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Abstract of the Dissertation

Optical Forces on Metastable Helium

by

Christopher Scott Corder

Doctor of Philosophy

in

Physics

Stony Brook University

2014

Optical forces using lasers allow precise control over the motion of atoms. The

bichromatic optical force (BF) is unique in its large magnitude and velocity range,

arising from the absorption and stimulated emission processes. These properties

were used to transversely collimate a beam of metastable helium (He∗) using the

23S− 23P transition. The collimation created a very bright beam of He∗, allowing

experiments of neutral atom lithography. The He∗ beam was used to pattern ma-

terial surfaces using a resist-based lithography technique, where the pattern was

determined by either mechanical or optical masks. The optical masks produced

features with a separation of half the wavelength of the light used. Patterning

was successfully demonstrated with both IR and UV optical masks. The etched

pattern resolution was ∼ 100 nm and limited by the material surface.

Further experiments were performed studying the ability of the bichromatic force

to cool. The finite velocity range of the BF allows estimation of a characteristic

cooling time which is independent of the excited state lifetime, only depending

on the atomic mass and optical transition energy. Past experiments, including
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the helium collimation used for neutral atom lithography, have demonstrated

that the BF can collimate and longitudinally slow atomic beams, but required

long interaction times that included many spontaneous emission (SE) events.

The effect of SE can be mitigated, and is predicted to not be necessary for BF

cooling. Since the BF cooling time is not related to the excited state lifetime,

a transition can be chosen such that the cooling time is shorter than the SE

cycle time, allowing direct laser cooling on atoms and molecules that do not

have cycling transitions. Experiments using the helium 23S−33P transition were

chosen because the BF cooling time (285 ns) is on the order of the average SE

cycle time (260 ns). Numerical simulations of the experimental system were run

predicting compression of the atomic velocity distribution. Our experimental

results demonstrate the stimulated nature of the force through many atomic

recoils from the light in less than one SE cycle time. A large range of the atomic

velocity distribution is accelerated and accumulates at the velocity limit of the

force. This accumulation results in an increase in the velocity space density,

demonstrating cooling.
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Chapter 1

Introduction

Optical forces in the field of atomic physics have become well-established techniques in

the decades since the discovery of laser cooling [1]. The use of lasers to manipulate the

motion and cool atomic samples has become a standard technique in most atomic physics

laboratories. This control has been exploited by many experiments to utilize atoms for pre-

cision measurements, such as gravimeters in the form of atom interferometers [2]. Optical

cooling techniques allow the trapping of atoms, which when done in high finesse optical

cavities are able to probe quantum electrodynamical effects of the interaction between the

atom and light. These implementations are leading research in the field of quantum infor-

mation [3]. Particularly exciting has been the creation of ultracold samples of dilute gas

reaching Bose-Einstein condensation and other more exotic phases of matter [4–6]. These

experiments allow a unique experimentally-based method for exploring theoretical condensed

matter systems [7, 8].

Besides the experiments born out of these control and cooling techniques, there have

been exciting experiments in the mechanical effects of the atom-light interaction. Recent

years have seen the technique of laser cooling extended to mechanical objects of macroscopic

size, able to be cooled to their quantum ground state [9]. Another recent push has been

established in the direct laser cooling of molecular gases analogous to the atoms described

above [10]. These cold molecules would allow exciting probes of fundamental physics from

condensed matter [8] to extensions of the standard model [11]. Recent work has also explored

the cooling of more exotic atomic elements that were previously ignored because of their

seeming complexity, but now are wanted to exploit this very complexity. Each of these areas

of cooling has required developing new and different techniques and ideas on methods for

manipulating the optical interaction to give the desired result. This has led to the discovery of

1



Figure 1.1: The energy structure of a two level system showing the separation between the
ground, |g〉, and excited, |e〉, states. The laser energy h̄ω` may be detuned from resonance,
where the sign of the detuning is defined as δ = ω` − ω0.

methods including sideband, Sisyphus, dark state, and molecule Doppler cooling [10,12–15].

The field of optical forces arising from multifrequency fields is relatively unexplored. The

impact of additional optical fields provides new opportunities for molding the interaction to

give a desired result, which of course comes at the expense of increasing complexity. This

thesis begins to explore this field by looking at the opportunities that arise from the simplest

case, adding a second optical field.

1.1 Atom-Optical Interactions

The interaction of isolated atoms with optical fields can lead to many effects, but the

discussion here will be restricted to a particular set: optical dipole interactions. The dipole

interaction is the first term in the series of a multipole expansion of an atom in an applied

electric field. It is often the strongest optical effect on an atom. The electric field is assumed

to have no structure on the length scale of the atom, and the atom responds as a pure dipole

in a uniform field.

1.1.1 The Dipole Interaction

The two-level atom will serve as the basic system for the work in this thesis. The electron

energy level structure is shown in Fig. 1.1, and the bare atomic Hamiltonian can be written

as

H0 = h̄ωg|g〉〈g|+ h̄ωe|e〉〈e| (1.1)

2



An induced dipole moment ~d allows coupling between the two levels through an interaction

with an applied electric field ~E(t). The interaction Hamiltonian is then

HI = ~d · ~E(t) = h̄Ω(t)|g〉〈e|+ h̄Ω∗(t)|e〉〈g| (1.2)

written in terms of the Rabi frequency defined as Ω(t) = − ~d· ~E(t)
h̄

. The definite parity of the

electronic spatial wavefunctions ψi(r) and the odd parity of the dipole operator ~r guarantee

no single state dipole moment as
∫
ψ∗i (r)rψi(r)dr = 0. However, two distinct electronic

states can have a non-zero dipole moment ~d = −e〈e|~r|g〉, where the −e outside the bra/ket

is the charge of the electron. The value of ~d for a particular atom can be evaluated by

integrating over its spatial wavefunctions for |g〉 and |e〉.
We can begin by simply noting the dynamics of the original Hamiltonian H0 by setting

Ω(t) = 0. Then the Schrödinger equation for an arbitrary state |ψ〉 = cg(t)|g〉+ ce(t)|e〉 is

ih̄
d

dt
|ψ〉 = H0|ψ〉 (1.3)

and simplifies to a set of differential equations.

ċg(t) = −iωgcg(t) (1.4a)

ċe(t) = −iωece(t) (1.4b)

The solutions are static state populations that accumulate phase proportional to their energy.

This leads to a prudent choice for a complete set of basis states for the full Hamiltonian

H = H0 +HI .

|ψ〉 = cg(t)e
−iωgt|g〉+ ce(t)e

−iωet|e〉 (1.5)

Plugging |ψ〉 into the combined Hamiltonian and some algebra leaves a set of differential

equations:

ċg(t) = −iΩ(t)e−iω0tce(t) (1.6a)

ċe(t) = −iΩ∗(t)eiω0tcg(t) (1.6b)

where ω0 = ωe−ωg. It is important to remember that Ω(t) will contain any time dependence

of the applied electric field.

A laser field can be written in terms of its optical frequency ω` as ~E(t) = E ε̂ cos(ω`t)

where ε̂ is the polarization vector and E is a function that can depend on space and timescales

much slower than ω−1
` . Plugging this expression into Ω(t) separates the optical frequency

3



oscillation from the slower Rabi frequency time dependence

Ω(t) = −
(
dE
h̄
|~d| · ε̂

)
cos(ω`t) = Ω0 cos(ω`t) (1.7)

This leads to a set of differential equations which, in general, cannot be solved analytically.

ċg(t) = −iΩ0

2
(e−iω`t + eiω`t)e−iω0tce(t) (1.8a)

ċe(t) = −iΩ
∗
0

2
(e−iω`t + eiω`t)eiω0tcg(t) (1.8b)

By examining these equations we can see that changes in state populations vary on two dis-

tinct time scales; fast e±i(ω`+ω0)t and slow e±i(ω`−ω0)t. The rotating wave approximation [16]

drops the fast anti-resonant timescale oscillations, ∼ 1015 Hz for optical transitions. The

anti-resonant term is considered to oscillate too quickly compared with relevant experimen-

tal timescales and is assumed to average to zero. Only the more slowly varying resonant

timescale of ω0 − ω` is considered, which for typical experiments is 1− 100 MHz.

1.1.2 Rabi Oscillations

After applying the rotating wave approximation Eq.’s 1.8 reduce to a deceptively simple

looking set of differential equations where the frequency detuning is defined as δ = ω` − ω0.

It is important to remember that Ω0 can still contain a non-trivial dependence on time and

space.

ċg(t) = − i
2

Ω0 ce(t)e
iδt (1.9a)

ċe(t) = − i
2

Ω0 cg(t)e
−iδt (1.9b)

It will be instructive to first solve the state amplitudes cg,e(t) for the simple case of a constant

laser field. This is most easily done by taking Eq. 1.9 to second order to decouple the set of

differential equations.

c̈g(t)− iδċg(t) +
|Ω0|2

4
cg(t) = 0 (1.10a)

c̈e(t) + iδċe(t) +
|Ω0|2

4
ce(t) = 0 (1.10b)

The resulting solutions, when squared to get the observable state populations, show that

an atom initially populating the ground state driven by on-resonance laser light oscillates

between the two states at the Rabi frequency. This is the process of absorption and stim-
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Figure 1.2: The excited state population is plotted vs time for a CW driving field at three
values of laser detuning. For zero detuning, complete population transfer occurs at a time
of Ω0t = π. The non-zero detunings reduce the amplitude of transferred population and
increase the rate of oscillation.

ulated emission. If the laser frequency is detuned from resonance the population in the ex-

cited state never reaches 100% and the oscillations occur at the generalized Rabi frequency

Ω′0 =
√
|Ω0|2 + δ2. The solutions are plotted for several values of δ in Fig. 1.2.

|cg(t)|2 = 1−
(

Ω0

Ω′0

)2

sin2 Ω′0t

2
(1.11a)

|ce(t)|2 =

(
Ω0

Ω′0

)2

sin2 Ω′0t

2
(1.11b)

1.1.3 The Light Shift

We can see from their oscillatory behavior that the atomic bare states in Fig. 1.2 are no

longer the eigenstates of the system. To find the eigenstates of the combined Hamiltonian
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Figure 1.3: The eigenstates are initially separated by h̄δ, and repel one another with in-
creasing laser intensity (I ∝ Ω2

0). This separation grows as the generalized Rabi frequency
Ω′0.

(Eq’s 1.1+1.2) we perform a coordinate transformation to a frame rotating at a rate δ.

c′g(t) = cg(t)e
−iδt/2 (1.12a)

c′e(t) = ce(t)e
iδt/2 (1.12b)

Following this transformation, the linear set of differential equations (Eq’s 1.9) can be written

in matrix form as (
ċ′g(t)

ċ′e(t)

)
= − i

2

(
δ Ω0

Ω∗0 −δ

)(
c′g(t)

c′e(t)

)
(1.13)

Diagonalizing the matrix gives the eigenenergies and eigenfunctions as

E± = ± h̄
2

√
|Ω0|2 + δ2 = ± h̄Ω′0

2
(1.14a)

|−〉 =
√

1/2(1 + δ/Ω′0)|g̃〉+
√

1− 1/2(1 + δ/Ω′0)|ẽ〉 (1.14b)

|+〉 =
√

1/2(1− δ/Ω′0)|g̃〉+
√

1− 1/2(1− δ/Ω′0)|ẽ〉 (1.14c)
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The tildes are included to remind us that these are the atomic states including the time de-

pendence of the rotating frame, but those phases have no effect on the population evolution.

The eigenenergies of the system are given by the generalized Rabi frequency as shown in

Fig. 1.3. At zero intensity (Ω0 = 0) the two states are separated by the detuning of the laser

and are exactly the bare atomic ground and excited states. As the intensity increases, the

two eigenstates separate and become a mixture of the original ground and excited states.

1.1.4 The Dressed Atom

The previous sections considered solutions to H = H0 +HI , where atomic states obtained

from H0 are influenced through an interaction with an external electric field. The energy

of these states is shifted due to varying amounts of interaction energy through HI . It can

be useful to study the system of dressed states that are formed by including the electric

field Hamiltonian (Hf ) in the system so that H = H0 + HI + Hf . The energy structure

of the atomic system (H0) has two levels separated by h̄ω0. This can be combined with

the energy contained in the optical field En = (n + 1
2
)h̄ω`, where n is the integer number

of photons. Since only classical light fields will be considered, the 1
2
h̄ω` zero point energy

will be omitted from this point onward. The combined state will be denoted by |i, N〉 with

i = g or e. The spectrum formed by these dressed states is shown in Fig. 1.4. The states

|g,N〉 and |e,N〉 are still separated by the atomic energy, however the combined effect of

losing one quantum of photon energy and gaining one quantum of atomic energy puts the

|e,N−1〉 state very near |g,N〉, as seen in Fig. 1.4. These two states are referred to as being

in a single manifold, and correspond to the atom removing one photon from the laser field

(absorption) and in the process transferring from its ground to excited state. The system

is now parameterized into two energy scales. The first comprises states within a manifold

differing by a single photon and separated in energy by h̄δ. The second is between different

manifolds separated by the much larger h̄ω`. The interaction Hamiltonian HI for this system

has no coupling terms between the different manifolds. Spontaneous emission (SE) is usually

the only coupling between these levels and can lead to effects such as the Mollow triplet [17],

but will be ignored here to study coherent effects.

Since each manifold has an identical structure the dressed state Hamiltonian can be

reduced to

H = h̄

(
0 Ω0/2

Ω∗0/2 δ

)
(1.15)

and diagonalized to find the new eigenstates of the combined system. These eigenstates (nec-

7



Figure 1.4: Level spectrum of the dressed states formed by including the laser energy with
the atomic states. The separation between ground and excited states associated with a
single photon change in the laser field is very much smaller than the original atomic state
separation δ � ω0 (not drawn to scale). The dressed state picture can be reduced to a single
manifold to study coherent effects since neighboring manifolds are not coupled by the laser.
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Figure 1.5: The eigenenergies of the dressed states |1〉 and |2〉 for a standing wave light field
with Ω0 = 2δ.

essarily time independent) consist of superpositions of the uncoupled states. The eigenener-

gies of the system are

En = h̄/2

(
δ ±

√
δ2 + Ω2

0

)
+ h̄nω` (1.16)

where n determines the manifold and the first term shows the structure within a manifold.

The energy gap between coupled states grows as the Rabi frequency is increased. This is the

same effect described as the light shift in Sec. 1.1.3. The eigenstate solutions [18], written

in terms of a mixing angle tan 2θ = −Ω0/δ for 0 ≤ θ < π,

|1〉 = sin θ|g, n〉+ cos θ|e, n− 1〉 (1.17a)

|2〉 = cos θ|g, n〉 − sin θ|e, n− 1〉 (1.17b)

show that with increasing Rabi frequency there is increased mixing of the bare atomic ground

and excited state. This maps back to the Rabi oscillations of Sec. 1.1.2. If the eigenenergies

are plotted as a function of position for a standing wave optical field, shown in Fig. 1.5, the

energy oscillates on the half wavelength scale. This will be important for the dipole force

discussed later in Sec. 2.2.
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Figure 1.6: The relevant energy levels for He∗ are shown on the left. The degenerate magnetic
structure of each S1 → PJ transition is shown on the right with the relative coupling strength
(∝ Ω) between mJ levels determined by the Clebsch-Gordon coefficients.

1.2 He∗ as a Two Level Atom

The atomic system used for all the experiments of this thesis is the metastable n = 2,

l = 0 triplet state of Helium, denoted as He∗. The beauty of the Helium atom is its simplicity.

With an atomic mass of four it contains no nuclear spin. There are only two electrons, which

at the lowest energy fill the 11S0 state. The next closest energy level, 2S, is ∼ 20 eV away,

an energy far too large to be of any use for optical experiments. Luckily, the two electron

system provides parallel sets of electronic states arising from the singlet/triplet systems

formed from the relative alignment of the two electron spins, where the spin wavefunction

is symmetric/antisymmetric on electron exchange [19]. The triplet set of states closely

mimic the singlet system except beginning at n = 2, since having two electrons in the same

n = 1 level with a triplet wavefunction would violate the Pauli principle. The triplet system

is uncoupled from the singlet system because the required spin flip forbids electric dipole

transitions. This means that for the triplet states of Helium, the 23S1 state is the lowest

10



Transition Energy ω0/2π λ γ/2π τ ωr/2π Is vr γ/k
(eV) (THz) (nm) (MHz) (ns) (kHz) (mW/mm2) (m/s) (m/s)

23S→ 23P 1.14 276.7 1083.3 1.63 97.9 42.5 1.7× 10−3 0.092 1.76
23S→ 33P 3.19 770.7 389.0 1.51 105.5 329.4 3.3× 10−2 0.256 0.58

Table 1.1: The relevant parameters for the optical transitions in He∗ taken or calculated
from values listed on the NIST Atomic Spectra Database [21].

energy state. In fact, it is the longest lived metastable state contained in the noble gas atoms

(τ = 2.2 hours) [20], being doubly forbidden to optical decay by spin and orbital angular

momentum quantum numbers.

If we now consider the system beginning with the metastable “ground” state (Fig. 1.6),

the nearest triplet energy levels are the set of 23PJ=2,1,0. These states are coupled to the

23S1 state through an electric dipole moment allowing an optical transition at the wave-

length 1083 nm, an experimentally-convenient value given its proximity to commonly used

telecommunication wavelengths. The next nearest optical transition is to the 33PJ=2,1,0 state.

The change in principal quantum number for the 23S→ 33P transition means it is larger in

energy than the previous one, and puts the wavelength in the UV near 389 nm. While these

transitions differ considerably in energy and coupling strength, they share a very common

structure. Each excited P state is split into three through the fine structure splitting. They

are labeled with the total angular momentum quantum number ~J = ~L + ~S with values 2, 1,

or 0. The fine structure splitting is large enough that when coupled by a laser each excited

state can be considered isolated. Since there is no nuclear spin, mJ sublevels in the absence

of any magnetic field are energy degenerate for a given J. However, they are important to

take into account as the polarization of the optical field will determine whether the transition

is between states of ∆mJ = 0 or ±1. This can lead to dark state formation [1] for transitions

to the levels with J 6= 2.

Typically the J = 2 excited state will be used. It provides a clear cycling transition if

optically pumped to the mJ = ±1 ground state and excited using the proper (σ±) polar-

ization. A second useful feature for an unpolarized atomic sample is that with π polarized

light there are no dark states and all three transitions have roughly the same strength (see

Fig. 1.6). Some important parameters for the two transitions are given in Table 1.1.
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Chapter 2

Optical Forces on Atoms

The interaction between atoms and optical beams induces dynamics between the different

electronic states through absorption and emission of the field quanta. The transfer from an

atomic state of lower energy to one of higher energy is possible through the absorption of

the energy difference from the applied field. In addition to its energy, the electromagnetic

radiation of the field also carries momentum. An absorbing/emitting atom must undergo

a momentum change so that the total momentum of the atom and field is conserved. This

momentum transfer in the absorption and emission processes gives rise to optical forces.

2.1 The Radiative Optical Force

When a single traveling-wave laser beam is applied to a two level atom, the atom can

absorb energy from the field and transfer to the excited electronic state. This absorption

extracts energy (E = h̄ω`) from the field, and therefore also a momentum given by ~p = h̄~k

where k = ω`
c

= 2π
λ

. This momentum transfer, shown in Fig 2.1(a), causes an atom initially

at rest to move at the recoil velocity (vr = h̄k
M

), where M is the mass of the atom. Assuming

the associated kinetic energy, written in terms of the recoil frequency (∆KE = h̄ωr = (h̄k)2

2M
),

is small compared to the linewidth of the excited atomic state (γ), the applied field will

continue to interact resonantly with the atom. The state will transfer to the ground state

and emit the energy and momentum back into the field through stimulated emission shown

in Fig 2.1(b). Because the field now increases in momentum, the atom returns to rest. From

these two processes alone we cannot obtain a useful force on the atom since on average there

is no net momentum transfer.

Fortunately, spontaneous emission (SE) gives us a way to break this cycle and create the
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Figure 2.1: The optical field can interact with the atom’s motion through the three processes
diagrammed here where the field is shown as the oscillating arrows. a) When an atom absorbs
energy from the field to transfer between states it must also absorb the momentum carried
by the field. b) If the field induces emission and energy is returned to the field the atom must
carry momentum in the opposite direction to conserve total momentum. c) In the absence
of an applied field an atom in an excited state will undergo SE to the ground state emitting
in a random angular distribution (indicated by multiple emissions above). Over the course
of many emissions the net momentum gained from this process averages to zero.
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radiative force. While the atom is in the excited state, it has a probability of spontaneously

decaying back to the ground state. This emission process is not associated with the applied

field and emits in a random angular distribution with symmetry about the atom, shown in

Fig. 2.1(c). While a single SE will impart momentum to the atom in a random direction

(opposite to the emitted field direction), over the course of many SE’s the net momentum

transfer will average to zero. Each SE is preceded by absorption from the applied field, and

this momentum transfer will accumulate. The magnitude of the radiative force is determined

by the momentum transferred by the applied field (h̄k) and the rate of the SE process. The

rate of SE is determined by the excited state lifetime (τ = 1/γ) and the time average

value of excited state population |ce(t)|
2
. Solving the two level system for the steady state

populations gives an expression for the radiative force [1]

~F = h̄~k
(
|ce(t)|

2
γ
)

=
h̄~kγ

2

(
s0

1 + s0 + (2δ/γ)2

)
(2.1)

where s0 is the saturation parameter defined in terms of the laser intensity (I) and saturation

intensity (Is = πhc
3λ3τ

) as

s0 =
I

Is
= 2

(
Ω0

γ

)2

(2.2)

The force is at a maximum when δ = 0 and s0 � 1. Under these conditions the excited state

population is maximized with an average value of 1/2, saturating the force at Frad = h̄kγ/2.

2.1.1 Optical Molasses

The magnitude of Frad is determined by the intensity and frequency of the optical field.

As the atom accelerates from the force and gains velocity, this velocity will in turn influence

the force through a Doppler shift of the laser frequency in the atomic frame. The detuning

in the denominator of Eq. 2.1 changes δ → δ+ kv, where kv is the Doppler shift induced by

atomic velocity v. Fig. 2.2(a) plots the radiative force as a function of this Doppler detuning

and shows there is a finite velocity range for the radiative force (±γ/k). All atoms within

this region are accelerated to a velocity where the magnitude of the force approaches zero.

This velocity dependence is exploited for the laser cooling process known as optical molasses.

In an optical molasses the laser frequency is purposefully set to be initially red detuned

(δ < 0) to the atomic resonance resulting in a force profile shown in Fig. 2.2(b), where

the atom requires a velocity traveling opposite to the laser direction to shift its frequency

into resonance. A second red detuned beam sent in the opposite direction has a similar
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Figure 2.2: The radiative force is plotted vs the Doppler detuning caused by the motion of
the atom for s0 = 1 and the laser (a) on resonance δ = 0 and (b) red detuned δ = −γ.
(c) The direction of the force is reversed for a red detuned laser traveling from the opposite
direction. (d) The combined forces from (b) and (c) create an optical molasses that is zero
only at v = 0.

force profile, Fig. 2.2(c), but with the force in the opposite direction and shifted to the

opposite side of v = 0. When these two laser beams are overlapped, the force profiles

sum and result in Fig 2.2(d). The name optical molasses fits because atoms experience a

force that always opposes their velocity. Within the velocity capture range (±γ/k), only

atoms at v = 0 experience no acceleration. Cooling occurs because an atomic velocity

distribution initially spread over ∆v ≈ 2γ/k reduces to a small range around v = 0. The

one-dimensional temperature can be expressed in terms of this velocity spread, where ∆v is

the rms velocity [1].

T =
M(∆v)2

kB
(2.3)

The optical molasses reduces the velocity spread ∆v resulting in a reduction in temperature.

2.2 The Dipole Optical Force

A second type of optical force on atoms occurs because of the induced light shift discussed

in Sec. 1.1.3. It was shown that the interaction energy of the eigenstates of the atom are

modified by the field. If we consider a standing wave applied to an atom, the Rabi frequency
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Figure 2.3: The optical dipole force of a standing wave with δ < 0. The electric field is
represented in faint red, and the force is plotted for three values of Rabi frequency. The
force vanishes at the peaks and nodes of the standing wave, but only the peaks have a stable
equilibrium. With δ > 0 the force profile inverts and the nodes become the stable equilibrium
points.

displays a spatial dependence.

Ω0(z) = Ωmax cos(kz) (2.4)

This causes the energy eigenstates of the atom to become spatially varying as shown in

Fig. 1.5. This spatial dependence of the potential energy landscape creates the dipole force

which we can quantify through the Ehrenfest theorem [1]

~Fdip = −∇H = −∇
√

Ω2
0(z) + δ2 (2.5)

It is interesting to note that this force does not saturate like the radiative force. This is

possible because the dipole force is mediated entirely by stimulated processes of the applied

field, and not by SE. The atom can accumulate momentum by absorbing from one direction

and emitting into the opposite direction, Fig 2.1(a) followed by Fig 2.1(b). However for

single frequency light the force is conservative, only allowing oscillations in the magnitude

of the kinetic energy, with no average force acting on the atom.

The radiative force discussed in the previous section will still occur, so the dipole force
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becomes most relevant at large detunings that are outside the range of the radiative force.

If we assume δ � Ω0, then the dipole force can be approximated as

~Fdip ≈ −
h̄

4δ
∇Ω2

0(z) = − h̄γ
2

8δIs
∇I(z) (2.6)

The magnitude of this force is directly proportional to the laser intensity and has a profile

given by the gradient of the spatial variation, shown in Fig. 2.3 for a standing wave pattern.

2.3 The Bichromatic Force

The previous sections explored the forces that arise from simple single frequency optical

fields. In general, the atomic response to an applied field can be very complicated if that field

has more structure than simple standing or traveling waves. Further, the range of parameters

of the applied field can include both strong dipole and radiative effects that interact together.

We will focus on the particular case of a bichromatic standing wave field. The bichromatic

field will be composed of two standing waves with detunings equally-spaced from atomic

resonance by an amount δ � γ (see Fig. 2.4). The two frequencies will be referred to as

red and blue in reference to their detuning from resonance (not the actual colors of the

fields). When the Rabi frequency and phases of these fields meet certain conditions they

produce the bichromatic force. The bichromatic force is unique in its very large magnitude

and velocity range and is not restricted by the radiative time limitations associated with SE.

In this section three views of the bichromatic force will be presented; the π pulse model, the

Bloch equations, and the dressed atom model.

2.3.1 The π Pulse Model

A qualitative description of the bichromatic force can be provided using the ‘π pulse’

model [22]. In this description we treat the four fields (two frequencies from two directions)

by combining fields that share propagation directions. After this we have two traveling

waves that are counterpropagating. Let us consider one of these traveling waves. The beam

contains two frequencies that are co-propagating. The two frequencies can be rewritten in

terms of a single amplitude-modulated carrier (beat pattern)

Er cos (krz − ωrt) + Eb cos (kbz − ωbt) = ETW cos (∆kz/2− δt) cos (kz − ω0t) (2.7)
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Figure 2.4: The bichromatic optical force uses two frequencies (ωr,b) equally detuned above
and below atomic resonance. The magnitude of the detuning is chosen to be much larger
than the linewidth of the excited atomic state (δ >> γ).

where ∆k = 2δ/c and Er = Eb = 1
2
ETW . Since these two frequencies are spaced equally from

resonance, the fast modulation carrier is exactly at the atomic resonance frequency ω0. The

slow amplitude modulation then varies with the magnitude of the detuning. The π pulse

model derives its name as the amplitude of the slow oscillation is chosen so that one beat

acts as a single π pulse. This occurs when the area of the pulse integrated over the beat

envelope is equal to π [16]
π/2δ∫

−π/2δ

ΩTW (t) dt = π (2.8)

and corresponds to each frequency having Ωr,b = π
4
δ. We can then easily picture the response

of the atoms to this single traveling wave. As the beat travels across the atom, the atom

transfers for example from the initial ground state to its excited state. We know this is

accompanied by a transfer of h̄k momentum. The next beat will transfer the atom back to

the ground state and remove h̄k momentum. Each beat acts as an individual π pulse able

to excite/deexcite and give/take momentum to the atom.

We now turn our attention to the traveling wave that is counterpropagating relative to

the first. We time the arrival of the π pulse beat from the opposite direction to coincide

with the end of the first π pulse that excites the atom. Then the opposite direction deexcites

and removes h̄k momentum, but now from the opposite direction. This results in a total

of 2h̄k momentum transferred to the atom over the course of two π pulses (one from each
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direction). This allows an estimation of the magnitude of the bichromatic force

~FB =
∆p

∆t
=

2h̄k

π/δ
=

2h̄kδ

π
(2.9)

Further, the system has returned to its initial state in terms of the internal atomic state

and optical fields. Only the momentum has been modified. This allows the entire process to

repeat itself as the following π pulse beats arrive, where the only changing parameter (in this

simplified model) is the momentum of the atom. This process continues until the cumulative

momentum change causes a large enough Doppler shift so that the atoms no longer regard

the beats as π pulses.

A simple implementation of the counterpropagating π pulse beats is to use a mirror to

retroreflect the bichromatic traveling wave (Eq. 2.7) after interacting with the atoms. Then

the relative pulse timing is determined by a phase accumulation of ∆kz, where z is the

distance between the atoms and the mirror. For a distance of ∆kz = π/2 (mod π) the π

pulses arrive from each direction equally separated in time. The direction of the force is

determined by the direction of the first π pulse to interact with the atom, and this will give

equal probability of a force in either direction as the atoms continuously enter the field. To

give the force a preferred direction, the timing can be modified by changing the phase so

that ∆kz 6= π/2 (mod π), so that it is more probable for one of the directions to occur first.

This timing offset will increase as ∆kz → 0 (mod π), and comes at the expense of increasing

overlap between the peak intensity regions of the π pulse beats. A good compromise borne

out of computational and experimental results is ∆kz = π/4 (mod π). With this offset it is

more likely (3:1), that the desired π pulse will occur first. While the π pulse model provides

a simplified picture of the bichromatic force, it ignores many important effects; decoherence

from SE, imperfection of the π pulses, and the overlap of the π pulses beats coming from

opposite directions.

2.3.2 The Bichromatic Optical Bloch Equations

A more quantitative, but less intuitive, description can be achieved by looking at the

atomic dynamics with the optical Bloch equations (OBE). The Bloch description has its

roots in the spin response in NMR [23, 24], but can be used to describe any quantum two

level system. Additionally, we can include some effects of SE. While not relevant for our

short interaction time cooling, it can influence the characteristics of the bichromatic force
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on longer timescales. We start with the density matrix for a two level system represented as

ρ =

(
|cg|2 cgc

∗
e

cec
∗
g |ce|2

)
=

(
ρgg ρge

ρeg ρee

)
(2.10)

and its time evolution is given by

ih̄ρ̇ = [H,ρ] (2.11)

The dipole interaction Hamiltonian in matrix form is

H = h̄

(
0 Ω

Ω∗ ω0

)
(2.12)

We will first transfer to a rotating frame given by the rotation matrix

R =

(
e−

i
2

(ω0t) 0

0 e
i
2

(ω0t)

)
(2.13)

so that the Hamiltonian in the rotating frame, following the rotating wave approximation,

becomes

H̃ = RHR−1 = h̄

(
0 Ω0

Ω∗0 ω0

)
(2.14)

and the density matrix becomes

ρ̃ = RρR−1 =

(
ρgg ρgee

−iω0t

ρege
iω0t ρee

)
=

(
ρ̃gg ρ̃ge

ρ̃eg ρ̃ee

)
(2.15)

After these substitutions and including the SE term, Eq. 2.11 becomes

ih̄Rρ̇R−1 = [H̃, ρ̃]−
(
dρ̃

dt

)
SE

=

ih̄

(
˙̃ρ−

(
0 −iω0ρ̃ge

iω0ρ̃eg 0

))
= H̃ρ̃− ρ̃H̃−

(
−γ γ/2

γ/2 γ

) (2.16)
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where the term
(
dρ̃
dt

)
SE

is the decoherence caused by SE [18]. Working through the algebra

leads to the follow set of differential equations.

˙̃ρgg = −i[Ω0ρ̃eg − Ω∗0ρ̃ge] + γρ̃ee (2.17a)

˙̃ρge = −iΩ0[ρ̃ee − ρ̃gg] + γρ̃ge/2 (2.17b)

˙̃ρeg = iΩ∗0[ρ̃ee − ρ̃gg] + γρ̃eg/2 (2.17c)

˙̃ρee = i[Ω0ρ̃eg − Ω∗0ρ̃ge]− γρ̃ee (2.17d)

The Bloch representation reduces these equations to a spin vector on the Bloch sphere. The

components of the Bloch vector are defined in terms of the density matrix as

u1 = ρ̃ge + ρ̃eg (2.18a)

u2 = i(ρ̃eg − ρ̃ge) (2.18b)

u3 = ρ̃ee − ρ̃gg (2.18c)

and their evolution can be written as

u̇1 = −γ
2

u1 + 2Im[Ω0] u3 (2.19a)

u̇2 = −γ
2

u2 − 2Re[Ω0] u3 (2.19b)

u̇3 = −2Im[Ω0] u1 + 2Re[Ω0] u2 − γ(u3 + 1) (2.19c)

To determine Ω0 the field can be written as the sum of the two bichromatic traveling waves

in Eq. 2.7 as

E(z, t) = ETW cos (ω0t− kz) cos (δt−∆kz/2)− ETW cos (ω0t+ kz) cos (δt+ ∆kz/2)

= eiω0tETW (e−ikz cos (δt−∆kz/2)− eikz cos (δt+ ∆kz/2)) + c.c

(2.20)

where c.c is the complex conjugate of the first term. Then the real and imaginary parts of

the Rabi frequency are

Re[Ω0] = 2ΩTW cos (kz) sin (δt) sin (∆kz/2) (2.21a)

Im[Ω0] = −2ΩTW sin (kz) cos (δt) cos (∆kz/2) (2.21b)
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The OBE’s can be solved to find the dynamics of the internal state populations and their

coherences. To determine the force that results, we make use of the Ehrenfest theorem

F =−∇H = Tr(−ρ̃∇H̃) = −h̄(u1∇Re[Ω0] + u2∇Im[Ω0])

=2h̄kΩTW [u1 sin (kz) sin (δt) sin (∆kz/2) + u2 cos (kz) cos (δt) cos (∆kz/2)]
(2.22)

The optical Bloch equations are able to include the effects of SE and atomic velocity, but

no longer result in analytic solutions. These equations will be used in the next chapter to

numerically simulate the dynamics.

2.3.3 The Doubly Dressed Atom

The dressed atom approach of Sec. 1.1.4 allows another intuitive model of the bichro-

matic force, which was originally described in Ref. [25] and expanded in Ref. [26]. Here the

bichromatic field will be represented slightly differently. Instead of combining the field in

groups traveling in the same direction (Eq. 2.7), we will consider each frequency individually.

The combination of each red/blue traveling wave from opposite directions is equivalent to a

red/blue standing wave.

Er cos (krz − ωrt) + Er cos (−krz − ωrt) = 2Er cos (kz −∆kz/2) cos (ωrt) (2.23a)

Eb cos (kbz − ωbt) + Eb cos (−kbz − ωbt) = 2Eb cos (kz + ∆kz/2) cos (ωbt) (2.23b)

The single frequency dressed atom was introduced in Sec. 1.1.4. To describe the bichromatic

force the dressed atom must be expanded to include the two laser fields at energies h̄ωr,b. A

particular difference of the doubly dressed atom is that each manifold contains an infinite

set of levels, all equally spaced at h̄δ, see Fig. 2.5. Each state is connected to the adjacent

states through either the red or the blue detuned field. These states are the basis states

for our dressed state Hamiltonian, and the coupling between adjacent states is given by the
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Figure 2.5: The bichromatic dressed states are constructed by combining the atomic states
with the energy states of the optical fields. The result is an infinite set of dressed states
each separated by h̄δ and coupled to its neighboring states through one of the two optical
frequencies.
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Rabi frequency of the field.

H =



. . .

Ωr(z) +4δ Ωb(z) 0 0 0 0 0 0 0 0

0 Ωb(z) +3δ Ωr(z) 0 0 0 0 0 0 0

0 0 Ωr(z) +2δ Ωb(z) 0 0 0 0 0 0

0 0 0 Ωb(z) +1δ Ωr(z) 0 0 0 0 0

0 0 0 0 Ωr(z) 0 Ω(z)r 0 0 0 0

0 0 0 0 0 Ωb(z) −1δ Ωr(z) 0 0 0

0 0 0 0 0 0 Ωr(z) −2δ Ωb(z) 0 0

0 0 0 0 0 0 0 Ωb(z) −3δ Ωr(z) 0

0 0 0 0 0 0 0 0 Ωr(z) −4δ Ωb(z)
. . .


(2.24)

Since the fields are independent standing waves at the two frequencies we can write these

couplings as a spatially dependent function.

Ωr,b(z) =
|d|Er,b
h̄

cos (kz ±∆kz/2) (2.25)

The off-diagonal coupling terms in Eq. 2.24 modify the eigenenergies of the system

through light shifts. Diagonalization of the Hamiltonian matrix gives the spatially depen-

dent eigenstates. When Ωr(z) = Ωb(z) the light shift between all the states are equal from

above and below, resulting in no overall change. This corresponds to timing in the π pulse

model that would have perfectly overlapped left and right traveling π pulses. We can adjust

the phase between the standing waves to match the π pulse model with appropriate beat

timings.

In reality, the standing waves have all possible phases on the length scale of cπ
δ
∼ meters,

and since the experiment is on the scale of µm-cm we can consider a single particular phase

set by the ∆kz terms in Eq. 2.25. If the standing waves are given a phase so that ∆kz 6=
0 (modπ) then as the Rabi frequency increases, the eigenstates experience light shifts that

depend on the relative intensity of each standing wave at a particular location. For the phase

that corresponds to the π pulse picture that resulted in the bichromatic force described in

Sec. 2.3.1 (∆kz = π/4), as the Rabi frequency is increased the dressed states experience

light shifts, avoided crossings, and eventually exact crossings (see Fig 2.6). The avoided

crossings occur when the light shift of one field causes two states to approach, and their
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(a) (b)

(c) (d)

Figure 2.6: The eigenenergies of the bichromatic standing wave with ∆kz = π
4

for standing

wave intensity (a) Ωr,b = 0, (b) Ωr,b = 1
2

√
3
2
δ, (c) Ωr,b =

√
3
2
δ, and (d) Ωr,b = 5

4

√
3
2
δ. The

standing wave pattern is shown below each energy diagram. At zero intensity, the dressed
states are separated in energy by h̄δ and then experience light shifts as the intensity increases.

At Ωr,b =
√

3
2
δ the energy levels have exact crossings that facilitate the bichromatic force,

changing by an energy of 2h̄δ every λ/2 in distance.
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Figure 2.7: The eigenenergies for ∆kz = π have equal probability over the span of λ/2 to
accelerate to the left or right when the atoms enter the optical field, and the force acts as
an atomic beamsplitter.

crossing is forbidden because they are coupled by the other field. The exact crossings are

allowed because they occur at positions where one of the standing waves has a node and

therefore the coupling between alternating states is zero.

The solutions in Fig 2.6 to the dressed atom in a bichromatic field leads to spatially

varying energy eigenstates initially similar to the eigenstates found for a single frequency

standing wave in Sec. 1.1.3. The oscillating potential energy will cause an atom to accelerate

and slow down as it travels along the standing wave. The kinetic energy will change contrary

to the dressed state energy (so total energy is conserved), and because the potential is

periodic, when it is averaged over a few wavelengths there is no net effect. At Ωr = Ωb =
√

3
2
δ

the exact crossings first occur and a very interesting structure emerges. Now an atom

traveling along the bichromatic standing wave will follow the eigenenergy through each exact

crossing so that over the course of each half wavelength the energy of the atom+field has

increased by 2h̄δ. Since the energy of the atom+field is increasing the kinetic energy must

be decreasing. This monotonically increasing path will continue to slow the atom through a

force with magnitude given by

F = −∆E

∆z
= −2h̄kδ

λ/2
= −2h̄kδ

π
(2.26)

which matches the result found in Sec 2.3.1 with the π pulse model.

The direction of the force is determined by the energy state that the atom is traveling

along. If we start with zero bichromatic intensity (the atom starting outside the standing
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wave), the atom is in the pure atomic ground state. When the atom enters the light field

it will start on a level that corresponds to the initial energy of atom and light fields. In a

given energy range of h̄δ there is an asymmetry in the probability of landing on a downward

vs upward slope as seen in Fig 2.6(c). For the case of ∆kz = π/4 the ratio is 1:3, and this

can change with different standing wave phase values. For a phase value of ∆kz = π/2 the

splitting is equal 1:1 as shown in Fig 2.7.

The velocity range of the bichromatic force is limited by Landau-Zener (LZ) transitions

that occur between levels at avoided crossings. As the atom’s velocity is increased, the

amount of time spent traveling through each avoided crossing decreases. The ability of the

atom to resolve the energy splitting is inversely proportional to this time (∆E∆t ∼ h̄). The

probability for these non-adiabatic crossings to occur is [26]

PLZ = e−α
δ/k
v = e−α

vB
v (2.27)

where α is a numerical factor of order 1 that depends on the choice of phase. We expect the

force to break down at the velocity limit ∆vB, where δ/4k < ∆vB < δ/2k, since the atom

will jump from state to state and is unable to continue along a path of increasing/decreasing

energy.
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Chapter 3

Numerical Simulations

The optical forces described in the previous sections allow experimental control over the

motion of individual atoms. This control will be demonstrated in later chapters for two

experiments. The first is neutral atom lithography with a bright He∗ beam. In neutral

atom lithography an optical beam is used to coherently control the position of individual

atoms to pattern a substrate in a lithographic process. The second experiment uses the

bichromatic force to compress the velocity distribution of He∗ atoms on very short time

scales (≈ τ = 1/γ). Both of these processes required numerical simulations of experimental

conditions to assist in understanding the experimental outcomes.

3.1 Lithographic Optical Mask Simulations

Numerical simulations of atomic trajectories were created to investigate the effects of

various experimental parameters on the neutral atom lithography process. This Fortran

code (Appendix A) is a Monte Carlo simulation of atomic trajectories through an optical

mask. The simulation begins with a statistical collection of atoms with properties that reflect

the He∗ beam produced experimentally. The free atomic motion is modified by the potential

created by the standing wave optical mask through the dipole force (Eq. 2.5). The spatial

gradient of the dipole potential results in forces on the atoms, and the trajectories to the

final atomic position on the lithographic sample surface are recorded. After the motion of

the entire statistical collection of atoms is integrated, a histogram of the final positions on

the sample surface is made to look at the effectiveness of the optical mask in forming a

pattern. Relevant to our experiment are effects related to the velocity distributions of our

He∗ beam and the strength of the optical mask potential.
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Figure 3.1: The trajectories of He∗ atoms (shown as blue lines) traveling downward through
a standing wave optical mask (not shown) with λ = 1.08µm forming a pattern along the
horizontal axis at Z = 0. At the correct optical intensity, determined by Pf , the optical
mask acts as an array of lenses for the atoms, spaced every half wavelength, focusing onto
the sample surface.

The ability to pattern the He∗ beam derives from the dipole interaction. If a standing

wave is formed, then the beam acts as a continuous set of micro lenses spaced at λ/2. These

lenses will focus atoms as they travel through the laser field as shown in Fig. 3.1, where

atoms are traveling down from high z values to the sample surface at z = 0 µm. Previous

studies determined that for a Gaussian laser beam, the optimal power for an optical mask

to produce the smallest features occurs with a dipole force that focuses an incoming atomic

beam onto the center of the laser beam [27]. This occurs at a power independent of beam

size and given by

Pf = 5.37
π(EKE)Isδ

h̄γ2k2
(3.1)

where EKE is the kinetic energy of the atom [27]. This is used as the starting point for

the experimental simulation, and relevant He∗ beam parameters are included to study their

effects on the focusing process.

The geometry of the experimental simulation is shown in Fig 3.2. A gold sample is in the

x-y plane and the optical mask standing wave is formed along the y-axis over the gold with its

beam center at the sample surface. The optical mask is characterized by three parameters;

wavelength (λ), Gaussian waist (w0), and optical power. The power is defined relative to

Pf from Eq. 3.1. The He∗ beam travels along z toward the sample surface with each atom

beginning a distance of 3w0 from the sample surface. The classical equations of motion are

given by free evolution from initial He∗ positions and velocities under the influence of the
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Figure 3.2: The geometry used for the lithography simulation. The He*, represented in
blue, travel toward the gold lithography sample inside the vacuum chamber. A laser beam
travels parallel to the sample surface and is retro-reflected from a high quality mirror placed
perpendicular to the sample. The resulting standing wave forms the optical mask (shown in
red) used to pattern the He* beam.

dipole force of the optical mask and integrated to the sample surface. The initial conditions

of the He∗ atoms are randomly populated from probability distributions chosen to reflect

the experimental conditions. The initial positions in the x-y plane are chosen from random

over a 4µm× 4µm region. The He∗ beam has a distribution of velocities in the longitudinal

propagation direction given by a Maxwellian profile centered at 1125 m/s with width ∼ 400

m/s. A particularly worrisome experimental reality is the transverse velocity spread of the

atomic beam, which produces a divergence entering the optical mask ‘lens’, smearing the

location of the focus. The initial velocities in the x and y directions are determined by

Gaussian distributions with variable widths ∆vt.

The final positions of each He∗ atom on the sample surface are plotted in Fig. 3.3 for a set

of laser powers and transverse velocity distributions. Above each scatter plot is a histogram

that integrates over the x axis and bins the y axis into 10 nm bins. It is immediately obvious

that the transverse velocity distribution has a detrimental effect on the focusing ability. It

is true that an optical mask power of Pf gives the narrowest features as reported in [27], but

only for ∆vt = 0. It was determined that the power should be slightly increased to improve

the He∗ localization at the sample surface to compensate transverse velocity spread. These

results also indicate that the experimental transverse velocity spread should be reduced as

much as possible, and led to the implementation of an extra optical molasses stage in our
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Figure 3.3: Monte-Carlo simulation of atom patterning with an IR optical mask. Atoms
initially randomly distributed over a 4µm×4µm area are patterned after they travel through
the IR optical mask. The location where each atom hits the sample surface is shown with
a blue dot. Above each scatter plot the distribution of atoms is shown summed over the
vertical dimensions and horizontally binned into 10 nm bins. Any transverse velocity spread
in the He∗ has a detrimental effect on the pattern formation that can be compensated with
increased optical power at the expense of feature size.
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Figure 3.4: Monte-Carlo simulation of atom patterning with an UV optical mask. The
UV optical mask (λ = 389 nm) is more sensitive to the He∗ transverse velocity spread
(∆vt = 1 m/s) because of the smaller feature spacing. The plots above show the final atomic
distribution for (a) Pf , (b) 4Pf , (c) 8Pf , and (d) 16Pf . The results show that a higher optical
power is required for the UV than the IR to compensate for the transverse velocities.

He∗ collimation to reduce the experimental transverse velocity spread to ∆vt ∼ 1 m/s.

Following the successful experimental patterning using the IR (λ = 1083) nm optical

mask, the experiment was modified to use the UV transition (λ = 389 nm) to create a

pattern with a smaller pitch (194 nm). The reduced distance between each optical mask

‘lens’ could be more sensitive to the transverse velocity distribution, so the simulation was

run for λ = 389 nm and ∆vt = 1 m/s. The results are shown in Fig. 3.4 and indicate an

increased sensitivity to the transverse spread that should also be compensated by higher

optical power.

3.2 The Bichromatic Optical Bloch Equations

The π pulse model and dressed atom model provide intuitive pictures of the bichromatic

force. They are also able to provide estimates of the force magnitude and velocity limits, but
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to look at the detailed dependence of the bichromatic force on the variation of parameters

the optical Bloch equations (OBE) must be solved. There are no analytic solutions to the

OBE derived in Sec. 2.3.2 for the bichromatic optical fields, so the equations must be solved

numerically which is possible with modest computing power.

3.2.1 Numerical Solutions of the OBE’s for the Bichromatic Force

The original bichromatic force Fortran code was developed in Heidelberg by the authors of

[25] and subsequently modified in Ref. [28]. It has been used to create force maps as a function

of velocity (v), Rabi frequency (Ω0), and phase (∆kz). It required only minor modifications

to solve for the He∗ UV transition. The simulation uses a constant velocity approximation,

keeping the velocity fixed and using z = vt. The Bloch equations are integrated until they

reach steady state. Once they reach steady state Eq. 2.22 is used to calculate the magnitude

of the force each time step. An effective force is found by averaging these values over time. All

the results shown in this section are in good agreement with previous calculations [22,28–30].

The calculated force vs velocity depends on the bichromatic Rabi frequency as shown in

Fig. 3.5. We know from the other bichromatic force models that the force magnitude and

velocity range scale with δ, so the plots are scaled where the Rabi frequency is given by Ω0/δ,

the velocity v/vB with vB = δ/k, and F/FB with FB = h̄kδ/π. The force extends through a

velocity range of ±vB/4 to ±vB/2 depending on the choice of Ω0. The lineouts of the force at

particular values of Ω0 show that the magnitude is strongest near the Ω0 =
√

3
2
δ, the value

predicted by the dressed atom picture. Here the force is strongest, but the velocity range is

narrow at ±vB/4. The force extends over the widest velocity range at Ω0 ∼ 1.15 δ at the

cost of reduced magnitude. The force is more sensitive to Ω0 in this region since it attempts

to bridge the small region of overlap between the features around v = 0 and v = ±vB/2.

We know from the π pulse model in Sec. 2.3.1 that the relative phase between the fields

can be related to the π pulse timing, so that we should expect that this determines the

directionality of the force. Fig. 3.6 shows the force reversal when the phase changes by π/2.

The sharp fall off of the force with changes in phase is in part due to the dependence of the

optimal Rabi frequency with phase. It was shown in Ref. [26] that the value of Ω0 required

for the dressed states to have exact crossings changes with phase.

If we look at the force vs velocity for Ω0 = 1.24δ and ∆kz = π/4 (Fig. 3.5), the profile

has a top hat type shape. All atoms within the velocity range of the force will be accelerated

to positive velocities until the force vanishes. This will cause an accumulation of atoms near

vB/4.
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Figure 3.5: Top: Magnitude of the bichromatic force as a function of velocity and Rabi
frequency for δ = 15.1γ and ∆φ = π/4. The white regions correspond to larger magnitude
and black signifies no force. Bottom: Three lineouts taken from the plot above of the force
vs velocity at particular values of Rabi frequency (Ω0 = 1.04 δ, Ω0 = 1.15 δ, Ω0 = 1.24 δ).
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Figure 3.6: The magnitude of the bichromatic force is shown as a function of velocity and
standing wave phase. The white regions indicate a strong force in the positive z direction,
while the black regions indicate a strong force in the negative z direction.

3.2.2 Simulating Atomic Dynamics in a Bichromatic Field

The previous version of the bichromatic force numerical simulation calculates the atomic

response and averages the force in time after the Bloch equations reach steady state. This

will not reflect the experiment of a short interaction time bichromatic force used to look

for cooling without SE. The steady state was previously important because the transient

response is strongly dependent on initial conditions, which for previous experiments were not

important because of the long interaction times. The code was modified to more carefully

take account of these parameters, and is attached in Appendix B.

The atomic motion through the standing wave, which is important in the dressed state

picture, means the constant velocity approximation is no longer valid. The acceleration felt

by the atom depends on the value of the Bloch vector components and the atom’s position

in the bichromatic field. This acceleration will influence the atom’s trajectory through the

field, and the evolution of the Bloch vector changes depending on the path taken. In this

way the history of the atom in the field is important to accurately determine its response.
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Figure 3.7: Each plot shows atomic velocity trajectories in time after entering the bichromatic
field. The trajectories are shown for equally-spaced initial velocities between ±1.25vB. The

response is shown or different values of φ = ∆kz with Ω0 =
√

3
2
δ kept constant. For φ = π

4

(mod π) the bichromatic force compresses the central velocity distribution showing cooling.
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Figure 3.8: Each plot shows the atomic velocity trajectories for the initial transient time in
the bichromatic field with the same parameters as Fig. 3.7. The accumulation of atoms is
less pronounced on this time scale, but still exists.
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The complete set of differential equations for the OBE (Eq.’s 2.19) and atomic motion are

u̇1 = −γ/2 u1 − 4Ω0 sin (φ/4) sin (kz) sin (δt) u3 (3.2a)

u̇2 = −γ/2 u2 − 4Ω0 cos (φ/4) cos (kz) cos (δt) u3 (3.2b)

u̇3 = 4Ω0[sin (φ/4) sin (kz) sin (δt) u1 + cos (φ/4) cos (kz) cos (δt) u2]− (γ − 1) u3 (3.2c)

ż = v (3.2d)

v̇ =
FB
M

= −2h̄kΩ0

M
[cos (φ/4) sin (kz) cos (δt) u1 + sin (φ/4) cos (kz) sin (δt) u2] (3.2e)

Integrating the atomic dynamics in the bichromatic field gives trajectories for each of

the five time dependent variables in Eq. 3.2. The velocity trajectories are the most informa-

tive as they will show changes induced by the bichromatic force, and we can also look for

accumulations of atoms at a particular velocity, showing cooling.

The atoms begin initially in their ground state before entering the field so that u1(0) =

u2(0) = 0 and u3(0) = −1. Fig. 3.7 shows a set of velocity trajectories for equally-spaced

starting velocity values as a function of interaction time and different phase values for Ω0 =√
3
2
δ. We saw in the previous section (Fig. 3.6) that the phase determines the direction of

the force and repeats every change of π. The same behavior is demonstrated here. The

bichromatic force accelerates all atoms in its velocity limits, and this acceleration causes the

trajectories to either slope upward or downward depending on the direction of the force. The

acceleration stops when the atoms reach a region of velocity where the force goes to zero,

and the atomic trajectories accumulate at a velocity that corresponds to the edge of the force

profile. At phases of ∆kz = ±π/2 the bichromatic beam acts as an atomic beamsplitter.

This can be understood from the π pulse model as having equally-spaced beats in time. In

this case, there is no method to institute a preferential direction since the first π pulse seen

will be determined by the timing of the atom entering the light field.

The trajectories shown in Fig. 3.7 have long interaction times, and the dynamics can

be largely described by what was known from the steady state force calculations. However

the dynamics on short time scales, shown in Fig. 3.8, are less intuitive. We can see that

the accumulations are less pronounced, but still exist. More interesting is that while we

should expect identical trajectories for atoms at phases separated by π, the results show

the trajectories are different. This led to the understanding that in this transient regime all

initial conditions are relevant, including starting position and time.

The starting position is relevant over the wavelength scale as shown in Fig. 3.9. Each of

these initial positions causes the trajectories to take different paths on the short time scales,
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Figure 3.9: The velocity trajectories for Ω0 =
√

3
2
δ and ∆kz = 3π/4 change for different

values of starting position (z0). On long time scales (not shown) the trajectories for different
starting positions converge to the result shown in Fig. 3.7. The trajectories are identical for
a relative change of ∆z0 = λ/2.
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Figure 3.10: The velocity trajectories for Ω0 =
√

3
2
δ and ∆kz = 3π/4 change for different

values of starting time (t0). On long time scales (not shown) the trajectories for different
starting times converge to the result shown in Fig. 3.7. The trajectories are identical for a
relative change of ∆t0 = π/δ.
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but converge on longer time scales and repeat every λ/2. We can understand this response

from the dressed atom model of Sec. 1.1.4 noting the dressed state structure over a distance

of λ/2. In Fig. 2.6 over a region of λ/2 the path of the dressed state has a slope in one

direction over 3/4 of the region, while for 1/4 of the region it is sloped in the other direction.

This is reflected in Fig. 3.9 where three of the four initial positions immediately cause the

trajectories to accelerate to negative velocities.

The starting time has a similar effect on the trajectories shown in Fig. 3.10, repeating

every π/δ. This is best understood from the π pulse model. Changing the initial time

corresponds to changing which π pulse beat direction is seen first. Because they are timed

to be asymmetric to favor a particular direction, we expect that 3/4 of the time the correct

π pulse is seen first, while 1/4 of the time the wrong π pulse is first. From these results we

were able to determine that the differences in the trajectories for phases separated by π in

Fig. 3.8 are actually caused by a shift in the starting time based on how the phase is defined

in the simulation program.

The initial position and time are not controlled experimentally since the He∗ beam width

spans many wavelengths and He∗ atoms are continuously entering the optical interaction

region. The simulation can be run for all combinations of v0, t0, and z0, but the number of

atomic trajectories that need to be calculated can easily become computationally unreason-

able when trying to account for all these parameters. This is because all permutations of

initial conditions are required to properly account for all experimental possibilities. A few

numerical simulations were run where atomic trajectories were calculated for each initial ve-

locity multiple times with different starting positions (15 equally spaced over λ) and starting

times (15 equally spaced over 2π/δ) and all combinations of the two. With so many tra-

jectories it became necessary to bin and histogram the finally velocity distribution after the

interaction, shown in Fig. 3.11. At this point there are so many initial parameters that very

little understanding of the detailed dynamics can be gained, but the numerical simulations

still indicate that cooling should occur on timescales of a few hundred nanoseconds.
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Figure 3.11: The trajectory for each initial velocity was calculated for all permutations of 15
initial positions (z0 = 0↔ λ) and 15 initial times (t0 = 0↔ π/δ). The final set of velocities
after an interaction time Tint are histogrammed into bins 0.0375vB wide.
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Chapter 4

Experimental Apparatus

4.1 Vacuum System

The vacuum chamber used for these experiments is largely inherited and is also well

described in [31–33]. The chamber has three main segments shown in Fig. 4.1; the He∗

source, interaction region, and lithography chamber. It is predominately constructed with

Conflat R© vacuum flanges, but there are some o-ring seals. The He∗ source region is nearly

isolated from the rest of the vacuum chamber except for a small exit hole. The entire system

is kept under vacuum with two Pfeiffer TPH-330 turbomolecular pumps (turbos) attached

to the source and interaction region. The exhaust of each turbo is pumped by a dedicated

mechanical pump. The turbo pump on the source region is pumped with a Pfeiffer Duo Seal

110 direct drive pump, while the interaction region turbo is pumped with a Welch 1376.

These pumps are able to keep the entire vacuum system in the 10−7 Torr pressure range.

This pressure is limited by a combination of leaking from o-ring seals in the He∗ source and

doors to the lithography chamber, and outgassing from certain parts not designed for high

vacuum.

The interaction region contains four windows directly following the He∗ source exit al-

lowing two dimensional optical access transverse to the He∗ beam direction. These windows

are antireflection (AR) coated for the IR and UV wavelengths. Downstream, just past the

windows are a set of parallel metal plates kept at 1000 volts relative to ground to use electric

fields to sweep any charged particles out of the He∗ beam and into the metal walls of the

vacuum chamber. About 25 cm downstream from the exit of the He∗ source are another two

vacuum windows allowing access for additional laser beams, or a line of sight to image the

front microchannel plate with phosphor screen detector (MCP/PS) that can be lowered from
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Figure 4.1: The He∗ beam apparatus is a stainless steel chamber pumped by two turbomolec-
ular pumps. The vacuum system has three main segments; the He∗ source, the interaction
region, and the lithography chamber. Adapted from Fig. 3.1 in [31].

above into the He∗ beam path. After this second set of windows and before the lithography

chamber there are two mechanical feedthroughs that can be used to position the front stain-

less steel detector (SSD) into the He∗ beam path. The interaction chamber is then connected

to the lithography chamber with a gate valve.

The lithography chamber also has two windows for optical access. Initially both windows

were on hinged doors with o-ring seals, allowing easy access when the lithography region is

brought up to atmospheric pressure. One of these windows eventually had to be replaced

with a standard uncoated Conflat R© window because the AR coating for the IR wavelength on

the hinged doors caused very large attenuation of the UV laser beam. Inside the lithography

chamber attached to the back flange directly facing the He∗ source are a set of electronically

controlled stages. These stages can be computer controlled through LabVIEW or with a

program written in Visual Basic designed for doing He∗ lithography [28]. The stages are

used to position or scan either the rear SSD or a lithography sample, and have a mount

designed to attach either. There are two mechanical feedthroughs near the gate valve that

are used to attach mechanical beam blocks, or a metallic mesh used to pattern the He∗ beam

for lithography experiments. There is also an residual gas analyzer that is used for vacuum

troubleshooting.
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Figure 4.2: Helium flows into the source and is cooled through collisions with the liquid
nitrogen cooled metal walls and is pumped back out through the glass tube. The tungsten
needle produces a discharge plasma at the nozzle, and the process of electron recombination
with helium ions produces the He∗ beam. Taken from Fig. 3.2 in [28]

The gate valve connection to the interaction region can be closed, isolating the lithog-

raphy chamber from the turbos and the rest of the vacuum system. Then the lithography

chamber can be vented with dry nitrogen to bring it up to atmospheric pressure. This is

necessary to allow access for insertion of lithography samples into the vacuum system with-

out compromising the entire chamber with atmospheric pressure. The lithography chamber

can then be pumped by two sorption pumps to a pressure of a few mTorr, with an optional

cold trap able to be attached to the top of the lithography chamber to speed up the pumping

rate. At this pressure, the gate valve can be opened and the turbo pumps can finish the

process of returning the pressure to 10−7 Torr. This process allowed 2-4 lithography samples

to be patterned by the He∗ beam in a single day, depending on the necessary exposure time.

4.1.1 He∗ Source

The He∗ are produced in a differentially-pumped liquid nitrogen cooled DC discharge

source [34, 35]. The source region is separated from the rest of the vacuum system by a
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Figure 4.3: The longitudinal velocity distribution of the He∗ exiting the source measured
with time of flight detection.

metal skimmer plate with a 0.5 mm diameter hole. The source has a glass tube tapered at

the end as shown in Fig. 4.2. Helium flows into the vacuum chamber in the region between the

outside of this glass tube and the liquid nitrogen cooled metallic jacket. The liquid nitrogen

cools the helium gas as it collides with the walls. The helium is pumped out through the

interior of the glass tube with a dedicated Welch 1376 mechanical pump. With the helium

flow, the pressure in the source region typically rises one or two orders of magnitude. In

the center of the glass tube is a tungsten needle whose sharpened tip is near the tapered

region of the glass tube. A high voltage is applied to the needle through a load resistor (170

kΩ) and a discharge forms from electric arcing to the metallic nozzle immediately in front

of the needle. In this region the helium atoms are ionized and a plasma forms. Exiting

this region some helium ions recapture an electron from the plasma, and when the electron

cascades down the energy levels of helium, there is a chance it will end in the metastable

23S state. A flux on the order ∼ 1014 He∗/sr·s is produced. These atoms, along with singlet

ground and excited state helium, ions, electrons, and UV light all exit the source through

the 0.5 mm hole of the skimmer plate into the interaction region. The liquid nitrogen is

used to reduce the average velocity of the He∗ beam. With the liquid nitrogen, the slightly

supersonic He∗ beam in our system has an average velocity ∼ 103 m/s. The longitudinal

velocity distribution (Fig. 4.3) is measured by mechanically chopping an on-resonance laser

beam and using time of flight to compare the arrival times of the pushed He∗ atoms to the

laser pulse monitored with a photodiode.
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Figure 4.4: Each He∗ in the beam causes an electron to eject into the MCP. The MCP
amplifies these electrons, and they are accelerated with a bias voltage to the PS. The PS
produces light that provides an image of the He∗ beam profile that is reflected from a mirror
and captured by a CCD camera outside the vacuum chamber.

4.1.2 He∗ Detectors

There are two types of detectors used for the He∗ beam. The first is a real time imaging

detector made from a microchannel plate and a phosphor screen shown in Fig. 4.4. A

microchannel plate (MCP) is composed of 10 µm channels at a 12 degree bias angle designed

to amplify electrons in a process similar to a photomultiplier tube. The He∗ have a large

internal energy (20 eV) and when colliding with the entrance of a channel on the MCP

they eject electrons from the surface. Since each channel is small many can be placed

equally spaced together so that the amplified electrons reflect the spatial distribution of the

incoming He∗ beam. After the electrons leave the MCP a large bias voltage (1-2 kV) is used

to accelerate them to the phosphor screen (PS), a glass plate coated with a phosphorescent

material, which will emit light proportional to the number of electrons that collide. This

produces an image that reflects the pattern that initially caused the electron injection on

the front of the MCP. The PS is then imaged from outside the vacuum system using a

CCD camera. This gives real time He∗ beam imaging in the transverse direction, however

it can be difficult to measure the absolute intensity of the He∗ beam with this technique
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Figure 4.5: (a) The front SSD is mounted in two parts on different mechanical feedthroughs.
When the two slits are overlapped the He∗ beam can be probed at a particular position by
measuring the current from ground to the stainless steel plate attached behind the slit on
the left. (b) The back SSD is two fixed metal plates with a 460 µm opening in the front.
This detector is attached to the computer controlled stages measuring the current generated
on the rear plate by He∗ that make it through the opening. Taken from Fig. 3.4(a) and
Fig. 3.5(a) of [31].

because the PS would need to be continuously calibrated to compensate for the dimming

that occurs as the screen ages. There are two MCP/PS detectors attached to the vacuum

system identified as the ‘front’ and ‘back’ signifying their distance from the He∗ source. The

two MCP detectors are nearly identical in design with the only significant difference being

their location in the vacuum chamber. The front detector can image a larger divergence

angle of the He∗ beam (∼ 50 mrad) with less resolution, where the back detector has a range

of (∼ 20 mrad) with better resolution.

A stainless steel detector (SSD), the second type of detector, is very reliable for measur-

ing the absolute flux in the He∗ beam, but is difficult to use for imaging. The SSD uses the

same physical process as the MCP, a signal resulting from electron ejection, but instead of

amplifying and imaging, the He∗ just collide with a flat metal surface, and then a moderate

bias voltage (∼ 250 V) is used to accelerate the electrons ejected from the cathode con-

nected to ground. By measuring the small current (pA - nA) that flows to keep the cathode

grounded, it is possible to measure the number of electrons being ejected each second. Cor-

recting for the electron ejection efficiency (70% [36]) the He∗ flux is quantifiable. This can

be used to slowly image the He∗ beam if an aperture is placed in front of the plate and then

the apertured detector is scanned across the He∗ beam. There are also two SSD detectors

within the vacuum system identified as front and back. The front SSD is attached to two

mechanical feedthroughs near the gate valve. One feedthrough positions a single metal plate
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held at 250 V with a 205 µm slit as shown in Fig. 4.5, and the other feedthrough positions

two parallel plates. The front acts as a second slit (orthogonal to the first) with width 500

µm and biasing plate also held at 250 V. The last plate is a solid stainless steel plate that

is connected to ground through a picoammeter to measure the current generated by the

apertured He∗ beam ejecting electrons. The back SSD is directly mounted to the electronic

stages in the lithography chamber used to scan the position of the detector. This detector

is built from two parallel plates permanently attached together. The front plate has a 460

µm diameter hole at the center and is kept at 250 V, while the back plate is a solid piece

of stainless steel grounded through the picoammeter. This detector is used to locate and

measure the collimated He∗ beam intensity at the position of the lithography sample.

4.2 Infrared Laser System

The lowest energy excitation of He∗ is the 23S→ 23P transition at an optical wavelength

near 1083 nm. This IR light is made with two external cavity distributed Bragg reflector

diode lasers. Each laser produces a few 10’s of mW at λ = 1083 nm and this light is sent

through optical isolators and beam shaping lenses before each beam is coupled into a single

mode optical fiber. These fibers can then be used to transport the light to any optical

setup required. In practice one laser is dedicated to the bichromatic collimation for the He∗

beam, and the second laser is either used for other experiments or as an optical mask for

lithography.

Each diode’s frequency is actively stabilized using feedback on a piezo-mounted mirror

that controls the external cavity length. The electronic feedback signal is derived from a

saturated absorption spectroscopy measurement of an rf discharge cell of helium. In practice

this method of locking resulted in a laser linewidth, measured by heterodyne spectroscopy,

less than 250 kHz, which is below the natural width of the transition γ = 2π × 1.6 MHz.

4.2.1 IR Bichromatic Light Production

The bichromatic force collimation required two beams of two frequencies each, for a total

of four unique frequencies (ω` = ω0 ± δ ± kv), where each offset of kv is chosen to cause the

force to collimate to v = 0 [37]. This is accomplished with a double-passed acousto-optic

modulator (AOM) as shown in Fig. 4.6. The rf drive power and incoming laser angle of the

AOM are chosen to give a 50% diffraction efficiency on each pass. The first pass produces two

beams with frequencies ω` and ω` + δ. The beams are retroreflected and sent back through
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Figure 4.6: (a) Four frequencies are required for bichromatic collimation. (b) They are
produced by double passing an AOM. The translation stage is required to set the correct
phase between the two beams for the bichromatic force. Part (b) taken from Fig. 3.4 in [32].

the AOM to add an additional frequency to each beam leaving one beam with (ω`, ω` + 2δ)

and the other with (ω` + δ, ω` − δ).
The bichromatic beams are measured with a Fabry-Pérot interferometer (FP) to accu-

rately balance the power equally between the two frequencies in each beam. After coupling

the bichromatic beams into two optical fibers, the power in each beam is typically ∼ 1 mW.

The required intensity for the bichromatic force I ≈ 4000Is means that the optical power

required is ∼ 1 W, so amplification is necessary. This is accomplished using a Keopsys

KPS-BT2-YFA-NLS-1083-40-COL two stage 4 W Yb fiber amplifier. The first stage is a

pre-amplification stage meant to saturate the input to the high power amplifier. The second

amplification stage can be controlled by the level of pump power sent into the Yb doped

fiber. The 1 W of required bichromatic power is typically achieved at 2-3 A of current into

a single pump diode.

Following the amplification stage, a small amount of light is taken from the bichromatic

beam containing ω` ± δ and used for optical molasses cooling and the saturation absorption

spectroscopy (SAS) frequency lock. The correct frequency offset for kv = δ/2 is accomplished

by using a 90 MHz AOM to frequency shift this beam and lock to the SAS atomic resonance

so that ω` = ω0 − δ/2. This leaves the two bichromatic beams with frequencies given by

ω0 ± δ + kv and ω0 ± δ − kv diagrammed in Fig. 4.6(a), where δ = 2π × 60 MHz and
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kv = 2π × 30 MHz.

The optical molasses light is produced using additional AOMs to shift the ω0 ± δ − kv

light closer to resonance. A high intensity molasses beam is shifted so that the frequency

closest to resonance became ω0− 2π× 8 MHz. The second molasses stage is shifted with an

AOM to ω0 − 2π× 1.6 MHz. Since the light used to produce the molasses beams originated

from one of the bichromatic beams, they both contained a second frequency. However this

frequency is shifted further from resonance, and for the intensities used, had a negligible

effect on the atoms.

4.2.2 IR Optical Mask Production

The IR optical mask is produced with the second 1083 nm diode laser. This laser is

frequency locked using the SAS so that ω` = ω0. The laser light is fiber coupled and

transported to near the lithography chamber of the vacuum system. The optical mask

requires a detuning far from resonance to suppress radiative effects, so an AOM is used to

frequency shift the light by 490 MHz above atomic resonance. The beam is then amplified

using a single stage Optocom 30 dBm 1 W Yb fiber amplifier to variably set the optical

mask power.

4.3 Ultraviolet Laser System

The next closest optically accessible He∗ transition is the 23S → 33P with a wavelength

near 389 nm. High power at this wavelength is not as easily obtained as it is at the IR

wavelength. Until recently diode lasers at this wavelength were nonexistent, and even now

the diodes that do exist are very limited in power output, typically ∼ 10 mW, far too low for

our experiments. Our UV light is instead produced from a CW narrow linewidth Ti:Sapphire

laser (Ti:Sapph) whose output is frequency doubled in a resonant cavity. The Ti:Sapph is

at a wavelength of 778 nm and the frequency doubled light is at λ = 389 nm. The Ti:Sapph

is pumped by a nominally 10 W, 532 nm wavelength laser, which was originally a Coherent

Verdi V-10, but was replaced with a Lighthouse Photonics Sprout. The Verdi is a single

longitudinal mode laser, but was no longer able to produce the full 10 W output due to

aging in its internal diode pump lasers. The Sprout is a multi-longitudinal mode design, but

this does not have any measurable effect on our Ti:Sapph laser output.

The Ti:Sapph output is sent to a second cavity in a commercial frequency doubling

setup (Coherent MBD-200). This cavity contains a nonlinear LBO crystal which is able
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to frequency double the Ti:Sapph light to the UV, which then exits through a dichroic

mirror. The efficiency of the process is low, and scales with the electric field intensity squared

(because it is a second order effect). The resonant cavity is used to build up intensity to

improve the conversion. To build up high intensity, the cavity resonance frequency needs to

match the incoming laser frequency. The cavity is designed with a piezo-mounted mirror to

allow feedback to the cavity length to meet this condition. The feedback is from a Hänsch-

Coulliaud signal [38], derived from the polarization dependence of the cavity (due to the

nonlinear phase matching condition). This cavity lock is entirely built into the commercial

system and only needs to be switched on, and as long as the incoming light stays single

frequency, it will stay locked indefinitely.

With this laser setup, the typical Ti:Sapph output power is ∼ 1.8 W at a wavelength of

777.951 nm, and the power produced at λ = 388.98 nm is typically 300 mW, although it can

reach as high as 500 mW when pumped with a little over 2.0 W output from the Ti:Sapph.

The UV light is produced in a room adjacent to the room housing the experimental vacuum

chamber and thus requires transport. This was originally done with a free space beam

through a hole cut in the wall between the rooms to preserve as much power as possible, but

its stability was too sensitive to air currents and vibrations of mirrors over the long beam

path. So instead a single mode polarization maintaining fiber is used for transport. Up

to 40% of the available UV light exits from the fiber output, which is near the maximum

expected based on the input coupling loss (−1.5 dB) and attenuation across 20 m of fiber

(−0.6 dB).

The frequency of the Ti:Sapph is monitored with a interferometer-based wavelength me-

ter (Burleigh Wavemeter WA-1500) with a resolution of a few hundred MHz. The experi-

ments require that the laser frequency match the transition frequency to within the natural

linewidth (γ = 2π × 1.5 MHz). The Ti:Sapph cavity length, and accordingly its frequency,

can be adjusted by a piezo that one of the mirrors is mounted on. Using this feedback, the

laser is frequency-locked to a stable FP cavity made of InVar using a Pound-Drever-Hall

(PDH) locking scheme [40]. The PDH error signal is produced from the reflected signal from

a laser beam after passing an electro-optic modulator (EOM) producing sidebands at ±65

MHz. This provides fast time scale frequency stability to the Ti:Sapph, but it needs to be

referenced to an atomic absorption signal. The FP cavity length is also adjustable with a

piezo mounted mirror. This cavity is scanned (causing the Ti:Sapph frequency to scan) and

the frequency doubled light (also scanning) is used in a SAS measurement on a rf discharge

helium cell. When the signal from the atomic absorption is found, the scan is halted and

the SAS is used to feedback to the FP cavity length, keeping the UV light at the atomic
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Figure 4.7: The electronic control setup for the UV frequency stabilization and lock. The
Pound-Drever-Hall lock is used to stabilize the Ti:Sapph to an external stable cavity to
provide fast time scale feedback. The external cavity length is controlled with a SAS feedback
to maintain the frequency doubled light on the absorption signal of He∗, this provides long
time scale stability. Taken from Fig. 3.10 in [39].
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Figure 4.8: The UV bichromatic light is produced with a single pass of an AOM. The two
beams are made to have orthogonal polarizations so they can be recombined with a polarizing
beam splitter cube and coupled into a single mode polarization maintaining optical fiber.

resonance frequency. A schematic of these control electronics is shown in Fig. 4.7

4.3.1 UV Optical Mask Production

The UV optical mask is frequency locked by taking a small amount of UV light directly

after the frequency doubling cavity and using it to lock directly to the atomic resonance.

The remainder of the light is fiber coupled and sent to the vacuum system. At the vacuum

system it is frequency shifted by 2π × 80 MHz using an AOM and sent to the lithography

setup.

4.3.2 UV Bichromatic Light Production

As shown in Fig. 4.8, the bichromatic UV beam is produced directly following the fre-

quency doubling setup. The UV light is sent through an AOM with 50% efficiency to produce

two beams with frequencies ω` and ω` + 2δ. One of the beams is sent through a half wave

plate to rotate its polarization orthogonal to the first and they are recombined using a po-

larizing beam splitter (PBS). After the PBS the single bichromatic beam is sent into a single

mode polarization maintaining optical fiber and transported to the room with the vacuum

chamber.

The bichromatic force requires that the two frequencies be detuned equally from atomic

resonance. The small amount of SAS light used for the UV frequency lock is first sent

through an AOM so that the pump beam is frequency detuned 2δ above the probe beam.
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Figure 4.9: The transmission signal from the UV FP cavity built to measure the frequency
intensity matching for the bichromatic force. The FP cavity length is scanned as two UV
frequencies separated by 160 MHz were sent into the cavity. A Lorentzian fit of the FWHM
gives a resolution of 6 MHz.

Then the SAS signal will occur for a value of ω` = ω0 + δ. The SAS AOM is driven with the

same rf signal as the bichromatic AOM so that in the end the two bichromatic frequencies

are ω` = ω0 ± δ, where typically 2δ ∼ 2π × 50 MHz.

The bichromatic UV beams require a method to measure the relative intensity of each

frequency component. A confocal FP cavity for UV was constructed to do this. Two mirrors

with f=7.5 cm are mounted on 15 cm of InVar cut into a hollow cylinder. One of the mirrors

is mounted on a piezo that can be used to sweep the cavity length. The cavity has a free

spectral range of 500 MHz and a resolution (FWHM) of 6 MHz, shown in Fig. 4.9.
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Chapter 5

Neutral Atom Lithography

The first demonstration of nano-fabrication using optical fields to steer neutral atoms

was described by Timp and colleagues with a beam of sodium atoms deposited on a glass

substrate [41]. Because of the chemical instability of sodium in air, their fabricated structure

could not survive removal from the vacuum chamber. Later the direct deposition of more

stable atoms was explored, with extensive demonstrations in chromium [27, 42, 43]. The

structures fabricated with such direct deposition techniques are limited to atoms with readily

accessible optical transitions for interaction with laser fields.

By contrast, lithography techniques can be used to make nano-scale patterns with a

greater diversity of materials. This is because the patterning is done by optically controlling

atoms that are different from the eventual fabricated material. The only requirement on

these materials is their vulnerability or resistance to an appropriate chemical etch. Thus

very many materials can be patterned for fabrication. A review of both direct deposit and

lithography techniques appeared in 2003 [44]. The results of this chapter are also largely

documented in [31,32,45].

5.1 Lithography Technique

Our neutral atom lithography (NAL), positive resist, is achieved by destroying the chem-

ical bonds in a layer of polymeric molecules of self-assembled monolayers (SAM’s), dissolving

the damaged molecules, and finally etching the exposed area. The metastable 23S state of

helium (He∗) is ideal because its internal energy of 20 eV is higher than any other metastable

atom. Thus it is most effective for exposing a resist with minimum dosage and results in

the shortest exposure time, requiring minimum restrictions on the atomic beams and laser
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Silicon Wafer

5 nm Cr Layer
20 nm Au Layer

SAM
 (nonanethiol)

Optical Mask

Incoming He* 
Beam

Figure 5.1: Our samples are silicon wafers with a 5 nm chromium adhesion layer for the 20
nm of gold. The SAM is formed with nonanethiol molecules on the gold surface and protects
the surface when submerged in a chemical etch solution. The incoming He∗ beam traveling
downward in this view is patterned (here with a standing wave optical mask) and transfers
its pattern into damage on the SAM. When submerged in the etch solution, the damaged
pattern will be etched into the gold.

control [44].

Our samples (Fig. 5.1) are built on single-crystal silicon wafers that have a 20 nm layer

of gold evaporated onto their [100] surface over a 5 nm chromium adhesion layer. These

wafers are grown and coated commercially. The SAM is formed on the gold surface by

submerging the wafer in a 1 mM solution of nonanethiol in ethanol for 13 to 20 hours.

The long chain molecules orient themselves with their hydrophilic heads bound to the gold

substrate and their hydrophobic tails sticking out into the solution. The incident He∗ attacks

the structure of the SAM molecules thereby making them soluble in a wet chemical etch.

Then the unprotected gold regions are dissolved in a subsequent etch while the undisturbed

SAM protects the remaining pattern in the gold layer.

5.2 He∗ Beam Collimation

Our NAL experiments use a bright beam of He∗ that originates from the reverse flow

DC discharge source described in Sec. 4.1.1. The He∗ beam exits the source with a large

divergence so that the intensity of He∗ quickly drops with distance from the source. To

address this, the atomic beam is collimated with the bichromatic force [22, 37], followed by
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Figure 5.2: The two bichromatic interaction regions for each dimension are given a frequency
offset to shift the force profile to vanish for v = 0. Taken from Fig. 2.10 in [28].

three optical molasses velocity compression stages. Because bichromatic collimation makes

such an intense He∗ beam, our sample exposure time is measured in minutes instead of hours.

In our experiment, the bichromatic force is implemented with counterpropagating light

beams, each containing two frequencies that are detuned by±δ = 2π×60 MHz, and amplified

with Yb fiber amplifiers as described in Sec. 4.2. With the frequencies of these beams centered

about the atomic resonance, the dependence of the force on atomic velocity (v) is symmetric

about v = 0 over the velocity range ±δ/2k, and nearly vanishes elsewhere. Since collimation

requires a force that is antisymmetric about v = 0, we shift the velocity dependence by δ/2k

without changing its shape by shifting the laser frequencies appropriately, see Sec. 4.2.1. The

resulting force is unidirectional so that collimation requires two regions (Fig. 5.2) for each

of the two dimensions, making four bichromatic force regions (Fig. 5.3). The four sequential

bichromatic force regions are placed as close as possible to the point where the cone of He∗

atoms emerges from the source so that the collimated beam has a minimum diameter. The

apodized Gaussian laser beam profiles in each 10 mm long region carry an average intensity

of ∼ 4000 Is.

The transverse velocity spread after the bichromatic force regions (first panel of Fig. 5.4)

is about ±10 m/s corresponding to ∼ ±9 mrad, and is not suitable for our purposes based
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Figure 4.8 Schematic diagram showing how the bichromatic beams were deliv-
ered to the atomic beam. The relative spacing of the beams is not to scale (see
text), and interaction regions 3 and 4 are not shown. Each pair of telescopes
is represented by a single box.

transverse them. The “−kvc” beam first enters interaction region 1, while

the “+kvc” beam first enters interaction region 2. After passing through the

atomic beam the light beams are then recycled back onto each other to cre-

ate two interaction regions comprised of counter-progating beams (see figure

4.8). The phase delay between the two beams was arranged (by the optical

path length) such that “+kvc” was π/2 ahead of “−kvc” as each beam first

crossed the atomic beam. The length of the recycle path was set to 125 cm

(62.5 cm each way) corresponding to a phase change of π for each beam. Thus,

82

Figure 5.3: Each collimation dimension requires two bichromatic interaction regions because
the force is unidirectional. Each interaction pushes atoms to v = 0 in the transverse direction.
The two interaction regions are formed with the same bichromatic beams by matching the
beam path length with the π pulse length of the bichromatic beat. The second dimension is
also collimated with the same design (not shown). Taken from Fig. 3.5 in [32].

59



Figure 5.4: Measurements of the transverse profile of the He∗ beam with; (left) the front
MCP/PS with bichromatic collimation only, (middle) the combined bichromatic and mo-
lasses collimation, and (right) the He∗ intensity measured at the sample position with the
back SSD.

on the results of Sec. 3.1. Therefore we have a high intensity optical molasses stage with

δ = −2π × 8 MHz and s0 = 10 to capture atoms in this large angular spread, followed by

an ordinary Doppler molasses to reduce the atomic beam divergence to nearly 3 mrad with

very little loss of atoms, shown in the second panel of Fig. 5.4. These molasses regions have

a length along the beamline of ≈ 19 mm and ≈ 9 mm respectively. A bit further down the

line in the second set of interaction region windows is a one dimensional Doppler molasses

used to steer the atoms and determine their angle of incidence at the target. This stage is

more carefully monitored to set the finally velocity spread of the He∗ beam near the Doppler

cooling limit for the lithography experiments, and results in a final transverse distribution

of ∼ 1 m/s. Also, to ensure that the He∗ beam is traveling perpendicular to the standing

wave optical mask, this beam is made to be parallel with the optical mask beam to within

1 mrad.

This collimation section occupies 8.2 cm of our beamline and delivers ∼ 1.5×109 atoms/s-

mm2 at our sample, 68 cm from the He∗ source shown in the right panel of Fig. 5.4. Thus

a 10 minute exposure deposits one He∗ in each ∼ 1 nm2 area without any focusing, and the

focusing can easily increase this dosage to a few He∗ per SAM molecule site (estimated area

∼ 0.3 nm2). These dosages are known to ± 10% measured with the back SSD discussed in

Sec. 4.1.2, and this precision arises from fluctuations of the laser beams that collimate the

atoms.
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5.3 Lithography Results

Our NAL is performed with three patterning techniques: mechanical mask, IR optical

mask, and UV optical mask. In practice there is always a mechanical mask in the form

of a metal grid placed before the sample that typically has a spacing of a few mm, and is

used to determine the proper etching time. There is a smaller mesh of 10 µm size that can

also be used to pattern the He∗ beam producing a small “box” pattern. The two optical

masks are formed by sending a laser beam into the vacuum system and retroreflecting from

a high reflectivity mirror attached perpendicular to the lithography sample. This mounting

is needed to couple any movement of the sample to the mirror and therefore the standing

wave pattern. The Gaussian beam is set so that the waist occurs at the mirror to give the

maximum standing wave area. The sample is positioned so that the gold surface lies halfway

through the optical beam.

The required He∗ exposure time for a lithography sample varies from day to day based on

the effectiveness of the optical collimation. It is determined by mapping the collimated He∗

beam with the back SSD and adjusting the exposure time according to the value of the peak

flux for that day. The exposure times range from 10 to 60 minutes. The sample etching is the

least predictable part of the experiment. The best process is to visually monitor the sample

surface while it is in the etching solution. When the pattern of the mechanical grid mask

becomes visible, the sample is pulled from the etch solution and rinsed with distilled water.

Then the samples are studied using a sequence of optical microscope, scanning electron

microscope (SEM), and atomic force microscope (AFM).

5.3.1 Mechanical Mask Patterning

All our samples are exposed using a metal grid of mm scale as a mechanical mask. This

grid pattern is shown in Fig. 5.5 and is always present, even when using a second smaller-

scale patterning technique. This visible result is a useful visual test for the success of the

He∗ exposure. A small mesh (15 µm spacing) is also used as a mechanical mask producing

the pattern shown in Fig. 5.6 measured using an SEM and AFM. This patterning technique

provides the initial estimate of the edge resolution, ∼ 80 nm. This resolution seems to be

limited by the domain granularity of the gold layer and by the etching process (but not

by the etching time). This method of neutral atom lithography is analogous to ordinary

resist-based technologies that are used in most conventional lithography processes.
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Figure 5.5: Optical microscope image of a gold lithography sample surface. The dark thick
lines are the result of the mechanical mesh with spacing of 2 mm. The bright green color is
optical diffraction of white light from the lines formed from an IR optical mask.

Figure 5.6: The result of patterning with a small mechanical mesh with boxes spaced 15 µm
apart shown in an (a) SEM image of the gold surface, (b) AFM measurement of the surface
height, and (c) lineout of the edge formed by the box measured with the AFM.
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Figure 5.7: The patterning result for the IR optical mask with Pinc = Pf . The pattern is
easily seen in the SEM image of the sample surface (a), but the AFM measurement shows
that the pattern height is small and not very clean.

5.3.2 Infrared Optical Mask

Our IR optical mask is formed with a standing wave field of λ = 1083 nm light tuned

∼ 490 MHz above the 23S1 → 23P2 transition (atoms attracted toward its nodes). It has

an elliptical cross section with waist of w‖ ∼ 1.5 mm parallel to the substrate surface and

w` ∼ 330µm along the atomic beam path to maximize the patterned area. We describe

the incident power of the traveling wave Pinc that is retro-reflected to form this “optical

mask” in terms of the power that will focus the atoms on its resulting standing wave axis:

Pf , see Sec. 3.1. The ellipticity of the optical mask slightly modifies the required power to

P ′f = Pf (w‖/w`) ≈ 5.0 mW.

The results of the numerical simulations described in Sec. 3.1 indicate that at P ′f the

transverse velocity spread of the He∗ beam will cause the well-defined pattern of lines to

wash out. The experimental result of patterning with this optical mask is shown in Fig. 5.7.

The equally-spaced lines separated by 542 nm are poorly formed, as expected from the

numerical results. Note that no previous experiment had been capable of showing pattern

formation with He∗ in this regime. The poor quality of the patterning is the result of atoms

that are not properly focused and damage the SAM in regions that should be protected.

However the increased density of atoms that are focused still appears. The SAM is more
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Figure 5.8: The patterning result for the IR optical mask with Pinc = 3Pf . With the higher
optical mask power, the pattern is much more clearly formed as seen from the (a) SEM image
of sample surface. The AFM measurement (b) and lineout across the pattern (c) show the
etched channels have a width of ∼ 100 nm, consistent with the edge resolution from the
mechanical mask results.

uniformly damaged in areas of the focus causing the resulting etch to more effectively remove

the gold than in the areas between the lines with sporadically damaged SAMs.

The localization of the He∗ beam into lines is improved by increasing the optical mask

power to 3P ′f , Fig. 5.8. The results of the numerical simulation indicate with this power

and velocity spread the lines should be well localized with fewer atoms landing in regions

between each line. The pattern formed after etching the gold sample has deeper trenches

that are spaced with spectroscopic regularity across the surface. The 20 × 20 µm region

shown in the AFM surface scan Fig. 5.8(b) is less than 1/10000 the total patterned area.

The length of each gold nano-line is ∼ 3 mm long, nearly 6000 times its width. This allowed

the sample to act as a diffraction grating in the patterned area as seen in Fig. 5.5. The

lithography resolution is estimated by the width of each channel to ∼ 100 nm although is

somewhat limited by the granularity of the gold. This resolution is consistent with the ∼ 80

nm edge resolution obtained from the mechanical mask sample.

5.3.3 Ultraviolet Optical Mask

The UV optical mask used to pattern the He∗ beam is created using a CW Ti:Sapph laser

that is frequency doubled using a resonant doubling cavity to λ = 389 nm, and locked to the
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Figure 5.9: The UV optical mask produces lines separated by 194 nm, nearing the size of the
gold surface granularity. (a) The optical mask pattern is clearly visible in the SEM image of
the surface, but the AFM measurement (b),(c) shows the irregularity caused by the etching
process of the gold grains.

atomic resonance frequency using SAS, as described in Sec. 4.3. To utilize the dipole force,

the light is detuned by 80 MHz using an AOM. The optical mask beam is made elliptical

to allow patterning over a large area (w1 = 1.12 mm) while concentrating the intensity in

the smaller dimension (w2 = 180 µm). This reduces the probability of SE as the time spent

traversing the optical beam is less than the radiative lifetime of the transition. The typical

power used to pattern the atomic beam is Pinc =3-5P ′f , where for the UV parameters P ′f = 3

mW.

Fig. 5.9 shows an SEM image of an area on one of the gold samples that has been etched

showing the pattern produced by the UV optical mask. The lines are now separated by 194

nm. The total area on the sample that has been patterned is ∼1 mm2, so that the figure

is 1/10000 the total area. To obtain information on the depth of the trenches, an AFM is

used to produce the lineout shown in Fig. 5.9(c), showing trenches about equal in width as

the structures. On the scale of our structures, ∼ 100 nm, the gold grain size has become a

serious limitation in the pattern formation during the etch process.
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Figure 5.10: An SEM image of the palladium sample surface after NAL using a mechanical
mask. The mask blocks all He∗ atoms outside the square pattern region, however the etch
process is unable to reproduce the straight edges on a sub-µm scale.

5.3.4 Palladium Samples

The results using the UV optical mask reach a fundamental limit with the thin layer

gold samples due to the grain size formed when the gold layer is deposited. These grains

are intrinsically ∼50-100 nm in size as can be seen in Fig. 5.9. For this reason palladium

patterning was attempted. Palladium grain sizes are smaller than those of gold allowing the

possibility for smaller scale patterning. The thiol molecules used in the gold lithography

process will form on palladium, however the selectivity of the etch arises from a different

underlying process. The standard gold etching solution does not etch palladium, and based

on results published on micro-contact printing lithography, a commercial etching solution was

chosen [46]. It is believed that the method of monolayer protection to the surface is different

from the gold. The thiol forms a much more tightly packed monolayer on palladium, and the

resistance is not based on the hydrophobic nature of the thiol tail chain as with gold [47].

Fig. 5.10 shows the result of NAL on palladium with a mechanical mask. The pattern

formed showed several interesting effects. First it is obvious that the palladium surface

is much smoother than the gold surface. However the chemical etch does not seem to be

isotropic, and etches out horizontally after breaking through the surface, as seen in the pitted

structure. This made it impossible to produce straight edges on the length scale produced

by the UV optical mask. This limitation and lack of better etch solution prevented further

studies of the He∗ NAL process.
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Chapter 6

Ultraviolet Bichromatic Force

The bichromatic force is a stimulated force whose magnitude (FB) is determined by the

properties of two overlapped standing wave fields at frequencies ωb,r = ω0 ± δ and not by

atomic parameters. The velocity range ∆vB is limited by non-adiabatic transitions between

the dressed state energy levels of the combined atom plus two frequency light field [26].

These properties have no dependence on spontaneous emission (SE), which has no role in

the force. The magnitude of the force is FB ∼ 2h̄kδ/π, as found by using the bichromatic

dressed states, with proper choice of Rabi frequency Ω and of standing wave phase ∆kz, see

Sec. 2.3.2. The velocity range extends symmetrically about zero in a region of ±∆vB, where

previous studies have found δ/4k ≤ ∆vB ≤ δ/2k so both FB and ∆vB scale with the value

of laser detunings δ.

The process of laser cooling requires that a force have a velocity dependence, and that

this velocity dependence allows atoms to accumulate at a particular location in velocity-

space. This will occur if the interaction is able to extract energy and entropy from the

atomic gas. The bichromatic force can meet all these requirements, and unlike other laser

cooling techniques, without the aid of SE. The velocity dependence of the force has already

been shown in many experimental and numerical studies for relatively long interaction times

that inevitably included many SE events [22,26,37,48–53]. The energy extraction is clearly

possible through the exchange of the different frequency photons in the fields. Absorbing a

‘red’ photon and stimulating emission into the ‘blue’ photon standing wave will clearly leave

the atom with less kinetic energy.

The last requirement is being able to extract the associated entropy from the atomic

velocity distribution. In single frequency laser cooling this is not possible without the aid

of SE. The large angular distribution of modes in SE allows many new states to become
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accessible to the system of atoms plus light. The scattering of photons into these system

modes acts as a huge reservoir for the entropy, S = kB ln(N), where N is the number of

states accessible to the system. It is so large that it is often (mistakenly) assumed to be

necessary for the removal of entropy. However, with more than a single light field, it is

possible to transfer the entropy into the applied laser fields through stimulated emission. It

is the addition of multiple laser fields and the redistribution of photons among these fields

that allows the BF to cool [54].

If we consider a dilute gas of atoms with an initial distribution of velocities spread

over the range of ±∆vB, application of the bichromatic force will accelerate all atoms with

approximately the same magnitude FB/M in a particular direction. As atoms approach the

velocity limit of ∆vB the magnitude of the force quickly diminishes as a result of Landau-

Zener (LZ) transitions between dressed states, so that there would be no appreciable change

in velocity [26]. All atoms will reach this velocity region within a characteristic “cooling

time” (tc) estimated as

tc =
∆p

FB
=
M 3δ/4k

2h̄kδ/π
=

3π

16ωr
(6.1)

where ∆p is given by twice the average value of ∆vB.

The final velocity distribution will be peaked at ∆vB, narrower than the initial distri-

bution spread over the entire velocity range of the force. The fact that all the atoms are

accelerated to ∆vB 6= 0 has no bearing on their temperature. The location in velocity of the

peak of the distribution is unimportant since it is always possible to transform into a frame

moving at ∆vB. The temperature is instead related to the distribution of velocities in the gas

around this point. If the final distribution of velocities is narrower than the initial, then the

atomic gas has been cooled. Additionally, as long as there has been no appreciable increase

in the spatial distribution, we can say that the phase-space density has been increased.

6.1 Experimental Setup

Of course, in any experiment, the possibility of SE will always be present. To experimen-

tally test the cooling process without SE, we have a chosen a transition with a large ωr and

long excited state lifetime τ to minimize the effects of SE. The 23S → 33P transition in He

at λ = 389 nm has a recoil frequency of ωr = 2π× 329 kHz, giving an expected bichromatic

cooling time of tc = 285 ns. The excited state lifetime is τ = 106 ns, so that the average SE

time is at least 260 ns (the time average excited state population is 41% [53]).

The experiment was performed on a beam of He atoms initially excited to the 23S state
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Figure 6.1: The experimental setup for the bichromatic force experiments is split between
two laboratories. The laser system (left) uses an AOM and PBS to produce a UV bichro-
matic beam (see Fig. 4.8). This beam is transported through optical fiber to the He∗ beam
apparatus, where it is split into two beams, each apertured with a slit and imaged from
opposite directions to form the required standing wave.

through a continuous flow DC discharge source cooled with liquid nitrogen as described in

Sec. 4.1.1. The optical standing waves are formed from a CW narrow linewidth Ti:Sapph laser

at a wavelength of 778 nm that is sent to a resonant frequency doubling cavity to produce

λ = 389 nm as described in Sec. 4.3.2. The bichromatic optical setup is shown in Fig. 6.1.

The single frequency beam after frequency doubling is sent through an AOM to produce

two beams at ω` = ω0 ± δ (fundamental and first order). The two beams are recombined

with a polarizing beamsplitter (PBS) and sent into a UV polarization-maintaining single

mode optical fiber for transport to the He∗ beam apparatus. After exiting the fiber the two

frequencies (orthogonally polarized to each other), are sent through a second PBS oriented at

45 degrees to the linear polarizations in the beam (in a setup similar to [22]). This produces

two beams, each with two frequencies sharing the same polarization, shown in Fig. 6.2. The

same polarization is required for the induced dipoles of both frequencies to be quantized

along the same quantization axis. Each of the now linearly polarized two frequency beams

is sent through mechanical slits and imaged from opposite directions onto the He∗ atoms.

The lasers are linearly polarized along the same direction when imaged onto the He∗

atoms to excite ∆mJ = 0 transitions in the atoms. The atomic beam is unpolarized and

could not be optically pumped prior to the bichromatic interaction because of experimental

space constraints, thus leaving atoms in all three degenerate ground state magnetic sublevels.

The π polarization was chosen because then the three degenerate magnetic ground state levels
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Figure 6.2: Exiting the optical fiber the two optical frequencies are orthogonally polarized,
and rotated 45 degrees with respect to the reflection/transmission axes of a PBS. Each
frequency is projected onto each axis with equal intensity, resulting in two separated beams
(one reflected, one transmitted) that can be used to form the desired standing wave.

have Rabi frequencies in the ratio of
√

3 : 2 :
√

3 for 23S1 → 33P2, see Fig. 1.6.

The experiments are typically run with δ = 2π × 25 MHz, where this is half of the

AOM rf drive frequency. This means the optimum Rabi frequency for a spatial phase of

∆kz = π/2 is Ω =
√

3/2 δ ∼ 2π × 31 MHz. For our UV transition this corresponds to an

intensity of I = 2.6 W/cm2. This is a limiting factor in the experiment given the difficulty

of producing high power bichromatic UV light. This detuning corresponds to a minimum

velocity range of the force of ±∆vB ≈ ±δ/4k = ±2.4 m/s. In principle these results should

be the same at larger velocity ranges, just requiring proper scaling of the velocity with an

increase in δ, but the required optical power scales as the square of the increase in δ, so

that to double the velocity range would require over 5 W/cm2. Given the imaged beam size,

the incident power required from each direction on the atoms is ∼ 10 mW. The bichromatic

force has an intensity dependence so the slits are designed to capture the flat region on the

top of the laser’s Gaussian profile with only ±10% variation in the Rabi frequency across

the interaction region. This results in transmitting only a fraction of the power delivered to

each slit. The small size of the bichromatic beams after imaging the slits, and the variability

of the output power from the UV setup make it difficult to accurately set the Rabi frequency

for the bichromatic force on a daily basis.

Following the bichromatic interaction region, the He∗ beam (< 1 mm in size) freely

expands, allowing a transverse TOF measurement of the velocity profile 630 mm downstream.
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The large transverse expansion and the small initial size following the bichromatic interaction

causes the transverse velocity (vt) distribution to map directly to the transverse position

distribution on the detector, where

vt =
Lt
Ll

vl (6.2)

where Lt is the transverse displacement on the detector, Ll = 630 mm is the longitudinal

distance, and vl = 1050 m/s is the average longitudinal velocity. The He∗ are detected using

an MCP/PS to directly image this transverse distribution (see Sec. 4.1.2). The transverse

spatial spread of the He∗ beam after the 630 mm flight is very much larger than the detector’s

24 mm size, so that absent any optical interaction the He∗ has a uniform distribution. Fol-

lowing the application of the bichromatic standing waves the velocity distribution measured

by the detector changes, and this can be directly compared with the initial distribution. The

sensitivity of the MCP/PS is not spatially uniform, and this effect is cancelled by divid-

ing the two images with and without the bichromatic force to measure changes in the He∗

velocity-space density.

6.2 Bichromatic Force, Phase Dependence

The first experimental tests using the bichromatic standing wave setup shown in Fig. 6.1,

were to observe the phase dependence of the force with about 1.2 tc of interaction time.

Sec. 2.3 showed that the relative spatial phase between the red and blue standing waves

controls the direction of the force. Experimentally the phase between the red and blue

standing waves varies with the length of the delay arm shown in Fig. 6.1. A difference in

path length (∆L) between the two beam paths used to form the standing wave is related

to the phase by ∆L/Lπ = ∆kz/π, where ∆k = 2 δ/c as defined as in Eq. 2.25. At a path

length difference of one bichromatic beat length, the standing waves return to the original

phase. The length of the beat is Lπ = cπ
δ

= 5 m, for the δ = 2π×30 MHz used for this data.

To look for the directionality dependence, the delay arm is varied over the length of

Lπ. Then looking at the direction of the atomic beam deflection we are able to identify

the relative phase of the standing wave fields, ∆kz. Fig. 6.3 shows results for several delay

arm distances as a % of Lπ, where Lπ/2 corresponds to ∆kz = π/2. The distributions in

Fig. 6.3 show atoms missing (dip) and moved to a new position in velocity-space (peak).

The data is shown as a percentage change in detector signal between the initial uniform He∗

distribution to that after the bichromatic force. The magnitude of this change is limited by a

large background signal on the detector arising from VUV light emitted from the He∗ source
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Figure 6.3: The optical path length difference between the two beams determines the relative
phase between the two standing waves. The direction of the force is set by this phase; pushing
to the right for ∆L < Lπ/2, pushing left for ∆L > Lπ/2, and with no preferred direction at
∆L = Lπ/2.
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discharge. Independent measurements have shown this background to be ∼ 90% of the

MCP/PS response with gradual changes as the detector ages or the He∗ source parameters

change. As the standing wave phase is varied, the directionality of the force changes from

right to left and has vanishing directionality as it nears the center with ∆kz = π/2. This

type of response is a purely bichromatic force effect and verified that the UV bichromatic

force was working.

The total span of the velocity range in these deflections is much smaller than expected,

only ∼ 1 m/s when δ/4k = 2.9 m/s. It was determined that the small velocity range was the

result of the available power in each laser beam (10 mW) being slightly below the optimal

Rabi frequency for δ = 2π× 30 MHz. This results in a force around a narrow velocity range

as is predicted in the force profile vs Rabi frequency in Fig. 3.5.

At this point the detuning was reduced to δ = 2π × 25 MHz and the phase delay arm

was fixed at ∆kz = π/4 for the remainder of the experiments, since changing the delay arm

length was a non-trivial task, given the critical nature of matching the transverse profile of

the two beam paths and the small beam sizes used in the two imaging systems.

6.3 Bichromatic Force, Ω Dependence

Since the power of the bichromatic UV light was at its maximum, the AOM frequency

was lowered (δ = 2π× 25 MHz) to address the insufficient Rabi frequency in the beams. At

the new value of δ, the required optical power should be 30% lower, and the magnitude of the

minimum velocity range is also reduced to ∆vB ≈ δ/4k = 2.4 m/s. Data is accumulated as

the laser power delivered to the He∗ beam is varied, and used to produce a 3D density map

of He∗ intensity as a function of detector position (transverse velocity) and Rabi frequency.

The spatial distribution of the atoms is measured over a range of Rabi frequencies in a

single run by capturing a video (60 − 100 s) of the MCP/PS detector while continuously

rotating a variable neutral density (ND) filter immediately following the fiber and simulta-

neously recording the intensity of one of the bichromatic beam’s reflection off the front of

an optic. The circular ND filter returns to maximum intensity after one full revolution, and

this sudden jump from very low intensity to very high intensity is used to synchronize the

MCP/PS video clock to the oscilloscope data obtained with a photodiode on the reflected

beam.

After saving the video file, the data analysis is done with a combination of ImageJ and

Mathematica. An ImageJ script (see Appendix C.1) is used for image processing (background

removal, image rotation, cropping) and takes a vertical average over a rectangular section of
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the detector screen for each frame. This reduces the data from the uncompressed video size

of several GBs to a set of several thousand lineouts which was ∼ 15 MB in total size. The

Mathematica script (see Appendix C.2) then imports each frame’s lineout of He∗ intensity

vs position along with the oscilloscope optical power data. The independently-measured

maximum optical power for that day along with the relevant beam parameters are used to

calibrate the photodiode data and convert it to Rabi frequency as a function of time. This

time axis is correlated with the frame numbers of the video lineouts by identifying the frame

during which the atomic spatial distribution has the largest change. This is guaranteed to be

the time at which the laser intensity went from the minimum to maximum. Then because

the number of frames at each value of Rabi frequency is not consistent across the video,

the Rabi frequency is binned and lineouts within each binned value of Rabi frequency are

averaged to reduce noise. The position axis of the lineout is calibrated to velocity using

Eq. 6.2 and vl = 1050 m/s. The entire analysis process for each force map (using typical PC

computing power) takes ∼ 20 minutes. This results in a three dimensional data set called a

force map of Rabi frequency vs velocity vs He∗ intensity.

A typical bichromatic force map is shown in Fig. 6.4 where dark purple shading indicates

a reduction in He∗ intensity and lighter white shading is an increase in intensity. At low

Rabi frequency the atomic velocity distribution remains relatively unaffected and uniform.

When the bichromatic standing waves reach the optimal Rabi frequency a large dip appears

in the atomic velocity distribution near v = −4 m/s, and a large peak appears at positive

velocities around +6 m/s. This large velocity limit is surprising given the short interaction

time (220 ns ≈ 2τ) indicating the force is able to act very efficiently on these short time

scales. The total velocity span is 10 m/s ≈ 40vr implying a net 20 cycles of absorption

followed by stimulated emission. This final velocity distribution has an increased density

of atoms in velocity-space around ∆vB ≈ δ/2k. This is only possible because atoms from

within the range of the force have been accelerated and accumulate at the limit while atoms

already at and outside this velocity range are not affected by the force. The appearance of a

large peak in the velocity-space density clearly demonstrates cooling. The He∗ beam has a

transverse spatial extent of ∼ 1000λ, and over the course of the interaction region expands

by

∆vB tc =

(
3δ

8k

)(
3π

16ωr

)
=

(
9δ

256ωr

)
λ (6.3)

where ∆vB tc ≈ 2.7λ for our choice of δ so there is negligible reduction in position-space

density. This result has no measurable dependence on the interaction region’s distance from

the He∗ source over about a cm, other than a drop in intensity on the MCP/PS detector
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Figure 6.4: A force map of He∗ velocity-space density as a function of the bichromatic Rabi
frequency. Darker purple shading indicates a reduction in He∗ intensity noticeable at higher
Rabi frequency to the left of v = 0, and lighter white shading is an increase in intensity
occurring to the right near ∆vB ≈ δ/2k. Each horizontal line of pixels is the MCP/PS
detector signal averaged over 10s of image captures, where each image is averaged to a single
dimension along the force axis.
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caused by the He∗ beam expanding to a size larger than the vertical extent of the bichromatic

standing wave beams.

The role of SE will depend on the interaction time of the atoms in the bichromatic

standing wave. The mechanical slits are used to give well defined edges to the interaction

region so that the total interaction time is given by tint = s
vl

where s is the imaged slit

opening. The bichromatic force is tested as a function of tint by recording force maps for

different slit openings, shown in Fig. 6.5. All interaction times (never long enough for many

SE events) show a very similar spatial distribution. A large region of atoms at negative

velocities have been removed and accumulate near positive velocities on the right. There

is no noticeable dependence on interaction time until the slit opening becomes as small as

150 µm corresponding to tint ≈ 140 ns, at which the width of the velocity dip is reduced

indicating insufficient time for the atoms within the entire velocity range to reach the limit.

The difference in coupling strengths for the three initial ground state mJ sublevels causes

different atoms to experience different Rabi frequencies and hence different force profiles. It

is not possible to simultaneously optimize the Rabi frequency for all three sublevels. A force

map was taken for the 23S1 → 33P1 transition to see if this was a significant effect. For the

π polarization used, the mJ = 0→ mJ = 0 transition is forbidden, and this prevents roughly

one third of the atoms from interacting with the light, thereby reducing the detector signal.

However the remaining two states have identical coupling strengths. The resulting force

map is shown in Fig. 6.6 along with the previous data from Fig. 6.4 shown as a reference.

The results are qualitatively similar. This result is strong evidence that SE is not frequent

enough to optically pump all the atoms into the mJ = 0 dark state and no longer interact

with the light. Since interaction time is determined by the slit geometry and doesn’t depend

on the transition used, this is proof that all of the force maps that demonstrate a strong

peak in velocity-space density have done so without the aid of SE.

Estimating the final temperature of the atoms following the bichromatic laser cooling

requires defining a measure of the spread in the final velocity distribution. This is compli-

cated by several experimental ‘smearing’ effects in the measured force maps. The transverse

velocity assignment (Eq. 6.2) is possible using the longitudinal velocity vl, but the He∗ source

produces a distribution of vl values. Even if the cooling is perfect and results in a single

transverse velocity, the beam would have an angular divergence traveling to the detector

given by the range of vt/vl values, where the vl distribution varies over about 40%. Further,

the actual spread of the final velocity distribution that will result from finite temperature will

be convolved with this distribution of longitudinal velocities causing additional spreading of

the detected signal. All these effects will lead to an overestimation of the actual width of
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Figure 6.5: The He∗ velocity-space density as a function of Rabi frequency (vertical axis) for
different imaged slit sizes, resulting in different bichromatic interaction times. The result is
not strongly dependent on the interaction time over these time scales, with the only notable
difference occurring as tint → 140 ns, where the width of the reduced/increased intensity is
reduced.
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Figure 6.6: The He∗ velocity-space density as a function of Rabi frequency for the
J = 1→ J = 1 and J = 1→ J = 2 transitions. The coupling strength for the J = 1→ J = 1
transition is equal for two of the initial ground state sublevels, and zero for the third. This
causes roughly one third of the atoms to not experience any optical interaction. The ob-
servation of the bichromatic force confirms that SE is not occurring, as this would quickly
optically pump all atoms into the dark state.

the final transverse velocity distribution. Several experimental schemes were attempted to

address these effects (described in the next section), but were largely unsuccessful.

A lineout of the force map from Fig. 6.4 taken at a Rabi frequency of 36 MHz is shown in

Fig. 6.7. This Rabi frequency is different from the optimum
√

3/2 δ, but is likely an indication

of the experimental difficulty in measuring the standing wave amplitude at the He∗ beam.

The interaction time for this experimental data was 220 ns. The range of the bichromatic

force extends between ±6 m/s, and the He∗ atoms accumulate around +6 m/s. The final

distribution has a full width half max of ≈ 4.8 m/s, corresponding to a final temperature of

≈ 10 mK. The temperature that corresponds to the full range of initial velocities affected

by the bichromatic force (≈ 18 m/s) would be ≈ 40 mK, indicating the bichromatic cooling

has reduced the one dimensional He∗ beam temperature by about a factor of four.

The cooling limit of the bichromatic force is not well understood theoretically. The veloc-

ity limit arises due to LZ transitions, and the probabilistic nature of these events indicates

a statistical distribution of final velocities related to the number of jumps. The statistical

nature would predict the force should require a few LZ jumps before sufficient cooling can

occur. However the diffusion among dressed levels discussed in Sec. 2.3.3 could also lead to

additional heating. The rate of this heating and how the bichromatic force responds is not
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Figure 6.7: The final velocity distribution after a bichromatic force interaction time of 220
ns. The bichromatic force has accelerated atoms from the region labeled ∆vi to the peak
centered at +6 m/s with a width ∆vf , corresponding to a final temperature of ≈ 10 mK.

something that has been investigated to date. The small magnitude of detuning and velocity

range available for our experiments provides limited opportunities for the LZ transitions to

occur. The typical transverse travel distance of an atom across the standing wave is given

by Eq. 6.3. This means that the typical distance traveled for an atom in the experiments is

about 2.7λ; offering ∼ 10 avoided crossings for potential LZ transitions based on the dressed

state model. It is not clear what effect this will have on the cooling limit. It is also possible

that this could be the source of the increased velocity limit near ∆vB ≈ δ/2k. In the absence

of the LZ jumps, the force will continue to accelerate the atoms, and as the velocity increases

the LZ jumps may no longer be limited to the usual regions of avoided crossings.

6.4 Attempted Detection Schemes

Initial data was taken with the front MCP/PS until it was determined that the limited

laser power would necessitate fairly low values of δ resulting in smaller transverse velocities.

This caused the front MCP/PS (Ll = 25 cm) to have limited resolution since the transverse

velocities of interest in the He∗ beam had not significantly expanded to fill the detector.

This required using the back MCP/PS (Ll = 63 cm), which gave adequate resolution but

lower signal since the expansion along the second transverse dimension (perpendicular to

the bichromatic force) could not be completely captured on the detector. This required

integrating the detection signal for longer to obtain similar signal to noise (S/N) levels.
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Figure 6.8: Longitudinal time of flight was used to reduce the smearing associated with the
longitudinal velocity distribution. A chopper wheel would gate the bichromatic standing
waves, and the transverse He∗ distribution would arrive at the detector at a time delay given
by its longitudinal velocity. The detector was then gated to only measure a subset of these
velocities.

However data taken with both detectors gave the same apparent velocity-space distributions.

The smearing caused by the longitudinal distribution of velocities in the beam makes an

absolute measurement of the ultimate cooling limit difficult. Several modifications to the

experiment were attempted to reduce this effect, but were largely unsuccessful for different

reasons. The next paragraphs will document the different schemes and the limitations that

prevented them from working.

It was recognized that atoms traveling perpendicular to the bichromatic standing wave

would not have any smearing. This is because the angular exit from the interaction region is

given by vt/vl so that at vt = 0 the distribution in vl has no effect. It was thought that the

bichromatic standing waves could cross the He∗ beam at an angle such that the final velocity

along the detector’s transverse axis would be zero. This scheme doesn’t work because the

angle required for the cooling to leave the atom with zero transverse velocity relative to the

detector itself depends on longitudinal velocity of the atom.

The next attempt was to switch to the back SSD detector and try to minimize the

smearing by measuring the transverse velocity distribution along with a longitudinal time

of flight (TOF) scheme shown in Fig. 6.8. The bichromatic optical beam was gated using a

chopper. Then the longitudinal TOF signal of the laser cooled atoms was recorded with the

SSD. The SSD has spatial resolution from a small opening slit and can be scanned across

the He∗ beam. At each position of the SSD, the He∗ signal was measured as a function

of delay time from the chopper on-signal using either a boxcar integrator or LabVIEW

data acquisition card. In principle this gives the unsmeared transverse velocity distribution

by looking at the position distribution for a fixed time delay corresponding to a subset of
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longitudinal velocities.

It actually would contain a wealth of information, by measuring the signal for different

time delays a single measurement would give the bichromatic force as a function of inter-

action time. This scheme gave qualitatively similar results to the initial bichromatic force

measurements, however could only be done for a single value of the laser power at a time.

Additionally each detector position had to be taken in sequence instead of all at once as

with the MCP/PS detector. The He∗ signal is also greatly reduced, first by the duty cycle

of the on time for the chopper (when cooling is occurring), and second by only looking at

the fraction of atoms at a particular longitudinal velocity. This necessitated amplifying the

signal by adding a MCP to the SSD device. These effects combined to cause single velocity

distribution scans to easily take more than an hour to obtain modest S/N levels, a time for

which it was very difficult to maintain stable laser power and bichromatic frequency balance.

Even with the chance that the entire system stayed stable enough for a scan, it was deter-

mined that the longitudinal velocity distribution could not be sufficiently narrowed given

the poor resolution of the TOF set by the minimum chopper opening time and He∗ TOF

distance.

To speed up the data acquisition process, TOF was attempted with the MCP/PS detec-

tor. This was done with a similar optical chopper setup on the laser beams, which triggered

a pulse generator. After a fixed delay, the electronic pulse was amplified with a DEI PVX-

4150 pulse amplifier to 1000 V and sent to the initially grounded MCP to gate it on. This

caused the He∗ beam signal to be amplified by the MCP and sent to the PS for only a fixed

range of longitudinal velocities. This detection scheme was also severely limited by low sig-

nal because of the small duty cycle. The results at the best TOF resolution in longitudinal

velocity, integrated for over five minutes for good S/N levels, resulted in distributions that

were not significantly different from what was seen with the complete longitudinal velocity

distribution, and was only able to cut out the edges of the velocity distribution because of

the same TOF limitations listed above.
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Chapter 7

Conclusions

The bichromatic force is likely the beginning of a rich field of optical forces involving mul-

tifrequency light. The additional frequencies have opened the possibility of using stimulated

processes to transfer momentum, energy, and entropy to cool atoms in a method previously

believed to be impossible. Once the radiative lifetime is no longer the relevant timescale

many of the limits on optical forces are no longer bounded by the atomic properties, and

this has been exploited for the experiments in this thesis.

7.1 Lithography Conclusions

The exquisite control over the motion of atoms from optical forces is a major motiva-

tion for the field of neutral atom lithography (NAL). Nanoscale lithography is driven by

ever shrinking spatial resolution. While electron beam lithography gives the cleanest spa-

tial patterning, the rastering required is slow and only feasible for small scale production,

at considerable expense. This leaves optical lithography for most mass produced devices.

Optical lithography is cumbersome in the current patterning resolution regime of 10-30 nm,

and will always be limited by the size of the image that can be formed, typically on the

order of the light’s wavelength. For large scale production this requires very bright sources

of VUV nearing XUV wavelengths, and in this regime most optical elements have very poor

efficiency and quality requiring large investments from the semiconductor industry.

In principle, neutral atom lithography can pattern with unlimited resolution, given that

the resolution is now determined by the size of an atom. He∗ is a particularly good choice

since its large internal energy can be used for a resist-based lithography method, so that the

patterned material can differ from that of the atomic beam. However, as with the optical
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lithography, this requires a bright beam and the ability to form an image. The bichromatic

force along with conventional laser cooling techniques allow complete collimation of our He∗

beam, so that lithographic patterning can be done in tens of minutes. Optical masks were

demonstrated that show the He∗ beam can be patterned and this pattern transferred to the

sample.

The atomic physics of neutral atom lithography is clearly effective, and was demonstrated

for different optical and mechanical masks. Since the optical mask is determined from the

intensity distribution of a laser, it would be possible to produce arbitrary patterns in the

He∗ using spatial light modulators and holographic techniques. The He∗ beam could even

be patterned with an optical mask and then focused to a much smaller size onto the sample

surface so that the wavelength of the optical mask is not a limiting factor. The only limiting

factor at the moment is the surface science required for the resist-based nanoscale patterning.

While in principle most lithographic resists are designed for light of a similar energy to the

He∗ internal energy, the damage mechanisms are quite different, arising from the very small

penetration depth of the He∗ compared to light. Given the eclectic nature of neutral atom

lithography, there is little scientific research in the field of lithography resists optimized for

He∗ instead of light, leaving the future of NAL uncertain.

7.2 Bichromatic Force Conclusions

The results with the UV bichromatic force on He∗ clearly show that the force is mediated

by stimulated processes causing many atomic recoils in a time too short to be caused by

radiative processes. The results presented here are not an optimum demonstration of the

actual cooling potential given the very limited magnitude of δ. The rate of momentum

transfer relative to the radiative process δ/γ could be much larger with additional laser

power. This would lead to a larger final velocity allowing more potential avoided crossings

to be traversed for better cooling. While a very large number of Landau-Zener transitions

is likely to cause some heating due to the diffusion among dressed energy states, too few is

insufficient to adequately stop all atoms at the velocity limit.

The experiments clearly show that the velocity-space distribution is peaked after inter-

action with the bichromatic force. This increase in the velocity-space density is the result of

cooling, and may be more significant than is measured, given the potential for spatial smear-

ing at the detector caused by the spread of longitudinal velocities. There are two sources

of this smearing, one on the location of the peak of the transverse velocity distribution,

which only for a cooled peak at vt = 0 has no spatial smearing at the detector. The second
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effect causing spatial smearing at the detector is due to the convolution of the longitudinal

velocity distribution with the entire transverse velocity distribution around the cooled peak.

These two effects could be minimized by reducing the longitudinal velocity spread, either

through a beam slowing process or by extending the He∗ beam path and gaining better TOF

resolution. The slowing would be more technically difficult, but would not suffer the large

loss of signal that occurs from the TOF velocity selection.

Verification that the bichromatic force can cool without SE also allows experiments to be

done with atoms or molecules without cycling transitions. The choice of transition could be

tailored for a better test of the cooling process. A transition with a very narrow linewidth

(long lifetime) would more easily allow large ratios of δ/γ. This along with a longer wave-

length, to reduce Is, could be chosen where high power lasers are possible. A careful study of

the bichromatic cooling process for a range of detunings could provide a better understanding

of the role of the non-adiabatic LZ transitions.
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Appendix A

Lithography Fortran Code

A.1 LightMaskProgram.f

program LightMaskProgram

integer∗4 MaxnStep

parameter ( MaxnStep = 100000 )

real ∗8 atom (6) , Vtrans , param (1) , time , tau

real Vlave , sin

real ∗8 xpos (MaxnStep ) , ypos (MaxnStep ) , zpos (MaxnStep ) , tpos (MaxnStep )

real ∗8 square s i z e , wo , m

integer∗4 idum , nState , nStep , iS tep

external GaussDist

external ve l c

external d ipo l e rk

! Se t Parameter Values

Vtrans = 4 .0 ! Transverse Ve l o c i t y

Vlave = 1125.0 ! L on g i t u d i n a l Ave Ve l o c i t y

time = 0.0

nStep = 50 ! Number o f s t e p s

wo = 4 . e−4 ! Gaussian wa i s t

s qua r e s i z e = 3 .∗ 3 . e−6/2. ! I n i t i a l Atomic Di s t

m = 6.646 e−27 ! Mass o f He

param (1) = m

nState = 6

open (16 , f i l e=’Fudge8/ I n i t i a lCond i t i o n s v t 4 . txt ’ , status=’unknown ’ )

open (18 , f i l e=’Fudge8/ Fina lCondi t ionsvt4 . txt ’ , status=’unknown ’ )

do i =1, 50000

atom (1) = squa r e s i z e ∗( ran1 ( idum) − 0 . 5 ) !X−pos

atom (2) = 3.∗wo !Y−pos

atom (3) = squa r e s i z e ∗ ran1 ( idum) ! Z−pos

atom (4) = Vtrans ∗ GaussDist ( idum) !X−v e l

atom (5) = −1. ∗ ve l c ( Vlave , idum) !Y−v e l

atom (6) = Vtrans ∗ GaussDist ( idum) ! Z−v e l

write (16 ,∗ ) atom (1) , atom (2) , atom (3) , atom (4) , atom (5) , atom (6)

tau = atom (2) / (−1.∗atom (5) ) / nStep ! Time S t ep s

do i S tep=1,nStep

ca l l rk4 ( atom , nState , time , tau , d ipo le rk , param )

time = time + tau

tpos ( iS tep ) = time

xpos ( iS tep ) = atom (1)

ypos ( iS tep ) = atom (2)

zpos ( iS tep ) = atom (3)

enddo
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write (18 ,∗ ) xpos ( nStep ) , ypos ( nStep ) , zpos ( nStep )

enddo

close (16)

close (18)

stop

end

A.2 DipoleForce.f

subroutine DipoleForce ( x , y , z , Force )

! C a l c u l a t e s Dipo l e Force ; Used by d i p o l e r k . f

! I npu t s

! x Po s i t i o n s in L i g h t F i e l d

! y

! z

! Output

! Force The Dipo l e Force

real In t ens i ty1 , In t ens i ty2 , Pre f a c to r

real m, vl , k , wo

Integer NTAB

REAL d f r i d r , err , h , func , CON, CON2, BIG , SAFE

PARAMETER (CON=1.4 , CON2=CON∗CON, BIG=1.E30 ,NTAB=10,SAFE=2.)

INTEGER i , j

REAL e r r t , fac , hh , a (NTAB,NTAB)

REAL xp , yp , zp

! The Fo l l ow ing i s t o f i n d De r i v a t i v e o f I n t e n s i t y

! Taken from Numerical Rec ipes f o r Fortran

h = .25 e−7
i f (h . eq . 0 . ) pause ’ h must be nonzero in d f r i d r ’

hh = h

xp = x

yp = y

zp = z

ca l l F i e l d I n t e n s i t y ( xp , yp , zp+hh , I n t en s i t y 1 )

ca l l F i e l d I n t e n s i t y (xp , yp , zp−hh , I n t en s i t y 2 )

a (1 , 1 ) = ( In t en s i t y 1 − I n t en s i t y 2 ) / (2 . 0∗hh)

err = BIG

do i =2, NTAB ! S u c c e s s i v e columns in t h e N e v i l l e t a b l e a u w i l l go to

hh = hh/CON ! sma l l e r s t e p s i z e s and h i g h e r o rde r s o f e x t r a p o l a t i o n

ca l l F i e l d I n t e n s i t y (xp , yp , zp+hh , I n t en s i t y 1 )

ca l l F i e l d I n t e n s i t y (xp , yp , zp−hh , I n t en s i t y 2 )

a (1 , i ) = ( In t en s i t y 1 − I n t en s i t y 2 ) / (2 . 0∗hh) ! Try new sma l l e r s t e p s i z e

f a c = CON2

do j =2, i ! Compute e x t r a p o l a t i o n s o f v a r i o u s orders , r e q u i r i n g no new

a ( j , i ) = ( a ( j−1, i )∗ f a c − a ( j−1, i −1) ) / ( fac −1.) ! f u n c t i o n e v a l u a t i o n s

f a c = CON2∗ f a c

e r r t = max(abs ( a ( j , i )−a ( j−1, i −1) ) ,abs ( a ( j , i )−a ( j−1, i −1) ) )

! The e r r o r s t r a t e g y i s t o compare each new e x t r a p o l a t i o n to one

! order lower , bo th a t t h e p r e s en t s t e p s i z e and the p r e v i o u s one .

i f ( e r r t . le . err ) then ! I f t h e e r r o r i s decreased , save t h e

err=e r r t ! improved answer

d f r i d r=a ( j , i )

endif

enddo

i f (abs ( a ( i , i )−a ( i −1, i −1) ) . ge .SAFE∗err ) then

m = 6.646 e−27 ! mass o f He

v l = 1125. ! L on g i t u d i n a l v e l o c i t y f o r McCle l land power

k = 2 ∗ 3 .141 / 1083 . e−9 ! Wavevector

wo = 4 . e−4 ! Laser gau s s i an wa i s t

Pre fac to r = 8 . ∗ 5 .37 ∗ 0 .5 ∗ m ∗ v l ∗∗2. / (k∗∗2. ∗ wo∗∗2 . ) ! Force p r e f a c t o r

Force = Pre fac to r ∗ d f r i d r ! Const ∗ De r i v a t i v e o f I n t e n s i t y

return

endif

! I f h i g h e r order i s worse by a s i g n i f i c a n t f a c t o r SAFE, then q u i t e a r l y
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enddo

m = 6.646 e−27 ! mass o f He

v l = 1125. ! L on g i t u d i n a l v e l o c i t y f o r McCle l land power

k = 2 ∗ 3 .141 / 1083 . e−9 ! Wavevector

wo = 4 . e−4 ! Laser gau s s i an wa i s t

Pre fac to r = 8 . ∗ 5 .37 ∗ 0 .5 ∗ m ∗ v l ∗∗2. / (k∗∗2. ∗ wo∗∗2 . ) ! Force p r e f a c t o r

Force = Pre fac to r ∗ d f r i d r ! Const ∗ De r i v a t i v e o f I n t e n s i t y

return

end

A.3 dipolerk.f

subroutine d ipo l e rk ( x , t , param , de r iv )

real ∗8 x (∗ ) , t , param (∗ ) , de r i v (∗ )
external DipoleForce

! Returns r i g h t−hand s i d e o f Doppler Force ODE; used by Runge−Kutta r o u t i n e s

! I npu t s

! x S t a t e v e c t o r [ r (1 ) r (2 ) r (3 ) v (1 ) v (2) v (3) ]

! t Time ( not used ) f o r c e i s t ime independen t

! param Parameter mass o f He

! Output

! d e r i v D e r i v a t i v e s [ dr (1 ) / d t dr (2 ) / d t dr (3 ) / d t dv (1) / d t dv (2) / d t dv (3) d t ]

real ∗8 m, v1 , v2 , v3 , acce l1 , acce l2 , a c c e l 3

real r1 , r2 , r3 , Force

! ∗ Compute a c c e l e r a t i o n

m = param (1)

r1 = x (1)

r2 = x (2) ! Unrave l t h e v e c t o r x i n t o

r3 = x (3)

v1 = x (4) ! p o s i t i o n and v e l o c i t y

v2 = x (5)

v3 = x (6)

a c c e l 1 = 0 .0 ! no a c c e l in

ac c e l 2 = 0 .0 ! x and y

ca l l DipoleForce ( r1 , r2 , r3 , Force )

a c c e l 3 = Force /m ! D ipo l e Force Acce l

! ∗ Return d e r i v a t i v e s [ dr (1 ) / d t dr (2 ) / d t dr (3 ) / d t dv (1 ) / d t dv (2) / d t dv (3) / d t ]

der iv (1 ) = v1

der iv (2 ) = v2

der iv (3 ) = v3

der iv (4 ) = acc e l 1

de r iv (5 ) = acc e l 2

de r iv (6 ) = acc e l 3

return

end

A.4 FieldIntensity.f

subroutine F i e l d I n t e n s i t y ( x , y , z , I n t en s i t y )

! C a l c u l a t e s E l e c t r i c F i e l d I n t e n s i t y ; Used by Dipo l eForce . f

! I npu t s

! x Po s i t i o n s in L i g h t F i e l d

! y

! z

! Output

! I n t e n s i t y The I n t e n s i t y o f t h e l i g h t

complex∗8 Ef i e ld1 , E f i e l d 2

real ∗8 zo , wz , Rz , k , woz ! , I n t e n s i t y

real I n t en s i t y

wz=4.e−4 ! Gaussian wa i s t
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zo=3.141∗wz∗∗2 ./1083 . e−9 ! Gaussian Zo

Rz=z+zo ∗∗2.0/ z ! Gaussian Rz

k=2.∗3.141/1083. e−9 ! WaveVector

woz=wz∗Sqrt (1.0+( z/zo ) ∗∗2 .0)

E f i e l d1 = wz/woz∗EXP(−(x∗∗2.0+y ∗∗2 .0) /(woz ∗∗2 .0) )∗EXP(CMPLX( 0 . , 1 . ) ∗(k∗(x∗∗2.0+y ∗∗2 .0) /(2 .0∗Rz)−ATAN(

z/zo )+k∗z ) )

E f i e l d 2 = wz/woz∗EXP(−(x∗∗2.0+y ∗∗2 .0) /(woz ∗∗2 .0) )∗EXP(CMPLX( 0 . , 1 . ) ∗(−k∗(x∗∗2.0+y ∗∗2 .0) /(2 .0∗Rz)−ATAN

( z/zo )−k∗z ) )

I n t en s i t y = 1 . / 4 . ∗ ( E f i e l d 1 + Ef i e l d2 ) ∗ (Conjg( E f i e l d 1 ) + Conjg( E f i e l d 2 ) )

return

end

A.5 GaussDist.f

FUNCTION GaussDist ( idum)

INTEGER idum

REAL GaussDist

EXTERNAL ran1

! Returns a norma l l y d i s t r i b u t e d d e v i a t e w i th z e ro mean and un i t var iance , u s ing ran1

! as t h e source o f uni form d e v i a t e s . A l l t aken from Numerical Rec ipes f o r Fortran

INTEGER i s e t

REAL fac , gset , rsq , v1 , v2 , ran1

SAVE i s e t , g s e t

DATA i s e t /0/

i f ( idum . l t . 0 ) i s e t=0 ! R e i n i t i a l i z e

i f ( i s e t . eq . 0 ) then !We don ’ t have an e x t r a d e v i a t e handy , so p i c k two

1 v1=2.∗ ran1 ( idum)−1. ! uni form numbers in t h e square e x t end i n g from −1 to

v2=2.∗ ran1 ( idum)−1. !+1 in each d i r e c t i o n .

r sq=v1∗∗2+v2∗∗2 ! See i f t h ey are in t h e un i t c i r c l e , and i f t h ey are

i f ( r sq . ge . 1 . . or . r sq . eq . 0 . ) goto 1 ! not t r y aga in .

f a c=sqrt (−2.∗ log ( r sq ) / rsq ) !Now make the Box−Mul l e r t r an s f o rma t i on to

gse t=v1∗ f a c ! g e t two normal d e v i a t e s . Return one and save t h e

GaussDist=v2∗ f a c ! o t h e r f o r nex t t ime .

i s e t=1 ! Se t F lag

else !We have an e x t r a d e v i a t e handy

GaussDist=gse t ! So r e t u rn i t .

i s e t=0 ! And unse t t h e f l a g

endif

return

END

A.6 ran1.f

FUNCTION ran1 ( idum)

INTEGER idum , IA , IM, IQ , IR , NTAB, NDIV

REAL ran1 , AM, EPS, RNMX

PARAMETER ( IA=16807 , IM=2147483647 , AM=1./IM, IQ=127773 , IR=2836 , NTAB=32, NDIV=1+(IM−1)/NTAB,EPS

=1.2e−7,RNMX=1.−EPS)

! ”Minimal ” random number g ene ra t o r o f Park and M i l l e r w i th Bays−Durham s h u f f l e and

! added s a f e g u a r d s . Returns a uniform random d e v i a t e be tween 0 .0 and 1 .0 ( e x c l u s i v e

! o f t h e endpo in t v a l u e s ) . Ca l l w i t h idum a n e g a t i v e i n t e g e r to i n i t i a l i z e ; t here−
! a f t e r , do not a l t e r idum between s u c c e s s i v e d e v i a t e s in a sequence . RNMX shou l d

! approx imate t h e l a r g e s t f l o a t i n g v a l u e t h a t i s l e s s than 1 .

INTEGER j , k , i v (NTAB) , iy

SAVE iv , iy

DATA i v /NTAB∗0/ , iy /0/

i f ( idum . le . 0 . or . i y . eq . 0 ) then ! I n i t i a l i z e

idum = max(−idum , 1 ) ! Be sure to p r e v en t idum=0

do j=NTAB+8,1,−1 ! Load the s u f f l e t a b l e ( a f t e r 8 warm−ups )

k = idum/IQ

idum = IA∗( idum−k∗IQ)−IR∗k
i f ( idum . l t . 0 ) idum=idum+IM

i f ( j . le .NTAB) iv ( j )=idum

enddo

i y=iv (1)

endif
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k=idum/IQ ! S t a r t here when not i n i t i a l i z i n g

idum=IA∗( idum−k∗IQ)−IR∗k ! Compute idum=mod( IA∗idum , IM) w i t hou t o v e r f l ow s by

i f ( idum . l t . 0 ) idum=idum∗IM ! Schrage ’ s method .

j=1+iy /NDIV ! Wi l l be in t h e range 1 :NTAB.

i y=iv ( j ) ! Output p r e v i o u s l y s t o r e d va l u e and r e f i l l t h e s h u f f l e

i v ( j )=idum ! t a b l e

ran1=min(AM∗ iy ,RNMX) ! Because u s e r s don ’ t e x p e c t endpo in t v a l u e s

return

end

A.7 rk4.f

subroutine rk4 ( x , nX, t , tau , derivsRK , param )

integer∗4 MAXnX, MAXnparam

parameter ( MAXnX = 50 , MAXnparam = 1000 )

integer∗4 nX

real ∗8 x (nX) , t , tau , param(MAXnparam)

! Runge−Kutta i n t e g r a t o r (4 th order )

! Inpu t s

! x Current v a l u e o f dependent v a r i a b l e

! nX Number o f e l emen t s in dependent v a r i a b l e x

! t Independent v a r i a b l e ( u s u a l l y t ime )

! tau Step s i z e ( u s u a l l y t ime s t e p )

! derivsRK Righ t hand s i d e o f t h e ODE; derivsRK i s t h e

! name o f t h e f u n c t i o n which r e t u rn s dx/ d t

! C a l l i n g format derivsRK ( x , t , param , dxd t ) .

! param Extra parameters pas sed to derivsRK

! Output

! x New va l u e o f x a f t e r a s t e p o f s i z e tau

integer∗4 i

real ∗8 ha l f t au , t h a l f , t f u l l

real ∗8 F1(MAXnX) , F2(MAXnX) , F3(MAXnX) , F4(MAXnX) , xtemp(MAXnX)

! ∗ Eva lua t e F1 = f ( x , t ) .

ca l l derivsRK ( x , t , param , F1 )

! ∗ Eva lua t e F2 = f ( x+tau∗F1/2 , t+tau /2 ) .

ha l f t au = 0.5∗ tau
t h a l f = t + ha l f t au

do i =1,nX

xtemp( i ) = x( i ) + ha l f t au ∗F1( i )

enddo

ca l l derivsRK ( xtemp , t h a l f , param , F2 )

! ∗ Eva lua t e F3 = f ( x+tau∗F2/2 , t+tau /2 ) .

do i =1,nX

xtemp( i ) = x( i ) + ha l f t au ∗F2( i )

enddo

ca l l derivsRK ( xtemp , t h a l f , param , F3 )

! ∗ Eva lua t e F4 = f ( x+tau∗F3 , t+tau ) .

t f u l l = t + tau

do i =1,nX

xtemp( i ) = x( i ) + tau∗F3( i )

enddo

ca l l derivsRK ( xtemp , t f u l l , param , F4 )

! ∗ Return x ( t+tau ) computed from four t h−order R−K.

do i =1,nX

x( i ) = x( i ) + tau /6 .∗ (F1( i ) + F4( i ) + 2 .∗ ( F2( i )+F3( i ) ) )

enddo

return

end
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A.8 velc.f

FUNCTION ve l c (Vave , idum)

INTEGER idum

REAL ve l c

EXTERNAL ran1

! Returns a norma l l y d i s t r i b u t e d d e v i a t e w i th z e ro mean and un i t var iance , u s ing ran1

! as t h e source o f uni form d e v i a t e s . A l l t aken from Numerical Rec ipes f o r Fortran

REAL Vave , Vel , Prob , Maxwell

REAL ran1

i f (Vave . le . 0 ) pause ’Need a p o s i t i v e average v e l o c i t y ’

1 Vel=3000.∗ ran1 ( idum) ! uni form numbers in t h e square e x t end i n g from 0 to 3000

Prob=0.0009∗ ran1 ( idum) ! and 0 to 0 .0009

Maxwell = 32 . / (3 . 141∗∗2 .∗Vave ∗∗3 . ) ∗Vel ∗∗2.∗EXP(−4./3.141∗( Vel/Vave ) ∗∗2 . )

i f (Prob . gt . Maxwell ) goto 1

ve l c=Vel

return

END
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Appendix B

Bichromatic Force Fortran Code

B.1 uvforce.f90

program f o r c e

implicit none

! Cons tants

double precision pi , lambda , k , hbar , gamma, f o r f a c t , v e l f a c t , mass

parameter ( p i =3.141592654 , lambda=388.98E−9,hbar=1.054571E−34,gamma=9.36E6 , mass=6.64E−27)

parameter ( k=2.0∗ pi /lambda , f o r f a c t=hbar∗k∗gamma, v e l f a c t=gamma/k)

! Inpu t Parameters

integer datapo ints

parameter ( datapo ints=41)

double precision : : dsym = (15 .∗gamma) ! Detuning

double precision : : wR = (1 .22∗15 .∗gamma) ! Rabi Freq

double precision : : phi = −2.0∗ pi ! ∗(−3.0) /2 .0 ! Phase

double precision : : r t o l = 1 .0E−12 ! R e l a t i v e To lerance

double precision : : a t o l = 1 .0E−12 ! Ab so l u t e To lerance

!ODE Parameters

integer neqn ! Number o f D i f f e r e n t i a l Equa t ions

double precision h0 ! I n i t i a l S tep S i z e f o r ODE So l v e r

integer lwork , l iwork

parameter ( neqn=5)

parameter ( lwork=24+neqn∗(48+2∗neqn ) , l iwork=37+neqn )

double precision work ( lwork )

integer iwork ( l iwork )

double precision rpar (8) ! Real Parameters f o r t h e ODE So l v i n g Process

integer i pa r (1 ) ! I n t Parameters f o r t h e ODE So l v i n g Process

integer i d i d ! Return Code o f t h e ODE So l v e r

external f eva l , j eva l , s o l ou t

integer i j a c , mljac , mujac , i ou t

double precision u (5) ! Bloch Vector ( u1 , u2 , u3 , z , v )

! Loop Parameters

integer i , j , ntime

double precision t s t a r t , tstop , tend , dt

double precision f o r s , vo , dv

character∗2 f i l ename

dv = v e l f a c t /1 .0 ! V e l o c i t y Step S i z e

vo = −20.∗ v e l f a c t − dv ! V e l o c i t y S t a r t − Step S i z e

! Loop Over V e l o c i t i e s

do j = 1 , datapo ints

vo = vo + dv
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! Rese t ODE So l v e r Inpu t s

do i = 1 , lwork ! Use De f au l t Parameters f o r work

work ( i ) = 0 .0

end do

do i = 1 , l iwork ! Use De f au l t Parameters f o r iwork

iwork ( i ) = 0

end do

i d i d = 0

i j a c = 0

mljac = neqn

mujac = neqn

iout = 0

!ODE Parameters

rpar (1) = gamma

rpar (2) = −gamma/2 .0

rpar (3) = dsym

rpar (4) = k

rpar (5) = 4.0∗wR∗ds in ( phi /4 . 0 )

rpar (6) = 4.0∗wR∗dcos ( phi /4 . 0 )

rpar (7) = −2.0∗hbar∗k/mass∗wR∗ds in ( phi /4 . 0 )

rpar (8) = −2.0∗hbar∗k/mass∗wR∗dcos ( phi /4 . 0 )

! I n i t i a l Values

u (1) = 0 .0 ! I n i t i a l

u (2) = 0 .0 ! Bloch

u (3) = −1.0 ! Vector

u (4) = 0 .0 ! Z − meters

u (5) = vo !V − meters / second

! Se t I n t e g r a t i o n Times

t s t a r t = 0 .0E0

dt = 10 .0∗ . 005/gamma ! 1 . 0∗ . 005/gamma ! tau /10

tend = 40 .0∗1 .0/gamma ! 4 . 0∗1 . 0/gamma !4 tau

ntime = i d i n t ( ( tend−t s t a r t ) /dt ) !# o f S t ep s

h0 = dt /1000.0 ! I n i t i a l S tep S i z e

! Setup Output F i l e

write ( f i l ename , ’ ( I2 . 2 ) ’ ) j

open(unit=88, f i l e=’ output ’ // f i l ename // ’ . dat ’ )

! Loop on Time

do i = 1 , ntime

ts top = t s t a r t + dt

! Force

f o r s = mass∗ rpar (8) ∗ds in ( rpar (4) ∗u (4) )∗dcos ( rpar (3) ∗ t s t a r t )∗u (1) + mass∗ rpar (7) ∗
dcos ( rpar (4) ∗u (4) )∗ds in ( rpar (3 ) ∗ t s t a r t )∗u (2)

! Write to F i l e : t , z , v , F , u1 , u2 , u3

write (88 ,9999) t s t a r t , u (4 ) ,u (5 ) / v e l f a c t , f o r s / f o r f a c t , u (1 ) ,u (2 ) ,u (3 )

! I n t e g r a t e Over Time Step d t

ca l l bim(neqn , f eva l , t s t a r t , tstop , u , h0 , r t o l , ato l , j eva l , i j a c , mljac , mujac , work , lwork ,

iwork , l iwork , rpar , ipar , iout , i d i d )

i f ( i d i d .ne . 0 ) then

write (∗ ,∗ ) ’ERROR: returned i d i d =’ , i d i d

end i f

end do

9999 format (7F25 . 9 )

close (88)

end do

stop

end

! Sub rou t ine implements Op t i c a l Bloch Equat ions (OBEs)

subroutine f e v a l ( neqn , t , u , du , i e r r , rpar , i pa r )

integer neqn , i e r r , i pa r

double precision t , u ( neqn ) ,du( neqn ) , rpar (8) , a , b , da , db

! rpar (1) = gamma

! rpar (2) = −gamma/2 .0
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! rpar (3) = dsym

! rpar (4) = k

! rpar (5) = 4.0∗wR∗ ds in ( ph i /4 . 0 )

! rpar (6) = 4.0∗wR∗ dcos ( ph i /4 . 0 )

! rpar (7) = −2.0∗ hbar∗k/mass∗wR∗ ds in ( ph i /4 . 0 )

! rpar (8) = −2.0∗ hbar∗k/mass∗wR∗ dcos ( ph i /4 . 0 )

! Op t i c a l F i e l d s

a = rpar (5 ) ∗ds in ( rpar (4 ) ∗u (4) )∗ds in ( rpar (3) ∗ t ) ! Im(Omega)

b = rpar (6) ∗dcos ( rpar (4) ∗u (4) )∗dcos ( rpar (3) ∗ t ) ! Re(Omega)

da = rpar (7) ∗dcos ( rpar (4) ∗u (4) )∗ds in ( rpar (3 ) ∗ t ) ! dIm(Omega) / dz

db = rpar (8) ∗ds in ( rpar (4) ∗u (4) )∗dcos ( rpar (3) ∗ t ) !−dRe (Omega) / dz

! D e r i v a t i v e s

du (1) = rpar (2) ∗u (1) − a∗u (3)

du (2) = rpar (2) ∗u (2) − b∗u (3)

du (3) = a∗u (1) + b∗u (2) − rpar (1) ∗u (3) − rpar (1)

du (4) = u (5)

du (5) = db∗u (1) + da∗u (2)

return

end

! Sub rou t ine f o r e v a l u a t i n g t h e Jacob ian o f t h e f u n c t i o n

! Jus t Dummy, s i n c e Jacob ian i s c a l c u l a t e d numer i c a l l y

subroutine j e v a l ( neqn , t , y , jac , ldim , i e r r , rpar , i pa r )

integer neqn , ldim , i e r r , i pa r

double precision t , y ( neqn ) , j a c ( ldim , neqn ) , rpar

return

end

! Sub rou t ine f o r ou tpu t a f t e r each s t e p

! Jus t Dummy, s i n c e no ou tpu t a f t e r each s t e p

subroutine s o l ou t (m, t , y , f , k , ord , i r t r n )

integer m, k , ord , i r t r n

double precision t ( k ) , y (m, k ) , f (m, k )

return

end
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Appendix C

Force Map Video Analysis

C.1 ImageJ Script

setBatchMode ( true ) ;

// f i l e numbe r = ”001”; // Keep Commented when Running Using Bash S c r i p t

RotAngle = −45.; // Rota t ion Angle f o r Images

r e c t=newArray (195 ,261 ,473 ,172) ; // Rec tang l e to Create L ineou t s

s eq l eng = 250 ; // Number o f F i l e s to Process in Each Sequence ( Determined from Computer ’ s

Memory L im i t a t i o n s )

LineoutFolder = f i l enumber+”/Lineouts /” ; // Fo lder to Save L ineou t s to

saveDivided = 0 ; // Se t to 1 to Save Div ided Images

DividedFolder = f i l enumber+”/Divided/” ; // Fo lder to Save Div ided Images to

// Find the Number o f Frames in t h e AVI f i l e

AVIf i l e = ”AVIs/”+f i l enumber+” . av i ” ;

run ( ”AVI . . . ” , ” s e l e c t =[ AVI f i l e ] use convert ” ) ;

numFrames = nS l i c e s ;

l i s t l e n g=numFrames / seq l eng ; // Number o f Sequences to Loop Over

c l o s e ( ) ;

// Create Background Image

Bckgrnd f i l e = ”AVIs/”+f i l enumber+”b . av i ” ;

run ( ”AVI . . . ” , ” s e l e c t =[ Bckgrnd f i l e ] use convert ” ) ; // Import Background AVI

bckgndavi=ge tT i t l e ( ) ;

run ( ”Z Pro j ec t . . . ” , ” p r o j e c t i on =[Average I n t en s i t y ] ” ) ; // Create Average Image

bckgnd=ge tT i t l e ( ) ;

s e l e c t Image ( bckgndavi ) ;

c l o s e ( ) ;

// Loop over Sequences o f Data Images to Div ide /Rotate / Lineout

for ( i =0; i< l i s t l e n g ; i++) { // Loop Over Each Sequence to Process

f i l enum=i ∗ s eq l eng +1; // F i r s t F i l e o f t h e Sequence

endf i lenum = fi lenum+seqleng −1; // Last F i l e o f t h e Sequence

run ( ”AVI . . . ” , ” s e l e c t =[ AVI f i l e ] f i r s t=f i l enum l a s t=endf i lenum use convert ” ) ; // Import Images

datastack=ge tT i t l e ( ) ;

imageCalculator ( ”Divide c r ea t e 32−b i t s tack ” , datastack , bckgnd ) ; // Div ide Background

d iv ideds tack=ge tT i t l e ( ) ;

s e l e c t Image ( datastack ) ;

c l o s e ( ) ;

s e l e c t Image ( d iv ideds tack ) ;

i f ( saveDivided )

run ( ”Image Sequence . . . ” , ” format=TIFF name=[] s t a r t=0 d i g i t s=4 use save=[DividedFolder ] ” ) ;

run ( ”Rotate . . . ” , ” angle=RotAngle g r id=1 i n t e r p o l a t i o n=Bicubic en l a rge stack ” ) ; // Rotate A l l Images

makeRectangle ( r e c t [ 0 ] , r e c t [ 1 ] , r e c t [ 2 ] , r e c t [ 3 ] ) ; // Create Rec tang l e f o r L ineou t s

for (n=1; n<=nS l i c e s ; n++) { // Loop Over A l l Images in t h e Sequence

s e t S l i c e (n) ;
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run ( ”Clear Resu l t s ” ) ;

p ro f = g e tP r o f i l e ( ) ; // Get Average Lineout o f Current Image

for ( j =0; j<pro f . l ength ; j++)

se tResu l t ( ”” , j , p ro f [ j ] ) ;

updateResults ;

s a v e f i l e=LineoutFolder+ge t In f o ( ” s l i c e . l a b e l ” )+” . x l s ” ; // Save Lineout to L ineou tFo l d e r w i th Fi lename

Given by Image name

saveAs ( ”Measurements” , s a v e f i l e ) ;

}
c l o s e ( ) ;

}
c l o s e ( ) ;

C.2 Mathematica Scripts

(∗ f i l e numbe r = 001 (∗ Keep Commented when Running in Bash ∗) ∗)
f o l d e r = StringTake [ ”000”<>ToString [ f i l enumber ] , −3 ] ; (∗ Fo lder w i th Data ∗)
o s c f i l e = StringTake [ ”000”<>ToString [ f i l enumber −0] ,−3]; (∗ Os c i l l o s c o p e Data F i l e ∗)
PowervTime = Import [ ” oscdata /WA000”<>o s c f i l e <>” .CSV” ] [ [ 3 ; ; , { 4 , 5 } ] ] ; (∗ Import O s c i l l o s c o p e Data ∗)

(∗ This Se c t i on Finds t h e Time o f t h e Laser Power Jump Using t h e De r i v a t i v e o f t h e O s c i l l o s c o p e Data ∗)
RabiDerivMax = Max[Table [ PowervTime [ [ i +10 ,2]]−PowervTime [ [ i , 2 ] ] , { i , 1 ,Length [ PowervTime ] −10} ] ] ; (∗ Max

Value o f D e r i v a t i v e ∗)
RabiMaxPos = Flatten [ Position [Table [ PowervTime [ [ i +10 ,2]]−PowervTime [ [ i , 2 ] ] , { i , 1 ,Length [ PowervTime ]−10} ] ,

RabiDerivMax ] ] [ [ 1 ] ] ; (∗ Pos i t i o n o f Max ∗)
RabiMaxTime = (PowervTime [ [ RabiMaxPos+10 ,1]]+PowervTime [ [ RabiMaxPos , 1 ] ] ) /2 ; (∗ Convert Array Po s i t i o n to

Time ∗)

(∗ This Se c t i on Conver t s O s c i l l o s c o p e Data to Rabi Frequency ∗)
Zero = 0 . 1 8 ; (∗ Zero O f f s e t o f Photod iode Vo l t age ∗)
Cal ib = 40 .∗ 4 0 . / 3 . 5 8 ; (∗ Photod iode Ca l i b r a t i o n ( Rabi Freq / Vo l t s ) ∗)
RabivTime = {#[ [ 1 ] ] ,Re [ ( (# [ [ 2 ] ] − Zero )∗Cal ib ) ˆ.5]}&/@PowervTime ; (∗ Convert I n t e n s i t y to Rabi Freq ∗)
Rabifunc = Interpolation [ RabivTime ] ; (∗ Find F i t t o Data ∗)

(∗ Import A l l L ineout Data and Prepend the As soc i a t ed Video Time ∗)
F i l e s = FileNames [ f o l d e r<>”/Lineouts /∗ . x l s ” ] ;

data = SortBy [Table [ (Prepend [#1 , ToExpression [ StringDrop [ StringDrop [ F i l e s [ [ i ] ] , 1 3 ] , −6 ] ] ] & ) /@ Drop [

Import [ F i l e s [ [ i ] ] ] , 1 ] , { i , 1 , Length [ F i l e s ] } ] , First ] ; (∗ The Value o f 13 i s Dependent on Fo lder F i l e

S t r u c t u r e ∗)

(∗ This Se c t i on Finds t h e Time o f t h e Laser Power Jump Using t h e De r i v a t i v e o f Chi ˆ2 Type Values Between

L ineou t s ∗)
VidDerivMax = Max[Table [Norm[ ( data [ [ i , ; ; , 3 ] ] − data [ [ i + 5 , ; ; , 3 ] ] ) ] ,{ i , 1 ,Length [ data ] −5} ] ] ; (∗ Max Value o f

D e r i v a t i v e ∗)
VidDerivPos = Flatten [ Position [Table [Norm[ ( data [ [ i , ; ; , 3 ] ] − data [ [ i + 5 , ; ; , 3 ] ] ) ] ,{ i , 1 ,Length [ data ]−5} ] ,

VidDerivMax ] ] [ [ 1 ] ] ; (∗ Pos i t i o n o f Max ∗)
VidMaxTime = ( data [ [ VidDerivPos +5 ,1 ,1] ]+ data [ [ VidDerivPos , 1 , 1 ] ] ) /2 ; (∗ Convert Array Po s i t i o n to Time ∗)

(∗ This Se c t i on Rep laces t h e Video Time wi th Rabi Frequency in t h e Data ∗)
p i x e l c a l = . 0 3 0 ;

o f f s e t t ime = VidMaxTime − RabiMaxTime ; (∗ O f f s e t Time Between Video and O s c i l l o s c o p e ∗)
(∗ Drop Video Frames Before O s c i l l o s c o p e Data S t a r t s ∗)
data = Select [ data , ( PowervTime [ [−1 ,1 ] ]+ o f f s e t t ime ) >#[[1 ,1]]>(PowervTime [ [ 1 , 1 ] ]+ o f f s e t t ime ) &] ;

CalData = Map[{ Rabifunc [#[ [1 ] ] − o f f s e t t ime ] ,# [ [ 2 ] ] ∗ p i x e l c a l ,# [ [ 3 ] ]}& , data , { 2 } ] ; (∗ Add Rabi Frequency in

Place o f Video Time ∗)

(∗ This Se c t i on Saves t h e Data in a Mathematica Format ∗)
SetDirectory [ f o l d e r ] ; (∗ Fo lder o f Current F i l e Number ∗)
CalData>>data .m; (∗ Save Data ∗)

s ta r tpx = 1 ;

endpx = All ;

numRabipoints = numPoints ;

numPospoints = numPoints ;

f o l d e r = StringTake [ ”000”<>ToString [ f i l enumber ] , −3 ] ; (∗ Fo lder w i th Data ∗)

SetDirectory [ f o l d e r ] ; (∗ Fo lder o f Current F i l e Number ∗)
data = << data .m;

data = SortBy [ data [ [ s ta r tpx ; ; endpx , ; ; , ; ; ] ] , First ] ;

NumPixel = Length [ data [ [ 1 , ; ; , 2 ] ] ] ;
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MinRabi = Min [ data [ [ ; ; , 1 , 1 ] ] ] ;

MaxRabi = Max[ data [ [ ; ; , 1 , 1 ] ] ] ;

RabiStep = (MaxRabi−MinRabi ) /( numRabipoints−1) ;

I f [ numPospoints > NumPixel , numPospoints = NumPixel ] ;

PosStep = NumPixel / numPospoints ;

RabiAveraged = Table [Table [ datava lues = Mean[ Select [ data [ [ ; ; , Pixe l , ; ; ] ] , Rabi<=#[[1]]<(Rabi+RabiStep ) & ] ] ;

I f [Length [ datava lues ] !=3 ,{} ,{ datava lues [ [ 2 ] ] , datava lues [ [ 1 ] ] , datava lues [ [ 3 ] ] } ] , { Rabi , MinRabi−RabiStep

/2 ,MaxRabi , RabiStep } ] ,{ Pixel , 1 , NumPixel , 1 } ] ;

PosAveraged = Table [Table [Mean[ RabiAveraged [ [Round [ j ∗PosStep ]+1 ; ;Round [ j ∗PosStep+PosStep ] , i , ; ; ] ] ] , { j , 0 ,

numPospoints−1} ] ,{ i , 1 ,Length [ RabiAveraged [ [ 1 ] ] ] } ] ;

Put [ PosAveraged , ”Averaged”<>ToString [ numRabipoints]<>” .m” ] ;
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