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Abstract of the Dissertation

Quantum Computation and Quantum Measurements with Mesoscopic

Superconducting Structures

by

Qiang Deng

Doctor of Philosophy

in

Physics

Stony Brook University

2013

Systems of mesoscopic Josephson junctions are at present among the leading can-

didates for development of practical qubits for quantum information devices. Al-

though different qubit structures have been realized with Josephson junctions, their

common feature is the design that is optimized to overcome the problem of deco-

herence by the low-frequency noise that exists in all solid-state structures. In the

presented dissertation research, we propose and study an alternative approach of

direct suppression of noise by a feedback loop based on the low-frequency quantum

measurements. The minimal noise induced in the qubit by such a feedback loop

is calculated under the conditions of continuous quantum-limited measurements.

Another obstacle facing the quantum Josephson junction circuits is the informa-

tion transfer between the circuit elements. Here we study the quantum dynamics

of dual-rail arrays of nSQUIDs characterized by a negative inductance between its

arms, which hold promise for quantum information transfer. The scaling and deco-

herence properties of these arrays are analyzed. Information transfer along nSQUID
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arrays can also be used to implement adiabatic quantum computation (AQC), an

alternative to the gate-model approach to quantum computation that is expected to

be more stable against the decoherence. Here we suggest fidelity of the ground state

as the quantitative measure of the ultimate effect of decoherence on AQC. We show

that decoherence-induced deformation of the ground state of an AQC algorithm is

characterized by the same noise correlators as those that determine the decoherence

time in the gate-model approach. Results for fidelity of a 16-qubit array at finite

temperatures are obtained numerically.
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Chapter 1

Introduction to Superconducting

Quantum Computing

1.1 Introduction to quantum computing

The concept of quantum computation was proposed by David Deutsch[1] in 1985,

when he was trying to find a physical foundation for the Church-Turing thesis[2, 3].

Also he attempted to define a computation model that can simulate arbitrary phys-

ical system efficiently. Naturally, he considered a computer based on quantum me-

chanics, i.e., the quantum computing, since quantum mechanics is the basic principle

followed by the physical system. Since then this idea drew a lot of attention, espe-

cially in 1994 when Peter Shor[4] put forward the Shor’s algorithm, showing that an

integer factorization can be accomplished in polynomial time using a quantum com-

puter. Afterward, several quantum algorithms were proposed, including the Grover’s

search algorithm[5] which is much faster (with complexity O(
√
N)) in comparison

to the classical searching algorithm (with complexity O(N)).

One of the most important features of these algorithms is quantum parallelism,

loosely speaking, ability of a quantum computing device to evolve simultaneously

along different classical computation trajectories. This ability implies that the sys-
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tem stays coherent during the computation process, however, any parasitic interac-

tions with other external degrees of freedom destroys the coherence of the quantum

evolution of a computing device. This “decoherence” problem represents a big chal-

lenge faced by quantum computing. In 1996 Robert Calderbank and Peter Shor[7],

and Andrew Steane[8] proposed the quantum error correcting codes to protect quan-

tum states against the decoherence produced by unavoidable coupling to external

environment. This CSS code is able to correct arbitrary errors in a single qubit by

encoding one qubit of quantum information with several physical entangled qubits.

Following this direction, an encouraging result - the threshold theorem[9, 10, 11, 12]

- was found. This theorem asserts that as long as the error rate of individual

quantum qubits and gates is below certain threshold, the fault-tolerant quantum

computing can be realized with a poly-logarithmically larger quantum circuit. The

precise value of the threshold depends on the assumed models of the environmental

noise and desired capability of the computer, but typically the threshold value of the

qubit quality factor value is estimated as 10−5 − 10−6. In 2005, it was proven that

the threshold can be as high as 1− 3% [13] provided that the number of qubits can

be made sufficiently large. Therefore, development of scalable qubits with relatively

large quality factors is the main goal of solid-state qubit research.

1.2 Qubit: A Two Level System

The basic building block of a classical computer is a bit of information, which can

take two values, 0 or 1, and a physical system with two possible states that represent

these two values. For the quantum computing, the notion of a bit is replaced by

the qubit, i.e., quantum bit. Physical qubit is a two-level quantum system and its

possible states span a two-dimension Hilbert space. Assume the basis state of this

system are |0〉 and |1〉, then an arbitrary state of the qubit |ψ〉 is a superposition

of the two basis states: |ψ〉 = c0|0〉 + c1|1〉. This means that a logical qubit of

information is encoded by the two coefficients c0 and c1. The quantum character of
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these coefficients as amplitudes of probability can be used to dramatically enhance

the computational capacity of a two-state system.

Although the theory of qubit advantages for information processing is quite

straightforward, the only real two-level systems available in solid state experiments

is spin-1/2, which is very difficult to isolate and manipulate individually because of

the weakness of magnetic interactions. Typical systems employed in these experi-

ments are all either “mesoscopic” or macroscopic, and have a very large number of

degrees of freedom. In this respect, the majority of experimental solid-state qubits

are effective two-level systems, which means that their dynamics is reduced to two

levels in some range of (typically low) energies and corresponding characteristic time

scales. For excitations on these time scales, employed in the computation process,

transitions to other energy levels can be ignored. In practice, this is realized typically

in a system with two lowest energy levels split by a small tunneling-produced energy

gap, and separated from other energy levels by a much larger characteristic gap ∆E.

If the thermal energy and other excitation energies are small, e.g., kBT � ∆E (kB

is the Boltzmann’s constant), the excitations can be suppressed exponentially and

the system works effectively as a two-level system.

The Hamiltonian of a two level system is determined by the energy splitting ε

and tunneling amplitude ∆ with the following general form:

Ĥ =
ε

2
σ̂z +

∆

2
σ̂x =

1

2

 ε ∆

∆ −ε

 . (1.1)

In the most basic designs of a qubit, the basis states |0〉 and |1〉 chosen to write

down this Hamiltonian, can be characterized typically by different values of some

classical collective degree of freedom, e.g., the number of Cooper pairs charging

a superconducting island in a charge qubit[21, 22, 23], or magnetic flux through a

superconducting loop in a flux qubit[24, 25, 26]. Tunneling between these two states

mixes them together and creates a characteristic level-crossing spectrum (Fig. 1.1).
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The eigenstates are generally a superposition of the |0〉 and |1〉 states, especially

at the degeneracy point, where ε = 0, and the eigenstates of Ĥ are the symmetric

and antisymmetric superposition of |0〉 and |1〉, which gives an equal probability

of occupying the two macroscopically distinct states. The time evolution of the



E

0

01

1

2

01 

2

01 

 

Figure 1.1: Eigenvalues of the Hamiltonian (1.1) for different values of the bias
ε. The eigenstates corresponding to these eigenvalues are generally a superposition
of the basis states |0〉 and |1〉. At the degeneracy point, the eigenstates are the
symmetric and anti-symmetric superposition of |0〉 and |1〉.

qubit (1.1) is governed by the Schrödinger equation. For an isolated system, the

final state |ψ(t)〉 and initial state |ψ(0)〉 are related via a unitary transformation

|ψ(t)〉 = exp(−iĤt/h̄)|ψ(0)〉. For a generic initial state, this corresponds to the

coherent oscillation between the two basis states. Assume |ψ(0)〉 = |0〉, then

|ψ(t)〉 = cos(Et/h̄)|0〉+ i sin(Et/h̄)|1〉, E =
1

2

√
ε2 + ∆2 . (1.2)

The probability of occupying the state |0〉 oscillates with time t as cos2(Et/h̄). Such

coherent quantum oscillations represent the most basic manifestation of quantum

coherence, which usually serves as the sign of the realization of coherent quantum

dynamics in qubit experiments.
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In real experiments, however, the qubits are always coupled to other “parasitic”

degrees of freedom collection of which constitutes “external environment” that leads

to eventual decoherence of coherent quantum qubit dynamics. A characteristic fea-

ture of such an environment is that it is coupled to a qubit through a dynamically

fluctuating random force, “noise”. In many cases, the nature of the environment

generating the external noise is not essential, and the qubit decoherence can be

understood directly in terms of the noise. To illustrate the concept of decoherence

in more details, consider one of such cases, when a two-level system is weakly and

diagonally coupled to a white noise:

H =
Ω

2
σz +

g

2
σzf̂(t) . (1.3)

The coupling constant g is assumed to be small. Since the system is not isolated

from its environment anymore, the language of density matrix [15, 16] should be

used, with its evolution equation

ih̄ρ̇ = [H, ρ] =
(

Ω + gf̂(t)
) 0 ρ01

ρ10 0.

 . (1.4)

The solution of this equation can be found immediately:

ρ01(t) = ρ01(0) exp

(
−iΩt

h̄

)
exp

(
i

h̄

∫ t

0

gf̂(t
′
)dt

′
)
. (1.5)

This equation has a clear physical meaning. When the two-level system is coupled

to the external noise, the energy difference between its levels fluctuates around the

noiseless value Ω. Since the relative phase shift between the two energy levels is

proportional to the energy difference, it becomes a random number, losing the defi-

nite structure (Ω/h̄)t as before. The precise value of ρ01(t) depends on the path of

f̂(t) which is a stochastic process, so only the average value can be determined. The

average value of ρ01(t) is decided by the statistical properties of f̂(t), most impor-
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tantly, the mean 〈f̂〉 and the correlation function 〈f̂(t1)f̂(t2)〉. For the stationary

white noise, these are:

〈f̂(t)〉 = 0, 〈f̂(t1)f̂(t2)〉 = 〈f̂(t1 − t2)f̂(0)〉 = 2πSfδ(t1 − t2) . (1.6)

Here 〈. . .〉 = Trenv(. . . ). The average value can always be taken to be zero, because

otherwise it can be combined with Ω. The correlation function is described by the

spectral density Sf (ω):

Sf (ω) =
1

2π

∫ ∞
−∞
〈f̂(t)f̂(0)〉e−iωt . (1.7)

For white noise the spectral density is constant. Average over the external degrees

of freedom gives:

〈ρ01(t)〉 = 〈ρ01(0)〉 exp

(
−iΩt

h̄

)
exp

(
− t

τϕ

)
, τ−1

ϕ =
πg2

h̄2 Sf . (1.8)

i.e., |〈ρ01(t)〉| decreases with time exponentially. Such exponential decay is charac-

terized by the characteristic time τϕ which is called coherence time. This time gives

roughly the time scale on which the system stays coherent.

1.3 Superconducting Quantum Computing

As a best-studied macroscopic quantum phenomenon, superconductivity gives rise to

several radically new effects. oNne of the most important examples is the Josephson

effect in a “Josephson junction” - weak link between the two bulk superconductors

[17, 18]. Josephson predicted for the first time that a dc current can flow across

the junction even without the voltage bias applied to it (the DC Josephson effect),

and an ac current is generated if there is a non-vanishing dc voltage drop across the

junction (the AC Josephson effect). Inclusion of one or two Josephson junctions in a

superconducting loop produces the SQUID(superconducting quantum interference

6



device) [20] which can be used to measure magnetic field with accuracy up to 10−15T

[19]. Another exciting application of Josephson junctions lies in quantum computing,

which benefits from the dissipationless nature of current flow in superconductors.

Several types of Josephson junction qubits: charge qubit[21, 22, 23], flux qubit[24,

25, 26], phase qubit [27], and their more recent generalizations have been realized.

Quantum coherent oscillations, a signature of macroscopic quantum dynamics of

these qubits, were observed in many experiments. As solid state devices, Josephson

junction circuits also have the advantage of scalability because of the well-established

microfabrication techniques like photo and electron beam lithography, and thin-

film deposition. These techniques can in principle be developed into fabrication

of the large scale circuits. Quantum Josephson junction circuits of several qubits

were demonstrated to perform necessary gate operations and measurements, making

present-day superconducting qubits one of the most promising qubit technologies.

One Josephson tunnel junction is a system of two mesoscopic superconducting

islands separated by a layer of insulator. The insulator is thin enough, typically 1−

2nm, so the macroscopic wavefunction of the Cooper pair condensate can penetrate

it, which leads to Cooper pair tunneling between the two superconducting islands

connected by the tunnel junction. At energies smaller than the superconducting

energy gap ∆, only the Cooper pairs can tunnel in the junctions, while the dissipative

quasiparticle tunneling is suppressed. Dissipationless tunneling of Cooper pairs plays

an essential role in Josephson junction qubits of various types.

1.3.1 Charge qubit

The simplest scheme of a Josephson junction qubit is provided by the single-Cooper-

pair box: a mesoscopic superconducting island coupled by a tunnel junction to a

large superconducting electrode. The Hamiltonian of the systems contains two parts,

charging energy and the Josephson coupling energy produced by the Cooper pair

tunneling. The charging energy arises from the imbalance of the number of Cooper

7
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Figure 1.2: (a) Scheme of the charge qubit: a single Cooper pair box. The box is
connected with the other superconducting island with an thin layer of insulator. The
charge energy is Ec ≡ (2e)2/(2C), where C is the overall capacitance C = Ce + CJ .
The tunneling energy is EJ . The number of extra Cooper pairs in the box is a
good quantum number. The balance number of the Cooper pairs in the box can
be adjusted by the external voltage Ve. (b) The equivalent circuit diagram of the
charge qubit: the box with a cross is the Josephson junction, which is coupled to
the electrode capacitively. (c) The spectrum in the limit Ec � EJ when ne = 0.5
(ne is the polarization charge and can be adjusted by the gate voltage). The lowest
two levels has n = 0, 1.

pairs on the island that gives rise to its finite electric charge. If the number of extra

Cooper pairs on the island is n, the electrostatic charging energy can be written

as (n − ne)2Ec, where Ec = (2e)2/2(CJ + Ce) is the charing energy of one Cooper

pair, CJ is the capacitance of the tunnel junction, and Ce is the capacitance between

the island and external electrode. The external electrode also generates an electric

field and induces a polarization charge ne on the capacitance Ce. The coupling

energy arises from the Cooper pair tunneling between the two superconductors and is

characterized with some tunneling amplitude which can be written as −EJ/2, where

EJ is called the Josephson energy. Then the total Hamiltonian of the Josephson

8



junction in the space of the number n of extra Cooper pair on the island is [45, 46]:

H = (n− ne)2Ec|n〉〈n| −
EJ
2

(|n〉〈n+ 1|+ |n+ 1〉〈n|) . (1.9)

Changing the ratio of Ec and EJ leads to different behavior of the junction. In the

regime of the charge qubit, the charging energy dominates the Hamiltonian, i.e.,

Ec � EJ , and the state of the system is well described by the number of the Cooper

pairs in the box. The quantization of the energy corresponds to the quantization of

number of Cooper pairs in the box in this case. It’s easy to see from the Hamiltonian

that it has a periodic structure as a function of the induced charge ne. The charging

energy spectrum stays the same under the change ne → ne + 1, so without loss of

generality, it’s assumed in the following that 0 ≤ ne ≤ 1.

For charge qubit, the number n of Cooper pairs is a good quantum number

and it’s convenient to work in the n representation. The energies are roughly the

parabolic function of the number of extra Cooper pairs En ≈ (n−ne)2Ec. If ne ≈ 0.5,

the state |0〉 and |1〉 have the smallest energy and separate with other eigenstates

by an energy gap ∆E ≈ 2Ec. If the thermal energy is low comparing to the energy

gap, i.e., Ec � kBT , the excitation to higher energy levels can be ignored, and the

system reduces to a two-level system and serves as a qubit. The energy splitting of

the two levels is around 2(ne − 1/2)Ec, and the tunneling amplitude between them

is −EJ/2. So the Hamiltonian can be effectively written as:

H = (ne −
1

2
)Ec (|0〉〈0| − |1〉〈1|)− EJ

2
(|0〉〈1|+ |1〉〈0|) . (1.10)

The coherent oscillation of the single-Cooper-pair box has been observed in time

domain by Nakamura et al.[21] for the first time. The period of the coherence

oscillation was around 100ps, and the coherence time was around 2ns. The readout

used in this experiment was a probe junction coupled to the box permanently, and

the measurement process itself was a major contribution of dephasing.
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Figure 1.3: Singe-Cooper-pair box as a charge qubit[21]. (a) Micrography of the
sample used in the experiment. The detector was a probe junction . (b) The
equivalent circuit diagram of the charge qubit. (c) Coherent oscillation observed in
the experiment, the period of the coherence oscillation was around 100ps, and the
coherence time was around 2ns.

1.3.2 Flux qubit

Another paradigm of superconducting qubit is the flux qubit where the correspond-

ing degree of the freedom used is flux instead of charge. An advantage of the flux

qubit is that the magnetic background is much cleaner compared to the charge im-

purities produced during the fabrication. A scheme of the flux qubit is shown in

Fig. 1.4. Instead of an isolated superconducting island, the Josephson junction is

10
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Figure 1.4: (a)Scheme of the flux qubit with a single Josephson junction (rf SQUID).
The Josephson junction is included in a superconducting loop, thread by the external
flux Φe, which is used to adjust the balance flux number. (b) The equivalent circuit
of the flux qubit. (c) The potential U(Φ) when β = 10 at Φe/Φ0 = 0.5. There are
two minimum around 0.5Φ0. The two lowest level lie in these two minimas.

included into a superconducting loop. The flux qubit works in the region where

EJ � Ec, and it’s more convenient to work with the phase operator ϕ̂. The phase

operator is directly related to the flux operator Φ, and the commutation with number

operator n̂ is well known:

ϕ̂ = 2π
Φ̂

Φ0

, [n̂, ϕ̂] = i, n̂ = i
∂

∂ϕ
. (1.11)

where Φ0 = πh̄/e is the magnetic flux quantum, and n̂ has been switched to the

phase representation. The tunneling energy of the Josephson junction in phase

representation is −EJ cos(ϕ̂). When the Josephson junction is included in the su-

perconducting loop, the magnetic field energy of the loop inductance L adds up to

the charging and coupling energy. Since EJ � Ec, the Cooper pairs can move nearly

continuously around the loop. The balance number of Cooper pairs ne becomes ir-

relevant with the system, and hence can be dropped from the Hamiltonian. So the
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system’s Hamiltonian becomes:

Ĥ = n2Ec − EJ cos(2π
Φ

Φ0

) +
(Φ− Φe)

2

2L
. (1.12)

Here Φe is the external flux and serves as the similar role as ne in charge qubit,

and the flux quantization replaces the role of Cooper pairs in charge qubit. The

dynamics of the flux is determined by the potential U(Φ), as is plotted in Fig. 1.4:

U(Φ) =
(Φ− Φe)

2

2L
− EJ cos(2π

Φ

Φ0

) . (1.13)

When β ≡ EJ/(Φ
2
0/4π

2L) > 1 and Φe ≈ Φ0/2, U(Φ) becomes a symmetric double

well potential around Φe. The two lowest eigenstates are localized around the two

minima. The separation to higher energy levels has the order of the harmonic

oscillation frequency around the minimal ∆E ∼ (EcEJ)1/2. If the temperature is

much lower than this scale, the system reduces effectively to a two-level system, i.e.,

the qubit.

A physical realization of the flux qubit stated above was the rf SQUID[25],

and the coherent superposition of the two states has been observed. In another

experiment, where the flux qubit included multiple Josephson junctions instead of

one, the coherent oscillation was also observed, and the observed dephasing time

was 20ns[26].
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Figure 1.5: Observation of the coherent state in rf SQUID [25]. (a) rf SQUID
Potential. The left well is the state with 0 flux and right well with one flux quantum.
The two excited state |0〉 and |1〉 are generated from |i〉 by absorbing the photon.
(b) Level-crossing of rf SQUID. Near the anti-crossing point, the eigenstates are
the symmetric and anti-symmetric superposition of |0〉 and |1〉: (|0〉+ |1〉)/

√
2 and

(|0〉 − |1〉)/
√

2. (c) The observed anti-crossing in the experiment.
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Figure 1.6: Coherent oscillation in flux qubit [26].(a) Scanning electron micrography
of the flux qubit including three Josephson junctions(the small loop) and attached
SQUID (the large loop). (b) The equivalent circuit of the flux qubit. (c) The
observed coherent oscillation in the flux qubit, the coherence time was around 20ns.
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1.3.3 Phase qubit and Transmon qubit

One of the main challenges of quantum computation is the short coherence time.

Charge qubit, where EC � EJ , is very sensitive to the charge noise caused by the

fluctuation of offset charges; flux qubit, where EJ � EC , is very sensitive to the

external flux noise. One approach to this problem is to design the qubit in such

a way that the degree of freedom used by the qubit system is separated from the

external environment. Another approach is to eliminate the sensitivity by tailoring

the quantum circuit and find a “sweet-spot” for operation. This section will briefly

introduce two corresponding examples, phase qubit[27, 28] and transmon[29].

As the name indicated, the different states of the phase qubit are distinguished

by phase difference across the Josephson junction. Consider the following circuit

(Fig. 1.7) of a Josephson junction. The voltage, current and phase across the junc-

,V

eI

)(a

eI

RI

CI

I

)(b

  

 

 

Figure 1.7: The schematic and equivalent circuit of the phase qubit. (a) Schematic
of a Josephson junction, which serves as a phase qubit. The voltage and phase
across the junction is V and δ. (b) The equivalent circuit Josephson junction. The
external current is Ie, which equals the summation of the three branches: IR, IC
and I.

tion are V , I and δ, which are related by the relations δ̇ = 2πV/Φ0 and I = I0 sin δ;

the self-inductance of the junction is C, and the junction is shunted by the resistance

R. The external current Ie equals the summation of the current in three branches:

Ie = IC + IR + I , I = I0 sin δ , (1.14)

IC = C
Φ0

2π
δ̈ , IR =

Φ0

2π

δ̇

R
. (1.15)

15



So the motion of the phase δ is governed by the following equation:

C

(
Φ0

2π

)2

δ̈ +
1

R

(
Φ0

2π

)2

δ̇ +
∂U

∂δ
= 0 , (1.16)

U(δ) = −I0
Φ0

2π
(cos δ +

Ie
I0

δ) . (1.17)

The potential U(δ) has a washboard form (Fig. 1.8). For Ie < I0, local minimum

exists and quantized states can be trapped around the bottom of the well. The

lowest two levels can serve as a qubit, i.e., phase qubit.

)(U


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

 

 

 

 

 

 

 

 

 

 

 

 

 

)(a )(b

Figure 1.8: The potential U(δ). (a) U(δ) has a wash-board form, the local minimum
could trap the phase if Ie/I0 < 1. (b) The enlarged plot of a local minimum. Discrete
quantum states lie around the bottom of the potential well and the lowest two serve
as the qubit states.

The scheme and circuit of the transmon qubit are shown below. Similar to

the charge qubit, the brick of the transmon qubit is a Cooper pair box. Also the

Hamiltonian of the transmon qubit has the same form to the charge qubit:

Ĥ = 4EC(n̂− ng)2 − EJ cos φ̂ . (1.18)

where EC = e2/2Cnet, Cnet = CJ + CB + Cg, CJ and Cg are junction capacitance

and gate capacitance. The additional capacitance CB can be large and hence lower
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Figure 1.9: The circuit of a transmon qubit [29]. There are two Cooper pair boxes
in the transmon qubit, the additional capacitance can lower the charging energy
significantly.

EC . The transmon benefits from the higher ratio of Josephson energy and charging

energy EJ/EC (for transmon qubit, this ratio is several tens to several hundreds),

because this ratio will suppress the charge dispersion exponentially and hence re-

duce the sensitivity to the charge noise significantly while lose the anharmonicity

only in a weak power law. In other words, the transmon qubit trades a little anhar-

monicity for a huge increment in robustness. With the help of a three-dimensional

superconducting cavity, the T2 coherence time can be improved to 92µs[30].

1.4 Adiabatic Quantum Computation

In 2001 Farhi, Goldstone, Gutmann and Sipser [31] proposed an quantum algo-

rithm based on the adiabatic evolution of the quantum system to solve the classical

optimization problems, which started a new direction of realization of quantum

computation-adiabatic quantum computation (AQC). Unlike the usual gate-model

quantum computation, where a sequence of discrete gate transformations are ap-

plied to the system, the calculation in AQC is “continuous”. AQC encoded the

solution of the problem into the ground state of a target Hamiltonian, and tracked

the adiabatic quantum evolution to reach that ground state. Assume the target
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Hamiltonian is Hp whose ground state |ψp〉 is difficult to find, consider the following

time-dependent Hamiltonian:

Ĥ(s) = sĤp + (1− s)Ĥb . (1.19)

where Ĥb is a simple Hamiltonian whose ground state |ψb〉 is readily known, and

usually a superposition of all basis states. s = t/tf is normalized time with tf as the

total time of the evolution. Based on the adiabatic theorem[32], if the evolution is

slow enough and the ground state is non-degenerate during the evolution, starting

from state |ψb〉, the system will stay on the ground state and finally arrives at |ψp〉.

In order for the adiabatic theorem to hold, the evolution of the Hamiltonian should

be slow enough, which could be related to the minimum energy gap between the

ground state and first excited states ∆min. The time scale needed for a successful

AQC roughly goes as ∆−2
min [33].

A possible advantage of AQC is that the energy gap ∆min gives a natural

protection against the thermal noise if the temperature is small compared to the

gap[34, 35]. Encouragingly, there is no less power of AQC than conventional quan-

tum computation. Aharonov et al. proved the equivalence between AQC and con-

ventional quantum computation, in the sense that any given quantum algorithm

can be adiabatic simulated in polynomial complexity [36]. Furthermore, a set of

Hamiltonians were proved to be universal [38, 39, 40, 41]. J.D. Biamonte and P.J.

Love [41] showed that the following Hamiltonians are universal, i.e., any quantum

circuit can be implemented adiabatically using the terms like these:

HZZXX =
∑
i

hiσ
z
i +

∑
i

∆iσ
x
i +

∑
i,j

Jijσ
z
i σ

z
j +

∑
i,j

Kijσ
x
i σ

x
j . (1.20)

An effective method to find the ground state of some spin system of these type is

quantum annealing [42, 43]. In [44] the ground state of an artificial Ising spin system

with eight flux qubit and programmable spin-spin couplings were solved with the

18



quantum annealing method in experiment.
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Chapter 2

Quantum Limited Measurement

Quantum measurement is a fundamental issue in quantum mechanics which also

causes some deep philosophical problems, such as the nonlocality[47] or many-world

interpretation[48]. But in a practical point of view, quantum measurement is a well

formalized theory[49]. Any detector is a double edge sword: telling the value of the

measured quantity while destroying the original state. This chapter focuses on the

weak continuous measurement and shows that quantum mechanics puts a limit on

detector, and this limit could be achieved in mesocopic detectors[59].

2.1 Measurement and Weak continuous Measure-

ment

Quantum measurement was first rigorously formulated by John von Neumann[49],

which is comprised by the probability interpretation of a wavefunction and the

wavefunction reduction or collapse after the measurement. Consider the quantum

measurement of a system with one degree of the freedom. The initial wavefunction

is |ψ〉 =
∑

n pn|ψp〉, where |ψp〉
′
s are the eigenstates of the measured quantity X.

The outcome is the eigenvalue of X, for example Xm, with probability |pm|2. The

wavefunction collapses to |ψm〉 after the measurement.
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This is an ideal description of measurement where a detector is assumed to

have a perfect correlation with the measured system. Also this is called projected

measurement because the wavefunction is projected to one of the eigenfunction

with certainty after the measurement. Including the detector’s degree of freedom,

the wavefunction evolves as the following way :

|ψ〉 ⊗ |D〉 =

(∑
n

pn|ψn〉

)
⊗ |D〉 −→

∑
n

pn (|ψn〉 ⊗ |Dn〉) . (2.1)

where |D〉 is the initial state of the detector and |Dn〉 are the outcome state corre-

sponding to |ψn〉, i.e., Dn are the “reading’s” of the detector and they are macro-

scopically distinguishable. Since the system and the detector are perfectly coupled

together, the reading tells the state of the system. To realize a projected measure-

ment, the coupling between the detector and measured system is usually very strong.

To see a concrete example, consider the measurement of the spin of an electron.

During the measurement, the electron passes through a magnetic field in ẑ direc-

tion, and suppose the electron is initially polarized in x direction. The wavefunction

of the electron evolves during the measurement as following:

|ψi〉 =
| ↑〉+ | ↓〉√

2
⊗ φ(z) −→ |ψf〉 =

1√
2

(| ↑〉 ⊗ φ(z − a) + | ↓〉 ⊗ φ(z + a)) . (2.2)

where φ(z) is a localized envelope of electron in real space, for example, an Gaussian

wavepacket φ(z) = 1√
2πλ2

exp(− z2

2λ2 ). After passing the magnetic field, the centers of

the wavepackets separate in real space, and each wavepacket has a definite value of

σz. So the position of the electron reads out the spin. Note that in order to get a def-

inite value of the spin, the two centers of the wavepackets should be distinguishable,

i.e., the magnetic field should be strong enough.

Although the strong coupling between the measured system and the detec-

tor could pull out a large part of the information, usually it also disturbs the

measured system a lot. Another paradigm of measurement is continuous weak
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Figure 2.1: Measurement of the electron’s spin. The electron passes through the
magnetic field, and deflects to different positions due to the different spin state. In
this case, the position and spin are coupled together. The reading of the position,
which is macroscopic distinguishable, tells the electron’s spin.

measurement[50], in which the coupling between the system and detector is weak.

The measurement gives part of the information and gives little perturbation to the

measured system. Consider the spin measurement in Fig. 2.1, if the magnetic field is

weak and the two wavepackets overlap after passing the field, only a probable value

could be given out by the measurement; in the meantime, the wavepackets are more

similar to the original one.

Below is the general schema of the continuous weak measurement [51]. The

quantity being measured is the system “coordinate” x̂ whose eigenvalues are xj, and

x̂ is coupled to the detector “force” f̂ . The coupling is weak enough so that the

linear-response theory is applicable. The full Hamiltonian contains three parts: the

system Hamiltonian Ĥs, the detector Hamiltonian ĤD and the coupling Hamiltonian
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ĤI ≡ x̂ · f̂ .

Ĥ = Ĥs + ĤD + ĤI . (2.3)
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Figure 2.2: Schema of the continuous weak measurement. The measurable x̂ is
coupled to the detector via ĤI = x̂f̂ . The output is ô, which is composed of the
output noise q̂ and response signal δq̂. The characteristic of the detector is given by
the commutation relation of q̂ and f̂ : [q̂(t), f̂(τ)]. The interaction ĤI is weak enough
that the perturbation to original system is weak; on the other side the information
acquired is limited in finite time.

The output of the detector is ô. Using the perturbation theory[54], the output

is:

ô(t) = q̂(t) + δq̂(t) = q̂(t)− i

h̄

∫ t

0

dτ
[
q̂(t), f̂(τ)

]
x̂(τ) . (2.4)

Here q(t) = exp(iHDt)ô(0) exp(−iHDt) is the output signal even no input is coupled

to the detector, i.e., the output noise. The second term is the linear response to

the input. In order to distinguish the response from the background noise, the

magnitude of the second term should be large comparing to the first term.

Tracing out the degrees of the freedom of the detector, we could get the average
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value of the output.

〈ô(t)〉 =

∫ t

0

dτλ(t− τ)x̂(τ) , (2.5)

λ(t− τ) = − i
h̄

〈[
q̂(t), f̂(τ)

]〉
. (2.6)

where 〈. . .〉 ≡ TrD(. . . ). In Eq. (2.5) 〈q̂(t)〉 = 0 is assumed, which means the mean

value of the output is zero when there is no input. λ(t− τ) is the response function

of the detector, it depends only on the time difference since the detector’s state is

stationary. Eq. (2.5) shows that the detector collects the information of the input

continuously. The lower limit of the integrand in Eq. (2.5) is the starting time of the

measurement and can be set to −∞. Because of the causality, the response function

should be 0 when t < τ , the Eq. (2.5) and Eq. (2.6) can be reformulated as:

〈ô(t)〉 =

∫ ∞
−∞

dτλ(t− τ)x̂(τ) , (2.7)

λ(t− τ) = − i
h̄
θ(t− τ)

〈[
q̂(t), f̂(τ)

]〉
. (2.8)

where θ(t) is the step function. For the simple example, consider the instantaneous

detector where:

λ(t) = λδ(t− 0+) . (2.9)

where 0+ is used to guarantee the causality. The output is 〈ô(t)〉 = λx(t). In general,

λ(t) is a function decaying with certain time scale, and the measurement pulls out

the information of the input continuously.

2.2 Quantum Limited Measurement

The Hamiltonian (2.3) is similar to the “system + reservoir” models studied in open

quantum systems[55]. Replacing the detector with a large dissipative reservoir,
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the well known fluctuation-dissipation theorem[56] can be derived from the linear

response theory. However, the detector is different from the reservoir since the

reservoir is usually very large and the interaction with system doesn’t change itself.

But as a detector, the response is the output and should be detectable to the coupling

with the measured system. Also the detector is usually far away from thermal

equilibrium in order to be sensitive to the input. Although there are differences

between these two cases, the similar structure indeed leads to a general restriction

to the detector, i.e., the quantum-limited detector[51, 52, 53].

2.2.1 Information Acquisition

For weak continuous measurement, the information of the input is collected gradu-

ally. Since there is output noise in the detector, a finite time is needed to acquire

enough information to distinguish two different input signals. The information ac-

quisition time is determined by the response function λ(t), which describes how fast

information can be collected, and the output noise, which sets the bottom line of

how much information is needed to be separable from the noise.

To be concrete, consider the instantaneous detector λ(t) = λδ(t − 0+). If there

are two different input signals xi and xj, the difference between the outputs is

∆x = λ(xi − xj). This difference should be large compared to the variance of the

output noise in order to be distinguished. The output noise is characterized by the

spectral density:

Sqq(ω) =

∫ ∞
−∞

dt〈q̂(t)q̂(0)〉e−iωt . (2.10)

For simplicity, here we consider the case of white noise Sqq(ω) = Sq. The variance

of the output in time ∆t is ∆o =
√
Sq/∆t. The information acquisition time τm is

defined to be the time needed for ∆o = 0.5∆x. It’s easy to get:

τm =
4Sq

λ2(xi − xj)2
. (2.11)
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The results says that the acquisition time increases with the output noise and de-

creases with the response, which is physically obvious.

2.2.2 Back-action Dephasing

In Nakamura’s experiment [21], the measurement process was a main source of

decoherence. Although it was suppressed a lot later, the dephasing induced by the

coupling to detector is inevitable, which make the measurement a double-edge sword:

pulling out the information while causing the measured system dephasing. This

back-action dephasing is similar to the dephasing caused by coupling to dissipative

reservoir. The dephasing comes from the fluctuation of the relative energy between

energy levels. Since the back action force commutes with degrees of freedom in the

system, it can be treated as a classical force. The time-evolution of the density

matrix is:

ih̄ρ̂(t) = [ρ̂(t), HI ] = [ρ̂(t), x̂(t)]f(t) . (2.12)

To see the dephasing process, consider the element 〈i|ρ̂|j〉, where |i〉 and |j〉 are the

eigenstates of x̂ corresponding to eigenvalues xi and xj.

ih̄ρij(t) = f(t)(xi − xj)ρij(t) . (2.13)

which can be solved easily:

ρij(t) = ρij(0) exp

(
−xi − xj

h̄

∫ t

0

dτf(τ)

)
. (2.14)

Similar to the quantum dynamics in usual dissipative quantum systems, this result

depends on the statistical properties of the reservoir force f̂ . Without losing the

generality, 〈f(t)〉 = 0, since the average term can be absorbed into the system
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Hamiltonian. The properties of the correlation is given by the spectral density:

Sff (ω) =

∫ ∞
−∞

dt〈f(t)f(0)〉e−iωt . (2.15)

For the simple case, assume the force is δ-correlated, i.e., Sff (ω) = Sf . With the

help of Wick theorem[55, 57], we get from Eq. (2.14) the following result:

〈ρij(t)〉 = 〈ρij(0)〉 e−t/τφ , (2.16)

τ−1
φ =

(xi − xj)2Sf

2h̄2 . (2.17)

2.2.3 Quantum Limited Detector

The information acquisition time τm is the time needed to get enough information,

i.e., the time at which the measurement should last; the backaction dephasing time

τφ is the time within which the information is destroyed by the measurement process.

These two quantities are not independent, actually there is a fundamental limitation

between these two. Combining τm and τφ gives :

τm
τφ

= 2
SqSf

h̄2λ2
. (2.18)

The response λ is related to Sq and Sf by linear-response theory. The Fourier

transformation of Eq. (2.7) and Eq. (2.6) gives:

〈ô(ω)〉 = λ(ω)x̂(ω) , (2.19)

ih̄λ(ω) = Sqf (ω)− S∗qf (−ω) . (2.20)

where

Sqf (ω) =

∫ ∞
−∞

dte−iωt 〈q(t)f(0)〉 , (2.21)

Sqf (ω) = S∗fq(ω) . (2.22)
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As is noted before, 〈. . .〉 = TrD(. . . ), which can be expressed by the density matrix

of the detector ρ̂D. It’s very natural to assume that the detector is stationary

and diagonal in the energy basis of the detector, then Eq. (2.22) can be expressed

microscopically:

Sqf (ω) =

∫ ∞
−∞

dte−iωt 〈q(t)f(0)〉

=

∫ ∞
−∞

dte−iωt
∫
dερD(ε)ν(ε) 〈ε|q(t)f |ε〉

=

∫ ∞
−∞

dte−iωt
∫
dεdε

′
ρD(ε)ν(ε)ν(ε

′
)〈ε|q(t)|ε′〉〈ε′ |f |ε〉

=

∫ ∞
−∞

dte−iωt
∫
dεdε

′
ρD(ε)ν(ε)ν(ε

′
)〈ε|e

iHDt

h̄ qe
−iHDt
h̄ |ε′〉〈ε′ |f |ε〉

=

∫
dεdε

′
ρD(ε)ν(ε)ν(ε

′
)

∫ ∞
−∞

dt exp

(
−ih̄ω − ε+ ε

′

h̄
t

)
〈ε|q|ε′〉〈ε′ |f |ε〉

= 2πh̄

∫
dερD(ε)ν(ε)ν(ε− h̄ω)〈ε|q|ε− h̄ω〉〈ε− h̄ω|f |ε〉 . (2.23)

Here ρD(ε) is the probability of occupying a state with energy ε; ν(ε) is the density

of states at ε. Eq. (2.23) has the form of inner product:

Sqf (ω) ≡ 〈q|f〉 . (2.24)

Similarly, the spectral density of force f and output q can be expressed in the same

way:

Sqq(ω) = 〈q|q〉, Sff (ω) = 〈f |f〉 . (2.25)

The Schwarz inequality[58] puts a restriction of these three:

Sqq(ω)Sff (ω) ≥ |Sqf (ω)|2 . (2.26)
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For classical noise, there are Sqq(ω) = Sqq(−ω) and Sff (ω) = Sff (−ω). For given

Sqq(ω) and Sff (ω), the magnitude of the response function |λ(ω)| is maximized if:

Sqq(ω)Sff (ω) = |Sqf (ω)|2 ,

Sqq(ω)Sff (ω) = |Sqf (−ω)|2 , (2.27)

Sqf (ω) + S∗qf (−ω) = 0 .

Under these conditions, there is:

ih̄λ(ω) = Sqf (ω)− S∗qf (−ω) = 2Sqf (ω) , (2.28)

h̄2|λ(ω)|2 = 4|Sqf (ω)|2 = 4Sqq(ω)Sff (ω) . (2.29)

Applying these relations to the detector with instantaneous response, δ-correlated

back-action force and output, as discussed above, there is the limitation:

τm
τφ

= 2
SqSf

h̄2λ2
≥ 1

2
. (2.30)

This is the a fundamental restriction of the weak continuous measurement, and any

detector satisfying the condition (2.27) is called quantum limited detector, which

is the most efficient detector people could get. Indeed, we will see in the following

section that this limit can be reached using mesoscopic structures.

2.3 QPC: a Physical Realization of Quantum

Limited Detector

The section follows [59] to prove that quantum point contact (QPC) can be a physical

realization of the quantum limited detector, and the spectral density of the input

and output satisfy the condition found in last section at the quantum limited point.

For clarity, the measured system has only two levels, i.e., a qubit. The schema
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of the total system is shown below. A voltage is added across the QPC, the two

level system generates a potential on the QPC and hence changes the current. The

Hamiltonian is:

Ĥ = −1

2
(εσz + ∆σx + σzU) +

∑
i,k

εka
†
ikaik , (2.31)

U =
∑
i,j

Uij
∑
k,p

a†ikajp . (2.32)

 

Figure 2.3: Schema of quantum point contact (QPC) [59]. ε is the energy split of
the qubit, and ∆ is the tunneling element. The qubit generates a potential on the
electron and hence influence the current. The state of the qubit can be deducted
from the electronic current. Γ is the back-action dephasing rate. The curves are the
spectrum of SII(ω) for different ε and Γ, see Eq. (2.39).

Here the Hamiltonian of the detector is written in the scattering basis. i, j can

be 1 or 2, which stands for the two incident directions; k, p are the magnitude of the

momentum. The two-level system generates a potential on QPC. In the measure-

ment, only the potential differences matter, since the average can be combined into

the energy. Here the generated potentials are assumed to be ±1/2U(x). When the

bias energy and thermal energy are much smaller than Fermi energy, all momentum

are near to the Fermi energy, hence the element Uij can be approximated the same

for all k′s. Uij is given by: Uij =
∫
dxψ∗i (x)U(x)ψj(x), here ψi(x) is the scattering
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state in real basis. The coupling term σzU is assumed small enough to allow the

linear response theory to work, and U is the back-action force.

The output of the detector is the electric current. Near the Fermi sea, the

spectrum can be approximated by εk = vFk, where vF is the Fermi velocity. Then

the current operator in the scattering basis is :

I =
evF
L

∑
kp

[D(−a†1ka1p − a†2ka2p) + i
√
DRe−i(k−p)|x|(−a†1ka2p − a†2ka1p)] . (2.33)

D and R are the transmission and reflection probability, D+R = 1; they are assumed

the same for all momentum since all k′s, p′s are near the Fermi level, except for a

phase variation.

In the linear-response regime, the difference of transmission probability δD is

related to the matrix element U12 by:

U12 =
vF
L

δD + iu

2
√
DR

. (2.34)

The imaginary part of U12 has no effect on the current. It’s related to the asymmetry

of the coupling between the system and QPC. If U(x) is symmetric, then u = 0.

The correlation function for U and I are:

〈U(t)U(t+ τ)〉0 =
eV

4π

(δD)2 + u2

DR
δ(τ) , (2.35)

〈U(t)I(t+ τ)〉0 =
e2V

2π
(iδD + u)δ(τ − η) , (2.36)

〈I(t)I(t+ τ)〉0 − 〈I〉2 = e〈I〉Rδ(τ) =
e3V DR

π
δ(τ) . (2.37)

In these calculation, eV � kBT , so the distribution is θ(ε− eVi).

The back-action dephasing rate is:

Γ = eV
(δD)2 + u2

8πDR
. (2.38)

31



The spectral density of the output Î for ε = 0 is:

SII(ω) = S0 +
ΓΩ2(δI)2

(ω2 − Ω2)2 + Γ2ω2
. (2.39)

For ε 6= 0, the plot of SII(ω) is shown in Fig. 2.3 for different ε and Γ. For the

continuous measurement, i.e., Γ � ∆, SII is maximized at ε = 0, whose value is

shown below:

Smax
S0

=
4(δD)2

(δD)2 + u2
. (2.40)

This is a good indicator of the efficiency of the detector since it describes the ratio

between the magnitude of the output in response to the input and the magnitude of

the background noise. This signal-to-noise ratio is maximized when u = 0, and this

corresponds to the case where the potential generated by the qubit is symmetric.

Another way to find the quantum-limitation of this detector is to use the quantum

limited relation derived in last section. The spectral density of back-action force,

output and their cross correlations:

SUU(ω) =
eV

4π

(δD)2 + u2

DR
, (2.41)

SUI =
e2V

2π
(iδD + u)eiωη , (2.42)

SII =
e3V DR

π
. (2.43)

It’s easy to see that the condition SUU(ω)SII(ω) = |SUI(ω)|2 = |SUI(−ω)|2 is

satisfied automatically. The condition SUI(ω) + S∗UI(−ω) = 0 gives the condition of

the quantum limited detector:

u = 0 . (2.44)

which is the same with the result by minimizing Eq. (2.40).
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Chapter 3

Feedback Suppression of the Low

Frequency Noise

Low-frequency noise (such as 1/f noise[60, 61, 62]) is one of the dominant sources

of decoherence in superconducting qubit. One approach to overcome this problem

is to employ the qubit structures with the basis states having the same values of the

main qubit coordinate so that the noise will not cause decoherence. This chapter

suggests another way by suppressing the low frequency directly using a feedback

loop. Continuous quantum measurement is frequency dependent so the dynamics of

the qubit could stay unchanged.

3.1 Noise in Superconducting Qubit

Decoherence, which is is caused by the coupling to external degrees of freedom, is

one of the greatest challenges in quantum computation. As is shown in chapter 2,

measurement itself will lead to decoherence of the system, but this is inevitable,

and in some sense “necessary”. In the view of information flow, this is a process of

pumping the information from the measured system to the detector. Fortunately

there is a limitation on this process and this limitation can be achieved by certain

physical systems[59]. Another source of decoherence, however, is not welcomed at all.
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That is the unwanted noise from the environment. The noise limits the coherence

time of the system by two mechanisms: one is the relaxation process, in which

the noise spectrum at the resonant frequency causes the system to transit between

energy levels, the other is dephasing, in which the noise, especially low-frequency

noise, that fluctuates the relative energy between energy levels and destroys the

coherence. It would be helpful if the environment noise could be suppressed or

eliminated. To find the ways of decreasing the noise, it’s important to understand

the characteristic and origin of the noise.

A qubit can be used as a noise spectrometer since it’s behavior, relaxation and

dephasing, is influenced by the noise. For example, consider a two-level system

coupled to the reservoir:

Ĥ =
1

2
h̄Ωσ̂z + σ̂x · f̂ . (3.1)

The transition rate between the two levels are:

Γ01 =
1

h̄2Sff (Ω), Γ10 =
1

h̄2Sff (−Ω) . (3.2)

The noise spectral density is related to the transition rate directly. By varying

the energy splitting, tunneling amplitude and the coupling to the external degree

of freedom, the spectrum of the noise can be derived from the relaxation and/or

dephasing of the qubit system.

Using this method, it was found [60] that, unlike the classical noise, the quantum

noise in charge qubit noise is asymmetric; at frequencies h̄ω < kBT , the noise has

the 1/f form; at frequencies h̄ω > kBT , the noise is proportional to the frequency.

In flux qubit the low-frequency flux noise spectrum also has a form of 1/f as low

as to 1Hz [61][62], see Fig. 3.1. The general spectral density of the noise can be
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written as:

S(ω) =
γ2

|ω|
+ h̄2 ηω

1− e−h̄ω/kBT
. (3.3)

In Chapter 5, we will use this spectral density for numerical simulation.

 

 

 

  
 

)(a

)(c

)(b

Figure 3.1: (a) Schematic of the charge qubit as the noise spectrometer. (b) The
general behavior of the noise spectral density in the charge qubit. Here SCU (ω) and
SQU (ω) are classical and quantum noise. SCU (ω) is symmetric. SQU (ω) ≈ SCU (ω) at
h̄ω < kBT and has the form 1/f ; at h̄ω > kBT , SQU (ω) is proportional to ω. See [60]
and references therein for details.(c) Decoherence at various flux biases in the flux
qubit. The red solid fitting curves are matches with the assumption of 1/f noise.
See [61] and references therein for details.
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3.2 Feedback Suppression of low-frequency noise

Feedback is well-studied in classical control theory and widely used in electronic ap-

paratus design[63, 64]. One application is to use a negative feedback loop to increase

the system robustness against external noise. Here we focus on the corresponding

topic of suppressing the noise and increasing the coherence time via a negative feed-

back loop in quantum system. As is shown in the experiment, the main source of

dephasing is low-frequency noise. Assume the typical frequency of the noise is ωN

and the energy splitting of the qubit is Ω, there is ωN � Ω. If the slowly changed

noise could be measured quickly and been subtracted from the original noise, the

net noise should be weaker. The classical feedback loop is shown below. The net

input is Inet = I0/(1− λ
′
λ) < I0. There is no limitation on |λ′λ| in classical theory,

so the input can be suppressed arbitrarily.

 

0I
netI





netIO 

netI 

Figure 3.2: Schematics of the classical feedback loop. The original input is I0, the
detector has an instantaneous response λ, the output O is send back by a feedback
channel with response function λ

′
. Inet has two parts: I0 and feedback signal λ

′
λInet,

i.e., Inet = I0 + λ
′
λInet. For a negative feedback, λ

′
λ < 0. In the following quantum

case, λ
′

is simply taken to be −1.
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In the quantum regime, it’s desirable to use the quantum limited detector in the

measurement. The response function of the detector should be negligible beyond ωN ,

i.e., only the noise has been measured and the qubit dynamics is left unaffected. In

classical regime, negative feedback has no fundamental limitation of the effectiveness,

but it not clear in quantum regime how effective the negative feedback could be. As

shown in chapter 2, the quantum measurement is a double-edged sword: on one side

the detector acquires the information of the system, on the other the back-action

destroys the coherence of the system. And quantum mechanics puts a fundamental

limitation to the rate of information acquisition and decoherence. It’s natural to

ask how this quantum limited measurement affects the feedback suppression. This

section tries to answer this question and addresses the ability of effectiveness of the

feedback suppression of the low-frequency noise in quantum limited measurement.

3.2.1 Negative Feedback Suppression

A feedback loop is shown in Fig. 3.3. It includes a detector followed by a feedback

channel. To be concrete, we consider a flux qubit sitting in an fluctuating external

magnetic field with magnet flux Φ̂e. The typical frequency of the noise in supercon-

ducting qubit ωD is much smaller than the qubit energy splitting Ω, i.e., ωD � Ω.

The response function of the detector λ is chosen in such a way that it is negligible

beyond frequency ωD, so the detector can measure the noise Φ̂e without disturbing

the qubit dynamics. The output is send back to the qubit system and eliminate part

of the original noise via the feedback loop. Then the net noise Φ̂ surrounding the

qubit has three parts: external flux noise Φ̂n, the back-action noise Φ̂b.a. = LeÎ
b.a.,

and the output Φ̂out.

Φ̂(t) = Φ̂n(t) + LeÎ
b.a.(t)− Φ̂out(t) . (3.4)

Here the detector is coupled to the system via the inductance Le.

The dynamics of the system is governed by the response function λ, however the
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Figure 3.3: Schematics of the feedback loop.The detector dynamics is determined
by the response function λ which only measures the low-frequency noise Φ̂n in the
qubit system. The back-action force of the detector Îb.a. is coupled inductively to
the qubits and hence add extra noise. The output is sent back to the system via the
feedback loop to eliminate the original noise.

input coupled to the back-action force Îb.a. consists both original flux noise Φ̂n and

the feedback output Φ̂out:

Φ̂out(t) = Φ̂out
0 (t) +

∫ t

dτλ(t− τ)
(

Φ̂n(τ)− Φ̂out(τ)
)
. (3.5)

To get the final spectral density of the net flux noise in the qubit system, switch to

frequency domain via Fourier transformation,

Φ̂(ω) = Φ̂n(ω) + LeÎ
b.a.(ω)− Φ̂out(ω) , (3.6)

Φ̂out(ω) = Φ̂out
0 (ω) + λ(ω)

(
Φ̂n(ω)− Φ̂out(ω)

)
. (3.7)

which related the net noise spectral density with the original noise, back-action force
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and response function:

Φ̂(ω) =
Φ̂n(ω)

1 + λ(ω)
+ LeÎ

b.a.(ω)− Φ̂out
0 (ω)

1 + λ(ω)
. (3.8)

Since the original flux noise has a different origin with the back-action force and

output noise, it’s natural to assume that 〈Φ̂n(ω)Îb.a.(ω
′
)〉 = 〈Φ̂n(ω)Φ̂out

0 (ω
′
)〉 = 0.

Use the relationship 2πSqf (ω) = 〈q̂(ω)f̂(−ω)〉, the spectral density of the net noise

is:

SΦ(ω) =
SnΦ(ω)

|1 + λ(ω)|2
+ SDΦ (ω) , (3.9)

SDΦ (ω) = L2
eSI(ω) +

SΦ0(ω)

|1 + λ(ω)|2
− 2LeRe

(
SΦ0I(ω)

1 + λ(ω)

)
. (3.10)

The physical meaning of this result is clear. The net noise spectral density has

two parts. The first part is the suppressed original noise, and the second part SDΦ

is the noise from the detector, which is the price paid for the feedback process.

Since there is no limitation on the magnitude of response function, i.e. |λ(ω)| ,

the first part of the noise can be suppressed arbitrarily small and hence can be

ignored, however, SDΦ has a fundamental limitation. Generally, the noise increases

with the response function, but there is an optimal way to choose the input and

output to minimize SDΦ . Assume the input and output are all classical quantities, so

the spectral density is symmetric. The minimization of the detector noise is given

by the following conditions:

SI(Φ0)(ω) = SI(Φ0)(−ω) , (3.11)

SI(ω)SΦ0(ω) = |SΦ0I(ω)|2 , (3.12)

ih̄λ(ω) = SΦ0I(ω)− S∗Φ0I
(−ω) , (3.13)

SΦ0I(ω) + S∗Φ0I
(−ω) = 0 . (3.14)

Eq. (3.11) means the input and output are both classical noise; Eq. (3.12) means
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the noise spectral density of the detector is quantum limited; Eq. (3.13) means the

detector has no-reverse gain; Eq. (3.14) means the response function is maximized.

Under these conditions, the noise spectral density SΦ(ω) can be formulated as fol-

lowing equation:

SΦ(ω) =
SnΦ(ω)

|1 + λ(ω)|2
+ L2

eSI(ω) +
1

4SI(ω)

∣∣∣∣ h̄λ(ω)

1 + λ(ω)

∣∣∣∣2 + Im
(

λ(ω)

1 + λ(ω)

)
Leh̄ . (3.15)

Varying SI(ω) to minimize SΦ(ω):

SΦ(ω) =
SnΦ(ω)

|1 + λ(ω)|2
+

∣∣∣∣ λ(ω)

1 + λ(ω)

∣∣∣∣Leh̄+ Im
(

λ(ω)

1 + λ(ω)

)
Leh̄ . (3.16)

where

2LeSI(ω) =

∣∣∣∣ h̄λ(ω)

1 + λ(ω)

∣∣∣∣ . (3.17)

The original noise could be suppressed to arbitrarily small and thus be negligible,

then there is:

SΦ(ω) =

[∣∣∣∣ λ(ω)

1 + λ(ω)

∣∣∣∣+ Im
(

λ(ω)

1 + λ(ω)

)]
Leh̄ ' Leh̄ , |λ| � 1 . (3.18)

Thus, in principle, any low-frequency flux noise can be suppressed by the negative

feedback to this fundamental level, which corresponds to the zero-point motion of

flux in the inductance Le spread over the frequency range up to the frequency of the

zero-point motion.

3.3 Examples

3.3.1 Lorentzian Noise

A simple example of the low-frequency quantum detector is given below, where a

Lorentzian form spectral density is assumed. The input and output has the same
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frequency dependence decided by the typical time scale τD; also 1/τD is much smaller

than the qubit energy splitting in order to retain the qubit dynamics. The magnitude

of the response function is given by the quantum-limited detector condition, and the

phase dependence over frequency can be determined with the help of Bode’s relation.

The results are:

SI(ω) =
SI

1 + ω2τ 2
D

, SΦ0(ω) =
SΦ0

1 + ω2τ 2
D

,

λ(ω) =
K

(1 + iωτD)2
, K =

√
4SISΦ0

h̄2 . (3.19)

The original noise is totally suppressed since K can be arbitrarily large. So the noise

spectrum is:

SΦ(ω) = L2
eSI(ω) +

SΦ0(ω)

|1 + λ(ω)|2
. (3.20)

Now let’s consider the fidelity of the system. The fidelity is given by the fluctuation

of the phase difference δE/h̄, which is proportional to the flux fluctuation δΦ:

F = 〈exp{ i
h̄

∫ t

0

δEds}〉 = 〈exp{iν
h̄

∫ t

0

δΦ(s)ds}〉 (3.21)

= exp{−ν
2

h̄2

∫ t

0

dt1dt2〈δΦ(t1)δΦ(t2)〉} . (3.22)

where δE = νδΦ. At large time, the result is:

F = exp{−ν
2

h̄2

∫ t

0

dt1dt2〈δΦ(t1)δΦ(t2)〉} ∝ exp{−γt} , (3.23)

γ =
ν2

2

(
L2
eSI +

SΦ0

K2

)
≥ ν2Lch̄

2
. (3.24)

The “ = ” holds when:

SI =
h̄

2Le
. (3.25)
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To see the scale of dephasing time, use the experiment parameter:

ν ≈ 0.1GHz/mΦ0 , Le ≈ 100pH → γ = (100ns)−1 . (3.26)

3.3.2 1/f Noise

1/f noise is one of the dominant sources of decoherence in superconducting

qubits[60, 61, 62]. For 1/f noise, the original noise is divergent at zero frequency

and can’t be suppressed completely. To avoid the divergence at zero-frequency, a

low-frequency cut-off ωc is assumed.

SΦn(ω) =
S0

|ω|
, |ω| > ωc . (3.27)

The fidelity under this noise decreases much faster than in the case of Lorentzian

noise. Including the feedback loop, the net noise is:

SΦ(ω) =
1

|1 + λ(ω)|2
S0

|ω|
+ L2

eSI(ω) +
SΦ0(ω)

|1 + λ(ω)|2
. (3.28)

The fidelity at large time is:

− lnF (t)/ν2 =
t

2

(
L2
eSI +

SΦ0

K2

)
+
S0

K2
t2| ln(ω0t)|

≥ Leh̄

2
t+

S0

K2
t2| ln(ω0t)| . (3.29)

The feedback loop adds a new term proportional to t in the result, but strongly

suppresses the much faster t2 term.
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Chapter 4

nSQUID array: a conveyer of

quantum information

The problem of quantum information transfer along the mesoscopic quantum struc-

tures is one of the most important issues that needs to be solved in order to design

and create scalable quantum computing circuits. This chapter suggests and eval-

uates a promising solution to this problem based on arrays of nSQUIDs[79, 80].

Negative mutual inductance between the two branches of an nSQUID assigns the

two tasks of processing and transferring quantum information to different modes

of the nSQUID circuit dynamics and therefore makes it possible to optimize pa-

rameters relevant for each mode for its particular task. The differential mode that

corresponds to the current circulating along one is used to encode the qubit, while

the common mode representing the total current through the nSQUID can be used

to transport this qubit along the circuit. In one of the most important examples,

dynamics of the common mode is similar to that of a fluxon propagating along the

Josephson transmission line.
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4.1 Introduction to Josephson transmission line

Superconducting qubits, including charge qubit [21, 22, 23], flux qubit[24, 25] and

phase qubit[27], all make use of one or a few Josephson junctions. Another im-

portant circuit of Josephson junctions is a one-dimensional array of a large number

of junctions, which supports propagation of fluxons carrying quanta of magnetic

flux. Such a“Josephson transmission line” (JTL) is one of the family of rapid single-

flux-quantum (RSFQ) devices [66] which were proposed as a promising technology

for superconducting digital circuits [67, 68, 69]. In [70], JTL was suggested and

analyzed as the quantum limited detector for flux qubits.

The Hamiltonian of the JTL, equivalent circuit of which is shown in Fig. 4.1,

can be expressed through the charge Q̂ and phase φ of each cell:

Ĥ =
∑
i

[
Q̂i

2

2C
+ EJ(1− cosφ̂i) + EL(φ̂i+1 − φ̂i − φ̂ei )2

]
, (4.1)

where EJ is the Josephson coupling energy, EL = 1
2L

(Φ0

2π
)2, C and L are the capaci-

tance and inductance. In the continuum limit, as will be shown in the next section,

the Hamiltonian reduces to that of the standard sine-Gordon model with its freely

propagating fluxon excitations.

 

 

L

CEJ , ......

Figure 4.1: Equivalent circuit of Josephson transmisson line (JTL). The line with
the “X” mark is a Josephson junction, and they are connected inductively. The
collective mode of JTL is fluxon moving along the array.
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In [71], a flux qubit detector was proposed using a closed JTL (Fig. 4.2). The

fluxon moves around the circle with a velocity depending on the state of the flux

qubit, and hence the frequency of the radiation of the fluxon includes the informa-

tion of the qubit state (Fig. 4.2). The predicted dip at Φ0/2 is not clear enough,

suggesting that further improvements are required.

 

)(a
)(b

Figure 4.2: JTL as a flux qubit readout. (a) Scheme of the experiment setup in
[71]. An annular Josephson junction with a trapped fluxon coupled to a flux qubit.
(b) Modulation of the fluxon’s oscillation frequency due to the coupling to the flux
qubit.

4.2 nSQUID

In this section, we introduce a solution to the problem of transferring quantum in-

formation along a superconducting quantum circuit of the flux-based qubits that

is based on nSQUID arrays. Such an array provides effectively the qubit imple-

mentation in the form of the dual-rail Josephson arrays. In details, the elementary

cell of such an array consists of the two-junction SQUID with in general negative

inductance between its two arms (Fig. 4.3). The time evolution of such a cell can

be separated naturally into the dynamics of two degrees of freedom (“excitation
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modes”). One is collective mode which represents total current flowing through the

two junctions of the SQUID together, and the other is the differential mode which

represents the current circulating along the SQUID loop. The negative mutual in-

ductance between the SQUID arms enables one to make the effective inductance of

the differential mode larger than the inductance of the common mode. As a result,

the excitation frequency of the common mode becomes much larger than that of

the differential mode, making it possible for the differential mode to exhibit non-

trivial dynamic without exciting the common mode. In the particular case when

the inductance of the differential mode is sufficiently large for it to have a bi-stable

dynamics, this structure is equivalent to nSQUID in [79, 80] developed for classical

reversible computing[72, 73] .

The Hamiltonian of the cell in in Fig. 4.3 includes the Hamiltonian of two Joseph-

son junction and the inductive energy in the arm.

H =
Q2

1

2C
− EJ cosφ1 +

Q2
2

2C
− EJ cosφ2

+
1

2

(
Φ0

2π

)2 (
φ1 − χe − φe, φ2 − χe + φe

)
L̂−1

φ1 − χe − φe
φ2 − χe + φe

 (4.2)

=
K2

4C
+
Q2

4C
− 2EJ cosχ cosφ

+
1

2(L2 −M2)

(
Φ0

2π

)2 (
φ1 − χe − φe, φ2 − χe + φe

)L M

M L

φ1 − χe − φe
φ2 − χe + φe

(4.3)

=
K2

2Ctot
+
Q2

4C
− 2EJ cosχ cosφ+

(
Φ0

2π

)2 [(χ− χe)2

L−M
+

(φ− φe)2

L+M

]
. (4.4)

Here Φ0 = πh̄/e is the magnetic flux quantum; Q1(2) is the charge on Josephson

junction 1(2), φ1(2) is the phase difference across each Josephson junction, L is the

inductance,−M is the mutual inductance (M > 0, so the inductance is negative).

K and χ are the variables of the common mode: K = Q1 + Q2 is the total charge

on the two capacitances of the SQUID junction, and χ = (φ1 + φ2)/2 is the average

Josephson phase difference across the junctions. The effective inductance of the
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1,JE C C

M
LL

e

2,JE

e e

Figure 4.3: Equivalent circuit of an elementary cell of a dual-rail array: SQUID
with two junctions of capacitances C and Josephson coupling energies EJ and the
negative mutual inductance M between its inductive arms with inductances L. The
negative mutual inductance makes the effective inductance of the common mode of
the SQUID dynamics much smaller than the inductance of the differential mode.
Also shown are the phase bias χe of the common mode and the bias φe of the
differential mode.
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common mode is (L − M)/2 and capacitance Ctot which can include additional

contributions (see Fig. 4.4 below) besides the total capacitance 2C of the junctions.

In quantum dynamic, K and χ are canonically conjugated variables, [χ,K] = 2ei.

The corresponding variables of the differential mode are the charge difference Q =

Q1 − Q2 and the phase difference φ = (φ1 − φ2)/2 which have the same canonical

commutation relation [φ,Q] = 2ei. The effective inductance and capacitance of this

mode are (L+M)/2 and 2C respectively.

The qualitative effect of the negative mutual inductance between the two SQUID

branches (Fig. 4.3) is to make the dynamic properties of the common and the

differential mode very different. For instance, if one neglects Josephson tunnel-

ing, the resonance frequencies of the two modes are ωC = [2/(L −M)Ctot]
1/2 and

ωD = 1/[(L+M)C]1/2, respectively, and for strong coupling, M → L, the dynamics

of the two modes can be clearly separated in frequency. This means that when

the SQUID cells are connected in an array (Fig. 4.4) the two modes can be used

to perform different functions. If the coupling inductances LC are designed to have

negative mutual inductance −MC to preserve the character of the SQUID dynamics,

the common mode remains rigid, i.e., it is not affected by the evolution of the differ-

ential mode, and is essentially fixed at some value χe(x, t), where x the coordinate

along the array, which is either applied externally or generated dynamically. This

phase plays then the role of the qubit control signal which is distributed along the

array through , the “clock” line (upper horizontal line in Fig. 4.4). The differential

mode has lower frequency and can be used to encode a classical or quantum bit of

information in the current circulating along the coupled SQUID loops. Dynamics of

the common mode ensures that the information encoded by the differential mode is

transported along the array.

The Hamiltonian of the nSQUID array in the limit M → L is :

H=
∑
j

{
K2
j

2Ctot
+
Q2
j

4C
− 2EJ cosχj cosφj +

(
Φ0

2π

)2[ φ2
j

L+M
+

(φj − φj−1)2

LC +MC

+
(χj − χj−1)2

2L0

]}
. (4.5)
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Figure 4.4: Dual-rail Josephson array made of nSQUID cells shown in Fig.(4.3). In
the array configuration, both bias phases χe and φe can be generated by the array
dynamics. In this dynamics, the common mode plays the role of the qubit control
signal propagating along the control line with specific capacitance C0 and inductance
L0, whereas the differential mode encodes the quantum information transferred be-
tween the cells coupled by inductances LC , with negative mutual inductance −MC

between them.

In the continuum limit, the Hamiltonian becomes:

H =

∫
dx
{(Φ0

2π

)2
[

1

2
Ctot

(
∂χ

∂t

)2

+
1

2L0

(
∂χ

∂x

)2
]
− 2EJ cosχ cosφ

+

(
Φ0

2π

)2
[
C

(
∂φ

∂t

)2

+
1

LC +MC

(
∂χ

∂x

)2

+
φ2

L+M

]}
=

∫
dx
{
EC

[
1

ω2
C

(
∂χ

∂t

)2

+

(
∂χ

∂x

)2
]
−2EJ cosχ cosφ+ ED

[
1

ω2
D

(
∂φ

∂t

)2

+ l

(
∂φ

∂x

)2

+ φ2

]}
.(4.6)
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Here:

EC =
1

2L0

(
Φ0

2π

)2

, ED =
1

L+M

(
Φ0

2π

)2

, ωC =
1√

L0Ctot
,

ωD =
1√

(L+M)C
, l =

L+M

Lc +Mc

. (4.7)

This is a field of a massless particle χ and massive particle φ with mass ED,

where these two particles interacting via cosχ cosφ. Due to the mass term, field

φ is small, the dynamics of the common mode χ is determined by the following

Hamiltonian:

Hχ =

∫
dx
{
EC

[
1

ω2
C

(
∂χ

∂t

)2

+

(
∂χ

∂x

)2
]
− 2EJ cosχ

}
. (4.8)

The behavior of the common mode is given by the sine-Gordon model[76] of discrete

Josephson junctions. This dynamically generalized common mode serves as a moving

background for differential mode, and gives it a space structure along the array. The

lowest-lying excitations of the differential mode that can serve as the basis state of

a qubit propagating along the array are localized in the region where χj ' π(see

Eq.4.9), i.e., where the Josephson coupling has the largest negative value. Depending

on the magnitude of this coupling, dynamics of the differential phase in this region

is governed by a bi-stable potential required for encoding the qubit of information

in two different flux states, as in regular qubits, or a mono-stable potential in which

the information can be encoded in two different energy states, similarly to the phase

qubits. In both situations, the qubit of information can be transported along the

arrays by the dynamics of the clock phase.

In the continuous approximation, strictly valid when the effective Josephson

penetration length λJ of the array, λJ ≡ (h̄/2e)/[EJ(LC +MC)]1/2, is large, λJ � 1,

the common mode is given by the usual fluxon[74] solution:

χ(x, t) = 4 tan−1[exp((x− vt)/λ0)] . (4.9)
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where λ0 = (h̄/2e)/[2EJL0]1/2. The fluxon propagates along the array with velocity

v determined by the dc bias voltage of the clock line. The Hamiltonian for differential

mode becomes:

HD = ED

∫
dx
{ 1

ω2
D

(
∂φ

∂t

)2

+ l

(
∂φ

∂x

)2

+ φ2 − 2β cosχ cosφ
}
. (4.10)

where β ≡ EJ/ED. In these equations, inductances and capacitances are now defined

per unit length of the array. For the quantum information transfer, one is interested

in the regime of the array dynamics characterized by adiabatic evolution of χ, when

the excitation frequencies of φ which are on the order of ωD, are much larger than

the frequency associated with the clock propagation, χ̇� ωD, ie, v �
√
L0Ctot.

4.3 Coherence property of the nSQUID

Let’s start from the Hamiltonian for differential mode:

ĤD = ẼD

∫
dz
{ 1

ω2
D

(
∂φ̂

∂t

)2

+ α

(
∂φ̂

∂z

)2

+ φ̂2 − 2β cosχ(z, t) cos φ̂
}
. (4.11)

where z = x/λ0, ẼD = EDλ0 and α ≡ l/λ2
0 . Here χ is the background potential

given by the common mode.

cosχ = 1− 2

cosh2 z
. (4.12)

The two dimensionless parameter α and β give a full description of the system. The

potential U(φ) is:

Û(φ̂, z) = φ̂2 − 2β

(
1− 2

cosh2 z

)
cos φ̂ . (4.13)

The potential Û(φ̂, 0) is given below. There are two different cases according to the

value of β.
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Figure 4.5: Potential at z=0: Û(φ̂, 0). There are two qualitatively different cases:
when β < 1, the potential has only one minimum at φ = 0; when β > 1 , the
potential has two minima symmetric to φ = 0.

If β < 1, the potential always has only one minimum at φ = 0, where the phase

dynamics is similar to the phase qubit; if β > 1, the potential is bistable when z is

near to zero and information could be encoded in different flux states as in the flux

qubit. In either case , the system is influenced by the noise and suffers a loss in the

coherence.

4.3.1 Case I: β < 1

If the Josephson coupling in the array is chosen that β < 1, one can use the quadratic

approximation to determine the space structure and frequencies for the φ excitations

using the approximation cosφ ≈ 1− φ2

2
, the classical equation of motion is then:

αφ′′ = ω−2
D φ̈+ (1 + β − 2β

cosh2 z
)φ} . (4.14)
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This equation is further reduced to a stationary Schrödinger equation after sepa-

rating the variable by replacing φ̈ with−ω2φ. This equation is exactly solvable and

gives the excitation modes φj(z) localized around z ' 0, and the frequencies ωj:

ωj = ωD{1 + β − α(s− j)2}1/2 . (4.15)

where the integer j is limited by the condition:

0 ≤ j ≤ s ≡ (1 + 8β/α)1/2 − 1

2
. (4.16)

Then the quantum dynamics of φ̂ and the Hamiltonian has then the following form:

φ̂(z, t) =
∑
j

(
e2

h̄Cωj
)1/2φj(z)(âj(t) + â†j(t)) , Ĥ0 =

∑
j

h̄ωj(â
†â+

1

2
) . (4.17)

where a’s are the usual creation/annihilation operators. The two level system used

as a qubit is now the vacuum state |0〉 without phonon and the one phonon state

|1〉 with the lowest excitation frequency ω0.

The noise is coupled directly to the phase φ:

ĤI =

∫
dzF (z, t)φ̂(z, t) =

∑
j

(
e2

h̄Cωj
)

1
2Fj(t)(âj(t) + â†j(t)) . (4.18)

where Fj(t) =
∫
dzF (z, t)φj(z). So the qubit system together with the noise has the

following form:

Ĥ =
h̄ω0

2
σ̂z + (

e2

h̄Cω0

)
1
2F0(t)σ̂x . (4.19)

We assume that the noise for each N-SQUID is identical but independent from each

other, so the noise F (z, t) is δ-correlated in space:

< F (z, t)F (z′, t′) >= δ(z − z′) < F (t− t′)F (0) > . (4.20)
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The spectral density then is:

SFF (ω) =

∫
dt〈F (t)F (0)〉eiωt . (4.21)

Since F0(t) =
∫
dzF (z, t)φ0(z), the spectral density for F0 is:

SF0F0(ω) =

∫
dt〈F0(t)F0(0)〉eiωt (4.22)

=

∫
dtdzdz′eiωt〈F (z, t)F (z′, 0)〉φ0(z)φ0(z′)

=

∫
dtdzdz′eiωt〈F (t)F (0)〉δ(z − z′)φ0(z)φ0(z′)

=

∫
dteiωt〈F (t)F (0)〉

∫
dz[φ0(z)]2

= SFF (ω) .

Use the standard method, the tunneling rate between the two state and the

decoherence rate are:

Γ10(01) =
e2

h̄3Cω0

SF0F0(±ω0) =
e2

h̄3Cω0

SFF (±ω0) , (4.23)

γ =
Γ10 + Γ01

2
. (4.24)

where the spectral density is given by:

Note that the space structure φ0 here doesn’t play a role in the result. It’s

caused by the fact that the excitation has only one phonon, leads to
∫
dz|φ0|2 = 1.

Together with the δ-correlated property of the noise, it has no explicit effect on the

final result.

4.3.2 Case II: β > 1

When β > 1, the potential has one minimal when |z| is large, and two minimals

when z ≈ 0 (Fig. 4.6(a)). Assume that the minimal of the potential is φm, then −φm
is also the minimals. Naively, one may say that there are two classical configurations
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that minimize the energy, and hence the ground state is double-degenerate, with one

state around φm, the other around −φm, but this is not always true. Consider a

classical static classical configuration φ(z), then the energy (Hamiltonian) is:

HS = (
Φ0

2π
)2 1

L+M

∫
dz{α(φ′)2 + φ2 − 2β cosχ(z, t) cosφ} (4.25)

= (
Φ0

2π
)2 1

L+M

∫
dz{α(φ′)2 + U(φ)} . (4.26)

The energy has two competing parts: one is φ′ which tends to keep φ constant, the

other is potential U(φ) which tends to constraint φ to local minimal. Consider two

extreme cases:

(1) α→ 0:

HS = (
Φ0

2π
)2 1

L+M

∫
dz{φ2 − 2β cosχ(z, t) cosφ} . (4.27)

In this case, there are two minimums which coincide with the minimums of the

potential, φm and −φm.

(2) α→ +∞:

HS = (
Φ0

2π
)2 α

L+M

∫
dz(φ′)2 . (4.28)

The minimum is φ = 0.

So only for certain range of α and β, there are two minimums. This prob-

lem can be “solved” together with finding the minimal configuration via a varia-

tional method. Here we try the find φc(x) minimize Hs, assuming φc has the form:

φc(z) = φ0/ coshη(z). Expand cosφ to φ4 which includes the bistable character of

the potential around z ∼ 0, HS is exactly integrable. The result is:

H0(L+M)

(φ0/2π)2
=
{
φ2

0B(1/2, η)
αη2 + 2(1− β)η + 1 + β

2η + 1
+
βφ4

0

12
B(1/2, 2η)

4η − 1

4η + 1

}
. (4.29)

To get a nonzero minimum, it’s necessary for the coefficient of φ2
0 to be negative and
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φ4
0 to be positive, this leads to the condition:

α <
(β − 1)2

1 + β
, η > 1/4 . (4.30)

To find the exact value of η and φ0, numerical method is needed, see Fig.4.6 for

result (in numerical method, it’s not necessary to expand cosφ).

To minimize the energy, φc should be satisfied the following equation:

αφ′′c = φc + β cosχ sinφc . (4.31)

For the φc found via variation method, Fig.4.6(c) shows that, the LHS of 4.31

is larger compared to the LHS −RHS.

From the symmetry of the Hamiltonian, it’s easy to see −φc is also a minimum.

States around these two minima have different flux and serves as a flux qubit. The

energy splitting ε0 can be adjusted by external bias. Borrowing the result from

quantum field theory T = e−Scl/h̄, where T is the transmission coefficient and Scl is

the classical action connecting these two states, we can find the tunneling element ∆

between these two minima as Tε0/2π. If φ0 is not very big, it’s proper to assume that

during the evolution it’s roughly maintain the shape, only the amplitude changes.

This approximation gives:

Scl = (
Φ0

2π
)2 1

L+M

4φ3
0

3ωD

√
(8η − 2)B(1/2, η)B(3/2, 2η)β ∼ (

Φ0

2π
)2 1

L+M

4φ3
0

3ωD

√√
2β

η
.

The details of the calculation are given below. First let’s review the instan-

ton method[75]. Consider a particle moves under a bistable potential V (x), the

minimums are x = ±a, given below:

The amplitude of transmission is:

|T | = exp

{
−1

h̄

∫ a

−a
dx
√

2m(V − E)

}
. (4.32)
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Figure 4.6: (a) Profile of the fluxon solution and the potential at different point;
around z ∼ 0, the potential is bistable; (b) Local minimum of the potential and
φc given by variational method for β = 2, α = 0.2; (c) φc should be a solution of
equation αφ′′c = φc + β cosχ sinφc. Red line is LHS obtained φc got via variation,
the blue curve is the difference between LHS and RHS. It can be seen that the
variational method gives a good approximation.
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Figure 4.7: The instanton method. (a) A particle moving under potential V . (b)
The inverse potential −V . The amplitude of transimission between the double well
potential V is given by the action of motion under the inverse potential −V .

This amplitude can be calculated using the instanton method: first, inverse the

potential V to −V , set the particle’s energy E to zero, and calculate the action Scl

from −a to a, then the amplitude is exp(−SRe/h̄). The Lagrangian after reversing

the potential is LRe and the Hamiltonian is HRe

HRe =
p2

2m
− V (x) = E = 0 , (4.33)

LRe =
p2

2m
+ V (x) = 2V (x) . (4.34)

The action is:

SRe =

∫
dtLRe =

∫ a

−a

dx

ẋ
2V (x) . (4.35)

Due to the energy conservation:

1

2
mẋ2 = E + V (x) = V (x) . (4.36)

58



hence:

SRe =

∫
dtLRe =

∫ a

−a

dx

ẋ
2V (x) =

∫ a

−a
dx2
√
V (x) . (4.37)

which gives:

|T | = exp

{
−1

h̄

∫ a

−a
dx
√

2m(V − E)

}
. (4.38)

Now get back to the original question. The Hamiltonian of the system is:

H0 = (
Φ0

2π
)2 1

L+M

∫
dz{ φ̇

2

ω2
D

+ V (φ, z)} , (4.39)

V (φ, z) = α(φ′)2 + (1− β cosχ(z, t))φ2 − β

12
cosχφ4 . (4.40)

where
∫
dzV (φ) has two minimals ±φc(z). There is a constraint on phic that is useful

in the following calculation. Assume φ(z) = kφc(z), as a function of k,
∫
dzV (φ)

should has two minimum at k = ±1 since φc minimize
∫
dzV (φ).

∫
dzV (φ) = (

Φ0

2π
)2 1

L+M

∫
dz

{[
α(φ′c)

2 + (1− βcosχ(z, t))φ2
c

]
k2 +

[
− β

12
cosχφ4

]
k4

}
= Ak2 +Bk4 . (4.41)

where

A = (
Φ0

2π
)2 1

L+M

∫
dz
[
α(φ′c)

2 + (1− βcosχ(z, t))φ2
c

]
, (4.42)

B = (
Φ0

2π
)2 1

L+M

∫
dz

[
− β

12
cosχφ4

c

]
. (4.43)

k = ±1 is minimum gives:

A+ 2B = 0 , B > 0 . (4.44)

Now calculate the transmission amplitude, flip the potential and shift the energy
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such that the energy at φ = φc is zero. The new Hamiltonian and Lagrangian are:

HF = (
Φ0

2π
)2 1

L+M

∫
dz

[
φ̇2

ω2
D

− V (φ, z)

]
+ δE = 0 , (4.45)

LF = (
Φ0

2π
)2 1

L+M

∫
dz

[
φ̇2

ω2
D

+ V (φ, z)

]
− δE (4.46)

= (
Φ0

2π
)2 2

L+M

∫
dz
φ̇2

ω2
D

, (4.47)

SF =

∫
dtLF = (

Φ0

2π
)2 2

L+M

∫
dzdt

φ̇2

ω2
D

. (4.48)

Assume during the evolution the shape of the phase configuration is kept but

with smaller amplitude, ie, φ(z, t) = f(t)φc(z), where f(t) involves from −1 to 1.

Due to the energy conservation:

Cḟ 2 − Af 2 −Bf 4 = −A−B = B . (4.49)

where

C = (
Φ0

2π
)2 1

L+M

∫
dz
φ2
c

ω2
D

. (4.50)

Hence:

ḟ =

√
B

C
(1− f 2) . (4.51)

and

SF = 2C

∫
dtḟ 2 = 2C

∫ 1

−1

df

ḟ
ḟ 2 (4.52)

= 2C

∫ 1

−1

dfḟ = 2C

∫ 1

−1

df

√
B

C
(1− f 2) (4.53)

=
8

3

√
BC . (4.54)
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Here A, B, C are all integrable and gives the result Eq. 4.32. After including the

noise, the Hamiltonian for the qubit system is:

H =
ε0
2
σ̂z + ∆σ̂x + f(t)σ̂z . (4.55)

where f(t) =
∫
dzφc(z)F (z, t). It’s easier to calculate the decoherence rate by

diagonalize the qubit Hamiltonian,ie, rotate the system around y-axis by θ =

tan−1[(E − ε0)/2∆], where E =
√

4∆2 + ε20:

HN=U †HU=
E

2
τ̂z + fx(t)τ̂x + fz(t)τ̂z, U=

cos θ − sin θ

sin θ cos θ

 .

where fx(t) = sin(2θ)f(t) and fz(t) = cos(2θ)f(t). It’s easy to calculate the transi-

tion and dephasing rate in this basis.

ΓN01(10) = sin2(2θ)
Sff (−E/h̄)

h̄2 , (4.56)

γN01 =
ΓN01 + ΓN10

2
+ cos2(2θ)

Sff (0)

h̄2 . (4.57)

Here the spectral density Sff (ω) =
∫
dz|φc|2SFF (ω), is closely related to the space

structure of the collective mode φc(z).

4.4 Moving Fluxons

In the above discussion, it’s assumed that the fluxon evolves adiabatically and can

be treated as static. But in the application, it’s hoped the fluxon could move fast

enough to accomplish the information transfer within the coherence time; in another

aspect, the velocity should still be small in the sense that the separation between

common mode and differential mode is clear and safe. Assume the fluxon’s velocity

v satisfies the restriction. This finite velocity changed the noise felt by the qubit

system and hence changed the dephasing rate. We will show in the following that
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due to the independence of the noise at different space point, the velocity actually

suppresses the dephasing rate. For simplicity of the statement, φc(z) is taken to

be a rectangular with width a and height φm around z = vt. Since the localized

character of the profile is the essential point for the result, the detail of the collective

mode gives only a prefactor.

 

)(),( 0 vtztzc 

V

)(a

)(b

Figure 4.8: (a) Moving fluxons. (b) when the fluxon moves, only the overlap part
contributes to the decoherence because the noise are independent at difference po-
sitions.

The quantity to be calculated is fidelity of the system, F(t) =

〈exp[−i
∫ t

0
dt1δε(t1)/h̄]〉, the fluctuation of the energy is δε(τ) =

∫
dzφc(z, t)F (z, t).

It’s easy to find that:

− lnF =

∫ t

0

dt1dt2
〈δε(t1)δε(t2)〉

2h̄2

=
2φ2

m

h̄2

[
vT

∫
dω

2π
SFF (ω)

sin2(ωτ/2)

ω2
− vτ

∫
dω

2π
SFF (ω)

∗
2
ωτ

sin(ωτ/2) cos(ωτ/2)−cos2(ωτ/2)

ω2

]
. (4.58)
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where T =Max{t, a/v}, τ=Min{t, a/v}. Meanwhile, the result for the static fluxon

case (v = 0, vT = a, τ = t) is :

− lnF =
2φ2

ma

h̄2

∫
dω

2π
SFF (ω)

sin2(ωt/2)

ω2
. (4.59)

For low-frequency noise, Eq. (4.58) is smaller than Eq. (4.59), ie, the dephasing rate

is suppressed when the fluxon has a finite velocity. This effect is essential for large

time, when the low-frequency part of the noise accumulates and contributes most to

dephasing. When t� a/v, the low-frequency noise accumulate linearly with time in

moving fluxon, but quadratically with time in static fluxon. Here are two examples

to see the effect explicitly.

First consider a noise spectrum mainly in low-frequency ω ≤ ωD, but still finite

in zero frequency: SFF (ω) = Sf
ω2
D

ω2+ω2
D

, the results at large time are:

− lnF ∼ aφ2
mSf · t
2h̄2

[
exp(−ωDτ)− 1 + ωDτ

ωDτ

]
, moving case , (4.60)

− lnF ∼ aφ2
mSf · t
2h̄2

[
exp(−ωDt)− 1 + ωDt

ωDt

]
, static case . (4.61)

The factor within the square bracket increases with t and approaches 1 in the static

fluxon, but keeps constant in moving case. If the velocity is large that v/a � ωD,

the dephasing time in moving fluxon case is enlarged by a factor v/ωDa comparing

the that of the static case.

The noise spectrum mentioned above is a toy model and it’s known that 1/f noise

is the main source of dephasing in flux qubit. Assume the noise has the following

spectrum SFF (ω) = Sf/ω, the lower cutoff is ωc, the fidelity at large time is:

− lnF ∼ aφ2
mSf

πh̄2

[
t
a

v
(3− 2γ − 2 ln(ωc

a

v
)
]
, moving case , (4.62)

− lnF ∼ aφ2
mSf

πh̄2

[
t2(3− 2γ − 2 ln(ωct)

]
, static case . (4.63)

The fidelity is much larger for moving fluxon carrier. For real profile of φc, the result
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should be a little bit different, but the qualitative picture stays the same.
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APPENDIX

This subsection includes the detail of the calculation of Eq.4.58

− lnF =

∫ t

0

dt1dt2
〈δε(t1)δε(t2)〉

2h̄2

=
1

2h̄2

∫ t

0

dt1dt2dz1dz2〈F (z1, t1)F (z2, t2)〉φc(z1, t1)φc(z2, t2)

=
1

2h̄2

∫ t

0

dt1dt2〈F (t1 − t2)F (0)〉
∫
dzφc(z − vt1)φc(z − vt2)

=
1

2h̄2

∫
dω

2π
SFF (ω)

∫ t

0

dt1dt2e
−iω(t1−t2)

∫
dzφc(z − vt1)φc(z − vt2)

=
2φ2

m

h̄2

[
vT

∫
dω

2π
SFF (ω)

sin2(ωτ/2)

ω2
− vτ

∫
dω

2π
SFF (ω)

∗
2
ωτ

sin(ωτ/2) cos(ωτ/2)−cos2(ωτ/2)

ω2

]
. (4.64)

where the integral over φc is given below:

∫ t

0

dt1dt2e
−iω(t1−t2)

∫
dzφc(z − vt1)φc(z − vt2)

= φ2
m

∫ t

0

dt1dt2e
−iω(t1−t2)(a− v|t1 − t2|)θ(a/v − |t1 − t2|)

= 2φ2
m

{∫ t

0

dt1

∫ t1

0

dt2 cos(ω(t1 − t2))(a− v|t1 − t2|)θ(a/v − |t1 − t2|)
}

= 2φ2
m

{∫ t

0

dt1

∫ t1

0

dt2 cos(ωt2)(a− vt2)θ(a/v − t2)

}
. (4.65)

When t < a/v, Eq.4.65 equals:

2φ2
m

{∫ t

0

dt1

∫ t1

0

dt2 cos(ωt2)(a− vt2)

}
= 2φ2

m

a+ vt+ (vt− a) cos(ωt)− (2v/ω) sin(ωt)

ω2

= 2φ2
m

{
a

1− cos(ωt)

ω2
+ vt

1 + cos(ωt)− 2 sin(ωt)/(ωt)

ω2

}
= 4φ2

m

{
a

sin2(ωt/2)

ω2
+ vt

cos2(ωt/2)− 2 sin(ωt/2) cos(ωt/2)/(ωt)

ω2

}
. (4.66)
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When t > a/v, Eq.4.65 equals:

2φ2
m

{∫ a/v

0

dt1

∫ t1

0

dt2 cos(ωt2)(a− vt2) +

∫ t

a/v

dt1

∫ a/v

0

dt2 cos(ωt2)(a− vt2)

}

= 2φ2
m

{
2a− (2v/ω) sin(ωa/v)

ω2
+
(
t− a

v

) v − v cos(ωa/v)

ω2

}
= 2φ2

m

{
a+ vt− (2v/ω) sin(ωa/v) + (a− vt) cos(ωa/v)

ω2

}
= 2φ2

m

{
vt

1− cos(ωa/v)

ω2
+ a

1 + cos(ωa/v)− 2v
ωa

sin(ωa/v)

ω2

}
= 4φ2

m

{
vt

sin2(ωa/2v)

ω2
+ a

cos2(ωa/2v)− 2v
ωa

sin(ωa/2v) cos(ωa/2v)

ω2

}
. (4.67)

So generally the result is:

− lnF =
2φ2

m

h̄2

[
vT

∫
dω

2π
SFF (ω)

sin2(ωτ/2)

ω2
− vτ

∫
dω

2π
SFF (ω)

∗
2
ωτ

sin(ωτ/2) cos(ωτ/2)−cos2(ωτ/2)

ω2

]
. (4.68)

where T =Max{t, a/v}, τ=Min{t, a/v}.
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Chapter 5

Decoherence Induced Deformation

of the Ground State in Adiabatic

Quantum Computation

Adiabatic quantum computation (AQC) [31], either in its universal form [36, 37],

or in the form of adiabatic quantum optimization [81], or quantum simulations

[82], presents a viable alternative to gate-model quantum computation (GMQC).

Although a part of the original motivation for introduction of the AQC [35] was

the promise of the increased stability against decoherence due to the energy gap

between the ground and excited states, the question of the role of decoherence in

AQC remains an open one. This uncertainty makes it important to quantify more

precisely the decoherence properties of AQC. A crucial step towards this would be

to define a quantitative characteristic of the decoherence strength in AQC, that

plays a role similar to the decoherence time for GMQC. However, in the case of

AQC, decoherence has qualitatively different, static effect on the qubits, not lim-

iting the operation time of an algorithm [83]. Here we propose the ground state

fidelity, defined as the distance between the open and closed system reduced density

matrices normalized to the Boltzmann ground state probability, as a quantitative
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measure of decoherence-induced deformation of the ground state in AQC, analogous

to the decoherence time for GMQC. We calculate the fidelity perturbatively at finite

temperatures and express it through the same environmental noise correlators that

determine the decoherence times in GMQC. We discuss the relation between fidelity

and the relaxation and dephasing times of the qubits, and its projected scaling

properties with the number of qubits.

5.1 Ground Sate Fidelity

In AQC, adiabatic evolution of the ground state of a qubit system realizes the solu-

tion of a computational problem represented by an appropriately designed Hamil-

tonian, which is typically written as

HS = A(s)HU +B(s)HP , (5.1)

where s = t/tf with tf being the total evolution time. At s = 0, one has A(0) = 1,

B(0) = 0, and the system is initialized in the ground state of the Hamiltonian HU ,

which usually consists of the uniform superposition of all computational basis states.

The energy scales A(s) and B(s) are varied monotonically so that at s = 1, A(1) = 0

and B(1) = 1. If the evolution is slow enough, an isolated qubit system stays in the

ground state with high fidelity throughout the evolution, and at s = 1 reaches the

ground state of HP , which provides a solution to a computational problem.

If the qubit system is weakly coupled to a dissipative environment, two effects

are expected. First, the low-frequency part of the environmental noise moves the

system energy levels relative to each other. This results in a dephasing of the energy

eigenstates that eventually suppresses all off-diagonal elements of the qubit density

matrix in the energy basis. However, since the population of the ground state is

the only important part of the computation and the relative phases of the energy

eigenstates do not carry any information, this does not affect AQC. Second effect of
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the coupling to the environment is that it induces the thermal transitions between

the qubit energy levels pushing the qubit system towards thermal equilibrium at a

temperature T . For slow evolution, the instantaneous probability to be in the ground

state is given approximately by the Boltzmann distribution, and so the qubit system

loses some of the ground state probability due to thermal occupation of the excited

states. Such a thermal loss of probability can be compensated by multiple iterations

of an AQC algorithm as long as it does not scale exponentially with the size of the

system, i.e. as long as the number of excited states within roughly the energy kBT

above the ground state does not grow exponentially.

The preceding arguments provide an intuitive explanation for the predicted ro-

bustness of AQC against local environmental noise in the limit of weak coupling

[34, 83, 88, 87, 86, 85, 84, 33]. When the strength of the coupling to the environ-

ment is increased without changing either the Hamiltonian or the temperature, the

qubit Boltzmann distribution is still not directly affected. However, it is known that

the decoherence time of the qubits decreases with increased coupling, and strong

coupling to the environment eventually makes the qubits completely incoherent,

rendering them useless for quantum computation. In GMQC, qubit decoherence

leads to computation errors which, without error correction, completely destroy the

computation process. This is why the qubits’ quality factor, which is the ratio of

the decoherence time and the gate operation time, provides a good measure of the

qubit performance in GMQC. It is, however, unclear how an increase in coupling to

the environment, or equivalently decrease in qubit quality factor, affects AQC.

In this section, we look closely at what happens to the eigenstates of the qubit

system in AQC when coupling to the environment is non-negligible. To ensure

consistent notation throughout this chapter, symbols with (without) “∼” denote

quantities related to the coupled (uncoupled) qubit system and environment. We

use letters m,n to enumerate the eigenstates and eigenvalues of the qubits (e.g., |n〉,

En), letters ν, µ to enumerate the eigenstates and eigenvalues of the environmental

degrees of freedom, and letters a, b to enumerate the eigenstates and eigenvalues of
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the total system (qubits+environment). The total Hamiltonian is H̃ = HS+HB+HI ,

where HB and HI are the environment and interaction Hamiltonians, respectively.

In the absence of coupling, HI= 0, and the eigenstates of the total system are |a〉 =

|n〉⊗|ν〉 with eigenvalues Ea = En +Eν . When HI 6= 0, the new eigenstates are |ã〉,

which typically are entangled superpositions of the unperturbed states |a〉. For weak

coupling, |ã〉 is very close to |a〉 and the effect of the environment is thermalization

of the qubit system. Once the environment is averaged out, the equilibrium of the

total system gives the Boltzmann distribution for the qubits:

Pn =
∑
ν

e−(En+Eν)/T

ZSZB
=
e−En/T

ZS
, (5.2)

where ZS =
∑

n e
−En/T and ZB =

∑
ν e
−Eν/T are the partition functions of the qubit

system and the environment.

As the coupling increases, the deviation of |ã〉 from |a〉 grows. In equilibrium, the

density matrix of the total system still has the Boltzmann form ρ̃SB =
∑

a P̃a|ã〉〈ã|,

where P̃a = e−Ẽa/T/Z̃SB, with Z̃SB =
∑

a e
−Ẽa/T being the partition function of the

total system. However, the reduced density matrix ρ̃S = TrB[ρ̃SB] of the qubit sys-

tem alone is no longer given by the Boltzmann distribution. The deviation from the

Boltzmann form provides a good qualitative measure of how strongly the eigenstates

|ã〉 are deformed in comparison to the unperturbed states.

To be consistent with the notation in the main text, we use symbols with (with-

out) “∼” to denote quantities related to the coupled (uncoupled) qubit system

and environment. We also use m,n, k to enumerate qubit system’s eigenstates

and eigenvalues (e.g., |n〉, En). Similarly, the letters ν, µ correspond to envi-

ronment eigenstates and eigenvalues, and letters a, b correspond to total system

(qubits+environment) eigenstates and eigenvalues. The total Hamiltonian is writ-

ten as H̃ = HS +HB +HI , which includes the qubit system Hamiltonian

HS =
∑
n

En|n〉〈n| , (5.3)
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and interaction Hamiltonian

HI =
∑
α,j

qαj σ
α
j , (5.4)

where σαj are the Pauli matrices, α = x, y, z, and qαj are the noise operators depen-

dent on the heat bath variables coupled to the j-th qubit. The bath Hamiltonian

HB is not specified, but the bath is assumed to be in thermal equilibrium at tem-

perature T . For the purpose of perturbative calculations of fidelity in this work, the

properties of qαj are completely characterized by its spectral density

Sαj (ω) =

∫ ∞
−∞

dteiωt〈qαj (t)qαj (0)〉 (5.5)

where qαj (t) = eiHBtqαj e
−iHBt, and vanishing average 〈qαj (t)〉 ≡ 0.

Even if the dissipative environment does not excite the system out of its ground

state, the non-vanishing HI term changes the structure of the ground state wave-

function in comparison with the unperturbed ground state of the Hamiltonian HS.

The magnitude of this change can be characterized quantitatively by fidelity. For

two general density matrices ρ and ρ′ acting on the same Hilbert space, the fidelity

(sometimes called Uhlmann’s fidelity) is given by

F(ρ, ρ′) = Tr
√√

ρρ′
√
ρ . (5.6)

If one of the states is a pure state, e.g., ρ = |ψ〉〈ψ|, then we can use the property
√
ρ = ρ = ρ2 to write

F(ρ, ρ′) = Tr
√
|ψ〉〈ψ|ρ′|ψ〉〈ψ| =

√
〈ψ|ρ′|ψ〉

= {Tr[ρρ′]}1/2. (5.7)

Let |a〉 and |ã〉 denote the unperturbed and perturbed states of the total system,

respectively. The total density matrix of the combined system is ρSB =
∑

a P̃a|ã〉〈ã|,

where P̃a is the probability of finding the total system in the state |ã〉. We define the
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reduced density matrix as ρ̃S = TrB[ρSB], where the partial trace is taken only over

the environmental degrees of freedom. We also define the pure state density matrix

ρ0 = |0〉〈0|, where |0〉 is the ground state of the (isolated) qubit system Hamiltonian

HS. Then, we express the fidelity F between ρ0 = |0〉〈0| and ρ̃S as

F(ρ0, ρ̃S)2 = 〈0|ρ̃S|0〉 = P̃0 , (5.8)

where P̃0 is the probability of finding the open system in state |0〉. In equilibrium,

this probability is determined by the thermal distribution over the system eigenstates

and also by the effects of the non-vanishing coupling to the environment. To separate

these two contributions, we define the ground state fidelity as

F ≡ P
−1/2
0 F(ρ0, ρ̃S) =

√
P̃0

P0

, (5.9)

where P0 = e−E0/T/Z is the Boltzmann probability of the ground state |0〉 with

partition function Z =
∑

n e
−En/T in the case of an isolated qubit system.

Quantitatively, we define the ground state fidelity as the Uhlmann fidelity [89]

between the reduced density matrix ρ̃S and the “ideal” ground state density matrix

ρ0 = |0〉〈0|, normalized to the Boltzmann ground state probability P0:

F = P
−1/2
0 Tr

√√
ρ0 ρ̃S

√
ρ0 =

√
P̃0/P0 , (5.10)

where P̃0 = 〈0|ρ̃S|0〉 is the equilibrium probability for the qubits to be in the ideal

ground state when coupled to the environment. In the weak-coupling limit, no de-

formation of the eigenstates is expected. Then P̃0 = P0, and Eq. (5.10) gives F = 1.

This shows that Eq. (5.10) correctly separates the effect of the quantum deformation

of the ground state, which can be viewed as the result of virtual transitions to the

excited states, from the thermal loss of probability. Qualitatively, the effect of the

virtual transitions, expressed in F , is different from that of the thermal transitions
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in two important aspects. First, it persists even at T = 0, when all the thermal

transitions are suppressed. Second, it depends on the strength of coupling to envi-

ronment (or decoherence time of the qubits), while thermal equilibrium probabilities

only depend on the energy eigenvalues and temperature. Nevertheless, similarly to

thermal transitions, the virtual transitions reduce the occupation probability of the

ground state by transferring it to the higher-energy states.

5.2 Perturbation Calculation of Ground State Fi-

delity

In this section, we calculate the fidelity (5.10) perturbatively and relate it to mea-

surable parameters of the qubit system and environment. As appropriate for AQC,

we assume that the coupling HI is weak. This allows us to employ the perturbation

theory in HI around the non-interacting state of the qubit system and the envi-

ronment with both of them in equilibrium at the same temperature T , i.e., density

matrices ρS =
∑

n Pn|n〉〈n| and ρB =
∑

ν Pν |ν〉〈ν|, where Pn and Pν are the Boltz-

mann probabilities. The reduction of the ground state probability due to finite HI is

caused by a change δP0 in the equilibrium probability P0 as a result of renormaliza-

tion of the energy eigenvalues (Lamb shifts), and probability transfers into and out

of the ground state due to renormalization of the wavefunctions. The probability

P̃0 that defines the fidelity (5.10) can be expressed as

P̃0 = TrB,S

[
|0〉〈0|

∑
a P̃a|ã〉〈ã|

]
. (5.11)

Introducing interaction-induced corrections to the equilibrium probabilities P̃a =

Pa + δPa, where Pa = PnPν , and wavefunctions: |ã(n, ν)〉 = |n〉⊗|ν〉+ |δã(n, ν)〉, we
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can rewrite this expression to the lowest non-vanishing order in HI as

P̃0 = δP0 +
∑
n

PnTrB,S
[
|0〉〈0|⊗ρB · |ã(n, ν)〉〈ã(n, ν)|

]
. (5.12)

Using the relation |0〉〈0| = 1 −
∑

m6=0 |m〉〈m| to transform the n = 0 term in

Eq. (5.12) we obtain

P̃0 = P0 + δP0 −
∑
n6=0

(Γ0nP0 − Γn0Pn) , (5.13)

where

Γmn ≡ 〈n|TrB[|δã(m, ν)〉〈δã(m, ν)|ρB]|n〉 .

The terms proportional to Γ in Eq. (5.13) describe the reduction of the ground state

probability as a result of renormalization of the qubit system wavefunctions by their

interaction with the environment.

Next, we calculate δP0 and Γmn. Quite generally, the interaction Hamiltonian

HI is

HI =
∑
j,α

qαj σ
α
j , (5.14)

where σαj are the Pauli matrices for the jth qubit, α = x, y, z, and qαj are the

corresponding operators of the noise generated by the environment. As usual, the

averages of the noise operators vanish, 〈qαj 〉 = 0. Then, in the weak coupling regime,

the effect of environment is fully characterized by the noise spectral densities:

Sαj (ω) =

∫
dt eiωt〈qαj (t)qαj (0)〉 , (5.15)

where 〈...〉 = TrB{ρB...} is the average over the environmental degrees of freedom.

For simplicity, we limit our discussion to the most typical case when the noises with

different α or j are uncorrelated.

In the situation relevant to quantum computation, the coupling HI is weak and
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can be treated by perturbation theory around the non-interacting state of the qubit

system and environment. In the context of AQC, one can also assume that both

the qubits and environment are in equilibrium at the same temperature T . These

are characterized by the density matrices ρS =
∑

n Pn|n〉〈n| and ρB =
∑

ν Pν |ν〉〈ν|

without the interaction, while the total interacting system has the density matrix

ρ̃SB =
∑

a P̃a|ã〉〈ã|, where P̃a, Pn, and Pν are the Boltzmann probabilities. The

probability P̃n of finding the qubit system in the state |n〉 in the presence of inter-

action can be written as

P̃n = TrB,S[|n〉〈n|ρ̃SB] . (5.16)

The interaction HI creates corrections to the equilibrium probabilities P̃a = Pa+δPa,

where Pa = PnPν , and to the wavefunctions: |ã(n, ν)〉 = |a(n, ν)〉+ |δã(n, ν)〉, where

|a(n, ν)〉 = |n〉⊗|ν〉. In the lowest non-vanishing order in HI , one can separate these

corrections in the total density matrix of the system:

ρ̃SB =
∑
a

[δPa|a〉〈a|+ Pa|ã〉〈ã|] . (5.17)

This expression reduces Eq. (5.16) for the probability P̃n to:

P̃n = δPn +
∑
m

PmTrB,S
[
|n〉〈n|⊗ρB · |ã(m, ν)〉〈ã(m, ν)|

]
. (5.18)

Using the relation |n〉〈n| = 1 −
∑

k 6=0 |k〉〈k| to transform the n = m term in

Eq. (5.18), we obtain

P̃n = Pn + δPn −
∑
m 6=n

(ΓnmPn − ΓmnPm) , (5.19)

where

Γmn ≡ 〈n|TrB[|δã(m, ν)〉〈δã(m, ν)|ρB]|n〉 . (5.20)

The Γ-factors in (5.20) represent the fractions of the probability transfer from the
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state |m〉 to the state |n〉 of the qubit system due renormalization of the qubit sys-

tem wavefunctions by non-vanishing coupling to the environment. Equation (5.19)

shows that, in addition to these transfers, environment-induced change of the prob-

abilities P̃n is also caused by the change in the equilibrium probability δPn due to

renormalization of the energy eigenvalues (Lamb shift).

Next, we calculate these two contributions explicitly using the perturbation ex-

pansion. We start with δPn. As shown below, the changes of the equilibrium

occupation probabilities δPn of the qubits states are determined by the changes δEa

of the total system energies averaged over the equilibrium state of the environment.

Since 〈qαj 〉 = 0, the linear corrections to the qubit system energies vanish, and the

relevant energy changes are given by second-order perturbation:

δEa =
∑
b6=a

|〈a|HI |b〉|2

Ea − Eb
=

′∑
α,j,m,µ

|σαj,nm|2|〈ν|qαj |µ〉|2

ωnm + Eν − Eµ
. (5.21)

The prime sign over the sum excludes terms with zero denominator. The average

change of the qubit system energy eigenvalues due to coupling to the environment,

which determines δPn, is therefore

δEn =
∑
ν

PνδEn,ν =
′∑

α,j,m,ν,µ

Pν
|σαj,nm|2|〈ν|qαj |µ〉|2

ωnm + Eν − Eµ
. (5.22)

We express this result in terms of the noise spectral densities. In this calculation,

we assume that the noises with different α and j are uncorrelated. The standard

spectral decomposition,

Sαj (ω) = 2π
∑
ν,µ

Pν |〈ν|qαj |µ〉|2δ(ω + Eν − Eµ) , (5.23)

transforms Eq. (5.22) into

δEn =
∑
j,α,m

∫
dω

2π

|σαj,nm|2Sαj (ω)

ωnm − ω
. (5.24)
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Now, we relate the changes in the occupation probabilities of the qubit states to

the energy changes of the total system. Expanding the Boltzmann probabilities, we

get

δPa = −β e
−βEaδEa∑
b e
−βEb

+ β
e−βEa

∑
b e
−βEbδEb

(
∑

b e
−βEb)2

= −βPaδEa + βPa
∑
b

PbδEb

= βPa
∑
b

(Pb − δab)δEb . (5.25)

Using Pa = PnPν , Pb = PmPµ, and δab = δnmδνµ, we see that δPn is indeed deter-

mined by the energy shifts averaged over the environment:

δPn =
∑
ν

δPa = β
∑
ν

PnPν
∑
m,µ

(PmPµ − δnmδνµ)δEm,µ

= βPn
∑
m,µ

(Pm − δnm)PµδEm,µ

= βPn
∑
m

(Pm − δnm)δEm . (5.26)

Combining Eqs. (5.24) and (5.26), we obtain

δPn = −βPn
∑
j,α,m,k

(Pm−δmn)|σαj,mk|2
∫
dω

2π

Sαj (ω)

ωkm + ω
. (5.27)

Next, we calculate the probability transfer fractions Γmn (5.20). It is convenient

to view the relation between the states with and without interaction as arising from

the adiabatic switching on of the interaction:

|ã〉 = U |a〉 , (5.28)

where

U = T exp

{
−i
∫ 0

−∞
dteλtHI(t)

}
. (5.29)
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Here λ is a small positive number which ensures an adiabatic increase of the coupling,

and

HI(t) = ei(HS+HB)tHIe
−i(HS+HB)t

=
∑

α,j,n,m

σαj,nme
iωnmtqαj (t)|n〉〈m| (5.30)

with HI given by Eq. (5.4).

Using Eq. (5.28) together with (5.29) limited to the lowest order in HI in

Eq. (5.20), we obtain

Γmn = TrB[〈n|U |m〉ρB〈m|U †|n〉]

=

∫ 0

−∞
dt

∫ 0

−∞
dt′TrB[〈n|eλtHI(t)|m〉ρB〈m|eλt

′
HI(t

′)|n〉]

=

∫ 0

−∞
dt

∫ 0

−∞
dt′
∑
j,α

|σαj,nm|2eλ(t+t′)+iωnm(t−t′)〈qαj (t′)qαj (t)〉.

We combine this expression with Eq. (5.5) for spectral densities to get

Γmn =
∑
j,α

|σαj,nm|2
∫
dω

2π
Sαj (ω)

×
∫ 0

−∞
dt

∫ 0

−∞
dt′eλ(t+t′)+i(ωnm+ω)(t−t′)

=
∑
j,α

|σαj,nm|2
∫
dω

2π

Sαj (ω)

λ2 + (ωnm + ω)2
. (5.31)

In the limit λ→ 0, this gives

Γmn =
∑
j,α

|σαj,nm|2
∫
dω

2π

Sαj (ω)

(ωnm + ω)2
. (5.32)
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The final result is

P̃n = Pn − βPn
∑
j,α,m,k

|σαj,mk|2
∫
dω

2π

Sαj (ω)(Pm−δmn)

ωkm + ω

−
∑

j,α,m6=n

|σαj,mn|2
∫
dω

2π

PnS
α
j (ω)− PmSαj (−ω)

(ωmn + ω)2
. (5.33)

This equation gives the normalized fidelity of the ground state n = 0 as

F =

√
P̃0

P0

= 1−β
∑

j,α,n,m

|σαj,nm|2
∫
dω

4π

Sαj (ω)(Pn−δn0)

ωmn + ω

−
∑

j,α,n>0

|σαj,n0|2
∫
dω

4π

Sαj (ω)− (Pn/P0)Sαj (−ω)

(ωn0 + ω)2
. (5.34)

This is our central equation, which is used in the numerical calculations. As shown

in the next subsection, it can also be obtained directly from the partition function

of the total system. However, the physical interpretation of the following derivation

is less transparent than the derivation presented above.

5.2.1 Alternative derivation using partition function

Consider the partition function

Z̃ = Tr
(
e−βH̃

)
. (5.35)

Using Eq. (5.3) one can express the occupation probabilities P̃n directly through Z̃

− 1

β

∂

∂En
ln Z̃ =

1

Z̃
T r
(
e−βH̃ ∂H̃

∂En

)
= Tr (ρ̃SB|n〉〈n|)

= 〈n|TrB(ρ̃SB)|n〉 = 〈n|ρ̃S|n〉 = P̃n , (5.36)

where

ρ̃SB =
e−βH̃

Z̃
(5.37)
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is the total density matrix of the system plus environment.

First, we calculate the partition function in the interaction representation,

e−βH̃ = e−βH
(
T exp

∫ β

0

dτHI(τ)

)
, (5.38)

where H = HS + HB is the non-interacting part of the Hamiltonian and HI(τ) =

eβHHIe
−βH . Therefore,

Z̃ = Tr
(
e−βH̃

)
= Tr

[
e−βH

(
T exp

∫ β
0
dτHI(τ)

)]
= Z Tr

[
ρSB

(
T exp

∫ β
0
dτHI(τ)

)]
= Z

〈
T exp

∫ β

0

dτHI(τ)

〉
, (5.39)

where 〈...〉 = Tr[ρSB...] and ρSB = e−βH/Z is the density matrix for the non-

interacting qubit system plus environment, which has the form ρSB = ρS ⊗ ρB =∑
n Pn|n〉〈n| ⊗ ρB, where Pn is the occupation probability of state |n〉 and ρB is the

density matrix of the environment alone. Expanding to second order, we have

Z̃ = Z

(
1 +

∫ β

0

dτ

∫ τ

0

dτ ′ 〈HI(τ)HI(τ
′)〉
)

= Z

(
1 +

∫ β

0

dτ

∫ τ

0

dτ ′
〈
qαj (τ)qαj (τ ′)

〉
B

·
∑
j,α,n

Pn〈n|σzj (τ)σzj (τ
′)|n〉

)
, (5.40)

where 〈...〉B = TrB[ρB...]. We write the integral in this expression in terms of the

environment spectral density using

〈
qαj (τ)qαj (τ ′)

〉
B

=

∫
dω

2π
Sαj (ω)e−ω(τ−τ ′). (5.41)
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Defining σαj,nm = 〈n|σzj |m〉 and ωnm = En − Em, we find

Integral =
∑

j,α,n,m

∫
dω
2π
Pn|σαj,nm|2Sαj (ω)

×
∫ β

0

dτ

∫ τ

0

dτ ′e(ωnm−ω)(τ−τ ′)

=
∑

j,α,n,m

∫
dω

2π
Pn|σαj,nm|2Sαj (ω)

×e
β(ωnm−ω) − 1− β(ωnm−ω)

(ωnm−ω)2

=
∑

j,α,n,m

∫
dω

2π

|σαj,nm|2

(ωnm−ω)2
[PmS

α
j (−ω)−PnSαj (ω)]

−
∑

j,α,n,m

∫
dω

2π

βPn|σαj,nm|2Sαj (ω)

ωnm−ω
(5.42)

In the last step we used Pm = eβωnmPn, which is valid for the Boltzmann distribution,

and Sαj (−ω) = Sαj (ω)e−βω. The first integral in the last equation vanishes, giving

Z̃ = Z

(
1−

∑
j,α,n,m

∫
dω

2π

βPn|σαj,nm|2Sαj (ω)

ωnm−ω

)
. (5.43)

Therefore,

ln Z̃ = lnZ +
∑

j,α,n,m

∫
dω

2π

βPn|σαj,nm|2Sαj (ω)

ωmn+ω
, [PnS

α
j (ω)− PmSαj (−ω)]

and

P̃n = − 1

β

∂

∂En
ln Z̃ = − 1

β

∂

∂En
lnZ

− ∂

∂En

∑
j,α,m,k

∫
dω

2π

Pm|σαj,mk|2Sαj (ω)

ωkm+ω
. (5.44)
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Finally, we transform this equation using the relations

− 1

β

∂

∂En
lnZ = Pn ,

∂

∂En

1

ωkm+ω
=

δmn − δkn
(ωkm+ω)2

,

∂Pm
∂En

= βPn(Pm − δmn) , (5.45)

to obtain

P̃n = Pn − β
∑
j,α,m,k

|σαj,mk|2
∫
dω

2π

Sαj (ω)Pn(Pm−δmn)

ωkm+ω

−
∑

j,α,m6=n

|σαj,mn|2
∫
dω

2π

PnS
α
j (ω)−PmSαj (−ω)

(ωmn+ω)2
. (5.46)

This is the same equation as (5.33). Using (5.9), one recovers Eq. (5.34) for fidelity.

Therefore

F =

√
P̃0

P0

= 1−β
∑

j,α,n,m

|σαj,nm|2
∫
dω

4π

Sαj (ω)(Pn−δn0)

ωmn+ω

−
∑

j,α,n>0

|σαj,n0|2
∫
dω

2π

Sαj (ω)−(Pn/P0)Sαj (−ω)

(ωn0+ω)2
, (5.47)

which is the same as (5.34).

5.3 General properties of Ground State Fidelity

As is shown above, the perturbation expansion in HI in this situation gives

δP0 = −βP0

∑
j,α,n,m

(Pn−δn0)|σαj,nm|2
∫
dω

2π

Sαj (ω)

ωmn + ω
,

Γmn =
∑
j,α

|σαj,nm|2
∫
dω

2π

Sαj (ω)

(ωnm + ω)2
, (5.48)
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where σαj,nm ≡ 〈n|σαj |m〉 and ωnm ≡ En−Em. Substituting (5.48) into (5.13) and

then into (5.10), we obtain

F = 1− β
∑

j,α,n,m

|σαj,nm|2
∫
dω

4π

Sαj (ω)(Pn−δn0)

ωmn + ω

−
∑

j,α,n>0

|σαj,n0|2
∫
dω

4π

Sαj (ω)− (Pn/P0)Sαj (−ω)

(ωn0 + ω)2
. (5.49)

Equation (5.49) is our main result. It is well-defined at T = 0, when all thermal

excitations are suppressed, i.e., Pn = 0 for n > 0 and Sαj (ω) ≡ 0 at ω < 0. Hence,

the values of ω around −ωm0, when the denominator in (5.49) vanishes, do not

contribute to the integral. When T 6= 0, the divergences that appear at ω = −ωm0

reflect the fact that environment can also create real thermal excitations of the qubit

system. However, the detailed balance relation, Sαj (−ω) = e−βωSαj (ω), ensures that

these divergences cancel each other out and Eq. (5.49) is well-defined also at T 6= 0.

Equation (5.49) is now applied to specific problems. The first example we con-

sider is a typical individual qubit with the Hamiltonian

HS = −[εσz + ∆σx]/2 (5.50)

coupled as in Eq. (5.14), but only through σz, to the environmental noise with

spectral density S(ω) (5.15). In the usual weak-coupling approximation [see, e.g.,

[16]], the qubit decoherence time T ∗2 is given by

1

T ∗2
=

1

2T1

+
1

Tϕ
, (5.51)

where T1 and Tϕ are the relaxation and pure dephasing times, given by

T−1
1 = (∆2/Ω2)[S(Ω) + S(−Ω)] , (5.52)

T−1
ϕ = (ε2/Ω2)S(0) , (5.53)
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with Ω =
√

∆2 + ε2. The standard expressions for the eigenstates of the Hamiltonian

(5.50) reduce Eq. (5.49) for the fidelity to F = 1−∆2K/2Ω2, where

K =

∫
dωS(ω−Ω)

2πω

{
1−e−ω/T

ω
− e−Ω/T+e−ω/T

T (e−Ω/T+1)

}
. (5.54)

We see that the same noise spectral density that defines the relaxation and dephasing

rates (5.52) and (5.53) of the qubits in the GMQC determines the reduction of

the ground-state fidelity in AQC. In this respect, the main difference between the

reduction of fidelity and the real-time relaxation and dephasing is that even in the

lowest-order perturbation theory, the fidelity is reduced by the whole spectrum of

environmental excitations, and not just by limited spectral groups resonant with

the qubit energy differences or the low-frequency excitations, as in Eqs. (5.52) and

(5.53).

To strengthen this comparison, we consider an Ohmic bath characterized by the

noise

S(ω) = ηω/(1− e−ω/T ) (5.55)

with cutoff frequency ωc. In this case, the relaxation time is T−1
1 =

η(∆2/Ω) coth(Ω/2T ) and the fidelity is expressed as

F = 1− k

Q
, k ≡ K

2η
tanh

Ω

2T
, (5.56)

where Q = T1Ω is the qubit quality factor due to relaxation. Equation (5.54) gives

the following expressions for the factor k at low and high temperatures:

k =
1

4π

 ln(ωc/Ω)− 1 + π2T 2/3Ω2 , T � Ω,

(Ω/T )2 ln(ωc/T ), T � Ω .
(5.57)

Equation (5.56) relates the ground state fidelity to the qubit quality factor, Q, as

calculated due to relaxation only. This shows that the fidelity can be related more

closely to the relaxation (T1) and not dephasing (Tϕ) processes. Adding a 1/f low-
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Figure 5.1: The temperature-dependent factor k in the expression (5.56) for the
ground state fidelity of an individual qubit in the presence of Ohmic environment
with cut-off frequency ωc.

frequency noise of a realistic magnitude does not change this conclusion (as discussed

in more details in the numerical examples below). As expected, a larger Q leads to a

better ground state fidelity. Figure 5.1 shows the factor k in Eq. (5.56) as a function

of temperature for different cut-off frequencies ωc. It exhibits the non-monotonic

T -dependence, and only weak, logarithmic, dependence on ωc, which allows one to

estimate the fidelity without precisely specifying ωc. The factor k is maximal around

kmax ' 0.5 at T ' 0.5Ω, which leads to a minimum fidelity F ' 1− (2Q)−1. Notice

that even a qubit quality factor as low as Q = 10, which is practically useless for
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GMQC, leads to F > 95% ground state fidelity.

The fact that fidelity is dominated by the relaxation (as opposed to dephasing)

and, more generally, high-frequency noise, remains true even if we take into account

the low-frequency (e.g., 1/f) noise. In addition to an Ohmic component (5.55), for

a typical mesoscopic solid-state qubit, environmental noise contains a low-frequency

component (see, e.g., [91]). Under an appropriate approximation that the low-

frequency noise is concentrated at frequencies ω � Ω, T , Eq. (5.54) for the fidelity

in presence of the low-frequency noise can be expressed through the total noise

intensity W 2 =
∫
dωS(ω)/2π, and gives:

F = 1− 1

2
(
∆W

Ω2
)2
[
1− e−Ω/T − 2Ω/T

eΩ/T + 1

]
. (5.58)

For realistic parameters, suppression of fidelity (5.58) is small compared to that due

to the high-frequency Ohmic noise. This is a very important difference between

AQC and the GMQC, as the latter is very sensitive to the dephasing dominated by

the low-frequency noise.

We now consider multi-qubit systems, starting with a system of N uncoupled

qubits. In this case, the trace in the definition of fidelity (5.10) can be taken inde-

pendently over separate qubits, so that the total fidelity F is the product of fidelities

Fj, j = 1, ..., N of the individual qubits: F =
∏

j Fj. For instance, a typical starting

point of AQC algorithms is to initialize the system in the ground state of the Hamil-

tonian HU (5.71). Then, the state of all qubits is the same and can be characterized

by the same fidelity (5.56). Then,

F = (1− k/Q)N
∣∣∣
Q�k
' e−kN/Q. (5.59)

For independent qubits, fidelity scales exponentially with N as a result of the ex-

ponential scaling of the probability for all qubits to remain in their corresponding

ground states. Since Q is inversely proportional to the noise strength η, by decreas-
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ing the noise by a factors of, e.g., 10, one can achieve the same fidelity with 10 times

more qubits.

5.4 Numerical calculations

In this section, we derive the equations that form the basis of our numerical calcu-

lation of the ground state fidelity F . We assume that the noise is coupled only

to σzj operators and Szj (ω) = S(ω) is the same for all qubits. We also define

Mmn =
∑

j |σzj,mn|2. Equation (5.34) can be rewritten as

F 2 = 1− β
∑
m,n>0

Mmn

∫
dω

2π

S(ω)Pn
ωmn + ω

−β
∑
n>0

M0n

∫
dω

2π

S(ω)Pn
ω0n + ω

−β
∑
m

Mm0

∫
dω

2π

S(ω)(P0−1)

ωm0 + ω

−
∑
n>0

Mn0

∫
dω

2π

S(ω)− (Pn/P0)S(−ω)

(ωn0 + ω)2
. (5.60)

We use Mnm = Mmn and change ω to −ω in some integrals to get

F 2 = 1− β
∑
m,n>0

Mmn

∫
dω

2π

S(ω)Pn
ωmn + ω

−β
∑
n>0

Mn0

∫
dω

2π

P0S(ω)− PnS(−ω)

ωn0 + ω

−β(P0 − 1)M00

∫
dω

2π

S(ω)

ω
−
∑
n>0

Mn0

·
∫
dω

2π

S(ω)[1− β(ωn0 + ω)]− (Pn/P0)S(−ω)

(ωn0 + ω)2
. (5.61)
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Next, we symmetrize this equation by using the fact that
∑

m>0 Pm = 1− P0:

F 2 = 1− β
∑

m>n>0

Mmn

∫
dω

2π

S(ω)Pn − S(−ω)Pm
ωmn + ω

−β
2

∑
m>0

Pm(Mmm −M00)

∫
dω

2π

S(ω)− S(−ω)

ω

−
∑
m>0

Mm0

∫
dω

2π

S(ω)[1− β(ωm0 + ω)]− (Pm/P0)S(−ω)

(ωm0 + ω)2

−
∑
m>0

Mm0

∫
dω

2π

β(ωm0 + ω)[P0S(ω)− PmS(−ω)]

(ωm0 + ω)2
. (5.62)

Note that each line in Eq. (5.62) has the form S(ω)/ω at large ω and hence diverges

together with the high-frequency cutoff in the used model of environmental noise

(see below). When all the states of the qubit system are included, these divergences

cancel each other. However, only part of the eigenstates are used in the numerical

calculations, so the divergence does not vanish if one employs directly Eq. (5.62).

Using the property
∑

n |〈|n|σzj |m〉|2 = 1, it can be shown that

∑
m>0

Pm(Mmm −M00) =
∑
m>0

Mm0(1− P0 − Pm)

−
∑

m>n>0

(Pm + Pn)Mmn . (5.63)

Combining (5.62) and (5.63), we get the final result for fidelity:

F 2 = 1−
∫
dω

2π
f(ω) ,

or, in our perturbation approximation,

F = 1− 1

4π

∫
dωf(ω) , (5.64)
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with

f(ω) = β
∑

m>n>0

Mmnfmn(ω) +
∑
m>0

Mm0gm(ω) .

Here

fmn(ω) =
S(ω)Pn − S(−ω)Pm

ωmn + ω
− Pm + Pn

2

× S(ω)− S(−ω)

ω
,

gm(ω) =
[1 + (P0−1)β(ωm0+ω)]S(ω)

(ωm0+ω)2

− [1 + P0β(ωm0+ω)](Pm/P0)S(−ω)

(ωm0+ω)2

+ β
1− P0 − Pm

2

S(ω)− S(−ω)

ω
. (5.65)

One can see that

fmn(ω)→ PnS(ω) +
Pm + Pn

2

S(ω) + S(−ω)

ω

as ω → −ωmn, and

gm(ω)→ β2(P0−1/2)S(ω) + β
1− P0 − Pm

2

S(ω)− S(−ω)

ω

as ω → −ωm0. This implies that the poles are removed and the S(ω)/ω divergence

at infinity also disappears for each term, thus improving the convergence properties

of this expression for the numerical evaluation of fidelity.

5.4.1 Noise spectral density

For numerical calculations in this work, we consider the flux noise in a rf-SQUID.

The noise operator q = IpδΦx is therefore related to the flux noise δΦx through

the rf-SQUID, where Ip is the persistent current of the rf-SQUID. The noise is
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characterized by its correlation function through the spectral density

S(ω) =

∫ ∞
−∞

dt eiωt〈q(t)q(0)〉 = I2
pSΦ(ω) (5.66)

where

SΦ(ω) =

∫ ∞
−∞

dt eiωt〈δΦ1x(t)δΦ1x(0)〉 (5.67)

is the spectral density of the flux noise. Since the actual noise is of the form of flux

noise, the spectral density, S(ω) ∝ I2
p , should depend on the bias point through Ip.

Then,

S(ω) = κ

[
γ2

|ω|
+ h̄2 ηωe−|ω|/ωc

1− e−h̄ω/kBT

]
, (5.68)

with

κ = (Ip/Ipm)2, (5.69)

where Ipm is the maximum value for Ip, η is a dimensionless coefficient characterizing

the Ohmic noise and γ is an energy scale characterizing the 1/f noise.

In the actual quantum annealing system described by Eq. (1) of the main

text, the persistent current Ip and the tunneling amplitude of qubits are time-

dependent. As described in Ref. 18 of the main text, the energy scale B(s) de-

pends on Ip as B(s) = M0I
2
p , where M0 is the maximum mutual inductance between

the qubits through the tunable couplers and s = t/tf . Therefore, one can write

κ(s) = B(s)/B(sm), where B(sm) = M0I
2
pm. It is therefore sufficient to determine

sm to calculate κ(s) at all s.

Measurement of the 1/f noise reveals a flux noise spectral density of the form

SΦ(2πf) = A2/|f |α, with α ≈ 1. From (5.66) we find

γ ≈
√

2πIpmA . (5.70)

For the qubits in the current D-Wave processors we have η ≈ 0.1, A ≈ 3µΦ0, and

Ipm ≈ 1 µA at sm = 0.636, which gives γ/h ≈ 23 MHz ≈ 0.02 GHz.
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5.4.2 Results

Next, we focus on how the ground state fidelity behaves in practical AQC systems.

We use as an example the D-Wave One quantum annealing processor installed at

the University of Southern California (see [96]). The Hamiltonian implemented by

the processor has the form of Eq. (5.1), with

HU = −
N∑
i=1

σxi , HP =
N∑
i=1

hiσ
z
i +

N∑
i,j=1

Jijσ
z
i σ

z
j , (5.71)

where hi and Jij are tunable dimensionless bias and coupling coefficients. The

parameters A(s) and B(s) for this processor are plotted in Fig. 5.2b. We calculate

fidelity of the ground state for a ferromagnetic chain (illustrated in Fig. 5.2a) with

hi= 0 and Ji,i+1= − 1, otherwise known as a quantum Ising model in a transverse

field. Here, the length of the chain is varied from N= 2 to 16. Although this

model is exactly solvable (see, e.g., [97] and references therein), fidelity cannot be

calculated exactly for practical noise models in which the coupling to environment is

dominated by the σzj terms. Hence, we calculate the fidelity numerically. In the limit

N→∞, the model is known to have a quantum critical point at A(s)=B(s). At this

point, the chain goes through a quantum phase transition between paramagnetic

and ferromagnetic phases. In the ferromagnetic phase, the ground state is doubly

degenerate with respect to simultaneous change of signs of all σzi terms. Figure 5.2c

plots several of the lowest energy levels of a 10-qubit chain relative to the ground

state energy E0. As seen in this plot, the quantum critical point manifests itself

as the appearance of the doubly-degenerate ground state and the minimum in the

energy gap between the ground and the second excited states.

To calculate fidelity for this system, we use a realistic noise model relevant to

the D-Wave qubits [90]. In this case, the dominant environmental coupling is to the

magnetic flux noise, which couples directly to the qubit computational basis states

represented by the σzj operators. The noise spectral density S(ω) was characterized
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Figure 5.2: Fig a. A ferromagnetic spin chain with transverse field and coupling
energies given, respectively, by A(s) and B(s) in Fig.(b). b. Energy scales A(s)
and B(s) extracted from experimental parameters. c. The lowest 20 energy levels,
relative to the ground state, of a 10-qubit ferromagnetic chain with Jij = −1, as a
function of the normalized time s. d. Ground state fidelity of the 10-qubit chain of
c at T = 20 mK. The vertical (red) dashed curve marks the quantum critical point.
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in the earlier experiments, which were consistent with the noise being a combination

of the 1/f low-frequency noise and an Ohmic noise at high frequencies [91]. For

calculations of fidelity, we take S(ω) = κ(s)[SHF (ω) + SLF (ω)], where SHF (ω) is

the Ohmic spectral density (5.55) and SLF (ω) = γ2/|ω|. The coefficient κ(s) =

B(s)/B(sm) appears because the strength of coupling to flux noise depends on the

persistent current of the flux qubits which changes as a function of s (see SI). Here

sm is the bias point at which the measurements of η and γ are performed. Based

on the experimental data, we use η = 0.1, γ = 20 MHz and sm = 0.636. We also

assume ωc = 100 GHz for the high-frequency cutoff and ωL = 1 MHz for the low-

frequency cutoff (based on a tf∼1 µs evolution time of an algorithm). We found that

for these parameters, the fidelity is dominantly determined by the high-frequency

Ohmic noise and not by the 1/f noise.

In principle, since the total number of energy levels grows exponentially with

N , the time required for numerical calculation of F also grows exponentially. For-

tunately, the value of F converges rapidly for a finite number of retained energy

states. Here, we keep all energy levels for N ≤ 10, and up to 2000 energy levels

for larger chains. The fidelity of the 10-qubit chain is plotted as a function of s

in Fig. 5.2d. The ground state fidelities of chains with other lengths (and coupled

systems other than chains) are qualitatively the same as the one plotted in Fig. 5.2d.

It is clear from the figure that the fidelity is minimum close to the critical point.

Notice also that the fidelity approaches F = 1 as s increases, which is the result of

HP commuting with HI , with only σzj terms and negligible other types of coupling

to environment. This again reflects the fact that the fidelity depends rather on

relaxation than dephasing.

Figure 5.3 shows the numerical results for the ground state fidelity for N -qubit

chains with N = 1 to 16 at the critical point. For all chain lengths, the fidelity is

better than 90%. It should be emphasized that these are the minimum fidelities at

the quantum critical point. The fidelity at all other points is larger, and near s = 1,

is very close to 1 as shown in Fig. 5.2d. We have also plotted in Fig. 5.3 the ground
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state fidelity of N uncoupled qubits at different N based on the exponential scaling

of Eq. (5.59). The scaling and magnitude of the fidelity at large N is better for

the ferromagnetic chain than for the uncoupled qubits. Unfortunately, it was not

possible to pursue numerical calculations beyond 16 qubits, as direct perturbation

approximation would break down when F strongly deviates from unity. A naive

exponential extrapolation of the data points to N = 128 (representing the worse

case) still yields F = 0.47, meaning that the eigenstates could retain their quantum

properties without error correction for such a large-size system. As in uncoupled

qubits, if one can reduce the noise by a large factor, the size of the chain can be

increased by the same factor while keeping the fidelity unchanged. In addition,

other techniques such as dynamical decoupling [93] or error correction [94] could be

employed to enhance the ground state fidelity at large scales.

Finally, we discuss how the ground state fidelity should affect the performance of

AQC. In universal AQC [36, 37], the fidelity of the final ground state determines the

quality of the computation. Indeed, deviations of F from 1 mean that the statistics

of measurements done on this state will be different from the one that corresponds

to the ideal ground state. For instance, in the case of one qubit with ε = 0 and

the Hamiltonian (5.50), measurement of σx has a non-vanishing probability 1− F 2

of producing the result σx = −1 different from the ground state σx = 1 even at

temperatures T � ∆. However, this effect is absent in the special case when the

coupling to environment via HI commutes with the final Hamiltonian HP , leading

to F = 1 at the end of evolution, as in the adiabatic quantum optimization discussed

above and shown in Fig. 5.2d. In this case, thermal transitions increase the loss of

probability due to small fidelity in the middle of the evolution, thereby decreasing the

ground state probability even further (P̃0 = P0F
2). Therefore, the probability will

be distributed among the low energy states even more than implied by the thermal

equilibrium. Part of the probability can be regained later when the gap is larger

and F is closer to 1. However, since the relaxation time becomes exponentially long

near the end of evolution, the majority of the probability that is lost may not be
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Figure 5.3: Ground state fidelity at the quantum critical point for ferromagnetic
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(5.49). The red dashed curve is fidelity of uncoupled qubits from (5.59) with k = 0.32
and Q = 38.4.

gained back, thus leading to smaller probability of success. This makes it important

to maintain fidelity close to unity throughout the evolution. We stress that most

treatments of AQC based on the weak coupling master equation, e.g., [33, 83, 95],

do not take into account the effect of deformation of the eigenstates that is captured

by our calculation of the fidelity.
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5.5 Conclusions

In summary, we have proposed using ground state fidelity as a quantity for mea-

suring the strength of decoherence effects in AQC. Fidelity plays a role similar to

decoherence time in GMQC, and is determined by the same noise correlator that

determines the decoherence time in GMQC. However, fidelity takes into account

qualitatively different effects of environment on the ground state relevant to AQC.

The fidelity is related to the relaxation processes and is relatively insensitive to the

dephasing. Our numerical calculations indicate that fidelity close to unity can be

achieved with a moderate qubit quality factor, even for large numbers of qubits.

Ground state fidelity should be a useful measure of the environment related quality

of AQC systems in the context of further work on important topics in AQC such as

quantum error correction or the threshold theorem.
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