the most popular topics and is

heavily used in real world problem solving. However, the application of differ-

ential geometry to finance is relatively rare except for information geometry.

Since the concept of Riemannian differential geometry was introduced to statis-

tics [52, 80], information geometry has been developed in various directions.

The statistical curvature as the differential geometric analogue of information

loss and sufficiency was proposed by Efron [36]. The α-dual description of

information geometry was found by Amari [2]. Not limited to statistical in-

ference, the information geometry has become popular in many different fields

such as information theoretic generalization of Expectation-Maximization al-

gorithm [72] and hidden Markov model [73], interest rate modeling [21], phase

transition [51, 106], and string theory [47]. More applications can be found in

the literature [9] and references therein.

In particular, the well-known applications of information geometry are time

series analysis and signal processing. Ravishanker et al. [81] found the infor-

mation geometry of autoregressive moving average (ARMA) model in the coor-

dinate system of poles and zeros. It was also extended to fractional integrated

ARMA model [82]. Barbaresco [15] also found the information geometry of au-

toregressive (AR) model in the reflection coefficient coordinates. The Bayesian

predictive priors outperforming Jeffreys’ prior were information theoretically

derived for the AR models by Komaki [59].
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The Kähler manifold is one of the most popular research topics in differ-

ential geometry. Since the manifold is equipped with good properties such

that metric tensors and Levi-Civita connection are derived from Kähler po-

tential and that Ricci tensor is obtained from the determinant of the metric

tensor, many implications of the Kähler manifold are found in mathematics

and theoretical physics. In that sense, Barbaresco’s paper [15] deserves to

get attention because it is the paper introducing the Kähler manifold to the

information geometry of time series models. Unfortunately, the reason why

the Kähler manifold for time series analysis is introduced was not clear in the

paper. Moreover, any specific conditions for the Kähler manifold were not

given.

Based on these backgrounds, this dissertation concentrates on the appli-

cations of physical and geometrical concepts to finance. Several momentum

and contrarian portfolios based on reward-risk measure and analogy of phys-

ical momentum are constructed. The geometric method is also developed for

signal processing and time series model. The structure of the dissertation is

as follows. In next chapter, the brief introduction and the portfolio construc-

tion based on the momentum strategy are given. The implementation of the

momentum/contrarian strategies using maximum drawdown and consecutive

recovery is tested in Chapter 3. Reward-risk momentum strategies using clas-

sical tempered stable distribution are implemented in Chapter 4. The analogy

of physical momentum is applied to the construction of contrarian strategy in

Chapter 5. The arbitrage is understood with spontaneous symmetry breaking

concept and application to momentum strategy is given in Chapter 6. The

correspondence between Kähler manifold and information geometry of signal
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processing filter is proven in Chapter 7. In Chapter 8, we make the conclusion

of the dissertation.
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Chapter 2

Fundamentals of momentum
and contrarian strategies

The momentum strategy is one of the famous trading strategies which use

market anomalies. It is well-known that the strategy that buys past winners,

short-sells past losers in returns, and then holds the portfolio for some periods

in the U.S. market enables to provide positive expected returns in intermediate

time frames such as 1–12 months [53]. The basic assumption of the strategy

is that since price has momentum in its dynamics, it tends to move along the

direction it has moved. Based on the assumption, the financial instruments

which have shown good performance in the past are highly probable to gain

profits in the future. Opposite to winners, it is likely that losers in the past

would underperform the benchmark in the monthly time frame.

Over other trading strategies such as pair trading or merger arbitrage

strategies, it is advantageous that the momentum strategy is able to be ex-

ploited at any time and in any markets. Pair trading is utilized only when the

correlation of two instruments weakens and when investors can find it. Merger

arbitrage is able to make benefits if M&A rumors or news begin to be spread
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in the market and if there is a price gap between actual and buy prices. When

using these strategies, the investors become relatively passive to market condi-

tions and events. However, in the case of the momentum strategy, if they look

back at the price history, market participants make use of momentum strat-

egy and the trading frequency is up to their time frames from high frequency

trading to long-term investment. In addition to that, unlike merger arbitrage

which is possible only in equity markets, momentum strategy can be applied

to various asset markets including local equity, global index/equity [87, 88],

currency [78], commodity [37], future [11, 76], and bond markets [11].

The most important variables of the momentum strategy are the length of

the lookback (or estimation) period J , length of the holding period K, and

sorting criterion ψ. The traditional momentum strategy uses the cumulative

return during the lookback period as a ranking criterion, i.e. a triplet of

the traditional momentum strategy is (J,K, ψ = p(0)) [53]. On the reference

day (t = 0), the cumulative returns of all instruments in the market universe

during the periods from t = −J to t = −1 are calculated. After sorting the

instruments in the order of the ascending criterion, numbers of ranking groups

are constructed and each of the ranking groups has the same number of the

instruments. As an instance, if there are 200 equities and we consider 10

groups, each of sorted ranking groups has 20 equities as group constituents.

Following the convention of Jegadeesh and Titman [53], the loser group who

has the worst performers in the market is named as R1 and the winner group

with the best performers is the last one, R10. And then the momentum

portfolio is constructed by buying the winners and short-selling the losers with

the same size of positions in cash in order to make the composite portfolio
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dollar-neutral. For the winner and loser portfolios, each group member is

equally weighted in the group in which it is. The constructed momentum

portfolio is held until the end of the holding period (t = K). On the last day

of the holding period (t = K), the momentum portfolio is liquidated by selling

the winner group off and buying the loser group back.

On the first day of each unit period, the momentum portfolio is constructed

as explained in the previous paragraph. For examples, a weekly momentum

portfolio is selected in every Monday unless it is not a holiday. Monthly port-

folios are formulated on the first business day in every month. For multiple-

period holding strategies, there exists overlapping period between two differ-

ent strategies. The reasons of this construction are followings. First of all,

the momentum return from this construction is not dependent with the start-

ing point of the strategy formation. For example, when we implement the

12-month lookback and 12-month holding momentum strategy, construction

of the portfolio occurs at the beginning of each year. Since the return results

are always interfered by the seasonal effects such as January effect or others

related to business cycle and taxation, it is difficult to discern the momen-

tum effect from the seasonal effects. Second, the portfolios from overlapped

periods can generate the larger numbers of return samples to fortify the sta-

tistical significance. Since the dataset here only has twelve years of historical

data comparing with other studies which uses much longer time periods as

datasets, its statistical significance could be lowered by the smaller size of our

samples if we use the non-overlapped portfolios. Third, Jegadeesh and Titman

[53] reported that there were not big differences between the returns by the

overlapped and non-overlapped portfolios. Finally, the portfolio construction
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here can be considered as diversification which helps to mitigate large return

fluctuation of the momentum portfolio. For example, in the case of 12-month

holding strategies, we have twelve different portfolios at a given moment and

it is definitely diversification of the portfolio. Based on these reasons, it is

more sensible that the overlapping portfolios are used in our case.

When we buy the winner and loser portfolios which provide expected re-

turns for those groups of rW and rL respectively, the return by the momentum

portfolio rΠ is simply rΠ = rW −rL because we short-sell the losers in the port-

folio. When we implement the trading strategy in the real financial markets, a

transaction cost including brokerage commission and tax is always important

because they actually erode the trading profits. The implemented momentum

return or transaction-cost-adjusted return rI is

rI = rΠ − c

= (rW − rL)− (cW + cL)

where cW and cL are the transaction costs for winner and loser group, respec-

tively. In general, cL is greater than cW because the short-selling is usually

much more difficult than buying. Since the transaction cost is an one-time

charge, its effect on the implemented return per unit period becomes smaller

as the holding period is lengthened.

When the expected return of the momentum portfolio for a given (J,K, ψ)

strategy is negative, the strategy can become profitable by simply switching

to the contrarian strategy (J,K, ψ†) that buys the past loser group and short-

sells the past winner group, exactly the opposite position to the momentum
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portfolio. Contrasting to the momentum strategy following the price trend,

the contrarian strategy is based on the belief that there is the reversion of

price dynamics. If equities have performed well during the past few periods,

investors try to sell those stocks to put the profits into their pockets. The in-

vestors who bought those equities long time ago are able to make large enough

profits even when the price recently has gone slightly downward. However,

buyers who recently purchased the equities might not have enough margins

yet from their inventories and want not to lose money from the current down-

ward movement because of risk aversion. The only option those investors can

take is just selling their holdings off. This herding behavior makes the rever-

sion of price and it is probable to make profits from short-selling if a smarter

investor knows when it would be. For the opposite case, it is also possible to

buy the past losers to get advantages of using the herding because the losers

are temporarily undershot by investors’ massive selling force and the equities

tend to recover their intrinsic values. On the way of price recovery, the short-

sellers need to buy back what they sold in the past in order to protect their

accounts and the serial buy-back can boost the price dynamics to the upward

direction which also causes feedback that causes consequential massive buy-

backs by other short-sellers. How the initial anomaly can be amplified and be

grown is modeled in Shleifer and Vishny [92].

The momentum and contrarian strategies look contradictory to each other

but they have only the different time horizons in which each of strategies works

well. Usually, in three to twelve months scale, the equity follows the trends

[53] but the reversal effect is dominant at the longer and shorter scales than

the monthly scale [35, 66]. For the contrarian strategy, the portfolio return
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rΠ† is given by

rΠ† = rL − rW = −rΠ.

The transaction cost adjusted return rI for the contrarian strategy is

rI = rΠ† − c

= (rL − rW )− (cW + cL).

When implementability of a given strategy in the real markets is the main

concern, we need to focus on whether or not it is possible to take actual

profits from the strategy among the momentum and contrarian strategies. In

this sense, the profitability of the strategy with absolute (implemented) return

r̃I can be measured by

r̃I = |rW − rL| − (cW + cL)

and tells whether the potential trading profit can exceed the barrier of the

transaction cost. The actual positive return from the momentum/contrarian

trading strategies can be taken into the pocket when r̃I is positive. However,

the transaction cost is not considered because the out/under-perfomance is

our main concern.

As mentioned above, the method for measuring the price momentum is

the momentum strategy with the physical momentum as a ranking criterion.

There are total eleven types of candidates for physical momentum including

the original cumulative return momentum. On the reference day (t = 0), each
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physical momentum for equities over the estimation periods is calculated and

is used for sorting the equities. The ranking for each criterion constructs the

momentum portfolios. After holding the portfolio during the given period, it is

liquidated to get the momentum profit. The positive implemented returns and

Sharpe ratios from implemented return exhibit the robustness of the physical

momentum strategies. If their returns beat that of the traditional momentum

strategy, it is obvious that the physical momentum definition really has a merit

to introduce and there is a practical reason to use the momentum strategies

based on the physical momentum as an arbitrage strategy.

For the lookback period, some stocks which don’t have enough trading

dates are ignored from the analysis. In general, this case happens to companies

which are enlisted to the market universe amid of the lookback period. If an

equity is traded on only one day during the estimation period, it is neglected

from our consideration for the momentum strategy universes because it is

impossible to calculate alternative ranking criteria for these stocks. Since

all possible candidates for the alternative momentum need to be compared

with other criteria over the same sample, it is obvious not to consider these

equities with only one trading day in the estimation period. The companies

delisted amid of the holding periods don’t cause the same problem because

only the lookback return is important in sorting the equities and constructing

the momentum portfolios. In this case, the returns for the delisted companies

are calculated from the prices on the first and last trading days in the holding

periods.

As mentioned before, the reason why the momentum strategy generates

positive expected return has attracted the interest of researchers but it is
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not clearly revealed yet. The sector momentum is considered one of possible

explanations [75]. A behavioral approach to momentum also can give more

explanations such as under-reaction [48, 101] or over-reaction [33] of market

participants to news or psychology [16]. It is ambiguous whether the momen-

tum effect comes from either which of them or from a combination of these

possible explanations. However, this dissertation focuses on how to use the

strategy based on symmetry breaking rather than what makes markets ineffi-

cient.
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Chapter 3

Maximum drawdown, recovery,
and momentum

One of the most popular risk measures is maximum drawdown. It is defined

as the worst cumulative decline from a peak in a given period. The maximum

drawdown is also used in the definitions of the Calmar ratio and Sterling

ratio in order to assess the performance and risk of mutual funds and hedge

funds. Several advantages of the maximum drawdown over VaR and CVaR

are followings. First of all, it is more insightful than other risk measures.

When two historical price charts are given, it is more straightforward to find

which asset has the smaller maximum drawdown. Additionally, it is easier to

calculate the drawdown directly from time series. Moreover, there is no model

dependency.

In this chapter, we introduce multiple composite ranking criteria stemmed

from the maximum drawdown and successive recovery in order to construct

alternative momentum/contrarian-style portfolios. The monthly momentum

and weekly contrarian strategies based on the alternative stock selection rules

are implemented in U.S. and South Korea stock markets. The alternative
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strategies outperform the traditional cumulative return based strategies in

performance and risk. In particular, the drawdown measures provide the better

trend-following strategies in monthly scale and the recovery criteria work well

with the weekly strategies. The outperformance is also found in the Fama-

French three-factor model. The structure of the paper is following. In the

next section, the new ranking rules based on the maximum drawdown and

sequential recovery are defined. In section 3.2, datasets and methodology are

introduced. The performance and risk profile of the alternative portfolios are

found in section 3.3. The factor analysis is given in section 3.4. We close the

chapter with conclusion in section 3.5.

3.1 Construction of stock selection rules

As mentioned before, the maximum drawdown is the worst successive loss

among declines from peaks to troughs during a given period. It is defined by

MDD = max
τ∈(0,T )

(
max
t∈(0,τ)

(
P (t)− P (τ)

))

where P (t) is the log-price at time t. The expression can be represented in

terms of return

MDD = − min
τ∈(0,T )

(
min
t∈(0,τ)

R(t, τ)
)

where R(t, τ) is the log-return between t and τ . The maximum drawdown is

regarded as the worst-case scenario to an investor who starts his/her invest-
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ment at any moment in that period. It is obvious for the investor to prefer

the lower maximum drawdown to the higher one.

The maximum drawdown is closely related to the price momentum. In

particular, the maximum drawdown is associated with the direction of the

price momentum. In the case of positive momentum, it is a part of mean-

reversion process if the size of the maximum drawdown is small. Additionally,

if it is large enough, the maximum drawdown is more likely to break the

upward trend and generate new downward trend-following stage. Meanwhile,

it is one of the largest components for the downside momentum. The larger

maximum drawdown would be much preferred for short position.

The successive recovery to the maximum drawdown is defined by

R = R(t∗, T )

where t∗ is the moment for the end of the maximum drawdown formation. It

encodes how much loss from the worst decline is recovered by the short-term

reversal. Similar to the maximum drawdown, it is also helpful to understand-

ing the price momentum. When an asset price is on the upward trend, it is

regarded as the support to the original trend. Meanwhile, in downside mo-

mentum, the recovery is a reversal to the overall trend. It is obvious that an

asset with stronger recovery is favored than an asset with weaker recovery.

In these spirits, the maximum drawdown and consecutive recovery are in-

dispensable in the processes of analyzing and detecting signals for price trend.

It is obvious that these measures should be incorporated into the momentum

analysis and momentum ranking criteria considered these measures need to
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be considered in portfolio construction. It is possible to construct new com-

posite selection rules stemming from the maximum drawdown and recovery.

For example, even when two assets have the same cumulative return, one with

the larger maximum drawdown can be penalized in the ranking measure. In

other case, assets with stronger short-term mean-reversion to the maximum

drawdowns can be preferred in the alternative ranking system.

Before developing alternative selection rules, we need to take a closer look

on the cumulative return. A given estimation period is chronologically decom-

posed into three periods. The first period is the peak formulation phase from

the beginning of the estimation period to the peak before the downfall. The

next stage is the period for the creation of the maximum drawdown. The last

stage is the recovery period from the trough associated with the maximum

drawdown to the end of the estimation period. The above decomposition on

the cumulative return C is represented with the returns in the three different

phases:

C = RI +RII +RIII

= PP−MDD + R

where PP is the log-return during the pre-peak period.

With the decomposition, it is possible to construct hybrid indicators using

the maximum drawdown and recovery. Taking weighted average with more

weights on certain specific period is one way of the construction. Many possible

combinations with the maximum drawdown and consecutive recovery are given

in Table 3.1.
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Table 3.1: Description on alternative selection rules using maximum drawdown
and recovery

Portfolio name Criterion Weights on Rt

C Cumulative return (1,1,1)
M MDD (0,1,0)
R Recovery (0,0,1)

RM Recovery–MDD (0,1,1)
CM Cumulative return-MDD (1,2,1)
CR Cumulative return+Recovery (1,1,2)

CMR Cumulative return–MDD+Recovery (1,2,2)

The C strategy is the benchmark strategy. It is the traditional momen-

tum/contrarian strategy that employs the cumulative return as the ranking

criterion. The M and R portfolios are constructed by using the maximum

drawdown and recovery as the ranking rule, respectively. More complicated

selection rules are stemmed from weighted averages on certain periods. The

RM strategy utilizes the difference between the recovery and maximum draw-

down. It encodes how much losses are recovered by the short-term reversion.

The CM strategy not only considers the cumulative return and but also pays

attention to the period of the maximum drawdown. It is a penalty to the

assets with the large drawdowns. In the similar way, it is possible to assign

the weights on only the recovery period or both of the maximum drawdown

and recovery for the CR and CMR strategies, respectively.
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3.2 Dataset and methodology

3.2.1 Dataset

The datasets for this study consist of the KOSPI 200 universe, SPDR U.S.

sector ETFs, and S&P 500 universe.

South Korea equity market: KOSPI 200

The KOSPI 200 is a stock benchmark index that is the value-weighted and

sector-diversified index with 200 stocks in South Korea stock markets. His-

torical price information and component-roster are downloaded from Korea

Exchange. The period from January 2003 to December 2012 is considered.

U. S. equity market: SPDR sector ETFs

Sector ETFs are selected for simulating sector momentum with the alternative

stock selection rules. In particular, the SPDR U.S. sector ETFs are chosen

because it is the collection of ETF products for which the equal length of

price history is available. The time span covers from January 1999 to De-

cember 2012. The SPDR U.S. sector ETFs consist of XLB (Materials), XLE

(Energy), XLF (Financial), XLI (Industrial), XLK (Technology), XLP (Con-

sumer Staples), XLU (Utilities), XLV (Health Care), and XLY (Consumer

Discretionary).

U. S. equity market: S&P 500

The price information and roster of the S&P 500 historical components are

collected from the Bloomberg. The covered time horizon is from January 1999
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to December 2012.

3.2.2 Methodology

The basic methodology for portfolios construction is the momentum-style (or

contrarian) portfolios given in Jegadeesh and Titman [53]. Based on given

selection rules during 6 months (weeks) of estimation period, assets in market

universes are sorted in ascending order. In this study, most criteria will be

used in increasing order except for the maximum drawdown. Then several

ranking baskets are fomulated. In the cases of the S&P 500 and KOSPI 200

universes, numbers of groups are 10 and three baskets are formed for U.S.

sector ETFs. The group 1 is for losers that exhibit the worst ranking scores

and the last group is for the best performers in the selection rules. Each

group is constructed as an equal-weighted portfolio. The winner group is at

long (short) position and the loser group is at short (long) position. After 6

months (weeks) of the holding period, each basket is liquidated. The portfolio

is constructed at the beginning of every month, i.e. it is the overlapping

portfolio.

The risk measures for the portfolio performance are calculated from the

daily time series of the overlapping portfolio. The risk model for VaR, CVaR,

and Sharpe ratio is the ARMA(1,1)-GARCH(1,1) model with classical tem-

pered stable (CTS) innovation. This model is suggested by Kim et al. [57]

and the same model is also used for momentum portfolio construction [26].

For more information, consult with Kim et al. [57] and references therein.
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3.3 Results

3.3.1 South Korea equity market: KOSPI 200

Weekly results

In Table 3.2, the recovery related strategies outperform the traditional mean-

reversion strategy obtaining weekly 0.073% under the volatility of 2.841%.

In particular, the best performer is the recovery portfolio with the weekly

returns of 0.146%, two-times larger than the original contrarian strategy, and

the excellent performance is achieved under much smaller standard deviation

of 1.757%, almost 1.1% lower than the C strategy. The CR and CMR strategies

also obtain the better performance under smaller fluctuation. The portfolio

returns are weekly 0.086% and 0.078% under the standard deviations of 2.665%

and 2.865%. Meanwhile, the maximum drawdown strategies such as the M,

CM, and RM strategies underperform the benchmark strategy in the weekly

scale.

The outperformance of the R, CR, and CMR strategies are based on the

strong reversal of each ranking basket. First of all, the loser groups of every

alternative contrarian strategies perform as well as the loser in the mean-

reversion portfolio. The performance of the long positions is in the range from

0.241%–0.314% and the return fluctuations are smaller or comparable with

the loser basket in the benchmark strategy. In particular, the loser group

in the recovery measure exhibits not only the best performance but also the

lowest deviation measure among all the loser baskets. Additionally, the winner

basket of the R, CR, and CMR portfolios perform poorer than other portfolios
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including the cumulative return contrarian portfolio.

According to Table 3.2, the outperformance of the recovery portfolios such

as the R and CR portfolios is achieved by taking less risks. The portfolios are

less riskier in every risk measures than the other portfolios by the alternative

ranking rules including the cumulative return. The R portfolio provides the

largest Sharpe ratio and the CR strategy is one of the top 4 in Sharpe ratio.

The lowest 95% VaRs and CVaRs are featured by the R and CR portfolios. In

particular, the R strategy exhibits 1.149% daily VaR and 1.391% daily CVaR,

the smallest risk measures. An interesting caveat is that the CVaR is much

decreased than the VaR. This indicates the existence of the much thinner

downside tail in the R portfolio performance. The maximum drawdowns of

these two portfolios are also lower than all other strategies.

The each ranking basket in the R and CR portfolios is also less riskier than

other competitive ranking groups. The winner and loser groups of these two

portfolios exhibit lower VaRs and CVaRs. The loser in the recovery criterion

achieves the lowest VaR and CVaR with 1.252% and 1.870%, respectively.

The Sharpe ratios of the loser groups are the top 2 largest ones among the

other alternative and benchmark strategies. The maximum drawdown of the

recovery loser is also smaller than the long position in the traditional contrarian

portfolio. For winner groups, the tendency is slightly weaker. Although the

short baskets are less riskier in 95% VaR and CVaR, the Sharpe ratios and

maximum drawdowns are worse than those of the winner and loser in the

C criterion. However, the riskier short position is more attractive for the

profitability of the entire portfolio.
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Monthly results

In Table 3.3, it is found that the maximum drawdown criterion and related

stock selection rules provide the alternative momentum strategies outperform-

ing the traditional momentum strategy. The best strategy is the momentum

portfolio by the composite rule of cumulative return and maximum draw-

down. The monthly average return of 1.433% with the volatility of 7.036% is

obtained by the CM portfolio while the cumulative return criterion provides

the trend-following strategy with the monthly return of 1.331% and the stan-

dard deviation of 6.826%. The CMR and RM strategies are the next best

performers with the monthly returns of 1.311% and 1.280% and the standard

deviations of 6.729% and 6.241%, respectively. The performance of these port-

folios are slightly worse but the volatility levels are also lower than that of the

momentum strategy. The CR and M strategies also perform well although

the strategies underperform the benchmark strategy. Meanwhile, the recovery

strategy obtains the worst performance in monthly scale.

The momentum strategies associated with the maximum drawdown exhibit

strong momentum in each ranking group basket. The winner basket of the CM

strategy achieves monthly 1.701%, the strongest upside momentum among all

long positions including the cumulative return winner. Additionally, the return

volatility of the position is only 8.062%, almost 10% smaller than that of the

momentum winner. The performance of the CMR winner is as good as the

benchmark winner and the fluctuation is relatively lower. In addition to that,

the loser groups of the M, RM, CM, and CMR strategies underperform the

traditional momentum loser. The short basket of the CM strategy, one of the
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3 worst performers in the loser groups, underperforms the loser group in the

cumulative return. The short baskets in the RM and CMR strategies also

show the stronger downside momentum than the loser group of the traditional

momentum strategy.

The risk profiles for the momentum portfolios in Table 3.3 indicate that the

portfolios ranked by the maximum drawdown related selection rules are less

riskier in many reward-risk measures than the benchmark. For example, most

of the alternative momentum strategies exhibit lower 95% VaR and CVaR

levels. Even for RM and CMR portfolios, the difference in risk measure is just

a few basis points. Additionally, lower maximum drawdown is featured by the

alternative portfolios except for the CR portfolio. Moreover, higher Sharpe

ratios than the C-strategy are achieved by the CM, CMR, and RM strategies.

In overall, choosing these composite ranking criteria related to the maximum

drawdown is better at risk management.

Each ranking group in the drawdown strategies exhibits better risk charac-

teristics. Lower 95% VaR, CVaR, and maximum drawdown levels are achieved

by the winner groups comparing with the long basket of the momentum port-

folios. Additionally, the Sharpe ratios of the long baskets are larger than

that of the momentum winner group. The better reward-risk and smaller risk

measures are favorable for the long position. Meanwhile, the loser groups are

under greater exposure to the risk with higher 95% VaR, 95% CVaR, and

maximum drawdown. The Sharpe ratios for the short baskets are weaker than

the momentum loser. For short position, the larger risk of losing money is

more desirable.
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3.3.2 U.S. equity market: SPDR sector ETFs

Weekly results

As shown in Table 3.4, the strong performance of the RM, CR, and CMR

contrarian portfolios is obtained in the ETF universe. In particular, the CR

strategy is the best performer among all the other contrarian strategies and is

the only alternative strategy that outperforms the benchmark portfolio. The

portfolio with the weekly performance of 0.094% and the volatility of 1.648%

is not only greater but also less volatile than the cumulative return portfolio.

The other recovery portfolios such as the CMR and RM strategies show good

performance but the fluctuations of the weekly returns are larger than the

traditional contrarian portfolio. Although the performance of the R strategy

is not the best result, its standard deviation is at the lowest level, 1.217%.

The outperformance of the CR portfolio is based on the strong reversal

in its ranking groups. The similar size of the reversion is achieved by every

loser group in the alternative measures. In particular, the loser basket in the

CR portfolio exhibits the strongest turn-around of 0.127%. Additionally, the

volatility is the second lowest one among all the alternative ranking rules. Its

strong mean-reversion is not limited to the loser group. The average weekly

return of the CR winner is 0.034%, the poorest performance among all the

short baskets including the benchmark. Moreover, the standard deviation of

the performance is at one of the highest levels. The combination of the poorer

performance and larger volatility in the CR short position makes the entire

portfolio more likely to get profits.

According to Table 3.4, taking less risk leads to the outperformance of the
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CR strategy. The 95% VaR, CVaR, maximum drawdown of the strategy are

0.450%, 0.575%, and 20.46%, the second lowest VaR, CVaR, and maximum

drawdown levels among the alternative portfolios. The CR portfolio also ex-

hibit lower CVaR and maximum drawdown levels and the comparable size of

VaR with the traditional contrarian portfolio. An interesting caveat is that the

recovery portfolio exhibits the best risk profiles in every risk measures. Its 95%

VaR, CVaR, and maximum drawdown are 0.340%, 0.443%, and 17.91% that

are much lower than the risk measures of the traditional mean-reversion strat-

egy. Meanwhile, the poorer risk measures are obtained by the other portfolios

of which the construction rules are associated with the maximum drawdown.

Similar to the entire portfolio level, the better risk management in each

ranking basket is provided by considering the recovery measure in the stock

selection rules. In particular, the recovery criterion has the best loser group

both in performance and risk. All the risk measures of the recovery loser

are lower than any other loser groups of the alternative strategies including

the benchmark strategy. Moreover, the largest Shape ratio among the loser

baskets is achieved by the loser in the recovery criterion. Opposite to the

loser basket, the winner group in the recovery portfolio exhibits the worst risk

measures and Sharpe ratio. Since the winner basket in the contrarian strategy

is actually going short, the risky assets are helpful to gain the profit for the

overall portfolio.

Monthly results

The alternative momentum portfolios constructed by the maximum drawdown

related criteria outperform the cumulative momentum strategy in the SPDR
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U.S. sector ETFs universe. According to the summary statistics given in

Table 3.5, the monthly performance of 0.172% under the standard deviation

of 3.565% is achieved by the CMR strategy, the best performer among all

criteria while the traditional momentum strategy generates monthly 0.117%

under the volatility of 3.552%. The portfolio return is increased by almost

50% and the standard deviation is changed less than 1%. The RM and CM

strategies with monthly returns of 0.138% and 0.121% are also followed by

the C strategy. The both strategies are also less volatile than the cumulative

return momentum strategy. The performance by the R and CR strategies are

not only as good as the C strategy but also less volatile.

Regardless of criterion, the outperformance of the alternative portfolios is

based on the strong momentum in each ranking basket. The winner and loser

groups in the alternative portfolios consistently perform as well as the rank-

ing groups of the traditional momentum strategy. In particular, the strongest

momentum in the baskets is achieved by the CMR strategy: the long bas-

ket outperforms and the short basket underperforms that of the benchmark

strategy. The winner and loser groups in the CM and RM portfolios are also

under the strong trend-following phenomena. Other recovery related ranking

rules also exhibit the same pattern. For example, the R and CR criteria also

provide the strong momentum at the ranking group level.

In Table 3.5, the alternative portfolios are less riskier than the traditional

momentum portfolio. First of all, the maximum drawdown of every strategy

is lower or comparable with the benchmark case. Additionally, the 95% VaR

and CVaR levels indicate that the recovery related selection rules are good

at handling the severe losses. In particular, the RM portfolio takes low risk
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with achieving the better performance. The substantially less-riskier portfolios

constructed by the R and CR criterion are also as good in performance as

the trend-following strategy by cumulative return. Considering almost 50%-

increased monthly return, the reward-risk ratio of the CMR portfolio is also

improved because the risk measure of the portfolio is only slightly increased.

The alternative momentum strategies constructed by the maximum draw-

down related measures are less riskier at the levels of the ranking baskets.

The lower VaR and CVaR levels for the winner and the higher levels for the

losers are found in the cases of the maximum drawdown strategies such as the

M, MR, CM, and CMR strategies. These strategies also exhibit the smaller

(larger) maximum drawdown for the winner (loser) group. Meanwhile, the op-

posite situation is observed in the ranking groups of the R and CR strategies.

The strategies show the larger (smaller) VaR and CVaR levels for the winner

(loser) groups than that of the cumulative return strategy.

3.3.3 U. S. equity market: S&P 500

Weekly results

In Table 3.6, the alternative weekly contrarian portfolios constructed by the

M, R, and CR criteria outperform the traditional contrarian portfolio. In par-

ticular, the recovery measure provides the best portfolio both in performance

and volatility. The weekly return of 0.045% under the weekly standard devia-

tion of 1.894% is achieved and both numbers are significantly improved with

respect to the benchmark case. The CR strategy is also followed by the cu-

mulative return mean-reversion strategy and its volatility level is one of the
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smallest ones. Although the maximum drawdown portfolio exhibits the second

best average return, its performance is based on the largest volatility.

The alternative contrarian portfolios exhibit strong reversal at the level of

each ranking basket. The loser groups in the R and CR portfolios achieve

the largest weekly returns of 0.202% and 0.185%, respectively. In particular,

the smallest standard deviation of 2.944% among the losers is achieved by the

recovery loser although its weekly return is larger than the losers in any other

portfolios including the benchmark loser group. While the winners in the al-

ternative criteria show as consistent performance as the traditional contrarian

winner basket, the winner group in maximum drawdown features the weakest

weekly performance of 0.094% which is desirable to the short position. More-

over, the return fluctuation is also the smallest volatility among the winner

baskets.

The recovery associated portfolios are less riskier than the traditional re-

versal portfolio according to the risk measures in Table 3.6. With the Shape

ratio, every alternative strategies exhibit larger Sharpe ratios than the bench-

mark contrarian strategy. Additionally, the R, RM, CMR, and CR portfolios

are less riskier in the 95% VaR and CVaR. Moreover, only the R and CR port-

folios feature lower maximum drawdowns than the cumulative return strategy

and the maximum drawdown of the R portfolios is at the lowest level and

50% decreased. More interesting finding is that the lowest level of the risk

is achieved by the risk measures of the recovery portfolio. Meanwhile, the

portfolios related to the maximum drawdown are exposed to the more risks.

In particular, the risk measures of the M portfolio are at the worst level.

In each ranking basket, the recovery based portfolio is also more compat-
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ible with the risk profile of the contrarian strategy. Its loser basket exhibits

the lowest risk measures such as 95% VaR, CVaR, and maximum drawdown.

For example, the R and CR portfolios achieve the lowest 95% VaRs, CVaRs,

maximum drawdowns in the loser groups, i.e. long postions. Additionally, the

Sharpe ratio of the long position in the recovery portfolio is significantly larger

than other portfolios including the benchmark portfolio and the CR criterion

provides the second largest Sharpe ratio for the loser group. Meanwhile, the

risk exposure of the winner in the recovery and CR measures is at the most

dangerous degree and worse than those of the benchmark winner. The VaR,

CVaR, and maximum drawdown of the recovery portfolio hit the worst levels.

Monthly results

The maximum drawdown related momentum portfolios exhibit the better per-

formance in the S&P 500 universe. The summary statistics in Table 3.7 show

that the monthly return of 0.185% and the standard deviation of 6.240% are

achieved by the CM strategy, the best performer among all the alternative

strategies while the monthly return of 0.135% and the standard deviation of

5.869% are obtained by the traditional momentum strategy. The portfolios by

other maximum drawdown based rules such as the CMR, M, and RM strate-

gies are followed by the benchmark strategy in performance measure. These

three portfolios generate monthly 0.179%, 0.160%, and 0.152%, respectively.

Meanwhile, the recovery portfolios such as the R and CR criteria show poorer

performance with smaller standard deviations. For example, the CR strategy

slightly underperforms the original strategy by 10% and its volatility is also

decreased by 10%.
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The outperformance of the maximum drawdown momentum strategies is

achieved by the poorer performance in the loser groups. Most loser groups

of the alternative strategies underperform that of the momentum strategy.

Except for the R-strategy, the short baskets of the composite ranking crite-

ria provide 0.240%–0.378% while the cumulative return loser group obtains

monthly 0.386%. When the baskets are in short-selling, the underperformance

generates the profit for the long/short portfolios. The returns of the alternative

long baskets are more consistent regardless of criterion. The performance of

the winners is slightly worse than 0.521% by the momentum winner group but

in the narrow range of 0.482%–0.520% except for the M-strategy which earns

monthly 0.400%. Additionally, the winners in maximum drawdown related

measures are less volatile than the recovery or cumulative return winners.

The outperformance of the maximum drawdown momentum strategies is

achieved by taking low downside risk. According to the risk measures given in

Table 3.7, the alternative strategies except for the M and CM portfolios tend

to exhibit lower 95% VaR and CVaR measures. Even with the CM criterion,

the performance of the portfolio is almost 50% improved and the risk measures

are only 10% increased. In addition to that, the Sharpe ratios of the maximum

drawdown strategies are greater than those of the recovery strategies and cu-

mulative return based strategy. Additionally, the lower maximum drawdown

is another characteristic of the maximum drawdown portfolios.

The risk measures of each ranking group support the outperformance of

the maximum drawdown momentum strategies. The lower (higher) 95% VaR,

CVaR, and maximum drawdown levels for winner (loser) groups are achieved

by the maximum drawdown related stock selection rules. Its long position is
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less riskier than that of the momentum strategy while the opposite position

is under the greater risk of losing money. This opposite behavior enables the

portfolios profitable. Additionally, the higher Sharpe ratios are obtained by

these strategies. Meanwhile, the recovery related strategies such as the R

and CR strategies exhibit the higher (lower) 95% VaR, CVaR, and maximum

drawdown for the winner (loser) groups.

3.3.4 Overall results

Regardless of asset class and market, the alternative portfolios constructed by

the maximum drawdown and consecutive recovery achieve the better perfor-

mance than the original momentum and contrarian strategies. In particular,

employing the composite ranking rules are superior to using the only cumula-

tive return, maximum drawdown, and recovery measures.

In weekly scale, the contrarian portfolios constructed by the recovery mea-

sures exhibit the outperformance over the traditional contrarian strategy. The

R, CR, and CMR criteria are the best stock selection rules for the weekly

contrarian strategy in any markets. The high performance and low volatil-

ity are featured by the portfolios. The historical cumulative returns of these

portfolios are found in Figure 3.1.

For momentum portfolio construction, the maximum drawdown related

measures are the best stock selection rules. The CM criterion provides the

portfolios performing well in three different markets. The CMR and RM se-

lection rules also predict future winners and losers well. Additionally, the

volatility levels of the portfolio returns are relatively lower when the overall
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Figure 3.1: For weekly contrarian, cumulative returns for the traditional con-
trarian (gray), R (blue), CR (red), and CMR (green). For monthly momen-
tum, cumulative returns for the traditional momentum (gray), CM (blue), RM
(red), and CMR (green).

performance is considered. The cumulative returns of these portfolios are also

given in Figure 3.1.

It is noteworthy that the price components related to the past and future
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directions expected by the momentum and reversal are important factors for

portfolio construction in any time scale. For momentum, the maximal draw-

down should be minimized for the winner but maximized for the loser because

the winner is expected to outperform the loser. Meanwhile, the recovery for

short-term contrarian should be smaller for losers. If the recovery is too large

for the losers, it is considered that the asset already spent the fuel for the

reversion and it is hard to exhibit the reversal.

The performance of the alternative portfolios is not the price of taking

more risk. The alternative portfolios are less riskier in the better risk profiles

such as VaR, CVaR, and maximum drawdown. It is also interesting that the

risk measures of each ranking group are also well-matched to the purpose of

portfolios construction: The winners (losers) groups are less (more) riskier in

monthly scale. The ranking groups of the weekly contrarian strategy exhibit

the opposite characteristics.

3.4 Factor analysis

As shown in the previous section, the maximum drawdown and consecutive

recovery provide the useful stock selection rules for more profitable portfolios

with low risk. The factor analysis with the Fama-French three-factors [40] also

tests the outperformance of the alternative strategies. We focus on the S&P

500 universe.
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3.4.1 Weekly

In Table 3.8, the intercepts and factor exposures of alternative contrarian

strategies are given. All Fama-French three-factor alphas are negative except

for the recovery portfolio. The positive and statistically significant alpha is

achieved only by the recovery strategy. The R and CR portfolios exhibit

greater alpha than the three-factor alpha of the traditional contrarian strategy.

The intercepts for all other contrarian strategies are negative and smaller than

the benchmark alpha.

Table 3.8: Fama-French regression of weekly 6/6 contrarian portfolios in U.S.
S&P 500

Criterion Portfolio Factor loadings
α(%) βMKT βSMB βHML R2

C Winner (W) -0.0494 1.1237∗∗ 0.2532∗∗ 0.2906∗∗ 0.8744
Loser (L) -0.0965 1.4406∗∗ 0.1721∗ 0.6591∗∗ 0.8445
L – W -0.0471 0.3169∗∗ -0.0810 0.3685∗∗ 0.1602

M Winner (W) 0.0047 0.6754∗∗ -0.1448∗∗ -0.1222∗∗ 0.8471
Loser (L) -0.1897∗ 1.5955∗∗ 0.3761∗∗ 1.0971∗∗ 0.8638
L – W -0.1945 0.9201∗∗ 0.5209∗∗ 1.2193∗∗ 0.6798

R Winner (W) -0.0994 1.3435∗∗ 0.2755∗∗ 0.6570∗∗ 0.9080
Loser (L) 0.0309 1.0689∗∗ 0.0088 0.1174∗∗ 0.9458
L – W 0.1303∗ -0.2746∗∗ -0.2667∗∗ -0.5396∗∗ 0.4502

RM Winner (W) -0.0222 0.9763∗∗ 0.1229∗∗ 0.1081∗∗ 0.8745
Loser (L) -0.1723∗ 1.5370∗∗ 0.2604∗∗ 0.8106∗∗ 0.8645
L – W -0.1500 0.5606∗∗ 0.1374 0.7025∗∗ 0.4339

CM Winner (W) -0.0271 0.9579∗∗ 0.1506∗∗ 0.0442 0.8520
Loser (L) -0.1517 1.5166∗∗ 0.2565∗∗ 0.8286∗∗ 0.8554
L – W -0.1246 0.5586∗∗ 0.1059 0.7844∗∗ 0.4150

CR Winner (W) -0.0587 1.1904∗∗ 0.2685∗∗ 0.3697∗∗ 0.8814
Loser (L) -0.0650 1.3810∗∗ 0.1372 0.5804∗∗ 0.8428
L – W -0.0063 0.1906∗∗ -0.1313 0.2108∗ 0.0643

CMR Winner (W) -0.0445 1.0426∗∗ 0.2018∗∗ 0.1728∗∗ 0.8671
Loser (L) -0.1345 1.4811∗∗ 0.2159∗∗ 0.7355∗∗ 0.8492
L – W -0.0900 0.4386∗∗ 0.0141 0.5628∗∗ 0.2847

∗∗ 1% significance ∗ 5% significance
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The factor exposure of the recovery portfolio is unique. The R portfolio

exhibits negative exposures to all the Fama-French three factors. Additionally,

the negative exposures are all statistically significant. The CR and C portfolios

show weak dependence on the market and value factors and negative exposure

on the size factor. The R2 values of the C, CR, and CMR portfolios are

relatively smaller.

The performance of the winner and loser baskets is explicable by the Fama-

French three-factor model with high R2 values. Most of the factor exposures

are positive and statistically significant. Meanwhile, the intercepts for the

ranking baskets are negative and not statistically significant in most cases.

The loser groups of the M and RM portfolios exhibit statistically significant

alphas.

3.4.2 Monthly

The intercepts and factor loadings of the alternative momentum strategies are

given in Table 3.9. All the intercepts of the regression model are positive except

for the recovery strategy. Additionally, most of the portfolios outperform the

cumulative return strategy if no factor exposure is given.

Different factor structures by the types of the stock selection rules are

found. The first type of the ranking rules are the selection rules associated with

the maximum drawdown. The alphas of the maximum drawdown related port-

folios are greater than other strategies including the traditional momentum. In

particular, the positive and statistically significant intercept is achieved only

by the M strategy. Additionally, the larger portions of the returns by the
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Table 3.9: Fama-French regression of monthly 6/6 momentum portfolios in
U.S. S&P 500

Criterion Portfolio Factor loadings
α(%) βMKT βSMB βHML R2

C Winner (W) -0.0855 1.0061∗∗ 0.3656∗∗ -0.0642 0.7869
Loser (L) -0.5270 1.5391∗∗ 0.1749 0.3457∗ 0.8026
W – L 0.4415 -0.5330∗∗ 0.1906 -0.4099 0.2057

M Winner (W) 0.1109 0.6204∗∗ -0.1077 -0.0089 0.7824
Loser (L) -0.8071∗ 1.6119∗∗ 0.4258∗ 0.4787∗∗ 0.8300
W – L 0.9180∗ -0.9916∗∗ -0.5334∗ -0.4876∗∗ 0.6036

R Winner (W) -0.3169 1.2997∗∗ 0.2715∗∗ 0.3641∗∗ 0.9033
Loser (L) 0.0056 1.0678∗∗ 0.0955 0.0389 0.9299
W – L -0.3225 0.2319∗∗ 0.1760 0.3252∗∗ 0.2925

RM Winner (W) -0.0081 0.8703∗∗ 0.2145∗ -0.0413 0.8274
Loser (L) -0.6613 1.5904∗∗ 0.3701∗ 0.3803∗∗ 0.8307
W – L 0.6532 -0.7202∗∗ -0.1556 -0.4217∗ 0.4112

CM Winner (W) -0.0367 0.8847∗∗ 0.2958∗∗ -0.0899 0.7880
Loser (L) -0.6901∗ 1.5843∗∗ 0.3056 0.4203∗∗ 0.8189
W – L 0.6533 -0.6996∗∗ -0.0098 -0.5102∗ 0.3475

CR Winner (W) -0.1586 1.0704∗∗ 0.3174∗∗ 0.0841 0.8193
Loser (L) -0.4931 1.4920∗∗ 0.1695 0.2650 0.8050
W – L 0.3345 -0.4216∗∗ 0.1479 -0.1810 0.1296

CMR Winner (W) -0.0355 0.9483∗∗ 0.2934∗∗ -0.0714 0.7970
Loser (L) -0.6101 1.5711∗∗ 0.2503 0.3486∗ 0.8148
W – L 0.5747 -0.6229∗∗ 0.0431 -0.4200∗ 0.2863

∗∗ 1% significance ∗ 5% significance

maximum drawdown strategies are explained by the Fama-French three-factor

model with higher R2. The strategies are much exposed to the market factor

and the value factor. The portfolio returns are negatively correlated with the

size factor.

Contrary to the maximum drawdown based portfolios, the recovery port-

folios such as the R and CR portfolios have the smaller intercepts than other

strategies. In particular, the negative intercept is obtained by the R portfolio.

The returns of these strategies are weakly dependent with the market and

value factors but exhibit the positive exposures on the size factor than the
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drawdown portfolios. The R2 values are relatively lower.

The winner and loser baskets in each portfolio are well-explained by the

Fama-French three-factor model with high R2 values. The differences in inter-

cept and factor exposure with respect to the ranking criterion are originated

from the characteristics in factor structure of each basket. The winner bas-

ket of the recovery momentum strategy not only has the a smaller intercept

but also exhibits more exposures on all the three factors than the loser basket.

Meanwhile, the maximum drawdown portfolios are opposite: the higher alpha,

less exposures to the Fama-French factors.

3.5 Concluding remarks

In this chapter, we test the monthly momentum and weekly contrarian strate-

gies with the alternative stock selection rules originating from maximum draw-

down and consecutive recovery. The selection rules include not only the max-

imum drawdown and successive recovery but also the composite indices of

them. The alternative portfolios are implemented in U.S. and South Korea

equity markets.

In every markets, the performance of the alternative strategies is supe-

rior to the benchmark strategies. Additionally, the best portfolios are related

to the construction rules that are related to the past and future directions

expected by momentum and reversal. In weekly scale, the recovery related

measures provide the better contrarian portfolios in the markets, i.e. smaller

recovery expects more reversal. The R, CR, and CMR portfolios show the
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outperformance.

In monthly scale, the maximum drawdown associated strategies outperform

the traditional momentum strategy, i.e. smaller maximum drawdown gives

stronger momentum. The CM strategy is the overall best performer in every

market. The CMR and CM portfolios are as good as the CM strategy.

The risk measures for the portfolios indicate that the portfolios are less

riskier than the benchmark strategy. The portfolios tend to exhibit the lower

VaR, CVaR, and maximum drawdown in the markets. The similar pattern is

also observed at the levels of each long/short basket.

The factor analysis also shows that the unique pattern by the stock selec-

tion rules exists. In weekly, the intercept of the recovery portfolio is the largest

one. The maximum drawdown portfolios have the higher intercept and larger

exposures to the market and value factors than the traditional momentum

strategy.

In future, the stock selection criteria based on the maximum drawdown

and recovery will be tested in shorter time scales such daily and intraday

frequencies. It will be useful to test the performance and risk of the alternative

portfolios in various equity markets.
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Chapter 4

Reward-risk momentum
strategies using classical
tempered stable distribution

In this chapter, we extend the approach based on the reward-risk measures

suggested by Rachev et al. [79] to many different directions. First of all,

the reward-risk measure based momentum portfolios are constructed in di-

verse asset classes including currency markets, commodity markets, global

stock benchmark indices, South Korea KOSPI 200 universe, SPDR U.S. sector

ETFs, and S&P 500 universe. Secondly, more robust tests by using a different

time horizon and removing survivor bias with the component-change log are

performed in the S&P 500 universe. Finally, the Fama-French factor analy-

sis on the reward-risk portfolios is conducted. The structure of this paper is

followings: In next section, we briefly cover a risk model and reward-risk mea-

sures used as stock selection rules for momentum-style portfolio construction.

In section 4.2, datasets and methodology are introduced. The performance

and risk measures of the strategies are given in section 4.3. The Fama-French

factor analysis is conducted in section 4.4. We close the chapter in section 4.5.
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4.1 Risk model and reward-risk measures

4.1.1 Risk model

It is important to decide a risk model for the calculation of reward-risk mea-

sures. Considering the distributional properties of a financial asset price

such as autocorrelation and volatility clustering, the ARMA(1,1)-GARCH(1,1)

model is chosen. Additionally, we assume that the innovation of the model is

generated from classical tempered stable (CTS) distribution [86] in order to

model skewness and kurtosis. The ARMA-GARCH-CTS model is proposed

by Kim et al. [57] and this paper follows it.

An infinitely divisible random variable X is said to follow the CTS distri-

bution, X ∼ CTS(α,C+, C−, λ+, λ−,m) if its Levy triplet (σ2, ν, γ) satisfies

following conditions:

σ = 0

ν(dx) = (C+e
−λ+xIx>0 + C−e

−λ−|x|Ix<0)
dx

|x|α+1

γ = m−
∫
|x|>1

xν(dx)

where C+, C−, λ+, λ− are all positive, α ∈ (0, 2), and m ∈ R. From the

viewpoint of risk management, important CTS parameters are α and λ−. The

tail index α tells how fat both tails are and the lager tail index is achieved

by the thinner tail. The downside tail is controlled by λ−. Similar to the tail

index α, the thinner downside tail is described by the larger λ− parameter.
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4.1.2 Reward-risk measures

Sharpe ratio

The Sharpe ratio is the ratio of expected excessive return to standard deviation

for excessive return [90], i.e. it is a reward per deviation. It is defined with

SR(r) =
E(r − rf )
σ(r − rf )

where rf is a risk-free rate. A portfolio with higher Sharpe ratio is considered

the better portfolio than a portfolio with lower Sharpe ratio. Additionally,

the portfolio with the highest Sharpe ratio in Markowitz framework is the

tangency portfolio [70].

Conditional Value-at-Risk

In order to define conditional Value-at-Risk (CVaR), Vale-at-Risk (VaR) needs

to be defined. The VaR is represented with

VaR(1−α)100% = −inf{l|P (r > l) ≤ 1− α}

where 0 < α < 1.

The CVaR, also known as average Value-at-Risk (AVaR), is the expected

loss worse than the VaR [83, 84]. The CVaR is defined by

CVaR(1−α)100%(r) = ETLα100%(r) =
1

α

∫ α

0

VaR(1−β)100%dβ

where 0 < α < 1. When severe losses hit a given VaR level, the CVaR tells
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how seriously bad in average those losses are, i.e. it is the average loss of the

extreme losses. For continuous distributions, it is identical to the extreme tail

loss (ETL).

An advantage of CVaR over VaR is the coherency of the risk measure

[8, 20, 84]. The definition of the coherent risk measure is given in the original

literatures on the coherent risk measures [8, 20, 84]. Another advantage is that

the CVaR encodes more information on the downside tail. For example, even

if the VaR levels of two different portfolios are same, one with the fatter tail

exhibits the larger CVaR.

Stable tail adjusted return ratio

The Sharpe ratio considers deviations along downside and upside directions.

Since the deviation in the upward direction is not an actual risk, much atten-

tion on the downslide risk should be paid. The stable tail adjusted return ratio

(STARR) is introduced by Martin et al. [71] in order to distinguish the risk

from the deviation. The standard deviation in the denominator of the Sharpe

ratio definition is replaced with the CVaR. The STARR is defined by

STARR(1−α)100% =
E(r − rf )

CVaR(1−α)100%(r − rf )

where 0 < α < 1. In this paper, the linearized version of STARR is used in

the paper and the linearized STARR is defined by

STARR(1−α)100% = E(r − rf )− CVaR(1−α)100%(r − rf ).
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Since larger CVaR is achieved by riskier assets, the STARR for riskier assets

becomes smaller. Meanwhile, less riskier, larger STARR.

Rachev ratio

The return distribution of financial assets has two tails, i.e. downside and

upside tails. The upper tails are favorable but the lower tails are undesirable.

The Rachev ratio (R-ratio) is the ratio of the expected upward tail gain to the

expected downside tail loss. It is defined by

RR(α, β) =
CVaR(1−α)100%(rf − r)
CVaR(1−β)100%(r − rf )

where 0 ≤ α, β ≤ 1. The higher R-ratio is more preferred.

Classification of the reward-risk measures

These reward-risk measures can be categorized into two classes. The first

class includes ratio-based measures such as R-ratio and Sharpe ratio. With

the ratio measures, the reward is scaled by the risk. The second class is risk-

based measures. The CVaR is one of the measures in this category and the

linearized STARR is also a member in the second group.
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4.2 Dataset and methodology

4.2.1 Dataset

Various asset classes and markets are employed in order to conduct robust tests

on the profitability of the reward-risk momentum strategies. The datasets con-

sist of currency markets, commodity markets, global stock benchmark indices,

South Korea KOSPI 200 universe, SPDR U.S. sector ETFs, and U.S. S&P 500

universe.

Currency markets

The historical currency prices are downloaded from Bloomberg and the length

of the covered period is 20 years from January 1993 to December 2012. The

currency rates are spot prices in U.S. dollar and obtained with respect to

Eastern Standard Timezone. The instruments are followings: ARSUSD (Ar-

gentina), AUDUSD (Australia), BRLUSD (Brazil), CADUSD (Canada), CHFUSD

(Swiss), CLPUSD (Chile), CNYUSD (China), COPUSD (Columbia), CZKUSD

(Czech), DEMUSD (German), DKKUSD (Denmark), EGPUSD (Egypt), EU-

RUSD (Euro), GBPUSD (U.K.), GHSUSD (Ghana), HKDUSD (Hong Kong),

HUFUSD (Hungary), IDRUSD (Indonesia), ILSUSD (Israel), INRUSD (In-

dia), ISKUSD (Iceland), JPYUSD (Japan), KESUSD (Kenya), KRWUSD

(South Korea), MXNUSD (Mexico), MYRUSD (Malaysia), NGNUSD (Nige-

ria), NOKUSD (Norway), NZDUSD (New Zealand), PENUSD(Peru), PH-

PUSD (Philippines), PLNUSD (Poland), RUBUSD (Russia), SARUSD (Saudi),

SEKUSD (Sweden), SGDUSD (Singapore), THBUSD (Thai), TRYUSD (Turkey),

TWDUSD (Taiwan), VEFUSD (Venezuela), XAFUSD (Central Africa), and
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ZARUSD (South Africa).

Commodity markets

The commodity price information between January 1993 and December 2012

is collected from Bloomberg. The historical price of a generic future contract is

obtained. The whole momentum universe includes following tickers: BO (Soy-

bean Oil: CBT), C (Corn: CBT), CC (Cocoa: NYB), CL (WTI: NYM), CO

(Brent:N YM), COA (Coal: NYM), CT (Cotton: NYB), DA (Milk: CME),

DL (Ethanol: CBT), FC (Feeder Cattle: CME), GC (Gold: CMX), HG (Cop-

per: CMX), HO (Heating Oil: NYM), HU(Gasoline: NYM) JO (Orange Juice:

NYB), KC (Coffee: NYB), LA (Aluminium Primary: LME), LC (Live Cattle:

CME), LCO (Cobalt: LME), LH (Lean Hogs: CME), LL (Lead: LME), LN

(Nickel: LME), LT (Tin: LME), LX (Zinc: LME), LY (Aluminium Alloy:

LME), MOL (Molybden: LME), NG (Natural Gas: NYM), O (Oat: CBT),

OR (Rubber: SGX), PA (Palladium: NYM), PB (Pork Belly: CME), PGP

(Polypropylen: NYM), PL (Platinum: NYM), PN (Propane: NYM), QS (Gas

Oil: ICE), RR (Rice: CBT), S (Soybean: CBT), SB (Sugar: NYB), SI (Silver:

CMX), SM (Soybean Meal: CBT), TO (Dubai: NYM), W (Wheat: CBT),

and XB (RBOB Gasoline: NYM).

Global stock benchmark indices

The daily data of global stock benchmark indices are downloaded from Bloomberg.

The time horizon covers the period from January 1993 to December 2012. The

indices are converted to dollar values and the considered index tickers are AEX

(Netherland), AS51 (Australia), BEL20 (Belgium), CAC 40 (France), CCMP
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(U.S. NASDAQ), DAX (German), FBMKLCI (Malaysia), FSSTI (Singapore),

FTSEMIB-MIB30 (Italy), HSI (Hong Kong), IBEX (Spain), IBOV (Brazil),

IGBC (Columbia), IGBVL (Peru), INDU (U.S. Dow Jones), IPSA (Chile), JCI

(Indonesia), KOSPI (South Korea), MERVAL (Argentina), MEXBOL (Mex-

ico), NKY (Japan), NZSE50FG (New Zealand), OMX (Sweden), PCOMP

(Philiphine), PSI20 (Portuguese), RTSI$ (Russia), SENSEX (India), SET

(Thailand), SHCOMP (China), SMI (Swiss), SPTSX (Canada), SPX (U.S.

S&P 500), SX5E (Euro), TWSE (Taiwan), UKX (U.K.), and VNINDEX(Vietnam).

South Korea equity market: KOSPI 200

The price history and component-change log are obtained from Korea Ex-

change. The market universe for the momentum strategy consists of the re-

cent 10-year (2003–2012) components of the KOSPI 200 which is one of main

benchmark indices in Korean stock markets.

U.S. equity market: SPDR sector ETFs

The data for SPDR U.S. sector ETFs are collected from Bloomberg. Among

various sector ETFs, SPDR sector ETFs are chosen because the same length

of historical price is available for all industry sectors. The time horizon is

the period between January 1999 and December 2012. The ETF universe

includes XLB (Materials), XLE (Energy), XLF (Financial), XLI (Industrial),

XLK (Technology), XLP (Consumer Staples), XLU (Utilities), XLV (Health

Care), and XLY (Consumer Discretionary).
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U.S. equity market: S&P 500

The price data and component-change log for S&P 500 components are down-

loaded from Bloomberg. The time span covers from January 2003 to December

2012.

4.2.2 Methodology

The portfolio construction for this study is identical to the traditional momen-

tum portfolio construction in Jegadeesh and Titman [53]. The only difference

is the usage of alternative ranking criteria for the formation of momentum

ranking groups. For comparison, the first criterion is cumulative return over

a ranking period. Other stock selection rules used for portfolio construction

are the reward-risk measures introduced in the previous section: Sharpe ratio,

CVaR, STARR, and R-ratio. Among these reward-risk measures, Sharpe ra-

tio, STARR, and R-ratio are already used in Rachev et al. [79] and CVaR is

newly adopted in this paper.

Given a ranking rule calculated from the past six months of estimation

period, assets are sorted from the highest risk to the lowest risk and grouped

into several baskets. In this paper, the size of the groups is 3 except for the

KOSPI 200 and S&P 500 universes which use 10 different ranking groups.

Assets with the highest risk form a loser basket and the safest assets are

assigned to a winner basket. Momentum return is the return difference between

the winner and loser quantiles after a holding period. The six months of

holding period are used in this study. In every six months, the new portfolio

is constructed and maintained until the end of the holding period, i.e. it is a
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non-overlapping portfolio.

The price data are converted into summary data which contain the reward-

risk measures and cumulative returns over the periods. Some summary results

for several instruments in certain periods are ignored if enough numbers of

data points in the period are not given. The minimum number of the data in

the period is 21 days corresponding to the trading dates in one month. This

ignorance is reasonable for the case that some instruments could have few data

points during the period. In this case, it is impossible to estimate the param-

eters of the CTS distribution by using maximum likelihood estimation with

very small numbers of data points. The Sharpe ratio, VaR, CVaR, STARR,

and R-ratio are calculated in daily scale. The maximum drawdown is obtained

from the entire history of the portfolio performance.

4.3 Results

4.3.1 Currency markets

According to the summary statistics of the strategies found in Table 4.1, the

R-ratio based strategies in the currency universe outperform the traditional

momentum strategy which obtains the monthly return of 0.33% and the stan-

dard deviation of 2.33%. In particular, the R-ratio(50%, 9X%)-based portfolios

achieve monthly 0.44%–0.52%. The standard deviations of these portfolios are

about 20% smaller than that of the original momentum strategy. In addition

to that, the average monthly returns of the R-ratio(9X%,9X%) portfolios are

in the range between 0.31% and 0.36%. The volatility levels of these strate-
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gies are also 40% lower than that of the cumulative return portfolio. Other

reward-risk measures such as Sharpe ratio, CVaRs, and STARR ratios pro-

vide the portfolios underperforming the traditional trend-following strategy

and these portfolios except for the Sharpe ratio based strategy are not less

volatile.

With the R-ratio(50%,9X%) criteria, the momentum of each ranking bas-

ket becomes stronger. The winner groups of the R-ratio(50%,9X%) portfolios

outperform that of the benchmark strategy. Additionally, they are the best

winner groups among all the reward-risk momentum portfolios. Opposite to

the winner baskets, the loser baskets of the R-ratio(50%,9X%) strategies are

the worst performers among all the selection rules including the cumulative

return. The lagging in the short basket enables the strategies beat the tra-

ditional momentum strategy. The short baskets of the R-ratio(9X%,9X%)

portfolios show substantial downside momentum but the opposite baskets are

not as strong as the winner portfolio of the cumulative return based strategy.

The pattern of skewness also explains why the momentum by the alterna-

tive ranking rules tends to be stronger. For all the reward-risk momentum

portfolios, the long (short) baskets exhibit larger (smaller) skewness than the

cumulative return strategy does.

The dominant performance of the reward-risk strategies is achieved by tak-

ing less risk. In Table 4.2, it is obvious that every R-ratio strategies exhibit

lower 95% VaR and CVaR levels. Another remarkable characteristic of the

reward-risk portfolios is that the maximum drawdowns of 10.96%–14.83% are

significantly smaller than 26.90% by the cumulative return portfolio. More-

over, the top 3 largest Sharpe ratios are achieved by the R-ratio(50%,X%)
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Table 4.1: Summary statistics of monthly 6/6 momentum portfolios in cur-
rency markets

Criterion Portfolio Summary statistics
Mean Std. Dev. Skewness Kurtosis Final Wealth

Cumulative return Winner (W) 0.0321 2.0745 -0.7740 5.4388 0.0751
Loser (L) -0.3050 2.3322 -0.1929 2.5957 -0.7138
W – L 0.3371 2.3313 -0.1021 1.0460 0.7889

Sharpe ratio Winner (W) -0.1120 2.0836 -0.6513 2.7086 -0.2620
Loser (L) -0.1464 1.8203 -0.2558 3.1569 -0.3426
W – L 0.0344 1.8672 -0.1799 1.4097 0.0806

CVaR(99%) Winner (W) -0.1505 1.1370 -0.0961 11.2495 -0.3522
Loser (L) -0.2853 2.5900 -0.4855 2.1489 -0.6677
W – L 0.1348 2.1998 0.4062 2.5712 0.3155

CVaR(95%) Winner (W) -0.1715 1.1056 0.0751 13.8207 -0.4012
Loser (L) -0.2184 2.6403 -0.3228 1.6908 -0.5110
W – L 0.0469 2.3552 0.1908 2.6448 0.1098

CVaR(90%) Winner (W) -0.1743 1.1531 0.1157 11.8002 -0.4078
Loser (L) -0.1944 2.6707 -0.3040 1.6134 -0.4549
W – L 0.0201 2.4136 0.1001 2.4119 0.0471

STARR(99%) Winner (W) -0.1533 1.1495 -0.1178 10.8946 -0.3586
Loser (L) -0.2692 2.5865 -0.4183 1.8526 -0.6299
W – L 0.1159 2.2168 0.3393 2.3994 0.2713

STARR(95%) Winner (W) -0.1761 1.1052 0.0937 13.8560 -0.4120
Loser (L) -0.2534 2.6841 -0.4140 2.1140 -0.5929
W – L 0.0773 2.3860 0.2367 2.7273 0.1809

STARR(90%) Winner (W) -0.1573 1.1573 0.1509 11.7092 -0.3680
Loser (L) -0.2025 2.6763 -0.2977 1.6779 -0.4739
W – L 0.0452 2.4405 0.0818 2.3401 0.1059

R-ratio(99%,99%) Winner (W) -0.0133 1.7425 -0.0727 1.5723 -0.0310
Loser (L) -0.3182 1.8715 -0.5392 3.1297 -0.7447
W – L 0.3050 1.5420 0.2915 2.8258 0.7137

R-ratio(95%,95%) Winner (W) 0.0058 1.7369 -0.4895 0.9809 0.0135
Loser (L) -0.3549 1.7668 -0.3822 3.3337 -0.8305
W – L 0.3607 1.4942 -0.0412 1.5296 0.8441

R-ratio(90%,90%) Winner (W) -0.0144 1.8151 -0.7065 2.0349 -0.0337
Loser (L) -0.3773 1.6853 -0.3615 3.9879 -0.8830
W – L 0.3629 1.4896 -0.2404 2.2522 0.8492

R-ratio(50%,99%) Winner (W) 0.0737 2.1660 -0.7656 3.0856 0.1725
Loser (L) -0.4499 1.4829 -0.6964 4.8830 -1.0529
W – L 0.5237 1.8569 -0.2688 3.1975 1.2254

R-ratio(50%,95%) Winner (W) 0.0722 2.0517 -0.7429 3.2594 0.1690
Loser (L) -0.4370 1.5174 -0.5894 4.5845 -1.0225
W – L 0.5092 1.7138 -0.1580 3.8655 1.1916

R-ratio(50%,90%) Winner (W) 0.0402 2.0641 -0.6512 2.3895 0.0940
Loser (L) -0.3994 1.5007 -0.5285 4.7091 -0.9346
W – L 0.4395 1.7131 -0.0681 4.2952 1.0285

strategies. Besides the R-ratio strategies, the highest Sharpe ratio and lowest

maximum drawdown are obtained by the Sharpe ratio momentum strategy.

The reward-risk measures of any other ranking criteria are worse than those
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of the traditional momentum. The R-ratio(50%,95%) and R-ratio(50%,90%)

strategies are characterized by larger CTS tail index α values which control the

both tails simultaneously. Most of the other reward-risk strategies generally

have larger λ− parameters than the benchmark strategy.

With the VaR and CVaR levels of each ranking basket, the selection rules

are categorized into two groups. The first class of the reward-risk measures are

characterized by higher (lower) VaR and CVaR levels for the winner (loser)

group. The R-ratios and Sharpe ratio are included in this class. The second

class is opposite to the first class, i.e. the winner (loser) group is less (much)

riskier than that of the cumulative return strategy. The second class consists

of the CVaR and the STARR criteria. The same classification is also applied to

the CTS parameters. For the criteria in the first class, the λ− values of the win-

ners are greater than the loser groups. In particular, for the R-ratio(50%,9X%)

strategies, the λ− parameters of the long (short) position are larger (smaller)

than that of the traditional momentum winner. This explain why the winner

(loser) groups of the R-ratio(50%,9X%) portfolios outperform (underperform)

the momentum winner (loser). For the second class, the situation is opposite

to the first class. The downside tail indices of the winner portfolios are below

the levels of the downside tail indices for the loser. Additionally, the smaller

λ− for the winners and larger λ− for the losers are found. It is the reason why

these strategies are not as good as the strategies by the selection rules in the

first class strategies or the cumulative return portfolio.
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Table 4.2: Summary risk statistics of monthly 6/6 momentum portfolios in
currency markets

Criterion Portfolio CTS parameters Risk measures
α λ+ λ− Sharpe VaR95% CVaR95% MDD

Cumulative return Winner (W) 0.3265 1.2321 1.2063 0.0000 0.3200 0.4291 29.98
Loser (L) 1.0536 0.5899 0.5726 -0.0001 0.2962 0.4555 64.37
W – L 0.1465 1.3847 1.4100 0.0002 0.3261 0.4293 26.90

Sharpe ratio Winner (W) 0.0584 1.4679 1.4174 -0.0000 0.3445 0.4729 47.73
Loser (L) 0.3092 1.0731 1.0843 -0.0001 0.2958 0.3679 46.76
W – L 0.1027 1.4560 1.4315 0.0113 0.3963 0.4520 24.25

CVaR(99%) Winner (W) 1.2291 0.2897 0.2671 0.0000 0.1712 0.2174 42.02
Loser (L) 0.0500 1.6772 1.5845 -0.0125 0.4893 0.6918 62.23
W – L 0.0501 1.5106 1.5468 0.0031 0.4540 0.6377 27.70

CVaR(95%) Winner (W) 1.2847 0.2185 0.2040 0.0000 0.1810 0.2169 43.36
Loser (L) 0.0500 1.7227 1.6260 -0.0064 0.5036 0.7111 59.02
W – L 0.0500 1.5408 1.5664 -0.0021 0.4585 0.6398 32.19

CVaR(90%) Winner (W) 1.3343 0.1935 0.1847 -0.0000 0.1811 0.2105 44.36
Loser (L) 0.0500 1.7320 1.6572 -0.0022 0.4989 0.7077 56.78
W – L 0.0500 1.5443 1.5765 -0.0034 0.4734 0.6584 33.55

STARR(99%) Winner (W) 1.2225 0.2841 0.2664 0.0000 0.1706 0.2201 42.07
Loser (L) 0.0500 1.6806 1.5912 -0.0116 0.4772 0.6733 61.92
W – L 0.0501 1.5352 1.5734 0.0039 0.4420 0.6174 27.76

STARR(95%) Winner (W) 1.2881 0.2160 0.2041 0.0000 0.1633 0.2162 43.43
Loser (L) 0.0500 1.7078 1.6164 -0.0093 0.5025 0.7101 61.57
W – L 0.0502 1.5230 1.5469 -0.0001 0.4690 0.6604 32.61

STARR(90%) Winner (W) 1.2620 0.2207 0.2205 0.0000 0.1637 0.2127 43.90
Loser (L) 0.0500 1.6719 1.6098 -0.0036 0.5105 0.7212 58.21
W – L 0.0500 1.5199 1.5387 -0.0020 0.4835 0.6797 33.22

R-ratio(99%,99%) Winner (W) 0.0500 1.6266 1.6361 0.0054 0.3023 0.4289 35.24
Loser (L) 0.3003 1.0894 1.0830 0.0022 0.2316 0.3535 63.39
W – L 0.5974 1.1324 1.2882 0.0127 0.2212 0.3161 14.44

R-ratio(95%,95%) Winner (W) 0.0500 1.6630 1.6881 0.0094 0.3294 0.4600 35.65
Loser (L) 0.4629 0.9745 0.9448 -0.0002 0.2304 0.3563 64.74
W – L 0.1903 1.5207 1.6450 0.0264 0.2452 0.3418 12.25

R-ratio(90%,90%) Winner (W) 0.0501 1.6728 1.6901 0.0125 0.3336 0.4658 34.57
Loser (L) 0.9131 0.6500 0.5814 0.0014 0.2211 0.3371 65.09
W – L 0.2621 1.2970 1.3826 0.0250 0.2816 0.3495 10.96

R-ratio(50%,99%) Winner (W) 0.0500 1.6440 1.6473 0.0116 0.3919 0.5533 27.00
Loser (L) 1.3377 0.3170 0.2621 -0.0001 0.1780 0.2770 67.89
W – L 0.0624 1.5050 1.5960 0.0363 0.3310 0.4512 14.83

R-ratio(50%,95%) Winner (W) 0.0500 1.5884 1.5990 0.0243 0.3717 0.5262 28.34
Loser (L) 1.1848 0.3975 0.3456 -0.0001 0.2248 0.3424 68.16
W – L 1.2444 0.5611 0.5777 0.0326 0.3044 0.3960 13.30

R-ratio(50%,90%) Winner (W) 0.0505 1.6138 1.6224 0.0147 0.3646 0.5146 33.36
Loser (L) 1.2180 0.3736 0.3352 -0.0001 0.2299 0.3613 65.65
W – L 1.2080 0.5865 0.5558 0.0264 0.2920 0.3800 12.46
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4.3.2 Commodity markets

Similar to the currency market, it is found that the reward-risk portfolios in

commodity markets also beat the cumulative return based strategy. According

to Table 4.3, the alternative momentum strategies in the commodity markets

exhibit negative average returns regardless of ranking criterion and outperform

the traditional trend-following strategy with the monthly return of -0.79%.

Those strategies are also less volatile with smaller standard deviation than

the benchmark strategy with the volatility of 5.59%. The R-ratio strategies

generate the larger average returns of -0.33%– -0.06% and the smaller standard

deviations in the range of 3.99%–4.31%. In particular, the R-ratio(50%,9X%)

strategies achieve the best performance among the R-ratio criteria. The next

best portfolios are the Sharpe ratio and CVaR(90%) strategies with monthly

-0.22% and -0.26%, respectively.

In the commodity markets, the reward-risk measures are good at filtering

the momentum signal. The behaviors of the winner and loser groups are similar

to the case in the currency universe. All winner groups in the alternative

ranking rules are followed by the winner basket of the traditional momentum

portfolio in performance. The best winner performer is the R-ratio(50%,90%)

portfolio with monthly 0.72%. The CVaR(99%) and Sharpe ratio criteria

provide the next best winner baskets with monthly 0.66% and 0.61%. These

long positions of the alternative strategies are at the lower volatility levels

than that of the cumulative return strategy. Additionally, all the loser groups

underperform the loser group of the cumulative return criterion. The poor

performance in short position is desirable for increasing the profitability of the
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Table 4.3: Summary statistics of monthly 6/6 momentum portfolios in com-
modity markets

Criterion Portfolio Summary statistics
Mean Std. Dev. Skewness Kurtosis Final Wealth

Cumulative return Winner (W) 0.4143 5.1784 -1.0806 5.2535 0.9694
Loser (L) 1.2053 4.8953 -0.2249 1.3746 2.8204
W – L -0.7910 5.5935 -0.2445 0.2579 -1.8510

Sharpe ratio Winner (W) 0.6064 5.1466 -0.8979 3.6700 1.4190
Loser (L) 0.8273 4.3070 -0.6332 2.5603 1.9360
W – L -0.2209 4.5718 -0.0674 -0.3583 -0.5170

CVaR(99%) Winner (W) 0.6631 3.6342 -0.8517 3.5270 1.5517
Loser (L) 0.9276 5.2643 -0.2828 1.2405 2.1706
W – L -0.2645 4.3264 -0.2562 0.9318 -0.6189

CVaR(95%) Winner (W) 0.5997 3.4050 -0.7986 3.9883 1.4033
Loser (L) 0.9575 5.3540 -0.3387 1.2568 2.2406
W – L -0.3578 4.4633 -0.2766 0.6479 -0.8373

CVaR(90%) Winner (W) 0.5338 3.3410 -0.9823 4.0281 1.2491
Loser (L) 0.9718 5.4232 -0.3288 1.1617 2.2741
W – L -0.4380 4.5934 -0.1550 0.4317 -1.0250

STARR(99%) Winner (W) 0.5907 3.7046 -1.0038 4.3935 1.3823
Loser (L) 0.9294 5.2586 -0.2552 1.4219 2.1747
W – L -0.3387 4.3930 -0.2675 0.9513 -0.7925

STARR(95%) Winner (W) 0.5376 3.5036 -0.9090 3.6746 1.2580
Loser (L) 0.9299 5.3508 -0.2844 1.3115 2.1759
W – L -0.3923 4.4493 -0.3029 0.5762 -0.9179

STARR(90%) Winner (W) 0.4963 3.5004 -1.0908 4.9997 1.1613
Loser (L) 0.9559 5.4563 -0.2540 1.2031 2.2367
W – L -0.4596 4.7060 -0.1914 0.5041 -1.0754

R-ratio(99%,99%) Winner (W) 0.5915 4.4427 -0.8225 3.0958 1.3840
Loser (L) 0.8540 4.3695 -0.4970 1.3058 1.9984
W – L -0.2626 4.0172 0.0491 0.2316 -0.6144

R-ratio(95%,95%) Winner (W) 0.5374 4.2729 -1.0231 4.3569 1.2576
Loser (L) 0.8656 4.1993 -0.2917 1.5985 2.0255
W – L -0.3282 3.9956 -0.1576 0.1118 -0.7679

R-ratio(90%,90%) Winner (W) 0.5887 4.4228 -1.0648 4.6065 1.3775
Loser (L) 0.8720 4.1982 -0.3809 1.7478 2.0406
W – L -0.2834 4.0549 -0.2807 0.2554 -0.6631

R-ratio(50%,99%) Winner (W) 0.5581 4.8855 -1.1222 4.5402 1.3059
Loser (L) 0.7970 4.1559 -0.6035 2.6882 1.8650
W – L -0.2390 4.1749 -0.1373 0.8693 -0.5592

R-ratio(50%,95%) Winner (W) 0.5819 4.6565 -0.9870 4.0067 1.3616
Loser (L) 0.8092 4.2402 -0.5323 2.5387 1.8936
W – L -0.2274 4.2693 -0.3293 0.5660 -0.5320

R-ratio(50%,90%) Winner (W) 0.7209 4.7138 -0.8867 3.0352 1.6868
Loser (L) 0.7806 4.3313 -0.4248 2.3588 1.8266
W – L -0.0597 4.3054 -0.4928 0.9752 -0.1397

momentum portfolio.

The risk profiles of these reward-risk strategies are more impressive. As

seen in Table 4.4, the maximum drawdowns of the strategies are in the range
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of 52.20–71.68%, substantially smaller than that of the traditional trend-

following strategy, 85.75%. The 95% VaRs and CVaRs by the reward-risk

strategies are also below the 95% VaR and CVaR levels of the original mo-

mentum portfolio. Moreover, the Sharpe ratios of the alternative strategies,

except for the STARR(90%) strategy, are larger than that of cumulative return

strategy. The different patterns in the risk characteristics are also observed as

it is found in the currency markets. The CVaR and STARR strategies exhibit

larger λ− values than the momentum strategy. Meanwhile, with the R-ratio

and Sharpe ratio, the λ− values of the portfolios are smaller than that of the

benchmark strategy except for some R-ratio portfolios.

The risk patterns of the long/short positions also show the superiority of

the alternative reward-risk strategies. The smaller VaR and CVaR levels are

achieved by the winner groups of these strategies. Since the long baskets of

the reward-risk strategies outperform that of the traditional momentum, the

lower VaR and CVaR levels of the winner groups impose that these groups

generate the more profits by accepting the lower risks. The Sharpe ratios

and maximum drawdowns of the long baskets are superior to the reward-risk

measures of the winner basket by the cumulative return selection rule. Other

ranking portfolios feature lower VaR and CVaR levels for the winner groups

but larger risk measures for the loser groups. The lower risk acceptance of the

long positions is also cross-checked by the higher λ− values than that of the

long position for the momentum portfolio. In the case of short position, the

CTS downside tail indices of R-ratio and Sharpe ratio strategies are smaller

than the short position of the cumulative return. Meanwhile, the CVaR and

STARR strategies have larger λ− values.
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Table 4.4: Summary risk statistics of monthly 6/6 momentum portfolios in
commodity markets

Criterion Portfolio CTS parameters Risk measures
α λ+ λ− Sharpe VaR95% CVaR95% MDD

Cumulative return Winner (W) 1.3720 0.9916 0.6312 0.0350 1.0760 1.5650 61.66
Loser (L) 0.1958 2.0049 1.9494 0.0604 1.1308 1.5448 35.93
W – L 0.9216 1.4964 1.3690 -0.0176 1.3787 1.8632 85.75

Sharpe ratio Winner (W) 0.4635 2.0927 1.6750 0.0430 1.1685 1.6479 59.19
Loser (L) 0.8170 1.2921 1.2816 0.0414 1.1398 1.5368 43.66
W – L 0.9183 1.3461 1.1814 0.0005 1.4338 1.9571 58.31

CVaR(99%) Winner (W) 0.9785 1.2509 1.1633 0.0445 0.7570 1.0685 42.33
Loser (L) 0.2422 2.2452 1.9497 0.0489 1.2025 1.6235 44.40
W – L 1.0338 1.1273 1.5324 -0.0160 0.9733 1.2693 59.71

CVaR(95%) Winner (W) 0.9448 1.3126 1.1662 0.0492 0.7446 1.0528 43.76
Loser (L) 0.0500 2.4102 2.1969 0.0437 1.2350 1.6702 44.85
W – L 0.9278 1.3522 1.5423 -0.0146 1.0126 1.3319 64.68

CVaR(90%) Winner (W) 0.9245 1.3392 1.1408 0.0463 0.7632 1.0823 43.76
Loser (L) 0.0501 2.3793 2.1784 0.0439 1.2369 1.6871 44.56
W – L 0.3408 1.9163 2.0487 -0.0179 1.0914 1.4583 71.68

STARR(99%) Winner (W) 0.9331 1.3316 1.1827 0.0388 0.7990 1.1277 49.08
Loser (L) 0.0500 2.4853 2.2204 0.0436 1.2130 1.6169 44.50
W – L 1.1206 1.0505 1.3073 -0.0130 1.0099 1.3323 62.34

STARR(95%) Winner (W) 0.9266 1.3549 1.1489 0.0440 0.7475 1.0581 46.89
Loser (L) 0.2859 2.1234 1.9041 0.0441 1.2462 1.6939 44.85
W – L 0.9204 1.3606 1.6227 -0.0160 0.9901 1.3005 66.57

STARR(90%) Winner (W) 0.9181 1.3089 1.0937 0.0453 0.7500 1.0689 46.40
Loser (L) 0.0501 2.3661 2.1507 0.0437 1.2607 1.7114 38.78
W – L 0.9370 1.2727 1.4695 -0.0187 1.0747 1.4262 71.56

R-ratio(99%,99%) Winner (W) 0.4814 1.7380 1.6970 0.0329 1.0402 1.3394 52.62
Loser (L) 0.9261 1.5171 1.1059 0.0544 1.1560 1.6415 39.32
W – L 0.9285 1.3067 1.5299 -0.0129 1.2503 1.6093 65.03

R-ratio(95%,95%) Winner (W) 0.5422 1.7836 1.6769 0.0377 1.0174 1.3677 53.89
Loser (L) 0.9138 1.4485 1.1528 0.0517 1.1874 1.6781 39.76
W – L 0.9954 1.2907 1.3079 -0.0129 1.1978 1.5729 70.98

R-ratio(90%,90%) Winner (W) 0.0500 2.4029 2.2400 0.0438 1.0362 1.3952 53.33
Loser (L) 0.8122 1.5034 1.2426 0.0487 1.2531 1.7657 37.30
W – L 1.2229 0.9370 0.9757 -0.0060 1.1654 1.5548 70.40

R-ratio(50%,99%) Winner (W) 0.1966 2.2214 2.0415 0.0399 1.0994 1.4746 56.55
Loser (L) 1.0158 1.0838 0.9312 0.0433 0.9920 1.4269 38.76
W – L 1.2547 0.9740 0.9249 -0.0021 1.0660 1.4203 60.97

R-ratio(50%,95%) Winner (W) 0.9164 1.4355 1.2057 0.0409 1.0998 1.4837 53.13
Loser (L) 0.9421 1.2119 1.0704 0.0432 0.9968 1.4152 43.02
W – L 1.4945 0.6476 0.5690 0.0017 1.0466 1.4391 58.70

R-ratio(50%,90%) Winner (W) 0.9074 1.6374 1.3227 0.0483 1.0802 1.4626 51.92
Loser (L) 0.9641 1.2459 1.0570 0.0433 1.0282 1.4610 42.76
W – L 0.9620 1.3896 1.3335 0.0055 1.0946 1.4697 52.20
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4.3.3 Global stock benchmark indices

As seen in Table 4.5, the outperformance of the alternative portfolios is also

attained in the global stock benchmark index universe. While the cumula-

tive return criterion obtains monthly 0.51% with standard deviation of 4.23%,

the best performers are the R-ratio(90%,90%) and R-ratio(95%,95%) portfo-

lios with 0.63% and 0.58%, respectively. The standard deviations of these

strategies are 3.47% and 3.16%, much less volatile than the traditional mo-

mentum strategy. Accepting smaller return fluctuations, the STARR(90%),

Sharpe ratio, and R-ratio(50%,90%) also provide higher average returns than

the benchmark strategy. The performance of the R-ratio(50%,90%) and R-

ratio(99%,99%) strategies are comparable with the cumulative return portfo-

lio and the volatility level of those portfolios are significantly lower. Smaller

standard deviations are also obtained by the other selection rules.

The strong performance of the winner baskets in the reward-risk strate-

gies is found in the global benchmark index universe regardless of criterion.

The winner groups obtain 0.86%–1.18% and the top 4 best long positions are

from the R-ratio criteria. The long basket in the Sharpe ratio portfolio is also

followed by the cumulative return winner group. Additionally, the volatility

levels of these winner baskets are lower than the the benchmark case. The

skewness of every R-ratio long position is greater than the traditional momen-

tum case, i.e. the downside tails of the R-ratio strategies are thinner. For

loser groups, the average returns are in the range of 0.46–0.60% while the

cumulative return loser group achieves 0.49%. Although the loser groups of

the reward-risk momentum strategies tend to perform slightly better than the
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Table 4.5: Summary statistics of monthly 6/6 momentum portfolios in global
stock benchmark indices

Criterion Portfolio Summary statistics
Mean Std. Dev. Skewness Kurtosis Final Wealth

Cumulative return Winner (W) 0.9905 5.9325 -1.1304 3.7568 2.3178
Loser (L) 0.4851 6.6008 -0.7938 3.0113 1.1350
W – L 0.5054 4.2311 0.1320 0.8529 1.1827

Sharpe ratio Winner (W) 1.0586 5.8729 -1.2502 4.7906 2.4772
Loser (L) 0.5297 5.8772 -0.8649 3.6942 1.2396
W – L 0.5289 3.3999 -0.1069 0.5636 1.2377

CVaR(99%) Winner (W) 0.8723 4.9680 -1.1605 3.9285 2.0412
Loser (L) 0.5861 7.3019 -0.7672 1.9657 1.3715
W – L 0.2862 3.9970 0.4240 2.8749 0.6697

CVaR(95%) Winner (W) 0.8593 4.9428 -1.3736 5.1772 2.0107
Loser (L) 0.5398 7.3079 -0.7509 1.7926 1.2632
W – L 0.3194 4.0510 0.3798 2.4666 0.7475

CVaR(90%) Winner (W) 0.9216 5.0045 -1.2665 4.8889 2.1566
Loser (L) 0.4636 7.2697 -0.7344 1.6345 1.0848
W – L 0.4580 4.0226 0.3939 2.3733 1.0718

STARR(99%) Winner (W) 0.9361 4.9617 -1.3080 4.4615 2.1905
Loser (L) 0.5785 7.2497 -0.7217 1.7708 1.3537
W – L 0.3576 4.0123 0.3719 3.0792 0.8368

STARR(95%) Winner (W) 0.9017 5.0220 -1.3293 4.9186 2.1100
Loser (L) 0.5332 7.1981 -0.7311 1.8412 1.2477
W – L 0.3685 3.9964 0.2788 2.7878 0.8623

STARR(90%) Winner (W) 1.0039 5.0770 -1.3917 5.4502 2.3490
Loser (L) 0.4689 7.1887 -0.7465 1.7680 1.0972
W – L 0.5350 3.9795 0.4948 2.9160 1.2518

R-ratio(99%,99%) Winner (W) 1.0947 5.7644 -0.7168 2.2020 2.5617
Loser (L) 0.6166 5.8873 -1.0293 2.9335 1.4429
W – L 0.4781 2.8936 0.5906 3.8428 1.1188

R-ratio(95%,95%) Winner (W) 1.1799 5.9191 -0.6809 2.5225 2.7610
Loser (L) 0.5993 5.9333 -0.9607 3.0226 1.4025
W – L 0.5806 3.1583 0.1902 3.4522 1.3585

R-ratio(90%,90%) Winner (W) 1.1711 5.9908 -0.8077 3.3492 2.7405
Loser (L) 0.5449 6.0320 -1.0438 3.5434 1.2751
W – L 0.6262 3.4709 0.1290 2.5468 1.4653

R-ratio(50%,99%) Winner (W) 0.9422 5.9046 -1.0095 4.1233 2.2049
Loser (L) 0.5731 5.8747 -0.9605 4.1299 1.3410
W – L 0.3692 3.0054 -0.0994 2.6143 0.8639

R-ratio(50%,95%) Winner (W) 0.9426 5.8568 -0.9330 4.1479 2.2058
Loser (L) 0.5306 5.9947 -1.0009 3.6159 1.2415
W – L 0.4121 3.3019 -0.1268 2.0959 0.9643

R-ratio(50%,90%) Winner (W) 1.0995 6.0004 -0.9742 4.4194 2.5729
Loser (L) 0.5948 6.0052 -0.9199 3.6425 1.3919
W – L 0.5047 3.3742 -0.2066 2.0993 1.1810

original momentum strategy, smaller skewness is obtained by the short posi-

tions of the R-ratio and Sharpe-ratio portfolios. The smaller skewness imposes

that the loser baskets are exposed to the more downside tail risk which are
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likely to generate the profits from the short positions.

In Table 4.6, it is found that the reward-risk strategies, in particular, the

R-ratio strategies are less riskier than the traditional trend-following strat-

egy. With 95% VaR and CVaR, all the reward-risk strategies, except for

the STARR(99%) strategy, are less riskier than the benchmark strategy. Ad-

ditionally, the maximum drawdowns of the R-ratio strategies are substan-

tially lower than that of the cumulative return strategy. The Sharpe ratio,

CVaR, and STARR momentum portfolios exhibit the comparable sizes of max-

imum drawdowns. Larger Sharpe ratios are obtained by the Sharpe ratio, R-

ratio(90%,90%), R-ratio(50%,90%), and R-ratio(95%,95%) strategies. In this

sense, the reward-risk portfolios generate more profits under less exposure to

the risk. In particular, the R-ratio and Sharpe ratio criteria are better both

in performance and risk.

The maximum drawdown of each ranking group is also well-matched to the

purpose of the group. The winner baskets of the reward-risk strategies exhibit

smaller maximum drawdowns and the maximum drawdowns of the losers are

higher. The 95% VaR and CVaR levels of these portfolios are slightly different

with the maximum drawdown. The CVaR and STARR criteria feature lower

VaRs and CVaRs than the long basket of the R-ratio and Sharpe ratio port-

folio. The short baskets of the alternative portfolios obtain lower VaR and

CVaR values than the momentum strategy.
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Table 4.6: Summary risk statistics of monthly 6/6 momentum portfolios in
global stock benchmark indices

Criterion Portfolio CTS parameters Risk measures
α λ+ λ− Sharpe VaR95% CVaR95% MDD

Cumulative return Winner (W) 0.0500 2.0979 1.9009 0.0968 0.6016 0.8975 66.04
Loser (L) 0.0503 1.8561 1.7458 0.0150 1.1133 1.6152 59.87
W – L 0.0500 1.9911 1.9836 0.0397 0.8778 1.2456 39.25

Sharpe ratio Winner (W) 0.1611 1.9514 1.7597 0.0890 0.6364 0.9404 61.60
Loser (L) 0.8824 1.2630 1.1015 0.0478 0.9627 1.4030 56.83
W – L 0.0500 1.8594 1.8528 0.0450 0.7009 0.9868 36.68

CVaR(99%) Winner (W) 0.7714 1.5418 1.2731 0.0811 0.6222 0.9331 57.18
Loser (L) 0.0501 1.9593 1.8333 0.0588 0.9804 1.4291 64.82
W – L 0.0505 1.8343 1.9519 -0.0156 0.8550 1.1789 38.42

CVaR(95%) Winner (W) 0.0500 2.0608 1.9121 0.0784 0.6208 0.9172 58.40
Loser (L) 0.0500 1.8935 1.7896 0.0563 0.9796 1.4324 64.76
W – L 0.0501 1.7456 1.8405 -0.0131 0.8602 1.1868 39.25

CVaR(90%) Winner (W) 0.0500 2.1249 1.9480 0.0842 0.6146 0.8973 57.76
Loser (L) 0.0500 1.9191 1.8091 0.0532 0.9805 1.4302 64.79
W – L 0.0500 1.7962 1.8969 -0.0041 0.8606 1.1760 40.41

STARR(99%) Winner (W) 0.1835 2.0098 1.8181 0.0850 0.6149 0.9185 59.81
Loser (L) 0.0502 1.9893 1.8419 0.0580 0.9843 1.4329 62.56
W – L 1.3829 0.3941 0.4447 -0.0000 0.8781 1.3049 38.01

STARR(95%) Winner (W) 0.0500 2.1778 1.9757 0.0887 0.5990 0.8842 60.07
Loser (L) 0.0501 1.9396 1.8233 0.0555 0.9902 1.4404 63.10
W – L 0.0500 1.7790 1.8637 0.0005 0.8368 1.1590 40.45

STARR(90%) Winner (W) 0.0500 2.2164 2.0290 0.0899 0.5915 0.8724 61.03
Loser (L) 0.0501 1.9499 1.8431 0.0522 1.0621 1.5389 62.43
W – L 0.0500 1.7647 1.8517 0.0077 0.8716 1.2138 39.07

R-ratio(99%,99%) Winner (W) 0.0500 1.9375 1.8094 0.0682 0.7317 1.0762 61.95
Loser (L) 0.0530 2.0874 1.9035 0.0667 0.6960 1.0160 59.22
W – L 0.0500 1.8410 1.8344 0.0285 0.5720 0.7874 26.74

R-ratio(95%,95%) Winner (W) 0.0500 1.8674 1.7495 0.0814 0.7375 1.0939 61.81
Loser (L) 0.0500 1.9943 1.8418 0.0563 0.7425 1.0792 60.21
W – L 0.0500 1.9181 1.8727 0.0386 0.5661 0.7748 28.23

R-ratio(90%,90%) Winner (W) 0.0500 1.9043 1.7863 0.0815 0.7076 1.0518 63.97
Loser (L) 0.0501 1.8711 1.7454 0.0482 0.7780 1.1356 60.17
W – L 0.0500 1.8931 1.8639 0.0442 0.5518 0.7645 30.55

R-ratio(50%,99%) Winner (W) 0.0500 2.0586 1.8799 0.0616 0.6885 1.0175 61.59
Loser (L) 0.0500 1.8478 1.7322 0.0530 0.8224 1.2045 63.54
W – L 0.0500 1.6900 1.7341 0.0318 0.5997 0.8451 26.25

R-ratio(50%,95%) Winner (W) 0.0500 2.1160 1.9211 0.0741 0.6881 1.0143 60.93
Loser (L) 0.0500 1.8117 1.7401 0.0474 0.8394 1.2234 61.02
W – L 0.0500 1.8467 1.8361 0.0328 0.5631 0.7899 27.79

R-ratio(50%,90%) Winner (W) 0.0500 2.0039 1.8754 0.0878 0.6834 1.0134 62.75
Loser (L) 0.0501 1.8849 1.7849 0.0537 0.8326 1.2112 59.56
W – L 0.0500 2.0022 1.9599 0.0422 0.5403 0.7582 23.14
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4.3.4 South Korea equity market: KOSPI 200

In the KOSPI 200 universe, the reward-risk momentum strategies not only out-

perform the cumulative return strategy but also feature lower volatility. Ac-

cording to the summary statistics of the reward-risk strategies in Table 4.7, the

best strategies are given by the STARR criteria. The STARR(90%) achieves

monthly 1.62% with the volatility of 6.73% while the cumulative return pro-

vides monthly 0.97% with the standard deviation of 7.56%. The STARR(95%)

and STARR(99%) portfolios are the next top performer obtaining the average

returns of 1.53% and 1.50% and the monthly return fluctuation levels of the

portfolios are 6.68% and 5.98%, respectively. The CVaR portfolios also ob-

tain better performance and are less volatile than the cumulative return. The

CVaR(99%), CVaR(95%) and CVaR(90%) based strategies generate 1.48%,

1.35%, and 1.24%, respectively. These CVaR criteria also have smaller stan-

dard deviations, 6.27%–6.94%.

Similar to other asset classes, the R-ratio(50%,9X%) strategies also fea-

ture better performance than the traditional momentum strategy. The R-

ratio(50%,99%) and R-ratio(50%,95%) strategies generate the monthly prof-

its of 1.15%. The two alternative portfolios with the monthly volatility lev-

els of 4.45%–4.67% are much less volatile not only than the original trend-

following strategy but also than the CVaR and STARR portfolios. The R-

ratio(50%,90%) portfolio with the average return of 1.00% and the volatility

of 4.46% is still better in performance and risk. Although the Sharpe ratio

strategy is slightly poorer in performance than the benchmark strategy, the

standard deviation of the performance is much reduced. Meanwhile, the R-
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Table 4.7: Summary statistics of monthly 6/6 momentum portfolios in South
Korea KOSPI 200

Criterion Portfolio Summary statistics
Mean Std. Dev. Skewness Kurtosis Final Wealth

Cumulative return Winner (W) 1.4398 9.0217 -0.3171 2.2066 1.6414
Loser (L) 0.4684 9.1068 -0.4597 4.1819 0.5339
W – L 0.9714 7.5597 0.0182 0.7296 1.1074

Sharpe ratio Winner (W) 1.8949 8.1841 -0.4886 2.1096 2.1602
Loser (L) 0.9584 8.0359 -0.8615 5.0522 1.0925
W – L 0.9365 5.6301 0.3053 0.5808 1.0677

CVaR(99%) Winner (W) 1.3118 5.7065 -0.6048 2.8393 1.4955
Loser (L) -0.1689 9.9050 -1.5460 10.0696 -0.1925
W – L 1.4807 6.2786 1.0819 5.9193 1.6880

CVaR(95%) Winner (W) 1.2905 5.5849 -0.4143 2.5666 1.4712
Loser (L) -0.0613 10.2952 -1.1747 7.5463 -0.0699
W – L 1.3519 6.9397 0.5886 3.6766 1.5411

CVaR(90%) Winner (W) 1.2074 5.5331 -0.6038 3.1926 1.3765
Loser (L) -0.0341 10.2453 -1.0795 6.6876 -0.0388
W – L 1.2415 6.7954 0.3954 2.8837 1.4153

STARR(99%) Winner (W) 1.3306 5.8878 -0.7975 4.3349 1.5169
Loser (L) -0.1647 9.8757 -1.5148 10.2862 -0.1878
W – L 1.4953 5.9833 0.7815 4.3467 1.7046

STARR(95%) Winner (W) 1.3460 5.7153 -0.5123 3.2865 1.5344
Loser (L) -0.1814 10.1670 -0.9790 6.8045 -0.2068
W – L 1.5274 6.6811 0.3329 2.4814 1.7412

STARR(90%) Winner (W) 1.3591 5.5502 -0.6069 3.7614 1.5494
Loser (L) -0.2631 10.2472 -0.9260 6.0243 -0.2999
W – L 1.6222 6.7347 0.1402 1.9444 1.8493

R-ratio(99%,99%) Winner (W) 1.4438 7.8759 -0.7614 2.3934 1.6459
Loser (L) 0.9616 7.6100 -1.3860 5.6460 1.0963
W – L 0.4821 4.3156 -0.2820 -0.0043 0.5496

R-ratio(95%,95%) Winner (W) 1.3230 7.7621 -0.6399 3.4614 1.5082
Loser (L) 0.8531 7.7857 -1.2492 5.0462 0.9725
W – L 0.4699 4.6851 0.2020 0.2420 0.5357

R-ratio(90%,90%) Winner (W) 1.5087 7.4916 -0.3809 2.7238 1.7199
Loser (L) 0.8257 7.5730 -1.3530 5.6923 0.9413
W – L 0.6829 4.5874 0.3489 0.5876 0.7785

R-ratio(50%,99%) Winner (W) 1.7095 7.6654 -0.7838 3.7805 1.9488
Loser (L) 0.5574 7.9100 -1.3168 6.6333 0.6355
W – L 1.1521 4.4496 0.2340 0.3793 1.3134

R-ratio(50%,95%) Winner (W) 1.7754 7.8268 -0.7106 3.8838 2.0239
Loser (L) 0.6279 7.7797 -1.1171 5.5356 0.7158
W – L 1.1474 4.6714 0.3849 1.4663 1.3081

R-ratio(50%,90%) Winner (W) 1.7137 7.5797 -0.6446 3.6913 1.9537
Loser (L) 0.7159 7.9767 -0.9611 5.0985 0.8161
W – L 0.9978 4.4564 0.3819 1.8013 1.1375

ratio(9X%,9X%) strategies underperform the momentum strategy although

the strategies are less volatile in the deviation measure. Every reward-risk

strategy is under larger skewness than the cumulative return strategy.
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The behaviors of winner and loser deciles are followings. With the STARR

and CVaR selection rules, the winner groups underperform that of the tra-

ditional momentum strategy by 0.10%. However, the loser groups perform

much poorly than the loser group of the cumulative return strategy by 0.60%–

0.70%. The different amounts of the shifts make the reward-risk strategies

more profitable. Meanwhile, the winner and loser groups of the Sharpe ratio

and R-ratio strategies tend to outperform the original trend-following strategy.

The long/short positions of all the reward-risk portfolios exhibit the smaller

skewness than the benchmark strategy.

The less riskier performance of the reward-risk strategies are also cross-

checked with the risk characteristics given in Table 4.8. The maximum draw-

downs of all the reward-risk strategies are substantially decreased. In particu-

lar, the maximum drawdowns of the R-ratio(50%,9X%) strategies are 17.31%–

24.63%, significantly smaller than 63.97% of the traditional momentum strat-

egy. The STARR portfolios also achieve 27.97%–33.46% and the CVaR criteria

obtain 32.74%–35.92% of maximum drawdowns. The maximum drawdown of

the Sharpe ratio portfolio is 49.57% which is higher than other criteria but

still smaller than the benchmark case. More interesting caveat is that all the

R-ratio momentum portfolios are remarkably less riskier because their VaRs

and CVaRs are decreased by 30%–40%. The 95% VaR and CVaR levels of the

STARR(99%), STARR(90%), Sharpe ratio, and CVaR(99%) strategies are

also lower than those of the trend-following strategy. In addition to that, the

λ− values of all the R-ratio portfolios are larger than that of the momentum

strategy. This fact indicates that those portfolios are under the lower tail risk.

The Sharpe ratios of the Sharpe ratio, CVaR(99%) and R-ratio(50%,9X%)
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Table 4.8: Summary risk statistics of monthly 6/6 momentum portfolios in
South Korea KOSPI 200

Criterion Portfolio CTS parameters Risk measures
α λ+ λ− Sharpe VaR95% CVaR95% MDD

Cumulative return Winner (W) 0.8478 2.1575 1.2321 0.0574 1.3611 1.9685 63.36
Loser (L) 0.7857 2.6316 1.3006 0.0597 1.7720 2.5289 61.04
W – L 0.7958 1.8394 1.8233 0.0301 1.8387 2.4195 63.97

Sharpe ratio Winner (W) 0.7768 2.3318 1.2925 0.0857 1.3897 2.0182 63.52
Loser (L) 0.6705 2.8222 1.3440 0.0793 1.4732 2.0966 57.35
W – L 0.0500 3.2275 3.0301 0.0386 1.4387 1.9039 49.57

CVaR(99%) Winner (W) 0.7763 2.1096 1.3939 0.0856 1.2377 1.7574 43.27
Loser (L) 0.8115 2.1446 1.0821 0.0435 1.8999 2.7423 76.76
W – L 1.4470 0.5609 1.1020 0.0404 1.7143 2.1861 32.74

CVaR(95%) Winner (W) 0.7997 1.9605 1.3082 0.0845 1.1781 1.7147 42.86
Loser (L) 0.8220 2.5174 1.1561 0.0444 2.0738 2.8467 74.27
W – L 0.8787 1.1987 1.8770 0.0270 1.9567 2.4884 35.70

CVaR(90%) Winner (W) 0.4379 2.3799 1.7123 0.0852 1.2029 1.7302 43.77
Loser (L) 0.8320 2.5104 1.1420 0.0461 2.0740 2.9225 72.88
W – L 1.1769 0.8078 1.5383 0.0172 1.9343 2.5135 35.92

STARR(99%) Winner (W) 0.7518 2.0932 1.4361 0.0826 1.2487 1.7661 48.34
Loser (L) 0.8042 2.0746 1.0620 0.0446 1.8875 2.7616 76.01
W – L 1.4385 0.5687 1.0741 0.0399 1.6948 2.1915 27.97

STARR(95%) Winner (W) 0.6662 2.2644 1.5439 0.0869 1.2036 1.7098 45.15
Loser (L) 0.7992 2.1960 1.1022 0.0423 2.0961 2.9631 73.99
W – L 1.2638 0.7440 1.3256 0.0333 2.0472 2.5786 30.97

STARR(90%) Winner (W) 0.6063 2.3069 1.6306 0.0868 1.1812 1.6821 44.97
Loser (L) 0.8128 2.1695 1.0729 0.0415 2.0908 2.9479 73.93
W – L 1.3431 0.6194 1.3335 0.0301 1.9072 2.3904 33.46

R-ratio(99%,99%) Winner (W) 0.8585 2.7585 1.2858 0.0800 1.3245 1.9144 59.63
Loser (L) 0.8275 2.1835 1.1921 0.0732 1.3315 1.9277 62.41
W – L 0.7841 1.9352 1.9353 0.0219 1.2057 1.6272 36.54

R-ratio(95%,95%) Winner (W) 0.8744 2.8021 1.3169 0.0708 1.2916 1.8392 62.61
Loser (L) 0.8931 2.0968 1.1701 0.0704 1.4142 2.0419 64.15
W – L 0.3083 3.4434 3.5048 0.0159 1.2456 1.6523 37.59

R-ratio(90%,90%) Winner (W) 0.7927 3.0129 1.5758 0.0744 1.3054 1.8505 57.92
Loser (L) 0.8319 2.2215 1.1868 0.0717 1.4654 2.1195 62.89
W – L 0.7879 1.8989 2.1168 0.0192 1.2328 1.6690 25.50

R-ratio(50%,99%) Winner (W) 0.7840 3.3015 1.6325 0.0763 1.3522 1.9132 58.96
Loser (L) 0.8136 2.3232 1.1549 0.0642 1.4451 2.0702 62.14
W – L 0.8466 1.6880 1.8100 0.0495 1.2995 1.7366 17.31

R-ratio(50%,95%) Winner (W) 0.8499 4.6116 1.8431 0.0761 1.3130 1.8300 58.86
Loser (L) 0.8250 2.3388 1.1320 0.0629 1.3904 2.0094 61.30
W – L 0.7449 2.1419 2.2175 0.0480 1.2479 1.6763 22.01

R-ratio(50%,90%) Winner (W) 0.8037 3.9623 1.7733 0.0779 1.3327 1.8677 58.31
Loser (L) 0.8393 2.0942 1.0814 0.0629 1.4042 2.0388 61.13
W – L 0.7499 2.0112 2.2066 0.0398 1.2411 1.6618 24.63

criteria are higher than that of the cumulative return portfolio.

The risk profile of each ranking basket is also consistent with the purpose
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of the ranking group. The winner (loser) groups of the reward-risk portfo-

lios feature smaller (larger) risk measures such as VaR, CVaR, and maximum

drawdowns. Larger (smaller) Sharpe ratios are available for the winner (loser)

groups. It is also supported by the CTS parameter λ− of each basket. The

λ− values for the winner (loser) deciles are greater (smaller) than that of the

long (short) basket in the momentum portfolio. The risk characteristics of the

ranking deciles in the R-ratio strategies are slightly different with other port-

folios. The R-ratio strategies are also less riskier in the level of both ranking

baskets. The winner and loser groups of the R-ratio portfolios are less riskier

in 95% VaR and CVaR. The Sharpe ratios of the both baskets beat those of

the benchmark ranking baskets.

4.3.5 U.S. equity market: SPDR sector ETFs

The R-ratio momentum strategies in the SPDR U.S. sector ETF universe

exhibit better performance than the traditional momentum strategy as seen

in Table 4.9. Comparing with the benchmark momentum strategy providing

the monthly return of 0.33% and the standard deviation of 4.34%, the R-

ratio(50%,99%), R-ratio(50%,90%), and R-ratio(50%,95%) portfolios generate

monthly 0.62%, 0.58%, and 0.58%, respectively. The standard deviations of

the portfolio returns are decreased by about 25%. The R-ratio(90%,90%)

and Sharpe ratio criteria not only outperform the cumulative return portfolio

by 0.08% and 0.04% but also obtain lower volatility levels. The other stock

selection rules follow the original momentum strategy in performance. The

skewness of every reward-risk strategy is larger than the cumulative return
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based strategy.

Table 4.9: Summary statistics of monthly 6/6 momentum portfolios in U.S.
sector ETF

Criterion Portfolio Summary statistics
Mean Std. Dev. Skewness Kurtosis Final Wealth

Cumulative return Winner (W) 0.5893 4.8317 -0.8700 1.9482 0.9547
Loser (L) 0.2624 5.4676 -0.4482 0.7811 0.4251
W – L 0.3269 4.3365 -0.2319 1.1894 0.5296

Sharpe ratio Winner (W) 0.3945 4.6092 -0.7806 1.9449 0.6391
Loser (L) 0.0234 5.5951 -0.7454 1.3787 0.0379
W – L 0.3711 4.1907 0.0029 0.7015 0.6012

CVaR(99%) Winner (W) 0.3114 3.8428 -0.6689 1.7318 0.5045
Loser (L) 0.3166 5.7499 -0.3607 0.5737 0.5129
W – L -0.0052 3.9082 -0.1820 0.2317 -0.0084

CVaR(95%) Winner (W) 0.2845 3.7622 -0.7628 1.9346 0.4608
Loser (L) 0.2954 5.7979 -0.3878 0.6469 0.4786
W – L -0.0109 3.9062 -0.2081 0.7141 -0.0177

CVaR(90%) Winner (W) 0.2743 3.8143 -0.8560 2.3086 0.4443
Loser (L) 0.2854 5.8318 -0.4204 0.7283 0.4623
W – L -0.0111 4.0001 -0.1735 0.9543 -0.0180

STARR(99%) Winner (W) 0.3455 3.8289 -0.6884 1.8070 0.5597
Loser (L) 0.2731 5.7228 -0.3611 0.5414 0.4424
W – L 0.0724 3.8656 -0.2519 0.3406 0.1173

STARR(95%) Winner (W) 0.3444 3.7157 -0.7922 2.1487 0.5580
Loser (L) 0.2810 5.7486 -0.4395 0.8571 0.4552
W – L 0.0635 4.0613 0.0032 1.1248 0.1028

STARR(90%) Winner (W) 0.3101 3.8911 -0.9767 2.8362 0.5024
Loser (L) 0.3362 5.9748 -0.6140 1.1656 0.5447
W – L -0.0261 4.1620 0.1635 1.4122 -0.0423

R-ratio(99%,99%) Winner (W) 0.3139 5.4340 -0.4896 1.3947 0.5085
Loser (L) 0.4029 4.6333 -0.7555 1.0687 0.6527
W – L -0.0890 3.4372 0.2474 0.7772 -0.1442

R-ratio(95%,95%) Winner (W) 0.4568 5.3861 -0.6746 2.2600 0.7400
Loser (L) 0.3419 4.7851 -0.7264 0.9766 0.5538
W – L 0.1149 3.3018 0.0994 1.0158 0.1862

R-ratio(90%,90%) Winner (W) 0.5282 5.4281 -0.6998 2.1819 0.8557
Loser (L) 0.1164 4.7575 -0.6552 0.9961 0.1886
W – L 0.4117 3.4053 -0.0449 1.6380 0.6670

R-ratio(50%,99%) Winner (W) 0.7366 4.8968 -0.5125 1.9995 1.1933
Loser (L) 0.1178 4.7254 -0.6995 1.0059 0.1908
W – L 0.6188 3.1334 0.0903 2.0793 1.0025

R-ratio(50%,95%) Winner (W) 0.7152 4.9317 -0.5214 1.8685 1.1586
Loser (L) 0.1396 4.5916 -0.7736 1.1658 0.2261
W – L 0.5756 3.2177 0.1278 1.7826 0.9325

R-ratio(50%,90%) Winner (W) 0.6417 4.7736 -0.4945 1.7924 1.0396
Loser (L) 0.0568 4.7619 -0.6846 1.1489 0.0920
W – L 0.5849 3.2278 -0.0048 1.5170 0.9475

The excellent performance of the R-ratio(50%,9X%) portfolios is achieved

by the strong momentum in each basket. The winner groups of the portfolios

79



strongly outperform the winner group of the traditional momentum strategy.

Meanwhile, the loser groups exhibit poorer performance than the loser of the

benchmark strategy. The winner return of the R-ratio(90%,90%) portfolio

is slightly worse but the loser return is much smaller than the momentum

loser. The group behavior of the Sharpe ratio portfolio is similar to the R-

ratio(90%,90%) case. Although the winner group underperforms the momen-

tum winner by 0.20%, the weakest performance among all the ranking rules is

obtained by the Sharpe ratio losers. For the R-ratio and Sharpe ratio strate-

gies, the skewness of the long (short) baskets is larger (smaller) than that of

the momentum strategy.

It is noteworthy that the performance of the R-ratio strategies, in partic-

ular, the performance of the R-ratio(50%,9X%) strategies is obtained by ac-

cepting less risks. Given in Table 4.10, all the R-ratio portfolios exhibit lower

95% VaRs and CVaRs than the benchmark momentum. The lower risks of the

portfolios are also guaranteed by their larger λ− values in the CTS model. Ad-

ditionally, higher Sharpe ratios are achieved by the R-ratio(90%,90%) and R-

ratio(50%,9X%) strategies. Moreover, smaller maximum drawdown than the

traditional momentum strategy is the unique feature of the R-ratio(50%,9X%)

strategies. Although all the CVaR and STARR portfolios are less riskier in

the 95% VaR and CVaR levels, the performance of these strategies is poorer

than the R-ratio portfolios.

The alternative portfolios are less riskier than the cumulative return strat-

egy not only at the levels of entire portfolios but also in each ranking group of

the portfolios. The winner and loser baskets of the R-ratio criteria, except for

the R-ratio(95%, 95%) winner group, achieve lower 95% VaRs and CVaRs. In
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Table 4.10: Summary risk statistics of monthly 6/6 momentum portfolios in
U.S. sector ETF

Criterion Portfolio CTS parameters Risk measures
α λ+ λ− Sharpe VaR95% CVaR95% MDD

Cumulative return Winner (W) 0.7510 2.3565 1.5212 0.0590 1.5412 1.8948 52.83
Loser (L) 0.3234 2.1317 1.7751 -0.0029 1.9601 2.1292 62.58
W – L 1.2096 1.4824 1.0474 0.0172 0.6720 0.9158 25.32

Sharpe ratio Winner (W) 0.0500 3.0977 2.2654 0.0552 1.4819 1.8030 50.70
Loser (L) 0.5778 2.3207 1.6956 0.0258 1.5013 1.8289 64.97
W – L 1.3215 1.0726 0.7875 0.0001 0.6593 0.9272 35.56

CVaR(99%) Winner (W) 0.2447 2.5717 1.9223 0.0449 1.1536 1.4848 42.45
Loser (L) 0.0500 2.9443 2.3076 0.0416 1.6355 1.9388 60.41
W – L 1.4094 1.1638 1.0081 -0.0100 0.7431 0.9087 36.32

CVaR(95%) Winner (W) 0.0738 2.8638 2.1811 0.0457 1.1600 1.4861 39.80
Loser (L) 0.0500 3.0203 2.3330 0.0435 1.6519 1.9624 61.22
W – L 1.3516 1.1409 1.1704 -0.0114 0.7370 0.8886 35.79

CVaR(90%) Winner (W) 0.6494 2.3053 1.5313 0.0460 1.1581 1.4960 39.80
Loser (L) 0.4007 2.5791 1.8816 0.0429 1.6654 1.9852 60.65
W – L 0.7996 1.8891 1.9635 -0.0120 0.7461 0.8990 37.93

STARR(99%) Winner (W) 0.4908 2.3868 1.6844 0.0466 1.1495 1.4850 39.80
Loser (L) 0.0500 2.9984 2.3374 0.0401 1.6376 1.9359 60.41
W – L 1.3896 1.1154 1.0433 -0.0062 0.7236 0.8762 32.04

STARR(95%) Winner (W) 0.7268 2.1082 1.4191 0.0485 1.1460 1.4937 39.80
Loser (L) 0.1450 2.7832 2.1184 0.0432 1.6661 1.9790 61.22
W – L 1.2936 1.2148 1.1946 -0.0031 0.7203 0.8599 36.49

STARR(90%) Winner (W) 0.7726 2.0945 1.3625 0.0483 1.1549 1.5055 42.83
Loser (L) 0.1435 2.8353 2.1773 0.0445 1.6583 1.9678 62.96
W – L 1.4297 1.0748 1.0378 -0.0045 0.7255 0.8609 37.02

R-ratio(99%,99%) Winner (W) 0.0500 2.6470 2.1651 0.0228 1.4620 1.7950 58.12
Loser (L) 0.5290 2.2609 1.5640 0.0474 1.4211 1.7881 50.45
W – L 0.7145 2.1055 2.5068 -0.0146 0.5459 0.6897 48.19

R-ratio(95%,95%) Winner (W) 0.0501 2.6370 2.1358 0.0309 1.6082 1.9410 56.56
Loser (L) 0.8360 1.9846 1.2608 0.0477 1.4153 1.7994 47.32
W – L 0.0500 3.3436 3.8430 0.0003 0.6524 0.8080 44.55

R-ratio(90%,90%) Winner (W) 0.0500 2.6752 2.1438 0.0353 1.4952 1.8316 52.73
Loser (L) 0.3301 2.3987 1.8375 0.0398 1.3556 1.6775 53.38
W – L 0.9987 1.5025 1.5760 0.0233 0.6390 0.8486 29.94

R-ratio(50%,99%) Winner (W) 0.0500 2.8326 2.2048 0.0488 1.4879 1.7827 42.85
Loser (L) 0.8534 1.8963 1.2870 0.0328 1.3333 1.6576 53.40
W – L 0.9556 1.4507 1.3746 0.0233 0.6208 0.8352 17.11

R-ratio(50%,95%) Winner (W) 0.0500 2.9408 2.2423 0.0535 1.5155 1.8095 42.85
Loser (L) 0.8312 1.9537 1.3455 0.0418 1.3301 1.6550 53.40
W – L 0.8906 1.6341 1.5288 0.0184 0.6306 0.8416 19.33

R-ratio(50%,90%) Winner (W) 0.0500 2.9660 2.2672 0.0518 1.5180 1.8059 43.33
Loser (L) 0.8150 1.9530 1.3654 0.0377 1.3322 1.6544 53.40
W – L 0.7904 1.7991 1.6057 0.0211 0.6354 0.8506 22.56

particular, the short baskets in the R-ratio(50%,9X%) portfolios exhibit the

lowest VaR and CVaR levels. Additionally, the long/short positions in the
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R-ratio(50%,9X%) portfolio also feature smaller maximum drawdowns com-

paring with each long/short positions of the traditional momentum. With the

CTS parameters, it is also cross-checked that these baskets in the R-ratio and

Sharpe ratio portfolios are consistent with the directions of the price momen-

tum. The λ− parameters for the reward-risk winner groups are greater than

that of the momentum strategy. Meanwhile, the λ− values of the loser groups

are smaller. This is much desirable for the momentum portfolio. Opposite to

the R-ratio and Sharpe ratio strategies, the larger (smaller) λ− for the short

(long) baskets are the characteristics of the CTS parameters in the CVaR and

STARR portfolios.

4.3.6 U.S. equity market: S&P 500

As shown in Table 4.11, the reward-risk momentum strategies in the S&P

500 universe outperform the traditional momentum and the best reward-

risk portfolios are constructed by the R-ratio(50%,9X%) criteria. The R-

ratio(50%,90%) strategy is the best portfolio of monthly 0.64%, almost three-

times larger return than the cumulative return portfolio of 0.22%. Meanwhile,

its standard deviation is monthly 2.73%, 50% smaller than the volatility of

the original momentum strategy, 5.54%. Similar to the R-ratio(50%, 90%)

case, the R-ratio(50%,95%) and R-ratio(50%,99%) portfolios obtain monthly

0.53% and 0.39% with the standard deviations of 2.83% and 2.64%, respec-

tively. Comparing with the results in Rachev et al. [79], the returns of the R-

ratio(50%,9X%) portfolios are increased and the volatility are reduced. How-

ever, the other strategies are not interesting because the performance of the
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portfolios are based on taking larger volatility. Additionally, the performance

of these selection rules including the cumulative return becomes poorer since

the original study [79].

Table 4.11: Summary statistics of monthly 6/6 momentum portfolios in U.S.
S&P 500

Criterion Portfolio Summary statistics
Mean Std. Dev. Skewness Kurtosis Final Wealth

Cumulative return Winner (W) 0.5589 5.5887 -0.7507 1.0164 0.6371
Loser (L) 0.3369 7.8426 -0.2007 2.3590 0.3841
W – L 0.2220 5.5408 -0.8821 4.2380 0.2531

Sharpe ratio Winner (W) 0.4825 5.4366 -1.2614 3.0440 0.5501
Loser (L) 0.3417 6.4953 -0.7847 2.9677 0.3895
W – L 0.1408 4.7980 -0.4827 2.5523 0.1605

CVaR(99%) Winner (W) 0.4648 2.9705 -1.8157 6.4702 0.5299
Loser (L) 0.4934 7.7577 -0.2225 1.5735 0.5625
W – L -0.0287 5.9358 -0.3818 2.4592 -0.0327

CVaR(95%) Winner (W) 0.4653 2.8899 -1.7931 6.2756 0.5304
Loser (L) 0.2432 8.3895 -0.4173 1.1078 0.2773
W – L 0.2220 6.7451 -0.0358 1.4197 0.2531

CVaR(90%) Winner (W) 0.4953 2.8628 -1.8302 6.4437 0.5646
Loser (L) 0.3187 8.6751 -0.2324 1.2326 0.3633
W – L 0.1766 7.0064 -0.2602 1.6025 0.2013

STARR(99%) Winner (W) 0.5020 2.9350 -1.7080 5.7548 0.5722
Loser (L) 0.4631 7.8568 -0.2536 1.6442 0.5280
W – L 0.0388 6.0815 -0.3588 2.6549 0.0443

STARR(95%) Winner (W) 0.5010 2.8426 -1.7691 6.1334 0.5712
Loser (L) 0.2534 8.4243 -0.3394 0.9851 0.2888
W – L 0.2477 6.7372 -0.1568 1.0950 0.2823

STARR(90%) Winner (W) 0.5056 2.8500 -1.8692 6.5580 0.5764
Loser (L) 0.3594 8.6919 -0.1974 1.1333 0.4098
W – L 0.1462 7.0042 -0.3702 1.7272 0.1666

R-ratio(99%,99%) Winner (W) 0.5720 5.1224 -1.1428 4.3427 0.6520
Loser (L) 0.7517 5.2703 -0.8659 1.8257 0.8570
W – L -0.1798 2.0233 0.9705 5.9285 -0.2049

R-ratio(95%,95%) Winner (W) 0.6804 4.8809 -1.3971 5.3933 0.7756
Loser (L) 0.5968 5.2557 -1.0893 2.3207 0.6804
W – L 0.0836 2.0793 0.6011 0.9863 0.0952

R-ratio(90%,90%) Winner (W) 0.5715 4.7584 -1.3633 5.6386 0.6515
Loser (L) 0.3841 5.3097 -1.0707 2.4322 0.4379
W – L 0.1874 2.3672 -0.0205 0.1447 0.2137

R-ratio(50%,99%) Winner (W) 0.7587 5.0256 -0.9462 5.0715 0.8649
Loser (L) 0.3654 5.3213 -0.9708 2.1627 0.4166
W – L 0.3933 2.6369 0.2485 1.1724 0.4484

R-ratio(50%,95%) Winner (W) 0.7762 4.7852 -1.0896 5.3304 0.8849
Loser (L) 0.2483 5.4449 -1.0573 2.2293 0.2830
W – L 0.5279 2.8255 -0.0482 1.8141 0.6018

R-ratio(50%,90%) Winner (W) 0.7654 4.7863 -1.0044 4.9962 0.8726
Loser (L) 0.1296 5.3085 -1.0210 2.2957 0.1477
W – L 0.6358 2.7326 -0.0795 1.3808 0.7249
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The ranking group properties of the R-ratio(50%,9X%) portfolios are also

attractive because each ranking group of the portfolios exhibit strong momen-

tum. All the winner groups of these strategies outperform the traditional mo-

mentum long basket. Moreover, the loser groups of the R-ratio(50%,95%) and

R-ratio(50%,90%) criteria underperform the momentum short basket and the

performance of the R-ratio(50%,99%) loser group is slightly better by 0.03%.

The ranking group characteristics of the STARR(90%) and Sharpe ratio port-

folios are exactly opposite to those of the R-ratio(50%,99%) criterion, i.e. the

winners underperform and the losers outperform the benchmark. In the cases

of the STARR(95%), CVaR(90%) and CVaR(95%) measures, the weaker per-

formance is observed for all the winner and loser groups. All winner and

loser groups of every stock selection rules perform worse than those ranking

groups of the reward-risk strategies in the previous study on the reward-risk

momentum strategy [79].

The alternative ranking portfolios in the S&P 500 universe are less riskier

according to Table 4.12. All the reward-risk momentum strategies feature

lower 95% CVaRs. The 95% VaR levels depends on the criteria. In particular,

the VaR and CVaR levels of the R-ratio strategies are substantially smaller

than the risk measures of the cumulative return strategy. The Sharpe ratio

portfolio also shows lower VaR and CVaR levels. Additionally, the λ− parame-

ters of the R-ratio and Sharpe ratio strategies, except for the R-ratio(95%,95%)

and R-ratio(90%,90%) measures, are larger than that of the cumulative return.

The larger λ− of the reward-risk momentum strategies are good at controlling

the downside tail risks. For maximum drawdown, the Sharpe ratio and the

R-ratio portfolios exhibit better maximum drawdown values than the origi-
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nal momentum strategy. The maximum drawdowns of the R-ratio portfolios

are impressively decreased. For example, the maximum drawdowns of the

R-ratio(50%,9X%) portfolios are around 15% and it imposes that 75% of the

maximum drawdown by the cumulative return criterion is gone away by choos-

ing the R-ratio(50%,9X%) measures. The additional advantage of adopting the

R-ratio(50%, 9X%) and Sharpe ratio as the stock selection rules is that the

Sharpe ratios of the portfolios are about 2–5 times higher than the cumulative

return portfolio.

The risk characteristics of the winner and loser groups also show that the

reward-risk selection rules are desirable to the risk management of the con-

stituent baskets. The λ− parameters of the winner groups are larger than

that of the cumulative return winner. It is evident that the lower downside

risks in the winner groups are obtained by the alternative portfolios. Opposite

to the long baskets, the λ− values for the loser baskets are smaller than the

loser group in the cumulative return criterion and it is attractive for the short

baskets to take the larger downside risks to earn the profits from short-selling

the losers. Most of the reward-risk measures provide the less riskier winner

and loser groups with smaller 95% VaRs and CVaRs. In addition to that, the

maximum drawdown of each basket is also lower than that of each long/short

basket by the cumulative return criterion. In the R-ratio and Sharpe ratio

portfolios, the comparable sizes of maximum drawdowns are obtained by the

winner and loser groups. Meanwhile, for the CVaR and STARR portfolios, the

maximum drawdowns of the winner groups are much lower than those of the

loser groups. This pattern is also observed in the cumulative return portfolio.
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Table 4.12: Summary risk statistics of monthly 6/6 momentum portfolios in
U.S. S&P 500

Criterion Portfolio CTS parameters Risk measures
α λ+ λ− Sharpe VaR95% CVaR95% MDD

Cumulative return Winner (W) 0.8861 2.1267 1.1819 0.0003 1.8478 2.2138 59.55
Loser (L) 0.0500 3.7818 2.7937 0.0358 1.9232 2.0562 78.90
W – L 1.1751 1.5755 1.2925 0.0078 1.2477 1.6680 59.71

Sharpe ratio Winner (W) 0.4746 2.5494 1.6115 0.0533 1.5337 1.9249 64.29
Loser (L) 0.8142 3.4789 1.8520 0.0387 1.8531 1.9718 70.73
W – L 0.5964 2.9640 2.5113 0.0182 1.0839 1.3332 49.50

CVaR(99%) Winner (W) 0.0500 2.3656 1.8691 0.0686 1.0915 1.4658 43.31
Loser (L) 0.7968 3.8780 1.9720 0.0357 1.8102 1.9908 72.92
W – L 0.3462 3.1218 3.6005 -0.0071 1.1925 1.3448 60.29

CVaR(95%) Winner (W) 0.0501 2.4449 1.9059 0.0708 1.0990 1.4700 41.14
Loser (L) 0.7347 3.1873 1.8628 0.0353 1.8524 2.0175 78.53
W – L 0.3278 3.1024 3.7552 -0.0114 1.3335 1.4625 60.63

CVaR(90%) Winner (W) 0.0500 2.4971 1.9367 0.0721 1.1096 1.4723 39.82
Loser (L) 0.2386 3.5081 2.4162 0.0366 1.9168 2.1219 78.57
W – L 0.0614 3.3466 3.9793 -0.0151 1.3596 1.5191 61.41

STARR(99%) Winner (W) 0.0500 2.3644 1.8484 0.0709 1.0980 1.4838 42.90
Loser (L) 0.7670 3.7859 2.0132 0.0363 1.6748 1.8117 73.82
W – L 0.2788 3.2625 3.7744 -0.0051 1.1199 1.2490 60.80

STARR(95%) Winner (W) 0.0500 2.3256 1.8339 0.0708 1.0970 1.4780 40.41
Loser (L) 0.7337 3.1198 1.8558 0.0341 1.8675 2.0504 78.24
W – L 0.4629 2.8693 3.3958 -0.0078 1.3407 1.4872 60.85

STARR(90%) Winner (W) 0.0501 2.4325 1.8814 0.0733 1.1099 1.4836 40.52
Loser (L) 0.4306 3.4380 2.3083 0.0350 1.9809 2.1363 78.62
W – L 0.0877 3.7570 4.2363 -0.0109 1.4510 1.5826 63.83

R-ratio(99%,99%) Winner (W) 0.1787 3.1398 2.1485 0.0573 1.4580 1.7811 60.75
Loser (L) 0.4969 2.7568 1.7266 0.0664 1.4836 1.7320 54.41
W – L 0.7684 1.7629 2.0395 -0.0256 0.4299 0.5620 26.20

R-ratio(95%,95%) Winner (W) 0.1662 2.8518 1.9817 0.0629 1.4310 1.7470 58.33
Loser (L) 0.2141 2.9262 2.0650 0.0605 1.3994 1.6769 55.39
W – L 1.5057 0.8361 0.8384 -0.0057 0.3827 0.5155 19.48

R-ratio(90%,90%) Winner (W) 0.0500 2.8640 2.0565 0.0595 1.4001 1.7342 57.40
Loser (L) 0.8505 2.6170 1.4780 0.0522 1.4632 1.7373 59.07
W – L 1.5972 0.5932 0.5247 0.0063 0.4317 0.6008 15.72

R-ratio(50%,99%) Winner (W) 0.4632 2.7405 1.6787 0.0650 1.4093 1.7276 54.79
Loser (L) 0.5545 3.3607 2.0531 0.0489 1.4725 1.7052 59.64
W – L 0.5909 2.4827 2.2535 0.0282 0.4856 0.6559 14.96

R-ratio(50%,95%) Winner (W) 0.0500 2.8730 2.0207 0.0653 1.3924 1.7017 53.42
Loser (L) 0.7764 2.8824 1.5795 0.0455 1.4935 1.7505 61.18
W – L 1.0335 1.5251 1.3447 0.0303 0.4366 0.5966 15.78

R-ratio(50%,90%) Winner (W) 0.2868 2.8634 1.8263 0.0665 1.4015 1.7125 54.69
Loser (L) 0.8508 2.9716 1.5304 0.0417 1.5503 1.7739 62.20
W – L 0.7900 1.7982 1.6932 0.0413 0.4813 0.6399 15.85
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4.3.7 Overall results in various universes

In the various asset classes, the reward-risk measures are the better ranking

rules that select the potential good and bad performers in next 6 months. In

particular, the R-ratio(50%,9X%) measures generate the consistent outperfor-

mance with lower volatility. The outperformance of the R-ratio(50%,9X%)

portfolios is also supported by the historical cumulative returns of the alterna-

tive portfolios given in Fig. 4.1. It is easy to find that the R-ratio(50%,9X%)

not only outperform the traditional trend-following strategy but also tend to

form consistent trends with less fluctuation. Additionally, the performance of

the R-ratio(50%,9X%) strategies is still consistent even during the financial

crisis in 2008. The R-ratio(9X%,9X%) and Sharpe ratio also provide good

performance and the portfolios are less riskier than the benchmark momen-

tum strategy in many asset classes. Each long/short basket is also superior to

the momentum strategy in performance.

The outperformance of the reward-risk momentum strategies is achieved

not by taking more risk but by accepting less risk. In particular, the R-

ratio(50%,9X%) strategies are less riskier than the momentum portfolio in

various risk measures such as Sharpe ratio, VaR, CVaR, and maximum draw-

down. The dominance in risk profiles is also observed in the level of long/short

baskets. Although the Sharpe ratio portfolio is not as good in performance as

the R-ratio strategies, its risk profile imposes that the portfolio by the Sharpe

ratio is also less riskier than the benchmark strategy.

In many asset classes, the patterns in performance and risk characteristics

are categorized into two classes: The first class includes R-ratio and Sharpe
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Figure 4.1: Cumulative returns for the traditional momentum (gray),
R-ratio(50%,99%) (blue), R-ratio(50%,95%) (red), and R-ratio(50%,90%)
(green).

ratio and the second group contains CVaR and STARR. It is noteworthy that

the classification is also associated with the origin of the reward-risk measures.

The reward-risk measures in the first category are all ratio-based measures.

Meanwhile, the second category consist of the return/loss-based measures.
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The possible explanation on the outperformance of the ratio-based reward-

risk measures is that the R-ratio and Sharpe ratio consider not only downside

risk but also upward latent profit in the normalized scale. Opposite to the

ratio measures, the return/loss based strategies tend to select the low-risk

instruments in non-normalized scale. It is likely not to consider the volatility

along the upward direction which is not the actual risk but the source of

potential gain.

4.4 Factor analysis

As found in the previous section, the reward-risk momentum strategies feature

the better characteristics in performance and risk. For more robust tests, the

alternative strategies need to be cross-checked with various market factors. In

particular, the Fama-French three-factor model [40] is one of the well-known

regression models in finance. We analyze the results in the S&P 500 universe

with the Fama-French three-factor model.

As seen in Table 4.13, the intercepts of the factor analysis on the reward-

risk momentum strategies in the S&P 500 universe are generally greater than

that of the traditional momentum strategy. The ranges of the three-factor

alpha are dependent with the types of the alternative stock selection rules.

Additionally, the three-factor alphas are statistically significant in many port-

folios. The different factor structures with respect to the criteria are also

found.

The first category in the factor structure is generated by the Sharpe ratio

89



Table 4.13: Fama-French regression of monthly 6/6 momentum portfolios in
U.S. S&P 500

Criterion Portfolio Factor loadings
α(%) βMKT βSMB βHML R2

Cumulative return Winner (W) -0.0643 1.0236∗∗ 0.3201∗ 0.0357 0.7699
Loser (L) -0.5487 1.4993∗∗ 0.2091 0.2665 0.8086
W – L 0.4844 -0.4757∗∗ 0.1110 -0.2307 0.1616

Sharpe ratio Winner (W) -0.0887 1.0443∗∗ 0.0957 0.0302 0.7504
Loser (L) -0.3925 1.2375∗∗ 0.1571 0.2559∗ 0.8082
W – L 0.3038 -0.1932 -0.0614 -0.2258 0.0643

CVaR(99%) Winner (W) 0.1749 0.5892∗∗ -0.1281 0.1025 0.7383
Loser (L) -0.4579 1.4739∗∗ 0.4497∗∗ 0.3284∗∗ 0.8873
W – L 0.6328 -0.8847∗∗ -0.5779∗∗ -0.2259 0.6696

CVaR(95%) Winner (W) 0.1887 0.5657∗∗ -0.1222 0.0892 0.7139
Loser (L) -0.7810∗∗ 1.5448∗∗ 0.5892∗∗ 0.3184∗ 0.8625
W – L 0.9696∗ -0.9792∗∗ -0.7114∗∗ -0.2292 0.6568

CVaR(90%) Winner (W) 0.2187 0.5621∗∗ -0.1150 0.0886 0.7216
Loser (L) -0.7602∗∗ 1.5755∗∗ 0.6597∗∗ 0.4131∗∗ 0.8760
W – L 0.9788∗∗ -1.0134∗∗ -0.7747∗∗ -0.3245∗ 0.6873

STARR(99%) Winner (W) 0.2116 0.5762∗∗ -0.1088 0.1115 0.7384
Loser (L) -0.4920 1.4975∗∗ 0.4475∗∗ 0.2906∗ 0.8795
W – L 0.7036∗ -0.9213∗∗ -0.5563∗∗ -0.1790 0.6577

STARR(95%) Winner (W) 0.2260 0.5592∗∗ -0.1217 0.0969 0.7260
Loser (L) -0.7864∗∗ 1.5491∗∗ 0.6140∗∗ 0.3504∗∗ 0.8743
W – L 1.0124∗∗ -0.9899∗∗ -0.7357∗∗ -0.2535 0.6846

STARR(90%) Winner (W) 0.2307 0.5631∗∗ -0.1235 0.0889 0.7265
Loser (L) -0.7197∗ 1.5706∗∗ 0.6603∗∗ 0.4263∗∗ 0.8713
W – L 0.9505∗ -1.0075∗∗ -0.7838∗∗ -0.3374∗ 0.6886

R-ratio(99%,99%) Winner (W) -0.0609 1.0247∗∗ 0.2012∗∗ 0.2384∗∗ 0.9333
Loser (L) 0.1324 1.0904∗∗ 0.1730∗ 0.0454 0.9057
W – L -0.1933 -0.0657 0.0282 0.1930∗ 0.0501

R-ratio(95%,95%) Winner (W) 0.0875 0.9893∗∗ 0.1652∗∗ 0.1805∗∗ 0.9237
Loser (L) -0.0113 1.0796∗∗ 0.1245 0.0827 0.8846
W – L 0.0988 -0.0903 0.0407 0.0979 0.0302

R-ratio(90%,90%) Winner (W) -0.0036 0.9603∗∗ 0.1500∗ 0.1877∗∗ 0.9157
Loser (L) -0.2248 1.1007∗∗ 0.1067 0.0573 0.8840
W – L 0.2212 -0.1405∗ 0.0433 0.1304 0.0553

R-ratio(50%,99%) Winner (W) 0.1429 0.9883∗∗ 0.2234∗∗ 0.2171∗∗ 0.9107
Loser (L) -0.2628 1.0583∗∗ 0.2204∗ 0.1057 0.8786
W – L 0.4057 -0.0701 0.0030 0.1114 0.0157

R-ratio(50%,95%) Winner (W) 0.1971 0.9518∗∗ 0.1862∗∗ 0.1795∗∗ 0.9051
Loser (L) -0.3787 1.0936∗∗ 0.1550 0.0983 0.8619
W – L 0.5758∗ -0.1418∗ 0.0312 0.0812 0.0389

R-ratio(50%,90%) Winner (W) 0.1876 0.9459∗∗ 0.1847∗∗ 0.1904∗∗ 0.8980
Loser (L) -0.4812∗∗ 1.0830∗∗ 0.1425 0.0633 0.8737
W – L 0.6688∗∗ -0.1371∗ 0.0422 0.1270 0.0395

∗∗ 1% significance ∗ 5% significance

and R-ratio. For the momentum portfolios by these reward-risk measures, the

exposures on the market factor and size factor are smaller than any other

strategies. Moreover, very small R2 values impose that the Fama-French
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three-factor model is not able to explain the return structures of the mo-

mentum portfolios constructed by the ratio-based reward-risk measures. The

R-ratio(50%,90%) and R-ratio(50%, 95%) exhibit greater Fama-French three-

factor alpha which is also statistically significant.

Another different factor structure is found in the CVaR and STARR port-

folios. The statistically significant intercepts of the regression on these stock

selection rules are much larger than the momentum strategies by the cumula-

tive return and the ratio-based reward-risk measures. The sizes of the exposure

on the market and size factors are substantially greater and statistically sig-

nificant. The larger exposures to the Fama-French factors lead to the higher

R2. The large parts of the portfolio performance by these ranking rules are

explained by the Fama-French three-factor model.

It is noteworthy that the classification for the different factor structures is

also identical to the types of the stock selection rules. Not only performance

and risk profiles but also the factor exposure highly depend the origin of the

ranking criterion. These two groups of the momentum portfolio construction

rules are considered the different categories of the reward-risk measures.

4.5 Concluding remarks

In this study, we test the alternative momentum portfolios based on the

reward-risk measures in various asset classes and markets. The reward-risk

measures include Sharpe ratio, CVaR, STARR, and R-ratio. The stock se-

lection rules for the reward-risk momentum strategies are calculated from the
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ARMA(1,1)-GARCH(1,1) model with CTS innovations in order to explain

autocorrelation, volatility clustering, skewness, and kurtosis in asset returns.

The reward-risk momentum portfolios achieve the better performance and

risk characteristics independent with asset class and market. In particular,

the R-ratio(50%,9X%) strategies outperform the traditional momentum strat-

egy in every asset classes. Additionally, the long/short positions of these

strategies exhibit the stronger momentum than the benchmark strategy, i.e,

the winners outperform the long basket of the traditional momentum port-

folio and the losers underperform the loser in the cumulative return. The

R-ratio(9X%,9X%) and Sharpe ratio strategies also perform well under the

smaller deviation.

The alternative portfolios are less riskier than the traditional momentum

portfolio in VaR, CVaR, and maximum drawdown. The larger λ− parame-

ters also guarantee the thinner downside tails of the portfolio returns. For

each winner/loser group, the less riskier portfolios are also constructed by the

alternative stock selection rules.

It is also observed that the performance and risk profile depend on the

characteristics of the momentum group ranking criterion. The reward-risk

measures such as R-ratio and Sharpe ratio construct the long/short portfolios

with the better average returns and lower downside risks. This tendency is

also found at the levels of long/short baskets.

The factor analysis in the S&P 500 universe supports the same conclusion

that the factor structures are highly dependent with the types of the ranking

criteria. Additionally, the Fama-French three-factor alpha is statistically sig-

nificant and larger than that of the benchmark strategy and the momentum
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strategies by the ratio-based stock ranking rules are inexplicable by the Fama-

French three factor model which explains the performance of the CVaR and

STARR portfolios.

In future study, various kinds of risk models will be tested for the con-

struction of alternative momentum-style portfolios. In addition to that, the

implementation of the reward-risk momentum strategies will be extended to

weekly, daily, and high frequency scales.
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Chapter 5

Physical approach to price
momentum and its application
to momentum strategy

In this chapter, we introduce various definitions for the physical momentum

of equity price. Based on those definitions, the equity price momentum can be

obtained from real historical data in the South Korean KOSPI 200 and S&500

universes. After computing the physical momentum, the implementation of the

contrarian strategies based on the candidates for the price momentum increases

the validity of our approach to measuring the physical momentum in equity

price. Empirically, these new candidates for the selection criteria originated

from the physical momentum idea provide the better returns and Sharpe ratios

than the original criterion, i.e. the cumulative return. The structure of this

paper is the following. In the next chapter, the definition of velocity in equity

price space and possible candidates for financial mass are introduced and then

the price momentum is defined with the financial velocity and mass. In section

5.2, we specify the datasets used for our analysis. In section 5.3, results for

the physical momentum strategies are given. The Fama-French three-factor
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analysis is given in section 5.4. In section 5.5, we conclude the chapter.

5.1 Theoretical background

When an one-dimensional space for price of a financial instrument is intro-

duced, it is possible to consider that the price is in motion on the positive

half-line. Although the negative price is conceptually proposed by Sornette

[94], the negative price of the instrument is not allowed in practice.1 The price

dynamics of the financial instruments are now changed to an one-dimensional

particle problem in physics. To extend the space to the entire line, the log

price is mapped to the position x(t) in the space by

x(t) = log S(t)

where S(t) is the price of the instrument. This transformation is not new to

physicists because Baaquie [12, 13] already introduced the same transforma-

tion to derive path integral approach to option pricing theory. It was used in

order to find the relation between the Black-Schole equation and Schrödinger

equation. With this re-parametrization, an option pricing problem was trans-

formed to an one-dimensional potential wall problem in quantum mechanics.

However, it was not for introducing the physical momentum concept mentioned

above. With the log return, x(t) covers the whole line from the negative to

positive infinity. In addition to the physical intuition, the log price has some

1Sornette not only pointed that the negative equity price is introduced only for symmetry
breaking but also explained why the negative price is not observed under real situations using
dividend payment as an external field in symmetry breaking.
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advantages in finance. First of all, it is much simpler to calculate the log return

from the log price because the difference of two log prices is the log return.

Contrasting to the log return, the raw return is more complicated to compute

than the log return. Secondly, one of the basic assumptions in mathematical

finance is that the returns of financial instruments are log-normally distributed

and we can handle normally-distributed log returns.

Having the advantages of the log price described above, it is natural to

introduce a concept of velocity into the one-dimensional price space. In the

case of the log price, the log return R(t) per unit time scale is expressed in

x(t) by

R(t) =
logS(t)− logS(t−∆t)

∆t

=
x(t)− x(t−∆t)

t− (t−∆t)

=
∆x(t)

∆t
.

In the limit of infinitesimal time interval (∆t→ 0), the log return becomes

R(t) =
dx(t)

dt
= v(t)

where v(t) is the velocity of the instrument in the log price space, x(t). When

the mapping between the log price and position in the one-dimensional space

is introduced, it imposes the relation between the log return and velocity.

Although this relation works only in the limit of ∆t→ 0, it can be used as the

approximation in the discrete time limit if the length of the whole time series

is long enough to make the time interval relatively shorter.
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The cumulative return r(t) is expressed in v(t) by

r(t) =
S(t)− S(t−∆t)

S(t−∆t)
= exp (R(t))− 1

= v(t)
(
1 +

1

2
v(t) + · · ·+ 1

n!
(v(t))n−1 + · · ·

)
.

Since the log return is usually small such as |v(t)| � 1 in real data, higher-

order terms in v(t) can be treated as higher-order corrections on r(t) and it is

possible to ignore the higher-order corrections if |v(t)| � 1. In this sense, the

cumulative return can be approximated to v(t). However this relation is broken

in the cases of heavy tail risks caused by financial crisis or firm-specific events

such as bankruptcy, merger and acquisition, and good/bad earning reports of

the company. Since |v(t)| in these events can be comparable to one or greater

than one, the higher-order perturbations should be considered.

Based on the correspondence, the concept of the price momentum can be

quantified by using the classical momentum in physics by

p = mv

where m has the same role to physical mass. In particular, when velocity is

given in the log return, the contribution of the mass to the price momentum

can be expressed in the following way,

p = m log (1 + r)

= log (1 + r)m.
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The financial mass m plays a role of amplifying the price change as the mass

becomes larger. This amplification is understood as filtering of market in-

formation on price. Consideration on the volume can catch more market

information. For example, large transaction volumes at the peak or trough

could impose the change in the trend from the viewpoint of technical analy-

sis. Some instruments are heavily influenced by the investors’ psychology and

other market factors but other aren’t. In this sense, the mass can act a role

of the filter which is unique to each instrument and encodes the instrument-

specific characters. This interpretation is also well-matched to the physical

analogy that mass is a physical constant which is unique to each particle.

The original ranking criterion in the traditional momentum strategy is a spe-

cial case of this momentum definition. In the cumulative return momentum

strategy, it is assumed that each of equities has the identical mass, m = 1.

However, the identical mass assumption seems not to be reasonable because

each equity has distinct properties and shows inherent price evolutions. In

order to capture these heterogeneities between characteristics of each equity,

the departure from the identical financial mass for all equities is more natural

and the introduction of the financial mass concept to the momentum strategy

look plausible. Although the physical momentum concept can be applied to

other asset classes, we focus only on the equities in this paper.

As described in the previous paragraph, the financial mass can convey

the instrument-specific information. However, it is obvious that all kinds of

information cannot work as candidates of the mass because it should be well-

matched to intrinsic properties of physical mass. In this sense, liquidity is a

good candidate for the financial mass. Its importance in finance is already
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revealed in many financial literatures in terms of bid-ask spread, volume, and

fractional turnover rate [5, 6, 34, 49, 56, 60]. In particular, Datar et al.[34] re-

ported that past turnover rate is negatively correlated to future return. With

the same size of the momentum, the larger turnover rate brings the poorer fu-

ture return i.e. illiquid stocks exhibit higher average returns. Even after con-

trolling other factors such as firm-size, beta2, and BM ratio, the past turnover

rate has the significant negative correlation with the future return. It is pos-

sible to understand that the trading volume incorporates integrated opinions

of investors and makes the price approach to the equilibrium asymptotically.

In the viewpoint of information, trading can be understood as the exchange of

information between investors with inhomogeneous information. More trans-

actions occur, more information is widely disseminated over the whole market

and the price change becomes more meaningful. Lee and Swaminathan [60]

also provided the similar result that stocks with low past trading volumes tend

to have high future returns. Additionally, the study found that the momentum

strategy among high volume stocks is more profitable. The similar result is

obtained in the South Korean market [56].

The possible mass candidates which are also well-matched to the analogy

of physical mass are volume, total transaction value, and inverse of volatility.

If the trading volume is larger, the price movement can be considered the more

meaningful signal because the higher volume increases the market efficiency.

The amount of the volume is proportional to mass m. As mentioned in the

previous paragraph, the relation between the trading volume and asset return

2The beta in finance is the correlation between the stock return and benchmark return
scaled by the market variance.
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is already studied in finance [34, 49, 60]. Instead of the raw volume, we need to

normalize the daily volumes with the total number of outstanding shares and

this normalized value is also known as a turnover rate. The reason of this nor-

malization is that some equities intrinsically have the larger trading volumes

than others because the total number of shares enlisted in the markets are

much larger than other equities or because they get more investors’ attentions

which cause more frequent trades between investors. The share turnover rate,

trading volume over outstanding shares is expressed in υ in the paper.

Similar to the volume, the daily transaction value in cash can be used as the

financial mass. If an equity on a certain day has the larger transaction value,

investors trade the equity frequently and the price change has more significant

meanings. Additionally, the transaction value contains more information than

the volume. For examples, even though two equities record the same daily

volume and daily return on a given day, the higher priced equity has the

larger trading value if two prices are different. The more important meaning

is that even though market information such as close price, volume, return,

and price band are identical, the trading value in cash can be different. As

an instance, when one equity is traded more near the lowest price of the daily

band but the other is traded mainly around the daily highest price region, the

total transaction values of two equities are definitely different. It also needs

to be normalized because each equity price is different. The normalization of

dividing total transaction value by market capitalization is expressed in τ in

the paper.

The return volatility σ is inversely proportional to the financial mass m. If

the volatility of a certain equity in a given period is larger, the equity price is
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easy to fluctuate much severely than other equities with the smaller volatilities.

This correspond to the situation in physics that a lighter object can move more

easily than a heavy object under the same force. So if it is heavy in the sense of

the volatility, the asset price with larger mass is under the smaller volatility.

This definition of the financial mass is also matched with the analogy used

in Baaquie’s works [12, 13]. In his works, the Black-Scholes equation was

transformed into Hamiltonian of a particle under the potential which specifies

the option. The mass of a particle in the Hamiltonian was exactly same to

the inverse of the return volatility. Since the volatility is also interesting to

economists and financiers, there are series of the literature covering the link

between volatility and return [42, 45].

With the fractional volume and fractional transaction value as the proxies

for the mass, it is possible to define two categories of the physical momentum,

p
(1)
t,k (m, v) =

k−1∑
i=0

mt−ivt−i

and

p
(2)
t,k (m, v) =

∑k−1
i=0 mt−ivt−i∑k−1
i=0 mt−i

over the period of the size k. The latter one is the reminiscent of the center-of-

mass momentum in physics and the similar concept is used as the embedded

capital gain in Grinblatt and Han [46]. Since two different categories for the

momentum calculation, two for return, and two for mass are available, there

are eight different momentum definitions for an equity.
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It is easily found that the cumulative return can be expressed in p(1) by

rt,k = exp (
k−1∑
i=0

Rt−i)− 1 = exp (p
(1)
t,k (1, R))− 1

≈ p
(1)
t,k (1, R) +O

((
p

(1)
t,k (1, R)

)2
)

an this shows that the traditional momentum in finance is a special case of the

physical momentum. In this sense, let’s call rt,k = p
(0)
t,k . In addition to that,

since exponential function and log function are strictly increasing functions,

the mapping between p
(0)
t,k and p

(1)
t,k (1, R) is one-to-one.

Since the return volatility over the period has more practical meanings than

the sum of daily volatilities during the period, the third class of the physical

momentum is defined by

p
(3)
t,k (m, v) = v̄t,k/σt,k

where v̄t,k is the average velocity at time t during the past k periods. There

are also two different definitions for p
(3)
t,k computed from the normal return and

log return. This is closely related to the Sharpe ratio, SR,

SR =
µ(r − rf )
σ(r − rf )

where rf is the risk-free rate. If the risk-free rate is small and ignorable, p
(3)
t,k

approaches to the Sharpe ratio. The momentum strategy with this ranking cri-

terion is reminiscent of the Sharpe ratio based momentum strategy by Rachev

et al. [79]. Similar to the Sharpe ratio, p
(3)
t,k can be related to the information
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ratio that uses excessive returns over the benchmark instead of the risk-free

rate in the definition. However, we don’t consider the risk-free rate nor the

benchmark return as a reference point of the portfolio returns in this paper.

With p
(1)
t,k , p

(2)
t,k , and p

(3)
t,k , total eleven different definitions of physical mo-

mentum including the traditional cumulative return are possible candidates for

the physical equity momentum. Each of them is originated from the physical

and financial foundations. Additionally, they are relatively easier to quantify

than other risk measures used in Rachev’s work [79]. Although it is possi-

ble to consider more complicated functions of other market data for the price

momentum, it is beyond the scope of this paper.

5.2 Dataset

5.2.1 South Korea equity markets: KOSPI 200

The market data and component-change log of the KOSPI 200 universe are

downloaded from Korea Exchange. The covered time horizon starts January

2003 and ends December 2012.

5.2.2 U.S. equity markets: S&P 500

The daily market information and roaster for S&P 500 components are col-

lected from Bloomberg. The time window is identical to the KOSPI 200.
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5.3 Results

5.3.1 South Korea equity market: KOSPI 200

In Table 5.1, all weekly contrarian strategies based on physical momentum

except for the p(3) criteria outperform the traditional contrarian strategy. The

p(1)(υ,R) portfolio is the best contrarian strategy with the weekly return of

0.261% under the volatility of 2.444% while the benchmark contrarian strat-

egy obtains weekly 0.069% with the standard deviation of 2.846%. The per-

formance of other p(1) portfolios is as good as the p(1)(υ,R) portfolio and is

better than the p(0) criterion. Although the p(2) strategies are slightly worse

than the p(1) cases, the performance is much better and less volatile than the

mean-reversion strategy. Although all p(3) portfolios exhibit smaller standard

deviations, the average returns are all negative. With a few exceptions, the

skewness levels of the alternative weekly contrarian strategies are higher and

the kurtosis is lower than the those of cumulative return strategy. The histor-

ical performance of the portfolios is given in Fig. 5.1.

The outperformance of the p(1) and p(2) portfolios is achieved by the stronger

reversal in each ranking group. The average returns of the loser groups by those

strategies are in the range of 0.278%–0.301% comparing with weekly 0.266%

by the benchmark contrarian portfolio. Additionally, the volatility of the loser

groups are lower than the loser in cumulative return. Meanwhile, the winner

baskets in the alternative portfolios underperform its competitive winner bas-

ket. While the traditional mean-reversion winner group obtain weekly 0.198%,

the performance of the winners in p(1) is in the range of 0.037%–0.048% and

the p(2) winners gain weekly 0.121%–0.160% with the smaller standard devi-
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Figure 5.1: Cumulative returns for the traditional contrarian (gray), p(1)(υ,R)
(blue), p(2)(υ,R) (red), and p(3)(1/σ,R) (green) in South Korea KOSPI 200.

ations than other strategies. In the cases of the p(3) criteria, the loser groups

are as good as the other loser basket but the winner groups show the strongest

momentum.

An interesting finding in Table 5.1 is that the outperformance of all the p(1)

and p(2) portfolios is achieved by taking low risk. All the strategies in these

classes are less riskier in every risk measures such as 95% VaR, CVaR, and

maximum drawdown. The maximum drawdowns are almost 50% decreased

with respect to the benchmark strategy. Additionally, the portfolios in both

categories exhibit much higher Sharpe ratios. In particular, the risk measures

of every selection rules in p(1) are at the lowest levels. The risk measures and

Sharpe ratios of these alternative portfolios are in the narrow ranges. This fact

indicates that the consistent risk management is valid for any choices of price

momentum definition. The p(2) strategies also show the same pattern: higher

Sharpe ratios and lower risk measures in the narrow ranges. Additionally, the

risk measures are slightly lower than any other contrarian portfolios.
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The risk profiles of each ranking basket is also consistent with the purpose

of the ranking group. Every alternative losers are less riskier than the bench-

mark loser and the winner groups are much exposed to the risk. In particular,

the 95% VaR and CVaR levels of the alternative loser groups are lower than

those of the loser in cumulative return. Meanwhile, the winner groups are

under the greater exposure of the risk than the winner basket in the tradi-

tional contrarian portfolio. The same pattern is observed for the Sharpe ratio.

The Sharpe ratios of the loser (winner) baskets in p(1) and p(2) portfolios are

greater (smaller) than that of cumulative return loser. The p(2) losers (winners)

exhibits the slightly better (worse) reward-risk measures than p(1).

5.3.2 U.S. equity market: S&P 500

In Table 5.2, every alternative momentum strategies outperform the traditional

contrarian strategy. The best portfolios are from the p(3) criteria with weekly

0.107% and 0.106%, respectively. These average returns are almost seven-

times greater than the performance of the original mean-reversion portfolios.

Additionally, the volatility levels of the portfolio performance are almost 50%

decreased with respect to the benchmark strategy. The p(3) portfolios also

exhibit the higher skewness and lower kurtosis. The strategies constructed by

p(1) and p(2) also obtain the better performance under the smaller standard

deviation. However, the skewness is decreased with respect to the cumula-

tive return strategy. There is no significant improvement in kurtosis. The

performance of the alternative portfolios can be found in Fig. 5.2.

In weekly scale, the contrarian strategies exhibit the strong reversal in
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Figure 5.2: Cumulative returns for the traditional contrarian (gray), p(1)(υ,R)
(blue), p(2)(υ,R) (red), and p(3)(1/σ,R) (green) in U.S. S&P 500.

each ranking group. First of all, all loser groups outperform the traditional

contrarian loser group. In particular, the performance of the two p(3) loser

baskets is much better than any other alternative and benchmark loser baskets.

Additionally, the standard deviations of these p(3) loser groups are much lower

than other losers constructed by the p(0), p(1), and p(2) physical momentum.

Opposite to the loser groups, the winner groups underperform the winner

basket in cumulative return. Although the performance of other winner groups

is slightly worse than the short basket in cumulative return portfolio, the

winner baskets in the p(3) criteria achieve the lowest average returns.

According to Table 5.2, the p(3) portfolios are less riskier in 95% VaR,

CVaR, and maximum drawdown. The portfolio with inverse volatility and

raw return for the physical momentum definition achieves the lowest risk mea-

sures. Additionally, its Sharpe ratio is the largest Sharpe ratio among all

the alternative portfolios including the benchmark. Another p(3) strategy is

ranked to the next in every measures to the p(3)(1/σ, r) portfolio. Meanwhile,
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other alternative contrarian portfolios constructed by the physical momentum

are riskier in 95% VaR and CVaR although the maximum drawdowns are im-

proved. Moreover, the Sharpe ratios are better than the benchmark case but

much lower than the p(3) portfolios.

The p(3) portfolios are less riskier at the level of each ranking basket. The

winner and lower baskets in the p(3) portfolios achieve the lowest 95% VaR,

CVaR, and maximum drawdown among every competitive baskets including

the traditional contrarian portfolio. Additionally, the Sharpe ratios of the

loser groups by p(3) are the largest Sharpe ratios. The winner groups of p(3)

portfolios also obtains the highest reward-risk ratios. The ranking baskets in

the p(2) portfolios are slightly less risker but the winner and loser groups in

the p(1) definitions exhibit worse risk measures.

5.4 Factor analysis

The intercepts and factor exposures of the Fama-French three-factor analysis

on the S&P 500 results are given in Table 5.3. All the intercepts by the

physical momentum definitions are greater than the three-factor alpha of the

traditional contrarian strategy. In particular, the p(3) portfolios achieve the

largest and positive three-factor alphas.

The market and value factors are statistically significant. Meanwhile, the

size factor doesn’t show any significance in any portfolios. The factor loadings

on the size factor in the p(3) portfolios are only positive. For any contrarian

portfolios in the S&P 500 universe, the performance of the contrarian portfolios
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Table 5.3: Fama-French regression of weekly 6/6 contrarian portfolios in U.S.
S&P 500

Criterion Portfolio Factor loadings
α(%) βMKT βSMB βHML R2

p(0) Winner (W) -0.0494 1.1237∗∗ 0.2532∗∗ 0.2906∗∗ 0.8744
Loser (L) -0.0965 1.4406∗∗ 0.1721∗ 0.6591∗∗ 0.8445
L – W -0.0471 0.3169∗∗ -0.0810 0.3685∗∗ 0.1602

p(1)(υ, r) Winner (W) -0.1003 1.2949∗∗ 0.3612∗∗ 0.5236∗∗ 0.8936
Loser (L) -0.0762 1.4045∗∗ 0.2632∗∗ 0.4818∗∗ 0.8704
L – W 0.0241 0.1096∗∗ -0.0980 -0.0418 0.0172

p(1)(τ, r) Winner (W) -0.0901 1.2575∗∗ 0.3567∗∗ 0.4547∗∗ 0.8911
Loser (L) -0.0744 1.4219∗∗ 0.2594∗∗ 0.5389∗∗ 0.8680
L – W 0.0157 0.1644∗∗ -0.0973 0.0841 0.0518

p(1)(υ,R) Winner (W) -0.0837 1.2310∗∗ 0.3670∗∗ 0.4165∗∗ 0.8890
Loser (L) -0.0719 1.4297∗∗ 0.2567∗∗ 0.5782∗∗ 0.8673
L – W 0.0118 0.1986∗∗ -0.1102 0.1617∗ 0.0849

p(1)(τ, R) Winner (W) -0.0708 1.1925∗∗ 0.3693∗∗ 0.3448∗∗ 0.8842
Loser (L) -0.0762 1.4482∗∗ 0.2549∗∗ 0.6252∗∗ 0.8671
L – W -0.0053 0.2557∗∗ -0.1144 0.2805∗∗ 0.1450

p(2)(υ, r) Winner (W) -0.0885 1.2362∗∗ 0.2405∗∗ 0.4664∗∗ 0.9034
Loser (L) -0.0603 1.3269∗∗ 0.1972∗∗ 0.4441∗∗ 0.8757
L – W 0.0282 0.0907∗ -0.0433 -0.0222 0.0139

p(2)(τ, r) Winner (W) -0.0764 1.2063∗∗ 0.2370∗∗ 0.3831∗∗ 0.9074
Loser (L) -0.0638 1.3386∗∗ 0.2013∗∗ 0.5146∗∗ 0.8699
L – W 0.0127 0.1323∗∗ -0.0357 0.1315 0.0513

p(2)(υ,R) Winner (W) -0.0731 1.1870∗∗ 0.2396∗∗ 0.3311∗∗ 0.9088
Loser (L) -0.0650 1.3536∗∗ 0.1942∗∗ 0.5621∗∗ 0.8681
L – W 0.0080 0.1666∗∗ -0.0454 0.2310∗∗ 0.0928

p(2)(τ, R) Winner (W) -0.0553 1.1538∗∗ 0.2384∗∗ 0.2512∗∗ 0.9110
Loser (L) -0.0660 1.3701∗∗ 0.1897∗∗ 0.6280∗∗ 0.8656
L – W -0.0107 0.2163∗∗ -0.0487 0.3768∗∗ 0.1676

p(3)(1/σ, r) Winner (W) -0.0721 1.0048∗∗ 0.0652 0.0936∗∗ 0.9099
Loser (L) -0.0012 1.1691∗∗ 0.0816 0.3046∗∗ 0.8830
L – W 0.0709 0.1642∗∗ 0.0164 0.2111∗∗ 0.1188

p(3)(1/σ,R) Winner (W) -0.0582 0.9689∗∗ 0.0661∗ 0.0187 0.9125
Loser (L) -0.0042 1.1906∗∗ 0.0865 0.3578∗∗ 0.8791
L – W 0.0540 0.2217∗∗ 0.0204 0.3391∗∗ 0.2082

∗∗ 1% significance ∗ 5% significance

are not explicable with the Fama-French three-factor model.

For each ranking basket, the intercepts of the regression are all negative.

The stronger reversal in the ranking baskets is also found in the Fama-French

three-factor analysis. The largest loser alphas are achieved by the winner

groups by p(3). The alphas of the loser groups are exceptionally smaller than

other loser baskets. The worst alphas are obtained by the p(1) portfolios. The
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three-factor alphas of the p(3) losers are also worse than the cumulative return

case.

The factor exposures of the contrarian portfolios are similar to other strate-

gies except for p(3). Although all the factor loadings for the winner and loser

baskets in p(0), p(1), and p(2) are positive and statistically significant, the p(3)

strategies exhibit the weaker dependence on the size factor. The Fama-French

three-factor model can explain the large parts of the portfolio performance

with high R2 values.

5.5 Concluding remarks

In this chapter, the various definitions of the physical momentum on equity

price are introduced. Using the mapping between the price of an financial

instrument and position of a particle in the one dimensional space, the log re-

turn corresponds to the velocity in equity price space. Up to the higher-order

correction terms, the cumulative return is also considered as the velocity. The

candidates for the financial mass to define the equity momentum quantita-

tively are the fractional volume, fractional transaction amount in cash, and

the inverse of volatility. These definitions have the plausible origins not only

from the viewpoint of physics but also based on financial viewpoint.

With the financial mass and velocity concepts, it is capable of defining the

physical momentum in price that is called as the price momentum in finance.

Measuring the physical momentum for each equity, the contrarian strategies

using the physical momentum as a ranking criteria are implemented in the
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KOSPI 200 and S&P 500 universes.

Its performance and reward-risk ratios surpass those of the traditional con-

trarian strategy in the weekly level. The outperformance of the physical mo-

mentum definition is based on the strong mean-reversion in each ranking bas-

ket. The winner in physical momentum definition underperform the winner

group of the traditional contrarian portfolio.

The performance of the physical momentum portfolios is not explained

by the Fama-French three-factor model. The intercepts are higher than the

cumulative return strategy and the R2 values are much lower.

In future work, the similar test will be conducted in different markets and

asset classes. It will be interesting to implement the physical momentum

portfolios in different trading strategies such as high frequency.
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Chapter 6

Spontaneous symmetry
breaking of arbitrage

In this chapter, the concept of spontaneous symmetry breaking is applied

to arbitrage modeling. Unlike Sornette’s work [94] which uses spontaneous

symmetry breaking to explain speculation in the asset valuation theory, the

phase transition is emergent directly from arbitrage dynamics. Wyarta and

Bouchaud also consider symmetry breaking [105] but their concern is self-

referential behavior explained by spontaneous symmetry breaking of correla-

tion in macroeconomic markets such as indexes not of arbitrage return gener-

ated by the trading strategy. From the viewpoint of symmetry breaking, this

paper pays attention to portfolio/risk management rather than explanations

on macroeconomic regime change on which both of the previous works focus.

Based on the dynamics which gives a spontaneous arbitrage phase and a no-

arbitrage phase, the arbitrage strategy can be executed upon the phases of

arbitrage. The phases are decided by a control parameter which has the same

meaning to speed of adjustment in finance. The execution of the strategy

aided by spontaneous symmetry breaking provides better performance than
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the naive strategy and also diminishes risk of the strategy. In Section 6.1,

a brief introduction to arbitrage modeling is given and then the spontaneous

arbitrage modes are emergent from the return dynamics. The momentum

strategy aided by spontaneous symmetry breaking is simulated on real data

and the results in various markets are posted in Section 6.2. In Section 6.3,

we conclude the chapter with some discussions and future directions.

6.1 Spontaneous symmetry breaking of arbi-

trage

6.1.1 Arbitrage modeling

Introducing the existence of arbitrage opportunity, the value of portfolio Π is

governed by the following differential equation,

dΠ
(
t, r(t)

)
=
(
rf + r(t)

)
Π
(
t, r(t)

)
dt+ σ(t)Π

(
t, r(t)

)
dW (t)

where rf is risk free rate, r(t) is excessive return of the portfolio Π, σ(t) is

volatility of portfolio return, and W (t) is a stochastic noise term. If the no-

arbitrage theorem is imposed, the excessive return becomes zero guaranteed

by the Girsanov theorem that the risk-neutral measure P̃(t) and the Brownian

motion W̃ (t) always exist under no-arbitrage situation [44]. If the existence of

arbitrage is assumed, there is no risk-neutral measure P̃(t) nor related Brow-

nian motion W̃ (t). In this case, it is more important to know how its return

series has evolved. The reason why the dynamics is important has two facets.
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First of all, for theorists, the dynamics encodes large amount of information

on market macro- and microstructure. Secondly, it is helpful for practitioners

to exploit the arbitrage opportunity by implementing trading strategies based

on the dynamics.

The excessive return r(t) is modeled by

dr(t)

dt
= f

(
r(t)

)
+ ν(t) (6.1)

where ν(t) is a white noise term. The structure of f
(
r(t)

)
is decided by prop-

erties of arbitrage. One of the simplest forms for f(r) is a polynomial function

of r. Two properties of arbitrage dynamics help to guess the structure of the

function [50]. When the excessive return of the strategy is large enough, the

arbitrage opportunity usually disappears very quickly because many market

participants are easily able to perceive the existence of the arbitrage and can

use the opportunity profitably even with trading costs. This property imposes

a constraint that coefficients of f(r) have negative values. Additionally, Eq.

(6.1) should be invariant under parity transformation r → −r because nega-

tive arbitrage return is also governed by the same dynamics. This property

makes even order terms in the function vanish. Considering these properties

of arbitrage, the form of f(r) is given by

f(r) = −λ1r − λ3r
3 − · · · (6.2)

where λi > 0 for odd positive integer i. In traditional finance, these λs are also

able to be considered as the proxies incorporating the information on changes
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of discount rates which are covered in [28]. The dynamics describes reversal of

return that the return becomes decreased when being large and it is increased

when under the trend line. In other words, the reversal makes the return stay

near the equilibrium around the trend line. By dimensional analysis, λ1 is a

speed of adjustment and is broadly studied in finance [7, 32, 99, 100]. Larger

λi means the arbitrage opportunity dies out much faster. Meanwhile, smaller

λi corresponds to the situation that chances for arbitrage can survive longer.

As λi goes to infinity, the arbitrage return goes to zero extremely quickly and

this limit corresponds to the no-arbitrage theorem. When only the linear term

is considered for the simplest case, the dynamics is an Ornstein-Uhlenbeck

process in mathematical finance,

drt = (µ− λ1rt)dt+ σdWt

where the trend line µ is zero. This stochastic differential equation is in-

variant under parity transformation of rt because Wt is an Ito process with

standard normal distribution which has symmetric distribution around mean

zero. Although there are higher order terms in Eq. (6.2), the dynamics is

still considered as a generalized Ornstein-Uhlenbeck process because it is the

mean-reverting process around the trend line.

6.1.2 Asymptotic solutions

We begin to introduce a cubic term to the Ornstein-Uhlenbeck process to

extend it to more general cases. The introduction of higher order terms is

already used in the market crash model [19]. Then the dynamics is changed
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to

dr(t)

dt
= −λ1r(t)− λ3r

3(t) + ν(t)

where λ1 > 0, λ3 > 0, and ν(t) is a white noise term. After the cubic term

is introduced, adjustment on arbitrate return occurs quicker because the coef-

ficients are all negative. The negative coefficient condition needs to be mod-

ified in order to describe not only reversal but also trend-following arbitrage

return which is explained by positive coefficients. In real situations, the trend-

following arbitrage strategies are also possible to make profits by exploiting

market anomalies because arbitrage opportunities fortified by transaction feed-

back do not disappear as quickly as expect and there could be more chances for

investors. Speculation, as one of the examples, can create more opportunities

for the trend-following arbitrage and increases expected return. Under spec-

ulation, the investors buy the instrument even though the price is high. This

transaction induces to generate the trend line and is able to give feedback

to the investors’ trading patterns. During market crash or bubble collapse,

they want to sell everything at very low prices although the intrinsic values

of instruments are much higher than the price at which they want to sell.

Not in extreme cases but under the normal market condition, people tend to

buy financial instruments which have shown better performance than others

because they expect that the instruments will provide higher returns in the

future. The prices of the instruments become higher because the investors

actually buy with the expectation [48, 101]. It seems to be very irrational

but happens frequently in the markets. To integrate these kinds of situations,
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we can introduce the cutoff value which can decide whether the arbitrage is

originated from reversal or trend-following dynamics rather than the negative

speed of adjustment. With the cutoff value, let us change λ1 and λ3 into the

forms of

λ1 → λ− λc

λ3 → λc/r
2
c

where λ, λc, and rc are positive. Although the number of parameters seems

to be increased, this is not true because λc is an external parameter. Under

these changes, the arbitrage dynamics is given by

dr(t)

dt
= −(λ− λc)r(t)− λc

r3(t)

r2
c

+ ν(t). (6.3)

After relaxation time τ , Eq. (6.3) becomes zero up to the noise term be-

cause other transient effects die out. In other words, the deterministic part

of arbitrage dynamics arrives at the equilibrium state. By setting the deter-

ministic part of the r.h.s. in Eq. (6.3) to zero, stationary solutions are found.

The interesting point is that the number of stationary solutions is dependent

with λ and λc. In the spontaneous symmetry breaking argument, λ is a con-

trol parameter and r is an order parameter. When λ ≥ λc, there is only one

asymptotic solution r(t > τ) = 0 which shows the property of usual arbitrage

opportunities. The meaning of this solution is that the arbitrage return finally

becomes zero up to noise. It is obvious that the arbitrage opportunity vanishes

after the relaxation time because it is taken by market participants who know
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the existence and use the chance.

For λ < λc, there are three asymptotic solutions with r(t > τ) = 0 and

r(t > τ) = ±
√

1− λ

λc
rc = ±rv.

The solution r = 0 has the same meaning to the solution for λ ≥ λc. It

means that the arbitrage opportunity finally dies out. The latter solutions,

r = ±rv, are more interesting because there exist long-living arbitrage modes

in return. After the relaxation time, the arbitrage chance still exists and

lifetime of the spontaneous market anomaly is longer than that of the usual

short-living arbitrage. It is noteworthy that these solutions unlike r = 0

are symmetry breaking solutions although the dynamics is conserved under

parity. The spontaneous mode also has the coherent meaning in the sense of

speed of adjustment λ. If λ is smaller than the critical value λc, it is slower

adjustment and the arbitrage opportunity can have longer lifetime. These

solutions are also well-matched to the no-arbitrage theorem that the arbitrage

chance does not exist because it disappears very quickly. The no-arbitrage

theorem which corresponds to λ → ∞ does not make the arbitrage possible

after the relaxation time because λ is always greater than λc.

When a weak field term is introduced to Eq. (6.3), the observation becomes

more interesting. Introducing the constant term ρ, the equation is given by

dr(t)

dt
= ρ− (λ− λc)r(t)− λc

r3(t)

r2
c

+ ν(t)

where ρ can be considered the velocity of r. If λ < λc, the asymptotic solution
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is also changed from rv to −rv as positive ρ is changed to negative.

6.1.3 Exact solutions

The asymptotic behaviors described in the previous subsection can be cross-

checked with exact solutions. In the long run, the noise term is ignored because

its average is zero. Under this property, the exact solutions of Eq. (6.3) are

given by

r(t) = ±rv
r(t′) exp (−(λ− λc)(t− t′))√

r2
v − r2(t′)(1− exp (−2(λ− λc)(t− t′)))

(6.4)

where t′ is the initial time. When λ ≥ λc, exponential functions in the nomi-

nator and the denominator go to zero in the large t region and it makes r(t)

zero. This corresponds to the symmetry preserving solution which is the usual

arbitrage. If λ < λc, the exponential functions become dominant as t goes to

infinity. At that time, r(t) approaches ±rv which are the symmetry breaking

solutions. These solutions are already seen in the asymptotic solutions.

With the long-living arbitrage solutions in Eq. (6.4), properties of the

solutions are checked graphically in Fig. 6.1 and 6.2.

In Fig. 6.1, the left graph shows time evolution of the solutions as t→∞.

In the small t region, there exist non-zero arbitrage returns regardless of the

value of λ/λc. However, as t → ∞, the return approaches to non-zero if

λ/λc < 1 and it vanishes if λ/λc ≥ 1. In the asymptotic region, the difference

becomes clear and phase transition happens where λ is at the critical value

λc. It is easily seen in the graph on the right. The region λ/λc < 1 is called

the long-living arbitrage phase, spontaneous return phase, or arbitrage phase.
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Figure 6.1: Return vs. λ/λc. In the left graph, t=5 (blue), t=10 (red),
t=25 (black), and t=∞ (gray dashed). In the right graph, t=∞ (black) and
λ/λc = 1 (red dotted)

Another region where λ/λc ≥ 1 is considered the short-living arbitrage phase

or no-arbitrage phase. In the model, market anomalies survive if they are in

the long-living modes.
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Figure 6.2: Return vs. time. long-living arbitrage mode (blue), short-living
arbitrage mode (red dashed), and asymptotic return (gray dashed)

In Fig. 6.2, the spontaneous arbitrage returns approach to rv whatever

initial return values are. However, the no-arbitrage phase finally goes to zero.

This property does not depend on the size of the initial return values. Even

if the initial value is smaller than the asymptotic value, it grows up to the
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asymptotic value. For example, if investors realize the arbitrage opportunity

and if they begin to invest into the chance, their trading behavior affects price

dynamics and the trend-following investors pay attention to the instruments.

The interest leads to trading which gives feedback to their trading patterns and

can increase the profitability. In other words, money flows into the instrument,

boosts its price, and gives feedback to investors’ behaviors. If transaction

cost is smaller than the asymptotic value, arbitrage opportunities created by

spontaneous symmetry breaking can be utilized by the investors.

When the long-living arbitrage mode is possible, r(t) can be re-parametrized

by

r(t) = ±rv + ψ±(t)

where ψ(t) is a dynamic field for expansion around ±rv. Plugging this re-

parametrization into (6.3), the differential equation for ψ is solved and its

solutions are given by

ψ±(t) = 0,∓ 2rv
1− exp (−(λc − λ)t)

Since the latter solution goes to ∓2rv in the asymptotic region, we can check

the transition between rv and −rv. If ψ = 0, the initial modes stay in them-

selves, i.e. ±rv go to ±rv. However, if ψ is the latter solution, they evolve to

∓rv in large t limit even though we start at ±rv initially.
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6.2 Application to real trading strategy

6.2.1 Method and estimation of parameters

In order to test the validity of spontaneous symmetry breaking of arbitrage, we

apply the following scheme depicted in Fig. 6.3 to trading strategies over real

historical data. In backtest, the control parameter λ for the strategy should be

forecasted based on historical data. At certain specific time t′, it is assumed

that data only from t < t′ are available and the control parameter for next pe-

riod is forecasted from them. If the forecasted λ is smaller than the forecasted

λc, the strategy which we want to test is expected to be in spontaneous arbi-

trage mode in the next period and the strategy will be executed. When the

forecast tells that the strategy would not be in spontaneous arbitrage mode,

it will not be exploited and the investor waits until the next execution signals.

The weak field is also able to decide the method of portfolio construction. If

the constant term is positive, the portfolio which the strategy suggests to build

will be constructed. However, if the constant term becomes negative, weights

of portfolio will become opposite to those of the portfolio originated from the

positive constant term. Simply speaking, the portfolio is not constructed if the

speed of adjustment is larger than the critical speed. When it is smaller than

the critical value, the weight of the portfolio is (w1, w2, · · · , wn) if the weak

field is positive and the portfolio is (−w1,−w2, · · · ,−wn) if the weak field is

negative. This kind of multi-state models is popular in the names of hidden

Markov model [17] or threshold autoregressive model [102] in econometrics

and finance. The scheme is repeated in every period over the whole data set.

To apply the model to real data, the model considered in the continuous
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Figure 6.3: Flow chart of the scheme based on spontaneous symmetry breaking
concept

time frame needs to be modified to discrete version because all financial data

are in the forms of discrete time series. In the discrete form, Eq. (6.3) is

changed into

ri+1 =
(
1− (λ− λc)

)
ri −

λc
r2
c

r3
i + εi+1 (6.5)

and an additional ri related to the coefficient 1 in the first term on the r.h.s

comes from the time derivative in Eq. (6.3).

The next step is estimation of parameters in Eq. (6.5) with real data.

Regression theory gives help on estimation but it is not easy to estimate the

parameters with real data because the model is nonlinear and many methods

in the regression theory are for linear models. In statistics, these parameters

can be estimated by nonlinear regression theory but it is not discussed in this
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paper. Instead of using nonlinear regression theory directly, we can get some

hints from linear regression theory. With consideration on financial meanings

and physical dimensions of the parameters, linear regression theory enables us

to estimate the model parameters.

There are some issues on the estimation of parameters. The first issue is

related to stability of the parameters. When the parameters are fit to real data,

if values of the parameters severely fluctuate over time, those abruptly-varying

parameters hardly give a steady forecast. One of the best ways to avoid this is

taking a moving average (MA) over a certain period. Moving average over the

period can make the parameters smoothly-changing parameters. For longer

MA windows, the parameter is stable but it would be rather out of date to

tell more on the recent situation of the market. If it is short, they can encode

more recent information but they tend to vary too abruptly to forecast the

future values. To check MA window size dependency, a range of MAs needs

to be tested and the results from different MAs should be compared.

Another issue is the method to estimate parameters in the model. Since

two or three1 internal parameters and one external parameter are given in the

model, the same number of equations should be prepared. For the simpler case,

the coefficient for each term can be considered as one parameter. In this case,

two equations need to be set up. However, the values of two parameters found

from two equations sometimes diverge when real data are plugged. Since λ and

λc are the speeds of adjustment and have same physical and financial meanings,

they need to be derived from the same origin. The only difference is that λc

is external. In addition to that, the symmetry breaking needs comparison

1If the weak field is considered, we have three internal parameters.
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between two different speeds, λ and λc.

One of the possible solutions is that λ is derived from the return series

of the strategy and λc comes from the benchmark return as the definition of

an external parameter. This interpretation can give two parameters the same

physical dimensions and financial meanings. The specification on λs is also

reasonable in the sense of the efficient market hypothesis. Since the hypothesis

tells that it is impossible to systematically outperform the benchmark, it is

obvious that we compare the performance of the strategy with that of the

benchmark in order to test the hypothesis. In the case of r2
c , the volatility of

the strategy or benchmark return can be a good candidate because r2
c also has

the same meaning and dimension to variance. For the constant term ρ, the

average value of strategy return or benchmark return would be considered.

Dividend payment rate is also a good candidate. However, since the most

important parameters in the model are λ and λc, we focus on the estimation

of these two parameters.

The intuitive way to get λ and λc is using a hint from the autoregressive

model of order 1 called the AR(1) model. Ignoring the cubic term is also

justified by the fact that the returns are much smaller than 1. Starting with

the simpler model which does not have the cubic term, multiplying ri to both

sides and taking MA over k periods make the last term zero on the r.h.s. of

Eq. (6.5) and give the form of λ. The one-step ahead forecasted λ is

λ̂i+1,k = 1− 〈riri−1〉k
〈r2
i−1〉k

where 〈Xi〉k = 1
k

∑k−1
j=0 Xi−j. In longer MA windows, we can change 〈r2

i−1〉k
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in the denominator to 〈r2
i 〉k because 〈r2

i−1〉k is close to 〈r2
i 〉k. In shorter MA

windows, the change is meaningful because it is capable of considering more

recent informations2. Based on this argument, the final form of forecasted

speed of adjustment is given by

λ̂i+1,k = 1− 〈riri−1〉k
〈r2
i 〉k

. (6.6)

This λ has the same form to the parameter in AR(1) model which is found in

ri+1 = φri + εi+1

φ =
E[xixi−1]

E[xixi]

where E[...] is the expectation value.

The estimator (6.6) is intuitively estimated but the hand-weaving argument

is available. Since the benchmark return tends to be weakly autocorrelated and

the return series by the arbitrage strategy is expected to be strongly positive-

autocorrelated, the estimator for the arbitrage strategy is usually smaller than

that for the benchmark. In this case, the strategy is in the long-living arbitrage

mode. When the estimator for the strategy is larger than that for the bench-

mark, it is highly probable that return series for the strategy becomes much

more weakly autocorrelated than the benchmark return. This tells that the

strategy has recently suffered from large downslide and it can be used as the

stop signal to strategy execution. Additionally, since the estimator is related

to the correlation function which is in the range of -1 and 1, the value of the

2Actually, these two different definitions for λ will be tested in next subsections.
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estimator fluctuates between 0 and 2 and it is well-matched to the positiveness

condition on λ.

6.2.2 Data sets for the strategy

Two different market universes are used for analysis to avoid sample selection

bias. The first universe is the S&P 500 index that is the value/float-weighted

average of the top 500 companies in market capitalization in NYSE and NAS-

DAQ. It is one of the main indexes such as the Dow Jones Index and Russell

3000 in the U.S. market. Standard & Poor’s owns and maintains the index

with regular rebalancing and component change. Another universe is KOSPI

200 in the South Korean market operated by Korea Exchange (KRX). It is the

value-weighted average of 200 companies which represent the main industrial

sectors. Unlike the S&P 500 index, KOSPI 200 contains small-sized companies

in market capitalization and considers sector diversification. Its components

and weights are maintained regularly and are also irregularly replaced and re-

balanced in the case of bankruptcy or upon sector representation issues such

as change of core business field or increase/descrease of relative weight in the

sector. The significance of each index in the market is much higher than those

of other main indexes such as Dow Jones 30 Index or Russell 3000 in the U.S.

and the KOSPI index, the value-weighted average of all enlisted equities in

the South Korean market, because futures and options on the indexes have

enough liquidities to make strong interactions between equity and derivative

markets. In the case of the Korean market, the KOSPI 200 index among main

indexes is the only index which has the futures and options related to the main
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indexes. Additionally, many mutual funds target the indexes as their bench-

marks and various index-related exchange-traded funds are highly popular in

both markets.

The whole time spans considered for two markets are slightly different but

have large overlaps. S&P 500 is covered in the term of Jan. 1st, 1995 and

Jun. 30th, 2010, 15.5 years which includes various macro-scale market events

such as the Russian/Asian crisis (1997–1998), Dot-com bubble (1995–2000),

its collapse (2000–2002), bull market phase (2003-2007), sub-prime mortgage

crisis (2007–2009), and the recovery boosted by Quantitative Easing I (2009–

2010). In the case of KOSPI 200, the market in the period of Jan. 1st. 2000

to Dec. 31st. 2010, had experienced not only economic coupling to the U.S.

market but also local economic turmoils such as the credit bubble and crunch

(2002–2003). Given the market and time span, the price history of each stock

and whether it was bankrupt or not are stored on a database in order to remove

survivor bias and all records for component change are also tracked to keep the

number of index components the same. The S&P 500 data are downloaded

from Bloomberg. The whole data of KOSPI 200 components and their change

records are able to be downloaded from KRX. The total number of equities in

the database during the covered period is 968 and 411 for S&P 500, KOSPI

200, respectively3.

3Unfortunately, S&P 500 data is not completely free of survivor bias. Histories of 14
equities are not trackable and are left empty in the database. However, it might not give any
serious impact on the result because the size of missing data is relatively small compared
with the whole dataset.
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6.2.3 Results

In both markets, 1/1 weekly strategies are considered and the contrarian port-

folios are constructed. The reason for choosing 1/1 weekly strategies is that

they show the best performance in each market among 144 strategies derived

from maximum 12-week lookbacks and holdings. Excessive weekly returns of

the portfolios are calculated from risk-free rates and proxies for the risk-free

rate are from the U.S. Treasury bill with 91 days duration for S&P 500, CD

with 91 days duration for KOSPI 200. Since the weekly momentum portfolio

is constructed at the closing price of the first day in the week and is liquidated

at the closing price of the last day, the benchmark return is also calculated

from the closing prices of the first and the last days in the week. The results

for these markets are given in Fig. 6.4
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Figure 6.4: Cumulative excessive weekly returns in S&P 500 and KOSPI 200.
Return time series by contrarian strategy (blue), by winner (gray), by loser
(gray dashed), and by benchmark (red dashed)

There are similarities and differences in two markets. First of all, it is eas-

ily seen that 1/1 strategy shows a reversal that if the winner basket is bought,

it is impossible to get a significant positive return but we can achieve posi-
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tive return from the loser basket. In particular, the contrarian portfolio beats

the benchmark over whole periods and this comes from the fact that the loser

basket outperforms and the winner basket underperforms the benchmark. Ad-

ditionally, the contrarian strategy looks more profitable in the Korean market

and it can be explained that developed markets have weaker anomalies than

emerging markets because the investors in the developed market have utilized

the anomalies during longer periods. In the South Korea market, the winner

and the loser have more clear directions and magnitudes of the returns are

much greater than those of the U.S. market. It is easily seen in Table 6.1.

Table 6.1: Statistics for contrarian strategy and benchmark in S&P 500 and
KOSPI 200.

mean std. skewness kurtosis t-statistics Sharpe ratio
S&P 500 Winner 0.045% 3.350% 0.419 11.181 0.379 0.013

Loser 0.334% 3.973% 1.899 23.666 2.385 0.084
Contrarian 0.225% 3.097% 1.011 21.447 2.065 0.073
Benchmark 0.040% 2.368% -0.150 8.097 0.482 0.017

KOSPI 200 Winner -0.612% 4.189% -1.051 7.444 -3.496 -0.146
Loser 0.796% 4.747% 0.339 9.581 4.013 0.168

Contrarian 1.325% 3.349% 1.293 9.839 9.491 0.396
Benchmark 0.136% 3.662% -0.125 7.052 0.889 0.037

In Table 6.14, the numbers from the KOSPI 200 confirm much stronger

and clearer contrarian patterns as shown in Fig. 6.4. The contrarian return in

the Korean market is weekly 1.325% which is much greater than 0.225% from

S&P 500 contrarian strategy and the t-value of the KOSPI 200 contrarian

strategy is 9.491 which is 0.1% statistically significant but the U.S. strategy

has only 2.065, 5% statistically significant. The null hypothesis is that the

expected excessive return is zero. Similar to the contrarian returns, the win-

ner basket and the loser basket have larger absolute returns and t-statistics in

KOSPI 200. Both of them are 0.1% statistically significant but the S&P 500

4The numbers are from excessive weekly return series.
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loser return only has a 5% statistically significant t-value and a less significant

t-value for another. In both markets, benchmarks have much smaller weekly

expected returns than those by the contrarian strategies and t-values are not

significant. Standard deviation gives another reason why the portfolio by the

momentum/contrarian strategy needs to be constructed. After construction

of the contrarian portfolio, the volatility of the portfolio is smaller than the

volatility of the winner group and the loser group. In particular, in the South

Korea market, the contrarian portfolio has a smaller volatility than the bench-

mark and has a greater Sharpe ratio than each of the winner and the loser

basket has. A larger Sharpe ratio imposes that the strategy is good at min-

imizing the risk and maximizing the return. Winners, losers, and contrarian

portfolios have large kurtosis by fat-tailed distribution.

The results by symmetry breaking with 99 different MA windows are given

in Fig. 6.5 and 6.6. The strategies aided by spontaneous symmetry breaking

show better performance than the naive momentum strategy in both markets

and the results are not particularly dependent on the market where the strat-

egy is used. In the case of return, the strategies with shorter MA windows have

improved returns than longer MA windows or naive momentum strategy. As

the length of the MA window becomes longer, the return plunges sharply and

this plummet is observed in both markets. The Sharpe ratio is also increased

with the SSB-aided strategy and it is obvious that the modified strategy is

under better risk management. The winning percentage also increases and it

is larger for shorter MA windows.

The application of spontaneous symmetry breaking also has the minor

market dependencies. In S&P 500, average returns and Sharpe ratios increase
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Figure 6.5: S&P 500. SSB-aided weekly contrarian strategy (blue) and naive
weekly contrarian strategy (red dashed). MA window size ranges from 2 to
100.

after a drop around the 20-MA window but the KOSPI 200 momentum does

not recover its average return level and remains stagnated around returns by

the naive strategies. In the case of volatility, it is helpful to reduce volatility

with SSB in KOSPI 200 but is not useful in S&P 500.

The constant term in spontaneous symmetry breaking is also considered.

As described before, average return over the MA window or return in previous

term of the raw strategy are used as the forecasted constant term. If the

constant is positive, the contrarian portfolio is constructed and if the constant

is negative, the momentum strategy is used. However, the strategy including

the constant term does not provide better results than the strategy without the
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Figure 6.6: KOSPI 200. SSB-aided weekly contrarian strategy (blue) and
naive weekly contrarian strategy (red dashed). MA window size ranges from
2 to 100.

constant. The same approach is applied to mean return or return in previous

terms of the benchmark but it is not possible to find the better strategy. With

these facts, it is guessed that the constant term is zero or the constant term is

always positive if it exists and if these returns are the only possible candidates

for the constant. The positiveness of the constant can be guaranteed by the fact

that the arbitrage portfolio is constructed to get a positive expected return.

With other estimators for speed of adjustment, it is found that the SSB-

guided strategies provide similar results although the results are not given in

the paper. In both markets, the patterns of results are similar to the results

depicted in Fig. 6.5 and 6.6. Specifically speaking, the estimator with 〈r2
i−1〉k
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in the denominator gives similar patterns in KOSPI 200 but the performance

is slightly poorer than the result in Fig. 6.6. In the U.S. market, similar

patterns in longer MA windows are found but the results with shorter MA

windows are worse than the result given in the paper. This is well-matched to

the assumption that 〈r2
i−1〉k is almost identical to 〈r2

i 〉k in longer MA windows.

When the estimator uses the covariance of ri and ri−1, similar results are

found but the performance becomes much poorer, especially in shorter window

length.

Although the whole time period is same for each of the MA windows, longer

MA strategies have fewer data points when the performance is calculated in

backtest. This difference in number of data points comes from the assumption

that even though we work with historical data already known, we pretend to

be unaware of the future after the moment at which the forecast is made in

backtest. In the simulation with each MA, the first few data whose length is

the same as the size of the MA window are used for forecast and are ignored

in the calculation of performance. However, the difference does not make any

serious difference in the patterns of performance. When the tests to calculate

the performance are repeated over the same sample period for all MA windows,

notable differences are not observed and the results are similar to Fig. 6.5 and

6.6.
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6.3 Concluding remarks

The cubic order term and parity symmetry on return introduce the concept

of spontaneous symmetry breaking to arbitrage dynamics. In the asymptotic

time region, the dynamics has symmetry breaking modes triggered by the

control parameter. It can provide the long-living arbitrage modes including the

short-living mode in the dynamics. Spontaneous symmetry breaking generated

by the control parameter λ imposes phase transition between the arbitrage

phase and no-arbitrage phase. Contrasting to the short-living mode which is

expected in the frame of the efficient market hypothesis, the long-living modes

are totally new and exotic. The existence of a spontaneous arbitrage mode

explains why the arbitrage return survives longer than expected and why the

trading strategies based on market anomalies can make long term profits. With

the existence of the weak field, it is possible to consider the transition between

two long-living arbitrage modes, ±rv in the asymptotic region.

Based on spontaneous symmetry breaking of arbitrage, the control param-

eter enables to decide execution of the trading strategy. If λ for the strategy

is smaller than λc for the benchmark, the strategy will be executed in next

period. If the speed of adjustment for the strategy is greater than that of

the benchmark, nothing will be invested. Since it is difficult to estimate the

parameter in the nonlinear model, the AR(1) model gives an insight for esti-

mation. The estimated λ based on the AR(1) model has the theoretical ground

that the speed of estimation is derived from the autocorrelation function. It is

also reasonable in the sense of testing the efficient market hypothesis because

it is capable of comparing the strategy with the benchmark. The simplest but
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most meaningful estimator for the control parameter is applied to momentum

strategy in the U.S and South Korean stock markets. The SSB-aided mo-

mentum strategy outperforms and has lower risk than the naive momentum

strategy has. Since the strategy applied to two different markets shows simi-

lar patterns, the results are not achieved by data snooping. It is also not by

estimator bias because three different estimators for speed of adjustment are

tested and provide similar results with some minor differences.

The future study will be stretched into a few directions. First of all, pa-

rameter estimation needs to be more precise and statistically meaningful. In

this paper, the estimator for the control parameter λ is from the AR(1) model

and λ for benchmark serves as the critical value λc although the cubic term

exists. Although it provides better performance and lower risk, estimation of

the parameters is from the reasonable intuition not from regression theory. For

the more precise model, they need to be estimated from nonlinear regression

theory. In particular, a statistical test on estimation should be done. In the

case of λc, it can be estimated with the help of other researches on market

phase such as Wyarta and Bouchaud’s work [105]. Other parameters, rc or

ρ, also help to find the better performance strategy if they are statistically

well-estimated. The second direction is considering the stochastic term in ar-

bitrage dynamics. In the paper, only the deterministic part is considered and

the stochastic term is out of interest in finding the exact solutions. If the spon-

taneous symmetry breaking modes are found not as the asymptotic solutions

but as the exact solutions of the stochastic differential equation, they would

extend our understanding on arbitrage dynamics. In addition to that, speci-

fication of relaxation time can be found from the correlation function of the
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stochastic solutions. Finally, it would be interesting if validity of the arbitrage

modeling with spontaneous symmetry breaking is tested over other arbitrage

strategies. Since only the momentum/contrarian strategy is the main concern

in the paper, tests on other trading strategies including high frequency trading

look very interesting. Additionally, a cross-check with momentum strategies

for different markets and frequencies would be helpful to check the effective-

ness and usefulness of spontaneous symmetry breaking concepts in arbitrage

modeling.
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Chapter 7

Kählerian information geometry
for signal processing

In this chapter, we prove the correspondence between the Kähler manifold and

the information geometry of signal processing models. Under certain condi-

tions on the transfer functions of time series models and filters, the Kähler

manifold is the information geometry of the models. On the Kähler manfi-

old, the calculation of geometric objects and search for Bayesian predictive

priors are much simpler than the non-Kähler geometry. Additionally, the

α-correction terms on the geometric objects are linear in α on the Kähler

manifold. The structure of this paper is following. In next section, we shortly

review information geometry for signal processing and derive some basic lem-

mas in terms of spectral density function and transfer function. In section 7.2,

the conditions for the Kähler manifold are derived and main results are given.

The implications of the Kähler geometry to time series models are provided in

section 7.3. We conclude the chapter in section 7.4.
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7.1 Information geometry for signal process-

ing

7.1.1 Spectral density representation in frequency do-

main

A signal processing filter with given model parameters ξ = (ξ1, ξ2, · · · , ξn) is

described by a transfer function h(w; ξ) with

y(w) = h(w; ξ)x(w; ξ)

where x(w; ξ) and y(w) are input and output signals in frequency domain

w, respectively. The properties of the filter are characterized by the transfer

function h(w; ξ) and model parameters ξ. A number of the parameters, n,

is not only a number of the independent variables in the model but also a

dimension of a statistical manifold in information geometry.

In signal processing, one of the most important quantities is spectral den-

sity function. The spectral density function S(w; ξ) is defined as the absolute

square of the transfer function

S(w; ξ) = |h(w; ξ)|2. (7.1)

The spectral density function describes the way how energy in frequency do-

main is distributed by the filter. In terms of signal amplitude, the spectral

density function encodes change in amplitude over frequency by the filter.

For example, the spectral density function of the all-pass filter is constant in
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frequency domain because the filter passes all inputs to outputs up to phase

difference regardless of frequency. The high-pass filter only allows the signal

in the high frequency domain. Meanwhile, the low-pass filter only permits

the low frequency inputs. The properties of other well-known filters are also

described by their own spectral density functions.

The spectral density function is also important in information geometry

because it is well-known that the Fisher information matrix, that is also the

metric tensor of a statistical manifold, is derived from the spectral density

function [3]. The metric tensor of a given time series model with spectral

density function S(w; ξ) is written in the form of

gij(ξ) =
1

2π

∫ π

−π
∂i logS∂j logSdw (7.2)

where partial derivative is the derivative with respect to the coordinate system

of the model parameters ξ. Since the dimension of the manifold is n, the metric

tensor is an n× n matrix.

Additionally, other information geometric objects are also represented with

the spectral density function. For examples, the α-connection, that encodes

the correction to a vector in order to transport the vector along the curve in

a parallel manner, is found in

Γ
(α)
ij,k(ξ) =

1

2π

∫ π

−π
(∂i∂j logS − α∂i logS∂j logS)∂k logSdw (7.3)

where α is a real number. Notice that the α-connection is not a tensor. The

α-connection is related to the Levi-Civita connection, Γij,k(ξ), also known as
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the metric connection. The relation is given by the following equation

Γ
(α)
ij,k(ξ) = Γij,k(ξ)− α

2
Tij,k(ξ) (7.4)

Tij,k(ξ) =
1

π

∫ π

−π
∂i logS∂j logS∂k logSdw (7.5)

where the tensor Tij,k(ξ) is symmetric under the exchange of the indices. It is

easy to verify that the Levi-Civita connection corresponds to the α = 0 case.

The metric tensor and α-connection are derived from the α-divergence, also

known as Chernoff’s α-divergence. The α-divergence is the only divergence

that are both f -divergence and Bregman divergence [4]. The α-divergence

between two spectral densities S1 and S2 is defined as

D(α)(S1||S2) =


1

2πα2

∫ π
−π

{(
S2

S1

)α
− 1− α log S2

S1

}
dw (α 6= 0)

1
4π

∫ π
−π

(
logS2 − logS1

)2
dw (α = 0)

and conventionally measures the distance from S1 to S2. The α-divergence

except for α = 0 is a pseudo-distance measure in information theory because

it is not symmetric under the commutation of S1 and S2. In spite of the

asymmetry, the α-divergence is used for measuring how different two time

series models or filters are. Different α provides different α-family. Some α-

divergences are used much frequently than others because they correspond

to the divergences already known in information theory and statistics. In

particular, the (−1)-divergence is the Kullback-Leibler divergence. The 0-

divergence is well-known as the square of the Hellinger distance. It is recently

reported that the Hellinger distance is locally identical to the information
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distance but globally tightly-bounded by the information distance [77].

These information geometric objects have interesting properties with the

reciprocal spectral density function. The inverse system is related to the α-

dual description. The following lemma is for the correspondence between the

reciprocality of the spectral density function and the α-duality.

Lemma 1. The inverse system of a signal processing model has the α-dual

geometry to the information geometry of the original system.

Proof. It is easy to prove that the metric tensor is invariant under the recip-

rocality of the spectral density function. By plugging S−1 to eq. (7.2), the

reciprocal spectral density function provides the identical metric tensor. Given

a filter with the spectral density function, there is no way to discern whether

the metric tensor is derived from the filter with S or S−1.

Meanwhile, the α-connection is not invariant under the reciprocality and

exhibit the more interesting property. The α-connection from the reciprocal

spectral density function is given in

Γ
(α)
ij,k(S

−1; ξ) =
1

2π

∫ π

−π
(∂i∂j logS + α∂i logS∂j logS)∂k logSdw

= Γ
(−α)
ij,k (S; ξ)

and it is obvious that the α-connection with the reciprocal spectral density

function is the (−α)-connection of the original spectral density function. For

example, if the 1-connection for model S is chosen, it corresponds to the (−1)-

connection for model S−1 after the transformation. Additionally, if the model

S is α-flat, S−1 provides the (−α)-flat connection. Obviously, the 0-connection

is self-dual to itself under the reciprocality.
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Similar to the α-connection, the α-divergence is equipped with the same

property under the inversion. The α-divergence between two inverted spectral

density functions is easily found from the definition of the α-divergence and it

is represented with

D(α)(S−1
1 ||S−1

2 ) = D(−α)(S1||S2).

With the inverse system, we can construct the α-dual description of the signal

processing model. Finding the multiplicative inverse of the spectral density

function corresponds to the α-dual transformation.

With Lemma 1, it is obvious that the following multiplication rule is true

D(α)(S1||S−1
2 ) =

1

2πα2

∫ π

−π

{
(S1S2)−α − 1 + α log (S1S2)

}
dw

= D(−α)(S0||S1S2) = D(α)(S1S2||S0)

where S0 is a spectral density function for the all-pass filter of which the spec-

tral density function is unity. Plugging S1 = S0 and S2 = S, D(0)(S0||S−1) =

D(0)(S0||S) = D(0)(S||S0).

7.1.2 Transfer function representation in z-domain

It is also possible to reproduce all the previous results in terms of the transfer

function instead of the spectral density function. By using z-transformation,

z = eiw, the transfer function h(z; ξ) is expressed by a Laurent polynomial
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function in z in the form of

h(z; ξ) =
∞∑

r=−∞

hr(ξ)z−r (7.6)

where hr(ξ) is an impulse response function. It is a bilateral (or two-sided)

transfer function expression which has both of positive and negative degrees in

z including the zero-th degree. If all hr(ξ) for negative r, i.e. positive degrees

in z, are zero, the transfer function is reduced to a unilateral expression. In

many real applications, the main concern is the causality of filters which is

represented with unilateral transfer functions. In this paper, we start with the

bilateral transfer function as generalization and then will focus on the causal

filters.

In z-domain, all fomulae for the information geometric objects are identical

to the expressions in frequency domain except for change of integral measure:

1

2π

∫ π

−π
g(w; ξ)dw → 1

2πi

∮
|z|=1

g(z; ξ)
dz

z
.

Since the evaluation of the integration is obtained by line integral along the

unit circle on the complex plane, it is easy to calculate with the aid of the

residue theorem. By the residue theorem, the poles only inside the unit circle

contribute to the evaluation of the integration. If g(z; ξ) is analytic on the

unit disk, the constant term in z of g(z; ξ) is the answer, If the function has

poles inside the unit circle, those poles contribute to the integration. For more

details, see Cima et al. [27] and reference therein.

One advantage of using z-transform is that the transfer function can be
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understood in the viewpoint of functional analysis. The transfer function in

z-coordinate is expanded by the orthonormal basis z−r with the coefficients

of impulse response function. The inner product between two functions is

expressed in terms of integration

〈f, g〉 =
1

2πi

∮
|z|=1

f(z)g(z)
dz

z
.

By using this expression, the condition for the stable system,
∑∞

i=0 |hi|2 <∞

is considered as the square norm of transfer function. In complex analysis, the

condition for stable system is represented as Hardy norm

∞∑
i=0

|hi|2 = ||h(z; ξ)||2H2 <∞

and the function that satisfies the above is called H2 or L2 function. The

transfer function for stable system is a function on the L2 space if it is in

the bilateral form. For unilateral transfer function, it is a function on the H2

space.

Additionally, it is natural to complexify the coordinate as being used in

the complex differential geometry. For example, with holomorphic and anti-

holomorphic coordinates, the metric tensor is represented with

gµν =
1

2πi

∮
|z|=1

∂µ
(

log h(z; ξ) + log h̄(z̄; ξ̄)
)
∂ν
(

log h(z; ξ) + log h̄(z̄; ξ̄)
)dz
z

where both µ and ν run over all the holomorphic and anti-holomorphic coordi-

nates, i.e. µ, ν = 1, 2, · · · , n, 1̄, 2̄, · · · , n̄. Since the metric tensor is defined as

the inner product between the basis vectors on the manifold, the expression for
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the metric tensor is also consistent with the viewpoint of functional analysis.

The metric tensor is categorized into three components: one for pure holo-

morphic coordinates, one for pure anti-holomorphic coordinates, and one for

mixed coordinates. The metric tensors in these three categories are given in

gij(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j log h(z; ξ)
dz

z
(7.7)

gij̄(ξ) =
1

2πi

∮
|z|=1

∂i log h(z; ξ)∂j̄ log h̄(z̄; ξ̄)
dz

z
(7.8)

where gīj̄ = (gij)
∗ and gīj = (gij̄)

∗. The indices i and j run from 1 to n. It

is also possible to express the α-connection and α-divergence in terms of the

transfer function by using eq. (7.1), the relation between the transfer function

and the spectral density function.

It is noteworthy that the information geometry of a filter is not changed

by the multiplicative factor of z in the transfer function because the metric

tensors are invariant under the factorization. It is also valid for spectral density

function.

Lemma 2. The information geometry is invariant under the multiplicative

factor of z and it is possible to reduce the transfer function with the finite

upper bound in degrees of z to the unilateral transfer function.

Proof. Any transfer function can be factored out zR in the form of

h(z; ξ) = zRh̃(z; ξ)

where R is any integer. When the spectral density function is considered,

contribution of the factorization is |z|2R which is a unity in line-integral. Be-
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cause of this cancelation, the metric tensor, α-connection, and α-divergence

are independent with the factorization.

When the transfer function is considered, the same conclusion is obtained.

Since partial derivatives in the expressions for metric tensor and α-connection

remove any contribution from log zR, the formulae are invariant under the

factorization. It is easy to show that α-divergence is also invariant under the

factorization. Another explanation is that ∂i log h in the metric tensor and

α-connection is scale invariant under zR factor.

In particular, this property is useful in the case that the transfer function

has finite number of terms in any unilateral direction. For example, if the

highest degree in z of the transfer function is finite, the transfer function is

given in

h(z; ξ) = zR(h−R + h−(R−1)z
−1 + · · ·+ h0r

−R + h1r
−(R+1) · · · )

= zRh̃(z; ξ)

where R is an integer and h̃ is a unilateral transfer function.

The bilateral transfer function can be expressed with the multiplication

of two functions that one is a unilateral transfer function and another is an

analytical function in the disk with non-negative degrees:

h(z; ξ) = f(z; ξ)a(z; ξ)

= (f0 + f1z
−1 + f2z

−2 + · · · )(a0 + a1z
1 + a2z

2 + · · · )

where fr and ar are functions of ξ. For a causal filter, all ais are zero except for
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a0. This expression also includes the case of the Lemma 2 by changing ai = 0

for i < R and aR = 1. However, it is natural to take f0 and a0 as non-zero

functions because powers of z could be factored out for non-zero coefficient

terms with the maximum degree in f(z; ξ) and the minimum degree in a(z; ξ),

and the transfer function is reduced to

h(z; ξ) = zRh̃(z; ξ)

where h̃(z; ξ) has non-zero f̃0 and ã0 and R is an integer which is the sum of

the degrees in z with first non-zero coefficient terms from f(z; ξ) and a(z; ξ),

respectively. By Lemma 2, h(z; ξ) has the same information geometry with

the information geometry of h̃(z; ξ).

Since f(z; ξ), a(z; ξ), and h(z; ξ) construct the Toeplitz system, frs are

decided by coefficients of a(z; ξ) for a given h(z; ξ). The following lemma is

noteworthy for further discussion. It is the generalization of Lemma 2.

Lemma 3. The information geometry is invariant under the choice of a(z; ξ).

Proof. It is obvious that the information geometry of the system is only de-

cided by the transfer function h(z; ξ). Whatever a(z; ξ) is chosen, the transfer

function is the same because f(z; ξ) is conformable in Toeplitz system.

For further generalization, the transfer function is extended with the Blaschke

product b(z), corresponding to the all-pass filter in signal processing, to the

following form

h(z; ξ) = f(z; ξ)a(z; ξ)b(z)
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where the Blaschke product b(z) is given by

b(z) =
∏
s

b(z, zs) =
∏
s

|zs|
zs

zs − z
1− z̄sz

and all zs is on the unit disk. When zs = 0, the Blaschke product is given

by b(z, zs) = z. Regardless of zs, the Blaschke product is analytic on the unit

disk. Since the Taylor expansion of the Blaschke product provides positive

order terms in z, it is also possible to incorporate the Blaschke product to

a(z; ξ). However, the Blaschke product is considered separately in the note.

The log of transfer function is found in terms of f, a, and b:

log h(z; ξ) = log (f0a0) + log (1 +
∞∑
r=1

fr
f0

z−r) + log (1 +
∞∑
r=1

ar
a0

zr) + log b(z)

= log (f0a0) +
∑
s

log |zs|+
∞∑
r=1

φr(ξ)z−r +
∞∑
r=1

αr(ξ)zr +
∞∑
r=1

βrz
r

where φr, αr are r-th coefficients of log expansions and those are functions of

ξ unless all fr/f0 and ar/a0 are constant. Meanwhile, βr is a constant given

in βr = 1
r

∑
s
|zs|2r−1

zrs
.

It is easy to show that the information geometry is independent with the

Blaschke product.

Lemma 4. The information geometry is independent with the Blaschke prod-

uct.

Proof. It is obvious that the Blaschke product is independent with the coor-

dinate system ξ. Plugging the above series to the expression for the metric in

complex coordinates, eq. (7.7) and (7.8), the metric component is expressed
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in terms of φr and αr

gij = ∂i log (f0a0)∂j log (f0a0) +
∞∑
r=1

∂iφr∂jαr +
∞∑
r=1

∂iαr∂jφr

gij̄ = ∂i log (f0a0)∂j̄ log (f̄0ā0) +
∞∑
r=1

∂iφr∂j̄φ̄r +
∞∑
r=1

∂iαr∂j̄ᾱr

and it is obvious that there are no βr terms related to the Blaschke product

because it is not dependent on ξ. It is straightforward to repeat the same

calculation for the α-connection.

According to Lemma 3, there exists the degree of freedom in choosing

a(z; ξ) while the geometry is not changed. Since the metric tensor is invariant

under the choice of a(z; ξ), it is possible to choose the degree of freedom as

ar/a0 constant. In that degree of freedom, the metric tensors are expressed in

gij = ∂i log (f0a0)∂j log (f0a0) (7.9)

gij̄ = ∂i log (f0a0)∂j̄ log (f̄0ā0) +
∞∑
r=1

∂iφr∂j̄φ̄r (7.10)

and it is easy to verify that the metric tensors are only dependent on f0a0 and

φr. In other words, the metric tensor is dependent only on the unilateral part

of the transfer function and a constant term of the analytic part.

By Lemma 2, it is also possible to reduce any transfer function with the

finite upper bound of the degree in z to the unilateral transfer function with

a constant term. For this kind of transfer function, the similar expression for

the metric tensor can be obtained. First of all, the log transfer function is in

152



following notation:

log h(z; ξ) = log zR + log h−R + log (1 +
∞∑
r=1

h−R+r

h−R
z−r)

= log zR + log h−R +
∞∑
r=1

ηrz
−r

where R is the highest degree in z. Plugging this equation to metric tensor

expression, eq. (7.7) and (7.8), it is obtained that

gij = ∂i log (h−R)∂j log (h−R) (7.11)

gij̄ = ∂i log (h−R)∂j̄ log (h̄−R) +
∞∑
r=1

∂iηr∂j̄ η̄r (7.12)

and these expressions for metric tensors are similar to eq. (7.9) and (7.10).

They could be exchangeable by (f0a0, φr)↔ (h−R, ηr).

As an extension of Lemma 4, it is possible to generalize it for the inner-

outer factorization for H2 function.

Lemma 5. Given a holomorphic transfer function in H2 space, the transfer

function is the multiplication of outer and inner functions. The information

geometry is independent with the inner function.

Proof. The transfer function h(z; ξ) ∈ H2 is decomposed by

h(z; ξ) = O(z; ξ)I(z; ξ)

where O(z; ξ) is an outer function and I(z; ξ) is an inner function. The α-

divergence is expressed with |h(z; ξ)|2 = |O(z; ξ)I(z; ξ)|2 = |O(z; ξ)|2 because

the inner function has the unit modulus on the circle. Since the α-divergence

153



is represented only by the outer function, other geometrical objects such as

metric tensor and α-connection are independent with the inner function.

7.2 Kähler manifold for signal processing

In z-domain, an advantage of using the transfer function representation is

that it is easy to verify whether the information geometry of a given signal

processing filter is the Kähler manifold or not. As mentioned before, choosing

the coefficients in a(z; ξ) is considered as choosing the degrees of freedom in

calculation without changing any dynamics similar to gauge fixing in physics.

By setting a(z; ξ)/a0 a constant function in ξ, the description for a statistical

model becomes much simpler and the emergence of Kähler manifold can be

verified easily. Since the causal filters are our main concerns in practice, we

concentrate on the unilateral transfer function. Although we will work with

a causal filter, the results in this section are also able to be extended to the

cases of bilateral transform functions.

Theorem 1. Given a holomorphic transfer function h(z; ξ), information ge-

ometry of a signal processing model is Kähler manifold if and only if f0a0 is a

constant in ξ.

Proof. (⇒) If the geometry is Kähler, it should be Hermitian and

gij = ∂i log (f0a0)∂j log (f0a0) = 0

for all i and j. This equation imposes that f0a0 is a constant in ξ.
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(⇐) If f0a0 is a constant in ξ, the metric tensor is given in

gij = 0

gij̄ =
∞∑
r=1

∂iφr∂j̄φ̄r (7.13)

and these metric tensor conditions impose that the manifold is the Hermitian

manifold. It is noteworthy that the non-vanishing metric tensor is expressed

only in φr and φ̄r that are functions of the impulse response functions in

f(z; ξ), the unilateral part of the transfer function. For the manifold to be the

Kähler manifold, the Kähler two form Ω given in

Ω = −igij̄dξi ⊗ dξ̄j

needs to be a closed two form. The condition for the Kähler two form Ω to be

closed is for the metric tensor to satisfy that ∂kgij̄ = ∂igkj̄ and ∂k̄gij̄ = ∂j̄gik̄.

It is easy to verify that the metric, eq. (7.13) satisfies the conditions. The

Hermitian manifold with the closed Kähler two form is the Kähler manifold.

The Theorem 1 is not limited to the entire manifold and it is possible to

apply to the submanifold. For example, given that h(z; ξ) is holomorphic and

a(z; ξ)/a0 is a constant function in z, a submanifold of the signal processing

models is Kähler manifold if and only if f0a0 is constant on the submanifold,

i.e. a function of the coordinates orthogonal to the submanifold.

Additionally, it is also possible to find the similar relationship in the case

of the transfer function with the finite upper degrees in z given in eq. (7.11)
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and (7.12).

Theorem 2. Given a holomorphic transfer function h(z; ξ), information ge-

ometry of a signal processing model is Kähler manifold if and only if the highest

degree in z of the log-transfer function is a constant.

Proof. The proof is straightforward because it is the same to the proof of the

Theorem 1 by changing (f0a0, φr)↔ (h−R, ηr).

The previous two theorems seem to be two separate theorems but those

theorems are actually equivalent to each other if the highest degree in z is

finite.

Theorem 3. If the highest degree in z of the transfer function is finite, the

previous two theorems are equivalent.

Proof. Let’s assume that the highest degree term in z is R. By Lemma 2,

it always enables to reduce the transfer function to the unilateral transfer

function. It is possible to represent h−R with f0a0. The two theorems are

equivalent.

On the Kähler manifold, a function called Kähler potential is very impor-

tant because the metric tensors are derived from the

gij̄ = ∂i∂j̄K (7.14)

where K is the Kähler potential. It is also possible to find the Kähler potential

for signal processing.
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Corollary 1. Given the Kählerian information geometry, the Kähler potential

of the geometry is the square of the Hardy norm of the log-transfer function.

Proof. From the transfer function h(z; ξ), the metric tensors for signal pro-

cessing models are given by eq. (7.8). By using integration by part, the metric

tensor is represented by

gij̄ =
1

2πi

∫
|z|=1

{
∂i

(
log h(z; ξ)∂j̄ log h̄(ξ̄; ξ̄)

)
− log h(z; ξ)∂i∂j̄ log h̄(ξ̄; ξ̄)

}
dz

z

where the latter term goes zero definitely. When we integrate by part for

anti-holomorphic derivative, the metric tensor is expressed by

gij̄ =
1

2πi

∫
|z|=1

{
∂i∂j̄

(
log h(z; ξ) log h̄(ξ̄; ξ̄)

)
− ∂i

(
∂j̄ log h(z; ξ) log h̄(ξ̄; ξ̄)

)}dz
z
.

and the latter term is also zero because h(z; ξ) is a holomorphic function.

Finally, the metric tensor is obtained as

gij̄ = ∂i∂j̄

(
1

2πi

∫
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

)

and by the definition of the Kähler potential, eq. (7.14), the Kähler potential

is given in

K =
1

2πi

∫
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

up to a holomorphic function F and its complex conjugate. The r.h.s. of the

above equation is known as the square of the Hardy norm for the log-transfer
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function where the Hardy norm is defined as

||g(z; ξ)||H2 =
( 1

2πi

∫
|z|=1

(
g(z; ξ)

)(
g(z; ξ)

)∗dz
z

)1/2

.

It is straightforward to derive the relation between the Kähler potential and

square of the Hardy norm of the log-transfer function:

K =
1

2πi

∫
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

= || log h(z; ξ)||2H2 . (7.15)

By eq. (7.13), the Kähler potential is given in

K =
∞∑
r=1

φrφ̄r

and it is noticeable that the Kähler potential only depends on φr, the unilateral

parts of the transfer function. It is possible to obtain the similar expression

for the finite highest degree case by changin φr → ηr.

Since the Kähler potential is expected to be finite, the transfer function

h(z; ξ) in H2 space satisfies

K = || log h(z; ξ)||2H2 <∞

and it imposes that the transfer function lives not only in H2 but also in

exp (H2). From now on, we assume h ∈ exp (H2) or log h ∈ H2 equivalently.

From its definition, eq. (7.14), the Kähler potential generates the metric

tensor and it is related to the α-divergence.
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Corollary 2. The Kähler potential is the same to a zero-th degree term in α

up to holomorphic and anti-holomorphic functions in α-divergence between a

signal processing filter and the all-pass filter of unit transfer function.

Proof. The divergence is given in

D(0)(h0||h) =
1

2πi

∮
|z|=1

1

2
(log h+ log h̄)2dz

z

= K +
1

2πi

∮
|z|=1

1

2

(
(log h)2 + (log h̄)2

)dz
z

= K + F (ξ) + F̄ (ξ̄)

where F (ξ) = 1
2
(log (f0a0))2. For bilateral transfer function, F (ξ) = 1

2
(log (f0a0)+∑

log |zs|) +
∑

r=1 φr(αr + βr).

For non-zero α, the α-divergence is

D(α)(h0||h) =
1

2πiα2

∫ π

−π

{
hα − 1− α(log h+ log h̄)

}dz
z

=
1

2πi

∫ (1

2
(log h+ log h̄)2 +

∞∑
n=1

1

(n+ 2)!
αn(log h+ log h̄)n+2

)dz
z

= D(0)(h0||h) +O(α)

= K + F (ξ) + F̄ (ξ̄) +O(α).

When f0a0 is a unity, a zero-th degree term in α of the α-divergence is the

Kahler potential. This shows the relation between α-divergence and the Kähler

potential.

The α-connection on the Kähler manifold is also derived from the transfer

function.
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Corollary 3. The α-connection of the Kählerian information geometry is

Γ
(α)

ij,k̄
=

1

2πi

∫
|z|=1

(
∂i∂j log h(z; ξ)− α∂i log h(z; ξ)∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

Γ
(α)

ij̄,k
=

1

2πi

∫
|z|=1

−α
(
∂i log h(z; ξ)

)(
∂j log h(z; ξ)

)∗(
∂k log h(z; ξ)

)dz
z

Γ
(α)

ij̄,k̄
=

1

2πi

∫
|z|=1

−α
(
∂i log h(z; ξ)

)(
∂j̄ log h(z; ξ)

)∗(
∂k log h(z; ξ)

)∗dz
z

and the symmetric tensor is given by

Tij,k̄ =
1

πi

∫
|z|=1

(
∂i log h(z; ξ)∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z
. (7.16)

In particular, the non-vanishing 0-connections are

Γ
(0)

ij,k̄
=

1

2πi

∫
|z|=1

(
∂i∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

Γ
(0)

īj̄,k
=

1

2πi

∫
|z|=1

(
∂i∂j log h(z; ξ)

)∗(
∂k log h(z; ξ)

)dz
z

and the 0-connection is directly derived from the Kähler potential

Γ
(0)

ij,k̄
= ∂i∂j∂k̄K. (7.17)

Proof. After plugging eq. (7.1) into eq. (7.3), the derivation of α-connection

formulae is straightforward by considering holomorphic and anti-holomorphic

derivatives in the expression. The same procedure is applied to the derivation

of symmetric tensor Tij,k̄.

The 0-connection is expressed in terms of Kähler potential. The proof is
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following:

Γ
(0)

ij,k̄
=

1

2πi

∫
|z|=1

(
∂i∂j log h(z; ξ)

)(
∂k log h(z; ξ)

)∗dz
z

= ∂i∂j∂k̄

( 1

2πi

∫
|z|=1

(
log h(z; ξ)

)(
log h(z; ξ)

)∗dz
z

)
= ∂i∂j∂k̄|| log h(z; ξ)||2H2

= ∂i∂j∂k̄K

The α-connection and symmetric tensor are expressed in terms of φr

Γ
(0)

ij,k̄
=

∑
r

∂i∂jφr∂k̄φ̄r

Tij,k̄ = 2
∑
r,s

∂iφr∂jφs∂k̄φ̄r+s

and it is obvious that the α-connection and Tij,k̄ are also independent with

a(z; ξ).

It is possible to compare these expressions with the well-known results

on the Kähler manifold. First of all, we can cross-check the fact that the

0-connection is the Levi-Civita connection:

(0)Γkij = gkm̄Γ
(0)
ij,m̄ = gkm̄∂i∂j∂m̄K = gkm̄∂igjm̄ = ∂i(log gmn̄)kj = Γkij

where the last equality comes from the expression for the Levi-Civita connec-

tion on the Kähler manifold. It is obvious that this is well-matched to the

Levi-Civita connection on Kähler manifold.
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In Riemannian geometry, the Riemann curvature tensor, corresponding to

the 0-curvature tensor, is given by

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

where the greek letters are all for any holomorphic and anti-holomorphic in-

dices. On the Kähler manifold, the non-vanishing curvature tensors are Rρ
σµ̄j

and its complex conjugate. The only non-vanishing 0-curvature tensor with

three holomorphic indices and one anti-holomorphic index (and its complex

conjugate tensor) is represented with

(0)Rl
kīj = ∂īΓ

l
jk − ∂jΓlīk + ΓlīmΓmjk − ΓljmΓmīk

= ∂īΓ
l
jk

= ∂ī(g
lm̄∂j∂l∂m̄K)

by using the fact that the 0-connection with the mixed coordinates is vanishing.

Taking trace on holomorphic upper and lower indices in the Riemann cur-

vature tensor, the 0-Ricci tensor is obtained as

R
(0)

ij̄
= Rk

kij̄ = −Rk
kj̄i

= −∂j̄∂i(log gij)
k
k̄ = −∂j̄∂itr(log gij)

= −∂j̄∂i log det g (7.18)

and this result is consistent with the definition of the Ricci tensor on the

Kähler manifold. It is also straightforward to get the 0-scalar curvature by
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contracting the indices of the 0-Ricci tensor.

The α-generalization of curvature tensor, Ricci tensor, and scalar curvature

is done by using the expression for α-connection, eq. (7.4). The α-curvature

tensor is given in

(α)Rl
kīj = ∂ī

(α)Γljk = ∂ī

(
(0)Γljk −

α

2
glm̄Tjk,m̄

)
= R(0)l

kīj −
α

2
∂ī

(
glm̄Tjk,m̄

)
.

The α-Ricci tensor and α-scalar curvature are obtained as

R
(α)

ij̄
= (α)Rk

kij̄ = −(α)Rk
kj̄i

= −∂j̄
(

(0)Γkik −
α

2
gkl̄Tik,l̄

)
= R

(0)

ij̄
+
α

2
∂j̄T

k
ik

R(α) = R(0) +
α

2
gij̄∂j̄T

ρ
iρ.

It is noteworthy that the α-curvature tensor, α-Ricci tensor, and α-scalar

curvature on the Kähler manifold have only the linear order correction of α

comparing the second order correction of α in non-Kähler manifold.

When the submanifold of dimension m < n exists, the transfer function is

splitted into two parts

h(z; ξ) = h‖(z; ξ1, · · · , ξm)h⊥(z; ξm+1, · · · , ξn)

where h‖ is the transfer function on the submanifold and h⊥ is the trans-

fer function for the orthogonal coordinates to the submanifold. When it is
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plugged into eq. (7.15), the Kähler potential is decomposed into three terms

as following

K =
1

2πi

∫
|z|=1

(log h‖ + log h⊥)(log h‖ + log h⊥)∗dz

=
1

2πi

∫
|z|=1

log h‖ log h̄‖dz +
1

2πi

∫
|z|=1

log h⊥ log h̄⊥dz

+
1

2πi

∫
|z|=1

log h‖ log h̄⊥dz + (c.c.)

= K‖ +K⊥ +K×

where K‖ contains only submanifold index, K× for cross-terms, and K⊥ for

orthogonal to the submanifold.

It is obvious that each part of the Kähler potential decomposition provides

the metric tensors given by

gMN̄ = ∂M∂N̄K‖

gMn̄ = ∂M∂n̄K×

gmn̄ = ∂m∂n̄K⊥

where a uppercase index is for the submanifold and a lowercase index for the

orthogonal coordinates to the submanifold. As we already know, the Kähler

potential of the submanifold is K‖ which gives the induced metric for subman-

ifold. Based on this decomposition, it is possible to use K for the submanifold

because it endows the same metric. However, Riemann curvature tensors and

Ricci tensors have the correction terms derived from embedding in the mani-

fold because the inverse metric tensor contains the orthogonal coordinates by
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Schur complement. In statistical inference, those tensors and scalar curvature

play important roles.

The benefits of introducing the Kähler manifold are followings. First of all,

on the Käher manifold, the calculation of geometric objects such as the metric

tensor, α-connection, and Ricci tensor becomes simpler by using the Kähler

potential. For example, the 0-connection on non-Kähler manifold is given by

Γ
(0)
ij,k =

1

2
(∂igkj + ∂jgik − ∂kgij)

and it needs three-times more calculation than the Kähler case. Additionally,

Ricci tensor is directly derived from the metric tensor on the Kähler manifold.

In case of the non-Kähler manifold, the connection should be calculated from

the metric tensor and taking the derivative on the connection provides Ricci

tensor.

Secondly, the α corrections of the Riemann curvature tensor, Ricci tensor,

and scalar curvature on the Kähler manifold are linear comparing the second

order corrections in non-Kähler cases. The linear correction makes much easier

to understand the effect of α-family.

Lastly, finding the superharmonic priors [59] is much easier in the Kähler

setup because the Laplace-Beltrami operator on the Kähler manifold is much

more straightforward than the non-Kähler cases. The Laplace-Beltrami oper-

ator on the Kähler manifold is

∆ψ = 2gij̄
∂2ψ

∂ξi∂ξ̄j
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comparing the Laplace-Beltrami operator on non-Kähler manifold

∆ψ =
1√
|g|
∂i
(√
|g|gij∂jψ

)
.

It is obvious that on the Kähler manifold, partial derivative only on the super-

harmonic prior gives contribution to the Laplace-Beltrami operator. Mean-

while, the contribution from the metric tensor parts also should be considered

in the non-Kähler cases.

7.3 Example: AR, MA, and ARMA models

The signal processing description enables to interpret time series models as

a filter that transforms an input x(z; ξ) to an output y(z) in the viewpoint

of signal processing. In particular, we cover AR, MA, and ARMA models as

examples.

First of all, the transfer functions of these time series models need to be

identified. The transfer functions of AR, MA, and ARMA models are repre-

sented with ξ = (σ, ξ1, · · · , ξn) by

h(z; ξ) =
σ2

2π

∏
i

(1− ξiz−1)ci

where ci = −1 if ξi is the AR pole and ci = 1 if ξi the MA root.
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7.3.1 AR(p) and MA(q) models

The AR and MA models are related to each other by using the reciprocality of

the transfer function. By Lemma 1, the AR model is α-dual to the MA model

and vice versa. The correspondence is expressed as following:

AR(n) ↔ MA(n)

poles ↔ zeroes

σ/
√

2π ↔
√

2π/σ

α ↔ −α

Γ(α) ↔ Γ(−α)

D(α)(h0||h) ↔ D(−α)(h0||h−1)

where h0 is the transfer function of the all-pass filter of unity. Since these

two models have the same information geometry, we will only cover the AR(p)

model.

Kählerian information geometry of AR(p) model

The AR(p) model is the (p+1)-dimensional model with ξ = (σ, ξ1, · · · , ξp) and

is represented with its transfer function

h(z; ξ) =
σ2

2π

1

(1− ξ1z−1)(1− ξ2z−1) · · · (1− ξpz−1)
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where σ is the standard deviation and ξi is a pole. The log-transfer function

of the AR(p) model is

log h(z; ξ) = log
σ2

2π
−

p∑
i=1

log (1− ξiz−1)

and it is easy to show that f0a0 = σ2/2π. By Theorem 1, information ge-

ometry of the AR(p) model is not the Kähler manifold because f0a0 is not a

constant in ξ. However, the submanifold of the AR model on which σ is a

constant is the Kähler manifold. Since it is possible to gauge σ by re-normalize

the amplitude of the input signal, σ-coordinate or 0-th coordinate can be con-

sidered as the denormalization coordinate [3]. Even in non-Kähler AR model,

the metric tensor g0i is vanishing for all non-zero i by direct calculation from

eq. (7.2). So there is no problem in working only with non-σ coordinates

and the information geometry of the AR(p) model is the Kähler manifold of

dimension p.

As mentioned, the Käher potential is crucial on the manifold and defined

with the square of the Hardy norm of the log-transfer function. For the AR(p)

model, the Kähler potential is given by

K =
∞∑
n=1

1

n2

∣∣∣ p∑
i=1

(ξi)n
∣∣∣2

and the metric tensor is simply derived from the Kähler potential by taking

the partial derivatives, eq. (7.14),

gij̄ =
1

1− ξiξ̄j

168



where other pure-holomorphic- and pure-anti-holomorphic-indexed metric ten-

sors are zero. Its inverse metric tensor is given by

gij̄ =
(1− ξiξ̄j)

∏
k 6=i(1− ξkξ̄j)

∏
k 6=j(1− ξiξ̄k)∏

k 6=i(ξ
k − ξi)

∏
k 6=j(ξ̄

k − ξ̄j)

and the determinant of the metric tensor is calculated as

g = det gij̄ =

∏
1≤j<k≤n |ξk − ξj|2∏

j,k(1− ξj ξ̄k)
.

The 0-connection and Tij,k̄ can be obtained in the Kähler-AR model. The

0-connection is obtained by eq. (7.17)

Γ
(0)

ij,k̄
=

δij ξ̄
k

(1− ξj ξ̄k)2

and Tij,k̄ is given by eq. (7.16)

Tij,k̄ =
2ξ̄k

(1− ξiξ̄k)(1− ξj ξ̄k)
.

Based on the above expressions, the α-connection is easily obtained by eq.

(7.4).

The 0-Ricci tensor, eq. (7.18) is found

R
(0)

ij̄
= − 1

(1− ξiξ̄j)2
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and the 0-scalar curvature is calculated from the 0-Ricci tensor

R(0) = −
∑
i,j

∏
k 6=i(1− ξkξ̄j)

∏
k 6=j(1− ξiξ̄k)

(1− ξiξ̄j)
∏

k 6=i(ξ
k − ξi)

∏
k 6=j(ξ̄

k − ξ̄j)
.

It is straightforward to obtain the α-generalization of Riemann curvature ten-

sor, Ricci tensor, and scalar curvature.

Superharmonic priors for Kähler-AR(p) model

As mentioned before, the Laplace-Beltrami operator on the Kähler manifold

has much simpler form than those on non-Kähler manifold. The simpler

Laplace-Beltrami operator imposes that it is easier to find the superharmonic

priors on the Kähler manifold. Although it is valid in any arbitrary dimen-

sions, let’s confine ourselves to the AR(2) model for simplification. For p = 2,

the metric tensor is given by

gij̄ =

 1
1−|ξ1|2

1
1−ξ1ξ̄2

1
1−ξ2ξ̄1

1
1−|ξ2|2

 .

By the Laplace-Beltrami on Kahler manifold, it is obvious that (1− |ξk|2)

for k = 1, · · · , p is a superharmonic function in arbitrary dimension by

∆(1− |ξk|2) = 2gij̄
∂2

∂ξi∂ξ̄j
(1− |ξk|2)

= −2gij̄δi,kδj,k = −2gkk̄

because the diagonal components of the inverse metric tensor are all positive.

By additivity, the sum of these priors
∑n

k=1(1−|ξk|2) are also superharmonic.
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It is obvious that ψ1 = (1− |ξ1|2) + (1− |ξ2|2) is a superharmonic prior in the

two-dimensional case.

Another superharmonic prior for the AR(2) model is ψ2 = (1− |ξ1|2)(1−

|ξ2|2). The Laplace-Beltrami operator on ψ2 is represented with

(∆ψ2

ψ2

)
= −2(2− ξ1ξ̄2 − ξ2ξ̄1)

|ξ1 − ξ2|2

and it is easily verified that
(

∆ψ2

ψ2

)
< 0 because 2 − ξ1ξ̄2 − ξ2ξ̄1 > 0. From

this, it is obvious that ψ2 = (1 − |ξ1|2)(1 − |ξ2|2) because ψ2 > 0 on the unit

disk.

The prior ψ3 = (1 − ξ1ξ̄2)(1 − ξ2ξ̄1)(1 − |ξ1|2)(1 − |ξ2|2) is also a super-

harmonic prior. The Laplace-Beltrami operator act on this prior is obtained

as

(
∆ψ3

ψ3

) = −6

g

|ξ1 − ξz|2

(1− ξ1ξ̄2)(1− ξ2ξ̄1)(1− |ξ1|2)(1− |ξ2|2)

= −6

and it is to verify that ψ3 is superharmonic because ψ3 is positive. This prior

is similar to the prior found in Komaki’s paper [59]. If Komaki’s prior is

represented in the complex coordinate, Komaki’s prior is (1 − |ξ1|2) because

z1 and z2 in his paper are complex conjugate to each other.

7.3.2 ARMA(p, q) model

Since the determinant of the metric tensor in the ARMA model is the same

to that in the AR or MA model, the Ricci tensor of the ARMA model is
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identical to the Ricci tensor of the AR or MA model. The correspondence

can be applied for ARMA(p, q) model. For example, ARMA(p, q) model with

α-connection is α-dual to ARMA(q, p) model with (−α)-connection under the

inversion. The correspondence is given as following:

ARMA(p, q) ↔ ARMA(q, p)

poles ↔ zeroes

zeroes ↔ poles

σ ↔ 2π/σ

α ↔ −α

Γ(α) ↔ Γ(−α)

D(α)(h0||h) ↔ D(−α)(h0||h−1)

where h0 is the transfer function of the unit all-pass filter. In the case of

ARMA(p, q), the metric can be still same if we consider the coordinate ex-

change between the AR and MA parts.

Kählerian information geometry of ARMA(p, q) model

The transfer function of ARMA(p, q) model is represented by

h(z; ξ) =
σ2

2π

(1− ξp+1z−1)(1− ξp+2z−1) · · · (1− ξp+qz−1)

(1− ξ1z−1)(1− ξ2z−1) · · · (1− ξpz−1)
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and log-transfer function is in the form of

log h(z; ξ) = log
σ2

2π
+

p+q∑
i=1

ai log (1− ξiz−1)

where ai = 1 if the ξi is a root, i.e. the MA part and ai = −1 if the ξi is come

from the AR part. Similar to the AR and MA models, information geometry

of the full ARMA model is not the Kähler manifold because of σ-coordinate.

The first term provides a constant term in z but it is not a constant in ξ.

However, the information geometry of the ARMA model on constant σ-plane

is the Kähler manifold as the AR and MA models do.

The Kähler potential of the ARMA model can be derived from the square

of the Hardy norm of the log-transfer function. The Kähler potential is given

by

K =
∞∑
n=1

1

n2

∣∣∣ p+q∑
i=1

ci(ξ
i)n
∣∣∣2

and it is similar to that of the AR and MA models except for ci factors. These

ci factors make the difference in the metric tensor because the metric tensor

is derived from the Kähler potential. The metric tensor of the ARMA(p, q) is

given by

gij̄ =
cicj

1− ξiξ̄j

and it is easily verified that AR(p) and MA(q) submanifolds have the same

metric tensors to the AR(p) and MA(q) models because ai and aj have the

same signature if those are both from AR or MA models. In the case of the
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mixed coordinate, there is only sign change in the metric tensor.

Considering Schur complement, the inverse metric tensor is represented

with

gij̄ = cicj
(1− ξiξ̄j)

∏
k 6=i(1− ξkξ̄j)

∏
k 6=j(1− ξiξ̄k)∏

k 6=i(ξ
k − ξi)

∏
k 6=j(ξ̄

k − ξ̄j)

and the only difference is the sign change in AR-MA mixed components. With

the sign change of the metric tensor in the mixed coordinate, the determinant

of the metric tensor is found as

g = det gij̄ =

∏
1≤j<k≤n |ξk − ξj|2∏

j,k(1− ξj ξ̄k)

and is the same to that of the AR or MA model.

The 0-connection and Tij,k̄ are similar to those of the AR or MA models

except for the sign change originated from the mixing between AR coordinates

and MA coordinates. The 0-connection is found in

Γ
(0)

ij,k̄
=

cjckδij ξ̄
k

(1− ξj ξ̄k)2

and Tij,k̄ is given by

Tij,k̄ =
2cicjckξ̄

k

(1− ξiξ̄k)(1− ξj ξ̄k)
.

Both of them are dependent with ci which generates the sign difference by

choosing the coordinates.

The Ricci tensor of the ARMA model is identical to that of the AR or MA
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models because the determinant of the metric tensor is not changed. However,

the scalar curvature is different because of the sign change in the inverse metric

tensor. The scalar curvature is given in

R = −
∑
i,j

cicj
∏

k 6=i(1− ξkξ̄j)
∏

k 6=j(1− ξiξ̄k)
(1− ξiξ̄j)

∏
k 6=i(ξ

k − ξi)
∏

k 6=j(ξ̄
k − ξ̄j)

.

Superharmonic priors for Kähler-ARMA(p, q) model

For ARMA(1, 1), the metric tensor is given by

gij̄ =

 1
1−|ξ1|2 − 1

1−ξ1ξ̄2

− 1
1−ξ2ξ̄1

1
1−|ξ2|2

 .

It is trivial to show that ψ1 = (1−|ξ1|2)+(1−|ξ2|2) and ψ2 = (1−|ξ1|2)(1−|ξ2|2)

are superharmonic priors similar to the AR(2) model. Oppose to the AR(2)

model, ψ3 = (1 − ξ1ξ̄2)(1 − ξ2ξ̄1)(1 − |ξ1|2)(1 − |ξ2|2) is not a superharmonic

prior.

7.4 Conclusion

In this chapter, we prove that the information geometry of a signal filter is

the Kähler manifold under the conditions on the transfer function of the filter.

The first condition for the transfer function to be Kähler manifold is whether

multiplication of zero-th degree terms in z of the unilateral and analytic parts

of the transfer function decomposition is a constant or not. The second is

whether the coefficient of the highest degree in z is a constant or not. These
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two conditions are equivalent to each other.

It is also found that the square of Hardy norm of log-transfer function is

the Kähler potential for the Kählerian information geometry. With the Kähler

potential, it is easy to derive the metric tensors and Ricci tensors. Additionally,

the Kähler potential is a constant term in α of the α-divergence.

The Kählerian information geometry for signal processing is not only math-

ematically interesting but also computationally beneficial. It is relatively eas-

ier to calculate the metric tensors and Ricci tensors comparing with the non-

Kähler manifold on which tedious and lengthy calculation is needed in order to

get the tensors. On the Kähler manifold, taking derivatives on the Kähler po-

tential provides these tensors. Moreover, α-corrections on the curvature tensor,

Ricci tensor, and scalar curvature are linear in α contrary to the non-linear

correction in the non-Kähler case. Additionally, since the Laplace-Beltrami

operator is in much simpler form, it is easier to find superharmonic priors.

The AR, MA, and ARMA models, the most well-known time series mod-

els, include the Kähler manifold as their information geometry. The metric

tensor, connection, and divergence are derived from the the Kähler potential

with simpler calculation than the non-Kähler manifold. In addition to that,

the superharmonic priors for those models are found within much shorter com-

putational steps.
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Chapter 8

Conclusion

In this dissertation, the concepts in physics and mathematics are applied to

problems in finance. The price momentum, one of the most well-known market

anomalies, is empirically tested and the theoretical framework from sponta-

neous symmetry breaking is proposed. Additionally, the differential geometric

correspondence between Kähler manifold and information geometry of signal

processing models is proven.

Introducing various ranking rules to momentum-style portfolio construc-

tion is a worthwhile approach to understanding the price momentum. Using

the stock selection rules originated from risk management and physics, the

alternative strategies in monthly and weekly scales outperform the portfolios

constructed by cumulative return regardless of market universe. The alterna-

tive portfolios are less riskier in many reward-risk measures such as Sharpe

ratio, VaR, CVaR, and maximum drawdown. Larger factor-neutral returns

achieved by the reward-risk momentum strategies are statistically significant

and the large portions of the performance are not explained by the Fama-

French three-factor model.

Using spontaneous symmetry breaking, the trading strategies are consid-
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ered being in the symmetry breaking phase. The model can explain why the

statistical arbitrage is available even under the efficient market hypothesis.

The application of the model to the contrarian strategies in various markets

exhibits that the performance and risk profile are improved.

The information geometry of signal filters is the Kähler manifold under

some conditions on transfer function. The Kähler manifold is emergent if and

only if the impulse response function in the highest degree in z-transform is

constant. The Kählerian information geometry takes the advantage of simpler

calculation steps for metric tensors and Ricci tensors. Moreover, α-corrections

on geometric tensors are linear. It is also easy to find Bayesian predictive

priors such as superharmonic priors because Laplace-Beltrami operator on the

Kähler manifold is more straightforward. Applications to time series models

including AR, MA, and ARMA models are also given.

The dissertation shows that the physical and geometrical ideas would be

useful in the various fields of finance including the implementation of trading

strategy. The possibility of the approaches based on physical and geometrical

ideas deserves to extend to various directions not only for finding the bet-

ter understanding on the market phenomena but also for making the more

profitable strategies.
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