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The polarization of proton beam during the acceleration process in a par-
ticle accelerator is affected by the existence of spin resonances. Coupling spin
resonances can be excited in the presence of the betatron coupling introduced
by rolled quadrupoles and solenoids, as well as in when the stable direction
of the spin deviates from the vertical (for instance, by partial Snakes or spin
rotators). In this study, We extended the ASPIRRIN code to account for
the effect of solenoidal magnets and related betatron coupling on the spin
resonances. The examples of the coupling spin resonance for RHIC are given.
In addition, an analysis is presented for spin coupling resonances produced
in the AGS due to the partial Snakes.
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Chapter 1

1 Introduction to spin beam dynamics

High energy polarized beams are as a fundamental necessities for research in
high energy and nuclear physics sciences using accelerators facilities. Spin
is an intrinsic feature of all of the accelerated particle species. Most lepton-
proton scattering experiments have shown that quark spin accounts for only
a portion of the proton spin. Studying polarized proton-proton collisions also
is a practical approach to examining the spin content of protons.

The missing portion of the proton spin may come from gluons and from
the movement of quarks and gluons relative to each other. A particular quark
polarization can be measured through the parity violation during different
collisions. Examples are W and Z bosons that are produced during the
collisions.

The spin program at RHIC is intended to probe the internal structure of
the proton. RHIC was the first machine in the world able to collide protons
with both longitudinal and transverse polarization up to a beam energy of
250 GeV. Although other proton accelerators have been accelerating proton
beams up to hundreds of GeVs, the acceleration of polarized protons to these
high energies has to deal with possible beam depolarization as a result of
depolarizing resonances. These resonances are produced by the fields required
for accelerating and focusing the protons and occur at special energies.

The particle’s spin is affected by its own motion. The particles traverse
magnetic field that results in the precessing of their spins around different
axes is defined by the field direction. The spin of a particle moving on closed
orbit would precess around the vertical axis in perfect circular accelerator
with vertical guiding magnetic fields; spin tune νs is defined as the rate of
spin precession in a circular accelerator.

The linear field errors caused by the presence of misaligned magnets and
by the betatron motion can add up coherently to tip the spin motion away
from the vertical direction. The action of perturbed fields would be enhanced
when the tune of perturbing magnetic fields equals the spin tune; this en-
hancement results in the depolarization of the beam. These resonances fall
into three categories: coupled spin resonances, intrinsic resonances and im-
perfection resonances.

Imperfection resonances are caused by the misalignment of the magnets.
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The spin would precess on the distorted closed orbit and the strength of
the resonance is proportional to the vertical distortion of the closed orbit so
produced. The only condition for that resonance to occur when Gγ equals
an integer, is where Gγ is the spin tune.

The intrinsic spin resonances are encountered in nature as betatron mo-
tion is an intrinsic feature of particle motion in synchrotrons, even for the
ideal case of perfectly aligned machine. They are enhanced when the spin
tune equals the harmonic of vertical betatron tune.

In general, vertical and horizontal betatron oscillations are not coupled.
Such coupling of motion can be introduced by skew quadrupoles and the
rotational misalignment of regular quadrupole and solenoids. In the case
of fouling resonances the horizontal betatron motion would drive additional
spin perturbation that can cause the deviation of the spin from the vertical.

Several techniques were considered and employed to compensate for de-
polarizing resonances. The most powerful one was proposed by Derbenev
and Kondratenko in 1978 using a powerful spin rotator called Siberian snake
to rotate the spin vector around a horizontal axis by 180o .

In the presence of one snake or several of them, the spin tune νs would be
energy independent at fixed value, generally 1/2. As a major consequence, all
first-order resonance conditions can be avoided. Hence, the spin tune would
never cross any imperfection or intrinsic depolarizing resonances during the
acceleration up to arbitrary high energy values. Two Siberian snakes are
installed in each of RHIC proton rings[3].

Each snake consists of four super-conducting helical dipoles. Using 2 full
snakes in each ring overcame both the intrinsic and imperfection resonances.
By installing full snakes,the RHIC delivered high polarization up to 250 GeV,
A partial snake also was used to preserve polarization; partial implies that
the angle of spin rotation is less than 180o.

A superconducting helical-field partial snake was installed at the AGS.
With a strength of 5% the spin vector was rotated by 9o ,i.e, sufficient to
correct for all imperfection resonances in the AGS.

For calculating depolarizing resonances the DEPOL code generally has
been used. However, DEPOL assumes that direction of the stable spin is
vertical everywhere on the closed orbit and does not include the effect of
snakes or other spin rotators. For RHIC it was necessary to do the assessment
with full configuration of snakes and spin rotators, and also to consider the
specific case of betatron coupling. The general algorithm used for calculating
the spin resonances with arbitrary orientation of periodical spin was added
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to the ASPIRRIN code (Analysis of Spin Resonances in Rings). In course of
this my work ASPIRRIN abilities were extended to calculate the strength of
coupled spin resonances. The newly modified ASPIRRIN code allowed us to
calculate both the horizontal and vertical resonance harmonics for the case
of strong betatron coupling.

This thesis begins with an overview of the basic fundamental concepts for
the spin dynamics in chapter 2. In Chapter 3 the formulations of contribu-
tions to spin resonances harmonics for rotated quadrupole ,solenoidal mag-
nets and combined-magnets function are derived . In chapter 4 the newly
modified code ASPIRRIN will be used for examining the major coupling
sources of the depolarization in both AGS and RHIC. In Chapter 5 conclu-
sions will be presented.
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2 SPIN BEAMDYNAMICS IN SYNCHROTRON

In this chapter we introduce first the analytic basics of the spin motion. Then
we discuss the spin depolarization resonances conditions.

Additionally the use of Siberian snakes in mitigating the spin depolar-
ization resonances is covered in details, followed by introducing a general
formula for spin resonance harmonics.

2.1 Basic Spin Motion

The dynamics of polarized beam particles is governed by the interaction
of magnetic moment with the surrounding external electromagnetic fields.
Since our main concern is the acceleration of polarized protons, it is more
convenient to discuss the spin dynamics,particularly of spin 1/2 particles.
For a beam of 1/2 spin particles, the degree of polarization is given by

P =
N+ −N−
N+ +N−

(1)

N± are the populations in two spin states |1/2,±1/2 >. The beam is
100% totally polarized when all the spin vectors are pointing to the same
point. The polarization P of a beam is defined as the absolute value of the
average spin taken over all N particles of the beam.[5]

P = | 1
N

N∑
j=1

Sj| (2)

Polarization is a collective property of the entire beam ; it cannot be
understood by the behavior of individual particle , nor a specific point in
phase space.

For a moving particles with magnetic and electric fields, the evolution
of the spin motion in the laboratory frame using Lorentz transformation is
described by the spin precession motion [3].

dS

dt
=

e

mγ
× [(1 +Gγ)B⊥ + (1 + G)B‖ + (Gγ +

γ

γ + 1
)
E× β

c
] (3)

where S is the spin vector in the rest frame, B⊥, B‖ are the magnetic field
components, which are parallel and magnetic to the particle’s momentum,e
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and γ are the charge and the relativistic Lorentz factor. For simplification,
the electric field is neglected. Converting the Thomas-BMT equation to the
accelerator reference system (êx, ês, êy) , related with a reference design closed
orbit, we get the spin precession equation:

dS

dθ
= (W0 + w)× S (4)

where W0 is the spin precession vector on the reference orbit and w
describes the precession due to orbit errors and betatron oscillations. The
components of W are defined as by the following Ref. [2]

W0x = ν0Kx W0y = (1 +G)Ky W0z = ν0Kz (5)

While the components of w are

wx = (ν0 + 1)z” + (ν0 +
G

γ0
)KxPσ + (1 +G)Kyx

′
(6)

wy = (1 +G)(K
′

xx+K
′

zz + δKy −Kypσ)− (ν0 −G)(Kxpx +Kzpz) (7)

wz = (ν0 + 1)x” + (ν0 +
G

γ0
)Kzpσ + (1 +G)Kyz

′
(8)

As pσ is the relative momentum and is defined as 4p
p0

where the longitu-
dinal motion is parametrized by a dimensionless time lag and is defined as
σ = θ − w0t where w0 is the circulation frequency along the reference orbit.
Kx,y,z are defined as the dimensionless scaled magnetic fields on the reference

orbit and are given by Kx,y,z = Bx,y,z

B0

For ideal case of a particle in the reference orbit the spin vector in one
direction comes back to the same direction after one revolution. This vector
is called the periodical stable spin vector n0. In most cases, n0 is oriented
vertically. For vertical bending fields the spin vector will precess around the
vertical direction faster than the orbital motion by values of Gγ per one
revolution.

2.2 Spin Depolarization Resonances

With a vertically stable spin vector,n0, depolarization happens if the parti-
cle’s spins deviated from the vertical direction because of the distorted orbit
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errors or betatron oscillations. Based on the main sources of spin resonances,
they can be broken down into three categories; Intrinsic-,imperfection- and
coupled-spin resonances.

Imperfection resonance can be caused by vertical closed orbit errors due
to faults in aligning of the magnets. The resonances become more enhanced
with time, become quite strong; may flip the direction of polarization. The
effects of the misalignment are considered significant when the spin tune
crosses an integer and that would lead to the domination of the horizontal
fields that produce spin precessions away from the vertical direction. Careful
corrections are needed for the distorted closed orbit to limit the delivered
horizontal field components when the imperfection resonances are crossed.
Intrinsic resonances are driven by the natural vertical focusing oscillations.
The condition for the occurrence of standard intrinsic resonances is when the
spin precessions build up coherently due to the vertical betatron oscillations
deflections. The condition can be written as

Gγ = KP ± νy (9)

where K is an integer and P is accelerator lattice super-periodicity. In the
presence of the coupling elements, such as the rotated quadrupole ,rotational
misalignment of the regular quadrupole and solenoids in the lattice would
cause the horizontal tune to come into play. The resonance condition is Gγ =
N ± νx where νx is the horizontal betatron tune and N represents an integer.
All of the depolarizing resonances are strong when N is a multiple of the
lattice’s super-periodicity. Nevertheless, a large fraction of the depolarizing
resonances could be eliminated by a lattice of higher periodicity compared
to a low super-periodicity lattice.

2.3 Siberian Snakes and spin rotators

The concept of Siberian Snakes has been imposed for correcting spin reso-
nance to enable the acceleration of spin polarized beams up to high energies
without crossing the depolarizing resonances. By using the Siberian snakes,
the spin vector would be rotated by an angle of less than or equal to 180o

around an axis in the horizontal plane. Full Siberian snakes are composed of
sequence of magnets so that the overall spin rotations would add up to 180o.
With a single full snake in a ring or with a properly placed pair of snakes the
spin tune will be fixed, usually to 0.5, so that no first order resonances have
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to be crossed. The value of the spin tune is independent of the beam energy.
Two snakes are used in RHIC rings to maintain a reasonable amount of po-
larization as the beam is accelerated to high energies up to E = 250 GeV.
Two full snakes installed on opposite sides in RHIC to assure the vertically
stable spin direction as shown in the following figure 1

Figure 1: Schematic of spin vector in the ring with two spin

Another polarization control device used in accelerators is the spin rota-
tor. They are used to rotate the stable spin direction from the vertical to
the horizontal plane, and back again, as most particle physics experiments
with polarized beams require longitudinally polarized beams. The spin ro-
tators concept did exist as the spin and the orbit rotate through different
angles when passing through a magnet. As with the snakes the amount of
rotation essentially is independent of energy. However, in RHIC there is an
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energy-dependent precessions due to the net horizontal bend between the ro-
tator and the interaction region. These precessions must be compensated to
maintain the required longitudinal polarization. Furthermore,in RHIC,four
rotators orient the spin axially at two collisions points. A partial snake ,
that rotates the spin by less than 180o, is very effective in counteracting im-
perfection resonances and was used successfully in the AGS. Partial snakes
represent a tool suitable for use in low-to-medium energy synchrotrons.

2.4 General formula for spin resonance harmonics

The stable spin direction on the design closed orbit may deviate from the ver-
tical even when various kinds of spin rotating devices are applied. Since rings
are frequently designed so that no is not vertical everywhere, a new algorithm
was extended to allow the identification of the spin-resonance harmonics with
this complex configuration of the magnetic field in the design orbit. We im-
plemented the algorithm of the intrinsic resonance harmonic calculation in a
program code that was added to the existing code, ASPIRRIN.

A 2π periodical coordinate system would be used to define the spin motion
so that the spin would rotate on the design orbit with a constant angle
2πνspo. This coordinate system is defined by the right-handed orthonormal
triad (l,m,no), where no is the stable direction of spin on the design orbit,
and the vectors l,m can be derived using the eigen-solutions of the one
turn spin map on the design orbit. We also will use the complex vector
k = l+ im. In fact, as the spin tune on the design orbit can be defined up to
the integer number, the choice of special periodic system also is unlimited. In
the accelerator with the snakes, we will use the periodical coordinate system
in which the spin tune is 1/2 (or other constant value between 0 and 1).
To describe the invariant spin field related with the orbital oscillations, we
can parametrize by a complex variable αand the spin precession presentation
would be described as:

n =
√

1− |α|2no + <(αk∗) (10)

The spin motion equation can be written as

dα

dθ
= iνα− iw · k

√
1− |α|2 (11)

where w describes the spin’s perturbation by the orbital oscillations. We
consider the spin perturbation as the linear form in the orbit variables: wj =
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Tjqxq. Also, the linear orbital motion can be presented as: xq = FqrAr,
where Fqr is the matrix compiled from the eigen-vectors of the orbital motion,
and Ar is the vector of the orbital amplitude. We note that currently we have
implemented the algorithm for the transverse betatron motion, and therefore
the q and r indexes run from 1 to 4.

The first-order spin resonance harmonics are defined as the coefficients of
the Fourier decomposition of the spin perturbation term:

w · k =
∑
r,p

wrpe
iνrpθ (12)

where νrp = p+Qr. The Qr are the components of the betatron tune set:
(Qx,−Qx, Qy,−Qy). For strong betatron coupling, the tunes of the betatron
modes would be more convenient for the calculation. Since we are only
considering linear fields and linear orbital motion, the resonance harmonics
are called first-order in the sense of both the spin motion and the orbital
motion.

Keeping only the terms corresponding to the betatron motion:

w · k =
∑
j,q,r

TjqFqrArkj =
∑
r

Are
iQrθṼr (13)

Here, the index j runs from 1 to 3, while the indices q and r run from 1 to
4. Futher, we introduced a four-component vector Ṽ , that is the periodical
function of the azimuth θ and, therefore, can be expanded into the Fourier
series:

Ṽr = [e−iQrθ
∑
j,q

TjqFqjkj] =
∑
p

ṽrpe
ipθ (14)

Comparing the expressions (13) and (14) with (12) we see that ṽrp presents
the spin resonance harmonic vrp normalized by the corresponding betatron
amplitude Ar. To calculate ṽrp we need to take the integral over one turn:

ṽrp =
1

2π

∫ 2π

0

Ṽre
−ipθdθ =

1

2π

∫ 2π

0

[ei(ν−νrp)θ
∑
j,q

TjqFqrk0j]dθ (15)

In the program the integral over one turn is taken via element-by-element
integration.

|wl1m| = |w1|+ |w−1|; |wl1s| = ||w1| − |w−1|| (16)
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Here wl1m presents main linear harmonic, which amplitude is large. And
wl1s denotes secondary linear harmonic, which is small and can be considered
as a perturbation.

In the similar way the program can calculate the intrinsic resonance har-
monics, which are located further away from the spin tune ( w2,w−2,w3,w−3,
and so on) and the corresponding linear harmonics. Calculating the harmon-
ics of the resonances related with the horizontal betatron motion which is
considered the new modification for the ASPIRRIN code, and in the case
when this motion has a non negligible effect on spin dynamics (betatron
coupling).
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3 TECHNIQUES FOR CALCULATING OF

THE RESONANCE STRENGTH

The transverse motion can be treated separately in the horizontal and ver-
tical plane. Proper selection and alignment of the magnets are the main
means to achieve a better standing for the concept of transverse motion.
The perturbation caused by the rotated quadrupole would create a linear
betatron coupling for both the vertical and horizontal betatron oscillations.
The most general sources that would introduce coupling to the beam motion
are the rotated quadrupole, the skew quadrupoles and the solenoid fields.
To compensate for the coupling in controlled way, its own dynamics must
be understood in more detail. Initially betatron coupling was considered as
unpreventable effect and unfortunately it has become as an intrinsic feature
for many accelerator proposals.

The general equations of motion in presence of solenoid and rotated
quaduroples magnets are Ref.[6]

x” + gx = −yκc + y
′
Ks + y

1

2
K

′

s y” − gy = −xκc − x
′
Ks + x

1

2
K

′

s (17)

where κc = g ·sin(2φ) are defined by the quadrupole rotation angle φ and
the quadrupole’s field strength g. Ks is the normalized solenoid field and is
defined as

Ks(y) =
eBs(y)

p
(18)

And Bs(y) is the longitudinal field component.
For (17) the analytic solution cannot be determined because the distri-

bution of solenoid and an arbitrary rotated quadrupole is random and could
change many times depending on the different parameters to take into ac-
count. Consequently, we discuss the solutions for individual magnets only.

3.1 Coupled Spin Resonance For Rotated Quadrupole

In order to obtain ṽrp for rotated quadrupole we start with considering
the following equations of particle motion of particle in arbitrarily rotated
quadrupole:
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x
′′

= −gcx− κcy (19)

y
′′

= gcy − κcx (20)

where gc = g · cos(2φ)
From (20) we can get the expressions for the orbital motion eigen-vectors:

F3r = −AF ′′

3r +BF
′′

1r (21)

F1r = AF
′′

1r +BF
′′

3r (22)

Here:

A = −cos(2φ)/g (23)

B = −sin(2φ)/g (24)

The spin response formalism treats transverse coupling with full or partial
snakes and spin rotators; however, the main assumption is that the orbital
and spin motion are enhanced by the presence of the magnetic fields only.The
components of the horizontal and vertical components of the spin perturba-
tions in a quadrupole are given by the following:

wx = (1 + ν0)y
′′

(25)

wy = −(1 + ν0)x
′′

(26)

where ν0 = Gγ, with magnetic moment anomaly G and relativistic factor
γ. From (12)and (26) the contribution to a spin resonance harmonic produced
by a betatron mode oscillating with the tune Qr from a quadrupole can be
formulated as the following:

ṽquadrp = (1 + ν0)(k0xI3 − k0yI1) (27)

where I1 and I2 are the integrals defined as

I1 =

∫ θ2

θ1

F
′′

1re
iδrpθdθ (28)
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I3 =

∫ θ2

θ1

F
′′

3re
iδrpθdθ (29)

and δrp = ν − (p + Qr) describes the detuning of the spin tune from a
resonance tune. And θ1 and θ2 correspond to the entrance and the exit of
the quadrupole.

To find the integrals (28) and(29) one can apply twice the integration by
parts and the expressions (22) to get the set of linear equations for I1 and
I3. Resolving the equations one generates the solution in the matrix form:

(
I1
I3

) = M−1(
C1

C3
) (30)

where M, C1 and C3 are expressed as

M = (
1 + Aδ2rp Bδ2rp
Bδ2rp 1− Aδ2rp

) (31)

C3 = [(F
′

3r − iδrpF3r)e
iδrpθ]θ2θ1 (32)

C1 = [(F
′

1r − iδrpF1r)e
iδrpθ]θ2θ1 (33)

Then the final formula which defines the contribution from an individual
rotated quadrupole to the spin resonance harmonic is:

ṽquadrp = Y [k0x(δ
2
rp sin(2φ)C1 + (g − δ2rp cos(2φ))C3)

−k0y((g + δ2rp cos(2φ))C1 + δ2rp sin(2φ)C3)]
(34)

where

Y = g(1 + ν0)/(g
2 − δ4rp) (35)

It is clear from (34) that spin resonance harmonics is a function of the
rotation angle. The same formula would be applicable for the the skew
quadrupole if we assign a value for the rotation angle round its longitudinal
axis as 45o. Summing these contributions from all quadrupoles yields the full
spin resonance harmonic defined by r and p.
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3.2 Coupled Spin Resonance For Solenoid

The strength of this coupled spin resonances will be a function of the cou-
pling coefficient, which itself is a function of the strength of the distributed
coupling elements in the lattice and the distance between the horizontal and
vertical tunes. So, As we go through the derivation of the formula for the
resonance strength produced by the quadrupole, it also was crucial to go
through the same one for the other element which contributes to a huge
fraction of producing the polarization loss.

To obtain ṽrp for the solenoid, we start by considering the following equa-
tions of motion of particle in solenoidal field as in [7]

x” = y
′
+

1

2
Ksy y” = x

′ − 1

2
Ksx (36)

Using floquet Transformations the equation of motion can be written as
the following

F ”
1 = F2 +

1

2
KsF3 F ”

2 = F4 −
1

2
KsF1 (37)

where Ks is the normalized field of the solenoid
The components of longitudinal and vertical components of the spin per-

turbations for the body of the solenoid are given by:

wx = (G− ν0)Ksx
′ − 1

2
(1 + ν0)Ksx (38)

wy = (G− ν0)Ksy
′ − 1

2
(1 + ν0)Ksy (39)

And the spin perturbations for produced at edges are

wx = −1

2
(1 + ν0)Ksx[δ(θ − θ1)− δ(θ − θ2)] (40)

wy =
1

2
(1 + ν0)Ksy[δ(θ − θ1)− δ(θ − θ2)] (41)

Using the same technique as previously mentioned for the quadrupole,
the contribution of spin resonance harmonics from a solenoid was derived as:
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ṽsolrp =
(G− ν0)Ks

δ2 − (GKs)2
(−iδrp[eiδrpθ((F2r +

1

2
KsF3r)k0x

+ (F4r −
1

2
KsF1r)k0y)]

θ2
θ1

+GKs[e
iδrpθ((F2r +

1

2
KsF3r)k0y

− (F4r −
1

2
KsF1r)k0x)]

θ2
θ1

)

+
(1 + ν0)Ks

2
[eiδrpθ(F1rk0x + F3rk0y)]

θ2
θ1

(42)

3.3 Spin Resonance For The Combined Magnet Func-
tion

A combination of bending and focusing magnets is required for specific ap-
plications. Sometimes functions like bending/focusing are combined into a
single element. In general, combined magnets are used to help reducing the
length (and, therefore , the cost) of a beamline. The combined function also
can help to improve the dynamical properties of the lattice.

The general expression for the equation of motion can be stated as follows:

y” − gy = 0 x” + (g + k2y)x = 0 (43)

where the focusing effects from the quadrupole magnet and that from a
bending dipole may be combined into one parameter as stated in the previous
equation

K = g +K2
y (44)

To conclude the general spin perturbations, Ky 6= zero and the gradient
has a non zero value too.The spin perturbations are simply described by

wx = (1 + ν0)y
” wy = −(1 + ν0)x

” wz = 0 (45)

ṽc.frp =

∫ θ2

θ1

kxwxe
−iδrpθdθ +

∫ θ2

θ1

kywye
−iδrpθdθ (46)
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Where kx and θ are defined as

kx = k0x cos ν0ψ + k0y sin ν0ψ , θ =
ρψ

R
(47)

And where ρ is the local bend radius in the horizontal plane and R is the
ring’s average radius .

The horizontal spin perturbation then can be expanded as∫ θ2

θ1

kxwxe
−iδrpθdθ = k0x

∫ θ2

θ1

Wx cos(ν0ψ)e−iδrpθdθ+k0y

∫ θ2

θ1

Wy sin(ν0ψ)e−iδrpθdθ

(48)
The general formula for the combined magnet function is derived from

the previous equations

ṽc.frp =
K0x

2
M1[(F4r − i(δrp + b)F3r)e

i(δrp+b)θ]θ2θ1+

K0x

2
M1[(F4r − i(δrp − b)F3r)e

i(δrp−b)θ]θ2θ1−

i
K0y

2
M2[(F4r − i(δrp + b)F3r)e

i(δrp+b)θ]θ2θ1−

i
K0y

2
M2[(F4r − i(δrp − b)F3r)e

i(δrp−b)θ]θ2θ1+

KzM3[(F2r − iδrpF1r)e
iδrpθ]θ2θ1

(49)

where M1 and M2 and M3 are defined as

M1 = (1 + ν0)(
k + k2y

k + k2y + (δrp − b)
) (50)

M2 = (1 + ν0)(
k + k2y

k + k2y + (δrp + b)
) (51)

M3 = (1 + ν0)(
k

k + δ2rp
) (52)
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4 STUDYOF THE BETATRONCOUPLING

AT RHIC and AGS

In this section we show calculations which were done with ASPIRRIN after
modifying it with the new spin coupling calculation algorithm.

The main motivation for our calculation is to test the code’s ability for cal-
culating the resonance strength amplitude in the general case for the betatron
oscillation coupling. The calculations were done for the RHIC lattice with
two Siberian Snakes, which had uncoupled tunes Qx = 27.685, Qy = 29.673
with betatron amplitudes of 10µm· rad in both planes.

The spin tune in RHIC with the Siberian Snakes is equal to 0.5, and
because of that in all plots in this section we show the result for resonance
harmonics that are closest to 0.5 value (that is with the resonance tunes in
[0 − 1] range). Moreover, we add the amplitudes of the two spin resonance
harmonics, one below and another above 0.5, corresponding to the same
betatron tune (QI orQII). This gives us the resonance amplitude of the linear
resonance harmonic, which is more natural when considering an accelerator
with the Siberian Snake [1].

First, we started to test the new modified code by applying a small ran-
dom error roll for one of the quadrupoles in the IR, and observed by how
much the sensitivity of the measurement of resonance strength varied after
applying the error. In figure 2 rolling the quadruple by 2 mrad introduced
high values for vertical resonance strength by a maximum value of almost
0.4 for Gγ of value 425 with minimum betatron tune split ∆Qmin of 0.017.

In figure 3 we noticed that even with the small value of the error roll of 2
mrad , it is still strong enough to cause a modest excitation of the horizontal
strength resonance.

A more flexible approach is used to observe the variation in the behavior
of the resonance strength by examining another case for a rolled Quadrupole
by 45o.

By randomly varying the gradient strength assigned for each skew quadrupole
corrector located at the IR for the range of 10−3 m−2 the vertical polarization
loss can be reduced by turning the skew quadrupole correctors for betatron
amplitude =10 µm as is declared in figure 4.

A typical pattern of behavior appeared for the horizontal resonance strength,
consistent with the previous case. Thus, for rolled quads, the horizontal res-
onance amplitudes increase up to value of 0.2 above the zero values that
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Figure 2: calculated vertical resonance strength from the artificial quadruple
roll errors.

are produced when the Skew Quads are off as shown in figure 5. A better
understanding of the behavior of these resonances is much needed so that an
effective remedy can be implemented.

If we start to vary the field strength of different IR skew quadrupoles
correctors, which are used to compensate for coupling caused by the rolled
quadrupoles, we can observe how the spin-resonance harmonics depend on
the betatron coupling, which is characterized by a minimum betatron tune
split ∆Qmin. Figure 6 depicts the typical behavior of the vertical and hori-
zontal resonance harmonics caused by varying the gradient strength of skew-
quadrupole (SQ06C2B); thus, the horizontal resonance amplitude increases
non linearly, while the vertical amplitude behaves in the opposite way.

Figure 7 demonstrates another typical feature of the resonance harmonic
dependence observed during the skew quadrupole variation studies. While
the vertical and horizontal harmonics change the sum of their squares remains
approximately constant: ṽ2hor + ṽ2ver ≈ const. This indicates a rotational
type transformation between the horizontal and vertical resonance harmonics
when betatron coupling is introduced.

Next, we considered the actual coupling errors present in RHIC, where
the strong sources of the the betatron coupling are due to the rotation of
the IR quadrupoles. These quad rolls are well known from the beam-based
and magnetic measurements. Thus, we applied the known rolls and well as
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Figure 3: Excited Horizontal resonance strength generated by the artificial
quadruple roll errors.

the local skew quadrupole corrector strengths used at RHIC operation [4].
Figure 8 shows the calculated values of the vertical resonance amplitudes
versus Gγ in a region of strong resonances in RHIC. The figure reveals some
reduction of the values of vertical harmonics amplitude after applying the
quad rolls and the skew quad correction.

Figure 9 shows the calculated values of the the horizontal resonance am-
plitude versus Gγ; the amplitudes are excited up to 0.15 when the actual
quadrupole rolls and skew quad corrector strengths are used (in this case
δQmin ≈ 0.01). Thereafter, we used optimized values for certain local skew
quadrupole gradients, which reduced the δQmin coupling parameter to 0.001.
The horizontal resonance harmonics clearly are reduced in this case.

The plot also shows that the horizontal resonance amplitudes are sup-
pressed to zero when the skew quadrupoles are turned off and the quadrupole
rolls are 0.

The horizontal and longitudinal solenoids can act in a coherent fashion to
depolarize the beam. Strong betatron oscillation coupling is introduced into
RHIC enhancing the coupled resonances. For a given range of Gγ the range of
the corresponding solenoidal filed strength would vary in a similarly to that
presented for the skew quadrupole. As expected, with stronger solenoidal
field comes stronger resonances as shown by the vertical resonance amplitude
as a function of Gγ in Fig 10.

19



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 380  390  400  410  420  430  440  450  460  470  480

V
er

ti
ca

l 
R

es
o
n
an

ce
 a

m
p
li

tu
d
e

G.gamma

Random values for K1L for the Skew-Quads
Skew-Quads off

Figure 4: calculated vertical polarization loss as a function of G.gamma.

We found that the behavior of strength of the horizontal resonances
matched fairly well with previous predictions of the exciting of the Reso-
nance strength with increasing the energy for the case when the solenoidal
magnets are on, as shown in fig11.

The same conservation law for the resonance strength that was predicted
for the skew quadrupole is applicable for the case of solenoid as illustrated
in fig 12

After modifying ASPIRRIN with the combined magnet resonance strength
calculations, we were able to better compare our findings against DEPOL’s
predictions. For a vertical emittance of 10 mrad and a zero horizontal one,
the assessments from ASPIRRIN and DEPOL calculations agreed well as
shown in fig 13.

We undertook another study using the modified ASPIRRIN code for com-
paring the resonance strength of AGS lattice with DEPOL data; in this case,
the agreement with DEPOL is not good and we plan to investigate this fur-
ther.
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Figure 5: calculated Horizontal polarization loss as a function of G.gamma.
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Figure 6: Dependence of the vertical and horizontal resonance harmonic am-
plitudes on the coupling strength when varying a skew quadrupole corrector.
Gγ = 422.3.
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Figure 7: Conservation of the sum of squares of the harmonic amplitudes
of the horizontal and vertical resonance when varying a skew quadrupole
corrector(SQ08C2B). Gγ = 422.3.
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Figure 8: Calculated vertical spin resonance harmonics with and without the
actual RHIC IR quadrupole rolls and local IR skew corrections.
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Figure 9: Calculated horizontal spin resonance harmonics with and without
the actual RHIC IR quadrupole rolls and local IR skew corrections. The
result for optimized corrections is also shown.
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Figure 10: Calculated vertical spin resonance harmonics for zero solenoidal
fields and when the solenoidal magnets are turned on versus Gγ.
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Figure 11: Calculated horizontal spin resonance harmonics for zero solenoidal
fields and when the solenoidal magnets are turned on versus Gγ.
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Figure 12: Conservation of the sum of squares of the horizontal and vertical
resonance harmonic amplitudes while varying the solenoidal field strength.
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Figure 13: Comparison of the modified ASPIRRIN by combined magnet
calculation For RHIC lattice with DEPOL Results.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  10  20  30  40  50  60

R
eo

so
n
an

ce
 a

m
p
li

tu
d
e

G.gamma

ASPIRRIN-AGS-data
DEPOl-data

Figure 14: Comparison of the modified ASPIRRIN by combined magnet
calculation For AGS lattice with DEPOL Results.
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5 Conclusions

The calculation of spin resonance harmonics with coupled transverse betatron
motion was implemented in the ASPIRRIN code.The modified code was used
to study coupled spin resonances in RHIC.

We noticed a rotational-type transformation of the resonance strength of
vertical and horizontal harmonics when introducing the betatron coupling
and the conversation for resonance amplitude was proved for the two cases,
which are Quadrupole and Solenoid.

The local coupling correction for actual values of quad rolls and interac-
tion region skew quad correctors at 6 Interaction regions in RHIC excites the
horizontal resonance strength up to 0.15 at G of the value of 422.3.

Optimizing the arrangement of the skew quadrupoles to better compen-
sate for the local coupling helps to reduce the horizontal spin resonance
amplitudes even before applying the global coupling correction. Modifying
the ASPRRIN code with the combined magnet resonance strength calcula-
tions allowed us to observe the significant agreement between ASPIRRIN
and DEPOL calculations for the vertical Resonance strength.
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