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The Large Hadron Collider has found an exciting excess at around
125 GeV. This excess appeared early on to behave as the long
sought Higgs boson and with the 7 and 8 TeV data sets has been
shown to behave very much like the Higgs boson responsible for
the mass of the fundamental particles of the Standard Model. As
the data continued to converge to the Standard Model predictions
it became important to try and classify possible small deviations
from the expected behavior. A manner of doing so, consistent with
the symmetries of the Standard Model, is the use of effective field
theories. Effective field theories are able to constrain the presence
of new physics without directly probing the new physics energy
scale. They are valid both for scenarios with new fundamental
physics such as supersymmetry or new gauge sectors, as well as new
strongly interacting scenarios where the degrees of freedom may
present as pseudo Goldstone bosons of some new global symmetry

such as composite Higgs models.
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In this dissertation we work in the effective field theory framework
and using the available experimental data we place bounds on the
coefficients of the relevant effective operators for Higgs physics.
We consider two complementary realizations of the effective field
theory: the linear realization, appropriate for a fundamental Higgs
and new fundamental particles such as those predicted by super-
symmetry, and the chiral or nonlinear realization, appropriate for
composite Higgs scenarios. Additionally, by considering the ef-
fects of the new operators on other sectors, like triple gauge cou-
pling data and electroweak precision data, we are able to further
test the framework and devise signatures with potential to dis-
criminate between the realizations. Finally we look at constraints
on the operator coefficients from perturbative unitarity considera-
tions, allowing us to then apply the results from our data analysis
to predict the lowest energies at which perturbative unitarity may
be violated signaling the possibility of new physics at energies con-
sistent with those which will be probed during the impending Run
2 of the Large Hadron Collider.
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Chapter 1
Introduction

March 2010 marked the beginning of the Large Hadron Collider (LHC) era
with the first recorded 7 TeV collisions. After just over two years of taking
data, the experiments, ATLAS and CMS, announced an approximately 5o
signal for the observation of a new particle |4, [5]. This particle appears to
behave as the long sought Higgs boson. The Higgs boson is the excitation of
the Higgs field which, through the Higgs mechanism, allows for the generation
of masses for the Standard Model (SM) gauge bosons and fermions [6HIT].
These masses are, without some symmetry breaking mechanism, forbidden by
the SU(3)c x SU(2) x U(1)y/2 SM gauge symmetry. Additionally, the Higgs
mechanism allows for the careful cancellation of the center of mass energy (1/s)
divergent amplitudes of longitudinal gauge boson scattering thereby ensuring
perturbative unitarity for the SM.

Since the announcement, where the combination of all decay channels was
approximately the 5o required to achieve the status of discovery in particle
physics, a vast improvement in the measurements of the properties of the Higgs
has occurred. Consistent with the SM, spin and CP measurements favor spin
zero and CP even properties for the observed particle [12, [13]. Additionally
the decays of the Higgs are consistent with the SM: the Higgs decays to v,
77, and WW are now measured above the 5o threshold individuallyE], with
their current values at 5.70 (5.20) [3,[14], 4.30 (6.10) [15], 16], and 6.80 (8.10)
[1°7,[18] respectively for the CMS (ATLAS) experiment at the LHC with respect
to the null, or no Higgs, hypothesis. Each channel is consistent with the SM

'n the highest resolution channels, excepting the CMS WW — fuvfv.



prediction at around the 1o level suggesting that the observed resonance is in
fact related to electroweak symmetry breaking (EWSB).

In the fermionic channels, where the signal is smaller or diluted by large
SM backgrounds, the picture is less clear. However, the H — 77 decay is
observed with an about 3.20 (4.50) [19, 20] excess above the null hypothesis
and for H — bb there is an observed 2.10 (1.40) excess for the CMS (ATLAS)
experiment. Again these decay rates are consistent with the SM prediction at
the 1o level indicating the observed resonance may be responsible for fermion
mass generation as well.

Many other decay channels remain to be measured with higher precision
as well as identifying the significance of the production cross sections. With
the impending start of the LHC Run 2 (injection tests are currently under-
way) these measurements are among the most exciting and anticipated for the
coming three year run.

The Higgs mechanism is not the only scenario in which EWSB may be
realized. In fact many theorists use the concept of “fine tuning,” or the hi-
erarchy problem, to motivate extensions of the SM. The hierarchy problem is
based in the aesthetics of the Higgs mechanism, in particular because of large
corrections to the Higgs mass from the heavier fields in the theory its mass re-
ceives large corrections proportional to the cut—off scale squared of the theory
which is frequently taken to the be Planck or grand unified scale. This large
mass correction then indicates that the Higgs mass, a parameter of the SM,
must be adjusted to an extraordinary number of decimal places. While rooted
in aesthetics this principle is a reasonable guide in the absence of new physics
(NP) signals before and after the discovery of the Higgs boson. This principle
has led to the formulation of a plethora of beyond the Standard Model (BSM)
theories such as, for example, supersymmetric (SUSY) models and strongly in-
teracting theories to break the electroweak symmetry and potentially generate
composite Higgses. At present no new states associated with these extensions
have been found.

In lieu of the direct observation of NP to guide theoretical discourse, it
becomes necessary to introduce a system for quantifying divergences from the
SM in a systematic manner. In this dissertation we make use of the framework
of Effective Field Theories (EFTs), where the behavior of potential NP is



assumed to be realized at some high energy scale which is not directly probed
by experiment, and which allow us to quantify these divergences and guide

future experimental searches and design.

1.1 The Standard Model and the Higgs Mech-

anism of Electroweak Symmetry Breaking

Here we briefly review the formulation of the SM, focusing on the Higgs mech-
anism for spontaneous symmetry breaking. We begin with the gauge group
of the SM, U(1)y/2 x SU(2)r, x SU(3)c. Here U(1)y 2 x SU(2), is associated
with the Weinberg—Salam—Glashow model of the electroweak interactions. It
describes the W=, Z, and photon of the SM. All fermions interact with the
U(1)y/2 gauge field, while only left handed fermions interact via the SU(2),
gauge fields indicated by the subscript L. SU(3)¢ is distinguished from the
other gauge groups in that only the quarks experience the “color force” indi-
cated by the subscript C.

In order to write all the charges for the fermionic content of the SM we

group the left handed fields into lepton and quark doublets:

LL = ( YL ) and QL = ( ZL ) (11)

Where vy, e, ur, and dy, are the left handed part of the Dirac spinors cor-
responding to the neutrino, electron, up—quark, and down-quark. With this
in mind we collect the charges for the fermionic field content in Tab. [I.T, We

| Field | U(1)y SU(2), SU@3)c |
L 1 2 1
Qyr 1/3 2 3
er -2 1 1
UR 4/3 1 3
dr | -2/3 1 3

Table 1.1:  Fermion fields of the SM with their charges under the U(1)y,
SU(2)r, and SU(3)¢c gauge symmetries of the SM.

note that in Tab. [I.1] there is no mention of a possible vg. This is a reflection



that, at the time of the conception of the SM, neutrinos were believed to be
massless and only produced in a left handed helicity which would therefore
be preserved. Current bounds placing the absolute neutrino mass scale at less
than or at the order of 1 eV make this a justified treatment for the purpose of
this dissertation.

In the SM there are three generations for each type of fermion mentioned
above. These are distinguished only by mass, i.e. they have the same charges
under the SM. Therefore we refrain from further discussion of the three gen-
erations until our discussion of the Yukawa couplings and mass generation via
the Higgs mechanism.

The kinetic and gauge interaction terms of the fermions are given by:

Ltormion = i€plPer +iLp DLy + iugDug + idplPdg +iQLPQr,  (1.2)

where I) = 4*D,,, D,, is the covariant derivative, and y* are the Dirac gamma

matrices. The covariant derivative acting on each fermion is given by:

Dyer = (0,+ i%YeBu> €R,

DLy = (8, +i4YiB, +iW,) Ly,

Dyup = (Ou+i4YuBy+i%G, ) un, (1.3)
Dydp = (0,+iLYyB, + z'%sGH> dr,

D.Qu = (8 +i4YoB, +i§W, +i%G,) Qu.

Here we have written the hypercharges from Tab. as Yy, and have used the
abbreviations W, and G, in the place of %Wﬁ and A—;GZ where 7, witha = 1,3
and A\, with a = 1,8 are the Pauli and Gell-Mann matrices respectively, and
an implicit color index is assumed for the quark fields. ¢, ¢/, and g, are the
gauge couplings of SU(2)r, U(1)y/2, and SU(3)c respectively.

The pure gauge part of the SM Lagrangian reads:

1 1. 1
LGauge = _ZBMVBMV - ZW;VWZW/ - ZGZVGCNV, (14)



with the stress tensors given by

B., = 9,B,—,B,,
Wi, = 8,Wi—d,Wi— g Wiwk (1.5)
Go, = 8,68 —8,G% — g, [ GLGE .

Here (e“%) and (f¢) are the structure constants of SU(2);, and SU(3)c re-

spectively.

Lagragians Eq. (1.2) and Eq. (1.4 are invariant under local U(1)y/y x
SU(2), x SU(3)¢ which transform the fermion fields, 1, as

! a A(l
v ovexp|-i (§ritrlo) + o000 Hage) |0 00
provided the gauge fields transform as

B, (z) = B,(x) + 0,0y (x)
Wi(x) = Wi(x) + 0,05, () + ge0,, (x) W (=) (1.7)
Gi(x) = Gii(v) + 9,08 (7) + g f 0% () G ()

From here we change our basis of gauge bosons by defining the W* in terms
of the W and W? along with mixing the W? and B to form the Z and photon

of the SM. In order to do so we use the definitions:

WE = LWlFiw?)
Zy

_ 1 3

= Wi —g'B) (1.8)

_ 1 3

A = T W+ 9B

We now have constructed the electroweak theory as well as the QCD interac-
tions in the quark sector. After the formulation of this model the only missing
components were the observed masses for the W and Z gauge bosons and the
masses for the fermions forbidden by the gauge symmetry. Clearly a mass
term for the gauge bosons, m}V,V* will not be invariant under the gauge
transformation of Eq. (1.7]). As for fermions, looking at a potential fermion

mass Lagrangian,

LMass = _m.]?f =—-m (f_LfR + .fTRfL) ) (19)



we see that the mass terms mix the left—handed doublet with the singlet right—
handed fields. This explicitly violates SU(2); gauge symmetry, thus rendering
the theory non-renormalizable.

The well-known solution allowing for mass generation for the W and Z
gauge bosons, and the fermions is the Higgs mechanism. For that we introduce
another field, a complex scalar doublet ®. This field is charged under both
SU(2)r, and U(1)y/s (with Y = 1). Therefore the covariant derivative of ®

takes the form:

/
D,® = (aﬂ + z’%Y@BH + igWM> ® (1.10)

Then we may write a gauge kinetic term for the new scalar doublet with an

arbitrary potential, V' (®), as,
Lo = (D'D) (D, ®) — V(®), (1.11)

where for the complex scalar doublet we assume a form,

o). 112)

The most general form of a renormalizable scalar potential compatible with

the gauge symmetries is:
V(®) = 1 *®T® + \(dTd)2 (1.13)

For ;2 < 0 the state with minimum energy is not located at ® = 0, but at

some value satisfying

U2 _“2

where v is called the vacuum expectation value (vev) of ®. Only the absolute

([@'ef)

value but not the direction of the mininum in the SU(2), space is determined
by the minimum condition. By choosing a direction for the ground state &,
we will spontaneously break the global SU(2), symmetry of the Lagrangian.

We make the choice of direction for the minimum as

1 {0
@FE(U). (1.15)



The electromagnetic charge is defined by the operator @ = (73 + Y)/2. Ap-
plying this operator to ®; we obtain Q®, = 0. Therefore, given this choice
for the direction of the ground state, the vacuum remains uncharged or equiv-
alently electromagnetism is unbroken by the scalar vev and we have achieved

the symmetry breaking pattern

In full generality we can write the complex scalar doublet in terms of the

vev and the other components of the doublet as

oo e [T (0 L

where h and 7 are four real fields. In the absence of the gauge symmetry 7
would be the goldstone boson fields of the broken global SU(2); symmetry.

Instead because of gauge invariance, plugging Eq. (1.17]) in Eq. (1.11]) one finds
that all the dependence in the 7%(z) fields can be reabsorved in a redefinition

of the gauge fields as in Eq. ([1.7) with

 (x)

v

geg(x) - (1.18)

In this gauge (referred to as the unitary gauge) the electroweak gauge bosons

acquire a longitudinal component proportional to 7%(z) and masses from the

pure vev part of Eq. (1.11)

Lo =200 (2w, + LB (0 (1.19)
<I>—2 , U 9 o 9 o v ) .

which read: L,
My = EF,
M2 = % (1.20)
My = 0.

We note that the photon remains massless as expected from the breaking
pattern Eq. (1.16]) and required by observation. It is also important to note

that the Higgs—vector interactions are completely determined from the A and



hh terms in L£g, which will be a point of interest throughout this dissertation
as we will be looking for deviations from this behavior.

Also in this gauge the h-field acquires a mass,
M3 = —2u* = 2)\0? (1.21)

The same mechanism allows the generation of fermion masses. As @ is

charged under SU(2), we may use the forms:

0

f_L(I): (f_l,fg> ( vt h ) :f_Q(U—i‘h>, (122)

and
v+ h

fr® =ifind® = (fi, f2) ( 0 ) = fi(v+h). (1.23)
We first note that these two expressions are singlets of SU(2)., this allows
us to multiply each by the corresponding right handed quarks and leptons to
generate masses when we select the part of the expanded complex doublet
corresponding to the vev. For example, if in Eq. we associate fr with
Ly, or Q1 we may generate masses for the charged leptons or down—like quarks
along with inducing Higgs—fermion interactions. Similarly associating f; with
@1 in Eq. allows for the generation of masses for the up-like quark
along with Higgs—fermion interactions. Altogether we write the Yukawa terms

of the SM Lagrangian responsible for fermion masses as:
Ly = —y'Qr®dr — y°LiPer, — y"QrPur, + h.c. . (1.24)

As in the case of the gauge bosons, Ly completely determines the Higgs—
fermion couplings, a prediction we will be testing throughout this dissertation.
Thus we have shown that with the Higgs mechanism we are able to generate
masses for the SM gauge bosons, W= and Z, along with the SM fermions
while simultaneously predicting its couplings to these fields. This dissertation,
however, will deal with quantifying deviations from these predictions of the
SM Higgs mechanism.

We finish this section by rewriting the scalar and Yukawa sectors of the

Standard Model Lagrangian in a non—linear representation. In order to do so



we introduce a matrix, X, for the scalar field

5(2) = 0(2) U(z) = o(z) exp [&} |

. (1.25)

where o(x) and 7%(z) are four real fields. In terms of ¥ we can write Lg+ Ly
as:
1 1 IUQ + A + 2
Lo+ Ly = {T[(D,D)(D'E)] - L1 [25] - ST [£5]
1

5 (QuFyeQn +he) - % (LySypLr + hc.) (1.26)

where the covariant derivative of X takes the form:
_ [ ig'
D, 3 (z) =0,X(x) + §gWH ()T 2(x) — ?B#(x)Z(x)Tg , (1.27)

and we have used a compact notation for the right-handed fields by using
doublets ()r and Lpg thus placing ygo and y; in two 6 x 6 block-diagonal
matrices containing the usual Yukawa couplings, yo = diag(y%, y?) and y, =
diag(0,y°). Notice that in defining the Lp doublet we have introduced a
spurious right-handed neutrino field which, however, does not appear in the
Lagrangian in the unitary gauge.

Written in the form in Eq. and in the limit of ¢’ = 0 it is explicit

that Lg is invariant under chiral SU(2), x SU(2)g transformations,
F, - LF,, Fr—RFr and X —LXIR (1.28)

where Fj, p = L g, Qr.r- In Eq. (1.28) L and R are SU(2), g global transfor-
mations respectively. This symmetry is explictly broken by ¢’ and the Yukawa
matrices which are not proportional to the identity.

After spontaneous symmetry breaking o(x) = v + h(z) and

A

Ls+ Ly = % [(0,h)(9"R) + 2p°Rh*] — Avh® — Zh4
+(U+Th)2Tr (D,U)(D"U)' (1.29)
v+ h

NG [(QLUyqQg +h.c.) + (LUyLLr + h.c.)].



with D,U given by Eq. with the exchange of 3 to U.

The U matrix contains the would-be Goldstone boson fields 7%(z). In the
unitary gauge U = I, and 7%(x) become the longitudinal components of the
massive weak gauge bosons. In this gauge the WiW*# part of the second line
in Eq. gives precisely the mass terms for the gauge bosons in Eq. (1.20).

After spontaneous symmetry breaking (still in the limit of vanishing ¢
and Yukawa couplings) the global chiral symmetry SU(2); x SU(2)g of the
Lagrangian is broken to SU(2)y. It is this remaining symmetry, referred to
as custodial symmetry, that it is responsible for the electroweak parameter T
which we will introduced in Sec. to be equal to one at tree-level.

1.2 Effective Field Theories

Effective Lagrangians are a useful method to represent in a simple way the
dynamical content of a theory in the low energy limit where the effects of high
energy dynamics can be systematically incorporated into a few constants. The
basic approach is to write out the most general set of Lagrangians consistent
with the symmetries of the theory. The important key ingredient is to identify
which are the relevant symmetries as they clearly depend on the assumptions
about the high-energy dynamics.

Effective field theories have been applied in areas throughout the SM the
most famous of which being the examples of the Fermi theory of weak in-
teractions and of chiral perturbation theory of strong interactions. Both of
these theories are formed by considering new effective operators respecting
the symmetries of the underlying dynamics and identifying their corresponding
operator coefficients, commonly referred to as low energy constants, through
experimental analyses. Eventually the Fermi theory of weak interactions trans-
formed into the electroweak part of the SM describing the low energy effects
of the exchange of the massive gauge bosons, the Ws and Zs. Chiral per-
turbation theory is considered to be the low energy description of quantum
chromodynamics, the renormalizable theory of the quarks and gluons. Still
these effective theories resulted in predictive power when no complete under-
lying dynamics had yet been formulated or when, even if formulated, cannot

be treated perturbatively.
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1.2.1 Integrating Out Heavy Fields

When one is addressing the physics at some energy scale, one must explicitly
take into account all particles which can be produced at that energy. The
question is what is the effect of those states which are too heavy to be produced
at that energy.

To answer this question, we begin by postulating a theory containing light
degrees of freedom, /;, as well as a heavy degree of freedom which we will

denote by S. We may then write the general Lagrangian for such a theory as,
L=L,+ Ls+ Lys, (130)

where £, contains the kinetic and interaction terms which only depend on the
light degrees of freedom. Lg contains the kinetic terms for the heavy field, .S,
and Lyg contains all terms in the Lagrangian containing both the light degrees
of freedom and the heavy S.

For simplicity we choose the heavy degree of freedom to be connected to
the light degrees of freedom only via a term linear in S. We also choose S to
have no self-interactions. Therefore we may write the parts of the Lagrangian

containing S as:

L(S,J) = Ls+ Log = = [(0"9)(8,5) — M25?] + JS. (1.31)

DO | —

Here we have chosen J to represent some combination of the light fields, /;.
We may now write the effective action Z.g[¢;] where we have integrated out

the heavy degrees of freedom as:

[ldS)exp [i [ d*zL(S(x), li(z))]
) .

exp(iZeg[l;]) [1ds] eXp[ [ dizL(S(x ,0)}

(1.32)
In order to calculate this integral we will complete the square, allowing us to
cancel the S dependent integrals, leaving only light degrees of freedom in our

effective action. In order to do so we first define some shorthand notations,

Dx = Dx"—MgV
DT = — [dy LOr(z—y)J(y), (1.33)
D, Ap (x—y) = —6'(z—y),

11



where A is the propagator. From here we use integration by parts to rewrite

the action as

/ d'zL(S,J) = / d'z {—%S@S+ JS] : (1.34)

Pulling out the factor of 1/2 and adding 0 = JD~'J — JD~1J we obtain:

[di2L(S,J) = — [d*@L[SDS — ST —SJ+JD 1] - JDLJ]
— — [d*z}[SDS — SDD 1] — D 1JDS
+ D LIDD1T — JD1J] (1.35)

— — [d2l[(S =D LI)D(S — D LJ) — JDLJ]
— — [d%l[SDS —JD L],

where in the second line we have integrated by parts resulting in the relation,

/d%(JS) = /d4x [(DD'J)S] = /d4x(DS)(D‘1J), (1.36)

in the subsequent line we simply collected like terms, and in the final line we
have made the field redefinition S’ = S — D~1J.

From here we may now rewrite the effective action as,

[[dS] exp [ fd4 (S'DS" — JD—lj)}
N [[dS]exp [—% [ d*z (SDS)]

exp (i Zeg[l;]) = (1.37)

As we are integrating over all values of the field at each point of spacetime we

may take [dS] = [dS'] and cancel the S dependent parts, leaving us with:
exp (iZeg [(;]) = exp {2 /d4xJD ljl (1.38)
Or equivalently,
Zuald) = = [ d'ad'y) @) B (@ - )T 0) (1.39)

where we have written out the form of D~1J from Eq. (1.33). Therefore we
have integrated out the S dependence for the low energy theory. Noting J is

peaked at small distances we may expand J as,
J(y) = J(@) + (y = 2)"[0, ] (Y)ly=2 + -+ (1.40)

12



allowing us to then write the integral over x as:

J(@)J(x)+- -
(1.41)

Therefore we have successfully integrated out the heavy field dependence and

Zeg|J] = —% / d*rd*yJ(z) Ap(x—y)J(z)+- - = / d4x2 e

see that the remaining effects from the full theory appear in inverse powers
of the heavy mass and any couplings appearing in J, the combination of light
fields, dictating the interaction of the light degrees of freedom with S. The
resulting effective low energy theory then presents itself as that of £, plus a
series of higher dimension operators formed with the light degrees of freedom,
suppressed by powers of the new physics scale (i.e. the heavy mass), and
respecting the symmetries of the theory. When £, is gauge invariant this
construction is an example of a decoupling theory, as in the absence of S the
theory described by L, is renormalizable.

An archetype of an EFT of the type described here is the Fermi model
of beta decay where the heavy degree of freedom has been identified with
the fundamental particle now known as the W boson. In the SM beta decay
describes the process n — pe~ 7. (or leptonic § decays like p~ — e~ v,7.) via
an intermediate fundamental W-boson. For example from Eq. we see

that given the following interactions from electroweak theory,

Lwpn, = 50751 —)uWy (1.42)
Lwe, = %é'ya%(l - 75)V€W<j>

the resulting Fermi four fermion interaction, after integrating out the W field,

is given by:

Lot = 5o (70" (1= 5)u] [7,(1 = 5)1]

5o | : (1.43)
= 5 [y (1= )] (e (1 — s)ve]

with Gp = \/592/8771%4,.

This is the form of the four-fermion interaction describing muon decay.
We note that the operator coefficient Gr, known as the Fermi constant, has
mass dimension 1/M?, consistent with our previous discussion. Eq. is

referred to as a dimension-six operator as the mass dimension of the field

13



content of the operator adds to six. Measurements using muon decay indicate

Gp ~ 1.17-107° GeV~2 Using the relation between G and g yields a W

mass of my ~ 80 GeV consistent with direct measurements of the W mass.
In Chapter [2f we will discuss the implications of this type of EFT expansion

for characterizing deviations from the SM prediction for Higgs physics.

1.2.2 Electroweak Chiral Lagrangian

Alternatively we may consider NP theories for which the new dynamics cannot
be treated perturbatively. In this case, as we do for strong interactions in the
SM, we may still attempt to build an effective Lagrangian for the light degrees
of freedom using as guidance the assumed global symmetries of the theory.
For example, let us take the SM Lagrangian written in the chiral form of
Eq. but without the light scalar h degree of freedom (either because it is
heavy or just nonexistent). In this case the lagrangian for the pure would-be

Goldstone bosons reads

UZQTr (D, U)(D"U)'] (1.44)

which is invariant under the chiral symmetry SU(2);, x SU(2)g in the limit
of vanishing ¢’. One may think of this as the lowest order term of an infinite
series of operators constructed from U and D,U and respecting the same
global symmetry. As U is dimensionless, any higher dimensional operator
will arise with higher numbers of derivatives, the lowest order shown above
being quadratic and the next order being quartic. In this case the general
chiral Lagrangian can be organized by the dimensionality of the operators in
number of derivatives. At low energy, the higher the number of derivatives
in the operator the more suppressed its effect, and therefore the derivative
expansion becomes consistent.

In Ref. [21] and [22] the full list of operators which can be built in this
approach up to four derivatives including also the electroweak gauge field
strengths was systematically constructed. These works were motivated by
the possibility of the Higgs being very heavy, in some cases as a consequence
of its possible composite nature and therefore it was integrated out from the

low energy Lagrangian.
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In recent years renewed interest has grown in the construction of composite
models for the EWSB sector, but containing a light Higgs-like particle. In
these constructions the Higgs appears light as it is a pseudo—Goldstone boson
of a global symmetry of the new strongly interacting dynamics. Therefore,
contrary to the above discussion, the Higgs is present in the low energy EFT,
but the assumption of strongly interacting new physics still implies that we
build the EFT as a derivative expansion. Concrete examples of these types
of theories are Composite Higgs Models (CHMs) [23H32], for different strong
groups and symmetry breaking patterns, generically “little Higgs” models [33]
(see [34] for a review), and some higher dimensional scenarios can also be
considered in the category of constructions in which the Higgs is a Goldstone
boson.

In Chapter 3| we will present the basis of operators appropriate for such
a light composite Higgs originally derived in Ref. [35] and we will look at its
implications for Higgs physics.

1.3 Outline

In this dissertation we make use of the framework of EFTs for EWSB for
which NP related to the EWSB sector is assumed to be accessible at some
high energy scale which is not directly probed by experiment. EFT's will allow
us to characterize in a systematic way any divergences from the SM predictions.
The presentation is divided into five chapters in addition to this introduction.
Following the approach outlined in Sec. in Chapter [2| we develop the
linear EFT appropriate for the physics of an elementary Higgs doublet. In
Chapter 3| we discuss the possibility of the Higgs as a pseudo—Goldstone boson
of some new strongly interacting sector and introduce an appropriate chiral
EFT for such a scenario following the approached outlined in Sec. [[.2.2] We
also discuss possible signals which can discriminate between both expansions.

Subsequently in Chapter [4] we develop an analysis framework for constrain-
ing these two EFTSs’ operator expansions from the recent LHC collider Higgs
data, the Tevatron collider Higgs data, and the triple gauge boson scattering
data from the LEP experiment. Chapter [5| proceeds to apply this framework

to both the linear and chiral expansions. We also discuss the possibility of
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using the correlations between the Higgs and triple gauge couplings (TGCs)
in the linear realization to constrain the TGCs from the Higgs data. Finally
we quantify possible discriminators between the two expansions.

In Chapter [6] we study unitarity in the gauge boson scattering sector and
consider the implications the effective operators of the linear expansion have
on perturbative unitarity. In doing so we are able to constrain the coefficients
of the operators as a function of the scattering energy. Then by using the
experimental constraints obtained in Chapter [5| we place lower bounds on the
scale at which perturbative unitarity may be violated signaling the expectation
of NP or the breakdown of the perturbative approach.

The dissertation is complemented by two appendices. In the first, Ap-
pendix [A] we expand the operators of the linear expansion, completing the
discussion begun in Chapter [2 The latter, Appendix B includes projections
for the 14 TeV LHC analysis regarding the linear expansion and the related
TGV projections. Chapter [7] contains the conclusions of this dissertation.
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Chapter 2

Effective Lagrangian with an
Elementary Higgs: The Linear

Realization

We begin by extending the SM by the use of an EFT construction with the
assumption of the SM electroweak symmetry being linearly realized. As de-
scribed in the previous chapter EFTs have been identified as useful pertur-
bative tools for quantifying divergences from the behavior predicted by low
energy models. In order to form an EFT one assumes new physics (NP)
occurring at some new energy scale, Axp, and a linear EFT quantifies the di-
vergences from the low energy theory in a series expansion in 1/Axp as briefly
sketched in Sec. [1.2.1] For a sufficiently high NP scale relative to the energy
scale being probed this implies a well defined perturbative expansion. The
Lagrangian is then identified as the low energy theory with the addition of
new operators satisfying the symmetries of the underlying ultraviolet (UV)
model of the NP. For sufficiently low momenta relative to Axp the series can
be truncated at some order determined by the level of accuracy one desires in
calculations.

For our purposes an EFT with a linear realization of the electroweak sym-
metry describes a NP theory where the Higgs boson is still treated as a funda-
mental field transforming as a doublet under the electroweak gauge symmetry.
Additionally we make the assumption that it is a pure C'P even scalar. We

begin by describing the Lagrangian appropriate for such a fundamental Higgs
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in Sec. and we derive the relevant triple vertices generated after account-
ing for finite renormalization effects (Sec. [2.2). We discuss the contributions
of these operators to the electroweak precision parameters in Sec. [2.3] Subse-
quently in Sec. we reduce the basis to that which is relevant for the Higgs
analysis performed in Chapter |5| by use of the equations of motion (EOM) and

the consideration of precision data.

2.1 The Effective Lagrangian

In this chapter we employ the operator basis introduced by Hagiwara, Ishihara,
Szalapski, and Zeppenfeld (HISZ) [36, 37] to parameterize deviations from the
SM. This basis contains 59 independent dimension-six (i.e. suppressed by
1/A%p) operators up to flavor, Hermition conjugation, and assuming baryon
and lepton numbers are not violated by the NP [38, 39]. Note that we begin
at dimension—six as the only dimension—five operator formed of the SM field
content is a Majorana mass term which explicitly violates Lepton number,
in contradiction with our assumption that Lepton number is not violated.
We also assume that dimension—eight operators’ effects are negligible at the
current level of precision available. Thus we start by adding the dimension—six

operators to the low energy, here the SM, Lagrangian:
Leg=2L Jn O 2.1
off = Asm + Z e (2.1)

Where the O,, represent the HISZ operator basis composed of the SM field con-
tent, i.e. gauge bosons, Higgs doublets, and fermionic fields, and (covariant—)
derivatives of these fields. In addition to the assumptions mentioned above we
will also impose on the HISZ basis that the operators be C— and P—even. This
leaves us with ten gauge—Higgs operators (nine electroweak and one gluon—H ),
with an additional eleven operators when including fermions (up to flavor con-
siderations), that are relevant to Higgs processes. Additionally as we will see
there is one extra pure gauge operator relevant to gauge boson scattering in

the discussion of unitarity in Chapter[6] Thus the relevant operators involving
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bosonic fields include:

Op = (D,®) B*(D,) 91 = (D,®)0dH(Dro)
Ow = (D,®)'Wm(D,®) Osp = 10,(010)01(D1D)
Opp = OB, B"® Ops = L(010)?
Oww = oW, Wme 04 = (D,®)(DHD)(DTD)
Opw = OB, W
Oge = oToGe, G Owww = Tr[W,"W, W ]

(2.2)

Where the Higgs doublet is denoted by ®. The covariant derivative is given
by D,® = (0, + i%g’Bu +ig%5 W7)®. The hatted field strength tensors are
B, = i%B,, and W,, = il7,W"

5 4> While the fields strengths are given by:

B, = 0,B,—0,B,,
we, = 0W¢—0,Wi— geWiwyg (2.3)
GY, = 0,G%—0,G% — g f*GLGE .

The couplings, g, ¢, and gs denote the SU(2)., U(1)y, and SU(3)c gauge
couplings, and 7, are the Pauli matrices.
The SM EW gauge fields are given by:

Wjﬁ = \%(Wl} F ZWi) ,

S _ 1
Z,LLM = W(gwj - QIBM) ) (2.4)
AM = — (g'W2 + gB,).

There is an additional operator not considered in our work as it may be re-
moved via the EOM, but it is relevant to the discussions in Chapter 3| where it
will be used to help identify the relation between chiral operators and those of
the linear expansion. Details relating to this operator and a similar operator

in the chiral expansion are discussed in [40]. It has the form:
One = (D,D"®)'(D,D"®). (2.5)

For completeness we also list an additional set of four operators made up
of only EW and strong gauge fields. They do not contribute to the Higgs

interactions nor to triple electroweak gauge boson vertices and therefore do
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not generate effects in the observables discussed in this dissertation:

Ocac = ifacGy GLPGEE,
Opw = (D“ WM> (DPWW)z, Opp — (aﬂéw> (apépv) , (2.6)
Opg = (D" Gw)* (D,G*)"

where (D*W,,)" = 0*W}, — ge*W Wk and where, in Opg, D* denotes the
covariant derivative acting on a field transforming in the adjoint of SU(3)¢,
(D" Gl)* = 0"GS, — gs f**°GMGE,,. Tt is worth noting this set is not minimal
as the operators Opw, Opp and Opg are usually traded using the EOM for
Owww and Ogge and fermionic operators.

Next we also list the dimension—six operators which couple fermions to the

Higgs boson [39):

Ouaoij = (¥10)(Qri®dry), O = @1(iD,®)(en er,).
Ogblqi,ij = ‘I’T(iﬁuq’)(uRﬂ“uRﬂ’
0., = ®(iD,®)(dp,y"d, ). (2.7)
ng)bd i = i’T(iBu‘I))(ﬂRﬂ“dR]),

08— &1 (i D%®)(L"r,L
QL — ZHM )( 7Li’Y Ta Lj),
0%; = @1 (i DLD)(Qrin" 7. Q)

where we have used ® = ir,®*, L} is the lepton doublet, Q;, the quark doublet,

fr the SU(2), singlet fermions, and 4, j are family indices. As well as:

g
oD, = &'D,®—(D,P)®

o (2.8)
oD, d = B'7D,d — (D,P) 7P

The dimension—six operators in Eq. have been classified according to
the number of Higgs fields that they contain. In the first column, the op-
erators are denoted by Oyg;; and they contain three Higgs doublets. After
spontaneous symmetry breaking these operators lead to modifications of the

SM Higgs Yukawa couplings as we will see below. The second column, (‘)EI)1 }l i
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contains operators with two Higgs doublets and one covariant derivative act-
ing on them. Consequently, they contribute to the Higgs couplings to fermion
pairs, but also modify the neutral current weak interactions of the correspond-
ing fermions, with the exception of Og&dﬂ. ; that also changes the charged weak
interactions. Og}w besides contributing to the Higgs couplings to fermion
pairs, also lead to modifications of the fermionic neutral and charged current

interactions.

2.2 Effective Vertices

Next we consider the finite wavefunction and coupling renormalization due to
the effective operators. We proceed by expanding the operators to obtain the
three— and four—vertex Lorentz forms relevant to our analysis. Here we only
include the Lorentz forms relevant to Higgs—vector (HV'V), triple gauge vertex
(TGV), and Higgs—fermion (H f f) interactions leaving other forms which will
be relevant to the discussions in Chapter [0}, for Appendix [A]

Working in the unitary gauge the Higgs doublet is given by:

1 0
@:E<v+hm>. (2.9)

Many of the operators induce finite field renormalization requiring us to expand
the operators to identify their impacts. First we note there is an induced shift

to the Higgs potential from Og 3:

V(®) = p2(T0) + \o(T)? — %(qﬂ@)? (2.10)

Leading to a shift in the minimum of the potential with respect to the SM,

2 2 2
2 Ho v¥ fez) _ o v° fogs

=——|14+——)] = 1+ —— 2.11

v A0(+4A2)\0> UO(+4A2>\O)’ (2.11)

where the subscript “0” denotes the SM value. As Og1, O¢2, and Og 4 con-

tain derivatives of the Higgs field they therefore induce a finite wavefunction

renormalization for the Higgs field, so that the field with a canonical kinetic
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term is H:
02

1/2
H=h {1 + W(fqb,l + 2fp2 + f¢,4)] : (2.12)
To linear order this leads to a shift of the Higgs mass:

2

M = 2)\ov? {1—W (f¢>,1+ f¢2+f¢4+f¢03)] : (2.13)

Next we consider similar effects on the gauge fields. We note that Oy, affects

Z~ mixing shifting the mass eigenstates from those in the SM:

9%g"” ey
Zy = [1—mAszW] Zu ) 514
' 2 su 99' (9>~ SM. (2.14)
A, = [1+WAszW] AT — [WA2JCBW:| Z,
and, additionally, that there are effects on the gauge boson masses:
- e L (- i)
M7 2 vt |1+ g (fer + fau — 9D few )|, (2.15)

MI%V = %1)2 [1 + 21;\—22f<1>74] .

Notice that Opw and Og; contribute to the Z mass, but not the W mass,
therefore violating the custodial SU(2) symmetry and contributing to the T
parameter as will be discussed in more detail in Sec. 2.3 and [2.4]

We use for our calculations the inputs Gr, Mz, agm, s, and My with
the electromagnetic coupling evaluated at zero momentum, the so—called Z—
scheme. In addition when convenient we can also absorb part of the tree level
factors by using the measured value of My, via the relation

2
% - ng, (2.16)
in combination with Eq. , so we can express the shift of the vacuum

expectation value and M3 as:

—1/2
v o= (\/QGF) / < - %f@A) 9
—1 2 2 72 2
MZ = (V2Gp) & (1 + Wf(b,l - %%fBW) ;

C\w +g

(2.17)

where we have used ey = g/+/¢2 + g’ = cos O, the tree level cosine of the SM
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weak mixing angle. Expanding the operators relevant to HV'V interactions we

define £y with corresponding couplings gg)vv, where ¢ indicates different

Lorentz structures:

LEY = g HGL,G™ + gy H Ay A™ + gip), Ay, 240" H
+ gg)ZWHAWZW + gg)ZZZuVZMaVH + gg)ZZHZMVZMV
+ 0 HZ,2" + g (WEW O H + h.c.)
+ Giww HW LW 4 g HW W= (2.18)

In Eq. (2.18) we have defined V,, =9,V, —9,V,, for V.=A, Z, W and

9Hgg = fi;\gv = _g_:r%
2 2

Gty _ (921/’{‘?2\7\/) fBB+fVV2W*fBW

1) _ g%v \ sw(fw—/B)
Iuzy = \2A2) 7 2ew

(2) _ g2v \ swli2sy feB—2¢% fww +(c3 —s%) fw]
9aZy = |\ 2AZ 2ew

1) _ g2v \ SyfwtsiyfB
9uzz = \a2az T2,

(2) _ g2\ swiBBtey fww ey sty fw
o AN o ©2.19)

3 2 2 2 12 .
gj(q)zz = f%) [1 + 1z <3fc1>,1 +3foa—2f00 — (;ng—ZQ)fBWﬂ

2
= MZ(V2Gp)'/? [1 + 2o +2fea — 2fc1>,2)]

S (L) Iw
I9aww = \2az) 2

2 2
gl(LI%/VW = - (é’A—Z Jww

2

QSQA/W = (% 1+ %(3/:@,4 — fo1 — 2fc1>,2)]
= 2MZ (V2Gp)'/? [1 + %(qum — fo1 — 2fq>,2)}

where, as previously, we have expanded to linear order in the f; coefficients.
Also, for convenience, we have rescaled the coefficient of the gluonic operator,
fea, by a loop factor —ay/(8m). This way an anomalous gluonic coupling of
order f;, ~ O(1—10) gives a contribution comparable to the SM top loop, which
is the main loop contributing to the coupling of the Higgs boson to gluons in
the SM. For the rest of the dimension-six operators involving EW gauge bosons
we have decided to keep the same normalization commonly used in all the pre-
LHC studies for an easier comparison with the existing literature. Notice that

the general expressions above reproduce in the different cases considered those
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of [ATHAR].

Concerning TGVs the relevant couplings are:

LWV = g WEW —he) 2% + g3y ,(WEW 12" — h.c.)

+ gWWZ(T/VJr W Y —h.c.)ZP* 4+ gWWA(WjWM — h.c.) A"
+ G a(Wh W, —he)Am (2.20)
where
(1) _igview sw .
gwwz = et (fw + 3 fB + o fBw 6202Wf<b 1)
2 ig3v2 52
gév)wz = -3 5w + 2 s fBW mﬁb,l)
igsc
gg)wz = _SgAzwaWW (2.21)
ig3v2s
gI(/Il/)WA = 916A2W (fW + fB - 2fBW)
(2) _ _3ig3sw
I9wwa — A2 fwww

and we have defined cow = cos(20y) and sow = sin(20y). We note that
the coefficients fy, and fp contribute to both Higgs-vector and TGVs. This
correlation is due to the fact the Higgs is a doublet charged under SU(2), and
will prove important in our future discussions. We will see this correlation is
absent in the chiral EFT presented in Chapter |3[ and that it will also allow us
to make projections of the Higgs data onto the space of TGCs at a competitive
level with the current best measurements in Chapter [5 As mentioned above
we save other vertices generated by the operators for Appendix [A]

Changing to the effective operators concerning the couplings of the Higgs
boson to fermions the form of the effective Lagrangian for the fermionic oper-
ators in Eq. (noticing that generically these operators are not Hermitian)

is then given by:

fe<1> 7
A2

fu‘1> K%
A2

Hff fd‘1>7
Leff -

Recalling that in the SM the Yukawa interactions take the form (see Eq. (|1.24]))
Lyax = =y Lri®er; — yi:Qri®dp; — y%@LiéuRj +h.c. (2.23)

we see that the operators Oy ;; renormalize fermion masses and mixing, and

then modify the Yukawa interactions as well.
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After spontaneous symmetry breaking and prior to Higgs wave function

renormalization we can decompose £ 4" into two pieces, Lo and L;:

Lo = \/%dL (—yd + %fdfb) dr(v +h) + \/%EL (‘yu + %f’u@) ur(v + h)
+ \%éL <—ye + %fe@) er(v+h)+he.
L, = \/%X—i 11 faodrh + \/%X—zaquq)uRh + \/%X—QgéLfe@@Rh + h.c.

(2.24)
We can see that £, then corresponds to the mass term of the fermions with
Higgs-fermion interactions subject to renormalized fermion masses and quark
mixing. The new interactions, contained in £;, are not generically flavor
diagonal in the mass basis unless f;e o< y/, where here f;e and y/ are the 3x3
matrices in generation space whose components are fg;; and yf; with f = u,
or d or e.
Altogether in the physical fermion mass basis and after renormalization of
the Higgs wave function from Eq. the Hff couplings may be written

as:

LI = ghpi P frH + e, (2.25)
with
f 2 2
fo_ v v
IHij = — . dij |1 — —4A2<f<1>,1 +2fo2+ foa)| + mf}mj, (2.26)

where the physical masses are denoted by m;-c and the coefficients of the corre-
sponding operators in the mass basis are given by fig4 ;. In what follows, for

the sake of simplicity, we will drop the primes in these fields and coefficients.

2.3 Electroweak Parameters: S, T, U

In this dissertation we will make use of and refer to electroweak precision data
(EWPD) with great frequency. In this section we present a short introduction
to the S, T, and U parameters the most common parameterization of universal
(also referred to as oblique) contributions to electroweak precision data [49].
These parameters are also frequently referred to as €;, €3, and €3 [50].

As a result of the great success of electroweak theory it was realized that
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deviations from the SM predictions had to be considered at loop level. The
strongest constraints come from LEP, where the processes ete™ — Z — ff
were measured with high accuracy. In order to quantify divergences from the
SM predictions related to these processes in a gauge covariant manner we must
consider corrections to the two point function of all gauge vectors, V, along
with vertex corrections to V' — ff’. For both we restrict ourselves to the
electroweak sector as that is the focus of in this dissertation. Our discussion
in this section will closely follow that of [51].

We begin by considering the corrections to the two point functions of the
electroweak vectors (projected into their longitudinal and transverse compo-

nents),

v

e VAV y 4" ViV q"q
LT () = T (@) (g“ - )—zHZW)( : ) (2.27)

where IT# is the correction to the V/Vy two-point functions, the sub— and
super—scripts V; and V5 indicate the vectors under consideration, and the sub-
scripts T" and L indicate the transverse and longitudinal projections of the
tensor respectively. The corrections to the V ff vertex, neglecting fermion
masses, are:
—ilp2(q) = =i (1 =) 9 T7 (%),
—il[(q) = —inu5(1 = 5)94T7(¢°), (2.28)
=il 2 (q) = —iuz (1 —75) 7 (@),
where the superscripts V fi fs indicate the vector, V', and two fermions, f; and
f2, under consideration, 7, and s are the usual gamma matrices, and Iz{ is
the third component of weak isospin for the external fermion.
We are interested in NP signals so we split the SM and anomalous parts
via
[M=1IIsqy + AIl  and TI'=Tgy+ AT, (2.29)
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and define the (gauge invariant) quantities:

AT (¢?) = ALY (¢%) — 2swq? Al (¢%),
AT (%) = AT () — swg*ATZ(¢?) — ew(q? — m3)AT] (¢,
AlIF(¢%) = AlF#(¢?) — 2ew(q® —mz)AFZ( %)
AW () = AIFY(¢?) — 2(¢* — miy) AT} (¢%).
(2.30)
Allowing us to then define
ATLp ™ (%) — AL (mi,)

AT () = — , (231)
Vs

and we finally arrive at the S, T', and U parameters:

apnAS = A5y (~AIFZ(0) + S AT (m3) + AT (m2))

OJEMAT = (Aﬁ%QZ(O) _ AﬁQWQW(O)) 7

mz My

AU = sy (CWAH%ZZ( ) — ATV (0)
+ swAIlLL (m%) + QSchAﬁ;{«i(TI’LQZ)> :

(2.32)
By inspection we can see that T is the difference between corrections to W and
Z interactions/propagators. Therefore any operators which induce different
behavior for the Z from that of the I, i.e. violate custodial symmetry, will
induce corrections to the 7" parameter. Recalling from Eq. that the
operator Og; induces a shift to the Z propagator (and to its mass), but not
that of the W, we expect that Og 1 contributes to the T" parameter. In fact it
does at tree-level, with its contribution given by:

OéEMAT = f@ 1- (233)

2/\2

The S parameter contains new physics contributions to the neutral currents
at different energies. Hence Opgy which gives a tree-level contribution to the

Z~ two-point function, gives a correction to S that reads:

2

We note that despite its contribution to the Z mass and not that of the W,
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Opw does not contribute directly to the T" parameter because it does not
modify the Z propagator. The correction to the Z mass is induced by the
redefinition of the neutral gauge boson fields after the mixing induced by this
operator, an effect which is accounted for in the S parameter.

Operators Op, Ow, Opp, Oww, and Og o give contributions at the one

loop level:

arAS = 325 {3(fw + f5) 5 og (25 )
+2((5c3 — 2) fw — (5¢% — 3) f5] %% log (ﬂg—H)
~ (226 = 1) fuw = (30cky + 1) ful 55 log ()
—24(cy fww + s fBB) NX—EZ log (,2—22)
+2fan3 10z (2},
T = g {15 (3) + Gt )3 ()
+ (26 fw + (3cky — 1) f] 5 log (5 )
~ fantlog (2},

252 2 2
apnAU = —%816?5 {(_4fW + 5fp) 3£ log (TQ—%)
+ 2w 5f5) R log ()},
(2.35)
where the calculations have been performed using dimensional regularization
with d = 4 — 2¢e. The logarithms result from identifying the poles with loga-

rithmic divergences, that is:
L) 1+ ) = log (2 (2.36)
— (4 € og| — ). )
€ & 12

In these expressions we have also neglected the finite parts as the logarithms

are meant to capture the running of the couplings which is the only infor-

mation from the loops of the ultraviolet completion which can be robustly

reconstructed with the low energy EFT.
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2.4 The Choice of Basis and the Application

of Precision Data

In the effective Lagrangian framework not all operators are independent as
they can be related by the use of the classical EOM[T] This is shown by proving
that operators connected by the EOM lead to the same S-matrix elements [52-
59]. In an approach where the full or UV theory is known one may integrate out
heavy degrees of freedom obtaining the operators (a top down approach) thus
leading to higher dimension operators whose form is tied to the UV physics
and therefore it may be convenient not to choose a minimal set of operators in
order to more easily identify the higher dimensional operators at low energy.
However, in our approach we use the effective Lagrangian to obtain bounds
on generic extensions of the SM (a bottom-up approach). As the NP is not
known a priori in this approach it is useful to adjust one’s basis via the EOM
to choose operators better constrained by low energy physics.

Since we truncate our expansion in effective operators at dimension—six it is
only necessary to consider the SM EOM. These EOM relate bosonic operators
to fermionic ones and we use those for the Higgs field and electroweak gauge
bosons giving three relations between operators:

2092 + 2084 =) (yiej(oetb,ij>T + 915 0us 45 + ygj<od<1>,ij)T + h-C-)

ij
—2(0TP) DT oY
72
205+ O + Op + 0° (a1 = $002) = =5 (~305L. + §08
~04) + 2080 — 3080,
20 V] V) 2 (Dp s — L0g,) = -2 ©9®) 0B

w+Usw +Uww + g ( 4~ 3 <1>,2) 1 Z orsi T Yequi) -
(2.37)
From these three EOM we are able to remove three of the operators listed

in Egs. (2.2)) and (2.7). We put off the discussion of which operators we will

remove via the EOM until after discussing precision data.

'Note our discussion on reducing the basis via the EOM and precision data primarily
pertains to Higgs related fits which will be discussed in Chapter 5} and is not directly used
in Chapter @]
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We wish to use pre-Higgs precision data to reduce the size of the relevant
set of operators for our Higgs studies. In particular we notice that the Z and
W couplings to fermions as well as the oblique parameters S, T, and U are in
agreement with the SM at least at the percent level [56]. These results severely
constrain the effects of Og }, Og’ }, Opw and Og . In particular as described in
the previous section the operators Opy and Og ; give tree level contributions
to the S and T parameters (see Eq. (2-35)).

Precise constraints also exist on triple gauge boson interactions from LEPII
and the Tevatron [57]. In order to account for these we begin by putting
the relevant terms of L.g into the parameterization of Ref. [37, 58] which is

generically used in experimental searches:

Cwwy = —igwwy |gf (WLW VY = WV, ) 4 gy W W, Ve
e 2emaw-rvg]
w
(2.38)
which, after comparison with Egs. (2.20)) and (2.21]) yields the following rela-

tions:

2

A91Z = 91Z— 1 = 802 A2 (fw+2 pv fBW) - mﬁm% )

2,2
Ak, = k=1 = L5 (fw+ fs—2fsw) ,
5 o 462 2
AIQZ = Kkyz—1 = Sg%N—UM<C%VfW_3%VfB+C%;VKZ%VVfBW)

S e
42 —s2)  BLAZ

392M2

>\'y = oA2 fWWWa
392M2

Az = St fwww

(2.39)

LEPIT and Tevatron results constrained these effective couplings to be in

agreement with the SM expectation with precision ranging from between
10 to 1% [51].

It is important to realize that in applying the constraints from these EWPD

we must take care that we do not introduce a combination of the anomalous
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operators whose contribution at tree level to the EWPD cancels out — we must
avoid “blind directions.”

To illustrate this point we consider the dependence on the anomalous cou-
plings of a subset of the EWPD that contains the W mass, W leptonic width,
the Z width into charged leptons, the leptonic Z left-right asymmetry, and
the invisible Z width (Myy, W Ty, Ap, and iy respectively). We can write

v
the departures of these observables (i.e. AOBS = W) from the SM
predictions as [59, [60]
1)
ALy e
1
AFinV éx[), U2
_ 3)
AA, | =M o " (2.40)
A My, fon
AT —4 few
where the matrix M is given by
453, 2—4s%, 453, (453, —1) 1253, —4sg dew sw (4sy,—1)
D D (c2,—s%,)D o 2(c%,—s3,)D (c%,—s%)D
0 -2 0 -3 0
255 (s —1/2)% 255 (s3y—1/2)° sty Ch S cw sty

sS—(s%,—1/2)* s, —(s%,—1/2)* S5, —(sh,—1/2)*  2(s§,—(s3,—1/2)%)  s§,—(s3,—1/2)* )

2 2
0 0 - 23W2 - QCW p) —
Cy — Sy 4(ciy —s3y) v — Sty
0 0 _ SS\QN _ 3c%v _ 3cwsw
3y —s%; 4(cq, —s%,) 2 —s%,

(2.41)
with D =1 — 4s%; + 8sy.

One can show that M has two zero eigenvalues, indicating that two coupling
constant combinations cannot be determined. Considering all LEP observables
also results in two blind directions. In this example we find the blind directions
to be:

2
for=—4fs) = =204} = ¢"fow  and 5 =Tfew.  (242)
This then indicates that we cannot simply choose any operators to remove

via the EOM, but instead have to choose in such a manner as to prevent
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the introduction of blind directions. The two combinations of operators that
do not contribute to these example leptonic observables are any two linear

combinations of:

OLEp blindg = ¢ (qu — }12 ng’ii -3 . OEI}Q)”) + Opw,

(2.43)
OLEP blind2 = Opw + %> og%,u"

We note that there exists a relation between operators that do not lead to
a tree-level contribution to the EWPD and blind directions: the elimination
of an operator that does not lead to tree—level contributions to EWPD leads
to a combination of operators each one apparently contributing to EWPD at
tree level. This combination, however, must define a blind direction as it has
the same S-matrix element as the original operator which had no impact on
the EWPD [61].

For example the bosonic operator Og 2 does not contribute to EWPD at
tree level since it modifies only the Higgs couplings, therefore it is a blind

operator. We can then rewrite the EOM from Eq. (2.37)) to give:

3000, = lgoBW + 40w + 20w + 5 50 (05]  + 0%,

+g? < > <yfj (Ocoif)" + 4Oy + 4 (Og0i5)" + h-0-> (2.44)
i
997

- 2(@*@)@*51)].

Then the right hand side of Eq. (2.44) defines a blind direction. However,

since we know that only the operators Opy and ), og”}ﬂ.i contribute to the

above leptonic observables at tree level, we find from the equation above that

the effect of Og 9 is equivalent to:

2 U e
34 (OBW T Z: OgLi | - (2.45)

Which corresponds to our previously given combination of operators Opgp biind 2

in Eq. (2.43).
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In summary the EOM in Eq. allow for the elimination of three
dimension-six operators from the basis with the caveat that we must avoid
blind directions. This is then achieved by removing operators that contribute
at tree level to the EWPD in such a way that the new form of the matrix M
has a non—vanishing determinant.

We then choose to eliminate Og 2”, Og’ %“, and Og 4 leaving ourselves with
a basis which will allow us to take full advantage of the EWPD as well as TGV
data from LEP. Altogether our basis is reduced to:

{ Occ, 95, Oww , Opw . Op, Ow . Oss, a1, O, 05, 09},

(2.46)
excepting the operators removed above, OS}J’M and Og’ zn Now we are able to
apply the available experimental information in order to reduce the number of
relevant parameters for our analysis of the Higgs data.

As mentioned above the Z and W couplings to fermions and the S, T,
and U parameters agreement with the SM is sufficiently high we can remove
from our basis Og }, OEI? }, Opw, and Og ;. Additionally limits on low-energy
flavor—changing interactions impose strong bounds on the off-diagonal Yukawa
couplings [62H68]. This allows us to discard the off diagonal part of Ose. We
note there is potential for sizeable flavor changing effects in 7e and 74 [69, [70]
along with recent hints from CMS [71] of a 7 decay with an excess of just over
20 above the SM prediction. This is however not considered in our current
analysis. Finally the effects of flavor diagonal Of¢ from the first and second
generation have not been directly accessed in current experiments and they
only appear in Higgs-g-¢g and Higgs-v-v vertices at one loop. These loop form
factors are suppressed for the light fermions and consequently they are entirely
negligible. Therefore of the remaining diagonal O we retain only O.s 33,
Ous 33, and Ou4e,33-

After all these constraints are imposed we conclude that the relevant L.g

for our Higgs analysis in Chapter [5] after reduction of the basis via the EOM
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and precision data, is:

Lo = —$248066 + 5 0oz + FFOpp + 23 Oww + 305 + fr0w

+%Oe¢>,33 + %Odcb,&% + %01@33-
(2.47)

Notice that with this choice of basis all of the dimension—six operators con-
sidered contribute to the Higgs—gauge boson and Higgs—fermion couplings at
tree level. However, a final remark regarding the top Yukawa-like dimension—
six operator, Ouq 33, is required. The tree-level information on hit from as-
sociated production of the Higgs with a top pair still has very large errors.
As such, quantitatively, the effects of the parameter fi,, enter mainly via its
contribution to the one-loop Higgs couplings to photon pairs and gluon pairs.
These contributions can be absorbed in the redefinition of the rest of the pa-
rameters contributing to these vertices, f, and fww + fpg, and therefore, we
set fiop = 0 for our Higgs analysis in Chapter [5} In the future, when a larger
luminosity is accumulated, and direct information on top associated produc-
tion is available, it will be necessary to introduce fi,, as one of the parameters

in the analysis.

2.5 Summary and Discussion

In this chapter we have introduced the HISZ basis of dimension—six operators
for a C'P—even Higgs under the assumptions of baryon and lepton number
conservation and a linear realization of the electroweak symmetry which is the
relevant expansion for NP theories in which the Higgs is a fundamental state.
We have detailed the wavefunction renormalization due to the operators in
the basis and after accounting for those we have expanded the operators to
find the Lorentz structures generated for the gauge-Higgs, TGV, and Higgs—
fermion interactions; in doing so we have found that gauge-Higgs and TGV
interactions are correlated as a consequence of the gauge invariance, a relation
which will become relevant when trying to discriminate this expansion against
that characteristic of a dynamical Higgs which we will introduce in the next
Chapter. We continued to introduce the electroweak parameters S, T', and U

and their contributions from the operators in our basis. Next, taking care not
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to generate blind directions, we used the EOM and precision data to reduce
the size of our operator basis to those relevant for the present interpretation
of the Higgs results. The final linear basis which will be considered for our

analysis of Higgs data is:

Leg = _%%OGG + %Ow + f[}\B_zBOBB + fVsz Oww + %OB + J;\—V‘Q’OW

+%Oe¢',33 + %Odcb,?ﬁ-
(2.48)

We will return to this basis in Chapter [f]when we apply our analysis framework
to constrain the parameters of this EFT and look at interesting implications

of the correlation between Higgs and triple gauge couplings.
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Chapter 3

Effective Lagrangian for a
Dynamical Higgs: Chiral

Expansion

In Chapter [2| we discussed the effective Lagrangian for an extension of the SM
assuming a linear realization of the electroweak symmetry. There we noted
that such an expansion is appropriate under the circumstances that the Higgs
is a fundamental doublet of SU(2), as in the SM. However other possibilities
exist. In particular it is an interesting question to consider the possibility of
some new strongly interacting sector with a global symmetry spontaneously
broken down resulting in new condensates which may result in EWSB and
also impart mass to the SM fermions. Among the first such models consid-
ered were Technicolor theories which sought to generate masses for the gauge
bosons [72] and subsequently the inclusion of fermion masses in Extended
Technicolor [73], [74]. However many such attempts induced large corrections
to some of the precision electroweak parameters which was in contradiction
with the experimental results. Furthermore generically in these models the
“would be” Higgs became very heavy and was not present in the light particle
spectrum (see Sec. [1.2.2).

In the latest years renewed interest has grown on the construction of com-
posite models, but containing a light Higgs—like particle. In these constructions
the Higgs appears light as it is a pseudo—Goldstone boson of a global symme-

try of the new strongly interacting dynamics. These types of models are also
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typically employed as a partial solution to the hierarchy problem. Concrete
examples of this type of theory are Composite Higgs Models (CHMs) [23H32],
for different strong groups and symmetry breaking patterns, generically “lit-
tle Higgs” models [33] (see [34] for a review), and some higher dimensional
scenarios can also be considered in the category of constructions in which the
Higgs is a Goldstone boson. In the previous chapter we observed that in the
linear expansion the Higgs boson is assumed to belong to an SU(2);, doublet
and therefore the leading order operators extending the renormalizable SM
are dimension-six operators suppressed by the NP scale A%, Instead, in dy-
namical Higgs scenarios the Goldstone boson parenthood of the Higgs boson
makes a non—linear or chiral expansion suitable [75]: a derivative expansion as
corresponds to the Goldstone boson dynamics as sketched in Sec[1.2.2]

In this chapter we discuss the general chiral EFT valid for these realizations
as outlined in [76]. In Sec. we will present the Lagrangian introduced in
Ref. [76], but our purpose will not be to work out the details of the construction
which builds on previous works of some of the authors of that paper [35].
In Sec. we will relate this chiral Lagrangian to that of the linear basis
and the TGV effective parameterization of Eq. , and formulate possible
discriminators between the two expansions. A global fit of Higgs data to the
coefficients of the operators is left to Sec. where we will also discuss the

implications of the global fit on the discriminators developed in this chapter.

3.1 The Chiral Basis

As mentioned above we treat the Higgs as a composite field, in this case a
pseudo—Goldstone boson of a new global symmetry which is exact at a high
energy scale A,. This new scale corresponds to that at which new resonances
should appear, with the relative lightness of the Higgs being explained by
its Goldstone—boson—like nature. We relax the requirement that the Higgs
belong to a doublet of SU(2), and our EFT expansion is no longer in in-
verse powers of A, but instead it is a derivative series (i.e. powers of p/Ajy).
The characteristic scale of the Goldstone bosons is identified as f which is
distinguished from the electroweak scale, v = 2my /g, and the electroweak

symmetry breaking scale, (h). The scale (h) is then associated with the scale
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at which the Higgs develops a potential which, generically, at the loop level,
breaks SU(2)r x U(1)y to U(1)gm. These scales then respect the relation
Ay < 47 f while for particular models one can relate the three scales through a
function g via v = g(f, (h)) (particular models are discussed in, for example,
[77]). We then define the degree of non-linearity of the Higgs dynamics [35]
via
&= (v/f), (3.1)
where & — 1 represents the technicolor-like scenario. This parameter will
prove useful in the comparison of the linear and chiral expansions in Sec. [3.2]
In [35] a complete effective Lagrangian basis for pure gauge and gauge—
Higgs operators up to four derivatives was presented. The particle content
of the chiral Lagrangian includes all the SM fermions, gauge bosons, and the
Higgs field h. The longitudinal degrees of freedom of the electroweak gauge
bosons are included in the usual way for chiral theories, that is in a dimen-

sionless unitary matrix transforming as a bi-doublet of the global symmetry:
U(z) = exp (it,m(z)*/v), U — LU(x)R. (3.2)

Here L and R are the SU(2). g global transformations respectively, and the
7, the Pauli matrices. After EWSB the SU(2) ., g symmetries are broken down
to custodial SU(2)¢, and subsequently explicitly broken by the gauge U(1)y
and by the fermionic masses. We note that the Higgs now transforms as a
singlet of SU(2), and Higgs insertions are now weighted by f instead of ®/A
in the linear case.

Again we assume that the observed 125 GeV boson is a C'P-even state
and in contrast to the linear case we will restrict ourselves strictly to bosonic
operators with the exception of the Yukawa couplings of the SM. We then

define the effective Lagrangian to order four derivatives as
L =2Ly+ Les, (3.3)

where Ly is the SM Lagrangian and we have chosen in this case to leave the

sign of the Yukawa couplings open, which we will indicate by sy. Therefore
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we write Lo in the usual chiral form (see Eq. ((1.29)):

Lo = 3(0,h)(0"h) — in,,W“W — 1B, B" — }EGZVG“‘“’ —V(h)

1
2

+ (v—tlh)2 Tr [D“U(DMU)T} + Lfermion (34)

—% (QLUyoQr +h.c.) — % (LLUyLLg +h.c.),

with Lfermion given in Eq. ((1.2)).
The covariant derivative then takes the form:

. .
D,U(z) = 0,U(x) + %gWS(a:)TaU(:E) - %Bu(x)U(:E)Tg. (3.5)
The first line of Eq. shows the Higgs and gauge kinetic terms, along with
the Higgs potential which induces spontaneous symmetry breaking. We do
not specify the Higgs potential here as it is not relevant to our discussion.
The second line then describes the W and Z masses and their interactions
with the Higgs as well as the kinetic terms for the Goldstone bosons and the
fermions. The third line corresponds to the SM Yukawa interactions with the
sign of the Higgs coupling left open and encoded in sy = +1. Quark mixing
is implicitly assumed in the definition of ();. Here, as in Eq. , we have
used a compact notation for the right-handed fields by using doublets Qg and
Lg thus placing yg and y in two 6 x 6 block-diagonal matrices containing
the usual Yukawa couplings, yg = diag(y", y?) and y;, = diag(0, y°).
As described in Sec. the expansion is in number of derivatives, corre-
sponding to powers of p/A,, which in the low momentum limit should corre-
spond to a well defined perturbative series. Then L. to four derivatives takes

the form,
Leff = S[CBTB(h) + Cwipw(h> -+ Ccyg(h) -+ Cc?c(h) -+ CTfPT(h)

—|—CH:PH(h) + CDHTDH(h)] + f éc,?,(h) + 52 %52 CZ{PZ(h,) (36)

=11

+&%¢o6Pas(h) + X, &My Py (h),
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where the ¢; are the model dependent constant coefficients corresponding to
each operator. The last term accounts for the many possible pure Higgs opera-
tors weighted by £ with n; > 2. Then the set of pure-gauge and gauge-Higgs
operators is defined by [35] [76][]

Weighted by ¢&:

Po(h) = —ETr(VFV,)Te Py = igB,Te(TVH)o'T,
Pr(h) = CT(TV,)To(TVHFp Py = igTe(W,, VH)o'F;
Pyp(h) = —%L B,,B"Fg Pe = (Tr(V,VH))2F
Pw(h) = —LWeWo Ty, Pr = Te(V,VH)9,0"F
Palh) = —LGoGmT, Py = Tr(V,V,)0rF0"F,
Pi(h) = g9 BTe(TWH)F, Py = Tr((D,VH)ATF
Po(h) = igB,Te(T[VF, VV))Fy Py = Tr(V,D,VH)Fig
Ps(h) = igTe(W,[VF, VY])Fs
(3.7)
Weighted by £2:
P = (Tx(V,V,))2Fn Pro = Te(TD, V) Tr(TV,) 0" Fro

P12 = G*(Tr(TW,))?Fra Pao = Tr(V, V)0, Fo00" Fhy

P13 = igTe(TW,,)Te(TVF, V) F13 Py = (Te(T'V,))?0,F 20"y,

Pry = g Te(TV,)Te(V,W,0)Fra Pag = Tr(TV,)Tr(TV,)0FFae 0" Fhy
P15 =Te(TD,VH)Tr(TD,VY)F15 Pas = TI(WV“)(TI(T‘/Z,))QC‘F%

P =Te([T,V,]D, V) Te(TV")F16 Poy = Tr(V,V,)Te(TVH*)Tr(TVY)Foy
Pz = igTe(TW,,) Te(TVH#)0" Fi7 Pos = (Tx(T'V,))?0,0" Fas

Prs = Te(T[V,, V) T (TVH)0" Fs

(3.8)
Weighted by &*:
Pos(h) = (Te(TV,)Te(T'V,))*Fag (3.9)
Where we have made use of the covariant derivative,
. Ogq
D,V, = ,V, +ig [Wl‘j?, V,,] , (3.10)

and we have introduced V, = (D, U)U", known as the vector chiral field,

'Here we have suppressed the h dependence of F;:, i.e. F;(h) = F;.
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and we also define the scalar field T' = U7U' the scalar chiral field, which
transform in the adjoint of SU(2).. In all cases F;(h) is an arbitrary function

of h (see Eq. (3.12)) below).

Finally the two pure Higgs operators weighted by ¢ include:
1 1
Py(h) = 5(@]1)(8“11)9’;;(1@), and  Poy = —2(8#8"11)29751{(11). (3.11)
v

Notice that we have slightly adjusted our power counting in a data—driven
manner, that is we have taken £, to be leading order, but we allow for two—
derivative operators in Leg: for example Tr(T'V,)Tr(T'V*)) is a two derivative
operator known to break custodial symmetry, and as such is well constrained
by data, therefore we move it to the next order Lagrangian.

There are additional Higgs operators weighted by & > 2, however they will
not be relevant to our analysis as their corresponding Feynman rules contain
too many Higgs legs. Some are briefly discussed in [70].

As in the linear basis the operator Poy can be removed by the EOM. We
include this operator here only for the purpose of identifying at what order in
¢ it occurs as neglecting it leads to accidental miscounting for other operators
in the basis. For the remainder of this dissertation we neglect to include Pnpy
in our discussion as it has no bearing on our results. Further details may be
found in [40], [76].

The reduced symmetry of the Higgs implies more possible invariant oper-
ators at any given order. These can be seen in the fact that in the nonlinear
realization the chiral symmetry breaking interactions of A now come in the form
of arbitrary functions F(h), instead of powers of (v + h). Additionally there
is a shuffling of the order at which operators occur in the chiral Lagrangian
relative to that of the linear [35] [78, [79] and consequently a higher number
of uncorrelated couplings are present in the leading corrections of the chiral
Lagrangian which were subleading in the Linear (i.e. occurring at operator

dimension d > 8).

3.2 Relating the Chiral and Linear Expansions

We begin by stressing that the weights in & do not reflect an expansion in terms

of €. & proves useful for relating the chiral and linear expansions. We define
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a “sibling” of a chiral operator P;(h) as the operator of the linear expansion
whose pure gauge interactions coincide with those described by P;(h). The
canonical dimension d of the sibling is related to the power of " as d = 4+ 2n
and therefore £" acts as an indicator of to which order in the linear expansion
it is necessary and sufficient to expand in order to account for the same gauge
interactions of the given chiral operator. More specifically the chiral operator’s
weight in £ corresponds to the lowest dimension to which one must expand in
linear operators to reproduce the chiral operator’s gauge interactions. There-
fore it follows the lowest order in the linear expansion to which we must expand
to obtain the siblings of the operators in Egs. and is d = 6, while
for Eq. we must expand to d = 8 and for Eq. to dimension d = 12.
Therefore £ has no physical meaning in the context of the effective Lagrangian
and could be reabsorbed into the definition of the coefficients c;.

We note that in comparison with the linear basis where the Higgs enters in
powers of (v + h), it is now introduced via the functions F;(h). Each of these

functions can be defined as,
?<h) = gO(h7 U) + ggl(]% U) + 5292(ha U) e (312)

where the g; are model dependent functions of h and v once (h) has been
reexpressed in terms of £ and v. For our current work we will assume a general

polynomial form of the g; taking the general form:

2

h -h

We will treat the a; and b; as unknown phenomenological parameters for the
fit performed in Chapter [f

In order to compare the two expansions we need to consider the limit
in which they should converge. Recalling that ¢ helps to parameterize the
degree to which the expansion is nonlinear we expect the two expansions to
be equivalent for & — 0. Therefore we can truncate the chiral expansion at
0(&) and compare the operators which contribute to gauge-Higgs interactions
with those of the linear expansion at d = 6. The linear basis then contains ten
independent couplings (see Eq. and Eq. noting Owww and Og 3
do not contribute to gauge-Higgs interactions) while the chiral depends on
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seventeen (those of Egs. ) and - For the purpose of comparison we
consider F;(h) = (1 4+ h/ v) for all P; which leads to the relations:

Opp = %TB(h)a Oww = 5Pw(h),

Occ = —24Pa(h), Opw = %Pi(h),

Op = ?Q(h)+82?4(h), Ow = %Ps(h) = 5Ps(h),
Ons = SPulh)— ETWPrR), Oz = vPulh)

ch,4 = TTH(h)‘*’%&r(h){‘PC(h)’

Oce = 5Pon(h) + 5 Po(h) + 5 Pr(h) = v*Ps(h) = £ Po(h) = T Pro(h) -

(3.14)

We note that these relations indicate that the five chiral operators Pg, Py,
Pa, P1, and Py are in one—to—one correspondence with the linear operators
OB, Oww, Oca, Opw, and Og 2 respectively. While Pr (P¢) correspond to
linear combinations of Og; and Og 2 (Og 4 and Og ). Conversely we note Op
(Ow ) corresponds to a specific combination of the chiral operators Py and P,
(P3 and P5). In order to break these last correlations in the linear expansion

we must consider operators at the next order, i.e. d = 8, such as:
(D, ®)'®) B (9'D,®) and  ((D,®)'®) W™ (7D, ®). (3.15)

In fact we will shortly consider how to use this difference to construct observ-
ables which may aid in identifying the underlying dynamics of the observed

Higgs—like resonance.

3.3 Effective Vertices

As was the case in Chapter |2, the chiral operators will introduce wave function
renormalizations for the various SM field content, along with renormalization
of the parameters of the theory. We employ again the Z—scheme taking as
input parameters agy, as, Gg, Mz, and My. Then in the following expressions
if the other parameters, such as g, ¢, v, e, or the mixing angle, are used they

must be expressed in terms of these input parameters. Recalling Eq. (3.13))
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we will further simplify the notation by using,

a; = ¢;d;, and b, = ¢b;, (3.16)

where the ¢; are the operator coefficients of Eq. (3.6). Working in the unitary
gauge we see that Pg, Py, Pg, Py, P1, and P15 introduce corrections to the
SM kinetic terms and require field redefinitions to put the kinetic terms in the

canonical form. These operators then affect the input parameters as:

B v 4e?ei€ + dePerné?, TE~0,

(3.17)
62
5]‘\]4\/122 ~ —CTg — 26201§ + 2@2%012527 (51{4\4—; ~ 0.
Then the W-mass diverges from that of the SM as:
AME,  4e? 2¢% 4e*

= - — . 3.18
M2, o c1§ + o cré 2, 12§ ( )

As we would expect from their relation to Opy and O 1, P; and Py generate

tree level contributions to the oblique parameters S and T',
apmAS = —8e?ci¢é and  apuAT = 2cr€. (3.19)

We note that the operators P;, Py, and Py induce additional terms in the
HVV Lagrangian, beyond those in Eq. (2.18)), such as:

Wy = GyzZuZ"0h + g3} ,0, 20 2,0 h + g 10,210, 2 h
g\ WEWHBR + g (0, W W, 0h + he)  (3.20)
+gO DLW, W,

The operators which are proportional to OA become redundant for on shell
Higgses and the those proportional to 0*V vanish for on-shell W or Z or
massless fermions. Therefore they will prove irrelevant to our analysis. We
include in Tab. the values of the coefficients for the HV'V operators in
Eqgs. and in the chiral basis. We include the effects of the oper-
ators P7, Py, and Py for completeness, however they will not be used in our

analysis for the reasons above. For the sake of comparison we also include the
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coefficients for the linear case as well. To simplify the table we employ the

definition,
gl(j) — ggj)SM + Agi(j), (3.21)

i.e. we remove the SM part and only show in the table the anomalous con-

tributions. TGV related coefficients are saved for the discussion in the next

section.
Coeft. Chiral Linear
xe? /4v x& ‘ x &2 xv? /A2
2z
Agirgy % —2a¢ - —4fac
Agrqy 1 —2(ap + aw) + 8a 8az —(fB + fww) + few
1 .
Ag%)m e , —8(as + 2a4) —16a17 . 2(fw — f5)
AQL)ZW % 42%‘13 —daw +8%%a; 16a:2 2%/“33 = 2fww + 3 faw
(1) 1 A v A Gy A iy A
Adizz 3 , —Azras + 8aq ) —8Farr ) Sfw+ s )
A!]g)zz *:2% 2%”3 + 2aw + 8%&1 —8ais %fb’tﬁ + fww + %fBW
Ag,, %z —2cy + 2(2a¢ — ¢¢) — 8(ar — cr) - Jo1+2fea—2fs2
Agl -2 1647 32az5 -
2W
Agiyz ||~ 16a10 32a1 -
A!]HZZS(G) — sglw 16ag 32ay5 —
1 .
A g%j‘,w % —4as - fw
Agirww o —daw - —2fww
@) m2 EIL ! 2 ) e
Agrrvw =L || —den +4Q2ac — co) + 3250+ rer *32§6’12 2= P foy + Afea — Afen + 4 faw
Agﬁ )w w - 8az - -
2
Ag g%vw -7 daxo - -
EX
Ag(}?%VW - ;% 8ag - -

Table 3.1: The trilinear Higgs-gauge boson couplings defined in Eq. .
The coefficients in the second column are common to both the chiral and linear
expansions. The contributions from the operators weighted by ¢ and &2 are
listed in the third and fourth columns respectively. For comparison, the last

column shows the corresponding expressions for the linear expansion at order
d=6.

In our analysis in Chapter [5| we will consider the constraints on the &—
weighted operators from the presently available Higgs data. After eliminating
operators whose contribution cancels for on—shell Higgs and/or light external
fermions, and considering the strong constraints on Pr and Py from the S and
T parameters, the basis of 15 operators in Eq. is greatly reduced, and

the relevant operators for our analysis are:

fPG, iP4, iP5, iPB, ?W, fPH, and fpc. (322)
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3.4 Discriminating Signatures

Before we move on to the analysis framework and results we briefly discuss the
implications of the chiral basis for TGVs and by considering the relations in
Eq. we construct discriminants between the two expansions. We begin
by parameterizing the effects of the chiral basis on the form of Eq. in
Tab. including two new Lorentz structures for the TGV Lagrangian here:

/ — ; 1 AV uvpo + - — +
wwv = —igwwv[—igs ¢ (WIo,W,; — W, 0,W )V, (3.23)
L g (DWW — 9, W R,
In Tab. 3.2l we have used the definitions
Z _ 7 _ _
Agy =gy — 1, Aky =Ky — 1, Aky = ky — 1,
Y Y Z Z Z Z (324>
Agg = 96, Ags = 95 , Ags = g5 .
Coeff. Chiral Linear
xe? /s x€ ‘ x €2 xv? /A2
AI{,Y 1 *261 + 2(:2 + C3 *4()12 + 2(213 é(fw + fb’ — thgw)
Agd 1 —cg - -
52w
Ag? é 4€ (2“ T Cr T2 S Ot C3 - 8fw + 4<2W wa 716;,”22“ {@,1
Aky 1 6262“ cr + 48‘; ¢ —2 3‘ et ey | —dep+ 2013 || 2fw — S“ f + zcm ~ fpw — 45';?;“: foa
Ag5z c% - C14 —
AgZ % s%co —ci6 —

Table 3.2: Effective couplings parameterizing the VW™~ vertices defined
in Eqgs. and (3.23). The coefficients in the second column are common
to both the chiral and linear expansions. In the third and fourth columns the
specific contributions from the operators in the chiral Lagrangian are shown.
For comparison the last column shows the corresponding contributions from
the linear d=6 operators.

There are two main effects which are clearly distinct between the two ex-

pansions with respect to TGV and HVV couplings which we discuss next.

3.4.1 Differences in TGV

From the results in Tab. B.2] we see that there are Lorentz structures in the
TGV vertex which appear at leading order in one expansion while sublead-

ing in the others. For example Oy yw contributes at the tree level to the
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anomalous TGV as parameterized in Eq. by Ay, however this coupling
does not receive contributions from any of the non-linear operators up to four
derivatives. Consequently the strength of the contributions to Ay in the non—
linear case are expected to be suppressed with respect to the other effective
couplings (Ak, z and Agf). On the contrary in the linear case the strength
of the Ay contributions could have the same size as those of all other effective
couplings. Therefore, a measurement of an anomalous TGV signal compatible
with Ay, which is the anomalous TGV with the most striking high energy
signature as we will see in the following, would point to a fundamental Higgs
boson.

Conversely in the chiral expansion and for large ¢ all chiral operators
weighted by &" with n > 2 are equally relevant to the {—weighted opera-
tors. However their siblings require operators of dimension d > 8 in the linear
expansion. A case of special interest is P14(h) which generates a contribution
to the gZ effective vertex in Eq. (see Tab. which is absent both in
the SM Lagrangian and in the linear expansion up to dimension-six. This fact
provides a viable strategy to test the nature of the physical Higgs which we
quantify in Sec. [5.4.2]

3.4.2 (De)correlation Between HVV and TGV

As we have mentioned briefly before, the relations between HVV and TGV
are different in the two expansions. We will recall the relation between Op

and Oy and the chiral operators Py, Pz, Py, and Ps:

2 2 ’U2 2

v v
Op = E392(h) + %(}34(11), and Oy = gfpg(h) - Z‘Psy(h)- (3.25)

Focusing on Op, in the unitary gauge we may expand Py(h) and P, (h) finding:

Py(h) = 2ieg? A, W HW T, (h) — 219 7 W—HW Ty (h),

cw

(3.26)
Pa(h) = =LA 210" Fs(h) + & Zu 210" Fa(h).

47



Expanding Op, their d = 6 sibling, we find similar Lorentz and field structures:

O0p = ieg? A W R (0 + h)? — ie’g Zy WHWH (v + h)?

8 8cw

(3.27)

— 9 A7 h(v+ h) + ﬁ%zﬂyzuam(v + h).

dew

From this we notice that in the linear case the Lorentz structures present in
Py and P, are correlated, whereas in the chiral case they are independently
tuned by the corresponding operator coefficients ¢o and ¢4. In particular the

Chiral basis allows for the decorrelation of:

o YWW from vZh and ZWW from ZZh vertices, these are examples of

interactions involving different numbers of external A legs.

o YWWHh from vZh and ZWW h from ZZh; examples of interactions in-

volving the same number of A legs.

While these decorrelations are expected in the leading deviations from the SM
in the chiral approach, they require the inclusion of the next order (i.e. d = 8)
operators in the linear approach. This observation allows us to create useful
discriminators between the chiral and linear expansions from the relations in

Ba. (25)

Given that the linear expansion requires the relations:
2c0o =ay4, and 2c3 = —as. (3.28)

We define ¥ and Xy such that they quantify the divergence from the SM
behavior of the Higgs data considered, and define Ag and Ay as discrimi-
nators between the linear and chiral expansions via the correlation (possible

decorrelation) that each one exhibits:

EB = 4(202 + a4), EW = 2(203 — CZ5),
(3.29)
AB = 4(262 — a4), AW = 2(203 + CL5).

Notice that this implies that for a Higgs behaving as a part of the linear
expansion Ypmy — feuw/A? and Ap = Ay — 0. We return to these
discriminators and the set of operators in Eq. (3.22) in Sec. [5.3| where we will
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make use of the relevant Higgs data from the LHC and Tevatron to constrain

their allowed values.

3.4.3 Quartic Gauge Boson Couplings

The quartic gauge boson couplings also receive contributions from the opera-

tors in Egs. (3.7)-(3.9). The corresponding effective Lagrangian reads

s 92{ Ia N ZuZ") + g WEW W W — g (W, W )2
+ g WIW T (VL VL + VIV, — g Wi W= vey,
+ ?;g‘(/5‘)//€”VPUWJWV‘/va/} , (3.30)
where VV' = {yv,vZ,ZZ}. Notice that all these couplings are C' and P

even, except for g‘(}r")// that is C'P—even but both C—and P—odd. Some of these

couplings are nonvanishing at tree-level in the SM:

msm _ 1 @sm _ 1 3)SM _ Gy @sM_ Sw
Jww = 5> gww = 5> Yzz = 5> 9vv T
3)SM Sow 4)SM S 4)SM
9(23 =5 g(z% =y 9%) M= s, g(zv) = Saw
(3.31)

Table [3.3] shows the contributions to the effective quartic couplings from the
chiral operators and from the linear operators in Eq. . As can be seen
by comparing Tabs. and [3.2) in the chiral expansion several operators
weighted by & or higher powers contribute to quartic gauge boson vertices
without inducing any modification to TGVs. Therefore, their coefficients are
much less constrained at present, and one can still expect larger deviations on
future studies of quartic vertices at LHC for large values of £&. This is unlike
in the linear expansion, in which the modifications of quartic gauge couplings
that do not induce changes to TGVs appear only when the d = 8 operators are
considered [80]. We will discuss in Sec. the present status on the bounds

of these effects.
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Coeff. Chiral Linear

xe?/4sy x& x£2 xv? /A
Agdy | 1 ahwor 8%, 1 4ey 21, — 1601 + 8cis By S oy ﬁ fan
Agithy 1 = f?“ cr +8; a —dcg —2¢11 — 16¢13 + 8ci3 fy g (;\‘N fow = 225 for — 3 foe
A!i(z% é Co 1 + 2093 + 204 + degpE? sJoe
Ag(;% + Sczxzcw or + 2- S Loy + Acdycs — 2s8yco 2¢11 + 4s3yci6 + 2004 @ f%fbw - ;é;‘c({‘ for + S?vam)

W 2W Cow 2W 2W

Agg% é 2 f‘f;\“‘ cr + 4 S e+ 8L“ c3 — 4dcg —4eog fw(t“ +2 _1(‘1\‘ few — 2?_‘(}1’; Bl — % fos
Ag(d) Sty —2c9 - % (=3
Aqﬁ? e e:i”w or + 8 ep 4 de + dsiycy —4eig Ly 4 (2‘:\ few — 1(2\NE’ T far — Sty foe
Agi‘? v czi‘;\\ cr+ 16%01 +8c3 - fw + QCQ‘; few — zf\%f@l
AQA(YSZ) % = 8ciy —

Table 3.3: Effective couplings parametrizing the vertices of four gauge bosons
defined in Eq. . The contributions from the operators weighted by & and
€22 are listed in the third and fourth columns, respectively. For comparison,
the last column exhibits the corresponding expressions for the linear expansion

at order d = 6 (see Eq. (A.6)).

3.5 Summary and Discussion

In this chapter we have discussed the effective Lagrangian relevant to a Higgs
introduced as a pseudo—Goldstone boson which results from the breaking of a
global symmetry of some new strong dynamics at a high energy scale. In this
case EWSB is assumed to be non-linearly realized at low energies and the more
appropriate expansion is that provided by chiral perturbation theory. Hence
we have introduced the effective chiral Lagrangian to order four derivatives.
Subsequently we have discussed the relation to the dimension-six effective
Lagrangian in the linear realization of EWSB by invoking the parameter &,
defined in Eq. which helps to organize the chiral basis in terms of the
order at which similar operators are introduced in the linear realization. In
doing so we have pointed out the importance of the connection between TGV
and HVV couplings, as well as quartic gauge boson couplings in discriminating
between these two expansions. We will return to the present experimental
constraints on the coefficients of the operators in the chiral basis and the
discriminating signals in Chapter |5 when we apply the current Higgs and

gauge boson scattering data to these discussions. In the next chapter we will
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put together the analysis framework necessary for achieving this goal.
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Chapter 4
The Analysis Framework

In this chapter we describe how to impose the constraints on our operator bases
from the available data. In particular we discuss how to include information
from the Higgs searches at the Tevatron and the Higgs results from the LHC
taken in the 7 TeV and 8 TeV runs. Additionally we will include the data on
the TGCs from LEP and the one-loop constraints from EWPD. Section
discusses the analysis framework for collider constraints, Sec. discusses the
framework for the inclusion of TGC data, and finally Sec. puts together
the framework for inclusion of EWPD. In Chapter |5/ we will apply this analysis
framework and give the results for both the linear basis (see Chapter [2) and
the chiral basis (see Chapter [3)).

4.1 Inclusion of Higgs Collider Data

In order to obtain the quantative information on the coefficients of the new op-
erators from the Higgs data coming from both LHC and Tevatron experimental
analyses we will make a chi-square test based on the signal strengths of the
different available channels measured by the experiments (See Tabs.
and . The signal strength for production of a final state F' mediated by
the Higgs boson is defined as the measured cross section for such a process

divided by the expected cross section in the SM:

o (pp(pp) = H — F)

M S M (pplpp) = H = F) 1)
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In order to form our chi-square test we must predict the expected signal
strengths in the presence of the new operators. In doing so we must consider
both the effects of the operators on the production channels and the decay
branching ratios. To simplify the calculation we will be assuming the nar-
row width approximation, which holds for Higgs widths sufficiently narrow
compared with Mg, a well justified limit in the SM as well as given recent
experimental bounds [81], 82]. In this approximation we will assume that for

both SM and anomalous contributions,
o(pp(pp) = H — F) = o(pp(pp) — H) x Br(H — F), (4.2)

where we have denoted as o(pp(pp) — H) the relevant production processes for
a Higgs alone or in association with other particles. The main contributions to
the Higgs production cross sections are from the following subprocesses which
we label as indicated in parenthesis: gluon-fusion (gg), associate production
of a Higgs with a gauge boson V = Z, W (V H), production in gauge-boson
fusion (VBF), or associated production with a pair of top quarks (ttH). For
illustration we show in Fig. the cross sections for the dominant production
processes in the SM at the LHC at 7 TeV. Regarding the decay modes, we
show in Fig. the SM branching ratios in the different final states.

For our analysis, and given the accessible public data, we assume that the
correlations between the different sources of errors for the different channels
are negligible except for the theoretical uncertainties which are treated with
the pull method [91], 2] in order to account for their correlations. In this
approach each source of uncertainty correlated between the different channels,
is characterized by a “pull parameter” &,,; which modifies the corresponding
theoretical prediction and which is allowed to vary within the expected range
of the uncertainty opy. Thus assuming that each such uncertainty is gaussian-

distributed, the chi—square can be schematically written as

_,EP2 2
i = minz —(MJ l;] ) + Z (@> ; (4.3)

£Pull J Uj pull Upull

where j stand for the different experimental channels considered. We present
the different Tevatron and LHC (at 7 TeV and 8 TeV) data points in Tabs. [£.1]
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Channel [ comment
pp— WIW- 0.9470% CDF & DO [69]
pp — TT 1.6877% CDF & DO [69]
pp — bb 1.5970:% CDF & DO [69]
pD — VY 59739 CDF & DO [69]
pp — TT 0.7707 | ATLAS @ 7 and 8 TeV [70]
pp — bb —2.157;3 ATLAS @ 7 TeV {83}
pp — bb 0.67~ ATLAS @ 8 TeV [83
pp— Z7* — €+€+_€+€_ 1.71_:%% ATLAS @ 7 and 8 TGEV ][84]
pp — WW* = tvl~v | 0.0556 ATLAS @ 7 TeV |85
pp — WW* = (vl | 1.267052 ATLAS @ 8 TeV [85]
pp — Zy — 00y 47785 | ATLAS @ 7 and 8 TeV [S6]
pp — TT 117954 CMS @ 7 and 8 TeV [19]
pp — bb 1.0703 | CMS @ 7 and 8 TeV []7]
pp — bb VBF 0.771% CMS @ 8 TeV [8S]

pp — ZZ* — 0000

0.91753,

CMS @ 7 and 8 TeV [I§]

pp — WW* — 0tul~ v

091703

CMS @ 7 TeV [89]

pp — WW* — (Tl v

0.717533

CMS @ 8 TeV [89]

pp — Zy — LTy

_0.5-1—4.87

—4.87

CMS @ 7 and 8 TeV [90]

Table 4.1: Results included in the analysis for the Higgs decay modes listed

except for the vy channels.

erp
1%

Channel

7 TeV \ 8 TeV

Unconverted central, low pr,

0.527 1%

0.89707

Unconverted central, high pr,

0.237 158

0.957505

Unconverted rest, low pp,

256710

2.5270%2

Unconverted rest, high pr,

10.477558

271510

Converted central, low pr,

6.1075°C5

1397002

Converted central, high pr,

1361

154
2.0_1.26

Converted rest, low pr,

2.737 158

2.22%0 99

Converted rest, high pr,

157

1.297152

Converted transition

041755

28371

2-jets / 2-jets high mass tight

2.737 1%

L6370

2-jets high mass loose

277015

2-jets low mass

0.3387172

Emss significance

2997270

One Lepton

2.7177 %0

o4

Table 4.2: H — ~v results from ATLAS [I], 2] included in our analysis.
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Figure 4.1: Cross sections for the dominant production channels in the SM at
the LHC at 7 TeV as a function of M.
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Figure 4.2: Decay branching ratios for the SM Higgs as a function of M.

, and In Eq. (4.3) we denote the theoretically expected signal as p;,
the observed best fit values as p; and the corresponding experimental errors
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erp

!

Channel

7 TeV \

8 TeV

pp — vy Untagged 3

148715

—0.36470%

pp — vy Untagged 2

0.0247 12

0.2917072

pp — vy Untagged 1

0.1947559

0.02470 1%

pp — vy Untagged 0

3.837 70

2.1679%

pp — YYIJ 4197330 loose 0.807 59
tight  0.29175:57
pp — vy MET — 1.893:%

pp — vy Electron

—0.655T%76

pp — vy Muon 0.41277 73

Table 4.3: H — 77 results from CMS [3] included in our analysis.

as 0;. As we can see from these Tables the experimental errors are not sym-
metric in some of the channels, showing a deviation from Gaussian behavior
as expected from the still low statistics. In our calculations we make the errors

in each channel symmetric by taking:

(4.4)

Concerning the theoretical uncertainties, the largest ones are associated with
the gluon fusion production subprocess and in order to account for these er-
rors we introduce two pull factors, one to account for the Tevatron uncertainty
(&)), and one for both the LHC at 7 and 8 TeV uncertainties (£)). We consider
that the errors associated with these pulls are o] = 0.43 and o = 0.15 [93].
Additionally we introduce two pull factors to account for the theoretical un-
certainties associated with vector boson fusion (VBF) cross section, one for
Tevatron (&l pr) with associated error of.pr = 0.035, and one for LHC at
both 7 and 8 TeV (&L 5) with associated error ofpr = 0.03 [93]. Finally
theoretical uncertainties from associated production (V H) cross section are
included with two more pulls, one for Tevatron (£{;) with associated error
oLy = 0.075 and one for LHC at both 7 and 8 TeV (£L,) with associated

L _
eITor Oy =

0.05 [93]. These pulls modify the corresponding signal strength
predictions as we will see below.

From the expressions in the previous chapters it is straight forward to
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compute the expected signal strengths at tree-level including the contributions
to the new operators. Concerning the higher order corrections we assume
that the corresponding “K—factors” (defined as the ratio of the higher order
predictions divided by the predictions at the leading order) are the same for

the SM as for the new operator contributions. In this approximation we then

write: o
?/no = }S/M U}S/M|soa> (45)
Oy tree
rae(h — F) SM
reh—»r)= ———= I (h = F)|soa. 4.6
=P = Fg gy 0 P (16)

Where the superscripts ano (SM) indicate the value of the observable consid-
ering the anomalous and SM interactions (SM interactions only). These ratios
of the cross sections (where Y indicates the subprocesses, gg, VBF, VH, or
ttH) and decay widths are evaluated at tree level and multiplied by the state
of the art SM calculations, o5M|a and IM(h — F)|gea. In our analysis we do
not include an invisible decay component, therefore we are assuming the total
width is obtained by summing over the decays to the SM particles. In the
future it may be insightful to include such analysis as recently developed tech-
niques [94], [95] have allowed for great improvements on indirect measurements
of the Higgs width [81, [82]. Calculation of the relevant tree-level cross sec-
tions was performed with the package MadGraph5 [96] with anomalous Higgs
interactions introduced using FeynRules [97]. Additionally our results were
checked against COMPHEP [98, 99] and VBENLO [100].
With all these considerations, for any final state F' listed in Tabs. [4.1]
and we can write the theoretical signal strength as
p = O S s st O sy ety
99999 TEVBROVBF T €W oW T 2 2T Thin F
(4.7)
where we explicitly show how the “pull factors” described above are intro-
duced. €& denotes the weight of the different production channels Y = VBF,
g9, WH , ZH, and ttH to each final state F.

Searches for H — bb are performed using only Higgs production via asso-

ciated production with a W or Z meaning

bb _ bb  __ bb bb  __ bb
€99 = €VBF = Cun = 0, €wy = €z = 1, (4.8)
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with the exception of the analysis by CMS [88] where
ezz = E%H = 6bZBH = EZ:)H =0, 65)]31: =1 (49)

is assumed.

In the case of the F' = 77 signals both CMS and ATLAS for 7 and 8
TeV data separate the signal into various different categories. For ATLAS
we reference Tab. 6 of [I] and Tab. 1 of [2] and for CMS Tab. 2 of [3]. For
convenience we summarize this information in Tabs. [£.4] and EL.5]

Excepting those cases all other channels F' = WW*, ZZ* 77, and Z~ are
treated as inclusive, that is:

egzegszegHze\};BergH: 1. (4.10)
Finally, we notice that some data available after the LHC 8 TeV run has been
combined with that of the 7 TeV run. In this case we construct the expected
theoretical signal strength as an average of the expected signal strengths for
the center of mass energies of 7 and 8 TeV by weighting the contributions by

the total number of events expected at each energy in the framework of the
SM,

SM,7TeV SM,8TeV
7TeVO. € L7TeV + M%TEVO.F € LSTeV

comb HE F
PJF = M.7T M.8T ) (411)
0% TTeV p7Tev +a§ 8TeV rgTev

where £7®)TV is the integrated luminosity accumulated at 7 (8) TeV in the
given channel F.

It is important to note that our analysis neglects possible effects associated
with the distortions of the kinematic distributions of the final states due to the
Higgs anomalous couplings arising from their non SM-like Lorentz structure.
Therefore we have implicitly assumed that the anomalous contributions have
the same detection efficiency as the SM Higgs. A full simulation of the Higgs
anomalous operators which considers their special kinematic features may aid
to increase both sensitivity to the anomalous couplings and to break degen-
eracies between operators. However, at the time of this work there was not

sufficient public information available to perform such an analysis.
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Channel €gg €vBF | €ewn | €zm €Tl
Unconverted central, low pr, 1.06 | 0.579 | 0.550 | 0.555 | 0.355
1.07 | 0.572 | 0.448 | 0.452 | 0.343
Unconverted central, high pp, 0.760 | 2.27 | 3.03 | 3.16 | 4.26
0.906 | 1.80 | 1.31 | 1.41 | 2.40

Unconverted rest, low pr, 1.06 | 0.564 | 0.612 | 0.610 | 0.355
1.06 | 0.572 | 0.512 | 0.566 | 0.171

Unconverted rest, high pp, 0.748 | 2.33 | 3.30 | 3.38 | 3.19
0.892 | 1.90 | 1.50 | 1.58 | 1.88

Converted central, low pr, 1.06 | 0.578 | 0.581 | 0.555 | 0.357
1.07 | 0.572 | 0.416 | 0.509 | 0.343

Converted central, high pr, 0.761 | 2.21 | 3.06 | 3.16 | 4.43
0.901 | 1.80 | 1.38 | 1.53 | 2.57

Converted rest, low pr, 1.06 | 0.549 | 0.612 | 0.610 | 0.355
1.06 | 0.586 | 0.512 | 0.566 | 0.171

Converted rest, high pr, 0.747 | 2.31 | 3.36 | 3.27 | 3.19
0.887 | 1.86 | 1.66 | 1.70 | 1.88

Converted transition 1.02 | 0.752 | 1.01 | 0.943 | 0.532

1.04 | 0.787 | 0.704 | 0.735 | 0.343
2-jets / 2-jets high mass tight 0.257 | 11.1 | 0.122 | 0.111 | 0.177
0.272 | 10.9 | 0.032 | 0.056 | 0.0
2-jets high mass loose (only 8 TeV) | 0.514 | 7.74 | 0.160 | 0.170 | 0.171
2-jets low mass (only 8 TeV) 0.550 | 0.429 | 9.51 | 9.73 | 3.25
Erss significance (only 8 TeV) 0.047 | 0.072 | 11.4 | 26.9 | 20.7
One lepton (only 8 TeV) 0.025 | 0.086 | 20.2 | 8.71 | 31.9

Table 4.4: Weight of each production mechanism for the different v~ categories
in the ATLAS analyses of the 7 TeV data (upper values) and 8 TeV (lower
values). For the 8 TeV analysis three new exclusive categories enriched in
vector boson associated production were added with the 2-jets low mass (lepton
tagged) [EM¢ significance]| category being built to select hadronic (leptonic)
[invisible| decays of the associated vector boson.
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Channel €99 €vBF | €vH €1il
pp — vy Untagged 3 1.04 | 0.637 | 0.808 | 0.355
1.06 | 0.558 | 0.675 | 0.343
pp — vy Untagged 2 1.04 | 0.637 | 0.769 | 0.532
1.05 | 0.629 | 0.715 | 0.685
pp — vy Untagged 1 1.00 | 0.897 | 1.10 | 0.887
0954 | 1.20 | 1.45 | 1.71
pp — vy Untagged 0 0.702 | 2.43 | 3.69 | 5.50
0.833 | 1.66 | 2.66 | 4.45

pp — vvjj (7T TeV) 0.306 | 10.5 | 0.118 0
pp — yvjj loose (8 TeV) | 0.535 | 7.31 | 0.348 | 0.856
pp — yvjj tight (8 TeV) | 0.236 | 11.3 | 0.061 | 0.171
pp — v, p-tag (8 TeV) 0.0 [0.029 | 16.2 | 35.6
pp — v, e-tag (8 TeV) 0.013 | 0.057 | 16.1 | 33.7
pp — v, Eres-tag (8 TeV) | 0.241 | 0.358 | 13.2 | 20.2

Table 4.5: Weight of each production mechanism for the different v categories
in the CMS analyses of the 7 TeV data (upper values) and 8 TeV (lower values).
vy = €z = €wpy. For the pp — v7vjj category the 8 TeV data was divided
in two independent subsamples labeled as “loose” and “tight” according to
the requirement on the minimum transverse momentum of the softer jet and
the minimum dijet invariant mass. For the 8 TeV analysis three new exclusive
categories were added enriched in vector boson associated production: p-tag,

e-tag and EJ'*S—tag.
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4.2 Inclusion of Triple Gauge Coupling Data

Recalling the Lagrangian of Eq. and its relation to the linear basis (see
Eq. (2.39)) and the chiral basis (Tab. we are able to include experimental
information on the TGV measurements in our analysis. We do this by adding
a new term to our chi-square test of Eq. .

We notice that Eq. implies that only three of the five relevant TGV

couplings are independent. These three can be chosen to be Ax,, A,, and
Ag?, while Az and Akz remain to be determined by the relations
2
Az=X . Akz=-—"TAr, +Agl. (4.12)
c

W

Experimental results, however, are usually given in terms of the effective
parametrization in Eq. assuming that only some of the couplings Ak, ,
Ay, g? Akyz , Az are not vanishing (usually one) while all others are taken to
be zero hence not all can be used in our analysis. For example in the frame-
work of the effective Lagrangians considered here, it is not consistent to use as
experimental results those obtained under the assumption that only one of the
effective couplings is non—vanishing since for any given operator at least two
of the couplings are non—vanishing as seen from the relations in Eq. .
So for our analyisis we will make use of the results from the LEP collab-
oration [I01] on YW*W~ and ZW*W~ TGVs which are the most precise
measurements obtained under the assumption that the couplings are related
as predicted by Eq. . In such analysis they present the results in terms

of correlated ranges between the parameters k., and g7:
Ky = 0.9847001 g7 =1.00410055 (4.13)
with a correlation factor of p = 0.11. We define the (row) vector

Z,exp K. — REXP

Z _
(37, 5M)E<gl I ) (114

Uglz O-’f'y

where in the expressions above g and k., are to be understood as functions
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of fw and fp as in Eq. (2.39)). The correlation matrix is

Cray = < Lor ) . (4.15)
p 1

This allows us to define the chi square test for the TGV data:

_ T
X?FGV(fWu fB) - (591Z7 5’%7) CTcl}V (59127 5’{7) : (4'16)

4.3 Inclusion of Electroweak Precision Data

Next we wish to include the effects of electroweak precision data on our anal-
ysis. We remind the reader that we have removed the two operators Opgy and
Os,1 because they contribute at tree level to EWPD. Now we consider addi-
tional constraints on the dimension—six operators still remaining in our basis,
as given in Eq. , and which give contributions to EWPD at one-loop.
As these effects are calculated at loop level they suffer from the usual issues
with the interpretation of non-renormalizable operators effects’” at loop level.

In order to account for the information from EWPD we use the reduced set
of S, T, and U parameters as calculated in Sec. and statistically compare
them to the current experimental extracted values from the global analysis of

LEP and low energy electroweak data [57]:
AS = 0.0040.10, AT =0.02+£0.11, and AU =0.03+0.09, (4.17)

which are correlated with a correlation matrix given by:

1 089 -0.55
Cewpp=| 089 1 -08 |[. (4.18)
—-0.55 —0.8 1

Then, as with the case of TGV (Sec.[5.2)), we define a (row) vector correspond-
ing to this data,

AS — AS=P AT — AT AU — AU
(55,5T,5U)E( S AST  AU-AU ) (4.19)

OAS OAT OAU
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and we form our chi-square test related to the EWPD as:

Xewpp (fw, [, fww, [BB, fa2) = (65, 0T,0U) Crwep (05, 0T, SU)T . (4.20)

4.4 Summary

In this chapter we have put together an analysis framework which allows us
to place constraints on the operator bases of Eqgs. and . In doing
so we have presented the available Higgs data from the Tevatron and LHC,
introduced the pulls method to account for correlations in theoretical errors,
and taken care to properly weight the channels by the appropriate production
cross sections which for the v+ decay channel are not straightforward. In
addition we have formulated a way to incorporate TGV data from LEP where
the correlations between TGCs were appropriately handled for our basis of
operators, as well as incorporating the implications of EWPD via the loop-
level contributions to S, T', and U of the operators in the linear basis.

In the following chapter we will bring together all of the topics discussed in
Chapters[2] [3] and[4to quantify our best determination of the coefficients of the
operator in the bases of Egs. (2.48)) and (3.22)) and some of the signatures which

have the potential to discriminate between the two expansions. In particular
we will recall the correlations between the HVV and TGV couplings implied
in the linear expansion and compare the data to these correlations searching
for signatures (dis)favoring the linear vs chiral expansions. Conversely we will
quantify how the assumption that the Higgs is a fundamental scalar doublet of
SU(2), befitting of the linear expansion, allows for the Higgs data to constrain
the TGCs.
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Chapter 5

Status After LHC 7 and 8 TeV

Runs

In this chapter we apply the framework outlined in Chapter [4] to obtain the
best present determination of the coefficients of the operators in our effective
Lagrangians. In Sec. we find the constraints on the coefficients of the op-
erators in the linear basis (see Chapter [2)) and we project the constraints from
the linear basis onto limits on triple gauge couplings in Sec. [5.2] The present
determination of the coefficients of the operators in the chiral expansion are
presented in Sec. Finally in Sec. we quantify the variables developed

in Chapter |3| with potential to discriminate between the two expansions.

5.1 Results in the Linear Expansion

We recall for convenience the final basis of operators we found in Chapter
— after reducing the basis via the EOM and precision data — which contains
eight operators relevant for the present analysis:

Lot = —%2 85006 + 35002 + FEOpp + B3 Oww + 505 + 250w

fr Jbo
+450co,33 + 38 O4s 33-

(5.1)
In this section we discuss the results of the 7 and 8 TeV runs of the LHC. We
have included in Appendix |B| projections for the next run of the LHC as well
as for the proposed high luminosity LHC.
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5.1.1 Bosonic Dimension—Six Operator Analysis

We begin by studying scenarios where NP in the EWSB sector does not lead to
modifications of the Higgs couplings to fermions. In other words we neglect the
fermionic Higgs operators (i.e. setting fyos = fr = 0) and fit the available data
treating the remaining six free bosonic operators as independent. Considering
all Higgs collider (ATLAS, CMS, and Tevatron) data we find x2,, = 66.8 for
the combined analysis and the SM lays at x3,; = 68.1, within the 3% confidence
level region. The inclusion of TGV data has approximately no quantitative
impact on the value of x2,, and the confidence level of the SM. Adding EWPD
increases Xfmn(SM) t0 67.9 (69.9) so the SM lies in the full combined analysis at
the 9% CL six—dimensional region in agreement with these combined results
at the 0.10 level.

The first column in Fig. displays the chi-square (Ax?) dependence
on each of the six bosonic anomalous couplings after marginalizing over the
other operator coefficients (i.e. minimizing with respect to the other 5 degrees
of freedom). In this figure the solid red line represents the results from the
analysis of all Higgs collider data, while the TGV data is included with the
dashed purple line, and both TGV and EWPD are included in the dotted blue
line. For inclusion of EWPD throughout this dissertation we always use the

value A = 10 TeV (see Eq. (2.35))).

From the figure we infer:

e In general we find that the best fit for all coefficients lies near the SM
prediction f; = 0.

e One exception is f, since we notice that Ax? as a function of f, exhibits
two degenerate minima. This is the result of the interference between
the SM and anomalous contributions which possess exactly the same
momentum dependence, so around the second minimum the anomalous
contribution is approximately minus twice the SM value. The gluon fu-
sion Higgs production cross section is too depleted for f, values between

the minima causing the intermediate barrier.

e Additionally as fg and fy, are the only operator coefficients which mod-
ify the triple gauge vertices at tree level they show the largest impact

of the inclusion of TGV data. fy is the most constrained parameter by
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Figure 5.1: Ax? dependence on the fit parameters considering all Higgs collider
(ATLAS, CMS and Tevatron) data (solid red line), Higgs collider and TGV
data (dashed purple line) and Higgs collider, TGV and EWP data (dotted blue
line). The rows depict the Ax? dependence with respect to the fit parameter
shown on the left of the row with the anomalous couplings f/A? given in
TeV~2 In the first column we use f,, fww, fs, fw, [, and feo as fit
parameters with fios = fr = 0. In the second column the fitting parameters
are fq, fww = —fBB, fw, B, faz2, and fio with f. = 0. In the panels of the
right column we fit the data in terms of f,, fww = —fss, fw, B, fo.2, foots
and f,.
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inclusion of TGV data as it corresponds to g7 (see Eq. (2.38))) which is

the most constrained of the two triple gauge couplings considered (see

Eq. (4.13)).

e Adding EWPD greatly reduces the available parameter space for the

bosonic operators, fw, fs, fww, fBr, and fo 2.

e We also see that, as expected, inclusion of TGV and EWPD has little

impact on fy.

It is instructive to project these results into the observable branching ra-
tios and production cross sections. In Fig. we show the Ax? dependence
on these observables using the collider and TGV data. The top two panels
illustrate that the SM predictions are within the 1o range with the largest
deviation coming from the vy channel. We note that the precision with which
the Higgs branching ratios are known is about 20% and that of the production
cross sections is of the order 30%.

We include in Tab. the best fit values and 90% CL allowed ranges for
the couplings and observables in the combined analysis of Higgs collider and
TGV data. We do not include in these final allowed ranges the constraints
from EWPD. As mentioned above, the quantitative interpretation of these
one-loop contributions is debatable. We have included them in some of the
figures for illustration of their possible impact, but have chosen not to include
them in the final combined results given in Tab. nor in the remaining
figures in this section.

The most important correlations between these ranges are shown in Figs.[5.3
and[5.4 Figure[5.3shows the correlation between fyy and fpp after marginal-
izing over the remaining four parameters for collider data. We note the strong
anti-correlation between the two operator coefficients. This is a result of their
dominantly contributing to the Higgs branching fraction to two photons which
is proportional to fww + fep (see Hy7y vertex in Eq. ) The 95% CL
region forms two narrow islands in a similar fashion to the f, degeneracy — one
where only small contributions from the anomalous operators are made and
one where they contribute twice the SM value with the opposite sign. This
degeneracy is not exact as fyyw and fgp also contribute to WW* and ZZ*

branching ratios as well as Vh and VBF production mechanisms, but with
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Figure 5.2: Chi-square dependence on the Higgs branching ratios (left panels)
and production cross sections (right panels) when we consider all Higgs collider
and TGV data. In the upper panels we have used f,, fww, fsgs, fw, B, and
fao 2 as fitting parameters with fyo, = fr = 0, while in the middle panels the
fit parameters are f,, fww = —fBB, fw, [B, fo2, and fio with f. = 0. In the
lower row we parametrize the data in terms of f,, fww = —fss, fw, fB, fo2,
fvot, and fr. The dependence of Ax? on the branching ratio to the fermions
not considered in the analysis arises from the effect of the other parameters in
the total decay width.

different coefficients. Comparing with the one—dimensional curves in Fig. [5.1

we see that marginalization over fyw or fpp results in two curves which are
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Fit with fooe = fr =0 Fit with f,ot and f-
Best fit | 90% CL allowed range || Best fit 90% CL allowed range

fo/A% (Tev=2) | 1.1,22 | [-3.3,5.1] U[19, 26] 21,21 [-5.3,5.8] U[17,22]
Ffww /A2 (Tev—2) 1.5 -3.2,82 0.65 —4.2,7.7
fep/A% (Tev=2) | -1.6 —7.5,5.3 -0.65 —7.7,4.2
fw /A% (Tev—2) 2.1 [-5.6,9.6] 1.7 [-5.4,9.8]

f5/A? (Tev—2) -10 [-29,8.9] -7.9 [—28,11]
foa/A% (Tev—2) -1.0 [-10,8.5] -1.3 [-9.8,7.5]
Joot/A? (Tev—2) — 0.01, 0.84 | [-0.28,0.24] U[0.55, 1.3]

f-/A% (Tev—2) — — -0.01, 0.37 | [-0.07,0.05] U [0.26, 0.49]

RaHO/BRSM 1.2 [0.78,1.7] 1.2 [0.55,1.9]
BRangV/BRSM 1.0 [0.89,1.1] 1.2 [0.51,1.9]
BR%2/BRY} 1.2 0.84,1.5 1.4 [0.6,2.2]
BR°/BRSM 1.0 0.92,1.1 0.89 [0.46,1.3]
BR»°/BRSM 1.0 0.92,1.1 1.1 0.42,2.6
game [o ! 0.88 0.59,1.3 0.73 0.38,2.0

oo oo 1.1 [0.52,1.9] 1.1 [0.58,1.8]
o JooN 0.82 [0.43,1.4] 0.96 [0.47,1.5]

Table 5.1: Best fit values and 90% CL allowed ranges for the combination of
all available Tevatron and LHC Higgs data as well as TGV.

mirror images of one another. That is, to a good approximation the data
favors fww = —fgp, an approximation that we will make use of for our fits

including fermionic operators.
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Figure 5.3:  We display the 95% and 99% CL allowed regions in the plane

fww X fp when we fit the Higgs collider data varying f,, fww, feg, fw, B,
and fg 2. The star indicates the global minimum. We have marginalized over
the undisplayed parameters.
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In Fig. we show the two-dimensional projection into the plane of f; x
fao 2 after marginalizing over the remaining parameters. The results include
both the Higgs collider and TGV data sets. Again we see two islands whose
origin is the interference between anomalous and SM contributions to the Higgs
coupling to two gluons. Whithin each island there is a clear anti-correlation
between f, and fg > coming from the fact the anomalous contribution to the
gluon fusion production is proportional to F ;QM foo2+2f,, where F ng ~ 0.7 is

the SM loop contribution to the Hgg vertex.

Tevatron+LHC+TGV

20 JH'\‘H'H‘\\H‘\H\‘HH‘HH‘HH‘HH‘HH‘\HL
Fit with o, fuwsfes, s o, Faam oo =f,=0 -

15

10

foa/ N [TeV2)

=15

o
[T T[T T T T[T T T T[T [TT T [TTITr]
T AN IR I A S A

5-10 -5 0 5 10 15 20 25 30 35

f,/N [Tev?2

o
=TT

Figure 5.4:  We present the 68%, 90%, 95%, and 99% CL allowed regions in
the plane f; X fo2 when we fit the Higgs collider and TGV data varying f,,
fww, feB, fw, fB, and fg 2. The stars indicate the global minima. We have
marginalized over the undisplayed parameters.

Finally, in the left panel of Fig. we show the correlations projected in
the observables, in particular between the Higgs decay into photons and Higgs
production via gluon fusion. These two quantities are anti—correlated because
their product is the major source of Higgs events decaying into two photons,
an increase in one requires a compensating decrease in the other to maintain

the correct signal strength.
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Figure 5.5: In the left (right) panel we present the 68%, 90%, 95%, and 99%

CL allowed regions in the plane 02°/c5M x Br(h — ~4v)*°/Br(h — 7)™

when we fit the Higgs collider and TGV data varying f,, fww, fss, fw, fB;

and foo (f;, fww = —fBB, fw, fB, fo2, and fie). The stars indicate the
global minima. We have marginalized over the undisplayed parameters.

5.1.2 Including Fermionic Operators

We now consider the inclusion of fermionic operators. We begin by introducing
fvot tO our parameter space. As mentioned above we take advantage of the
strong anticorrelation between fyw and fgp, taking fyw = — fpg, to simplify
the numerical analyses. The free parameters under consideration are now
{fo, fw, [, fww = —fBB, fo.2, foot }-

The middle column of Fig. [5.1] shows the effects on the chi-square of the
inclusion of fi,.;. We begin by noting that Ay? shows degenerate minima for
foot, one which represents a small correction to the SM Yukawa coupling, the
other corresponding to a flip of the sign of the Hbb coupling. The parameter
space being degenerate under the change of sign of the Hbb coupling indicates
that experimental data does not favor one or the other sign at this time.

The allowed range for f, is also opened dramatically by the inclusion of
foot- This is a reflection of the fact that H — bb is the dominant decay mode
of the 125 GeV Higgs. Increases in fi,,; push the Higgs branching ratio into a
bottom pair to 1, and therefore the gluon fusion cross section must be enhanced

to compensate the dilution of the Higgs decay in any other channel. This com-
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pensation works because the data for the H — bb final state does not receive a
contribution from gluon fusion production. We further illustrate this behavior
in Fig. where we plot the correlation between f; and f,o;. Additionally in
the right panel of Fig. |5.5| we see that this correlation has opened the available
range of the gluon fusion cross section, but at the necessity that the branching
ratio to two photons be below the standard model to fit the observed v rate.
Also from the middle column of Fig. [5.1] we see that inclusion of fi has a
very small impact on the ranges of the Higgs coupling to electroweak gauge
bosons (i.e. on the parameters fuw, fp, fww = —fp, and fo2).

The effect of including f,,; on the observables is also demonstrated in
Fig. We see that bounds on both the branching fractions and cross sections
are weakened, with V H and VBF being the least affected channels. The gluon
fusion cross section is the most effected, with its constraints being dramatically
broadened, as expected from the previous discussion of f, and fyet.

Finally we conclude with the inclusion of f.. Again we will constrain fyw
and fpp such that our basis contains the free parameters { f,, fw, fg, fow =
—feB, fo2, fvots fr}. The right panels of Fig. show the Ay? dependence
of each of the free parameters while the lower panels of Fig. [5.2] show the
allowed ranges of the branching ratios and cross sections given the addition
of f.. We note that the introduction of f; does not result in any new strong
correlations and the plots resemble those of the (fuor # 0, f- = 0) scenario
with the exception of the f. branching ratio which is less constrained.

Again we see a degeneracy in the f,. space similar to that of f,,; stemming
from the fact the sign of the Yukawa is not constrained by current data. Addi-
tionally the analysis favors a slightly large BR*°/BRSM ~ 1.1 which accounts
for the slight offset of the two minima for f. from the expected values of zero
and the flip of sign in the Yukawa in Fig. [5.1]

Finally, Table also includes the best fit points and the 90% CL range
for branching ratios and production cross section for the fit including both
fermionic operators using the Higgs collider and TGV data. The inclusion of

fermionic operators maintains the agreement of the SM with the data at about
the 9% CL.
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Figure 5.6:  We present the 68%, 90%, 95%, and 99% CL allowed regions in
the plane fio; X f, from the Higgs collider and TGV data varying f,, fw, fs.
fww = —fBB, fo2, and fre. The stars indicate the global minima. We have
marginalized over the undisplayed parameters.

5.2 Implications for Triple Gauge Couplings

To date, LEP constraints on the triple gauge couplings (see Eq. ) are
the most stringent bounds on deviations of the SM predictions of the TGV
applicable to our effective lagrangian framework. LEP experiments were sen-
sitive to anomalous TGCs through the W*W—, single v, and W productions
giving information on both the WWZ and W W+~ vertices [101]. Tevatron was
also able to put constraints on the parameter space to a lesser extent through
WW ., WZ, and W+ production in pp collisions, results from the detector at
D@ can be found in [I02] while those from CDF may be found in [103] T04]]

Work at the LHC is beginning to constrain the parameter space as well,
projections for the early LHC were made in [105]. In particular at ATLAS
studies of TGCs in WHW~ [106], W Z [107], and W+ and Z~ (fully leptonic)
[108] have been made for 7 TeV with an integrated luminosity of 4.6 fb™*. Ad-

ditionally at 7 TeV for similar luminosities CMS has reported on the leptonic

In the case of Tevatron a form factor of 1/(1 + s/A?) with A = 2 TeV is used to
unitarize the scattering amplitudes for high energy. Details on the divergence of amplitudes
for anomalous operators are worked out in detail in Chapter @
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WW channel [109], leptonic W+ and Z~ [110], and WW and W Z productions
with two jets in final state [IT1].

In the previous section we have used these TGV results to impose additional
constraints on the couplings of the Higgs boson. This is possible because both
TGV and HVV sectors are related as seen in Egs. and , a relation
which follows from the gauge invariance assumed in the construction of the
low energy EFT.

Given these relations, it is interesting to ask if it is possible to instead
constrain the TGCs in Ly wy using only the Higgs collider data. In order to
use the Higgs observables to constrain the TGCs we employ our same chi—
square framework, marginalized over all parameters which do not contribute
to TGCs (i.e. fww, fep, fos2, and f,), and project the remaining fy and fp
into the language of Ly via Eq. . Note that we leave fi,o and f; out
of the fit, which is justified given our conclusions in Sec. where we found
the fermionic operators have a negligible effect on the parameter space of the
bosonic operators.

In Fig. 5.7 we show 95% CL constraints (for two degrees of freedom) on the
Ak, x Ag? plane from the Higgs collider data (red contour). These bounds
are obtained from Higgs data and are therefore independent of A\, and A\z. We
note the strong correlation between Ak, and Ag? imposed by the tree level
contribution of fy, and fp to the Zv data. Additionally we have included
the two—dimensional constraints from LEP (solid blue line), D@ (solid green),
ATLAS WW (solid black), and ATLAS WZ (dashed black) where we have
re-expressed these bounds on Akyz and Ag? in terms of Ak, and Agf. In this
case the bounds are obtained assuming A, = A, =0

We are then able to put limits on Ak, Akz, and Ag? of which only two
are independent. The 90% CL (for one degree of freedom) allowed ranges read:

—0.047 < Agf¥ <0.089, —0.19 < Ak, < 0.099

. : (5.2)
implying : —0.019 < Arz < 0.083.

Thus we find that the strength of the bounds derived from the analysis of
the Higgs data are at the same precision level as the bounds derived from the
direct TGV experimental measurements (see Eq. (4.13))).

In order to estimate the potential of a combination of all the data shown in
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Figure 5.7: The 95% C.L. allowed regions (2 d.o.f.) on the plane Ak, x Ag{
from the analysis of the Higgs data from the LHC and Tevatron (filled region)
together with the relevant bounds from different TGC studies from collider
experiments as labeled in the figure. We also show the estimated constraints
obtainable by combining these bounds (hatched region).
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Fig. We first reconstruct an approximate Gaussian X?(Am, Aglz ) reproduc-
ing the 95% CL regions for each contour from direct TGC data (i.e. we obtain
the best fit point and two—dimensional covariance matrix from the condition
X2 =5.99). Then define the total x* as

Xeomb = Xt (Dkiy, Ag?) + > X3 (Aky, Ag?), (5.3)

allowing us to project the combined result in the hashed region and find the

one—dimensional limits to be:

—0.005 < Ag? <0.040, —0.058 < Ar,, < 0.047 (5.4)
implying : —0.004 < Axz < 0.040. '

5.3 Results in the Chiral Expansion

Next we apply our analysis framework to the operators in the chiral basis. For
convenience we recall the applicable basis weighted by ¢ relevant to the Higgs
data:

Pa, Py, Ps, P, Pw, Py, Pe (5.5)

For the sake of simplification of the analysis we will categorize these operators
into two sets of effectively six operators as a seven parameter fit is beyond the
reach of this dissertation. We denote these sets as Set A and Set B which
correspond to sets of the operator coefficients as defined in Egs. and

(3.16). These sets are

Set A: ag, a4, as, ap, aw, CH, 2CLC — Cc = 07 (5 6)
Set B: aq, a4, a5, ap, aw, cyg = 2ac — cc.

Additionally as mentioned in Chapter [3] we explore the sensitivity of the results
to the sign of the h-fermion couplings by performing our analysis with both
signs for the parameter sy = +1.

Our choice of the relations between the operator coefficients relevant to Py
and Po are not arbitrary. Recalling P induces universal shifts of the SM-like
HV'V couplings (See Tab. and Py induces shifts to all SM Higgs couplings

we see that Set A corresponds to a scenario where we simultaneously shift the
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SM HVV and H f f couplings while Set B corresponds to the Higgsfermion
coupling shifts being totally unrelated to the modification of the Higgs—vector
couplings. The remaining operators are kept constant between the two sets,
and correspond to Lorentz structures different from those of the SM.

Again employing our analysis framework of Chapter 4] we perform a chi-
square test of the dependence of the six couplings for both sets and sy = +1.
Figure displays the Ay? dependence of the sets in Egs. based on the
collider (ATLAS, CMS, and Tevatron) data on Higgs couplings as compiled
in Tabs. [4.0] and 1.3l As with Fig. for the linear case, we display
the single parameter Ax? dependence while marginalizing over the unshown
parameters.

We begin by noting that there is little difference between the two sets with
the exception of a slight difference in the behavior of a¢g, which we discuss in
more detail below. The fit quality is approximately equally good for both sets
with X2 A — Xfns| < 0.5. We recall from Sec. [5.1] that x%,, = 68.1 which
for the chiral basis corresponds to the 4% CL region for both sets.

Additionally the fit is equally good for both signs of sy, in fact | anim 4=
Xfmnﬁ] is compatible with zero within numerical precision. However, for all
couplings set to zero while keeping sy an open parameter there is a dramatic
difference with x> — x% = 26. This is a result of changing the sign of the
interference between the W and top-loop contributions to hyy which is neg-
ative for the SM (sy = +1) and positive for sy = —1 which causes an increase
BR_(h — v7v)/BRgm(h — ) ~ 2.5 which is strongly disfavored by the data.
For the inclusion of the other operators (particularly P and Py, which give
tree level contributions to hyy) we find both signs are equally favored.

As with the linear case of f; we see two degenerate minima for ag. Again
these are due to the interference between the anomalous and SM contribu-
tions where the secondary minimum corresponds to the anomalous coupling
accounting for twice that of the SM top—loop but with an opposite sign. Here
we see a shifting of the two parameter spaces due to the sign sy = +1 as
this switches the sign of the top Yukawa and therefore reverses the location of
the degenerate minimum. The slight shift in the minima for ag between the
two cases is a result of the behavior of ¢z near the minima which shifts the

contribution of the top—loop by a slightly different quantity in both analyses.
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Figure 5.8: Ax? dependence on the coefficients of the seven bosonic operators
in Eq. from the analysis of all Higgs collider (ATLAS, CMS and Tevatron)
data. In each panel, we have marginalized over the five undisplayed variables.
The six upper (lower) panels corresponds to analysis with Set A (B). In each
panel the red solid (blue dotted) line stands for the analysis with the discrete
parameter sy = +(—)1.

We see that additionally for both cases ay and ap are almost mirror sym-

metric. As we saw in the linear case for fy and fgpg, this is due to the

strong anticorrelation between these two coefficients as they are the dominant
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contributions to the Higgs branching ratio to two photons which is propor-
tional to aw + ap, see Tab. [3.1] Table [5.2] gives the 90% CL ranges for the
six coefficients for both cases and signs of sy, except where the sign of sy or
difference in set has an approximately negligible effect on the ranges.

Additionally we may constrain the coefficients ¢; and c3 by applying the
chi-square test of Eq. as described in Sec. . We include these allowed
ranges in Tab. [5.2) as well.

Set A Set B
agE(-107%) | sy = +1:[-1.8,2.1] U [6.5, 10] sy = +1:[-0.78,2.4] U [6.5, 12]
sy = —1:[-9.9,—6.5] U[-2.1,1.8] | sy = —1: [~12,—6.5] U [~2.3,0.75]

as€ [—0.47,0.14]

asé [—0.33,0.17]

awf [—0.12,0.51]

apé [—0.50,0.21]

cué [—0.66, 0.66] | [—1.1,0.49]

o€ [~0.12,0.076]

csé [—0.064, 0.079]

Table 5.2: 90% CL allowed ranges of the coefficients of the operators con-
tributing to Higgs data (ag, a4, as, aw, ap, and cy) and TGV data (¢ and
c3). For a4, as, aw, and ap the range is almost the same for both sets and
signs of sy.

5.4 Discriminating Signatures

In this section we quantify the present status for some of the signatures which
we discussed in Sec. [3.4) which have potential to discriminate between the linear

and chiral expansion.

5.4.1 (De)correlation Between HVV and TGV

As we discussed in Sec. 3.4.2] the relations between HVV and TGV differ
between the two expansions and can be used to discriminate between them.
With the information on the allowed ranges of c¢s, c3, a4, and a5 obtained in
the previous section we can consider the discriminating variables introduced in
Eq. (3.29). We show in Fig. [5.9]the presently allowed ranges for Xy x 5 and
Aw x Apg. For simplicity we show the results for set A with syy = +1, however

changes in set and/or sy have little impact on the figure. For the figure
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on the left the sensor’s departure from (0,0) indicates possible NP without
sensitivity to the choice of expansion, while departures from (0,0) for the
figure on the right indicate an underlying non-linear realization of EWSB. We
see that within the present precision these variables neither signal a significant

departure from the SM nor a preference for the chiral expansion.

Bounds from TGV Higgs
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Figure 5.9: Left: A NP sensor insensitive to the type of expansion — con-
straints from TGV and Higgs data on the combinations X5 = 4(2¢2 + a4) and
Yw = 2(2c3 — as), which converge to fp and fy in the linear d = 6 limit.
The dot at (0,0) signals the SM expectation. Right: A non-linear versus
linear discriminator — constraints on the combinations Ag = 4(2¢; — a4) and
Aw = 2(2¢3 + a;), which would take zero values in the linear (order d = 6)
limit (as well as in the SM), indicated by the dot at (0,0). For both figures the
lower left panel shows the two—dimensional allowed regions at 68%, 90%, 95%,
and 99% CL after marginalization with respect to the other six parameters
(ag, aw, ap, cy, Ap, and Ay ) and (ag, aw, ag, cg, Xp, and Xy ) respec-
tively. The star corresponds to the best fit point of the analysis. The upper
left and lower right panels give the corresponding one-dimensional projections
over each of the two combinations.

If future data pointed to a departure from (0,0) in the variables of the left
panel it would indicate BSM physics irrespective of the linear or non—linear
character of the underlying dynamics. Such a departure in the right panel

would be consistent with a non-linear realization of EWSB instead.
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5.4.2 ¢2-weighted Couplings: LHC potential to study g7

As discussed in Sec. one interesting property of the £2-chiral Lagrangian
is the presence of operator Py4(h) that generates a non-vanishing gZ TGV,
which is a C' and P odd, but C'P even operator (see Eq. (2.38)). Motivated
by this fact we summarize here the study of the sensitivity to this coupling at
the LHC which was presented in Ref. [70]

Presently, the best direct limits on this anomalous coupling come from the
study of WHTW ™ pairs and single W production at LEP 1T energies [112-114].
For example L3 limits imply [I13] —0.21 < ¢gZ < 0.2 (=0.12 < ¢146% < 0.11)
at 95% CL. Indirect (hence less robust) bounds can also be imposed from its
contribution to Z physics at one-loop [TI5HIT7] which imply —0.08 < g7 <
0.04 (—0.04 < 1462 < 0.02) at 90% CL.

The LHC collaborations have presented some data analyses of anomalous
TGV [107, 110, [T11}, [T18, [119], but have not yet included the effects of gZ. A
preliminary study on the potential of LHC 7 to constrain this coupling was
presented in Ref. [105] where it was shown that the LHC 7 with a very modest
luminosity had the potential of probing gZ at the level of the present indirect
bounds. Reference [105] also discussed the use of some kinematic distributions
to characterize the presence of a non—vanishing gZ.

At the LHC, the anomalous coupling ¢gZ contributes to WIW and W Z pair
production, with the strongest limits originating from the latter channel [105].
Hence, our study is focused on the W Z production channel, where we consider

only the leptonic decays of the gauge bosons for better background suppression:
pp — OE0T 0BRSS (5.7)

where () = e or u. The main background for the gZ analysis is the irreducible
SM production of W Z pairs. There are further reducible backgrounds like W
or Z production with jets, ZZ production followed by the leptonic decay of
the Z’s with one charged lepton escaping detection and ¢t pair production.
We simulated the signal and the SM irreducible background using an im-
plementation of the anomalous operator gZ in FeynRules [97] interfaced with
MadGraph 5 [96] for event generation. In order to make the simulations

more realistic, one can closely follow the TGV analysis performed by AT-
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LAS [107]. Thus, the kinematic study of the WZ production starts with
the usual detection and isolation cuts on the final state leptons. Muons and
electrons are considered if their transverse momentum with respect to the
collision axis z, pr = \/piTpf/, and pseudorapidity n = %ln i?,l%iz, satisfy
ph > 15 GeV |, [n#| < 2.5 and |n°| < 1.37 or 1.52 < |n°] < 2.47.

To guarantee the isolation of muons (electrons), we required that the scalar
sum of the pr of the particles within AR = \/m = 0.3 of the muon
(electron), excluding the muon (electron) track, is smaller than 15% (13%) of
the charged lepton pr. In the case where the final state contains both muons
and electrons, a further isolation requirement has been imposed AR, > 0.1

It was also required that at least two leptons with the same flavour and op-
posite charge are present in the event and that their invariant mass is compati-
ble with the Z mass My+,- € [Mz — 10, Mz + 10] GeV. A further constraint
imposed is that a third lepton is present which passes the above detection
requirements and whose transverse momentum satisfies p% > 20 GeV . More-
over, with the purpose of suppressing most of the Z + jets and other diboson
production background, we required E%niss > 25 GeV and M})Y > 20 GeV,
E:rrniss

where is the missing transverse energy and the transverse mass is de-

fined as M} = \/2prE§!liSS (1 — cos(A¢)) with pf being the transverse mo-

mentum of the third lepton, and where A¢ is the azimuthal angle between the

missing transverse momentum and the third lepton. Finally, it was required
that at least one electron or one muon has a transverse momentum complying
with pS”) > 25 (20) GeV.

At the end the resulting Monte Carlo simulations have been tuned to the
ATLAS ones [107], so as to incorporate more realistic detection efficiencies.
We account for the different detection efficiencies by rescaling our simulation
to the one done by ATLAS [107] for the study of Ak, g7, and \z. Finally,
the reducible backgrounds for the 7 TeV analysis were obtained from the sim-
ulations presented in the ATLAS search [107], and they were properly rescaled
for the 8 TeV and 14 TeV runs.

After applying all the above cuts and efficiencies, the cross section for the
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process (Eq. in the presence of a non-vanishing gZ can be written a

2
0 = Ophck t0sm + Oipg 95Z + Oano (g?) , (5.8)

where gy denotes the SM contribution to W*Z production, oipt stands for
the interference between this SM process and the anomalous gZ contribution
and cano is the pure anomalous contribution. Furthermore, o). corresponds
to all background sources except for the SM EW W Z production. We present
in Tab. the values of o5y, 0y and oano for center—of-mass energies of 7,

8 and 14 TeV, as well as the cross section for the reducible backgrounds.

COM Energy | o) (fb) | osm (fb) | o3¢ (fb) | dano (fb)
7 TeV 14.3 A47.7 6.5 304
8 TeV 16.8 55.3 6.6 363
14 TeV 29.0 97.0 9.1 707
Table 5.3:  Values of the cross section predictions for the process pp —

(=00~ ERiss after applying all the cuts described in the text. ogy is the
SM contribution coming from EW W*Z production, Tint 1s the interference
between this SM process and the anomalous gZ contribution, oang is the pure

anomalous contribution and oy, corresponds to all background sources ex-
cept for the SM EW W*Z production.

As it was shown in Ref. [I05] besides modifying the total number of events,
gZ modifies the kinematic distributions of the produced gauge bosons. We
show in the left (right) panel of Fig. the number of expected events with
respect to the Z transverse momentum for the 7 (14) TeV run and an inte-
grated luminosity of 4.64 (300) fb~!. As illustrated by this figure, the existence
of an anomalous gZ contribution enhances the tail of the p% spectrum, signal-
ing the existence of new physics.

Then, in order to enhance the sensitivity to this coupling we study the
number of events with pZ > 90 GeV. We perform a simple event counting

analysis estimating the expected sensitivity by assuming that the number of

2We assumed in this study that all anomalous TGV vanish except for gZ.
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Figure 5.10: The left (right) panel displays the number of expected events
as a function of the Z transverse momentum for a center—of-mass energy of
7 (14) TeV, assuming an integrated luminosity of 4.64 (300) fb~!. The black
histogram corresponds to the sum of all background sources except for the
SM electroweak pp — W=*Z process, while the red histogram corresponds to
the sum of all SM backgrounds, and the dashed distribution corresponds to
the addition of the anomalous signal for gZ = 0.2 (¢ = 0.1). The last bin
contains all the events with pZ > 180 GeV.

observed events correspond to the SM prediction (g7 = 0) and we look for the
values of gZ which lay at the 95% CL. We find that

with present LHC 74+ 8 TeV Data —0.080 < g5Z <0.072,

5.9
adding expected LHC 14 TeV Data —0.033 < g5Z <0.028 , (5.9)

where by expected LHC 14 TeV run we have considered an integrated lu-
minosity of 300 fb~!. In summary, we find that the LHC precision on gZ
will approach the percent level, clearly improving the present both direct and

indirect bounds.

5.4.3 Anomalous Quartic Couplings

As shown in Sec. [3.4.3] in the chiral expansion several operators weighted
by & or higher powers contribute to quartic gauge boson vertices without in-
ducing any modification to TGVs. Therefore, their coefficients are much less
constrained at present and one may still expect larger deviations on future

studies of quartic vertices at LHC for large values of &.
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Of the five operators giving rise to purely quartic gauge boson vertices,
{Ps(h), P11(Rh), Paz(h), Pas(Rh), Pag(h)}, none modifies quartic vertices includ-
ing photons while all generate the anomalous quartic vertex ZZZZ that is
not present in the SM. Moreover, all these operators but Pos(h) modify the
ZZW*TW ™ vertex, while only Pg(h) and P11(h) also induce anomalous contri-
butions to WTW-WTW ™. Presently, the only bounds on the coefficients of
these operators are indirect, from their one-loop contribution to the EWPD
derived in Ref. [120].

At the LHC these anomalous quartic couplings can be directly tested in
the production of three vector bosons or in vector boson fusion production
of two gauge bosons [I21]. At lower center—of-mass energies the best limits
originate from the TGV processes, while the VBF channel dominates for the
14 TeV run [80], T21H124].

At the LHC with 14 TeV center—of—mass energy, the couplings ¢g and c¢qq

can be constrained by combining their impact on the VBF channels,
pp = JGWITW ™ and pp — ji(WTWT +W-W™), (5.10)

where j stands for a tagged jet and the final state W's decay into electron or
muon and a neutrino. It was shown in Ref. [80] that the attainable 99% CL

limits on these couplings are

—12x10% <€ <10x 1072, and —T7.7x103 <c¢&2<14x1073
(5.11)

for an integrated luminosity of 100 fb~!. Notice that the addition of the

channel pp — jjZZ does not improve significantly the above limits [123].

5.5 Summary and Conclusions

In this chapter we have performed a fit to the relevant operator bases con-
structed in Chapters [2] and [3] using the framework introduced in Chapter [4]
We have demonstrated that the present data is sufficient to support a robust
data—driven analysis of the EFT extensions of the SM.

In Secs. and we discussed the parameter space of the operator

coefficients for both the linear and chiral realizations, summarizing these main
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results in 90% CL ranges with best fit points in Tabs. and 5.2, Our
analysis implies the SM is consistent with the data, laying well within the
lo range of the data. In Sec. [5.2) we saw that the Higgs data constraints on
TGCs is becoming competitive with the LEPII constraints. Noting that these
constraints require the linear interpretation we also looked at discriminators
between the linear and chiral realizations in Sec. [5.4, Here we explored the
discriminating variables introduced in Eq. , as well as possible signals
from the operator P14 which contributes to the gZ TGC and operators which
contribute to quartic gauge couplings. In the last two cases we also discussed
projections for the Run 2 of the LHC, noting there is still potential for exciting
NP in the gauge and Higgs sectors at the next run of the LHC. In the case
of the linear basis, projections for Run 2 of the LHC and the proposed high
luminosity LHC are reserved for Appendix
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Chapter 6
Unitarity Considerations

In this chapter we consider constraints on the linear operator basis of Chapter[2]
related to perturbative unitarity in electroweak gauge boson scattering. In
Section we will discuss the operators relevant to electroweak gauge boson
scattering, in Section [6.2] we review the conditions of partial wave unitarity. We
find all electroweak boson and Higgs scattering amplitudes which contribute
to unitarity violation in Section [6.3] and finally in Section we discuss
the implications for each operator coefficient individually as well as in a six
parameter search.

Previous works in the literature have studied similar unitarity bounds on
some of the the dimension—six operators either considering only one non-
vanishing coupling at a time, and/or they did not take into account coupled
channels, or they worked in the framework of effective vertices [I25H131]. Here
we complete these previous analyses by considering the effects of coupled chan-
nels leading to the strongest constraints, including both elastic and inelastic
channels. We also analyze the general six-dimensional parameter space of rel-
evant anomalous couplings. We consider the contributions to order 1/A? to

apply systematically the effective field theory approach.

6.1 The Relevant Operator Basis

For the case of electroweak gauge boson scattering the relevant dimension—six
operators in the linear (HISZ) basis are those in Eq. (2.2)) with the exception

of Ogq as it only involves gluons.
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Again we will reduce the size of this basis by applying EWPD constraints.

This allows us to remove Opy and Og 1, due to their contributions to the S

and T parameters (see Egs. (2.33) and ([2.34])), respectively. Further as we will

be discussing unitarity constraints we will be considering large center of mass
energies (i.e. /s > mwy.zy), in this limit we find that the behavior of Og 2
and Og 4 is the same up to a sign. Therefore we will quantify their behavior

by a single operator coefficient:

f¢2,4 _ fCID,Q - f¢,4
A2 T A2

(6.1)

One expects this behavior as the combination Og 2+ Og 4 can be traded via the
EOM (see Sec. and Eq. ) by a combination of Yukawa-like operators
which do not contribute to the 2 — 2 scattering processes we consider in this
chapter.

Additionally we find O 3 modifies the Higgs self couplings and the rela-
tion between the Higgs mass, its vev, and its self coupling A (for details see
the discussions in Chapter [2[ and Appendix . These effects do not induce
unitarity violation in the 2 — 2 scattering processes.

Then for this chapter we will consider the operator coefficients:

fw, fB,  fww, fee,  fwww, and  feou. (6.2)

6.2 Brief Review of Partial Wave Unitarity

We briefly review the requirements of partial wave unitarity. We begin by

expanding an amplitude for the scattering of (V3, V3) into (V3, Vi)

into its partial wave components as

M(‘/l)\l%/\z — %)\3‘/;1)\4) -

Va Vi i
167 Z J + \/1 + (S A2 \/]- + 5V3i4d ) Md)TJ(‘/l)q %Az — %/\3%/\4%
(6.4)
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where )\; is the helicity corresponding to the scattered state V;, 6 (¢) is the

polar (azimuthal) scattering angle, and we have defined:
)\E)\l_)\Q, [LE)\3—>\4, and ME)\l—)\z—)\3+>\4:>\—,u. (65)

d is the Wigner rotation matrix. In the case that one of the vector bosons
is replaced by the Higgs we can still employ this expression by setting the
corresponding A to zero.

We will also consider the case of inelastic fermion scattering,

f101f20'2 — Vg,)\3‘/4)\4 . (66)
here the decomposition takes the form,

M(fioy foos = Var,Var,) =
167 ZJ:(J+ %)501770'2dg1_0—27)\3_)\4(9>Tj(fla'1f20'2 — Vaa, Vi) (6.7)
where we have used our freedom to take ¢ = 0. As these processes proceed via
s-channel exchange of a vector J = 1 boson, in the limit of massless fermions
the fermions must appear with opposite helicity states, made manifest in our
decomposition by the 04, 4,.
Next we consider the optical theorem where we will use (ij — kl) to denote
(V;/\iV},\j — Vi, Vi) with 5kl denoting the various possible initial and final

state particles,

ImT7(12 —» 34) = Y Pz |

T7*(12 = 1'2)T7 (12 — 34 6.8
12—1/2/

with

5 | = Vs = (mi + my)2][s — (m; — my)?]
ij 2\/§ .

Taking V5), = Vi, and Vj,, = Vb, and separating out the part where the

(6.9)

intermediate states are the same as the final we obtain:

Im7T7(12 = 12) = @ T7(12 — 12 2+ 1o |
NG —
S

IT7(12 = 1'2)|".
1/2/£12 Vs

(6.10)
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Then for only one intermediate channel we can conclude

Im7T7(12 — 12) = %W(m — 12)%. (6.11)

This implies a form of T,

T7(12 — 12) = VS 8 gin g, (6.12)

el

giving the condition for elastic scattering (with the limit representing m; <

V):
IT7(12 = 12)] < ﬁ — 2. (6.13)
|P12|
More stringent bounds can be obtained by diagonalizing 77 in the particle
and helicity space and then applying the condition in Eq. to each of the
eigenvalues.
For unitarity constraints from fermion annihilation into gauge bosons we
follow the procedure presented in Ref. [I30] and obtain the unitarity bound
on the inelastic production of gauge boson pairs in Eq. by relating the

corresponding amplitude to that of the elastic process

fioy foos = Fioy foo, - (6.14)

In this case the unitarity relation is

2Im[TJ<f101f_20'2 — flUlfQO'Q)} = |TJ(f101f_202 — flalf_2crg)|2 (615)
+ Z ‘TJ<f10'1.]?20'2 — ‘/3)\3‘/4)\4)|2
Vang Var,

+Z ‘Tj(flaleUg — N)|2 )
N

where as before we take the limit s > (My, + My, ). N represents any state
into which fi,, f_QU2 can annihilate that does not consists of two gauge bosons.

Denoting fi,, f202 as 12 and 1’2’ as all other final states (in particular gauge
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boson pairs) and defining

T/(12 5 12) =y +iv, d= Y Pz| /(12 5 12", (6.16)
1/2/£12 \/5

we can rewrite Eq. (6.15) as

— |ﬁl?|

NG

Solving the quadratic equation, and requiring the terms under the radical be

(z° 4+ y*) + d. (6.17)

semi-positive definite (i.e. requiring x be real as required by Eq. (6.16))) gives

the condition:

ﬁ// —
21;12%\T"<12%1’2’>I2£H D 1T (o Fooy = Vi Vir ) <1

Vaag,Var,

(6.18)
where again the limit comes from taking /s > m;. We note this implies the
strongest bound can be found by considering some optimized linear combina-
tion of states

|X> = Z L fa,00 ’fla1f202>a (619)

f1,01

with the normalization condition 37, |zs|* = 1, for which the amplitude

T7(X — Vsy,Vay,) is largest.

(X =R3* X s)

WHW+ — WHw+ -1
W Z S W7Z —IX
W+H - W*H —3X
WHW= — WHWw- ;Y
WW- — ZZ 1

W+W~- — HH -1
Z7 — HH -1
ZH — ZH —:X

Table 6.1: Unitarity violating (growing as s) terms of the scattering ampli-
tudes M(Viy, Vay, = V3, Viy,) for longitudinal gauge bosons generated by the
operators Op 2 and Og 4 where X =1 —cosf and Y = 1 + cosf. The overall
factor extracted from all amplitudes is given at the top of the table.
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(xe2 B x s)
0000 00+ + 0+ 0- 0+ -0 +00— +0—-0 | ++00

W+ = Ww+ 3 0 =X LY | a2 ¥

- H 88,
Wtz swtz || -3-X Lo aciwy | by | oy | x| gl
v s i w <

Why = Wty — _ Ix - ! W] o
ye STTIY 1 (3¢2,—s2,) .

W :Z — H:'y - T e wx - Y _ -
W+Z - WtH 0 - - —Toe ¥ — 0 .
Wty - WTH — — _ 1 By

: 16sw Bsw
WEHSWOH | —gx | - | - . - x| O
WEW= > W= | &Y ! e 0 0 X |

T — 3 8%, —Coy 1 1 1 A ;
W TV[ , — 27 I3, PR T6cw  Toow ~ 16ew T6cw ey
WHW= — vy - -3 _ h _ W b
Wtw- — Zy _ 1—deyy 1y o 1y _ B
WW~- — ZH 0 — _ _161 % W _161 X )
A — , ICW cw
W+ W= —=~H - 0 — e - 1
W+W~- — HH o — — — _ _ 1
__1 1 1 1 e _ L

o " oo | w s | Y | wgX | Tw

77 — Zy - ~Sowew | Toowsw X - - T :

77 — HH — 5 — _ -~ W B 453Y

Zy — 27 — - T6ewsw ~Toowsw S

ZA,/ o 5 ~ B B - N 8swew

ZH — ZH -2X _ _ - B X we
W Z,

ZH —~H - - - - - L x| -

16cw sw

Table 6.2: Unitarity violating (growing as s) terms of the scattering ampli-
tudes M(V1,,Vay, — Vaa,Vay,) for gauge bosons with the helicities A\j AgAzAq
listed on top of each column, generated by the operator Oy,. Notation as
previous Table.

6.3 The Unitarity Violating Amplitudes

First we consider all two—to—two Higgs and electroweak gauge—boson scatter-
ing processes. We have calculated the amplitudes for all possible combinations
of particles and helicites generated by the effective field theory to dimension—
six discussed in Sec. We keep terms only to linear order in the dimension—
six operators as use of the dimension—six operators at quadratic and higher
order requires the inclusion of dimension—eight and higher operators. That is
we assume that the new physics occurs at a sufficiently high energy scale that
it is sufficient to truncate the effective Lagrangian expansion at dimension—six.

We note that to linear order in the anomalous operator coefficients no
amplitude diverges as s?, this is a result of gauge invariance enforcing that
the corresponding triple and quartic vertices satisfy the requirements for the
cancellation for the s* terms to take place [132].

In total we find 26 processes (in particle space) which yield some helicity

amplitude that grows as s for at least one of the dimension—six operators. The

92



(xe28) x s
0000 | 00 + + 0+0— 0+ -0 +00— +0—-0 ++ 00
WHW+ — WHrw+ f% 0 0 0 0 0 0
1 8 —Chr 1 1 1
Wtz - Wtz 0 ~Sow 7V;C%VW X ~ Toow Y | —% fow Y 0 — o
Wty — Wty - - iX - - - -
WHZ — Wy - ! Sy - Ly - -
. 8sw 16swew 16sw
WtZ - W+tH -4y - - —Lvy - 0 L
. . 8¢, llﬁuw Sc\vir
Wry —» Wi — — - Tosw © — — T Sow
WHW- — WHw- S%Y 0 0 0 0 0 0
2
; - Ry—sty 1 1 1 1
Ww- — 722 0 \ZC%Y“ Tocw X ~ Toow Y| - 6w Y 6w X 0
WHW = — vy - \ —452 - - - - -
WHW= — Zy - —w | Lx - o - —
A Iy CW SW SW 1 v Gsw 1 X
W*W~- — ZH i, — — - 116L,W — - 11st-w 0
WHW~ — ~vH - 0 — T g — oo X —
1 1 v 1 Bsw 1
ZZ - ZZ O - /IC€V 8c2, X - BC%N Y - SC%V Y 81:%,\, X - /lc%v
~ _ 1 _ 1 _ 1 — —
ZZZZ %5 [—i] 3 Bcwsw 16cw sw X 16cw sw Y 1
— Lz - - - - - 2
12, 12,
1 1 1
ZZV - [i[Z{ - - - 16cw sw X 16cw sw Y - - 85\\7(13\)\7
7 - - - - - - ~ swew
ZH — ZH A x| - - - - X ey
2, 2
ZH —~H - - — - — — Toowrm —

Table 6.3: Same as Tab. for the operator Op.

remainder are constant or vanishing for my z g < /s.

Table contains the fgo4 divergent amplitudes. We note unitarity vi-
olation only occurs in the purely longitudinal modes for the operators Og
and Og 4. This behavior is expected as these operators do not generate higher
derivative terms beyond those already present in the SM in the triple and
quartic couplings. Table show the unitarity violating amplitudes for
Ow (Op), the results for operators Oy and Opp are in Tab. and those
for Oy ww are in Tab. . Contrary to the case of fp24 We see that these
operators do introduce amplitudes which grow as s for helicity combinations
beyond purely longitudinal. It is interesting to note all amplitudes which grow
with s generated by Os2, Os4, Ow, Op, Oww, and Opp have only J = 0 or
J = 1 partial-wave projections. Owyww leads to violation of unitarity in helic-
ity amplitudes with projections over J > 2. However, as bounds are weakened
for increasing J, we compute our constraints using only the J =0 and J =1
partial waves.

We will also consider fermionic scattering into two vectors, ff — VV'.
Here only operators contributing to triple gauge vertices will contribute, as

vertices involving the Higgs will be proportional to the fermion mass which
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(X(ﬁz%xs) (X(ﬁz{‘?—,f) X 8
00+ + ] 0+0- J0+—0]+00— | +0—0 [ ++00 J00++ [0+0- [ 0+—0] +00— | +0—0 [ + +00
WIWT - Wrw+ 0 |- X| =Y | = -5 0 0 0 0 0 0 0
Wtz >wtz 0 |- 0 0 |-3=X| 0 0 |- 0 0 0 0
w’+,>, S Wty _ *{\X _ _ ,“ _ _ —l“X _ —_ — —
/ 4
WHZ = Wty 0 | -gex | - 0 - - S = 0 - -
W*H — W+H - - - - | -Ex] - - - - - 0 -
WIW= = W= | g [ =X | 0 0 | =X = 0 0 0 0 0 0
wrw- -2z || S 0 0 0 0 . t 0 0 0 0 0
WHW = — vy % — — - - - % - — — — -
WHW= = Zy S 0 - 0 - - e 0 - 0 - -
WHW= — HH - - - - - 5k - - - - - 0
27227 g | x| dey | dey | odex | A || s [Ssx| sy | sy |y | &
2 e = v e = 253y 2}, | ey ach, i, 2k,
27 — vy : - - — — - 3 - - - - —
77 = 7y e ol B o B S = e A . -
77— HH - - - - - -2y - - - - - oy
252, 22,
Zy—~ 22 - x| oy | - - s - x|y - - -
Zy — 2y - 7%)( — — — — — X — — — —
Zy— HH - - - - - — g - - - - - o
v — HH _ _ _ _ _ iy _ _ — - _ -
! 2 2 52, 2
ZH - ZH - - - - |- - - - - - | aEx] -
yH = vH - - - - —X - - - - - —X -
~ cw Sw
ZH — yH - - - - e - - - - - A -

Table 6.4: Same as Tab. [6.2] for the operators Oy and Opp.

(X2€4fw\vgw x S)
+++-
+ _——
00 0+0— 0+-0 00— 0-0 00 -
++ + + + + ++ b4t ++
++ —+
774 1 —3021Y) 32+X) 32+X) —32+Y) — 3 3
WHW+ — WHrw+ - (; ) 521 3(;2ﬁ:5 3(;2?)’ 3oL, - OX ) i L 32;4,
T+ T+ 3(Y—=X)ew : +2)ew : +2)ew 3(Y—=X)ew _ 3ew Sew
Wtz Wiz | R 0 g | Ao 0 e X | X
Wy — Wty — 0 — - — — - 3X SX
Bswy dsyy
n14 e _3(Y-X) - 3(X+2) - _ _ 3ew 3ew
W*Z = Wy w0 c=o il B x|
Wty = WHH - - 802 - - —3=X) - -
) 3253 a\e
A — . 37 —X) 302+Y) 302+Y) 3V —X) 3 — 3
WIW= — Ww 3253, 3253, 0 0 325y, 325y, 85‘\‘,\,Y sy
T — 3(24Y)ew 3(X+2)ew 3(X+2)ew 3(24Y)ew 3cd, 3cd,
Wiw" = 27 0 325k e 3252 e 3253, = 325k - 0 45%: _25%:
WA= = 7y 0 - - - - - = g
SWw S
T — , 3(2+Y) _ _3(2+X) _ _ 3ew _ Bew
WIW™ = 77 0 3253, 3253, 42%? zf%t
- _ _ _ _3(2+Y)ew 3(Y-X) a o
WIW= — ZH 3253, . 3253,
ST N _ _ _ _3(24Y) _ _ _
WHW- = ~H e

Table 6.5: Same as Tab. for the operator Oy ww .

is taken to be small relative to y/s. Therefore we need only consider the
operators fw, fg, and fyyww. The relevant unitarity violating amplitudes for
these inelastic processes are compiled in Tab. [6.6l Notice the effects of the
operator Oy ww occur for different helicity amplitudes than for Oy, and Op

as a result of the different Lorentz structure of the operator.

94



Process 01,09, A3, Ay | Amplitude
- -W Zssinf Coy fw 5%
ctem s W | —q00 | —idesnlSuidilp
W
Lo 2
_ _ ig®ssin® sw/B
+-00 4 2 A2
-t _ 3ighssing fwww
s a8 A2
— 4t _ 3ig 5851n9 fwAuév‘,y
_ J— 025 sin 0 o fov —s2
v — W-Wt: — 100 ig ssamﬁ W fMCZ sw/B
W
+—00 0
_ _ 3ig*ssinf fwww
+ a; 48 . A2
— 4t 3ig ;Sln(’ fw:vgw
i - ig2 Nes sin 0 3¢y fw +s%
uti — W-W+ —+00 | Wlasnd3ulnisuls
3cqy
ig2Nessin 0 sy o
+—00 ig C;sm %f}}
i d . Gw
I 3ig* Nessin 6 fwww
3i 4N8 in 6 A
— 4+ ig gbsm .fwx/&z/w
7 - ig? in 0 3¢, fiv —s%;
dd — W-W+ — 400 | —iNessind Sy syl
W
L . 2
_ __1g°Nessinf siwlB
+—00 i Nessing ol
— _ 3ig* Nessin 0 fwww
8 A2
— 4t _ 3ig*Nessing fu//{,’;",y
+ 1/ + _ igZssinf fu
etv - W+tZ + 00 VR
+—00 0
T 3icwg'ssinf fWWW
42 2
. Sicwgssind furww
+ ++ O AT
ety — WTA: — 400 0
+—00 0
— 3iswg?ssind fwww
4\4/5 A?
_ 3iswgissind fwww
+ ++ s AT

Table 6.6:  Unitarity violating (growing as s) terms of the scattering ampli-
tudes M( f1,, fos, = Var,Van,) for fermions and gauge bosons with the helicities
0109 34 given in the second column.

6.4 Constraints from Perturbative Unitarity

With Tabs. , , and in mind we proceed to build the 7

and 7' amplitude matrices in particle and parameter space. These matrices
are formed of the s—divergent amplitudes corresponding to all combinations of

gauge and Higgs boson pairs for each total charge (@ = 2,1,0) and partial
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wave J as follows:

(Q,J) | States Total

(2,0) | WEWE Wi 3

(2,1) | WEWE WEWS wyrwi 6

(1,0) | WiZe WiZy, Wiy Wi H 6

(L) | Wo'Zy WiZy Wiz Wizy (6.20)
Wofve Wine WFH  WIH 14

0,0) | WiWy WiW,  ZiZy  ZoZy
Zive  yxve  ZoH HH 12

0,1) | WoWy WiEWy WiWi WIWs ZiZ
ZoZ+ Zo+ ZyH Z+H e H 18

Where the upper index indicates charge, lower indices indicate helicity, and

we have taken advantage of the relation:

TJ<‘/'1)\1 ‘/2)\2 — ‘/3/\3‘/4/\4> = (_1))\17)\27)\3+)\4TJ<‘/1—)\1‘/2—)\2 — ‘/3—)\3‘/;1—)\4>

(6.21)
In the right-most column of Eq. (6.20) we give the dimensionality of
the corresponding 77 matrix. For example, for @ = 2, T° in the basis
(WEWE W W, WXW ) we have the 3 x 3 matrix]
0 0 5%64fWWW
S 3 .2 3 .2 1 v
g O —%6 fB — 88%\/6 fW — §f<1>72 0 . (622)
¢ foww 0 0
w

To obtain the most stringent bounds on the operator coefficients, f,/A?
we diagonalize the six T matrices and impose the constraint from Eq. (6.13)).

Considering only one operator different from zero at a time we find the strongest

'We note in Eq. 1) we have included explicitly the symmetry factors /1 + 6&?2 and
1

1+ 5“2 i: Therefore we need not include these explicitly in our matrix. Other conventions

include this in the definition of the two equal gauge boson states.
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constraints arise from the following eigenvalues:

3 foou4 fao2
. i < 2 l <
Tor Az | S 2 T |Tpe s s3
2
9° fw fw
g Sw \/9+7Cw+38w fB B
< 2 = |=s| <617
128cw7r A2
3¢% fww fww
-z < 2 = <99 6.23
287 A2 0| = ne 5| =99 (623)
9 BB fBB
2022 < 92 <
‘ O87r A2 s| < = A2 603
/ 39 fwww fwww

Inclusion of the amplitudes for fermions scattering into gauge boson pairs
requires the use of the constraint from Eq. . In summing over amplitudes
we choose | X') such that we will have the largest values for the Q = 0and @ = 1
cases. We find the strongest bounds come from the Q = 0 (i.e. VV =W W)

combination with the states:

1

\/ﬁ \Nf (
1 —
22) = —= Ny (-efel + Nows@o — Nedyd-)) (6:25)

Where we have used Ny (N,) to denote the number of flavors (colors). These

[z1) = —eZel 4+ Ve Uey + Neu_tiy — Ned_dy)) , (6.24)

two combinations of states give the bounds

1 g* foww |’ fW fwww
— — 14 <1 < 122
24[6871' Az ot 8A2 e BV
d Jw <211, (6.26
an FS < , (6.26)
1 %9 B 9 In, Is
— |olwd JB Z = <1 < 664,
21‘f28 As ’00538 S| <1 o= g <66
respectively.
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As we have no UV model to guide our choice of basis and parameters
fis/A%, we must consider the case of more than one parameter non-zero.
Therefore we search for the largest allowed value of a given parameter while
varying over others. We obtain general bounds for our basis of six operator
coefficients from searching a six—dimensional grid and recording the largest
range of the parameters which satisfy both the elastic and inelastic partial—

wave unitarity constraints. This search yields the bounds:

fjéAs < 105,
{\—Vgs < 205 ,
%s < 640 ,
fww
NS < 200, (6.27)
J%fs < 880 ,
fngws < 82 .

We note that these constraints do not indicate the largest ranges which may
be realized for each parameter simultaneously, rather the most conservative
constraints on a given parameter allowing for all possible cancellations with
the others in the scattering amplitudes.

Also the comparison of Eq. with Egs. and indicates
that searching the six-dimensional space results in weaker constraints, but
not substantially. Therefore even when allowing for all possible cancellations
between the contribution of the relevant dimension—six operators, partial-wave
unitarity still imposes constraints on their range of validity.

The bounds in Eq. (6.27)) must be understood as providing the maximum
center of mass energy (1/s) for which unitarity holds for a given value of f; /A2
One may argue that for not—too—small values of f; the bounds in Eq.
correspond to spax approximately or larger than A% for which the quadratic
contribution of dimension—six operators to the scattering amplitudes at order
f2(s/A?%)? can be sizeable and could substantially change the bounds. At such
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an order, however, one must consider linear contributions from dimension—
eight operators. Thus the results in Eq. can be interpreted as the
bounds that partial wave unitarity imposes on the effects of the dimension—six
operators uniquely, irrespective of possible cancellations due to higher—order
contributions. The interpretation of the perturbative unitarity bounds is that
one expects the appearance of some new state or a strongly interacting phase
at the bound. In this respect we may also interpret y/syax as a generous upper
limit for the validity of the description provided by the lowest order of the
EFT.

We can now compare these unitarity constraints in Eq. with the
bounds from the global analysis in Chapter [5]in Tab. [5.1 We map the 90% CL
ranges of the six-dimensional space from the analysis in Chapter [5] Tab. [5.1]
onto the unitarity constraints derived here to identify the lowest energy for
which presently allowed values of the coefficients of operators affecting Higgs
physics would lead to unitarity violation. For the operator Oy ywy,, which is
not included in the Higgs data analysis, we make use of the presently allowed
range of )\ﬂ from the PDG [57], A, = —0.022 £ 0.019. Altogether we obtain:

fo2

—10 < F(Tev—2) <85 = /5<32TeV,
—5.6 < i—f(TeV”) <96 = +/s<4.6TeV,
—29 < %(Te\ﬂ) <89 = /s<4.7TeV,
—32< fjg” (TeV™2) <82 = /s <4.9TeV , (6.28)
—75< %(Tev—% <53 = s<11TeV,
—15 < ij\VgW (TeV™2) <39 = /s <24TeV .

6.5 Summary

In this chapter we briefly put together the operator basis relevant to gauge
boson scattering and reviewed the conditions of partial wave unitarity from

both elastic and inelastic gauge boson scattering. We evaluate the amplitudes

2From Eq. (2.39) we recall Ay = Ay = 220 £,
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which violate perturbative unitarity, allowing us to finally constrain the op-
erators in the relevant basis of Eq. . We considered the constraints for
individual operators in the case of elastic and inelastic fermion scattering and
also combined them in a six—parameter search, noting that the constraints
were not affected to a large degree by such a search.

Finally we included the results from the discussion of the linear basis in
Sec. allowing us to put lower bounds on the energies at which perturbative
unitarity may be violated. In particular in Eq. we have shown that
for operators affecting Higgs couplings the present 90% CL constraints from
Sec. are such that perturbative unitarity is not violated for /s < 3.2 TeV.
For the purely gauge-boson operator Oy our naive translation of the triple
gauge boson constraints indicated that for the allowed 90% range perturbative
unitarity can be violated for ff' — V'V’ at /s > 2.4 TeV.

In the next chapter we summarize the discussions and results contained in

this dissertation.
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Chapter 7
Conclusions

In this dissertation we have used the exciting discovery of a Higgs—like particle
at the Large Hadron Collider to motivate the use of effective field theories to
quantify deviations from the predicted Standard Model behavior of the ob-
served state. We began in Chapter [2| by introducing the Hagiwara, Ishihara,
Szalapski, and Zeppenfeld basis of dimension-six operators for a C'P-even
Higgs requiring that baryon and lepton number be conserved. We noted that
this was the relevant expansion under the assumption that the Higgs is a
fundamental scalar doublet of the SU(2); symmetry of the Standard Model.
We proceeded to consider the Lorentz—structures implied by the new opera-
tors, many of which are not induced in the SM at tree level. From there we
considered the correlations between the triple gauge vertices and Higgs—gauge
interactions. We then reduced the size of our basis from the equations of
motion and precision data taking care not to introduce blind directions.
Chapter [3| repeated the themes of Chapter [2, however this time we looked
at the Higgs as a pseudo—Goldstone boson of some new global symmetry real-
ized at a new high energy scale and for which electroweak symmetry breaking
is assumed to be non-linearly realized in the low energy Lagrangian and hence
a more appropriate expansion is that provided by chiral perturbation theory.
We wrote the effective Lagrangian for such composite-like Higgs to order four
derivatives. We organized the leading order operators in terms of the parame-
ter £ = (v/f)? where f is the characteristic scale of the Godstone boson while
v is the scale set by the EW gauge boson mass. This parameter helped us to

relate the chiral operators to those in the linear expansion, with ¢ indicating
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the lowest order at which each operators’ effects would be induced in the linear
expansion. From these relations we concluded that the correlations between
the Higgs to gauge bosons and triple gauge boson couplings discussed for the
linear expansion no longer existed for the chiral expansion, instead allowing for
triple gauge vertices to be independently tuned from the Higgs—gauge vertices.
This allowed for the formulation of discriminators between the two expansions.
Together Chapters [2| and [3] motivated us to put together an analysis frame-
work in Chapter [4] which would allow for quantifying the present status on
the determination of the coefficients and correlations in these expansions to
be drawn in Chapter

Desiring data—driven discussions of the expansions we formed chi-square
statistics from the three main sources of data. The first and most direct being
the Higgs Collider data from the LHC and Tevatron. Here we formulated a
method for incorporating the state of the art calculations with the anomalous
corrections from the operator expansions of Chapters [2] and [3] accounting for
correlations in theoretical uncertainties via the pulls method, and incorporat-
ing the weights of various production channels for the sometimes convoluted
cuts made by the different experiments (in particular for the H — ~~ channel).
We additionally put together a way to incorporate the LEP data on the triple
gauge boson couplings into our chi—square structure, allowing us to consider
the implications of triple gauge vertex measurements on the correlated struc-
tures between Higgs—gauge and triple gauge couplings in the linear expansion.
Finally we formulated a similar system for the inclusion of the one-loop ef-
fects on electroweak precision data induced by the new operators. Thus, after
completing Chapter 4] we were left with a framework to analyze the effective
operator bases put together in the previous two chapters.

In Chapter 5| we put our framework to use, first by analyzing the free
parameter space of the operator coefficients in the linear expansion. Our
analysis implies that the Standard Model is consistent with the data, laying
well within the 1o uncertainties. Furthermore this quantification allowed us
to consider first the implications of the triple gauge coupling data from LEP
as constraints on the Higgs parameter space, and then to turn the argument
around and constrain the triple gauge couplings using the results of the analysis

of the Higgs data. We found that Higgs data driven constraints on triple gauge
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boson couplings are becoming competitive with those from direct measurement
of those couplings, and showed the potential for future combination of these
two types of measurements.

Next we analyzed the parameter space of the chiral operator coefficients
and the uncorrelated triple gauge couplings. This led to a discussion of dis-
criminating between the two expansions, and we placed constraints on four
variables, Xy p and Ay p introduced in Chapter [3| which measure deviations
from the Standard Model predictions and deviations from the behavior of the
linear expansion respectively. All constraints at this point were found to be
consistent with the Standard Model predictions, but Appendix [B| indicates
that the next run of the LHC and the possible future high luminosity LHC
both have the potential to vastly improve on these measurements. We then
moved on to potential new physics signals from the chiral operator P4 which
induced a new Lorentz-form in the triple gauge coupling differing from the
Standard Model and from those induced by dimension—six operators in the
linear expansion. Here we were able to place limits on ¢4, or in the triple
gauge vertex language gZ, from the 7 and 8 TeV runs of the LHC, and pro-
jected the potential for study at the 14 TeV LHC. We finished our discussion
with generic anomalous quartic gauge couplings (unrelated to triple gauge bo-
son vertices) which appear to the lowest order in the chiral expansion unlike
in the linear case, and quantify the potential limits on two such operators at
the 14 TeV LHC where probing quartic gauge couplings directly will become
possible.

In Chapter [6| we consider constraints on the linear operator basis arising
from perturbative unitarity in electroweak gauge boson scattering from the
conditions of partial wave unitarity for both the elastic and inelastic scatter-
ing processes involving gauge boson pairs. In order to do so we computed
the divergent amplitudes for all the relevant processes in particle and helicity
space. We used those to place limits on each operator individually, and by
searching the six operator coefficient space to bound all operator coefficients
simultaneously. Using these constraints we were able to project the bounds we
had derived from the Higgs and triple gauge coupling data analyses onto the
minimum energy at which perturbative unitarity may be violated, indicating

the possible onset of new physics, which we found to be /s ~ 2.4 TeV.
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In summary the LHC 7 and 8 TeV runs have served to establish the exis-
tence of a new particle which appears to be related to the electroweak symme-
try breaking mechanism, opening the possibility of directly testing the sym-
metry breaking sector. From the analyses of the Higgs, triple gauge boson
vertices, and precision data we have concluded that there are no hints so far
for deviations with respect to the Standard Model in this sector. This fact
added to the many experimental exclusion bounds on a large variety of new
expected states in several beyond the Standard Model extensions set the cur-
rent picture: after the first LHC runs the Standard Model with a minimal
Higgs mechanism is still a valid picture of particle physics.

The quantification presented, however, also shows the present, sometimes
poor, precision with which this conclusion stands. Large room for deviations
is still allowed which will be within reach at the coming runs of LHC keeping

open the possibility of new descoveries.
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Appendix A

Anomalous Interactions in the

Linear Expansion

In this Appendix we proceed to identify the coefficients of the different Lorentz
structures generated by the dimension-six operators in the linear expansion for
the remaining 3 and 4 point vertices relevant to our discussion in Chapter [0]

Chapter [2| contains the effects of dimension-six effective operators which give

rise to HVV and TGV interactions, see Eqgs. (2.18)) and (2.19), and Egs.
and (| - respectively.

Quartic vertices involving Higgs and gauge bosons read:

LMY = g HPW LW 4 gty H (0, H)(W, W 4 hic.)
gg’LWWHQWjWW + QSLZZHQZWZW
02 HZ,(0,H) 2" + ¢, H?Z,2" (A1)
gl(“{HZA H(0,H)Z,A" + gHHZAH2Am/Z'W

GitnaaH A A

+ o+ + o+
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with

and

LHV1V2V3

with

1)
IaEWW

(2)
9aaWW

(3)
9uaWW

(1)
9uHZZ

(2
9uHZZ

(3)
9uHZZ

1)
QJ(LIHZA
(2)
9HHZA
1)
JuHAA

+ + +

(1)
(3)

(1)
(3)

— i furw
e fw
21+ 35 5fas — for = 2f02)|
MZA2G [1 + %(5]0@,4 — fou1 — 2f¢>,2)}
—gcé’v%(cévfww + sw./BB + Gy sw.lew)
_ﬁ(c%vfw + sw.f5)
1+ oz (5fa + 5fa — 2fp2— 0 1;,2 fBW)}

M%\/_GF [1 + m(‘lfcb,l +5fp4— 2f<1>,2)}

~ 5% — i)

4gc sAz (v fww — sty fee — 5(cly — sty) few)

— I (fww + [ — f3W),

gHZWWH(W—W+ —h.c.)Z" + gg)ZWWHZAL(WjW_HV
QHZWW(a H)Z,(W™ W —h.c.)
gHAWWH<Wu_W:_ —h.c)A, + gg)AWWHAV(W:”W_“
Iiraww (OuH)A,(WHWH —h.c.) ,

823511;2 (v fw — s fB + 4 fww + 2s% few)
_423517(2 (fw + 4c%vfww)
42%2 sw/fw
”gngzW (fw + f5 + 4fww — 2faw)
g gy

zg VSW
Y fw

106

(A.2)

—h.c.)
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Quartic gauge boson vertices read:

LoV = g e W W (W — he)

+ gWWWWW+W ”p(WﬂLW W+W )
+ gD 2 I W + gW)WZZZHZ,,(WjW; +he)
+ gx(/vwzz (WrZMZ"W™ — ZPFW™") + h.c.)
+ gi(/VWAA (WhHAMA'W™P — APW™) +h.c.)
+ gx(/VWZAW WHZ, A" + gW)WZA(WV_W;j_ + h.c.)A” Z*
G ha (W Z AW — APW )
+ v -V
WA (ZYW P — Z0W ) 4 he) (A.5)
with
(1) _ 92 Sw S%W
Iwwww = 252 + 4 8A2 (fw + e few — 3255 fe1)
(2) —3g ot
dJwwww — 2A2 fWWW
i A2 A2 252 524, C2
Wwrs = 2622 ERT (cwfw + 22 fow W 2i§VC2:',VVf<1> 1)
e"c 4v2A2 §2.1,C2
gI(/V)WZZ = 25\:\}/: ;|_29 oy ( WfW + 2CQWfBW — 2?27\223‘;]% 1)
-3
Qéli)wzz = ngfWWW (A.6)
9(3) AA T B - fwww
ww - A2
S 52
gI(/Il/)WZA = —¢ _4g — ¥ (fw + cgvvvv fw — %622\/\\762 fon)
62 V™ SW 5
Gvwza = 5+ L8 (fW + 25 fow — gz o)
— 48 C
gI(/I?})I/VZA = waww :

Finally Higgs self interactions take the form:

S = G+ iy H (O, H) (0" H) (A7)
(A8
LHIM = g HY + 9 H? (0, H) (0" H) (A.9)
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X+ G (B far + 2 fas + D+ 2 fod)
(a1 o+ o]
ﬁ(%f‘b,l + f¢,2 + %f‘I’A)

—3+ oMo + 5 fas + 20 oo+ Mfoa)
M (VEGR) 1+ $nlfus + Hfoa + foa)
4—/1XQ(f<1>71 + 2f<1>,2 + f¢,4>‘

(A.10)
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Appendix B

Projections for LHC14

In this Appendix we summarize our contribution to the Energy Frontier work-
ing group on the Community Summer Study (Snowmass). In this study we
assessed the impact of Higgs physics on the TGC determination at the LHC
with a center—of—mass energy of 14 TeV and integrated luminosities of 300
fb=1 and 3000 fb—1.

For the sake of simplicity we fit the ATLAS and CMS expected sensi-
tivities [I33], 134] for the Higgs signal strength using a reduced set of four
independent operators { Ogc , Oww ,0p5 , Ow } and setting the Yukawa
couplings to their SM values. This simplified scenario captures most of the
features of fits that we presented in Chapter [5| while keeping the analysis time

efficient.

68% CL allowed range 95% CL allowed range
300 fb~1 3000 fb~! 300 fb~1 3000 b=t
F,JAT (Tev-2) | (—0.33,0.31) U | (=0.17,0.17) U | (—0.74,0.86) U | (—0.33,0.34) U
(22.40,23.04) (22.54,22.88) (21.85,23.45) (22.36,23.04)
Forw JAZ (Tev—2) | (—0.043,0.044) | (—0.023,0.022) | (—0.003,0.096)U | (—0.045, 0.044)
(2.75,2.82)
(
(

F /AT (Tev=2) | (=1.9,2.5) (—0.75,0.83)
Fu/NZ (Tev=2) | (—2.0,25) (—0.78,0.85)

34,91 (—1.39,1.82)
11.7,7.5) (—6.0,—4.1) U
(—1.5,1.8)

Table B.1: 68% CL and 95% expected allowed ranges for 300 and 3000 fb~!
of integrated luminosity.

Figure displays Ax? as a function of the four fitting parameters for
integrated luminosities of 300 fb™! (upper row) and 3000 fb~! (lower row).
The corresponding 68% CL and 95% expected allowed ranges can be found
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Figure B.1: Ax? as a function of f,, fww, fw, and fp assuming fyo = fr =
fiop = 0, after marginalizing over the three undisplayed parameters. The three
horizontal dashed lines stand for the Ax? values associated with 68%, 90% and
95% from bottom to top respectively. The upper (lower) row was obtained for
an integrated luminosity of 300 (3000) fb~!.

in Tab. We observe in the upper and lower left panels that the Ay?
as a function of f, exhibits two degenerate minima due to the interference
between SM and anomalous contributions to gg — H production, as was the
case in Chapter . In the case of the x¥? dependence on fiyw there is also an
interference between anomalous and SM contributions to H — 77, however,
the degeneracy of the minima is lifted since the fyw coupling contributes also
to Higgs decays into WW™*, ZZ* and vZ, as well as in Vh associated and
vector boson fusion production mechanisms. Clearly larger statistics help to
eliminate the degeneracy in fy. The interference between fp and the SM
contribution to H — 7 is responsible for the two local minima with smaller
Ax? while the additional minima in the upper right panel originate from the

marginalization of fyy. Comparing the upper and lower rows, we can see
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that a larger integrated luminosity also helps to significantly reduce the errors

in the determination of the anomalous couplings.
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Figure B.2: Ax? as a function of branching ratios (left panels) and production
cross sections (right panels) when we use only the expected ATLAS and CMS
sensitivity on the Higgs signal strengths for integrated luminosities of 300 fb~1
(upper row) and 3000 fb~! (lower row).

Figure depicts the y? dependence on branching ratios and production
cross sections for integrated luminosities of 300 fb~! and 3000 fb~!. As we can
see these quantities can be determined with a precision better than 20% (5%)
with 300 (3000) fb~!. The only exception is the Higgs branching ratio into Zv
that can be measured only within 20% with 3000 fb~!. These results show the
consistency of the extracted accuracies in the production cross sections and
branching ratios in the dimension—six operator framework with those obtained
by the experimental collaborations in their simulations [133] [134] assuming a
shift of the SM couplings.

Next we focus our attention to the expected TGC bounds which can be
derived from this analysis of the Higgs data. Eq. allows us to translate
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Figure B.3: We present the expected 90%, 95%, 99%, and 3¢ allowed regions
for the Ar., ® Ag{ plane from the analysis of the Higgs data from LHC at 14
TeV with integrated luminosities of 300 fb™! (left panel) and 3000 fb=! (right
panel).

the constraints on fy and fg coming from the Higgs measurements to bounds
on Ak, Arz and Ag? of which only two are independent. Fig. displays
the results of this exercise where we plot the 90%, 95%, 99%, and 30 CL
allowed region in the plane A, ® Agf after marginalizing over the other two
parameters relevant to the Higgs analysis, i.e. f, and fiw. Notice that the
two almost degenerate local minima in fg lead to the appearance of two narrow
disconnected regions due to the high precision achieved with 3000 fb~1.
Clearly the analysis of the Higgs data alone can improve the present best
bounds on TGCs which are still given by the LEP results. Further improve-
ment will come from combining the Higgs results with those from direct studies
of the TGCs which will be done once the results of the study of the capabilities
of the LHC14 runs to constraints the TGCs from diboson production in this

scenario are available.
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