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Abstract of the Dissertation

Geometric Aspects of Quantum Hall States

by

Andrey Gromov

Doctor of Philosophy

in

Physics

Stony Brook University

2015

Explanation of the quantization of the Hall conductance at low
temperatures in strong magnetic field is one of the greatest accom-
plishments of theoretical physics of the end of the 20th century.
Since the publication of the Laughlin’s charge pumping argument
condensed matter theorists have come a long way to topological
insulators, classification of noninteracting (and sometimes inter-
acting) topological phases of matter, non-abelian statistics, Ma-
jorana zero modes in topological superconductors and topological
quantum computation - the framework for “error-free” quantum
computation. While topology was very important in these devel-
opments, geometry has largely been neglected.

We explore the role of space-time symmetries in topological phases
of matter. Such symmetries are responsible for the conservation
of energy, momentum and angular momentum. We will show that
if these symmetries are maintained (at least on average) then in
addition to Hall conductance there are other, in principle, mea-
surable transport coefficients that are quantized and sensitive to
topological phase transition. Among these coefficients are non-
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dissipative viscosity of quantum fluids, known as Hall viscosity;
thermal Hall conductance, and a recently discovered coefficient -
orbital spin variance. All of these coefficients can be computed
as linear responses to variations of geometry of a physical sample.
We will show how to compute these coefficients for a variety of
abelian and non-abelian quantum Hall states using various ana-
lytical tools: from RPA-type perturbation theory to non-abelian
Chern-Simons-Witten effective topological quantum field theory.

We will explain how non-Riemannian geometry known as Newton-
Cartan (NC) geometry arises in the computation of momentum
and energy transport in non-relativistic gapped systems. We use
this geometry to derive a number of thermodynamic relations and
stress the non-relativistic nature of condensed matter systems. NC
geometry is also useful in the study of Galilean invariant systems in
manifestly coordinate independent form. We study the Ward iden-
tities of the Galilean symmetry and find new relations between uni-
versal, quantized transport coefficients and long-wave corrections
there of.
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Chapter 1

Introduction

1.1 Observation of integer quantum Hall ef-

fect

Around 35 years ago, in High Magnetic Field Laboratory in Grenoble, in
the middle of the night Klaus von Klitzing observed strange behavior of the
Hall conductance in a quasi 2D layer of metal-oxide-semi-conductor field-effect
transistor or MOSFET [1]. This strange behavior is depicted in Fig. 1.1.2.

The classical electromagnetism predicts that in strong magnetic field in a
2D material there will be a current transverse to external magnetic field and
to the potential difference. This current was first observed by Edwin Hall.
The resistance of the material is classically given by

RH =
B

eρ
=

1

eν
, (1.1)

where we have introduced the carrier density ρ, magnetic field B and filling
fraction ν defined as ration of density to magnetic field. Classically, ν can take
any value.

In reality at certain values of ν the longitudinal resistance would vanish
(at low temperature) and the material would turn into a perfect insulator. In
this insulating state the material will not conduct current along the potential
difference thus there will be no dissipation. Instead, the material allows for a
non-dissipative current in the direction transverse to the potential difference.
In this state the conductance (or resistance) is precisely quantized in the units
e2

h
( h
e2

) with accuracy of one part in a billion. This effect of quantization of
Hall conductance is called Integer Quantum Hall Effect (IQHE).

In the original work [1] it was suggested that such an accurate measurement
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Figure 1.1: This is a plot obtained by von Klitzing [1]. It shows the Hall voltage
plotted against the voltage drop between the potential probes. Notice that
for special values of the filling factor n there are plateaus in the dependence.
These plateaus contradict the classical e/m prediction. The resistance on these
plateaus is quantized precisely in the units of e2

h̄
as 1, 1

2
, 1

3
, . . .. The formation

of the plateaus is called integer quantum Hall effect of IQHE.
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of resistance can provide the most accurate procedure to measure the fine struc-
ture constant (which, unfortunately, did not happen for the reasons). To this
day the Hall resistance quantization serves a standard unit of resistance. The
unit Ohm is defined through the von Klitzing constant RK−90 = 25812.807,
which is the Hall resistance at filling fraction ν = 1. Von Klitzing constant
does not depend on material properties, concentration of impurities or sample
geometry: it is truly a stunning consequence of coherent collective behavior of
electrons at low temperatures and strong magnetic field.

1.1.1 Laughlin charge pumping argument

It took theorists about a year to explain this precise quantization. It was
clear that there must be a truly fundamental (not depending on microscopic
detailes) principle at work. The explanation was given in an ingenious 2 page
paper by Robert Laughlin [5]. The fundamental principle turned out to be the
charge conservation or, more formally, gauge invariance.

Laughlin considered a sample of cylindrical shape with external magnetic
field perpendicular to the surface of the cylinder. He assumed that the chem-
ical potential lies in the mobility gap (or, in clean case, between the Landau
levels) then the density of the conducting states will be small an longitudinal
conductance will vanish. Now consider and adiabatic threading of one quan-
tum of magnetic flux Φ0 through the cylinder then the net effect of the flux
threading would be transfer of one unit of charge from one edge to the other.
The flux threading is equivalent to a gauge transformation and therefore in
the end of the adiabatic process the quantum state of the system would not
change. However, during the adiabatic flux threading by the Faradey’s law
there was a current I ∼ ∂U

∂Φ
around the cylinder, where U is the electron en-

ergy. If the potential difference between the edges of a cylinder is V then
the change in electron energy is ∂U = e × V whereas the flux quantum is
Φ0 = h

e
= ∂Φ. The ratio gives

I =
∂U

∂Φ
=
e2

h
V (1.2)

thus concluding that Hall resistance is RH = h
e2

.
When the physical system consists of dirty, weakly interacting electrons

the argument still holds as long as there are extended states in the bulk that
will carry the charge. The brilliance of this argument is that it relies on the
fact that even in a dirty system, at finite (but small) temperature the gauge
invariance or charge conservation is still an exact symmetry and therefore after
a flux insertion one electron can only travel from one edge to the other. It

3



could not disappear or split into several “quarks” etc.
Around the same time it was realized [6] that (integer) Hall conductance

can be understood as a topological invariant of the U(1) bundle over a Brillouin
zone, thus giving a very strong argument for the topological protection of the
value of Hall conductance. Topological invariants cannot change by a small
amount under any continuous deformations of, say, band structure or external
(random) potential.

1.1.2 Gapless edge states

In a subsequent work another important observation was made by Halperin
[2]. An important part of the Laughlin argument was existence of the extended
states in the bulk, which at the time was a controversial topic. Halperin has
shown that even when the bulk of the quantum Hall system is insulating there
are always edged states that are localized in the direction transverse to the
edge, but are extended in the direction along the edge. These extended edge
states are stable against disorder and carry part of the Hall current.

Later on the picture painted by Halperin was formalized by Wen [7] who
proposed the generalization of the gapless edge to interacting quantum Hall
systems. In that case the edge states are described by a chiral WZW model.
We will have more to say about the edge physics later.

1.2 Fractional quantum Hall effect

Around two years after von Klitzing’s observation another great breakthrough
has happened Tsui, Stormer and Gossard observed a formation of a plateau
at the filling factor ν = 1

3
in GaAs heterostructure [3]. This effect was called

fractional quantum Hall effect or FQHE.
This was very puzzling at the time, because all of the theoretic under-

standing was based on, roughly speaking, adding disorder to a free electron
problem. In order to study the free problem analytically one had to place the
chemical potential outside of Landau level. If the chemical potential is inside
a Landau level (which is equivalent to saying that the filling factor is less than
one) then the problem becomes extremely degenerate and the linear response
cannot be done in a familiar manner.

One of the resolutions would be to include interactions into the picture of
IQHE. Unfortunately, this is easier said than done, because the interactions in
such systems are usually very strong and analytical treatment is unimaginable.
Nonetheless, some unorthodox treatments were suggested.

4



Figure 1.2: The energy levels in a finite size sample taken from the original
work of Halperin [2]. One can see that even though in the bulk the gap is well
defined, no matter what the value of the Fermi level is, there are always states
available at the edge of a sample.

5



Figure 1.3: A plot from the original work of Tsui [3]. We see a similar picture to
Fig. 1.1.2: at the filling ν = 1

3
a plateau is formed and longitudinal resistivity

vanished.
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1.2.1 Laughlin function: rise of the first quantized ap-
proach

One year after the experimental observation of fractional Hall conductance
was made Laughlin had another brilliant insight [8]. Since the interacting,
disordered system is intractable, why not guess a ground state at least ap-
proximately? Perhaps, there is some universality in fractional quantum Hall
systems that on average can be described by a representative, a “trial” wave-
function that is easy to write down from some general principles and experi-
mental facts? Laughlin also immediately realized that: “The ground state is a
new state of matter, a quantum fluid the elementary excitations of which, the
quasielectrons and quasiholes, are fractionally charged.”. This is still exactly
the way we think about FQHE today. This insight and this way of reasoning
led to the field of topological phases of matter as it is today (mostly general
principles and only a few experimental facts).

To guess the ground state wavefunction Laughlin realized that on the lowest
Landau level the wave function must have a form (in symmetric gauge, with
magnetic length l = 1)

ψ ∼
∏
j 6=k

f(zj − zk)e−
∑
i
|zi|

2

4 , (1.3)

where z = x+iy is a complex coordinate in the x−y plane, f(z) some unknown
function of only holomorphic coordinate z and not z̄. Since zk are the electron
coordinates f(z) must be anti-symmetric and, in order to conserve angular
momentum, f(z) must be a homogeneous polynomial. With this information
Laughlin concluded that f(z) = zm, where m is an odd integer. Now, the only
parameter left in the problem is m.

What is the relation between m and the filling factor? To answer this
question Laughlin used another great insight that is now known as the “plasma
mapping”. He wrote the square modulus of the wave function as

|ψ|2 =
∣∣∣∏
j 6=k

(zj − zk)me−
∑
l
|zl|

2

4

∣∣∣2 = e−βH , (1.4)

where H is the energy of a classical “plasma” of particles of charge m inter-
acting with each other classically with 2D Coulomb potential

H = −
∑
j<k

2m2 ln |zj − zk|+
1

2
m
∑
l

|zl|2 (1.5)
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The reason plasma mapping is useful is that it allows one to estimate the
(uniform) electron density in the state. Plasma wants to be neutral on average
(there is screening). The term in the potential energy 1

2
m
∑

l |zl|2 provides
a neutralizing background charge. This charge is smeared over the whole
complex plane and its density is n = 1

2π
. Due to screening the plasma charge

density and the density of the neutralizing background must be equal. The
plasma charge density ρ equals m times the electron (or charge 1 particle
density). It follows then that

ρ

n
= me = ν−1 (1.6)

So the plasma mapping helped us to understand that the Laughlin wave func-
tion describes the state with homogeneous density with filing fraction ν = 1

m
.

It is also easy to write the wavefunction of an excited quasihole state.
Even though the state is excited, it properties are really the properties of the
ground state wave function. In the integer case a hole is created by inserting
a thin solenoid tube into the Hall fluid at some position z0 and adiabatically
threading a quantum of flux through the solenoid. The wave function of such
an (integer) hole state is

ψh =
∏
j

(zj − z0)
∏
j 6=k

(zj − zk)e−
|z|2

4 . (1.7)

Laughlin guessed that in the fractional case this ansatz should be replaced by

ψqh =
∏
j

(zj − z0)
∏
j 6=k

(zj − zk)me−
|z|2

4 . (1.8)

It is obvious that multiplying by a factor
∏

j(zj − z0)m simply adds one more
electron into the fluid. In view of (1.8) we see that inserting an electron is the
same as inserting m quasiholes. Since electron has electric charge e the quasi-
hole has charge e

m
. This is an example of a fractionalisation of charge. This

effect became a benchmark for topological phases in condensed matter physics.
The particles with fractional charge also often have fractional statistics. We
will say a few words about these aspects in Chapter 4.

Finally repeating the charge pumping argument we find that the Hall con-
ductance must be equal to

σH =
e∗e

h
=
e2

h
× 1

m
, (1.9)
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where e∗ is the smallest charge of a quasiparticle, which we have found to be
e
m

.

1.3 Geometric response

Time has passed and we have learned that there is a swarm of different frac-
tional quantum Hall states. More surprisingly, we have learned that there
are different quantum Hall states that can exist at the same filling fraction.
What is different about them? We have just discussed that FQH states sup-
port fractional quasi particles. Depending on the structure of a state it can
support many different quasi particles. There are many examples of states
that despite occurring at the same filling fraction have different quasi particle
content. The simples example is ν = 1

2
bosonic Laughlin state and ν = 1

2

bosonic Moore-Read state [9]. The latter supports neutral excitations with
non-abelian statistics, whereas the former does not support any neutral exci-
tations at all. In fact, Laughlin charge pumping argument is not sensitive to
any kind of neutral excitations!

With this in mind, it is very reasonable to ask: are there other transport
experiments one could perform on a quantum Hall state that will give addi-
tional information about neutral excitations? Fortunately, the answer to this
question is yes: there are at least two more transport coefficients one could try
to measure. These transport coefficients have one important thing in common:
they characterize the linear response of a system perturbations of geometry.
Clearly, neutral excitations cannot be accessed by perturbing the electromag-
netic field, so the next “easiest” thing to do is to apply stress, shear, shear rate
and temperature gradient to a sample. Since FQH forms an incompressible
fluid the responses to the first two perturbations vanish, but responses to the
last two perturbations do not. The temperature gradient can also be thought
of in geometric terms as we will explain in Chapter 6.

1.3.1 Hall viscosity

Hall viscosity was introduced by Avron et. al. [10] and Levay [11]. This
is “mechanical” transport coefficient in a sense that it is proportional to a
two-point correlation function of stress tensors

〈T11(0, ω)T12(0,−ω)〉 ∼ iωηH . (1.10)

One can get some intuition about how dissipationless viscosity is possible by
examining Figure (1.3.1). The trick is that when parity is broken the viscous
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Figure 1.4: (a) Illustrates usual viscosity: when a disc rotating anti-clockwise
submerged into a viscous fluid the viscous force will act in the direction, oppo-
site to the velocity, thus slowing down the rotation and dissipating energy. (b)
Illustrates Hall viscosity: when a disc rotating anti-clockwise submerged into
a viscous fluid the Hall viscous force will act in the direction, perpendicular to
the velocity. This force does not cause dissipation. The picture is taken from
[4]

force can choose to act perpendicular to the velocity, so that a pair of vectors
(force, velocity) form either left or right pair. In a parity-invariant system
such transport coefficient is not possible. It was found by Read [12] that in
general Hall viscosity is given by

ηH =
s̄

2
ρ , (1.11)

where s̄ is the “orbital spin”- measure of average angular momentum per par-
ticle. For the Read-Rezayi Zk parafermion states it is given by

s̄ =
ν−1

2
+

1

k
, (1.12)

where the integer k contains information about the “neutral sector”. In over-
whelming majority of cases s̄ is an integer or half integer (although see [13]).
Thus we see that it precisely does the job that we set out in the last Section.

Hall viscosity and the orbital spin will be one of the main topics of this
Thesis.

1.3.2 Thermal Hall effect

Another linear response occurs when a temperature gradient is applied to a
Hall sample. This response was first analyzed by Kane and Fisher [14]. This

10



response is also quantized and also introduces a new topological quantum num-
ber. This number is called chiral central charge and it roughly characterizes
the number of degrees of freedom on the edge of the sample (including the
neutral ones). The precise expression is [15]

KH =
πk2

BT

6
c , (1.13)

where c is the chiral central charge. This quantity can easily distinguish be-
tween ν = 1

2
bosonic Laughlin state and ν = 1

2
bosonic Moore-Read state. In

the former case c = 1 and in the latter c = 3
2
. In this Thesis we will study

the chiral central charge in great detail and we will find that it is somewhat
obscured in the bulk and can be measured (even in principle) with certainty
only at the edge.

One main result of the Thesis is the relation between these two responses
that can be seen in curved space

ηH =
s̄

2
ρ+

(ν
2
· vars− c

24

) R

4π
, (1.14)

where vars is the orbital spin variance - another topological number that
characterizes an FQH state and it was introduced by the author in [16]. The
relation (1.14) first appeared in [17].

1.3.3 Disclaimer about disorder

Formation of quantum Hall plateaus would not be possible in a clean system.
The Laughlin charge pumping would not really work as electron or quasi-
particle could not travel across the gapped bulk without any extended states
that would transmit it. We do understand and appreciate this important fact.
Nonetheless, in the bulk of the Thesis we will carefully avoid discussion of the
influence of the disorder on the geometric response.

Instead of speculating about the influence of disorder on our results we
simply leave it for the future work and only state that in ideal, clean systems
both viscosity and thermal transport should be present and quantized.

1.4 Plan of the thesis

The Thesis is organized as follows: in Chapter 2 we will review the main
technical tool that will be used throughout the Thesis. This tool is known
under many names: induced action, effective action, generating functional
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of correlation functions, etc. In the Chapter 3 we will derive the geometric
response of IQH state in a perturbative computation. While most of the
results are not new, the general equations for the gradient corrections to linear
response are novel. Using the general relations we corrected a mistake in older
literature on geometric response. In the Chapter 4 we will extend our results
to FQH states and use the full power of the effective field theory, topological
quantum field theory and discover that a very abstract effect known as framing
anomaly contributes to the linear response and is (in principle) observable. In
Chapter 5 we will discuss the additional restrictions on the linear response
and induced action imposed by the local Galilean symmetry. The new result
of Chapter 5 is the relation between chiral central charge and a correction to
density due to gradients of curvature of the sample. In Chapter 6 we will
look at the finite temperature physics of FQH. We will explain how to use
geometry in non-relativistic system and what kind of geometry is related to
Luttinger’s theory of thermoelectric transport. In this Chapter we will find
some inconsistencies of modern literature on the subject and explain how to
fix them. In Chapter 7 we will look at the edge physics and discuss the
edge consequences of the bulk Hall viscosity. We will find that unlike Hall
conductivity and thermal Hall conductivity Hall viscosity is not related to
quantum anomalies of the edge theory and is not “carried” by the edge modes
in the same way as Hall current or thermal Hall current. In Chapter 8 we
will discuss the problems that are not touched by the Thesis and the likely
research direction one could take in the field. Finally, in the Appendix we will
present various technicalities that did not find a logical place in the main text.
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Chapter 2

Induced Action

The induced action is an extremely powerful formalism that allows one to build
in the Ward identities of continuous and discrete symmetries as well as quan-
tum anomalies into a response theory. Here we will define the induced action
and explain how to compute the response functions. Before going into details
we give a disclaimer: the induced action is designed to work in a clean system
at zero temperature or at thermal equilibrium at finite temperature. While it
is conceivable that out-of-equilibrium systems can be described by some sort
of generating functional it is beyond the scope of this Thesis. We also will
carefully distinguish the notion of induced action from the notion of effective
action. The former is completely classical object defined below, whereas the
latter is a quantum field theory describing the dynamics (or absence there of)
of the low energy degrees of freedom.

2.1 Definition of the induced action

We now turn to the definition of the induced action. Given a quantum field the-
ory of matter fields {ψ} coupled to various external fields Aµ, gij, . . . described
by an action S[{ψ}, Aµ, gij, . . .] one defines the induced action (or generating
functional) as

W [Aµ, gij, . . .] = −i ln

∫
D(g

1
4ψ) eiS[ψ,Aµ,gij ,...] . (2.1)

The functional W encodes various multipoint correlation functions of the op-
erators conjugate to the external fields Aµ, gij, . . .. The external fields are
conjugate to operators in the quantum field theory. The local symmetries of
W ensure that the correlation functions of these operators satisfy appropriate
Ward identities. If the microscopic theory is gapped W is a local functional of
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external fields and can be understood as an expansion in gradients of external
fields.

The observable quantities of a quantum field theory are the correlation
functions of various local operators. These correlation function can be related
to more familiar transport coefficients. If we are interested in a correlation
function of an operator O defined by

〈O〉 ≡
∫
D(g

1
4ψ)D(g

1
4ψ†)e

i
~SO∫

D(g
1
4ψ)D(g

1
4ψ†)e

i
~S

(2.2)

we simply need to execute the following three-step program. First, we intro-
duce a field f conjugate to an operator O into the action

S[ψ, f ] = S[ψ, f = 0] + fO (2.3)

Second, we compute the induced action according to (2.1). Third, we compute
the variational derivaitve

δW [f ]

δf(x)
=

∫
D(g

1
4ψ)D(g

1
4ψ†)e

i
~SO∫

D(g
1
4ψ)D(g

1
4ψ†)e

i
~S

= 〈O(x)〉 (2.4)

The notation Dg
1
4ψ means that the region of integration in the functional

integral is the space of functions ψ(x) equipped with invariant scalar product
given by

(ψ, φ) ≡
∫
dx
√
gψ†φ . (2.5)

2.2 Electro-magnetic response functions

When the matter fields ψ are charged it is useful to introduce a source for
the current operator. This source is traditionally called vector potential and
is denoted Aµ. If the quantum field theory conserves the electric charge then
the external vector potential satisfies the Ward identity

∂µ〈Jµ〉 = 0 . (2.6)

In order to ensure that this Ward identity holds we impose the local U(1) gauge
symmetry as follows. First, we demand that the vector potential transforms
like a connection (i.e. in the adjoint representation of the gauge group). In
the abelian case it amounts to

Aµ → Aµ + e−θ∂µe
θ ≈ Aµ + ∂µθ , (2.7)
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where we have expanded in θ in the last step. If this symmetry is imposed the
correlation functions of the current defined as

〈ρ(x)〉 =
1
√
g

δW

δA0(x)
(2.8)

〈J i(x)〉 =
1
√
g

δW

δAi(x)
. (2.9)

will automatically satisfy the Ward identity (2.6). We have also included the
factor 1√

g
into the definition in order to ensure that current Jµ is a true vector

(and not a vector density). We will discuss this in great detail later on.
The Ward identity can easily be derived as follows

δW = W [Aµ + δAµ]−W [Aµ] =

∫
ddx

δS

δAµ
δAµ =

∫
ddxα

(
∂µ

δS

δAµ

)
= 0 ,

(2.10)
since the last equality must hold for any α we have

∂µ
δW

δAµ
= ∂µ〈Jµ〉 = 0 . (2.11)

Multi-point Ward identities can be obtained by taking the variational deriva-
tives of this Ward identity.

2.3 Stress, strain and curved space

The visco-elastic responses are encoded in the stress tensor T ij. In the theory
of elasticity the stress tensor is defined in terms of total force acting on a
macroscopic element of a fluid or a solid. In this Section we explain give a
brief introduction to the subject. We will follow [18]

Consider an undeformed solid, it is intuitively clear that under the influence
of external force the solid will change shape and deform. Let’s say that the
coordinate of a given point in a body before deformation was xi and after a
small deformation it became x′i. We define the displacement field ui

ui(x) = x′i − xi . (2.12)

When a solid is deformed the relative distances between points are changed.
We are going to interpret strain as change of the geometry of the solid. Consider
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a small deformation described by the distortion field ui so that

dx′i = dxi + dui . (2.13)

The distance between points before deformation was

(ds2) = dxidx
i (2.14)

and after deformation it became

(ds′)2 = dx′idx
′i (2.15)

We can express (ds′)2 in terms of the displacement field ui. We have

(ds′)2 =

(
δij +

(
∂ui
∂xj

+
∂uj
∂xi

)
+
∂ui
∂xk

∂ui
∂xl

)
dxidxj . (2.16)

This equation can be interpreted as a length element in a slightly curved space
with the metric given by

gij = δij + δgij = δij +

(
∂ui
∂xj

+
∂uj
∂xi

)
+
∂ui
∂xk

∂ui
∂xl

= δij + 2uij , (2.17)

where we have defined a strain tensor uik = 1
2
δgik. In the linear approximation

the strain tesnor is give by

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.18)

Thus in the linear approximation the variation of metric is given by twice
the strain tensor. Notice that in general the relationship between metric and
the displacement field is not linear. In the incompressible fluids the stress is
sometimes created not by the strain, but by the strain rate. This phenomenon
is known is viscosity. The strain rate is given by

vik = u̇ik =
1

2
ġik . (2.19)

2.4 Stress tensor in the theory of elasticity

Here we will define the stress tensor from very general considerations. Later
on we will relate this definition with quantum field theory definition. We will
follow [18]. Consider a solid body in thermal and mechanical equilibrium. If a
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body is deformed and the relative position of small macroscopic constituents
of the body is changed then the internal forces that try to bring the body back
into equilibrium will appear. Lets consider a total force F i acting in a volume
of a slightly deformed solid body. This force is given by a volume integral

F i =

∫
dV F i . (2.20)

The forces inside the volume must cancel each other due to the third Newton’s
law. Therefore, the total force acting on a volume is concentrated on the
surface of the volume. This is equivalent to saying that the above integral can
be re-written as a surface integral. This is only possible if the force Fi is a
total divergence of rank 2 tensor

F i = ∂kT
ik . (2.21)

This tensor known as the stress tensor. The total force acting on a volume
element is then given by

F i =

∫
dV F i =

∫
dV ∂kT

ik =

∮
dSkT

ik , (2.22)

where Sk is a surface element directed along the normal to the surface (pointing
inwards). A component of the stress tensor T ik describes the i-th component of
a force acting on a unit surface element perpendicular to the k-th coordinate
axis. If a body is in mechanical equilibrium then both total force and its
density vanish. Then the stress tensor satisfies the conservation law

∂kT
ik = 0 . (2.23)

Consider total momentMik of the force F i acting on a volume of a sightly
deformed solid body. It is given by a surface integral

Mik =

∫
dV (xiF k − xkF i) =

∫
dV
(
xi∂lT

kl − xk∂lT il
)

=

∫
dV
(
T ki − T ik

)
+

∮
dSl
(
xiT kl − xkT il

)
. (2.24)

Just like the total force the total moment has to be written as a surface integral
since the moments inside the volume must cancel. This is only possible if
the anti-symmetric part of the stress tensor can be represented as a total
divergence.

T ik − T ki = 2∂jϕ
ikj . (2.25)
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The stress tensor can always be brought to a symmetric form. This can be done
as follows. Notice that the definition (2.21) of the stress tensor is inherently
ambiguous. The force (which is an observable) will not change if the stress
tensor is redefined by a total divergence

T ′ ik = T ik + ∂lχ
ikl , with χikl = −χilk . (2.26)

Using this freedom one can always cancel the right hand side of (2.25) by and
appropriate redefinition of stress tensor. In particular, this can be accom-
plished by choosing

χikl = ϕkli + ϕikl − ϕikl . (2.27)

To summarise, we have defined a rank 2 symmetric stress tensor that satisfies
the conservation law (2.23). In the next section we will relate the stress tensor
with the strain tensor and explain how to derive the stress tensor from the
action principle.

2.5 Visco-elastic response

Hooke’s law is a linear relation between stress in a solid or a fluid and applied
strain. It is given by

Tij = Λijklukl + ηijklvkl =
1

2
Λijklgkl +

1

2
ηijklġkl , (2.28)

where Λijkl and ηijkl are the rank 4 tensors known as tensor of elastic moduli
and viscosity tensor. We have to mention here that in the most general case
the stress tensor can also depend on the anti-symmetric part of ∂iuk, but this
happens when the solid or a fluid does not have local rotational invariance and
possesses local degrees of freedom such as spin.

In the following we will be interested in incompressible, ideal fluids in
2+1D. Incompressible fluid is a state of matter for which stress tensor Tij does
not depend on the displacement field from an “undeformed” configuration 1.
With these assumptions we can parametrize the stress tensor as follows

Tik = ζbulkδikvnn + 2ζshear(vik −
1

2
δikvnn) + ηH(εinvnk + εknvni) (2.29)

=
1

2
ζbulkδikġnn + ζshear(ġik −

1

2
δikġnn) +

1

2
ηH(εinġnk + εknġni) ,(2.30)

1When the strain is inhomogeneous the elastic moduli require a redefinition to ensure
that they remain vanishing.
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where we have defined three kinetic coefficients known as bulk viscosity ζbulk,
shear viscosity ζshear and Hall viscosity ηH (also known as Odd viscosity or
Lorentz shear modulus) [10, 11, 19]. We have also used completely anti-
symmetric Levi-Civita symbol εij defined as

εij = −εji , ε12 = 1 . (2.31)

If the fluid is ideal (there is no dissipation), then first two coefficients must
vanish. This can be easily seen from the local version of the second law of
thermodynamics. The entropy (or heat) production is given by [20]

ṡ+ ∂ij
i
Q =

1

T
ηijklv

ijvkl , (2.32)

where T is the temperature (in the units where the Boltzmann constant is
kB = 1). In order for ṡ = 0 it is necessary and sufficient to impose the
condition on the viscosity tensor ηijkl

ηijkl = −ηklij , (2.33)

that is the viscosity tensor is anti-symmetric with respect to exchange of the
first and second pairs of indices. It is easy to see that only the third term in
(2.28) satisfies this condition. Thus, ηH is a non-dissipative viscosity. This
type of viscosity is not possible in 3 dimensional, isotropic fluids, but if the
isotropy is broken by, say, a large magnetic field then this transport coefficient
can appear.

Hall viscosity carries a strong resemblance to the Hall conductivity. First,
as we have just established it is a non-dissipative transport coefficient that
contributes to the transverse transport of momentum. Second, this coefficient
is only possible in a system with broken parity. This can easily be seen from
(2.28) as follows. Apply parity transformation to both sides of (2.28). Since
the stress tensor is parity even and the ε-tensor changes sign under parity we
conclude that ηH must be parity odd. Analogously to the Hall conductivity,
Hall viscosity can be viewed as a response to a gravitational version of electric
field, defined in terms of the strain rate (more details below). In the IQH
states Hall viscosity is quantized in the units of density times ~. For an IQH
states with filling factor N we have

ηH = ~
N

2
× N

2πl2
= ~

N

2
× ρ , (2.34)

where l2 = ~
B

is square of the magnetic length (in the units e = c = 1). We
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will discuss the derivation of this fact as well as the value of the Hall viscosity
for many other quantum Hall states in great detail later on.

2.6 Stress tensor in quantum field theory

We have learned in the previous section that a deformation of a solid or a fluid
can be viewed as a change in geometry described by the metric gij and that
the Hooke’s laws states that the stress tensor is linear in metric and its time
derivatives. In this Section we will explain how to derive the stress tensor from
the Lagrangian formalism.

We start at a somewhat unexpected point. Consider an action for matter
coupled coupled to the gravitational field

Stot[ψ, g
µν ] = Sgr[g

µν ] + Smatter[ψ, g
µν ] , (2.35)

where gµν is the space-time metric. The difference between greek and latin
indices in this and previous section is that the greek indices run through both
space and time, whereas latin indices run only through space. The gravita-
tional action is given by, say, Einstein-Hilbert action.

Sgr[g
µν ] =

∫
dV R , (2.36)

where R is the Ricci scalar and dV . The equations of motion of General
Relativity or Einstein equations (in Euclidean space) are

Rµν − 1

d
δµνR = T µν , (2.37)

where Rµν is the Ricci tensor and T µν is the stress-energy tensor. In addition
to the stress tensor the stress-energy tensor includes momentum T i0, energy
current T 0i = T i0 and energy density T 00. The combinationRµν− 1

d
δµνR = Gµν

is known as Einstein tensor.
If we instead attempt to compute the equation of motion from (2.35) we

will find

Rµν − 1

d
δµνR =

2
√
g

δSmatter
δgµν

. (2.38)

Comparing (2.37) and (2.38) we discover that

2
√
g

δSmatter
δgµν

= T µν . (2.39)
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This computation is a formal trick to derive the expression for the stress-energy
tensor. Gravitational field was an intermediate step and can be turned off in
the end of the computation.

We have to pause here for an extremely important comment. The above
trick silently assumed the Lorentz symmetry and therefore is not useful in
deriving either energy current or momentum or energy density of a non-
relativistic system (such as quantum Hall system). We will introduce a pro-
cedure for deriving these quantities later in the text. Despite this fact, the
outlined trick does give a correct expression for the stress tensor (i.e. the
space-space components of the stress-energy tensor). If one wishes to retain
the metric dependence of the stress tensor, one has to set metric gµν to

gµν =

(
1 0
0 gij

)
(2.40)

in the final expression.
With the expression (2.39) at hand it is very easy to check that stress tensor

satisfies the equilibrium conservation law (2.23). Since the physics has to be
independent of the choice of (spatial) coordinates the action must be a scalar
under a coordinate transformation. Under a diffeomorphism parametrized by
an infinitesimal vector ξj (that is xj −→ xj + ξj(x)) we have

δgij = −ξk∂kgij − ξk∂jgik − ξk∂igjk = Diξj +Djξi , (2.41)

where Dj is the covariant derivative. The parameter of a diffeomorphism ξj

plays a role of the displacement vector uj. Under this transformation the
action transforms as

δS = S[ψ, gij + δgij]− S[ψ, gij] =

∫
ddx
√
g
δS

δgij
δgij

=

∫
ddx
√
gξjDi

2
√
g

δS

δgij
= 0 , (2.42)

since the last equality must hold for any ξj we have derived a conservation law

Di
2
√
g

δS

δgij
= DiT

ij = 0 . (2.43)

It is worth noting that had we demanded the full coordinate invariance, in-
cluding the time dependent diffeomorphism we would have obtained the Ward
identity

DµT
µν = 0 , (2.44)
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but as we have mentioned before this Ward identity is not suitable for non-
relativistic systems. Later on we will use the conservation laws to define the
momentum, energy and energy current responses of a non-relativistic systems.

2.7 Momentum, energy and energy current

In the seminal work of 1964 Luttinger developed a linear response theory for
thermoelectric transport [21]. An essential part of his approach is the coupling
of the many body system to an auxiliary external “gravitational potential”
conjugated to the energy density. The evolution of the energy density is defined
by the divergence of energy current, the latter is a fundamental object in the
theory of thermal transport. In this section we identify the appropriate sources
of the momentum, energy, and energy current in non-relativistic systems. We
will use the developed general formalism later on.

In relativistic systems the energy density and the corresponding current
are naturally combined into a stress-energy tensor T µν coupled to an external
gravitational field described by the spacetime metric. The energy-momentum
and charge conservation laws can be written as

∂µT
µν = F νρJρ, ∂µJ

µ = 0, (2.45)

where T µν is a stress-energy tensor defined as a response to the external metric
gµν . Here, we introduced an electric current Jµ and an external electromag-
netic field Fνρ = ∂νAρ − ∂ρAν . Given a matter action S we can compute the
energy-momentum tensor and the electric current as

T µν =
2
√
g

δS

δgµν
, Jµ =

1
√
g

δS

δAµ
. (2.46)

In the absence of the external sources the first equation in (2.45) encodes two
conservation laws: conservation of momentum and conservation of energy

Ṗ j + ∂iT
ij = 0, ε̇+ ∂iJ

i
E = 0, (2.47)

where we introduced momentum, energy and energy current as P j ≡ T 0j, ε =
T 00 and J iE = T i0. These notations will be very natural later on. In relativistic
systems the stress-energy tensor T µν (being defined as response to the external
space-time metric) is symmetric. This implies equality of momentum and
energy current P i = J iE.

In non-relativistic systems this equality no longer holds. For example, for
a single massive non-relativistic particle with mass m moving with velocity vi
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we have P i = mvi and J iE = mv2

2
vi.

In the next Section we will explain how to introduce the appropriate sources
for the momentum, energy and energy current. We will introduce a non-
relativistic analogue of (2.46). This is achieved by replacing the space-time
metric gµν by a different geometric data known as Newton-Cartan (NC) ge-
ometry with torsion. We explain how to couple a given non-relativistic system
to the NC geometry. Our analysis does not assume Galilean symmetry and is
valid in systems without boost symmetry. The NC geometry has appeared in
the context of Quantum Hall effect [22], non-relativistic (Lifshitz) Holography
[23] and fluid dynamics [24]. The relation between NC geometry and quantum
transport in non-relativistic physics is one of the new results of this Thesis.

2.8 Construction of the NC geometry

Here we review the construction of NC geometry data from the familiar Einstein-
Cartan (EC) geometry (also known as first order formalism or triad formalism).
The NC geometry can be understood as a generalization of the latter for the
cases where Lorentz symmetry is absent.

The geometric data of EC geometry consists of four objects: vielbeins
(also known as frame fields) eaµ and their inverse Eµ

a , spin connection ω a
µ b and

torsion T aµν [25].
Vielbeins satisfy the following relations

gµν = ηabe
a
µe
b
ν , gµν = ηabEµ

aE
ν
b , δµν = δabE

µ
a e

b
ν , (2.48)

where gµν is space-time metric and ηab is a flat metric in tangent space. The
geometric data satisfies the Cartan structure equations [25].

dea + ωab ∧ eb = T a . (2.49)

The Eq. (2.49) is written in the form notations. For example the torsion T a in
the right hand side is given by T a = T aµνdx

µ∧dxν and dxµ∧dxν = −dxν∧dxµ.
We impose constraints on these equations and obtain the essential ingredients
of NC geometry.

First, we split (2.49) into temporal and spatial parts and impose the non-
relativistic constraint

ωA0 = 0 . (2.50)

This constraint has a simple physical meaning: the part of the spin connection,
responsible for Lorentz boosts vanishes identically.
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In order to simplify the discussion we also impose ω0
A = 0 and TA = 0 2.

Then (2.49) takes form

de0 = T 0 ≡ T , deA + ωAB ∧ eB = 0 . (2.51)

Notice, that while these equations are still covariant in space-time, the tangent
space has lost the Lorentz symmetry. From the objects that appear in (2.51)
together with relations (2.48) we can construct all of the NC geometry data.
In particular, the Eq. (2.51) clarifies why we refer to T as temporal torsion.

After the constraint (2.50) is imposed we define a degenerate “metric”
hµν = δABEµ

AE
ν
B, 1-form nµ = e0

µ and a vector vµ = Eµ
0 . Notice, that the

spatial part of the metric hij is a (inverse) metric on a fixed time slice, it is
symmetric and invertible. We have denoted its determinant det(hij) = h−1.
The introduced objects are not independent, but obey the relations

vµnµ = 1, hµνnν = 0. (2.52)

These are precisely the conditions satisfied by the NC geometry data [22, 26]3.
Some detailed discussion of the first order (i.e. using the vielbeins) formulation
of the NC geometry can be found in [27, 28].

Introduction of the NC geometry allows to write non-relativistic actions
and equations of motion in arbitrary coordinate system. The invariant vol-

ume element is dV = edtd2x with e =
√

det(eaµe
a
ν). If the underlying physical

system was spatially isotropic then vielbeins naturally combine into the degen-
erate metric hµν . Similarly, the temporal components of vielbeins (denoted vµ

and nµ) will appear independently of their spatial counterpart thus explicitly
breaking the (local) Lorentz symmetry down to SO(2).

To couple a generic matter action to the NC geometry one has to proceed
as follows. One should modify the space and time derivatives according to

∂A → Eµ
A∂µ, ∂0 → Eµ

0 ∂µ . (2.53)

Then the objects vµ, nµ and hµν (NC data) will naturally arise (we assume
spatial isotropy from now on). When the 1-form nµ is not closed we define the
Newton-Cartan temporal torsion 2-form as

Tµν = ∂µnν − ∂νnµ. (2.54)

2These fields in general do not have to be set zero, but in this Thesis we will only
consider the backgrounds that satisfy these constraints

3It is often convenient to define the “inverse metric” hµν = eAµ e
A
ν . It satisfies hµνhνρ =

δµρ − vµnρ and hµνv
µ = 0 and is fully determined by vµ, nν and hij .
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If the physical system were anisotropic the replacement (6.25) would still make
sense, but one would have to treat each vielbein as an independent object, i.e.
not constrained by any local symmetries of the tangent space. The NC geom-
etry also provides a natural definition of a covariant derivative that satisfies

Dλnµ = 0 , Dλh
µν = 0 . (2.55)

These conditions fix the Christofell symbols as

Γµν,ρ = vµ∂ρnν +
1

2
hµσ(∂νhρσ + ∂ρhνσ − ∂σhνρ). (2.56)

Temporal torsion can also be pulled down from the tangent space. According
to our general rule we replace the 0 tangent space index by vµ. We have

T ρµν = vρ(∂µnν − ∂νnµ) (2.57)

In practice, it is convenient to use a particular parametrization of the NC
background fields. Let us specify the spatial part hij of the degenerate metric
and assume that nµ = (n0, ni) and vµ = (v0, vi) are also specified and sat-
isfy the first relation in (6.27). Then we find from other relations in (6.27)

hµν =

(
n2

n2
0
− ni

n0

− ni

n0
hij

)
, where we defined ni = hijnj, n

2 = ninjh
ij. In this

parametrization the invariant volume element is given by dV =
√
hn0dtd

2x.

2.9 Conserved currents

Here we explain how to obtain the momentum, energy and energy current from
the action. We will use the parametrization described in the previous Section.

We now consider an induced action (or generating functional) that depends
only on the external fields W = W [n, v, hµν ]. We will derive two (local) con-
servation laws that follow from (local) space and time translation invariance.
In order to simplify the expressions we will turn off the fields vi and ni and
set the metric flat after all variations are taken (see below).

The passive action of the (local) space translation with parameter ξi(x, t)
on the external fields is

δvν = vµ∂µξ
iδνi , (2.58)

δnµ = −ni∂µξi , (2.59)

δhij = hjk∂kjξ
i + hik∂kξ

j − ni

n0

ξ̇j − nj

n0

ξ̇i . (2.60)
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We demand that under these variations δW = 0, i.e. the induced action is
diffeomorphism invariant. Explicitly we have

δW =

∫
dV

[
δW

δvµ
δvµ +

δW

δnµ
δnµ +

δW

δhij
δhij

]
= −

∫
dV ξi

[
∂0

(
v0 δW

δvi

)
+ ∂j

(
2
δW

δhij

)]
= 0 (2.61)

for any ξi(x, t). On the other hand space translation invariance implies con-
servation of the momentum in the form

Ṗ i + ∂jT
ij = 0 . (2.62)

Comparing the equation (2.63) with (2.61) we identify the momentum vector
and stress tensor as (in flat spce)

Pi = −δW
δvi

, Tij = −2
δW

δhij
. (2.63)

The action of the (local) time translation with parameter ζ(x, t) on the
external fields is

δvµ = δµ0 v
ν∂νζ , (2.64)

δnµ = −n0∂µζ , (2.65)

δhij = 0 . (2.66)

We again demand that under these variations δS = 0. Explicitly we have

δW =

∫
dV

[
δW

δvµ
δvµ +

δW

δnµ
δnµ

]
=

∫
dV ζ

[
∂0

(
−δW
δv0

v0 +
δW

δn0

n0

)
+ ∂i

(
n0
δW

δni

)]
= 0 . (2.67)

On the other hand the time translation invariance implies conservation of
energy.

ε̇+ ∂iJ
i
E = 0 . (2.68)

Comparing the equation (2.69) with (2.67) we identify energy and energy cur-
rent as

ε =
δW

δv0
v0 − δW

δn0

n0 , J iE = −n0
δW

δni
. (2.69)
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When ni = 0 and v0 = 1
n0

we restore the Luttinger’s expression for energy.

ε = −2
δW

δn0

n0 . (2.70)

2.10 Examples of coupling to Newton-Cartan

geometry

Let us illustrate how one can derive expressions for conserved currents using
the coupling to NC geometry on two examples of physical systems.

The first example is the system of free fermions (studied in the next Chap-
ter). The action describing free fermions coupled to external Newton-Cartan
geometry is given by

S =

∫
dV

[
i

2
vµ(Ψ†∂µΨ− ∂µΨ†Ψ)− hµν

2m
∂µΨ†∂νΨ

]
, (2.71)

Applying (2.63) and (2.69) together with (5.17), using equations of motion
to exclude time derivatives, and turning off NC fields after the variations we
obtain the familiar expressions for energy and energy current

ε = − 1

2m
(∂iΨ)†(∂iΨ) , (2.72)

JEi =
i

4m2

(
∂2Ψ†∂iΨ− ∂iΨ†∂2Ψ

)
. (2.73)

These are the familiar expressions for the energy density and energy current.
As another example we consider the action for the non-relativistic electro-

dynamics, i.e. electrodynamics in a medium. The action in the flat background
is given by

S =

∫
d2xdt

(
ε

8π
E2 − µ−1

8π
B2

)
. (2.74)

Replacing ∂0 → vµ∂µ and using hµν instead of contracting spatial indices we
obtain from (2.74)

S =

∫
d2xdt

√
hn0 h

µλ

(
ε

8π
vνvρ − µ−1

8π
hνρ
)
FµνFλρ , (2.75)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor. Applying (2.63) and
(2.69) together with (5.17), and turning off the NC fields after the variations
are taken we obtain the familiar expressions for energy, energy current and
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momentum of electromagnetic field

ε =
ε

8π
E2 +

µ−1

8π
B2 , (2.76)

JEi =
1

2π
µ−1εijEjB =

1

2π
E× 1

µ
B , (2.77)

P i =
1

2π
εE×B =

1

v2
J iE . (2.78)

Here v = (εµ)−1/2 is the speed of electromagnetic waves in the medium. One
can easily recognize the Poynting vector J iE and the momentum density P i of
the electromagnetic field.

2.11 Outlook

In this Chapter we have learned how to compute the induced action (at least
in principle) and how to extract transport coefficient from it. In order to
successfully study the stress response and momentum transport we had to
introduce the curved background geometry. To study energy transport in non-
relativistic systems we had to abandon the Riemannian geometry and, instead,
we introduced the Newton-Cartan geometry with torsion [22, 24, 29, 30].

There are three ways one can use the induced action. First, one can hon-
estly compute it and this program will be carried out in the next Chapter for
free electrons in an IQH state. In the computation of the induced action one
can either use a microscopic theory or long wave effective theory. When the
underlying microscopic system is interacting (such as FQH system) we first
have to replace it by a tractable effective action and then integrate out the
effective long-wave degrees of freedom. This program will be carried out in
Chapter 4.

Alternatively, one could ask a question: what kind of terms are allowed
in the induced action, based on symmetries alone? The answer to this ques-
tion allows one to distill the terms appearing with the dimentionless transport
coefficients. These coefficients are the best candidates to be universal char-
acteristic of a phase of matter. Hall conductance, Hall viscosity and chiral
central charge are among these properties (see Chapter 4). One also could de-
mand some additional symmetries from the induced action, such as Galilean
symmetry. Additional symmetries will impose additional constrains on the
action. This program will be carried out in Chapter 5.

Finally, one can change the topology of space where the microscopic theory
“lives”. Then it turns out that the induced action will give a hint about the
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structure of boundary excitations. This will be discussed in Chapter 7.
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Chapter 3

Induced Action for Integer
Quanum Hall States

Recent interest to the Hall viscosity in the theory of Fractional Quantum
Hall effect (FQHE) and the interest to the interplay of defects and mechanical
stresses with electromagnetic properties of materials motivates studies of grav-
itational, electromagnetic and mixed responses in condensed matter physics.
Gravitational field, as was explained in the previous Chapter, is simply a trick
to represent deformational strains present in the material under consideration
and a technical tool allowing to extract correlation functions involving stress
tensor components.

It is always important to have a simple model system for which such re-
sponses can be calculated exactly. For the quantum Hall effect one can consider
two-dimensional electron gas in a constant magnetic field (2DEGM) as such a
model. When the density of fermions is commensurate with magnetic field the
integer number of Landau levels is filled and one expects local and computable
response to weak external fields. This model is as important starting point
of analysis for quantum Hall systems as a free electron gas for the theory of
metals. However, while some electromagnetic responses for 2DEGM can be
found in literature we were not able to find the complete results for mixed and
gravitational linear responses. The goal of this Chapter is to compute these
responses providing the analogue of Lindhard [31] function, both e/m and
gravitational, for 2DEGM. We compute the effective action encoding linear
responses in the presence of external inhomogeneous, time-dependent, slowly
changing electro-magnetic and gravitational fields.

We compare and find an agreement of the obtained responses with known
e/m responses [32–35] and with known results for Hall viscosity at integer
fillings [36, 37]. In addition we find the stress, charge and current densities
induced by perturbations of spatial geometry. Another point of comparison
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is given by phenomenological hydrodynamic models for FQHE [38–43] and
Ward identities following from the exact local Galilean symmetry (also known
as non-relativistic diffeomorphism) of the model [44, 45].

The main results of this Chapter are presented in the eqs.(3.174),(3.169).
The former states that the low energy effective action for the integer quantum
Hall system is not completely captured by the Wen-Zee arguments [46] and
the correct coefficient in front of the gravitational Chern-Simons term is not
completely determined by the orbital spin and the filling fraction, but, in
addition, requires the knowledge of the chiral central charge. The latter states
that the chiral central charge manifests itself in a curved space and shifts
the value of the Hall viscosity. In particular, (3.169) implies that one could
determine the chiral central charge and, therefore, thermal Hall conductivity
[14, 47] from the Hall viscosity computed on a curved space.

3.1 The Model

Our starting point is the system of two-dimensional free non-relativistic fermions
interacting with an external gauge Aµ and spatial metric gij fields (in an at-
tempt for brevity we postpone the discussion of general NC geometry). We
assume that the spatial metric can depend on time. The action has a form

S =

∫
d2xdt

√
g

[
i

2
~ψ†∂0ψ −

i

2
~(∂0ψ

†)ψ+

+ eA0ψ
†ψ − ~2

2m
gij(Diψ)†Djψ +

gsB

4m
ψ†ψ

]
. (3.1)

We assume that the fermions are spin polarized and treat ψ field as a complex
grassman scalar. We have also added Zeeman term with the g-factor gs. For
the case of electrons in vacuum gs = 2, but it is convenient to keep it arbitrary
for potential condensed matter applications. The covariant derivative Di =
∂i−i e~c(Āi+Ai) and includes both vector potential of the constant background
magnetic field B̄ = ∂1Ā2 − ∂2Ā1 and a weak perturbation. In the curved
background magnetic field is defined as B = 1√

g

(
∂1Ā2 − ∂2Ā1 + ∂1A2 − ∂2A1

)
,

so it transforms as a (pseudo)scalar under coordinate transformations. We
separate it into constant part and perturbation as B = B̄+ b. In this Chapter
we use the expression linear in fields b = B − B̄ ≈ ∂1A2 − ∂2A1 − 1

2
δgii. Here

δgij is a deviation from the flat background gij = δij + δgij.
We omit the chemical potential term in (3.1) for brevity, but assume

throughout the paper that the lowest N Landau levels are completely filled
in the ground state. We use conventional notations for metric fields so that
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gij and gij are reciprocal matrices and an invariant spatial volume is given by√
g d2x with g = det(gij).

The equation of motion

i

[
~∂0 − ieA0 +

1

2
∂0 ln

√
g

]
ψ +

~2

2m

1
√
g
Di

[√
ggijDjψ

]
= 0 . (3.2)

3.2 Hawking’s field redefinition

In order to find the linear responses of the system (3.1) with respect to pertur-
bations in gauge and metric fields we compute the induced action of the theory
in quadratic (aka RPA) approximation. The induced action W is defined as a
path integral over the fermionic fields

e
i
~W [Aµ,gij ] ≡

∫
D(g

1
4ψ)D(g

1
4ψ†)e

i
~S . (3.3)

We stress that only a finite number of the Landau levels is filled, therefore,
only a finite number of eigenmodes contributes to the fluctuation determinant.
There are no divergencies and no renormalization is required.

The notation [48, 49] D(g
1
4ψ) means that the actual integration variables

are the weight 1
2

fields Ψ given by

Ψ = g
1
4ψ (3.4)

Ψ† = g
1
4ψ . (3.5)

The reason for seemingly awkward notation is hiding in the functional integral
measure. The measure on a functional space in general depends on the scalar
product on the functional space. If the functions are defined on a curved
manifold then their scalar product is defined by

(ψ, φ) ≡
∫
d2x
√
gψ†φ . (3.6)

That is, it depends on the external metric on the manifold. Through the scalar
product the metric dependence spreads into the measure of the functional
integral. For this reason the computation of the stress tensor will become
cumbersome: a priori we do not know how to differentiate the functional
integral measure with respect to the metric. Fortunately, this disease can be
cured by the field redefinition (3.4). The scalar product in the space of Ψ is
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now given by

(Ψ,Φ) ≡
∫
d2xΨ†Φ (3.7)

and the functional measure D(Ψ)D(Ψ†) does not depend on metric.
The new field Ψ transforms with the weight 1

2

δΨ = −ξk∂kΨ−
1

2
Ψ∂kξ

k . (3.8)

In these new variables the action has form

S =

∫
d2xdt

[
iΨ†(~∂0 − ieA0)Ψ

− ~2

2m
gij
(

(Di −
1

4
∂i ln g)Ψ

)†
(Dj −

1

4
∂j ln g)Ψ

+
gsB

4m
Ψ†Ψ

]
(3.9)

the classical current, density and stress tensor are given by

ρ(x) ≡ J0 = eΨ†Ψ (3.10)

J i(x) =
e~

2mi
gij
[
Ψ†DjΨ− (DjΨ)†Ψ

]
+

gs
4m

εij∂jρ (3.11)

T ij(x) = −~2

m
(DiΨ)†DjΨ +

+
~2

2m

[
∂i ln

√
gΨ†DjΨ + (DiΨ)†∂j ln

√
gΨ− 1

2
∂i ln

√
g∂j ln

√
gΨ†Ψ

]
−

− ~2

2m
gkl∂

kgij
[
Ψ†DlΨ + (DlΨ)†Ψ− 2∂l ln

√
gΨ†Ψ

]
(3.12)

Notice, that the stress tensor does not include time derivatives. Usually in the
computation of stress tensor by varying metric one gets a contribution that
contains time derivative of the fermionic field ψ. Then the equations of motion
for ψ are used to exclude it. In our case the time derivative was excluded by
the virtue of the field redefinition.

For simplicity we will set gs = 0 in the following. In the very end we will
restore gs.
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3.3 Symmetries of the action

Action (3.9) possesses a few interesting symmetries. First of all it is gauge
invariant, provided that the field Ψ transforms according to

Ψ′ = eiαΨ and A′µ = Aµ + ∂µα (3.13)

This symmetry implies the familiar local charge conservation law. In addition,
the action is invariant with respect to spatial diffeomorphisms (or, simply,
coordinate transformations). This symmetry implies the conservation of stress
tensor in the form (with background fields turned off).

∂kT
ik = εklJkB0 (3.14)

There are two less obvious symmetries. One of them is non-relativistic scaling

x −→ λx (3.15)

t −→ λ2t (3.16)

Ψ −→ λ−1Ψ (3.17)

This symmetry can easily be seen in the flat space

S =

∫
d2x′dt′

[
iΨ′Ψ̇′ − ~2

2m
|D′Ψ′|2

]
=

∫
d2xdtλ4 × λ−4

[
iΨΨ̇− ~2

2m
|DΨ|2

]
(3.18)

This is a non-relativistic version of the Weyl symmetry and it leads to the
Ward identity

T 00 =
1

2
T ii (3.19)

or, simply, energy equals to half the pressure. This implies that in order to
compute the energy density in the free system we simply need to compute the
response to gii. Any reasonable interaction will break the symmetry.

Finally, there is local Galilean invariance [50]. This symmetry is quite
non-trivial and is described by the transformation laws.

δAi = −ξkFki −mgikξ̇k − ∂i(α + Akξk) ,

δA0 = −ξkFk0 − ∂0(α + Akξk) +
gs
4

εij
√
g
∂i(gjkξ̇

k) , (3.20)

δgmn = −ξk∂kgmn − gmk∂nξk − gnk∂mξk ,
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This symmetry implies an additional Ward identity (c.f. (3.11) ).

J i =
e

m
P i +

gs
4m

εij∂jρ , (3.21)

where P i is the momentum of the electron fluid. This symmetry is extremely
powerful as it allows to relate different orders in the gradient expansion of
the linear response functions. We will study this symmetry in detail in the
Chapter 5.

3.4 Computation of the induced action

We will compute the induced action as a gradient expansions in the external
fields. Throughout the computation we will only keep the terms quadratic in
the external fields, but to arbitrary order in the gradients. The expansion will
be well defined due to the presence of the gap between the ground state and
excited states. One can view the gradient expansion as the expansion in either
inverse gap or in the powers of the magnetic length l which is small compared
to any other scale in the problem.

We start with rewriting the action as differential operator sandwiched be-
tween the fermionic fields.

S =

∫
d2xdtΨ†G−1Ψ , (3.22)

where G−1 is the differential operator obtained by integrating by parts the
derivatives acting on Ψ†. Since we will be assuming the perturbations of
external fields to be small we can write

G−1 = G−1
0 + V , (3.23)

where G−1
0 is the unperturbed action given by

G−1
0 = i∂0 −

~2

2m
|D|2 +

gsB̄

4m
(3.24)

and V encodes the terms at least linear in the perturbations of the external
fields.

V =

[
A0 +

~2

2m

(
Di +

1

4
∂i ln g

)
gij
(
Dj −

1

4
∂j ln g

)
+
gsB

4m

]
(3.25)

Since the functional integral is quadratic in the external fields it can be formally
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Figure 3.1: The first diagram corresponds to the linear part of the induced
action W (1), the second diagram contains the so-called contact terms W

(2)
cont

and the last diagram contains the remainder of the quadratic induced action
W (2).

computed as a determinant of the differential operator acting on the fermions.

W =
~
i

ln det[G−1] =
~
i

ln det[G−1
0 + V ] =

~
i
Tr (ln(1 +G0V )− lnG0)

= −~
i

lnG0 −
~
i
Σn≥1

(−1)n

n!
Tr
(
G0V

)n
= −~

i
lnG0 +

~
i
Tr (G0V )− 1

2

~
i
Tr (G0V G0V ) + . . . , (3.26)

where in the last line we kept only the terms that will participate in the
computation. We can also disregard the first term in the last line since it
will not contribute to the linear response because it does not depend on the
external fields. Thus the object we are interested in is only given by

W =
~
i
Tr (G0V )− 1

2

~
i
Tr (G0V G0V )+ . . . = W (1) +W (2) +W

(2)
cont+ . . . , (3.27)

where W
(2)
cont denotes the contact terms (explained below).

On the formal level this is the end of the procedure. We now only need to
compute G0, V and the functional traces. In the diagrammatic notations G0’s
are the lines and the V ’s are the vertices. Each V carries an external field with
some derivatives acting on it. The first term in the sum contains the so-called
contact terms.

The terms in the induced action can be illustrated as Feynman diagrams
presented in Fig. 3.4.
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3.5 Complex notations

Before diving into the perturbative computations we pause for another for-
mality. We will use the following notation very often in this Chapter. For any
spatial 1-form Ai we introduce the complex form

Az = A1 − iA2 (3.28)

Az̄ = A1 + iA2 (3.29)

Then A2 = AiA
i = 1

2
(AzAz̄ + Az̄Az). This is equivalent to introducing a new

complex (flat) metric

gαβ =

(
0 1

2
1
2

0

)
, (3.30)

so that the length element is given by

ds2 =
1

2
(dzdz̄ + dz̄dz) = dzdz̄ = dx2 + dy2 (3.31)

For the components of a tensor ταβ we have

τzz = τ11 − τ22 − i(τ12 + τ21) (3.32)

τz̄z̄ = τ11 − τ22 + i(τ12 − τ21) (3.33)

τz̄z = τ11 + τ22 − i(τ12 − τ21) (3.34)

τzz̄ = τ11 + τ22 + i(τ12 − τ21) (3.35)

We stress that direct consequence of these notations is that the derivative ∂z
is given by

∂z = ∂1 − i∂2 , (3.36)

and, therefore, does not act exactly the way on would expect

∂zz = 2 , ∂z z̄ = 0 (3.37)

Despite this unpleasant relations, we believe that the uniform notations will
be very useful in what comes next.

3.6 General structure of the quadratic induced

action

In this section we set up general notations that will slightly simplify our com-
putations and will allow to present an answer in a tractable form. First of all,
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the induced action is Taylor expanded in external fields and, therefore, all of
the symmetries we have discussed before are not going to be manifest and it
will be a hard technical exercise to check the Ward identites.

The induced action is a quadratic form in external fields. In general it can
be written as follows

W =

∫
d2xdt

[
ρ̄A0+p̄gii+

1

2

(
AµΠµνAν + AµΘµ

ijδg
ij + δgijΛijklδg

kl
) ]
, (3.38)

where Π, Θ and Λ are matrices of differential operators acting, say, on the
right. It will turn out to be much more convenient to re-write the action in
momentum space, so that the differential operators will turn into polynomials
in momentum and frequency.

We define a vector

vI(k, ω) =


A0(k, ω)
Az(k, ω)
Az̄(k, ω)
gzz(k, ω)
gz̄z̄(k, ω)
gzz̄(k, ω)

 , (3.39)

the index I runs from 0 to 5 and another vector wI = (ρ̄, 0, 0, 0, 0, p̄)T , so that

vIwI = ρ̄A0 + p̄gii (3.40)

We also combine the Fourier images of Π, Θ and Λ into one 6 by 6 matrix
WIJ(k, ω) so that the induced action takes form

W =
1

(2π)3

∫
d2kdω

(
vI(k, ω)wI +

1

2
vI(−k,−ω)WIJ(k, ω)vJ(k, ω) + . . .

)
(3.41)

In these notations all we need to do is to compute is the vector wI and the
matrix WIJ . We term the matrix WIJ a generalized polarization operator.

3.7 Fock basis in the Hilbert space and G0

Non-interacting electrons in quantizing magnetic field at finite and fixed chem-
ical potential µ so that they fill precisely an integer number of the Landau lev-
els is effectively a zero-dimensional quantum mechanical problem. In order to
make this manifest we will use Fock representation for the basis states instead
of the coordinate representation.
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Define the creation and annihilation operators

a =
i√
2

l

~
Dz̄ =

i√
2

l

~
(D1 + iD2) (3.42)

and

a† =
i√
2

l

~
Dz =

i√
2

l

~
(D1 − iD2) (3.43)

So that [a, a†] = 1. The inverse relations are

Dz = −i
√

2
~
l
a† (3.44)

Dz̄ = −i
√

2
~
l
a (3.45)

In terms of these operators the Hamiltonian takes form

G−1
0 =

(
i~∂0 +

1

2m
DiDi +

gs
4m

)
= i~∂0 − ~ωc

(
a†a+

1

2
+

gs
4m

)
= i~∂0 −H0 , (3.46)

We introduce another set of generators of the Fock space.

b† =
1√
2

l

~
(D − ~

l2
z) = −a+

i√
2l
z (3.47)

and

b =
1√
2

l

~
(D̄ − ~

l2
z) = −a† − i√

2l
z̄ (3.48)

so that [b, b†] = 1 and all a’s commute with all b’s. These two pairs of the
operators generate the entire Hilbert space of the problem. Using this relation
we can express the coordinates themselves (viewed as operators on the Hilbert
space) in terms of a and b. We have

z = −
√

2li(b† + a) (3.49)

z̄ =
√

2li(a† + b) (3.50)

More formally the complete basis in the Hilbert space is

|nm〉 = |n〉 ⊗ |m〉 =
(a†)n√
n!

(b†)m√
m!
|0〉 ⊗ |0〉 (3.51)

The a-operators move us between the Landau levels, whereas operators b ex-
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plore the available states within each Landau level since

[H0, b] = [H0, b
†] = 0 . (3.52)

Each Landau level is infinitely degenerate and every eigen space of the Hamil-
tonian is spanned by the operators b† acting on the vacuum. The bare Green’s
function is then given by

G0 =

∫
dω

2π

∑
nm

e−iωt
|nm〉〈nm|
~ω − En

, (3.53)

where En = (n+ 1
2
)~ωc + gs

4m
is the spectrum of the unperturbed Hamiltonian

~ωc(a†a+ 1
2

+ gs
4m

).
It is easy to check that G−1

0 G0 = δ(t)×
∑

m,n |nm〉〈nm| = 1.
Thus we have derived an expression for G0 and also were able to define the

trace in the Hilbert space as

Tr (X) =
∑
m,n,t

〈mnt|X|tmn〉 =

∫
dt
∑
m,n

〈mn|X|mn〉 . (3.54)

3.8 Vertices V

In this section we will derive the expression for various vertices that will appear
in our gradient expansion. First we have to expand the classical action to
the second order in external fields on top of the background of flat space an
constant magnetic field. Then we will read off the vertices that contain to
every external field one by one. The unperturbed action is given by

S(0) =

∫
d2xdtΨ†

[
i~∂0 − ~ωc

(
a†a+

1

2
+

gs
4ml2

)]
Ψ =

∫
d2xdtΨ†G−1

0 Ψ

(3.55)
The part of the action linear in external fields is given by

S(1) =

∫
d2xdtΨ†

[
+ eA0 −

e~
2
√

2ml
({a†, Az̄}+ {a,Az})

− ~2

4ml2

(
a(gzza) + a†(gz̄z̄a

†) +
1

2
l2(∂∂̄gzz̄) + a†(gzz̄a) + a(gzz̄a

†)

)]
Ψ

=

∫
d2xdtΨ†V (1)Ψ (3.56)
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The part of the action quadratic in external fields is given by∫
d2xdtΨ†

[
− e2

2m
|A|2 − ~2

32m
(∂ ln g)2 − ~

8m
∂j(gij∂i ln g) + i

e

2m
∂j(Aigij)

]
Ψ ,

(3.57)
although the only terms that will give a non-trivial contribution to the quadratic
induced action are

S(2) =

∫
d2xdtΨ†

[
− e2

2m
AzAz̄ −

~2

32m
∂gzz̄∂̄gzz̄

]
Ψ =

∫
d2xdtΨ†V (2)Ψ (3.58)

Total vertex function consists of the terms linear and quadratic in fields

V = V (x, t) = V (1)(x, t) + V (2)(x, t) (3.59)

Keeping in mind that in the previous section we have identified x with an
operator on a Hilbert space, V is also an operator (or infinite matrix) on a
Hilbert space.

In accordance with the Section 3.5 we wish to re-write all the vertices in
Fourier space and introduce a vector V

(1)
I (k, ω) so that

V (1) = V(1)
I (k, ω)vI(k, ω) , (3.60)

this is always possible since V (1) is linear in external fields by definition. To
do this consider, say, the terms in V linear in Az̄. We have

V (x, t)
∣∣∣
Az̄

=
~

2
√

2ml
{a†, Az̄} (3.61)

Its Fourier transform is given by

Ṽ (k, ω)
∣∣∣
Az̄

= e−iωt
~

2
√

2ml
{a†, eikx}Az̄(k, ω) ≡ V(1)

2 (k, ω)v2(k, ω) (3.62)

Since x is expressible in terms of creation and annihilation operators we have

exp i~k · ~x = exp
i

2
(kz̄) exp

i

2
(k̄z) = e

− kl√
2
a†
e
k̄l√

2
a
e
− kl√

2
b
e
k̄l√

2
b†

(3.63)

Thus putting everything together and using that a’s and b’s commute with
each other we have

V(1)
2 (k, ω) = e−iωte

− kl√
2
b
e
k̄l√

2
b† ~

2
√

2ml

{
a†, e

− kl√
2
a†
e
k̄l√

2
a
}
. (3.64)
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Expressions for the other vertext operators can be derived in the same way.
We list them all

V(1)
0 v0 = e−iωte

− kl√
2
b
e
k̄l√

2
b†
e
− kl√

2
a†
e
k̄l√

2
a × A0(k, ω) (3.65)

V(1)
1 v1 = −e−iωte−

kl√
2
b
e
k̄l√

2
b† e~

2
√

2ml
{a†, e−

kl√
2
a†
e
k̄l√

2
a} × Az(k, ω) (3.66)

V(1)
2 v2 = −e−iωte−

kl√
2
b
e
k̄l√

2
b† e~

2
√

2ml
{a, e−

kl√
2
a†
e
k̄l√

2
a} × Az̄(k, ω) (3.67)

V(1)
3 v3 = e−iωte

− kl√
2
b
e
k̄l√

2
b† ~2

4ml2
ae
− kl√

2
a†
e
k̄l√

2
a
a× gz̄z̄(k, ω) (3.68)

V(1)
4 v4 = e−iωte

− kl√
2
b
e
k̄l√

2
b† ~2

4ml2
a†e
− kl√

2
a†
e
k̄l√

2
a
a† × gzz(k, ω) (3.69)

V(1)
5 v5 = e−iωte

− kl√
2
b
e
k̄l√

2
b† ~2

4ml2

( |kl|2
2
e
− kl√

2
a†
e
k̄l√

2
a

+ a†e
− kl√

2
a†
e
k̄l√

2
a
a

+ ae
− kl√

2
a†
e
k̄l√

2
a
a†
)
× gzz̄(k, ω) (3.70)

Notice that part of the operators that depends on both time and b’s has com-
pletely factorized and is the same for all vertices. We will be able to use this
fact to integrate over time and to trace over the Fock space spanned by b
before tracing over the Fock space spanned by a. It is the trace over a where
all of the complexity is concentrated. For this reason it will be convenient to
introduce another notation for part of the vertex insertions that act in a-space.

V(1)
I = e−iωte

− kl√
2
b
e
k̄l√

2
b†
V̂I (3.71)

Our final result will be written in terms of VI so we find it important to write
them out.

V̂0 = 1 (3.72)

V̂1 = − e~
2
√

2ml
{a†, e−

kl√
2
a†
e
k̄l√

2
a} (3.73)

V̂2 = − e~
2
√

2ml
{a, e−

kl√
2
a†
e
k̄l√

2
a} (3.74)

V̂3 = − ~2

4ml2
ae
− kl√

2
a†
e
k̄l√

2
a
a (3.75)

V̂4 = − ~2

4ml2
a†e
− kl√

2
a†
e
k̄l√

2
a
a† (3.76)

V̂5 = − ~2

4ml2

(
|kl|2

2
e
− kl√

2
a†
e
k̄l√

2
a

+ a†e
− kl√

2
a†
e
k̄l√

2
a
a+ ae

− kl√
2
a†
e
k̄l√

2
a
a†
)
(3.77)
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3.9 Coherent states and Laguerre polynomials

In the next Section we will have to simplify the expressions that involve the ex-
pectation values and amplitudes of (3.65)-(3.70). The following two important
relations will play the central role in the computations.

[b, f(b†)] = f ′(b†) (3.78)

eQbf(b†) = f(b† +Q)eQb (3.79)

Also, using this relations and elementary properties of the oscillator algebra
we derive an important formula for this Chapter. We have

〈n|e−
kl√

2
a†
e
k̄l√

2
a|m〉 =

√
n!

m!

(
k̄l√

2

)m−n
Lm−nn

(
|kl|2

2

)
(3.80)

=

√
m!

n!

(
−kl√

2

)n−m
Ln−mm

(
|kl|2

2

)
. (3.81)

Similar equations can be found in [51].
In the same manner we simplify

〈n|e−
kl√

2
b
e
k̄l√

2
b†|m〉 = e−

|kl|2
2

√
n!

m!

(
k̄l√

2

)m−n
Lm−nn

(
|kl|2

2

)
(3.82)

= e−
|kl|2

2

√
m!

n!

(
−kl√

2

)n−m
Ln−mm

(
|kl|2

2

)
. (3.83)

3.10 Induced action to the first order

First, we want to compute the vector wI defined in Section 3.5. It comes from
the term

~
i
TrG0V

(1) (3.84)

Before moving forward we notice that Geen’s function G0 is diagonal in fre-
quency space and the vertex insertion V is diagonal in time, i.e. we have
(omitting the Fock space parts)

〈t|V |t′〉 = 〈t|V |t〉 ∼ δ(t− t′)V (t) (3.85)

〈ω|G0|ω′〉 = 〈ω|G0|ω〉 =
1

~ω − En
(3.86)
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These relations will be important in the following computations. To evaluate
the trace we insert the resolution of unity between G0 and V (1).

TrG0V
(1) ≡

∑
n,m,t

〈nmt|G0V
(1)|nmt〉

=
∑
n,m,t,

∑
n′,m′,t

〈nmt|G0|n′m′t′〉〈n′m′t′|V (1)|nmt〉

=
∑
n,m,t,

∑
n′,m′,t

〈nmt|
∑
ω

|ω〉〈ω|G0

∑
ω′

|ω′〉〈ω′|n′m′t′〉〈n′m′t′|V (1)|nmt〉

=
∑
n,m,t,ω

∑
n′,m′,ω′,t′

〈nmω|G0|ω′n′m′〉〈n′m′t|V (1)|t′nm〉〈t′|ω〉〈ω′|t〉

=
∑
n,m,t,ω

∑
n′,m′,ω,t

〈nmω|G0|ωn′m′〉〈n′m′t|V (1)|tnm〉

=

∫
dt

∫
dω

2π

∑
n,m

1

~ω − En
〈nm|V (1)(x, t)|nm〉

=

∫
dt
∑
n,m

θ(N − n)〈nm|V (1)(x, t)|nm〉

=

∫
dt

∫
dω

2π

∫
d2k

(2π)2

∑
n,m

θ(N − n)〈nm|V(1)
I (k, ω)|nm〉vI(k, ω) ,

where we have used the definition of the trace in the first line, insertion of
unity in the second, (3.85) and (3.86) in the fifth and sixth and, finally, we
have included only first N poles into the frequency integration in the seventh
line and we took the Fourier transform and re-expressed eikx according to
(3.63). The first N poles correspond to N filled Landau levels. In a sense, the
integral

~
2πi

∫
dω

1

~ω − En
= θ(N − n) (3.87)

is a projector on the first N Landau levels.
Now we have to plug in a particular expression for V(1)

I . There are no
currents and torques in ground states, so the terms with the index I = 1, 2, 3, 4
(i.e. terms proportional to Az, Az̄, gzz, gz̄z̄) do not lead to a non-vanishing
answer. The only non-trivial contributions come from I = 0 and I = 5
describing the density and pressure in the ground state correspondingly.

44



We will treat these terms one by one. We start with I = 0∫
dV w0v0 =

∫
dt

∫
dω

2π

∫
d2k

(2π)2

∑
n,m

θ(N − n)〈nm|V(1)
0 (k, ω)|nm〉v0(k, ω)

=

∫
d2k

(2π)2

∑
n,m

θ(N − n)〈nm|e−
kl√

2
b
e
k̄l√

2
b†
e
− kl√

2
a†
e
k̄l√

2
a|nm〉A0(k, 0)

=

∫
d2k

(2π)2
e−
|kl|2

2

∑
n,m

θ(N − n)〈nm|e
k̄l√

2
b†
e
− kl√

2
b
e
− kl√

2
a†
e
k̄l√

2
a|nm〉A0(k, 0)

=

∫
d2k

(2π)2
e−
|kl|2

2

∑
n,m

θ(N − n)〈m|e
k̄l√

2
b†
e
− kl√

2
b|m〉 · 〈n|e−

kl√
2
a†
e
k̄l√

2
a|n〉A0(k, 0)

=

∫
d2k

(2π)2

∑
n,m

θ(N − n)e−
|kl|2

2 L0
m

(
|kl|2

2

)
· L0

n

(
|kl|2

2

)
A0(k, 0) , (3.88)

The summation over m gives the momentum conservation delta-function
δ(2)(~k). This is very important fact: even though the original problem is not
translation invariant, the completely filled Landau level is translation invari-
ant. Technically this happens after the summation over states within every
Landau level (i.e. over the b-space). We will encounter the same effect on the
quadratic level as well. We explain the technical side of this summation in the
Appendix E.

We proceed with computation of the linear order of the induced action.∫
dV w0v0 =

1

2πl2

∑
n

θ(N − n)A0(k = 0, ω = 0) =
N

2πl2
A0(k = 0, ω = 0)

=

∫
dtd2x

N

2πl2
A0(x, t) , (3.89)

where we have used the property of Fourier transform

A0(k = 0, ω = 0) =

∫
d2xdtA0(x, t) (3.90)

thus we derived w0 = ρ̄ = N
2πl2

. Perhaps this is not the easiest way to derive
the background density for non-interacting electrons in external magnetic field,
but the methods we used will be important at the quadratic level.

We turn to the computation of p̄ = w5. The difference now is that V(1)
5 is

more complicated. Going through the same steps and using the expression for
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V(1)
5 we get instead of (3.88)∫

dV w5v5 =
~ωc
4

∫
d2k

(2π)2

∑
n,m

θ(N − n)e−
|kl|2

2 L0
m

(
|kl|2

2

)
·
(
|kl|2

2
L0
n

(
|kl|2

2

)
+ nL0

n−1

(
|kl|2

2

)
+ (n+ 1)L0

n+1

(
|kl|2

2

))
A0(k, 0)

=
∑
n

θ(N − n)
~ωc
2

(
n+

1

2

)
gzz̄(k = 0, ω = 0) (3.91)

=

∫
dtd2x

N

2πl2
~ωc
2
Ngzz̄(x, t) .

Thus we have found p̄ = ρ̄N~ωc
2

. Notice that the total energy of N filled

Landau levels equals to N2~ωc
2

, thus we obtained that energy density equals
to the pressure density. This was indeed expected since the model was Weyl
invariant.

To summarize the induced action in the linear order is

W (1) =

∫
dtd2x

(
N

2πl2
A0 +

N

2πl2
N~ωc

2
gzz̄

)
(3.92)

Before moving to the tedious quadratic terms computations we make a fun
remark: both terms can be written covariantly as follows

W (1) =
N

2π

∫
dtd2xεµνρAµ∂νĀρ +

N

2πl2
N~ωc

2

∫
dtd2x

√
g (3.93)

The first term is the expected Chern-Simons term. Its coefficient also gives
the Hall conductance σH = N

2π
. The re-writting is useful, because it actually

has predictive power. Since the backround vector potential Āµ always enters
in a sum with Aµ we actually can restore one of the terms of the quadratic
induced action! We will derive the term in any case, but it is a nice check.

Remarkably, the last term (when written covariantly) is the “cosmological
constant” term in general relativity with the coefficient given by the energy
density, as we just argued. Thus “cosmological constant” of a quantum Hall
problem is given by the total energy density in the system. This is not too
surprising since there is only one energy scale in the problem. When gs is
present the energy density is shifted as

N

2πl2
N~ωc

2
−→ N

2πl2
~ωc

2N − gs
4

. (3.94)
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3.11 Induced action to the second order

This is the central section of the Chapter. We will perform the exact computa-
tion of the entire quadratic induced action including all gradient corrections.
There will be two contributions to the induced action. One contribution comes
from the so-called contact terms. These are generated from plugging V (2) into

~
i
TrG0V (3.95)

These contributions are always zero momentum and zero frequency correc-
tions. In fact, these terms can be restored simply from analyzing at the Ward
identities of various symmetries. We will compute these terms later.

The main contribution, however, comes from

1

2

~
i
T rG0V

(1)G0V
(1) . (3.96)

First we will trace over time and frequency, then we will trace over the
b-Fock space and in the end we will be left with irreducible expression for the
trace in a-space. This is the general strategy.

We start with trace over time and frequency

TrG0V
(1)G0V

(1) =
∑
t

〈t|G0V
(1)G0V

(1)|t〉

=
∑
t,ω

∑
t′,ω′

〈t|ω〉〈ω|G0|ω〉〈ω|t′〉〈t′|V (1)|t′〉〈t′|ω′〉〈ω′|G0|ω′〉〈ω′|t〉〈t|V (1)|t〉

=
∑
n,n′

∑
t,ω

∑
t′,ω′

eit(ω−ω
′)e−it

′(ω−ω′) 1

~ω − En
V (1)(t)

1

~ω′ − En′
V (1)(t′)

=
∑
n,n′

∑
t,ω,Ω

∑
t′,ω′,Ω

eit(ω−ω
′−Ω)e−it

′(ω−ω′−Ω′) 1

~ω − En
V (1)(Ω)

1

~ω′ − En′
V (1)(Ω′)

=
∑
n,n′

∑
ω,Ω

∑
ω′,Ω

δ(ω − ω′ − Ω)δ(ω − ω′ − Ω′)
1

~ω − En
V (1)(Ω)

1

~ω′ − En′
V (1)(Ω′)

=
∑
n,n′

∑
ω,Ω

1

~(ω + Ω)− En
V (1)(Ω)

1

~ω − En′
V (1)(−Ω)

=
∑
n,n′

∫
dΩ

2π

dω

2π

1

~(ω + Ω)− En
1

~ω − En′
V (1)(Ω)V (1)(−Ω)
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We perform the frequency integration by re-writting the fraction as a sum

1

~(ω + Ω)− En
1

~ω − En′
=

(
1

~(ω + Ω)− En
− 1

~ω − En′

)
−1

~Ω− (En − E ′n)
(3.97)

and taking only first N poles in the integral over ω. This integration (as we
pointed out before) will project onto Hilbert space of the first N Landau levels.
When this is done we have∫

dΩ

2π

(∑
n,n′

θ(N − n)

En′ − En − ~Ω
− θ(N − n′)
En′ − En − ~Ω

)
V (1)(Ω)V (1)(−Ω)

=

∫
dΩ

2π

∑
n≤N,n′>N

(
1

En′ − En − ~Ω
+

1

En − En′ + ~Ω

)
V (1)(Ω)V (1)(−Ω)

=
~
i
T rG0V

(1)G0V
(1)
∣∣∣
ω

(3.98)

This is the final outcome of the computation. Notice that in the notations we
have suppressed the matrix elements in a and b Fock spaces.

The next easiest thing to do is to perform the summation over the Fock
space generated by b operator. This is possible because the b operators com-
pletely factorize out, due to the fact that even the perturbed action does not
depend on b. We compute the trace over the Fock spaces now (suppressing
the frequency integrations that we have already performed)∑

n,n′,m,m′

〈nm|G0|nm〉〈nm|V (1)|n′m′〉〈n′m′|G0|n′m′〉〈n′m′|V (1)|nm〉

=
1

~ω − En
1

~ω′ − En′
〈nm|V (1)|n′m′〉〈n′m′|V (1)|nm〉 (3.99)

= TrG0V
(1)G0V

(1)
∣∣∣
a,b

(3.100)

The matrix elements 〈n′m′|V (1)|nm〉 factorize as

〈n′m′|V (1)|nm〉 = 〈m′|e−
kl√

2
b
e
k̄l√

2
b†|m〉

∣∣∣
b
· 〈n′|V(1)|n〉

∣∣∣
a

(3.101)

because a commutes with b. In Eq. (3.101) 〈m|X|m′〉
∣∣∣
b

means that the average

value of operatorX is computed in the Fock space generated by the b operators.
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With this in mind we continue the computation.

TrG0V
(1)G0V

(1)
∣∣∣
a,b

=
∑

n,n′,m,m′,k,q

1

~ω − En
1

~ω′ − En′
〈m|e−

kl√
2
b
e
k̄l√

2
b†|m′〉

∣∣∣
b

× 〈m′|e−
ql√
2
b
e
q̄l√
2
b†|m〉

∣∣∣
b
〈n′|V (1)

I |n〉
∣∣∣
a
〈n′|V (1)

J |n〉
∣∣∣
a
vI(k)vJ(q)

=
∑

n,n′,m,k,q

1

~ω − En
1

~ω′ − En′
〈m|e−

kl√
2
b
e
k̄l√

2
b†
e
− ql√

2
b
e
q̄l√
2
b†|m〉

∣∣∣
b

× 〈n′|V (1)
I |n〉

∣∣∣
a
〈n′|V (1)

J |n〉
∣∣∣
a
vI(k)vJ(q) , (3.102)

where in the last lime we have used the fact that |m′〉〈m′| is an identity operator
in the Fock space spanned by b operators. We have, thus, established that in
all of the components of the generalized polarization operator the summation
over m can be done explicitly and amounts to the computation of the sum∑
m

〈m|e−
kl√

2
b
e
k̄l√

2
b†
e
− ql√

2
b
e
q̄l√
2
b†|m〉 =

1

π

∫
dαe|α|

2〈0|eαbe−
kl√

2
b
e
k̄l√

2
b†
e
− ql√

2
b
e
q̄l√
2
b†
eᾱb
†|0〉

=
2π

l2
e−
|kl|2

2 δ(2)(k + q) (3.103)

In the first line we replaced the summation in m with integration over the
coherent states (we explain how to do such trick in the Appendix E).

In resume: for any component of the generalized polarization tensor sum-

mation over m can be replaced by 2π
l2
e−
|kl|2

2 δ(2)(k + q). This delta function
allows to remove the integration over q leaving us with translationally invari-
ant induced action.

It’s time to put everything together. For the trace TrG0V
(1)G0V

(1) we
have

1

(4πl2)

∫
d2kdΩ

(2π)3
e−
|kl|2

2

∑
n′<N,n≥N

(
〈n|V (1)

I (k)|n′〉〈n′|V (1)
J (−k)|n〉

En − En′ − ~Ω

+
〈n′|V (1)

I (k)|n〉〈n|V (1)
J (−k)|n′〉

En − En′ − ~Ω

)
vI(k,Ω)vJ(−k,−Ω)

= TrG0V
(1)G0V

(1) (3.104)

Finally, we introduce the notation

ΓInn′(k,Ω) = 〈n|V (1)
I (k)|n′〉 (3.105)
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and the final expression for the quadratic part of the induced action (minus
the contact terms) is

W (2) =
i

4πl2~2ωc

∫
d2kdω

(2π)3
e−
|kl|2

2

∑
n≥N,m≤N

ΓInm(k)ΓJmn(−k) + ΓJnm(k)ΓImn(−k)

n−m− ω
vIvJ

(3.106)
and the generalized polarization operator (defined in (6.51)) is given by

WIJ(k,Ω) =
i

~
1

(4πl2)

1

~ωc
e−
|kl|2

2

∑
n≥N,m≤N

ΓInm(k)ΓJmn(−k) + ΓJnm(k)ΓImn(−k)

n−m− ω
(3.107)

This is the main result of this Chapter. In the following we will massage this
expression to a form that can be easily treated on a computer and use it to
derive linear response function of free fermions.

3.12 The generating function

While (3.107) is indeed the final expression that cannot be reduced to any-
thing nicer, it is not very convenient to work with since one has to use various
complicated expressions for the vertex insertions. In this Section we will intro-
duce a trick that will allow to express all of the components of the generalized
polarization operator in terms of derivatives of a certain master function.

The master function is constructed out of W00. Consider the following
expression (not to be confused with the Green’s function)

G(k, q;N) =
∑

n≥N,m<N

(
Γ0
nm(k)Γ0

mn(q)

n−m− ω
+

Γ0
nm(q)Γ0

mn(k)

n−m+ ω

)
Using the equation (3.80) we have

Γ0
nm(k) =

√
n!

m!

(
k̄l√

2

)m−n
Lm−nn

(
|kl|2

2

)
=

√
m!

n!

(
−kl√

2

)n−m
Ln−mm

(
|kl|2

2

)
(3.108)

we can write an explicit expression for G to

G(k, q;N) =
∑

n≥N,m<N

(
− l

2

2

)n−m
m!

n!

(
(kq̄)n−m

n−m− ω
+

(k̄q)n−m

n−m+ ω

)
(3.109)

× Ln−mm

(
|lk|2

2

)
Ln−mm

(
|lq|2

2

)
(3.110)
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To illustrate the formula notice that

W00 =
1

(4π)

m

~2
e−
|kl|2

2 G(k,−k;N) (3.111)

We used above the following identity

1

~ωcl2
=
m

~2
(3.112)

What about other components of WIJ? It turns out that they all can be
expressed as derivatives of G(k, q,N). To see this we use the definitions and
identities

k = k1 + ik2 (3.113)

∂k =
1

2
(∂k1 − i∂k2) (3.114)

∂kk = 1 (3.115)

∂k̄k̄ = 1 (3.116)

e−ka
†
ek̄aa† = (a† + k̄)e−ka

†
ek̄a = (−∂k + k̄)e−ka

†
ek̄a (3.117)

ae−ka
†
ek̄a = e−ka

†
ek̄a(a− k) = (∂k̄ − k)e−ka

†
ek̄a . (3.118)

These identities allow us to re-write the vertex insertions (3.73)-(3.77) in terms
of derivatives with respect to momentum as follows (indices correspond to our
previous 6D notations)

V̂0(k) = 1 (3.119)

V̂1(k) = − e~
2
√

2lm
(−2
√

2

l
∂k +

l√
2
k̄) (3.120)

V̂2(k) = − e~
2
√

2lm
(
2
√

2

l
∂k̄ −

l√
2
k) (3.121)

V̂3(k) = − ~2

4ml2
2

l2
∂k̄(∂k̄ −

l√
2
k) (3.122)

V̂4(k) = − ~2

4ml2
2

l2
∂k(∂k −

l2

2
k̄) (3.123)

V̂5(k) = − ~2

4ml2

(
1− |kl|2 − 4

l2
∂k∂k̄ + (k̄∂k̄ + k∂k)

)
(3.124)
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Then an arbitrary element of the genralized polarization operator is given by

WIJ(ω, k) =
1

(4π)

m

~2
e−
|kl|2

2 lim
q→−k

V̂I(k)V̂J(q)G(k, q;N) (3.125)

This expression is the one we will use for practical computations.

3.13 Contact terms

The contact terms are obtained from TrG0V
(2). These terms are quadratic

in external fields, but do not contain an infinite series. Schematically the
computation is similar to the computation of the linear order terms. We
remind the reader the relevant part of the action

S(2) =

∫
d2xdtΨ†

[
− e2

2m
AzAz̄ −

~2

32m
∂gzz̄∂̄gzz̄

]
Ψ =

∫
d2xdtΨ†V (2)Ψ

(3.126)
We start with the contact term involving the vector potential. Using the same
methods as in previous Sections we calculate

~
i
TrG0V

(2) =
1

2m

~
i

∑
n≤N

∑
m

∫
d2q

(2π)2

d2k

(2π)2
〈nm|ei(k+q)x|nm〉Az(k, 0)Az̄(q, 0)

=
1

4π

1

ml2

∫
d2k

(2π)2
Az(k, 0)Az(−k, 0) , (3.127)

other contact terms are given by (these terms are evaluated at zero frequency
ω = 0 as it always happens for the contact terms).

W
(2)
cont =

1

4π

1

ml2

∫
d2k

2π

[ |k|2
4
gzz̄(k, 0)gzz̄(−k, 0)

+
gs
4

(
k̄

2
Az(k, 0)gzz̄(k, 0)− k

2
Az̄(k, 0)gzz̄(k, 0)

)
(3.128)

+
gs
4

1

8
gzz(k, 0)gz̄z̄(k, 0)

]
. (3.129)

These terms are all obtained in the same fashion.
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3.14 Induced action: final expression

For conveniece we list here our results in terms of dimensionless momentum
q = kl√

2
.

The generating function is given by

G(k, q;N) =
∑

n≥N,m<N

(−1)n−m
m!

n!

(
(kq̄)n−m

n−m− ω
+

(k̄q)n−m

n−m+ ω

)
(3.130)

· Ln−mm

(
|k|2

2

)
Ln−mm

(
|q|2

2

)
(3.131)

The vertices are given by

V̂0(q) = 1 (3.132)

V̂1(q) = − ~
2
√

2lm

(
2∂q̄ −

(
1 +

gs
2

)
q
)

(3.133)

V̂2(q) = − ~
2
√

2lm

(
−2∂q +

(
1 +

gs
2

)
q̄
)

(3.134)

V̂3(k) = − ~2

4ml2
∂q̄(∂q̄ − q) (3.135)

V̂4(k) = − ~2

4ml2
∂q(∂q − q̄) (3.136)

V̂5(k) = − ~2

4ml2

((
1 +

gs
2

)
− 2|q|2 − 2∂q∂q̄ + (q̄∂q̄ + q∂q)

)
, (3.137)

where we have also added the dependence on the gs-factor that describes the
non-minimal coupling of the electrons to the magnetic field due to the intrinsic
magnetic moment. The generalized polarization operator is given by

WIJ =
1

(4π)

m

~2
e−|k|

2

lim
q→−k

V̂i(k)V̂j(q)G(k, q;N) (3.138)

The induced action in momentum space is given by

W =

∫
d2k

(2π)2

dω

2π

(
wIvI +

1

2
WIJ(k, ω)vI(k, ω)vJ(k, ω)

)
+W

(2)
cont (3.139)

Since it is quadratic in external fields it is straightforward to go back to coor-
dinate space.
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3.15 Spin connection

Before presenting the explicit answer for the induced action we introduce a
geometric object that will be useful to write down the answer and to restore
non-linear contributions to the induced action using the diffeomorphism in-
variance.

In the external magnetic field the electron is moving along a circular orbit.
There is an orbital spin s̄ associated to this motion. The orbital spin is not a
part of the original action (3.1), but an emergent phenomenon [36] that appears
after the averaging over the “fast” cyclotron motion of the electron. The
emergent orbital spin couples to the SO(2) spin connection just like electric
charge couples to the vector potential.

The Levi-Civita SO(2) spin connection can be expressed in terms of the
vielbeins as [44]

ω0 = −1

2
εabeaj∂0e

b
j , (3.140)

ωi = −1

2
εabeaj∂ie

b
j −

1

2
√
g
εjk∂jgik , (3.141)

This connection transforms as an abelian gauge field under the local SO(2) ro-
tations [44]. While more covariant formulas can be written using the Newton-
Cartan geometry, they will not be practical for our purposes.

This spin connection can be used to construct the gravi-magnetic and gravi-
electric fields

Ei = ∂iω0 − ∂0ωi (3.142)

R

2
= εij∂iωj , (3.143)

where gravi-magnetic field coincides with the Gaussian curvature or half the
Ricci curvature. There are several general arguments that explain why the spin
connection has to be a part of the low energy description of the FQH states
[22, 46, 52]. Nevertheless, there is a confusion in the literature about the
Chern-Simons term that can be constructed from ωµ. Methods based on the
local Galilean invariance cannot say anything about the term or the coefficient
in front of it because it is too far in the gradient expansion. Methods of [46]
give the wrong prediction for the coefficient in front of the gravitational Chern-
Simons (gCS) term. The major result of this Thesis is the direct computation
of the coefficient. We notice that the mismatch between our computation and
the result of [46] is captured precisely by the gravitational anomaly of the edge
theory.
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3.16 Quadratic induced action in coordinate

space.

The induced action defined in (3.3) was computed as a regular expansion in
background fields Aµ(x, t) and gij(x, t) and their gradients. In the following
we expand the effective action to quadratic order in the external fields. It is
convenient to separate it as

W = W (1) +W (geom) +W (2) . (3.144)

The first contribution is given by

W (1) =

∫
d2xdt

√
g [−ε0 + ρ0A0 + s0ω0] , (3.145)

where ω0 is the time component of the spin connection and ε0, ρ0, and s0 are
the energy density, density, and the orbital spin density in the ground state.
They are given respectively by

ρ0 =
N

2πl2
, ε0 = ρ0 ~ωc

2N − gs
4

, s0 = ρ0~
N

2
. (3.146)

Magnetic length and cyclotron frequency are given in term of the constant
part of the background magnetic field B0 as

l2 =
~c
eB̄

, ωc =
eB̄

mc
. (3.147)

We notice here that although (3.145) includes all terms linear in Aµ, gij they
also contain several quadratic terms. Indeed, the expansion of the

√
g in terms

of the deviations from the flat background is

√
g = 1 +

1

2
δgii −

1

8

[
(δg11 − δg22)2 + 4δg12δg21

]
+ . . . (3.148)

and (3.145) should be re-expanded and truncated to the terms up to the second
order in fields.

The second term in (3.144) contains the topological and geometrical con-
tributions to the effective action (with ~ = c = e = 1)

W (geom) =
N

4π

∫ (
AdA+NAdω +

2N2 − 1

6
ωdω

)
, (3.149)

where we used the “form notation”
∫
AdA ≡

∫
d2xdtεµνλAµ∂νAλ. The coef-
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ficients of the three terms in (3.149) give, respectively the Hall conductivity
σH = N

2π
, the average orbital spin per particle s̄ = N

2
(corresponding to the

Wen-Zee shift S = N), and the gCS coefficient N(2N2−1)
24π

.
The following comment is in order. The action (3.1) is written in terms

of the gauge potential Aµ and metric gij. It does not require spin connection
ωµ as it is already covariant due to the fact that ψ is a scalar field. Thus,
the W (geom) should also depend solely on the vector potential and metric. It
is, however, instructive to write W (geom) in terms of Aµ and ωµ as we did in
(3.149). With the accuracy used in this paper the dependence on ωµ can be
restored with the help of linearized version of (3.140), i.e. ωi ↔ −1

2
εjk∂jδgik

and ω0 ↔ 1
2
εjkδgijδġik.

It is illuminating to present (3.149) as an explicit sum over Landau levels

W (geom) =
N∑
n=1

∫ [ 1

4π
(A+ s̄nω)d(A+ s̄nω)− 1

48π
ωdω

]
, (3.150)

where s̄n = 2n−1
2

is the orbital spin per particle on the n-th Landau level and
the last term is an anomalous gCS contribution. It is the same for all Landau
levels. It is equal to the non-relativistic limit of the well-known relativistic
gCS term [53]. The latter is related to the gravitational anomaly via the usual
anomaly inflow arguments. Its presence shows that the spin connection does
not simply combine with vector potential in the effective action as suggested
in [46, 52]. We speculate that the offset is related to the gravitational anomaly
experienced by the chiral edge modes in the curved space. In the next chapters
we will show the precise relation.

The physical meaning of Chern-Simons and Wen-Zee terms have been ex-
tensively discussed in literature. The relativistic gCS term is usually related
to the transverse heat transport via Luttinger’s argument [15, 54, 55]. It was
shown in [53] that this relations is misleading. We will elaborate on this issue
in the Chapter 6. The last term in (3.144) gives the remaining second order
terms

W (2) =

∫
d2xdtL(2) , (3.151)

L(2) =
1

2

(
AµΠµνAν + AµΘµ

ijδg
ij + δgijΛijklδg

kl
)
,

where differential operators Π,Θ,Λ encode electro-magnetic, mixed, and grav-
itational responses, respectively. These operators can be computed exactly as
infinite series in time and spatial derivatives or as series in frequency and
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wavevectors in Fourier representation.

4π

N
L(2) = ml2E2

i −
N

m
b2 − 3N

2
l2b(∂iEi)−

2N2 − 1

4m
bR ,

+
2N2 − 1

6
l2R(∂iEi) +

N(N2 − 1)

8m
R2 + . . . , (3.152)

whereR is the scalar curvature given byR = ∂i∂jδgij−∆δgii after linearization.
While the first three terms of the expansion (3.152) can be found in literature
[32] the other terms were computed in this Thesis for the first time [17].

The induced action presented above is the most compact way to summarize
linear responses. However, we find it convenient to have direct formulas for
observables such as charges, currents and stresses in a dynamic and inhomo-
geneous background. We present the explicit expressions and their physical
meaning for linear responses in next sections. For the illustration purposes
and to lighten up the equations in the following we consider only the lowest
Landau level filled, i.e. N = 1.

3.17 Response functions.

Below we will compute various response functions using the techniques devel-
oped above.

3.17.1 Density.

The expectation value of the electric charge density is given by the variational
derivatives of the action (3.3) with respect to the scalar potential

ρ(x) ≡ 1
√
g

δW

δA0(x)
= 〈ψ†ψ〉 . (3.153)

In the curved background the density has to be understood as number of
particles per invariant volume element

ρ− ρ0 =
1

2π

(
1 +

3− gs
4

l2∆

)
b

+
1

8π

(
1 +

1

3
l2∆

)
R +

ml2

2π

(
1 +

3

8
l2∆

)
(∂iEi) , (3.154)

where ∆ is the Laplacian.
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Integrating (3.154) over a closed manifold we obtain the shift of the degen-
eracy of the lowest Landau level due to topology of the manifold

Q =

∫
d2x
√
gρ =

∫
d2x
√
g

(
B

2π
+
R

8π

)
= Nφ +

1

2
χ , (3.155)

where Nφ is the total magnetic flux and χ is the Euler characteristics of the
manifold [46]. The correction to the density due to curvature gradients in
(3.154) is in agreement with Refs.[43, 56]. Extending (3.155) to the case of an
isolated conic singularity with the deficit angle θ we find

δQ =

∫
d2x
√
g (ρ− ρ0) =

1

8π

∫
d2x
√
gR =

1

4π
θ . (3.156)

The points of higher positive curvature attract particles in and increase local
density. Although the derivation presented here cannot be rigorously applied
to the case of conic singularity where curvature R = 2θδ(x) is highly singular,
the integral formula (3.156) is exact and can be checked by direct computation
of the density on a surface of the cone.

In the following we illustrate some structures arising as the time depen-
dence is introduced.

In the flat background and for N = 1, gs = 0 we have

ρ(ω)

ρ0

=
1

1− ω2

(
1 + l2b+ml4∂iEi

− 3

2
l2∆

2l2b+ml4∂iEi
4− ω2

+ . . .
)
,

where ω is measured in units of ωc. The overall pole at ω = 1 is expected even
in the presence of interactions as a consequence of the Kohn’s theorem. The
poles at ω = n, n = 2, 3, . . . corresponding to transitions between different
Landau levels occur in the next terms of gradient expansion.

Expanding in frequency and including the gravitational perturbations we
have the leading term (first order in time derivative)

ρ(x, t) = ρ(x, 0) +
3

16πml2
εij∂i∂kġik (3.157)

with ρ(x, 0) given by (3.154).
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3.17.2 Electric current

The expectation value of the electric current density is given by the variational
derivative of the action (3.3) with respect to the vector potential

J i(x) ≡ 1
√
g

δW

δAi(x)
=

〈
gij

2mi

[
ψ†Djψ − (Djψ)†ψ

]〉
. (3.158)

We find

〈Ji〉 = εij
(
σHEj +

2− gs
4πm

∂j

(
b+

R

8

))
, (3.159)

where the wavevector dependent Hall conductivity is given by

σH(k) =
1

2π

(
1− 3− gs

4
|kl|2 +

22− 9gs
96

|kl|4
)
. (3.160)

The correction of the order of k2 is in full agreement with general results for
Galilean invariant systems [37, 44]. The k4 term calculated here is new.

The second term in (3.159) is another new result of this work. It shows
that in low orders of gradient expansion the gradient of magnetic field and
curvature affect current similarly to the electric field. We also point out that
in agreement with [22] m→ 0 limit is regular for gs = 2.

3.17.3 Stress tensor

The expectation value of the stress tensor is given by

Tij ≡ −
2
√
g

δW

δgij(x)
=

1

2m

〈 (
Diψ)†Djψ + (Djψ)†Diψ

) 〉
− 1

4m
gij(∆g + gsB)

〈
ψ†ψ

〉
. (3.161)

Here ∆g is the Laplace-Beltrami operator defined as ∆gρ = 1√
g
∂i(g

ij√g∂jρ) 1.

Using (3.161) we find the stress tensor in the leading order in gradients

Tij =
1

8π
(∂iEj + ∂jEi) (3.162)

+ δij

(
ε0 −

4− gs
8π

∂kEk +
2− gs
8πml2

(
b+

R

8

))
.

1We remark here that the term − 1
4mgij∆gρ in (3.161) comes from the path integral

measure (3.3) while the rest of (3.161) can be obtained in conventional way from the variation
of (3.1) over the metric.
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The stress tensor has a regular limit m→ 0 limit for gs = 2.
The action (3.1) is Weyl-invariant. The Weyl symmetry implies a relation

between one point correlation functions of the energy density and pressure
(3.19)

ε =
1

2
T i
i , (3.163)

so (3.162) can be used to extract the energy density in the ground state in
the presence of external fields. Keeping only the lower gradients we obtain the
correction to the energy density

ε− ε0 = −4− gs
8π

∂iEi +
2− gs
8πml2

(
b+

R

8

)
. (3.164)

In the case of an isolated conic singularity we get a contribution to the total
energy δE

E0
= θ

8π
per singularity 2.

3.17.4 Hall viscosity of free fermions

Time-dependent part of the stress tensor is related to another quantity of great
interest: the Hall viscosity. We are looking for the parity odd terms in the
stress tensor containing no more than two spatial derivatives.

T oddij =
1

2
ηH(εikġkj + εjkġki) (3.165)

+
1

2
η

(2)
H l2 [εil∂l∂j + εjl∂l∂i] ġkk

where ηH = ηH(ω, k) is a generalization of the Hall viscosity to finite wave
number and frequency (here N = 1 and we measure ω in units of ωc)

ηH(ω, k)

η
(0)
H

=
4

4− ω2
+ |kl|2

(
1

1− ω2
− 6

4− ω2
+

6

9− ω2

)
.

Here the conventional Hall viscosity

ηH(ω = 0, k = 0) ≡ η
(0)
H =

1

2
ρ0s̄ . (3.166)

At the zero wavevector ηH(ω, k = 0)/η
(0)
H = 4/(4 − ω2) is in full agreement

with Ref. [37]. For the coefficient in front of the second tensor (second line of

2E0 = ε0/ρ0 is the energy per particle in the unperturbed state.
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Eq. 3.165) we have

η
(2)
H =

1

8
ρ0

(
2

1− ω2
− 4

4− ω2

)
. (3.167)

In the static limit and for general N we rewrite the expression for the Hall
viscosity as a sum over Landau levels

ηH(k, ω = 0) =
1

2πl2

N∑
n=1

(
s̄n
2

+
1

4

[
s̄2
n −

c

12

]
|kl|2

)
. (3.168)

One has to recall that c = 1 and that the orbital spin per particle at the n-th
Landau level s̄n = 2n−1

2
. We remark here that the gCS term gives a long wave

k2 correction to the Hall viscosity in a fashion similar to how the Wen-Zee
term produces the long wave correction to the Hall conductivity [44]. In fact,
the k2 correction to the Hall viscosity (3.168) comes solely from the gCS term.

We note, that the gCS term also corrects the value of the Hall viscosity
in the presence of constant background curvature R0. Indeed, the gCS term
gives a contribution

√
g 1

2
R0ω0 to the induced action, which results in δηH =

N(2N2−1)
96π

R0. Then the total value of the Hall viscosity (for N = 1) is given by

ηH =
s̄

2
ρ0 −

c

24

R

4π
(3.169)

The second term gives the correction due to the curvature of the background
and should be compared to (3.168). If the coefficient c is indeed the chiral
central charge then (3.169) suggests very non-trivial relation. One could de-
termine the chiral central charge (and, therefore, thermal Hall conductivity)
simply measuring the Hall viscosity on a curved sample.

Equation (3.169) is also in (somewhat surprising) correspondence with
Ref. [57], where the same (for N = 1) curvature-induced shift of the rela-
tivistic version of the Hall viscosity was calculated.

3.17.5 Hall viscosity and Berry curvature

It was shown by Avron et. al. [10] and Levay [11] that Hall viscosity (at the
time [10] called it Odd viscosity) as related to the Berry curvature on the space
of moduli of a torus. We will briefly pause to remind this result.

One considers a Schroedinger equation on a tours

~2

2m
gij(∂i − iAi)(∂j − iAj)ψ = Eψ , (3.170)
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where metric is chosen to be flat (that is Ricci curvature of the metric-compatible
affine connection vanishes). On a torus such metric is parametrized by as single
complex number τ known as modulus.

gij =

(
1
τ2

τ1
τ2

τ1
τ2

|τ |2
τ2

)
, (3.171)

The Berry curvature of the U(1) line bundle (described by ground state of
(3.170) ) on the space of τ is given by

Ω =
νs̄

2
Nφ

dτ1 ∧ dτ2

τ 2
2

=
1

4
Nφ

dτ1 ∧ dτ2

τ 2
2

. (3.172)

The Chern class of this connection is a fractional number and is given by
the integrated curvature

1

2π

∫
Ω =

Nφ

24
. (3.173)

The Berry phase computation proves that in principle the (average) Hall
viscosity is topologically protected since it is a Chern number of a moduli space
of a torus. This is similar to Hall conductance that is also a Chern number of
a certain U(1) bundle over a torus.

This computation must be contrasted to the computation we did in this
Chapter, where we have computed the local response function, while the Berry
phase computation gives average viscosity. Only the latter is topologically
protected and these quantities coincide for the integer quantum Hall states.

3.18 Outlook

In this Chapter we have developed techniques to derive the linear visco-elastic
and electo-magnetic response. The response is summarized in the induced
action, that is a gauge invariant functional of external fields. We have derived
this functional to quadratic order in external fields and to arbitrary order in
gradients of the external fields. With the functional at hand we have derived
the gradient corrections to various transport coefficients, that is corrections to
transport due to inhomogeneity of the external fields.

We believe that the geometric part of the induced action is a universal
characteristic of a topological phase, because the coefficients do not depend
on any energy scale in the problem and are given by dimensionless numbers.
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Thus we regard the equation

W (geom) =
N∑
n=1

∫ [ 1

4π
(A+ s̄nω)d(A+ s̄nω)− 1

48π
ωdω

]
(3.174)

=
ν

4π

∫
AdA+ 2s̄Adω + s2ωdω − c

48π

∫
Tr

(
ΓdΓ +

2

3
Γ3

)
,

as a major new result of this Chapter. Notice, that non-minimal couplings of
the original theory do not contribute to these terms (i.e. nothing depends on
gs). The second line is the most general induced action (keeping only the terms
with dimensionless coefficients) that one can write based on the symmetries
of the problem: charge and angular momentum conservation. For IQHE the
coefficients are given by

ν = N , (3.175)

s̄ =
N

2
, (3.176)

s2 =
N(4N2 − 1)

12
, (3.177)

vars = ν−1s2 − s̄2 =
N(N2 − 1)

12
, (3.178)

c = N (3.179)

where the last three coefficients were for the first time computed in this The-
sis. This is a full set of numbers that characterizes rotationally invariant
gapped topological phase with no other symmetry restrictions. To an extent
the remainder of the Thesis will focus on investigation of the origin of these di-
mensionless quantities. There are many interesting questions related to these
topological numbers: Are they topologically protected? Are they related to
anomalies of the edge gapless theory? Did we miss any important numbers?
Are these numbers quantized for a generic interacting system?...

The results related to the gravitational Chern-Simons term obtained in this
Chapter disagree with previous results derived from the effective Chern-Simons
TQFT by Wen and Zee [46]. In the next Chapter we will carefully analyze the
Wen and Zee derivation and find a slight oversight. We will explain how to fix
the oversight and derive the induced action for a variety of quantum Hall states
admitting effective description in terms of Chern-Simons topological quantum
field theory.
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Chapter 4

Induced Action for Fractional
Quantum Hall States

In this Chapter we will derive (3.175)-(3.179) for a number of interacting, frac-
tional quantum Hall states. The main tool will be the effective Chern-Simons
quantum field theory, which we will also derive from an interacting quantum
field theory using various tools such as flux attachment and parton construc-
tion. We will also clean up the old flat space versions of these constructions.

In the following we will study the interacting, non-relativistic, quantum
field theories. This view on a quantum Hall effect is complementary to the
trial wavefunctions [9] and some properties of the trail wave functions can be
derived directly from a quantum field theory via an appropriate mean field
approximation.

4.1 FQHE as a non-relativistic interacting quan-

tum field theory

The prototypical example of a quantum field theory we have in mind is

S = S0 + Sint , (4.1)

where S0 is the kinetic part and is given by the familiar expression

S0 =

∫
d2xdt

√
g

[
i

2
~ψ†∂0ψ −

i

2
~(∂0ψ

†)ψ+

+ eA0ψ
†ψ − ~2

2m
gij(Diψ)†Djψ

]
. (4.2)
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and where Sint is the interaction term, new to this Chapter

Sint =

∫
dtd2xd2y

√
g(x)

√
g(y)ψ†(x)ψ(x)V (d(x, y))ψ†(y)ψ(y) (4.3)

=

∫
dtd2xd2y

√
g(x)

√
g(y)ρ(x)V (d(x, y))ρ(y) , (4.4)

where V (x, y) is the interaction potential and d(x, y) is the shortest geodesic
distance between x and y. We will only consider small deviations from flat,
topologically trivial, space. In this case d(x, y) should be a well defined, sin-
glevalued function.

4.2 Flux attachment

In general the theory (4.1) is completely non-tractable: when the interaction
is strong we cannot use the perturbation theory; we cannot easily use the
mean field theory, since we do not know the state that will serve as a base
for the mean field. No controlled set of approximations is available. These
obstructions were the driving force behind the use of first quantized approach
and the trial wave functions.

After influential work of Zhang-Hansson-Kivelson [40] and Read [39] the
Landau-Ginzburg-Chern-Simons theory was developed. This theory provided
a way to guess a state around which the mean field theory is done. Later
on Lopez and Fradkin [58], using Polyakov’s [59, 60] statistics transmutation,
carefully explained how Chern-Simons theory can be derived on the second-
quantized language. We start by reviewing the flux attachment procedure and
explain how to derive the effective and induced actions from it.

The starting point is to consider a formally equivalent theory described by
the action

S ′ = S[A+ a] +
1

4π

1

2n

∫
ada . (4.5)

First, we want to argue that this modification of the action leaves all of the
physical quantities unchanged. That is, the partition functions before and
after the flux attachment coincide, at least in flat space. We have

Z[A] =

∫
DψDψ†e

i
~S[ψ;A] =

∫
DψDψ†Dae

i
~S
′[ψ;A,a] = Z ′[A] (4.6)

To be perfectly fair, the action (4.5) is not even well defined, since the level
of the Chern-Simons theory is not integer (we assume the field a is compact
gauge field) and equals 1

k
. To circumvent this problem we re-write the last
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term in (4.5) as∫
Da exp i

[
1

4πn

∫
a ∧ da

]
=

∫
DaDb exp i

[
−2n

4π

∫
b ∧ db+

1

2π

∫
b ∧ da

]
(4.7)

The total action then reads

S ′ = S[ψ;A+ a]− 2n

4π

∫
b ∧ db− 1

2π

∫
a ∧ db , (4.8)

where we have integrated by parts in the last term.

S = S0[ψ;A] +

∫
d3xJµaµ −

2n

4π

∫
b ∧ db− 1

2π

∫
a ∧ db (4.9)

Taking integral over aµ gives a delta function condition Jµ = 1
2π
εµνρ∂νbρ

or, more invariantly, J = 1
2π
∗ db. This relation can be inverted as

bρ = −2πεαβρ∂
αJβ (4.10)

Then as a result of the integration over aµ and bµ we get

S = S0[ψ;A] + 2πn

∫
εµνρJ

µ 1

∆
∂νJρ , (4.11)

Thus, the path integral of aµ is equivalent to multiplication of the partition
function by a phase

Z ′ = Z × exp

(
2πi× 2n

2
×
[∫

εµνρJ
µ 1

∆
∂νJρ

])
= Z. (4.12)

Thus we have Z ′ = Z, since the object in the brackets is the integer Gauss
linking number

∫
εµνρJ

µ 1
∆
∂νJρ.

4.3 Flux attachment in curved space

This derivation works only naively. In fact, the integral
∫
εµνρJ

µ 1
∆
∂νJρ equals

to the so-called writhing number W that equals to L−T , where L is the Gauss
linking number of the currents and T is the torsion of the curve; it is not a
topological invariant and only contributes if the currents J carry particles with
spin. It was shown [61] that given a framing of the ambient space eAµ the curve
can inherit this framing and then the torsion T can be expressed in terms of
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the spin connection of the framing eAµ [61] .

T =
1

2π

∫
dxiωi =

1

2π

∫
d3xJ iωi (4.13)

The only covariant version of this formula is

T =
1

2π

∫
d3xJµωµ (4.14)

Thus we obtain the “flux attachment identity”

Z ′ = Z × exp 2πi

(
2n

2

1

2π

∫
d3xJµωµ

)
(4.15)

In order to remove the phase factor we change the coupling to spin connection
as

S ′ = S[ψ;A+ a+ nω]− 2n

4π

∫
b ∧ db− 1

2π

∫
a ∧ db (4.16)

or This coupling introduces an additional factor of exp 2πi
(

2n
2

1
2π

∫
d3xJµωµ

)
to Z ′. This can be seen as follows

S ′[ψ;A+ a+ nω] ≈ S ′[ψ;A+ a] + n

∫
d3xJµωµ (4.17)

plugging this into the functional integral we obtain the required phase factor.
In conclusion, we have shown that going from S to S ′ (with simultaneous

coupling to spin connection) is a “trivial” operation, in a sense that it the same
as to do nothing. On a more detailed level it multiplies all of the correlation
functions by a factor of e2πiL, where L is an integer number. Nevertheless, the
action S ′ is a suitable starting point to build the mean field theory.

4.4 Mean field theory

First, we are going to describe the mean field theory in the flat space. The
starting point is the flux attached action S ′[ψ,A, a]. We are going to reduce
the interacting problem to a non-interacting one by a clever choice of the
background value of the statistical gauge field aµ. We start by examining the
stationary point of the action S ′ with respect to a0

ρ̄+
1

4πn
εij∂iaj ≡ ρ̄+

1

4πn
B = 0 , (4.18)
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we assume that the electrons have formed an incompressible state state at
filling fraction ν. Then the density is given by

ρ̄ =
ν

2πl2
=
νB̄

2π
. (4.19)

Combining these two relations we get

B = −nνB̄ (4.20)

We choose the background value of aµ so that the relation (4.20) is satisfied.
Now since electrons feel the total gauge field Aµ + aµ the total magnetic field
felt by electrons is

Btotal = B̄ + B = (1− 2nν)B̄ = νB̄ , (4.21)

depending on the sign of 2n the statistical magnetic field will either increase
or reduce the value of the real magnetic field. This equation illustrates the
meaning of the flux attachment. The statistical gauge field binds n fluxes of the
statistical gauge field to every electron, the composite object “electron + 2n
fluxes” is called composite fermion. These fluxes change the statistics by e2πin

and, therefore, the topological spin is changed by n, hence the coupling to spin
connection. The physical picture of the flux attachment is very transparent.

We can demand that the electrons will form an integer quantum Hall state
with respect to the new total magnetic field Btot. This is the mean field we
were looking for

ρ̄ =
1

2π
Btotal =

1− 2nν

2π
B̄ =

ν

2π
B̄ (4.22)

this is only possible when

ν =
1

2n+ 1
, (4.23)

which is precisely the Laughlin series! As a side note, we can also map IQHE
at ν = 1 into IQHE at ν = −1 by choosing the statistical magnetic field to be
B = −2B̄ (or, simply for n = −1) . This mapping will be important later on.

When the total magnetic field is adjusted so that composite fermions fill
precisely 1 Landau level the interaction do not matter and one can integrate
them out using the methods of the previous chapter. Indeed, using the induced
action (3.174) we obtain an effective theory of the Laughlin state (in flat space)

Seff =
1

4π
(A+ a) ∧ d (A+ a)− 2n

4π
b ∧ db− 1

2π
a ∧ db (4.24)
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Integrating out the statistical gauge fields a and b we obtain the induced action.

W =
1

4π

1

2n+ 1

∫
AdA , (4.25)

this give the Hall conductance

σH =
1

2n+ 1

1

2π
, (4.26)

which is the correct expression. Similar procedure can be done by filling N
Landau levels with the composite fermions. In this case one would obtain the
so-called Jain states.

There is, however, a problem when one attempts to implement the outlined
program in the curved space.

4.5 Inconsistency of flux attachment in curved

space

Here we consider a trivial example: we take IQHE with 1 filled Landau level.
We do not really need the meanfield or flux attachment to compute the induced
action. The answer is given by (3.174)

W0 =
1

4π

∫
A ∧ dA+

1

4π

∫
A ∧ dω +

1

4π

(
1

4
− 1

12

)∫
ω ∧ dω (4.27)

Nonetheless, as a sanity check it is useful to see if we can get the same
answer from the flux attachment. More precisely, we will be able to check
perturbatively whether attaching fluxes is the same thing as “doing nothing”.
Thus we attach −2 fluxes to every electron. This turns ν = 1 IQHE into
ν = −1 IQHE (as we have discussed before).

When the flux attachment is done we can integrate out the fermions using
the parity conjugate of (3.174). We have

W = − 1

4π

(
A+ a+ ω − 1

2
ω

)
∧ d
(
A+ a+ ω − 1

2
ω

)
+

1

48π
ω ∧ dω

− 2

4π
b ∧ db− 1

2π
a ∧ db , (4.28)

where the first line comes from (3.174) and the rest of the terms are doing the
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flux attachment according to (4.8). We shift the variable a→ a+ A+ 1
2
ω.

W = − 1

4π
a∧da− 1

2π
a∧db− 2

4π
b∧db+ 1

2π

(
A+

1

2
ω

)
∧db+ 1

48π
ω∧dω (4.29)

Integration over a yields

W =
1

4π
b ∧ db− 2

4π
b ∧ db+

1

2π

(
A+

1

2
ω

)
∧ db+

1

48π
ω ∧ dω (4.30)

= − 1

4π
b ∧ db+

1

2π

(
A+

1

2
ω

)
∧ db+

1

48π
ω ∧ dω (4.31)

Finally performing the b integral we get

W =
1

4π

(
A+

1

2
ω

)
∧ d
(
A+

1

2
ω

)
+

1

48π
ω ∧ dω (4.32)

This is the result for the induced action. A wary reader might notice that the
last term has wrong sign. It is not a typo or a sign error. There is a genuine
problem in the flux attachment. This is, in fact, the same problem that lead
to an error in the work of Wen and Zee [46]. The resolution of this problem is
another major result of this Thesis.

4.6 Framing anomaly

We give a very brief review of the framing anomaly tailored to our purposes.
The integration over the hydrodynamic Chern-Simons gauge field in the action
of the type Eq.(4.8) is done by substituting the solutions of equations of motion
back into the action. While it is true that stationary phase approximation for
the gaussian integral is exact there is a subtlety that arises when Chern-Simons
theory is defined on a curved space.

It is well known that the Chern-Simons theory is topological at the classical
level, i.e. it does not depend on the metric and has vanishing stress-energy
tensor. However, this is not true for the full quantum theory [62, 63]. The
reason is that while the action is metric-independent, the path integral measure
does depend on metric in a non-trivial way. Indeed, the definition of the
path integral measure DA requires gauge fixing, which should be defined in
a covariant way to avoid dependence of the partition function on the choice
of coordinates. For example, the gauge fixing can be done by including an
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additional gauge fixing term into the action

Sφ =

∫
dV φDµAµ , (4.33)

with the integration over the auxiliary field φ included in the path integral.
The term Eq.(4.33) depends on the geometry of the manifold through both
covariant derivative Dµ and the invariant space-time integration measure dV .
The term of Eq.(4.33) is understood as a part of the definition of the integration
measure DAµ.

The dependence of the full partition function Z on the metric of the man-
ifold can be quantified [62, 63]. Consider the partition function of the Chern-
Simons theory with arbitrary compact, semi-simple group G at level k. Its
partition function is given by [62]

Z =

∫
DADφ exp

{
−i k

4π

∫
M

Tr

(
AdA+

2

3
A3

)
− iSφ

}
= τ exp

{
−i c

96π

∫
M

Tr

(
ΩdΩ +

2

3
Ω3

)}
, (4.34)

where τ is the Ray-Singer analytic torsion [64]. The latter is a topological
invariant and is not important for the upcoming discussion. The phase of the
partition function Z is given by the framing anomaly and c is the chiral central
charge given by

cG =
k dim(G)

k + h
(4.35)

In Eq.(4.34) Ωa
b,µ is the Levi-Civita SO(1, 2) spin connection [65]. We

denote it by Ω to avoid the confusion with the SO(2) spin connection ω (see
below). In this work we are interested in quantum Hall states, which are
inherently non-relativistic systems. For this reason we turn off the temporal
components of the spin connection Ωa

0,µ = Ω0
b,µ = 0 because non-relativistic

physical systems generally do not couple to these components. With this
choice the SO(2) component of the spin connection ωµ ≡ Ω1

2,µ is precisely the
one used in Eq.(3.174). Then, we obtain

c

96π

∫
M

Tr

(
ΩdΩ +

2

3
Ω3

)
=

c

48π

∫
M

ωdω . (4.36)
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4.6.1 Relation to the gravitational anomaly.

Here we emphasize the relation of the framing anomaly to the edge theory of
FQHE. The edge theory has a contribution from the gravitational anomaly
[66, 67] which can be related to the bulk gravitational Chern-Simons term in
the following way. First, let us rewrite the gravitational Chern-Simons term
Eq.(4.36) replacing the SO(1, 2) spin connection Ω by Christoffel symbols as
[68]

c

96π

∫
Tr

(
ΩdΩ +

2

3
Ω3

)
=

c

96π

∫
Tr

(
ΓdΓ +

2

3
Γ3

)
− c

288π

∫
Tr (e−1de)3 , (4.37)

The last term in this relation describes the winding number of the dreibeins
e and is irrelevant here since the variations of this term on a closed manifold
vanish [69].

The gravitational Chern-Simons term written in terms of Christoffel sym-
bols Γµν,ρ is not invariant with respect to changes of coordinates in the presence
of a boundary and induces the gravitational anomaly of the edge theory [70].
Thus, in general expressions such as Eq.(3.174), we present the contributions
of the framing anomaly in terms of Christoffel symbols to emphasize the re-
lation to the gravitational anomaly and, in turn, to the thermal Hall effect
[15].

In summary, every integration over a statistical Chern-Simons field must
be accompanied by adding a gravitational CS term with the coefficient given
by the chiral central charge of the Kac-Moody algebra of the gauge group.

4.7 Integer quantum Hall state

Here we consider a trivial example: we take IQHE with 1 filled Landau level.
We do not really need the meanfield or flux attachment to compute the induced
action. The answer is given by (3.174)

Ab before we attach −2 fluxes to every electron. This turns ν = 1 IQHE
into ν = −1 IQHE (as we have discussed before).

When the flux attachment is done we can integrate out the fermions using
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the parity conjugate of (3.174). We still have have

W = − 1

4π

(
A+ a+ ω − 1

2
ω

)
∧ d
(
A+ a+ ω − 1

2
ω

)
+

1

48π
ω ∧ dω

− 2

4π
b ∧ db− 1

2π
a ∧ db , (4.38)

where the first line comes from (3.174) and the rest of the terms are doing the
flux attachment according to (4.8). We shift the variable a→ a+ A+ 1

2
ω.

W = − 1

4π
a∧da− 1

2π
a∧db− 2

4π
b∧db+ 1

2π

(
A+

1

2
ω

)
∧db+ 1

48π
ω∧dω (4.39)

This is where things start to change. Integration over a yields

W =
1

4π
b ∧ db− 2

4π
b ∧ db+

1

2π

(
A+

1

2
ω

)
∧ db

+
1

48π
ω ∧ dω − 1

48π
ω ∧ dω (4.40)

= − 1

4π
b ∧ db+

1

2π

(
A+

1

2
ω

)
∧ db , (4.41)

where the last term in the first line came from the framing anomaly.
Finally performing the b integral we get

W =
1

4π

(
A+

1

2
ω

)
∧ d
(
A+

1

2
ω

)
− 1

48π
ω ∧ dω , (4.42)

where, again, the last term came from the framing anomaly. This is the correct
result for the induced action. While it might seem that the framing anomaly
is tailored to fix only IQHE problem, it actually fixes all such problems we
have encountered in all of the states we have considered.

4.8 Laughlin states

We solve the flux constraint equation by demanding that the composite fermions
fill 1 Landau level, i.e.

Btotal = 2πρ̄ = νB̄ = B̄(1− 2pν) (4.43)

This is solved by ν = 1
2p+1

. This is Laughlin series.
Alternatively we could have asked that the composite fermions fill −1 Lan-
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dau levels. Then We solve this equation by demanding that the composite
fermions fill 1 Landau level, i.e.

Btotal = −2πρ̄ = νB̄ = B̄(1− 2pν) (4.44)

This is solved by ν = 1
2p−1

. This is again Laughlin series. Let us emphasize
that these are two different meanfields for the same Laughlin state. So the
induced action should coincide (at least in the lowest orders).

In this Section we will derive the induced action for using both types of
the flux attachment and then show that the induced actions again coincide
because of the contribution of the framing anomaly.

4.8.1 Meanfield around νeff = −1

We start with the meanfield around νeff = −1 as it is very similar to the
calculation of the previous section. We integrate out the composite fermions
to get

W = − 1

4π

(
A+ a+ pω − 1

2
ω

)
∧ d
(
A+ a+ pω − 1

2
ω

)
+

1

48π
ω ∧ dω

− 2p

4π
b ∧ db− 1

2π
a ∧ db , (4.45)

notice that the difference now in the coefficient of b-field Chern-Simons action.
After the shift of variables we have

W = − 1

4π
a∧da− 2p

4π
b∧db− 1

2π
a∧db+

1

2π

(
A+ pω − 1

2
ω

)
∧db+

1

48π
ω∧dω

(4.46)
Integration over a gives

W =
1

4π
b ∧ db− 2p

4π
b ∧ db+

1

2π

(
A+ pω − 1

2
ω

)
∧ db+

1− c−1

48π
ω ∧ dω

= −2p− 1

4π
b ∧ db+

1

2π

(
A+ pω − 1

2
ω

)
∧ db+

1− c−1

48π
ω ∧ dω (4.47)

Integration over b gives expected answer (for c−1 = 1).

W =
1

4π

1

2p− 1

(
A+

2p− 1

2
ω

)
∧d
(
A+

2p− 1

2
ω

)
+

1− 2c−1

48π
ω∧dω , (4.48)

here we kept c−1 before replacing it by 1. This gives the expected value of the
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chiral central charge for the Laughlin state.

4.8.2 Meanfield around νeff = 1

We now choose ν = 1. In this background the fermionic determinant gives

W =
1

4π

(
A+ a+ pω +

1

2
ω

)
∧ d
(
A+ a+ pω +

1

2
ω

)
− 1

48π
ω ∧ dω

− 2p

4π
b ∧ db− 1

2π
a ∧ db (4.49)

Shifting the variables

W =
1

4π
a∧ da− 1

2π
a∧ db− 2p

4π
b∧ db+

1

2π

(
A+ pω +

1

2
ω

)
∧ db− 1

48π
ω ∧ dω

(4.50)
Integrating over a we have

W = − 1

4π
b ∧ db− 2p

4π
b ∧ db+

1

2π

(
A+ pω +

1

2
ω

)
∧ db− 1 + c1

48π
ω ∧ dω

= −2p+ 1

4π
b ∧ db+

1

2π

(
A+ pω +

1

2
ω

)
∧ db− 1 + c1

48π
ω ∧ dω (4.51)

Finally integrating out b

W =
1

4π

1

2p+ 1

(
A+

2p+ 1

2
ω

)
∧ d
(
A+

2p+ 1

2
ω

)
− 1 + c1 + c−1

48π
ω ∧ dω

(4.52)
In the last equation c1 and c−1 cancel each other. Also, fixing ν = 1

2m+1
we

get different values for p depending on the sign of νeff . For νeff = −1 we have
p = m + 1 and for νeff = 1 we have p = m. Thus (4.52) and (4.48) are the
same and given by

W =
1

4π

1

2p+ 1

(
A+

2p+ 1

2
ω

)
∧ d
(
A+

2p+ 1

2
ω

)
− 1

48π
ω ∧ dω (4.53)

Again, we see that framing anomaly ensures the self-consistency of the
calculation.
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To summarize the important numbers for the Laughlin series are

ν =
1

2p+ 1
, (4.54)

s̄ =
2p+ 1

2
, (4.55)

s2 =

(
2p+ 1

2

)2

, (4.56)

vars = 0 , (4.57)

c = 1 . (4.58)

These results are in agreement with the Berry phase computation of [71].
It was shown by Bradlyn and Read that in general conformal block trial

wave functions that come from what they call a “diagonal CFT” [71, 72]

vars = 0 . (4.59)

4.9 Jain states

The Jain states we reintroduced in [73] and were exceptionally successfull in
explaining the observed quantum Hall plateaus at fractional fillings. Coun-
trary to Laughlin states we cannot perform the self-consistency checks any-
more because the different mean fields will describe genuinely different Jain
sequences.

From the flux attachment perspective the Jain sequences are obtained by
either filling N or −N Landau levels with composite fermions.

4.9.1 “Quiver” Chern-Simons gauge theory

“Quiver” gauge theory is a fancy term for a gauge theory with a gauge group
of the form

U(1)× U(1)× . . .× U(1) . (4.60)

This kind of Chern-Simons theory allows to encode any abelian FQH state.
We will explain how to integrate out a “quiver” Chern-Simons given by an
arbitrary, integer valued, K-matrix. Consider an action

SK =

∫
d3x

[
1

4π
Kijαi ∧ dαj +

1

2π
αi ∧ tidA

]
, (4.61)
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where A is an arbitrary abelian external field and αi is a compact U(1) gauge
field. The EoM give

Kijαj = −tiA , or αj = −K−1
nj tnA (4.62)

Plugging this back we have

WK =

∫
d3x

[
− 1

4π
tiK

−1
ij tjA ∧ dA+

sign(K)

48π
ω ∧ dω

]
, (4.63)

where sign(K) stands for the signature of the K-matrix, that is number of
positive eigenvalues minus the number of negative eigenvalues.

4.9.2 ν = N
2pN+1 Jain sequence.

We now proceed with the Jain states that are obtained by filling N Landau
levels of composite fermions. They correspond to taking ν = N

2pN+1
. This time

we take fermionic functional integral over the electrons that fill N Landau
levels. The answer is given by (3.174)

W =
1

4π

N∑
n=1

[(
A+ a+ pω +

2n− 1

2
ω

)
∧ d
(
A+ a+ pω +

2n− 1

2
ω

)
− 1

48π
ω ∧ dω

]
− 2p

4π
b ∧ db− 1

2π
a ∧ db (4.64)

We proceed with re-writing (4.64) as follows

W =
1

4π
(Na ∧ da− 2a ∧ db− 2pb ∧ db)− 1

2π
b ∧ d

(
A+

N + 2p

2
ω

)
+

1

4π

(
NA ∧ dA+ 2

N∑
k=1

2k − 1 + 2p

2
A ∧ dω +

N∑
k=1

(
2k − 1 + 2p

2

)2

ω ∧ dω

)

− 1

4π

NA ∧ dA+ 2
N∑
k=1

2k − 1 + 2p

2
A ∧ dω +

1

N

(
N∑
k=1

2k − 1 + 2p

2

)2

ω ∧ dω


− N

48π
ω ∧ dω , (4.65)
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where we have used

N

4π
a ∧ da +

N

4π
a ∧ d

(
A+

N + 2p

2
ω

)
=

=
N

4π

[
(a+

(
A+

N + 2p

2

)]
∧ d
[
a

(
A+

N + 2p

2

)]
(4.66)

− 1

4π

(
NA ∧ dA+ 2

N∑
k=1

2k − 1 + 2p

2
A ∧ dω

+
1

N

(
N∑
k=1

2k − 1 + 2p

2

)2

ω ∧ dω

 (4.67)

We integrate (4.65) over a and b using (4.63) with A = A + N+2p
2
ω. The

“K-matrix” is given by

K =

(
N −1
−1 −2p

)
and sign(K) = 0 and tiK

−1
ij tj = − N

2pN + 1
(4.68)

We have then

W =
1

4π

N

2pN + 1

(
A+

N + 2p

2
ω

)
∧ d
(
A+

N + 2p

2
ω

)
+

1

48π
N(N2 − 1)ω ∧ dω − N

48π
ω ∧ dω , (4.69)

where we have used a marvelous identity

N∑
k=1

(
2k − 1 + 2p

2

)2

− 1

N

(
N∑
k=1

2k − 1 + 2p

2

)2

=
N(N2 − 1)

12
(4.70)

The equation (4.69) is the induced action for the positive Jain series. We
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again emphasize the topological numbers

ν =
N

2pN + 1
, (4.71)

s̄ =
N + 2p

2
, (4.72)

s2 =
N

12

(
N2 − 1 +

3(N + 2p)2

1 + 2Np

)
, (4.73)

vars =
N(N2 − 1)

12
, (4.74)

c = N . (4.75)

We emphasize that orbital spin variance vars does not vanish. This was
expected since Jain series cannot be written as conformal blocks in any CFT.

4.9.3 ν = N
2pN−1 Jain sequence.

We demand that composite fermions fill N Landau levels of opposite chirality.
That is we direct the magnetic field into an opposite way. We have

− ν

N
B0 = B0(1− 2pν) (4.76)

This is solved by ν = N
2pN−1

. This series is more interesting since it has ν = 2
3
, 3

5

in it for which there is a violation of the Wiedeman-Franz law found by Kane
and Fisher [14]. Integrating out the composite fermions gives us (notice the
signs)

W = − 1

4π

N∑
n=1

[(
A+ a+ pω − 2n− 1

2
ω

)
∧ d
(
A+ a+ pω − 2n− 1

2
ω

)
+

1

48π
ω ∧ dω

]
− 2p

4π
b ∧ db− 1

2π
a ∧ db (4.77)

Going through the same steps we get to the following result

W =
1

4π

N

2pN − 1

(
A+

−N + 2p

2
ω

)
∧ d
(
A+

−N + 2p

2
ω

)
− 1

48π
N(N2 − 1)ω ∧ dω +

(N + sign(K))

48π
ω ∧ dω , (4.78)
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with

K =

(
−N −1
−1 −2p

)
and sign(K) = ±2 and tiK

−1
ij tj = − N

2pN − 1
(4.79)

The equation (4.78) is the induced action for the negative Jain series. We
again emphasize the topological numbers

ν =
N

2pN − 1
, (4.80)

s̄ =
−N + 2p

2
, (4.81)

s2 = −N
12

(
N2 − 1 +

3(−N + 2p)2

1− 2Np

)
, (4.82)

vars = −N(N2 − 1)

12
, (4.83)

c = 2−N . (4.84)

We emphasize that orbital spin variance vars does not vanish. This was
expected since Jain series cannot be written as conformal blocks in any CFT.

4.9.4 ν = 2/3 state

The equation (4.78) is quite powerful. Consider ν = 2
3
. It is described by

N = 2 and p = 1. For these values K-matrix has eigenvalues −1,−3 and
signature sign(K) = −2. Then we get

W =
1

4π

2

3
A ∧ dA− 1

16π
ω ∧ dω +

0

48π
ω ∧ dω (4.85)

So assuming that the last gravitational Chern-Simons term is responsible
for the gravitational anomaly we have c = 0 and vanishing thermal conductiv-
ity - exactly what was predicted by Kane and Fisher.

4.9.5 ν = 3/5 state

The equation (4.78) is quite powerful. Consider ν = 3
5
. It is described by

N = 3 and p = 1. For these values K-matrix has eigenvalues −1,−3 and
signature sign(K) = −2. Then we get

W =
1

4π

3

5

(
A+

−1

2
ω

)
∧ d
(
A+

−1

2
ω

)
− 1

2π
ω ∧ dω +

1

48π
ω ∧ dω , (4.86)
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Again, assuming that the last gravitational Chern-Simons term is the one
responsible for the gravitational anomaly we have c = −1 and the thermal

conductivity KH = −π2

3

k2
B

h
T - exactly what was predicted by Kane and Fisher.

We will talk about the thermal transport at great length in the next chap-
ter.

4.10 Composite Boson theory

We obtain the consistent gravitaional Chern-Simons term from composite bo-
son theory in the presence of the curved background geometry [61] for a few
Abelian FQH states, which can be easily generalized to any heirarchy state.

We start with the Laughlin state at the filling ν = 1
m
, m ∈ 2Z + 1. In

the composite boson theory, we attach m-flux quanta to the electron to form
a composite boson. After flux attachment, we perform the average flux ap-
proximation in which we smear out the flux attached to the composite boson
onto the two dimensional space uniformly. Then it is clear, in this approxima-
tion, that the composite boson sees no background magnetic field in average
and therefore condenses into a superfluid state (more precisely, into the Higgs
phase of the fluctuating internal gauge fields). After integrating out the phase
and density fluctuation of the boson field, we arrive with the hydrodynamical
theory of the Laughlin state,

L = −m
4π
bdb− 1

2π
adb+

1

2π
(A+ a+

m

2
ω)dα. (4.87)

Here α field is introduced as the hydrodynamic gauge field to parametrize the
conserved electronic current,

J =
1

2π
dα. (4.88)

Integrating out the gauge fields {aµ, bµ, αµ} and taking care of the framing
anomaly associated with the Chern-Simons terms of {aµ, bµ, αµ}, we obtain,

L =
1

4mπ
(A+

m

2
ω)d(A+

m

2
ω)− 1

48π
ωdω. (4.89)

This is the result for the Laughlin state at ν = 1
m

. We can obtain the heirarchy
state by condensing quasiparticles on top of the Laughlint states.

In the Laughlin state, the quasiparticle current jqpµ couples to the hydrody-
namical gauge field as Lcoupling = tαµj

qp
µ , t = ±1 for quasiparticle and quasihole

currents. We apply flux attachment procedure to the quasiparticle currents.
Suppose we attach n-flux quantum (n ∈ 2Z) to the quasiparticle, the compos-

81



ite quasiparticle condenses into a superfluid state. This generically gives rise
a heirarchy state. We present a few cases below.

4.10.1 ν = 2/5 state

We consider t = 1, n = 2,m = 3 which describes the FQH state at the filling
1

3−1/2
= 2

5
. Following the above discussions and references, we find the effective

theory

L = − 3

4π
αdα− 1

2π
(A+

3

2
ω)dα− 2

4π
cdc+

1

2π
(α− 2

2
ω)dc,

= − 1

4π
aIKIJda

J − 1

2π
AtJdaJ − 1

2π
ωsJdaJ ,

K =

(
3 −1
−1 2

)
, ai = (α, c), ti = (1, 0), si = (3/2, 1). (4.90)

Here c is introduced as the hydrodynamic gauge field for the conserved quasi-
particle current. The signature of the K-matrix is positive and thus we finally
obtain by taking the framing anomaly into account,

L =
2

5
× 1

4π
(A+ 2ω)d(A+ 2ω) +

1

8π
ωdω − 2

48π
ωdω,

=
2∑
l=1

1

4π
(A+ ω +

(2l − 1)

2
ω)d(A+ ω +

(2l − 1)

2
ω)

− 1

4π(2 + 1/2)
(

2∑
l=1

(A+ ω +
(2l − 1)

2
ω))d(

q∑
l=1

(A+ ω +
(2l − 1)

2
ω))− 2

48π
ωdω.

4.10.2 ν = 2/3 state

In the same way, if we choose t = −1, n = 2,m = 1, the theory describes a
first hierarchy state at the filling fraction ν = 1

1+1/2
= 2

3

L = − 1

4π
αdα− 1

2π
(A+

1

2
ω)dα +

2

4π
cdc− 1

2π
(α− 2

2
ω)dc,

= − 1

4π
aJKIJda

J − 1

2π
AtJdaJ − 1

2π
sJωdaJ ,

K =

(
1 1
1 −2

)
, aI = (α, c), tI = (1, 0), sI = (1/2,−1). (4.91)
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This K matrix has no net chirality, i.e., the signature is zero. Hence, integrat-
ing out the gauge fields, we obtain

L =
2

12π
AdA− 1

8π
ωdω,

=
1

4π

(
A+

1

2
ω

)
d

(
A+

1

2
ω

)
− 1

12π

(
A+

3

2
ω

)
d

(
A+

3

2
ω

)
,(4.92)

which is consistent with the composite fermion description.

4.11 Arbitrary abelian states

In the general case an abelian FQH state is described by an effective quiver
Chern-Simons TQFT copled to the space curvature and electromagnetic field
via minimal couplings to the vector potential and SO(2) spin connection

Seff =

∫
d3x

[
1

4π
Kijαi ∧ dαj +

qi
2π
αi ∧ dA+

si
2π
αi ∧ dω

]
, (4.93)

Integrating out statistical gauge fields and adding the framing anomaly we
obtain the induced action is given by

W = WK +Wanom , (4.94)

WK =
1

4π

∫ (
qTA+ sTω

)
K−1d (qA+ sω) , (4.95)

Wanom = − c

96π

∫
Tr

(
ΓdΓ +

2

3
Γ3

)
, (4.96)

From this action we read off the topological numbers

ν = qTK−1q (4.97)

s̄ = ν−1qTK−1s =
qTK−1s

qTK−1q
(4.98)

s2 = ν−1sTK−1s =
sTK−1s

qTK−1q
, (4.99)

vars =
qTK−1q · sTK−1s− (qTK−1s)2

(qTK−1q)2
, (4.100)

c = signK (4.101)
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There is a good reason to believe that every possible abelian quantum Hall
state can be described by an abelian Chern-Simons theory. If we accept this
conjecture then we have solved the problem of computing these topological
numbers for all abelian quantum Hall states. We have to emphasize that the
number qi and ti have to be computed from a microscopic model. In the
previous sections we have used the flux attachment combined with the mean
field theory to compute them.

Sadly, these tool are not sufficient to even scratch the surface of the world
of nonabelian quantum Hall states. We turn to these states in the next section.

4.12 What is non-abelian quantum Hall state?

We are not going to indulge in the definition of fractional statistics too much,
but we will say a few general words about statistics of excitations. One of
the advantages of the first-quantized approach to FQHE is that it allows to
construct wavefunctions of “collective”, gapped excitations (we explained this
point in the introduction). The properties of the excitations are particularly
transparent if the wave function is written as a conformal block in a rational
conformal field theory.

For example, Laughlin state at filling 1
q

can be written as a conformal block
in c = 1 chiral boson theory

Ψ({zi}) =
〈 N∏
i=1

ei
√
qφ(zi) × e−

i
2π
√
q

∫
d2zφ(z)

〉
(4.102)

=
N∏
i=1

(zi − zj)qe−
1
4

∑
i |zi|2 (4.103)

where φ is free scalar field with logarithmic propagator.

In order to construct excitations one has to insert a vertex operator e
i
rφ(w)√

q

into the correlation function. This operator is a primary field for the values
r = 0, 1, . . . , q − 1. With this insertion the wavefunction takes form

Ψ(w, {zi})q.h. =
〈
e
i
rφ(w)√

q

N∏
i=1

ei
√
qφ(zi) × e−

i
2π
√
q

∫
d2zφ(z)

〉
(4.104)

=
∏
i

(zi − w)r
N∏

i,j=1

(zi − zj)qe−
1
4

∑
i |zi|2−

r
4q
|w|2 (4.105)
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and similarly for several quasi-holes

Ψ({wk}, {zi})q.h. =
〈∏

k

e
i
rφ(wk)√

q

N∏
i=1

ei
√
qφ(zi) × e−

i
2π
√
q

∫
d2zφ(z)

〉
(4.106)

exchanging the position of two quasi-holes multiplies the wavefunction by a
phase factor after subtraction of Aharonov-Bohm effect

e2πi 1
q , (4.107)

as can be deduced from the properties of the primary fields in free boson
CFT. Thus quasi holes are abelian anyons, that is quasi-particles with abelian
statistics that is nor fermion nor boson. Possibility of the existence of such
statistics was first pointed out by Leinaas and Myrheim in 1976 in [74], only
5 years before the discovery of integer quantum Hall effect and only 7 years
before Laughlin wrote a wavefunction that supported fractional excitations.
In the case of IQHE q = 1 and the quasi holes are real holes with charge +1
and fermionic statistics.

Moore and Read suggested that the correspondance between trial states
and CFT correlators should be taken very seriously and trial wave functions
can be guessed by studying various rational conformal field theories (RCFT).
In [9] they suggested a construction of the “pfaffian” state (now called Moore-
Read state). To construct this state one has to consider the correlation func-
tion in conformal field theory U(1) × Ising, where U(1) denotes the chiral
boson theory. More explicitly the correlation function is given by

ΨMR =
〈 N∏
i=1

ψ(zi)
〉
Ising
×
〈 N∏
i=1

ei
√
qφ(zi)× e−

i
2π
√
q

∫
d2zφ(z)

〉
boson

(4.108)

similarly one can construct a wave function with local excitations. These
excitations can only appear in pairs due to flux quantization (their charge is
half the minimal charge allowed in the theory)

ΨMR =
〈 N∏
i=1

ψ(zi)
〉
Ising
×
〈
e
i
rφ(w1)√

q σ(w1)e
i
rφ(w2)√

q σ(w2)
N∏
i=1

ei
√
qφ(zi)×e−

i
2π
√
q

∫
d2zφ(z)

〉
boson

(4.109)
Moore and Read have shown that two pairs of such excitations have non-
abelian statistics [9]. The reason it is possible is that the state with 2 pairs of
such excitations is doubly degenerate and a clever exchange of the excitations
induces a non-abelian transformation in the degenerate space.

85



In general, in 2D the (quasi-)particle statistics is a representation of a
braid group. If the braids live in any dimension except 2 the representation
is either trivial or “anti-trivial” which corresponds to bosons and fermions
respectively. In 2D the braid group is extremely rich and possesses many
inequivalent abelian and non-abelian irreducible representations. In higher
dimensions it is still possible to have non-trivial statistics, but one has to
consider extended objects like strings, loops, and branes.

4.13 Parton construction

In order to find a way to do a mean field theory with non-abelian states Wen
[75] has introduced a parton construction. In this Section, we introduce the
projective parton construction [75, 76] which is by now standard, for Laughlin
states and Zk non-Abelian FQH states at filling ν = k

k+2
(which can be gen-

eralized to the states at the filling ν = k
Mk+2

following [76]). Furthermore, we
will also show that the geometric responses can be derived for the FQH states
from the projective parton constructions as shown in [61].

To demonstrate how the projective parton method works for the Laughlin
state, we first consider an example of the bosonic Laughlin state at filling
ν = 1/2. For this state, we fractionalize a bosonic field b into the two fermionic
partons ψi, i = 1, 2 carrying 1

2
electric charge.

b(z) = ψ1(z)ψ2(z) (4.110)

The Hilbert space of the partons ψi has unphysical states, and we need to
project out those unphysical states by requiring that ρb = 〈b†b〉 and ρψj =

〈ψ†jψj〉, j = 1, 2 are the same, i.e. ρb = ρψj , j = 1, 2. This projection can be
implemented by introducing an internal U(1) gauge field aµ. Under the U(1)
gauge field, ψ1 and ψ2 are oppositely charged because the fundamental boson
b should be invariant under the U(1) gauge transformation. To describe the
Laughlin state, we choose the mean field state where the fermionic partons
ψi are in ν = 1 state. Furthermore, the partons are scalars and thus do not
minimally couple with the spin connection.

L =
2∑
j=1

√
g

[
i

2

((
Dj

0ψj(x)
)†
ψj − ψ†j(x)

(
Dj

0ψj(x)
))
− 1

2
(Dj

aψj(x))†gab(Dj
bψj(x))

]
(4.111)

in which Dj
µ = dµ + i1

2
Āµ + i1

2
δAµ ± iaµ are the covariant derivatives of the

fermionic partons ψj, j = 1, 2 (+iaµ for ψ1 and −iaµ for ψ2), and Ā (δA) is
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the average gauge field parametrizing the uniform magnetic field (the probe
field). We integrate out the partons and obtain the effective theory

L =
2∑
i=1

[
1

4π

(1

2
A+

1

2
ω ± a

)
d
(1

2
A+

1

2
ω ± a

)
− 1

48π
ωdω

]
=

2

4π

(1

2
A+

1

2
ω
)
d
(1

2
A+

1

2
ω
)

+
2

4π
ada− 2

48π
ωdω, (4.112)

in which the first line is obtained by integrating out the partons ψj, j = 1, 2

at filling ν = 1. Then the second line follows by identifying ρψj = ρb, j = 1, 2,
a constraint of the partons in construction (4.110), and expand the Chern-
Simons terms, the first term in the second sum in the first line. Notice that
there is no coupling between the internal gauge field aµ and the “probe” fields
{Aµ, ωµ}. Now we integrate out the internal gauge field aµ and, following the
prescription of Witten on the frame anomaly, we find

L =
2

4π

(1

2
δA+

1

2
ω
)
d
(1

2
δA+

1

2
ω
)
− 2

48π
ωdω +

1

48π
ωdω,

= +
2

4π

(1

2
A+

1

2
ω
)
d
(1

2
A+

1

2
ω
)
− 1

48π
ωdω

= +
1

4π

1

2

(
A+ ω

)
d
(
A+ ω

)
− 1

48π
ωdω. (4.113)

The last term in the first line, Chern-Simons term of the spin connection,
emerges from the frame anomaly of integrating out the gauge field aµ. The
second and third lines follow by the elementary algebra. Now we compare with
the effective actions of general quantum Hall states to identify the important
topological quantum numbers of the fluid

L =
ν

4π
(A+ s̄ω)d(A+ s̄ω)− c

48π
ωdω. (4.114)

in which ν is the filling factor, s̄ is the orbital spin, and c is the chiral central
charge of the edge state of the quantum Hall state.

Now by comparing Eq.(4.113) and Eq.(4.114), we notice that the orbital
spin s̄ = 1, with the known value of the spin of the Laughlin state, and ν = 1

2
,

and the central charge c = 1 are correctly reproduced.

4.13.1 Laughlin series

for a general Laughlin state at filling 1/k,

Ψ = f1f2 · · · fk, (4.115)
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in which k ∈ 2Z + 1, then the fundamental particle Ψ is fermionic, and
if k ∈ 2Z, then the particle is bosonic. The partons fj, j = 1 · · · k are
fermionic and carry the electric charge 1/k. All the partons are in the in-
teger quanutm Hall state at the filling ν = 1 for the Laughlin state. Formally,
the mean-field state is invariant (or can be extended to be invariant) under
SU(k) gauge group, but instead of using the full SU(k) invariance, we use
Uk−1(1) = U(1)×U(1) · · ·U(1) gauge group, which is enough for the Laughlin
state. We assume that the projective partons are spinless (in that the partons
do not couple minimally to the spin connection) and see the same metric as
the fundamental electron. Then integrating out the fermionic partons, we can
obtain the effective theory in terms of the geometric deformations and gauge
fields.

To demonstrate how this can be done explicitly, we introduce the internal
gauge fields as {a1,µ, a2,µ, · · · ak−1,µ} in the gauge group Uk−1(1) = U(1) ×
U(1) · · ·U(1). Then the parton fi couples to the gauge field

βi,µ = ai,µ − ai+1,µ +
1

k
δAµ, for i = 1, 2, · · · k − 1, (4.116)

and βk,µ = ak,µ+ 1
k
δAµ for i = k. With this at hand, it is clear that, the gauge

transformation aj,µ. Then, integrating out the partons, we find the effective
theory

L =
k∑
i=1

[(
1

4π

(
βi +

1

2
ω
)
d
(
βi +

1

2
ω
)
− 1

48π
ωdω

)]
(4.117)

Finally, we get

L =
k∑
i=1

(
1

4π

(
βi +

1

2
ω
)
d
(
βi +

1

2
ω
)
− 1

48π
ωdω

)
. (4.118)

Now we proceed to the hydrodynamic description. For this, we need to intro-
duce bi, i = 1, 2, · · · k. Then we find

L =
k∑
i=1

[
− 1

4π
bidbi +

1

2π
bid
(
βi +

1

2
ω
)]

(4.119)

in which one can check that integrating out bi fields gives the expression Eq.(3).
Notice that there is no gravitational CS term in the hydrodynamic theory. Now
we integrate out ai fields, and this generates all the b1 = b2 = · · · bk which we
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will call as b. Then we can perform sum over i to find

L =
[
− k

4π
bdb+

1

2π
bd
(
A+

k

2
ω
)]

(4.120)

Now we perform integration over bµ, taking care of the frame anomaly associ-
ated with the Chern-Simons term of bµ, and find

L =
1

4πk

(
A+

k

2
ω
)
d
(
A+

k

2
ω
)
− 1

48π
ωdω (4.121)

in which every coefficient {s̄, σH , c} in Eq.(4.114) for the Laughlin state is cor-
rectly reproduced. The discussion here can be generalized to the non-Abelian
states including Zk parafermion states which are explicitly demonstrated in the
main text (and in [61] in which the framing anomaly has not been included).

In the following we will use the results of [61] to guess the correct bulk
effective theory for Read-Rezayi states and derive the induced action.

4.14 Effective and induced actions for Read-

Rezayi states

In the following we will derive the effective action for the non-abelian Zk Read-
Rezayi (RR) parafermion states [77] at filling ν = k

Mk+2
. While the problem

of deriving the bulk effective theory for a generic non-abelian gapped FQH
state is not solved, the answer for a variety of different states can be obtained
through the parton construction [75, 76]. The effective bulk theory for the
non-abelian Zk Read-Rezayi parafermion states at filling ν = k

Mk+2
is given

by the (U(M) × Sp(2k))1 Chern-Simons theory [76] and U(1)2k+M
1 Abelian

theory.

S =
1

4π

∫
Tr

[
ada+

2

3
a3 + ωda

]
− 1

4π

∫
Tr
[
bdb+ 2(QA+ Sω)db

]
, (4.122)

where Q = 1
kM+2

diag (12k, k × 1M) and S = 1
2
12k+M are (2k +M)× (2k +M)

charge and spin matrices. There are 2k+M hydrodynamic U(1) gauge fields b
and one non-abelian U(M)×Sp(2k) field a. In the second line of Eq. (4.122) we
have coupled the bulk theory to external electromagnetic field and geometry
(see [61]). In Eq.(4.122) we have essentially used the coset construction of
[78]. Note that the introduction of the abelian fields b does not change the
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degeneracy on the higher genus surfaces because the corresponding K-matrix
is unity.

Integration over the low energy degrees of freedom implies the universal
effective action Eq.(3.174) with the filling factor, the average orbital spin, and
the orbital spin variance given by

ν = TrQ2 =
k

Mk + 2
, (4.123)

s̄ = ν−1TrQS =
M + 2

2
, (4.124)

vars = ν−1TrS2 − s̄2 = 0 . (4.125)

The chiral central charge c of the boundary U(1)2k+M
1 /(U(M)×Sp(2k))1 coset

CFT is given by

c = cU(1)2k+M
1

− cU(M)1 − cSp(2k)1 =
3k

k + 2
, (4.126)

which is the correct value of the central charge of the edge states of the RR
parafermion states.

4.15 Outlook

In this Chapter we have derived the induced action for a variety of the frac-
tional quantum Hall states. The presented derivation actively used Chern-
Simons topological quantum field theory as well as various mean field theories
that allowed to derive the details of the Chern-Simons theory such as gauge
group, level, spin and charge vector or matrix, etc. This is, in principle addi-
tional information that comes from the UV details and (at least in principle)
could depend on the UV completion of the effective description.

In this Section we want to offer an opposite point of view. Suppose we
are given only induced action and no other information whatsoever. To an
extent an experimentalist performing only transport measurements only has
access to induced action, so the question we are raising is relevant at least in
principle. Let’s fix the space-time to be a closed manifold and investigate the
generic induced action

W =
ν

4π

∫ (
(A+ s̄ω)d(A+ s̄ω) + vars · ωdω

)
− c

96π

∫
Tr

[
ΓdΓ +

2

3
Γ3

]
, (4.127)
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As we have mentioned before on a closed manifold (that is, if experimen-
talist cannot access the edge physics) the affine gravitational Chern-Simons
term can be traded with SO(2) gravitational Chern-Simons term without any
consequence. One can even view this trade of as a GL(3,R)-valued gauge
transformation

ωµ = e−1Γµe+ e−1∂µe (4.128)

Thus a priori we do not know how to split the coefficient in front of the
gravitational CS term into s̄2, vars and c. In fact, the notion of c is somewhat
meaningless since we do not know what CFT or TQFT this induced action
came from. The best we can do is to compute the linear response functions.
All of the information is contained in two transport coefficients

σH =
ν

4π
(4.129)

ηH =
s̄

2
ρ+

(ν
2

vars− c

24

) R

4π
(4.130)

Measuring the Hall conductance we can find ν, measuring the Hall viscosity
on a flat space (say, torus) we can find s̄, finally measuring the Hall viscosity
on a sphere or any other curved space we can find ν

2
vars − c

24
. If we do not

have any additional information we cannot distill the chiral central charge c
from this combination. If, however, we have access to the edge theory we can
measure the thermal Hall conductance that will only be sensitive to c.

In the next two Chapters we will subject the quantum Hall states to addi-
tional perturbations and restrictions, such as extra Galilean symmetry and fi-
nite temperature in an attempt to get more information from the bulk physics,
but will only confirm the general conclusions presented in this discussion.
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Chapter 5

Galilean Invariant Induced
Action

We have mentioned before that the induced action can also be investigated
from the general symmetry principles. The more symmetry is imposed on a
physical system the more restricted the induced action will be. In this Chapter
we will study an additional symmetry that is only possible in non-relativistic
world with z = 2 dynamical scaling exponent. This symmetry generalizes the
familiar symmetry of the Newton’s laws

x −→ x− vt (5.1)

to a local symmetry that is termed local Galilean symmetry or non-relativistic
diffeomorphism symmetry. The pioneering works of Son and Wingate [45] in
cold gas physics and Son and Hoyos [50] in quantum Hall physics shown that
this symmetry is useful in restricting the induced action, but at the same time
it remains realistic symmetry to be likely implemented on the Lowest Landau
Level.

In this Chapter we will construct the quadratic induced action that is in-
variant under local Galilean symmetry to any order in gradient expansion and
illustrate the interesting relations that follow. In particular, we will discover
that Laughlin and Moore-Read wave functions satisfy the relations we derive,
thus giving a strong argument in support of the local Galilean symmetry as a
universal dynamic symmetry of the Lowest Landau Level.

92



5.1 Galilean symmetry in free fermions

In this Section we will derive an unexpected symmetry of the non-interacting
non-relativistic theory (3.1). The action is given by

S0 =

∫
d2xdt

√
g

[
i

2
~ψ†∂0ψ −

i

2
~(∂0ψ

†)ψ+

+ eA0ψ
†ψ − 1

2m
gij((∂i − iAi)ψ)†(∂j − iAj)ψ −

gs
4m

Bψ†ψ

]
. (5.2)

We assume that all of the external fields depend on time. It is a matter of
an unpleasant computation to verify that the following set of infinitesimal
transformations is indeed a symmetry of the action

δAi = −ξkFki −mgikξ̇k − ∂i(α + Akξk) ,

δA0 = −ξkFk0 − ∂0(α + Akξk) +
gs
4

εij
√
g
∂i(gjkξ̇

k) , (5.3)

δgmn = −ξk∂kgmn − gmk∂nξk − gnk∂mξk ,
δgmn = −ξk∂kgmn + gmk∂kξ

n + gnk∂kξ
m .

These transformations combine a local version of Galilean transformations pa-
rameterized by ξk(x, t) and gauge transformations α(x, t). In the following we
use Galilean transformations accompanied by a particular gauge transforma-
tion α = −Akξk, so that (5.3) have an explicitly gauge invariant form.

Conventional (global) Galilean transformations corresponding to a con-
stant velocity vk are given by ξk(x, t) = vkt. Under this transformation we
have (in the integrated form)

B′ = B (5.4)

E ′|| = E|| (5.5)

E ′⊥ = E⊥ − vB (5.6)

g′ij = gij (5.7)

as it should be. The fermionic field transforms according to

ψ′(x, t) = eimv
ixiψ(x− vt, t) (5.8)

We will later show that this symmetry is a field-theoretic way to impose
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the relation between momentum P i and and electric current J i (see e.g., [79])

J i =
e

m
P i +

gs
4m

εij∂jρ . (5.9)

5.2 Galilean invariant interactions

It is possible to introduce interactions that respect the local Galilean sym-
metry (5.3). A rule of thumb is that the interaction should not involve time
derivatives. For example, the action [45]

S = S0 +

∫
dV

(
λψ†ψσ − 1

2
gij∂iσ∂jσ −

σ2

2r2
0

)
(5.10)

If the field σ transforms as a scalar

δσ = −ξk∂kσ (5.11)

the action S is Galilean invariant. This action describes non-relativistic fields
that interact with an instantaneous interaction

V (r) = − λ2

4πr
e
− r
r0 . (5.12)

This can be obtained by integration out the field σ, which is easy to do since
it is non-dynamical.

Coulomb potential can be introduced as well, but one has to introduce
an additional spatial dimension, transverse to the quantum Hall plane. The
action is given by [50]

S = S0 +

∫
d2xdt

√
ga0(ψ†ψ − ρ̄) + 2πε

∫
dts2xdz

√
g
(
(∂za0)2 + gij∂ia0∂ja0

)
(5.13)

integrating out the slave field a0 ond obtains a theory of non-relativistic fields
interacting with the coulomb potential

V (r) ∼ ε

r
(5.14)

The action is again Galilean invariant if a0 transforms as a scalar. Thus we
have established that there is a number of very reasonable interactions that
are allowed by the symmetry.
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5.2.1 Galilean symmetry from large c limit

Son and Wingate have also given a beautiful construction of Galilean invariant
actions starting from a relativistic quantum field theory coupled to a relativis-
tic gravity. Consider a relativistic massive scalar coupled to spacetime metric

S = −
∫
d3x
√
−g
(
gµν∂µΨ∗∂νΨ +m2c2Ψ∗Ψ

)
(5.15)

under space-time diffemorphisms Ψ transforms as a scalar and gµν transforms
as a tensor according to

δgµν = −ξλ∂λgµν − gλν∂µξλ − gµλ∂νξλ (5.16)

We make an ansatz for Ψ = e−imc
2t ψ√

mc
and the metric

gµν =

(
−1− 2A0

mc2
− Ai
mc

− Ai
mc

gij

)
, (5.17)

plugging this into (5.15) and keeping the leading terms in 1
c

we get back to
action (5.2) at gs = 0. The diffeomorphism of in the time direction ξ0 = α

mc

turns into a gauge transformation.
Using this limiting procedure it is possible to construct a number of Galilean

invariant induced actions starting from relativistic gravitational actions. We
will give a couple of examples later on.

5.3 Galilean transformations in constant mag-

netic field

The constant part of the external magnetic field B0 is a parameter of the
macroscopic theory and will enter the coefficients in the gradient expansion of
the effective action. We do not transform it under Galilean transformations,
but instead absorb the corresponding part into the transformation laws of the
vector potential Ai (compare to eq. 5.3) as

δAi = −ξkF ki − ξkFki −mgikξ̇k . (5.18)

The external metric is a small perturbation over flat background gik = δik +
δgik.

We first find the 0-th order piece of these transformations, because we are
going to require symmetry in the first order in fields.
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δ(0)Ai = −εkiξkB −mξ̇i (5.19)

δ(0)A0 = 0 (5.20)

δ(0)gmn = ∂nξm + ∂mξn (5.21)

We will impose the symmetry in Fourier space. The 0-th order transfor-
mation in Fourier space the transformations take form

δ(0)Az = im(ω + ωc)ξ
z̄ (5.22)

δ(0)Az̄ = im(ω − ωc)ξz (5.23)

δ(0)gzz = 2ikzξz (5.24)

δ(0)gz̄z̄ = 2ikz̄ξz̄ (5.25)

δ(0)gz̄z(ω, k) = i(kzξz̄ + kz̄ξz) (5.26)

(5.27)

and the 1-st order piece

δ(1)A0 = − i
2

(kz̄A0 + ωAz̄)ξ
z̄ + c.c. (5.28)

δ(1)gzz̄ =
i

2
kzg

zzξz̄ + c.c. (5.29)

5.4 Building blocks for quadratic induced ac-

tion

To restrict the form of the induced action we use the rotational invariance, lo-
cality, gauge invariance and similarities between electro-magnetism and grav-
ity.

The gauge invariance requires that the effective action depends on the vec-
tor potential Aµ only through electric field Ei and magnetic field B. The
only exception is the Chern-Simons term which is gauge invariant only up
to boundary terms. We also assume that the system under consideration is
gapped. Therefore, linear response functions are local, i.e., can be written
as Taylor series in frequency and momentum, so that the quadratic effective
action is constructed as an expansion in derivatives. As transformations (5.3)
mix different orders in the gradient expansion we expect nontrivial relations
between the universal response coefficients and higher order gradient correc-
tions thereof.

We analyze the gravitational terms in a similar way by introducing an
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Abelian gauge field that encodes coupling to the background curvature. This
field is a non-relativistic spin-connection [50] ω0 = −1

2
εabeaj ėbj, ωi = −1

2
εabeaj∂ie

b
j−

1
2
√
g
εjk∂jgik where eaj are the time-dependent zweibeins [65]. The spin connec-

tion depends only on the metric and transforms as an Abelian gauge field
under local SO(2) spatial rotations ωµ → ωµ + ∂µα.

With the spin connection at hand we construct the gravi-electric Ei =
ω̇i − ∂iω0 and gravi-magnetic 1

2

√
gR = ∂1ω2 − ∂2ω1 fields which are explicitly

invariant under the local SO(2) rotations. Notice, that the parity properties
of e/m fields and their elastic cousins are different: R is a scalar while B is a
pseudo-scalar and Ei is an axial vector.

In the linear order in deviations from the flat background we have explicitly

R ≈ ∂i∂jgij −∆gii , Ei ≈ −
1

2
εjk∂j ġik , (5.30)

where ∆ is the flat space Laplace operator.
The spin connection ω can be expressed in terms of perturbations of the

metric as follows.

ω0 =
1

2
εjkδgij ġik ωi = −1

2
εjk∂jδgik . (5.31)

There is an additional building block describing dilatations - the trace of the
metric which we denote as

G ≡ δgii . (5.32)

5.5 Induced action

In the following we present the quadratic induced action as a sum

W = W (1) +W (η) +W (geom) +W (em) +W (g) +W (mix) . (5.33)

The first contribution collects all “linear” terms

W (1) =

∫
d2xdt

√
g (−ε0 + ρ0A0) . (5.34)

Notice, that although (5.34) is linear in A0 it also contains (through
√
g) terms

quadratic in deviations from the constant background. This term encodes the
properties of the unperturbed ground state: energy density ε0 and density
ρ0 = ν

2πl2
, where l2 = 1/B0 is the magnetic length and ν is the filling fraction.

The coefficients in (5.34) and below generally depend on the external mag-
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netic field B0, filling fraction ν and other microscopic parameters of the system
such as the Coulomb gap, cyclotron mass, etc.

The next term has a form

W (η) =

∫
d2xdt ηHε

jkgij ġik , (5.35)

where ηH (in Fourier space) is a function of frequency. One can think about
ηH(ω) as of frequency dependent Hall viscosity. We notice comparing to (5.31)
that the term (5.35) at zero frequency has a form 2ηH(0)ω0 which allows to
identify 2ηH(0) as the orbital spin density and s̄ = 2ηH(0)/ρ0 as an average
orbital spin per particle. For the conformal block states [9] the latter is given
by 2s̄ = ν−1 + 2hψ, where hψ is the conformal weight of the electron operator
in the “neutral” sector of the conformal field theory [13, 36].

The next contribution contains topological and geometric terms

W (geom) =

∫ (σH
2
AdA+ SAdω + Cωdω

)
, (5.36)

known as the Chern-Simons, Wen-Zee [46] and the gravitational Chern-Simons
terms. These terms are special as they are invariant with respect to gauge
transformations and local rotations only up to full derivatives. In the presence
of the boundary they are related to the boundary theory and are the natural
candidates for encoding universal properties. It is convenient to allow ηH , σH ,
S, and C in (5.36) to depend on frequency, so that they coincide with their
conventional values at zero frequency. In the following expressions (5.37-5.39)
the coefficients ε, σ, µ, . . . depend on both frequency and momentum 1.

The electro-magnetic response is represented by

W (em) =

∫
d2xdt

(
εE2 + σ(∂iEi)B − µ−1B2

)
. (5.37)

Here ε and µ are electromagnetic susceptibilities and σ encodes the gradient
corrections to the Hall conductivity.

1We stress that since we are interested in the long wave corrections to the linear response
functions the coefficients in (5.34) and below are Taylor series in ∂t and (in (5.37-5.39) ∆,
therefore in the Fourier space these coefficients are frequency and momentum dependent.
For example, εE2 of (5.37) should be understood as E(x, t)ε(∂t,∆)E(x, t). To make the
equations more readable we suppress the arguments and ordering
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Analogously, we write down gravitational and mixed terms

W (g) =

∫
d2xdt

(
εgE2 + σg(∂iEi)R−

1

µg
R2

+ ζ3GR + ζ4G(∂iEi) + ζ5G
2
)
, (5.38)

W (mix) =

∫
d2xdt

(
εm(EiEi) + σm1(∂iEi)R−

1

µm
BR

+ σm2(∂iEi)B + ζ1G(∂iEi) + ζ2GB
)
. (5.39)

Eqs. (5.33-5.39) give the effective action expanded to the second order in fields
and to an arbitrary order in gradients.

Equations (5.33-5.39) contain all possible combinations that can enter real,
rotationally, gauge and PT invariant quadratic effective action of a gapped
system in transverse constant magnetic field. They define 19 different response
coefficients ηH , σH , S, C, ε, . . .. The coefficients in W encode all possible two
point correlation functions of electric charge density, electric current, and stress
tensor at finite frequency ω and momentum k. Imposing the LGI (5.3) will
give additional relations between the coefficients.

The next step is to derive the Ward identities of LGI. We apply the trans-
formations (5.3) to W and demand the invariance of the full effective action
under these transformations up to the terms quadratic in fields. This require-
ment imposes constraints on the linear response functions in all orders of the
gradient expansion in a form of a system of linear (in response functions) equa-
tions. In full generality these relations are not enlightening and we present only
several particular relations.

We write the induced action in the notations of Chapter 3.

W =

∫
dΩ

2π

d2k

(2π)2

(
wIvI +

1

2
vI(k)WIJ(k)vJ(−k)

)
(5.40)

linear term has form
wivi = ρ̄A0(k)− ε̄gzz̄(k) (5.41)

where ρ̄ and p̄ are average density and pressure in the ground state and WIJ

is the generalized polarization operator.
Using (5.22)-(5.26) we can write the 0-th order transformation laws of vI(k)
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δ
(0)
Galvi(k) = i


0

mΩ+

0
2kz̄

0
kz

 ξz̄ + i


0
0

mΩ−

0
2kz

kz̄

 ξz , (5.42)

where Ω± = ω ± ωc.
Now taking the variation of the linear term in the induced action we find

δGal(wivi) = (δ(1)n̄A−0 − ε̄δ(1)g−,zz) = − i
2

(
kz̄nA

−
0 + ωnA−z̄ + kzεg

−,zz) ξz̄
(5.43)

Variation of the effective action is given by

δGal

[
wIvI +

1

2
vI(−k)WIJ(k)vJ(k)

]
= cI(k)vI(−k) + vI(−k)WIJδ

(0)
GalvI(k) = 0

(5.44)
We introduce a notation cI

cI(k) = − i
2


n̄kz̄
0
n̄ω
ε̄kz
0
0

 ξz̄ − i

2


n̄kz
n̄ω
0
0
ε̄kz̄
0

 ξz (5.45)

So the requirement that W is invariant w.r.t. Galilean and gauge U(1) trans-
formations can be written simply as a system of linear equations

WIJ(k)δ
(0)
GalvJ(k) = cI(k) (5.46)

WIJ(k)δgaugevJ(k) = 0 , (5.47)

where

δgaugev(k) = i


ω
−kz
kz̄
0
0
0

α (5.48)

The linear equations (5.46) encode infinite number of the relations because
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the left hans side must be understood as an expansion in momentum and
frequency. Coefficient in front of every monomial in k and ω must vanish
independently. Also, notice that the linear order term contributes contact-like
terms into the Ward identites.

These are the main results of the Chapter in the implicit form. One needs to
impose both of these constraints on the effective action and obtain the relations
between responses. We point out that constraints from Galilean invariance mix
the electromagnetic response with the ”mixed” or ”gravi-electro-magnetic”
responses and the latter with purely gravitational (or visco-elastic) responses.

5.6 Ward Identities

In this section we will write out the constraints (5.46) in glory details. We will
find many interesting relations between the response functions: some of these
relations will be old and some will be new.

5.6.1 Hall conductivity and orbital spin

We start with the following relations

σH =
ν

2π

ω2
c

ω2
c − ω2

, S = 2ηH l
2 ω2

c

ω2
c − ω2

, (5.49)

where ωc = B0/m is the cyclotron frequency. These are the familiar relations
for the Hall conductivity and the Wen-Zee shift [37]. Integrating the charge
density ρ over the curved manifold and using (5.49) we obtain that the shift
in the total charge on the curved manifold of the Euler character χ is given by

Q = νNφ + νs̄χ . (5.50)

5.6.2 Zero momentum relations

Here we present the Ward identities at zero momentum k = 0. In order to
lighten up the notations we suppress the dependence on frequency. We stress
that all response function below are evaluated at finite frequency ω and k = 0.

We start with relations

ε(ω) =
ν

4π

ωc
ω2
c − ω2

, (5.51)

εm(ω) = ηH l
2 ωc
ω2
c − ω2

. (5.52)
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The first relation determines the homogeneous dielectric response function
ε(ω, k = 0) completely and the pole at ωc reflects the Kohn’s theorem. The
second relation is an elastic analogue of Kohn’s theorem.

The next relation is the finite frequency version of the Hall viscosity-
conductivity relation [50]

σ

l2
=
ω2
c (ω

2
c + ω2)

(ω2
c − ω2)2

(
ηH l

2 − νgs
16π

)
− ω2

c

ω2
c − ω2

µ−1

ωcl2
. (5.53)

Here we slightly generalized the relation obtained in [37] by including an ar-
bitrary gs-factor.

We also find two elastic analogues of (5.71)

µ−1
m

ωcl2
=

C

2
− gs

4
ηH l

2ω
2
c + ω2

ω2
c − ω2

− σm1

l2
+
ε

(1)
m ω2

ωc
, (5.54)

σm2

l2
=

gs
2
ηH l

2 ω2
c

ω2
c − ω2

+
(
2ε(1)
m − εg

)
ωc , (5.55)

where we introduced (kl)2ε
(1)
m = εm(k, ω)− εm(0, ω).

The coefficients ζ1, . . . , ζ5 are completely fixed by the Galilean invariance
in terms of other coefficients. Their expansions start with ω2 and we do not
list them here.

5.7 Regularity of the limit m→ 0

Let us consider the static limit ω = 0 of (5.54)

mµ−1
m (0) =

C

2
− νs̄gs

16π
− 1

l2
σm1(0) . (5.56)

The coefficient σm1(0) describes the contribution to the expectation value of
the density proportional to the Laplacian of curvature ∆R. We introduce
b = −8πσm1(0)/l2 defined as a coefficient in the gradient expansion for the
static density-curvature response2

δρ =
νs̄

4π
R +

b

8π
l2∆R + . . . . (5.57)

For gs = 2 the ground state of noninteracting electrons is degenerate even

2The subleading coefficient b was introduced in [80] and shown to be related to (kl)6

coefficient in the static structure factor.
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in the presence of inhomogenious background fields and it is expected that the
limit m → 0 (i.e., ωc →∞) is regular for ν ≤ 1 [22, 81]. Therefore, µ−1

m (0) is
finite in the limit m→ 0 at gs = 2.

We take the limit m → 0 of (5.56) at gs = 2. The left hand side vanishes
and we find a relation between the coefficients of the Wen-Zee and gCS terms
(5.36) and the coefficient b

C =
S

2
− b

4π
. (5.58)

This relation is obtained for gs = 2. However, b is a response of the density
to curvature and cannot depend on gs, neither can the coefficients C or S.
Therefore, the relation (5.58) is valid for general gs.

5.8 Chiral central charge

We split the geometric part of the effective action (5.36) as

W (geom) =

∫
ν

4π
(A+ s̄ω) d(A+ s̄ω)− c

48π
ωdω . (5.59)

Here we used (5.49) at zero frequency. The first contribution in (5.59) reflects
the Wen-Zee construction [46] (see also [22]) stating that every electron carries
not only charge, but also intrinsic orbital spin s̄ that couples to the curvature.
Thus, in any transport process the electric current will be accompanied by the
“spin current”. Formally, this amounts to changing the vector potential as
Ai → Ai+ s̄ωi. We have noted in [17] however, that even in the noninteracting
case with ν = 1 there is an additional contribution to gCS term represented
by the second term in (5.59). Comparing (5.36) with (5.59) we identify C =
ν
4π
s̄2 − c

48π
and rewrite (5.58) as

b = νs̄(1− s̄) + c/12 . (5.60)

This equation relates the coefficients of geometric terms with the static bulk
density-curvature response. A relation of this kind appeared recently in [80].

We refer to c as to the chiral central charge. In relativistic physics c is
related to the gravitational anomaly at the boundary [70].

Let us consider the relation (5.60) for few cases where b has been computed
independently. The first such case is non-interacting fermions filling the lowest
Landau level ν = 1. It was found in [17] that in this case ν = 1, s̄ = 1

2
, and

b = 8πσm1(0)/l2 = 1/3. Then (5.60) gives c = 1 corresponding to C = 1
24π

and
is in agreement with the straightforward calculation of [17]. The coefficient b
was also computed in [82] from the Bergman kernel expansion for free fermions.
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For Laughlin states νs̄ = 1/2 and using b = 1
3

+ ν−1
4ν

calculated in [80] we
predict using (5.60) and assuming that the results of [80] are compatible with
Galilean invariance

C =
1

8π
− 1

4π
b =

1

24π
+

1

2π

ν−1 − 1

8
(5.61)

again corresponding to c = 1.
In both cases the boundary theory is the chiral boson c = 1 and the results

given by (5.60) are in agreement with our expectations for the (chiral) central
charge. Therefore, we conjecture that c in (5.59) coincides with the central
charge of boundary theory for all other states of FQHE hierarchy.

Note that the relation (5.60) was derived using regularity conditions at
gs = 2 specific for ν ≤ 1 and is not supposed to hold for ν > 1. However, for
non-interacting case with ν = N we found using the results of [17] that (5.60)
can still be written as a sum over filled Landau levels

b =
N∑
n=1

(
νns̄n(1− s̄n) +

cn
12

)
. (5.62)

Here s̄n = 2n−1
2

, νn = 1 and cn = 1 for the n-th Landau level.
The significance of the equations (5.59,5.60) is that in the non-relativistic

case, the averaging over the microscopic degrees of freedom produces two gCS
terms. One originates from the coupling of the orbital spin to the curvature
and the other one is related to the gravitational anomaly of the boundary.

5.9 Abelian quantum Hall states

For general Abelian states we re-write the geometric action (5.59) as

W (geom) =
1

4π

∫
(tiA+ s̄iω)K−1

ij d(tjA+ s̄jω)− c

12
ωdω , (5.63)

where K-matrix, charge vector ti and spin vector s̄i characterize the state [83].
Then (5.58) takes the form (in matrix notations)

c

12
= (s̄− t)tK−1s̄+ b (5.64)

generalizing (5.60) to more general Abelian Quantum Hall states. Here the
parameter c counts the number of chiral propagating modes and is equal to
c = n+ − n−, where n± is the number of positive/negative eigenvalues of
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K-matrix, respectively.
We conclude this section with few examples of applications of (5.64) to

some well-known FQHE states. For the Laughlin’s state ν = 1
m

, K = (m),
t = 1, s̄ = m/2, c = 1 and we obtain b = 1

3
− m−1

4
. For the corresponding

particle-hole conjugated state ν = 1 − 1/m, K =

(
1 1
1 1−m

)
, t = (1, 0),

s̄ = (1
2
, 1−m

2
), and c = 0 [83]. The relation (5.64) gives b = m−1

4
.

As an example of non-Abelian state we consider the fermionic Pfaffian state

[9] with ν = 1/2, t = (−1,−2), s̄ = (−3/2,−3), c = 3/2, and K =

(
3 4
4 8

)
[83, 84]. We obtain b = −1/4.

5.9.1 Thermal Hall effect

It has been demonstrated that the thermal Hall current (the Leduc-Righi ef-
fect) is related to the chiral central charge of edge modes via the relation
[14, 15, 47]

KH =
∂JH
∂T

=
πk2

BT

6
c . (5.65)

We use (5.64) in order to express the thermal Hall conductivity through other
response functions.

KH

2πk2
BT

= (s̄− t)tK−1s̄+ b . (5.66)

An important remark is in order. Eq. (5.66) allows to obtain the thermal Hall
response in terms of the bulk quantities. Of course, “measuring” b involves
gradients of curvature or “tidal forces” (c.f., Ref. [53]). We will have more to
say about the thermal Hall effect in the next chapter.

5.10 Non-relativistic limits of gravitational ac-

tions

In this Section we will illustrate what happens if on takes the standard gravi-
tational actions and takes the “non-relativistic limit” described above [85].

First consider Einstein-Hilbert action

SEH =

∫
d3x
√
g(3)R(3) , (5.67)

where d3x
√
g(3) is 2 + 1D invariant volume element of spacetime and R(3) is
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the 2 + 1D Ricci scalar. Substituting (5.17) into the action we get

SEH = mc2

∫
dt

∫
d2x
√
gR

− 2

∫
dtd2x

√
g

(
m

8
ġij ġij +

m

8
(gij ġij)

2 + Adω − 1

4m
B2 ,

)
(5.68)

notice that the first term is the Euler character of a time slice. If a sample does
not abruptly change a topology it is simply a constant and can be removed
from the action.

Consider now the gravitational Chern-Simons action

SgCS =

∫
d3xTr

(
ΓdΓ +

2

3
Γ3

)
, (5.69)

where Γ is the Christoffel connection (see Appendix). The same limiting prce-
dure will give

SgCS =

∫
dtd2x

(
ωdω − 1

2m

√
gRB

)
. (5.70)

Both actions SEH and SgCS are by construction Galilean invariant. Unfor-
tunately, it is not the case that all Galilean invariant actions come as non-
relativistic limit if some gravitational relativistic action. In fact it was shown
[86] that some of the non-relativistic actions are not obtained by a large c limit
of any relativistic action!

5.11 Outlook

Galilean invariance helped us to get additional insight about gradient cor-
rections to the linear response function. We have derived a very important
relation between the gradient correction to Hall conductivity and Hall viscos-
ity, that was first derived by Son and Hoyos

σ
(2)
H = ηH l

4 − µ−1

ωc
. (5.71)

This relation, in principle, provides an alternative method of measuring the
Hall viscosity: one has to measure the long wave correction to the Hall con-
ductivity and magnetic susceptibility, then one can extract ηH from (5.71).
What’s important is that mechanical experiment is thus reduced to an electro-
magnetic one. We will come back to the issue of measuring the Hall viscosity
in the Discussion Chapter. We have also derived a relation that expresses a
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chiral central charge (perhaps shifted by the orbital spin variance) in terms of
a response of density to the gradients curvature

b = νs̄(1− s̄)−
(
ν · vars− c

12

)
, (5.72)

If vars vanishes then one can extract the chiral central charge and thermal
Hall conductance from (5.72).

Another interesting issue is of more abstract nature. In this Chapter we
attempted to derive the most general Galilean invariant action. To some ex-
tent we did not succeed completely, because we still do not know how to
generate an induced action that would be invariant including the non-linear
terms. The reason is that the transformations (5.3) are utterly complicated
and non-covariant. There was some progress in understanding the covariant
formulation of the Galilean symmetry [30], but even in the covariant formula-
tion the symmetry is very unnatural (from the geometric point of view) and the
construction of an invariant unduced action seems prohibitively complicated.
We will indulge in the discussion of the formal matters in the Appendix.
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Chapter 6

Induced Action in Thermal
Equilibrium

In the previous Chapters we have mentioned a few times the relation between
chiral central charge and thermal Hall conductivity. In this Chapter we will
investigate the finite temperature physics of quantum Hall states using the
induced action. We will discover that the whole literature on the subject is
extremely confused and often incorrect. For example, it was believed for a
while that there exists a thermal Hall transport in the bulk and on the level
of the induced action it is described by the gravitational Chern-Simons term.

We will show here (with the help of [87] and [88] as well as our own work)
that thermal Hall conductance vanishes in a bulk of a quantum Hall system
and is solely an edge effect. We will explain the subtle relation between thermal
Hall effect and gravitational anomaly. Finally, we will also show what one can
learn by studying local thermodynamics of a quantum Hall system in local
thermal equilibrium.

6.1 Short review of Cooper-Halperin-Ruzin trans-

port theory

Following the pioneering work of Luttinger of 1964 [21], Cooper, Halperin and
Ruzin (CHR) developed a theory of linear thermoelectric response. In this
section we will briefly summarize their results [88].

We consider a physical system that is subject to external electric poten-
tial A0 and “mechanical” gravitational field ψ that couples to energy density
(much like A0 couples to charge density). The geometric meaning of ψ will
be explained below. We define a set of response functions Lnij independent of
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momentum or frequency so that

J i = −L(1)
ij ∂jA0 − L(2)

ij ∂jψ , (6.1)

J iE = −L(3)
ij ∂jA0 − L(4)

ij ∂jψ , (6.2)

where J i is the local electric current and J iE is local energy current. In a
system placed in external strong magnetic field there are also magnetization
currents

J imag = εij∂jM (6.3)

J iE,mag = εij∂jME , (6.4)

Total local currents can be separated into two contributions: transport cur-
rents and magnetization currents. At this point it is sufficient to say that
transport currents are defined as total currents minus magnetizations currents
(although there are subtleties)

J itr = −L(1)
ij ∂jA0 −

(
L

(2)
ij +M

)
∂jψ (6.5)

J iE,tr = −
(
L

(3)
ij +Mεij

)
∂jA0 −

(
L

(4)
ij + 2MEε

ij
)
∂jψ (6.6)

The transport currents are the currents measured by an ampere-meter in a
transport experiment.

In order to relate the linear response to fields that we can apply in an
experiment we use the Einstein relations that state that close to equilibrium
we can replace ∂ψ ↔ ∂iT

T
and ∂ξ + T∂ µ

T
, where ξ is the electro-chemical

potential (the number measured by an ideal voltmeter). Then

J itr = −N1
ij∂jξ −

1

T
N

(2)
ij ∂jT (6.7)

J iQ,tr = −N (3)
ij ∂jξ −

1

T
N

(4)
ij ∂jT (6.8)

where we have also defined the thermal current

J iQ,tr = J iE,tr − µJ itr . (6.9)
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The new transport N
(n)
ij coefficients are given by

N
(1)
ij = L

(1)
ij (6.10)

N
(2)
ij = L

(2)
ij − µL

(1)
ij −Mεij (6.11)

N
(3)
ij = L

(3)
ij − µL

(1)
ij −Mεij (6.12)

N
(4)
ij = L

(4)
ij − µ(N

(2)
ij +N

(3)
ij )− µ2L

(1)
ij − 2MEεij (6.13)

The coefficients N
(1)
ij and N

(4)
ij are related to Hall conductance and thermal

Hall conductance. CHR proceed with derivation of the Kubo formula for the
transport coefficients [88]. We will not need those relations as we will attempt
to understand the thermoelectric transport on the language of Newton-Cartan
geometry and the induced action. To our surprise we will find that Luttinger’s
“fictitious gravitational field” ψ is the zero component of the Newton-Cartan
“clock form” nµ.

6.1.1 Kane-Fisher computation of thermal Hall conduc-
tivity

Before diving into the induced action business we briefly pause and recall the
derivation of the thermal Hall conductivity formula by Kane and Fisher [14].
Their main result was a relation between the number of chiral edge modes
(or chiral central charge) and thermal Hall conductance KH . Let’s see how to
derive it.

We start with the definition of thermal current. Each edge mode is char-
acterized by its velocity vi (the velocity does not equal to speed of light and
depends on microscopic details), its direction ηi, energy Ei(q) = ~viq, where q
is the momentum. The modes are distributed according to Bose distribution
b( E
kBT

) (the modes are chiral bosons).

JQ =
∑
i

ηivinQ,i , (6.14)

where nQ,i is the energy density of the i-th channel. It is given by

nQ,i =

∫
dq

2π
Ei(q)b

(
Ei(q)

kBT

)
=

1

vi

π2

6

k2
B

h
T 2 (6.15)
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Combining these relations we have

JQ =

(∑
i

ηi

)
π2

6

k2
B

h
T 2 , (6.16)

it is extremely important that the velocities cancel in this derivation. From
here we get the thermal Hall conductance

KH =
∂JQ
∂T

= c
π2

3

k2
B

h
T , (6.17)

where c is the chiral central charge and is given by c =
∑

i ηi.
Several comments are in order.
First, this derivation did not appeal to any notion of conformal field theory

or central charge, but when the edge theory is indeed conformal Read and
Green argued that KH is indeed given by (6.17) with c being the chiral central
charge of the edge theory [15].

Second, since KH is proportional to c severe deviation from Wiedeman-
Franz law are possible: the ratio

KH

σH
=
c

ν

π2

3

k2
B

e2
(6.18)

can be either positive, negative or zero. Indeed, for the ν = 2
3

Jain state the
ratio is zero and for ν = 3

5
Jain state the ratio is negative.

6.1.2 Gravitational Chern-Simons and thermal Hall con-
ductivity

In the view of the previous discussion relating the thermal Hall conductance
to chiral central charge there appeared a belief that the gravitational Chern-
Simons term

W [g] =
c

96π

∫
Tr

(
ΓdΓ +

2

3
Γ3

)
(6.19)

is somehow related to energy or thermal transport.
The discussions of this matter were extremely vague [15, 54]: it was not

even clear how to define an energy current as a variational derivative of the
induced action. Additionally, the fact that condensed matter systems are not
relativistically invariant and do not couple to the usual metric compatible
affine connection Γ or space-time metric gµν .
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Even if one could assume Lorentz invariance then the relation

KH =
∂JQ
∂T

= c
π2

3

k2
B

h
T , (6.20)

is simply arithmetically impossible to derive from the Eq. (6.19), even using
the Tolman-Ehrenfest effect that states that in thermal equilibrium gravita-
tional potential acts as temperature gradient

∂T

T
∼ ∂g00 . (6.21)

The reason very simple: gravitational Chern-Simons term simply contains too
many derivatives for this relation to follow. The stress energy tensor that is
obtained from (6.19) is known as Cotton tensor and is given by

T µν = − c

48π

1

2
√
g

(ερσµDρR
ν
σ + ερσνDρR

µ
σ) (6.22)

The energy current in of a Lorentz invariant system is given by

JµE = T µ0 = T 0µ (6.23)

Form (6.22) it is immediately clear that the energy current is proportional
to the third derivative of metric. So the gravitational Chern-Simons cannot
possibly be related to the thermal Hall effect the same way as electromagnetic
Chern-Simons related to the electromagnetic quantum Hall effect.

6.2 Coupling matter to Newton-Cartan geom-

etry

Conservation laws of energy and momentum (2.47) follow from the space and
time translation symmetries. Gauging these symmetries allowed us to intro-
duce external fields that naturally couple to momentum, energy and energy
current. We have already discussed the Newton-Cartan geometry in Chapter
2, so in this Section we briefly explain how to couple free fermions to the NC
geometry.

Before going to general formulations we consider an example of free fermions.
The action is given by

S =

∫
dtd2x

(
iΨ†∂0Ψ− 1

2m
(∂AΨ)†(∂AΨ)

)
. (6.24)
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In order to make this action coordinate independent, i.e. gauge the time and
space translations we introduce frame fields (or vielbeins) Eµ

a and replace the
derivatives in (6.24) as follows

∂A → Eµ
A∂µ, ∂0 → Eµ

0 ∂µ . (6.25)

The second replacement can be understood as a material derivative so that
the vielbein Eµ

0 is the velocity field. Then the action (6.24) takes the form

S =

∫
dtd2xeL ,

L =

(
i

2
vµ(Ψ†∂µΨ− ∂µΨ†Ψ)− hµν

2m
∂µΨ†∂νΨ

)
. (6.26)

Our conventions a, b, . . . = 0, 1, 2 and µ, ν, . . . = 0, 1, 2, also A,B, . . . = 1, 2 and
i, j, . . . = 1, 2. General coordinate transformations act on the greek indices and
local frame transformations act on the latin a, b, . . . indices.

We have defined a degenerate metric hµν = δABEµ
AE

ν
B, 1-form nµ = e0

µ and
a vector vµ = Eµ

0 . Notice, that the spatial part of the metric hij is a (inverse)
metric on a fixed time slice, it is symmetric and invertible. We have denoted
its determinant det(hij) = h−1. The introduced objects are not independent,
but obey the relations

vµnµ = 1, hµνnν = 0. (6.27)

These are precisely the conditions satisfied by the NC geometry data [22, 26]1.
Some detailed discussion of the first order (i.e. using the vielbeins) formulation
of the NC geometry can be found in [27, 28].

The action (6.26) can be viewed as an action (6.24) written in an arbi-
trary coordinate system. The invariant volume element is dV = edtd2x with
e = det(eaµe

a
ν). Due to the spatial isotropy of (6.24) the vielbeins naturally com-

bine into the degenerate metric hµν . Similarly, the temporal components of
vielbeins (denoted vµ and nµ) stand aside in (6.26) explicitly breaking the (lo-
cal) Lorentz symmetry down to SO(2). If the physical system was anisotropic
the replacement (6.25) would still make sense, but one would have to treat
each vielbein as an independent object, i.e. not constrained by any local
symmetries of the tangent space.

To couple a generic matter action to the NC geometry one has to proceed in
the same way as for the example considered above. Namely, one should modify
the derivatives according to (6.25). Then the objects vµ, nµ and hµν (NC data)

1It is often convenient to define the “inverse metric” hµν = eAµ e
A
ν . It satisfies hµνhνρ =

δµρ − vµnρ and hµνv
µ = 0 and is fully determined by vµ, nν and hij .
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will naturally arise (we assume spatial isotropy from now on). When the 1-
form nµ is not closed we define the Newton-Cartan temporal torsion 2-form
as

Tµν = ∂µnν − ∂νnµ. (6.28)

In practice, it is convenient to use a particular parametrization of the
NC background fields. Let us specify the spatial part hij of the degenerate
metric and assume that nµ = (n0, ni) and vµ = (v0, vi) are also specified and
satisfy the first relation in (6.27). Then we find from other relations in (6.27)

hµν =

(
n2

n2
0
− ni

n0

− ni

n0
hij

)
, where we defined ni = hijnj, n

2 = ninjh
ij. In this

parametrization the invariant volume element is given by dV =
√
hn0dtd

2x.
The momentum, stress, energy and energy current are identified as re-

sponses to the NC geometry as follows

Pi =
v0

√
hn0

δS

δvi
, Tij = − 2√

hn0

δS

δhij
, (6.29)

ε = − 1√
hn0

(
n0
δS

δn0

− v0 δS

δv0

)
, (6.30)

J iE = − 1√
hn0

(
n0
δS

δni
− vi δS

δv0

)
, (6.31)

where we turn off the fields ni after the variation is taken. The introduced NC
geometry is general and reduces to some cases considered in literature. For
example, the choice nµ = (1, 0, 0), v = (1, vi) corresponds to the torsionless NC
background which turned out to be convenient in studying Galilean invariant
actions [17, 22, 50, 85, 89].

Another particular limit is given by nµ = (eψ, 0, 0), vν = (e−ψ, 0, 0). This
is an example of the NC geometry with temporal torsion. The torsion is given
by

T = eψ(∂iψ)dxi ∧ dt . (6.32)

In this case the only non-vanishing component of the torsion tensor is T0i. This
NC geometry essentially appeared in the procedure introduced by Luttinger
[21, 88]. The field ψ is precisely the “gravitational potential” introduced in
[21]. The disadvantage of this choice of geometry is the absence of the field ni
that couples to the energy current.

In the following we consider a general case keeping all of the components
of NC geometry turned on.
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6.3 Induced action for thermal transport and

absence of bulk thermal Hall conductivity

While our main focus will be on equilibrium physics, we will briefly discuss the
thermal transport. according to the logic we have been following in this Thesis,
in order to study the linear response we have to write down the induced action
that satisfies some set of symmetries. This time we have additional fields in
our disposal. These fields are the Newton-Cartan data.

The induced action is given by

W =
α

4π

∫
ndA+

β

4π

∫
ndn+

ν

4π

∫
AdA ≡ W (loc) +

ν

4π

∫
AdA , (6.33)

where α and β are dimensionful phenomenological coefficients. Notice that
despite the fact that first two terms look like Chern-Simons terms and indeed
do not depend on external space metric, these terms are invariant with respect
to all symmetries of the problem. Finally, the coefficients α and β can be
made spacedependent. Already these observations scream that α and β are
not universal coefficeints!

Electric and energy currents are given by

J i =
ν

2π
εijEj −

α

4π
εij∂jn0 (6.34)

J iE =
α

4π
εijEj −

β

2π
εij∂jn0 (6.35)

From here we can read off the L coefficients

L
(1)
ij =

ν

2π
εij (6.36)

L
(2)
ij = L

(3)
ij =

α

4π
εij (6.37)

L
(4)
ij =

β

4π
εij , (6.38)

notice that L(4) is not related to chiral central charge or gravitational Chern-
Simons in any way. We also compute the magnetizations

M =
δW (loc)

δB̄
=

α

4π
n0 (6.39)

ME =
δW (loc)

δεij∂inj
=

α

2π
A0 +

β

2π
n0 (6.40)
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This implies that the currents are given by

J i =
ν

2π
εijEj − εij∂jM (6.41)

J iE = εij∂jME (6.42)

Thus the energy current is purely magnetization current and the only part
of the local current densities that will contribute to transport is electric current
J i.

From this reasoning we find

N
(1)
ij =

ν

2π
εij (6.43)

N
(2)
ij = N

(3)
ij = 0 (6.44)

N
(4)
ij = 0 , (6.45)

These relations were written in [87].
When an edge is introduced, the chemical potential will indeed make a

difference, but all of the thermoelectric transport will happen at the edge.
Also when an edge is introduced, an edge computation shows that [87]

N
(4)
ij = c

π

6

kBT
2

h
. (6.46)

We have to notice here that the definition of the transport currents is
very subtle. The transport current densities are defined as integrated along a
crosssection of a sample of local current densities divided by the volume of the
system. This integration usually kills all of the gradient corrections.

6.4 Thermal equilibrium

We construct a partition function, consistent with time independent, local
space and time translations and gauge symmetries. The partition function
can be written as a Euclidian functional integral

W = − ln Tr exp

{
−H − µ̄N

T̄

}
= − ln

∫
DΨDΨ†e−SE , (6.47)

where we introduced a Euclidean action

SE[Ψ,Ψ†;Aµ, nµ, v
µ, hij] =

∫
d2x
√
h

∮ 1/T̄

0

dτn0LE . (6.48)

116



This action is coupled to the NC geometry as explained in the previous section.
The time-independent field n0 can be viewed as an inhomogeneous temperature
T (x) defined according to∮ 1/T̄

0

dτn0 →
∮ 1/T (x)

0

dτ ′,
1

T (x)
=
n0

T̄
. (6.49)

The NC geometry allows to introduce spatial variations in the size of the
compact imaginary time direction.

It is easy to see via usual scaling arguments [90] that the Euclidean action
has the following functional form

SE = SE

[
Ψ,Ψ†;

A0

T̄
,
n0

T̄
, v0T̄ , Ai,

ni
n0

T̄ , vi, hij
]
. (6.50)

In (local) equilibrium external fields do not depend on Euclidean time. The
generating functional W depends on the temperature T and external sources.
We also assume that W can be written as an integral of a local density so that

W =

∫
d2x
√
h
n0

T̄
P
(
A0

T̄
,
n0

T̄
, v0T̄ , Ai,

ni
n0

T̄ , vi, hij
)
, (6.51)

where we have already replaced the integral over Euclidean time by the overall
factor 1/T̄ . It is worth noting that results derived from the Euclidean gener-
ating functional can be used to obtain the zero frequency correlation functions
in real time upon a Wick rotation.

6.4.1 Local time shifts

We are mainly interested in the thermal transport, so from now on we set the
external field vi = 0 and parametrize v0 = 1

n0
≡ e−ψ in order to satisfy (6.27).

This field configuration is preserved by the symmetries.
The transformation law of the external field ni under a local time shift

t→ t+ ζ(x) takes form
δ(e−ψni) = −∂iζ , (6.52)

i.e. the field e−ψni transforms like a U(1) gauge field under a local time shift.
This field can be regarded as a connection on an S1 bundle over the base
manifold, where S1 is the thermal circle. The field strength is related to the
NC temporal torsion.

It is convenient to introduce Ai = Ai − A0e
−ψni. This field transform like

a gauge field under electro-magnetic gauge transformations and it is invariant
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under local time shifts.
The symmetry (6.52) implies a local conservation law of the thermal current

J iQ = − T̄√
h

(
δW

δe−ψni
+ A0

δW

δAi

)
= J iE − A0J

i . (6.53)

This current is conserved
∇iJ

i
Q = 0 , (6.54)

where ∇iX
i = 1√

h
∂i

(√
hX i

)
is the covariant divergence.

6.5 Equilibrium generating functional

We present the partition function as an expansion in derivatives of the external
fields. We consider the following generating functional

W =

∫
d2x
√
h

1

T
P (µ, T,B, BE) , (6.55)

where we made the identifications

1

T (x)
=
eψ

T̄
, µ(x) = e−ψA0(x) , (6.56)

and defined gauge invariant (pseudo) scalars

B = εij∂iAj, BE = εij∂i(e
−ψnj) . (6.57)

Writing (6.55) we assumed that both B and B might be large, while their
derivatives are small and can be neglected. We also assumed that gradients of
both µ and T are small.

The generating functional (6.55) encodes various local thermodynamic quan-
tities and relations. For example, the energy (in flat space) can be found with
the help of (6.30), appropriately modified for the presence of the gauge field

ε = T̄
δW

δeψ
+ TA0

δW

δA0

=
∂(P/T )

∂(1/T )
− µ∂P

∂µ

= P + sT + nµ , (6.58)

where we made the identifications

n(x) = T̄
δW

δA0

= −∂P
∂µ

(6.59)
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and

s(x) = −∂P
∂T

. (6.60)

The relation (6.58) suggests that P(µ, T,B, BE) is the density of the grand
thermodynamic potential (in the presence of external fields) and that (6.58)
is the local version of the known thermodynamic relation P = E − T̄ S − µ̄N .

It is instructive to find the pressure in the presence of external fields, also
known as internal pressure

Pint = T̄
δW

δhi i
= P(0) −MB −MEBE , (6.61)

where we have introduced the magnetization M = eψ ∂P
∂B , the energy magneti-

zation ME = eψ ∂P
∂BE

and P(0) is the pressure at zero magnetic field.
The additional contribution to the pressure given by the second term in

(6.61) comes from the Lorentz force acting on magnetization currents. The last
term of (6.61) gives a similar contribution present in non-vanishing background
field BE.

6.6 Magnetization currents

While all transport currents vanish in thermal equilibrium, there are still mag-
netization currents flowing in a material even at equilibrium. These currents
cannot be measured in transport experiments [88]. However, e.g., the electric
magnetization current can be in principle observed in spectroscopy experi-
ments or by measuring the magnetic field created by moving charges. The
energy current can (at least in principle) be observed by the frame drag [54]
due to distortions in the gravitational field created by the flow of energy. In the
presence of the inhomogeneous external fields magnetization currents can flow
in the bulk of the material, otherwise they are concentrated on the boundary
of the sample.

Knowing magnetization currents is important as this knowledge can be
used to separate transport currents from the magnetization ones for systems
driven out of equilibrium [88]. Also, for a particular case of the chemical
potential lying in the excitation gap the magnetization currents are the only
currents responsible for the Hall effect [91].

In the following we consider both electric and thermal magnetization cur-
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rents. They are given, respectively, by

J i = T̄
δW

δAi
= εij∂jM , (6.62)

J iQ = εij∂jME . (6.63)

The currents (6.62) and (6.63) are conserved in the presence of arbitrary
temperature profile T (x) set by (6.56) and coincide with the ones found in
[88, 92, 93] at the level of linear response.

We note here that usually the energy magnetization ME is defined by the
Eq. (6.63) while the NC ”magnetic field” BE (usually denoted as Bg and re-
ferred to as gravimagnetic field) is defined as a quantity thermodynamically
conjugated to ME. In this work we clarified how one can systematically intro-
duce external fields ni in non-relativistic system and couple the system to BE

(6.57). Previous approaches explicitly used the presence of Lorentz symmetry
[54, 93] and cannot be applied in majority of condensed matter systems.

6.6.1 Streda formulas

It is possible to express the Hall conductivity and other parity odd responses
purely in terms of derivatives of thermodynamic quantities. We define electric
and thermal conductivities as

J i = εij
(
σH∂iµ+ σTH∂iT

)
, (6.64)

J iE = εij (κµH∂iµ+ κH∂iT ) . (6.65)

Comparing with (6.62-6.63) we obtain using the Maxwell’s relations 2

σH =

(
∂M

∂µ

)
T,B,BE

=

(
∂n

∂B

)
T,µ,BE

, (6.66)

σTH =

(
∂M

∂T

)
µ,B,BE

=

(
∂s

∂B

)
T,µ,BE

, (6.67)

κµH =

(
∂ME

∂µ

)
T,B,BE

=

(
∂n

∂BE

)
T,µ,B

, (6.68)

κH =

(
∂ME

∂T

)
µ,B,BE

=

(
∂s

∂BE

)
T,µ,B

. (6.69)

These are thermodynamic Streda-type formulas [94, 95] for the response coef-
ficients.

2As dP = −sdT − ndµ−MdB −MEdΩ we have ∂M/∂µ = ∂n/∂B etc.
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6.7 Galilean vs. Lorentz symmetries

So far we assumed that the (un-perturbed) system under consideration is gauge
invariant, spatially isotropic and homogeneous, and time translation invariant.
In this general case there are no additional relations between electric current,
momentum and energy current. Several new relations appear if additional
symmetries are present. For simplicity, we assume below that the underlying
microscopic system consists of charged particles of a single species or several
species with the same e/m ratio.

If the system is Galilean invariant the electric current is proportional to the
momentum J i = e

m
P i, therefore, the magnetization density is proportional to

the density of the angular momentum M = e
m
Lz.

Then from (6.66) we have

σH =
e

m

(
∂Lz
∂µ

)
T,B,BE

, (6.70)

that is Hall conductivity can be expressed in terms of derivatives of the angular
momentum.

If the system is Lorentz invariant then there is an additional equality be-
tween momentum and energy current as we pointed out in the introduction
J iE = P i and, therefore, ME = Lz. Therefore, we have another version of
Streda formula for thermal Hall conductivity [93]

κH =

(
∂Lz
∂T

)
µ,B,BE

. (6.71)

In general case, when no additional symmetries are present the angular
momentum is not related to either electric or thermal magnetization and the
relations (6.70)-(6.71) do not hold.

6.8 Outlook

In this Chapter we have investigated the physics of quantum Hall states at
finite temperature. We understood that thermal Hall effect is impossible in
the bulk and, therefore, is purely an edge effect. This should not come as a
surprise, since at low temperatures the thermal effects in the bulk should be
exponentially suppressed. Despite this simple logic, there was a large confusion
in the literature about relationship between the gravitational Chern-Simons
term and thermal effects.

121



We have shown that the relevant term in the induced action is related to
Newton-Cartan torsion in the temporal direction and has a form

α

4π

∫
ndn , (6.72)

where n is the Newton-Cartan “clock form” and dn is the temporal torsion
with α being a dimensionful coefficient. This term is not universal and is not
related to Leduc-Righi or thermal Hall effect. In fact, this terms describes
only the magnetization currents.

Comparing this Chapter with the previous ones we can’t help, but to notice
an unfortunate trade of we have to make in the study of transport phenom-
ena at finite temperature. We either can compute finite frequency response
functions at zero temperature or we can compute equilibrium properties at
finite temperature. True frequency dependent out-of-equilibrium physics is
not accessible in either formalism. It seems to be extremely useful to have an
analogue of induced action for non-equilibrium phenomena. We feel that such
an object must exist and be of fundamental importance in non-equilibrium
physics. We will focus on this problem in the future research.
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Chapter 7

Induced Action at the Edge

We have mentioned in the previous Chapters that edge contains additional
information that is necessary to distinguish the chiral central charge from
the orbital spin variance. We have also learned that thermal Hall transport
is purely an edge effect and, therefore, it seems impossible to even define a
notion of central charge in the bulk just in terms of the induced action.

In this Chapter we will look at the boundary from a different perspective.
It is well known that Chern-Simons term are not invariant with respect to
their local symmetries if a boundary is introduced. This effect is known as
Callan-Harvey anomaly inflow [70] that we will discuss in some detail below.
Wen-Zee term studied in the previous Chapters does look like a type of Chern-
Simons term. Is there a corresponding anomaly? Could it be that without
Lorentz symmetry the spectrum of anomalies became bigger? How do the
edge modes know about Hall viscosity and do they know about it at all? We
will be able to answer these question using the induced action on a manifold
with a boundary.

7.1 Induced action on a closed manifold

In the following we will study the induced action that contains all possible
Chern-Simons-type terms written in terms of the external gauge field Aµ,
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SO(2) spin connection ωµ and the Levi-Civita affine connection Γσµρ
1

W =
ν

4π

∫
AdA+ 2s̄Adω + s2 ωdω

+
c

96π

∫
Tr
(

ΓdΓ +
2

3
Γ3
)

+ . . . . (7.1)

All four coefficients ν, s̄, s2 and c are dimensionless and are known as “filling
factor”, mean orbital spin per particle, mean orbital spin squared per particle,
and chiral central charge respectively. The corresponding terms of (7.1) encode
(in flat space) the Hall conductivity σH = ν

2π
2, Wen-Zee shift S = 2s̄ (in

the presence of finite magnetic field B it is also related to the Hall viscosity
ηH = νs̄

2
B
2π

), and thermal Hall conductivity κH = cπ
3
kBT . The coefficient s2

contributes to the Hall viscosity in the background with finite Ricci curvature

R: ηH = νs̄
2
B
2π

+
(
νs2

2
− c

24

)
R
4π

. This formula can be re-written in terms of the

charge density ηH = s̄
2
ρ +

(
ν
2
β − c

24

)
R
4π

where we introduced the orbital spin

variance β = s2 − s̄2. All these four coefficients have been computed for the
integer quantum Hall states in [96] and for various model fractional quantum
Hall states in [16, 61, 72].

The terms of the induced action (7.1) are the only terms having dimension-
less coefficients which are required to be space and time independent by local
symmetry requirements. Therefore, these coefficients are natural candidates
for being the universal properties distinguishing topological phases of matter.
The ellipsis in (7.1) denote the higher gradient terms with dimension-full coef-
ficients depending on various scales in the problem (e.g, energy gap or impurity
concentration). In the following we will be only interested in “geometrical”
terms written explicitly in (7.1).

Computation of the induced action for a generic gapped interacting system
is not a tractable problem. However, it is often possible to significantly con-
straint W by symmetries of the problem. For example, for topological phases
in 2 spatial dimensions with various symmetries this was done in [50, 87, 97–
99]. In particular, the induced action (7.1) is the most general functional of
the gauge field and metric having local U(1) charge conservation, local SO(2)
rotational invariance and invariance with respect to spatial coordinate trans-
formations 3.

1Here we use the conventional differential form and matrix notations so that AdA =
εµνλAµ∂νAλ d

3x, Tr ΓdΓ = εµνλΓρµσ∂νΓσλρ d
3x etc.

2Here and in the following we use the units in which e2/~ = 1.
3The geometric background in (7.1) is assumed to be torsionless. For a discussion of the

role of torsion see [87, 97, 99, 100].
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The action (7.1) is invariant on a closed manifold but it loses its symmetries
if considered on a manifold with the boundary. To retain these symmetries the
induced action (7.1) must be supplemented with appropriate boundary terms.
This boundary action is well known in Lorentz-invariant case [7, 62, 78, 101].
However, (7.1) contains SO(2) spin connection and is explicitly not Lorentz
invariant. In the following we will construct the induced boundary action
appropriate for this case.

7.2 Chern-Simons - Wess-Zumino-Witten cor-

respondance

We have already seen that both topological quantum field theory and confor-
mal field theory play central role in the description of FQH physics. It is not
of course a surprise that these objects are related to each other [78]. In this
Section we will work out the simplest relation between these quantum theories.
Before we proceed we have to warn reader that the relation goes much deeper
than our presentation or understanding.

Here we will consider an effective action on a 3D manifold M = R×Σ with
boundary ∂M = R× ∂Σ. For simplicity we will assume that time slices Σ are
topologically equivalent to a disc D. In other words, we will be studying an
effective theory of a quantum Hall droplet. Finally we only allow the gauge
transformations that smoothly go to 1 near the boundary.

To simplify the equations we will consider only coupling of the effective
theory to the external e/m field A. Thus our starting point is

L = −
[
k

4π
ada− q

2π
adA

]
(7.2)

Integrating by parts it can be brought to the form

S = −
∫
M

a0

(
k

4π
εij∂iaj −

q

4π
εij∂iAj

)
− k

4π
εijaiȧj (7.3)

− q

2π
εij
(
aiȦj + ai∂jA0

)
− k

4π

∫
∂M

a0a1 (7.4)

Integration over a0 in the path integral leads to

ai = ∂iφ+
q

k
Ai (7.5)

Making the variable change from ai to ∂iφ and assuming there is not Jacobian
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we have

S =
1

4π

q2

k

∫
M

AdA+
k

4π

∫
∂M

φ̇φ′ − a0a1 +
q

k
A0φ

′ + 2
q2

k
A0A1 (7.6)

The boson φ is charged under the electromagnetic U(1) symmetry, so it is
more convenient (and esthetically pleasing) to re-write the action in a mani-
festly gauge invariant way. We have

S =
ν

4π

∫
M

AdA+
ν

4π

∫
∂M

D0φD1φ+ Eφ− a0a1 , (7.7)

where Dµφ = ∂µφ + Aµ, where we have also rescaled φ by q2

k
and denoted

q2

k
= ν.
Under a gauge transformation φ transforms as a phase (after rescaling)

δφ = −α (7.8)

This is as far as we can go without any additional input about the edge
physics. This additional input will enter through the boundary conditions for
the gauge field a.

7.2.1 Elitzur, et. al. boundary conditions

The simplest (and traditional) choice of the boundary conditions ensures the
vanishing of the last term in (7.7). We set a0 = 0 and get

S =
ν

4π

∫
M

AdA+
ν

4π

∫
∂M

D0φD1φ+ Eφ (7.9)

This is the chiral boson without dynamics coupled to external gauge field.
We stress that we have made a choice of boundary conditions and not a

gauge choice. As we have mentioned in the beginning of the Section: the group
of gauge transformations consists only of those transformations that smoothly
go to 1 near the boundary.

7.2.2 Holomorphic boundary conditions

Another way to fix boundary conditions is to preserve the invariance under
anti-holomorphic gauge transformations on the boundary (i.e. ∂̄α = 0).

az = 0 or a0 = va1 , (7.10)
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for some constant v. This boundary condition leads to action

S =
ν

4π

∫
M

AdA+
ν

4π

∫
∂M

DzφD1φ+ Eφ (7.11)

=
ν

4π

∫
M

AdA+
ν

4π

∫
∂M

(D0 − vD1)φD1φ+ Eφ (7.12)

In order to get some feeling for this theory we compute the density and
current of the gauged chiral boson. We have

J0 =
δS

δA0

=
ν

4π
(2φ′ + A1) (7.13)

J1 =
δS

δA1

=
ν

4π

(
−vD1φ+ (D0 − vD1)φ− φ̇

)
= −v ν

2π
D1φ (7.14)

Notice that the total number of the bosons is given by the winding of the
compact field φ.

7.2.3 Covariant boundary conditions

Finally one can choose the boundary conditions that depend on the induced
geometry of the boundary. Given a boudnary vielbein Eµ

z . We have

Eµ
z aµ = 0 or a0 =

E1
z

E0
z

a1 ≡ Ka1 (7.15)

This condition corresponds to choosing velocity v = K in (7.11). This is
exactly the coupling obtained by [102]. This coupling indeed leads to the
gravitational anomaly discussed below [103].

7.2.4 Non-abelian CS-WZW correspondance

In the non-abelian case the Chern-Simons action is given by

S =
k

4π

∫
M

Tr

(
AdA+

2

3
A3

)
(7.16)

The solution of equations of motion (in the temporal gauge A0 = 0) is

A = U−1dU , (7.17)

where U is an element of the group of gauge transformations. We choose only
the transformations that equal to 1 at the edge. Plugging this relation back
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in we obtain.

S =
k

4π

∫
∂M

Tr
(
U−1∂xUU

−1∂0U
)

+
k

12π

∫
M

Tr
(
U−1dU

)3
. (7.18)

This action is the chiral Wess-Zumino-Witten theory. It was obtained from
the Chern-Simons action in [101].

7.3 Callan-Harvey anomaly inflow

We will demonstrate the Callan-Harvey mechanism in 2 + 1D for a system
of Dirac fermions coupled to an axion string (or a boundary) that extends it
1+1D. Dirac fermions are free of anomalies in odd dimensions, but the degrees
of freedom that “live” on the string are chiral (in a sense that they propagate
along the string in one direction only) and therefore experience gauge and
gravitational anomalies. For the illustrative purpose we will focus on gauge
anomaly. The gauge anomaly is characterized by the failure of the electric
current to be conserved

∂iJ
i =

1

4π
Fijε

ij , i = 0, 1 . (7.19)

At the same time in the 2 + 1 theory the current must be conserved since the
theory is non-anomalous [104]. Therefore there must be something outside
of the string that cancels the anomaly. In fact, what happens is that charge
from the surrounding space flows onto the string (or boundary). The way it
happens formally is relatively simple. The induced action of the fermions in
2 + 1D is given in the leading order by a parity violating radiative correction

W = − 1

4π

∫
A ∧ F = − 1

4π

∫
A ∧ dA , (7.20)

The gauge variation of the induced action W is

δW =
1

4π

∫
d(Fα) = − 1

4π

∫
d2xεijFijα , (7.21)

where α is the parameter of the gauge variation. This gauge variation precisely
matches the anomaly of the chiral degrees of freedom. Similar arguments can
be made for the gravitational Chern-Simons theory.
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7.3.1 Gravitational Chern-Simons and gravitational anomaly

We will show the anomaly inflow for the gravitational Chern-Simons term.
Its diffeomorphism variation can easily be done after some preparation. We
introduce the matrix valued one-form Γµν . Then the curvature two-form is
nicely written as

R = dΓ + Γ ∧ Γ , (7.22)

where matrix product is understood. The gravitational Chern-Simons term is
written as∫
M
IgCS =

∫
M

Tr

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
=

∫
M

Tr

(
Γ ∧R− 1

3
Γ ∧ Γ ∧ Γ

)
(7.23)

The variation of the Christofell connection under a diffeomorphism ξµ is given
by

δΓµν,ρ = LξΓµν,ρ + ∂ν∂ρξ
µ ≡ LξΓµν,ρ + δ̃Γµν,ρ , (7.24)

where δ̃ stands for the non-tensorial part of the variation. Obviously, I4 is
invariant under the tensorial Lie derivative part of the variation, so we will
only care about non-tensorial part. On the form language we can re-write
(7.24) as

δΓ = LξΓ + d(∂ξ) , (7.25)

where ∂ξ is a matrix valued 0-form ∂µξ
ν and d(∂ξ) is a matrix valued 1-form

∂ρ(∂µξ
ν)dxρ. With this notation the variation of IgCS is computed as follows∫

M
δIgCS =

∫
M

Tr
(
δ̃Γ ∧R− δ̃Γ ∧ Γ ∧ Γ

)
=

∫
M

Tr (d(∂ξ) ∧ dΓ)

=

∫
M
dTr [∂ξdΓ] =

∫
∂M

Tr [∂ξdΓ] , (7.26)

where we used δ̃R = 0 and the cyclic property of the trace in the first step,
definition of δ̃ and (7.22) in the second step and Poincare lemma d2 = 0 in the
third, finally we used the Stokes theorem in the last step. In components we
have (after integration by parts)

δ

∫
M
IgCS =

∫
∂M

ξνελρ∂µ∂λΓ
µ
ν,ρ (7.27)
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This matches the consistent gravitational anomaly of the chiral edge theory
as [104]

DiT
i
j =

1

48π
∂k∂lΓ

k
mjε

ml . (7.28)

7.4 Induced action at the boundary: gauge

and gravitational anomalies

To construct an induced boundary action corresponding to (7.1) let us first
consider the case when s̄ = s2 = 0. In this case the construction is well known
in relativistic physics (both CS and gCS terms are Lorentz-invariant). Namely,
one needs to supplement the action (7.1) by boundary counterterms restoring
the gauge and coordinate invariance. The corresponding boundary induced
action can be formally written as

W 1
∂ = − 1

4π

∫
dxdt

[
νE

1

∂−
A− −

c

12
R

1

∂−
Γ−

]
, (7.29)

where Γα = Γγβ,αε
γβ is the abelianized affine connection defined on the bound-

ary. Here we also defined “minus” components as A− = Eµ
−Aµ in terms of viel-

beins Eµ
− = Eµ

0 − E
µ
1 etc. 4 The notation 1/∂− is a notation for the Green’s

function of the operator ∂−. We have to notice here that the non-local induced
action is somewhat misleading as it misses the non-perturbative contributions.
We will elaborate on this point later on in the Letter. The counter terms (7.29)
are necessarily non-local reflecting gauge and gravitational anomalies of the
boundary theory. It must be emphasized that (7.29) does not uniquely fix the
boundary theory (additional local gauge and coordinate invariant boundary
terms can be added) and only fixes anomalies. Although the boundary action
(7.29) is nonlocal it can be obtained as an induced action of a local boundary
theory (chiral CFT) as explained in the begining of the Chapter.

7.5 Extrinsic geometry of the boundary

In the next Section we will show that in contrast to CS and gCS terms, the
gauge and general coordinate non-invariances of Wen-Zee terms of (7.1) can
be fixed by local boundary counter terms. In this Section we briefly review the
geometric data provided by the boundary necessary to construct the counter
terms.

4In flat space we have Eµ = (1, v) and this becomes simply A− = A0 − vA1.
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A boundary can be described in a covariant way as a two-dimensional man-
ifold embedded into the three-dimensional space time. Embedded manifolds
are characterized by two types of geometry: intrinsic one that is described by
the metric and extrinsic one described by embedding functions xµ = xµ(σ, τ)
and the second fundamental form. A very nice exposition of these issues can
be found for example in [105].

In particular, in 2 spatial dimensions the extrinsic geometry is very simple.
Since we do not require the effective theory to be Lorentz invariant we restrict
the embedding functions to be of the form x0 = t, xi = xi(x, t), where x is the
“spatial” coordinate on the physical boundary and t is the global time. Given
embedding functions one can construct tangent and normal vectors ti and ni

that satisfy
nini = titi = 1 , nit

i = 0 . (7.30)

Later on we will also need a one-formKα (related to the second fundamental
form) defined on the boundary as

K0 = nj∂0tj, K1 = njti∇itj. (7.31)

The one-form Kα has an interesting relation to the spin connection ωµ
evaluated on the boundary (in the bulk everything can be written only in
terms of metric). If the spatial vielbeins Ei

A are aligned along the vectors ti

and ni the the spin connection evaluated on the boundary will coincide with
−Kα. Generally, at the boundary the difference ω +K is a pure SO(2) gauge

ωα +Kα = ∂αθ , (7.32)

where θ is a rotation angle. In particular, integrating the spatial component
of (7.32) along the one-dimensional boundary of a surface and using R =
2(∂1ω2 − ∂2ω1) and the Stokes theorem we obtain the Gauss-Bonnet theorem
for a manifold with a boundary

1

4π

∫
Σ

dAR +
1

2π

∫
∂Σ

dsK1 = χ . (7.33)

Here dA and ds are invariant area and line element, respectively. The Euler
characteristics χ is an integer-valued topological invariant equal to the winding
number of the angle θ in (7.32)5.

5For example, the Euler characteristics of a disc or a spherical cap is χ = 1 while for a
closed surface of genus g it is χ = 2− 2g.
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7.6 Induced action at the boundary: Wen-Zee

terms

Let us now consider the first Wen-Zee term written as Adω in Eq.(7.1). The
form dω can be viewed as a part of topologically conserved Euler current [98]
that couples minimally to the vector potential A. This term is not gauge
invariant in the presence of the boundary. Similarly, the second Wen-Zee term
ωdω is not SO(2) invariant in the presence of the boundary.

It is straightforward to check that the boundary term

W 2
∂ = − ν

2π

∫
dxdt εαβ

[
s̄AαKβ +

s2

2
ωαKβ

]
(7.34)

cures the non-invariances of both Wen-Zee terms. 6

In contrast to (7.29) the boundary term (7.34) is local. This proves that
there are no anomalies related to the Wen-Zee terms. This observation is the
first main result of this Letter.

The total boundary induced action is

W∂ = W 1
∂ +W 2

∂ + . . . , (7.35)

where W 1
∂ + W 2

∂ is the part fixed by the bulk action (7.1) and ellipsis denote
terms invariant under all symmetries.

7.7 Shift in the presence of the boundary

The bulk induced action (7.1) encodes local response functions which can be
found by taking various variational derivatives of the induced action.

Density response is

ρ =
1
√
g

δW

δA0

=
ν

2π
B +

νs̄

4π
R + . . . . (7.36)

This local relation means that electrons accumulate in the areas of higher
magnetic field and curvature in the bulk. The relation (7.36) contains also
higher gradient terms denoted by ellipsis. Therefore, it is more interesting
to look at the integral version of this relation. The corrections to the density
from higher order terms are necessarily full spatial derivatives and vanish upon

6The first term in (7.34) coincides with the non-relativistic limit of the counterterm
needed to ensure the gauge invariance of the Euler current term [98].
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integration. On an arbitrary manifold without boundary we have

N = νNφ + νs̄χ , (7.37)

where χ is the Euler characteristics of a manifold defined by (7.33) and Nφ =
1

2π

∫
Σ
B 7. Relation (7.37) was known in FQH literature for closed manifolds.

We will now generalize it to the systems with a physical edge.
The induced action Wtot = W∂ + W , in principle, provides us with the

means to compute the total number of electrons N in a given FQH state. In
order to carefully evaluate the correction to the density coming from the non-
local terms W 1

∂ one has to fix the boundary theory first. The contribution
coming from the boundary is not topological and depends (to an extent) on
the boundary conditions and the definition of the boundary on the scales
comaparable with the magnetic length.

We are going to illustrate the answer on the example of IQHE. First, we
adiabatically connect an IQHE state to a clean system of non-interacting elec-
trons. This case is particularly well controlled because the computation of the
total electron number can be done in two different ways. The first way is quite
abstract and it relies on the Atiyah-Patodi-Singer (APS) index theorem [106].
The states at the lowest Landau level are the zero modes of the ∂̄ operator
and their number is determined by its index 8. According to the APS theorem
the index of ∂̄ is given by

N = ind (∂̄) =
1

2π

∫
Σ

B +
1

2

(
1

4π

∫
Σ

R +
1

2π

∫
∂Σ

K1

)
+

1

2
η . (7.38)

Here ind (∂̄) is the index of ∂̄ operator and the η-invariant is defined by

η = sign∂̄|∂Σ ≡ Σλsignλ , (7.39)

where λ is an eigenvalue of operator ∂̄ restricted to the boundary ∂Σ [107].
We observe that the first terms of (7.38) and (7.37) at ν = 1 and s̄ = 1/2

identically coincide. The last term in (7.38) is more subtle. Since the manifold
Σ has a boundary and the sum of first three terms in (7.38) is not necessarily
integer. In fact, the sum of first three terms is half-integer even if we choose
to thread an integer flux Nφ through the disc. The role of the η-invariant is to
make it integer. Indeed, for one dimensional operatorD = ∂̄|∂Σ = −i∂x+Ax(x)
we have η(D) = 1−2{Nφ}, where Nφ = 1

2π

∫
dxAx and (7.38) becomes simply

7Strictly speaking, the formula (7.37) is valid only when its right hand side is integer so
that there is no contribution from excitations.

8Generally ind(∂̄) = dim Ker ∂̄ − dim Ker ∂ but the lowest Landau level is spanned only
by holomorphic states and only first term contributes.
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an integer part

N = [Nφ] +
χ+ 1

2
, (7.40)

where [Nφ] denotes the integer part of Nφ.
The applicability of the index theorem requires a specific choice of the

boundary conditions on the wave-function and thus might seem unrealistic.
The second way to compute the total charge N is more physical and it repro-
duces the results of the index theorem. We start from fixing the boundary
theory to be a chiral fermion. Then the relation (7.37) has to be amended
by the induced fermion number of the edge theory given by the η−invariant
[108]. This again leads to (7.40).

Notice that the first term in (7.34) while not related to quantum anomalies
is crucial to produce the correct expression for χ (7.33) entering (7.40).

7.8 Singular expansion of charge density

We find the corrections to the local formula for the equilibrium charge density
(7.36) in the presence of the boundary. For simplicity we confine ourselves
to the case of the flat domain Σ and constant magnetic field B. Then the
variation of the induced action W +W∂ over A0 gives

ρ =
ν

2π
Bθ(Σ) +

νs̄

4π
K1δ(∂Σ) +

ζ

2π
∂nδ(∂Σ) . (7.41)

Here θ(Σ) is an indicator function of the domain (equal to unity inside the
domain and zero otherwise) and δ and ∂nδ denote Dirac’s delta function con-
centrated on the boundary ∂Σ of the domain and its derivative normal to the
boundary. The coefficient ζ describes the so-called “overshoot” phenomenon
and in the case of the Laughlin function is related to the Hall viscosity.

A comment is in order, the last term in (7.41) gets contributions from two
different terms: one in the bulk and one on the boundary. The relevant terms
are

W1 =
σ

(2)
H

2π

∫
M

∇iEiB , W2 =
ξ

2π

∫
∂M

niEi , (7.42)

where σ
(2)
H is the longwave correction to the Hall conductance and ξ is a di-

mensionless parameter related to the total dipole moment at the edge. With
these definitions we have ζ = l2σ

(2)
H + ξ. The first of these coefficients can be

found purely in a bulk computation (one also has to substitute the background
constant magnetic field B) and the other one is an edge effect. When the in-
duced action is additionally restricted by the (local) Galilean invariance [50]
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the coefficient σ
(2)
H gets a contribution from the Hall viscosity, thus relating

the “overshoot” with ηH . In general, these phenomena are not related.
In order to illustrate our results we can compare them with the computation

of the singular expansion of the charge density computed by Wiegmann and
Zabrodin [109].

ρ =
ν

2π
Θ(R− r) +

1

2π
δ(r2 −R2) +

1− 2ν

2π
R2δ′(r2 −R2)

This fixes ζ = 1− 2ν.

7.9 Gibbons-Hawking-York boundary term.

Here we will demonstrate a curious observation regarding the Wen-Zee term:
it can be obtained from the non-relativistic limit of Einstein-Hilbert term,
whereas the boundary counter term (7.34) can be obtained from the non-
relativistic limit of Gibbons-Hawking-York boundary term.

Consider an Einstein-Hilbert action written in first order formalism on a
2 + 1D manifold M .

SEH = − 1

8πG

∫
M

d3xεabcε
µνρeaµR

bc
µν , (7.43)

where G is the Newton’s constant in 2 + 1D.
If the manifold M has a boundary the action S should be supplemented

with a boundary term in order for the variational principle to be well-defined.
In the first order treatment this boundary term is given by

S∂ = − 1

8πG

∫
∂M

d2x
√
gεabcε

µνeaµω
bc
ν (7.44)

We want to stress that there are no symmetry reasons to add the term since
SEH is invariant even if there is a boundary.

There is a general procedure that allows to construct Galilean invariant
theories from Lorentz invariant theories [45]. It amounts to placing a Lorentz
invariant theory in a curved background with vielbeins given by

e0
µ = (1− A0

c
,−Ai

c
) , eAµ = (0, eAi ) , (7.45)

where Aµ will become a vector potential in the non-relativistic theory. It is
easy to see that this substitution equates momentum to the electric current
[45] which is equivalent to the statement of the Galilean invariance.
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Substituting (7.45) into (7.43) and (7.44) we find

SEH + S∂ ≈
1

8πG

∫
εµνρAµ∂νωρ +

1

8πG

∫
∂M

εαβAαωβ + . . . , (7.46)

where + . . . means other terms fixed by the Galilean symmetry. We will not
indulge in the computation of these terms.

7.10 Outlook

In this Chapter we have slightly touched upon the aspects of boundary physics
of quantum Hall states. This topic is a gigantic field and we are certainly not
competent enough to give a complete and wide discussion.

What we did accomplish however, is showing that Hall viscosity is not as
strong property of a quantum Hall fluid as Hall conductance. That is, if we
imagine a fluid with no Hall conductance, but with Hall viscosity only then
there is no guarantee that there are gapless degrees of freedom if one attempts
to introduce a boundary. At the same time, if there is a chiral central charge
(or if there is Leduc-Righi effect on the boundary) then the only bulk response
that will receive a contribution is the Hall viscosity.

We have also shown that despite some claims in literature, at a general
level (i.e. without Galilean invariance) Hall viscosity is not related to the edge
dipole moment. This happens because in the presence of the boundary it is
possible to add manifestly invariant (with respect to all symmetries) bound-
ary terms in the induced action. These terms are, however, restricted if the
Galilean symmetry is enforced.
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Chapter 8

Discussion and Perspectives

In this closing Chapter we will summarize the results obtained in the Thesis
and will say a few words about the future directions of the research in the field
of geometric responses.

8.1 Summary

In this Thesis we have studied both integer and fractional quantum Hall states
in the background of the perturbed space geometry. This study allowed us to
compute various dimensionless response functions such as Hall viscosity (in
the units of density) and orbital spin variance. In all the cases these kinetic
coefficients take rational values. It was found that when the computation
of the induced action is done using the effective TQFT one has to add the
“framing anomaly” contribution to the induced action. Only in that case
various effective and mean field approaches to quantum Hall states are self-
consistent in curved sapce.

We have investigated a class of gapped systems with local Galilean sym-
metry. For this class we have derived a number of relations (Ward Identities)
between the aforementioned response functions and their gradient corrections.
What seems to be interesting is that the response functions computed for the
Laughlin function satisfy these Ward identities. We used these Ward identities
to predict the values of gradient corrections to various kinetic coefficients.

We have investigated quantum Hall states in thermal equilibrium on a
curved space. The developed formalism allowed to derive the local thermody-
namic relations and a collection of Streda formulas for various thermodynamic
quantities. We have emphasized that Lorentz invariance imposes additional
constraints on these relations and in general case these constraints do not
have to hold. It was found that in order to couple a non-relativistic system
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to curved space in coordinate reparametrisation invariant way one has to in-
troduce additional external fields that form the Newton-Cartan geometry (a
type of non-Riemannian geometry). This geometry was implicitly used in
old Luttinger’s work on thermoelectric transport. NC geometry is useful for
computation of momentum and energy transport in non-relativistic systems.

We have studied quantum Hall states on a curved space with boundary. It
was found that there are four independent “Chern-Simons-type” terms that
one can construct in the bulk induced action. Two of these terms induce a
quantum (gauge and gravitational) anomaly of the edge theory. These terms
are related to Hall conductance and thermal Hall conductance correspondingly.
The other two terms do not lead to an anomaly, but imply a certain boundary
response. Thus, we have concluded that unlike Hall conductance, Hall viscosity
does not imply existence of “protected” gapless edge modes.

8.2 Measurement of the Hall viscosity

The lead character of this exposition was the Hall viscosity. It is an observable
transport coefficient. This kinetic coefficient manifests itself in a shear flow
of a two dimensional fluid: it leads to a force, transverse, to the shear. Hall
viscosity is different from zero only in systems where parity is broken either
explicitly or spontaneously. For example, in quantum Hall states parity is
broken by the magnetic field.

It is very difficult to access mechanical properties of an electron fluid. One
promising possibility to access it is to reduce any mechanical experiment to an
electro-magnetic one. The recent result of Hoyos and Son (5.71) is an example
of such reduction. The difficulty with the proposal is that instead of Hall
viscosity one has to measure a long wave correction to Hall conductivity and
that quantity does not really contribute to any transport measurement either.

The problem of measuring (shear) viscosity in electron fluids is difficult
even outside of the non-dissipatve quantum Hall regime. Recently there was
a proposal of an apparatus that could measure the shear viscosity of electron
fluid in Corbino disc geometry [110] and to the best of our knowledge it is
the only one so far. It is very interesting to adopt the suggested method to
measure the Hall viscosity.

Alternatively, one could try to obtain s̄ directly from a measurement of the
equilibrium density making use of the relation between the local density and
local curvature [111]

ρ =
ν

2π
B +

νs̄

4π
R . (8.1)

It is, in principle, possible to create ripples, cones and corners in, say, a
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graphene sample, but the difficulty with this approach is that there always
will be a charge density accumulation around such defects and only a tiny
contribution will come from the orbital spin.

It is not clear how robust the value of the Hall viscosity will be to disorder
and other details of the system that violate rotational invariance. In the case
of the Hall conductivity the robustness is justified by the Laughlin’s argument
that only appeals to the charge conservation, that will not be affected by
disorder. There is a more precise argument of Pruisken [112] that appeals to
the presence of a topological term in the effective non-linear sigma model that
leads to precise quantization of Hall conductance in the presence of disorder.
At the present time the relationship of Hall viscosity with disorder is not clear.
Presumably, if disorder is sufficiently weak the orbital spin will not change
after the averaging over disorder. It is extremely important to understand
this question.

8.3 Gravitation as effective theory of FQH states

recently there was a lot of interest to hidden “geometric degree of freedom” in
the effective theory of FQHE [113–116]. This degree of freedom should encode
some universal information about dynamics and gapped collective excitations
in FQHE. If this is indeed the case then the effective theory should contain
some version of gravitation (perhaps, without Lorentz symmetry).

In a seemingly unrelated development [117–119] it was found that inter-
actions can induce spontaneous breaking of SO(2) rotational symmetry in
quantum Hall state driving system to a so-called nematic phase. Hall vis-
cosity changes its value in the transition. The (massive) fluctuations of the
nematic order parameter on the isotropic side of the transition are identified
with the Girvin-MacDonald-Platzman collective mode. The effective theory
of the phase transition is written for the matrix SO(2) local order parame-
ter: that is one way to interpret the “geometric degree of freedom” mentioned
before.

We believe that there is something to be understood about the role of 2+1
dimensional gravity in the effective theory of FQHE. The relation seems to be
possible particularly because 2 + 1D gravitation is a Chern-Simons theory in
disguise (although with non-compact gauge group) [120]. It should describe
the statistics, fusion and braiding of the space-time defects much like gauge
Chern-Simons theory describes the statistics, fusion and braiding of quasi-
particles. It is exciting to speculate that understanding (quantum) gravity as
an effective theory for quantum Hall states might shed some new light on the
fundamental problem of quantization of Einstein’s theory in 3 + 1 dimensions.
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[68] Ali H Chamseddine and J Fröhlich. Two-dimensional lorentz-weyl
anomaly and gravitational chern-simons theory. Comm. Math. Phys.,
147(3):549–562, 1992.

[69] Importantly, the replacement of the SO(2) spin connection of the SK
part of the action Eq.(4.95) by Christoffel symbols cannot be done.

[70] Curtis G Callan Jr and Jeffrey A Harvey. Anomalies and fermion zero
modes on strings and domain walls. Nuclear Physics B, 250(1):427–436,
1985.

[71] Semyon Klevtsov and Paul Wiegmann. Precise adiabatic transport and
geometry of quantum hall states. arXiv preprint arXiv:1504.07198, 2015.

146

http://link.aps.org/doi/10.1103/PhysRevB.90.115139
http://link.aps.org/doi/10.1103/PhysRevB.90.115139
http://link.aps.org/doi/10.1103/PhysRevLett.56.742
http://link.aps.org/doi/10.1103/PhysRevLett.56.742
http://link.aps.org/doi/10.1103/PhysRevLett.56.746
http://link.aps.org/doi/10.1103/PhysRevLett.56.746


[72] Barry Bradlyn and N Read. Topological central charge from berry cur-
vature: gravitational anomalies in trial wavefunctions for topological
phases. arXiv preprint arXiv:1502.04126, 2015.

[73] Jainendra K Jain. Composite-fermion approach for the fractional quan-
tum hall effect. Physical review letters, 63(2):199, 1989.

[74] Jon M Leinaas and Jan Myrheim. On the theory of identical particles.
Il Nuovo Cimento B Series 11, 37(1):1–23, 1977.

[75] Xiao-Gang Wen. Projective construction of non-abelian quantum hall
liquids. Physical Review B, 60(12):8827, 1999.

[76] Maissam Barkeshli and Xiao-Gang Wen. Effective field theory and pro-
jective construction for Zk parafermion fractional quantum Hall states.
Phys. Rev. B, 81:155302, 2010.

[77] N. Read and E. Rezayi. Beyond paired quantum Hall states:
Parafermions and incompressible states in the first excited Landau level.
Phys. Rev. B, 59:8084, 1999.

[78] Gregory Moore and Nathan Seiberg. Taming the conformal zoo. Physics
Letters B, 220(3):422–430, 1989.

[79] Martin Greiter, Frank Wilczek, and Edward Witten. Hydrodynamic
relations in superconductivity. Modern Physics Letters B, 3(12):903–
918, 1989.

[80] T Can, M Laskin, and P Wiegmann. Fractional quantum hall effect in
a curved space: Gravitational anomaly and electromagnetic response.
arXiv preprint arXiv:1402.1531, 2014.

[81] Robert Alicki, John R. Klauder, and Jerzy Lewandowski. Landau-
level ground-state degeneracy and its relevance for a general quanti-
zation procedure. Phys. Rev. A, 48:2538–2548, Oct 1993. doi: 10.
1103/PhysRevA.48.2538. URL http://link.aps.org/doi/10.1103/

PhysRevA.48.2538.

[82] Michael R Douglas and Semyon Klevtsov. Bergman kernel from path in-
tegral. Communications in Mathematical Physics, 293(1):205–230, 2010.

[83] Xiao-Gang Wen. Topological orders and edge excitations in frac-
tional quantum hall states. Advances in Physics, 44(5):405–473, 1995.
doi: 10.1080/00018739500101566. URL http://www.tandfonline.

com/doi/abs/10.1080/00018739500101566.

147

http://link.aps.org/doi/10.1103/PhysRevA.48.2538
http://link.aps.org/doi/10.1103/PhysRevA.48.2538
http://www.tandfonline.com/doi/abs/10.1080/00018739500101566
http://www.tandfonline.com/doi/abs/10.1080/00018739500101566


[84] Eddy Ardonne, Peter Bouwknegt, Sathya Guruswamy, and Kareljan
Schoutens. K-matrices for non-abelian quantum hall states. Phys. Rev.
B, 61:10298–10302, Apr 2000. doi: 10.1103/PhysRevB.61.10298. URL
http://link.aps.org/doi/10.1103/PhysRevB.61.10298.

[85] Oleg Andreev, Michael Haack, and Stefan Hofmann. On nonrelativistic
diffeomorphism invariance. arXiv preprint arXiv:1309.7231, 2013.

[86] Kristan Jensen and Andreas Karch. Revisiting non-relativistic limits.
arXiv preprint arXiv:1412.2738, 2014.

[87] Barry Bradlyn and N Read. Low-energy effective theory in the bulk for
transport in a topological phase. arXiv preprint arXiv:1407.2911, 2014.

[88] N. R. Cooper, B. I. Halperin, and I. M. Ruzin. Thermoelectric response
of an interacting two-dimensional electron gas in a quantizing magnetic
field. Phys. Rev. B, 55:2344–2359, Jan 1997. doi: 10.1103/PhysRevB.55.
2344. URL http://link.aps.org/doi/10.1103/PhysRevB.55.2344.

[89] Andrey Gromov and Alexander G Abanov. Density-curvature response
and gravitational anomaly. arXiv preprint arXiv:1403.5809, 2014.

[90] Nabamita Banerjee, Jyotirmoy Bhattacharya, Sayantani Bhattacharyya,
Sachin Jain, Shiraz Minwalla, and Tarun Sharma. Constraints on fluid
dynamics from equilibrium partition functions. Journal of High Energy
Physics, 2012(9):1–57, 2012.
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Appendix A

Energy current

We will derive the expression for the energy current operator the way it is
usually done in solid state literature. We will define the energy current JEi as
the current, that participates in the local energy conservation law.

We start with the unperturbed action

S0 =

∫
d2xdt

[
i~ψ†ψ̇ − ~2

2m
D†iψ

†Diψ

]
(A.1)

with Di = ∂i− i
~A

b
i . The background vector potential Abi creates homogeneous

magnetic field so that εij∂iA
b
j = B0 = const and we partially fix the gauge

by choosing Ȧbi = 0. We chose the static external potential so it lightens the
derivation, but should not affect the final conclusions.

Equations of motion are

iψ̇ = − ~
2m

DiD
iψ (A.2)

iψ̇† =
~

2m
D†iD

†iψ† (A.3)

The total energy H of the system is

H =

∫
d2xdt

[
~2

2m
D†iψ

†Diψ

]
≡
∫
d2xdt× h(x, t) (A.4)

We are looking for the continuity equation for the time derivative of h.

ḣ =
~2

2mi

(
D†j(iψ̇

†)Djψ +D†jψ
†Dj(iψ̇)

)
(A.5)
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Using the EoM we find.

ḣ =
~3

4m2i

(
D†jD

†
iD
†iψ†Djψ −D†jψ†DjDiD

iψ
)

(A.6)

Using the integration by parts in the form (D†f)g = −f(Dg) + ∂(fg). We
apply it twice to the first term. The the send term will be canceled leaving us
with a full derivative. As such:

(D†jD
†
iD
†iψ†)Djψ = −(D†jD

†jψ†)(D†iD
iψ) + ∂j

(
D†iD

†iψ†Djψ
)

= (D†jψ
†)(DjDiD

iψ)− ∂j
(
(D†jψ†)(DiD

iψ)
)

+ ∂j

(
(D†iD

†iψ†)(Djψ)
)

First term cancels the second term in (A.6). We have shown that

ḣ =
~3

4m2i
∂j

[
−(D†jψ†)(DiD

iψ) + (D†iD
†iψ†)(Djψ)

]
≡ ∂jJ

E
j (A.7)

The final expression for energy current is given by

JEi =
~3

4m2i

[
−(D†jψ

†)D2ψ + (D2ψ)†(Djψ)
]

(A.8)

We did not need to keep all of the external perturbations in the derivation
since it is easy to embed this expression into the curved space, simply by
demanding that it is a vector under spatial coordinate variations.
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Appendix B

Free fermions in Newton-Cartan
background

The action for the free fermions in general Newton-Catran background is given
by (see Chapter 6)

S =

∫
dtd2xeL ,

L =

(
i

2
vµ(Ψ†∂µΨ− ∂µΨ†Ψ)− hµν

2m
∂µΨ†∂νΨ

)
. (B.1)

As we have mentioned in Chapter 6, it is convenient to use a particular
parametrization of the NC background fields. Let us specify the spatial part
hij of the degenerate metric and assume that nµ = (n0, ni) and vµ = (v0, vi)
are also specified and satisfy the first relation in (6.27). Then we find from

other relations in (6.27) hµν =

(
n2

n2
0
− ni

n0

− ni

n0
hij

)
, where we defined ni = hijnj,

n2 = ninjh
ij. In this parametrization the invariant volume element is given

by dV =
√
hn0dtd

2x.
In this parametrization of the NC background the Lagrangian takes form

L =

(
i

2
v0(Ψ†∂0Ψ− ∂0Ψ†Ψ) +

i

2
vi(Ψ†DiΨ−DiΨ

†Ψ)− hij

2m
DiΨ

†DjΨ

)
− ni

2mn0

(
DiΨ

†D0Ψ +D0Ψ†DiΨ
)

+
n2

n2
0

D0Ψ†D0Ψ + A0Ψ†Ψ (B.2)

As promised in Chapter 6 the NC “clock form” nµ couples to the energy
and energy current. To see this one has to use the equations of motion in(
DiΨ

†D0Ψ +D0Ψ†DiΨ
)
.
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Also we stress reader’s attention that the spatial part of vi couples to the
matter the same way as spatial part of the vector potential Ai, apart from the
A2 term. This identical coupling is not accidental, it is consequence of the
Galilean invariance and leads to the Ward identity

J i =
e

m
P i (B.3)

Also notice that n0 and
√
h couple the same way to the energy. This is

consequence of the non-relativistic version of Weyl symmetry that leads to
equality of pressure and energy. Pretty much any interaction will destroy this
symmetry. Thus, in order to restore n0 in the calculation of Chapter 3 we only
need to ensure that

√
g and n0 enter together.

We also have to point out that if the NC background does not satisfy the
integrability condition n∧dn = 0 then the theory stops being casual. In order
to avoid this problem we will only retain the terms linear in ni in the induced
action. This amounts to using ni as a source for energy current and then
setting ni to zero in all 1-point functions.

B.1 Perturbation theory

We will only consider the perturbation by ni since n0 terms are easily restored
as we pointed out in the last section.

The new contribution in the linear order is given by niJ
E
i (after using the

equations of motion):

δS(1) =
~3

4m2i

∫
d2xdt

(
ni
[
−(DiΨ)†D2Ψ + (D2Ψ)†(DiΨ)

])
(B.4)

Integrating by parts enough times we get

δS(1) =
~3

4m2i

∫
d2xdt×Ψ†

[
DiniD

2 +D2niDi

]
Ψ, (B.5)

where derivatives act all the way to the right. Now we go to complex basis.

δS(1) =
~3

16m2i

∫
d2xdt×Ψ† [Dz̄nz(DzDz̄ +Dz̄Dz)

+ (DzDz̄ +Dz̄Dz)D
2nzDz̄ + c.c.

]
Ψ, (B.6)
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Now we replace the derivatives with creation/annihilation operators as

Dz =

√
2~
li

a† (B.7)

Dz̄ =

√
2~
li

a (B.8)

So we get

δS(1) =
~3

4
√

2l3m2

∫
d2xdtψ†[anz(2a

†a+ 1) + (2a†a+ 1)nza

+ a†nz̄(2a
†a+ 1) + (2a†a+ 1)nz̄a

†]ψ (B.9)

The vertices are (up to an overall factor = ~3

4
√

2l3m2 )

Vnz = ae−qa
†
eq̄a(2a†a+ 1) + (2a†a+ 1)e−qa

†
eq̄aa, (B.10)

Vnz̄ = a†e−qa
†
eq̄a(2a†a+ 1) + (2a†a+ 1)e−qa

†
eq̄aa†, (B.11)

where we introduced q = kl√
2
. In order to simplify this we will use

eq̄af(a†) = f(a† + q̄)eq̄a (B.12)

eqa
†
f(a) = f(a− q)eqa† (B.13)

After some algebra

Vnz = e−qa
† [

4a†a2 + 4qa†a+ 4a+ 2q̄a2 + 2|q|2a+ q
]
eq̄a (B.14)

Vnz̄ = e−qa
† [

4a†2a+ 4q̄a†a+ 4a† + 2qa†2 + 2|q|2a† + q̄
]
eq̄a (B.15)

Finally, replacing operators with momentum derivatives

Vnz =
[
−4∂q∂

2
q̄ − 4q∂q∂q̄ + 4∂q̄ + 2q̄∂2

q̄ + 2|q|2∂q̄ + q
]
e−qa

†
eq̄a (B.16)

Vnz̄ =
[
4∂2

q∂q̄ − 4q̄∂q∂q̄ − 4∂q + 2q∂2
q − 2|q|2∂q + q̄

]
e−qa

†
eq̄a (B.17)

And the corresponding differential operators, acting on the generating function
are

V̂nz =
~3

4
√

2l3m2

[
−4∂q∂

2
q̄ − 4q∂q∂q̄ + 4∂q̄ + 2q̄∂2

q̄ + 2|q|2∂q̄ + q
]

(B.18)

V̂nz̄ =
~3

4
√

2l3m2

[
4∂2

q∂q̄ − 4q̄∂q∂q̄ − 4∂q + 2q∂2
q − 2|q|2∂q + q̄

]
(B.19)

156



B.2 Contact terms

To get the contact terms we expand the action to the second order.

δS =
~3

4m2i

∫
d2xdt

(
gijni

[
−(∇jΨ)†∇2

gΨ + (∇2
gΨ)†(∇jΨ)

])
We expand the differential operators to the linear order in fields

∇i = Di −
i

~
Ai −

1

4
∂igzz̄ (B.20)

∇†i = Di +
i

~
Ai −

1

4
∂igzz̄ (B.21)

∇2
g = D2 + gijDiDj + (∂ig

ij)Dj −
1

4
∆gzz̄ − i∂iAi − 2iAiDi (B.22)

∇2
g = D2 + gijDiDj + (∂ig

ij)Dj −
1

4
∆gzz̄ + i∂iAi + 2iAiDi (B.23)

Using these notations we can write down all of the quadratic contact terms.
We do not list those here

B.3 The lowest order induced action

Finally we present a few interesting terms induced in the Newton-Cartan ge-
ometry. The terms of interest are the Chern-Simons-type parity odd terms

δW =
α

4π

∫
ndA+

β

4π

∫
ndn (B.24)

These terms contribute to the thermo-electric transport in the lowest order in
gradients. These terms a not universal for the reasons discussed in Chapter 6.
The coefficients are given by

α =
1

ml2
= 2× ~ωc

2
, β =

1

m2l4
= (~ωc)2 (B.25)

We can easily check that at least α makes sense. If we plug in the background
value for A. We get

W =

∫
d2xdt

~ωc
4π

n0B =

∫
d2xdtn0

~ωc
2

1

2πl2
=

∫
d2xdtn0ε0 , (B.26)

so n0 is indeed coupled to the energy density. We do not have similar trick to
check the sanity of the value of β except the dimensional analysis (that works
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our correctly). The value of β implies the transverse bulk energy current

J iE =
(~ωc)2

4π
εij∂jn0 . (B.27)

This concludes our discussion of the free fermions in the general Newton-
Cartan background.
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Appendix C

Non-relativistic limit of
gravitational Chern-Simons

Affine connection Γijk is defined such that covariant derivative has the right
(covariant) transformation law. Covariant derivative of a vector and a co-
vector are

Divk = ∂ivk − Γikj vj (C.1)

Div
k = ∂iv

k + Γkijv
j (C.2)

Imposing the Levi-Cevita condition Digjk = 0 we find the expression for the
connection

Γi,jk =
1

2
(−∂igjk + ∂jgik + ∂kgij) (C.3)

Γjki = gjmgknΓi,mn (C.4)

In order to take the non-relativistic limit we go to the co-moving frame where
g00 = 1 and gi0 = g0i = 0. We also note that ∂

∂x0
= 1

c
∂
∂t

. So that ∂0f = 1
c
ḟ .

We will set c = 1 for now, but then restore it by counting the number of time
derivatives. NR limit will be taken in 2 steps. First, we go to the co-moving
frame and then we set c → ∞. The measure will go to d3x → cd2xdt. So, in
the NR limit we must keep only 1

c
terms.

The non-zero components of Γi,jk are

Γ0,ij = −1

2
ġij (C.5)

Γi,0j =
1

2
ġij = Γi,j0 (C.6)

Γi,jk ≡ Γi,jk (C.7)
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and the rest are zero.
The non-zero components of Γjki are

Γij0 = −1

2
ġij, (C.8)

Γ0j
i =

1

2
gjkġki, (C.9)

Γjki ≡ Γjki . (C.10)

C.1 Gravitational Chern-Simons in the NR limit

We will write the gCS term as

I[Γ] =

∫
d3x

[
εµνρΓµ,αβ∂νΓ

αβ
ρ +

2

3
Γ3

]
(C.11)

Now we plug all that in, simplify and keep only quadratic order. After a
tedious computation we obtain (restoring c)∫

d3xεµνρΓµ,αβ∂νΓ
αβ
ρ →

∫
d2xdt

[
εijgin∂m∂nġjm

]
(C.12)

In the quadratic approximation we do not distinguish between upper and lower
indices (up to an overall sign).

In the complex basis we have

I[Γ] = −1

4

∫
d2xdt

[
ω|k|2gzz(−k)gz̄z̄(k) + ωk̄2gzz̄(−k)gz̄z̄(k)− ωk2gzz̄(−k)gzz(k)

]
(C.13)

This is twice the gCS action that is obtained from Son’s ωµ.

C.2 Cartan equations and spin connection

We define frame 1-form as ea = eaµdx
µ. Driebeins satisfy eaµe

b
νηab = gµν and

eaµe
b
νg

µν = ηab. We define exterior derivative d acting on a 0-from as df =
(∂µf)dxµ. Exterior derivative acting on a vector field is

dvk = (∂µv
k)dxµ (C.14)

finally, acting on a 1-form

d(fµdx
µ) = (∂νfµ)dxν ∧ dxµ (C.15)
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We define torsion free spin connection matrix valued 1-form ωa·b by demanding
Dµe

a
ν = 0. This is equivalent to torsion free Cartan structure equations.
Cartan structure equations are

dea + ωa·b ∧ eb = T a (C.16)

In components:(
Dνe

a
µ + ωaν,be

b
µ

)
dxν ∧ dxµ = T aµνdx

ν ∧ dxµ (C.17)

In the presence of torsion one has to be careful with choosing the independent
quantities. For now we set T a = 0. In the NR limit we choose e0

0 = 1 and
e0
i = ei0 = 0. This will determine the spin connection.

We solve the (C.17) in components since 2-forms dxν ∧ dxµ are linearly
independent.

(0,0) gives
ωa0,0 = 0 = ω0

0,a (C.18)

(0,i) combined with NR expressions form Γ gives

ω0,ab = ei,a∂0e
i
b +

1

2c
ekae

l
bġkl (C.19)

contraction with εab gives then twice Son’s expression.

ω0 = εabei,a∂0e
i
b (C.20)

(i,j) gives, combined with NR expressions form Γ and with the use of
elae

k
b ε
ab = 1√

g
εlk

ωi = εabei,a∂0e
i
b −

1
√
g
εlk∂lgik (C.21)

which is again twice Son’s expression. Thus we established that in order to
compare NR limit of usual gCS with εµνρωµ∂νωρ one needs to add a factor of
1
2

in front of the latter

C.3 Isothermal coordinates.

Here we derive an exact expression for the gCS term, but written in the isother-
mal coordinates. We choose gij = g

1
2 δij and gij = g−

1
2 δij. Then affine connec-
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tion has components The non-zero components of Γi,jk are

Γ0,ij = −1

2
ġij = −1

2

√
g∂t ln

√
g × δij (C.22)

Γi,0j =
1

2
ġij = Γi,j0 = −1

2

√
g∂t ln

√
g × δij (C.23)

Γi,jk ≡ Γi,jk =

√
g

2
(−∂i ln

√
gδjk + ∂j ln

√
gδik + ∂k ln

√
gδij) (C.24)

and the rest are zero.
The non-zero components of Γjki are

Γij0 = −1

2
gimgjnġmn = −1

2

1
√
g
∂0 ln

√
g × δij (C.25)

Γ0j
i =

1

2
gjkġki =

1

2
∂0 ln

√
g × δji (C.26)

Γjki ≡ Γjki =
1

2
√
g

(
−∂i ln

√
gδjk + ∂j ln

√
gδki + ∂k ln

√
gδji
)

(C.27)

Define the gCS term as

I[g] =

∫
d2xdt

(
εαβγΓα,µν∂βΓµνγ

)
(C.28)

=

∫
d2xdtεij

(
Γ0,mn∂iΓ

mn
j + Γi,µν

[
∂0Γµνj − ∂jΓ

µν
0

])
(C.29)

After some algebra

I[g] =

∫
M

d2xdtεij(∂i ln
√
g)(∂0∂j ln

√
g) (C.30)

this looks more illuminating in form notation. Denoting det gij = e2φ

I[g] =

∫
M

dφ ∧ dφ̇ =

∫
M

[
−φ̇d2φ+ d(φ̇dφ)

]
(C.31)

The first term vanishes due to Poincare lemma and the second term goes to
the boundary due to Stokes theorem

I[g] =

∫
∂M

φ̇dφ =

∫
∂M

(∂0 ln
√
g)d ln

√
g =

∫
dli(∂0 ln

√
g)εij∂i ln

√
g (C.32)

Thus in isothermal coordinates SO(2) gravitational Chern-Simons theory is a
boundary term.

162



Appendix D

Gauge invariance of the induced
action for IQHE

While the final expression (3.138) is useful for computational purposes all of
the symmetries of the classical action are not manifest. In this Appendix we
will show that (3.138) is gauge invariant. We note that it is sufficient to check
that gauge variation of the quadratic part of the induced action vanishes.

δW (2) ≈
∫
d2kdω

(2π)3

(
e−
|kl|2

2

[ ∑
n≥N,m≤N

−
∑

n≤N,m≥N

] ∑2
i=0 δΓ

i
nm(k)Γjmn(−k)

n−m− ω

)
= 0

(D.1)
with

δΓinm(k) = 〈n|δV̂i(k)|m〉 (D.2)

We list transformations of vertices, with notation γ̂(k) = e
− kl√

2
a†
e
k̄l√

2
a

δV̂0 = −iωγ̂(k) (D.3)

δV̂1 = −i ~
2
√

2ml
{a†, γ̂(k)}k (D.4)

δV̂2 = −i ~
2
√

2ml
{a, γ̂(k)}k̄ (D.5)

δV̂3 = 0 (D.6)

δV̂4 = 0 (D.7)

δV̂5 = 0 (D.8)

It is more convenient to use dimensionless momentum q = kl√
2

and frequency
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ω → ~ω
ml2

. Then

δV̂0 = −i ~ω
ml2

γ̂(q) (D.9)

δV̂1 = −i ~
2ml2

{a†, γ̂(q)}q (D.10)

δV̂2 = −i ~
2ml2

{a, γ̂(q)}q̄ (D.11)

δV̂3 = 0 (D.12)

δV̂4 = 0 (D.13)

δV̂5 = 0 (D.14)

Looking at (D.1) we see that we have to prove for ∀ j[ ∑
n≥N,m≤N

−
∑

n≤N,m≥N

] ∑2
i=0〈n|δV̂i(k)|m〉
n−m− ω

Γjmn(−k) =

[ ∑
n≥N,m≤N

−
∑

n≤N,m≥N

](
〈n|(n−m) δV̂0(k)

ω
+ δV̂1(k) + δV̂2(k)|m〉

n−m− ω
Γjmn(−k)

−i〈n| ~
ml2

γ̂(q)|m〉Γjmn(−k)

)
Close look at the last expression gives

〈n|(n−m)
δV̂0(k)

ω
+δV̂1(k)+δV̂2(k)|m〉 = 〈n|[a†a, δV̂0(k)

ω
]+δV̂1(k)+δV̂2(k)|m〉

(D.15)
We move all creation/annihilation operators between exponents.

δV̂2 = −i ~
2ml2

q̄e−qa
†
(2a− q)eq̄a (D.16)

δV̂1 = −i ~
2ml2

qe−qa
†
(2a† + q̄)eq̄a (D.17)

(D.18)
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We also compute

[a†a,
δV̂0(k)

ω
] = −i ~

ml2

(
a†ae−qa

†
eq̄a − e−qa†eq̄aa†a

)
(D.19)

= i
~
ml2

e−qa
† (
qa† + q̄a

)
eq̄a (D.20)

So we find

[a†a,
δV̂0(k)

ω
] + δV̂1(k) + δV̂2(k) = 0 (D.21)

So gauge invariance holds for any Γjnm.
Then

δW (2) = −i ~
ml2

[ ∑
n≥N,m≤N

−
∑

n≤N,m≥N

]
〈n|γ̂(q)|m〉Γjmn(−k)

= −i ~
ml2

[ ∑
n≥N,m<N

−
∑

n≤N,m≥N

]
Γ0
nm(k)Γjmn(−k)

= −i ~
ml2

∑
n≥N,m<N

(
Γ0
nm(k)Γjmn(−k)− Γ0

mn(k)Γjnm(−k)
)

= −i ~
ml2

∑
m<N

∑
n≥1

(
Γ0
nm(k)Γjmn(−k)− Γ0

mn(k)Γjnm(−k)
)

= −i ~
ml2

∑
m<N

〈m|[V̂0(k), V̂j(−k)]|m〉

Finally, we compute the commutator

[V̂0(k), V̂j(−k)] = 0 (D.22)

This computation shows that the induced action is gauge invariant. We
have also checked the gauge invariance using the symbolic algebra tools in
Mathematica and, of course, it also works.
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Appendix E

Coherent states

Here we describe coherent states that will be useful for multiple calculations.
Here we follow Perelomov [51], but customize the notations.

E.1 Heisenberg-Weyl group

We define Heisenberg-Weyl algebra via relations

[a, a†] = 1 [a, 1] = [a†, 1] = 0 (E.1)

an arbitrary element of the algebra is given by a linear combination

W = is · 1 + qa† − q̄a, (E.2)

where s is real and q is complex.
We want to exponentiate the algebra to the group. Arbitrary Heisenbrg-

Weyl group element is given by

eW = eis · eqa†−q̄a = eiseqa
†
e−q̄ae−

1
2

[qa†,−q̄a] = eise−
|q|2

2 eqa
†
e−q̄a, (E.3)

where we have used eA+B = e−
1
2

[A,B]eAeB, which is true for linear combinations
of creation/annihilation operators. We also denote D(q) = eqa

†−q̄a as these op-
erators form a representation of the Heisenberg-Weyl group. Representations
for different values of s are inequivalent. For fixed value of s all representations
are unitary equivalent. So from now on we fix s and drop this factor.

We can freely switch between D(q) and eqa
†
e−q̄a at the cost of an exponent,

that is

D(q) = e−
|q|2

2 eqa
†
e−q̄a (E.4)
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Operators D have the following multiplication relations.

D(q)D(k) = eiIm(qk̄)D(k + q) (E.5)

This can be checked using the following simple rules. We can always choose
representation in which a is a derivative and a† is a variable or where a† is
minus derivative and a is a variable. In this case an operator ec·a is an operator
of shift by c and ec·a

†
is an operator of shift by −c. This proves the following

relations

ecaf(a†) = f(a† + c)eca (E.6)

eca
†
f(a) = f(a− c)eca† (E.7)

These relations can be used to prove the multiplication law. The latter can be
obviously generalized as follows.

D(qM) ·D(qM−1) · . . . ·D(q1) = ei
∑
i<j Im(qj q̄i)D(qM + qM−1 + . . .+ q1) (E.8)

The multiplication law implies the permutation relations

D(q)D(k) = e2iIm(qk̄)D(k)D(q), (E.9)

which is equivalent to (E.6)

E.2 Generalized coherent states

Operators a, a† naturally generate Hilbert space H. With a basis

|n〉 =
a†√
n!
|0〉 (E.10)

and |0〉 is defined as a|0〉 = 0. Consider an arbitrary state |Ψ0〉 ∈ H. States
of the form

D(q)|Ψ0〉 = |q〉 (E.11)

are generalized coherent states. One gets usual coherent states choosing |Ψ0〉 =
|0〉. Most of relations for coherent sates hold for any |Ψ0〉. The overlap of the
coherent sates is

〈q|k〉 = eiIm(kq̄)〈Ψ0|D(k − q)|Ψ0〉 |〈q|k〉|2 ≡ ρ(k − q) (E.12)
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Also we have
D(k)|q〉 = eiIm(kq̄)|k + q〉 (E.13)

Since the hilbert space H is projected D(k) acts on the q-plane by simple
translations. Therefore an invariant (under the action of Heisenberg-Weyl
group) measure is

dµ(k) = cdk1dk2 with k = k1 + ik2 (E.14)

Consider an operator

A =

∫
dµ(k)|k〉〈k| (E.15)

We find that for any k we have [D(k), A] = 0, thus A = λ1̂ due to Schur’s
lemma. We also can always choose c form (E.14) to set λ = 1. Thus we have
shown ∫

dk1dk2

π
|k〉〈k| = 1̂ (E.16)

We now present some relations that are valid for |Ψ0〉 = |0〉.

D†(q)aD(q) = a+ q (E.17)

and
a|k〉 = k|k〉 (E.18)

Similarly we have

|k〉 = D(k)|0〉 = e−
|k|2

2 eka
†|0〉 =

∞∑
n=0

kn√
n!
|n〉 (E.19)

Using the last relation we find

|〈k|0〉|2 = ρ(k) = e−|k|
2 |〈k|q〉|2 = ρ(q − k) = e−|k−q|

2

(E.20)

Noticing that (E.16) is equivalent to
∫
dµ(k)ρ(k) = 1 we find that c = 1

π
.

We want to be able to compute traces in H. In the Fock basis we have

TrO =
∑
n

〈n|O|n〉 =
∑
n

∫
dµ(k)dµ(q)〈q|n〉〈n|k〉〈k|O|q〉

=

∫
dµ(k)dµ(q)〈q|k〉〈k|O|q〉 (E.21)
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Contracting one more decomposition of unity

TrO =

∫
dµ(q)〈q|O|q〉 =

∫
dµ(q)e−|q|

2〈0|eq̄aOeqa†|0〉 (E.22)

So we have derived

Tr aÔ =
1

π

∫
dq1dq2

(
e−|q|

2〈0|eq̄aÔeqa†|0〉
)

(E.23)

Consider a matrix element of D(k)

G(k̄, q; p) ≡ e
1
2(|k|2+|q|2)〈k|D(p)|q〉 = e−

|p|2
2 ek̄q+k̄p−q̄p (E.24)

Inserting resolution of unity in terms |n〉 we find

G(k̄, q; p) =
∑
m,n

ūm(k)un(q)Dmn(p) with un(k) ≡ 〈n|k〉 =
km√
m!

(E.25)
G is a generating function of the matrix elements of Dmn(p). The latter

are obtain expanding (E.24) in series in k and q.

Dnm(p) =

√
n!

m!
e−
|p|2

2 pm−nLm−nn (|p|2) m ≥ n (E.26)

Dnm(p) =

√
m!

n!
e−
|p|2

2 pn−mLn−mm (|p|2) n ≥ m (E.27)

We can find trace of TrD(p) = πδ(2)(p) and Tr [D(p)D−1(q)] = πδ(2)(p−q)
Another relevant object is the generating function of associated Laguerre

polynomials

(1 + t)me−tx =
∑
n

tnLm−nn (x) (E.28)

E.3 Application

We want to compute trace of a product

Tr b

[
M∏
i=1

Oi(xi)

]
=

∫
[dk]

M∏
i=1

[
Tr b

[
ei

∑
i ki·xi

]
Õi(ki)

]
, (E.29)
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where we have introduce a shorthand notation [dk] =
∏M

i=1
d2ki

(2π)2M . Now we
re-write the exponent in terms of a and b.

eik·x = e
k̄l√

2
a− kl√

2
a†
e
− k̄l√

2
b†+ kl√

2
b

= eq̄a−qa
†
e−q̄b

†+qb (E.30)

where we introduced q = kl√
2
, so that [dk] =

(
2
l2

)M
[dq]. We have for the

exponent

eik·x = Da(−q)e−
|q|2

2 e−q̄b
†
eqb (E.31)

Now, we plug this back into the trace(
2

l2

)M M∏
i=1

∫
[dq]Da(−qi)

[
Tr b

[
e−
|qi|

2

2 e−q̄ib
†
eqib
]
Õi(qi)

]
(E.32)

In order to proceed we use (E.23) derived before.

Tr b

[
M∏
i=1

e−
|qi|

2

2 e−q̄ib
†
eqib

]
=

1

π
e−

∑
i
|qi|

2

2

∫
dp1dp2

[
e−|p|

2〈0|ep̄b
M∏
i=1

e−q̄ib
†
eqibepb

†|0〉

]
(E.33)

We want to normal order the product. In order to do this we use permu-
tation relations many times.

ep̄b
M∏
i=1

e−q̄ib
†
eqibepb

†
=: ep̄b

M∏
i=1

e−q̄ib
†
eqibepb

†
: e|p|

2

e
∑
i>j −q̄iqje−p̄

∑
i q̄iep

∑
i qi

(E.34)
Denoting

∑
i qi = Q and using 〈0| : ep̄b

∏M
i=1 e

−q̄ib†eqibepb
†

: |0〉 = 1 we have

Tr b

[
M∏
i=1

e−
|qi|

2

2 e−q̄ib
†
eqib

]
=

1

π
e−

∑
i
|qi|

2

2 e
∑
i>j −q̄iqj

∫
dp1dp2e

−p̄QepQ̄ (E.35)

The latter integral is a δ-function

1

π

∫
dp1dp2e

−p̄QepQ̄ = πδ(2)(Q) = π

∫
d2λ

(2π)2
eiλ·Q (E.36)

We also use q̄iqj = qi · qj + iqi ∧ qj, where a ∧ b = a1b2 − a2b1. As well as

1

2

∑
i

|qi|2 +
∑
i<j

qi · qj =
1

2
Q2 (E.37)
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then

Tr b

[
M∏
i=1

e−
|qi|

2

2 e−q̄ib
†
eqib

]
= πe−i

∑
i>j qi∧qj

∫
d2λ

(2π)2
eiλ·Q (E.38)

We have proven that

Tr b

[
M∏
i=1

Oi(xi)

]
= π

(
2

l2

)M ∫
d2λ

(2π)2

M∏
i=1

∫
[dq]

[
Da(−qi)eiλ·qiÕi(qi)

]
e−i

∑
i>j qi∧qj

(E.39)
using relations derived above we have

Da(−q1) · . . . ·Da(−qM) = ei
∑
i>j qi∧qjDa(−q1− . . .− qM) = ei

∑
i>j qi∧qjDa(−Q)

(E.40)
Plugging this back in

Tr b

[
M∏
i=1

Oi(xi)

]
= π

(
2

l2

)M ∫
d2λ

(2π)2

M∏
i=1

∫
[dq]

[
eiλ·qiÕi(qi)

]
(E.41)

This is the generalization of the b-summation formula used in Chapter 2.
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Appendix F

Laguerre polynomial identity

Here we derive a property of Laguerre polynomials used in the main text.

Functions e−
|kl|2

4 L0
m

(
|kl|2

2

)
form a complete orthonormal basis in a func-

tional space on a half-line with measure d |kl|
2

2
. This implies (together with

Lm(0) = 1). ∑
m

e−
|kl|2

4 L0
m

(
|kl|2

2

)
= δ(1)

(
|kl|2

2

)
, (F.1)

Let’s prove this. To simplify things let’s say that functions fn(x) form
a complete orthonormal (

∫
dxfn(x)fm(x) = δn,m) basis and that fn(0) = 1.

Then consider a sum ∑
n

fn(x) (F.2)

as a generalized function. Let’s integrate this functions against some trial
continuous function that can also be expanded in the same basis g(x) =∑
cnfn(x). ∫

dx
∑
n

fn(x)g(x) =
∑
n,m

cn

∫
dxfn(x)fm(x) =

∑
n

cn (F.3)

on the other hand lets integrate g(x) against a delta function δ(x)∫
dxδ(x)g(x) =

∑
n

cn

∫
dxfn(x)δ(x) =

∑
n

cn (F.4)

thus we conclude that is a sense of generalized functions∑
n

fn(x) = δ(x) . (F.5)
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Appendix G

Galilean symmetry in
Newton-Cartan geometry

In this Appendix we briefly summarize the covariant description of Galilean
symmetry given in [30]. Then Newton-Cartan structure on a manifold is a
pair of (nµ, h

µν). Where n is a 1-form that specifies the time direction and hµν

is degenerate “metric”, it contains the information about metric on a spatial
slice. These structures satisfy the relations

vµnµ = 1, hµνnµ = 0 , (G.1)

where vµ is a vector field, dual to nµ. We also define projector P ν
µ = δµν −vµnµ.

There is a field transformation that preserves these constraints called Milne
transformation

v′µ = vµ + hµνψν (G.2)

A′µ = Aµ + P ν
µψν −

1

2
nµh

νρψνψρ , (G.3)

where ψ is the parameter of the transformation.
The action

S =

∫
dV

[
i

2
vµ(Ψ†∂µΨ− ∂µΨ†Ψ)− hµν

2m
∂µΨ†∂νΨ

]
, (G.4)

is, in fact, Milne invariant.
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To see how it works in detail we can re-write the action as

S =

∫
dV
(
− m

2
(hµνAµAν − 2vµAµ) Ψ†Ψ +

i

2
(vµ − hµνAν)Ψ†∂µΨ

− hµν

2m
∂µΨ†∂νΨ

)
(G.5)

The scalar hµνAµAν − 2vµAµ, vector vµ − hµνAν and tensor hµν are explicitly
Milne invariant (but not all gauge invariant).

It is an unsolved problem to construct an induced action invariant with
respect to Milne transformations to arbitrary order in fields and gradients.

174



Appendix H

Chiral boson from gaussian free
field

In the main text we have derived the chiral boson edge theory from the effective
Chern-Simons theory. Alternatively, it is possible to derive the chiral boson
theory starting from the non-chiral boson and restricting it to one of the
sectors. We discuss the derivation in this Appendix.

H.1 Electro-mangetic field

The topological bulk action of the quantum Hall system is known to be the
Chern-Simons theory.

SM =
σH
2

∫
dtd2xA ∧ dA =

σH
2

∫
dtd2x

√
g εµνρAµ∂νAρ, (H.1)

where ε123 = 1√
g
. On a closed manifold this action is gauge invariant. On a

manifold with boundary this action is not invariant and requires a boundary
theory that compensates the non-invariance. Let’s choose the boundary to be
a line y = 0. Then

δαSM =
σH
2

∫
dtd2x d(αdA) =

σH
2

∫
y=0

dtdx αdA =
σH
2

∫
y=0

dtdx
√
g αεij∂iAj

=
σH
2

∫
y=0

dtdx
√
gαE (H.2)

or

δSM =
σH
2

∫
αE, (H.3)
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where E is defined below.
We choose the following boundary theory:

S∂M =
1

π

∫
dtdx

(
1

2
(∂+φ− qA+)(∂−φ− qA−) + γlElφ+ γrErφ

)
+ I[A],

(H.4)
where we defined E = εij∂iAj = ∂+A− − ∂−A+ = El + Er = F01 and x+ =
x1 + x2 and x− = x1 − x2 and ∂+x+ = ∂−x− = 1. So that 2∂+ = ∂1 − ∂2 and
2∂− = ∂1 + ∂2. We also have A± = A1 ∓ A2. Also, I[A] is a local counter
term to be chosen later.

Under a gauge transformation we have δEl = ∂+A− = ∂+∂−α = ∂2α and
δEr = ∂−A+ = ∂+∂−α = ∂2α. Also, the boson field φ transforms as a phase
δφ = α.

We re-write the action as follows.

S∂M =
1

π

∫
1

2
∂+φ∂−φ+

(
(γl +

q

2
)El + (γr −

q

2
)Er)

)
φ+

q2

2
A+A−+I[A] (H.5)

Now we perform a shift of the integration variable φ→ φ+X. We have

S∂M =
1

π

∫
1

2
∂+φ∂−φ− (H.6)

−
(
∂2X

)
φ+

(
(γl +

q

2
)El + (γr −

q

2
)Er)

)
φ−

− 1

2
X∂2X +

(
(γl +

q

2
)El + (γr −

q

2
)Er)

)
X +

q2

2
A+A− + I[A]

Eliminating the linear term in φ we get

X =
1

∂2

(
(γl +

q

2
)El + (γr −

q

2
)Er)

)
(H.7)

With this condition we finally obtain

S∂M =
1

π

∫
1

2
∂+φ∂−φ+ (H.8)

+
1

2

[(
γl +

q

2

)
El + (γr −

q

2
)Er)

] 1

∂2

[(
γl +

q

2

)
El + (γr −

q

2
)Er)

]
+

q2

2
A+A− + I[A] (H.9)
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Integrating out the bosonic field we get for the normalizedW∂M = −i ln
∫
DφeiS∂M

W∂M =
1

2π

(
γl +

q

2

)2
∫
El

1

∂2
El +

1

2π

(
γr −

q

2

)2
∫
Er

1

∂2
Er (H.10)

+
1

π

(
γr −

q

2

)(
γl +

q

2

)∫
El

1

∂2
Er +

q2

2π
A+A− + I[A] (H.11)

In this form action is not satisfactory for our purposes. We add and subtract
terms to convert

∫
El

1
∂2El into

∫
El

1
∂2E. We have

W∂M =
1

2π

(
γl +

q

2

)2
∫
El

1

∂2
E +

1

2π

(
γr −

q

2

)2
∫
Er

1

∂2
E + (H.12)

+
1

π

{(
γr −

q

2

)(
γl +

q

2

)
− 1

2

(
γl +

q

2

)2

− 1

2

(
γr −

q

2

)2
}∫

El
1

∂2
Er

+
q2

2
A+A− + I[A] (H.13)

Now we simplify the last line and find our counter term

πI[A] = (γr − γl)
{

1

2
(γr − γl)− q

}∫
El

1

∂2
Er (H.14)

Also, upon taking γr = q
2

it takes the form

πI[A] =

(
γ2
l −

q2

4

)∫
El

1

∂2
Er =

(
γ2
l −

q2

4

)
A+A− (H.15)

Plugging this back into the action we arrive at the final form of the action
and effective action

S∂M =
1

π

∫
1

2
∂+φ∂−φ+

(
γl +

q

2

)
Elφ+

(
γ2
l +

q2

4

)
A+A− (H.16)

W∂M =
1

2π

(
γl +

q

2

)2
∫
El

1

∂2
E (H.17)

The corresponding Chern-Simons term in the bulk is

WM =
σH
2

∫
AdA (H.18)

We demand

δ(WM +W∂M) =
1

2π

(
γl +

q

2

)2
∫
αE − σH

2

∫
αE = 0 (H.19)
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or

σH =
1

π

(
γl +

q

2

)2

(H.20)

We can choose q = 0 and get

σH =
1

π
γ2
l (H.21)

For FQHE with ν−1 we have γl =
√

ν−1

2
.

H.2 Turning on gravity

Just like before we start with the following boundary theory, but we set q = 0
from the start.

S∂M =
1

π

∫
dtdx

(
1

2
∇+φ∇−φ+ γlElφ+ γrErφ+ βlRlφ+ βrRrφ

)
+ I[A, ω],

(H.22)
where we have defined

∇± = Eµ
±∂µ + ω±Ĵ , ω± = ∓1

e
∂µ (eEµ

±) , E = (∇+A− −∇−A+) = El + Er

R = ∇+ω− −∇−ω+ = Rl +Rr, (H.23)

Then

S∂M =
1

π

∫
1

2
∇+φ∇−φ− (H.24)

−
(
∇2X

)
φ+

(
(γl +

q

2
)El + (γr −

q

2
)Er + βlRl + βrRr)

)
φ−

− 1

2
X∇2X +

(
(γl +

q

2
)El + (γr −

q

2
)Er) + βlRl + βrRr

)
X +

q2

2
A+A− + I[A]

we choose X in order to cancel the terms linear in φ.

X =
1

∇2

(
(γl +

q

2
)El + (γr −

q

2
)Er) + βlRl + βrRr

)
(H.25)
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Plugging this in we have

S∂M =
1

π

∫
1

2
∇+φ∇−φ+

+
1

2

[(
γl +

q

2

)
El +

(
γr −

q

2

)
Er + βlRl + βrRr)

] 1

∇2

×
[(
γl +

q

2

)
El +

(
γr −

q

2

)
Er + βlRl + βrRr

]
+

q2

2
A+A− + I[A]

Integrating over φ we get the effective action

W∂M =
1

2π

(
γl +

q

2

)2
∫
El

1

∇2
El +

1

2π

(
γr −

q

2

)2
∫
Er

1

∇2
Er + (H.26)

+
1

2π

(
1

12
+ β2

l

)∫
Rl

1

∇2
Rl +

1

2π

(
1

12
+ β2

r

)∫
Rr

1

∇2
Rr +

+
1

π
βl

(
γl +

q

2

)∫
El

1

∇2
Rl +

1

π
βr

(
γr −

q

2

)∫
Er

1

∇2
Rr

+
1

π
βl

(
γr −

q

2

)∫
Er

1

∇2
Rl + βr

(
γl +

q

2

)∫
El

1

∇2
Rr

+
1

π

(
γr −

q

2

)(
γl +

q

2

)∫
El

1

∇2
Er +

1

π
βlβr

∫
El

1

∇2
Er (H.27)

+
q2

2π
A+A− + I[A, ω]

We will ignore the counter terms for now and proceed with setting, β2
r =

− 1
12

and αr = q
2
. Then

W∂M =

(
γl + q

2

)2

2π

∫
El

1

∇2
E +

βl
(
γl + q

2

)
2π

∫ (
El

1

∇2
R +Rl

1

∇2
E

)
+

1

2π

(
1

12
+ β2

l

)∫
Rl

1

∇2
R (H.28)

Finally, setting γl = 0 and βl = 0. We also assumed that we chose a counter
term I[A, ω] appropriately. Then the induced action takes form

W∂M =
ν

4π

∫
El

1

∆
E +

1

48π

∫
Rl

1

∆
R (H.29)

with ν = q2

2
.
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In the bulk we write

WM =
ν

4π

∫
AdA− 1

96π

∫
d3xTr

[
ΓdΓ +

2

3
Γ3

]
(H.30)

The total induced action is diffeomorphism and gauge invariant.
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