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Abstract of the Dissertation

Advances in Theory of Coherent Electron Cooling

by

Andrey Elizarov

Doctor of Philosophy

in

Physics

Stony Brook University

2015

The coherent electron cooling is a novel hadron beam cooling technique
that is being developed at Brookhaven National Laboratory. It is a real-
ization of the stochastic cooling, in which an electron beam is used in the
modulator, amplifier and kicker. In the modulator, hadrons create electron
density perturbations. Then these perturbations are amplified in the free
electron laser, while hadrons pass through dispersion section, where they
are placed such that, in the kicker, amplified perturbations’ electric fields
accelerate or decelerate hadrons, depending on their velocities, cooling the
beam. In the present dissertation, we describe ways to model the modu-
lator section of the coherent electron cooling. The electron beam can be
modeled as an infinite plasma and in this model even analytical solutions
can be obtained for the density perturbations. Obviously, infinite electron
plasma is unrealistic model of an electron beam in accelerator. The main
result of the dissertation is a method to compute dynamics of shielding of a
moving charged particle (hadron) in a confined plasma, which represents a
realistic model of an electron beam. This is a longstanding problem in plasma
physics with applications ranging from cosmology to advanced particle accel-
erator techniques. However, only solutions for an infinite unrealistic plasma
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are available. We developed a novel method to solve this problem, which
consists of transformation of the Vlasov-Poisson differential equations to an
integral equation for the Laplace image of the electron density perturbation
created by an external charge. The integral equation is then solved numer-
ically via the piecewise polynomial collocation method and the fast Fourier
transform. We present thorough analysis of the results obtained and their
physical interpretation. We also consider infinite plasma model and derive
some formulas for the free electron laser section within this approximation.
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1 Introduction

Particle accelerators [1, 2], which are devices that propel charged particles to
high energies and contain them in beams, are very important tools in modern
science and technology. Their primary purpose is to provide particle beams
for research in particle and nuclear physics, however, they are also very useful
in solid state physics, biology, medicine etc. It is impossible to list all the
applications of particle accelerators. It is very important to provide beams
of high quality.

Typically, particles in a beam are grouped into ”bunches”. One of the
most important parameters of a particle accelerator is its luminosity:

L =
N2f

4πσ2
, (1)

where N is a number of electrons in a bunch, f is its repetition frequency,
σ2 is a variance of the transverse spatial density distribution of the bunch.
The transverse emittance ε⊥ is defined as an area of the cross section of the
phase space volume occupied by the bunch:

ε⊥ =

∫
B⊥

d~xd~p, (2)

where B⊥ stands for the cross section of the region in phase space occu-
pied by the bunch (we omit longitudinal coordinates for simplicity, typically,
emittance is constant along the bunch) and ~x and ~p are the coordinate and
momentum vectors, respectively. Defining beta function β via

β =
σ2

ε⊥
, (3)

we can rewrite luminosity in a form:

L =
N2f

4πεβ
. (4)

Obviously, one of the ways to increase luminosity is to reduce emittance.
Reduction of the emittance of the beam is called ”beam cooling”.

There are few well-known cooling techniques, i.e., ionization cooling, elec-
tron cooling, and stochastic cooling. In the ionization cooling, particles pass
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through some material and their momentum is reduced as they ionize atoms
of the material; this technique is mostly used to cool muon beams. In the
electron cooling, which was invented by G. Budker in 1966, an accelerated
electron beam merged with a particle beam being cooled and the heat of the
particle beam is transferred to the electron beam through collisions and, as
a result, emittance of the particle beam is reduced. In the stochastic cool-
ing, individual particles in a beam create some electrical signals, then these
signals are amplified and then they ”kick” particles, reducing emittance of
the beam. The first section of the stochastic cooling is called ”modulator”
or ”pickup” and the last – ”kicker”. This cooling technique can be used for
transverse and longitudinal cooling.

Currently, electron cooling and stochastic cooling are used to cool hadron
beams. However, these methods are unable to cool beams with energies of
TeV order. Recently, the coherent electron cooling (CeC), which is a new
realization of stochastic longitudinal cooling, was proposed as a new cooler
for Relativistic Heavy Ion Collider (RHIC) [3] at Brookhaven National Lab-
oratory (BNL). It was estimated [4], that CeC is able to cool 250 Gev proton
beam (at RHIC) in under 10 minutes and 7 TeV proton beam (at LHC) in
under an hour. Currently, a corresponding facility is under construction at
Brookhaven National Laboratory, for the present status of the developments
of the machine, we refer to [5]. In the next subsection, we discuss CeC in
more detail.

1.1 Coherent electron cooling

Figure 1: The scheme of the coherent electron cooler [4].

The CeC is a modern realization of the stochastic electron cooling, where
the electron beam is used in the modulator, amplifier and kicker. In the
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modulator, the information about a hadron beam is recorded as electron
density perturbations resulting from shielding of the hadrons. Then these
perturbations are amplified in the free electron laser (FEL) section [6, 7, 8],
and then, in the kicker, every hadron experience an electric field produced
by its own amplified perturbation receiving kicks. Before the kicker, in the
dispersion section, each hadron is placed such that these kicks accelerate
or decelerate it depending on its velocity toward the desired one reducing
the velocity spread of the hadron beam. The scheme of the CeC device is
depicted in Fig. 1. To analyze the performance of the CeC, all sections of
the device has to be studied in detail.

1.1.1 CeC modulator and test charge problem

In the modulator, electron and hadron beams are merged and hadrons create
electron density perturbations in the electron beam. Precise computation
of the dynamics of shielding of a hadron in an electron beam is required
to provide a theoretical description of CeC device and obtain the correct
parameters’ values for the facility, which is currently under construction at
Brookhaven National Laboratory [5].

The simplest formulation of the test charge problem is an evaluation of
screening of a stationary particle in an infinite plasma (by plasma we mean
a collisionless single-species electron plasma), this is the well-known Debye
screening. For a particle moving in an infinite plasma, it is possible to solve
the corresponding equations, i.e., the Vlasov-Poisson system, via the Laplace
and Fourier transforms [9, 10, 11]. For the 1D infinite plasma with the Cauchy
equilibrium velocity distribution, the exact solution can be obtained [10]. For
the 3D infinite plasma with the Lorentz equilibrium velocity distribution, the
solution can be expressed as a one-dimensional integral [9], we will discuss
these results in more detail in subsection 1.1.2. For other cases, the integral
transforms must be inverted numerically [10]. In section 2, we will describe
our exhaustive considerations of the dynamical shielding of a charged particle
in the infinite plasma following [10].

An infinite plasma is an unrealistic model of an electron beam. Many
effects are very different in finite and infinite plasmas and so the shielding,
as we shall see in section 4. For the first time, the Vlasov-Poisson equations
for a finite plasma with the microcanonical equilibrium distribution was con-
sidered by Gluckstern [12]; then these ideas were further developed by him
and Venturini in [13]. In these papers, they studied a plasma’s response
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to an external magnetic field of a special form. However, plasma with the
microcanonical equilibrium distribution doesn’t represent a realistic model
of a physical system and they didn’t study shielding of an external charge.
There also have been some considerations of a test charge problem for a
semi-infinite bounded plasma [14].

Main result of the present thesis is a development of a novel method for
computation of shielding of a charged particle in a confined plasma. Confined
plasma is defined as plasma with an integrable equilibrium distribution, at
least over some spatial coordinates; velocity distribution is integrable even
for the infinite plasma. An example of such plasma is an electron beam with
the finite emittance along these coordinates. There are two cases of practical
interest: a fully confined plasma (its spatial distribution is integrable over
all coordinates), e.g., a ball in 3D space with the normal (Maxwell) spatial
distribution, which is a realistic model of an electron bunch in a bunched
beam, and a partially confined plasma (its spatial distribution is integrable
over some coordinates), e.g., a longitudinally infinite electron beam with the
finite transverse emittance. Although, with some modifications, the method
can be applied to infinite and partially confined plasmas, we will focus on a
fully confined case, since this model is more realistic.

Potential applicability of the methods developed extends far beyond par-
ticle beams with finite sizes. For example, they can be used to describe
interstellar phenomena, such as propagation of a planet or star through a
dust cloud or low density interstellar plasma, and screening effects in so-
lar and stellar interiors. Also, the methods can be applied to plasmas with
charged dust particles, since the method can be easily modified to deal with
finite size charged particles.

Section 4 is devoted to the test charge problem in the confined plasma.
We will start with the formulation of the problem. Then we describe two
different methods, which are similar, but one is less general and more effective
numerically than the other. They both lead to the Fredholm integral equation
of the second type for the Laplace image of the perturbation’s density. We call
such equations the Laplace-Fredholm equations for the density perturbation.
Then, we review the piecewise polynomial collocation method (PPCM) for
the Fredholm integral equation, and describe our numerical method for the
Laplace-Fredholm equation that utilizes the PPCM and the discrete Fourier
transform. Thereafter, we present numerical results for shielding of a charged
particle in the 1D, 2D and 3D plasmas with the normal (Maxwell) spatial and
velocity distributions. We compare the results to those obtained previously
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for the infinite plasma [10] and provide physical interpretation of the results.
We will then discuss application of these results to the CeC device now being
constructed at Brookhaven National Laboratory.

All the methods discussed solve this problem via solving the Vlasov-
Poisson system of equations either analytically or numerically. Alternatively,
the shielding problem can be solved via simulations [15]. So called ”particle-
in-cell” (PIC) method is used for that. For the infinite plasma, after veri-
fication with the results of [9], the PIC method is working fine. However,
there are some difficulties with applying PIC for the realistic case of the con-
fined plasma, which make the results of the present thesis very important for
future tests of the PIC simulations for the confined plasma.

1.1.2 Recent considerations of the test charge problem

Dynamical test charge problem for the infinite plasma was recently considered
by Gang Wang and Michael Blaskiewicz [9], our colleagues from BNL. Here
we briefly present and discuss their results.

They started with the Vlasov-Poisson system of equations:

∂

∂t
f1(~x,~v, t) + ~v · ∂

∂~x
f1(~x,~v, t)− e ~E

me

· ∂
∂~v
f0(~v) = 0, (5)

∂

∂~x
· ~E(~x, t) =

ρ(~x, t)

ε0
, (6)

where f1(~x,~v, t) is an unknown perturbation’s density, f0(~v) is an equilibrium

density, me is an electron mass, ε0 is a vacuum permittivity, ~E(~x, t) is an
electric field, and ρ(~x, t) is given by

ρ(~x, t) = Zeδ(~x)− en1(~x, t), (7)

where

n1(~x, t) =

∫
f1(~x,~v, t)d~v. (8)

Doing Fourier transform and integrating over time, we can obtain an
integral equation for the Fourier image of n1(~x, t):

ñ1(~k, t) = ω2
p

t∫
0

(
ñ1(~k, t)− Z

)
(t1 − t)g(~k(t− t1))dt1, (9)
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where

g(~u) ≡ 1

n0

∫
f0(~v)e−i~u·~vd~v, ω2

p =
n0e

2

meε0
, and n0 =

∫
f0(~v)d~v. (10)

The main result of their work was an analytical expression for ñ1(~k, t),
for some special distribution f0(~v), namely, for the Lorentzian distribution1:

f0(~v) =
n0

π2βxβyβz

(
1 +

(vx + v0x)
2

β2
x

+
(vy + v0y)

2

β2
y

+
(vz + v0z)

2

β2
z

)−2

, (11)

where βx, βy, βz, and ~v0 are some parameters. With this distribution, the
integral equation (9) can be transformed to the inhomogeneous ordinary

differential equation (ODE) for H̃1(~k, t) defined via:

H̃1(~k, t) = ñ1(~k, t)e−λ(~k)t, (12)

where

λ(~k) = i~k · ~v0 −
√

(kxβx)2 + (kyβy)2 + (kzβz)2. (13)

The ODE looks as follows:

d2

dt2
H̃1(~k, t) + ω2

pH̃1(~k, t) = ω2
pZe−λ(~k)t, (14)

This equation can be solved and the following expression for ñ1(~k, t) can be
obtained:

ñ1(~k, t) =
ω2
p

ω2
p + λ(~k)2

(
1− e−λ(~k)t

(
cos(ωpt)−

λ(~k)

ωp
sin(ωpt)

))
. (15)

Inverting the Fourier transform, it is possible to obtain the following expres-
sion for n1(~x, t):

n1(~̄x, t) =
Z

π2axayaz

ψ∫
0

ψ1 sinψ1

(
ψ2

1 + (x̄+ u0xψ1)2 + (ȳ + u0yψ1)2+

+(z̄ + u0zψ1)2
)−2

dψ1, (16)

1In mathematics this distribution is known as the Cauchy distribution.
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wherein normalized variables are defined as ψ = ωpt, ai = βi/ωp, x̄i = xi/ai,
u0i = v0i/βi, and i = x, y, z.

This result was a very important step forward in this theory. Before it,
there were only numerical solutions of the equation (9), which are not very
convenient. This result allowed to verify the PIC code for this problem,
which is widely used for simulations of this process. This cannot be consid-
ered as a final result in this theory for the following reasons. This is done
for the unrealistic infinite plasma. The unrealistic Lorentzian distribution is
used. Although, its profile looks similar to the profile of realistic normal dis-
tribution, this distribution doesn’t have mean and variance, while empirical
velocity distribution, obviously, does. And, finally, this is still a 1D integral,
which must be evaluated numerically. In the present thesis, we will address
all this issues, in sections 2 and 4, we will present and discuss our results.

Another important result of the paper [9] is an expression for the density
perturbation for t→∞. It was shown that for the equilibrium distributions
satisfying f0(~v) = f0(v),

lim
t→∞

n1(~̄x, t) =
Z

4πcxcycz

e−r̄

r̄
, (17)

where ci ≡
√
η0βi/ωp for i = x, y z, r̄ =

√
x2/a2

x + y2/a2
y + z2/a2

z, and

η0 =

4πβxβyβz

∞∫
0

f0(u)du

−1

. (18)

In particular, this means that plasma oscillations are damped completely at
infinity. We will elaborate on this a bit more in section 4.

Recently, Gang Wang, Michael Blaskiewicz, and Vladimir Litvinenko ex-
tended this theory and took into account longitudinal space charge fields
[16].

1.1.3 Free electron lasers

Free electron laser (FEL) is a laser, in which radiation is produced by
electrons moving through a magnetic structure called undulator. In the FEL,
the beam of electrons moving with a speed close to the speed of light passes
through a periodic magnetic field created by the undulator. Because of the

7



Figure 2: The scheme of a free electron laser. The set of alternating magnets
is an undulator, an electron beam is shown as red line, and radiation is shown
as a yellow arrow. The picture is taken from [17]

undulator magnetic field, electrons move along sinusoidal trajectories, i.e.,
they have alternating transverse accelerations and thus emit photons.

Suppose, Nu is a number of sections in the undulator and each section
has length λu. We define the wavevector of the undulator ku:

ku =
2π

λu
. (19)

We also introduce the radiation length seen by observer λ1:

λ1 =
λu
2γ2

, (20)

and corresponding wave vector k1:

k1 =
2π

λ1

. (21)

γ is a ratio of the electron’s kinetic energy and its rest mass energy:

γ =
Ee
mc2

, (22)

typically, for free electron lasers, γ ∼ 103−104. These notations will be used
later. The FEL principle is illustrated in Fig. 2.

The free electron lasers are sources of an almost monochromatic radiation
and radiation frequency ωr is defined by a certain resonance condition [18].
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We further develop the FEL theory in subsection 1.1.5, in section 3, and
in appendix D.

In the CeC, the FEL is used in a non-standard way, i.e., the radiation is
not used, instead, we are interested in amplification of the density perturba-
tions in the electron beam. This effect will be discussed in subsection 1.1.5
and in section 3.

1.1.4 FEL section and kicker

In the FEL section, the perturbations generated in the modulator are am-
plified via the high gain FEL. The 1D FEL theory [18, 19, 20, 21, 22] can
be used to derive expressions for the amplified perturbation density and for
the density corresponding to the self-amplified spontaneous emission (SASE),
which can be used to estimate the saturation length, providing the limitations
on the density perturbations amplification, and, as a result, on performance
of the whole CeC machine. In section 3, we derive these expressions, they
contains many inverse integral transforms and can be evaluated numerically
using the fast Forurier transform (FFT) algorithm.

In the kicker, the hadrons interact with the electric field produced by
their own amplified density perturbations [23]. Mathematically, the problem
is very similar to the one solved for the modulator, but, in the kicker, as initial
density perturbation we have the hadron’s charge and the amplified electron
density from the FEL section. Solving for the Fourier image of the density
perturbation, we can easily obtain the potential of the field in the Fourier
domain. And then, doing the inverse Fourier transform we can compute the
potential in the space domain.

1.1.5 Recent considerations of the FEL section

Theoretical model of the FEL section was recently developed by Stephen
Webb, Gang Wang, and Vladimir Litvinenko [6]. The model was developed
in the framework of the FEL theory described in the book by E. Saldin, E.V.
Schneidmiller, M.V. Yurkov [18].

Dynamics of individual particles in the undulator is described by the
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Hamilton’s equations:

dH

dz
=

1

c

[
− 1

p0

(e
c

)2
~Au · ~A⊥ +

e

c

∂Az
∂t

]
, (23)

dt

dz
=

1

c

[
1 +

1

2

1

p2
0

[(e
c

)2 (
A2
u + 2 ~Au · ~A⊥

)
+m2c2

]]
, (24)

where p0 = H
c

, ~Au = Bu
ku

(cos kuz~ey − sin kuz~ex) is the undulator potential
for the helical undulator and ku is the wavevector of the undulator, ~ex, ~ey
are unit vectors, Bu is some constant, ~A⊥ is the laser field, and Az is the
longitudinal space charge.

Dynamics of the phase space density of the electron beam is described by
the Vlasov equation:

∂f

∂z
+
dH

dz

∂f

∂H
+
dt

dz

∂f

∂t
= 0. (25)

Representing the density f as f = f0 + f1, where f0 is a thermal background
and f1 is an instabilty, the Vlasov equation can be linearized:

∂f1

∂z
+

1

c

[
1 +

1

2

1

γ2
0

(
1 +K2

)(
1− 2

E

E0

)]
∂f1

∂t
+

+

[
1

E0

(e
c

)2
~Au ·

~A

∂t
+ eEz

]
∂f0

∂E
= 0, (26)

where K = eAu
mec2

is the undulator parameter.
We define the longitudinal current density jz via

jz = −ec
∫
dHf1, (27)

and its Fourier transform j̃z via

jz =
1√
2π3

∫
dνd2k⊥ei

~k⊥~r⊥eiνωr(z/c−t)eikuze−ik
2
⊥cz/(2νωr)j̃z, (28)

where ωr is a radiation frequency. It is possible to solve the FEL equations
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and obtain the following expression for j̃z:

j̃z

(
ẑ, Ĉ,~k⊥

)
=− ecρE0

2ν

∫
dÊei(Ĉ+Ê−k2⊥)ẑf̃1

∣∣∣
ẑ=0

+

+

∫
dÊ

ẑ∫
0

dẑ
′
ei(Ĉ+Ê−k̂2⊥)(ẑ

′−ẑ)

∫
d2q̂ei(q̂

2−k̂2⊥)ẑ
′

×

×

 ẑ
′∫

0

dẑ
′′
j̃z(~q) + iΛ̂2

pj̃z(~q)

 dF̂
dÊ

R̂(~q − ~k⊥), (29)

where dimensionless units were used and

Ĉ =
1− ν
ρ

, (30)

Λ̂2
p =

8πe2n0Γ−1(1 +K2)

γ3
0mc

3
, (31)

Ê =
2νE

ρE0

, (32)

k̂2 =
k2cΓ−1

2νωr
, (33)

n0 is a normalization factor of f0, i.e.,

f0 = n0F (E)R(~r⊥), (34)

Γ =

(
E2

0c
2γ

2πνe3Kkun0

)− 1
3

, (35)

and Pierce parameter is given by

ρ = Γk−1
u . (36)

In the infinite beam approximation, R(~q−~r⊥) = δ(~q−~r⊥) and expression (29)
can be significantly simplified and the following expression for the Laplace
image (over z) of the electron density perturbation can be obtained:

f̃1(s, Ĉ3D, k̂⊥, Ê) =

∫
dÊ

′
GFEL(s, Ĉ3D, k̂⊥, Ê|Ê

′
) f̃1(Ĉ3D, k̂⊥, Ê)

∣∣∣
0
, (37)
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where GFEL(s, Ĉ3D, k̂⊥, Ê|Ê
′
) is the FEL Green’s function:

GFEL(s, Ĉ3D, k̂⊥, Ê|Ê
′
) =

δ(Ê − Ê ′)
s+ i(Ĉ3D + Ê)

+ · · ·+ 1

s+ i(Ĉ3D + Ê)
×

×

[
1

s− D̂(1− isΛ̂2
p)

+ iΛ̂2
ps

1

s− D̂(1− isΛ̂2
p)

]
dF̂

dÊ

1

s+ i(Ĉ3D + Ê)
, (38)

Ĉ3D = Ĉ − k̂2
⊥, and f̃1(Ĉ3D, k̂⊥, Ê)

∣∣∣
0

represents initial density perturbation.

The FEL Green’s function has two components. The first one represents
Landau damping and single-particle non-cooperative motion in the undula-
tor, this process doesn’t lead to gain and this component can be neglected,
and the second one contains the growing roots of the dispersion relation and
represents gain process of the FEL.

The expression (38) for the FEL Green’s function is for arbitrary initial
perturbation. For further details and application of the formula for some
particular initial perturbation, we refer to [6], where finite beam case is also
considered via eigenmode expansion.

1.2 Organization of the manuscript

In section 2, the test charge problem for the infinite plasma will be considered.
We will introduce convenient dimensionless units, which also will be used in
later sections with some modifications. General solution for the problem will
be derived in terms of the inverse Laplace and Fourier transforms. For the
1D Cauchy equilibrium distributions, we will derive exact analytical solution,
which will serve as a testing ground for the numerical solutions. For other
1D, 2D, and 3D distributions, we will present numerical solutions obtained
using the fast Fourier transform algorithm. Some technical details regarding
inversion of integral transforms and evaluation of the special functions used
will be presented in the appendix.

In section 3, we will present our considerations for the FEL sections in the
formalism of the 1D FEL theory [20, 22]. We will derive expressions for the
amplified density in terms of the inverse integral transforms, they are closely
related to the formulas for the modulator for the infinite plasma model.

In section 4, we will describe the test charge problem for the confined
plasma. We will transform the Vlasov-Poisson system into the Fredholm

12



integral equation. We will derive two different equations, one is more gen-
eral, but the other can be solved faster. We will describe in detail numerical
methods for these equations and software that was developed for this prob-
lem. We will discuss parallelization of the algorithms for the systems with
distributed memory; some algorithms will be discussed in the appendix. We
will perform numerical tests of the software and show numerical results for
some particular cases. We will conclude this section with discussion of the
physics of the solutions.

We will summarize our results in section 5.
Many technical details of the work are discussed in appendixes.
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2 Shielding of a charge in the infinite plasma

In this section, we will consider shielding of a charged particle in the infinite
electron plasma [10, 24]. We will start with the Vlasov-Poisson system of
equations, solve it via the Fourier and Laplace transforms. Then, we will
derive an exact solution for the 1D Cauchy equilibrium distribution and
show numerical results for other distributions.

2.1 The Vlasov-Poisson system

Generally, shielding of a charged particle in a plasma is described by the
Vlasov-Poisson system of equations [25], i.e., the dynamics of the electron
density is governed by the Vlasov equation and the electric field by the Pois-
son equation. We first describe the system in a co-moving frame of reference,
then derive a formal solution via the integral transforms, then introduce
convenient dimensionless variables, and finally write a solution for a particle
moving along a straight line.

2.1.1 General formulation for an infinite plasma

We consider the Vlasov-Poisson system for the 1D, 2D and 3D plasmas si-
multaneously, which means that ~x is a one-, two- or three-dimensional vector
depending on the dimensionality of the plasma we are considering and by
x we denote its absolute value, even for the 1D case; the same conventions
are applied for the dimensionless vectors that we will introduce in subsection
2.1.3. For the electron phase-space density f(~x, ~p, t), the Hamiltonian H, and
the electric potential U(~x, t), we have the Vlasov equation, the Hamilton’s
equations and the Poisson equation:

∂f

∂t
+ ~v · ∂f

∂~x
+
d~p

dt

∂f

∂~p
= 0, f ≡ f(~x, ~p, t), (39)

~v =
∂H

∂~p
,

d~p

dt
= −∂H

∂~x
, H =

p2

2m0

+ eU(~x, t), (40)

∂2

∂~x2
U(~x, t) = − e

ε0
n(~x, t), n(~x, t) =

∫
f(~x, ~p, t)d~p, (41)

and the charge density is en(~x). For this system, we consider the test charge
problem with an external time-dependent density d(~x, t). We assume that
f = f0 + f1, where f0 = f0(~v) is an equilibrium electron density, and f1 =
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f1(~x, ~p, t) is an unknown perturbation resulting from the interaction with the
test charge. The linearized Vlasov-Poisson system looks as follows:

∂f1

∂t
+ ~v · ∂f1

∂~x
− e

m0

∂U

∂~x

∂f0

∂~v
= 0, (42)

∂2

∂~x2
U(~x, t) = − e

ε0
(n1(~x, t) + d(~x, t)) . (43)

2.1.2 Solving the Vlasov-Poisson system via the integral trans-
forms

The Poisson equation (43) can be solved via the Fourier transform:

k2Ũ(~k, t) =
e

ε0

(
ñ1(~k, t) + d̃(~k, t)

)
, (44)

where Ũ(~k, t), ñ1(~k, t), and d̃(~k, t) are the Fourier images of the corresponding
functions. Using this solution, we transform the equation (42) to [11]:

Ñ1(~k, s) =
−e2

m0ε0
LF~kt (tf0 (~v))

(
Ñ1(~k, s) + LFd(~x, t)

)
, (45)

where, Ñ1(~k, s) and LFd(~x, t) are, respectively, the Laplace-Fourier images
of n1(~x, t) and d(~x, t):

Ñ1(~k, s) ≡ LFn1(~x, t) =

∞∫
0

∫
n1(~x, t)e−i

~k·~x−tsd~xdt, (46)

LFd(~x, t) =

∞∫
0

∫
d(~x, t)e−i

~k·~x−tsd~xdt, (47)

and

LF~kt (tf0 (~v)) =

∞∫
0

e−tst

∫
f0 (~v) e−i

~k·~vtd~vdt. (48)
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Denoting the inverse Fourier and Laplace transforms, respectively, by F−1

and L−1, we obtain the following expression:

n1 (~x, t) = − e2

m0ε0
F−1L−1 LFd(~x, t)(

LF~kt (tf0 (~v))
)−1

+ e2

m0ε0

, (49)

for the details on definitions of the integral transforms and our notations, see
appendix A. Generally, the expression (49) can be complex. Looking back
to our initial equations and assuming complex f1, we note that the equation
with Imf1 corresponds to the equation without an external charge, while
the equation with Ref1 is the one with it, consequently, Imf1 = 0 and it is
confirmed by further computations. Hence, the expression (49) is real, as it
should be.

Even though the Poisson equations and their Green’s functions differ for
the 1D, 2D, and 3D cases, their solutions in the Fourier domain (44) and the
expression (49) for n1 (~x, t) have the same form.

In proceeding further, we need to specify the dimension of the problem,
the external charge density d(~x, t), and the equilibrium distribution, but first
we introduce dimensionless variables.

2.1.3 Introducing dimensionless variables

We define the dimensionless variables, denoting them using the sans-serif
font, as follows:

~x =
~x

rD

, ~v =
~v

vrms

, t =
t

tp
, ~k = ~krD, s =

s

ωp

, (50)

where

vrms =

√
1

ρ

∫
v2f0(~v)d~v, ωp ≡

1

tp
=

√
e2ρ

m0γε0
, (51)

rD =
vrms

ωp

, (52)

are, respectively, the root-mean-square velocity, the plasma frequency, and
the Debye radius. The equilibrium density is normalized via:∫

f0(~v)d~v = ρ. (53)
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We introduce the dimensionless equilibrium density f0(~v) by the relation:

f0(~v) = ρfdf0(~v), (54)

wherein all the dimensional constants are gathered into fd and d stands for
the dimensionality of the space, and can be 1, 2, or 3. We have the following
dimensionalities for other quantities:

[ε0] =
C2T 2

LdM
, [n(~x, t)] = [ρ] = L−d, [fd] = [vrms]

−d. (55)

We note that fd and vrms are not the same for the different equilibrium
densities and must be computed via (51) and (54); for the non-integrable
densities, the values have to be chosen voluntarily; among the densities we
consider, only the Cauchy one is of that type. Using the dimensionless units,
we rewrite formula (49) as follows:

n1 (~x, t) = −L−1F−1

 LF
(
d(~x, t)

)(
LF~kt (tf0 (~v))

)−1 1
fdvdrms

+ 1

 , (56)

where LF
(
d(~x, t)

)
and LF~kt (tf0 (~v)) are the dimensionless analogs of (47) and

(48), respectively, 1
fdvdrms

is a dimensionless factor, and L−1, F−1 are the inverse
Laplace and Fourier transforms for the dimensionless variables.

2.1.4 The external point charge

We assume that the charge’s trajectory is unaffected by the space charge
fields and consider the charge moving along a straight line ~y (t) = ~x0 + ~v0t,
we have:

d(~x, t) = −Zδ (~x− ~y (t)) , (57)

this assumption is reasonable for a hadron moving in an electron beam, as the
hadron’s mass is much larger than the electron’s. For simplicity, we assume
Z = 1 and the final density for the non-unitary charge can be recovered just
by multiplying it by Z. Using the dimensionless units introduced, for any
number of the spatial dimensions, we have:

LF
(
d(~x, t)

)
= −

∞∫
0

∫
δ (~x−~y(t)) e−i

~k·~x−tsd~xdt = − e−i
~k·~x0

s + i~k ·~v0

, (58)

~y(t) = ~x0 +~v0t. (59)
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Finally, we can write the expression for the electron density perturbation re-
sulting from the interaction with the external charge moving along a straight
line ~y (t) = ~x0 +~v0t, valid in 1D, 2D, and 3D spaces:

n1 (~x, t) = L−1F−1

 e−i
~k·~x0(

f−1
d v−drms

LF~kt(tf0(~v))
+ 1
)(

s + i~k ·~v0

)
 . (60)

In the next subsection, we consider this solution for some particular equilib-
rium densities f0 (~v); for each case, we just need to compute LF~kt (tf0 (~v)) and
f−1
d v−drms and insert them into (60).

2.2 Application to the particular equilibrium distribu-
tions

Generally, the equilibrium distribution f0 (~v) has to be a solution of the un-
perturbed Vlasov equation, i.e., it has to be a function of the unperturbed
Hamiltonian, in our dimensionless units it is v2, thus we consider the follow-
ing functions:

δ(v2 − 1), (61)

Θ(−v2 + 1), (62)

e−v
2

, (63)

(1 + v2)−
1+d
2 . (64)

They correspond to the Kapchinskij-Vladimirskij (KV) [1, 26], water-bag
(WB), normal (or Maxwell), and Cauchy (or Lorentz) equilibrium distribu-
tions, Θ(v) stands for the Heaviside step function, d is the dimensionality
of the space, and ~v is a one-, two-, or three-dimensional vector. However,
for the case of the infinite plasma that we are considering here, any function
of velocity is a solution of the unperturbed Vlasov equation; thus, all our
formulae can be easily generalized for the equilibrium distributions of the
form:

f0

(
d∑
i=1

(aivi)
2

)
, (65)

corresponding to an anisotropic plasma, where ai, i = 1, ..., d are dimension-
less constants characterizing the plasma’s temperatures. The changes should
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be applied only to the expression for LF~kt (tf0 (~v)), i.e., ki should be substi-
tuted with ki/ai for i = 1, ..., d, and the whole expression should be divided
by
∏d

i=1 ai.

For the 1D Cauchy distribution, the inverse Laplace and Fourier trans-
forms in (60) can be evaluated analytically, while for the other distributions,
the numerical techniques should be applied. We describe the 1D Cauchy case
in detail and just quote the results for the other distributions starting with
the KV and WB, which have different expressions for LF~kt (tf0 (~v)) in spaces
of different dimensionalities. We conclude this section with the Cauchy and
normal distributions that have the same expressions for this quantity in all
cases. Although, below we present vrms computed via (51), we considered
dimensionless equilibrium distributions, f0 (~v), corresponding to

vrms =

√
Hc

β
, (66)

with this vrms, in all cases, 1
fdvdrms

= 1 and f0 (~v) has a simpler form.

2.2.1 1D Cauchy distribution

For the 1D Cauchy distribution, we have

f0 (~v) = ρ
β

Hc

1

π
(

1 + β
Hc
v2
) , (67)

where β and Hc are dimensional constants that can be used for fitting the
experimental distributions. Computing LF~kt (tf0 (~v)) via (48), we obtain the
following expression:

LF~kt (tf0 (~v)) =
ρ(

s+ k
√

Hc
β

)2 , (68)

or, using the dimensionless variables:

f0(~v) =
1

π (1 + v2)
, LF~kt (tf0 (~v)) =

1

(s + k)2
, (69)

vrms =

√
Hc

β
, fd =

√
β

Hc

,
1

fdvdrms

= 1. (70)
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Then, we insert the expression for LF~kt (tf0 (~v)) into the formula (60) and
obtain:

n1 (~x, t) = L−1F−1

[
e−i

~k·~x0

(1 + (s + k)2)
(
s + i~k ·~v0

)] . (71)

For all distributions we are considering, excepting the 1D Cauchy, the in-
verse integral transforms in the corresponding expressions for n1 (~x, t) have
to be inverted numerically, while, for the 1D Cauchy, they can be computed
analytically giving the following expression:

n1 (~x, t) =
1

4π

1

v0 − i
(
e−A+ (Ei(A+)− Ei(B+)) + eA+ (E1(A+)− E1(B+))

)
+

+
1

4π

1

v0 + i

(
e−A− (Ei(A−)− Ei(B−)) + eA− (E1(A−)− E1(B−))

)
,

(72)

where

A± =
tv0 − x + x0

1± iv0

, B± =
x0 − x± it

1± iv0

, (73)

and E1(z) and Ei(z) are the exponential integral functions [27] that can be
computed via the series expansions, for details, see appendix B.1; for deriva-
tion of this formula, we refer to appendix C. The whole expression (72) is
real even though it contains complex numbers.

In Figures 3 and 4, we show the densities obtained via the exact formula
(72) and the ones obtained by the discussed in subsection 2.3 numerical in-
version of the integral transforms for x0 = 0 and v0 = 1.0, 0.2, 10.0. We note
perfect agreement of the exact solution and the numerical one. The solution
has several interesting features, i.e., starting from some time, the left tail of
the density has negative values, meaning that there is an accumulation of the
charge of the same sign as that of the external perturbation, its maximum is
oscillating, and the shape of the peak depends on the charge’s velocity, being
spiky for small velocities, widening as it increases, and, for large velocities, a
discontinuity of the density’s shape derivative appears in the right tail. All
these features are equally well captured by the numerical computations and
the analytical formula. We will comment further on the parameters’ values
in subsection 2.3.2.
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Figure 3: The density n1(~x, t) for the infinite plasma with the 1D Cauchy
velocity distribution obtained via exact formula (72) and numerically via the
FFT.

2.2.2 1D KV and WB distributions

For the 1D KV distribution, we have

f0(~v) = ρHc

√
β

Hc

δ
(
βv2 −Hc

)
. (74)

Using the dimensionless variables, we obtain:

f0(~v) = δ(v2 − 1), LF~kt (tf0 (~v)) =
s2 − k2

(s2 + k2)2 , (75)

vrms =

√
Hc

β
, fd =

√
β

Hc

,
1

fdvrms

= 1. (76)

For the 1D WB, we have:

f0 (v) =
1

2
ρ

√
β

Hc

Θ

(
− β

Hc

v2 + 1

)
, (77)
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Figure 4: The exact values and the ones obtained numerically via the FFT
for the 1D Cauchy distribution, for the various velocities of the external
charge. Solid lines represent the exact values and the FFT values are shown
by marks of different shapes regarding the times.
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f0(~v) =
1

2
Θ(1− v2), (78)

LF~kt (tf0 (~v)) =
1

k2 + s2
, (79)

vrms =
1√
3

√
Hc

β
, fd =

√
β

Hc

,
1

fdvrms

=
√

3. (80)

2.2.3 2D KV and WB distributions

In the 2D case, we have for the KV distribution:

f0 (~v) = ρHc
1

π

β

Hc

δ
(
βv2 −Hc

)
, (81)

f0(~v) =
1

π
δ
(
v2 − 1

)
, (82)

LF~kt (tf0 (~v)) =
s

(s2 + k2)
3
2

, (83)

vrms =

√
Hc

β
, fd =

β

Hc

,
1

fdv2
rms

= 1, (84)

and, for the 2D WB:

f0 (~v) = ρ
β

Hc

1

π
Θ

(
− β

Hc

v2 + 1

)
, (85)

f0(~v) =
1

π
Θ
(
1− v2

)
, LF~kt (tf0 (~v)) =

2

k2

√
k2 + s2 − s√
k2 + s2

, (86)

vrms =
1√
2

√
Hc

β
, fd =

β

Hc

,
1

fdv2
rms

= 2. (87)
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2.2.4 3D KV and WB distributions

The expressions are slightly bulkier in the 3D case; we obtain for the 3D KV:

f0 (~v) = ρδ
(
βv2 −Hc

) 1

2π
Hc

(
β

Hc

)3/2

, (88)

f0(~v) =
1

2π
δ(v2 − 1), (89)

LF~kt (tf0 (~v)) =
1

2
Î(s,~k, 1), (90)

vrms =

√
Hc

β
, fd =

(
β

Hc

) 3
2

,
1

fdv3
rms

= 1, (91)

where

Î(s,~k, v) =
ik3v (S− − S+) + s (S− + S+)

(s2 + k2v2)S−S+

, (92)

S± =

√(
s± ik

2
3v

k

)2

, (93)

and k3 is a third component of ~k; for the 3D WB, we obtain:

f0 (~v) = ρ
3

4π
Θ

(
− β

Hc

v2 + 1

)(
β

Hc

)3/2

, (94)

f0(~v) =
3

4π
Θ(1− v2), (95)

LF~kt (tf0 (~v)) =
3

2

1∫
0

v2Î(s,~k, v)dv, (96)

vrms =

√
3Hc

5β
, fd =

(
β

Hc

) 3
2

,
1

fdv3
rms

=

(
5

3

) 3
2

, (97)

the integral in (96) has to be computed numerically.

2.2.5 Cauchy distribution

For the Cauchy distribution, we obtained the expressions valid in 1D, 2D,
and 3D cases:
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f0 (~v) = ρ

(
β

Hc

) d
2 Γ(1+d

2
)

Γ(1
2
)π

d
2

(
1 +

βv2

Hc

)− 1+d
2

, (98)

f0(~v) =
Γ(1+d

2
)

Γ(1
2
)π

d
2

1

(1 + v2)
1+d
2

, (99)

LF~kt (tf0 (~v)) =
1

(s + k)2 , (100)

vrms =

√
Hc

β
, fd =

(
β

Hc

) d
2

, f−1
d v−drms = 1. (101)

2.2.6 Normal distribution

For the normal distribution, we also found universal formulas valid in 1D,
2D, and 3D cases:

f0 (~v) =
ρ

πd/2

(
Hc

β

)− d
2

exp−
βv2

Hc , (102)

f0(~v) = π−
d
2 e−v

2

, (103)

LF~kt (tf0 (~v)) =
2

k2

[
1−
√
πe

s2

k2
s

k
Erfc

s

k

]
, (104)

vrms =

√
dHc

2β
, fd =

(
β

Hc

) d
2

, f−1
d v−drms = (2/d)

d
2 , (105)

where Erfc(z) is the complementary error function [27], for its definition and
some computational details, see Appendix B.2.

2.3 Numerical methods and results

In this subsection, we briefly discuss numerical methods we employed and
present our results.

2.3.1 A few remarks on integral transforms inversion

To evaluate expression (60) for a particular distribution, we first need to
compute LF~kt (tf0 (~v)) via the formulas presented in the previous section; the
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expressions are either elementary functions or include special functions or a
one-dimensional integral, all these things can be computed straightforwardly.
Next step is an evaluation of the inverse Fourier and Laplace transforms. It
is well-known that the inverse Fourier transform can be approximated by
the discreet Fourier transform and then computed using the FFT algorithm,
for details, see appendix A. In this algorithm, the domain of interest of the
resulting function is divided into N = 2q segments. The inverse Laplace
transform can be expressed via the inverse Fourier transform:

L−1f̃ (s) =
eσt

2π

∞∫
−∞

f̃ (σ + ik) eiktdk = eσtF−1
k f̃ (σ + ik) , (106)

which can be evaluated in a way that we described above, σ is a real constant
greater than the real parts of all singularities of f̃ . For more details on
integral transforms, we refer to appendix A. In the upcoming subsection,
we graphically present our results using the dimensionless units. We note
that the dimensionless values for the different distributions are not always
comparable to each other, since the values for vrms can be different; the
corresponding conversion factors should be applied.

2.3.2 Numeircal results

In this subsection, we discuss the results obtained numerically and shown in
Figures 5, 6, 7, and 8; the velocity of the external charge, v0, is measured in
units of vrms corresponding to the electron’s density equilibrium distribution
and the initial position of the charge, x0, is measured in units of rD. The
possible space-time ranges differ for different distributions and are limited
by the required precision and the number of points N = 2q in the FFT al-
gorithm. For each plot, we increased q until the values stabilized; the values
used are shown in the legends in each plot. The most well-behaving case
corresponds to the Cauchy distribution, the KV and normal distributions
require greater values of q. For the 1D Cauchy distribution, the numerical
results were already shown in Fig. 4.

In Fig. 5, we show the densities computed numerically for all 1D distri-
butions for v0 = 1. For the 1D KV distribution, we see that beam’s response
is a delta function-like peak, for the WB, the density is very spiked and
asymmetric. For all distributions, excepting the KV, an accumulation of the
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Figure 5: The density n(~x, t) for the KV, WB, normal, and Cauchy distribu-
tions in 1D space.
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Figure 6: The density n(~x, t) for the 1D KV for v0 = 0.

charge of the same sign as the external charge occurs. For the normal equi-
librium distribution, the perturbation is skewed and spiked resembling the
shape of the α-stable distribution. For the Cauchy case, the perturbation
is also skewed and spiked for v0 ≈ 10−1, as illustrated in Fig. 4. While all
other distributions exhibit a symmetric peak around the external charge for
v0 = 0, the KV distribution has two peaks that spread out with time, as
shown in Fig. 6; with the increase of the velocity, the relative sizes of the
peaks change, and, for v0 = 1, the left peak almost disappears and the right
one looks almost like delta-function, as evidenced in Fig. 5.

In Fig. 7, the lines of equal densities, for a certain set of times, for all 2D
distributions considered, are shown for v0 = 4. For the 2D KV distribution,
we see spreading out delta function-like ”fronts”, similar to the 1D case for
v0 = 0. For the 2D WB distribution, the lines are triangular with a peak
following the charge. For the 2D Cauchy distribution, outer lines are almost
circular; for the normal distribution, they have a bit more complicated shape.
For the smaller velocities, the profiles are less directed toward the charge.

In Fig. 8, the lines of equal densities in certain planes, i.e., in three
planes, each of which is parallel to the two out of the three coordinate axes,
are illustrated. The shape of the lines for every distribution has the same
features as the ones for 1D and 2D cases.
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Figure 7: The density n(~x, t) for the KV, WB, normal, and Cauchy distribu-
tions in 2D space.
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Figure 8: The density n(~x, t) for the KV, WB, normal, and Cauchy distribu-
tions in 3D space.

2.3.3 Discussion

Figure 3 compares the density perturbation for the 1D Cauchy distribution
computed using the analytical expression (72) and the density obtained nu-
merically via (60) using the FFT techniques that we detail in the appendix
A. This plot shows that values obtained numerically via the FFT agree per-
fectly with the exact values. We use the same numerical methods to invert
the integral transforms in (250) in our method for the Laplace-Fredholm
equation.

In Fig. 5, plots for the density obtained via the expression (60) numeri-
cally for the 1D KV, WB, Cauchy and normal distributions are shown. For
some time values, we see negative and smaller additional positive peaks. The
main positive peaks follow the external charge with some delay.

In Fig. 3, for the density perturbation for the 1D Cauchy distribution,
for t = 10.61, we see a negative peak behind the main positive peak and
another smaller positive peak behind the negative one; for t = 12.54, we see
a larger negative peak. Negative and small positive peaks can also be seen
in Fig. 5 for the normal distribution for t = 5.0 and for the WB distribution.
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These are standard plasma oscillations, which are caused by appearance of
the external charge in plasma.

An initial wave-like disturbance in plasma results in a damped traveling
wave – this is well-known Landau damping [28]. Any disturbance can be
represented as a superposition of such disturbances via Fourier integral, that
means that Landau damping should be present in the solution of the test
charge problem as well. However, unlike in classical Landau’s consideration,
in our case, the external excitation (charge) doesn’t disappear immediately,
but continues to exist in plasma. As a result, the Landau damping will lead
to decay of the oscillations of the maximum of the perturbation, as we see in
Fig. 3, and stationary perturbation will be established at infinity, as it was
discussed in subsection 1.1.2.

In subsection 4.5, we shall see the results for the confined plasma, which
also have these qualitative features.

2.3.4 The code

The method we discussed herein was implemented as an object-oriented pro-
gram in C++. The solution is stored as a multidimensional array over some
grid in space-time; for further usage, it can be evaluated for any point using
interpolation. The program is easily expendable for other external charge
densities and equilibrium distributions and, in particular, can deal with the
empirical ones. The visualization is also very flexible: it is possible to adjust
time values, the number of equal density lines, set the particular values of
interest, and look at different projections and cross-sections of the 2D and
3D densities.

2.3.5 Application to the Proof-of-principle experiment

As it was mentioned in the introduction, the proof-of-principle (PoP) exper-
iment is planned at Brookhaven National Laboratory and the corresponding
facility is currently under construction [5]. In this subsection, we describe
how the results can be applied to the modulator of the real device. To re-
cover the dimensional quantities, we need the Debye radius and the plasma
frequency; for the PoP, we have rD = 4.65 · 10−5 m and ωp = 6.436 · 109 s−1.
We obtain for the dimensional density perturbation:

n1 (~x, t) =
1

rdD
n1

(
1

rD

~x, ωpt

)
, (107)
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where d is a spatial dimension of the problem, for the real 3D case, d = 3.
For the PoP experiment, the modulator is constructed such that the interac-
tion time is about one half of the plasma period, it depends on the hadron’s
velocity, as the modulator length is constant. The velocity is measured in
units of vrms, in the PoP experiment, we have vrms = 3.0 · 105 m

s
. Our compu-

tations, shown in Fig. 5, demonstrate that extending the modulator up to
a few plasma oscillations can significantly increase the density perturbation,
i.e., its maximum will be up to four times greater. Further increasing of the
modulation time doesn’t increase the perturbation, as the modulator satu-
rates, as shown in Fig. 5. The amplification of the perturbation in the FEL
section is limited by the FEL saturation. For the model-independent descrip-
tion of the FEL saturation and its application to the theory of CeC, see [29]
and [30], respectively. These considerations provide limitations on a possible
amplified perturbation that we can get, which, in their turn, determine the
performance of the CeC device.

2.4 Conclusion

In this section, we considered a possible way to model the modulator section
of the coherent electron cooling, i.e., we developed a method for evaluating
the dynamical shielding of an external charge in an infinite electron plasma;
for the certain case, we found analytical solution. The software package that
we developed gives reliable results for a variety of equilibrium distributions
and initial conditions.

It is possible to use the same numerical methods to model other sections
of the CeC. We derived formulae for the amplified density perturbations in
the FEL section in terms of the inverse integral transforms. We will describe
them in the next section.
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3 FEL section

In the FEL section, the perturbations generated in the modulator are am-
plified via the high gain FEL. We apply the 1D FEL theory [20, 22, 18] to
derive an expression for the amplified perturbation density and the density
corresponding to the self-amplified spontaneous emission (SASE), which can
be used to estimate the saturation length, providing the limitations on the
density perturbations amplification, and, as a result, on a performance of the
whole CeC machine. We start with the coordinate transformation from the
modulator to the FEL section, then describe the FEL system of equations,
and then solve it for the initial conditions corresponding to the perturbation
from the modulator and the SASE.

3.1 From the modulator to the FEL amplifier

The modulator is described in a system of reference moving with the electron
beam, however, the FEL theory is written in a laboratory frame, thus, we
need to perform the Lorentz transformation, then we shift coordinates such
that the hadron have coordinates (z, t) = (0, 0) by the end of the modulator
section, then we introduce the standard independent variables in the FEL
theory, (θ, z), a phase and a coordinate along the beam, via:{

θ(z, t) = (k1 + ku)z + ck1t,

z(z, t) = z,
(108)

the phase θ is the position relative to the bunch center, ku and k1 are wavevec-
tors defined in (19) and (21), and c is a speed of light. The ”reference elec-
tron” is the one that has θ = 0, it has the same position as the hadron. It
is well-known that the phase-space density is Lorentz-invariant, thus, if we
assume that the velocity distribution of the density perturbation is δ(v) and
using the relation η = v

c
(η = γ−γr

γr
) – the relative energy deviation from the

resonance [22]), valid for the ultra-relativistic beams, we obtain the follow-

ing relation between the density perturbation n
(lab)
1 (θ, z) in the frame, which

will be used as the initial perturbation in the FEL section, and the density
perturbation n1(~z

′
, t
′
) in the beam’s frame:

n
(lab)
1 (θ, z) = n1

(
z
′
(θ, z), t

′
(θ, z)

)
, (109)
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and the discussed coordinate transformation isz
′
(θ, z) = γ

(
z + Lm − β

(
θ−(k1+ku)z

k1
+ cti

))
,

t
′
(θ, z) = γ

c

(
θ−(k1+ku)z

k1
+ cti − β(z + Lm)

)
,

(110)

where ti is the time spent by the hadron in the modulator, typically, it is of
the order of ½ of the plasma osicllation:

ti ≡ ti(~v
′

0) = Lm
c + β~v0

′

~v
′
0c + βc2

, (111)

Lm is the length of the modulator and ~v
′
0 is the hadron’s velocity. In all these

formulas we used the dimensionless units introduced before and all vectors
are one-dimensional.

3.2 The 1D Maxwell-Vlasov system

In this subsection, we derive expression for the amplified density perturbation
in the framework of the 1D FEL theory [19]. The slowly varying frequency
domain amplitude of the radiation field Eν(z) and the electron density dis-
tribution function F (θ, η, z), represented as a sum of a smooth background
and a perturbation:

F (θ, η, z) = F0(η) + δF (θ, η, z), (112)

are governed by the 1D Maxwell-Vlasov equations:{(
∂
∂z

+ i∆νku
)
Eν(z) = −χ2ne

∫
dηδFν(η, z),(

∂
∂z

+ 2kuη
∂
∂θ

)
δF (θ, η, z) = −χ1

∫
Eν(z)eiθνdν d

dη
F0(η),

(113)

where we wrote δF (θ, η, z) in the Maxwell equation, as the smooth back-
ground doesn’t contribute to the electric field. We refrer to appendix D.3
for explanations of the notations and derivation of the 1D FEL Maxwell-
Vlasov system (113). The continuity equation can be solved via the method
of unperturbed orbits:

δF (θ, η, z) = δF (θ(0)(0), η, 0)− χ1

z∫
0

∫
Eν(z1)eiθ

(0)(z1)νdνdz1
d

dη
F0(η),

(114)
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where the unperturbed orbit is given by:

θ(0) (z1) = θ + 2kuη (z1 − z) . (115)

Then we insert this expression into the Maxwell equation and solve it via the
Laplace transform:

Eν(z) =
1

2πi

σ+i∞∫
σ−i∞

esz

D(s)

[
Eν(0)−

−χ2ne
2π

∞∫
0

∫ ∫
e−iνθ−sz2δF (θ(0)(0), η, 0)dθdηdz2

]
ds, (116)

where

D(s) = s+ i∆νku − ρ̄3

∫
iν

(s+ 2ikuην)2
F0(η)dη, (117)

and Eν(0) is the initial field, which we set to zero. To obtain the expression
for the dynamics of the density perturbation we insert expression (116) for
Eν(z) into expression (114) for δF (θ, η, z). As the initial perturbation we
can either consider the Klimontovich distribution function or the density
perturbation formed in the modulator section. The first case corresponds to
the SASE and the second one will give dynamics of the amplification of the
perturbation in the FEL section. We consider them in order.

3.3 The SASE

As the initial perturbation we consider the Klimontovich function:

δF (θ(0)(0), η, 0) =
1

Nλ

Ne∑
j=1

δ
(
θ(0)(0)− θj

)
δ
(
η − ηj

)
, (118)

where Nλ = dλ1
I
ec
e is the number of electrons on one radiation wavelength

and Ne is the number of electrons in a bunch. θj and ηj are the initial
phases and energies of the electrons. For the θ-independent background
distribution, θj is distributed uniformly over the bunch and ηj are the random
variables with the cumulative distribution function F0(η). Following the
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route described in the previous subsection we obtain for the SASE density
perturbation:

δn(θ, z) =
1

Nλ

Ne∑
j=1

δ
(
θ − 2kuηjz− θj

)
−

− Γ3

Nλ

F−1
ν,θL

−1
s,z

Ne∑
j=1

ie−iνθ̂j(0)

2iνkuη̂j(0) + s

νe−sz

D(s)
I1(s, z, ν, ku), (119)

where

I1(s, z, ν, ku) =

∫
1− ez(s+2ikuην) + sz + 2ikuzην

e2ikuzην(s + 2ikuην)2
F0(η)dη, (120)

I2(s, ν, ku) =

∫
iν

(s + 2ikuην)2
F0(η)dη, (121)

D(s) = s + i∆νku − Γ3I2(s, ν, ku), (122)

and Γ is our equivalent of the Pierce parameter defined via

Γ = (2χ1χ2r
−1
D neku)

1
3 , (123)

this definition is different from the conventional one. In formula (119), we
used the dimensionless units. The saturation is reached when the SASE per-
turbation is of the order of Ne

Nλ
. This solution can be used for any equilibrium

distribution F0(η). Here we apply it for the KV distribution F0(η) = δ(η)
and obtain:

δn(θ, z) =
1

Nλ

Ne∑
j=1

δ
(
θ − 2kuηjz− θj

)
−

− Γ3

Nλ

F−1
ν,θL

−1
s,z

Ne∑
j=1

e−iνθ̂j(0)

s

iνe−sz

D(s)

(1− ezs + sz)

s2
, (124)

D(s) = s + i∆νku − Γ3 iν

s2
, (125)

the inverse Laplace transform can be easily computed as the sum over the
residues at the roots of the denominator and the inverse Fourier transform
can be computed numerically via the FFT.
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3.4 The smooth density perturbation

As the initial perturbation we can also use the perturbation formed in the
modulator:

δn(θ, 0) = n
(lab)
1 (θ, z = 0) , (126)

and

δF (θ(0)(0), η, 0) = δn
(
θ − 2kuηz, 0

)
F0(η). (127)

Following the procedure described in the beginning of this section, after quite
lengthy computations we obtain:

δn(θ, z) = n1

(
z
′
(θ − 2kuηz, 0), t

′
(θ − 2kuηz, 0)

)
+

+
χ̃12ne
i

L−1
s,z F

−1
ν,θF

−1
~k, Lm
rDγ

{∫ M(~k, s∗1(~k))eiνk1(cti−βLm)

2kuηγ
k1

(
s∗1(~k)

c
+~kβ

)
+ s
×

× F0(η)

D(s)
dη

∫
1− e2iη1kuνz−sz

2iη1kuν + s

d

dη1

F0(η1)dη1

}
, (128)

where χ̃12 and ne are the dimensionless equivalents of χ1χ2 and ne, the elec-
tron volume density, respectively, M(~k, s) is just the expression in square

brackets in (60), s∗1(~k) is defined via:

s∗1(~k) =
itpck1

γ

(
~kγβ

rDk1

+ ν

)
= iν

tpck1

γ
+ i~k

tpcβ

rD

, (129)

D(s) is the same as in (122). F−1
~k, Lm
rDγ

denotes the inverse Fourier transform over

~k evaluated at Lm
rDγ

. Expressions for the perturbation formed in the modulator

and for M(~k, s) for different distributions can be found in appendix D.2.
The expression (128) is valid for any equilibrium distribution F0(η). For

the KV distribution F0(η) = δ(η), we have:

δn(θ, z) = n1

(
z
′
(θ, 0), t

′
(θ, 0)

)
−

− Γ3F−1
ν,θL

−1
s,z F

−1
~k, Lm

γ

[
(1 + sz)e−sz − 1

s3D(s)
M

(
~k, iν

ck1

γ
+ i~kcβ

)
νeiνk1(cti−βLm)

]
,

(130)

as for the SASE case, the inverse Laplace transform can be easily computed
as the sum over the residues at the roots of the denominator and the inverse
Fourier transforms can be computed numerically via the FFT.
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3.5 The kicker

In the kicker, hadrons interact with the electric field produced by their own
amplified density perturbations. Mathematically, the problem is very similar
to the one solved for the modulator, but, in the kicker, as initial density
perturbation we have the hadron’s charge and the amplified electron density
from the FEL section. Solving for the Fourier image of the density pertur-
bation, we can easily obtain the potential of the field in the Fourier domain.
And then, doing the inverse Fourier transform we can compute the potential
in the space domain.

3.6 Results and discussion

In this section we described the FEL section in the framework of the 1D FEL
theory, it is possible to extend this description to the 3D FEL theory. The
expressions for the amplified density perturbation and the SASE contribution
are derived. Both of them are written using the inverse integral transforms,
which can be computed numerically in the same way as it was done for the
modulator section. The computation of the SASE contribution allows one to
estimate the limitations of the amplification of the density modulation in the
FEL section. The kicker can be described in a very similar way as the mod-
ulator. The numerical methods required for the computations for the every
section are thoroughly tested in the modulator section and, undoubtedly, can
be applied in other sections.
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4 Shielding of a charge in the confined plasma

In this section, we present main results of the thesis. Here, we thoroughly
study dynamical test charge problem for the confined plasma. We start
with the Vlasov-Poisson system of equations. Then we transform it to the
Fredholm integral equation of the second type for the Laplace image of the
unknown perturbation, i.e., Laplace-Fredholm equation for the unknown per-
turbation. Then we describe and test numerical methods for such equations.
The 3D physical problem requires a lot of computational resources. We de-
scribe parallelization of the algorithms and their optimizations. We conclude
the section with numerical results for a model problem and describe physics
of the results. The ideas of this method was first presented on IPAC 2012
[31] and then published in a present form in [32].

4.1 The test charge problem for a confined plasma

An interaction of a colisionless anisotropic plasma with an external charge
with an electron density d(~x, t) in a center-of-momentum frame of the plasma
can be described by the Vlasov-Poisson [25] system of equations:

∂f

∂t
+ ~v · ∂f

∂~x
+
d~p

dt
· ∂f
∂~p

= 0, f ≡ f(~x,~v, t), (131)

~v =
∂H

∂~p
,

d~p

dt
= −∂H

∂~x
, H = H0 + eU(~x, t), (132)

H ≡ H(~x, ~p, t), H0 ≡ H0(~x, ~p), (133)

H0 =
∑
i,j

xiαijxj +
∑
i,j

piβijpj ≡ ~x · α̂~x+ ~p · β̂~p, (134)

∂2

∂~x2
U(~x, t) = − e

ε0
(n1(~x, t) + d(~x, t)) , (135)

where the dynamics of the plasma’s phase-space electron density f(~x,~v, t)
is governed by the Vlasov equation (131), and the electric potential U(~x, t)
– by the Poisson equation (135); the charge density can be obtained by
multiplying the electron density by an electron charge e: ρ(~x, t) = en(~x, t).
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n1(~x, t) is a plasma’s electron density perturbation, caused by an interaction
with the external charge, that we are going to evaluate; it is related to the
plasma’s phase-space electron density perturbation f1(~x,~v, t) via

n1(~x, t) =

∫
f1(~x,~v, t)d~v. (136)

Also, we employ the Hamilton’s equations (132), in which H is a total Hamil-
tonian that includes unperturbed equilibrium Hamiltonian H0 and the con-
tribution eU(~x, t), caused by the external charge and the plasma’s electron
density perturbation. In the unperturbed Hamiltonian H0, the second term
is a kinetic energy and β̂ characterizes the plasma’s anisotropy, while the
first term is responsible for spatial confining of the plasma. In accelerator
physics, α̂ is determined by the focusing magnetic fields in an accelerator.
We consider the problem with a moving point charge with a density

d(~x, t) = −Zδ(~x− ~y(t)), (137)

where ~y(t) is its trajectory; we assume that the trajectory is unaffected by
the space charge fields.

The Vlasov-Poisson system (131)-(135) differs from the one for the infinite
plasma [10] only by the α̂-term in H0. This term makes ∂H0

∂~x
nonzero and an

extra term appears in the Vlasov equation, which makes it unsolvable by the
methods that worked for the infinite plasma.

We consider the diagonal matrices in the unperturbed Hamiltonian H0:

αij = αiδij, βij = βiδij, (138)

where δij is the Kronecker delta. In this case,

H0 =
∑
i

αix
2
i +

∑
i

βip
2
i , (139)

~v =
∂H

∂~p
, vi = 2βipi, ~v = γ̂~p, (140)

where γij =
∂vj
∂pi

= 2βiδij, (141)

and,

d~p

dt
= −∂H

∂~x
, −∂H0

∂xi
= −2αixi, or − ∂H0

∂~x
= −η̂~x, (142)
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where ηij = 2αiδij. Thus, we have

H0 =
∑
i

αix
2
i +

∑
i

v2
i

4βi
. (143)

Introducing new notations

ai = αi, bi =
1

4βi
, (144)

we rewrite the unperturbed Hamiltonian in a form:

H0 =
∑
i

aix
2
i +

∑
i

biv
2
i . (145)

For the diagonal matrices, we have

γij = γiδij, ηij = ηiδij,
∂f

∂~p
= γ̂

∂f

∂~v
. (146)

For a fully confined symmetric 1D, 2D, or 3D plasmas, we have:

αi = α, βi =
1

2m0

, bi =
m0

2
, γi =

1

m0

, ηi = 2α. (147)

All our considerations are applicable to the 1D, 2D and 3D spaces. The only
differences are in the expressions for the Green’s function for the Poisson’s
equation (135) and in the units of the dimensional constants. These aspects
are discussed in subsections 4.2.5 and 4.2.7, respectively.

4.2 Integral equation for the test charge problem

In the present subsection, we describe how the Vlasov-Poisson (131)-(135)
system can be transformed into the Fredholm integral equation of the second
type for the Laplace image of the density perturbation n1(~x, t). We use the
method of unperturbed orbits to solve the linearized Vlasov equation, and
then insert into the obtained equation an expression for the potential in the
form of an integral of the Green’s function multiplied by the electron density
and e

ε0
. We derived two different integral equations. The first one is for

general orbits; the second is for periodic orbits only (for the fully confined
plasma), but it involves integrals that can be evaluated faster. We describe
these two methods in order.

41



4.2.1 Method for general orbits

We represent the phase-space electron density f , f ≡ f(~x,~v, t1), in a form
f = f0 + f1, where f0, f0 ≡ f0(~x,~v) is an equilibrium electron density and
f1, f1 ≡ f1(~x,~v, t1), is the unknown electron density perturbation, which
satisfies the linearized Vlasov equation:

∂f1

∂t1
+ ~v · ∂f1

∂~x
− ∂H0

∂~x
γ̂
∂f1

∂~v
= e

∂U

∂~x
γ̂
∂f0

∂~v
, (148)

where we denoted the time variable as t1 just for future convenience and
introduced the notation:

~a b̂~c ≡
∑
i

aibi,ici = ~a · b̂~c, (149)

where b̂ is a diagonal matrix. The third term in equation (148) represents
interaction of the perturbation with the focusing fields and the term in the
right-hand side represents interaction of the unknown perturbation and ex-
ternal charge with the equilibrium space-charge filed; it will be clear from
(155). After substituting

~x = ~X0 (t1) ,

~v = ~V0 (t1) ,
(150)

where ~X0 (t1) , ~V0 (t1) are the unperturbed orbits, the solutions of the follow-
ing Hamilton’s system:

~̇X0 (t1) = ~V0 (t1) , ~̇V0 (t1) = −γ̂ ∂H0

∂ ~X0 (t1)
, (151)

with the initial conditions:

~X0 (t) = ~x, ~V0 (t) = ~v, (152)

into the equation (148), terms in its left-hand side will be equal to a full time
derivative of f1:

d

dt1
f1 (~x,~v, t1) = e

∂U

∂~x
γ̂
∂f0

∂~v

∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

. (153)

42



With a reasonable initial condition f1 (~x,~v, 0) = 0, this equation can be
integrated:

f1 (~x,~v, t) = e

t∫
0

∂U

∂~x
γ̂
∂f0

∂~v

∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

dt1. (154)

When plasma oscillations are considered [33], an equation analogous to (154)
is already a solution, since in this case, U is a known quantity and doesn’t
depend on f1. In our case, this is not a solution yet, since U depends on f1.

Assuming boundary conditions at infinity, we have for the electric poten-
tial:

U (~x, t1) = U1 (~x, t1) + U2

(
~x, t1

)
= (155)

=
e

ε0

∫
n1(~x

′
, t1)G(~x, ~x

′
)d~x

′ − Z e

ε0
G
(
~x, ~Y (t1)

)
, (156)

where G(~x, ~x
′
) is the Green’s function for the Poisson equation, U1 (~x) is

a potential of the plasma’s electron density perturbation, and U2 (~x) is a

potential of the hadron and ~Y (t1) is its trajectory. Inserting (156) into (154)
and integrating over ~v, we obtain

n1 (~x, t) =
e2

ε0

t∫
0

∫
n1

(
~x
′
, t1
) ∫ ∂G(~x, ~x

′
)

∂~x
γ̂
∂f0

∂~v

∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

d~vd~x
′
dt1+

+e

t∫
0

∫
∂U2

(
~x, t1

)
∂~x

γ̂
∂f0

∂~v

∣∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

d~vdt1.

(157)

The first term in the right-hand side can be considered as a convolution over
time, since the unperturbed orbits are functions of (t− t1), as we shall show
in subsection 4.2.2. Applying the Laplace transform over t, and taking into
account that the Laplace image of a convolution of two functions equals a
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product of their Laplace images, we obtain

N1 (~x, s) =
e2

ε0

∫
N1

(
~x
′
, s
)
L
∫
∂G(~x, ~x

′
)

∂~x
γ̂
∂f0

∂~v

∣∣∣∣ ~x = ~X0 (0)

~v = ~V0 (0)

d~vd~x
′
+

+eL
t∫

0

∫
∂U2

(
~x, t1

)
∂~x

γ̂
∂f0

∂~v

∣∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

d~vdt1, (158)

where L is a Laplace transform operator and

N1 (~x, s) ≡ Ln1 (~x, t) (159)

is a Laplace image of the unknown function n1 (~x, t). Equation (158) is the
Fredholm integral equation of the second type with a kernel

K
(
~x, ~x

′
, s
)

= L
∫

∂G(~x, ~x
′
)

∂~x
γ̂
∂f0

∂~v

∣∣∣∣ ~x = ~X0 (0)

~v = ~V0 (0)

d~v, (160)

and a left-hand side

F (~x, s) = −Z e
2

ε0
L

t∫
0

∫
∂G
(
~x, ~Y (t1)

)
∂~x

γ̂
∂f0

∂~v

∣∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

d~vdt1. (161)

With these notations, the equation can be written in a standard form:

F (~x, s) = N1

(
~x, s
)
− λ

∫
N1

(
~x
′
, s
)
K
(
~x, ~x

′
, s
)
d~x
′
, (162)

where λ = e2

ε0
.

4.2.2 Unperturbed orbits

In some cases, the Hamilton’s equations (151) with the initial conditions
(152) can be solved exactly. For example, for the Hamiltonian (143), we
have

X0i (t1) = xi cos (ωi (t− t1))− vi
ωi

sin (ωi (t− t1)) , (163)

V0i (t1) = vi cos (ωi (t− t1)) + xiωi sin (ωi (t− t1)) , (164)
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where ωi =
√
γiηi and i is a vector index, i = 1, . . . , d, where d is a dimension-

ality of the space. The Hamilton’s system (151) with the initial conditions
(152) defines a map from the phase space to the space of trajectories:

(~x,~v, t) 7−→
(
~̇X0 (·) , ~̇V0 (·)

)
. (165)

We call the orbits (163), (164) elliptical; and spherical, if all ωi are equal.
When H0 does not depend on ~x, all ωi equal zero, and we obtain orbits

for the infinite plasma:

X0i (t1) = xi − vi (t− t1) , (166)

V0i (t1) = vi. (167)

For an electron beam finite in the transverse direction, and infinite in
longitudinal, we have the orbits (163), (164) for the transverse directions
and (166), (167) for the longitudinal one. We will call the unperturbed
orbits simply orbits or trajectories.

4.2.3 On integration domain

Generally, the domain of the integral equation is R3. However, the numerical
methods for integral equation are developed for a finite domain, so we need to
transform these infinite regions to finite ones. In this subsection, we describe
changes of variables, which can transform an integral equation with infinite
domain to the one with the finite.

Suppose, we have an equation with semi-infinite domain:

n (x) =

∞∫
0

n(x
′
)K(x, x

′
)dx

′
. (168)

Introducing a function

x (y) =
1− y
y

, (169)

we have

m (y) =

1∫
0

m
(
y
′)
K
(
x
(
y
)
, x
(
y
′)) 1

y′2
dy
′
, (170)
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and

n (x) = m (y (x)) , y (x) ≡ x−1 (x) =
1

x+ 1
, (171)

this transforms domain [0, ∞] to [0, 1].
For double-infinite domain, we have

n (x) =

∞∫
−∞

n
(
x
′)
K
(
x, x

′)
dx
′
, (172)

here we take

x (y) = tan y, (173)

and

m (y) =

π
2∫

−π
2

m
(
y
′)
K
(
x
(
y
)
, x
(
y
′)) 1

cos2 y′
dy
′
, (174)

and

n (x) = m (y (x)) , y (x) ≡ x−1 (x) = arctan x, (175)

this transforms domain [−∞, ∞] to [−π
2
, π

2
].

In our physical problem, in the kernel, there is an equilibrium distribution,
which tends to zero quite fast, and it is possible just to cut the tails of the
distribution, since they do not contribute. For example, if we have normal
distribution, we can safely consider ”four-sigma” interval instead of infinite
domain, we will discuss it in more detail in subsection 4.5.

4.2.4 Method for periodic orbits

In this subsection, we describe a method suitable for the periodic orbits with
the same periods in all dimensions, spherical orbits fall into this category.
Instead of integrating from 0 to t, as in (154), for the case of periodic tra-
jectories, we can integrate the linearized Vlasov equation from t to t + 2π

ω
,
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where 2π
ω

is the orbits’ period. We start with the linearized Vlasov equation
(148), as before:

∂f1

∂t1
+ ~v · ∂f1

∂~x
=
∂H0

∂~x
γ̂
∂f1

∂~v
+ e

∂U

∂~x
γ̂
∂f0

∂~v
, (176)

then, taking into account

L∂f1(t1)

∂t1
= sF1(s)− f1(0), in our case f1(0) = 0, (177)

where f1(t1) ≡ f1 and F1 is the Laplace image of f1, F1 ≡ F1(s) ≡ F1(~x,~v, s),
we do the Laplace transform of the equation and then multiply it by et1s:

sF1et1s + ~v · ∂F1

∂~x
et1s =

∂H0

∂~x
γ̂
∂F1

∂~v
et1s + e

∂Ū

∂~x
γ̂
∂f0

∂~v
et1s. (178)

Taking into account that

∂

∂t1

(
F1(s)et1s

)
= sF1(s)et1s, (179)

we obtain

∂

∂t1

(
F1(s)et1s

)
+~v · ∂

∂~x

(
F1(s)et1s

)
=

=
∂H0

∂~x
γ̂
∂

∂~v

(
F1(s)et1s

)
+ e

∂
(
Ū(s)et1s

)
∂~x

γ̂
∂f0

∂~v
; (180)

then, doing substitution

~x = ~X0 (t1) ,

~v = ~V0 (t1) ,
(181)

where ~X0 (t1) , ~V0 (t1) are the unperturbed orbits, we obtain

d

dt1

(
F1( ~X0(t1), ~V0(t1), s)et1s

)
= e

∂
(
Ū(~x, s)et1s

)
∂~x

γ̂
∂f0(~x,~v)

∂~v

∣∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

.

(182)
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Then we integrate this equation over t1:

F1( ~X0(t+
2π

ω
), ~V0(t+

2π

ω
), s)e(t+ 2π

ω )s − F1( ~X0(t), ~V0(t), s)ets =

= e

t+ 2π
ω∫

t

∂
(
Ū(~x, s)et1s

)
∂~x

γ̂
∂f0(~x,~v)

∂~v

∣∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

dt1, (183)

where Ū(~x, s) is the Laplace image of the potential. Using periodicity of the
trajectories and initial conditions (152), we obtain

F1(~x,~v, s) = e
e−ts

e
2π
ω
s − 1

t+ 2π
ω∫

t

∂Ū(~x, s)

∂~x
γ̂
∂f0(~x,~v)

∂~v

∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

et1sdt1, (184)

where t is some free constant that can be set to any number, t is also present
in trajectories, as it is evident from (163) and (164); for example, it can be
set to 0 without any loss of generality. For the potential, we use expressions
(155), (156) and obtain for Ū(~x, s):

Ū(~x, s) = Ū1(~x, s) + Ū2(~x, s) = (185)

=
e

ε0

∫
N1(~x

′
, s)G(~x, ~x

′
)d~x

′ − eZ

ε0
Lt2,sG(~x, ~Y (t2)). (186)

Inserting this into the equation (184) and integrating it over ~v, we obtain the
same equation as in the previous case:

F (~x, s) = N1

(
~x, s
)
− λ

∫
N1

(
~x
′
, s
)
K
(
~x, ~x

′
, s
)
d~x
′
, (187)

but with the different expressions for the kernel and left-hand side:

K
(
~x, ~x

′
, s
)

=
e−ts

e
2π
ω
s − 1

∫ t+ 2π
ω∫

t

∂G(~x, ~x
′
)

∂~x
γ̂
∂f0(~x,~v)

∂~v

∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

et1sdt1d~v,

(188)
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F (~x, s) =− Z e
2

ε0

e−ts

e
2π
ω
s − 1

∫ ∞∫
0

t+ 2π
ω∫

t

∂G(~x, ~Y (t2))

∂~x
·

· γ̂ ∂f0(~x,~v)

∂~v

∣∣∣∣ ~x = ~X0 (t1)

~v = ~V0 (t1)

e(t1−t2)sdt1dt2d~v, (189)

and λ = e2

ε0
.

4.2.5 Introducing dimensionless variables

The dimensionless units that we define for the confined plasma slightly differ
from the ones that we used for the infinite one [10]. There, we used the
following dimensionless variables:

~x =
~x

rD

, ~v =
~v

vrms

, t =
t

tp
≡ tωp, (190)

~k = ~krD, s =
s

ωp

≡ stp, (191)

where we used sans-serif font to denote them, and the root mean square
velocity vrms, plasma frequency ωp, plasma period tp, and Debye radius rD

were defined as follows

vrms =

√
1

ρ

∫
v2f0(~v)d~v, ωp =

√
e2ρ

m0ε0
=

1

tp
, (192)

rD =
vrms

ωp

= vrmstp. (193)

The vacuum permittivity ε0 has different units in the 1D, 2D, and 3D cases,
i.e.,

[ε0] =
C2T 2

LdM
, (194)

where d is a dimensionality of the space, and C, T , L, and M are the charge,
time, length and mass units, respectively. And we used the dimensionless
equilibrium density f0(~v) defined via:

f0(~v) = ρfdf0(~v), (195)
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where [ρ] = [n(~x, t)] = L−d, and [fd] = [vrms]
−d.

For the confined plasma, the equilibrium distribution also depends on ~x,
thus we have

f0(~x,~v) = ρfdf0(~x,~v), [ρ] = 1, [fd] = [vrmsrD]−d. (196)

In this case, ρ has different units; we redefine plasma frequency accordingly:

ωp =

√
e2ρr−dD

m0ε0
. (197)

In subsection 4.2.8, we rewrite the integral equations for the test charge
problem using these units. In the next subsection, we detail the equilibrium
distributions.

4.2.6 Equilibrium distributions

Since any function of the unperturbed Hamiltonian is a solution of the un-
perturbed Vlasov equation, we consider equilibrium distributions that are
functions of the unperturbed Hamiltonian, i.e., f0(H0). For H0, we have

H0 =
∑
i

aix
2
i +

∑
i

biv
2
i . (198)

We consider the normal and Cauchy distributions. The latter was very use-
ful for the infinite plasma, since it has a simpler density, and hence, the
computations were faster. We normalize the distributions such that∫

f0(~x,~v)d~xd~v = ρ. (199)

Normal distribution For the normal distribution, we have

f(~x,~v) = ρ

(∏
i

aibi

) 1
2

Hd
c π

d
e
−
∑
i

ai
Hc
x2i−

∑
i

bi
Hc
v2i

(200)

and we obtain for v2
rms via (192):

v2
rms =

Hc

2

d∑
j=1

d∏
i=1,i 6=j

bi

d∏
i=1

bi

, (201)
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or, for the isotropic case (bi = b, for all i),

v2
rms =

Hc

2

d

b
. (202)

We will not use this vrms, though; rather, we define vrms,i for each spatial
dimension, it turns out that they are given by:

vrms,i =

√
Hc

2bi
, (203)

and, for the isotropic plasma, we have

vrms =

√
Hc

2b
. (204)

While it is possible to consider general anisotropic case, this leads to more
dimensionless parameters in the dimensionless density; thus, for simplicity,
we consider isotropic case with the Hamiltonian

H0 =
∑
i

aix
2
i +

1

2

∑
i

v2
i . (205)

We have for the distribution:

f0(~x,~v) =
1

πd
e
−
∑
i
aix2i−

1
2

∑
i
v2i

; (206)

the conventions we used here are slightly different from those used in [10],
and

fd =

(
b

Hc

) d
2 ∏

i

√
ai
Hc

. (207)

Alternatively, we can consider vrms =
√

Hc
b

, this gives

f0(~x,~v) =
1

πd
e
−
∑
i
aix2i−

∑
i
v2i
, (208)

by setting ai = 1 for all i and integrating over ~x, this distribution can be
reduced to the same velocity distribution that we considered in [10] for the
infinite plasma. We have for the derivative:

∂f0(~x,~v)

∂~v
= −2~v f0(~x,~v). (209)
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In next subsections, we will need plasma’s spatial size. Integrating the dis-
tribution (208) over ~v, we obtain∫

f0(~x,~v)d~v =
1

π
d
2

e
−
∑
i
aix2i

. (210)

The variance of this integrated distribution in a certain direction j is

σ2
j =

1

2

(∏
i

ai

)− 1
2

1

aj
, (211)

It is well-known that approximately 99.9% of the values of the 1D, 2D and
3D normally distributed random variables lie within a ”four sigma” interval.
Thus, we assume that the plasma with the normal spatial distribution lies
within a closed interval [−4σj, 4σj] in dimension j. If we assume that for all

j, aj = 1, all σj equal 2−
1
2 ≈ 0.707 and 4σj ≈ 2.83 for all j. For the case

when all σj are equal, we introduce σ:

σ =
√

2σj, (212)

which equals one, when all aj equal one; we will use σ to characterize plasmas’
sizes in section 4.5.

Cauchy distribution All of the considerations for the normal distribution
also can be applied to other distributions. For example, for the Cauchy
distribution, we have

f0 (~x,~v) =ρ

(∏
i

aibi

) 1
2

Hd
c π

d

Γ(1+d
2

)

Γ(1
2
)π

d
2

(
1 +

∑
i

ai
Hc

x2
i +

∑
i

bi
Hc

v2
i

)− 1+d
2

, (213)

where Γ(z) is the gamma function [27]; in this case, vrms cannot be computed,
since the corresponding integral is divergent; we use

vrms =

√
Hc

b
. (214)

Considering an isotropic plasma (bi = b, for all i), we obtain

f0(~x,~v) =
Γ(1+d

2
)

Γ(1
2
)π

d
2

1(
1 +

∑
i

aix2
i +

∑
i

v2
i

) 1+d
2

, (215)
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and

fd =

(√
b

Hc

)d∏
i

√
ai
Hc

, (216)

and for the derivative:

∂f0(~x,~v)

∂~v
= − (1 + d)~v f0(~x,~v)

1 +
∑
i

aix2
i +

∑
i

v2
i

. (217)

For an infinite plasma [10], the Cauchy distribution is very useful, since
with it the formulae are much simpler and the equation was even exactly solv-
able in the 1D case; in higher dimensional cases, computations were much
faster than for the normal. Using this distribution for the confined plasma
does not offer any advantages; thus, we focus on a realistic normal distribu-
tion.

4.2.7 The Green’s functions

In this subsection, we write the well-known expressions for the Poisson’s
equation Green’s functions in the 1D, 2D and 3D spaces and their gradients.
Using the introduced dimensionless units, we have

G(~x,~x
′
) = −1

2
|~x−~x′ |, ∂

∂~x
G(~x,~x

′
) = −1

2
sign(~x−~x′), (218)

G(~x,~x
′
) = − 1

2π
ln |~x−~x′|, ∂

∂~x
G(~x,~x

′
) = − 1

2π

~x−~x′

|~x−~x′|2
, (219)

G(~x,~x
′
) =

1

4π

1

|~x−~x′|
,

∂

∂~x
G(~x,~x

′
) = − 1

4π

~x−~x′

|~x−~x′|3
, (220)

for the 1D, 2D, and 3D spaces, respectively.

4.2.8 Dimensionless units for the integral equation

Using the dimensionless units, we rewrite the integral equation (187) as fol-
lows:

F (~x, s) = N1(~x, s)−
∫

N1(~x
′
, s)K

(
~x,~x

′
, s
)
d~x
′
. (221)
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To simplify the expressions, we introduce the following notation:

R
(
~x,~x

′
,~v
)

= Fd
∂G(~x,~x

′
)

∂~x

∂f0(~x,~v)

∂~v
, (222)

where Fd is a dimensionless constant, Fd = fdv
d
rmsr

d
D; the derivatives in this

expression are given by equations (218)-(220), (209), and (217). For the
method for general orbits, we have

K
(
~x,~x

′
, s
)

=

∞∫
0

∫
R
(
~X0 (0) ,~x

′
, ~V0 (0)

)
d~ve−stdt, (223)

F (~x, s) = −Z
∫ ∞∫

0

t∫
0

R
(
~X0 (t1) , ~Y (t1) , ~V0 (t1)

)
e−stdt1dtd~v, (224)

and, for the method for periodic orbits,

Kt

(
~x,~x

′
, s
)

=
e−ts

e
2π
ω̃
s − 1

t+ 2π
ω∫

t

∫
R
(
~X0 (t1) ,~x

′
, ~V0 (t1)

)
est1d~vdt1, (225)

Ft (~x, s) = −Z e−ts

e
2π
ω̃
s − 1

∞∫
0

t+ 2π
ω∫

t

∫
R
(
~X0 (t1) , ~Y (t1) , ~V0 (t1)

)
e(t1−t2)sd~vdt1dt2,

(226)

where t, as mentioned, is a free constant that can be set to zero.

4.2.9 On integration domain

To apply numerical methods, which will be described in subsection 4.3, to
the equation (221), we have to transform its domain to a finite rectangular
domain. Let us assume that we have an equation in Cartesian coordinates:

F (~x, s) = N1(~x, s)−
∫
Rd

N1(~x
′
, s)K

(
~x,~x

′
, s
)
d~x
′
. (227)
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We can use change of variables (173) to do the required transformation:

F (tan~x, s) =N1(tan~x, s)−

−
∫

[−π2 ,
π
2 ]
d

N1(tan~x
′
, s)K

(
tan~x, tan~x

′
, s
) 1∏
i

cos2(x
′
i)
d~x
′
. (228)

Then we solve the following equation for N̄1(~x, s):

F̄ (~x, s) = N̄1(~x, s)−
∫

[−π2 ,
π
2 ]
d

N̄1(~x, s)K̄
(
~x,~x

′
, s
)
d~x
′
, (229)

where

K̄
(
~x,~x

′
, s
)

= K
(

tan~x, tan~x
′
, s
) 1∏
i

cos2(x
′
i)
, (230)

F̄ (~x, s) = F (tan~x, s) . (231)

We get solution of the initial equation via:

N1(~x, s) = N̄1(arctan~x, s). (232)

Another way is to use spherical coordinates and compactify the radial coor-
dinate, but the approach we just described seems simpler.

4.3 Numerical Methods

In the previous subsection, we derived the Laplace-Fredholm integral equa-
tion for the test charge problem for the confined plasma. In this subsection,
we describe a numerical method to solve such equation and the software that
we developed. The method has two main steps: solving the Fredholm integral
equation for the Laplace image of the unknown function and then doing the
inverse Laplace transform. We detail these steps in order. Then we describe
our program, discuss parallelization of the algorithm and optimizations.

The complete source code of our program is distributed under the terms
of the GNU General Public License at [34]. The code includes a stand-alone
solver for the multidimensional Fredholm integral equations of the second
type, a solver for the Laplace-Fredholm equations and the kernel and left-
hand side classes for the test charge problem. The codes for all particular
cases considered in subsection 4.5 are included.
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4.3.1 Numerical solution of the Fredholm equation

Numerical methods for the Fredholm equations are very well developed [35],
however, there are no publicly available codes implementing them. In this
subsection, we review the piecewise polynomial collocation method (PPCM),
emphasizing implementation details; for the mathematical details, such as the
existence theorems and accuracy estimates, we refer to [35]. The idea of the
method is to split the equation’s domain, which should be a d-dimensional
rectangle, into rectangular sub-domains and then to represent the solution
in each sub-domain as polynomial series. The polynomials should be of
some special form to transform the integral equation into a system of linear
equations for the coefficients of these expansions, when polynomial solution
is inserted into the equation and evaluated at some special points.

Let us consider an integral equation

F (~x) = N1(~x)−
∫
G

N1(~x
′
)K
(
~x,~x

′)
d~x
′
, (233)

defined on a d-dimensional rectangular domain

G =
d∏
i=1

[0, bi]. (234)

In every dimension k, we introduce 2Nk + 1 grid points:

xjk =
bk
2

(
j

Nk

)r
, j = 0, . . . , Nk, (235)

xNk+j
k = bk − xNk−jk , j = 1, . . . , Nk, (236)

where r is a constant, r ≥ 1, that characterizes uniformity of the grid, i.e.,
for r > 1, the grid becomes denser towards the boundaries of the domain,
and, for r = 1, it is uniform. Using these grid points, we partition G into the
closed cells:

Gj1,...,jd = {~x ∈ Rd : xjkk ≤ xk ≤ xjk+1
k , k = 1, . . . , d}, (237)

for all jk = 0, . . . , 2Nk for all k = 1, . . . , d. We then introduce d-dimensional
multi-index j, j = (j1, . . . , jd), such that Gj1,...,jd ≡ Gj and

G =
⋃
j

Gj. (238)
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Figure 9: Cells and collocation points for the PPCM for d = 2, N1 = N2 = 3,
m = 3, r = 1. The collocation points are shown only in three cells, while, of
course, they exist in all of them.

Then we choose m interpolation points in [−1, 1]: −1 ≤ ξ1 < · · · < ξm ≤
1 and map them into every dimension of all partitions, thereby obtaining
collocation points in each cell Gj. We denote the collocation points as ξj,l;
it is a d-dimensional vector with two multi-indexes, where j characterizes
the cell the collocation point belongs to and components of l runs from 1 to
m characterizing the mapped interpolation point. In Fig. 9, we depict this
construction for d = 2.

Then, we introduce the interpolating polynomials of degree (m−1)d that
has two multi-indexes:

φj,m (~x) =
d∏
i=1

q 6=mi∏
q=1...m

(
xi − ξji,qi

)(
ξji,mii − ξji,qi

) , ~x ∈ Gj, (239)

where the first multi-index characterizes the cell, to which the polynomial
belongs, and the second, each component of which runs from 1 to m, charac-
terizes the collocation point used to build the polynomial. For example, for
m = 1, the polynomials will be just constants. The polynomials satisfy the
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following important property:

φj,m
(
ξj,l
)

= δm,l, (240)

where δm,l is the Kronecker delta, defined for the multi-indexes via

δm,l =
d∏
i=1

δmi,li . (241)

We look for a solution in the following form:

N1(~x) =
∑
m

cmj φj,m (~x) , ~x ∈ Gj, (242)

where the summation runs over all possible values of multi-index m. We
emphasize that unknown coefficients and polynomials are different in each
cell Gj.

Then we insert the solution (242) into the equation (233), and, using the
condition that the equation is satisfied at the collocation points and property
(240), we reduce the integral equation to the system of linear equations for
cmj :

cli =
∑
j

∑
m

al,mi,j c
m
j + F(ξi,l), (243)

where

al,mi,j =

∫
Gj

K(ξi,l, ~y)φj,m(~y)d~y, (244)

and F(ξi,l) is just F (~x) evaluated at the collocation point ξi,l. Equations (243)
ensure that the numerical solution (242) equals the unknown true solution at
all collocation points; at other points, the numerical solution is interpolated
by polynomials. Obviously, the matrix al,mi,j , vector F(ξi,l) and the unknown

vector of coefficients cli can be represented as a matrix with two scalar indexes

and two vectors with one scalar index, i.e., A, ~f , and ~c, respectively, and
standard methods to solve systems of linear equations can be applied. With
these notations, the system (243) looks as follows:

(I−A)~c = ~f, (245)
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where I is an identity matrix. Dimension of matrix A is

d∏
k=1

(2Nkmk). (246)

The system of linear equations (245) can be solved using standard nu-
merical methods such as ”LU decomposition”. We will discuss the algorithm
and its parallelization scheme in appendix F.

It is worth to note that this method can deal with integral equations with
weakly singular kernels, meaning that the kernels can have singularities, but
they must be integrable [35], i.e., the integral in (244) must be convergent.

We developed our own multidimensional integrators to compute integrals
in (244). Multidimensional integral can be computed recursively using one-
dimensional integrators. At each step of recursion, we use as an integrand the
initial integral corresponding to this step, but with lowered by one number
of integration variables. We also store the values of this step’s integration
variables and pass them to further steps. When dimension of the integral is
one, the recursive integrator takes function as an integrand and evaluates it at
the values of the integration variables, which were stored in previous steps of
the recursion. To perform one-dimensional integration, we implemented the
adaptive Gauss-Kronrod algorithm. We also used this integrator to evaluate
integrals in expressions for the kernel and the left-hand side of the integral
equations corresponding to the test charge problem. For more details on
numerical integration, we refer to appendix E.

4.3.2 Numerical solution of the Laplace-Fredholm equation

The integral equation for the test charge problem (221) is slightly more com-
plicated than the Fredholm equation (233), i.e., we have the Fredholm equa-
tion

F (~x, s) = N1(~x, s)−
∫

N1(~x
′
, s)K

(
~x,~x

′
, s
)
d~x
′
, (247)

but for the Laplace image of the quantity of interest. It is well-known that
the inverse Laplace transform of a known function f̃ (s) can be computed
using discrete Fourier transform (323):

f (tj) = eσtjCjDFTj

[
{f̃ (σ + ikn) (−1)n}0≤n≤N−1

]
, (248)
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this formula is derived and all notations are explained in appendix A; for
more details, we refer to [10], where numerical tests were also performed.
The discrete Fourier transform can be computed numerically using the fast
Fourier transform (FFT) algorithm. For any value of s, we can obtain the
numerical solution of the integral equation (247) via the PPCM described in
previous subsection. To invert the Laplace transform numerically, we need to
solve the equation (247) for s = σ+ ikn for some set {kn}0≤n≤N−1. Then, we
store these solutions for d-dimensional array of~x values of interest; thereafter,
for each value of ~x, we invert the Laplace transform via (248). After solving
equations (247) for the set of s, we have the following (d + 1)-dimensional
array of solutions:

{N1(xi1 , . . . , xid , σ + ikn)}
0≤n≤N−1, 0≤ij≤N

(x)
j , 0≤j≤d−1

, (249)

where N
(x)
j is the number of grid points in dimension j. Inverting the Laplace

transform via (248), we obtain the space-time solution:

n1(~xi, tj) = eσtjCjDFTj [{N1(~xi, σ + ikn) (−1)n}0≤n≤N−1] , (250)

where ~xi = (xi1 , . . . , xid). The discrete Fourier transform in this formula can
be evaluated via the FFT; the numerical test of this procedure is discussed
in subsection 4.4.

Thus, being able to solve equation (247) over some grid of complex num-
bers for s, we can obtain the space-time density n1(~x, t) via (250). For complex
values of s, equation (247) turns into a system of equations for ReN1(~x

′
, s)

and ImN1(~x
′
, s):

(
ReF
ImF

)
=

(
ReN1

ImN1

)
−
∫
G

(
ReK −ImK
ImK ReK

)(
ReN1

ImN1

)
d~x
′
, (251)

wherein, for brevity, we omitted arguments of functions. The PPCM can
be applied to this system as well. Looking for solution in a form similar to
(242), (

ReN1(~x)
ImN1(~x)

)
=
∑
m

(
cmj
dmj

)
φj,m (~x) , ~x ∈ Gj, (252)

60



we obtain a system of linear equations analogous to (245):(
I−A B
−B I−A

)(
~c
~d

)
=

(
~f
~g

)
, (253)

where A and ~f have the same meaning as in (245), but for the real parts
of the corresponding quantities, and B and ~g – for the imaginary parts;
vectors ~c and ~d are the unknown vectors corresponding to solution (252).
The dimension of the matrix of the system (253) is

d∏
k=1

(4Nkmk). (254)

The system of linear equations (253) is a standard system of linear equation
and can be easily solved using, for example, ”LU decomposition”, which is
discussed in appendix F.

4.3.3 Implementation and tests

The algorithm described in the previous section we implemented as a parallel
object-oriented program. Our solver deals with abstract classes for the kernel
and for the left-hand side of an integral equation. By defining sub-classes
of these classes and supplying them to the solver, we can solve equations
corresponding to different problems. The diagram of this design is depicted
in Fig. 10. This design completely separates the solver and a particular
equation it solves, i.e., the solver only deals with interfaces, which are defined
by the abstract classes for the kernel and left-hand side. That means that we
can test the solver with some simple exactly solvable equation and be sure
that it solves correctly any other integral equation of the same type.

It is easy to construct an exactly solvable integral equation by taking
some functions for the solution and for the kernel, and then, the left-hand
side can be obtained via substituting these functions into the equation. For
example, a d-dimensional equation

F (~x, s) = N(~x, s)−
∫

[−π,π]d

N(~x
′
, s)K

(
~x,~x

′
, s
)
d~x
′

(255)
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Figure 10: Design of the integral equation solver. The solver deals only with
abstract classes for the kernel and left-hand side.

with a kernel

K
(
~x,~x

′
, s
)

= s2

d∏
i=1

cos x
′

i sin xi, (256)

and a left-hand side

F (~x, s) =
1

s2

d∏
i=1

sin xi (257)

has an exact solution

N(~x, s) =
1

s2

d∏
i=1

sin xi, (258)
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and in the time domain:

n(~x, t) = t
d∏
i=1

sin xi, t ≥ 0. (259)

In Fig. 11, we show numerical solution in the time domain of this equation

Figure 11: Numerical solution of the exactly solvable 1D Laplace-Fredholm
equation (255) with kernel (256) and left-hand side(257) obtained via the
PPCM and Laplace transform inversion via FFT.

obtained by our program for d = 1. It is indistinguishable from the exact
solution (259), the extrema of the curves equal the corresponding time values,
as they should accordingly to (259). We also completed the same tests for
higher dimensions. From this test we can conclude that our solver will solve
any equation of this type correctly.

The solver is implemented in C++ using MPI for parallelization. The re-
sults shown in Fig. 11 were obtained on Hopper machine at the National En-
ergy Research Scientific Computing Center (NERSC); Hopper is a Cray XE6
supercomputer with 6,384 nodes, which are two twelve-core AMD ’Magny-
Cours’ 2.1 GHz processors. We utilized 256 nodes (6,144 cores), it took 2.52
seconds to solve this exactly solvable Laplace-Fredholm equation; individual
Fredholm equations (for a given s) were solved in 0.02 seconds.
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4.3.4 Parallel algorithm for the Fredholm equation

In this subsection, we describe parallel algorithm for the Fredholm equation.
There are two natural ways to parallelize the algorithm. To do the Laplace
transform in (250), we need to have the solutions of the integral equation
(247) for different values of the parameter s, which are independent and
can be obtained in parallel. The most time-consuming part of solving the
individual integral equation is the evaluation of the matrix elements of A,
or, in complex case, of the matrix of the system of linear equations (253);
for simplicity, we will denote this matrix as a in this subsection in both
cases. Each matrix element is a multidimensional integral (244) and they
are also independent of each other; thus, they can be evaluated in parallel.
We consider two cases of real or complex kernel simultaneously; for the real
case a has rd × rd elements, in the complex case it has 2rd × 2rd elements,
where rd is a dimension of the matrix for the real kernel, ”real dimension”.
We want to distribute all these integral between available processes. Let us
assume that we have Ic integrals:{

Ic = rd × rd, for real kernel,

Ic = 2rd × rd, for complex kernel.
(260)

In addition, we compute vector f corresponding to the right-hand side of the
equation, this vector is rd-dimensional in the real case, and 2rd-dimensional
in the complex one: {

dc = rd, for real kernel,

dc = 2rd, for complex kernel,
(261)

Let us say that we have K processes. On root process we crate a full matrix
a, (rd × rd or 2rd × 2rd). And we have a loop computing integrals indexed
by i ∈ [0, rd × rd).

We consider three cases:

1. K > Ic. In this case, there exist positive integers b, M , such that

K = MIc + b, b < Ic. (262)

We form a group of Ic processes and assign for each integral each own
process, i.e., we assign integral i to process k, iff i = k. In case of
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complex kernel, we assign ”imaginary” i-th integral to the process k,
iff i+ rd × rd = k. On the non-root processes we create 1× 1 matrices
a. For the left-hand side (LHS), we assign i-th integral to process k,
iff i = k. In the complex case, we assign ”imaginary” i-th LHS to the
process k, iff i+rd = k. On the non-root processes with ranks less than
dc, we create 1× 1 matrices f .

2. K > Ic/2. We consider this case only for the complex kernels. Analo-
gously, we find positive integers b, M :

K = M
Ic
2

+ b, b <
Ic
2
, (263)

and form a group of Ic
2

processes, and for each process we assign two
integrals corresponding for the real and imaginary parts of the kernel,
i.e., we assign both real and imaginary i-th integrals to process k, iff
i = k, thus on non-root processes we create 1 × 2 matrices a. For the
LHS, we assign real i-th LHS to process k, iff i = k, and we assign
imaginary i-th LHS to the process k, iff i + rd = k. On the non-root
processes with ranks less than dc, we create 1× 1 matrices f .

3. K < Ic for the real case and K < Ic
2

for the complex. In this case we
define {

Ĩc = Ic = rd × rd, for real kernel,

Ĩc = Ic
2

= rd × rd, for complex kernel,
(264)

and find positive integers M̃ , b̃ such that

Ĩc = M̃K + b̃, b̃ < K, (265)

thus, we form a group of K processes and assign to each process compu-
tation of M̃+1 integrals, i.e., we compute i-th integral on the process k,
iff i ≡ k(modK), and for the complex integral i+ rd× rd ≡ k(modK).
In this way, we actually compute (M̃ + 1)K integrals in the real case,
and 2(M̃ + 1)K in the complex. We create 1 × (M̃ + 1) matrices a
on non-root processes for the real case, and, for the complex case, we
create 2 × (M̃ + 1) matrices a and store real integrals in the first row
and imaginary ones in the second.

65



For the LHS, we define{
d̃c = dc = rd, for real kernel,

d̃c = Ic
2

= rd, for complex kernel,
(266)

and find positive integers M̃f , b̃f such that

d̃c = M̃fK + b̃f , b̃f < K, (267)

on each process we compute M̃f + 1 integrals in the real case and
2(M̃f + 1) in the complex, i.e., we compute i-th LHS on a process k,
iff i ≡ k(mod K), and, for the imaginary LHS, i + rd ≡ k(mod K).
In this way, we actually compute (M̃f + 1)K LHSs in the real case,
and 2(M̃f + 1)K in the complex. We create 1 × (M̃f + 1) matrices f
on non-root processes for the real case, and, for the complex case, we
create 2× (M̃f + 1) matrices f and store real integrals in the first row
and imaginary in the second.

Then we have to collect all the data to the matrix on the root process. In
the real case, we have rd×rd matrix and there is a one-to-one correspondence
between integrals and matrix elements, in the complex case we have 2rd×2rd
matrix, and the real integrals go into upper left and lower right rd×rd block,
and the complex integrals go into upper right and lower left blocks. As for
integrals we have a loop with index i running from 0 to rd× rd− 1. We have
the same three cases:

1. K > Ic. For the real case, we gather all 1× 1 matrices into the rd × rd
matrix to the root process. In the complex case, we gather all 1 × 1
matrices into an upper left corner of the 2rd × 2rd matrix a on the
root process, i.e., we form an auxiliary array on a root process of the
dimension rd, collect the data from first rd processes to it, then write
the data into a, then read from the second group of processes of the
size rd and then write that data into the second row of the matrix a. In
this way, we read all real integrals. Then we continue with imaginary,
but write them to the lower right corner of a. For the LHS, we just
gather all 1× 1 matrices to the LHS matrix on the root process.

2. K > Ic/2. We consider this case only for the complex kernels. In this
case, we form an auxiliary array of the size 2rd, we collect real data
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from rd processes into the first half of the array, and imaginary into the
second. Then, we write first half into the upper left corner of a and
second into the lower left corner. For the LHS, we just gather all 1× 1
matrices to the LHS matrix on the root process.

3. K < Ic for the real case, and K < Ic
2

for the complex. In this case,

we have M̃ + 1 gathering steps. At each step, we collect one (two)
number(s) and write numbers corresponding to the real case into the
upper left corner of a, in the complex case, we also write complex
contribution into the lower right corner of the matrix.

4.3.5 Optimized solver

The solver, whose design is depicted in Fig. 10, is implemented using ab-
stract classes, pure virtual functions, and, since it is equation-independent,
it doesn’t take advantage of a certain equation. This implementation is very
important for testing, but it’s too slow for the realistic 3D test charge prob-
lem.

The most time consuming part of the algorithm is evaluation of the mul-
tidimensional integral in the expression for the matrix elements of the system
of linear equations (244). It is a multidimensional integral of the kernel of the
equation, which is also a multidimensional integral. For the physical problem
that we consider, it is possible to rearrange integrals and precompute some
inner integrals providing significant speed-up of the whole computation. In
next paragraphs, we detail this procedure for both methods, i.e., for the
method with periodic orbits and for the general one.

Evaluation of al,mi,j for the method with periodic orbits We need to
compute the following expression (244):

al,mi,j (s) =

∫
Gj

K(ξi,l,~y, s)φj,m(~y)d~y, (268)

with the kernel (225). Inserting into the equation (225) the expression (222)

for R
(
~x,~x

′
,~v
)
, changing infinite domain of the integral over ~v to

[
−π

2
, π

2

]d
via
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change of variables, and putting t = 0, we have

K0

(
~x,~x

′
, s
)

=Fd
1

e
2π
ω̃
s − 1

∫
[−π2 ,

π
2 ]
d

2π
ω∫

0

(
∂

∂~X0 (t1)
G(~X0 (t1) ,~x

′
) ·

· ∂f0(~X0 (t1) , ~V0 (t1))

∂~V0 (t1)

)∣∣∣∣∣
vi=tan vi

est1dt1
d~v∏

i cos2(vi)
. (269)

Let us look at the integrand. We have the following expressions for the orbits:{
X0i (t1) = xi cos (ω̃t1) + vi

ω̃i
sin (ω̃t1) ,

V0i (t1) = vi cos (ω̃t1)− xiω̃i sin (ω̃t1) ,
(270)

and for the equilibrium distribution:

f0(~x,~v) =
1

πd
e
−
∑
i
aix2i−

1
2

∑
i
v2i
, (271)

and its derivative:

∂f0(~X0 (t1) , ~V0 (t1))

∂~V0 (t1)
= −2f0(~x,~v)~V0 (t1) . (272)

Thus, we obtain for the kernel:

K0

(
~x,~x

′
, s
)

= −2Fd
1

e
2π
ω̃
s − 1

∫
[−π2 ,

π
2 ]
d

2π
ω∫

0

(
∂G

∂~x

(
~x cos (ω̃t1) +

~v

ω̃i
sin (ω̃t1) ,~x

′) ×
× (~v cos (ω̃t1)−~xω̃i sin (ω̃t1)) f0(~x,~v))|vi=tan vi

est1dt1
d~v∏

i cos2(vi)
. (273)

In expression (268), the kernel should be integrated with the polynomials:

φj,m (~y) =
d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)(
ξji,mii − ξji,ri

) = (274)

=
d∏
i=1

r 6=mi∏
r=1...m

1(
ξji,mii − ξji,ri

) × d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)
, (275)
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i.e.,

al,mi,j (s) =
1

d∏
i=1

r 6=mi∏
r=1...m

(
ξji,mii − ξji,ri

)
∫
Gj

K(ξi,l,~y, s)
d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)
d~y.

(276)

We change the order of integration and obtain:

al,mi,j (s) = g(s)

∫
Gj

2π
ω∫

0

∫
[−Lv ,Lv ]d

F j,m(ξi,l,~y,~v, t1)d~vest1dt1d~y,

where

g(s) =
1

e
2π
ω̃
s − 1

, (277)

and what is denoted by F j,m(ξi,l,~y,~v, t1) is clear from the expression (276).
We pre-compute and store the boxed integral:

al,mi,j (s) = g(s)

2π
ω∫

0

∫
Gj

∫
[−Lv ,Lv ]d

F j,m(ξi,l,~y,~v, t1)d~vd~y est1dt1.

For the equilibrium distribution, we precompute ~v-related factors and ~x-
related factors separately:

f0(ξi,l,~v) =
1

πd
e
−
∑
j
aiξ

i,l
j

2
− 1

2

∑
i
v2i ≡ ei,l

d∏
i=1

e−
1
2
v2i . (278)
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We obtain the final expression for the matrix element:

al,mi,j (s) = g(s)

2π
ω∫

0

 −2dfFdei,l

d∏
i=1

r 6=mi∏
r=1...m

(
ξji,mii − ξji,ri

)×
×
∫
Gj

∫
[−Lv ,Lv ]d

ξi,l cos (ω̃t1) + ~v
ω̃i

sin (ω̃t1)−~y∣∣∣ξi,l cos (ω̃t1) + ~v
ω̃i

sin (ω̃t1)−~y
∣∣∣d ·

·
(
~v cos (ω̃t1)− ξi,lω̃i sin (ω̃t1)

) d∏
i=1

e−
1
2
v2i d~v

d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)
d~y

]
est1dt1,

(279)

where d is a dimensionality of space and df is a constant factor in the ex-
pression for derivative of the Green’s function. Denoting expression in square
brackets as ãl,mi,j (t1), we have:

al,mi,j (s) = g(s)

2π
ω∫

0

ãl,mi,j (t1)est1dt1.

We pre-compute ãl,mi,j (t1) for the nodes of the integral over t1 and store them,
it will be a vector of matrices. Similarly we proceed with the left-hand side:

F0 (~x, s) = ZFd
2

e
2π
ω̃
s − 1

∫
[−Lv ,Lv ]d

2π
ω∫

0

1∫
0

∂G
∂~x

(
~X0 (t1) , ~Y

(
1−t2
t2

))
e

(
1−t2
t2

)
s−t1s

dt2
t22
×

× (~v cos (ω̃t1)−~xω̃i sin (ω̃t1)) f0(~x,~v)dt1d~v, (280)
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F0(ξ
i,l, s) =

1

e
2π
ω̃
s − 1

2π
ω∫

0

1∫
0

2ZdfFdei,l
∫

[−Lv ,Lv ]d

ξi,l cos (ω̃t1) + ~v
ω̃i

sin (ω̃t1)−~x0 −~v0
1−t2
t2∣∣∣ξi,l cos (ω̃t1) + ~v

ω̃i
sin (ω̃t1)−~x0 −~v0

1−t2
t2

∣∣∣d ·
·
(
~v cos (ω̃t1)− ξi,lω̃i sin (ω̃t1)

) d∏
i=1

e−
1
2
v2i d~v

1

t22
e
−
(

1−t2
t2

)
s
dt2et1sdt1. (281)

We denote the integral over ~v multiplied by a constant and 1
t22

as F̃(ξi,l, t1, t2)

and obtain:

F0(ξ
i,l, s) = g(s)

2π
ω∫

0

1∫
0

F̃(ξi,l, t1, t2)e
−
(

1−t2
t2

)
s
dt2et1sdt1. (282)

We precompute F̃(ξi,l, t1, t2) for nodes of integrals over t1 and t2.
With precomputed ãl,mi,j (t1) and F̃(ξi,l, t1, t2), integrals for the system of

linear equations can be evaluated much faster.

Evaluation of al,mi,j for the method for non-periodic orbits In this
case, we need to compute

al,mi,j (s) =

∫
Gj

K(ξi,l,~y, s)φj,m(~y)d~y (283)

with the kernel given by equation (223). Doing the same transformations as
in the previous paragraph, we obtain

K
(
~x,~x

′
, s
)

=− 2Fd

1∫
0

∫
Rd

∂G

∂~x
(~x cos (ω̃t)−

~v

ω̃i
sin (ω̃t) ,~x

′
) ×

× (~v cos (ω̃t) +~xω̃i sin (ω̃t)) f0(~x,~v)|t= 1−t
t

1

t2
e−s(

1−t
t )d~vdt. (284)

The kernel should be integrated with polynomials:

al,mi,j (s) =

∫
Gj

K(ξi,l,~y, s)φj,m(~y)d~y, (285)
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φj,m (~y) =
d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)(
ξji,mii − ξji,ri

) = (286)

=
d∏
i=1

r 6=mi∏
r=1...m

1(
ξji,mii − ξji,ri

) × d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)
, (287)

al,mi,j (s) =
1

d∏
i=1

r 6=mi∏
r=1...m

(
ξji,mii − ξji,ri

)
∫
Gj

K(ξi,l,~y, s)
d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)
d~y.

(288)

We exchange integration order, precompute and store boxed integral:

al,mi,j (s) =

1∫
0

∫
Gj

∫
[−Lv ,Lv ]d

F j,m(ξi,l,~y,~v, t)d~vd~y e−s(
1−t
t )dt, (289)

what is denoted by F j,m(ξi,l,~y,~v, t) clear from the expression (289). For
the equilibrium distribution, we precompute ~v-related factors and ~x-related
factors separately:

f0(ξi,l,~v) =
1

πd−1
e
−
∑
j 6=1

aiξ
i,l
j

2
− 1

2

∑
i
v2i
≡ ei,l

d∏
i=1

e−
1
2
v2i , (290)

with that, we have:

al,mi,j (s) =

1∫
0

[
−2dfFdei,l

d∏
i=1

r 6=mi∏
r=1...m

(
ξji,mii − ξji,ri

)−1×

×
∫
Gj

∫
[−Lv ,Lv ]d

ξi,l cos (ω̃t1) + ~v
ω̃i

sin (ω̃t1)−~y∣∣∣ξi,l cos (ω̃t1) + ~v
ω̃i

sin (ω̃t1)−~y
∣∣∣d ·

·
(
~v cos (ω̃t1)− ξi,lω̃i sin (ω̃t1)

) d∏
i=1

e−
1
2
v2i d~v×

×
d∏
i=1

r 6=mi∏
r=1...m

(
yi − ξji,ri

)
d~y

1

t2

]
e−s(

1−t
t )dt, (291)
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where d is a dimensionality of space and df is a constant factor in the ex-
pression for derivative of the Green’s function. Denoting expression in square
brackets as ãl,mi,j (t), we have:

al,mi,j (s) =

1∫
0

ãl,mi,j (t)e−s(
1−t
t ) 1

t2
dt.

We precompute ãl,mi,j (t) for the nodes of the integral over t and store them,
it will be a vector of matrices. Similarly we proceed with the left-hand side.
In this case, it is given by:

F (~x, s) =2FdZ

∫ ∞∫
0

t∫
0

∂G

∂~x

(
~X0 (t1) , ~Y

(
1− t2
t2

))
×

× (~v cos (ω̃t1)−~xω̃i sin (ω̃t1)) f0(~x,~v)e−stdt1dtd~v. (292)

In the same way as in the previous paragraph, we expand it:

F(ξi,l, s) =

1∫
0

t∫
0

∫
[−Lv ,Lv ]d

ξi,l cos (ω̃t1) + ~v
ω̃i

sin (ω̃t1)−~x0 −~v0
1−t2
t2∣∣∣ξi,l cos (ω̃t1) + ~v

ω̃i
sin (ω̃t1)−~x0 −~v0

1−t2
t2

∣∣∣d ·
·
(
~v cos (ω̃t1)− ξi,lω̃i sin (ω̃t1)

)
2ZdfFd

d∏
i=1

e−
1
2
v2i d~vei,ldt1e−s(

1−t
t ) 1

t2
dt. (293)

We denote the integral over ~v multiplied by a constant as F̃(ξi,l, t, t1) and
obtain:

F(ξi,l, s) =

1∫
0

t∫
0

F̃(ξi,l, t, t1)dt1e−s(
1−t
t ) 1

t2
dt, (294)

we precompute F̃(ξi,l, t, t1) for nodes of integrals over t and t1.

Summary This pre-computation allows to compute elements of the system
of linear equations much faster. For sparse grids, we tested this faster method
and obtained exactly same results for the physical problem, as we obtained
using the general solver, which was tested on exactly solvable equations. We
conclude that our solver works correctly and provides an opportunity to solve
the realistic 3D problem with fine grids.
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Figure 12: The density n1(~x, t) for the infinite plasma with the 1D Cauchy
velocity distribution obtained via exact formula (72) and numerically via the
FFT.

4.4 Test charge problem for an infinite plasma

Before discussing our numerical results for the confined plasma, we remind
the reader our results for the infinite plasma, which was detailed in section
2. All the features of shielding in the infinite plasma can be seen in the case
of 1D Cauchy distribution, which is depicted in Fig. 12.

For the infinite plasma, we observe a density peak, which follows the
charge with a little delay. Due to infiniteness of the plasma’s charge, for small
time values, we observe positive peak without any negative peaks. Then, size
of the peak increases, and negative and additional positive peaks appear –
these are standard plasma oscillations. Then we observe saturation, i.e., peak
stops growing and its hight oscillates around some value; these oscillations
disappear at infinity due to Landau damping.

4.5 Numerical results

In subsection 4.2, we derived two different integral equations for the test
charge problem in a confined plasma. One equation can deal with both
confined and infinite plasmas; the kernel and the left-hand side are given by
the formulae (223) and (224), respectively. Although, this method can deal
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with infinite plasmas, the numerical method that we described in subsection
4.3 is only for compact domains; some modifications are required to solve
the equations with infinite domains, which we are not going to discuss here.
For infinite plasmas, there are much simpler methods that are thoroughly
developed in [10]. The second integral equation with the kernel and the left-
hand side given by (225) and (226) can deal only with a spherical confined
plasma; however, it has simpler integrals over time that can be computed
faster. We did numerical tests of both methods for a confined plasma and
obtained the same results, this confirms that the methods are equivalent for
spherical plasmas, as they should be according to our theory.

In this subsection, we focus on a confined spherical plasma with the nor-
mal (Maxwell) velocity and spatial distributions given by (208). The compo-
nents of vector ~a in the expression for the equilibrium distribution character-
ize the plasma’s size; for example, when they all equal one, σ also equals one,
and more than 99.9% of the plasma lie within a ball of radius 3, accordingly
to considerations in subsection 4.2.6.

We will graphically present our results obtained via the second method.
We show plots for some time values, but we would like to emphasize that,
when solution is obtained, it is available for all time points in a certain
predefined range. We consider the 1D, 2D and 3D cases in order. Then we
will discuss our results.

We also assume that perturbation is zero outside of the d-dimensional

rectangle
d∏
j=1

[−4σj, 4σj], where σj is defined via (211), and take this rectangle

as a domain of the integral equations. In all plots, the time and distance are
measured in units of inverse plasma frequency and the Debye radius, defined
in (192) and (193), respectively.

Since in the 1D case, the time dependence is quite simple, we depicted the
densities with time step 0.5. In the 2D and 3D cases, it is more complicated;
hence, we plotted it with a time step 0.1 and depicted for the values, for which
important features of the dynamics of the density are more pronounced.

For simplicity, we did computations for the external charges moving with
a constant velocity along straight lines; however, the method and our software
can deal with charges moving along any trajectory.

All computations were performed on Edison machine at NERSC. Edison
is a Cray XC30 supercomputer with 5,576 nodes, which are two twelve-core
Intel ”Ivy Bridge” 2.4 GHz processors with 64 GB of RAM. The 1D case
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was computed on 2,048 cores in 14 seconds. The 2D case was computed
on 4,096 cores in 14 minutes and 12 seconds. Computation of the 3D case
was split into two steps: evaluation the matrix and right-hand side of the
system (253), and solving this system via LU decomposition. The first step
was done on 16,392 cores (16,392 MPI tasks, 683 nodes) in 2 hours, and the
second step was done on 3,072 cores (256 MPI tasks, two tasks per node
or one task per 12 cores – we needed more memory on each task) in 36
minutes. Computation of the second step can be accelerated approximately
by a factor of 10 by using parallel LU decomposition reducing computation
of the whole 3D problem to almost 2 hours. The great advantage of our
program is its ability to utilize effectively thousands of cores available on
modern supercomputers.

4.5.1 Numerical results for 1D plasma

In this case, we consider an external charge starting moving with velocity
v0 = 1 from the center of the plasma, x0 = 0, and moving with the same
velocity, but from outside of the plasma, i.e., x0 = −4.

In Fig. 13, we show our results for the ”x0 = 0” case and, in Fig. 14,
for ”x0 = −4”. They exhibit three main qualitative differences from the re-
sults for the infinite plasma shown in Fig. 12; for more plots for the infinite
plasma, we refer to [10]. For the infinite plasma, the peak of the perturba-
tion quite closely follows the charge, just with a little delay, while, for the
confined plasma, the symmetry of the plasma has much larger affection on
the perturbation’s density than the charge’s position, which only determines
location of the positive and negatives peaks relatively to the center of the
plasma; this is because the density perturbation is affected by the confining
and space-charge fields, which equal zero in the infinite plasma case. An-
other difference is a compensation of the positive peak, which is around the
charge, by a negative one. In the infinite plasma, this compensation occurs
only for the large time values, while, for the confined plasma, it always ex-
ists. This effect is reasonable, since the total charge of the confined plasma
is finite. The last difference lies in the dynamics of the perturbation. In the
infinite plasma, the perturbation reaches certain value, i.e., saturates, and
then slightly oscillates around this value, as shown in Fig. 3 for the Cauchy
velocity distribution, for the results for other distributions, we refer to [10],
while for the confined plasma, an amplitude of the oscillations is much larger
and they take place around zero. These oscillations are seen for large time
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Figure 13: Dynamics of the density n(~x, t) for the 1D plasma with the normal
spatial and velocity distributions and for a charge starting moving from x0 =
0.
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Figure 14: Dynamics of the density n(~x, t) for the 1D plasma with the normal
spatial and velocity distributions and for a charge starting moving from x0 =
−4.
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values in Fig. 13 and Fig. 14.
A point charge in the 1D space corresponds to a charged plane perpendic-

ular to x axis in a 3D plasma with the x-dependent distribution, in our case,
the normal distribution along x axis and the uniform with the infinite support
(support of a function is a set of points where the function is nonzero) along
two other axes. If this plane has equation x = c, where c is some constant,
the potential and the charge density do not depend on z and y and equations
are the same as we have in the 1D case.

4.5.2 Numerical results for 2D plasma

In the 2D case, we consider an and an external charge starting moving from
the center of the plasma along x axis with velocity ~v = (1.0, 0.0).

Figure 15 shows the electron density for different values of the time; these
are the contour density plots, depicting lines, along which the density is
constant; we call them the equidensity contours. For some contours, values
of the density are shown on the graphs; for others, the values can be obtained
via the color bars attached to the plots. As we see from the plots, for times
smaller than one half, there is no significant negative peak, and the negative
density is spread out around a positive peak, while for the 1D case, both
peaks are of the same size from the beginning. Then, the positive peak
continues to grow and a negative peak starts to build up, but in front of
the positive peak; in the 1D case, it was behind the positive one. For times
greater than one, another negative peak appears, now, behind the positive
one; and they both become very spiky, then they widen for a time around
two. Thereafter, the oscillations continue; for a time about 3.5, the positive
peak has negative x coordinate and the negative – positive, and then they
widen. These oscillations continue for larger times.

A point charge in the 2D space corresponds to a charged infinite line in a
3D plasma with the z-independent distribution; in our case, it is an infinite
cylinder with the normal distribution in transverse directions and uniform
with infinite support in longitudinal.

4.5.3 Numerical results for 3D plasma

In the 3D case, we consider the problem with an external charge starting mov-
ing from the center of the plasma along y axis with velocity ~v = (0.0, 1.0, 0.0).
In this case, we show the results as 3D density plots, which depict equidensity
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Figure 15: Dynamics of the density n(~x, t) for the 2D plasma with normal
spatial and velocity distributions for different values of time; the external
charge starts moving from ~x0 = (0.0, 0.0) with velocity ~v0 = (1.0, 0.0); each
plot has its own color bar.
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Figure 16: Dynamics of the density n(~x, t) for the 3D plasma with normal
spatial and velocity distributions for different values of time; the external
charge starts moving from~x0 = (0.0, 0.0, 0.0) with velocity ~v0 = (0.0, 1.0, 0.0).
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Figure 17: Dynamics of the density n(~x, t) for the 3D plasma with normal
spatial and velocity distributions for different values of time; the external
charge starts moving from~x0 = (0.0, 0.0, 0.0) with velocity ~v0 = (0.0, 1.0, 0.0).
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contours in the planes x = 0 and z = 0; some plots also have few lines in the
plane y = 0.

Figures 16 and 17 depict the densities for different times. The dynamics is
quite similar to that in the 2D case. In the beginning, there is a positive peak,
which follows the external charge and the negative density is spread around.
This peak reaches its maximum height at t ≈ 0.9. Then, this peak continues
to exist, and its height decreases, until t = 1.7, when it almost disappears
and negative peak appears in the negative part of y axis. For t = 2.1, both
peaks are relatively small and have almost the same sizes. Thereafter, for
t = 2.3, we see the negative peak in a negative part of the y axis; for t = 2.5,
the negative and positive peaks are of the same size. Then, a positive peak
appears in the negative part of the y axis, and then, the positive and negative
peaks have almost same size for t = 3.0. For t = 3.4 and t = 4.0, we see
a quite large positive peak in the negative part and negative peak in the
positive part, respectively. For t = 4.3, the peaks are almost of the same
size. At this time, the charge is outside of the plasma and barely affects
its charge distribution. For larger time values, the oscillations continue but
with decreasing amplitudes, as we see for the time values t = 3.4 and t = 4.0,
similarly to the lower dimensional cases.

In this subsection, we described our results for the test charge problem in
a 3D confined plasma. These results can be used to analyze the dynamics of
shielding of a charge particle in a bunched electron beam that is needed to
model the modulator section of the coherent electron cooling; we will discuss
this after explaining physics of the observed effects.

4.5.4 Discussion

Dynamics of the density perturbation caused by interaction of plasma with
a moving charged particle has some qualitative features that can be seen
in both confined and infinite plasmas. However, there are also differences,
which are caused by an interaction with the confining fields.

There is always a main positive peak, which follows the charge, as shown
in Figures 5, 7, 8 and 12 for the infinite plasma, and in Figures 13 - 17 for the
confined; this peak is caused by attraction between plasma’s particles and an
external charge. In the infinite plasma (with infinite charge), the charges are
coming from infinity and sole positive peaks can occur for small time values,
as shown in Figures 5, 7, 8 and 12. In contrast, in the finite plasma, the
charge is finite and conserved, and positive peaks are always surrounded by
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negative density regions or well-formed negative peaks, as shown in Figures
13 - 17.

For large time values, negative and spurious positive peaks appear in the
infinite plasma. For the infinite 1D Cauchy plasma, appearance of additional
peaks is confirmed by the exact analytical solution (72) depicted in Fig. 3,
for other distributions, it is confirmed by numerical solutions [10]. These are
the plasma oscillations (also known as Langmuir waves) induced by sudden
appearance and movement of the external charge. These plasma waves are
solutions of the Vlasov-Poisson system for both infinite and confined plasmas
and they are also seen in Figures 13 - 17 for the confined plasma. Their
amplitude decreases because of the Landau damping.

The confined plasma considered doesn’t have an actual boundary, how-
ever, the confining fields serve as one and we observe reflections of the plasma
waves from this effective boundary. In the 1D case, there is only one spatial
dimension and reflection of the wave from the boundary leads to decrease of
the positive peak and then to its transformation into the negative one. It
is seen in Fig. 13: the perturbation reaches its maximum at t = 2.0 and
then decreases, then the charge leaves the plasma and we see standing wave
with decreasing amplitude. In Fig. 14, the situation is more complicated,
since the charge spends more time in the plasma and travels across it, but
reflections are also there. In the 2D and 3D cases, the situation is differ-
ent, since we still have a point (zero-dimensional) charge traveling along a
line, which is a 1D object, but the plasma has more spatial dimensions. The
plasma waves sourced at the location of the charge travel to the boundary
in all directions, then reflect from the boundary and form a negative peak at
the location opposite to the location of the charge with respect to center of
the plasma. In the 2D and 3D cases, these negative peaks appear at t = 1.2
and t = 1.7, respectively. Thus, confining fields serve as a reflecting bound-
ary, which focuses reflected waves to the position opposite to the location of
the initial peak with respect to the origin in the 2D and 3D cases, and just
reflects the wave in the 1D case.

Then, in all confined plasmas, we see a standing density waves. These
waves are harmonic oscillations of the perturbation’s density in the confining
fields, which correspond to x-dependent part of the Hamiltonian H0 (205):

H0 =
∑
i

aix
2
i +

1

2

∑
i

v2
i . (295)

We consider symmetric case, for which all ai equal 1; denoting them as a, we
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obtain for the dimensionless frequency ω̃0:

ω̃0 =
√

2a. (296)

For a = 1, we have for the dimensionless period T0:

T0 =
2π

ω̃0

=
√

2π ≈ 4.44, and
T0

2
≈ 2.22. (297)

This value for the half-period is in an agreement with the observed behavior.
In the 2D case, the changes of the density profiles between t = 1.8 and
t = 3.9, and t = 1.2 and t = 3.5 correspond to half-oscillation and time
differences are close to the computed value for the half-period. (We plotted
densities with time step 0.1, so the exact equality should not be expected.)
Similarly, in the 3D case, we see half-oscillation from t = 1.7 to t = 4.0, and
from t = 1.2 to t = 3.4. Since the 1D plasma is not symmetric with respect
to charge’s trajectory, as the 2D and 3D plasmas, and there is no focusing
in the 1D case, the standing wave behaves a bit differently in the 1D plasma
case.

In the 2D and 3D case, there is another interesting effect: oscillations of
the shape of the peaks of the standing density wave. In the 2D case, we see
wide peaks for t = 1.8 and t = 3.9 and spiky peaks for t = 1.2 and t = 3.5.
Similarly, in the 3D case, we see wide peaks for t = 2.1 and t = 4.3 and spiky
peaks for t = 1.7 and t = 4.0. This effect is caused by reflection and focusing
of the standing wave in the confining fields: the wide density profiles reach
the boundary and then focuses into spiky peaks, then widen again, etc. In
the 1D case, we do not see this widening and shrinking of the peaks, since
we do not have focusing, which is responsible for this effect, the wave just
reflects.

Another feature is damped oscillations of the maximum of the positive
peak for the large time values. This effect is caused by the Landau damping
and confirmed for the infinite plasma by the exact solution (72) plotted in
Fig. 3. For the large time values, the charge does not leave the plasma
and perturbation continues to exist approaching constant nonzero value at
infinity [9]. In the confined plasma case, oscillations in the confining fields
have much larger amplitude and this effect is not clearly observable. For the
large time values, the charge is outside of the plasma and do not affect much
the plasma’s charge distribution, which is controlled by the space charge fields
and confining fields, which damp the perturbation caused by the charge.
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4.5.5 Application to the coherent electron cooling

The device for the coherent electron cooling proof of principle (PoP) experi-
ment is being constructed in the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory [5]. To apply our results to the modulator
section of the device, we need to recover the dimensional quantities. For the
PoP experiment, we have the Debye radius rD = 4.65 · 10−5 m and plasma
frequency ωp = 6.436·109 s−1. The dimensional electron density perturbation
can be obtained as follows:

n1 (~x, t) = r−dD n1

(
r−1

D ~x, ωpt
)
, (298)

where d is a spatial dimension of the problem; for the real 3D case, d = 3. In
the PoP experiment, the modulator is designed such that the interaction time
is around one half of the plasma period, it is one half in our dimensionless
units, and it depends on the hadron’s velocity, since the modulator’s length
is constant. The velocity is measured in units of electron beam’s vrms, in the
PoP experiment, vrms = 3.0 · 105 m

s
.

Our computations for the 3D confined plasma show that for times around
one half of the plasma period the density perturbation follows the charge, and
there are no considerable negative peaks, which could cause problems in a
CeC device, since they also would be amplified in an FEL and created electric
fields that would undesirably accelerate the hadrons. Since the peaks grow
with time and we are interested in largest possible ones, the maximum time,
for which there are no negative peaks, sets limit on a possible length of the
modulator. Although, it is possible to determine the precise time value, for
which negative peaks of a certain size appear, it wouldn’t make sense, since
the modulator’s length is constant and hadrons have different velocities, thus
their passing through the modulator takes different times. For the 3D ball
that we considered, it is t ≈ 1.2, this time is larger than the modulation time
in the PoP experiment, thus the modulator can even be extended. Moreover,
in the actual device, the bunches are not ball-like; their longitudinal size is
larger than transversal, and so the hadrons will pass through a much smaller
part of the bunch, than in our computations, and these edge effects will not
play a role, thus, spurious perturbations will not cause any problems.

Although, we shed some light on the dynamics of the perturbation in
the device for the CeC PoP experiment, the main goal was to develop the
method and explore the physics of the shielding in the confined plasma.
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4.6 Conclusion

In this section, we studied in detail dynamical test charge problem for the
confined plasma. We developed a novel method for solving this problem.
We considered a collisionless single-species electron plasma; the method can
be easily generalized to a multi-species plasma. While other known non-
simulation methods are applicable only to the infinite plasma [9, 10], our
method is developed for the confined plasmas and can be modified to deal
with the infinite plasma as well.

The idea underlying the method is to transform the Vlasov-Poisson sys-
tem of differential equations to an integral equation for the Laplace image
of the density perturbation, and then to solve this equation numerically. To
solve the integral equation, we applied the piecewise polynomial collocation
method [35] that we reviewed in detail. We used the FFT to compute the
inverse Laplace transform.

We developed a stand-alone solver for the Fredholm integral equations,
and for the Laplace-Fredholm ones, which are Fredholm equations for the
Laplace image of the quantity of interest. Our solver can be used to solve
other equations of this type; for example, such equations appear in the three-
dimensional theory of high-gain free-electron lasers [21]. All our programs
are object-oriented, parallel, and written in C++; the complete source code
is available at [34] under the GNU General Public License; all computations
were performed on Cray supercomputers at the National Energy Research
Scientific Computing Center (NERSC).

Our computations revealed a few important features of the shielding of
a charged particle in a confined plasma. Similarly to the case of the infinite
plasma, in addition to main positive peak, we see plasma oscillations, i.e.,
negative and positive peaks of the density perturbation, these peaks can
be comparable in size to the main positive peak. For the case of confined
plasma, especially, for large time values, the shape of the perturbation is
mostly determined by the symmetry of the plasma, and we observe density
oscillations in the confining fields that occur around zero, while for the case
of the infinite plasma [9, 10], the density oscillates around some saturation
value and follows the charge even for large time values. These differences are
caused by non-zero confining and space-charge fields in the confined plasma
and by the finiteness of its charge. The confining fields create an effective
boundary, which reflects plasma waves. For the 2D and 3D plasmas, we
observe focusing of these reflected waves and formation of additional peaks

87



via this mechanism; reflections and focusing also explain oscillations of the
shape of the peaks, i.e., spiky and wide peaks are observed. In the 1D plasma,
there is no focusing, only reflections, and there are no spiky peaks.

The method developed provides an opportunity to compute shielding
effects in confined plasmas, which are realistic models of the correspond-
ing physical systems in accelerator physics, astrophysics and other areas of
plasma physics such as physics of dusty plasmas. In particular, these com-
putations will allow to advance further theoretical modeling of the coherent
electron cooling.
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5 Conclusion

The main result of the present thesis is a development of a new method for
solving the dynamical test charge problem for the confined plasma, a real-
istic model of an electron beam (and other physical systems in astrophysics
and physics of dusty plasmas). This problem is important for modeling the
coherent electron cooling, a modern hadron beam cooling technique.

We started our considerations with a simpler problem, i.e., the dynamical
test charge problem for the infinite plasma. The Vlasov-Poisson system for
this problem can be solved via the Fourier and Laplace transforms and the
general solution for the arbitrary equilibrium distribution f0 (~v) and point
charge traveling along a straight line can be obtained (60):

n1 (~x, t) = L−1F−1

 e−i
~k·~x0(

f−1
d v−drms

LF~kt(tf0(~v))
+ 1
)(

s + i~k ·~v0

)
 . (299)

For the 1D Cauchy distribution, (69),

f0(~v) =
1

π (1 + v2)
, (300)

the integral transforms can be inverted analytically and we can obtain exact
solution (72):

n1 (~x, t) =
1

4π

1

v0 − i
(
e−A+ (Ei(A+)− Ei(B+)) + eA+ (E1(A+)− E1(B+))

)
+

+
1

4π

1

v0 + i

(
e−A− (Ei(A−)− Ei(B−)) + eA− (E1(A−)− E1(B−))

)
,

(301)

where

A± =
tv0 − x + x0

1± iv0

, B± =
x0 − x± it

1± iv0

, (302)

and E1(z) and Ei(z) are the exponential integral functions [27]. For other
equilibrium distributions, the integral transforms in must be inverted numer-
ically. We discussed algorithms in appendix A and the results obtained in
subsections 2.2 and 2.3.
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The Fourier methods developed for the test charge problem for the in-
finite plasma can be applied to the FEL section of the CeC as well. We
discussed this in section 3, where we derived formulas for the amplified den-
sity perturbation (124) and SASE contribution (130).

The Vlasov-Poisson system for the test charge problem for the confined
plasma contains additional term in the Vlasov equation and cannot be solved
using methods that worked for the infinite plasma. We proposed a new
solving technique, in which the system is transformed into the Fredholm
equation for the Laplace image of the solution, we call such equation the
Laplace-Fredholm equation for the density perturbation (221):

F (~x, s) = N1(~x, s)−
∫

N1(~x
′
, s)K

(
~x,~x

′
, s
)
d~x
′
. (303)

For the kernel K
(
~x,~x

′
, s
)

and the left-hand side F (~x, s), we derived two dif-
ferent expressions one is for general orbits and the other is for periodic. The
latter is less general, but faster. These are the expressions (225) and (226)
(we set t = 0):

K
(
~x,~x

′
, s
)

=
1

e
2π
ω̃
s − 1

2π
ω∫

0

∫
R
(
~X0 (t1) ,~x

′
, ~V0 (t1)

)
est1d~vdt1, (304)

F (~x, s) = −Z 1

e
2π
ω̃
s − 1

∞∫
0

2π
ω∫

0

∫
R
(
~X0 (t1) , ~Y (t1) , ~V0 (t1)

)
e(t1−t2)sd~vdt1dt2,

(305)

where, in orbits, t is also should be set to zero, and R
(
~x,~x

′
,~v
)

is given by
(222):

R
(
~x,~x

′
,~v
)

= Fd
∂G(~x,~x

′
)

∂~x

∂f0(~x,~v)

∂~v
, (306)

where Fd is a dimensionless constant characterizing the equilibrium distribu-
tion, G(~x,~x

′
) is the Green’s function, and f0(~x,~v) is the equilibrium distribu-

tion.
In subsection 4.3, we describe the piecewise polynomial collocation method

for the Fredholm equation and our extension of it for the Laplace-Fredholm
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equation. We implemented this methods as a parallel object-oriented pro-
gram written in C++ and available at [34] under GNU GPL License; the
program was tested on some exactly solvable equations. Multidimensional
integrators is an important part of the program and we describe our integra-
tors in appendix E. We discuss our numerical results in subsection 4.5.

The results obtained can be used to analyze the modulator of the coher-
ent electron cooling. After the modulator, the perturbation created will be
amplified in the FEL, thus the larger the perturbation, the better. In the
initial analysis of the modulator, its length was suggested to be such that, on
average, the hadron spends one half of the plasma period in the modulator.

Our computations suggest that the modulator can be extended. For the
infinite plasma, we obtained that the perturbation grows approximately until
3 plasma periods (for the Cauchy and normal distributions), then it saturates
and oscillates around this saturation value. For the 3D confined plasma, we
obtained that the perturbation grows approximately until 1.2 plasma periods
and then it decreases due to edge effects. These two cases are extreme cases;
in the real beam, the edge effects will affect the perturbation less than in the
confined plasma considered, since the longitudinal size of the actual bunch
is greater than of the one considered. Thus, the modulator can be made at
least two times longer and the edge effects will not cause any problems.
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A Numerical evaluation of the inverse Laplace

and Fourier transforms

In this appendix, we provide definitions of the Fourier and Laplace trans-
forms, and corresponding inverse transforms. We discuss their numerical
evaluation via converting them to the discrete Fourier transform (DFT). We
conclude the section with the fast Fourier transform algorithm for the DFT.

A.1 The Fourier transform

We use the following definition of the Fourier transform:

Ff (x) ≡ f̃ (k) =

∞∫
−∞

f (x) e−ikxdx, (307)

and the inverse Fourier transform:

F−1f̃ (k) ≡ f (x) =
1

2π

∞∫
−∞

f̃ (k) eikxdk. (308)

When we write the Fourier transform or its inverse for the dimensionless vari-
ables, we use F and F−1, respectively. The discrete Fourier transform (DFT)
assigns to the set of points {xn}0≤n≤N−1 the set of points {Xk}0≤k≤N−1:

Xk =
N−1∑
n=0

xne−2πi kn
N , (309)

we use the following notation:

Xk = DFTk [{xn}0≤n≤N−1] . (310)

The DFT can be computed numerically using the effective fast Fourier trans-
form (FFT) algorithm, there are parallel algorithms allowing to increase the
speed of computations.
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A.2 The Laplace transform

The Laplace transform of function f(t) is defined as follows:

Lf(t) ≡ f̃(s) =

∞∫
0

f(t)e−tsdt, (311)

and the inverse:

L−1f̃(s) ≡ f(t) =
1

2πi

σ+i∞∫
σ−i∞

f̃(s)etsds, (312)

where σ is a real constant greater than the real parts of all singularities of
f̃(s), we use L and L−1 for the dimensionless variables.

A.3 The inverse Fourier transform via the DFT

The inverse Fourier transform can be approximated by the discrete one. Ap-
proximating the integral by

f (x) ≈ 1

2π

a∫
−a

f̃ (k) eikxdk, (313)

and, introducing the following notations

kn = −a+
2a

N
n, xj =

Nπ

2a
− π

a
j, Cj =

a

Nπ
e−iπ

N
2 (−1)j , (314)

we obtain:

f (xj) ≈ Cj

N−1∑
n=0

f̃ (kn) (−1)n e−i
2πnj
N = CjDFTj

[
{f̃ (kn) (−1)n}0≤n≤N−1

]
.

(315)

A.4 Multidimensional Inverse Fourier transform via
DFT

Similar expressions can be written for the multidimensional Fourier trans-
form. Approximating the integral by

f (~x) ≈ 1

2π

∫
C

f̃
(
~k
)

ei
~k·~xd~k, (316)
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where C =
[
−a(1), a(1)

]
× ... ×

[
−a(d), a(d)

]
and introducing the following

notations

k
(i)

n(i),
= −a(i) +

2a(i)

N (i)
n(i), x

(i)

j(i)
=
N (i)π

2a(i)
− π

a(i)
j(i), (317)

C
(i)

j(i)
=

a(i)

N (i)π
e−iπ

N(i)

2 (−1)j
(i)

, (318)

and we have

f (d−1)
(
kn(1) , ... , kn(d−1) , x

(d)

j(d)

)
=

= Cj(d)DFTj(d)

[
{f̃ (kn(1) , ..., kn(d)) (−1)n

(d)

}0≤n(d)≤N(d)−1

]
, (319)

and

f (l−2)
(
kn(1) , ... , kn(l) , x

(l−1)

j(l−1) , ... , x
(d)

j(d)

)
=

= Cj(l−1)DFTj(l−1)

[
{f (l−1)

(
kn(1) , ... , kn(l−1) , x

(l)

j(l)
, ... , x

(d)

j(d)

)
×

× (−1)n
(l−1)

}0≤n(l−1)≤N(l+2)−1

]
, (320)

we apply this recurrently for l = d, ... , 2 and get

f
(
x

(1)

j(1)
, ... , x

(d)

j(d)

)
= f (0)

(
x

(1)

j(1)
, ... , x

(d)

j(d)

)
. (321)

A.5 The inverse Laplace transform via the DFT

The inverse Laplace transform can be expressed via the Fourier transform:

L−1f̃ (s) =
eσt

2π

∞∫
−∞

f̃ (σ + ik) eiktdk = eσtF−1
k f̃ (σ + ik) , (322)

where σ is the same as in (312) and subscript k stands for the fact that the
transform is over k. Evaluating the inverse Fourier transform via (315), we
obtain:

f (tj) = eσtjCjDFTj

[
{f̃ (σ + ikn) (−1)n}0≤n≤N−1

]
. (323)

Some other algorithms for computation of the inverse Laplace transform can
be found in [36, 37].
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A.6 The inverse Laplace-Fourier transform via the DFT

For the 1D problems, the inverse Laplace-Fourier transform can be computed
via the DFT as follows:

f (xi, tj) =CiCje
σtj×

×DFTi

[
{DFTj

[
{f̃ (kn(1) , σ + ikn(2)) (−1)n

(2)

}0≤n(2)≤N(2)−1

]
×

× (−1)n
(1)

}0≤n(1)≤N(1)−1

]
, (324)

where superscript (2) corresponds to the Laplace transform, and (1) to the
Fourier one.

A.7 Inverse (1,d)-D Laplace-Fourier transform via DFT

In the similar way we can write a formula fot the (1,d)-dimensional case. We
just modify formulas (319) and (320): and we have

f (d−1)
(
kn(1) , ... , kn(d−1) , x

(d)

j(d)
, tj(d+1)

)
= Cj(d)Cj(d+1)e

σt
j(d)×

×DFTj(d)

[
{DFTj(d+1)

[
{f̃ (kn(1) , ..., kn(d+1)) (−1)n

(d+1)

}0≤n(d+1)≤N(d+1)−1

]
×

× (−1)n
(d)

}0≤n(d)≤N(d)−1

]
, (325)

where superscript (d+1) corresponds to the Laplace transform and

f (l−2)
(
kn(1) , ... , kn(l) , x

(l−1)

j(l−1) , ... , x
(d)

j(d)
, tj(d+1)

)
=

= Cj(l−1)DFTj(l−1)

[
{f (l−1)

(
kn(1) , ... , kn(l−1) , x

(l)

j(l)
, ... , x

(d)

j(d)
, tj(d+1)

)
×

× (−1)n
(l−1)

}0≤n(l−1)≤N(l+2)−1

]
, (326)

then we apply this recursively for l = d, ... , 2 and get

f
(
x

(1)

j(1)
, ... , x

(d)

j(d)
, tj(d+1)

)
= f (0)

(
x

(1)

j(1)
, ... , x

(d)

j(d)
, tj(d+1)

)
. (327)

A.8 The fast Fourier transform algorithm

In this subsection, we describe a very important fast Fourier transform (FFT)
algorithm [38]. The discrete Fourier transform (DFT) assigns to the set of
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points {xn}0≤n≤N−1 the set of points {Xk}0≤k≤N−1 via (328):

Xk =
N−1∑
n=0

xne−2πi kn
N . (328)

Obviously, a naive algorithm computing Xk for each k from 0 to N − 1
will have O(N2) complexity. It is possible to reduce complexity of this
computation to O(N logN). For example, in our computations, we had
N = 210 = 1024; in this case N2 = 1048576 and N logN = 10240, which is
much less; this will be even more important for the multidimensional Fourier
transforms.

We will describe the Cooley-Tukey algorithm. It uses the ”divide and
conquer” idea, i.e., evaluation of the DFT of size N can be split into two
DFT’s of size N

2
, and evaluation of initial DFT of size N using these two

smaller DFT’s has complexity O(N). This leads to the following recurrence
relation for the complexity T (N):

T (N) = 2T

(
N

2

)
+O(N). (329)

The binary tree corresponding to this relation has logN levels and N leaf
nodes, this gives complexity:

T (N) = O(N logN). (330)

This splitting into two smaller Fourier transforms can be done via

Xk =

N
2
−1∑

n=0

x2ne
−2πi kn1

2N + e−2πi k
N

N
2
−1∑

n=0

x2n+1e
−2πi kn1

2N ≡ Ek + e−2πi k
NOk, (331)

where it is assumed that N is a power of 2, and Ek is a first sum and Ok is
the second. Taking into account

Ek = Ek+ 1
2
N , (332)

Ok = Ok+ 1
2
N , (333)

we obtain {
Xk = Ek + e−2πi k

NOk, 0 ≤ k < 1
2
N,

Xk = Ek− 1
2
N + e−2πi k

NOk− 1
2
N ,

1
2
N ≤ k < N.

(334)
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Using e−2πi
k+1

2N

N = −e−2πi k
N , we can further simplify:{

Xk = Ek + e−2πi k
NOk, 0 ≤ k < 1

2
N,

Xk+ 1
2
N = Ek − e−2πi k

NOk, 0 ≤ k < 1
2
N.

(335)

This expresses the DFT of size N via two DFT’s of size N
2

. This splitting can
be continued until the size of DFT’s is 1, and DFT of that size is trivial, i.e.,
X0 = x0. This algorithm can be easily implemented recursively. This split-
ting scheme also allows to parallelize the computation increasing efficiency
even further.

B Special Functions

In this appendix, we define some special functions that were used in section
2 and discuss their numerical evaluation.

B.1 The exponential integral functions

The exponential integral functions are defined by [27]:

Ei (z) = −
∞∫
−z

e−t

t
dt, E1 (z) =

∞∫
z

e−t

t
dt, (336)

these functions can be computed via the convergent series for a small argu-
ment:

E1 (z) = −γ − ln z +
∞∑
k=1

(−1)k+1zk

kk!
, (337)

Ei (z) = γ + ln z +
∞∑
k=1

zk

kk!
, (338)

where γ ≈ 0.57721 is the Euler-Mascheroni constant, and via the asymptotic
series for a large one:

E1 (z) =
e−z

z

N−1∑
k=0

k!

(−z)n
+O

(
N !z−N

)
, (339)
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Ei (z) =
ez

z

N−1∑
k=0

k!

zn
+O

(
N !z−N

)
, (340)

where it is assumed that |argz| < π.

B.2 The error function

The error function and the complementary error function are defined by [27]:

Erf(z) =
2√
π

x∫
0

e−t
2

dt, Erfc(z) = 1− Erf(z), (341)

respectively, these functions can be computed via the convergent series for a
small argument and via the asymptotic series for a large one:

Erf(z) =
2√
π

∞∑
n=0

z

2n+ 1

n∏
k=1

−z2

k
, (342)

Erf(z) = 1− e−z
2

z
√
π

N−1∑
n=0

(−1)n
(2n− 1)!!

(2z2)n
+O

(
z−2N+1e−z

2
)
. (343)

To compute the density perturbation for the normal equilibrium distribution,
we need to compute the following expression:

LF~kt (tf0 (~v)) =
2

k2

[
1−
√
πez

2

zErfc(z)
]
, (344)

where z = s
|k| . For certain values of z, Erfc(z) diverges, while ez

2
zErfc(z) is

finite, thus we use the series expansions for the whole expression:

ez
2

zErfc(z) = ez
2

z

(
1− 2√

π

∞∑
n=0

z

2n+ 1

n∏
k=1

−z2

k

)
, (345)

ez
2

zErfc(z) =
1√
π

N−1∑
n=0

(−1)n
(2n− 1)!!

(2z2)n
+O

(
z−2N+2

)
. (346)
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To perform the FFT, one needs to compute the expression (344) exactly at
k = 0, for this case, we write the following series:

LF~kt (tf0 (~v)) =
1

s2
− 1

s2

N−1∑
n=2

(−1)n
(2n− 1)!!

(2z2)n−1 +O
(
z−2N+4

)
, (347)

thus

LF~kt (tf0 (~v))
∣∣
k=0

=
1

s2
. (348)

C Derivation of the formula for the 1D Cauchy

distribution

In this appendix, we present derivation of the formula (72). We consider the
1D Cauchy distribution (69):

f0(~v) =
1

π (1 + v2)
, (349)

and the expression for the perturbation’s density is given by (71):

n1 (~x, t) = L−1F−1

[
e−i

~k·~x0

(1 + (s + |k|)2)
(
s + i~k ·~v0

)] . (350)

This expression can be computed analytically using Mathematica [39], the
actual expression given by the program is very bulky, but can be simplified
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to the form:

n1 (~x, t) =
−1

4π
e
− i

1+v20
(t(2−3iv0+v20)+2v0(x+x0))×

×
[
e

1

1+v20
(2t(i+v0+iv20)+x+iv0x+(−1+3iv0)x0) 1

v0 − i
Ei

[
x0 − x + it

1 + iv0

]
+

+e
− 1

1+v20
(−2t(i+v0)+x+x0)

(
e

1

1+v20
(2x+iv0(3x+x0)) 1

v0 + i
Ei

[
x0 − x− it

1− iv0

]
−

−e
iv0(x+x0)

1+v20

(
1

v0 − i

(
e

2(itv20+x+iv0x0)

1+v20 Ei

[
tv0 − x + x0

1 + iv0

]
+

+e
2(tv0+iv0x+x0)

1+v20

(
Γ

(
0,

tv0 − x + x0

1 + iv0

)
− Γ

(
0,

x0 − x + it

1 + iv0

)))
+

+
1

v0 + i

(
e

2ix
i+v0 Ei

[
tv0 − x + x0

1− iv0

]
−

−e
2i(tv0+x0)

1+iv0

(
Γ

(
0,

x0 − x− it
1− iv0

)
− Γ

(
0,

tv0 − x + x0

1− iv0

)))))]
,

(351)

where the exponential integral function Ei (z) and the incomplete gamma
function Γ (0, z) [27] are used, for definition and evaluation methods see ap-
pendix B.1. The formula (351) can be further simplified:

n1 (~x, t) =
1

4π
e

tv0+x+x0
−1+iv0

[
e

2(x+iv0(tv0+x0))

1+v20
1

i− v0

Ei

[
x0 − x + it

1 + iv0

]
− (352)

−e
2x

1−iv0
1

i+ v0

Ei

[
x0 − x− it

1− iv0

]
+

+
1

v0 − i

(
e

2(itv20+x+iv0x0)

1+v20 Ei

[
tv0 − x + x0

1 + iv0

]
+

+e
2(tv0+iv0x+x0)

1+v20

(
E1

[
tv0 − x + x0

1 + iv0

]
− E1

[
x0 − x + it

1 + iv0

]))
+

+
1

v0 + i

(
e

2ix
i+v0 Ei

[
tv0 − x + x0

1− iv0

]
−

−e
2i(tv0+x0)

1+iv0

(
E1

[
x0 − x− it

1− iv0

]
− E1

[
tv0 − x + x0

1− iv0

]))]
,
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and even further, giving formula (72):

n1 (~x, t) =
1

4π

1

v0 − i
(
e−A+ (Ei(A+)− Ei(B+)) + eA+ (E1(A+)− E1(B+))

)
+

+
1

4π

1

v0 + i

(
e−A− (Ei(A−)− Ei(B−)) + eA− (E1(A−)− E1(B−))

)
,

(353)

where

A± =
tv0 − x + x0

1± iv0

, B± =
x0 − x± it

1± iv0

. (354)

We compared values that can be obtained via the expression (353) and
via the initial expression given by Mathematica [39], they are exactly the
same.

D FEL section

This section contains derivations of some formulas and equations from section
3.

D.1 From the modulator to the FEL amplifier

In the modulator, we have dimensionless density in the following form in a
co-moving frame:

n1(~x
′
, t
′
), (355)

in dimensional units:

1

rdD
n1

(
~x
′

rD

,
t
′

tp

)
, (356)

or in 1D we have:

n1

(
z
′
, t
′
)
, and

1

rD

n1

(
z
′

rD

,
t
′

tp

)
. (357)

We have expressions for these quantities in a co-moving frame, to apply the
FEL theory we need to transform them to the laboratory frame. If we have
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two frames K
′

and K, such that K
′

moves with speed ~v in the positive
z direction w.r.t K, and their origins are coincident at t = t

′
= 0, the

coordinates in K
′

are expressed as follows:{
t
′
(z, t) = γ

c
(ct− βz),

z
′
(z, t) = γ(z − βct),

(358)

we also know the transformation law for the phase-space density:

f(z, p) = f
′
(z
′
, p
′
), (359)

or

n(z)np(p) = n
′
(z
′
)n
′

p(p
′
), (360)

where z and p are 4-vectors and should be expressed in terms of z
′

and t
′

via Lorentz transformations. If we assume cold beam in laboratory frame,
we have:

n(z, t)δ(v) = n
′
(z
′
, t
′
)δ(ηc) = n

′
(z
′
, t
′
)
1

c
δ(η), (361)

where we used

η ≡ γ − γr
γr

=
v

c
, (362)

which is valid for ultra-relativistic beams. If we integrate this expression over
v, we obtain:

n(z, t) = n
′
(z
′
, t
′
), (363)

thus we can omit these momentum distributions. Thus we have for the
density:

n
(lab)
1 (z, t) ≡ 1

rD

n1

(
z
′
(z, t)

rD

,
t
′
(z, t)

tp

)
, (364)

where (z, t) are coordinates in the laboratory frame. In the modulator
beam spends some ”modulating time” t

′
i, which is typically in the range

[0.25tp, 0.5tp] and, after modulation, we have density perturbation n1

(
z
′)

=

102



n1

(
z
′
, t
′
i

)
. In the laboratory frame, the interaction time ti equals

t
′
i

γ
and we

have:

ti =
Lm
v0

, (365)

where v0 is an hadron’s velocity in the laboratory frame, which is related to
the hadron’s velocity in a co-moving frame v0

′, which we considered in the
modulator, via

~v0 =
~v
′
0 + v

1 + ~v~v0′

c2

, (366)

where v is an electron beam velocity and all vectors here are one-dimensional,
i.e., just signed scalars. We do space-time shift in the laboratory frame such
that in new coordinates the hadron will have coordinates (0, 0) by the end
of modulation: {

z(0)(z, t) = z − Lm,
t(0)(z, t) = t− ti,

(367)

or {
z(z(0), t(0)) = z(0) + Lm,

t(z(0), t(0)) = t(0) + ti.
(368)

Using these coordinates, we have for the density:

n
(lab)(0)
1 (z(0), t(0)) ≡ n

(lab)
1 (z(z(0), t(0)), t(z(0), t(0))) ≡ (369)

≡ 1

rD

n1

(
z
′
(z(z(0), t(0)), t(z(0), t(0)))

rD

,
t
′
(z(z(0), t(0)), t(z(0), t(0)))

tp

)
, (370)

In order to apply the standard FEL theory, we do the following change of
variables:

(z(0), t(0)) 7→ (θ(f), z(f)),

{
θ(f)(z(0), t(0)) = (k1 + ku)z

(0) + ck1t
(0),

z(f)(z(0), t(0)) = z(0),
(371)

where θ is a position of individual electrons from the bunch center. The
”reference electron” is the one that has θ = 0, it has the same position as
the hadron.
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We introduce the dimensional density perturbation in variables (θ, z) via:

n
(lab)(f)
1

(
θ(f), z(f)

)
≡ n

(lab)(0)
1 (z(0)

(
θ(f), z(f)

)
, t(0)

(
θ(f), z(f)

)
), (372)

where {
z(0)

(
θ(f), z(f)

)
= z(f),

t(0)
(
θ(f), z(f)

)
= θ(f)−(k1+ku)z(f)

ck1
.

(373)

The density in a laboratory frame in the FEL coordinates is related to the
one came from the modulator via:

n
(lab)(f)
1

(
θ(f), z(f)

)
≡ 1

rD

×

× n1

(
1

rD

z
′
(z(z(0)(θ(f), z(f)), t(0)(θ(f), z(f))), t(z(0)(θ(f), z(f)), t(0)(θ(f), z(f)))),

1

tp
t
′
(z(z(0)(θ(f), z(f)), t(0)(θ(f), z(f))), t(z(0)(θ(f), z(f)), t(0)(θ(f), z(f))))

)
,

(374)

where

z
′
(θ(f), z(f)) =

= z
′
(z(z(0)(θ(f), z(f)), t(0)(θ(f), z(f))), t(z(0)(θ(f), z(f)), t(0)(θ(f), z(f)))) =

= γ
(
z(f) + Lm − βc

(
θ(f)−(k1+ku)z(f)

ck1
+ ti

))
,

t
′
(θ(f), z(f)) =

= t
′
(z(z(0)(θ(f), z(f)), t(0)(θ(f), z(f))), t(z(0)(θ(f), z(f)), t(0)(θ(f), z(f)))) =

= γ
c

(
c
(
θ(f)−(k1+ku)z(f)

ck1
+ ti

)
− β(z(f) + Lm)

)
,

and finallyz
′
(θ(f), z(f)) = 1

rD
γ
(
z(f) + Lm − β

(
θ(f)−(k1+ku)z(f)

k1
+ cti

))
,

t
′
(θ(f), z(f)) = 1

tp

γ
c

(
θ(f)−(k1+ku)z(f)

k1
+ cti − β(z(f) + Lm)

)
,

(375)

for ti we have:

ti ≡ ti(~v
′

0) =
Lm
~v0

= Lm
1 + β~v0′

c

~v
′
0 + βc

= Lm
1 +

β~v
′
0vrms

c

~v
′
0vrms + βc

, (376)
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where βe is the scaled velocity of the electron beam in the laboratory frame,
i.e., β = v/c, and v

′
0 is hadron’s velocity in beam frame. We also can write

these transformations in units of tp for time and rD for the length:z
′
(θ(f), z(f)) = γ

(
z(f) + Lm − β

(
θ(f)−(k1+ku)z(f)

k1
+ cti

))
,

t
′
(θ(f), z(f)) = γ

c

(
θ(f)−(k1+ku)z(f)

k1
+ cti − β(z(f) + Lm)

)
,

(377)

for ti we have:

ti ≡ ti(~v
′

0) = Lm
c + β~v0

′

~v
′
0c + βc2

, (378)

we distinguish between transformations (375) and (377) only by the argu-
ments supplied.

D.2 The density perturbation from the modulator

Using the transformation derived, we can write an expression for the density
from the modulator in terms of the FEL coordinates:

n
(lab)(f)
1

(
θ(f), z(f)

)
≡ 1

rD

n1

(
z
′
(θ(f), z(f)), t

′
(θ(f), z(f))

)
, (379)

or in dimensionless form:

n
(lab)(f)
1

(
θ(f), z(f)

)
≡ n1

(
z
′
(θ(f), z(f)), t

′
(θ(f), z(f))

)
, (380)

The relevant constants for the CeC PoP experiment are:

rD = 4.66 · 10−5m, vrms = 3 · 105m/s, (381)

ωp = 6.436 · 109 s−1, tp = 0.155 · 10−9 s, (382)

γ = 42.937, (383)

β = 0.999729, (384)

Lm = 3.0m, (385)

Lu = 7.5m, (386)

k1 = 4.99 · 105m−1, λ1 = 1.26 · 10−5m, (387)

ku = 1.57 · 102, m−1, λu = 4.00 · 10−2m, (388)

c = 2.997 · 108m/s, (389)
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Omitting the superscript (f), we have the following initial value for the FEL
section:

δn(θ, 0) = rDn
(lab)(f)
1 (θ, 0) . (390)

Let us write an explicit expression for it. We start with the solution for the
modulator for the hadron moving with velocity ~v

′
0 from the initial position

~x
′
0 (60):

n1 (~x, t) = L−1F−1

 e−i
~k·~x′0(

f−1
d v−drms

LF~kt(tf0(~v))
+ 1
)(

s + i~k ·~v′0
)
 , (391)

the expression in square brackets depends only on ~k and s and we will denote
it by M(~k, s):

n1 (~x, t) =
1

2πi

1

2π

σ+i∞∫
σ−i∞

∫
M(~k, s)est+i

~k~xd~kds, (392)

and obtain:

n
(lab)(f)
1 (θ, z) ≡ 1

rD

n1

(
z
′
(θ, z), t

′
(θ, z)

)
= (393)

=
1

i(2π)2

1

rD

σ+i∞∫
σ−i∞

∫
M(~k, s)est

′
(θ,z)+i~kz

′
(θ,z)d~kds, (394)

where the exponent is:

est
′
(θ,z)+i~kz

′
(θ,z) =

= e
s
(

1
tp

γ
c

(
θ−(k1+ku)z

k1
+cti−β(z+Lm)

))
+i~k

(
1
rD
γ
(
z+Lm−β

(
θ−(k1+ku)z

k1
+cti

)))
, (395)

or

n
(lab)(f)
1 (θ, z) ≡n1

(
z
′
(θ, z), t

′
(θ, z)

)
= (396)

=
1

i(2π)2

σ+i∞∫
σ−i∞

∫
M(~k, s)est

′
(θ,z)+i~kz

′
(θ,z)d~kds. (397)
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The expressions for M(~k, s) for different distributions:

KV: M(~k, s) =
e−i

~k·~x′0(
(s2+k2)2

s2−k2 + 1
)(

s + i~k ·~v′0
) , (398)

WB: M(~k, s) =
e−i

~k·~x′0(
(k2 + s2)

√
3 + 1

) (
s + i~k ·~v′0

) , (399)

Cauchy: M(~k, s) =
e−i

~k·~x′0(
(s + k)2 + 1

) (
s + i~k ·~v′0

) , (400)

Normal: M(~k, s) =
e−i

~k·~x′0(
k2√

2

[
1−
√
πe

s2

k2
s
|k|Erfc s

|k|

]−1

+ 1

)(
s + i~k ·~v′0

) . (401)

D.3 The Maxwell-Vlasov system in the 1D FEL theory

In this subsection, we derive the Maxwell-Vlasov system for the 1D FEL
theory. We will follow unpublished lecture notes [19], the related material
can be found in [20, 21, 22]. We consider the Klimontovich distribution
function:

F (K1)(θ, η, z) =
k1

I
ec

Ne∑
j=1

δ
(
θ − θj(z)

)
δ
(
η − ηj(z)

)
, (402)

F (K2)(θ, η, z) =
k1

I
ec

F0(η)
Ne∑
j=1

δ
(
θ − θj(z)

)
, (403)

where η is the normalized dimensionless energy deviation from the energy
γr, resonant with the electromagnetic field energy with the wavelength λ1,
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η = γ−γr
γr

. In the frequency representation, we have:

F (K1)
ν (η, z) =

1

2π

∫
dθe−iνθF (K1)(θ, η, z) =

1

Nλ

Ne∑
j=1

e−iνθj(z)δ
(
η − ηj(z)

)
,

(404)

F (K2)
ν (η, z) =

1

2π

∫
dθe−iνθF (K2)(θ, η, z) =

1

Nλ

F0(η)
Ne∑
j=1

e−iνθj(z),

(405)

where Nλ = dλ1
I
ec
e is the number of electrons in one radiation wavelength λ1.

The Klimontovich distribution function contains the smooth θ, z-independent
background F0(η) and the FEL interaction density perturbation:

F (θ, η, z) = F0(η) + δF (θ, η, z). (406)

In addition to undulator field, we consider the spontaneous radiation field,
which we represent as a co-propagating with the electron beam electromag-
netic wave:

Ex(z, t) = Ẽ(z, t) cos(k1z − ω1t+ φ), ω1 = ck1 =
2πc

λ1

, (407)

this is a slowly-varying phase and amplitude (SVPA) approximation. For
Ex(z, t), we have the Maxwell equation in (z, t)-domain:[

1

c2

∂2

∂t2
− ∂2

∂z2

]
Ex(z, t) = − 1

ε0c2

∂Jx
∂t

. (408)

We then introduce the complex amplitude function:

E(z, t) =
1

2
Ẽ(z, t)eiφ(z,t), (409)

for it, under certain assumptions, the time-domain Maxwell equation can be
written as follows:(

∂

∂z
+

1

c

∂

∂t

)
E(z, t) = −χ2ne

〈
e−iθj

〉
∆
, (410)
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where

χ2 =
eK[JJ ]

4ε0γr
, (411)

ne =
I

ec(2πσ2
x)
. (412)

Then we introduce the SVPA approximation frequency domain amplitude
Ẽν via:

Ex(z, t) = eik1(z−ct)
∫
dνẼν(z)ei∆νk1(z−ct) + c.c., (413)

and then redefine the amplitude via:

Ẽν(z) = Eν(z)ei∆νkuz. (414)

For this redefined amplitude Eν(z), the 1D Maxwell equation in the frequency
domain looks as follows:(

∂

∂z
+ i∆νku

)
Eν(z) = −χ2ne

∫
dηδFν(η, z), (415)

where

∆ν = ν − 1. (416)

The electric field is driven by the components of F (θ, η, z), for which ν = 1,
thus F0(η) doesn’t contribute.
We have the continuity equation:

∂F

∂z
+
dθ

dz

∂F

∂θ
+
dη

dz

∂F

∂η
= 0, (417)

and

dθ

dz
= 2kuη, (418)

dη

dz
= χ1

∫
dνeiνθEν(z) + χ1

∫
dνe−iνθE∗ν(z), (419)

where

χ1 =
eK[JJ ]

2γ2
rmc

2
, (420)
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then we obtain the linearized continuity equation:(
∂

∂z
+ 2iνkuη

)
δFν(η, z) = −χ1Eν(z)

d

dη
F0(η), (421)

or (
∂

∂z
+ 2kuη

∂

∂θ

)
δF (θ, η, z) = −χ1

∫
Eν(z)eiθνdν

d

dη
F0(η). (422)

This completes the derivation of 1D Maxwell-Vlasov equations:{(
∂
∂z

+ i∆νku
)
Eν(z) = −χ2ne

∫
dηδFν(η, z),(

∂
∂z

+ 2kuη
∂
∂θ

)
δF (θ, η, z) = −χ1

∫
Eν(z)eiθνdν d

dη
F0(η).

(423)

E Numerical integration

The most critical component of the piecewise polynomial collocation method
is a numerical integrator. It must provide fast and accurate values for the in-
tegrals. We developed our own efficient integrators to do that. For the 1D in-
tegrals, we implemented a well-known adaptive Gauss-Kronrod method. For
the multidimensional integrals, we developed a recursive integrator, which
uses the 1D Gauss-Kronrod integrator. The code for all self-written integra-
tors that we discuss here are available at [34].

E.1 Gauss-Kronrod method

The n-point Gaussian quadrature formula looks as follows:
1∫

−1

f(x)dx ≈
n∑
i=1

wif(xi), (424)

where wi and xi are Gaussian weights and nodes, they are can be computed
for any odd n. For example, the 7-point Gaussian nodes and weights are

Nodes Weights

±0.949107912342759 0.129484966168870

±0.741531185599394 0.279705391489277

±0.405845151377397 0.381830050505119

0.000000000000000 0.417959183673469.
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For an integral with arbitrary limits

b∫
a

f(x)dx ≈
n∑
i=1

vif(yi) ≡ Gn, (425)

the weights and nodes can be computed via{
yi = a+ (xi + 1) b−a

2
, i = 1 . . . n,

vi = wi
b−a

2
, i = 1 . . . n.

(426)

It is possible to add n + 1 more points to the Gaussian rule and obtain the
quadrature of the order 2n+ 1:

b∫
a

f(x)dx ≈
2n+1∑
i=1

uif(zi) ≡ K2n+1, (427)

This quadrature is called the 2n + 1-point Kronrod rule. For example, the
15-point Kronrod nodes and weights are

Nodes Weights

±0.991455371120813 0.022935322010529

±0.949107912342759 0.063092092629979

±0.864864423359769 0.104790010322250

±0.741531185599394 0.140653259715525

±0.586087235467691 0.169004726639267

±0.405845151377397 0.190350578064785

±0.207784955007898 0.204432940075298

0.000000000000000 0.209482141084728.

n of the 2n + 1-point Kronrod nodes are the same as the n-point Gaussian
nodes, so only n + 1 extra function evaluations are required. In the Gauss-
Kronrod rule, K2n+1 is taken as a value of the integral and error can be
approximated by

(200|Gn −K2n+1|)
3
2 . (428)
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This error estimate is quite conservative. The error estimation of the Gauss-
Kronrod rule is a non-trivial question and we refer interested readers to [40].
For details on computation of the nodes and weights, we refer to [41].

For difficult integrands, for example, oscillatory or singular functions, the
Gauss-Kronrod method with n ∼ 10 is not able to compute integral with
good accuracy estimated via (428). For such integrands, we can do adaptive
integration. The idea is the following. We compute integral via the Gauss-
Kronrod integrator, compute error via (428), and if error is too big, we split
the interval into two and compute integral and error for each interval via the
Gauss-Kronrod integrator, then if error is good enough we stop, and if error
is too big we continue splitting. Recursive implementation of this algorithm
is trivial.

E.2 Multidimensional integration

For the multidimensional integrals, we developed a recursive integrator that
can compute integrals of any dimension using one-dimensional integrator. At
each step of recursion, it uses as an integrand the initial integral correspond-
ing to this step, but with lowered by one number of integration variables.
We also store the values of this step’s integration variables and pass them to
further steps. When dimension of the integral is one, the recursive integrator
takes function as an integrand and evaluates it at the values of the integration
variables, which were stored in previous steps of the recursion. To perform
one-dimensional integration, we implemented the adaptive Gauss-Kronrod
algorithm. Schematically, this recursion can be represented as follows:

∫ ∫ ∫
. . .

∫
f(x1, . . . xn) dx1 . . . dxn−2 dxn−1 dxn, (429)

where boxes represent integrands at each recursion step.
We tested our integrator and did timing studies with integral∫ 1

−1

∫ 1

−1

∫ 1

−1

1√
(x− 0.3)2 + (y − 0.4)2 + (z − 0.5)2

dxdydz, (430)

we requested absolute and relative errors 10−7, 10−7, respectively. This
integral is similar to those, which we compute for the test charge problem.
We used a laptop with a 1.8 GHz Intel Core i5 processor.
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Method Time, sec. Result Abs. Error fun. eval.
GSL Monte Carlo 0.0062 8.5478 2.068·10−2 -
Rec. with GSL 1D 0.7803 8.5072 8.220·10−7 21178965
Rec. with adaptive GK 0.0929 8.5068 3.133·10−3 2674395
Rec. with non-adap. GK 0.0003 8.4863 3.904·101 3375
Mathematica [39] 11.122 8.507 - -

Table 1: Timing studies of different integrators. Columns are: method, time,
result, absolute error, number of function evaluations.

The results are presented in Table 1. We tested Monte-Carlo integrator of
the GSL library [42] and our recursive integrator with three different 1D inte-
grators: GSL 1D integrator, our adaptive Gauss-Kronrod integrator and non-
adaptive Gauss-Kronrod integrator. Absolute error is computed via (428).
We see that recursive integrator with non-adaptive Gauss-Kronrod integrator
is 24 times faster than GSL Monte-Carlo integrator, 350 times faster than re-
cursive integrator with adaptive Gauss-Kronrod integrator, 3000 faster than
recursive integrator with GSL 1D integrator, and 41,000 times faster than
Mathematica’s [39] integrator.

We observe that error estimation (428) is too conservative for such in-
tegrals, for the recursive integrator with non-adaptive Gauss-Kronrod inte-
grator, it gives absolute error 39.04, while the value differs from the exact
just by 0.02. As it is seen from the table, this integrator requires much less
number of function evaluations, thus works much faster, as it is clear from
the table, while giving reasonable accuracy.

E.3 Improper integrals

Although, in most cases, it is possible to cut the infinite domain of an integral
and use quadrature formula for the finite domain, the correct way to proceed
is to do change of variables and transform the infinite interval into the finite
one. For the integral

+∞∫
0

f(x)dx, (431)
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we do the following change of variables:

x(t) =
1− t
t

, (432)

and obtain:

+∞∫
0

f(x)dx =

1∫
0

f

(
1− t
t

)
dt

t2
. (433)

This fomula can be generalized:

+∞∫
a

f(x)dx =

1∫
0

f

(
a+

1− t
t

)
dt

t2
, (434)

b∫
−∞

f(x)dx =

1∫
0

f

(
b− 1− t

t

)
dt

t2
. (435)

And for the double-infinite interval, we have

+∞∫
−∞

f(x)dx =

1∫
0

f

(
1− t
t

)
dt

t2
+

1∫
0

f

(
t− 1

t

)
dt

t2
. (436)

This formula is too bulky and it is possible to use another change of variables:

x(t) = tan t. (437)

With this change of variables, we obtain

+∞∫
−∞

f(x)dx =

π
2∫

−π
2

f (tan t)
dt

cos2 t
. (438)

Then the integrals can be computed using quadrature formulas for the
finite segment, for example, the Gauss-Kronrod rule.

All these changes of variables are extensively used in section 4.
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F Systems of linear equations

In this appendix we consider system of linear equations:

A~x = ~b, (439)

where A is a known square matrix, ~b is a known vector, and ~x is an unknown
vector.

F.1 Solution via LU decomposition

The system can be solved using LU decomposition of matrix A:

A = LU, (440)

where L is a lower triangular matrix and U is an upper triangular matrix.
The system with either lower or upper triangular matrix can be easily solved
line by line and the initial system can be reduced to two such systems, i.e.,
we first solve

L~y = ~b, (441)

for ~y, then we solve

U~x = ~y, (442)

for ~x.

F.2 Algorithm for LU decomposition

In this subsection, we describe a well-known algorithm for the LU decompo-
sition [38, 43], its implementation is available in GSL Library [42].

Suppose, we are computing LU decomposition of matrix A. We build a
sequence of matrices Ai, i = 0, . . . , N , via

A0 = A, (443)

Ai = LiAi−1, i = 1, . . . , N (444)
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where

Li =



1 0 . . . . . . 0 0

0
. . . 0 0

... 1
...

0 . . . li+1,i
. . . 0

...
...

. . .
...

0 . . . lN,i . . . . . . 1


, (445)

and lj,i, j = i+ 1, . . . , N are given by

lj,i = −
a

(i−1)
ji

a
(i−1)
ii

, (446)

where a
(i−1)
ii is a matrix element of matrix Ai−1. By multiplying A ≡ A0 by

L1 we nullify element below main diagonal in the first column of A. Then,
when we multiply L1A by L2 we nullify elements below main diagonal in the
second column etc. We can write:

A = L−1
1 L1A0 = L−1

1 A1 = · · · = L−1
1 . . .L−1

N−1AN−1. (447)

By construction, AN−1 is an upper triangular matrix, and, since inverse of
lower triangular matrix is lower triangular matrix, and product of lower trian-
gular matrices is a lower triangular matrix, L−1

1 . . .L−1
N−1 is a lower triangular

matrix. Thus, equation represents the LU decomposition

A = LU, (448)

where

L = L−1
1 . . .L−1

N−1, (449)

U = AN−1. (450)

F.3 Parallel algorithm for LU decomposition

In this subsection, we describe a parallel algorithm for the LU decomposition,
its implementation (in C++, with MPI) can be found at [34].

Let us take a closer look at the LU decomposition algorithm.
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To build matrix Li, we need elements of i-th column (from the main
diagonal to the end) of the matrix A, and when we compute LiAi−1, we will
need only i-th row (from the main diagonal to the end) of the matrix A and
only i-th column (from the main diagonal to the end) of the matrix A will be
affected. This means that computation of AN−1 can be easily parallelized.
Moreover, the whole matrix A is not required on each process, thus from
root process we can distribute one row and one column to other processes
and then collect the results from them, this is important, when the matrix
A is large and there is no enough memory to send the whole matrix to all
processes.

Computation of L is even simpler and also can be parallelized in a similar
way. Inverse of Li is just

L−1
i =



1 0 . . . . . . 0 0

0
. . . 0 0

... 1
...

0 . . . −li+1,i
. . . 0

...
...

. . .
...

0 . . . −lN,i . . . . . . 1


, (451)

and

L−1
1 . . .L−1

N−1 =



1 0 . . . . . . 0 0

−l2,1
. . . 0 0

... 1
...

−li+1,1 . . . −li+1,i
. . . 0

...
...

. . .
...

−lN,1 . . . −lN,i . . . −lN,N−1 1


. (452)

Computation of this matrix can be done simultaneously with computation
of AN−1 with the same parallelization scheme.
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