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Abstract of the Dissertation

Effective Lagrangians for Higgs Physics

by

Tyler Corbett

Doctor of Philosophy

in

Physics

Stony Brook University

2015

The Large Hadron Collider has found an exciting excess at around

125 GeV. This excess appeared early on to behave as the long

sought Higgs boson and with the 7 and 8 TeV data sets has been

shown to behave very much like the Higgs boson responsible for

the mass of the fundamental particles of the Standard Model. As

the data continued to converge to the Standard Model predictions

it became important to try and classify possible small deviations

from the expected behavior. A manner of doing so, consistent with

the symmetries of the Standard Model, is the use of effective field

theories. Effective field theories are able to constrain the presence

of new physics without directly probing the new physics energy

scale. They are valid both for scenarios with new fundamental

physics such as supersymmetry or new gauge sectors, as well as new

strongly interacting scenarios where the degrees of freedom may

present as pseudo Goldstone bosons of some new global symmetry

such as composite Higgs models.
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In this dissertation we work in the effective field theory framework

and using the available experimental data we place bounds on the

coefficients of the relevant effective operators for Higgs physics.

We consider two complementary realizations of the effective field

theory: the linear realization, appropriate for a fundamental Higgs

and new fundamental particles such as those predicted by super-

symmetry, and the chiral or nonlinear realization, appropriate for

composite Higgs scenarios. Additionally, by considering the ef-

fects of the new operators on other sectors, like triple gauge cou-

pling data and electroweak precision data, we are able to further

test the framework and devise signatures with potential to dis-

criminate between the realizations. Finally we look at constraints

on the operator coefficients from perturbative unitarity considera-

tions, allowing us to then apply the results from our data analysis

to predict the lowest energies at which perturbative unitarity may

be violated signaling the possibility of new physics at energies con-

sistent with those which will be probed during the impending Run

2 of the Large Hadron Collider.
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5. T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia,

Phys. Rev. D 86, 075013 (2012) [arXiv:1207.1344 [hep-ph]].

Additional work completed in the duration of the author’s PhD career:

1. M. Baak, A. Blondel, A. Bodek, R. Caputo, T. Corbett, C. Degrande,

O. Eboli and J. Erler et al., arXiv:1310.6708 [hep-ph].

2. T. Corbett, O. J. P. boli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia,

arXiv:1306.0006 [hep-ph].

v



To my mother and father.

vi



Contents

List of Figures ix

List of Tables xiii

Acknowledgements xvi

1 Introduction 1

1.1 The Standard Model and the Higgs Mechanism of Electroweak

Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Effective Field Theories . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Integrating Out Heavy Fields . . . . . . . . . . . . . . 11

1.2.2 Electroweak Chiral Lagrangian . . . . . . . . . . . . . 14

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Effective Lagrangian with an Elementary Higgs: The Linear

Realization 17

2.1 The Effective Lagrangian . . . . . . . . . . . . . . . . . . . . . 18

2.2 Effective Vertices . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Electroweak Parameters: S, T, U . . . . . . . . . . . . . . . . 25

2.4 The Choice of Basis and the Application of Precision Data . . 29

2.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 34

3 Effective Lagrangian for a Dynamical Higgs: Chiral Expansion 36

3.1 The Chiral Basis . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Relating the Chiral and Linear Expansions . . . . . . . . . . . 41

3.3 Effective Vertices . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Discriminating Signatures . . . . . . . . . . . . . . . . . . . . 46

vii



3.4.1 Differences in TGV . . . . . . . . . . . . . . . . . . . . 46

3.4.2 (De)correlation Between HVV and TGV . . . . . . . . 47

3.4.3 Quartic Gauge Boson Couplings . . . . . . . . . . . . . 49

3.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 50

4 The Analysis Framework 52

4.1 Inclusion of Higgs Collider Data . . . . . . . . . . . . . . . . . 52

4.2 Inclusion of Triple Gauge Coupling Data . . . . . . . . . . . . 61

4.3 Inclusion of Electroweak Precision Data . . . . . . . . . . . . . 62

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Status After LHC 7 and 8 TeV Runs 64

5.1 Results in the Linear Expansion . . . . . . . . . . . . . . . . . 64

5.1.1 Bosonic Dimension–Six Operator Analysis . . . . . . . 65

5.1.2 Including Fermionic Operators . . . . . . . . . . . . . . 71

5.2 Implications for Triple Gauge Couplings . . . . . . . . . . . . 73

5.3 Results in the Chiral Expansion . . . . . . . . . . . . . . . . . 76

5.4 Discriminating Signatures . . . . . . . . . . . . . . . . . . . . 79

5.4.1 (De)correlation Between HVV and TGV . . . . . . . . 79

5.4.2 ξ2-weighted Couplings: LHC potential to study gZ5 . . 81

5.4.3 Anomalous Quartic Couplings . . . . . . . . . . . . . . 84

5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 85

6 Unitarity Considerations 87

6.1 The Relevant Operator Basis . . . . . . . . . . . . . . . . . . 87

6.2 Brief Review of Partial Wave Unitarity . . . . . . . . . . . . . 88

6.3 The Unitarity Violating Amplitudes . . . . . . . . . . . . . . . 92

6.4 Constraints from Perturbative Unitarity . . . . . . . . . . . . 95

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusions 101

A Anomalous Interactions in the Linear Expansion 105

B Projections for LHC14 109

Bibliography 113

viii



List of Figures

4.1 Cross sections for the dominant production channels in the SM

at the LHC at 7 TeV as a function of MH . . . . . . . . . . . 55

4.2 Decay branching ratios for the SM Higgs as a function of MH . 55

5.1 ∆χ2 dependence on the fit parameters considering all Higgs col-

lider (ATLAS, CMS and Tevatron) data (solid red line), Higgs

collider and TGV data (dashed purple line) and Higgs collider,

TGV and EWP data (dotted blue line). The rows depict the

∆χ2 dependence with respect to the fit parameter shown on

the left of the row with the anomalous couplings f/Λ2 given in

TeV−2. In the first column we use fg, fWW , fBB, fW , fB, and

fΦ,2 as fit parameters with fbot = fτ = 0. In the second column

the fitting parameters are fg, fWW = −fBB, fW , fB, fΦ,2, and

fbot with fτ = 0. In the panels of the right column we fit the

data in terms of fg, fWW = −fBB, fW , fB, fΦ,2, fbot, and fτ . 66

5.2 Chi–square dependence on the Higgs branching ratios (left pan-

els) and production cross sections (right panels) when we con-

sider all Higgs collider and TGV data. In the upper panels we

have used fg, fWW , fBB, fW , fB, and fΦ,2 as fitting param-

eters with fbot = fτ = 0, while in the middle panels the fit

parameters are fg, fWW = −fBB, fW , fB, fΦ,2, and fbot with

fτ = 0. In the lower row we parametrize the data in terms of

fg, fWW = −fBB, fW , fB, fΦ,2, fbot, and fτ . The dependence

of ∆χ2 on the branching ratio to the fermions not considered

in the analysis arises from the effect of the other parameters in

the total decay width. . . . . . . . . . . . . . . . . . . . . . . 68

ix



5.3 We display the 95% and 99% CL allowed regions in the plane

fWW×fBB when we fit the Higgs collider data varying fg, fWW ,

fBB, fW , fB, and fΦ,2. The star indicates the global minimum.

We have marginalized over the undisplayed parameters. . . . 69

5.4 We present the 68%, 90%, 95%, and 99% CL allowed regions

in the plane fg × fΦ,2 when we fit the Higgs collider and TGV

data varying fg, fWW , fBB, fW , fB, and fΦ,2. The stars indicate

the global minima. We have marginalized over the undisplayed

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 In the left (right) panel we present the 68%, 90%, 95%, and 99%

CL allowed regions in the plane σano
gg /σ

SM
gg ×Br(h→ γγ)ano/Br(h→

γγ)SM when we fit the Higgs collider and TGV data varying

fg, fWW , fBB, fW , fB, and fΦ,2 (fg, fWW = −fBB, fW , fB,

fΦ,2, and fbot). The stars indicate the global minima. We have

marginalized over the undisplayed parameters. . . . . . . . . . 71

5.6 We present the 68%, 90%, 95%, and 99% CL allowed regions

in the plane fbot × fg from the Higgs collider and TGV data

varying fg, fW , fB, fWW = −fBB, fΦ,2, and fbot. The stars

indicate the global minima. We have marginalized over the

undisplayed parameters. . . . . . . . . . . . . . . . . . . . . . 73

5.7 The 95% C.L. allowed regions (2 d.o.f.) on the plane ∆κγ×∆gZ1

from the analysis of the Higgs data from the LHC and Tevatron

(filled region) together with the relevant bounds from different

TGC studies from collider experiments as labeled in the figure.

We also show the estimated constraints obtainable by combining

these bounds (hatched region). . . . . . . . . . . . . . . . . . . 75

5.8 ∆χ2 dependence on the coefficients of the seven bosonic opera-

tors in Eq. (5.6) from the analysis of all Higgs collider (ATLAS,

CMS and Tevatron) data. In each panel, we have marginal-

ized over the five undisplayed variables. The six upper (lower)

panels corresponds to analysis with Set A (B). In each panel

the red solid (blue dotted) line stands for the analysis with the

discrete parameter sY = +(−)1. . . . . . . . . . . . . . . . . . 78

x



5.9 Left: A NP sensor insensitive to the type of expansion – con-

straints from TGV and Higgs data on the combinations ΣB =

4(2c2 + a4) and ΣW = 2(2c3 − a5), which converge to fB and

fW in the linear d = 6 limit. The dot at (0, 0) signals the

SM expectation. Right: A non–linear versus linear discrimi-

nator – constraints on the combinations ∆B = 4(2c2 − a4) and

∆W = 2(2c3 + a5), which would take zero values in the linear

(order d = 6) limit (as well as in the SM), indicated by the dot

at (0, 0). For both figures the lower left panel shows the two–

dimensional allowed regions at 68%, 90%, 95%, and 99% CL

after marginalization with respect to the other six parameters

(aG, aW , aB, cH , ∆B, and ∆W ) and (aG, aW , aB, cH , ΣB, and

ΣW ) respectively. The star corresponds to the best fit point

of the analysis. The upper left and lower right panels give the

corresponding one–dimensional projections over each of the two

combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.10 The left (right) panel displays the number of expected events as

a function of the Z transverse momentum for a center–of–mass

energy of 7 (14) TeV, assuming an integrated luminosity of 4.64

(300) fb−1. The black histogram corresponds to the sum of all

background sources except for the SM electroweak pp→ W±Z

process, while the red histogram corresponds to the sum of all

SM backgrounds, and the dashed distribution corresponds to

the addition of the anomalous signal for gZ5 = 0.2 (gZ5 = 0.1).

The last bin contains all the events with pZT > 180 GeV. . . . . 84

B.1 ∆χ2 as a function of fg, fWW , fW , and fB assuming fbot =

fτ = ftop = 0, after marginalizing over the three undisplayed

parameters. The three horizontal dashed lines stand for the

∆χ2 values associated with 68%, 90% and 95% from bottom to

top respectively. The upper (lower) row was obtained for an

integrated luminosity of 300 (3000) fb−1. . . . . . . . . . . . 110

xi



B.2 ∆χ2 as a function of branching ratios (left panels) and produc-

tion cross sections (right panels) when we use only the expected

ATLAS and CMS sensitivity on the Higgs signal strengths for

integrated luminosities of 300 fb−1 (upper row) and 3000 fb−1

(lower row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.3 We present the expected 90%, 95%, 99%, and 3σ allowed regions

for the ∆κγ ⊗ ∆gZ1 plane from the analysis of the Higgs data

from LHC at 14 TeV with integrated luminosities of 300 fb−1

(left panel) and 3000 fb−1 (right panel). . . . . . . . . . . . . . 112

xii



List of Tables

1.1 Fermion fields of the SM with their charges under the U(1)Y ,

SU(2)L, and SU(3)C gauge symmetries of the SM. . . . . . . 3

3.1 The trilinear Higgs–gauge boson couplings defined in Eq. (2.18).

The coefficients in the second column are common to both the

chiral and linear expansions. The contributions from the oper-

ators weighted by ξ and ξ2 are listed in the third and fourth

columns respectively. For comparison, the last column shows

the corresponding expressions for the linear expansion at order

d=6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Effective couplings parameterizing the VW+W− vertices de-

fined in Eqs. (2.38) and (3.23). The coefficients in the second

column are common to both the chiral and linear expansions.

In the third and fourth columns the specific contributions from

the operators in the chiral Lagrangian are shown. For compari-

son the last column shows the corresponding contributions from

the linear d=6 operators. . . . . . . . . . . . . . . . . . . . . . 46

3.3 Effective couplings parametrizing the vertices of four gauge bosons

defined in Eq. (3.30). The contributions from the operators

weighted by ξ and ξ≥2 are listed in the third and fourth columns,

respectively. For comparison, the last column exhibits the cor-

responding expressions for the linear expansion at order d = 6

(see Eq. (A.6)). . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Results included in the analysis for the Higgs decay modes listed

except for the γγ channels. . . . . . . . . . . . . . . . . . . . . 54

4.2 H → γγ results from ATLAS [1, 2] included in our analysis. . 54

xiii



4.3 H → γγ results from CMS [3] included in our analysis. . . . . 56

4.4 Weight of each production mechanism for the different γγ cate-

gories in the ATLAS analyses of the 7 TeV data (upper values)

and 8 TeV (lower values). For the 8 TeV analysis three new

exclusive categories enriched in vector boson associated produc-

tion were added with the 2-jets low mass (lepton tagged) [Emiss
T

significance] category being built to select hadronic (leptonic)

[invisible] decays of the associated vector boson. . . . . . . . 59

4.5 Weight of each production mechanism for the different γγ cate-

gories in the CMS analyses of the 7 TeV data (upper values) and

8 TeV (lower values). εV H = εZH = εWH . For the pp → γγjj

category the 8 TeV data was divided in two independent sub-

samples labeled as “loose” and “tight” according to the require-

ment on the minimum transverse momentum of the softer jet

and the minimum dijet invariant mass. For the 8 TeV analysis

three new exclusive categories were added enriched in vector

boson associated production: µ–tag, e–tag and Emiss
T –tag. . . 60

5.1 Best fit values and 90% CL allowed ranges for the combination

of all available Tevatron and LHC Higgs data as well as TGV. 69

5.2 90% CL allowed ranges of the coefficients of the operators con-

tributing to Higgs data (aG, a4, a5, aW , aB, and cH) and TGV

data (c2 and c3). For a4, a5, aW , and aB the range is almost the

same for both sets and signs of sY . . . . . . . . . . . . . . . . 79

5.3 Values of the cross section predictions for the process pp →
`′±`+`−Emiss

T after applying all the cuts described in the text.

σSM is the SM contribution coming from EW W±Z production,

σint is the interference between this SM process and the anoma-

lous gZ5 contribution, σano is the pure anomalous contribution

and σbck corresponds to all background sources except for the

SM EW W±Z production. . . . . . . . . . . . . . . . . . . . . 83

xiv



6.1 Unitarity violating (growing as s) terms of the scattering am-

plitudes M(V1λ1
V2λ2

→ V3λ3
V4λ4

) for longitudinal gauge bosons

generated by the operators OΦ,2 and OΦ,4 where X = 1− cos θ

and Y = 1 + cos θ. The overall factor extracted from all ampli-

tudes is given at the top of the table. . . . . . . . . . . . . . . 91

6.2 Unitarity violating (growing as s) terms of the scattering am-

plitudes M(V1λ1
V2λ2

→ V3λ3
V4λ4

) for gauge bosons with the

helicities λ1λ2λ3λ4 listed on top of each column, generated by

the operator OW . Notation as previous Table. . . . . . . . . . 92

6.3 Same as Tab. 6.2 for the operator OB. . . . . . . . . . . . . . 93

6.4 Same as Tab. 6.2 for the operators OWW and OBB. . . . . . . 94

6.5 Same as Tab. 6.2 for the operator OWWW . . . . . . . . . . . . 94

6.6 Unitarity violating (growing as s) terms of the scattering am-

plitudes M(f1σ1
f̄2σ2
→ V3λ3

V4λ4
) for fermions and gauge bosons

with the helicities σ1σ2λ3λ4 given in the second column. . . . 95

B.1 68% CL and 95% expected allowed ranges for 300 and 3000 fb−1

of integrated luminosity. . . . . . . . . . . . . . . . . . . . . . 109

xv



Acknowledgements

This work would not have been possible without all of the positive influences

in my life. I would like to begin by thanking all of my friends and family who

have been my support base throughout my studies.

I must also thank all of my mentors in my academic career starting with

Roger Loucks who helped me build a solid foundation in physics at the un-

dergraduate level and worked so hard to be the best possible educator he

could for myself and all of his students. Additionally, I am indebted to all the

other professors who have taught me and taken the time to help me to better

understand physics both in and out of the classroom.

I thank Juan Gonzalez–Fraile for helping me work through the first steps

of becoming a researcher and each step thereafter, for being a friend and

colleague. I would also like to thank all of my collaborators for allowing me

the opportunity to work with them. In particular Oscar Éboli with whom I
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Chapter 1

Introduction

March 2010 marked the beginning of the Large Hadron Collider (LHC) era

with the first recorded 7 TeV collisions. After just over two years of taking

data, the experiments, ATLAS and CMS, announced an approximately 5σ

signal for the observation of a new particle [4, 5]. This particle appears to

behave as the long sought Higgs boson. The Higgs boson is the excitation of

the Higgs field which, through the Higgs mechanism, allows for the generation

of masses for the Standard Model (SM) gauge bosons and fermions [6–11].

These masses are, without some symmetry breaking mechanism, forbidden by

the SU(3)C ×SU(2)L×U(1)Y/2 SM gauge symmetry. Additionally, the Higgs

mechanism allows for the careful cancellation of the center of mass energy (
√
s)

divergent amplitudes of longitudinal gauge boson scattering thereby ensuring

perturbative unitarity for the SM.

Since the announcement, where the combination of all decay channels was

approximately the 5σ required to achieve the status of discovery in particle

physics, a vast improvement in the measurements of the properties of the Higgs

has occurred. Consistent with the SM, spin and CP measurements favor spin

zero and CP even properties for the observed particle [12, 13]. Additionally

the decays of the Higgs are consistent with the SM: the Higgs decays to γγ,

ZZ, and WW are now measured above the 5σ threshold individually1, with

their current values at 5.7σ (5.2σ) [3, 14], 4.3σ (6.1σ) [15, 16], and 6.8σ (8.1σ)

[17, 18] respectively for the CMS (ATLAS) experiment at the LHC with respect

to the null, or no Higgs, hypothesis. Each channel is consistent with the SM

1In the highest resolution channels, excepting the CMS WW → `ν`ν.
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prediction at around the 1σ level suggesting that the observed resonance is in

fact related to electroweak symmetry breaking (EWSB).

In the fermionic channels, where the signal is smaller or diluted by large

SM backgrounds, the picture is less clear. However, the H → ττ decay is

observed with an about 3.2σ (4.5σ) [19, 20] excess above the null hypothesis

and for H → bb there is an observed 2.1σ (1.4σ) excess for the CMS (ATLAS)

experiment. Again these decay rates are consistent with the SM prediction at

the 1σ level indicating the observed resonance may be responsible for fermion

mass generation as well.

Many other decay channels remain to be measured with higher precision

as well as identifying the significance of the production cross sections. With

the impending start of the LHC Run 2 (injection tests are currently under-

way) these measurements are among the most exciting and anticipated for the

coming three year run.

The Higgs mechanism is not the only scenario in which EWSB may be

realized. In fact many theorists use the concept of “fine tuning,” or the hi-

erarchy problem, to motivate extensions of the SM. The hierarchy problem is

based in the aesthetics of the Higgs mechanism, in particular because of large

corrections to the Higgs mass from the heavier fields in the theory its mass re-

ceives large corrections proportional to the cut–off scale squared of the theory

which is frequently taken to the be Planck or grand unified scale. This large

mass correction then indicates that the Higgs mass, a parameter of the SM,

must be adjusted to an extraordinary number of decimal places. While rooted

in aesthetics this principle is a reasonable guide in the absence of new physics

(NP) signals before and after the discovery of the Higgs boson. This principle

has led to the formulation of a plethora of beyond the Standard Model (BSM)

theories such as, for example, supersymmetric (SUSY) models and strongly in-

teracting theories to break the electroweak symmetry and potentially generate

composite Higgses. At present no new states associated with these extensions

have been found.

In lieu of the direct observation of NP to guide theoretical discourse, it

becomes necessary to introduce a system for quantifying divergences from the

SM in a systematic manner. In this dissertation we make use of the framework

of Effective Field Theories (EFTs), where the behavior of potential NP is

2



assumed to be realized at some high energy scale which is not directly probed

by experiment, and which allow us to quantify these divergences and guide

future experimental searches and design.

1.1 The Standard Model and the Higgs Mech-

anism of Electroweak Symmetry Breaking

Here we briefly review the formulation of the SM, focusing on the Higgs mech-

anism for spontaneous symmetry breaking. We begin with the gauge group

of the SM, U(1)Y/2 × SU(2)L × SU(3)C . Here U(1)Y/2 × SU(2)L is associated

with the Weinberg–Salam–Glashow model of the electroweak interactions. It

describes the W±, Z, and photon of the SM. All fermions interact with the

U(1)Y/2 gauge field, while only left handed fermions interact via the SU(2)L

gauge fields indicated by the subscript L. SU(3)C is distinguished from the

other gauge groups in that only the quarks experience the “color force” indi-

cated by the subscript C.

In order to write all the charges for the fermionic content of the SM we

group the left handed fields into lepton and quark doublets:

LL =

(
νL

eL

)
and QL =

(
uL

dL

)
(1.1)

Where νL, eL, uL, and dL are the left handed part of the Dirac spinors cor-

responding to the neutrino, electron, up–quark, and down–quark. With this

in mind we collect the charges for the fermionic field content in Tab. 1.1. We

Field U(1)Y SU(2)L SU(3)C

LL -1 2 1
QL 1/3 2 3
eR -2 1 1
uR 4/3 1 3
dR -2/3 1 3

Table 1.1: Fermion fields of the SM with their charges under the U(1)Y ,
SU(2)L, and SU(3)C gauge symmetries of the SM.

note that in Tab. 1.1 there is no mention of a possible νR. This is a reflection
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that, at the time of the conception of the SM, neutrinos were believed to be

massless and only produced in a left handed helicity which would therefore

be preserved. Current bounds placing the absolute neutrino mass scale at less

than or at the order of 1 eV make this a justified treatment for the purpose of

this dissertation.

In the SM there are three generations for each type of fermion mentioned

above. These are distinguished only by mass, i.e. they have the same charges

under the SM. Therefore we refrain from further discussion of the three gen-

erations until our discussion of the Yukawa couplings and mass generation via

the Higgs mechanism.

The kinetic and gauge interaction terms of the fermions are given by:

Lfermion = iēR /DeR + iL̄L /DLL + iūR /DuR + id̄R /DdR + iQ̄L /DQL, (1.2)

where /D = γµDµ, Dµ is the covariant derivative, and γµ are the Dirac gamma

matrices. The covariant derivative acting on each fermion is given by:

DµeR =
(
∂µ + ig

′

2
YeBµ

)
eR,

DµLL =
(
∂µ + ig

′

2
YLBµ + ig

2
Wµ

)
LL,

DµuR =
(
∂µ + ig

′

2
YuBµ + igs

2
Gµ

)
uR,

DµdR =
(
∂µ + ig

′

2
YdBµ + igs

2
Gµ

)
dR,

DµQL =
(
∂µ + ig

′

2
YQBµ + ig

2
Wµ + igs

2
Gµ

)
QL.

(1.3)

Here we have written the hypercharges from Tab. 1.1 as Yf , and have used the

abbreviations Wµ and Gµ in the place of τ
a

2
W a
µ and λa

2
Ga
µ where τa with a = 1, 3

and λa with a = 1, 8 are the Pauli and Gell–Mann matrices respectively, and

an implicit color index is assumed for the quark fields. g, g′, and gs are the

gauge couplings of SU(2)L, U(1)Y/2, and SU(3)C respectively.

The pure gauge part of the SM Lagrangian reads:

LGauge = −1

4
BµνB

µν − 1

4
W i
µνW

iµν − 1

4
Gc
µνG

cµν , (1.4)
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with the stress tensors given by

Bµν = ∂µBν − ∂νBµ ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν ,

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν .

(1.5)

Here (εijk) and (fabc) are the structure constants of SU(2)L and SU(3)C re-

spectively.

Lagragians Eq. (1.2) and Eq. (1.4) are invariant under local U(1)Y/2 ×
SU(2)L × SU(3)C which transform the fermion fields, ψ, as

ψ → exp

[
−i
(
g′

2
YψθY (x) + g

τa
2
θaw(x) + gs

λa
2
θas (x)

)]
ψ (1.6)

provided the gauge fields transform as

Bµ(x)→ Bµ(x) + ∂µθY (x)

W a
µ (x)→ W a

µ (x) + ∂µθ
a
w(x) + gεabcθbw(x)W c

µ(x)

Ga
µ(x)→ Ga

µ(x) + ∂µθ
a
s (x) + gsf

abcθbs(x)Gc
µ(x)

(1.7)

From here we change our basis of gauge bosons by defining the W± in terms

of the W 1 and W 2 along with mixing the W 3 and B to form the Z and photon

of the SM. In order to do so we use the definitions:

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) ,

Zµ = 1√
g2+g′2

(gW 3
µ − g′Bµ) ,

Aµ = 1√
g2+g′2

(g′W 3
µ + gBµ).

(1.8)

We now have constructed the electroweak theory as well as the QCD interac-

tions in the quark sector. After the formulation of this model the only missing

components were the observed masses for the W and Z gauge bosons and the

masses for the fermions forbidden by the gauge symmetry. Clearly a mass

term for the gauge bosons, m2
V VµV

µ will not be invariant under the gauge

transformation of Eq. (1.7). As for fermions, looking at a potential fermion

mass Lagrangian,

LMass = −mf̄f = −m
(
f̄LfR + f̄RfL

)
, (1.9)
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we see that the mass terms mix the left–handed doublet with the singlet right–

handed fields. This explicitly violates SU(2)L gauge symmetry, thus rendering

the theory non–renormalizable.

The well–known solution allowing for mass generation for the W and Z

gauge bosons, and the fermions is the Higgs mechanism. For that we introduce

another field, a complex scalar doublet Φ. This field is charged under both

SU(2)L and U(1)Y/2 (with YΦ = 1). Therefore the covariant derivative of Φ

takes the form:

DµΦ =

(
∂µ + i

g′

2
YΦBµ + i

g

2
Wµ

)
Φ (1.10)

Then we may write a gauge kinetic term for the new scalar doublet with an

arbitrary potential, V (Φ), as,

LS = (DµΦ)†(DµΦ)− V (Φ), (1.11)

where for the complex scalar doublet we assume a form,

Φ =

(
Φ+

Φ0

)
. (1.12)

The most general form of a renormalizable scalar potential compatible with

the gauge symmetries is:

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2. (1.13)

For µ2 < 0 the state with minimum energy is not located at Φ = 0, but at

some value satisfying

〈|Φ†Φ|〉 ≡ v2

2
=
−µ2

2λ
, (1.14)

where v is called the vacuum expectation value (vev) of Φ. Only the absolute

value but not the direction of the mininum in the SU(2)L space is determined

by the minimum condition. By choosing a direction for the ground state Φ0

we will spontaneously break the global SU(2)L symmetry of the Lagrangian.

We make the choice of direction for the minimum as

Φ0 =
1√
2

(
0

v

)
. (1.15)
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The electromagnetic charge is defined by the operator Q = (τ3 + Y )/2. Ap-

plying this operator to Φ0 we obtain QΦ0 = 0. Therefore, given this choice

for the direction of the ground state, the vacuum remains uncharged or equiv-

alently electromagnetism is unbroken by the scalar vev and we have achieved

the symmetry breaking pattern

SU(2)L × U(1)Y/2 → U(1)EM . (1.16)

In full generality we can write the complex scalar doublet in terms of the

vev and the other components of the doublet as

Φ =
1√
2

exp

[
iπ(x) · τ

v

](
0

v + h(x)

)
(1.17)

where h and πa are four real fields. In the absence of the gauge symmetry πa

would be the goldstone boson fields of the broken global SU(2)L symmetry.

Instead because of gauge invariance, plugging Eq. (1.17) in Eq. (1.11) one finds

that all the dependence in the πa(x) fields can be reabsorved in a redefinition

of the gauge fields as in Eq. (1.7) with

g

2
θaw(x) =

πa(x)

v
. (1.18)

In this gauge (referred to as the unitary gauge) the electroweak gauge bosons

acquire a longitudinal component proportional to πa(x) and masses from the

pure vev part of Eq. (1.11)

LΦ =
1

2
(0, v)

(
g

2
Wµ +

g′

2
Bµ

)2
(

0

v

)
, (1.19)

which read:
M2

W = g2v2

4
,

M2
Z = (g2+g′2)v2

4
,

MA = 0.

(1.20)

We note that the photon remains massless as expected from the breaking

pattern Eq. (1.16) and required by observation. It is also important to note

that the Higgs–vector interactions are completely determined from the h and
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hh terms in LS, which will be a point of interest throughout this dissertation

as we will be looking for deviations from this behavior.

Also in this gauge the h-field acquires a mass,

M2
H = −2µ2 = 2λv2 (1.21)

The same mechanism allows the generation of fermion masses. As Φ is

charged under SU(2)L we may use the forms:

f̄LΦ = (f̄1, f̄2)

(
0

v + h

)
= f̄2(v + h), (1.22)

and

f̄LΦ̃ = if̄Lτ2Φ∗ = (f̄1, f̄2)

(
v + h

0

)
= f̄1(v + h). (1.23)

We first note that these two expressions are singlets of SU(2)L, this allows

us to multiply each by the corresponding right handed quarks and leptons to

generate masses when we select the part of the expanded complex doublet

corresponding to the vev. For example, if in Eq. (1.22) we associate fL with

LL or QL we may generate masses for the charged leptons or down–like quarks

along with inducing Higgs–fermion interactions. Similarly associating fL with

QL in Eq. (1.23) allows for the generation of masses for the up–like quark

along with Higgs–fermion interactions. Altogether we write the Yukawa terms

of the SM Lagrangian responsible for fermion masses as:

LY = −ydQ̄LΦdR − yeL̄LΦeL − yuQ̄LΦ̃uL + h.c. . (1.24)

As in the case of the gauge bosons, LY completely determines the Higgs–

fermion couplings, a prediction we will be testing throughout this dissertation.

Thus we have shown that with the Higgs mechanism we are able to generate

masses for the SM gauge bosons, W± and Z, along with the SM fermions

while simultaneously predicting its couplings to these fields. This dissertation,

however, will deal with quantifying deviations from these predictions of the

SM Higgs mechanism.

We finish this section by rewriting the scalar and Yukawa sectors of the

Standard Model Lagrangian in a non–linear representation. In order to do so
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we introduce a matrix, Σ, for the scalar field

Σ(x) = σ(x)U(x) ≡ σ(x) exp

[
iπ(x) · τ

v

]
. (1.25)

where σ(x) and πa(x) are four real fields. In terms of Σ we can write LS +LY

as:

LS + LY =
1

4
Tr
[
(DµΣ)(DµΣ)†

]
− µ2

4
Tr
[
ΣΣ†

]
− λ

8
Tr
[
ΣΣ†

]2
− 1√

2

(
Q̄LΣyQQR + h.c.

)
− 1√

2

(
L̄LΣyLLR + h.c.

)
,(1.26)

where the covariant derivative of Σ takes the form:

DµΣ(x) ≡ ∂µΣ(x) +
i

2
gW a

µ (x)τaΣ(x)− ig′

2
Bµ(x)Σ(x)τ3 , (1.27)

and we have used a compact notation for the right–handed fields by using

doublets QR and LR thus placing yQ and yL in two 6 × 6 block-diagonal

matrices containing the usual Yukawa couplings, yQ ≡ diag(yu, yd) and yL ≡
diag(0, ye). Notice that in defining the LR doublet we have introduced a

spurious right-handed neutrino field which, however, does not appear in the

Lagrangian in the unitary gauge.

Written in the form in Eq. (1.26) and in the limit of g′ = 0 it is explicit

that LS is invariant under chiral SU(2)L × SU(2)R transformations,

FL → LFL, FR → RFR, and Σ→ LΣR†, (1.28)

where FL,R = LL,R, QL,R. In Eq. (1.28) L and R are SU(2)L,R global transfor-

mations respectively. This symmetry is explictly broken by g′ and the Yukawa

matrices which are not proportional to the identity.

After spontaneous symmetry breaking σ(x) = v + h(x) and

LS + LY =
1

2

[
(∂µh)(∂µh) + 2µ2h2

]
− λvh3 − λ

4
h4

+
(v + h)2

4
Tr
[
(DµU)(DµU)†

]
(1.29)

−v + h√
2

[(
Q̄LUyQQR + h.c.

)
+
(
L̄LUyLLR + h.c.

)]
.
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with DµU given by Eq. (1.27) with the exchange of Σ to U .

The U matrix contains the would–be Goldstone boson fields πa(x). In the

unitary gauge U = I, and πa(x) become the longitudinal components of the

massive weak gauge bosons. In this gauge the W a
µW

µa part of the second line

in Eq. (1.29) gives precisely the mass terms for the gauge bosons in Eq. (1.20).

After spontaneous symmetry breaking (still in the limit of vanishing g′

and Yukawa couplings) the global chiral symmetry SU(2)L × SU(2)R of the

Lagrangian is broken to SU(2)V . It is this remaining symmetry, referred to

as custodial symmetry, that it is responsible for the electroweak parameter T

which we will introduced in Sec. 2.3 to be equal to one at tree–level.

1.2 Effective Field Theories

Effective Lagrangians are a useful method to represent in a simple way the

dynamical content of a theory in the low energy limit where the effects of high

energy dynamics can be systematically incorporated into a few constants. The

basic approach is to write out the most general set of Lagrangians consistent

with the symmetries of the theory. The important key ingredient is to identify

which are the relevant symmetries as they clearly depend on the assumptions

about the high-energy dynamics.

Effective field theories have been applied in areas throughout the SM the

most famous of which being the examples of the Fermi theory of weak in-

teractions and of chiral perturbation theory of strong interactions. Both of

these theories are formed by considering new effective operators respecting

the symmetries of the underlying dynamics and identifying their corresponding

operator coefficients, commonly referred to as low energy constants, through

experimental analyses. Eventually the Fermi theory of weak interactions trans-

formed into the electroweak part of the SM describing the low energy effects

of the exchange of the massive gauge bosons, the W s and Zs. Chiral per-

turbation theory is considered to be the low energy description of quantum

chromodynamics, the renormalizable theory of the quarks and gluons. Still

these effective theories resulted in predictive power when no complete under-

lying dynamics had yet been formulated or when, even if formulated, cannot

be treated perturbatively.
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1.2.1 Integrating Out Heavy Fields

When one is addressing the physics at some energy scale, one must explicitly

take into account all particles which can be produced at that energy. The

question is what is the effect of those states which are too heavy to be produced

at that energy.

To answer this question, we begin by postulating a theory containing light

degrees of freedom, `i, as well as a heavy degree of freedom which we will

denote by S. We may then write the general Lagrangian for such a theory as,

L = L` + LS + L`S, (1.30)

where L` contains the kinetic and interaction terms which only depend on the

light degrees of freedom. LS contains the kinetic terms for the heavy field, S,

and L`S contains all terms in the Lagrangian containing both the light degrees

of freedom and the heavy S.

For simplicity we choose the heavy degree of freedom to be connected to

the light degrees of freedom only via a term linear in S. We also choose S to

have no self–interactions. Therefore we may write the parts of the Lagrangian

containing S as:

L(S, J) = LS + L`S =
1

2

[
(∂µS)(∂µS)−M2

SS
2
]

+ JS. (1.31)

Here we have chosen J to represent some combination of the light fields, `i.

We may now write the effective action Zeff [`i] where we have integrated out

the heavy degrees of freedom as:

exp(iZeff [`i]) ≡
´

[dS] exp
[
i
´
d4xL(S(x), `i(x))

]
´

[dS] exp
[
i
´
d4xL(S(x), 0)

] . (1.32)

In order to calculate this integral we will complete the square, allowing us to

cancel the S dependent integrals, leaving only light degrees of freedom in our

effective action. In order to do so we first define some shorthand notations,

Dx = 2x +M2
S,

D−1
x J = −

´
d4y4F (x− y)J(y),

Dx4F (x− y) = −δ4(x− y),

(1.33)
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where 4F is the propagator. From here we use integration by parts to rewrite

the action as ˆ
d4xL(S, J) =

ˆ
d4x

[
−1

2
SDS + JS

]
. (1.34)

Pulling out the factor of 1/2 and adding 0 = JD−1J − JD−1J we obtain:

´
d4xL(S, J) = −

´
d4x1

2
[SDS − SJ − SJ + JD−1J − JD−1J ]

= −
´
d4x1

2
[SDS − SDD−1J −D−1JDS

+ D−1JDD−1J − JD−1J ]

= −
´
d4x1

2
[(S −D−1J)D(S −D−1J)− JD−1J ]

= −
´
d4x1

2
[S ′DS ′ − JD−1J ] ,

(1.35)

where in the second line we have integrated by parts resulting in the relation,

ˆ
d4x(JS) =

ˆ
d4x

[
(DD−1J)S

]
=

ˆ
d4x(DS)(D−1J), (1.36)

in the subsequent line we simply collected like terms, and in the final line we

have made the field redefinition S ′ = S −D−1J .

From here we may now rewrite the effective action as,

exp (iZeff [`i]) =

´
[dS ′] exp

[
− i

2

´
d4x (S ′DS ′ − JD−1J)

]
´

[dS] exp
[
− i

2

´
d4x (SDS)

] . (1.37)

As we are integrating over all values of the field at each point of spacetime we

may take [dS] = [dS ′] and cancel the S dependent parts, leaving us with:

exp (iZeff [`i]) = exp

[
i

2

ˆ
d4xJD−1J

]
. (1.38)

Or equivalently,

Zeff [J ] = −1

2

ˆ
d4xd4yJ(x)4F (x− y)J(y), (1.39)

where we have written out the form of D−1J from Eq. (1.33). Therefore we

have integrated out the S dependence for the low energy theory. Noting J is

peaked at small distances we may expand J as,

J(y) = J(x) + (y − x)µ[∂µJ(y)]y=x + · · · , (1.40)
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allowing us to then write the integral over x as:

Zeff [J ] = −1

2

ˆ
d4xd4yJ(x)4F (x−y)J(x)+ · · · =

ˆ
d4x

1

2M2
S

J(x)J(x)+ · · · .

(1.41)

Therefore we have successfully integrated out the heavy field dependence and

see that the remaining effects from the full theory appear in inverse powers

of the heavy mass and any couplings appearing in J , the combination of light

fields, dictating the interaction of the light degrees of freedom with S. The

resulting effective low energy theory then presents itself as that of L` plus a

series of higher dimension operators formed with the light degrees of freedom,

suppressed by powers of the new physics scale (i.e. the heavy mass), and

respecting the symmetries of the theory. When L` is gauge invariant this

construction is an example of a decoupling theory, as in the absence of S the

theory described by L` is renormalizable.

An archetype of an EFT of the type described here is the Fermi model

of beta decay where the heavy degree of freedom has been identified with

the fundamental particle now known as the W boson. In the SM beta decay

describes the process n → pe−ν̄e (or leptonic β decays like µ− → e−νµν̄e) via

an intermediate fundamental W–boson. For example from Eq. (1.41) we see

that given the following interactions from electroweak theory,

LWµνµ = g√
2
ν̄µγ

α 1
2
(1− γ5)µW−

α ,

LWeν = g√
2
ēγα 1

2
(1− γ5)νeW

+
α ,

(1.42)

the resulting Fermi four fermion interaction, after integrating out the W field,

is given by:

Leff = g2

8m2
W

[ν̄µγ
µ(1− γ5)µ] [ēγµ(1− γ5)νe]

= GF√
2

[ν̄µγ
µ(1− γ5)µ] [ēγµ(1− γ5)νe] ,

(1.43)

with GF ≡
√

2g2/8m2
W .

This is the form of the four-fermion interaction describing muon decay.

We note that the operator coefficient GF , known as the Fermi constant, has

mass dimension 1/M2, consistent with our previous discussion. Eq. (1.43) is

referred to as a dimension–six operator as the mass dimension of the field
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content of the operator adds to six. Measurements using muon decay indicate

GF ∼ 1.17 · 10−5 GeV−2. Using the relation between GF and g yields a W

mass of mW ∼ 80 GeV consistent with direct measurements of the W mass.

In Chapter 2 we will discuss the implications of this type of EFT expansion

for characterizing deviations from the SM prediction for Higgs physics.

1.2.2 Electroweak Chiral Lagrangian

Alternatively we may consider NP theories for which the new dynamics cannot

be treated perturbatively. In this case, as we do for strong interactions in the

SM, we may still attempt to build an effective Lagrangian for the light degrees

of freedom using as guidance the assumed global symmetries of the theory.

For example, let us take the SM Lagrangian written in the chiral form of

Eq. (1.29) but without the light scalar h degree of freedom (either because it is

heavy or just nonexistent). In this case the lagrangian for the pure would–be

Goldstone bosons reads

v2

4
Tr
[
(DµU)(DµU)†

]
(1.44)

which is invariant under the chiral symmetry SU(2)L × SU(2)R in the limit

of vanishing g′. One may think of this as the lowest order term of an infinite

series of operators constructed from U and DµU and respecting the same

global symmetry. As U is dimensionless, any higher dimensional operator

will arise with higher numbers of derivatives, the lowest order shown above

being quadratic and the next order being quartic. In this case the general

chiral Lagrangian can be organized by the dimensionality of the operators in

number of derivatives. At low energy, the higher the number of derivatives

in the operator the more suppressed its effect, and therefore the derivative

expansion becomes consistent.

In Ref. [21] and [22] the full list of operators which can be built in this

approach up to four derivatives including also the electroweak gauge field

strengths was systematically constructed. These works were motivated by

the possibility of the Higgs being very heavy, in some cases as a consequence

of its possible composite nature and therefore it was integrated out from the

low energy Lagrangian.
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In recent years renewed interest has grown in the construction of composite

models for the EWSB sector, but containing a light Higgs–like particle. In

these constructions the Higgs appears light as it is a pseudo–Goldstone boson

of a global symmetry of the new strongly interacting dynamics. Therefore,

contrary to the above discussion, the Higgs is present in the low energy EFT,

but the assumption of strongly interacting new physics still implies that we

build the EFT as a derivative expansion. Concrete examples of these types

of theories are Composite Higgs Models (CHMs) [23–32], for different strong

groups and symmetry breaking patterns, generically “little Higgs” models [33]

(see [34] for a review), and some higher dimensional scenarios can also be

considered in the category of constructions in which the Higgs is a Goldstone

boson.

In Chapter 3 we will present the basis of operators appropriate for such

a light composite Higgs originally derived in Ref. [35] and we will look at its

implications for Higgs physics.

1.3 Outline

In this dissertation we make use of the framework of EFTs for EWSB for

which NP related to the EWSB sector is assumed to be accessible at some

high energy scale which is not directly probed by experiment. EFTs will allow

us to characterize in a systematic way any divergences from the SM predictions.

The presentation is divided into five chapters in addition to this introduction.

Following the approach outlined in Sec. 1.2.1 in Chapter 2 we develop the

linear EFT appropriate for the physics of an elementary Higgs doublet. In

Chapter 3 we discuss the possibility of the Higgs as a pseudo–Goldstone boson

of some new strongly interacting sector and introduce an appropriate chiral

EFT for such a scenario following the approached outlined in Sec. 1.2.2. We

also discuss possible signals which can discriminate between both expansions.

Subsequently in Chapter 4 we develop an analysis framework for constrain-

ing these two EFTs’ operator expansions from the recent LHC collider Higgs

data, the Tevatron collider Higgs data, and the triple gauge boson scattering

data from the LEP experiment. Chapter 5 proceeds to apply this framework

to both the linear and chiral expansions. We also discuss the possibility of
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using the correlations between the Higgs and triple gauge couplings (TGCs)

in the linear realization to constrain the TGCs from the Higgs data. Finally

we quantify possible discriminators between the two expansions.

In Chapter 6 we study unitarity in the gauge boson scattering sector and

consider the implications the effective operators of the linear expansion have

on perturbative unitarity. In doing so we are able to constrain the coefficients

of the operators as a function of the scattering energy. Then by using the

experimental constraints obtained in Chapter 5 we place lower bounds on the

scale at which perturbative unitarity may be violated signaling the expectation

of NP or the breakdown of the perturbative approach.

The dissertation is complemented by two appendices. In the first, Ap-

pendix A, we expand the operators of the linear expansion, completing the

discussion begun in Chapter 2. The latter, Appendix B, includes projections

for the 14 TeV LHC analysis regarding the linear expansion and the related

TGV projections. Chapter 7 contains the conclusions of this dissertation.
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Chapter 2

Effective Lagrangian with an

Elementary Higgs: The Linear

Realization

We begin by extending the SM by the use of an EFT construction with the

assumption of the SM electroweak symmetry being linearly realized. As de-

scribed in the previous chapter EFTs have been identified as useful pertur-

bative tools for quantifying divergences from the behavior predicted by low

energy models. In order to form an EFT one assumes new physics (NP)

occurring at some new energy scale, ΛNP, and a linear EFT quantifies the di-

vergences from the low energy theory in a series expansion in 1/ΛNP as briefly

sketched in Sec. 1.2.1. For a sufficiently high NP scale relative to the energy

scale being probed this implies a well defined perturbative expansion. The

Lagrangian is then identified as the low energy theory with the addition of

new operators satisfying the symmetries of the underlying ultraviolet (UV)

model of the NP. For sufficiently low momenta relative to ΛNP the series can

be truncated at some order determined by the level of accuracy one desires in

calculations.

For our purposes an EFT with a linear realization of the electroweak sym-

metry describes a NP theory where the Higgs boson is still treated as a funda-

mental field transforming as a doublet under the electroweak gauge symmetry.

Additionally we make the assumption that it is a pure CP even scalar. We

begin by describing the Lagrangian appropriate for such a fundamental Higgs
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in Sec. 2.1 and we derive the relevant triple vertices generated after account-

ing for finite renormalization effects (Sec. 2.2). We discuss the contributions

of these operators to the electroweak precision parameters in Sec. 2.3. Subse-

quently in Sec. 2.4 we reduce the basis to that which is relevant for the Higgs

analysis performed in Chapter 5 by use of the equations of motion (EOM) and

the consideration of precision data.

2.1 The Effective Lagrangian

In this chapter we employ the operator basis introduced by Hagiwara, Ishihara,

Szalapski, and Zeppenfeld (HISZ) [36, 37] to parameterize deviations from the

SM. This basis contains 59 independent dimension–six (i.e. suppressed by

1/Λ2
NP) operators up to flavor, Hermition conjugation, and assuming baryon

and lepton numbers are not violated by the NP [38, 39]. Note that we begin

at dimension–six as the only dimension–five operator formed of the SM field

content is a Majorana mass term which explicitly violates Lepton number,

in contradiction with our assumption that Lepton number is not violated.

We also assume that dimension–eight operators’ effects are negligible at the

current level of precision available. Thus we start by adding the dimension–six

operators to the low energy, here the SM, Lagrangian:

Leff = LSM +
∑
n

fn
Λ2

On. (2.1)

Where the On represent the HISZ operator basis composed of the SM field con-

tent, i.e. gauge bosons, Higgs doublets, and fermionic fields, and (covariant–)

derivatives of these fields. In addition to the assumptions mentioned above we

will also impose on the HISZ basis that the operators be C– and P–even. This

leaves us with ten gauge–Higgs operators (nine electroweak and one gluon–H),

with an additional eleven operators when including fermions (up to flavor con-

siderations), that are relevant to Higgs processes. Additionally as we will see

there is one extra pure gauge operator relevant to gauge boson scattering in

the discussion of unitarity in Chapter 6. Thus the relevant operators involving
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bosonic fields include:

OB = (DµΦ)†B̂µν(DνΦ) OΦ,1 = (DµΦ)†ΦΦ†(DµΦ)

OW = (DµΦ)†Ŵ µν(DνΦ) OΦ,2 = 1
2
∂µ(Φ†Φ)∂µ(Φ†Φ)

OBB = Φ†B̂µνB̂
µνΦ OΦ,3 = 1

3
(Φ†Φ)3

OWW = Φ†ŴµνŴ
µνΦ OΦ,4 = (DµΦ)†(DµΦ)(Φ†Φ)

OBW = Φ†B̂µνŴ
µνΦ

OGG = Φ†ΦGa
µνG

aµν OWWW = Tr[Ŵ ν
µ Ŵ

ρ
ν Ŵ

µ
ρ ]

(2.2)

Where the Higgs doublet is denoted by Φ. The covariant derivative is given

by DµΦ = (∂µ + i1
2
g′Bµ + ig τa

2
W a
µ )Φ. The hatted field strength tensors are

B̂µν = ig
′

2
Bµν and Ŵµν = ig

2
τaW

a
µν , while the fields strengths are given by:

Bµν = ∂µBν − ∂νBµ ,

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν ,

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν .

(2.3)

The couplings, g, g′, and gs denote the SU(2)L, U(1)Y , and SU(3)C gauge

couplings, and τa are the Pauli matrices.

The SM EW gauge fields are given by:

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) ,

ZSM
µ = 1√

g2+g′2
(gW 3

µ − g′Bµ) ,

ASM
µ = 1√

g2+g′2
(g′W 3

µ + gBµ).

(2.4)

There is an additional operator not considered in our work as it may be re-

moved via the EOM, but it is relevant to the discussions in Chapter 3 where it

will be used to help identify the relation between chiral operators and those of

the linear expansion. Details relating to this operator and a similar operator

in the chiral expansion are discussed in [40]. It has the form:

O2Φ = (DµD
µΦ)†(DνD

νΦ). (2.5)

For completeness we also list an additional set of four operators made up

of only EW and strong gauge fields. They do not contribute to the Higgs

interactions nor to triple electroweak gauge boson vertices and therefore do
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not generate effects in the observables discussed in this dissertation:

OGGG = ifabcG
a ν
µ Gb ρ

ν G
c µ
ρ ,

ODW =
(
Dµ Ŵµν

)i (
DρŴ

ρν
)i
, ODB =

(
∂µB̂µν

)(
∂ρB̂

ρν
)
,

ODG = (DµGµν)
a (DρG

ρν)a ,

(2.6)

where (DµWµν)
i = ∂µW i

µν − gεijkW µjW k
µν and where, in ODG, Dµ denotes the

covariant derivative acting on a field transforming in the adjoint of SU(3)C ,

(DµGµν)
a = ∂µGa

µν − gsfabcGµbGc
µν . It is worth noting this set is not minimal

as the operators ODW , ODB and ODG are usually traded using the EOM for

OWWW and OGGG and fermionic operators.

Next we also list the dimension–six operators which couple fermions to the

Higgs boson [39]:

OeΦ,ij = (Φ†Φ)(L̄LiΦeRj), O
(1)
ΦL,ij = Φ†(i

↔
DµΦ)(L̄Liγ

µLLj),

OuΦ,ij = (Φ†Φ)(Q̄LiΦ̃uRj), O
(1)
ΦQ,ij = Φ†(i

↔
DµΦ)(Q̄Liγ

µQLj),

OdΦ,ij = (Φ†Φ)(Q̄LiΦdRj), O
(1)
Φe,ij = Φ†(i

↔
DµΦ)(ēRiγ

µeRj),

O
(1)
Φu,ij = Φ†(i

↔
DµΦ)(ūRiγ

µuRj),

O
(1)
Φd,ij = Φ†(i

↔
DµΦ)(d̄Riγ

µdRj),

O
(1)
Φud,ij = Φ̃†(i

↔
DµΦ)(ūRiγ

µdRj),

O
(3)
ΦL,ij = Φ†(i

↔
Da

µΦ)(L̄Liγ
µτaLLj),

O
(3)
ΦQ,ij = Φ†(i

↔
Da

µΦ)(Q̄Liγ
µτaQLj),

(2.7)

where we have used Φ̃ = iτ2Φ∗, LL is the lepton doublet, QL the quark doublet,

fR the SU(2)L singlet fermions, and i, j are family indices. As well as:

Φ†
↔
DµΦ = Φ†DµΦ− (DµΦ)†Φ

Φ†
↔
Da

µΦ = Φ†τaDµΦ− (DµΦ)†τaΦ
(2.8)

The dimension–six operators in Eq. (2.7) have been classified according to

the number of Higgs fields that they contain. In the first column, the op-

erators are denoted by OfΦ,ij and they contain three Higgs doublets. After

spontaneous symmetry breaking these operators lead to modifications of the

SM Higgs Yukawa couplings as we will see below. The second column, O
(1)
Φf,ij,
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contains operators with two Higgs doublets and one covariant derivative act-

ing on them. Consequently, they contribute to the Higgs couplings to fermion

pairs, but also modify the neutral current weak interactions of the correspond-

ing fermions, with the exception of O
(1)
Φud,ij that also changes the charged weak

interactions. O
(3)
Φf,ij, besides contributing to the Higgs couplings to fermion

pairs, also lead to modifications of the fermionic neutral and charged current

interactions.

2.2 Effective Vertices

Next we consider the finite wavefunction and coupling renormalization due to

the effective operators. We proceed by expanding the operators to obtain the

three– and four–vertex Lorentz forms relevant to our analysis. Here we only

include the Lorentz forms relevant to Higgs–vector (HV V ), triple gauge vertex

(TGV), and Higgs–fermion (Hff) interactions leaving other forms which will

be relevant to the discussions in Chapter 6, for Appendix A.

Working in the unitary gauge the Higgs doublet is given by:

Φ =
1√
2

(
0

v + h(x)

)
. (2.9)

Many of the operators induce finite field renormalization requiring us to expand

the operators to identify their impacts. First we note there is an induced shift

to the Higgs potential from OΦ,3:

V (Φ) = µ2
0(Φ†Φ) + λ0(Φ†Φ)2 − fΦ,3

3Λ2
(Φ†Φ)3. (2.10)

Leading to a shift in the minimum of the potential with respect to the SM,

v2 = −µ
2
0

λ0

(
1 +

v2

4Λ2

fΦ,3

λ0

)
≡ v2

0

(
1 +

v2

4Λ2

fΦ,3

λ0

)
, (2.11)

where the subscript “0” denotes the SM value. As OΦ,1, OΦ,2, and OΦ,4 con-

tain derivatives of the Higgs field they therefore induce a finite wavefunction

renormalization for the Higgs field, so that the field with a canonical kinetic
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term is H:

H = h

[
1 +

v2

2Λ2
(fφ,1 + 2fφ,2 + fφ,4)

]1/2

. (2.12)

To linear order this leads to a shift of the Higgs mass:

M2
H = 2λ0v

2

[
1− v2

2Λ2

(
fφ,1 + 2fφ,2 + fφ,4 +

fφ,3
λ0

)]
. (2.13)

Next we consider similar effects on the gauge fields. We note that OBW affects

Zγ mixing shifting the mass eigenstates from those in the SM:

Zµ =
[
1− g2g′2

2(g2+g′2)
v2

Λ2fBW

]−1/2

ZSM
µ ,

Aµ =
[
1 + g2g′2

2(g2+g′2)
v2

Λ2fBW

]−1/2

ASM
µ −

[
gg′(g2−g′2)

4(g2+g′2)
v2

Λ2fBW

]
ZSM
µ ,

(2.14)

and, additionally, that there are effects on the gauge boson masses:

M2
Z = g2+g′2

4
v2
[
1 + v2

2Λ2

(
fΦ,1 + fΦ,4 − g2g′2

(g2+g′2)
fBW

)]
,

M2
W = g2

4
v2
[
1 + v2

2Λ2fΦ,4

]
.

(2.15)

Notice that OBW and OΦ,1 contribute to the Z mass, but not the W mass,

therefore violating the custodial SU(2) symmetry and contributing to the T

parameter as will be discussed in more detail in Sec. 2.3 and 2.4.

We use for our calculations the inputs GF , MZ , αEM, αs, and MH with

the electromagnetic coupling evaluated at zero momentum, the so–called Z–

scheme. In addition when convenient we can also absorb part of the tree level

factors by using the measured value of MW via the relation

GF√
2

=
g2

8M2
W

, (2.16)

in combination with Eq. (2.15), so we can express the shift of the vacuum

expectation value and M2
Z as:

v =
(√

2GF

)−1/2
(

1− v2

4Λ2fΦ,4

)
,

M2
Z =

(√
2GF

)−1 g2

4c2W

(
1 + v2

2Λ2fΦ,1 − g2g′2

2(g2+g′2)
v2

Λ2fBW

)
,

(2.17)

where we have used cW ≡ g/
√
g2 + g′2 = cos θW, the tree level cosine of the SM
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weak mixing angle. Expanding the operators relevant to HV V interactions we

define LHV V with corresponding couplings g
(i)
HV V , where i indicates different

Lorentz structures:

LHV V
eff = gHggHG

a
µνG

aµν + gHγγHAµνA
µν + g

(1)
HZγAµνZ

µ∂νH

+ g
(2)
HZγHAµνZ

µν + g
(1)
HZZZµνZ

µ∂νH + g
(2)
HZZHZµνZ

µν

+ g
(3)
HZZHZµZ

µ + g
(1)
HWW (W+

µνW
−µ∂νH + h.c.)

+ g
(2)
HWWHW

+
µνW

−µν + g
(3)
HWWHW

+
µ W

−µ . (2.18)

In Eq. (2.18) we have defined Vµν = ∂µVν − ∂νVµ, for V = A,Z,W and

gHgg = fGGv
Λ2 ≡ −αs

8π

fgv

Λ2

gHγγ = −
(
g2vs2W

2Λ2

)
fBB+fWW−fBW

2

g
(1)
HZγ =

(
g2v
2Λ2

)
sW(fW−fB)

2cW

g
(2)
HZγ =

(
g2v
2Λ2

)
sW[2s2WfBB−2c2WfWW+(c2W−s

2
W)fBW ]

2cW

g
(1)
HZZ =

(
g2v
2Λ2

)
c2WfW+s2WfB

2c2W

g
(2)
HZZ = −

(
g2v
2Λ2

)
s4WfBB+c4WfWW+c2Ws2WfBW

2c2W

g
(3)
HZZ =

(
g2v
4c2W

) [
1 + v2

4Λ2

(
3fΦ,1 + 3fΦ,4 − 2fΦ,2 − 2g2g′2

(g2+g′2)
fBW

)]
= M2

Z(
√

2GF )1/2
[
1 + v2

4Λ2 (fΦ,1 + 2fΦ,4 − 2fΦ,2)
]

g
(1)
HWW =

(
g2v
2Λ2

)
fW
2

g
(2)
HWW = −

(
g2v
2Λ2

)
fWW

g
(3)
HWW =

(
g2v
2

) [
1 + v2

4Λ2 (3fΦ,4 − fΦ,1 − 2fΦ,2)
]

= 2M2
W (
√

2GF )1/2
[
1 + v2

4Λ2 (2fΦ,4 − fΦ,1 − 2fΦ,2)
]

(2.19)

where, as previously, we have expanded to linear order in the fi coefficients.

Also, for convenience, we have rescaled the coefficient of the gluonic operator,

fGG, by a loop factor −αs/(8π). This way an anomalous gluonic coupling of

order fg ∼ O(1−10) gives a contribution comparable to the SM top loop, which

is the main loop contributing to the coupling of the Higgs boson to gluons in

the SM. For the rest of the dimension–six operators involving EW gauge bosons

we have decided to keep the same normalization commonly used in all the pre-

LHC studies for an easier comparison with the existing literature. Notice that

the general expressions above reproduce in the different cases considered those
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of [41–48].

Concerning TGVs the relevant couplings are:

LWWV
eff = g

(1)
WWZ(W+

ν W
−
µ − h.c.)Zµν + g

(2)
WWZ(W+

µνW
−µZν − h.c.)

+ g
(3)
WWZ(W+

µνW
−ν
ρ − h.c.)Zρµ + g

(1)
WWA(W+

ν W
−
µ − h.c.)Aµν

+ g
(2)
WWA(W+

µνW
−ν
ρ − h.c.)Aρµ , (2.20)

where

g
(1)
WWZ = ig3v2cW

16Λ2 (fW +
s2W
c2W
fB +

4s2W
c2W

fBW −
2s2W
e2c2W

fΦ,1)

g
(2)
WWZ = − ig3v2

8cWΛ2 (fW +
2s2W
c2W

fBW −
s22W

2e2c2W
fΦ,1)

g
(3)
WWZ = −3ig3cW

2Λ2 fWWW

g
(1)
WWA = ig3v2sW

16Λ2 (fW + fB − 2fBW )

g
(2)
WWA = −3ig3sW

2Λ2 fWWW

(2.21)

and we have defined c2W = cos(2θW ) and s2W = sin(2θW ). We note that

the coefficients fW and fB contribute to both Higgs-vector and TGVs. This

correlation is due to the fact the Higgs is a doublet charged under SU(2)L and

will prove important in our future discussions. We will see this correlation is

absent in the chiral EFT presented in Chapter 3 and that it will also allow us

to make projections of the Higgs data onto the space of TGCs at a competitive

level with the current best measurements in Chapter 5. As mentioned above

we save other vertices generated by the operators for Appendix A.

Changing to the effective operators concerning the couplings of the Higgs

boson to fermions the form of the effective Lagrangian for the fermionic oper-

ators in Eq. (2.7) (noticing that generically these operators are not Hermitian)

is then given by:

L
Hff
eff =

fdΦ,ij

Λ2
OdΦ,ij +

fuΦ,ij

Λ2
OuΦ,ij +

feΦ,ij
Λ2

OeΦ,ij + h.c. (2.22)

Recalling that in the SM the Yukawa interactions take the form (see Eq. (1.24))

LYuk = −yeijL̄LiΦeRj − ydijQ̄LiΦdR,j − yuijQ̄LiΦ̃uRj + h.c. , (2.23)

we see that the operators OfΦ,ij renormalize fermion masses and mixing, and

then modify the Yukawa interactions as well.
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After spontaneous symmetry breaking and prior to Higgs wave function

renormalization we can decompose L
Hqq
eff into two pieces, L0 and L1:

L0 = 1√
2
d̄L

(
−yd + v2

2Λ2fdΦ

)
dR(v + h) + 1√

2
ūL

(
−yu + v2

2Λ2fuΦ

)
uR(v + h)

+ 1√
2
ēL

(
−ye + v2

2Λ2feΦ

)
eR(v + h) + h.c.

L1 = 1√
2
v2

Λ2 d̄LfdΦdRh+ 1√
2
v2

Λ2 ūLfuΦuRh+ 1√
2
v2

Λ2 ēLfeΦeRh+ h.c.

(2.24)

We can see that L0 then corresponds to the mass term of the fermions with

Higgs-fermion interactions subject to renormalized fermion masses and quark

mixing. The new interactions, contained in L1, are not generically flavor

diagonal in the mass basis unless ffΦ ∝ yf , where here ffΦ and yf are the 3×3

matrices in generation space whose components are ffΦ,ij and yfij with f = u,

or d or e.

Altogether in the physical fermion mass basis and after renormalization of

the Higgs wave function from Eq. (2.12) the Hf̄f couplings may be written

as:

LHff = gfHij f̄
′
Lf
′
RH + h.c. (2.25)

with

gfHij = −m
f
i

v
δij

[
1− v2

4Λ2
(fΦ,1 + 2fΦ,2 + fΦ,4)

]
+

v2

√
2Λ2

f ′fΦ,ij, (2.26)

where the physical masses are denoted by mf
j and the coefficients of the corre-

sponding operators in the mass basis are given by f ′qΦ,ij. In what follows, for

the sake of simplicity, we will drop the primes in these fields and coefficients.

2.3 Electroweak Parameters: S, T, U

In this dissertation we will make use of and refer to electroweak precision data

(EWPD) with great frequency. In this section we present a short introduction

to the S, T , and U parameters the most common parameterization of universal

(also referred to as oblique) contributions to electroweak precision data [49].

These parameters are also frequently referred to as ε1, ε2, and ε3 [50].

As a result of the great success of electroweak theory it was realized that
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deviations from the SM predictions had to be considered at loop level. The

strongest constraints come from LEP, where the processes e+e− → Z → f̄f

were measured with high accuracy. In order to quantify divergences from the

SM predictions related to these processes in a gauge covariant manner we must

consider corrections to the two point function of all gauge vectors, V , along

with vertex corrections to V → f̄f ′. For both we restrict ourselves to the

electroweak sector as that is the focus of in this dissertation. Our discussion

in this section will closely follow that of [51].

We begin by considering the corrections to the two point functions of the

electroweak vectors (projected into their longitudinal and transverse compo-

nents),

− iΠµν
V1V2

(q2) = −iΠV1V2
T (q2)

(
gµν − qµqν

q2

)
− iΠV1V2

L (q2)

(
qµqν

q2

)
, (2.27)

where Πµν is the correction to the V µ
1 V

ν
2 two-point functions, the sub– and

super–scripts V1 and V2 indicate the vectors under consideration, and the sub-

scripts T and L indicate the transverse and longitudinal projections of the

tensor respectively. The corrections to the V ff vertex, neglecting fermion

masses, are:

−iΓγf1f2
µ (q) = −iγµ 1

2
(1− γ5)gIf3 ΓγL(q2),

−iΓZf1f2
µ (q) = −iγµ 1

2
(1− γ5)gIf3 ΓZL(q2),

−iΓWf1f2
µ (q) = −iγµ 1

2
(1− γ5) g√

2
ΓWL (q2),

(2.28)

where the superscripts V f1f2 indicate the vector, V , and two fermions, f1 and

f2, under consideration, γµ and γ5 are the usual gamma matrices, and If3 is

the third component of weak isospin for the external fermion.

We are interested in NP signals so we split the SM and anomalous parts

via

Π = ΠSM + ∆Π and Γ = ΓSM + ∆Γ, (2.29)
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and define the (gauge invariant) quantities:

∆Π̄γγ
T (q2) = ∆Πγγ

T (q2)− 2sWq
2∆ΓγL(q2),

∆Π̄γZ
T (q2) = ∆ΠγZ

T (q2)− sWq
2∆ΓZL(q2)− cW(q2 −m2

Z)∆ΓγL(q2),

∆Π̄ZZ
T (q2) = ∆ΠZZ

T (q2)− 2cW(q2 −m2
Z)∆ΓZL(q2),

∆Π̄WW
T (q2) = ∆ΠWW

T (q2)− 2(q2 −m2
W )∆ΓWL (q2).

(2.30)

Allowing us to then define

∆Π̄V1V2
T,V3

(q2) =
∆Π̄V1V2

T (q2)−∆Π̄V1V2
T (m2

V3
)

q2 −m2
V3

, (2.31)

and we finally arrive at the S, T , and U parameters:

αEM∆S = 4s2
Wc

2
W

(
−∆Π̄ZZ

T,Z(0) +
c2W−s

2
W

sWcW
∆Π̄γZ

T,γ(m
2
Z) + ∆Π̄γγ

T,γ(m
2
Z)
)
,

αEM∆T =
(

∆Π̄ZZT (0)

m2
Z
− ∆Π̄WW

T (0)

m2
W

)
,

αEM∆U = 4sW

(
c2

W∆Π̄ZZ
T,Z(0)−∆Π̄WW

T,W (0)

+ s2
W∆Π̄γγ

T,γ(m
2
Z) + 2sWcW∆Π̄γZ

T,γ(m
2
Z)
)
.

(2.32)

By inspection we can see that T is the difference between corrections to W and

Z interactions/propagators. Therefore any operators which induce different

behavior for the Z from that of the W , i.e. violate custodial symmetry, will

induce corrections to the T parameter. Recalling from Eq. (2.15) that the

operator OΦ,1 induces a shift to the Z propagator (and to its mass), but not

that of the W , we expect that OΦ,1 contributes to the T parameter. In fact it

does at tree-level, with its contribution given by:

αEM∆T =
1

2

v2

Λ2
fΦ,1. (2.33)

The S parameter contains new physics contributions to the neutral currents

at different energies. Hence OBW which gives a tree-level contribution to the

Zγ two-point function, gives a correction to S that reads:

αEM∆S = e2 v
2

Λ2
fBW . (2.34)

We note that despite its contribution to the Z mass and not that of the W ,
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OBW does not contribute directly to the T parameter because it does not

modify the Z propagator. The correction to the Z mass is induced by the

redefinition of the neutral gauge boson fields after the mixing induced by this

operator, an effect which is accounted for in the S parameter.

Operators OB, OW , OBB, OWW , and OΦ,2 give contributions at the one

loop level:

αEM∆S = 1
6

e2

16π2

{
3(fW + fB)

m2
H

Λ2 log
(

Λ2

m2
H

)
+ 2 [(5c2

W − 2) fW − (5c2
W − 3) fB]

m2
Z

Λ2 log
(

Λ2

m2
H

)
− [(22c2

W − 1) fW − (30c2
W + 1) fB]

m2
Z

Λ2 log
(

Λ2

m2
Z

)
−24 (c2

WfWW + s2
WfBB)

m2
Z

Λ2 log
(

Λ2

m2
H

)
+2fΦ,2

v2

Λ2 log
(

Λ2

m2
H

)}
,

αEM∆T = 3
4c2W

e2

16π2

{
fB

m2
H

Λ2 log
(

Λ2

m2
H

)
+ (c2

WfW + fB)
m2
Z

Λ2 log
(

Λ2

m2
H

)
+ [2c2

WfW + (3c2
W − 1) fB]

m2
Z

Λ2 log
(

Λ2

m2
Z

)
− fΦ,2

v2

Λ2 log
(

Λ2

m2
H

)}
,

αEM∆U = −1
3

e2s2W
16π2

{
(−4fW + 5fB)

m2
Z

Λ2 log
(

Λ2

m2
H

)
+ (2fW − 5fB)

m2
Z

Λ2 log
(

Λ2

m2
Z

)}
,

(2.35)

where the calculations have been performed using dimensional regularization

with d = 4 − 2ε. The logarithms result from identifying the poles with loga-

rithmic divergences, that is:

1

ε
(4π)εΓ(1 + ε)→ log

(
Λ2

µ2

)
. (2.36)

In these expressions we have also neglected the finite parts as the logarithms

are meant to capture the running of the couplings which is the only infor-

mation from the loops of the ultraviolet completion which can be robustly

reconstructed with the low energy EFT.
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2.4 The Choice of Basis and the Application

of Precision Data

In the effective Lagrangian framework not all operators are independent as

they can be related by the use of the classical EOM1. This is shown by proving

that operators connected by the EOM lead to the same S-matrix elements [52–

55]. In an approach where the full or UV theory is known one may integrate out

heavy degrees of freedom obtaining the operators (a top down approach) thus

leading to higher dimension operators whose form is tied to the UV physics

and therefore it may be convenient not to choose a minimal set of operators in

order to more easily identify the higher dimensional operators at low energy.

However, in our approach we use the effective Lagrangian to obtain bounds

on generic extensions of the SM (a bottom-up approach). As the NP is not

known a priori in this approach it is useful to adjust one’s basis via the EOM

to choose operators better constrained by low energy physics.

Since we truncate our expansion in effective operators at dimension–six it is

only necessary to consider the SM EOM. These EOM relate bosonic operators

to fermionic ones and we use those for the Higgs field and electroweak gauge

bosons giving three relations between operators:

2OΦ,2 + 2OΦ,4 =
∑
ij

(
yeij(OeΦ,ij)

† + yuijOuΦ,ij + ydij(OdΦ,ij)
† + h.c.

)
− 2(Φ†Φ)Φ† ∂V

∂Φ†
,

2OB + OBW + OBB + g′2
(
OΦ,1 − 1

2
OΦ,2

)
= −g′2

2

∑
i

(
−1

2
O

(1)
ΦL,ii + 1

6
O

(1)
ΦQ,ii

−O(1)
Φe,ii + 2

3
O

(1)
Φu,ii − 1

3
O

(1)
Φd,ii

)
,

2OW + OBW + OWW + g2
(
OΦ,4 − 1

2
OΦ,2

)
= −g2

4

∑
i

(
O

(3)
ΦL,ii + O

(3)
ΦQ,ii

)
.

(2.37)

From these three EOM we are able to remove three of the operators listed

in Eqs. (2.2) and (2.7). We put off the discussion of which operators we will

remove via the EOM until after discussing precision data.

1Note our discussion on reducing the basis via the EOM and precision data primarily
pertains to Higgs related fits which will be discussed in Chapter 5, and is not directly used
in Chapter 6
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We wish to use pre–Higgs precision data to reduce the size of the relevant

set of operators for our Higgs studies. In particular we notice that the Z and

W couplings to fermions as well as the oblique parameters S, T , and U are in

agreement with the SM at least at the percent level [56]. These results severely

constrain the effects of O
(1)
Φf , O

(3)
Φf , OBW and OΦ,1. In particular as described in

the previous section the operators OBW and OΦ,1 give tree level contributions

to the S and T parameters (see Eq. (2.35)).

Precise constraints also exist on triple gauge boson interactions from LEPII

and the Tevatron [57]. In order to account for these we begin by putting

the relevant terms of Leff into the parameterization of Ref. [37, 58] which is

generically used in experimental searches:

LWWV = −igWWV

[
gV1 (W+

µνW
−µV ν −W+

µ VνW
−µν) + κVW

+
µ W

−
ν V

µν

+ λV
m2
W
W+
µνW

−νρV µ
ρ

]
,

(2.38)

which, after comparison with Eqs. (2.20) and (2.21) yields the following rela-

tions:

∆gZ1 = gZ1 − 1 = g2v2

8c2WΛ2

(
fW + 2

s2W
c2W−s

2
W
fBW

)
− 1

4(c2W−s
2
W)
fΦ,1

v2

Λ2 ,

∆κγ = κγ − 1 = g2v2

8Λ2 (fW + fB − 2fBW ) ,

∆κZ = κZ − 1 = g2v2

8c2WΛ2

(
c2

WfW − s2
WfB +

4s2Wc2W
c2W−s

2
W
fBW

)
− 1

4(c2W−s
2
W)
fΦ,1

v2

Λ2 ,

λγ =
3g2M2

W

2Λ2 fWWW ,

λZ =
3g2M2

W

2Λ2 fWWW .

(2.39)

LEPII and Tevatron results constrained these effective couplings to be in

agreement with the SM expectation with precision ranging from between

10 to 1% [57].

It is important to realize that in applying the constraints from these EWPD

we must take care that we do not introduce a combination of the anomalous
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operators whose contribution at tree level to the EWPD cancels out – we must

avoid “blind directions.”

To illustrate this point we consider the dependence on the anomalous cou-

plings of a subset of the EWPD that contains the W mass, W leptonic width,

the Z width into charged leptons, the leptonic Z left-right asymmetry, and

the invisible Z width (MW , ΓW`ν , Γ``, A`, and Γinv respectively). We can write

the departures of these observables (i.e. ∆OBS ≡ OBS−OBSSM

OBSSM
) from the SM

predictions as [59, 60]
∆Γ``

∆Γinv

∆A`

∆MW

∆ΓW`ν

 = M


f

(1)
Φe

f
(1)
ΦL

f
(3)
ΦL

fΦ,1

−gg′

4
fBW


v2

Λ2
, (2.40)

where the matrix M is given by

− 4s2W
D

2−4s2W
D

4s2W(4s2W−1)

(c2W−s2W)D
− 1−2s2W−4s4W

2(c2W−s2W)D

4cWsW(4s2W−1)

(c2W−s2W)D

0 −2 0 − 1
2 0

− 2s2W(s2W−1/2)2

s8W−(s2W−1/2)4
2s4W(s2W−1/2)2

s8W−(s2W−1/2)4
s4W

s8W−(s2W−1/2)4
c2Ws

4
W

2(s8W−(s2W−1/2)4)

cWs
3
W

s8W−(s2W−1/2)4

0 0 − s2W
c2W−s2W

− c2W
4(c2W−s2W)

− cWsW
c2W−s2W

0 0 − 3s2W
c2W−s2W

− 3c2W
4(c2W−s2W)

− 3cWsW
c2W−s2W



,

(2.41)

with D = 1− 4s2
W + 8s4

W.

One can show thatM has two zero eigenvalues, indicating that two coupling

constant combinations cannot be determined. Considering all LEP observables

also results in two blind directions. In this example we find the blind directions

to be:

fΦ,1 = −4f
(1)
ΦL = −2f

(1)
Φe = g′

2
fBW and f

(3)
ΦL =

g2

4
fBW . (2.42)

This then indicates that we cannot simply choose any operators to remove

via the EOM, but instead have to choose in such a manner as to prevent
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the introduction of blind directions. The two combinations of operators that

do not contribute to these example leptonic observables are any two linear

combinations of:

OLEP blind,1 = g′2
(
OΦ,1 − 1

4

∑
i

O
(1)
ΦL,ii − 1

2

∑
i

O
(1)
Φe,ii

)
+ OBW ,

OLEP blind,2 = OBW + g2

4

∑
i

O
(3)
ΦL,ii.

(2.43)

We note that there exists a relation between operators that do not lead to

a tree–level contribution to the EWPD and blind directions: the elimination

of an operator that does not lead to tree–level contributions to EWPD leads

to a combination of operators each one apparently contributing to EWPD at

tree level. This combination, however, must define a blind direction as it has

the same S–matrix element as the original operator which had no impact on

the EWPD [61].

For example the bosonic operator OΦ,2 does not contribute to EWPD at

tree level since it modifies only the Higgs couplings, therefore it is a blind

operator. We can then rewrite the EOM from Eq. (2.37) to give:

3g2OΦ,2 =

[
2OBW + 4OW + 2OWW + g2

2

∑
i

(
O

(3)
ΦL,ii + O

(3)
ΦQ,ii

)
+g2

(∑
ij

(
yeij (OeΦ,ij)

† + yuijOuΦ,ij + ydij (OdΦ,ij)
† + h.c.

)
− 2(Φ†Φ)Φ† ∂V

∂Φ†

)]
.

(2.44)

Then the right hand side of Eq. (2.44) defines a blind direction. However,

since we know that only the operators OBW and
∑

iO
(3)
ΦL,ii contribute to the

above leptonic observables at tree level, we find from the equation above that

the effect of OΦ,2 is equivalent to:

2

3g2

(
OBW +

g2

4

∑
i

O
(3)
ΦL,ii

)
. (2.45)

Which corresponds to our previously given combination of operators OLEP blind,2

in Eq. (2.43).
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In summary the EOM in Eq. (2.37) allow for the elimination of three

dimension–six operators from the basis with the caveat that we must avoid

blind directions. This is then achieved by removing operators that contribute

at tree level to the EWPD in such a way that the new form of the matrix M

has a non–vanishing determinant.

We then choose to eliminate O
(1)
ΦL,ii, O

(3)
ΦL,ii, and OΦ,4 leaving ourselves with

a basis which will allow us to take full advantage of the EWPD as well as TGV

data from LEP. Altogether our basis is reduced to:

{ OGG , OBB , OWW , OBW , OB , OW , OΦ,2 , OΦ,1 , OfΦ , O
(1)
Φf , O

(3)
Φf },
(2.46)

excepting the operators removed above, O
(1)
ΦL,ii and O

(3)
ΦL,ii. Now we are able to

apply the available experimental information in order to reduce the number of

relevant parameters for our analysis of the Higgs data.

As mentioned above the Z and W couplings to fermions and the S, T ,

and U parameters agreement with the SM is sufficiently high we can remove

from our basis O
(1)
Φf , O

(3)
Φf , OBW , and OΦ,1. Additionally limits on low–energy

flavor–changing interactions impose strong bounds on the off–diagonal Yukawa

couplings [62–68]. This allows us to discard the off diagonal part of OfΦ. We

note there is potential for sizeable flavor changing effects in τ̄ e and τ̄µ [69, 70]

along with recent hints from CMS [71] of a τµ decay with an excess of just over

2σ above the SM prediction. This is however not considered in our current

analysis. Finally the effects of flavor diagonal OfΦ from the first and second

generation have not been directly accessed in current experiments and they

only appear in Higgs-g-g and Higgs-γ-γ vertices at one loop. These loop form

factors are suppressed for the light fermions and consequently they are entirely

negligible. Therefore of the remaining diagonal OfΦ we retain only OeΦ,33,

OuΦ,33, and OdΦ,33.

After all these constraints are imposed we conclude that the relevant Leff

for our Higgs analysis in Chapter 5, after reduction of the basis via the EOM
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and precision data, is:

Leff = −αsv
8π

fg
Λ2OGG +

fΦ,2

Λ2 OΦ,2 + fBB
Λ2 OBB + fWW

Λ2 OWW + fB
Λ2OB + fW

Λ2 OW

+ fτ
Λ2OeΦ,33 + fbot

Λ2 OdΦ,33 + ftop

Λ2 OuΦ,33.

(2.47)

Notice that with this choice of basis all of the dimension–six operators con-

sidered contribute to the Higgs–gauge boson and Higgs–fermion couplings at

tree level. However, a final remark regarding the top Yukawa–like dimension–

six operator, OuΦ,33, is required. The tree–level information on ht̄t from as-

sociated production of the Higgs with a top pair still has very large errors.

As such, quantitatively, the effects of the parameter ftop enter mainly via its

contribution to the one–loop Higgs couplings to photon pairs and gluon pairs.

These contributions can be absorbed in the redefinition of the rest of the pa-

rameters contributing to these vertices, fg and fWW + fBB, and therefore, we

set ftop = 0 for our Higgs analysis in Chapter 5. In the future, when a larger

luminosity is accumulated, and direct information on top associated produc-

tion is available, it will be necessary to introduce ftop as one of the parameters

in the analysis.

2.5 Summary and Discussion

In this chapter we have introduced the HISZ basis of dimension–six operators

for a CP–even Higgs under the assumptions of baryon and lepton number

conservation and a linear realization of the electroweak symmetry which is the

relevant expansion for NP theories in which the Higgs is a fundamental state.

We have detailed the wavefunction renormalization due to the operators in

the basis and after accounting for those we have expanded the operators to

find the Lorentz structures generated for the gauge–Higgs, TGV, and Higgs–

fermion interactions; in doing so we have found that gauge–Higgs and TGV

interactions are correlated as a consequence of the gauge invariance, a relation

which will become relevant when trying to discriminate this expansion against

that characteristic of a dynamical Higgs which we will introduce in the next

Chapter. We continued to introduce the electroweak parameters S, T , and U

and their contributions from the operators in our basis. Next, taking care not
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to generate blind directions, we used the EOM and precision data to reduce

the size of our operator basis to those relevant for the present interpretation

of the Higgs results. The final linear basis which will be considered for our

analysis of Higgs data is:

Leff = −αsv
8π

fg
Λ2OGG +

fΦ,2

Λ2 OΦ,2 + fBB
Λ2 OBB + fWW

Λ2 OWW + fB
Λ2OB + fW

Λ2 OW

+ fτ
Λ2OeΦ,33 + fbot

Λ2 OdΦ,33.

(2.48)

We will return to this basis in Chapter 5 when we apply our analysis framework

to constrain the parameters of this EFT and look at interesting implications

of the correlation between Higgs and triple gauge couplings.
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Chapter 3

Effective Lagrangian for a

Dynamical Higgs: Chiral

Expansion

In Chapter 2 we discussed the effective Lagrangian for an extension of the SM

assuming a linear realization of the electroweak symmetry. There we noted

that such an expansion is appropriate under the circumstances that the Higgs

is a fundamental doublet of SU(2)L as in the SM. However other possibilities

exist. In particular it is an interesting question to consider the possibility of

some new strongly interacting sector with a global symmetry spontaneously

broken down resulting in new condensates which may result in EWSB and

also impart mass to the SM fermions. Among the first such models consid-

ered were Technicolor theories which sought to generate masses for the gauge

bosons [72] and subsequently the inclusion of fermion masses in Extended

Technicolor [73, 74]. However many such attempts induced large corrections

to some of the precision electroweak parameters which was in contradiction

with the experimental results. Furthermore generically in these models the

“would be” Higgs became very heavy and was not present in the light particle

spectrum (see Sec. 1.2.2).

In the latest years renewed interest has grown on the construction of com-

posite models, but containing a light Higgs–like particle. In these constructions

the Higgs appears light as it is a pseudo–Goldstone boson of a global symme-

try of the new strongly interacting dynamics. These types of models are also
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typically employed as a partial solution to the hierarchy problem. Concrete

examples of this type of theory are Composite Higgs Models (CHMs) [23–32],

for different strong groups and symmetry breaking patterns, generically “lit-

tle Higgs” models [33] (see [34] for a review), and some higher dimensional

scenarios can also be considered in the category of constructions in which the

Higgs is a Goldstone boson. In the previous chapter we observed that in the

linear expansion the Higgs boson is assumed to belong to an SU(2)L doublet

and therefore the leading order operators extending the renormalizable SM

are dimension–six operators suppressed by the NP scale Λ2. Instead, in dy-

namical Higgs scenarios the Goldstone boson parenthood of the Higgs boson

makes a non–linear or chiral expansion suitable [75]: a derivative expansion as

corresponds to the Goldstone boson dynamics as sketched in Sec.1.2.2.

In this chapter we discuss the general chiral EFT valid for these realizations

as outlined in [76]. In Sec. 3.1 we will present the Lagrangian introduced in

Ref. [76], but our purpose will not be to work out the details of the construction

which builds on previous works of some of the authors of that paper [35].

In Sec. 3.2 we will relate this chiral Lagrangian to that of the linear basis

and the TGV effective parameterization of Eq. (2.38), and formulate possible

discriminators between the two expansions. A global fit of Higgs data to the

coefficients of the operators is left to Sec. 5.3 where we will also discuss the

implications of the global fit on the discriminators developed in this chapter.

3.1 The Chiral Basis

As mentioned above we treat the Higgs as a composite field, in this case a

pseudo–Goldstone boson of a new global symmetry which is exact at a high

energy scale Λs. This new scale corresponds to that at which new resonances

should appear, with the relative lightness of the Higgs being explained by

its Goldstone−boson−like nature. We relax the requirement that the Higgs

belong to a doublet of SU(2)L and our EFT expansion is no longer in in-

verse powers of Λ, but instead it is a derivative series (i.e. powers of p/Λs).

The characteristic scale of the Goldstone bosons is identified as f which is

distinguished from the electroweak scale, v = 2mW/g, and the electroweak

symmetry breaking scale, 〈h〉. The scale 〈h〉 is then associated with the scale
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at which the Higgs develops a potential which, generically, at the loop level,

breaks SU(2)L × U(1)Y to U(1)EM. These scales then respect the relation

Λs < 4πf while for particular models one can relate the three scales through a

function g via v = g(f, 〈h〉) (particular models are discussed in, for example,

[77]). We then define the degree of non–linearity of the Higgs dynamics [35]

via

ξ ≡ (v/f)2, (3.1)

where ξ → 1 represents the technicolor-like scenario. This parameter will

prove useful in the comparison of the linear and chiral expansions in Sec. 3.2.

In [35] a complete effective Lagrangian basis for pure gauge and gauge–

Higgs operators up to four derivatives was presented. The particle content

of the chiral Lagrangian includes all the SM fermions, gauge bosons, and the

Higgs field h. The longitudinal degrees of freedom of the electroweak gauge

bosons are included in the usual way for chiral theories, that is in a dimen-

sionless unitary matrix transforming as a bi-doublet of the global symmetry:

U (x) = exp (iτaπ(x)a/v) , U → LU(x)R†. (3.2)

Here L and R are the SU(2)L,R global transformations respectively, and the

τa the Pauli matrices. After EWSB the SU(2)L,R symmetries are broken down

to custodial SU(2)C , and subsequently explicitly broken by the gauge U(1)Y

and by the fermionic masses. We note that the Higgs now transforms as a

singlet of SU(2)L and Higgs insertions are now weighted by f instead of Φ/Λ

in the linear case.

Again we assume that the observed 125 GeV boson is a CP -even state

and in contrast to the linear case we will restrict ourselves strictly to bosonic

operators with the exception of the Yukawa couplings of the SM. We then

define the effective Lagrangian to order four derivatives as

L = L0 + Leff , (3.3)

where L0 is the SM Lagrangian and we have chosen in this case to leave the

sign of the Yukawa couplings open, which we will indicate by sY . Therefore
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we write L0 in the usual chiral form (see Eq. (1.29)):

L0 = 1
2
(∂µh)(∂µh)− 1

4
W a
µνW

aµν − 1
4
BµνB

µν − 1
4
Ga
µνG

aµν − V (h)

+ (v+h)2

4
Tr
[
DµU(DµU)†

]
+ Lfermion

−v+sY h√
2

(
Q̄LUyQQR + h.c.

)
− v+sY h√

2

(
L̄LUyLLR + h.c.

)
,

(3.4)

with Lfermion given in Eq. (1.2).

The covariant derivative then takes the form:

DµU(x) ≡ ∂µU(x) +
i

2
gW a

µ (x)τaU (x)− ig′

2
Bµ(x)U(x)τ3. (3.5)

The first line of Eq. (3.4) shows the Higgs and gauge kinetic terms, along with

the Higgs potential which induces spontaneous symmetry breaking. We do

not specify the Higgs potential here as it is not relevant to our discussion.

The second line then describes the W and Z masses and their interactions

with the Higgs as well as the kinetic terms for the Goldstone bosons and the

fermions. The third line corresponds to the SM Yukawa interactions with the

sign of the Higgs coupling left open and encoded in sY = ±1. Quark mixing

is implicitly assumed in the definition of QL. Here, as in Eq. (1.29), we have

used a compact notation for the right–handed fields by using doublets QR and

LR thus placing yQ and yL in two 6 × 6 block-diagonal matrices containing

the usual Yukawa couplings, yQ ≡ diag(yu, yd) and yL ≡ diag(0, ye).

As described in Sec. 1.2.2 the expansion is in number of derivatives, corre-

sponding to powers of p/Λs, which in the low momentum limit should corre-

spond to a well defined perturbative series. Then Leff to four derivatives takes

the form,

Leff = ξ [cBPB(h) + cWPW (h) + cGPG(h) + cCPC(h) + cTPT (h)

+cHPH(h) + c2HP2H(h)] + ξ
10∑
i=1

ciPi(h) + ξ2
25∑
i=11

ciPi(h)

+ξ4c26P26(h) +
∑

i ξ
niciHHP

i
HH(h),

(3.6)
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where the ci are the model dependent constant coefficients corresponding to

each operator. The last term accounts for the many possible pure Higgs opera-

tors weighted by ξni with ni ≥ 2. Then the set of pure–gauge and gauge–Higgs

operators is defined by [35, 76]1

Weighted by ξ:

PC(h) = −v2

4
Tr(V µVµ)FC P4 = ig′BµνTr(TV µ)∂νF4

PT (h) = v2

4
Tr(TVµ)Tr(TV µ)FT P5 = igTr(WµνV

µ)∂νF5

PB(h) = −g′2

4
BµνB

µνFB P6 = (Tr(VµV
µ))2F6

PW (h) = −g2

4
W a
µνW

aµνFW P7 = Tr(VµV
µ)∂ν∂

νF7

PG(h) = −g2
s

4
Ga
µνG

aµνFG P8 = Tr(VµVν)∂
µF8∂

νF′8

P1(h) = gg′BµνTr(TW µν)F1 P9 = Tr((DµV
µ)2)F9

P2(h) = ig′BµνTr(T [V µ,V ν ])F2 P10 = Tr(VνDµV
µ)F10

P3(h) = igTr(Wµν [V
µ,V ν ])F3

(3.7)

Weighted by ξ2:

P11 = (Tr(VµVν))
2F11 P19 = Tr(TDµV

µ)Tr(TVν)∂
νF19

P12 = g2(Tr(TWµν))
2F12 P20 = Tr(VµV

µ)∂νF20∂
νF′20

P13 = igTr(TWµν)Tr(T [V µ,V ν ])F13 P21 = (Tr(TVµ))2∂νF21∂
νF′21

P14 = gεµνρλTr(TVµ)Tr(VνWρλ)F14 P22 = Tr(TVµ)Tr(TVν)∂
µF22∂

νF′22

P15 = Tr(TDµV
µ)Tr(TDνV

ν)F15 P23 = Tr(VµV
µ)(Tr(TVν))

2F23

P16 = Tr([T ,Vν ]DµV
µ)Tr(TV ν)F16 P24 = Tr(VµVν)Tr(TV µ)Tr(TV ν)F24

P17 = igTr(TWµν)Tr(TV µ)∂νF17 P25 = (Tr(TVµ))2∂ν∂
νF25

P18 = Tr(T [Vµ,Vν ])Tr(TV µ)∂νF18

(3.8)

Weighted by ξ4:

P26(h) = (Tr(TVµ)Tr(TVν))
2F26 (3.9)

Where we have made use of the covariant derivative,

DµVν ≡ ∂µVν + ig
[
W a
µ

σa
2
,Vν

]
, (3.10)

and we have introduced Vµ ≡ (DµU)U †, known as the vector chiral field,

1Here we have suppressed the h dependence of Fi:, i.e. Fi(h) = Fi.
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and we also define the scalar field T ≡ Uτ3U
† the scalar chiral field, which

transform in the adjoint of SU(2)L. In all cases Fi(h) is an arbitrary function

of h (see Eq. (3.12) below).

Finally the two pure Higgs operators weighted by ξ include:

PH(h) =
1

2
(∂µh)(∂µh)FH(h), and P2H =

1

v2
(∂µ∂

µh)2F2H(h). (3.11)

Notice that we have slightly adjusted our power counting in a data–driven

manner, that is we have taken L0 to be leading order, but we allow for two–

derivative operators in Leff : for example Tr(TVµ)Tr(TV µ)) is a two derivative

operator known to break custodial symmetry, and as such is well constrained

by data, therefore we move it to the next order Lagrangian.

There are additional Higgs operators weighted by ξ ≥ 2, however they will

not be relevant to our analysis as their corresponding Feynman rules contain

too many Higgs legs. Some are briefly discussed in [76].

As in the linear basis the operator P2H can be removed by the EOM. We

include this operator here only for the purpose of identifying at what order in

ξ it occurs as neglecting it leads to accidental miscounting for other operators

in the basis. For the remainder of this dissertation we neglect to include P2H

in our discussion as it has no bearing on our results. Further details may be

found in [40, 76].

The reduced symmetry of the Higgs implies more possible invariant oper-

ators at any given order. These can be seen in the fact that in the nonlinear

realization the chiral symmetry breaking interactions of h now come in the form

of arbitrary functions F(h), instead of powers of (v + h). Additionally there

is a shuffling of the order at which operators occur in the chiral Lagrangian

relative to that of the linear [35, 78, 79] and consequently a higher number

of uncorrelated couplings are present in the leading corrections of the chiral

Lagrangian which were subleading in the Linear (i.e. occurring at operator

dimension d ≥ 8).

3.2 Relating the Chiral and Linear Expansions

We begin by stressing that the weights in ξ do not reflect an expansion in terms

of ξ. ξ proves useful for relating the chiral and linear expansions. We define
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a “sibling” of a chiral operator Pi(h) as the operator of the linear expansion

whose pure gauge interactions coincide with those described by Pi(h). The

canonical dimension d of the sibling is related to the power of ξn as d = 4 + 2n

and therefore ξn acts as an indicator of to which order in the linear expansion

it is necessary and sufficient to expand in order to account for the same gauge

interactions of the given chiral operator. More specifically the chiral operator’s

weight in ξ corresponds to the lowest dimension to which one must expand in

linear operators to reproduce the chiral operator’s gauge interactions. There-

fore it follows the lowest order in the linear expansion to which we must expand

to obtain the siblings of the operators in Eqs. (3.7) and (3.11) is d = 6, while

for Eq. (3.8) we must expand to d = 8 and for Eq. (3.9) to dimension d = 12.

Therefore ξ has no physical meaning in the context of the effective Lagrangian

and could be reabsorbed into the definition of the coefficients ci.

We note that in comparison with the linear basis where the Higgs enters in

powers of (v + h), it is now introduced via the functions Fi(h). Each of these

functions can be defined as,

F(h) ≡ g0(h, v) + ξg1(h, v) + ξ2g2(h, v) + · · · , (3.12)

where the gi are model dependent functions of h and v once 〈h〉 has been

reexpressed in terms of ξ and v. For our current work we will assume a general

polynomial form of the gi taking the general form:

Fi(h) ≡ 1 + 2ãi
h

v
+ b̃i

h2

v2
+ · · · . (3.13)

We will treat the ãi and b̃i as unknown phenomenological parameters for the

fit performed in Chapter 5.

In order to compare the two expansions we need to consider the limit

in which they should converge. Recalling that ξ helps to parameterize the

degree to which the expansion is nonlinear we expect the two expansions to

be equivalent for ξ → 0. Therefore we can truncate the chiral expansion at

O(ξ) and compare the operators which contribute to gauge–Higgs interactions

with those of the linear expansion at d = 6. The linear basis then contains ten

independent couplings (see Eq. (2.2) and Eq. (2.5) noting OWWW and OΦ,3

do not contribute to gauge–Higgs interactions) while the chiral depends on
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seventeen (those of Eqs. (3.7) and (3.11)). For the purpose of comparison we

consider Fi(h) = (1 + h/v)2 for all Pi which leads to the relations:

OBB = v2

2
PB(h), OWW = v2

2
PW (h),

OGG = −2v2

g2
s
PG(h), OBW = v2

8
P1(h),

OB = v2

16
P2(h) + v2

8
P4(h), OW = v2

8
P3(h)− v2

4
P5(h),

OΦ,1 = v2

2
PH(h)− v2

4
F(h)PT (h), OΦ,2 = v2PH(h),

OΦ,4 = v2

2
PH(h) + v2

2
F(h)PC(h),

O2Φ = v2

2
P2H(h) + v2

8
P6(h) + v2

4
P7(h)− v2P8(h)− v2

4
P9(h)− v2

2
P10(h) .

(3.14)

We note that these relations indicate that the five chiral operators PB, PW ,

PG, P1, and PH are in one−to−one correspondence with the linear operators

OBB, OWW , OGG, OBW , and OΦ,2 respectively. While PT (PC) correspond to

linear combinations of OΦ,1 and OΦ,2 (OΦ,4 and OΦ,2). Conversely we note OB

(OW ) corresponds to a specific combination of the chiral operators P2 and P4

(P3 and P5). In order to break these last correlations in the linear expansion

we must consider operators at the next order, i.e. d = 8, such as:

(
(DµΦ)†Φ

)
B̂µν

(
Φ†DνΦ

)
and

(
(DµΦ)†Φ

)
Ŵ µν

(
Φ†DνΦ

)
. (3.15)

In fact we will shortly consider how to use this difference to construct observ-

ables which may aid in identifying the underlying dynamics of the observed

Higgs–like resonance.

3.3 Effective Vertices

As was the case in Chapter 2, the chiral operators will introduce wave function

renormalizations for the various SM field content, along with renormalization

of the parameters of the theory. We employ again the Z–scheme taking as

input parameters αEM, αs, GF , MZ , andMH . Then in the following expressions

if the other parameters, such as g, g′, v, e, or the mixing angle, are used they

must be expressed in terms of these input parameters. Recalling Eq. (3.13)
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we will further simplify the notation by using,

ai ≡ ciãi, and bi ≡ cib̃i, (3.16)

where the ci are the operator coefficients of Eq. (3.6). Working in the unitary

gauge we see that PB, PW , PG, PH , P1, and P12 introduce corrections to the

SM kinetic terms and require field redefinitions to put the kinetic terms in the

canonical form. These operators then affect the input parameters as:

δαEM

αEM
∼ 4e2c1ξ + 4e2c12ξ

2, δGF
GF
∼ 0,

δMZ

MZ
∼ −cT ξ − 2e2c1ξ + 2e2 c

2
W

s2W
c12ξ

2, δMH

MH
∼ 0.

(3.17)

Then the W–mass diverges from that of the SM as:

∆M2
W

M2
W

=
4e2

c2W

c1ξ +
2c2

W

c2W

cT ξ −
4e2

s2
W

c12ξ
2. (3.18)

As we would expect from their relation to OBW and OΦ,1, P1 and PT generate

tree level contributions to the oblique parameters S and T ,

αEM∆S = −8e2c1ξ and αEM∆T = 2cT ξ. (3.19)

We note that the operators P7, P9, and P10 induce additional terms in the

HV V Lagrangian, beyond those in Eq. (2.18), such as:

L′HV V ≡ g
(4)
HZZZµZ

µ2h+ g
(5)
HZZ∂µZ

µZν∂
νh+ g

(6)
HZZ∂µZ

µ∂νZ
νh

+g
(4)
HWWW

+
µ W

−µ2h+ g
(5)
HWW (∂µW

+µW−
ν ∂

νh+ h.c.)

+g
(6)
HWW∂µW

+µ∂νW
−νh.

(3.20)

The operators which are proportional to 2h become redundant for on shell

Higgses and the those proportional to ∂µV vanish for on-shell W or Z or

massless fermions. Therefore they will prove irrelevant to our analysis. We

include in Tab. 3.1 the values of the coefficients for the HV V operators in

Eqs. (2.18) and (3.20) in the chiral basis. We include the effects of the oper-

ators P7, P9, and P10 for completeness, however they will not be used in our

analysis for the reasons above. For the sake of comparison we also include the
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coefficients for the linear case as well. To simplify the table we employ the

definition,

g
(j)
i ≡ g

(j)SM
i + ∆g

(j)
i , (3.21)

i.e. we remove the SM part and only show in the table the anomalous con-

tributions. TGV related coefficients are saved for the discussion in the next

section.

Coeff. Chiral Linear
×e2/4v ×ξ ×ξ2 ×v2/Λ2

∆gHgg
g2
s

e2
−2aG − −4fGG

∆gHγγ 1 −2(aB + aW ) + 8a1 8a12 −(fBB + fWW ) + fBW
∆g

(1)
HZγ

1
s2W

−8(a5 + 2a4) −16a17 2(fW − fB)

∆g
(2)
HZγ

cW
sW

4
s2W
c2W
aB − 4aW + 8 c2W

c2W
a1 16a12 2

s2W
c2W
fBB − 2fWW + c2W

c2W
fBW

∆g
(1)
HZZ

1
c2W

−4
c2W
s2W
a5 + 8a4 −8

c2W
s2W
a17

c2W
s2W
fW + fB

∆g
(2)
HZZ − c2W

s2W
2
s4W
c4W
aB + 2aW + 8

s2W
c2W
a1 −8a12

s4W
c4W
fBB + fWW +

s2W
c2W
fBW

∆g
(3)
HZZ

m2
Z

e2
−2cH + 2(2aC − cC)− 8(aT − cT ) − fΦ,1 + 2fΦ,4 − 2fΦ,2

∆g
(4)
HZZ − 1

s22W
16a7 32a25 −

∆g
(5)
HZZ − 1

s22W
16a10 32a19 −

∆gHZZs
(6) − 1

s22W
16a9 32a15 −

∆g
(1)
HWW

1
s2W

−4a5 − fW

∆g
(2)
HWW

1
s2W

−4aW − −2fWW

∆g
(3)
HWW

m2
Zc

2
W

e2
−4cH + 4(2aC − cC) + 32 e2

c2W
c1 +

16c2W
c2W

cT −32 e2

s2W
c12 −2

(3c2W−s
2
W)

c2W
fΦ,1 + 4fΦ,4 − 4fΦ,2 + 4 e2

c2W
fBW

∆g
(4)
HWW − 1

s2W
8a7 − −

∆g
(5)
HWW − 1

s2W
4a10 − −

∆g
(6)
HWW − 1

s2W
8a9 − −

Table 3.1: The trilinear Higgs–gauge boson couplings defined in Eq. (2.18).
The coefficients in the second column are common to both the chiral and linear
expansions. The contributions from the operators weighted by ξ and ξ2 are
listed in the third and fourth columns respectively. For comparison, the last
column shows the corresponding expressions for the linear expansion at order
d=6.

In our analysis in Chapter 5 we will consider the constraints on the ξ–

weighted operators from the presently available Higgs data. After eliminating

operators whose contribution cancels for on–shell Higgs and/or light external

fermions, and considering the strong constraints on PT and P1 from the S and

T parameters, the basis of 15 operators in Eq. (3.7) is greatly reduced, and

the relevant operators for our analysis are:

PG, P4, P5, PB, PW , PH , and PC . (3.22)
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3.4 Discriminating Signatures

Before we move on to the analysis framework and results we briefly discuss the

implications of the chiral basis for TGVs and by considering the relations in

Eq. (3.14) we construct discriminants between the two expansions. We begin

by parameterizing the effects of the chiral basis on the form of Eq. (2.38) in

Tab. 3.2, including two new Lorentz structures for the TGV Lagrangian here:

L′WWV = −igWWV [−igV5 εµνρσ(W+
µ ∂ρW

−
ν −W−

ν ∂ρW
+
µ )Vσ

+ gV6 (∂µW
+µW−ν − ∂µW−µW+ν)Vν ].

(3.23)

In Tab. 3.2 we have used the definitions

∆gZ1 = gZ1 − 1, ∆κγ = κγ − 1, ∆κZ = κZ − 1,

∆gγ6 = gγ6 , ∆gZ6 = gZ6 , ∆gZ5 = gZ5 .
(3.24)

Coeff. Chiral Linear
×e2/s2

W ×ξ ×ξ2 ×v2/Λ2

∆κγ 1 −2c1 + 2c2 + c3 −4c12 + 2c13
1
8
(fW + fB − 2fBW )

∆gγ6 1 −c9 − −
∆gZ1

1
c2W

s22W

4e2c2W
cT + 2

s2W
c2W

c1 + c3 − 1
8
fW +

s2W
4c2W

fBW −
s22W

16e2c2W
fΦ,1

∆κZ 1
s2W

e2c2W
cT + 4

s2W
c2W

c1 − 2
s2W
c2W
c2 + c3 −4c12 + 2c13

1
8
fW −

s2W
8c2W

fB +
s2W

2c2W
fBW −

s2W
4e2c2W

fΦ,1

∆gZ5
1
c2W

− c14 −
∆gZ6

1
c2W

s2
Wc9 −c16 −

Table 3.2: Effective couplings parameterizing the VW+W− vertices defined
in Eqs. (2.38) and (3.23). The coefficients in the second column are common
to both the chiral and linear expansions. In the third and fourth columns the
specific contributions from the operators in the chiral Lagrangian are shown.
For comparison the last column shows the corresponding contributions from
the linear d=6 operators.

There are two main effects which are clearly distinct between the two ex-

pansions with respect to TGV and HVV couplings which we discuss next.

3.4.1 Differences in TGV

From the results in Tab. 3.2 we see that there are Lorentz structures in the

TGV vertex which appear at leading order in one expansion while sublead-

ing in the others. For example OWWW contributes at the tree level to the
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anomalous TGV as parameterized in Eq. (2.38) by λV , however this coupling

does not receive contributions from any of the non–linear operators up to four

derivatives. Consequently the strength of the contributions to λV in the non–

linear case are expected to be suppressed with respect to the other effective

couplings (∆κγ,Z and ∆gZ1 ). On the contrary in the linear case the strength

of the λV contributions could have the same size as those of all other effective

couplings. Therefore, a measurement of an anomalous TGV signal compatible

with λV , which is the anomalous TGV with the most striking high energy

signature as we will see in the following, would point to a fundamental Higgs

boson.

Conversely in the chiral expansion and for large ξ all chiral operators

weighted by ξn with n ≥ 2 are equally relevant to the ξ–weighted opera-

tors. However their siblings require operators of dimension d ≥ 8 in the linear

expansion. A case of special interest is P14(h) which generates a contribution

to the gZ5 effective vertex in Eq. (3.23) (see Tab. 3.2) which is absent both in

the SM Lagrangian and in the linear expansion up to dimension–six. This fact

provides a viable strategy to test the nature of the physical Higgs which we

quantify in Sec. 5.4.2.

3.4.2 (De)correlation Between HVV and TGV

As we have mentioned briefly before, the relations between HVV and TGV

are different in the two expansions. We will recall the relation between OB

and OW and the chiral operators P2, P3, P4, and P5:

OB =
v2

16
P2(h) +

v2

8
P4(h), and OW =

v2

8
P3(h)− v2

4
P5(h). (3.25)

Focusing on OB, in the unitary gauge we may expand P2(h) and P4(h) finding:

P2(h) = 2ieg2AµνW
−µW+νF2(h)− 2 ie

2g
cW
ZµνW

−µW+νF2(h),

P4(h) = − eg
cW
AµνZ

µ∂νF4(h) + e2

c2W
ZµνZ

µ∂νF4(h).

(3.26)
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Expanding OB, their d = 6 sibling, we find similar Lorentz and field structures:

OB = ieg2

8
AµνW

−µW+ν(v + h)2 − ie2g
8cW

ZµνW
−µW+ν(v + h)2

− eg
4cW

AµνZ
µ∂νh(v + h) + e2

4c2W
ZµνZ

µ∂νh(v + h).

(3.27)

From this we notice that in the linear case the Lorentz structures present in

P2 and P4 are correlated, whereas in the chiral case they are independently

tuned by the corresponding operator coefficients c2 and c4. In particular the

Chiral basis allows for the decorrelation of:

• γWW from γZh and ZWW from ZZh vertices, these are examples of

interactions involving different numbers of external h legs.

• γWWh from γZh and ZWWh from ZZh; examples of interactions in-

volving the same number of h legs.

While these decorrelations are expected in the leading deviations from the SM

in the chiral approach, they require the inclusion of the next order (i.e. d = 8)

operators in the linear approach. This observation allows us to create useful

discriminators between the chiral and linear expansions from the relations in

Eq. (3.25).

Given that the linear expansion requires the relations:

2c2 = a4, and 2c3 = −a5. (3.28)

We define ΣB and ΣW such that they quantify the divergence from the SM

behavior of the Higgs data considered, and define ∆B and ∆W as discrimi-

nators between the linear and chiral expansions via the correlation (possible

decorrelation) that each one exhibits:

ΣB ≡ 4(2c2 + a4), ΣW ≡ 2(2c3 − a5),

∆B ≡ 4(2c2 − a4), ∆W ≡ 2(2c3 + a5).

(3.29)

Notice that this implies that for a Higgs behaving as a part of the linear

expansion ΣB(W ) → fB(W )/Λ
2 and ∆B = ∆W → 0. We return to these

discriminators and the set of operators in Eq. (3.22) in Sec. 5.3, where we will
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make use of the relevant Higgs data from the LHC and Tevatron to constrain

their allowed values.

3.4.3 Quartic Gauge Boson Couplings

The quartic gauge boson couplings also receive contributions from the opera-

tors in Eqs. (3.7)-(3.9). The corresponding effective Lagrangian reads

L4X ≡ g2

{
g

(1)
ZZ(ZµZ

µ)2 + g
(1)
WW W+

µ W
+µW−

ν W
−ν − g

(2)
WW (W+

µ W
−µ)2

+ g
(3)
V V ′W

+µW−ν (VµV ′ν + V ′µVν
)
− g

(4)
V V ′W

+
ν W

−νV µV ′µ

+ ig
(5)
V V ′ε

µνρσW+
µ W

−
ν VρV

′
σ

}
, (3.30)

where V V ′ = {γγ, γZ, ZZ}. Notice that all these couplings are C and P

even, except for g
(5)
V V ′ that is CP–even but both C– and P–odd. Some of these

couplings are nonvanishing at tree-level in the SM:

g
(1)SM
WW =

1

2
, g

(2)SM
WW =

1

2
, g

(3)SM
ZZ =

c2
W

2
, g(3)SM

γγ =
s2

W

2
,

g
(3)SM
Zγ =

s2W

2
, g

(4)SM
ZZ = c2

W , g(4)SM
γγ = s2

W , g
(4)SM
Zγ = s2W .

(3.31)

Table 3.3 shows the contributions to the effective quartic couplings from the

chiral operators and from the linear operators in Eq. (2.2). As can be seen

by comparing Tabs. 3.3 and 3.2, in the chiral expansion several operators

weighted by ξ or higher powers contribute to quartic gauge boson vertices

without inducing any modification to TGVs. Therefore, their coefficients are

much less constrained at present, and one can still expect larger deviations on

future studies of quartic vertices at LHC for large values of ξ. This is unlike

in the linear expansion, in which the modifications of quartic gauge couplings

that do not induce changes to TGVs appear only when the d = 8 operators are

considered [80]. We will discuss in Sec. 5.4.3 the present status on the bounds

of these effects.
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Coeff. Chiral Linear

×e2/4s2
W ×ξ ×ξ2 ×v2/Λ2

∆g
(1)
WW 1

s22W

e2c2W
cT + 8

s2W
c2W

c1 + 4c3 2c11 − 16c12 + 8c13
fW
2

+
s2W
c2W

fBW −
s22W

4c2We2
fΦ1

∆g
(2)
WW 1

s22W

e2c2W
cT + 8

s2W
c2W

c1 + 4c3 − 4c6 −2c11 − 16c12 + 8c13
fW
2

+
s2W
c2W

fBW −
s22W

4c2We2
fΦ1 − 1

2
f�Φ

∆g
(1)
ZZ

1
c4W

c6 c11 + 2c23 + 2c24 + 4c26ξ
2 1

8
f�Φ

∆g
(3)
ZZ

1
c2W

s22Wc2W
e2c2W

cT + 2
s22W

c2W
c1 + 4c2

Wc3 − 2s4
Wc9 2c11 + 4s2

Wc16 + 2c24
fW c2W

2
+

s22W

4c2W
fBW −

s22Wc2W
4e2c2W

fΦ1 +
s4W
2
f�Φ

∆g
(4)
ZZ

1
c2W

2
s22Wc2W
e2c2W

cT + 4
s22W

c2W
c1 + 8c2

Wc3 − 4c6 −4c23 fW c
2
W + 2

s22W

4c2W
fBW −

s22Wc2W
2e2c2W

fΦ1 − 1
2
f�Φ

∆g
(3)
γγ s2

W −2c9 − 1
2
f�Φ

∆g
(3)
γZ

sW
cW

s22W

e2c2W
cT + 8

s2W
c2W

c1 + 4c3 + 4s2
Wc9 −4c16

fW
2

+
s2W
c2W

fBW −
s22W

4c2We2
fΦ1 − s2

Wf�Φ

∆g
(4)
γZ

sW
cW

2
s22W

e2c2W
cT + 16

s2W
c2W

c1 + 8c3 − fW + 2
s2W
c2W

fBW −
s22W

2c2We2
fΦ1

∆g
(5)
γZ

sW
cW

− 8c14 −

Table 3.3: Effective couplings parametrizing the vertices of four gauge bosons
defined in Eq. (3.30). The contributions from the operators weighted by ξ and
ξ≥2 are listed in the third and fourth columns, respectively. For comparison,
the last column exhibits the corresponding expressions for the linear expansion
at order d = 6 (see Eq. (A.6)).

3.5 Summary and Discussion

In this chapter we have discussed the effective Lagrangian relevant to a Higgs

introduced as a pseudo–Goldstone boson which results from the breaking of a

global symmetry of some new strong dynamics at a high energy scale. In this

case EWSB is assumed to be non–linearly realized at low energies and the more

appropriate expansion is that provided by chiral perturbation theory. Hence

we have introduced the effective chiral Lagrangian to order four derivatives.

Subsequently we have discussed the relation to the dimension–six effective

Lagrangian in the linear realization of EWSB by invoking the parameter ξ,

defined in Eq. (3.1) which helps to organize the chiral basis in terms of the

order at which similar operators are introduced in the linear realization. In

doing so we have pointed out the importance of the connection between TGV

and HVV couplings, as well as quartic gauge boson couplings in discriminating

between these two expansions. We will return to the present experimental

constraints on the coefficients of the operators in the chiral basis and the

discriminating signals in Chapter 5 when we apply the current Higgs and

gauge boson scattering data to these discussions. In the next chapter we will

50



put together the analysis framework necessary for achieving this goal.
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Chapter 4

The Analysis Framework

In this chapter we describe how to impose the constraints on our operator bases

from the available data. In particular we discuss how to include information

from the Higgs searches at the Tevatron and the Higgs results from the LHC

taken in the 7 TeV and 8 TeV runs. Additionally we will include the data on

the TGCs from LEP and the one–loop constraints from EWPD. Section 4.1

discusses the analysis framework for collider constraints, Sec. 4.2 discusses the

framework for the inclusion of TGC data, and finally Sec. 4.3 puts together

the framework for inclusion of EWPD. In Chapter 5 we will apply this analysis

framework and give the results for both the linear basis (see Chapter 2) and

the chiral basis (see Chapter 3).

4.1 Inclusion of Higgs Collider Data

In order to obtain the quantative information on the coefficients of the new op-

erators from the Higgs data coming from both LHC and Tevatron experimental

analyses we will make a chi–square test based on the signal strengths of the

different available channels measured by the experiments (See Tabs. 4.1, 4.2

and 4.3). The signal strength for production of a final state F mediated by

the Higgs boson is defined as the measured cross section for such a process

divided by the expected cross section in the SM:

µF =
σobs(pp(pp̄)→ H → F )

σSM(pp(pp̄)→ H → F )
. (4.1)
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In order to form our chi-square test we must predict the expected signal

strengths in the presence of the new operators. In doing so we must consider

both the effects of the operators on the production channels and the decay

branching ratios. To simplify the calculation we will be assuming the nar-

row width approximation, which holds for Higgs widths sufficiently narrow

compared with MH , a well justified limit in the SM as well as given recent

experimental bounds [81, 82]. In this approximation we will assume that for

both SM and anomalous contributions,

σ(pp(pp̄)→ H → F ) = σ(pp(pp̄)→ H)× Br(H → F ), (4.2)

where we have denoted as σ(pp(pp̄)→ H) the relevant production processes for

a Higgs alone or in association with other particles. The main contributions to

the Higgs production cross sections are from the following subprocesses which

we label as indicated in parenthesis: gluon-fusion (gg), associate production

of a Higgs with a gauge boson V = Z,W (V H), production in gauge-boson

fusion (VBF), or associated production with a pair of top quarks (tt̄H). For

illustration we show in Fig. 4.1 the cross sections for the dominant production

processes in the SM at the LHC at 7 TeV. Regarding the decay modes, we

show in Fig. 4.2 the SM branching ratios in the different final states.

For our analysis, and given the accessible public data, we assume that the

correlations between the different sources of errors for the different channels

are negligible except for the theoretical uncertainties which are treated with

the pull method [91, 92] in order to account for their correlations. In this

approach each source of uncertainty correlated between the different channels,

is characterized by a “pull parameter” ξpull which modifies the corresponding

theoretical prediction and which is allowed to vary within the expected range

of the uncertainty σpull. Thus assuming that each such uncertainty is gaussian-

distributed, the chi–square can be schematically written as

χ2 = min
ξpull

∑
j

(µj − µexp
j )2

σ2
j

+
∑
pull

(
ξpull

σpull

)2

, (4.3)

where j stand for the different experimental channels considered. We present

the different Tevatron and LHC (at 7 TeV and 8 TeV) data points in Tabs. 4.1,
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Channel µexp comment
pp̄→ W+W− 0.94+0.85

−0.83 CDF & D0 [69]
pp̄→ τ τ̄ 1.68+2.28

−1.68 CDF & D0 [69]
pp̄→ bb̄ 1.59+0.69

−0.72 CDF & D0 [69]
pp̄→ γγ 5.97+3.39

−3.12 CDF & D0 [69]
pp→ τ τ̄ 0.7+0.7

−0.7 ATLAS @ 7 and 8 TeV [70]
pp→ bb̄ −2.1+1.4

−1.4 ATLAS @ 7 TeV [83]
pp→ bb̄ 0.6+0.7

−0.7 ATLAS @ 8 TeV [83]
pp→ ZZ∗ → `+`−`+`− 1.7+0.5

−0.4 ATLAS @ 7 and 8 TeV [84]
pp→ WW ∗ → `+ν`−ν̄ 0.0+0.6

−0.6 ATLAS @ 7 TeV [85]
pp→ WW ∗ → `+ν`−ν̄ 1.26+0.35

−0.35 ATLAS @ 8 TeV [85]
pp→ Zγ → `+`−γ 4.7+6.89

−6.89 ATLAS @ 7 and 8 TeV [86]
pp→ τ τ̄ 1.1+0.4

−0.4 CMS @ 7 and 8 TeV [19]
pp→ bb̄ 1.0+0.49

−0.49 CMS @ 7 and 8 TeV [87]
pp→ bb̄ VBF 0.7+1.4

−1.4 CMS @ 8 TeV [88]
pp→ ZZ∗ → `+`−`+`− 0.91+0.30

−0.24 CMS @ 7 and 8 TeV [18]
pp→ WW ∗ → `+ν`−ν̄ 0.91+0.44

−0.44 CMS @ 7 TeV [89]
pp→ WW ∗ → `+ν`−ν̄ 0.71+0.22

−0.22 CMS @ 8 TeV [89]
pp→ Zγ → `+`−γ −0.5+4.87

−4.87 CMS @ 7 and 8 TeV [90]

Table 4.1: Results included in the analysis for the Higgs decay modes listed
except for the γγ channels.

µexp

Channel 7 TeV 8 TeV

Unconverted central, low pTt 0.52+1.45
−1.40 0.89+0.74

−0.71

Unconverted central, high pTt 0.23+1.98
−1.98 0.95+1.08

−0.92

Unconverted rest, low pTt 2.56+1.69
−1.69 2.52+0.92

−0.77

Unconverted rest, high pTt 10.47+3.66
−3.72 2.71+1.35

−1.14

Converted central, low pTt 6.10+2.62
−2.62 1.39+1.05

−0.95

Converted central, high pTt −4.36+1.80
−1.80 2.0+1.54

−1.26

Converted rest, low pTt 2.73+1.98
−1.98 2.22+1.17

−0.99

Converted rest, high pTt −1.57+2.91
−2.91 1.29+1.32

−1.26

Converted transition 0.41+3.55
−3.66 2.83+1.69

−1.60

2-jets / 2-jets high mass tight 2.73+1.92
−1.86 1.63+0.83

−0.68

2-jets high mass loose —– 2.77+1.79
−1.39

2-jets low mass —– 0.338+1.72
−1.48

Emiss
T significance —— 2.99+2.74

−2.15

One Lepton —— 2.71+2.00
−1.66

Table 4.2: H → γγ results from ATLAS [1, 2] included in our analysis.
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Figure 4.1: Cross sections for the dominant production channels in the SM at
the LHC at 7 TeV as a function of MH .
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Figure 4.2: Decay branching ratios for the SM Higgs as a function of MH .

4.2, and 4.3. In Eq. (4.3) we denote the theoretically expected signal as µj,

the observed best fit values as µexp
j and the corresponding experimental errors
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µexp

Channel 7 TeV 8 TeV

pp→ γγ Untagged 3 1.48+1.65
−1.60 −0.364+0.85

−0.82

pp→ γγ Untagged 2 0.024+1.24
−1.24 0.291+0.49

−0.46

pp→ γγ Untagged 1 0.194+0.99
−0.95 0.024+0.703

−0.655

pp→ γγ Untagged 0 3.83+2.01
−1.67 2.16+0.95

−0.75

pp→ γγjj 4.19+2.30
−1.77 loose 0.80+1.09

−0.99

tight 0.291+0.679
−0.606

pp→ γγ MET —– 1.89+2.62
−2.28

pp→ γγ Electron —– −0.655+2.76
−1.96

pp→ γγ Muon —– 0.412+1.79
−1.38

Table 4.3: H → γγ results from CMS [3] included in our analysis.

as σj. As we can see from these Tables the experimental errors are not sym-

metric in some of the channels, showing a deviation from Gaussian behavior

as expected from the still low statistics. In our calculations we make the errors

in each channel symmetric by taking:

σj =

√
(σ+

j )2 + (σ−j )2

2
. (4.4)

Concerning the theoretical uncertainties, the largest ones are associated with

the gluon fusion production subprocess and in order to account for these er-

rors we introduce two pull factors, one to account for the Tevatron uncertainty

(ξTg ), and one for both the LHC at 7 and 8 TeV uncertainties (ξLg ). We consider

that the errors associated with these pulls are σTg = 0.43 and σLg = 0.15 [93].

Additionally we introduce two pull factors to account for the theoretical un-

certainties associated with vector boson fusion (VBF) cross section, one for

Tevatron (ξTV BF ) with associated error σTV BF = 0.035, and one for LHC at

both 7 and 8 TeV (ξLV BF ) with associated error σLV BF = 0.03 [93]. Finally

theoretical uncertainties from associated production (V H) cross section are

included with two more pulls, one for Tevatron (ξTV H) with associated error

σTV H = 0.075 and one for LHC at both 7 and 8 TeV (ξLV H) with associated

error σLV H = 0.05 [93]. These pulls modify the corresponding signal strength

predictions as we will see below.

From the expressions in the previous chapters it is straight forward to
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compute the expected signal strengths at tree-level including the contributions

to the new operators. Concerning the higher order corrections we assume

that the corresponding “K–factors” (defined as the ratio of the higher order

predictions divided by the predictions at the leading order) are the same for

the SM as for the new operator contributions. In this approximation we then

write:

σano
Y =

σano
Y

σSM
Y

∣∣∣∣
tree

σSM
Y |soa, (4.5)

Γano(h→ F ) =
Γano(h→ F )

ΓSM(h→ F )

∣∣∣∣
tree

ΓSM(h→ F )|soa. (4.6)

Where the superscripts ano (SM) indicate the value of the observable consid-

ering the anomalous and SM interactions (SM interactions only). These ratios

of the cross sections (where Y indicates the subprocesses, gg, VBF, V H, or

tt̄H) and decay widths are evaluated at tree level and multiplied by the state

of the art SM calculations, σSM
Y |soa and ΓSM(h→ F )|soa. In our analysis we do

not include an invisible decay component, therefore we are assuming the total

width is obtained by summing over the decays to the SM particles. In the

future it may be insightful to include such analysis as recently developed tech-

niques [94, 95] have allowed for great improvements on indirect measurements

of the Higgs width [81, 82]. Calculation of the relevant tree–level cross sec-

tions was performed with the package MadGraph5 [96] with anomalous Higgs

interactions introduced using FeynRules [97]. Additionally our results were

checked against COMPHEP [98, 99] and VBFNLO [100].

With all these considerations, for any final state F listed in Tabs. 4.1, 4.2

and 4.3 we can write the theoretical signal strength as

µF =
εFggσ

ano
gg (1+ξg)+εano

VBFσ
ano
VBF(1+ξVBF)+εFWHσ

ano
WH(1+ξVH)+εFZHσ

ano
ZH(1+ξVH)+εF

tt̄H
σano
tt̄H

εFggσ
SM
gg +εSM

VBFσ
SM
VBF+εFWHσ

SM
WH+εFZHσ

SM
ZH+εF

tt̄H
σSM
tt̄H

· BRano
F

BRSM
F

(4.7)

where we explicitly show how the “pull factors” described above are intro-

duced. εFY denotes the weight of the different production channels Y = VBF,

gg, WH , ZH, and tt̄H to each final state F .

Searches for H → bb̄ are performed using only Higgs production via asso-

ciated production with a W or Z meaning

εbb̄gg = εbb̄VBF = εbb̄tt̄H = 0, εbb̄WH = εbb̄ZH = 1, (4.8)
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with the exception of the analysis by CMS [88] where

εbb̄gg = εbb̄WH = εbb̄ZH = εbb̄tt̄H = 0, εbb̄VBF = 1 (4.9)

is assumed.

In the case of the F = γγ signals both CMS and ATLAS for 7 and 8

TeV data separate the signal into various different categories. For ATLAS

we reference Tab. 6 of [1] and Tab. 1 of [2] and for CMS Tab. 2 of [3]. For

convenience we summarize this information in Tabs. 4.4 and 4.5.

Excepting those cases all other channels F = WW ∗, ZZ∗, τ̄ τ , and Zγ are

treated as inclusive, that is:

εFgg = εFWH = εFZH = εFVBF = εFtt̄H = 1. (4.10)

Finally, we notice that some data available after the LHC 8 TeV run has been

combined with that of the 7 TeV run. In this case we construct the expected

theoretical signal strength as an average of the expected signal strengths for

the center of mass energies of 7 and 8 TeV by weighting the contributions by

the total number of events expected at each energy in the framework of the

SM,

µcomb
F =

µ7TeV
F σSM,7TeV

F L7TeV + µ8TeV
F σSM,8TeV

F L8TeV

σSM,7TeV
F L7TeV + σSM,8TeV

F L8TeV
, (4.11)

where L7(8)TeV is the integrated luminosity accumulated at 7 (8) TeV in the

given channel F .

It is important to note that our analysis neglects possible effects associated

with the distortions of the kinematic distributions of the final states due to the

Higgs anomalous couplings arising from their non SM–like Lorentz structure.

Therefore we have implicitly assumed that the anomalous contributions have

the same detection efficiency as the SM Higgs. A full simulation of the Higgs

anomalous operators which considers their special kinematic features may aid

to increase both sensitivity to the anomalous couplings and to break degen-

eracies between operators. However, at the time of this work there was not

sufficient public information available to perform such an analysis.
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Channel εgg εV BF εWH εZH εtt̄H
Unconverted central, low pTt 1.06 0.579 0.550 0.555 0.355

1.07 0.572 0.448 0.452 0.343
Unconverted central, high pTt 0.760 2.27 3.03 3.16 4.26

0.906 1.80 1.31 1.41 2.40
Unconverted rest, low pTt 1.06 0.564 0.612 0.610 0.355

1.06 0.572 0.512 0.566 0.171
Unconverted rest, high pTt 0.748 2.33 3.30 3.38 3.19

0.892 1.90 1.50 1.58 1.88
Converted central, low pTt 1.06 0.578 0.581 0.555 0.357

1.07 0.572 0.416 0.509 0.343
Converted central, high pTt 0.761 2.21 3.06 3.16 4.43

0.901 1.80 1.38 1.53 2.57
Converted rest, low pTt 1.06 0.549 0.612 0.610 0.355

1.06 0.586 0.512 0.566 0.171
Converted rest, high pTt 0.747 2.31 3.36 3.27 3.19

0.887 1.86 1.66 1.70 1.88
Converted transition 1.02 0.752 1.01 0.943 0.532

1.04 0.787 0.704 0.735 0.343
2-jets / 2-jets high mass tight 0.257 11.1 0.122 0.111 0.177

0.272 10.9 0.032 0.056 0.0
2-jets high mass loose (only 8 TeV) 0.514 7.74 0.160 0.170 0.171

2-jets low mass (only 8 TeV) 0.550 0.429 9.51 9.73 3.25
Emiss
T significance (only 8 TeV) 0.047 0.072 11.4 26.9 20.7

One lepton (only 8 TeV) 0.025 0.086 20.2 8.71 31.9

Table 4.4: Weight of each production mechanism for the different γγ categories
in the ATLAS analyses of the 7 TeV data (upper values) and 8 TeV (lower
values). For the 8 TeV analysis three new exclusive categories enriched in
vector boson associated production were added with the 2-jets low mass (lepton
tagged) [Emiss

T significance] category being built to select hadronic (leptonic)
[invisible] decays of the associated vector boson.
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Channel εgg εV BF εV H εtt̄H
pp→ γγ Untagged 3 1.04 0.637 0.808 0.355

1.06 0.558 0.675 0.343
pp→ γγ Untagged 2 1.04 0.637 0.769 0.532

1.05 0.629 0.715 0.685
pp→ γγ Untagged 1 1.00 0.897 1.10 0.887

0.954 1.20 1.45 1.71
pp→ γγ Untagged 0 0.702 2.43 3.69 5.50

0.833 1.66 2.66 4.45
pp→ γγjj (7 TeV) 0.306 10.5 0.118 0

pp→ γγjj loose (8 TeV) 0.535 7.31 0.348 0.856
pp→ γγjj tight (8 TeV) 0.236 11.3 0.061 0.171
pp→ γγ, µ-tag (8 TeV) 0.0 0.029 16.2 35.6
pp→ γγ, e-tag (8 TeV) 0.013 0.057 16.1 33.7

pp→ γγ, Emiss
T -tag (8 TeV) 0.241 0.358 13.2 20.2

Table 4.5: Weight of each production mechanism for the different γγ categories
in the CMS analyses of the 7 TeV data (upper values) and 8 TeV (lower values).
εV H = εZH = εWH . For the pp → γγjj category the 8 TeV data was divided
in two independent subsamples labeled as “loose” and “tight” according to
the requirement on the minimum transverse momentum of the softer jet and
the minimum dijet invariant mass. For the 8 TeV analysis three new exclusive
categories were added enriched in vector boson associated production: µ–tag,
e–tag and Emiss

T –tag.
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4.2 Inclusion of Triple Gauge Coupling Data

Recalling the Lagrangian of Eq. (2.38) and its relation to the linear basis (see

Eq. (2.39)) and the chiral basis (Tab. 3.2) we are able to include experimental

information on the TGV measurements in our analysis. We do this by adding

a new term to our chi–square test of Eq. (4.3).

We notice that Eq. (2.39) implies that only three of the five relevant TGV

couplings are independent. These three can be chosen to be ∆κγ, λγ, and

∆gZ1 , while λZ and ∆κZ remain to be determined by the relations

λZ = λγ , ∆κZ = −s
2
W

c2
W

∆κγ + ∆gZ1 . (4.12)

Experimental results, however, are usually given in terms of the effective

parametrization in Eq. (2.38) assuming that only some of the couplings ∆κγ ,

λγ, g
Z
1 ∆κZ , λZ are not vanishing (usually one) while all others are taken to

be zero hence not all can be used in our analysis. For example in the frame-

work of the effective Lagrangians considered here, it is not consistent to use as

experimental results those obtained under the assumption that only one of the

effective couplings is non–vanishing since for any given operator at least two

of the couplings are non–vanishing as seen from the relations in Eq. (4.12).

So for our analyisis we will make use of the results from the LEP collab-

oration [101] on γW+W− and ZW+W− TGVs which are the most precise

measurements obtained under the assumption that the couplings are related

as predicted by Eq. (4.12). In such analysis they present the results in terms

of correlated ranges between the parameters κγ and gZ1 :

κγ = 0.984+0.049
−0.049 gZ1 = 1.004+0.024

−0.025 , (4.13)

with a correlation factor of ρ = 0.11. We define the (row) vector

(
δgZ1 , δκγ

)
≡

(
gZ1 − g

Z,exp
1

σgZ1
,
κγ − κexp

γ

σκγ

)
, (4.14)

where in the expressions above gZ1 and κγ are to be understood as functions
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of fW and fB as in Eq. (2.39). The correlation matrix is

CTGV ≡

(
1 ρ

ρ 1

)
. (4.15)

This allows us to define the chi square test for the TGV data:

χ2
TGV(fW , fB) =

(
δgZ1 , δκγ

)
C−1

TGV

(
δgZ1 , δκγ

)T
. (4.16)

4.3 Inclusion of Electroweak Precision Data

Next we wish to include the effects of electroweak precision data on our anal-

ysis. We remind the reader that we have removed the two operators OBW and

OΦ,1 because they contribute at tree level to EWPD. Now we consider addi-

tional constraints on the dimension–six operators still remaining in our basis,

as given in Eq. (2.48), and which give contributions to EWPD at one–loop.

As these effects are calculated at loop level they suffer from the usual issues

with the interpretation of non–renormalizable operators effects’ at loop level.

In order to account for the information from EWPD we use the reduced set

of S, T , and U parameters as calculated in Sec. 2.3 and statistically compare

them to the current experimental extracted values from the global analysis of

LEP and low energy electroweak data [57]:

∆S = 0.00± 0.10, ∆T = 0.02± 0.11, and ∆U = 0.03± 0.09, (4.17)

which are correlated with a correlation matrix given by:

CEWPD =

 1 0.89 −0.55

0.89 1 −0.8

−0.55 −0.8 1

 . (4.18)

Then, as with the case of TGV (Sec. 5.2), we define a (row) vector correspond-

ing to this data,

(δS, δT, δU) ≡
(

∆S −∆Sexp

σ∆S

,
∆T −∆T exp

σ∆T

,
∆U −∆U exp

σ∆U

)
, (4.19)
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and we form our chi-square test related to the EWPD as:

χ2
EWPD(fW , fB, fWW , fBB, fΦ,2) = (δS, δT, δU)C−1

EWPD (δS, δT, δU)T . (4.20)

4.4 Summary

In this chapter we have put together an analysis framework which allows us

to place constraints on the operator bases of Eqs. (2.48) and (3.22). In doing

so we have presented the available Higgs data from the Tevatron and LHC,

introduced the pulls method to account for correlations in theoretical errors,

and taken care to properly weight the channels by the appropriate production

cross sections which for the γγ decay channel are not straightforward. In

addition we have formulated a way to incorporate TGV data from LEP where

the correlations between TGCs were appropriately handled for our basis of

operators, as well as incorporating the implications of EWPD via the loop-

level contributions to S, T , and U of the operators in the linear basis.

In the following chapter we will bring together all of the topics discussed in

Chapters 2, 3, and 4 to quantify our best determination of the coefficients of the

operator in the bases of Eqs. (2.48) and (3.22) and some of the signatures which

have the potential to discriminate between the two expansions. In particular

we will recall the correlations between the HVV and TGV couplings implied

in the linear expansion and compare the data to these correlations searching

for signatures (dis)favoring the linear vs chiral expansions. Conversely we will

quantify how the assumption that the Higgs is a fundamental scalar doublet of

SU(2)L, befitting of the linear expansion, allows for the Higgs data to constrain

the TGCs.
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Chapter 5

Status After LHC 7 and 8 TeV

Runs

In this chapter we apply the framework outlined in Chapter 4 to obtain the

best present determination of the coefficients of the operators in our effective

Lagrangians. In Sec. 5.1 we find the constraints on the coefficients of the op-

erators in the linear basis (see Chapter 2) and we project the constraints from

the linear basis onto limits on triple gauge couplings in Sec. 5.2. The present

determination of the coefficients of the operators in the chiral expansion are

presented in Sec. 5.3. Finally in Sec. 5.4 we quantify the variables developed

in Chapter 3 with potential to discriminate between the two expansions.

5.1 Results in the Linear Expansion

We recall for convenience the final basis of operators we found in Chapter 2

– after reducing the basis via the EOM and precision data – which contains

eight operators relevant for the present analysis:

Leff = −αsv
8π

fg
Λ2OGG +

fΦ,2

Λ2 OΦ,2 + fBB
Λ2 OBB + fWW

Λ2 OWW + fB
Λ2OB + fW

Λ2 OW

+ fτ
Λ2OeΦ,33 + fbot

Λ2 OdΦ,33.

(5.1)

In this section we discuss the results of the 7 and 8 TeV runs of the LHC. We

have included in Appendix B projections for the next run of the LHC as well

as for the proposed high luminosity LHC.
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5.1.1 Bosonic Dimension–Six Operator Analysis

We begin by studying scenarios where NP in the EWSB sector does not lead to

modifications of the Higgs couplings to fermions. In other words we neglect the

fermionic Higgs operators (i.e. setting fbot = fτ = 0) and fit the available data

treating the remaining six free bosonic operators as independent. Considering

all Higgs collider (ATLAS, CMS, and Tevatron) data we find χ2
min = 66.8 for

the combined analysis and the SM lays at χ2
SM = 68.1, within the 3% confidence

level region. The inclusion of TGV data has approximately no quantitative

impact on the value of χ2
min and the confidence level of the SM. Adding EWPD

increases χ2
min(SM) to 67.9 (69.9) so the SM lies in the full combined analysis at

the 9% CL six–dimensional region in agreement with these combined results

at the 0.1σ level.

The first column in Fig. 5.1 displays the chi–square (∆χ2) dependence

on each of the six bosonic anomalous couplings after marginalizing over the

other operator coefficients (i.e. minimizing with respect to the other 5 degrees

of freedom). In this figure the solid red line represents the results from the

analysis of all Higgs collider data, while the TGV data is included with the

dashed purple line, and both TGV and EWPD are included in the dotted blue

line. For inclusion of EWPD throughout this dissertation we always use the

value Λ = 10 TeV (see Eq. (2.35)).

From the figure we infer:

• In general we find that the best fit for all coefficients lies near the SM

prediction fi = 0.

• One exception is fg since we notice that ∆χ2 as a function of fg exhibits

two degenerate minima. This is the result of the interference between

the SM and anomalous contributions which possess exactly the same

momentum dependence, so around the second minimum the anomalous

contribution is approximately minus twice the SM value. The gluon fu-

sion Higgs production cross section is too depleted for fg values between

the minima causing the intermediate barrier.

• Additionally as fB and fW are the only operator coefficients which mod-

ify the triple gauge vertices at tree level they show the largest impact

of the inclusion of TGV data. fW is the most constrained parameter by
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Figure 5.1: ∆χ2 dependence on the fit parameters considering all Higgs collider
(ATLAS, CMS and Tevatron) data (solid red line), Higgs collider and TGV
data (dashed purple line) and Higgs collider, TGV and EWP data (dotted blue
line). The rows depict the ∆χ2 dependence with respect to the fit parameter
shown on the left of the row with the anomalous couplings f/Λ2 given in
TeV−2. In the first column we use fg, fWW , fBB, fW , fB, and fΦ,2 as fit
parameters with fbot = fτ = 0. In the second column the fitting parameters
are fg, fWW = −fBB, fW , fB, fΦ,2, and fbot with fτ = 0. In the panels of the
right column we fit the data in terms of fg, fWW = −fBB, fW , fB, fΦ,2, fbot,
and fτ .
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inclusion of TGV data as it corresponds to gZ1 (see Eq. (2.38)) which is

the most constrained of the two triple gauge couplings considered (see

Eq. (4.13)).

• Adding EWPD greatly reduces the available parameter space for the

bosonic operators, fW , fB, fWW , fBB, and fΦ,2.

• We also see that, as expected, inclusion of TGV and EWPD has little

impact on fg.

It is instructive to project these results into the observable branching ra-

tios and production cross sections. In Fig. 5.2 we show the ∆χ2 dependence

on these observables using the collider and TGV data. The top two panels

illustrate that the SM predictions are within the 1σ range with the largest

deviation coming from the γγ channel. We note that the precision with which

the Higgs branching ratios are known is about 20% and that of the production

cross sections is of the order 30%.

We include in Tab. 5.1 the best fit values and 90% CL allowed ranges for

the couplings and observables in the combined analysis of Higgs collider and

TGV data. We do not include in these final allowed ranges the constraints

from EWPD. As mentioned above, the quantitative interpretation of these

one–loop contributions is debatable. We have included them in some of the

figures for illustration of their possible impact, but have chosen not to include

them in the final combined results given in Tab. 5.1 nor in the remaining

figures in this section.

The most important correlations between these ranges are shown in Figs. 5.3

and 5.4. Figure 5.3 shows the correlation between fWW and fBB after marginal-

izing over the remaining four parameters for collider data. We note the strong

anti-correlation between the two operator coefficients. This is a result of their

dominantly contributing to the Higgs branching fraction to two photons which

is proportional to fWW + fBB (see Hγγ vertex in Eq. (2.19)). The 95% CL

region forms two narrow islands in a similar fashion to the fg degeneracy – one

where only small contributions from the anomalous operators are made and

one where they contribute twice the SM value with the opposite sign. This

degeneracy is not exact as fWW and fBB also contribute to WW ∗ and ZZ∗

branching ratios as well as V h and VBF production mechanisms, but with
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Figure 5.2: Chi–square dependence on the Higgs branching ratios (left panels)
and production cross sections (right panels) when we consider all Higgs collider
and TGV data. In the upper panels we have used fg, fWW , fBB, fW , fB, and
fΦ,2 as fitting parameters with fbot = fτ = 0, while in the middle panels the
fit parameters are fg, fWW = −fBB, fW , fB, fΦ,2, and fbot with fτ = 0. In the
lower row we parametrize the data in terms of fg, fWW = −fBB, fW , fB, fΦ,2,
fbot, and fτ . The dependence of ∆χ2 on the branching ratio to the fermions
not considered in the analysis arises from the effect of the other parameters in
the total decay width.

different coefficients. Comparing with the one–dimensional curves in Fig. 5.1

we see that marginalization over fWW or fBB results in two curves which are
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Fit with fbot = fτ = 0 Fit with fbot and fτ
Best fit 90% CL allowed range Best fit 90% CL allowed range

fg/Λ
2 (TeV−2) 1.1, 22 [−3.3, 5.1] ∪ [19, 26] 2.1, 21 [−5.3, 5.8] ∪ [17, 22]

fWW/Λ
2 (TeV−2) 1.5 [−3.2, 8.2] 0.65 [−4.2, 7.7]

fBB/Λ
2 (TeV−2) -1.6 [−7.5, 5.3] -0.65 [−7.7, 4.2]

fW/Λ
2 (TeV−2) 2.1 [−5.6, 9.6] 1.7 [−5.4, 9.8]

fB/Λ
2 (TeV−2) -10 [−29, 8.9] -7.9 [−28, 11]

fφ,2/Λ
2 (TeV−2) -1.0 [−10, 8.5] -1.3 [−9.8, 7.5]

fbot/Λ
2 (TeV−2) —– —– 0.01, 0.84 [−0.28, 0.24] ∪ [0.55, 1.3]

fτ/Λ
2 (TeV−2) —– —– -0.01, 0.37 [−0.07, 0.05] ∪ [0.26, 0.49]

BRano
γγ /BR

SM
γγ 1.2 [0.78, 1.7] 1.2 [0.55, 1.9]

BRano
WW/BR

SM
WW 1.0 [0.89, 1.1] 1.2 [0.51, 1.9]

BRano
ZZ/BR

SM
ZZ 1.2 [0.84, 1.5] 1.4 [0.6, 2.2]

BRano
bb /BR

SM
bb 1.0 [0.92, 1.1] 0.89 [0.46, 1.3]

BRano
ττ /BR

SM
ττ 1.0 [0.92, 1.1] 1.1 [0.42, 2.6]

σano
gg /σ

SM
gg 0.88 [0.59, 1.3] 0.73 [0.38, 2.0]

σano
V BF/σ

SM
V BF 1.1 [0.52, 1.9] 1.1 [0.58, 1.8]

σano
V H/σ

SM
V H 0.82 [0.43, 1.4] 0.96 [0.47, 1.5]

Table 5.1: Best fit values and 90% CL allowed ranges for the combination of
all available Tevatron and LHC Higgs data as well as TGV.

mirror images of one another. That is, to a good approximation the data

favors fWW = −fBB, an approximation that we will make use of for our fits

including fermionic operators.

Figure 5.3: We display the 95% and 99% CL allowed regions in the plane
fWW × fBB when we fit the Higgs collider data varying fg, fWW , fBB, fW , fB,
and fΦ,2. The star indicates the global minimum. We have marginalized over
the undisplayed parameters.

69



In Fig. 5.4 we show the two–dimensional projection into the plane of fg ×
fΦ,2 after marginalizing over the remaining parameters. The results include

both the Higgs collider and TGV data sets. Again we see two islands whose

origin is the interference between anomalous and SM contributions to the Higgs

coupling to two gluons. Whithin each island there is a clear anti-correlation

between fg and fΦ,2 coming from the fact the anomalous contribution to the

gluon fusion production is proportional to F SM
gg fΦ,2 + 2fg, where F SM

gg ∼ 0.7 is

the SM loop contribution to the Hgg vertex.

Figure 5.4: We present the 68%, 90%, 95%, and 99% CL allowed regions in
the plane fg × fΦ,2 when we fit the Higgs collider and TGV data varying fg,
fWW , fBB, fW , fB, and fΦ,2. The stars indicate the global minima. We have
marginalized over the undisplayed parameters.

Finally, in the left panel of Fig. 5.5 we show the correlations projected in

the observables, in particular between the Higgs decay into photons and Higgs

production via gluon fusion. These two quantities are anti–correlated because

their product is the major source of Higgs events decaying into two photons,

an increase in one requires a compensating decrease in the other to maintain

the correct signal strength.
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Figure 5.5: In the left (right) panel we present the 68%, 90%, 95%, and 99%
CL allowed regions in the plane σano

gg /σ
SM
gg × Br(h → γγ)ano/Br(h → γγ)SM

when we fit the Higgs collider and TGV data varying fg, fWW , fBB, fW , fB,
and fΦ,2 (fg, fWW = −fBB, fW , fB, fΦ,2, and fbot). The stars indicate the
global minima. We have marginalized over the undisplayed parameters.

5.1.2 Including Fermionic Operators

We now consider the inclusion of fermionic operators. We begin by introducing

fbot to our parameter space. As mentioned above we take advantage of the

strong anticorrelation between fWW and fBB, taking fWW = −fBB, to simplify

the numerical analyses. The free parameters under consideration are now

{fg, fW , fB, fWW = −fBB, fΦ,2, fbot}.
The middle column of Fig. 5.1 shows the effects on the chi–square of the

inclusion of fbot. We begin by noting that ∆χ2 shows degenerate minima for

fbot, one which represents a small correction to the SM Yukawa coupling, the

other corresponding to a flip of the sign of the Hbb coupling. The parameter

space being degenerate under the change of sign of the Hbb coupling indicates

that experimental data does not favor one or the other sign at this time.

The allowed range for fg is also opened dramatically by the inclusion of

fbot. This is a reflection of the fact that H → bb is the dominant decay mode

of the 125 GeV Higgs. Increases in fbot push the Higgs branching ratio into a

bottom pair to 1, and therefore the gluon fusion cross section must be enhanced

to compensate the dilution of the Higgs decay in any other channel. This com-
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pensation works because the data for the H → bb final state does not receive a

contribution from gluon fusion production. We further illustrate this behavior

in Fig. 5.6 where we plot the correlation between fg and fbot. Additionally in

the right panel of Fig. 5.5 we see that this correlation has opened the available

range of the gluon fusion cross section, but at the necessity that the branching

ratio to two photons be below the standard model to fit the observed γγ rate.

Also from the middle column of Fig. 5.1 we see that inclusion of fbot has a

very small impact on the ranges of the Higgs coupling to electroweak gauge

bosons (i.e. on the parameters fW , fB, fWW = −fBB, and fΦ,2).

The effect of including fbot on the observables is also demonstrated in

Fig. 5.2. We see that bounds on both the branching fractions and cross sections

are weakened, with V H and VBF being the least affected channels. The gluon

fusion cross section is the most effected, with its constraints being dramatically

broadened, as expected from the previous discussion of fg and fbot.

Finally we conclude with the inclusion of fτ . Again we will constrain fWW

and fBB such that our basis contains the free parameters {fg, fW , fB, fWW =

−fBB, fΦ,2, fbot, fτ}. The right panels of Fig. 5.1 show the ∆χ2 dependence

of each of the free parameters while the lower panels of Fig. 5.2 show the

allowed ranges of the branching ratios and cross sections given the addition

of fτ . We note that the introduction of fτ does not result in any new strong

correlations and the plots resemble those of the (fbot 6= 0, fτ = 0) scenario

with the exception of the fτ branching ratio which is less constrained.

Again we see a degeneracy in the fτ space similar to that of fbot stemming

from the fact the sign of the Yukawa is not constrained by current data. Addi-

tionally the analysis favors a slightly large BRano
ττ /BR

SM
ττ ∼ 1.1 which accounts

for the slight offset of the two minima for fτ from the expected values of zero

and the flip of sign in the Yukawa in Fig. 5.1.

Finally, Table 5.1 also includes the best fit points and the 90% CL range

for branching ratios and production cross section for the fit including both

fermionic operators using the Higgs collider and TGV data. The inclusion of

fermionic operators maintains the agreement of the SM with the data at about

the 9% CL.
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Figure 5.6: We present the 68%, 90%, 95%, and 99% CL allowed regions in
the plane fbot × fg from the Higgs collider and TGV data varying fg, fW , fB,
fWW = −fBB, fΦ,2, and fbot. The stars indicate the global minima. We have
marginalized over the undisplayed parameters.

5.2 Implications for Triple Gauge Couplings

To date, LEP constraints on the triple gauge couplings (see Eq. (4.13)) are

the most stringent bounds on deviations of the SM predictions of the TGV

applicable to our effective lagrangian framework. LEP experiments were sen-

sitive to anomalous TGCs through the W+W−, single γ, and W productions

giving information on both the WWZ and WWγ vertices [101]. Tevatron was

also able to put constraints on the parameter space to a lesser extent through

WW , WZ, and Wγ production in pp̄ collisions, results from the detector at

DØ can be found in [102] while those from CDF may be found in [103, 104]1.

Work at the LHC is beginning to constrain the parameter space as well,

projections for the early LHC were made in [105]. In particular at ATLAS

studies of TGCs in W+W− [106], WZ [107], and Wγ and Zγ (fully leptonic)

[108] have been made for 7 TeV with an integrated luminosity of 4.6 fb−1. Ad-

ditionally at 7 TeV for similar luminosities CMS has reported on the leptonic

1In the case of Tevatron a form factor of 1/(1 + s/Λ2) with Λ = 2 TeV is used to
unitarize the scattering amplitudes for high energy. Details on the divergence of amplitudes
for anomalous operators are worked out in detail in Chapter 6.
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WW channel [109], leptonic Wγ and Zγ [110], and WW and WZ productions

with two jets in final state [111].

In the previous section we have used these TGV results to impose additional

constraints on the couplings of the Higgs boson. This is possible because both

TGV and HVV sectors are related as seen in Eqs. (2.38) and (2.39), a relation

which follows from the gauge invariance assumed in the construction of the

low energy EFT.

Given these relations, it is interesting to ask if it is possible to instead

constrain the TGCs in LWWV using only the Higgs collider data. In order to

use the Higgs observables to constrain the TGCs we employ our same chi–

square framework, marginalized over all parameters which do not contribute

to TGCs (i.e. fWW , fBB, fΦ,2, and fg), and project the remaining fW and fB

into the language of LWWV via Eq. (2.39). Note that we leave fbot and fτ out

of the fit, which is justified given our conclusions in Sec. 5.1 where we found

the fermionic operators have a negligible effect on the parameter space of the

bosonic operators.

In Fig. 5.7 we show 95% CL constraints (for two degrees of freedom) on the

∆κγ × ∆gZ1 plane from the Higgs collider data (red contour). These bounds

are obtained from Higgs data and are therefore independent of λγ and λZ . We

note the strong correlation between ∆κγ and ∆gZ1 imposed by the tree level

contribution of fW and fB to the Zγ data. Additionally we have included

the two–dimensional constraints from LEP (solid blue line), DØ (solid green),

ATLAS WW (solid black), and ATLAS WZ (dashed black) where we have

re-expressed these bounds on ∆κZ and ∆gZ1 in terms of ∆κγ and ∆gZ1 . In this

case the bounds are obtained assuming λγ = λκ = 0

We are then able to put limits on ∆κγ, ∆κZ , and ∆gZ1 of which only two

are independent. The 90% CL (for one degree of freedom) allowed ranges read:

−0.047 ≤ ∆gZ1 ≤ 0.089, −0.19 ≤ ∆κγ ≤ 0.099

implying : −0.019 ≤ ∆κZ ≤ 0.083 .
(5.2)

Thus we find that the strength of the bounds derived from the analysis of

the Higgs data are at the same precision level as the bounds derived from the

direct TGV experimental measurements (see Eq. (4.13)).

In order to estimate the potential of a combination of all the data shown in
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Figure 5.7: The 95% C.L. allowed regions (2 d.o.f.) on the plane ∆κγ ×∆gZ1
from the analysis of the Higgs data from the LHC and Tevatron (filled region)
together with the relevant bounds from different TGC studies from collider
experiments as labeled in the figure. We also show the estimated constraints
obtainable by combining these bounds (hatched region).
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Fig. 5.7 we first reconstruct an approximate Gaussian χ2
i (∆κγ,∆g

Z
1 ) reproduc-

ing the 95% CL regions for each contour from direct TGC data (i.e. we obtain

the best fit point and two–dimensional covariance matrix from the condition

χ2 = 5.99). Then define the total χ2 as

χ2
comb = χ2

H(∆κγ,∆g
Z
1 ) +

∑
i

χ2
i (∆κγ,∆g

Z
1 ), (5.3)

allowing us to project the combined result in the hashed region and find the

one–dimensional limits to be:

−0.005 ≤ ∆gZ1 ≤ 0.040, −0.058 ≤ ∆κγ ≤ 0.047

implying : −0.004 ≤ ∆κZ ≤ 0.040 .
(5.4)

5.3 Results in the Chiral Expansion

Next we apply our analysis framework to the operators in the chiral basis. For

convenience we recall the applicable basis weighted by ξ relevant to the Higgs

data:

PG, P4, P5, PB, PW , PH , PC (5.5)

For the sake of simplification of the analysis we will categorize these operators

into two sets of effectively six operators as a seven parameter fit is beyond the

reach of this dissertation. We denote these sets as Set A and Set B which

correspond to sets of the operator coefficients as defined in Eqs. (3.13) and

(3.16). These sets are

Set A: aG, a4, a5, aB, aW , cH , 2aC − cC = 0,

Set B: aG, a4, a5, aB, aW , cH = 2aC − cC .
(5.6)

Additionally as mentioned in Chapter 3 we explore the sensitivity of the results

to the sign of the h-fermion couplings by performing our analysis with both

signs for the parameter sY = ±1.

Our choice of the relations between the operator coefficients relevant to PH

and PC are not arbitrary. Recalling PC induces universal shifts of the SM–like

HV V couplings (See Tab. 3.1) and PH induces shifts to all SM Higgs couplings

we see that Set A corresponds to a scenario where we simultaneously shift the
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SM HV V and Hff couplings while Set B corresponds to the Higgs–fermion

coupling shifts being totally unrelated to the modification of the Higgs–vector

couplings. The remaining operators are kept constant between the two sets,

and correspond to Lorentz structures different from those of the SM.

Again employing our analysis framework of Chapter 4 we perform a chi–

square test of the dependence of the six couplings for both sets and sY = ±1.

Figure 5.8 displays the ∆χ2 dependence of the sets in Eqs. (5.6) based on the

collider (ATLAS, CMS, and Tevatron) data on Higgs couplings as compiled

in Tabs. 4.1, 4.2, and 4.3. As with Fig. 5.1 for the linear case, we display

the single parameter ∆χ2 dependence while marginalizing over the unshown

parameters.

We begin by noting that there is little difference between the two sets with

the exception of a slight difference in the behavior of aG, which we discuss in

more detail below. The fit quality is approximately equally good for both sets

with |χ2
min,A − χ2

min,B| < 0.5. We recall from Sec. 5.1 that χ2
SM = 68.1 which

for the chiral basis corresponds to the 4% CL region for both sets.

Additionally the fit is equally good for both signs of sY , in fact |χ2
min,+ −

χ2
min,−| is compatible with zero within numerical precision. However, for all

couplings set to zero while keeping sY an open parameter there is a dramatic

difference with χ2
− − χ2

+ = 26. This is a result of changing the sign of the

interference between the W– and top–loop contributions to hγγ which is neg-

ative for the SM (sY = +1) and positive for sY = −1 which causes an increase

BR−(h→ γγ)/BRSM(h→ γγ) ∼ 2.5 which is strongly disfavored by the data.

For the inclusion of the other operators (particularly PB and PW which give

tree level contributions to hγγ) we find both signs are equally favored.

As with the linear case of fg we see two degenerate minima for aG. Again

these are due to the interference between the anomalous and SM contribu-

tions where the secondary minimum corresponds to the anomalous coupling

accounting for twice that of the SM top–loop but with an opposite sign. Here

we see a shifting of the two parameter spaces due to the sign sY = ±1 as

this switches the sign of the top Yukawa and therefore reverses the location of

the degenerate minimum. The slight shift in the minima for aG between the

two cases is a result of the behavior of cH near the minima which shifts the

contribution of the top–loop by a slightly different quantity in both analyses.
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Figure 5.8: ∆χ2 dependence on the coefficients of the seven bosonic operators
in Eq. (5.6) from the analysis of all Higgs collider (ATLAS, CMS and Tevatron)
data. In each panel, we have marginalized over the five undisplayed variables.
The six upper (lower) panels corresponds to analysis with Set A (B). In each
panel the red solid (blue dotted) line stands for the analysis with the discrete
parameter sY = +(−)1.

We see that additionally for both cases aW and aB are almost mirror sym-

metric. As we saw in the linear case for fWW and fBB, this is due to the

strong anticorrelation between these two coefficients as they are the dominant
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contributions to the Higgs branching ratio to two photons which is propor-

tional to aW + aB, see Tab. 3.1. Table 5.2 gives the 90% CL ranges for the

six coefficients for both cases and signs of sY , except where the sign of sY or

difference in set has an approximately negligible effect on the ranges.

Additionally we may constrain the coefficients c2 and c3 by applying the

chi–square test of Eq. (4.16) as described in Sec. 4.2. We include these allowed

ranges in Tab. 5.2 as well.

Set A Set B
aGξ(·10−3) sY = +1 : [−1.8, 2.1] ∪ [6.5, 10] sY = +1 : [−0.78, 2.4] ∪ [6.5, 12]

sY = −1 : [−9.9,−6.5] ∪ [−2.1, 1.8] sY = −1 : [−12,−6.5] ∪ [−2.3, 0.75]
a4ξ [−0.47, 0.14]
a5ξ [−0.33, 0.17]
aW ξ [−0.12, 0.51]
aBξ [−0.50, 0.21]
cHξ [−0.66, 0.66] [−1.1, 0.49]

c2ξ [−0.12, 0.076]
c3ξ [−0.064, 0.079]

Table 5.2: 90% CL allowed ranges of the coefficients of the operators con-
tributing to Higgs data (aG, a4, a5, aW , aB, and cH) and TGV data (c2 and
c3). For a4, a5, aW , and aB the range is almost the same for both sets and
signs of sY .

5.4 Discriminating Signatures

In this section we quantify the present status for some of the signatures which

we discussed in Sec. 3.4 which have potential to discriminate between the linear

and chiral expansion.

5.4.1 (De)correlation Between HVV and TGV

As we discussed in Sec. 3.4.2 the relations between HVV and TGV differ

between the two expansions and can be used to discriminate between them.

With the information on the allowed ranges of c2, c3, a4, and a5 obtained in

the previous section we can consider the discriminating variables introduced in

Eq. (3.29). We show in Fig. 5.9 the presently allowed ranges for ΣW ×ΣB and

∆W ×∆B. For simplicity we show the results for set A with sY = +1, however

changes in set and/or sY have little impact on the figure. For the figure
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on the left the sensor’s departure from (0, 0) indicates possible NP without

sensitivity to the choice of expansion, while departures from (0, 0) for the

figure on the right indicate an underlying non-linear realization of EWSB. We

see that within the present precision these variables neither signal a significant

departure from the SM nor a preference for the chiral expansion.

Figure 5.9: Left: A NP sensor insensitive to the type of expansion – con-
straints from TGV and Higgs data on the combinations ΣB = 4(2c2 + a4) and
ΣW = 2(2c3 − a5), which converge to fB and fW in the linear d = 6 limit.
The dot at (0, 0) signals the SM expectation. Right: A non–linear versus
linear discriminator – constraints on the combinations ∆B = 4(2c2 − a4) and
∆W = 2(2c3 + a5), which would take zero values in the linear (order d = 6)
limit (as well as in the SM), indicated by the dot at (0, 0). For both figures the
lower left panel shows the two–dimensional allowed regions at 68%, 90%, 95%,
and 99% CL after marginalization with respect to the other six parameters
(aG, aW , aB, cH , ∆B, and ∆W ) and (aG, aW , aB, cH , ΣB, and ΣW ) respec-
tively. The star corresponds to the best fit point of the analysis. The upper
left and lower right panels give the corresponding one–dimensional projections
over each of the two combinations.

If future data pointed to a departure from (0, 0) in the variables of the left

panel it would indicate BSM physics irrespective of the linear or non–linear

character of the underlying dynamics. Such a departure in the right panel

would be consistent with a non–linear realization of EWSB instead.
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5.4.2 ξ2-weighted Couplings: LHC potential to study gZ5

As discussed in Sec. 3.4.1 one interesting property of the ξ2–chiral Lagrangian

is the presence of operator P14(h) that generates a non-vanishing gZ5 TGV,

which is a C and P odd, but CP even operator (see Eq. (2.38)). Motivated

by this fact we summarize here the study of the sensitivity to this coupling at

the LHC which was presented in Ref. [76]

Presently, the best direct limits on this anomalous coupling come from the

study of W+W− pairs and single W production at LEP II energies [112–114].

For example L3 limits imply [113] −0.21 ≤ gZ5 ≤ 0.2 (−0.12 ≤ c14ξ
2 ≤ 0.11)

at 95% CL. Indirect (hence less robust) bounds can also be imposed from its

contribution to Z physics at one-loop [115–117] which imply −0.08 ≤ gZ5 ≤
0.04 (−0.04 ≤ c14ξ

2 ≤ 0.02) at 90% CL.

The LHC collaborations have presented some data analyses of anomalous

TGV [107, 110, 111, 118, 119], but have not yet included the effects of gZ5 . A

preliminary study on the potential of LHC 7 to constrain this coupling was

presented in Ref. [105] where it was shown that the LHC 7 with a very modest

luminosity had the potential of probing gZ5 at the level of the present indirect

bounds. Reference [105] also discussed the use of some kinematic distributions

to characterize the presence of a non–vanishing gZ5 .

At the LHC, the anomalous coupling gZ5 contributes to WW and WZ pair

production, with the strongest limits originating from the latter channel [105].

Hence, our study is focused on the WZ production channel, where we consider

only the leptonic decays of the gauge bosons for better background suppression:

pp→ `′±`+`−Emiss
T , (5.7)

where `(′) = e or µ. The main background for the gZ5 analysis is the irreducible

SM production of WZ pairs. There are further reducible backgrounds like W

or Z production with jets, ZZ production followed by the leptonic decay of

the Z’s with one charged lepton escaping detection and tt̄ pair production.

We simulated the signal and the SM irreducible background using an im-

plementation of the anomalous operator gZ5 in FeynRules [97] interfaced with

MadGraph 5 [96] for event generation. In order to make the simulations

more realistic, one can closely follow the TGV analysis performed by AT-
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LAS [107]. Thus, the kinematic study of the WZ production starts with

the usual detection and isolation cuts on the final state leptons. Muons and

electrons are considered if their transverse momentum with respect to the

collision axis z, pT ≡
√
p2
x + p2

y, and pseudorapidity η ≡ 1
2

ln |~p|+pz|~p|−pz , satisfy

p`T > 15 GeV , |ηµ| < 2.5 and |ηe| < 1.37 or 1.52 < |ηe| < 2.47 .

To guarantee the isolation of muons (electrons), we required that the scalar

sum of the pT of the particles within ∆R ≡
√

∆η2 + ∆φ2 = 0.3 of the muon

(electron), excluding the muon (electron) track, is smaller than 15% (13%) of

the charged lepton pT . In the case where the final state contains both muons

and electrons, a further isolation requirement has been imposed ∆Reµ > 0.1

It was also required that at least two leptons with the same flavour and op-

posite charge are present in the event and that their invariant mass is compati-

ble with the Z mass M`+`− ∈ [MZ − 10, MZ + 10] GeV. A further constraint

imposed is that a third lepton is present which passes the above detection

requirements and whose transverse momentum satisfies p`T > 20 GeV . More-

over, with the purpose of suppressing most of the Z + jets and other diboson

production background, we required Emiss
T > 25 GeV and MW

T > 20 GeV,

where Emiss
T is the missing transverse energy and the transverse mass is de-

fined as MW
T =

√
2p`TE

miss
T (1− cos(∆φ)) with p`T being the transverse mo-

mentum of the third lepton, and where ∆φ is the azimuthal angle between the

missing transverse momentum and the third lepton. Finally, it was required

that at least one electron or one muon has a transverse momentum complying

with p
e(µ)
T > 25 (20) GeV.

At the end the resulting Monte Carlo simulations have been tuned to the

ATLAS ones [107], so as to incorporate more realistic detection efficiencies.

We account for the different detection efficiencies by rescaling our simulation

to the one done by ATLAS [107] for the study of ∆κZ , gZ1 , and λZ . Finally,

the reducible backgrounds for the 7 TeV analysis were obtained from the sim-

ulations presented in the ATLAS search [107], and they were properly rescaled

for the 8 TeV and 14 TeV runs.

After applying all the above cuts and efficiencies, the cross section for the
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process (Eq. 5.7) in the presence of a non-vanishing gZ5 can be written as2

σ = σbck + σSM + σint g
Z
5 + σano

(
gZ5
)2
, (5.8)

where σSM denotes the SM contribution to W±Z production, σint stands for

the interference between this SM process and the anomalous gZ5 contribution

and σano is the pure anomalous contribution. Furthermore, σbck corresponds

to all background sources except for the SM EW W±Z production. We present

in Tab. 5.3 the values of σSM , σint and σano for center–of–mass energies of 7,

8 and 14 TeV, as well as the cross section for the reducible backgrounds.

COM Energy σbck (fb) σSM (fb) σint (fb) σano (fb)

7 TeV 14.3 47.7 6.5 304

8 TeV 16.8 55.3 6.6 363

14 TeV 29.0 97.0 9.1 707

Table 5.3: Values of the cross section predictions for the process pp →
`′±`+`−Emiss

T after applying all the cuts described in the text. σSM is the
SM contribution coming from EW W±Z production, σint is the interference
between this SM process and the anomalous gZ5 contribution, σano is the pure
anomalous contribution and σbck corresponds to all background sources ex-
cept for the SM EW W±Z production.

As it was shown in Ref. [105] besides modifying the total number of events,

gZ5 modifies the kinematic distributions of the produced gauge bosons. We

show in the left (right) panel of Fig. 5.10 the number of expected events with

respect to the Z transverse momentum for the 7 (14) TeV run and an inte-

grated luminosity of 4.64 (300) fb−1. As illustrated by this figure, the existence

of an anomalous gZ5 contribution enhances the tail of the pZT spectrum, signal-

ing the existence of new physics.

Then, in order to enhance the sensitivity to this coupling we study the

number of events with pZT > 90 GeV. We perform a simple event counting

analysis estimating the expected sensitivity by assuming that the number of

2We assumed in this study that all anomalous TGV vanish except for gZ5 .
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Figure 5.10: The left (right) panel displays the number of expected events
as a function of the Z transverse momentum for a center–of–mass energy of
7 (14) TeV, assuming an integrated luminosity of 4.64 (300) fb−1. The black
histogram corresponds to the sum of all background sources except for the
SM electroweak pp → W±Z process, while the red histogram corresponds to
the sum of all SM backgrounds, and the dashed distribution corresponds to
the addition of the anomalous signal for gZ5 = 0.2 (gZ5 = 0.1). The last bin
contains all the events with pZT > 180 GeV.

observed events correspond to the SM prediction (gZ5 = 0) and we look for the

values of gZ5 which lay at the 95% CL. We find that

with present LHC 7 + 8 TeV Data −0.080 ≤ gZ5 ≤ 0.072 ,

adding expected LHC 14 TeV Data −0.033 ≤ gZ5 ≤ 0.028 ,
(5.9)

where by expected LHC 14 TeV run we have considered an integrated lu-

minosity of 300 fb−1. In summary, we find that the LHC precision on gZ5

will approach the percent level, clearly improving the present both direct and

indirect bounds.

5.4.3 Anomalous Quartic Couplings

As shown in Sec. 3.4.3, in the chiral expansion several operators weighted

by ξ or higher powers contribute to quartic gauge boson vertices without in-

ducing any modification to TGVs. Therefore, their coefficients are much less

constrained at present and one may still expect larger deviations on future

studies of quartic vertices at LHC for large values of ξ.
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Of the five operators giving rise to purely quartic gauge boson vertices,

{P6(h), P11(h), P23(h), P24(h), P26(h)}, none modifies quartic vertices includ-

ing photons while all generate the anomalous quartic vertex ZZZZ that is

not present in the SM. Moreover, all these operators but P26(h) modify the

ZZW+W− vertex, while only P6(h) and P11(h) also induce anomalous contri-

butions to W+W−W+W−. Presently, the only bounds on the coefficients of

these operators are indirect, from their one–loop contribution to the EWPD

derived in Ref. [120].

At the LHC these anomalous quartic couplings can be directly tested in

the production of three vector bosons or in vector boson fusion production

of two gauge bosons [121]. At lower center–of–mass energies the best limits

originate from the TGV processes, while the VBF channel dominates for the

14 TeV run [80, 121–124].

At the LHC with 14 TeV center−of−mass energy, the couplings c6 and c11

can be constrained by combining their impact on the VBF channels,

pp→ jjW+W− and pp→ jj(W+W+ +W−W−) , (5.10)

where j stands for a tagged jet and the final state W s decay into electron or

muon and a neutrino. It was shown in Ref. [80] that the attainable 99% CL

limits on these couplings are

− 12× 10−3 < c6 ξ < 10× 10−3, and − 7.7× 10−3 < c11 ξ
2 < 14× 10−3

(5.11)

for an integrated luminosity of 100 fb−1. Notice that the addition of the

channel pp→ jjZZ does not improve significantly the above limits [123].

5.5 Summary and Conclusions

In this chapter we have performed a fit to the relevant operator bases con-

structed in Chapters 2 and 3 using the framework introduced in Chapter 4.

We have demonstrated that the present data is sufficient to support a robust

data–driven analysis of the EFT extensions of the SM.

In Secs. 5.1 and 5.3 we discussed the parameter space of the operator

coefficients for both the linear and chiral realizations, summarizing these main
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results in 90% CL ranges with best fit points in Tabs. 5.1 and 5.2. Our

analysis implies the SM is consistent with the data, laying well within the

1σ range of the data. In Sec. 5.2 we saw that the Higgs data constraints on

TGCs is becoming competitive with the LEPII constraints. Noting that these

constraints require the linear interpretation we also looked at discriminators

between the linear and chiral realizations in Sec. 5.4. Here we explored the

discriminating variables introduced in Eq. (3.29), as well as possible signals

from the operator P14 which contributes to the gZ5 TGC and operators which

contribute to quartic gauge couplings. In the last two cases we also discussed

projections for the Run 2 of the LHC, noting there is still potential for exciting

NP in the gauge and Higgs sectors at the next run of the LHC. In the case

of the linear basis, projections for Run 2 of the LHC and the proposed high

luminosity LHC are reserved for Appendix B.
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Chapter 6

Unitarity Considerations

In this chapter we consider constraints on the linear operator basis of Chapter 2

related to perturbative unitarity in electroweak gauge boson scattering. In

Section 6.1 we will discuss the operators relevant to electroweak gauge boson

scattering, in Section 6.2 we review the conditions of partial wave unitarity. We

find all electroweak boson and Higgs scattering amplitudes which contribute

to unitarity violation in Section 6.3, and finally in Section 6.4 we discuss

the implications for each operator coefficient individually as well as in a six

parameter search.

Previous works in the literature have studied similar unitarity bounds on

some of the the dimension–six operators either considering only one non-

vanishing coupling at a time, and/or they did not take into account coupled

channels, or they worked in the framework of effective vertices [125–131]. Here

we complete these previous analyses by considering the effects of coupled chan-

nels leading to the strongest constraints, including both elastic and inelastic

channels. We also analyze the general six–dimensional parameter space of rel-

evant anomalous couplings. We consider the contributions to order 1/Λ2 to

apply systematically the effective field theory approach.

6.1 The Relevant Operator Basis

For the case of electroweak gauge boson scattering the relevant dimension–six

operators in the linear (HISZ) basis are those in Eq. (2.2) with the exception

of OGG as it only involves gluons.

87



Again we will reduce the size of this basis by applying EWPD constraints.

This allows us to remove OBW and OΦ,1, due to their contributions to the S

and T parameters (see Eqs. (2.33) and (2.34)), respectively. Further as we will

be discussing unitarity constraints we will be considering large center of mass

energies (i.e.
√
s � mW,Z,H), in this limit we find that the behavior of OΦ,2

and OΦ,4 is the same up to a sign. Therefore we will quantify their behavior

by a single operator coefficient:

fΦ2,4

Λ2
≡ fΦ,2 − fΦ,4

Λ2
. (6.1)

One expects this behavior as the combination OΦ,2 +OΦ,4 can be traded via the

EOM (see Sec. 2.4 and Eq. (2.37)) by a combination of Yukawa-like operators

which do not contribute to the 2→ 2 scattering processes we consider in this

chapter.

Additionally we find OΦ,3 modifies the Higgs self couplings and the rela-

tion between the Higgs mass, its vev, and its self coupling λ (for details see

the discussions in Chapter 2 and Appendix A). These effects do not induce

unitarity violation in the 2→ 2 scattering processes.

Then for this chapter we will consider the operator coefficients:

fW , fB, fWW , fBB, fWWW , and fΦ2,4. (6.2)

6.2 Brief Review of Partial Wave Unitarity

We briefly review the requirements of partial wave unitarity. We begin by

expanding an amplitude for the scattering of (V1, V2) into (V3, V4)

V1λ1
V2λ2

→ V3λ3
V4λ4

(6.3)

into its partial wave components as

M(V1λ1V2λ2 → V3λ3V4λ4) =

16π
∑
J

(
J + 1

2

)√
1 + δ

V2λ2
V1λ1

√
1 + δ

V4λ4
V3λ3

dJλµ(θ)eiMφT J(V1λ1V2λ2 → V3λ3V4λ4),

(6.4)
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where λi is the helicity corresponding to the scattered state Vi, θ (φ) is the

polar (azimuthal) scattering angle, and we have defined:

λ ≡ λ1−λ2, µ ≡ λ3−λ4, and M ≡ λ1−λ2−λ3 +λ4 = λ−µ. (6.5)

d is the Wigner rotation matrix. In the case that one of the vector bosons

is replaced by the Higgs we can still employ this expression by setting the

corresponding λ to zero.

We will also consider the case of inelastic fermion scattering,

f1σ1
f̄2σ2
→ V3λ3

V4λ4
. (6.6)

here the decomposition takes the form,

M(f1σ1 f̄2σ2 → V3λ3V4λ4) =

16π
∑
J

(J + 1
2
)δσ1,−σ2d

J
σ1−σ2,λ3−λ4

(θ)T J(f1σ1 f̄2σ2 → V3λ3V4λ4) ,
(6.7)

where we have used our freedom to take φ = 0. As these processes proceed via

s-channel exchange of a vector J = 1 boson, in the limit of massless fermions

the fermions must appear with opposite helicity states, made manifest in our

decomposition by the δσ1,σ2 .

Next we consider the optical theorem where we will use (ij → kl) to denote

(ViλiVjλj → VkλkVlλl) with ijkl denoting the various possible initial and final

state particles,

ImT J(12→ 34) =
∑

12→1′2′

|~p1′2′ |√
s
T J∗(12→ 1′2′)T J(1′2′ → 34), (6.8)

with

|~pij | =
√

[s− (mi +mj)2][s− (mi −mj)2]

2
√
s

. (6.9)

Taking V3λ3 = V1λ1 and V4λ4 = V2λ2 and separating out the part where the

intermediate states are the same as the final we obtain:

ImT J(12→ 12) =
|~p12|√
s

∣∣T J(12→ 12)
∣∣2 +

∑
1′2′ 6=12

|~p1′2′|√
s

∣∣T J(12→ 1′2′)
∣∣2 .
(6.10)
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Then for only one intermediate channel we can conclude

ImT J(12→ 12) =
|~p12|√
s
|T J(12→ 12)|2. (6.11)

This implies a form of T J ,

T J(12→ 12) =

√
s

|~p12|
eiδ sin δ, (6.12)

giving the condition for elastic scattering (with the limit representing mi �√
s):

|T J(12→ 12)| ≤
√
s

|~p12|
→ 2. (6.13)

More stringent bounds can be obtained by diagonalizing T J in the particle

and helicity space and then applying the condition in Eq. (6.13) to each of the

eigenvalues.

For unitarity constraints from fermion annihilation into gauge bosons we

follow the procedure presented in Ref. [130] and obtain the unitarity bound

on the inelastic production of gauge boson pairs in Eq. (6.6) by relating the

corresponding amplitude to that of the elastic process

f1σ1
f̄2σ2
→ f1σ1

f̄2σ2
. (6.14)

In this case the unitarity relation is

2Im[T J(f1σ1
f̄2σ2
→ f1σ1

f̄2σ2
)] =

∣∣T J(f1σ1
f̄2σ2
→ f1σ1

f̄2σ2
)
∣∣2 (6.15)

+
∑

V3λ3
,V4λ4

∣∣T J(f1σ1
f̄2σ2
→ V3λ3

V4λ4
)
∣∣2

+
∑
N

∣∣T J(f1σ1
f̄2σ2
→ N)

∣∣2 ,
where as before we take the limit s � (MV1 + MV2)2. N represents any state

into which f1σ1
f̄2σ2

can annihilate that does not consists of two gauge bosons.

Denoting f1σ1
f̄2σ2

as 12 and 1′2′ as all other final states (in particular gauge
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boson pairs) and defining

T J(12→ 12) ≡ y + ix, d ≡
∑

1′2′ 6=12

|~p1′2′ |√
s

∣∣T J(12→ 1′2′)
∣∣2 , (6.16)

we can rewrite Eq. (6.15) as

x =
|~p12|√
s

(x2 + y2) + d. (6.17)

Solving the quadratic equation, and requiring the terms under the radical be

semi-positive definite (i.e. requiring x be real as required by Eq. (6.16)) gives

the condition:

2
∑

1′2′ 6=12

|~p1′2′ |√
s

∣∣T J(12→ 1′2′)
∣∣2 ≤ 1→

∑
V3λ3

,V4λ4

∣∣T J(f1σ1
f̄2σ2
→ V3λ3

V4λ4
)
∣∣2 ≤ 1 ,

(6.18)

where again the limit comes from taking
√
s � mi. We note this implies the

strongest bound can be found by considering some optimized linear combina-

tion of states

|X〉 =
∑
f1,σ1

xf2,σ2 |f1σ1 f̄2σ2〉 , (6.19)

with the normalization condition
∑

fσ |xfσ|2 = 1, for which the amplitude

T J(X → V3λ3
V4λ4

) is largest.

(×fΦ,2,4

Λ2 × s)
W+W+ → W+W+ −1
W+Z → W+Z −1

2
X

W+H → W+H −1
2
X

W+W− → W+W− 1
2
Y

W+W− → ZZ 1
W+W− → HH −1
ZZ → HH −1
ZH → ZH −1

2
X

Table 6.1: Unitarity violating (growing as s) terms of the scattering ampli-
tudes M(V1λ1

V2λ2
→ V3λ3

V4λ4
) for longitudinal gauge bosons generated by the

operators OΦ,2 and OΦ,4 where X = 1 − cos θ and Y = 1 + cos θ. The overall
factor extracted from all amplitudes is given at the top of the table.
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(×e2 fW
Λ2 × s)

0000 00 + + 0 + 0− 0 +−0 +00− +0− 0 + + 00
W+W+ → W+W+ − 3

4s2W
0 1

8s2W
X − 1

8s2W
Y − 1

8s2W
Y 1

8s2W
X 0

W+Z → W+Z − 3
8s2W

X − 1
8cW

c2W−s
2
W

8s2W
X − 1

16cW
Y − 1

16cW
Y 1

8c2W
X − 1

8cW

W+γ → W+γ − − 1
4
X − − − −

W+Z → W+γ − 1
8sW

(3c2W−s
2
W)

16cWsW
X − 1

16sW
Y − −

W+Z → W+H 0 − − − 1
16cW

Y − 0 1
8cW

W+γ → W+H − − − 1
16sW

Y − − − 1
8sW

W+H → W+H − 3
8s2W

X − − − − 1
8s2W

X −
W+W− → W+W− 3

8s2W
Y − 1

4s2W

1
8s2W

X 0 0 1
8s2W

X − 1
4s2W

W+W− → ZZ 3
4s2W

s2W−c
2
W

4s2W

1
16cW

X − 1
16cW

Y − 1
16cW

Y 1
16cW

X − 1
4s2W

W+W− → γγ − −1
2

− − − − −
W+W− → Zγ − 1−4c2W

8cWsW
− 1

16sW
X − 1

16sW
Y − −

W+W− → ZH 0 − − − 1
16cW

Y − − 1
16cW

X 0

W+W− → γH − 0 − 1
16sW

Y − 1
16sW

X −
W+W− → HH − 3

4s2W
− − − − − 1

4s2W

ZZ → ZZ 0 − 1
4s2W

1
8s2W

X − 1
8s2W

Y − 1
8s2W

Y 1
8s2W

X − 1
4s2W

ZZ → Zγ − − 1
8cWsW

1
16cWsW

X − − 1
16cWsW

Y − −
ZZ → HH − 3

4s2W
− − − − − 1

4s2W

Zγ → ZZ − − 1
16cWsW

X − 1
16cWsW

Y − − − 1
8sWcW

Zγ → HH − − − − − − 1
8sWcW

ZH → ZH − 3
8s2W

X − − − − 1
8s2W

X −
ZH → γH − − − − − 1

16cWsW
X −

Table 6.2: Unitarity violating (growing as s) terms of the scattering ampli-
tudes M(V1λ1

V2λ2
→ V3λ3

V4λ4
) for gauge bosons with the helicities λ1λ2λ3λ4

listed on top of each column, generated by the operator OW . Notation as
previous Table.

6.3 The Unitarity Violating Amplitudes

First we consider all two−to−two Higgs and electroweak gauge–boson scatter-

ing processes. We have calculated the amplitudes for all possible combinations

of particles and helicites generated by the effective field theory to dimension–

six discussed in Sec. 6.1. We keep terms only to linear order in the dimension–

six operators as use of the dimension–six operators at quadratic and higher

order requires the inclusion of dimension–eight and higher operators. That is

we assume that the new physics occurs at a sufficiently high energy scale that

it is sufficient to truncate the effective Lagrangian expansion at dimension–six.

We note that to linear order in the anomalous operator coefficients no

amplitude diverges as s2, this is a result of gauge invariance enforcing that

the corresponding triple and quartic vertices satisfy the requirements for the

cancellation for the s2 terms to take place [132].

In total we find 26 processes (in particle space) which yield some helicity

amplitude that grows as s for at least one of the dimension–six operators. The
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(×e2 fB
Λ2 )× s

0000 00 + + 0 + 0− 0 +−0 +00− +0− 0 + + 00
W+W+ → W+W+ − 3

4c2W
0 0 0 0 0 0

W+Z → W+Z 0 − 1
8cW

s2W−c
2
W

8c2W
X − 1

16cW
Y − 1

16cW
Y 0 − 1

8cW

W+γ → W+γ − − 1
4
X − − − −

W+Z → W+γ − 1
8sW

c2W−3s2W
16sWcW

X − 1
16sW

Y − −
W+Z → W+H −2+Y

8c2W
− − − 1

16cW
Y − 0 1

8cW

W+γ → W+H − − − 1
16sW

Y − − − 1
8sW

W+W− → W+W− 3
8c2W

Y 0 0 0 0 0 0

W+W− → ZZ 0
c2W−s

2
W

4c2W

1
16cW

X − 1
16cW

Y − 1
16cW

Y 1
16cW

X 0

W+W− → γγ − −1
2

− − − − −
W+W− → Zγ − 3−4c2W

8cWsW
− 1

16sW
X − 1

16sW
Y − −

W+W− → ZH 1−Y
4c2W

− − − 1
16cW

Y − − 1
16cW

X 0

W+W− → γH − 0 − 1
16sW

Y − 1
16sW

X −
ZZ → ZZ 0 − 1

4c2W

1
8c2W

X − 1
8c2W

Y − 1
8c2W

Y 1
8c2W

X − 1
4c2W

ZZ → Zγ − 1
8cWsW

− 1
16cWsW

X − 1
16cWsW

Y − −
ZZ → HH − 3

4c2W
− − − − − 1

4c2W

Zγ → ZZ − − − 1
16cWsW

X 1
16cWsW

Y − − 1
8sWcW

Zγ → HH − − − − − − − 1
8sWcW

ZH → ZH − 3
8c2W

X − − − − 1
8c2W

X −
ZH → γH − − − − − − 1

16cWsW
X −

Table 6.3: Same as Tab. 6.2 for the operator OB.

remainder are constant or vanishing for mW,Z,H �
√
s.

Table 6.1 contains the fΦ2,4 divergent amplitudes. We note unitarity vi-

olation only occurs in the purely longitudinal modes for the operators OΦ,2

and OΦ,4. This behavior is expected as these operators do not generate higher

derivative terms beyond those already present in the SM in the triple and

quartic couplings. Table 6.2 (6.3) show the unitarity violating amplitudes for

OW (OB), the results for operators OWW and OBB are in Tab. 6.4 and those

for OWWW are in Tab. 6.5. Contrary to the case of fΦ2,4 we see that these

operators do introduce amplitudes which grow as s for helicity combinations

beyond purely longitudinal. It is interesting to note all amplitudes which grow

with s generated by OΦ,2, OΦ,4, OW , OB, OWW , and OBB have only J = 0 or

J = 1 partial-wave projections. OWWW leads to violation of unitarity in helic-

ity amplitudes with projections over J ≥ 2. However, as bounds are weakened

for increasing J , we compute our constraints using only the J = 0 and J = 1

partial waves.

We will also consider fermionic scattering into two vectors, ff̄ ′ → V V ′.

Here only operators contributing to triple gauge vertices will contribute, as

vertices involving the Higgs will be proportional to the fermion mass which
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(×e2 fWW

Λ2 × s) (×e2 fBB
Λ2 )× s

00 + + 0 + 0− 0 +−0 +00− +0− 0 + + 00 00 + + 0 + 0− 0 +−0 +00− +0− 0 + + 00
W+W+ → W+W+ 0 − 1

4s2W
X 1

4s2W
Y 1

4s2W
Y − 1

4s2W
X 0 0 0 0 0 0 0

W+Z → W+Z 0 − c2W
4s2W

X 0 0 − 1
4s2W

X 0 0 − s2W
4c2W

X 0 0 0 0

W+γ → W+γ − −1
4
X − − − − − −1

4
X − − − −

W+Z → W+γ 0 − cW
4sW

X − 0 − − 0 sW
4cW

X − 0 − −
W+H → W+H − − − − − 1

4s2W
X − − − − − 0 −

W+W− → W+W− 1
2s2W

− 1
4s2W

X 0 0 − 1
4s2W

X 1
2s2W

0 0 0 0 0 0

W+W− → ZZ
c2W
2s2W

0 0 0 0 1
2s2W

s2W
4c2W

0 0 0 0 0

W+W− → γγ 1
2

− − − − − 1
2

− − − − −
W+W− → Zγ cW

2sW
0 − 0 − − − sW

2cW
0 − 0 − −

W+W− → HH − − − − − − 1
2s2W

− − − − − 0

ZZ → ZZ
c2W
2s2W

− c2W
4s2W

X
c2W
4s2W

Y
c2W
4s2W

Y − c2W
4s2W

X
c2W
2s2W

s2W
2c2W

− s2W
4c2W

X
s2W
4c2W

Y
s2W
4c2W

Y − s2W
4c2W

X
s2W
2c2W

ZZ → γγ 1
2

− − − − − 1
2

− − − − −
ZZ → Zγ cW

2sW
− cW

4sW
X − cW

4sW
Y − − − sW

2cW

sW
4cW

X − − sW
4cW

Y − −
ZZ → HH − − − − − − c2W

2s2W
− − − − − − s2W

2c2W

Zγ → ZZ − − cW
4sW

X cW
4sW

Y − − cW
2sW

− sW
4cW

X − sW
4cW

Y − − − sW
2cW

Zγ → Zγ − −1
4
X − − − − − −1

4
X − − − −

Zγ → HH − − − − − − cW
2sW

− − − − − sW
2cW

γγ → HH − − − − − −1
2

− − − − − −1
2

ZH → ZH − − − − − c2W
4s2W

X − − − − − − s2W
4c2W

X −
γH → γH − − − − −1

4
X − − − − − −1

4
X −

ZH → γH − − − − − cW
4sW

X − − − − − sW
4cW

X −

Table 6.4: Same as Tab. 6.2 for the operators OWW and OBB.

(×2e4 fWWW

Λ2 × s)

00 + + 0 + 0− 0 +−0 +00− +0− 0 + + 00

+ + +−
+−−−
+−++
+ +−+

+ +−−

W+W+ → W+W+ 0 −3(2+Y )

32s4W

3(2+X)

32s4W

3(2+X)

32s4W
−3(2+Y )

32s4W
0 − 3

4s4W

3
2s4W

W+Z → W+Z 3(Y−X)cW
32s4W

0 3(X+2)cW
32s4W

3(X+2)cW
32s4W

0 3(Y−X)cW
32s4W

− 3c2W
8s4W

X
3c2W
4s4W

X

W+γ → W+γ − 0 − − − − − 3
8s2W

X 3
4s2W

X

W+Z → W+γ −3(Y−X)

32s3W
0 − 3(X+2)

32s3W
− − − 3cW

8s3W
X 3cW

4s3W
X

W+Z → W+H − − 3(X+2)cW
32s4W

− 3(2+Y )

32s4W
−3(Y−X)cW

32s4W
− −

W+γ → W+H − − 3(X+2)

32s3W
− − −3(Y−X)

32s3W
− −

W+W− → W+W− 3(Y−X)

32s4W

3(2+Y )

32s4W
0 0 3(2+Y )

32s4W

3(Y−X)

32s4W

3
8s4W

Y − 3
4s4W

Y

W+W− → ZZ 0 3(2+Y )cW
32s4W

−3(X+2)cW
32s4W

−3(X+2)cW
32s4W

3(2+Y )cW
32s4W

0
3c2W
4s4W

− 3c2W
2s4W

W+W− → γγ 0 − − − − − 3
4s2W

− 3
2s2W

W+W− → Zγ 0 3(2+Y )

32s3W
− −3(2+X)

32s3W
− − 3cW

4s3W
− 3cW

2s3W

W+W− → ZH − − −3(2+X)cW
32s4W

− −3(2+Y )cW
32s4W

3(Y−X)

32s4W
− −

W+W− → γH − − −3(X+2)

32s3W
− −3(2+Y )

32s3W
− − −

Table 6.5: Same as Tab. 6.2 for the operator OWWW .

is taken to be small relative to
√
s. Therefore we need only consider the

operators fW , fB, and fWWW . The relevant unitarity violating amplitudes for

these inelastic processes are compiled in Tab. 6.6. Notice the effects of the

operator OWWW occur for different helicity amplitudes than for OW and OB

as a result of the different Lorentz structure of the operator.
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Process σ1, σ2, λ3, λ4 Amplitude

e+e− → W−W+ −+ 00 − ig2s sin θ
8

c2WfW+s2WfB
c2WΛ2

+− 00 − ig2s sin θ
4

s2WfB
c2WΛ2

−+−− −3ig4s sin θ
8

fWWW

Λ2

−+ ++ −3ig4s sin θ
8

fWWW

Λ2

νν̄ → W−W+: −+ 00 ig2s sin θ
8

c2WfW−s2WfB
c2W

+− 00 0

−+−− 3ig4s sin θ
8

fWWW

Λ2

−+ ++ 3ig4s sin θ
8

fWWW

Λ2

uū→ W−W+ −+ 00 ig2Ncs sin θ
8

3c2WfW+s2WfB
3c2W

+− 00 ig2Ncs sin θ
6

s2W
c2W
fB

−+−− 3ig4Ncs sin θ
8

fWWW

Λ2

−+ ++ 3ig4Ncs sin θ
8

fWWW

Λ2

dd̄→ W−W+ −+ 00 − ig2Ncs sin θ
8

3c2WfW−s2WfB
3c2W

+− 00 − ig2Ncs sin θ
12

s2WfB
c2WΛ2

−+−− −3ig4Ncs sin θ
8

fWWW

Λ2

−+ ++ −3ig4Ncs sin θ
8

fWWW

Λ2

e+ν̄ → W+Z −+ 00 ig2s sin θ

4
√

2

fW
Λ2

+− 00 0

−+−− 3icWg4s sin θ

4
√

2

fWWW

Λ2

−+ ++ 3icWg4s sin θ

4
√

2

fWWW

Λ2

e+ν̄ → W+A: −+ 00 0
+− 00 0

−+−− 3isWg4s sin θ

4
√

2

fWWW

Λ2

−+ ++ 3isWg4s sin θ

4
√

2

fWWW

Λ2

Table 6.6: Unitarity violating (growing as s) terms of the scattering ampli-
tudes M(f1σ1

f̄2σ2
→ V3λ3

V4λ4
) for fermions and gauge bosons with the helicities

σ1σ2λ3λ4 given in the second column.

6.4 Constraints from Perturbative Unitarity

With Tabs. 6.1, 6.2, 6.3, 6.4, and 6.5 in mind we proceed to build the T 0

and T 1 amplitude matrices in particle and parameter space. These matrices

are formed of the s–divergent amplitudes corresponding to all combinations of

gauge and Higgs boson pairs for each total charge (Q = 2, 1, 0) and partial
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wave J as follows:

(Q, J) States Total

(2, 0) W+
±W

+
± W+

0 W
+
0 3

(2, 1) W+
±W

+
± W+

±W
+
0 W+

0 W
+
± 6

(1, 0) W+
±Z± W+

0 Z0 W+
± γ± W+

0 H 6

(1, 1) W+
0 Z0 W+

±Z0 W+
0 Z± W+

±Z±

W+
0 γ± W+

± γ± W+
0 H W+

±H 14

(0, 0) W+
±W

−
± W+

0 W
−
0 Z±Z± Z0Z0

Z±γ± γ±γ± Z0H HH 12

(0, 1) W+
0 W

−
0 W+

±W
−
0 W+

0 W
−
± W+

±W
−
± Z±Z0

Z0Z± Z0γ± Z0H Z±H γ±H 18

(6.20)

Where the upper index indicates charge, lower indices indicate helicity, and

we have taken advantage of the relation:

T J(V1λ1V2λ2 → V3λ3V4λ4) = (−1)λ1−λ2−λ3+λ4T J(V1−λ1V2−λ2 → V3−λ3V4−λ4)

(6.21)

In the right–most column of Eq. (6.20) we give the dimensionality of

the corresponding T J matrix. For example, for Q = 2, T 0 in the basis

(W+
+W

+
+ ,W

+
0 W

+
0 ,W

+
−W

+
− ) we have the 3× 3 matrix1

s

8π


0 0 3

s2W
e4fWWW

0 − 3
8c2W

e2fB − 3
8s2W

e2fW − 1
2
fΦ,2 0

3
s2W
e4fWWW 0 0

 . (6.22)

To obtain the most stringent bounds on the operator coefficients, fn/Λ
2

we diagonalize the six T J matrices and impose the constraint from Eq. (6.13).

Considering only one operator different from zero at a time we find the strongest

1We note in Eq. (6.4) we have included explicitly the symmetry factors
√

1 + δ
V2λ2

V1λ1
and√

1 + δ
V4λ4

V3λ3
. Therefore we need not include these explicitly in our matrix. Other conventions

include this in the definition of the two equal gauge boson states.
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constraints arise from the following eigenvalues:∣∣∣∣ 3

16π

fΦ2,4

Λ2
s

∣∣∣∣ ≤ 2 ⇒
∣∣∣∣fΦ2,4

Λ2
s

∣∣∣∣ ≤ 33 ,∣∣∣∣1.4 g2

8π

fW
Λ2

s

∣∣∣∣ ≤ 2 ⇒
∣∣∣∣fWΛ2

s

∣∣∣∣ ≤ 87 ,∣∣∣∣∣g2sW(
√

9 + 7c2
W + 3sW)

128c2
Wπ

fB
Λ2
s

∣∣∣∣∣ ≤ 2 ⇒
∣∣∣∣fBΛ2

s

∣∣∣∣ ≤ 617∣∣∣∣∣
√

3

2

g2

8π

fWW

Λ2
s

∣∣∣∣∣ ≤ 2 ⇒
∣∣∣∣fWW

Λ2
s

∣∣∣∣ ≤ 99 , (6.23)∣∣∣∣.20
g2

8π

fBB
Λ2

s

∣∣∣∣ ≤ 2 ⇒
∣∣∣∣fBBΛ2

s

∣∣∣∣ ≤ 603 ,∣∣∣∣(1 +
√

17− 16c2
Ws

2
W)

3g4

32π

fWWW

Λ2
s

∣∣∣∣ ≤ 2 ⇒
∣∣∣∣fWWW

Λ2
s

∣∣∣∣ ≤ 82 .

Inclusion of the amplitudes for fermions scattering into gauge boson pairs

requires the use of the constraint from Eq. (6.18). In summing over amplitudes

we choose |X〉 such that we will have the largest values for theQ = 0 andQ = 1

cases. We find the strongest bounds come from the Q = 0 (i.e. V V = W+W−)

combination with the states:

|x1〉 =
1√
24
|Nf

(
−e−−e+

+ + νe−ν̄e+ +Ncu−ū+ −Ncd−d̄+

)
〉 , (6.24)

|x2〉 =
1√
21
|Nf

(
−e−+e+

− +Ncu+ū− −Ncd+d̄−
)
〉 , (6.25)

Where we have used Nf (Nc) to denote the number of flavors (colors). These

two combinations of states give the bounds

1

24

[∣∣∣∣6 g4

8π

fWWW

Λ2
s

∣∣∣∣2 +

∣∣∣∣1.41
g2

8π

fW
Λ2

s

∣∣∣∣2
]
≤ 1 ⇒

∣∣∣∣fWWW

Λ2
s

∣∣∣∣ ≤ 122,

and

∣∣∣∣fWΛ2
s

∣∣∣∣ ≤ 211, (6.26)

1

21

∣∣∣∣√2
s2
w

c2
w

g2

8π

fB
Λ2
s

∣∣∣∣2 =

∣∣∣∣0.053
g2

8π

fB
Λ2
s

∣∣∣∣2 ≤ 1 ⇒
∣∣∣∣fBΛ2

s

∣∣∣∣ ≤ 664,

respectively.
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As we have no UV model to guide our choice of basis and parameters

fis/Λ
2, we must consider the case of more than one parameter non–zero.

Therefore we search for the largest allowed value of a given parameter while

varying over others. We obtain general bounds for our basis of six operator

coefficients from searching a six–dimensional grid and recording the largest

range of the parameters which satisfy both the elastic and inelastic partial–

wave unitarity constraints. This search yields the bounds:∣∣∣∣fΦ2,4

Λ2
s

∣∣∣∣ ≤ 105 ,∣∣∣∣fWΛ2
s

∣∣∣∣ ≤ 205 ,∣∣∣∣fBΛ2
s

∣∣∣∣ ≤ 640 ,∣∣∣∣fWW

Λ2
s

∣∣∣∣ ≤ 200 , (6.27)∣∣∣∣fBBΛ2
s

∣∣∣∣ ≤ 880 ,∣∣∣∣fWWW

Λ2
s

∣∣∣∣ ≤ 82 .

We note that these constraints do not indicate the largest ranges which may

be realized for each parameter simultaneously, rather the most conservative

constraints on a given parameter allowing for all possible cancellations with

the others in the scattering amplitudes.

Also the comparison of Eq. (6.27) with Eqs. (6.26) and (6.23) indicates

that searching the six–dimensional space results in weaker constraints, but

not substantially. Therefore even when allowing for all possible cancellations

between the contribution of the relevant dimension–six operators, partial–wave

unitarity still imposes constraints on their range of validity.

The bounds in Eq. (6.27) must be understood as providing the maximum

center of mass energy (
√
s) for which unitarity holds for a given value of fi/Λ

2.

One may argue that for not−too−small values of fi the bounds in Eq. (6.27)

correspond to smax approximately or larger than Λ2 for which the quadratic

contribution of dimension–six operators to the scattering amplitudes at order

f 2
i (s/Λ2)2 can be sizeable and could substantially change the bounds. At such
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an order, however, one must consider linear contributions from dimension–

eight operators. Thus the results in Eq. (6.27) can be interpreted as the

bounds that partial wave unitarity imposes on the effects of the dimension–six

operators uniquely, irrespective of possible cancellations due to higher–order

contributions. The interpretation of the perturbative unitarity bounds is that

one expects the appearance of some new state or a strongly interacting phase

at the bound. In this respect we may also interpret
√
smax as a generous upper

limit for the validity of the description provided by the lowest order of the

EFT.

We can now compare these unitarity constraints in Eq. (6.27) with the

bounds from the global analysis in Chapter 5 in Tab. 5.1. We map the 90% CL

ranges of the six–dimensional space from the analysis in Chapter 5, Tab. 5.1,

onto the unitarity constraints derived here to identify the lowest energy for

which presently allowed values of the coefficients of operators affecting Higgs

physics would lead to unitarity violation. For the operator OWWW , which is

not included in the Higgs data analysis, we make use of the presently allowed

range of λγ
2 from the PDG [57], λγ = −0.022± 0.019. Altogether we obtain:

−10 ≤ fΦ,2

Λ2
(TeV−2) ≤ 8.5 ⇒

√
s ≤ 3.2 TeV ,

−5.6 ≤ fW
Λ2

(TeV−2) ≤ 9.6 ⇒
√
s ≤ 4.6 TeV ,

−29 ≤ fB
Λ2

(TeV−2) ≤ 8.9 ⇒
√
s ≤ 4.7 TeV ,

−3.2 ≤ fWW

Λ2
(TeV−2) ≤ 8.2 ⇒

√
s ≤ 4.9 TeV , (6.28)

−7.5 ≤ fBB
Λ2

(TeV−2) ≤ 5.3 ⇒
√
s ≤ 11 TeV ,

−15 ≤ fWWW

Λ2
(TeV−2) ≤ 3.9 ⇒

√
s ≤ 2.4 TeV .

6.5 Summary

In this chapter we briefly put together the operator basis relevant to gauge

boson scattering and reviewed the conditions of partial wave unitarity from

both elastic and inelastic gauge boson scattering. We evaluate the amplitudes

2From Eq. (2.39) we recall λγ = λZ =
3g2M2

W

2Λ2 fWWW .

99



which violate perturbative unitarity, allowing us to finally constrain the op-

erators in the relevant basis of Eq. (6.2). We considered the constraints for

individual operators in the case of elastic and inelastic fermion scattering and

also combined them in a six–parameter search, noting that the constraints

were not affected to a large degree by such a search.

Finally we included the results from the discussion of the linear basis in

Sec. 5.1 allowing us to put lower bounds on the energies at which perturbative

unitarity may be violated. In particular in Eq. (6.28) we have shown that

for operators affecting Higgs couplings the present 90% CL constraints from

Sec. 5.1 are such that perturbative unitarity is not violated for
√
s ≤ 3.2 TeV.

For the purely gauge–boson operator OWWW our naive translation of the triple

gauge boson constraints indicated that for the allowed 90% range perturbative

unitarity can be violated for ff̄ ′ → V V ′ at
√
s ≥ 2.4 TeV.

In the next chapter we summarize the discussions and results contained in

this dissertation.
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Chapter 7

Conclusions

In this dissertation we have used the exciting discovery of a Higgs–like particle

at the Large Hadron Collider to motivate the use of effective field theories to

quantify deviations from the predicted Standard Model behavior of the ob-

served state. We began in Chapter 2 by introducing the Hagiwara, Ishihara,

Szalapski, and Zeppenfeld basis of dimension–six operators for a CP–even

Higgs requiring that baryon and lepton number be conserved. We noted that

this was the relevant expansion under the assumption that the Higgs is a

fundamental scalar doublet of the SU(2)L symmetry of the Standard Model.

We proceeded to consider the Lorentz–structures implied by the new opera-

tors, many of which are not induced in the SM at tree level. From there we

considered the correlations between the triple gauge vertices and Higgs–gauge

interactions. We then reduced the size of our basis from the equations of

motion and precision data taking care not to introduce blind directions.

Chapter 3 repeated the themes of Chapter 2, however this time we looked

at the Higgs as a pseudo–Goldstone boson of some new global symmetry real-

ized at a new high energy scale and for which electroweak symmetry breaking

is assumed to be non–linearly realized in the low energy Lagrangian and hence

a more appropriate expansion is that provided by chiral perturbation theory.

We wrote the effective Lagrangian for such composite–like Higgs to order four

derivatives. We organized the leading order operators in terms of the parame-

ter ξ = (v/f)2 where f is the characteristic scale of the Godstone boson while

v is the scale set by the EW gauge boson mass. This parameter helped us to

relate the chiral operators to those in the linear expansion, with ξ indicating
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the lowest order at which each operators’ effects would be induced in the linear

expansion. From these relations we concluded that the correlations between

the Higgs to gauge bosons and triple gauge boson couplings discussed for the

linear expansion no longer existed for the chiral expansion, instead allowing for

triple gauge vertices to be independently tuned from the Higgs–gauge vertices.

This allowed for the formulation of discriminators between the two expansions.

Together Chapters 2 and 3 motivated us to put together an analysis frame-

work in Chapter 4 which would allow for quantifying the present status on

the determination of the coefficients and correlations in these expansions to

be drawn in Chapter 5.

Desiring data–driven discussions of the expansions we formed chi–square

statistics from the three main sources of data. The first and most direct being

the Higgs Collider data from the LHC and Tevatron. Here we formulated a

method for incorporating the state of the art calculations with the anomalous

corrections from the operator expansions of Chapters 2 and 3, accounting for

correlations in theoretical uncertainties via the pulls method, and incorporat-

ing the weights of various production channels for the sometimes convoluted

cuts made by the different experiments (in particular for the H → γγ channel).

We additionally put together a way to incorporate the LEP data on the triple

gauge boson couplings into our chi–square structure, allowing us to consider

the implications of triple gauge vertex measurements on the correlated struc-

tures between Higgs–gauge and triple gauge couplings in the linear expansion.

Finally we formulated a similar system for the inclusion of the one–loop ef-

fects on electroweak precision data induced by the new operators. Thus, after

completing Chapter 4 we were left with a framework to analyze the effective

operator bases put together in the previous two chapters.

In Chapter 5 we put our framework to use, first by analyzing the free

parameter space of the operator coefficients in the linear expansion. Our

analysis implies that the Standard Model is consistent with the data, laying

well within the 1σ uncertainties. Furthermore this quantification allowed us

to consider first the implications of the triple gauge coupling data from LEP

as constraints on the Higgs parameter space, and then to turn the argument

around and constrain the triple gauge couplings using the results of the analysis

of the Higgs data. We found that Higgs data driven constraints on triple gauge

102



boson couplings are becoming competitive with those from direct measurement

of those couplings, and showed the potential for future combination of these

two types of measurements.

Next we analyzed the parameter space of the chiral operator coefficients

and the uncorrelated triple gauge couplings. This led to a discussion of dis-

criminating between the two expansions, and we placed constraints on four

variables, ΣW,B and ∆W,B introduced in Chapter 3, which measure deviations

from the Standard Model predictions and deviations from the behavior of the

linear expansion respectively. All constraints at this point were found to be

consistent with the Standard Model predictions, but Appendix B indicates

that the next run of the LHC and the possible future high luminosity LHC

both have the potential to vastly improve on these measurements. We then

moved on to potential new physics signals from the chiral operator P14 which

induced a new Lorentz-form in the triple gauge coupling differing from the

Standard Model and from those induced by dimension–six operators in the

linear expansion. Here we were able to place limits on c14, or in the triple

gauge vertex language gZ5 , from the 7 and 8 TeV runs of the LHC, and pro-

jected the potential for study at the 14 TeV LHC. We finished our discussion

with generic anomalous quartic gauge couplings (unrelated to triple gauge bo-

son vertices) which appear to the lowest order in the chiral expansion unlike

in the linear case, and quantify the potential limits on two such operators at

the 14 TeV LHC where probing quartic gauge couplings directly will become

possible.

In Chapter 6 we consider constraints on the linear operator basis arising

from perturbative unitarity in electroweak gauge boson scattering from the

conditions of partial wave unitarity for both the elastic and inelastic scatter-

ing processes involving gauge boson pairs. In order to do so we computed

the divergent amplitudes for all the relevant processes in particle and helicity

space. We used those to place limits on each operator individually, and by

searching the six operator coefficient space to bound all operator coefficients

simultaneously. Using these constraints we were able to project the bounds we

had derived from the Higgs and triple gauge coupling data analyses onto the

minimum energy at which perturbative unitarity may be violated, indicating

the possible onset of new physics, which we found to be
√
s ∼ 2.4 TeV.
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In summary the LHC 7 and 8 TeV runs have served to establish the exis-

tence of a new particle which appears to be related to the electroweak symme-

try breaking mechanism, opening the possibility of directly testing the sym-

metry breaking sector. From the analyses of the Higgs, triple gauge boson

vertices, and precision data we have concluded that there are no hints so far

for deviations with respect to the Standard Model in this sector. This fact

added to the many experimental exclusion bounds on a large variety of new

expected states in several beyond the Standard Model extensions set the cur-

rent picture: after the first LHC runs the Standard Model with a minimal

Higgs mechanism is still a valid picture of particle physics.

The quantification presented, however, also shows the present, sometimes

poor, precision with which this conclusion stands. Large room for deviations

is still allowed which will be within reach at the coming runs of LHC keeping

open the possibility of new descoveries.
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Appendix A

Anomalous Interactions in the

Linear Expansion

In this Appendix we proceed to identify the coefficients of the different Lorentz

structures generated by the dimension-six operators in the linear expansion for

the remaining 3 and 4 point vertices relevant to our discussion in Chapter 6.

Chapter 2 contains the effects of dimension-six effective operators which give

rise to HV V and TGV interactions, see Eqs. (2.18) and (2.19), and Eqs. (2.20)

and (2.21) respectively.

Quartic vertices involving Higgs and gauge bosons read:

LHHV1V2
eff = g

(1)
HHWWH

2W+
µνW

−µν + g
(2)
HHWWH(∂νH)(W−

µ W
+µν + h.c.)

+ g
(3)
HHWWH

2W+
µ W

−µ + g
(1)
HHZZH

2ZµνZ
µν

+ g
(2)
HHZZHZν(∂µH)Zµν + g

(3)
HHZZH

2ZµZ
µ (A.1)

+ g
(1)
HHZAH(∂µH)ZνA

µν + g
(2)
HHZAH

2AµνZ
µν

+ g
(1)
HHAAH

2AµνA
µν ,
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with

g
(1)
HHWW = − g2

4Λ2fWW

g
(2)
HHWW = g2

4Λ2fW

g
(3)
HHWW = g2

4

[
1 + v2

2Λ2 (5fΦ,4 − fΦ,1 − 2fΦ,2)
]

= M2
W

√
2GF

[
1 + v2

2Λ2 (5fΦ,4 − fΦ,1 − 2fΦ,2)
]

g
(1)
HHZZ = − g2

8c2WΛ2 (c4
WfWW + s4

WfBB + c2
Ws

2
WfBW )

g
(2)
HHZZ = − g2

4c2WΛ2 (c2
WfW + s2

WfB)

g
(3)
HHZZ = g2

8c2W

[
1 + v2

2Λ2 (5fΦ,1 + 5fΦ,4 − 2fΦ,2− g2g′2

(g2+g′2)
fBW )

]
= M2

Z

√
2GF

[
1 + v2

2Λ2 (4fΦ,1 + 5fΦ,4 − 2fΦ,2)
]

g
(1)
HHZA = − g2sW

4cWΛ2 (fW − fB)

g
(2)
HHZA = − g2sW

4cWΛ2 (c2
WfWW − s2

WfBB − 1
2
(c2

W − s2
W)fBW )

g
(1)
HHAA = −g2s2W

8Λ2 (fWW + fBB − fBW ),

(A.2)

and

LHV1V2V3
eff = g

(1)
HZWWH(W−

µ W
+
ν − h.c.)Zµν + g

(2)
HZWWHZµ(W+

ν W
−µν − h.c.)

+ g
(3)
HZWW (∂µH)Zν(W

−µW+ν − h.c.)

+ g
(1)
HAWWH(W−

µ W
+
ν − h.c.)Aµν + g

(2)
HAWWHAν(W

+ν
µ W−µ − h.c.)

+ g
(3)
HAWW (∂µH)Aν(W

−µW+ν − h.c.) , (A.3)

with

g
(1)
HZWW = ig3v

8cWΛ2 (c2
WfW − s2

WfB + 4c2
WfWW + 2s2

WfBW )

g
(2)
HZWW = − ig3v

4cWΛ2 (fW + 4c2
WfWW )

g
(3)
HZWW = ig3v

4cWΛ2 s
2
WfW

g
(1)
HAWW = ig3vsW

8Λ2 (fW + fB + 4fWW − 2fBW )

g
(2)
HAWW = − ig3sWv

Λ2 fWW

g
(3)
HAWW = − ig3vsW

4Λ2 fW .

(A.4)
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Quartic gauge boson vertices read:

LWWV1V2
eff = g

(1)
WWWWW

−
µ W

+
ν (W−µW+ν − h.c.)

+ g
(2)
WWWWW

+
µνW

−νρ(W+µW−
ρ −W+

ρ W
−µ)

+ g
(1)
WWZZZµZ

µW+
ν W

−
ν + g

(2)
WWZZZµZν(W

+
ν W

−
µ + h.c.)

+ g
(3)
WWZZ

(
W+
µνZ

µ
ρ (ZνW−ρ − ZρW−ν) + h.c.

)
+ g

(3)
WWAA

(
W+
µνA

µ
ρ (AνW−ρ − AρW−ν) + h.c.

)
+ g

(1)
WWZAW

−
µ W

+µZµA
µ + g

(2)
WWZA(W−

ν W
+
µ + h.c.)AνZµ

+ g
(3)
WWZA

(
W+
µνZ

µ
ρ (AνW−ρ − AρW−ν)

+W+
µνA

µ
ρ (ZνW−ρ − ZρW−ν) + h.c.

)
, (A.5)

with

g
(1)
WWWW = e2

2s2W
+ g4v2

8Λ2 (fW + 2
s2W
c2W

fBW −
s22W

2c2We2
fΦ,1)

g
(2)
WWWW = −3g4

2Λ2 fWWW

g
(1)
WWZZ = −e2 c

2
W

s2W
− g4v2Λ2

4c2W
(c2

WfW +
2s22W

c2W
fBW −

s22Wc2W
2e2c2W

fΦ,1)

g
(2)
WWZZ =

e2c2W
2s2W

+ g4v2Λ2

8c2W
(c2

WfW +
s22W

2c2W
fBW −

s22Wc2W
2e2c2W

fΦ,1)

g
(3)
WWZZ =

−3g4v2c2W
2Λ2 fWWW

g
(3)
WWAA = −3g4v2s2W

2Λ2 fWWW

g
(1)
WWZA = −e2 − g4v2sW

4cWΛ2 (fW + 2
s2W
c2W

fBW −
s22W

2c2We2
fΦ,1)

g
(2)
WWZA = e2

2
+ g4v2sW

8cWΛ2 (fW + 2
s2W
c2W

fBW −
s22W

2c2We2
fΦ,1)

g
(3)
WWZA = −3g4sWcW

2Λ2 fWWW .

(A.6)

Finally Higgs self interactions take the form:

LHHH
eff = g

(1)
HHHH

3 + g
(2)
HHHH(∂µH)(∂µH) , (A.7)

(A.8)

LHHHH
eff = g

(1)
HHHHH

4 + g
(2)
HHHHH

2(∂µH)(∂µH) , (A.9)
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where

g
(1)
HHH = −λv + v3

Λ2 (3λ
4
fΦ,1 + 5

6
fΦ,3 + 3λ

2
fΦ,2 + 3λ

4
fΦ,4)

= −M2
H

2
(
√

2GF )1/2
[
1− v2

4Λ2 (fΦ,1 + 2fΦ,2
4

3λ
fΦ,3)

]
g

(2)
HHH = v

Λ2 (1
2
fΦ,1 + fΦ,2 + 1

2
fΦ,4)

g
(1)
HHHH = −λ

4
+ v2

4Λ2 (λfΦ,1 + 5
2
fΦ,3 + 2λfΦ,2 + λfΦ,4)

= −M2
H

8
(
√

2GF )
[
1 + v2

2Λ2 (fΦ,1 + 4
λ
fΦ,3 + fΦ,2)

]
g

(2)
HHHH = 1

4Λ2 (fΦ,1 + 2fΦ,2 + fΦ,4).

(A.10)
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Appendix B

Projections for LHC14

In this Appendix we summarize our contribution to the Energy Frontier work-

ing group on the Community Summer Study (Snowmass). In this study we

assessed the impact of Higgs physics on the TGC determination at the LHC

with a center−of−mass energy of 14 TeV and integrated luminosities of 300

fb−1 and 3000 fb−1.

For the sake of simplicity we fit the ATLAS and CMS expected sensi-

tivities [133, 134] for the Higgs signal strength using a reduced set of four

independent operators { OGG , OWW ,OB , OW } and setting the Yukawa

couplings to their SM values. This simplified scenario captures most of the

features of fits that we presented in Chapter 5 while keeping the analysis time

efficient.

68% CL allowed range 95% CL allowed range
300 fb−1 3000 fb−1 300 fb−1 3000 fb−1

fg/Λ
2 (TeV−2) (−0.33, 0.31) ∪

(22.40, 23.04)
(−0.17, 0.17) ∪
(22.54, 22.88)

(−0.74, 0.86) ∪
(21.85, 23.45)

(−0.33, 0.34) ∪
(22.36, 23.04)

fWW/Λ
2 (TeV−2) (−0.043, 0.044) (−0.023, 0.022) (−0.093, 0.096)∪

(2.75, 2.82)
(−0.045, 0.044)

fW/Λ
2 (TeV−2) (−1.9, 2.5) (−0.75, 0.83) (−3.4, 9.1) (−1.39, 1.82)

fB/Λ
2 (TeV−2) (−2.0, 2.5) (−0.78, 0.85) (−11.7, 7.5) (−6.0,−4.1) ∪

(−1.5, 1.8)

Table B.1: 68% CL and 95% expected allowed ranges for 300 and 3000 fb−1

of integrated luminosity.

Figure B.1 displays ∆χ2 as a function of the four fitting parameters for

integrated luminosities of 300 fb−1 (upper row) and 3000 fb−1 (lower row).

The corresponding 68% CL and 95% expected allowed ranges can be found
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Figure B.1: ∆χ2 as a function of fg, fWW , fW , and fB assuming fbot = fτ =
ftop = 0, after marginalizing over the three undisplayed parameters. The three
horizontal dashed lines stand for the ∆χ2 values associated with 68%, 90% and
95% from bottom to top respectively. The upper (lower) row was obtained for
an integrated luminosity of 300 (3000) fb−1.

in Tab. B.1. We observe in the upper and lower left panels that the ∆χ2

as a function of fg exhibits two degenerate minima due to the interference

between SM and anomalous contributions to gg → H production, as was the

case in Chapter 5. In the case of the χ2 dependence on fWW there is also an

interference between anomalous and SM contributions to H → γγ, however,

the degeneracy of the minima is lifted since the fWW coupling contributes also

to Higgs decays into WW ∗, ZZ∗ and γZ, as well as in V h associated and

vector boson fusion production mechanisms. Clearly larger statistics help to

eliminate the degeneracy in fWW . The interference between fB and the SM

contribution to H → γZ is responsible for the two local minima with smaller

∆χ2 while the additional minima in the upper right panel originate from the

marginalization of fWW . Comparing the upper and lower rows, we can see
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that a larger integrated luminosity also helps to significantly reduce the errors

in the determination of the anomalous couplings.

Figure B.2: ∆χ2 as a function of branching ratios (left panels) and production
cross sections (right panels) when we use only the expected ATLAS and CMS
sensitivity on the Higgs signal strengths for integrated luminosities of 300 fb−1

(upper row) and 3000 fb−1 (lower row).

Figure B.2 depicts the χ2 dependence on branching ratios and production

cross sections for integrated luminosities of 300 fb−1 and 3000 fb−1. As we can

see these quantities can be determined with a precision better than 20% (5%)

with 300 (3000) fb−1. The only exception is the Higgs branching ratio into Zγ

that can be measured only within 20% with 3000 fb−1. These results show the

consistency of the extracted accuracies in the production cross sections and

branching ratios in the dimension–six operator framework with those obtained

by the experimental collaborations in their simulations [133, 134] assuming a

shift of the SM couplings.

Next we focus our attention to the expected TGC bounds which can be

derived from this analysis of the Higgs data. Eq. (2.20) allows us to translate
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Figure B.3: We present the expected 90%, 95%, 99%, and 3σ allowed regions
for the ∆κγ ⊗∆gZ1 plane from the analysis of the Higgs data from LHC at 14
TeV with integrated luminosities of 300 fb−1 (left panel) and 3000 fb−1 (right
panel).

the constraints on fW and fB coming from the Higgs measurements to bounds

on ∆κγ, ∆κZ and ∆gZ1 of which only two are independent. Fig. B.3 displays

the results of this exercise where we plot the 90%, 95%, 99%, and 3σ CL

allowed region in the plane ∆κγ ⊗∆gZ1 after marginalizing over the other two

parameters relevant to the Higgs analysis, i.e. fg and fWW . Notice that the

two almost degenerate local minima in fB lead to the appearance of two narrow

disconnected regions due to the high precision achieved with 3000 fb−1.

Clearly the analysis of the Higgs data alone can improve the present best

bounds on TGCs which are still given by the LEP results. Further improve-

ment will come from combining the Higgs results with those from direct studies

of the TGCs which will be done once the results of the study of the capabilities

of the LHC14 runs to constraints the TGCs from diboson production in this

scenario are available.
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