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Abstract of the Dissertation

Uncovering the structure of (super)conformal
field theories

by

Pedro Liendo

Doctor of Philosophy

in

Physics

Stony Brook University

2013

Conformal field theories (CFTs) are of central importance in mod-
ern theoretical physics, with applications that range from con-
densed matter physics to particle theory phenomenology. In this
Ph.D. thesis we study CFTs from two somehow orthogonal (but
complementary) points of view.

In the first approach we concentrate our efforts in two specific
examples: the Veneziano limit of N = 2 and N = 1 superconfor-
mal QCD. The addition of supersymmetry makes these theories
amenable to analytical analysis. In particular, we use the corre-
spondence between single trace operators and states of a spin chain
to study the integrability properties of each theory. Our results in-
dicate that these theories are not completely integrable, but they
do contain some subsectors in which integrability might hold.

In the second approach, we consider the so-called “bootstrap pro-
gram”, which is the ambitious idea that the restrictions imposed
by conformal symmetry (crossing symmetry in particular) are so
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powerful that starting from a few basic assumptions one should
be able to fix the form of a theory. In this thesis we apply boot-
strap techniques to CFTs in the presence of a boundary. We study
two-point functions using analytical and numerical methods. One-
loop results were re-obtained from crossing symmetry alone and
a variety of numerical bounds for conformal dimensions of opera-
tors were obtained. These bounds are quite general and valid for
any CFT in the presence of a boundary, in contrast to our first
approach where a specific set of theories was studied.

A natural continuation of this work is to apply bootstrap tech-
niques to supersymmetric theories. Some preliminary results along
these lines are presented.
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Chapter 1

Introduction

Conformal field theories (CFTs) are of central importance in modern theoreti-
cal physics, with applications in condensed matter physics and particle theory
phenomenology, among others. On a more fundamental level, they play a deep
role in our understanding of Quantum Field Theory (QFT) in general. QFTs
are expected to flow to conformal fixed points in the extreme ultraviolet and
infrared energy regimes. This being the case, a natural first step towards un-
derstanding general field theories would be to understand CFTs; a reduced
set that however represents the asymptotic behavior of general QFTs at high
and low energies. Once a strong understanding of CFTs is obtained, one can
proceed to study more general field theories starting from a conformal fixed
point and adding relevant operators.

CFTs play a crucial role in String Theory as well. In particular, in the
worldsheet formulation, but also from the spacetime point of view, thanks to
the AdS/CFT correspondence. In recent years, String Theory has become a
major tool in understanding various aspects of QFT, especially for some se-
lected supersymmetric models. Nowadays, the line dividing String Theory and
QFT is somehow blurred, with both frameworks complementing each other.
CFTs therefore allow us to understand QFT from several fronts.

Having said that, this thesis is devoted to the study of CFTs. The work
presented here is naturally divided into two parts: the “spin chain part”, in
which we will enhance the four-dimensional conformal symmetry to supercon-
formal symmetry; and the “bootstrap part”, where we will consider CFTs in
the presence of a boundary, and we will focus mostly on the three-dimensional
case. These two lines of research are somehow orthogonal but complement
each other and together give a coherent picture of the implications of confor-
mal symmetry in field theory. Both subjects will be studied in detail in the
remainder of this thesis, but let us start with a short description motivating
each of them and highlighting the main results of our work.
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1.1 Integrability in supersymmetric theories

The study of supersymmetric CFTs might help us understand one of the long-
standing unsolved problems in theoretical physics: the strongly-coupled regime
of QCD. Since the arrival of the gauge/string duality one can ask the following
question: what is the string dual of QCD? This does not solve the problem
of understanding QCD at strong coupling, but it does give a whole new angle
to attack it. The vast majority of the results concerning the AdS/CFT corre-
spondence rely heavily on supersymmetry. A logical line of development would
be to systematically reduce the number of supersymmetries, until we reach the
more realistic case of no supersymmetry at all. We can therefore ask: what is
the string dual of N=2 SYM? The scope of this question is certainly smaller
than the one posed before, but it does point out towards the same ultimate
goal.

One of the most remarkable aspects of the original AdS/CFT example
(Type IIB String Theory/N = 4 SYM) is the presence of integrability (see
chapter 2). If integrability is present in less supersymmetric theories, it would
certainly play a major role in helping uncover the structure of the putative
string dual descriptions. It is then natural to ask whether this prominent fea-
ture is present in theories in which supersymmetry is not maximal. In the first
part of this thesis we attempt to answer the question whether integrability is
present in theories with reduced supersymmetry. In particular, the Veneziano
limit of N = 2 superconformal QCD and N = 1 super QCD in the upper edge
of the conformal window. In chapter 2 we will give an introduction to the
“spin chain picture” in which single trace operators of a large-N gauge theory
are associated with states on a spin chain. The Hamiltonian acting on the
chain is identified with the dilation operator of the conformal theory. The ap-
proach we take is perturbative and in chapter 3 we obtain explicit expressions
for the complete one-loop dilation operator of the N = 2 and N = 1 theories.
Its integrability properties are studied in chapter 4 by means of direct diag-
onalization of the Hamiltonian. This analysis is complemented with a higher
loop calculation also in chapter 4 where we conclude that the N = 2 theory is
not completely integrable. However, we argue that integrability might still be
present in a special subsector of the theory.

1.2 The modern bootstrap program

The second part of the thesis concerns the “bootstrap program”. It is the
ambitious idea that postulates that the restrictions imposed by conformal
symmetry are so powerful, that starting with a few basic assumptions (in
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particular, crossing symmetry) one should be able fix the form of the theory.
The bootstrap approach was mostly studied in two dimensions; however, there
has been a revival of the program applied to conformal field theories in higher
dimensions. The authors of [3] showed that it is possible to extract important
information from the crossing symmetry equations using numerical methods.
Among other things, they obtained a numerical bound for the conformal di-
mension of certain operators valid in any four-dimensional theory.

In this thesis we will concentrate on CFTs in the presence of a boundary.
Boundary CFTs have diverse physical applications, in condensed matter they
describe surface phenomena in systems near criticality, while in string theory
two-dimensional world-sheet BCFTs are interpreted as D-branes. In particu-
lar, we will study the conformal block decomposition of two-point functions
in the presence of a boundary. In chapters 5 and 6 we present various im-
plications of these boundary bootstrap equations. Our results are obtained
using analytic as well as numerical techniques. On the analytic side, in chap-
ter 5 we set up the boundary bootstrap equations for scalars and reproduce
the one-loop critical exponents of the Wilson-Fisher fixed point in the epsilon
expansion. Additionally, we use the embedding space formalism to write the
bootstrap equations for the stress tensor. On the numerical front, in chap-
ter 6 we apply the numerical techniques of [3] to obtain a handful of bounds
valid for arbitrary theories, but also more specific results concerning the 3d
Ising model. In particular, we managed to bound bulk quantities using the
boundary bootstrap equations. We also obtained bounds for the stress tensor,
which is notoriously difficult to study using the standard bulk crossing symme-
try equations (i.e. without a boundary) due to the proliferation of spacetime
indices in the equations.

We conclude in chapter 7 with a summary of our results and discuss pos-
sible extensions. In particular, we describe the “supersymmetric bootstrap”
which is a natural continuation of the two lines of research presented here, in
which we enhance the bootstrap equations adding the constraints coming from
supersymmetry.

3



Chapter 2

The Dilation Operator and Spin
Chains

As we will review below, the dilation operator of a planar gauge theory can be
identified with the “Hamiltonian” of a spin chain. In the case of N = 4 super
Yang-Mills (SYM), this spin chain turns out to be integrable: it has an infinite
set of conserved charges and its spectrum is described by a set of algebraic
equations (see e.g. [4–9] for a partial list of references and [10] for a recent
comprehensive review). The spectrum of energies of the spin chain is identified
with the spectrum of conformal dimensions in the gauge theory; if we solve the
spectral problem of the spin chain, we also solve the spectral problem of the
gauge theory. Perturbative field theory calculations of the dilation operator
have played a crucial role in uncovering the integrability properties of N = 4
SYM. As the integrability structure is common to the planar field theory and
the dual string sigma model, one might even imagine an alternative history
where the AdS/CFT correspondence is discovered following the hints of the
field theory integrability.

In this thesis we present the calculation of the complete planar one-loop
dilation operator (or Hamiltonian) of two paradigmatic superconformal theo-
ries: the N = 2 SU(Nc) super Yang-Mills theory with Nf = 2Nc fundamental
hypermultiplets, in the flavor singlet sector; and N = 1 SU(Nc) super QCD
(SQCD) in the conformal window.

Let us start our discussion with the N = 2 theory. This theory is per-
haps the simplest 4d conformal field theory outside the “universality class” of
N = 4 SYM and is a very interesting case study. It admits a large N ex-
pansion in the Veneziano sense [11] of Nf ∼ Nc → ∞ with λ = g2YMNc fixed,
and a perturbative expansion in the exactly marginal ’t Hooft coupling λ. Is
the planar theory integrable? Does it have a dual string description? Some
progress in answering these two questions, which are logically independent,
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was described in [12, 13]. In particular in [13] the planar one-loop dilation
operator in the scalar subsector was obtained. As explained in [12, 13], it is
illuminating to embed N = 2 superconformal QCD (SCQCD) into the N = 2
SU(Nc) × SU(Nč) quiver theory (with Nč ≡ Nc) which has two independent
marginal couplings gYM and ǧYM . The quiver theory interpolates between the
standard Z2 orbifold of N = 4 SYM for ǧYM = gYM and SCQCD for ǧYM = 0.
With minor extra work, we can keep our calculations more general and derive
the full one-loop spin chain Hamiltonian for the whole interpolating quiver
theory. In the closed subsector of scalar chiral fields the Hamiltonian of the
quiver theory has been obtained to three loops [14].

The quiver theory is known to be integrable at the orbifold point ǧYM =
gYM [15], but it is definitely not integrable for generic values of the couplings,
since the two-body magnon S-matrix does not obey the Yang-Baxter equa-
tion [13]. The question whether integrability is recovered in the (somewhat
singular) SCQCD limit ǧYM → 0 is the subject of the first part of this thesis.

Before the work presented here, only the one-loop Hamiltonian in the scalar
sector was known for SCQCD [13]. There are two natural ways in which this
result can be improved. One is to add more fields and consider the complete
one-loop Hamiltonian, where in addition to scalar fields we consider fermions
and covariant derivatives. The other is to go to higher loops in some tractable
subsectors where the integrability properties of the theory can be studied.
In this thesis we pursue both directions, starting with the complete one-loop
result in this chapter. The higher loop analysis of the SU(2|1) subsector is
presented in chapter 4.

We find that the full spin-chain Hamiltonian of N = 2 SCQCD is com-
pletely fixed by symmetry, as is the case for N = 4 SYM [16, 17]. This came
as a surprise, because representation theory is less restrictive for the N = 2
superconformal algebra. Unlike N = 4 SYM, where each site of the spin
chain hosts a single ultrashort irreducible representation, in our case single-
site letters decompose into three distinct irreps, and the tensor product of two
nearest-neighbor state spaces has a considerably more intricate decomposition.
Nevertheless, by a non-trivial generalization of Beisert’s approach [16, 17], we
find that symmetry is sufficient to determine the Hamiltonian up to overall
normalization. The generalization to the interpolating quiver is then as simple
as one may hope: symmetry leaves a single undetermined parameter, which
gets identified with the ratio of the two marginal gauge couplings.

For N = 1 SQCD, we again consider the large N Veneziano limit of Nc →
∞, Nf → ∞ with Nf/Nc fixed, near the upper edge of the superconformal
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window Nf . 3Nc. If one defines

Nf

Nc

= 3− ϵ , (2.1)

the large N theory flows for ϵ ≪ 1 to a weakly-coupled Banks-Zaks fixed
point [18], with ’t Hooft coupling g2YMNc ∼ ϵ. The one-loop planar dilation
operator captures the spectrum of the theory at this isolated fixed point, while
higher-loop corrections (reorganized in powers of ϵ) correspond to moving down
the conformal window. The dual “magnetic” theory admits a perturbative
expansion starting from the lower edge of the conformal window Nf & 3

2
Nc,

with a Banks-Zaks fixed point that is weakly-coupled for ϵ̃≪ 1, where

Nf

Nc

=
3

2
+ ϵ̃ . (2.2)

A complete large N solution of SQCD would entail determining the dilation
operator of the electric theory to all orders in ϵ, and that of the magnetic
theory to all orders in ϵ̃. The resummations of both expansions should then
coincide – in the ultimate triumph of Seiberg duality. Needless to say, this is
a tall order, and one cannot hope to fulfill this program unless integrability
comes to the rescue.

The one-loop dilation operator of N = 1 SQCD in the Veneziano limit
has been determined in the scalar subsector [19], and shown to coincide with
the Ising spin chain in a transverse magnetic field, one of the best known
integrable models. This is a tantalizing hint, well-worth subjecting to more
stringent tests. As in the N = 2 case, we consider the evaluation of the
complete one-loop Hamiltonian a natural continuation of the work of [19].

The calculation for N = 1 SQCD proceeds along similar lines as N = 2
SCQCD, and again we are able to fix the one-loop Hamiltonian from symmetry
considerations alone. A preliminary investigation of its integrability properties
is presented in chapter 4.

2.1 The N = 2 Spin Chain

We begin by quickly reviewingN = 2 superconformal QCD, the closely related
Z2 quiver theory, and the structure of their spin chains. For more details,
including the explicit Lagrangians, we refer to [13].
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SU(Nc) U(Nf ) SU(2)R U(1)r

Q I
α 1 1 2 +1/2

S α
I 1 1 2 −1/2

Aαα̇ Adj 1 1 0

ϕ Adj 1 1 −1

λIα Adj 1 2 −1/2

QI � � 2 0

ψα � � 1 +1/2

ψ̃α � � 1 +1/2

Table 2.1: Field content and symmetries of N = 2 SCQCD. We show the
quantum numbers of the Poincaré supercharges Q I

α , of the conformal super-
charges S α

I and of the elementary component fields. Conjugate objects (such
as Q̄I α̇ and ϕ̄) are not written explicitly.

2.1.1 Field Content and Symmetries

We summarize in table 2.1 the field content and quantum numbers of the
N = 2 SYM theory with gauge group SU(Nc) and Nf = 2Nc fundamental
hypermultiplets, which we refer to as N = 2 superconformal QCD. Its global
symmetry group is U(Nf ) × SU(2)R × U(1)r, where SU(2)R × U(1)r is the
R-symmetry subgroup of the superconformal group. We use indices α, β = ±
and α̇, β̇ = ±̇ for the Lorentz group, I,J = 1, 2 for SU(2)R, i, j = 1, . . . Nf for
the flavor group U(Nf ) and a, b = 1, . . . Nc for the color group SU(Nc). The
N = 2 vector multiplet consists of a gauge field Aαα̇, two Weyl spinors λIα,
I = 1, 2, which form a doublet under SU(2)R, and one complex scalar ϕ, all
in the adjoint representation of SU(Nc). Each N = 2 hypermultiplet consists
of an SU(2)R doublet QI of complex scalars and of two Weyl spinors ψα and
ψ̃α, SU(2)R singlets.

N = 2 SCQCD, which has one exactly marginal coupling gYM , can be
viewed as a limit of the N = 2 Z2 quiver theory with gauge group1 SU(Nc)×

1The gauge groups are identical, Nč ≡ Nc, but we find it useful to distinguish with a
“check” all the quantities pertaining to the second gauge group.
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SU(Nc) SU(Nč) SU(2)R SU(2)L U(1)R

Q I
α 1 1 2 1 +1/2

S α
I 1 1 2 1 –1/2

Aαα̇ Adj 1 1 1 0

Ǎαα̇ 1 Adj 1 1 0

ϕ Adj 1 1 1 –1

ϕ̌ 1 Adj 1 1 –1

λIα Adj 1 2 1 –1/2

λ̌Iα 1 Adj 2 1 –1/2

QIÎ � � 2 2 0

ψÎ α � � 1 2 +1/2

ψ̃Î α � � 1 2 +1/2

Table 2.2: Field content and symmetries of the quiver theory that interpolates
between the Z2 orbifold of N = 4 SYM and N = 2 SCQCD.

SU(Nč), which has two exactly marginal couplings gYM and ǧYM , as ǧYM → 0.
When gYM = ǧYM the quiver theory is the familiar Z2 orbifold of N = 4 SYM.
Table 2 summarizes the field content and symmetries of the quiver theory. Be-
sides the R-symmetry group SU(2)R × U(1)r, the theory has an additional
SU(2)L global symmetry, whose indices we denote by Î, Ĵ = 1̂, 2̂. Super-
symmetry organizes the component fields into the N = 2 vector multiplets
of each factor of the gauge group, (ϕ, λI , Aαα̇) and (ϕ̌, λ̌I , Ǎαα̇), and into two
bifundamental hypermultiplets, (QI,1̂, ψ1̂, ψ̃1̂) and (QI,2̂, ψ2̂, ψ̃2̂).

Setting ǧYM = 0, the second vector multiplet (ϕ̌, λ̌I , Ǎαα̇) becomes free and
completely decouples from the rest of the theory, which coincides with N = 2
SCQCD (the field content is the same and N = 2 susy does the rest). The
SU(Nč) symmetry can now be interpreted as a global flavor symmetry. In fact
there is a symmetry enhancement SU(Nč) × SU(2)L → U(Nf = 2Nc): the

SU(Nč) index ǎ and the SU(2)L index Î can be combined into a single flavor
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index i ≡ (ǎ, Î) = 1, . . . 2Nc.
We work in the large Nc ≡ Nč limit, keeping fixed the ’t Hooft couplings

λ ≡ g2YMNc ≡ 8π2g2 , λ̌ ≡ ǧ2YMNč ≡ 8π2ǧ2 . (2.3)

We will often refer to the theory with arbitrary g and ǧ as the “interpolating
SCFT”, thinking of keeping g fixed as we vary ǧ from ǧ = g (orbifold theory)
to ǧ = 0 (N = 2 SCQCD ⊕ extra N2

č − 1 free vector multiplets).

2.1.2 The Spin Chain

The planar dilation operator of a gauge theory can be represented as the
Hamiltonian of a spin chain. Each site of the chain is occupied by a “letter”
of the gauge theory: a letter DkA can be any of the elementary fields A acted
on by an arbitrary number of gauge-covariant derivatives D. A closed chain
corresponds to a single-trace operator.

In the interpolating SCFT, letters belonging to the vector multiplets are
in the adjoint representation of either gauge group (index structures a

b and
ǎ

b̌
), while letters belonging to the hypermultiplets are in a bifundamental

representation (index structures a
b̌
and ǎ

b). In SCQCD, vector letters have
index structure a

b, while hyper letters have stuctures
a

i and
i

b. We restrict
attention to the flavor-singlet sector of SCQCD. Then, as explained in [12, 13],
in the Veneziano limit of Nc → ∞, Nf → ∞ with Nf/Nc ≡ 2 and g2YMNc fixed,
the basic building blocks are the “generalized single-trace operators”, where
consecutive letters have contracted color or flavor indices, for example

Tr[ϕ̄ϕϕQIQ̄
J ϕ̄] = ϕ̄a

bϕ
b
cϕ

c
dQ

d
I iQ̄

J i
eϕ̄

e
a , a, b, c, d, e = 1, . . . Nc , i = 1, . . . Nf .

(2.4)
In the largeN Veneziano limit the action of the dilation operator is well-defined
on generalized single-traces, because mixing with multi-traces is suppressed.
We write the planar dilation operator as

D = g2H , (2.5)

where H is the spin-chain Hamiltonian. At one-loop, H is of nearest-neighbor
form,

H =
L∑

ℓ=1

Hℓ,ℓ+1 . (2.6)

The one-loop Hamiltonian of the interpolating theory depends on the ratio of
the couplings, κ ≡ ǧ/g, while the one-loop Hamiltonian of SCQCD has no
parameters. We can obtain HSCQCD as the κ → 0 limit of the interpolating
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Hamiltonian, restricted to the U(Nf ) singlet subsector (consecutive SU(2)L
indices are contracted).

2.2 Lifting the Full One-loop Hamiltonian from

a Subsector

Computing the complete one-loop Hamiltonian appears to be a daunting com-
binatorial task, because of the sheer number of possible two-letter structures
on which the Hamiltonian can act. For N = 4 SYM, Beisert [16] was able to
determine the full one-loop Hamiltonian by making maximal use of the power
of superconformal symmetry. The letters of N = 4 SYM belong to a single
representation of the superconformal algebra, the ultrashort “singleton” repre-
sentation VF . The tensor product of two singletons has a simple decomposition
into an infinite sum of irreducible representations,

VF × VF =
∞∑
j=0

Vj . (2.7)

The one-loop Hamiltonian can then be written as

H12 =
∞∑
j=0

f(j)Pj , (2.8)

where Pj is a projector on the Vj module for letters at sites 1 and 2. Beisert’s
strategy was to identify a simple closed subsector of the theory, such that each
of the Vj modules contains a representative within the subsector. The coeffi-
cients f(j) and thus the full Hamiltonian can be read off from the Hamiltonian
of the closed subsector. A particularly clever choice [17] of subsector is the
SU(1, 1)×U(1|1) subsector comprising the letters Dn

++̇
λ+, where λα is one of

the four Weyl fermions. To obtain the Hamiltonian in the subsector a Feynman
diagram calculation is needed. However, as pointed out by Beisert [17], the
algebraic constraints of superconformal symmetry are so powerful that they
fix the Hamiltonian of this sector, up to the overall normalization which cor-
responds to a rescaling of the coupling.2 All in all, the one-loop Hamiltonian
of N = 4 SYM is determined by superconformal symmetry alone.

In adapting Beisert’s strategy to our case, we are faced with the compli-

2In his first calculation [16], Beisert considered the SU(1, 1) subsector consisting of
the letters Dn

++̇
Z, where Z is a complex scalar, and determined the SU(1, 1) one-loop

Hamiltonian by direct evaluation of Feynman diagrams.
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cation that the letters belong to three distinct representations of the N = 2
superconformal algebra, with their tensor products containing different copies
of the same module. This leads to a rather intricate mixing problem. Never-
theless, the problem turns out to be tractable and we are able to identify a
subsector from which the full Hamiltonian can be lifted.

2.2.1 N = 2 superconformal representations

Our notations for superconformal representations are borrowed from [20] and
reviewed in Appendix A.1. The letters of SCQCD (as well as of the whole
interpolating theory) belong to three superconformal representations, which we
denote by H, V and V̄ . The hypermultiplet letters (QI and its descendants3)
belong to the representation H ≡ B̂ 1

2
, while the vector multiplet letters split

into the two conjugate representations V ≡ Ē1(0,0) (ϕ and its descendants)
and V̄ ≡ E1(0,0) (ϕ̄ and its descendants). It is not difficult, using N = 2
superconformal characters4, to evaluate the relevant tensor products5

H×H =
∞∑

q=−1

Ĉ0( q
2
, q
2
) , (2.9)

H× V =
∞∑

q=−1

Ĉ0( q+1
2

, q
2
) = V ×H , (2.10)

H× V̄ =
∞∑

q=−1

Ĉ0( q
2
, q+1

2
) = V̄ × H , (2.11)

V × V = Ē2(0,0) +
∞∑
q=0

Ĉ0( q+1
2

, q−1
2

) , (2.12)

V̄ × V̄ = E2(0,0) +
∞∑
q=0

Ĉ0( q−1
2

, q+1
2

) , (2.13)

V × V̄ =
∞∑
q=0

Ĉ0( q
2
, q
2
) = V̄ × V . (2.14)

3We are suppressing for now SU(2)L indices, since SU(2)L commutes with the super-
conformal algebra.

4See for example [21] for an illustration of superconformal character techniques in N = 4
case.

5Following [20], we extend the definition of the Ĉ multiplets to j1, j2 = − 1
2 according to

the rules:
Ĉ0(− 1

2 ,−
1
2 )

≡ B̂1, Ĉ0(0,− 1
2 )

≡ D̄ 1
2 (0,0)

, Ĉ0(− 1
2 ,0)

≡ D 1
2 (0,0)

, Ĉ0( 1
2 ,−

1
2 )

≡ D̄ 1
2 (

1
2 ,0)

and Ĉ0(− 1
2 ,

1
2 )

≡
D 1

2 (0,
1
2 )
.
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The two-site Hamiltonian H12 can still be written as a sum of superconformal
projectors, but we must take into account mixing between different sectors.
For example, since the representation Ĉ0( q

2
, q
2
) appears in the tensor products

H×H, V × V̄ and V̄ × V , these states will mix. The restriction of H12 to this
subspace takes the form

H12 = A11(−1)P(− 1
2
,− 1

2
) +

∞∑
q=0


A11(q) A12(q) A13(q)

A21(q) A22(q) A23(q)

A31(q) A32(q) A33(q)

P( q
2
, q
2
) , (2.15)

where for each q the 3× 3 matrix Ars(q) is the mixing matrix of H×H, V ×V̄
and V̄ ×V . Similarly, there is mixing between H×V and V ×H, and between
H×V̄ and V̄ ×H, but no mixing for either V ×V and V̄ × V̄ , since these latter
products decompose into representations that do not appear anywhere else.

2.2.2 A Convenient Subsector

A straightforward way to obtain the coefficients that multiply the supercon-
formal projectors would be to evaluate the dilation operator on the supercon-
formal primaries of each module. The projectors act trivially on these states
and the mixing matrix could be read immediately. However, the primaries
are complicated objects (see Appendix B.3) and it will be easier to consider
certain descendants instead.

We have identified a closed subsector, somewhat analogous to the SU(1, 1)×
U(1|1) subsector [17] of N = 4 SYM. In SCQCD, our subsector consists of the
letters λ2+, λ̄2+̇, Q2 and Q̄2, acted upon by an arbitrary number of covariant
derivatives D++̇. Note that all the SU(2)R indices are taken to be subscripts6

with the value I = 2. In the interpolating theory, we add λ̌2+ and ¯̌λ2+̇ to the
list. It will be convenient to define (with D ≡ D++̇)

λk =
Dk

k!
λ2+ , λ̄k =

Dk

k!
λ̄2+̇ , (2.16)

λ̌k =
Dk

k!
λ̌2+ ,

¯̌λk =
Dk

k!
¯̌λ2+̇ , (2.17)

Qk Î =
Dk

k!
Q2 Î , Q̄Î

k =
Dk

k!
Q̄Î

2 . (2.18)

6If the natural position of the SU(2)R index is as a superscript, as in λ̄I
α̇ and Q̄I , we

lower it using ϵIJ .
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The SU(2)L indices Î = 1̂, 2̂ will often be suppressed to avoid cluttering.
The sector (2.16)-(2.18) is closed to all loops, as one easily checks by us-

ing conservation of the engineering dimension and of the Lorentz and the
R-symmetry quantum numbers. The subgroup of the superconformal group
acting on the sector is SU(1, 1) × SU(1|1) × SU(1|1) × U(1). The SU(1, 1)
generators are

J ′
+(g) = P++̇(g) , (2.19)

J ′
−(g) = K++̇(g) , (2.20)

J ′
3(g) =

1

2
D0 +

1

2
δD(g) +

1

2
L +

+ +
1

2
L̇ +̇

+̇
, (2.21)

where δD(g) ≡ D(g) − D0 is the difference between the quantum dilation
operator and its classical limit D0 = D(0). The states Qk=0 and Q̄k=0 are
primaries of spin −1

2
representations of SU(1, 1), while the states λk=0, λ̌k=0,

λ̄k=0,
¯̌λk=0 are primaries of spin −1 representations of SU(1, 1). The SU(1|1)×

SU(1|1) × U(1) generators will be presented in section 3.1, and they play a
key role in the evaluation the complete one-loop Hamiltonian.

Each of the modules appearing on the right hand side of the tensor products
(2.9)-(2.14) contains a representative in this subsector. The representatives are
primaries of SU(1, 1), and descendants with respect to the full SU(2, 2|2). This
is sufficient to uplift the Hamiltonian of the subsector to the full Hamiltonian.

2.3 The N = 1 Spin Chain

Let us now review N = 1 SQCD, the N = 1 supersymmetric Yang-Mills
theory with gauge group SU(Nc) and Nf flavors of fundamental quarks. In
table 2.3 we recall the familiar symmetries of the theory and set our notations.
Besides the N = 1 vector multiplet (Aαα̇, λα), in the adjoint representation
of the gauge group, there are two sets of Nf chiral multiplets, (Q,ψα) and
(Q̃, ψ̃α), respectively in the fundamental and antifundamental representations
of SU(Nc). The color and flavor structure is then

(Aa
b, λ

a
b) , (Qai, ψai) , (Q̃aı̃, ψ̃aı̃) , (2.22)

where a = 1, . . . Nc are color indices, and i = 1, . . . Nf and ı̃ = 1, . . . Nf two
independent sets of flavor indices, corresponding to the independent flavor
symmetries of the gauge-fundamental and of the gauge-antifundamental chiral
multiplets.

In the largeN Veneziano limit, the basic flavor-singlet local gauge-invariant
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SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)r

Qα 1 1 1 0 −1

Sα 1 1 1 0 1

λα Adj 1 1 0 1

Aαα̇ Adj 1 1 0 0

Q � � 1 1 1− Nc

Nf

ψα � � 1 1 −Nc

Nf

Q̃ � 1 � −1 1− Nc

Nf

ψ̃α � 1 � −1 −Nc

Nf

Table 2.3: Field content and symmetries of N = 1 SQCD. We use α = ± and
α̇ = ±̇ for Lorentz spinor indices. Qα and Sα denote respectively the Poincaré
and conformal supercharges. Conjugate objects such as λ̄α̇ are not written
explicitly.

operators are again “generalized single-traces” of the schematic form

Tr
(
ϕk1Mk2ϕk3Mk4 . . .

)
. (2.23)

Here ϕ denotes any of the color-adjoint “letters”, for example ϕa
b = (Dnλ)ab,

where D is a gauge-covariant derivative, while Ma
b is any of the gauge-adjoint

composite objects obtained by the flavor contraction of a fundamental and an

antifundamental letter, for example Ma
b = QaiQ̄bi or Ma

b =
¯̃ψaı̃Q̃bı̃.

2.3.1 N = 1 superconformal representations

As in the N = 2 case we will make crucial use of superconformal symmetry
to constraint the form of the the spin chain Hamiltonian. The letters that
occupy each site of the N = 1 SQCD chain belong to four distinct irreducible
representations of the SU(2, 2|1) superconformal algebra. We denote them
by X (chiral multiplet), X̄ (antichiral multiplet), V (vector multiplet) and V̄
(conjugate vector multiplet).

The setup is now analogous to N = 2 SCQCD. The Hamiltonian density
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acts on two adjacent sites and can be written as a sum of projectors onto
the irreducible representations that span the two-site state space. Because
of the index structure of the spin chain, not all orderings of two single-site
representations are allowed in the two-site state space. For example, it is not
possible to have two Qs adjacent to each other because there is no way in which
to contract the indices, so two adjacent X representations are not allowed. On
the other hand, Q and Q̄ can be placed together and, in fact, there are two
ways in which this can be done, we can contract either adjacent gauge indices
or adjacent flavor indices. The gauge-contracted combinations are (the order
matters):

V × V V̄ × V V̄ × V̄ V × V̄ (2.24)

V × X X̃ × V V̄ × X X̃ × V̄ (2.25)

V × ¯̃X X̄ × V V̄ × ¯̃X X̄ × V̄ (2.26)

X̄ × X X̄ × ¯̃X X̃ × X X̃ × ¯̃X , (2.27)

while the flavor-contracted combinations are:

X × X̄ ¯̃X × X̃ . (2.28)

For clarity we have added a “tilde” to distinguish the fundamental from the
antifundamental chiral multiplets, though of course this is a distinction that
pertains to the color and flavor structure, not the superconformal structure
(X and X̃ are isomorphic as superconformal representations).

The classification of multiplets of the N = 1 superconformal algebra is
reviewed in Appendix B.1. We follow the notations of [22], according to which
the multiplets that span the single-site state space are given by

X = X̃ = D̄(0,0) , X̄ = ¯̃X = D(0,0), V = D̄( 1
2
,0) , V̄ = D(0, 1

2
) .

(2.29)
Using superconformal characters it is not difficult to decompose the tensor
products of any two such multiplets into irreducible representations. We find

X̃ × X = B̄ 4
3
(0,0) +

∞∑
q=0

Ĉ( q+1
2

, q
2
) , (2.30)

X̄ × ¯̃X = B− 4
3
(0,0) +

∞∑
q=0

Ĉ( q
2
, q+1

2
) , (2.31)
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X × X̄ = X̄ × X =
∞∑
q=0

Ĉ( q
2
, q
2
) = X̃ × ¯̃X = ¯̃X × X̃ , (2.32)

V × X = B̄ 5
3
( 1
2
,0) +

∞∑
q=1

Ĉ( q+1
2

, q−1
2

) = X̃ × V , (2.33)

V̄ × X =
∞∑
q=0

Ĉ( q
2
, q+1

2
) = X̃ × V̄ , (2.34)

X̄ × V =
∞∑
q=0

Ĉ( q+1
2

, q
2
) = V × ¯̃X , (2.35)

X̄ × V̄ = B− 5
3
(0, 1

2
) +

∞∑
q=1

Ĉ( q−1
2

, q+1
2

) = V̄ × ¯̃X , (2.36)

V × V = B̄2(0,0) + B̄2(1,0) +
∞∑
q=2

Ĉ( q+1
2

, q−2
2

) , (2.37)

V̄ × V̄ = B−2(0,0) + B−2(0,1) +
∞∑
q=2

Ĉ( q−2
2

, q+1
2

) , (2.38)

V × V̄ =
∞∑
q=1

Ĉ( q
2
, q
2
) = V̄ × V . (2.39)

2.3.2 Another convenient subsector

Consider the subsector generated by the letters

λk =
Dk

k!
λ+ , F̄k =

Dk

k!
F̄+̇+̇ , (2.40)

Qk =
Dk

k!
Q , ψ̄k =

Dk

k!
ψ̄+̇ , (2.41)

Q̃k =
Dk

k!
Q̃ , ¯̃ψk =

Dk

k!
¯̃ψ+̇ . (2.42)

with D ≡ D++̇. By using conservation of the engineering dimension, of the
Lorentz spins and of the R-charge it is easy to see that this sector is closed to
all loops under the action of the dilation operator. Moreoever, the one-loop
Hamiltonian restricted to this subsector can be uplifted to the full one-loop
Hamiltonian, as each of the modules appearing on the right hand side of the
tensor products (2.30–2.39) contains a representative within the subsector.
The representatives are primaries of SU(1, 1), and descendants with respect
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to the full SU(2, 2|1) algebra.
The subgroup of the superconformal group acting on the sector is SU(1, 1)×

U(1|1). The SU(1, 1) generators are the same as in theN = 2 case. The U(1|1)
generators will be given in chapter 3 and will be essential for our calculation
of the complete one-loop Hamiltonian.
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Chapter 3

Algebraic Evaluation of the
Dilation Operator

As described in the previous chapter, the evaluation of the complete one-loop
Hamiltonian can be simplified dramatically by restricting its action to a special
subsector with SU(1, 1) symmetry. However, even with this simplification,
it remains to calculate the SU(1, 1) Hamiltonian using Feynman diagrams.
The diagrammatic calculation was done in [16] for N = 4 SYM and [23] for
N = 2 SCQCD. In this chapter we will use the more elegant algebraic approach
developed in [17], avoiding Feynman diagrams altogether.

3.1 The N = 2 Hamiltonian

In this section we describe the algebraic evaluation of the one-loop Hamiltonian
in the SU(1, 1)×SU(1|1)×SU(1|1)×U(1) subsector, and its uplifting to the
full Hamiltonian. We present the result for the interpolating theory, as a
function of κ = ǧ/g. The result for SCQCD is obtained by taking the limit
κ→ 0 and focussing on the relevant subspace (that is, discarding the “checked”
fields and contracting adjacent SU(2)L indices). We can focus on evaluating
the Hamiltonian on two-site states with open indices a

b and a
b̌
, since the

Hamiltonian acting on the structures ǎ
b̌
and ǎ

b is immediately obtained by
interchanging g ↔ ǧ.

In addition to the SU(1, 1), our closed subsector has an extra SU(1|1) ×
SU(1|1)× U(1) symmetry. The generators of the two SU(1|1)s are1

1The bar in B̄, Q̄, and S̄ does not denote complex conjugation, we are going to impose
the appropriate hermiticity condition below.
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B =
1

2
L −

− +
1

2
L̇ −̇

−̇ +
1

2
D0 + r , S(g) = S −

1 (g) , Q(g) = Q 1
− (g) , (3.1)

B̄ =
1

2
L −

− +
1

2
L̇ −̇

−̇ +
1

2
D0 − r , S̄(g) = S̄−̇2(g) , Q̄(g) = Q̄−̇2(g) , (3.2)

and can be checked to commute with the SU(1, 1) generators (2.19). The
U(1) is a central element corresponding to the quantum part of the dilatation
operator, δD(g).

The (anti)commutators are

[B,Q(g)] = Q(g) , [B̄, Q̄(g)] = Q̄(g) , (3.3)

[B,S(g)] = −S(g) , [B̄, S̄(g)] = −S̄(g) , (3.4)

{S(g),Q(g)} =
1

2
δD(g) , {S̄(g), Q̄(g)} =

1

2
δD(g) . (3.5)

The operator L = B + B̄ evaluates to 1 on each of the elementary letters of
the subsector, and thus measures the “length” of a state. Since

[L,Q(g)] = Q(g) , [L, Q̄(g)] = Q̄(g) , (3.6)

[L,S(g)] = −S(g) , [L, S̄(g)] = −S̄(g) . (3.7)

we learn that Q(g) and Q̄(g) increase the length of a state by one unit while
S(g) and S̄(g) decrease it.

3.1.1 First order expressions for Q(g) and S(g)
In the classical limit g → 0 one easily checks that the SU(1|1) generators
annihilate all the states of the subsector, consistent with the fact that they
must change the length of a state. As in [17], we know that there must be
quantum corrections to Q(g) and S(g), because their anticommutator must
yield a non-vanishing quantum dilation operator. Writing Q(g) = gQ+O(g2),
the most general ansatz for the action of Q on λ compatible with Lorentz and
R-charge conservation is

Qλn =
n∑

k′=0

an,k′Qk′Q̄n−k′

+
n−1∑
k′=0

bn,k′λk′λ̄n−k′−1 +
n−1∑
k′=0

cn,k′λ̄k′λn−k′−1 (3.8)
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for arbitrary coefficients an,k′ , bn,k′ and cn,k′ . The coefficients can be con-
strained by requiring that Q commutes with the SU(1, 1) algebra. Requiring
[J ′,Q]λn = 0 fixes an,k′ to be a constant an,k′ = α′, and bn,k′ = cn,k′ = 0.
This is however too restrictive, and as in N = 4 SYM [17], one should only
require that [J ′,Q] annihilates all gauge invariant states (closed spin chains).
We should demand [J ′,Q]λn ∼ 0, where ∼ stands for equivalence up to a
gauge transformation. There are two independent gauge transformations, cor-

responding to adding an extra λ̄ or ¯̌λ to the chain, so we impose

[Q,J ′
+]λn = α

(
λnλ̄+ λ̄λn

)
, (3.9)

[Q,J ′
+]λ̄n = α

(
λ̄nλ̄+ λ̄λ̄n

)
, (3.10)

[Q,J ′
+]Qn = α

(
λ̄Qn − γQn

¯̌λ
)
, (3.11)

[Q,J ′
+]Q̄n = α

(
γ ¯̌λQ̄n − Q̄nλ̄

)
, (3.12)

[Q,J ′
+]λ̌n = αγ

(
λ̌n

¯̌λ+ ¯̌λλ̌n

)
, (3.13)

[Q,J ′
+]
¯̌λn = αγ

(
¯̌λn

¯̌λ+ ¯̌λ¯̌λn

)
, (3.14)

where we have labelled by α and αγ the two independent gauge parameters.
We now find

an,k′ = α′ , (3.15)

bn,k′ =
α

n− k′
, (3.16)

cn,k′ =
α

k′ + 1
, (3.17)

where at this stage α and α′ are arbitrary constants. Similarly, for the action
on the other states of the sector,

Qλ̌n =
n∑

k′=0

α′′Q̄k′Qn−k′

+αγ

(
n−1∑
k′=0

1

n− k′
λ̌k′

¯̌λn−k′−1 +
n−1∑
k′=0

1

k′ + 1
¯̌λk′λ̌n−k′−1

)
, (3.18)

Qλ̄n = α

n−1∑
k′=0

n+ 1

(k′ + 1)(n− k′)
λ̄k′λ̄n−k′−1 , (3.19)

Q¯̌λn = αγ
n−1∑
k′=0

n+ 1

(k′ + 1)(n− k′)
¯̌λk′

¯̌λn−k′−1 , (3.20)
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QQn = α

n−1∑
k′=0

(
1

k′ + 1
λ̄k′Qn−k′−1 −

γ

n− k′
Qk′

¯̌λn−k′−1

)
, (3.21)

QQ̄n = α
n−1∑
k′=0

(
γ

k′ + 1
¯̌λk′Q̄n−k′−1 −

1

n− k′
Q̄k′λ̄n−k′−1

)
. (3.22)

One can check that the commutators [J ′
−,Q] = 0 and [J ′

3,Q] = 0 are then
identically satisfied with the action of Q given by the above expressions. An
analogous analysis can be performed for S. Now the relevant gauge transfor-
mations are

[S,J ′
−]λ̄kλ̄n−k = β (δk=0 + δn=k) λ̄n , [S,J ′

−]
¯̌λk
¯̌λn−k = βγ′ (δk=0 + δn=k)

¯̌λn ,
(3.23)

[S,J ′
−]λkλ̄n−k = βδn=kλn , [S,J ′

−]λ̌k
¯̌λn−k = βγ′δn=kλ̌n , (3.24)

[S,J ′
−]λ̄kλn−k = βδk=0λn , [S,J ′

−]
¯̌λkλ̌n−k = βγ′δk=0λ̌n , (3.25)

[S,J ′
−]λ̄kQn−k = βδk=0Qn , [S,J ′

−]
¯̌λkQ̄n−k = βγ′δk=0Q̄n , (3.26)

[S,J ′
−]Q̄kλ̄n−k = −βδn=kQ̄n , [S,J ′

−]Qk
¯̌λn−k = −βγ′δn=kQn , (3.27)

and the action of S consistent with them is

SQkÎQ̄
Ĵ
n−k =

β′

n+ 1
λnδ

Ĵ
Î , SQ̄Ĵ

k Qn−kÎ =
β′′

n+ 1
λ̌nδ

Ĵ
Î , (3.28)

Sλ̄kλ̄n−k = βλ̄n+1 , S ¯̌λk ¯̌λn−k = γ′β ¯̌λn+1 , (3.29)

Sλkλ̄n−k = β
k + 1

n+ 2
λn+1 , Sλ̌k ¯̌λn−k = γ′β

k + 1

n+ 2
λ̌n+1 , (3.30)

Sλ̄kλn−k = β
n− k + 1

n+ 2
λn+1 , S ¯̌λkλ̌n−k = γ′β

n− k + 1

n+ 2
λ̌n+1 , (3.31)

Sλ̄kQn−k = βQn+1 , SQk
¯̌λn−k = −γ′βQn+1 , (3.32)

SQ̄kλ̄n−k = −βQ̄n+1 , SQk
¯̌λn−k = −γ′βQn+1 . (3.33)

With these expressions, the remaining commutators [J ′
+,S] = 0 and [J ′

3,S] =
0 are automatically satisfied.

As we are interested in unitary representations of the superconformal al-
gebra, we impose the hermiticity condition2

Q† = S , (3.34)

2To exhibit hermiticity explicitly one needs to rescale the fermion letters as χn → χn√
n+1

,

where χn stands for λn , λ̌n , λ̄n or ¯̌λn.
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which implies the following reality constraints for the undetermined coeffi-
cients:

α = β∗ , (3.35)

α′ = β′∗ , (3.36)

α′′ = β′′∗ , (3.37)

γ = γ′∗ . (3.38)

Having determined the O(g) action of Q(g) and S(g), we are now in the
position to evaluate the one-loop Hamiltonian, since the algebra (3.5) implies

H ′ = 2{S,Q} . (3.39)

Let us proceed to find H ′ in the different subspaces:

3.1.2 V × V and V̄ × V̄
The V̄ × V̄ case is identical with N = 4, we refer the interested reader to [17]
for details of the calculation. The result is

H ′
12λ̄kλ̄n−k = 2|α|2

n∑
k′=0

cn,k,k′λ̄k′λ̄n−k′ , (3.40)

with

cn,k,k′ = δk=k′ (h(k + 1) + h(n− k + 1))− δk ̸=k′

|k − k′|
+

δk>k′

n− k′ + 1
+

δk<k′

k′ + 1
,

where h(k) are the harmonic numbers, h(k) =
∑k

j=1
1
j
and h(0) ≡ 0.

For V × V the calculation is very similar, and the result is

H ′
12λkλn−k = 2|α|2

n∑
k′=0

cn,k,k′λk′λn−k′ , (3.41)

with

cn,k,k′ = δk=k′

(
h(k + 1) + h(n− k + 1) +

|α′|2

|α|2
− 1

)
− δk ̸=k′

|k − k′|
+

δk>k′

n− k′ + 1
+

δk<k′

k′ + 1
. (3.42)

We now impose the physical requirement that the action of the Hamiltonian on
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λλ is identical to the action on λ̄λ̄ (this is CPT invariance in the field theory).
This fixes |α′|2 = |α|2, which implies α′ = eiθ1α, where θ1 is an arbitrary phase.

Using the oscillator representation (see Appendix A.2) it is easy to check
that H ′

12 is invariant under SU(1, 1). We can then write the Hamiltonian
density as

H ′
12 =

∞∑
j=0

A(j)P ′
−1−j , (3.43)

where P ′
−1−j is a projector on the SU(1, 1) module of spin −1− j. To obtain

the coefficients A(j) we act on the SU(1, 1) highest weights,

J (j) = −(j + 2)

(j + 1)

j∑
k=0

(−1)k

k + 1

(
j

k

)(
j + 1

k

)
Dj−kλ2+Dkλ2+ . (3.44)

The result is
H ′

12J (j) = 4|α|2h(j + 1)J (j) , (3.45)

which implies A(j) = 4|α|2h(j + 1). The lifting procedure is now straightfor-
ward: J (j) is not only an SU(1, 1) highest weight but also a superconformal
descendant, it can be obtained by applying −1

2
R 1

2 Q 2
+ to (A.29) for j = 0

and Q 1
+ Q̄+̇2 to (A.30) for j > 0. The SU(1, 1) modules are sub-modules of

the the superconformal modules with j = q. The only module not present in
this sub-sector is Ē2(0,0), but we know that this is a protected multiplet so its
coefficient is just zero. All in all, the Hamiltonian density in V × V is

H12 = 0× PĒ + |α|2
∞∑
q=0

4h(q + 1)P( q+1
2

, q−1
2

) . (3.46)

The overall constant |α|2 cannot be fixed algebraically and is related to a
rescaling of the coupling. To match with the Feynman diagram calculation of
[23] we need to set |α|2 = 1.

3.1.3 V̄ × H ↔ H× V̄
Since this case is somewhat different from N = 4 SYM because of multiplet
mixing, let us give a few more details of the calculation. We need to evaluate

H ′
12λkQn−k = 2(SQ+QS)λkQn−k . (3.47)

In the first term inside the parenthesis we can act with Q in either the first or
the second site, we will denote this contributions by Q1 and Q2. Both choices
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will increase the length of the chain by one, which implies that S can act in
either sites 1-2 or 2-3, we will denote this by S12 and S23. Taking into account
all possible combinations the action of the Hamiltonian is

H ′
12 = 2 (S12Q1 + S23Q1 + S12Q2 + S23Q2 +Q1S12) . (3.48)

Each individual contribution can be calculated by straightforward application
of the action of the supercharges given in the previous section,

S12Q1λ̄kQn−k = 4h(k)λ̄kQn−k , (3.49)

S23Q1λ̄kQn−k = −2
k−1∑
k′=0

(
1

k′ + 1
+

1

k − k′

)
λ̄k′Qn−k′ , (3.50)

S12Q2λ̄kQn−k = −2
n∑

k′=k+1

(
1

k′ − k
λ̄k′Qn−k′ +

γ

n− k′ + 1
Qk′

¯̌λn−k′

)
,(3.51)

S23Q2λ̄kQn−k = 2(1 + |γ|2)h(n− k)λ̄kQn−k , (3.52)

Q1S12λ̄kQn−k = 2
n∑

k′=0

(
1

k′ + 1
λ̄k′Qn−k′ −

γ

n− k′ + 1
Qk′

¯̌λn−k′

)
. (3.53)

Now, since S12Q1 and S23Q2 act at the single site level, they are analogous to
the self-energy contributions in a field theory calculation. As usual for spin
chains, we distribute them evenly in two adjacent sites by adding an extra

factor of one half. An analogous calculation can be done for 2{S,Q}Qk
¯̌λn−k,

the action of the Hamiltonian in this subspace is

H ′
12λ̄kQn−k = 2

n∑
k′=0

an,k,k′λ̄k′Qn−k′ + 2
n∑

k′=0

bn,k,k′Qk′
¯̌λn−k′ , (3.54)

H ′
12Qk

¯̌λn−k = 2
n∑

k′=0

ǎn,k,k′Qk′
¯̌λn−k′ + 2

n∑
k′=0

b̌n,k,k′λ̄k′Qn−k′ , (3.55)

where

an,k,k′ = δk=k′

(
h(k + 1) +

1 + |γ|2

2
h(n− k)

)
− δk ̸=k′

|k − k′|
+

δk<k′

k′ + 1
, (3.56)

bn,k,k′ = −γ δk≥k′

n− k′ + 1
, (3.57)

ǎn,k,k′ =
1 + |γ|2

2
h(k)δk=k′ + |γ|2

(
h(n− k + 1)δk=k′ −

δk ̸=k′

|k − k′|
+

δk>k′

n− k′ + 1

)
,
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b̌n,k,k′ = −γ∗ δk≤k′

k′ + 1
. (3.58)

In this case, the Hamiltonian densityH ′
12 is not an SU(1, 1) invariant. How-

ever, conformal symmetry only dictates that the total Hamiltonian
∑

ℓH
′
ℓ,ℓ+1

acting on a closed spin chain must be invariant. A redefinition of the two-site
Hamiltonian of the form

H ′
ℓ,ℓ+1 → H ′

ℓ,ℓ+1 −Kℓ +Kℓ+1 , (3.59)

where Kℓ is a local operator at site ℓ, leaves the total Hamiltonian invariant.
So what we must really check is whether we can make the two-site Hamiltonian
invariant by an appropriate choice of Kℓ. The choice of Kℓ that makes H ′

12

invariant for the whole SU(1, 1)× SU(1|1)× SU(1|1)× U(1) subsector is

Kℓ =
∞∑
k=0

(
f(k)P ℓ

Qk
− f(k)P ℓ

Q̄k

)
, f(k) = (1− |γ|2)h(k) , (3.60)

where P ℓ
Qk

is the projector on the state Qk at site ℓ, and similarly for P ℓ
Q̄k
.

We have verified this claim for the restriction of H ′
12 to each of the tensor

products. For the tensor products V ×H ↔ H×V , the transformation (3.59,
3.60) amounts to redefining the coefficients (3.56, 3.58) as

an,k,k′ → an,k,k′ +
1

2
f(n− k) , ǎn,k,k′ → ǎn,k,k′ −

1

2
f(k) . (3.61)

The new coefficients read

an,k,k′ = δk=k′(h(k + 1) + h(n− k))− δk ̸=k′

|k − k′|
+

δk<k′

k′ + 1
, (3.62)

ǎn,k,k′ = |γ|2
(
δk=k′(h(k) + h(n− k + 1))− δk ̸=k′

|k − k′|
+

δk>k′

n− k′ + 1

)
,(3.63)

and these combinations are SU(1, 1) invariant as can be easily checked with
the oscillator representation. (The coefficients bn,k,k′ and b̌n,k,k′ were never
problematic). Now we can write H ′

12 in (3.54, 3.55) as a sum of projectors

H ′
12 =

∞∑
j=0

 A11(j) A12(j)

A21(j) A22(j)

P ′
− 3

2
−j
. (3.64)

To obtain the undetermined coefficients we act on the SU(1, 1) highest weights
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(of spin −3
2
− j),

J (j) =

j∑
k=0

(−1)k
(
j

k

)(
j + 1

k

)
Dj−kλ̄2+DkQ2 , (3.65)

K(j) =

j∑
k=0

(−1)k
(
j

k

)(
j + 1

k + 1

)
Dj−kQ2Dk ¯̌λ2+ . (3.66)

As before, these are also superconformal descendants. They can be obtained
by applying −1

2
R 1

2 R 1
2 Q 2

+ to (A.33) and (A.36) for j = 0 and Q 1
+ Q̄+̇2 to

(A.34) and (A.37) for j > 0.

H ′
12J (j) = 2 (h(j + 1) + h(j))J (j)− 2γ

j + 1
K(j) , (3.67)

H ′
12K(j) = 2|γ|2 (h(j + 1) + h(j))K(j)− 2γ∗

j + 1
J (j) . (3.68)

The lifting procedure works as before: there is a one-to-one relationship be-
tween SU(1, 1) modules and superconformal modules, now with q + 1 = j.
Defining γ ≡ ηeiθ2 , where η and θ2 are real parameters, we find

H12 = 2
∞∑

q=−1

 h(q + 2) + h(q + 1) − η
q+2

eiθ2

− η
q+2

e−iθ2 η2(h(q + 2) + h(q + 1))

P( q+1
2

, q
2
) .

(3.69)
The phase θ2 does not enter in any physical anomalous dimension, and can in
fact be set to zero by a similarity transformation.

A quick check: Let’s consider the action of the Hamiltonian on the two

dimensional vector space formed by ϕ̄Q and Q ¯̌ϕ. These are the superconformal
primaries of the q = −1 modules. The mixing matrix is just (3.69) evaluated
at q = −1. The result is

H12 =

 2 −2η

−2η 2η2

 , (3.70)

in perfect agreement with [13], if we identify η ≡ κ. This is a nice check

because in the above calculation we never considered ϕ̄ and ¯̌ϕ.
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3.1.4 H×H ↔ V × V̄ ↔ V̄ × V
Following similar steps as in the previous subsection, we obtain for this sub-
space

H ′
12Qk ÎQ̄

Ĵ
n−k = 2

n∑
k′=0

(an,k,k′)
Ĵ K̂
ÎL̂ Qk′ K̂Q̄

L̂
n−k′ (3.71)

+δĴÎ 2
n−1∑
k′=0

(
bn,k,k′λk′λ̄n−k′−1 + cn,k,k′λ̄k′λn−k′−1

)
,

where (with Î ≡ δK̂Î δ
Ĵ
L̂ , K̂ ≡ δĴÎ δ

K̂
L̂ )

an,k,k′ =
K̂

(n+ 1)
+ κ2Î

(
δk=k′(h(k) + h(n− k))− δk ̸=k′

|k − k′|

)
, (3.72)

bn,k,k′ =
e−iθ1

n+ 1

(
− δk>k′

n− k′
+

δk≤k′

k′ + 1

)
, (3.73)

cn,k,k′ = − e−iθ1

(n+ 1)

(
− δk>k′

n− k′
+

δk≤k′

k′ + 1

)
. (3.74)

For the action on the fermions, we get

H12λkλ̄n−k = 2
n∑

k′=0

(
an,k,k′λk′λ̄n−k′ + bn,k,k′λ̄k′λn−k′

)
+ 2

n+1∑
k′=0

cn,k,k′Qk′ ÎQ̄
Î
n+1−k′ ,

(3.75)

H12λ̄kλn−k = 2
n∑

k′=0

(
an,k,k′λ̄k′λn−k′ + bn,k,k′λk′λ̄n−k′

)
− 2

n+1∑
k′=0

cn,k,k′Qk′ ÎQ̄
Î
n+1−k′ ,

(3.76)

where

an,k,k′ = δk=k′

(
h(k + 1) + h(n− k + 1)− 1

n+ 2

)
− δk ̸=k′

|k − k′|

+δk>k′
k + 1

(n+ 2)(n− k′ + 1)
+ δk<k′

n− k + 1

(n+ 2)(k′ + 1)
, (3.77)

bn,k,k′ =
eiθ1

n+ 2

(
δk=k′ + δk>k′

n− k + 1

n− k′ + 1
+ δk<k′

k + 1

k′ + 1

)
, (3.78)

cn,k,k′ = −eiθ1
(
−δk≥k′ +

k + 1

n+ 2

)
. (3.79)
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Let us now distinguish the two possible combinations of SU(2)L indices:

SU(2)L singlet

The Hamiltonian density can be written as

H ′
12 = A11(0)P ′

−1 +
∞∑
j=1


A11(j) A12(j) A13(j)

A21(j) A22(j) A23(j)

A31(j) A32(j) A33(j)

P ′
−1−j , (3.80)

To fix the undetermined constants we consider the SU(1, 1) highest weights
(of spin −1− j),

J (j) = −
j∑

k=0

(−1)k
(
j

k

)(
j

k

)
Dj−kQ2DkQ̄2 , (3.81)

K(j) =
√
2j(j + 1)

j−1∑
k=0

(−1)k
1

k + 1

(
j

k

)(
j − 1

i

)
Dj−k−1λ2+Dkλ̄2+̇ ,(3.82)

K̄(j) = −
√

2j(j + 1)

j−1∑
k=0

(−1)k
1

k + 1

(
j

k

)(
j − 1

k

)
Dj−k−1λ̄2+̇Dkλ2+ .(3.83)

These states are superconformal descendants obtained by acting with−1
2
R 1

2 R 1
2

on (A.38) for j = 0, and with Q 1
+ Q̄+̇2 on (A.39) and (A.41) for j > 0. The

action of the Hamiltonian is, for j > 0,

H ′
12J (j) = 4κ2h(j)J (j) +

2
√
2e−iθ1√
j(j + 1)

K(j) +
2
√
2e−iθ1√
j(j + 1)

K̄(j) ,

H ′
12K(j) = 2(h(j + 1) + h(j − 1))K(j)− 2

j(j + 1)
K̄(j) +

2
√
2eiθ1√

j(j + 1)
J (j) ,

H ′
12K̄(j) = 2(h(j + 1) + h(j − 1))K̄(j)− 2

j(j + 1)
K(j) +

2
√
2eiθ1√

j(j + 1)
J (j) ,

and for j = 0,
H ′

12J (0) = 4J (0) . (3.84)
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We can immediately read off the full one-loop Hamiltonian density in the
H×H ↔ V × V̄ ↔ V̄ × V subspace,

H12 = 4P(− 1
2
,− 1

2
) (3.85)

+2
∞∑
q=0


2κ2h(q + 1)

√
2√

(q+1)(q+2)
e−iθ1

√
2√

(q+1)(q+2)
e−iθ1

√
2√

(q+1)(q+2)
eiθ1 h(q + 2) + h(q) − 1

(q+1)(q+2)

√
2√

(q+1)(q+2)
eiθ1 − 1

(q+1)(q+2)
h(q + 2) + h(q)

P( q
2
, q
2
) .

The phase θ1 can be set to zero by a similarity transformation, and we find
perfect agreement with the field theory calculation of [23].

A quick check: Let’s consider the action of the Hamiltonian on the three-
dimensional vector space spanned by 2ϕϕ̄, 2ϕ̄ϕ and QI ÎQ̄

Î I . These are the
superconformal primaries of the q = 0 modules. The mixing matrix is the one
given in (3.85) evaluated at q = 0,

H12 =


4κ2 2 2

2 3 −1

2 −1 3

 , (3.86)

again in agreement with [13].

SU(2)L triplet

In this case H×H does not mix with V × V̄ and V̄ × V , and the Hamiltonian
on H×H is simply

H12 =
∞∑
q=0

4κ2h(q + 1)P( q
2
, q
2
) . (3.87)

3.2 The N = 2 Harmonic Action

While we have obtained an explicit expression for the full one-loop Hamiltonian
in terms of superconformal projectors, evaluating this expression on concrete
states is still a rather cumbersome procedure. For N = 4 SYM Beisert [16]
was able to find a very explicit and elegant formula for the the action of the
Hamiltonian on any state, using the oscillator representation, which he called
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the “harmonic action”. Beisert’s approach easily generalizes to our case and
allows to write a harmonic action for the interpolating SCFT.

3.2.1 V × V
For a state in V × V we found that the action of the Hamiltonian is identical
with that of N = 4 SYM. Let’s review then how the harmonic action works
in this case. As pointed out in [16] a general state in V × V can be written as

|s1, ..., sn;A⟩V × V = A†
s1A1

...A†
snAn

|0⟩ ⊗ |0⟩ , (3.88)

where A†
A = (a†

α,b
†
α̇, c

†
I) and si = 1, 2 indicates in which site the oscillator

sits. The action of the Hamiltonian on this state does not change the number
of oscillators but merely shifts them from site 1 to site 2 (or vice versa) in all
possible combinations. This can be written as

H12|s1, ..., sn;A⟩V × V =
∑

s′1,...,s
′
n

cn,n12,n21δC1,0δC2,0|s′1, ..., s′n;A⟩V × V , (3.89)

where the delta functions project onto states with zero central charge and nij

counts the number of oscillators moving from site i to site j. The explicit
formula for the function cn,n12,n21 is

cn,n12,n21 = 2(−1)1+n12n21
Γ(1

2
(n12 + n21))Γ(1 +

1
2
(n− n12 − n21))

Γ(1 + 1
2
n)

, (3.90)

with cn,0,0 = 2h(n
2
). In [16] it was proven that this function is a superconfor-

mal invariant and that it has the appropriate eigenvalues when acting on the
Ĉ0( q+1

2
, q−1

2
) modules, namely

H12Ĉ0( q+1
2

, q−1
2

) = 4h(q + 1)Ĉ0( q+1
2

, q−1
2

) . (3.91)

3.2.2 V ×H ↔ H× V
General states in V ×H and H× V can be written as

|s1, ..., sn;A⟩V × H = A†
s1A1

...A†
snAn

|0⟩ ⊗ |d⟩ , (3.92)

|s1, ..., sn;A⟩H × V̌ = A†
s1A1

...A†
snAn

|d⟩ ⊗ |0̌⟩ , (3.93)

where |d⟩ = d†|0⟩.
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We claim that the action of H12 is given by 3

H12|s1, ..., sn;A⟩V × H =
∑

s′1,...,s
′
n

cn+1,n12,n21|s1, ..., sn;A⟩V × H

+κ
∑

s′1,...,s
′
n

cn+1,n12,n21+1|s1, ..., sn;A⟩H × V̌ (3.94)

and

H12|s1, ..., sn;A⟩H × V̌ = κ2
∑

s′1,...,s
′
n

cn+1,n12,n21 |s1, ..., sn;A⟩H × V̌

−κ
∑

s′1,...,s
′
n

cn+1,n12,n21+1|s1, ..., sn;A⟩V × H (3.95)

Invariance under the superconformal group is guaranteed by the same argu-
ments given in [16]. The only thing we need to check is that this expression
correctly reproduces the 2× 2 matrix given in (3.69). This can be easily done
with an algebra software like Mathematica..

Let us work out an example. Consider the action of the Hamiltonian on
λIQJ (Lorentz and SU(2)L indices are open and go along for the ride). First,
we need to write the state in a “canonical order” to make sure all our signs
are correct,

λIQJ = a†
(1)c

†
(1)I |0⟩ ⊗ c†(2)J |d⟩ = a†

(1)c
†
(1)Ic

†
(2)J |0⟩ ⊗ |d⟩ , (3.96)

QI λ̌J = c†(1)I |d⟩ ⊗ a†
(2)c

†
(2)J |0̌⟩ = −c†(1)Ia

†
(2)c

†
(2)J |d⟩ ⊗ |0̌⟩ . (3.97)

For λ1Q1, the action of the Hamiltonian is

H12λ1Q1 = c4,0,0a
†
(1)c

†
(1)1c

†
(2)1|0⟩ ⊗ |d⟩+ c4,1,1a

†
(1)c

†
(2)1c

†
(1)1|0⟩ ⊗ |d⟩

+κ
(
c4,1,1a

†
(2)c

†
(1)1c

†
(2)1|d⟩ ⊗ |0̌⟩+ c4,2,2a

†
(2)c

†
(2)1c

†
(1)1|d⟩ ⊗ |0̌⟩

)
= 2λ1Q1 − 2κQ1λ̌1 , (3.98)

while for λ1Q2,

H12λ1Q2 = c4,0,0a
†
(1)c

†
(1)1c

†
(2)2|0⟩ ⊗ |d⟩+ c4,1,1a

†
(1)c

†
(2)1c

†
(1)1|0⟩ ⊗ |d⟩

+κc4,1,1

(
a†
(1)c

†
(2)1c

†
(2)2|d⟩ ⊗ |0̌⟩+ a†

(2)c
†
(1)1c

†
(2)2|d⟩ ⊗ |0̌⟩

)
+c4,1,1a

†
(2)c

†
(1)1c

†
(1)1|0⟩ ⊗ |d⟩+ κc4,2,2a

†
(2)c

†
(2)1c

†
(1)2|d⟩ ⊗ |0̌⟩

3To simplify the notation we will omit the delta functions δC1,0δC2,0.
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= 3λ1Q2 − λ2Q1 + ϕψ − κ
(
Q1λ̌2 +Q2λ̌1 − ψϕ̌

)
. (3.99)

Similar calculations can be done for λ2Q1 and λ2Q2. The final result is

H12λIQJ = 3λIQJ − λJQI − ϵIJϕψ̃

−κQI λ̌J − κQJ λ̌I − κϵIJ ψ̃ϕ̌ . (3.100)

3.2.3 H×H ↔ V × V̄ ↔ V̄ × V
For these multiplets we have the following states

|s1, ..., sn;A⟩H × H = A†
s1A1

...A†
snAn

|d⟩ ⊗ |d̃⟩ , (3.101)

|s1, ..., sn;A⟩V × V̄ = A†
s1A1

...A†
snAn

|dd̃⟩ ⊗ |0⟩ , (3.102)

|s1, ..., sn;A⟩V̄ × V = A†
s1A1

...A†
snAn

|0⟩ ⊗ |dd̃⟩ . (3.103)

Let us consider the SU(2)L triplet and singlet cases separately. We have found:

SU(2)L singlet

H12|s1, ..., sn;A⟩H × H =
∑

s′1,...,s
′
n

(
κ2cn,n12,n21 − 2cn+2,n12+2,n21

)
|s1, ..., sn;A⟩H × H

+2
∑

s′1,...,s
′
n

cn+2,n12,n21+1|s1, ..., sn;A⟩V × V̄

+2
∑

s′1,...,s
′
n

cn+2,n12+1,n21|s1, ..., sn;A⟩V̄ × V , (3.104)

H12|s1, ..., sn;A⟩V × V̄ =
∑

s′1,...,s
′
n

cn+2,n12,n21|s1, ..., sn;A⟩V × V̄ (3.105)

+
∑

s′1,...,s
′
n

cn+2,n12+2,n21|s1, ..., sn;A⟩V̄ × V

+
∑

s′1,...,s
′
n

cn+2,n12+1,n21|s1, ..., sn;A⟩H × H ,

H12|s1, ..., sn;A⟩V̄ × V =
∑

s′1,...,s
′
n

cn+2,n12,n21|s1, ..., sn;A⟩V̄ × V (3.106)
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+
∑

s′1,...,s
′
n

cn+2,n12,n21+2|s1, ..., sn;A⟩V × V̄

+
∑

s′1,...,s
′
n

cn+2,n12,n21+1|s1, ..., sn;A⟩H × H .

SU(2)L triplet

H12|s1, ..., sn;A⟩H × H = κ2
∑

s′1,...,s
′
n

cn,n12,n21|s1, ..., sn;A⟩H × H . (3.107)

3.3 The N = 1 Hamiltonian

The procedure here is the same as in the previous section. We consider the
SU(1, 1) subsector and determine the Hamiltonian using the constraints of
superconformal symmetry. We then uplift the result to the complete theory
and obtain the full Hamiltonian as a sum of superconformal projectors. Finally
we rewrite the Hamiltonian in an “harmonic action” form.

In addition to the SU(1, 1) symmetry, the subsector (2.40–2.42) has an
additional U(1|1) symmetry generated by,

L = L −
− + L̇ −̇

−̇ +D0 , Q̄(g) = Q̄−̇(g) , S̄(g) = S̄−̇(g) , δD(g) (3.108)

and can be checked to commute with the SU(1, 1) generators (2.19). Their
(anti)commutators are

[L, Q̄(g)] = Q̄(g) , (3.109)

[L, S̄(g)] = −S̄(g) , (3.110)

{S̄(g), Q̄(g)} =
1

2
δD(g) . (3.111)

The generator L can be identified with the length operator, this implies that
Q̄ increases the length of a chain while S̄ decreases it.

3.3.1 First order expressions for Q(g) and S(g)
The procedure is now very similar to the one before and we shall be brief.
Writing Q(g) = gQ + O(g2), we formulate an ansatz for the action of the
supercharges on the states of the sector compatible with the quantum numbers
of the fields and impose invariance under the SU(1, 1) algebra, [J ′, Q̄] = 0 and
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[J ′, S̄] = 0. As before, strict invariance is too restrictive and one needs only to
impose vanishing of these commutators up to local gauge transformations on
the chain. It can be easily checked that the following transformations evaluate
to zero on any closed chain,

[J ′
+, Q̄]λn = α (λnλ+ λλn) , (3.112)

[J ′
+, Q̄]F̄n = α

(
−F̄nλ+ λF̄n

)
, (3.113)

[J ′
+, Q̄]Qn = αλQn , (3.114)

[J ′
+, Q̄]ψ̄n = αψ̄nλ , (3.115)

[J ′
+, Q̄]Q̃n = −αQ̃nλ , (3.116)

[J ′
+, Q̄] ¯̃ψn = αλ ¯̃ψn , (3.117)

where α is an arbitrary gauge parameter. The action of Q̄ consistent with
these transformations is

Q̄λn = α
n−1∑
k′=0

n+ 1

(k′ + 1)(n− k′)
λk′λn−k′−1 , (3.118)

Q̄F̄n = α

n−1∑
k′=0

(
− 1

n− k′
F̄k′λn−k′−1 +

1

k′ + 1
λk′F̄n−k′+1

)
+α′

n∑
k′=0

Qi
k′ψ̄n−k′ i + α′′

n∑
k′=0

¯̃ψ ı̃
k′Q̃n−k′ ı̃ , (3.119)

Q̄Qn = α
n−1∑
k′=0

1

k′ + 1
λk′Qn−k′−1 , (3.120)

Q̄ψ̄n = α

n−1∑
k′=0

1

n− k′
ψ̄k′λn−k′−1 , (3.121)

Q̄Q̃n = −α
n−1∑
k′=0

1

n− k′
Q̃k′λn−k′+1 , (3.122)

Q̄ ¯̃ψn = α

n−1∑
k′=0

1

k′ + 1
λk′ψ̄n−k′+1 . (3.123)

The terms with α′ and α′′ are invariant on their own and that’s why we assigned
them independent gauge parameters. Similarly, the gauge transformations
associated with the S̄ supercharge are

[J ′
−, S̄]λkλn−k = β (δk=0 + δn=k)λn , (3.124)
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[J ′
−, S̄]λkF̄n−k = βδk=0F̄n , [J ′

−, S̄]F̄kλn−k = −βδn=kF̄n , (3.125)

[J ′
−, S̄]λkQn−k = βδk=0Qn , [J ′

−, S̄]Q̃kλn−k = −βδn=kQ̃n , (3.126)

[J ′
−, S̄]ψ̄kλn−k = βδn=kψ̄n , [J ′

−, S̄]λk
¯̃ψn−k = βδk=0

¯̃ψn , (3.127)

and the action of S̄ consistent with them is

S̄λkλn−k = βλn+1 , (3.128)

SλkF̄n−k = β
(n− k + 2)(n− k + 1)

(n+ 3)(n+ 2)
F̄n+1 , (3.129)

SF̄kλn−k = −β (k + 2)(k + 1)

(n+ 3)(n+ 2)
F̄n+1 , (3.130)

S̄λkQn−k = βQn+1 , (3.131)

S̄Q̃kλn−k = −βQ̃n+1 , (3.132)

S̄ψ̄kλn−k = β
k + 1

n+ 2
ψ̄n+1 , (3.133)

S̄λk ¯̃ψn−k = β
n− k + 1

n+ 2
¯̃ψn+1 , (3.134)

SQi
kψ̄n−k i = β′ n− k + 1

(n+ 2)(n+ 1)
F̄n , (3.135)

S ¯̃ψ ı̃
kQ̃n−k ı̃ = β′′ k + 1

(n+ 2)(n+ 1)
F̄n . (3.136)

As before, the terms with β′ and β′′ are invariant on their own. Note that the

action of S̄ on Qkψ̄n−k and ¯̃ψk Q̃n−k is non-zero only for the flavor-contracted
combinations. Indeed the action on the gauge-contracted combinations would
have to give a single letter with open flavor indices which is impossible. Now
we impose the hermiticity condition

Q̄† = S̄ , (3.137)

which implies the following reality constraints for the undetermined coeffi-
cients:

α = β∗ , α′ = β′∗ , α′′ = β′′∗ . (3.138)
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3.3.2 The Hamiltonian as a sum of projectors

Having determined the O(g) action of Q̄(g) and S̄(g), the one-loop Hamilto-
nian is easily obtained from

H ′ = 2{S̄, Q̄} . (3.139)

This result suffers from a certain gauge ambiguity analogous to the one en-
counter in theN = 2 calculation, we fix it by demanding the stronger condition
that the Hamiltonian density be SU(1, 1) invariant. We can then write H ′

12 as
a sum of projectors onto the SU(1, 1) irreps of the two-site state space, with
coefficients determined by explicit evaluation on the primary of each module.
The uplifting procedure is straightforward: one writes the full Hamiltonian
as a sum over SU(2, 2|1) projectors and fixes the coefficients by comparison
with the SU(1, 1) subsector, as each SU(1, 1) primary is also a SU(2, 2|1)
descendant. We simply quote the results in the various subspaces.

V × V and V̄ × V̄

We find

H12 = 0× PB̄2(0,0)
+ 2|α|2

∞∑
q=1

2h(q)P( q+1
2

, q−2
2

) , (3.140)

for V × V and

H12 = 0× PB−2(0,0)
+ 2(−2|α|2 + |α′|2

2
+

|α′′|2

2
)

∞∑
q=1

2h(q)P( q−2
2

, q+1
2

) , (3.141)

for V̄ × V̄ . CPT invariance implies that these expressions should be identical,
which imposes an extra restriction on |α′|2 and |α′′|2 namely,

|α′|2 + |α′′|2 = 6|α|2 . (3.142)

Now, α′ and α′′ are parameters associated with (X , X̄ ) and (X̃ , ¯̃X ) repectively.
Parity (which is a symmetry of the theory, see section 4.1) interchanges the
two, in order to have parity invariant Hamiltonian we need to set

α′ =
√
3eiθα , (3.143)

α′′ = −
√
3eiθα , (3.144)

where θ is an arbitrary phase, which can be set to zero by a similarity trans-
formation.
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V × X , X̄ × V̄, V̄ × X and X̄ × V

The Hamiltonian in these subspaces is4

V × X = 2|α|2
∞∑
q=0

(h(q + 1) + h(q)− 1

2
)P( q+1

2
, q−1

2
) = X̃ × V , (3.145)

X̄ × V̄ = 2|α|2
∞∑
q=0

(h(q + 1) + h(q)− 1

2
)P( q−1

2
, q+1

2
) = V̄ × ¯̃X , (3.146)

V̄ × X = 2|α|2
∞∑
q=0

(h(q + 2) + h(q)− 1

2
)P( q

2
, q+1

2
) = X̃ × V̄ , (3.147)

X̄ × V = 2|α|2
∞∑
q=0

(h(q + 2) + h(q)− 1

2
)P( q+1

2
, q
2
) = V × ¯̃X . (3.148)

X̄ × X , X̃ × X , X̃ × ¯̃X and X̄ × ¯̃X (gauge contracted)

Here we find

X̄ × X = 2|α|2
∞∑
q=0

(h(q + 1) + h(q)− 1)P( q
2
, q
2
) = X̃ × ¯̃X , (3.149)

X̃ × X = 2|α|2
∞∑

q=−1

(2h(q + 1)− 1)P( q+1
2

, q
2
) , (3.150)

X̄ × ¯̃X = 2|α|2
∞∑

q=−1

(2h(q + 1)− 1)P( q
2
, q+1

2
) . (3.151)

X ×X̄ (flavor contracted), ¯̃X ×X̃ (flavor contracted), V×V̄ and V̄ ×V.

This is the most involved subspace since we have mixing between different
copies of the same superconformal multiplets. The Hamiltonian acting on this

4Some of the modules with low q are not present in the subsector so the corresponding
coefficients are not determined by the algebraic constraints. However, these coefficients can
be fixed by invoking CPT.
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subspace is a 4× 4 matrix,

H12 = 3|α|2



XX̄ ¯̃XX̃ VV̄ V̄V

X̄X 1 −1 0 0

X̃ ¯̃X −1 1 0 0

V̄V 0 0 0 0

VV̄ 0 0 0 0


P(0,0) (3.152)

+ 2|α|2
∞∑
q=1



XX̄ ¯̃XX̃ VV̄ V̄V

X̄X 0 0
√
3e−iθ −

√
3 e−iθ

q+1

X̃ ¯̃X 0 0 −
√
3e−iθ

q+1

√
3e−iθ

V̄V
√
3 eiθ

q(q+2) −
√
3eiθ

q(q+1)(q+2) h(q + 2) + h(q − 1) 2
q(q+1)(q+2)

VV̄ −
√
3eiθ

q(q+1)(q+2)

√
3eiθ

q(q+2)
2

q(q+1)(q+2) h(q + 2) + h(q − 1)


P( q

2
, q
2
) .

3.3.3 Scalar Sector

Let us compare our results with the scalar sector computation of [19]. Apart
from providing a check of our procedure, this comparison allows us to fix the
overall normalization of the Hamiltonian in terms of the gauge theory ’t Hooft
coupling. The action of the Hamiltonian for the gauge contracted Q and Q̃
pairs can be obtained from (3.149) at q = 0 and (3.150,3.151) at q = −1,

H12 = 2|α|2



Q̄Q Q̄ ¯̃Q Q̃Q Q̃ ¯̃Q

QQ̄ 0

QQ̃ −1

¯̃QQ̄ −1

¯̃QQ̃ 0


, (3.153)
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in perfect agreement with equation (3.6) of [19] provided we identify 2|α|2 = λ.
For the flavor contracted pairs we obtain from the first matrix in (3.152),

H12 = 3|α|2


QQ̄ ¯̃QQ̃

Q̄Q 1 −1

Q̃ ¯̃Q −1 1

 , (3.154)

again in agreement with [19]. It is interesting that the value of the transverse
magnetic field for the Ising spin chain in the scalar sector, namely hIsing =
Nf/Nc = 3 [19], turns out to be determined by superconformal symmetry
alone.

3.3.4 The N = 1 Harmonic Action

In this section we present the explicit oscillator form of the Hamiltonian.

V × V and V̄ × V̄.

For states in these two subspaces the action of the Hamiltonian is identical
with that of N = 4 SYM and of N = 2 SCQCD. General states in V ×V and
V̄ × V̄ can be written as

|s1, ..., sn;A⟩V × V = A†
s1A1

...A†
snAn

|0⟩ ⊗ |0⟩ , (3.155)

|s1, ..., sn;A⟩V̄ × V̄ = A†
s1A1

...A†
snAn

|d3⟩ ⊗ |d3⟩ , (3.156)

where A†
A = (a†

α,b
†
α̇, c

†) and si = 1, 2 indicates in which site the oscillator sits.
The action of the Hamiltonian on this state does not change the number of
oscillators but merely shifts them from site 1 to site 2 (or vice versa) in all
possible combinations. This can be written as

H12|s1, ..., sn;A⟩V × V =
∑

s′1,...,s
′
n

cn,n12,n21δC1,0δC2,0|s′1, ..., s′n;A⟩V × V ,(3.157)

H12|s1, ..., sn;A⟩V̄ × V̄ =
∑

s′1,...,s
′
n

cn,n12,n21δC1,0δC2,0|s′1, ..., s′n;A⟩V̄ × V̄ ,(3.158)

where the Kronecker deltas project onto states with zero central charge and
nij counts the number of oscillators moving from site i to site j. The explicit
formula for the function cn,n12,n21 is
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cn,n12,n21 = (−1)1+n12n21
Γ(1

2
(n12 + n21))Γ(1 +

1
2
(n− n12 − n21))

Γ(1 + 1
2
n)

, (3.159)

with cn,0,0 = h(n
2
). As before, this function is a superconformal invariant and

has the appropriate eigenvalues when acting on the Ĉ( q+1
2

, q−2
2

) and Ĉ( q−2
2

, q+1
2

)

modules, namely

H12Ĉ( q+1
2

, q−2
2

) = 2h(q)Ĉ( q+1
2

, q−2
2

) , (3.160)

H12Ĉ( q−2
2

, q+1
2

) = 2h(q)Ĉ( q−2
2

, q+1
2

) . (3.161)

V × X , X̃ × V , X̄ × V̄ and V̄ × ¯̃X .

General states in these four subspaces can be written as

|s1, ..., sn;A⟩V × X = A†
s1A1

...A†
snAn

|0⟩ ⊗ |d1⟩ , (3.162)

|s1, ..., sn;A⟩X̃ × V = A†
s1A1

...A†
snAn

|d̃1⟩ ⊗ |0⟩ , (3.163)

|s1, ..., sn;A⟩X̄ × V̄ = A†
s1A1

...A†
snAn

|d1d2⟩ ⊗ |d3⟩ , (3.164)

|s1, ..., sn;A⟩V̄ × ¯̃X = A†
s1A1

...A†
snAn

|d3⟩ ⊗ |d̃1d̃2⟩ , (3.165)

where |di⟩ = d†
i |0⟩ 5. The action of H12 for all these four subspaces is given

by 6

H12|s1, ..., sn;A⟩ =
∑

s′1,...,s
′
n

cn+1,n12,n21 |s1, ..., sn;A⟩ −
1

2
|s1, ..., sn;A⟩ . (3.166)

Invariance under the superconformal group is guaranteed because we are using
the cn,n12,n21 constants. We need only to check that this expression has the
correct eigenvalues when acting on the corresponding N = 1 primaries (see
Appendix B.3), which can be easily done using Mathematica.

5The tilde in some of the d oscillators is just a reminder that we are looking at the X̃
multiplet or its conjugate.

6To simplify the notation we will omit the Kronecker deltas δC1,0δC2,0.
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V̄ × X , X̃ × V̄ , X̄ × V and V × ¯̃X .

In this case we have

|s1, ..., sn;A⟩V̄ × X = A†
s1A1

...A†
snAn

|d3⟩ ⊗ |d1⟩ , (3.167)

|s1, ..., sn;A⟩X̃ × V̄ = A†
s1A1

...A†
snAn

|d̃1⟩ ⊗ |d3⟩ , (3.168)

|s1, ..., sn;A⟩X̄ × V = A†
s1A1

...A†
snAn

|d1d2⟩ ⊗ |0⟩ , (3.169)

|s1, ..., sn;A⟩V × ¯̃X = A†
s1A1

...A†
snAn

|0⟩ ⊗ |d̃1d̃2⟩ , (3.170)

and the action of H12 reads

H12|s1, ..., sn;A⟩ =
∑

s′1,...,s
′
n

cn+2,n12,n21 |s1, ..., sn;A⟩ −
1

2
|s1, ..., sn;A⟩ . (3.171)

X̄ × X and X̃ × ¯̃X (gauge contracted).

The states are given by

|s1, ..., sn;A⟩X̄ × X = A†
s1A1

...A†
snAn

|d1d2⟩ ⊗ |d1⟩ , (3.172)

|s1, ..., sn;A⟩X̃ × ¯̃X = A†
s1A1

...A†
snAn

|d̃1⟩ ⊗ |d̃1d̃2⟩ , (3.173)

and the action of H12 is

H12|s1, ..., sn;A⟩ =
∑

s′1,...,s
′
n

cn+1,n12,n21|s1, ..., sn;A⟩ − |s1, ..., sn;A⟩ . (3.174)

X̃ × X and X̄ × ¯̃X .

The states are given by

|s1, ..., sn;A⟩X̃ × X = A†
s1A1

...A†
snAn

|d̃1⟩ ⊗ |d1⟩ , (3.175)

|s1, ..., sn;A⟩X̄ × ¯̃X = A†
s1A1

...A†
snAn

|d1d2⟩ ⊗ |d̃1d̃2⟩ , (3.176)

and the action of H12 is

H12|s1, ..., sn;A⟩ =
∑

s′1,...,s
′
n

(cn+2,n12,n21 − cn+2,n12+1,n21+1) |s1, ..., sn;A⟩−|s1, ..., sn;A⟩ .

(3.177)
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X ×X̄ (flavor contracted), ¯̃X ×X̃ (flavor contracted), V×V̄ and V̄ ×V.

The states are

|s1, ..., sn;A⟩X × X̄ = A†
s1A1

...A†
snAn

|d1⟩ ⊗ |d1d2⟩ , (3.178)

|s1, ..., sn;A⟩ ¯̃X × X̃ = A†
s1A1

...A†
snAn

|d̃1d̃2⟩ ⊗ |d̃1⟩ , (3.179)

|s1, ..., sn;A⟩V × V̄ = A†
s1A1

...A†
snAn

|0⟩ ⊗ |d3⟩ , (3.180)

|s1, ..., sn;A⟩V̄ × V = A†
s1A1

...A†
snAn

|d3⟩ ⊗ |0⟩ . (3.181)

The action of H12 is given by

H12|s1, ..., sn;A⟩X × X̄ =
∑

s′1,...,s
′
n

cn+3,n12+1,n21+1|s1, ..., sn;A⟩X × X̄ (3.182)

+3
∑

s′1,...,s
′
n

cn+3,n12+1,n21+2|s1, ..., sn;A⟩ ¯̃X × X̃

+
√
3e−iθ

∑
s′1,...,s

′
n

cn+3,n12,n21+1|s1, ..., sn;A⟩V × V̄

+
√
3e−iθ

∑
s′1,...,s

′
n

cn+3,n12+1,n21+1|s1, ..., sn;A⟩V̄ × V ,

H12|s1, ..., sn;A⟩ ¯̃X × X̃ =
∑

s′1,...,s
′
n

cn+3,n12+1,n21+1|s1, ..., sn;A⟩ ¯̃X × X̃ (3.183)

−3
∑

s′1,...,s
′
n

cn+3,n12+1,n21+2|s1, ..., sn;A⟩X × X̄

+
√
3e−iθ

∑
s′1,...,s

′
n

cn+3,n12+1,n21+1|s1, ..., sn;A⟩V × V̄

+
√
3e−iθ

∑
s′1,...,s

′
n

cn+3,n12+1,n21|s1, ..., sn;A⟩V̄ × V ,

H12|s1, ..., sn;A⟩V × V̄ =
∑

s′1,...,s
′
n

cn+3,n12,n21 |s1, ..., sn;A⟩V × V̄ (3.184)

+
∑

s′1,...,s
′
n

cn+3,n12+2,n21+1|s1, ..., sn;A⟩V̄ × V

+
√
3eiθ

∑
s′1,...,s

′
n

cn+3,n12+1,n21|s1, ..., sn;A⟩X × X̄
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−
√
3eiθ

∑
s′1,...,s

′
n

cn+3,n12,n21+2|s1, ..., sn;A⟩ ¯̃X × X̃ ,

and

H12|s1, ..., sn;A⟩V̄ × V =
∑

s′1,...,s
′
n

cn+3,n12,n21|s1, ..., sn;A⟩V̄ × V (3.185)

−
∑

s′1,...,s
′
n

cn+3,n12+2,n21+1|s1, ..., sn;A⟩V × V̄

−
√
3eiθ

∑
s′1,...,s

′
n

cn+3,n12+2,n21|s1, ..., sn;A⟩X × X̄

+
√
3eiθ

∑
s′1,...,s

′
n

cn+3,n12,n21+1|s1, ..., sn;A⟩ ¯̃X × X̃ .
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Chapter 4

Integrability Analysis

In the first part of this chapter we will use the complete one-loop Hamiltonians
obtained above for a preliminary analysis of the integrability properties of the
N = 2 and N = 1 spin chains. The analysis consists in the systematic search
of “parity pairs”. These pairs correspond to degeneracies in the spectrum
of the theory and they are associated with extra conserved charges, one of
the consequences of integrability. In the famous N = 4 SYM example, the
presence of parity pairs was an early hint for the full itegrability of the theory.
The results of our search are inconclusive, but they seem to indicate that the
N = 2 and N = 1 theories do not retain the integrability properties present
in N = 4 SYM. In the second part we make this conclusion stronger for
the case of N = 2 SCQCD, by studying the Hamiltonian at higher loops in a
special subsector with SU(2|1) symmetry. We conclude the chapter with some
comments on the SU(2, 1|2) sector of the theory, and suggest that it may be
integrable to all loops.

4.1 Spectral analysis

Spectral studies in planar N = 4 SYM have shown the systematic presence of
degenerate pairs of states of opposite “parity”, where parity is the Z2 symmetry
associated with complex conjugation of the SU(N) gauge group [17, 24–26].
These degeneracies persist at higher loops, but are lifted by non-planar cor-
rections. This phenomenon is naturally explained by the integrable structures
of planar N = 4 SYM: the theory admits higher conserved charges that are
parity-odd and map the degenerate eigenstates. In some models it is even
possible to prove that the existence of parity pairs is a sufficient condition for
integrability [17].

The upshot is that in N = 4 SYM the existence of parity pairs is one of the
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many pieces of evidence for the complete integrability of the theory. With this
precedent in mind, we can look forward to a similar analysis in N = 2 SCQCD
and in N = 1 SQCD. In this section we determine the low-lying spectrum of
the one-loop dilation operator of both theories, in the closed non-compact
subsectors that were used to uplift the full Hamiltonian.

4.1.1 N = 2 SCQCD

We start our analysis with N = 2 SCQCD and with the more general quiver
theory that interpolates between the Z2 orbifold of N = 4 SYM and N = 2
SCQCD.

Parity

The first thing we need to do is define a meaningful parity operation. We will
take N = 4 SYM as our starting point where parity amounts to conjugation of
the SU(N) gauge group. Under parity, the Lie algebra generators transform
as

T a
b → −(T a

b)
∗ = −T b

a , (4.1)

where we have used hermiticity to trade conjugation by transposition.
Now, as reviewed in Chapter 2, N = 2 SCQCD can be thought of as a limit

of a two-parameter (g, ǧ) quiver theory with gauge group SU(Nc) × SU(Nč)
(with Nč ≡ Nc): one has N = 2 SCQCD at ǧ = 0 and the Z2 orbifold of
N = 4 SYM at g = ǧ. Starting from N = 4 SYM with gauge group SU(2Nc)
the Z2 orbifold theory is obtained by the projection

Aαα̇ =

 Aa
αα̇ b 0

0 Ǎǎ
αα̇ b̌

 , Z =

 ϕa
b 0

0 ϕ̌ǎ
b̌

 , (4.2)

λI =

 λaIb 0

0 λ̌ǎI b̌

 , λÎ =

 0 ϵÎĴψ
aĴ
ǎ

ϵÎĴ ψ̃
b̌Ĵ
b 0

 , (4.3)

XIÎ =

 0 Q a
IÎǎ

−ϵIJ ϵÎĴ Q̄
b̌Ĵ J
b 0

 , (4.4)

where I, Î = 1, 2. The parity operation described above implies the following
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transformations. For the fields in the vector multiplets,

Aa
αα̇ b ↔ −Ab

αα̇ a λaIb ↔ −λbIa ϕa
b ↔ −ϕb

a ,

Ǎǎ
αα̇ b̌

↔ −Ǎb̌
αα̇ ǎ λ̌ǎI b̌ ↔ −λ̌b̌Iǎ ϕ̌ǎ

b̌
↔ −ϕ̌b̌

ǎ ,
(4.5)

and analogous expressions for the conjugate fields. For the fields in the hyper-
multiplets,

ψa
Î b̌ ↔ −ψ̃b̌

Îa Qa
IÎ b̌ ↔ Q̄b̌

IÎa , (4.6)

and analogous expressions for the conjugate fields. These transformations
remain a symmetry also away from the orbifold point (that is, for arbitrary
(g, ǧ)), as can be easily checked by inspection of the Lagrangian (see e.g. [13]
for the explicit expression of the Lagrangian). This implies that the parity
operation commutes with the dilation operator to all loops. Its action on
single-trace states is then given by

P |A1 . . . AL⟩ = (−1)L+k(k+1)/2|AL . . . A1⟩ , (4.7)

where k is the number of fermions and we replace ψ ↔ ψ̃, ψ̄ ↔ ¯̃ψ, Q↔ −Q̄.

Diagonalization

We consider the SU(1, 1)×SU(1|1)×SU(1|1)×U(1) used to uplift the Hamil-
tonian. We focus on SU(1, 1) primaries (since descendants have the same
anomalous dimensions) and take with no loss of generality r ≥ 0. Table 4.1
corresponds to states with maximal r-charge. This subsector is made exclu-
sively out of {Dkλ̄} and is therefore identical to the SU(1, 1) subsector used in
[17] to obtain the complete dilation operator of N = 4 SYM. Being a subsec-
tor of N = 4, it is integrable and, indeed, our results indicate that degenerate
states with opposite parity show up consistently at each stage of the diagonal-
ization. The notation Pn(x) denotes the roots of a polynomial of order n, we
will not write the polynomial explicitly because we are really interested in the
amount of parity pairs and not in the actual values of the energies. We will
denote by Pn(x) all the roots of polynomials of order n we encounter, even if
they are different from each other.

Being identical to the analogous N = 4 SYM sector, we cannot use the
results of table 4.1 as a test for integrability. The true dynamics of N = 2
SCQCD is encoded in subspaces where the r-charge is not maximal. For this
we need states with Q and Q̄. Our results are presented in table 4.2. As
opposed to the results of table 4.1 the presence of parity pairs here is less
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L r ∆0 δ∆P [2g2YMN/π2]

3 3
2 7.5 5

4

±

9.5 133
96

±

10.5 761
480

±
, 761

560

−

11.5 179
120

±

4 2 8 5
4

±

9 1
48 (73±

√
37)−

10 19
12

±
, 13396

±

11 P3(x)
−, 761

480

±

5 5
2 9.5 1

48 (73±
√
37)+

10.5 7
4

±
, 1912

±

11.5 P3(x)
−, 1

24 (43±
√
5)±

Paired eigenvalues: ∼ 69 %

Table 4.1: SU(1, 1) primaries with maximal r-charge (r = L
2
) in the SU(1, 1)×

SU(1|1)×SU(1|1)×U(1) sector of N = 2 SCQCD. We have omitted the one-
dimensional subspaces where there is no room for a parity pair.

systematic.
More insight is obtained if we also look at the Z2 orbifold (ǧ = g). For the

the orbifold theory (and for the whole interpolating theory with general ǧ, g)
we have an SU(2)L symmetry not present in N = 2 SCQCD, so to make the
analysis more transparent we restrict the diagonalization to SU(2)L singlets.
Our results for the Z2 orbifold are shown in table 4.3. As in the case with
maximal r-charge, parity pairs show up consistently. This is again expected
because this theory is known to be integrable [15].

Finally we look at how some sample parity pairs of the orbifold theory
evolve when we move away from the orbifold point. Our results are shown in
table 4.4. We see that for arbitrary values of κ ≡ ǧ/g the pairs are lifted and
they are not in general recovered in the SCQCD limit κ → 0. (Note that not
all SU(2)L gauge singlets evolve to legitimate states of N = 2 SCQCD, which
must obey the stronger condition of being SU(Nf ) singlets. In the last column
of table 4.4 we indicate whether the states belong or not to N = 2 SCQCD.)
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L r ∆0 δ∆P [2g2YMN/π2]

3 1
2 4.5 3

4

−
, 3

4

−
, 3

8

+

5.5 15
16

−
, 1

24 (16±
√
31)−, 1

32 (21±
√
57)+

6.5 25
24

−
, 25

24

−
, 25

48

+

1
96 (81±

√
561)−, 1

96 (83±
√
409)+

4 0 5 3
4

±
, 3

8

−

6 1±, 15
16

+
, 15

16

+

1
32 (21±

√
57)−, 1

32 (21±
√
57)−

1
24 (16±

√
31)+, 5

8 , 0
+

1 6 1−, 15
16

+
, 1

32 (21±
√
57)−

7 5
4

±
, 9

8

−
, 25

24

+

1
16 (16±

√
6)+, 1

96 (81±
√
561)+

1
96 (83±

√
409)−

5 1
2 6.5 1±, 1+, 15

16

−

1
32 (21±

√
57)+

Paired eigenvalues: 16 %

Table 4.2: SU(1, 1) primaries with 0 ≤ r < L
2
in the SU(1, 1) × SU(1|1) ×

SU(1|1)× U(1) sector of N = 2 SCQCD.

4.1.2 N = 1 SQCD

We now repeat the same analysis for N = 1 SQCD. Inspired by the transfor-
mation used in the N = 2 theory, we define the following parity operation.
For the fields in the vector multiplet,

Aa
µb ↔ −Ab

µa λab ↔ −λba , (4.8)

and analogous expressions for the conjugate fields. For the chiral multipets,

Qai ↔ −Q̃ı̃a, ψai ↔ −ψ̃ı̃a , (4.9)
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L r ∆0 δ∆P [2g2YMN/π2]

3 1
2 4.5 1

2

+
, 3

4

−
, 3

4

−
, 3

4

−

3
4

±

5.5 3
4

−
, 7

8

−
, 25

24

−
, 1

2

+

15
16

±
, 1

32 (27±
√
57)±

6.5 3
4

+
, 25

24

−
, 25

24

−
, 25

24

−

5
4

±
, 15

16

±
, 25

24

±

1
96 (93±

√
249)±

4 0 5 1
2

−
, 1

2

−
, 1

8 (5±
√
13)−

3
4

±
, 3

4

±

6 7
8

+
, 25

24

+
, 1

2

−
, 1

2

−

1
8 (5±

√
5)+

3
4

±
, 5

4

±
, 5

8

±
, 7

8

±

15
16

±
, 15

16

±
, 1

4 (3±
√
2)±

1
32 (27±

√
57)± , 1

32 (27±
√
57)±

Paired eigenvalues: ∼ 68 %

Table 4.3: SU(1, 1) primaries with 0 ≤ r < L
2
in the SU(1, 1) × SU(1|1) ×

SU(1|1) × U(1) sector of the orbifold theory (ǧ = g). We have restricted the
diagonalization to SU(2)L singlets.

and analogous expressions for the conjugate fields. Again, these transfor-
mations are a symmetry of the Lagrangian and therefore commute with the
dilation operator to all loops. The action on single-trace states is given by

P |A1 . . . AL⟩ = (−1)L+k(k+1)/2|AL . . . A1⟩ , (4.10)

where k is the number of fermions and we make the replacements ψ ↔ ψ̃,

ψ̄ ↔ ¯̃ψ, Q ↔ Q̃, Q̄ ↔ ¯̃Q. Our results for the diagonalization of generalized
single-trace operators of length L ≤ 5 are shown in table 4.5. We restrict
to states with r-charge 0 < r < L. (We omit the sectors with r = L and
r = 0, which are spanned respectively by {λk} and {F̄k}. These sectors are
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L r ∆0 κ = 1 κ = 0.7 κ = 0.3 κ = 0 SCQCD

3 1
2 5.5 1

32 (27 +
√
57) 0.97 0.94 15

16 Yes

1
32 (27 +

√
57) 0.95 0.90 1

32 (27 +
√
57) Yes

3 1
2 5.5 1

32 (27−
√
57) 0.39 0.08 0 No

1
32 (27−

√
57) 0.47 0.30 1

4 No

3 1
2 6.5 5

4 1.12 1.09 1
96 (81 +

√
561) Yes

5
4 1.11 1.08 1

96 (83 +
√
409) Yes

3 1
2 6.5 1

96 (93 +
√
249) 0.81 0.63 1

96 (81−
√
561) Yes

1
96 (93 +

√
249) 0.82 0.68 1

96 (83−
√
409) Yes

3 1
2 6.5 1

96 (93−
√
249) 0.48 0.09 0 No

1
96 (93−

√
249) 0.57 0.31 1

4 No

4 0 6 5
4 1.08 1.01 1 Yes

5
4 1.06 1.01 1 Yes

4 0 6 5
8 0.45 0.29 1

4 No

5
8 0.49 0.28 1

4 No

4 0 6 1
4 (3 +

√
2) 0.74 0.54 1

2 No

1
4 (3 +

√
2) 0.81 0.66 5

8 Yes

4 0 6 1
4 (3−

√
2) 0.26 0.06 0 No

1
4 (3−

√
2) 0.30 0.08 0 No

Table 4.4: Examples of evolution of Z2 orbifold pairs for different values of the
parameter κ = ǧ

g
.

isomorphic to the analogous sectors in N = 4 SYM and thus inherit their
integrability.)

The results are qualitatively similar to the ones for N = 2 SCQCD: there
are a few parity pairs, but their presence is not as striking and systematic as
in N = 4 SYM.
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L r ∆0 δ∆P [g2YMN/π2]

3 1 4.5 3
4

−
, 3

8

+

5.5 1
96 (67±

√
457)−, P3(x)

+

6.5 25
24

−
, 1

96 (81±
√
473)−, P3(x)

+

25
48

±

2 4 3
16

−
, 9

16

+

5 7
16

−
, 7

24

−
, 13

16

+
, 1

24 (13±
√
39)+

4 1 6.5 3
4

+
, 9

8

−

7.5 P3(x)
−, P4(x)

+

2 6 1
16 (9±

√
37)+ , 1

96 (67±
√
457)+ , P3(x)

−

9
16

±
, 0±

7 1
96 (81±

√
473)+, P3(x)

−, P7(x)
+, P8(x)

−

25
48

±

3 5.5 7
16

−
, 13

16

+

6.5 11
16

+
, 17

16

−
, 1

96 (71±
√
553)+, P3(x)

−

5 3 6.5 1
16 (9±

√
37)−, 9

16

±

Paired eigenvalues: ∼ 13 %

Table 4.5: SU(1, 1) primaries with 0 < r < L in the SU(1, 1)×U(1|1) sector
of N = 1 SQCD.

4.2 The SU(2|1) sector of N = 2 SCQCD

The results of the spectral analysis seem to indicate that theN = 2 and N = 1
theories are not fully integrable. They do have some integrable subsectors but
these are isomorphic to the respective sectors in N = 4 SYM, and therefore
trivially integrable. In this section we will study an SU(2|1) subsector of
N = 2 SCQCD that has no analog in N = 4 SYM. By studying the scattering
of magnons and the Yang-Baxter equation we will prove that the SU(2|1)
sector is not integrable.

Let us start with a symmetry analysis of the N = 2 superconformal group.
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It has the following Lorentz and R-symmetry subgroups: SU(2α)× SU(2α̇)×
SU(2I) × U(1)R ⊂ SU(2α, 2α̇|2I). The spin chain vacuum is the chiral state
Trϕk. It breaks the superconformal group to the subgroup PSU(2α̇|2I) ×
SU(2α)nR, where R is a central generator that gets identified with the spin
chain Hamiltonian. In accordance with Goldstone’s theorem, broken symme-
try generators are manifested as gapless excitations of the spin chain called
magnons. Table 4.6 shows the symmetry generators of the N = 2 supercon-
formal algebra. The diagonal boxed generators correspond to the symmetry
preserved by the vacuum while the off-diagonal ones are broken and correspond
to Goldstone magnons, which transform in the bifundamental representation
of PSU(2α̇|2I)× SU(2α).

SU(2β̇) SU(2J ) SU(2β)

SU(2α̇) L̇ β̇
α̇ Q̄J α̇ D†

βα̇

SU(2I) S̄I β̇ R I
J λ† Iβ

SU(2α) Dαβ̇ λ α
J L α

β

Table 4.6: The N = 2 superconformal generators. The boxed generators are
preserved by the choice of the spin chain vacuum while the unboxed ones are
broken and correspond to Goldstone excitations. The broken generators are
identified with the corresponding magnon: the upper-right column contains
magnon creation operators while the lower-left row contains magnon annihi-
lation operators.

A priori, the two-body magnon S-matrix when decomposed according to
SU(2α̇|2I)× SU(2α) quantum numbers will take the form

SSU(2α̇,2α|2I) = SSU(2α̇|2I) × S1
SU(2α) + S ′

SU(2α̇|2I) × S3
SU(2α) , (4.11)

where the superscripts 1 and 3 denote the singlet and triplet SU(2α) represen-
tations. Remarkably, the product of two fundamental SU(2|2) representations
consists of a single irreducible representation, which implies that the SU(2|2)
two-body S-matrix is completely fixed by symmetry, up to an overall phase
[7]. Thus, the total two-body S-matrix of our model factorizes as

SSU(2α,2α̇|2I) = SSU(2α̇|2I) × SSU(2α) . (4.12)

The SSU(2α̇|2I) factor is the two-body S-matrix of the magnons in the SU(2α)
highest weight state, namely {λ I

+ ,D+α̇ }, while SSU(2α) is the two-body S-
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matrix of the magnons in the SU(2α̇|2I) highest weight state, namely {λ +
α }.

We can identify two “orthogonal” all-order closed subsectors, associated
with either factor of the two-body S-matrix. Exciting an arbitrary number
of SU(2α) highest weight magnons {λ I

+ ,D+α̇} above the spin chain vacuum
Trϕk, and demanding closure of the dilation operator, we obtain a subsector
with enhanced SU(2, 1|2) symmetry, spanned by the following letters:

SU(2, 1|2) sector: (D+α̇)
n{ϕ, λ I

+ ,F++ } . (4.13)

Here the covariant derivatives are understood to be totally symmetrized at
each site, so for example (D+α̇)

nϕ is shorthand for D+{α̇1D+α̇2 . . .D+α̇n}ϕ. The
introduction of the self-dual field strength F++ = [D++̇,D+−̇] is necessary to
achieve closure of the dilation operator because of the transition ϵIJλ

I
+ λ J

+ ↔
ϕF++.

Similarly, considering the SU(2α̇|2I) highest weight magnons {λ +
α }, and

demanding closure we obtain a sector with SU(2|1) symmetry:

SU(2|1) sector: {ϕ, λ +
α ,M++ } , (4.14)

where we have introduced the notation MIJ ≡ QI
i Q̄

iJ . Inclusion of the M++

dimer is forced at two loops by the transition ϵαβλ +
α λ +

β ↔ ϕM++.
In the following sections we will study scattering in the SU(2|1) sector.

Having no analog in N = 4 SYM, this sector has the potential to reveal a
new integrability structure. The SU(2, 1|2) sector exists in any N = 2 gauge
theory, including N = 4 SYM, and will be discussed at the end of the chapter.

4.2.1 The two-loop Hamiltonian in the SU(2|1) sector

In this section we will use symmetry arguments to fix the two-loop Hamiltonian
of the SU(2|1) sector, up to a few arbitrary coefficients. With this result
at hand, we will proceed in the following section to calculate the two-body
scattering of magnons and test integrability of the sector. To avoid cluttering
we will suppress the “+” SU(2)R index and write the letters as

{ϕ, λα,M} . (4.15)

At one loop the sector decomposes into {ϕ, λα} and {ϕ,M}. Each of these
subsectors is separately integrable: The first one, because it is identical to the
corresponding sector in N = 4 SYM. The second one, because its Hamiltonian
turns out to be trivial [13] – the dimer M does not move on the ϕ chain
so each string of ϕ’s and M’s is already an exact eigenstate. The SU(2|1)
sector becomes interesting at two loops, where interaction with M affects the
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scattering of the asymptotic λα magnons.
To avoid an explicit Feynman diagram calculation we will use the approach

of [25], where the symmetry algebra was used to restrict the form of the spin
chain Hamiltonian in the SU(2|3) subsector of N = 4 SYM. In that case, the
two-loop Hamiltonian turned out to be completely fixed by symmetry.

Parity

The parity transformations for the fields in the SU(2|1) are as follows,

ϕa
b ↔ −ϕb

a , λab ↔ −λba , Ma
b ↔ −Mb

a . (4.16)

This is just transposition of adjoint indices with an extra minus sign. The
action on a single trace state is then (using a ket notation for the states of the
chain):

P |A1 . . . AL⟩ = (−1)L+f(f+1)/2|AL . . . A1⟩ , (4.17)

where f is the number of fermionic fields and L is the length of the state
considering M as a single-site object.

4.2.2 Symmetry analysis

The states of the sector furnish a representation of the SU(2|1) algebra. In the
interacting theory, the symmetry generators can be written as a perturbation
series in the coupling constant [17, 25],

J (g) =
∞∑
k=0

gkJk . (4.18)

As usual when working with spin chains we will focus in the local action of
the generators, the complete action being a sum of local terms. Following [25]
we will represent the action of a generator by the symbol

Jk ∼
{

a1...an
b1...bm

}
. (4.19)

This replaces the string of fields a1 . . . an by b1 . . . bm and gives zero otherwise.
To obtain the total action we apply this transformation at each site of the
closed chain. For example,{

AB
CD

}
|ABEABF ⟩ = |CDEABF ⟩+ 0 + 0 + |ABECDF ⟩+ 0 + 0 . (4.20)
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Of course, we will pick up an extra minus sign each time a fermionic generator
(Q or S) hops a fermionic field. An interaction with n+m entries will be said
to have n + m legs. Because corrections to the generators have their origin
in planar perturbation theory, the number of legs is restricted by the order of
the coupling constant we are considering. The counting is easier if we forget
for a moment our definition of M and consider Q as fundamental field of our
sector. The number of legs is then restricted by,

n+m = k + 2 , (4.21)

where k is the order of the coupling.1 Now, if a Q field sits at the far right in
the upper or lower row of (4.19), we know that the next field to its right will
be a Q̄, in order to have a flavor singlet. An analogous statement holds for a
Q̄ sitting in the far left. This means that after writing the J generators using
the Q and Q̄ fields, we can replace all the Q’s(Q̄’s) in the far right(left) with
an M symbol, in addition to the explicit QQ̄ = M replacement.

The SU(2|1) algebra

To obtain the SU(2|1) algebra we start from the full SU(2, 2|2) generators:2

{L β
α , L̇ β̇

α̇ ,R J
I ,Pαβ̇,K

αβ̇, D, r,Q I
α ,S α

I , Q̄α̇ I , S̄ α̇ I } , (4.22)

where L and L̇ are the Lorentz generators, R and r correspond to SU(2)R and
the U(1) r-charge,D is the dilation operator andQ and S are the supercharges.
We now define

Qα ≡ Q +
α , (4.23)

Sα ≡ S α
+ , (4.24)

U ≡ R +
+ + 1

2
(D0 − r) , (4.25)

δH ≡ δD . (4.26)

We have split the interacting dilation generator as

D = D0 + δD , (4.27)

1As in [25], we use gauge invariance of cyclic states to increase the legs of the generators
to its maximum value, i.e. k + 2 at order k in the coupling.

2See Appendix A.2 for our conventions.

55



where D0 measures the classical conformal dimension and δD its quantum
corrections.3 The SU(2|1) generators are then:

J = {L β
α ,U , δH,Qα,Sα} . (4.28)

As in [25], we enhanced the algebra by the extra central U(1) generator δH.
The commutation relations are easy to obtain from the original SU(2, 2|2)
commutators. Generators carrying SU(2) Lorentz indices transform canoni-
cally according to:

[L β
α ,Jγ] = δβγJα − 1

2
δβαJγ , [L β

α ,J γ] = −δγαJβ +
1
2
δβαJ γ . (4.29)

The only non-zero anti-commutator is:

{Sβ,Qα} = L β
α + δβα(U + 1

2
δH) (4.30)

and the non-zero U -charges are:

[U ,Qα] = −1
2
Qα , [U ,Sα] = 1

2
Sα . (4.31)

Also,
[J , δH] = 0 , (4.32)

confirming that δH is indeed a central element. Note that U is defined in
terms of generators that do not receive quantum corrections and therefore it
will not be modified in the interacting theory. The same applies to L β

α if we
choose a regularization scheme consistent with Lorentz symmetry.

4.2.3 The interacting generators

The tree-level representation of the SU(2|1) algebra reads

U =
{

ϕ
ϕ

}
+ 1

2

{
α
α

}
,

L β
α =

{
α
β

}
− 1

2
δαβ
{

γ
γ

}
,

(Qα)0 = eiβ1
{

ϕ
α

}
,

(Sα)0 = e−iβ1
{

α
ϕ

}
, (4.33)

where the subscript “0” indicates that we are working at tree level. The idea
is to consider perturbative deformations of these generators and restrict their

3To be consistent with (4.26) we also define H0 ≡ D0, although H0 is not an SU(2|1)
generator.
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form using the SU(2|1) algebra. In principle, there should be fluctuations in
the length, but because we consider the dimeric impurity M as a single-site
object, the length always stays constant. For H2 we have:

H2 = c0
{

ϕϕ
ϕϕ

}
+ c1

{
ϕM
ϕM

}
+ c2

{Mϕ
Mϕ

}
+ c3

{M
M

}
+ c4

{
ϕα
ϕα

}
+ c5

{
αϕ
αϕ

}
+ c6

{
ϕα
αϕ

}
+ c7

{
αϕ
ϕα

}
+ c8

{
αM
αM

}
+ c9

{Mα
Mα

}
+ c10

{
αβ
αβ

}
+ c11

{
αβ
βα

}
.

(4.34)

Imposing invariance under parity we obtain:

c1 = c2 , c4 = c5 , c6 = c7 , c8 = c9 . (4.35)

In addition, protection of ϕϕ implies c0 = 0.4 This still leaves seven indepen-
dent coefficients. Imposing that the algebra commutation relations are satis-
fied perturbatively eliminates six of them, leaving us with one undetermined
parameter, c1 ≡ α2

1, which is associated with a rescaling of the coupling and
cannot be fixed by algebraic means. The procedure is now completely algo-
rithmic and it was described in detail in [25]. For each perturbative correction
we consider the most general ansatz consistent with conservation of classical
energy, r-charge and equation (4.21). Consistency of the algebra commuta-
tions relations significantly reduces the number of independent parameters. As
extra input we use the fact that in the SU(1|1) subsector spanned by {ϕ, λ+ }
the two-loop Hamiltonian of N = 2 SCQCD should be identical to the corre-
sponding Hamiltonian in N = 4 SYM [14]. We present our results in tables
4.7 and 4.8. At first sight, there seems to be a high number of independent co-
efficients, however most of them are unphysical. The two coefficients {α1, α3 }
can be reabsorbed by a redefinition of the coupling,5

g → α1g + α3g
3 . (4.36)

The six coefficients { β1, β2, δ1, δ2, δ3, δ4 } correspond to similarity transforma-
tions and never show up in physical quantities like anomalous dimensions or
S-matrix elements. We are then left with { η, χ } which do show up in physical
quantities and therefore cannot be ignored. However, the S-matrix elements
that we will study in the next section happen to be independent of { η, χ }.

4In [25] this condition was obtained using the algebra constraints, in our case we have
to give it as extra input.

5Note of course that α1 ̸= 0, otherwise the whole one-loop HamiltonianH2 would vanish.
The actual value of α1 can be fixed by comparison with the results of Chapter 3: α2

1 = 2.
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H0 =
{

ϕ
ϕ

}
+ 2
{M

M

}
+ 3

2

{
α
α

}
,

H2 = α2
1

({
ϕM
ϕM

}
+
{Mϕ

Mϕ

})
+ 2α2

1

{M
M

}
+ α2

1

({
ϕα
ϕα

}
+
{

αϕ
αϕ

})
− α2

1

({
ϕα
αϕ

}
+
{

αϕ
ϕα

})
+ α2

1

({
αM
αM

}
+
{Mα

Mα

})
+ α2

1

{
αβ
αβ

}
+ α2

1

{
αβ
βα

}
,

H3 = −α3
1 e

iβ2 εαβ
({

αβ
ϕM

}
+
{

αβ
Mϕ

})
− α3

1 e
−iβ2 εαβ

({
ϕM
αβ

}
+
{Mϕ

αβ

})
,

H4 = (−3
2
α4
1 + 2α1α3)

({
ϕϕα
ϕϕα

}
+
{

αϕϕ
αϕϕ

})
+ (α4

1 − α1α3)
({

ϕϕα
ϕαϕ

}
+
{

αϕϕ
ϕαϕ

})
− 1

2
α2
1

({
ϕϕα
αϕϕ

}
+
{

αϕϕ
ϕϕα

})
+ (α4

1 − α1α3)
({

ϕαϕ
αϕϕ

}
+
{

ϕαϕ
ϕϕα

})
+ (−5

4
α2
1 + α1α3 − η + χ)

({
ϕϕM
ϕϕM

}
+
{Mϕϕ

Mϕϕ

})
+ (−31

4
α2
1 + 7α1α3 + χ)

({
ϕM
ϕM

}
+
{Mϕ

Mϕ

})
+ (α4

1 − 2α1α3 + η)
({

ϕM
Mϕ

}
+
{Mϕ

ϕM

})
+ (19

2
α4
1 − 10α1α3 + 2η − 2χ)

{MϕM
MϕM

}
+ 2η

{MM
MM

}
+ (−2α4

1 + 2α1α3 − η + χ+ iα2
1(δ1 + δ2))

({
αϕM
ϕαM

}
+
{Mϕα

Mαϕ

})
+ (−2α4

1 + 2α1α3 − η + χ− iα2
1(δ1 + δ2))

({
ϕαM
αϕM

}
+
{Mαϕ

Mϕα

})
+ (−13

4
α4
1 + 3α1α3 − η + χ)

({
ϕαM
ϕαM

}
+
{Mαϕ

Mαϕ

})
+ (−2α4

1 + 2α1α3 + η)
({

αM
αM

}
+
{Mα

Mα

})
+ (2α4

1 − 2α1α3 + η)
({

αM
Mα

}
+
{Mα

αM

})
+ (−1

4
α4
1 + α1α3)

({
ϕαβ
ϕαβ

}
+
{

βαϕ
βαϕ

})
+ (−7

4
α4
1 + α1α3)

({
ϕαβ
ϕβα

}
+
{

βαϕ
αβϕ

})
+ (α4

1 − α1α3 − iα2
1δ1)

({
ϕαβ
αϕβ

}
+
{

βαϕ
βϕα

})
+ (α4

1 − α1α3 + iα2
1δ1)

({
αϕβ
ϕαβ

}
+
{

βϕα
βαϕ

})
+ (1

4
α4
1 + iα2

1δ3)
({

ϕαβ
βϕα

}
+
{

βαϕ
αϕβ

})
+ (1

4
α4
1 − iα2

1δ3)
({

βϕα
ϕαβ

}
+
{

αϕβ
βαϕ

})
+ (−7

2
α4
1 + 4α1α3)

{
αϕβ
αϕβ

}
+ 1

2
α2
1

{
αϕβ
βϕα

}
+ (−7

2
α4
1 + 4α1α3 − η + χ)

({Mαβ
Mαβ

}
+
{

βαM
βαM

})
+ (3

2
α4
1 − 2α1α3 + η − χ)

({Mαβ
Mβα

}
+
{

βαM
αβM

})
+ (−9

4
α4
1 + 3α1α3)

({
αβγ
αγβ

}
+
{

γβα
βγα

})
+ (1

2
α4
1 − 2α1α3)

({
αβγ
βγα

}
+
{

γβα
αγβ

})
+ (−1

2
α4
1 + 2α1α3)

{
αβγ
γβα

}
.

Table 4.7: The Hamiltonian up to order g4.

4.2.4 The magnon S-matrix in the SU(2|1) sector

We now proceed to calculate the magnon two-body S-matrix in the SU(2|1)
sector, and to check whether it satisfies the Yang-Baxter equation. Let us
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(Qα)0 = eiβ1
{

ϕ
α

}
,

(Qα)1 = α1 e
i(β1+β2)εαβ

{
β
M

}
,

(Qα)2 = ieiβ1(δ1 + δ2 + δ4)
({

ϕϕ
ϕα

}
+
{

ϕϕ
αϕ

})
+ eiβ1(1

4
α2
1 + iδ4)

({
ϕM
αM

}
+
{Mϕ

Mα

})
+ eiβ1(1

4
α2
1 + iδ3)

({
ϕβ
βα

}
−
{

βϕ
αβ

})
+ ieiβ1(δ2 + δ4)

({
ϕβ
αβ

}
−
{

βϕ
βα

})
,

(Sα)0 = e−iβ1
{

α
ϕ

}
,

(Sα)1 = α1 e
−i(β1+β2)εαβ

{M
β

}
,

(Sα)2 = −ie−iβ1(δ1 + δ2 + δ4)
({

ϕα
ϕϕ

}
+
{

αϕ
ϕϕ

})
+ e−iβ1(1

4
α2
1 − iδ4)

({
αM
ϕM

}
+
{Mα

Mϕ

})
+ e−iβ1(1

4
α2
1 − iδ3)

({
βα
ϕβ

}
−
{

αβ
βϕ

})
− ie−iβ1(δ2 + δ4)

({
αβ
ϕβ

}
−
{

βα
βϕ

})
.

Table 4.8: Fermionic SU(2|1) generators up to order g2.

start by defining the momentum eigenstate of a single excitation,

|λα(p)⟩ =
∑
k

eipk|αk⟩ , (4.37)

where k labels the position of the particle,

|αk⟩ = | . . . ϕ
k
↓
λαϕ . . .⟩ . (4.38)

Its dispersion relation is easily obtained by acting with the Hamiltonian:

H|λα(p)⟩ = g2α2
1

[
(2− eip − e−ip) + g2α2

1(−3 + 2(eip + e−ip)− 1
2
(e2ip + e−2ip))

]
|λα(p)⟩ ,

(4.39)
hence,

Eλ(p) = 4(g2α2
1 − 2g4α4

1) sin
2 p

2
+ 2g4α4

1 sin
2 p+O(g6) . (4.40)

To extract the S-matrix we will use the familiar perturbative asymptotic Bethe
ansatz, see e.g. [5]. For the SU(2α) singlet two-body state we define:
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|λ[αλβ]⟩ =
∑
k<l−1

Ψ1(k, l)| . . . ϕ
k
↓
λ[αϕ . . . ϕ

l
↓
λβ]ϕ . . .⟩

+
∑
k

Ψn(k)| . . . ϕ
k
↓
λ[α

k+1
↓
λβ]ϕ . . .⟩+

∑
k

ΨM(k)| . . . ϕ
k
↓
Mϕ . . .⟩ ,

(4.41)

valid up to order g2. The Ψ’s correspond Schrödinger wave functions and k
and l label the positions of the particles in the ϕ vacuum. At this order in
perturbation theory a transition λ[αλβ] → M is possible and this is taken into
account by the last term in (4.41). In order to solve the scattering problem
we consider the following ansatz:

Ψ1(k, l) = ei(p1k+p2l) + S1(p2, p1)e
i(p1l+p2k) ,

Ψn(k) = Sn(p2, p1)e
i(p1+p2)k ,

ΨM(k) = SM(p2, p1)e
i(p1+p2)k .

(4.42)

Here S1(p2, p1), Sn(p2, p1) and SM(p2, p1) are functions of g and represent the
different scattering amplitudes. Imposing the Schrödinger equation

H|λ[αλβ]⟩ = E(p1, p2)|λ[αλβ]⟩ , (4.43)

for the separate cases l > k + 2, l = k + 2 and l = k + 1 we can solve for the
scattering amplitudes to order g2. The interesting term is S1(p2, p1), which
governs the asymptotic magnon scattering,

S1(p2, p1) =− 1− 2eip2 + ei(p1+p2)

1− 2eip1 + ei(p1+p2)

×
(
1 + 2ig2α2

1

(cos p1 − 2 cos(p1 − p2) + cos p2) sin
p1
2
sin p2

2
(sin p1 − sin p2)

cos(p1−p2
2

)(3− 2 cos p1 − 2 cos p2 + cos(p1 + p2))
+O(g4)

)
.

(4.44)

In the triplet sector the ansatz is simpler since λ{αλβ} does not mix with M,

|λ{αλβ}⟩ =
∑
k<l−1

Ψ3(k, l)| . . . ϕ
k
↓
λ{αϕ . . . ϕ

l
↓
λβ}ϕ . . .⟩+

∑
k

Ψ3n(k)| . . . ϕ
k
↓
λ{α

k+1
↓
λβ}ϕ . . .⟩ ,

(4.45)
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where

Ψ3(k, l) = ei(p1k+p2l) + S3(p2, p1)e
i(p1l+p2k) ,

Ψ3n(k) = S3n(p2, p1)e
i(p1+p2)k .

(4.46)

We find

S3(p2, p1) =− 1− ig2α2
1(sin p1 − sin (p1 − p2)− sin p2) +O(g4) . (4.47)

Checking the Yang-Baxter equation

We are finally ready to check the Yang-Baxter equation for the two-body
magnon S-matrix. The equation reads

Sδϵ
αβ(p1, p2)S

τγ′

ϵγ (p1, p3)S
α′β′

δτ (p2, p3) = Sβ′γ′

ϵδ (p1, p2)S
α′ϵ
ατ (p1, p3)S

τδ
βγ(p2, p3) .

(4.48)
Defining:

A(p1, p2) = S3(p1, p2) , (4.49)

B(p1, p2) =
1

2
(S1(p1, p2)− S3(p1, p2)) , (4.50)

we can rewrite the S-matrix in terms of the identity operator I and the trace
operator K,

S(p1, p2) = A(p1, p2)I+B(p1, p2)K . (4.51)

As explained e.g. in [13], the Yang-Baxter equation is equivalent to the single
constraint

0
?
= 2B(p1, p2)A(p1, p3)B(p2, p3) + A(p1, p2)A(p1, p3)B(p2, p3) +B(p1, p2)A(p1, p3)A(p2, p3)

+B(p1, p2)B(p1, p3)B(p2, p3)− A(p1, p2)B(p1, p3)A(p2, p3) . (4.52)

A necessary condition for factorization of many-body scattering is the vanish-
ing of the right-hand side. However, working at order g2 we obtain

64iα2
1e

i(p1+p2+p3)
sin (p1

2
)2 sin (p2

2
)2 sin (p3

2
)2 tan (p1−p2

2
) tan (p1−p3

2
) tan (p2−p3

2
)

(1 + ei(p1+p2) − 2eip2)(1 + ei(p1+p3) − 2eip3)(1 + ei(p2+p3) − 2eip3)
,

(4.53)
which is certainly non-zero. Failure of the Yang-Baxter equation conclusively
shows that the SU(2|1) sector is not integrable at two loops.
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4.3 The universal SU(2, 1|2) sector
The SU(2, 1|2) sector (4.13) consists entirely of letters that belong to the
N = 2 vector multiplet, and it is then present in any N = 2 gauge theory.
Diagrammatic arguments [14] show that the planar dilation operator in this
sector is the same up to two loops in any N = 2 superconformal theory, as it
coincides to that order with a restriction of the N = 4 SYM dilation operator.
The model dependence kicks in at three loops.6

Choosing the usual chiral vacuum Trϕk, the Goldstone magnons {λ I
+ ,D+α̇}

transform in the fundamental representation of SU(2α̇|2I). Their two-body S-
matrix SSU(2α̇|2I) is uniquely determined up to an overall phase by the SU(2|2)
symmetry [7], and thus, just as is the case in N = 4 SYM, it automatically
satisfies the Yang-Baxter equation. This is a first hint to suspect that this sec-
tor may be generically integrable, at least in the sense of the asymptotic Bethe
ansatz on the infinite chain.7 Of course, factorization of the n-body S-matrix
into two-body S-matrices is a stronger condition than Yang-Baxter, and an ex-
plicit test at three loops will be required. A three-loop diagrammatic analysis
is in progress [27]. The strongest conjecture [27] suggested by this perturbative
study is that the SU(2, 1|2) Hamiltonian of any N = 2 superconformal gauge
theory can be mapped to that of N = 4 SYM by a redefinition of the ’t Hooft
coupling, g2 → f(g2) = g2+O(g6). This would be a trivial operation from the
viewpoint of the integrable structure. Indeed recall that it is still somewhat of
a mystery why the dispersion relation of the N = 4 SYM magnons takes the
exact form

∆− |r| =
√

1 + 8g2 sin2 p

2
, (4.54)

while integrability alone would be compatible with the replacement g2 →
f(g2) (which is indeed what happens in the ABJM model [28]). However
a redefinition of g can have drastic dynamical consequences, for example it
may radically change the strong coupling behavior of anomalous dimensions
(ABJM is again a case in point.)

A second indication in favor of integrability of the SU(2, 1|2) sector comes
from the AdS/CFT correspondence – at least, that is, for the subset of mod-
els that admit a string dual. The simplest N = 2 theories with a known
string description are the orbifolds of N = 4 SYM by a discrete subgroup
Γ ⊂ SU(2) ⊂ SU(4)R, which are dual to the IIB backgrounds AdS5 × S5/Γ

6In the context of N = 4 SYM, the SU(2, 1|2) sector can be regarded as a non-compact
cousin of the SU(2|3) sector, whose Hamiltonian was determined up to three loops by Beisert
[25] using symmetry arguments. The Hamiltonian of non-compact sectors is much harder
to fix. Zwiebel’s paper [26] represents the state of the art.

7We are postponing at this stage the harder questions about finite-size effects.
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[29, 30]. These are quiver gauge theories with product gauge group SU(N)k,
where k is the order of Γ. The k gauge couplings are exactly marginal pa-
rameters. If all gauge couplings are equal, the spin chain (and the dual sigma
model) is completely integrable [15, 31], but when they are different, integra-
bility of the full chain is broken.8 However, the situation is much better in
the SU(2, 1|2) sector.9 At strong coupling one can study the S-matrix of the
SU(2|2) excitations using the dual sigma model. Changing the relative gauge
couplings is dual to twisted-sector deformations in the sigma model: to leading
order in α′ (tree level in the sigma model) they do not change the scattering
of the SU(2|2) excitations, which live in directions of the target space unaf-
fected by the orbifold. So the n-body S-matrix still factorizes into two-body
S-matrices. To be more precise, the only effect of the twisted deformation
felt by the SU(2|2) excitations is a renormalization of the string tension. For
example, in the Z2 case, the relation between α′ and the AdS radius R reads

R4

α′ =
2λλ̌

λ+ λ̌
, (4.55)

where λ and λ̌ are the two ’t Hooft couplings. It would be very interesting
to confirm this picture to next order in α′, where the effect of the twisted
deformation is non-trivial, by an explicit one-loop calculation of the sigma-
model S-matrix. Recall that the two-body SU(2|2) S-matrix is completely
fixed by symmetry, so to really probe integrability one would have to study
factorization of the n-body S-matrix or devise some other test.

In summary, the SU(2, 1|2) sector(s) of N = 2 superconformal gauge the-
ories have the same Hamiltonian as in N = 4 SYM for small λ (to two-loop
order, O(λ2)); and in theories with AdS duals, the large λ limit of the Hamil-
tonian is also the same as in N = 4 SYM, modulo a renormalization of the
coupling. For example, in the Z2 quiver theory, it follows from (4.55) that for
large λ and large λ̌ (with λ/λ̌ fixed) the dilation operator in the SU(2, 1|2)
sector coincides with the one in N = 4 SYM if one replaces λ→ 2λλ̌/(λ+λ̌).10

We are led to conjecture that this remains true for all intermediate values of

8For the simplest example of the Z2 orbifold, this phenomenon was studied in detail in
[13, 14, 32], which focussed on the magnons transforming in the bifundamental represen-
tation of the SU(Nc) × SU(Nč) gauge group, with Nc ≡ Nč. For λ ̸= λ̌ their dispersion
relation develops a gap. The form of their two-body S-matrix is fixed by symmetry, and
fails to satisfy the Yang-Baxter equation except when λ = λ̌.

9There are actually k separate SU(2, 1|2) sectors, one for each of the SU(N) vector
multiplets.

10This correspondence is also precisely confirmed [33] by considering the strong coupling
limit of the matrix model [34] that calculates the expectation value of the 1/2 BPS circular
Wilson loop in the Z2 quiver theory, following [35, 36].
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the coupling, with the appropriate redefinition λ → f(λ) that matches the
weak and strong coupling behaviors.

SU(2, 1|1) sector

In closing, it is tempting to entertain the natural extrapolations of this conjec-
ture to N = 1 conformal gauge theories. Every N = 1 superconformal gauge
theory contains a closed SU(2, 1|1) sector, with letters belonging entirely to
the N = 1 vector multiplet,

SU(2, 1|1) sector: (D+α̇)
n{λ+,F++ } . (4.56)

The diagrammatic arguments of [14] show again that in any N = 1 supercon-
formal theory the dilation operator in this sector coincides up to two loops
with the restriction of the N = 4 SYM dilation operator. (Of course this is a
meaningful statement only for N = 1 SCFTs that have a weak coupling limit).
Choosing the chiral vacuum Trλk+, the asymptotic excitations on the chain are
the massless magnons {D+α̇}, transforming as a doublet of SU(2α̇). This is
not enough symmetry to completely fix the form of the two-body magnon
S-matrix, which makes integrability of the SU(2, 1|1) sector somewhat less
compelling as a general conjecture. For models that admit string duals, some
evidence for integrability comes again from the AdS/CFT correspondence. For
example, while the generic Leigh-Strassler deformation of N = 4 SYM is not
fully integrable (see [37] for a review), there is still hope for integrability in the
SU(2, 1|1) sector. Indeed, one can argue for integrability at strong coupling
(to leading order): the deformation of the AdS5 × S5 background that corre-
sponds to the Leigh-Strassler deformation (whatever its explicit form may be)
is not expected to affect the tree-level scattering of excitations in the SU(2, 1|1)
subsector, since those excitations live entirely in AdS5.

Seiberg duality implies that the resummation of the ϵ expansion in the
electric theory must coincide with the resummation of the ϵ̃ expansion in the
magnetic theory. In the SU(2, 1|1) sector, the dilation operator is the same
as in N = 4 SYM, and thus obviously integrable, up to two loops in both
expansions. The optimistic scenario is for the sector to remain integrable
throughout the conformal window. It will be interesting to perform higher
order checks in both ϵ and ϵ̃. Integrability would offer the exciting prospect of
much more quantitative tests of Seiberg duality than presently possible.
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Intermission

Up to this point, we have concentrated our efforts in two specific theories, N =
2 SCQCD and N = 1 SQCD in the upper edge of the conformal window. Both
these theories are supersymmetric and therefore, their conformal symmetry is
enhanced to superconformal symmetry. The superconformal group is a very
powerful and superconformal theories are amenable to analytical analysis. In
the absence of supersymmetry and in dimensions higher than two, analytic
results based on conformal symmetry alone are harder to obtain. Therefore,
starting with the following chapter, our philosophy will be different to what
we have been doing so far. Instead of studying a specific set of theories, we
will look for structural constraints in the space of conformal theories. Our
analysis will be embedded in the so-called “bootstrap program” and it will be
mostly numeric.
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Chapter 5

The Boundary Bootstrap
Program

The “bootstrap” has been a recurring dream in theoretical physics. It is the
ambitious aspiration that, starting from a few basic spectral assumptions, sym-
metries and general consistency requirements (such as unitarity and crossing)
will be powerful enough to fix the form of the theory, with no reference to
a Lagrangian. The dual models of the strong interactions emerged as an in-
carnation of the S-matrix bootstrap attempts of the 1960s and eventually led
to the discovery of string theory. The bootstrap program for conformal field
theories (CFTs) in d dimensions was formulated in the early 1970s [38]. De-
spite important formal developments such as the operator product expansion
and the conformal block decomposition (see e.g. the early books [39, 40]),
attempts to solve CFTs in arbitrary dimensions were not successful. For two-
dimensional CFTs, the revolution came in the 1980s with the discovery of
many exactly-solvable “rational” models. While this is a beautiful incarnation
of the bootstrap idea, the methods that work in 2d rational CFTs1 are too
specialized to be imitated in higher dimensions, or even in two dimensions for
the generic non-rational model.

The interest in CFT in various dimensions is nowadays stronger than ever,
sustained by phenomenological questions in condensed matter physics (d = 3)
and particle physics (d = 4), as well as by more formal motivations such as the
AdS/CFT correspondence and the rich integrability structures of superconfor-
mal field theories (d ≤ 6). A pioneering work [3] has rekindled the conformal
bootstrap, turning it into a concrete computational tool. This approach has
been refined and extended in a series of papers [1, 41–48].

The modern bootstrap starts with the simple question: in a generic theory,

1or in closely-related models such as Liouville theory
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which values of operator dimensions and OPE coefficients are compatible with
the constraints of crossing symmetry and unitarity for the four-point functions?
There is a shift of viewpoint, from trying to find analytic answers in a specific
model to deriving (by numerical methods if necessary) universal bounds valid
for any model. As it turns out, one can derive strong constraints already from
the analysis of a single four-point function of identical scalar operators [3].
This should be regarded as the first step in a systematic exploration of the
space of CFTs. More surprisingly, important theories such as the 3d Ising
model appear to live at interesting corners of the parameter space, sitting at
“kinks” of the exclusion curves [1, 41, 48]. So even the solution of some special
models in d > 2 may not be too far-fetched, after all.

In its simplest version, the revived conformal bootstrap works as follows.
The four-point correlation function ⟨φ(x1)φ(x2)φ(x3)φ(x4)⟩ of a scalar opera-
tor can be written as a sum over conformal blocks in two different channels, by
taking OPEs in two different limits. The conformal block decompositions in
either channel must sum up to the same four-point function, giving crossing-
symmetry relations for the couplings and scaling dimensions. While this was
understood long ago, the main idea of [3] is that these constraints can be put to
good use by taking derivatives of the four-point function at symmetric points
and applying linear programming techniques to obtain contradictions if cer-
tain conditions for e.g. the operator spectrum are not met. The prototypical
example of a constraint that arises in this way is an upper bound for the dimen-
sion of the first scalar primary φ2 appearing in the OPE of two φ’s. Crossing
symmetry and unitarity imply that ∆φ2 ≤ f(∆φ) for some numerically de-
termined function f(∆φ). The method admits straightforward extensions to
bounds on scaling dimensions of tensorial operators, central charges and OPE
coefficients.2

In this thesis we extend this program to conformal field theories with a
boundary. An Euclidean CFT in d dimensions can be defined in the half-space
xd ≥ 0, with boundary conditions at xd = 0 that preserve an SO(d, 1) subgroup
of the original SO(d + 1, 1) conformal symmetry [54, 55]. For a given bulk
CFT, different consistent boundary conditions are usually possible. Boundary
CFTs (BCFTs) are very interesting in their own right and find diverse physical
applications. They describe surface phenomena in systems near criticality,
with surface critical exponents related to the conformal dimensions of the
boundary operators. In string theory, two-dimensional worldsheet BCFTs are
interpreted as D-branes. These would be sufficient reasons to consider the
boundary bootstrap, but one of the main questions we would like to address is

2Analogous “sum rule” techniques can also be used to obtain non-trivial bounds from
modular invariant partition functions, see [49–53].
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whether by probing the theory with a boundary one can constrain the original
bulk theory itself.3 One could in fact also go ahead and consider a more general
setup where conformal defects of all possible codimensions (boundaries being
the special case of codimension one) appear on a democratic footing.

Besides the spectrum of bulk operators and their three-point functions,
which are unaffected by the boundary conditions, a BCFT is characterized by
additional boundary data: the spectrum of boundary operators, their three-
point functions, and the bulk-boundary two-point functions. A correlator
containing both bulk and boundary operators can be decomposed in different
channels, giving crossing-symmetry constraints that in general involve both
bulk and boundary data. We will focus on the simplest non-trivial type of
correlator, the two-point function of two bulk operators, which in the presence
of a boundary is a non-trivial function of a single conformal cross-ratio. It
can be decomposed in the bulk channel, by first fusing the two bulk operators
together, or in the boundary channel, by taking the boundary OPE of each
bulk operator. See figure 5.1 on page 73.

The main advantage of using the boundary bootstrap to constrain bulk
dynamics is the simplicity of the setup just described. This follows from the
results of section 5.1, where we discuss the two-point function of bulk scalar
operators: its functional form and its conformal block decomposition in the
bulk and boundary channels. The conformal blocks turn out to be simple
(hypergeometric) functions of the single cross-ratio and furthermore depend
analytically on the spacetime dimension d. This is to be contrasted with the
standard conformal blocks for four-point functions (in a theory with no bound-
ary), which depend on two cross-ratios and admit closed-form expressions only
when d is an even integer.

5.1 Boundary crossing symmetry for scalars

In this section we introduce the general setup of boundary CFT and derive
the crossing symmetry equations for the two-point function of bulk scalar
operators. For background material on BCFTs see [54, 57–60], and especially
the paper by McAvity and Osborn [61], whose results we borrow at several
points in this and subsequent sections.

3A prototype is the the beautiful theory developed by Cardy [56, 57] in 2d rational
CFTs, which relates the set of consistent boundary conditions with the bulk spectrum and
its modular transformation properties.
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5.1.1 Scalar two-point function

Let us start by deriving the form of the scalar two-point function in the pres-
ence of a boundary, a classic result dating back to [54]. We will use standard
Euclidean coordinates xµ = (x1, . . . , xd) and consider the half-space defined
by xd > 0, the coordinates tangential to the boundary are denoted x. It will
be useful to embed this physical space in a higher dimensional space as the
so-called null projective cone [62, 63]. Consider Minkowski space in d+2 di-
mensions in lightcone coordiates denoted by PA = (P+, P−, P 1, . . . P d). The
null projective cone is defined as,

PAPA = 0 with PA ∼ λPA . (5.1)

The map from the null projective cone to our physical space is given by

xµ =
P µ

P+
. (5.2)

One easily finds that the usual SO(d+1, 1) Lorentz group of the d+2-dimensional
Minkowski space becomes the conformal group of the d-dimensional Euclidean
space. The null projective cone provides a linearization of the action of the
conformal group.

As we mentioned above, the presence of a boundary at xd = 0 breaks the
symmetry group to SO(d, 1). In the null projective cone this breaking can be
implemented by introducting a fixed vector V with components

V A = (0, . . . , 0, 1) , (5.3)

and restricting ourselves to those Lorentz transformations that leave V A in-
variant. The residual conformal transformations for the coordinates xµ are
easily obtained from the linear transformations of the PA coordinates.

Let us now consider scalar fields that are homogeneous functions of the
coordinates,

O(λP ) = λ−∆O(P ) , (5.4)

where ∆ is the conformal dimension of the field O. The physical CFT scalar
operator is defined as

O(x) = (P+)∆O(P ) . (5.5)

The two-point function of O should be invariant under SO(d, 1) and consis-
tent with (5.4). The only SO(d, 1) invariants that can be formed with two
coordinates and the fixed vector V A are

P1 · P2, V · P1, and V · P2. (5.6)
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The two-point function must then be of the form

⟨O1(P1)O2(P2)⟩ =
1

(2V · P1)∆1(2V · P2)∆2
f(ξ), (5.7)

where f(ξ) is an arbitrary function of the conformal invariant,

ξ =
−P1 · P2

2(V · P1)(V · P2)
. (5.8)

In physical coordinates,

ξ =
(x1 − x2)

2

4xd1x
d
2

. (5.9)

We see that the limit ξ → 0 corresponds to bringing the operators close to-
gether while the limit ξ → ∞ amounts to bringing the operators close to the
boundary. It will be useful to introduce a function G(ξ) = ξ(∆1+∆2)/2f(ξ), the
two-point function then becomes

⟨O1(x1)O2(x2)⟩ =
1

(2xd1)
∆1(2xd2)

∆2
ξ−(∆1+∆2)/2G(ξ). (5.10)

For two identical (canonically normalized) operators limξ→0G(ξ) = 1, since
we need to recover the usual two-point function far away from the boundary.
Although using the null projective cone is somewhat of an overkill for the
scalar two-point function, this formalism will become essential for the tensor
calculations of section 5.3.

5.1.2 The boundary bootstrap

Much like a four-point function for a CFT without a boundary, one can de-
compose the correlation function (5.10) into conformal blocks. In this case
there exist two different decompositions (or channels) and we review both of
them below.

In the bulk channel we simply substitute the bulk OPE in the two-point
function (5.10). For two identical scalar operators the bulk OPE takes the
form (omitting tensor indices for simplicity):

O(x)O(y) =
1

(x− y)2∆
+
∑
k

λkC[x− y, ∂y]Ok(y) , (5.11)

where k labels conformal primary fields. The differential operators C[x−y, ∂y]
are determined by the (bulk) conformal symmetry and the couplings λk can be
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taken to be real [3]. We emphasize that this OPE is a local property of the bulk
CFT and therefore unaffected by the presence of a boundary. On the other
hand, whereas in the absence of any boundaries only the identity operator
gets a non-zero one-point function (and all other terms in the OPE therefore
drop out of the two-point function of O), this is no longer the case once a
boundary is present. Using the null projective cone it is easily demonstrated
that boundary conformal invariance allows for one-point functions of scalar
operators of the form:

⟨O(x)⟩ = aO
(2xd)∆

, (5.12)

with a coefficient aO whose magnitude is unambiguous as we have normalized
the operator using the first term in (5.11). One-point functions for operators
with spin are not allowed by conformal invariance, see section 5.3.2 below.
Substituting now (5.11) in (5.10) and using (5.12) one arrives at the bulk
channel conformal block decomposition:

G(ξ) = 1 +
∑
k

λkak fbulk(∆k; ξ) , (5.13)

where the bulk conformal blocks fbulk(∆k; ξ) can be determined by working out
the expression:

C[x− y, ∂y]
1

(yd)∆k
. (5.14)

This computation was performed in [61], with the result that (see appendix C
for a derivation)

fbulk(∆k; ξ) = ξ∆k/2
2F1

(
∆k

2
,
∆k

2
;∆k + 1− d

2
;−ξ

)
. (5.15)

Equations (5.13) with the explicit expression (5.15) summarize the bulk block
decomposition of the two-point function. Notice that the blocks are naturally
defined as a series expansion around ξ = 0, which is when the two operators
approach each other. Convergence of the OPE away from the boundary how-
ever implies that the conformal block decomposition should converge for all
physical values of ξ, that is for all 0 < ξ <∞.

In the boundary channel we use the bulk-to-boundary OPE where a bulk
operator is written as an infinite sum over boundary operators. For a scalar
operator this OPE takes the form:

O(x) =
aO

(2xd)∆
+
∑
l

µlD[xd, ∂x]Ôl(x) , (5.16)
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where the index l runs over boundary primary fields, the differential operators
D[xd, ∂x] are again completely determined by (boundary) conformal symmetry
and the couplings µl are again assumed to be real. The first term in (5.16)
corresponds to the one-point function of O(x) and represents the contribution
of the boundary identity operator. Subsequent operators all have to be scalars
by boundary Lorentz invariance. Notice also that in equation (5.16) we used a
hat to denote operators living on the boundary (and such operators obviously
can depend only on x).

The constraints of boundary conformal invariance for the correlation func-
tions of boundary operators Ô(x) are exactly the same as those of ordinary
conformal invariance in d − 1 dimensions. This implies in particular that
boundary operators cannot get one-point functions and their two-point func-
tions take the canonical form,

⟨Ô(x)Ô(y)⟩ = 1

|x− y|2∆
, (5.17)

which also provides a normalization for boundary operators. Combining now
(5.16) and (5.10) and using (5.17) one arrives at the boundary channel con-
formal block decomposition:

G(ξ) = ξ∆

(
a2O +

∑
l

µ2
l fbdy(∆l; ξ)

)
, (5.18)

where the boundary conformal blocks fbdy(∆l; ξ) can now be determined from:

D[xd, ∂x]D[yd, ∂y]
1

|x− y|2∆
. (5.19)

Just as for the bulk blocks, this computation was done in [61] (and rederived
in appendix C),

fbdy(∆; ξ) = ξ−∆
2F1

(
∆,∆+ 1− d

2
; 2∆ + 2− d;−1

ξ

)
. (5.20)

The boundary blocks have a good series expansion when both operators ap-
proach the boundary, that is around ξ = ∞.

The boundary block decomposition is summarized by equations (5.18) and
(5.20). The convergence of the bulk-boundary OPE away from other operator
insertions implies that this conformal block decomposition should converge for
all 0 < ξ <∞ as well.

The statement of crossing symmetry is nothing more than the fact that
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the two decompositions (5.13) and (5.18) should agree,

G(ξ) = 1 +
∑
k

λkak fbulk(∆k; ξ) = ξ∆

(
a2O +

∑
l

µ2
l fbdy(∆l; ξ)

)
. (5.21)

A pictorial representation of this equation is shown in figure 5.1. The aim of
this thesis is to explore how equation (5.21) can be used to constrain the space
of boundary conformal field theories.

∑
k

=

∑
l

k
l

Figure 5.1: Two-point function crossing symmetry in boundary CFT.

5.2 The boundary bootstrap in the epsilon ex-

pansion

In this section we demonstrate that in a few special cases it is possible to ob-
tain an analytic solution of the crossing symmetry equation (5.21). As we will
see below, in this way we can in fact bootstrap the outcome of a one-loop com-
putation and recover the order ϵ critical exponents of the Wilson-Fisher fixed
point! This is possible because our solutions turn out to have only one or two
blocks in either channel and equation (5.21) reduces to a finite-dimensional
linear system. This should be constrasted with the conformal block decom-
position for the bulk four-point function, whose asymptotic properties dictate
that it always decomposes into an infinite number of conformal blocks [3],
which makes the problem much harder. The results in this section therefore
highlight the relative simplicity of the boundary bootstrap program. At higher
orders in the epsilon expansion, the problem becomes infinite-dimensional even
in the boundary case, and more powerful methods will have to be developed.

5.2.1 The simplest bootstrap

Let us begin our exploration of the constraining power of the crossing sym-
metry equation (5.21) by considering the following question: is it possible to
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satisfy crossing symmetry with just a single block in either channel? It turns
out that this question can be answered affirmatively and leads to a rederivation
of the free-field theory two-point functions. In formulas, our question becomes
whether there exists a solution to the equation

1 + λaη fbulk(η; ξ) = ξ∆
(
a2O + µ2 fbdy(η

′; ξ)
)
, (5.22)

for all ξ and with unknowns λaη, η,∆, a
2
O and η′. We use η and η′ to denote

the dimensions of the single bulk and boundary operator, respectively.
In order to find a solution we will expand both sides in ξ. The bulk confor-

mal blocks (5.15) have a natural series expansion in powers of ξ around ξ = 0,
which is when we bring the two points close together. On the other hand, the
boundary conformal blocks of equation (5.20) are naturally defined via a series
expansion around ξ = ∞ where both points approach the boundary.

Now, using standard hypergeometric transformation formulas (see for ex-
ample [64]), we can expand a boundary block around ξ = 0,

fbdy(η
′; ξ) = c1(1 + . . .) + c2ξ

1−d/2(1 + . . .) , (5.23)

with the dots representing subleading integer powers of ξ and c1 and c2 certain
constants. Substituting this expansion into (5.22) and simply matching the
powers of ξ to those possibly appearing on the left hand side of (5.22), we
directly find that:

∆ = ∆ϕ ≡ d

2
− 1 , η = 2∆ϕ = d− 2 . (5.24)

This is our first non-trivial result: the scaling dimension ∆ has to be that
of a free field ϕ and the value of η reflects the simple free-field bulk OPE,
ϕ× ϕ = 1+ ϕ2.

Our next step is to notice that the bulk block with η = 2∆ϕ becomes
particularly simple,

fbulk(2∆ϕ; ξ) =

(
ξ

ξ + 1

)∆ϕ

, (5.25)

and expanding now both sides of (5.22) around ξ = ∞ we find that

1 + λaη

(
1 +

1− d/2

ξ
+ . . .

)
= ξ∆ϕ

(
a2O + µ2ξ−η′

(
1− η′

2ξ
+ . . .

))
, (5.26)

which allows us to solve for all the other coefficients. We find two possible
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solutions:

+ : λaη = +1 , a2O = 0 , η′ = ∆ϕ , µ2 = 2 ,

− : λaη = −1 , a2O = 0 , η′ = ∆ϕ + 1 , µ2 =
d− 2

2
.

(5.27)

Although we have only used the series expansions of the conformal blocks
around the endpoints ξ = 0 and ξ = ∞, it turns out that for the above values
of the coefficients the crossing symmetry equation is miraculously satisfied at
every order in ξ. Therefore, the two functions

G+(ξ) = 1 + fbulk(2∆ϕ; ξ) = ξ∆ϕ

(
2fbdy(∆ϕ; ξ)

)
= 1 +

(
ξ

ξ + 1

)∆ϕ

,

G−(ξ) = 1− fbulk(2∆ϕ; ξ) = ξ∆ϕ

(d− 2

2
fbdy(∆ϕ + 1; ξ)

)
= 1−

(
ξ

ξ + 1

)∆ϕ

,

(5.28)

are valid solutions to the crossing symmetry equation (5.21) with just a single
block in each channel. Using (5.10) we find that they correspond to two-point
functions of the form:

⟨ϕ(x)ϕ(y)⟩ = 1

(x− y)2∆ϕ
± 1

(x− yr)2∆ϕ
, (5.29)

where yr is the coordinate vector y reflected in the boundary, so if y = (y, yd)
then yr = (y,−yd). This equation informs us that we have derived the two
possible two-point functions of a free field on a half-space, with the + sign
corresponding to Neumann boundary conditions and the − sign corresponding
to Dirichlet boundary conditions.

Let us offer a few more comments on the above solutions. First of all, the
bulk-to-boundary OPE is consistent with the boundary conditions. Indeed,
the bulk-to-boundary OPE of a free field ϕ contains a priori a boundary field
ϕ̂ and its normal derivative ∂dϕ̂ of dimensions ∆ϕ and ∆ϕ + 1, respectively.
(Notice that these are both SO(d, 1) primaries.) As expected, in the Dirichlet
case the operator ϕ̂ vanishes by the boundary conditions and only the block
corresponding to ∂dϕ̂ is present. In the Neumann case the situation is reversed.
Finally, the operator ϕ2 is the only operator appearing in the bulk channel
and the sign of its one-point function is reversed between the two boundary
conditions.
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5.2.2 Order ϵ bootstrap

Having obtained the scalar two-point function for the free theory, let us apply
the bootstrap technique to the interacting theory in the epsilon expansion. In
this section we will allow for N massless scalars with strength λ

4!
(ϕ2)2. The

N -dependence of the free two-point function comes from the overall normal-
ization, so the results of the previous section remain unchanged. Defining
d = 4− ϵ, the Wilson-Fisher fixed point is given by

λ∗
16π2

=
3ϵ

N + 8
+O(ϵ2) . (5.30)

We can now write the bootstrap equations as a perturbation series in ϵ. Fol-
lowing the strategy used in the free case we will assume a finite number of
blocks in each channel. In particular, we will consider two non-trivial blocks
in the bulk channel and a single block in the boundary channel. This ansatz
has some partial justification in Feynman diagrams. In order for an operator
O to appear in the bulk OPE of ϕ with itself, the three-point function ⟨ϕϕO⟩
should be non-zero. For operators of the form ϕ2n (ignoring O(N) indices) the
only allowed possibilities at order ϵ are ϕ2 and ϕ4. For n > 2 the correlator
is higher order in ϵ, two or more vertices are needed to contract all the legs.
In the boundary channel4 we are only considering the operator ϕ̂, similarly to
the bulk case, the bulk-to-boundary OPE between ϕ and ϕ̂2n+1 for n > 0 is
higher order in ϵ. Let us then proceed to bootstrap the order ϵ correlator and
comment on the validity of our ansatz at the end of this section.

We want to solve the following equation,

1 + λaϕ2fbulk(∆ϕ2 ; ξ) + λaϕ4fbulk(∆ϕ4 ; ξ) = µ2ξ∆ϕfbdy(∆ϕ̂, ξ) . (5.31)

Because we are working perturbatively we will write all coefficients as a power
series in ϵ. For the spacetime dimension d and the external dimension confor-
mal dimension ∆ϕ we have

d = 4− ϵ ,

∆ϕ =
d

2
− 1 + δ∆ϕϵ+O(ϵ2) .

(5.32)

4For concreteness we will consider the Neumann case but a parallel analysis can be done
for Dirichlet boundary conditions.
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For the internal conformal dimensions we write,

∆ϕ2 = d− 2 + δ∆ϕ2ϵ+O(ϵ2) ,

∆ϕ4 = 2d− 4 + δ∆ϕ4ϵ+O(ϵ2) ,

∆ϕ̂ =
d

2
− 1 + δ∆ϕ̂ϵ+O(ϵ2) .

(5.33)

Finally, for the coefficients multiplying the blocks,

λaϕ2 = 1 + δλaϕ2ϵ+O(ϵ2) ,

λaϕ4 = δλaϕ4ϵ+O(ϵ2) ,

µ2 = 2 + δµ2ϵ+O(ϵ2) ,

(5.34)

where the quantities denoted by “δ” correspond to deviations from the free-
field solution. For example, λaϕ4 has only a correction term since it is not
present in the free theory. We will again use the transformation formulas that
led to (5.23) in order to expand the boundary blocks around ξ = 0. The
procedure now is the same as before, we Taylor expand both sides of the
equation and match equal powers of the parameter ξ. As in the free case, after
matching the first few coefficients, equation (5.31) is solved to all orders in ξ.
The order ϵ solution is,

δ∆ϕ = 0 , δ∆ϕ2 = 2α , δ∆ϕ̂ = −α ,

δλaϕ2 = α , δλaϕ4 =
α

2
, δµ2 = 0 ,

(5.35)

where α is an arbitrary coefficient. The zero one-loop anomalous dimension
for ϕ is not a surprise, the anomalous dimension of ϕ2 is also well known and
can be used to fix the value of α,

α =
1

2

(
N + 2

N + 8

)
. (5.36)

The first order corrections to the OPE coefficients of the ϕ2 and ϕ4 blocks are
positive, while the order ϵ correction to µ2 is zero, as expected from Feynman
diagrams. We find a negative anomalous dimension for the boundary opera-
tor corresponding to ϕ̂. The anomalous dimension for ϕ4 does not enter the
equations at this order in the expansion. The complete corrected two-point
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function is then

G+
ϕϕ = 1 +

(
ξ

ξ + 1

)1− ϵ
2

+
ϵ

2

(
N + 2

N + 8

)( ξ

ξ + 1
log(ξ) + log(ξ + 1)

)
+O(ϵ2)

= 1 +
(
1 +

ϵ

2

(
N + 2

N + 8

))
fbulk(2− ϵ+ ϵ

(
N + 2

N + 8

)
; ξ) +

ϵ

4

(
N + 2

N + 8

)
fbulk(4; ξ) +O(ϵ2)

= ξ1−
ϵ
2

(
2fbdy(1−

ϵ

2
− ϵ

2

(
N + 2

N + 8

)
; ξ)
)
+O(ϵ2) , (5.37)

where the + sign indicates Neumann boundary conditions. An analogous
calculation can be done for the Dirichlet case. We simply quote the result:

G−
ϕϕ = 1−

(
ξ

ξ + 1

)1− ϵ
2

+
1

2
ϵ

(
N + 2

N + 8

)(
− ξ

ξ + 1
log(ξ) + log(ξ + 1)

)
+O(ϵ2)

= 1−
(
1− 1

2
ϵ

(
N + 2

N + 8

))
fbulk(2− ϵ+ ϵ

(
N + 2

N + 8

)
; ξ) +

ϵ

4

(
N + 2

N + 8

)
fbulk(4; ξ) +O(ϵ2)

= ξ1−
ϵ
2

((
1− ϵ

2
+
ϵ

2

(
N + 2

N + 8

))
fbdy(2−

ϵ

2
− ϵ

2

(
N + 2

N + 8

)
; ξ)
)
+O(ϵ2) ,

(5.38)

which features only minor changes with respect to the previous case. Com-
parison of these expressions with the explicit calculation of [61] shows perfect
agreement. We have used the bootstrap equations to obtain a one-loop result!

Let us now return to our original ansatz. We did not consider primary oper-
ators with derivatives acting on ϕ, which we denote schematically by �kϕ2 and
�kϕ4. For the first family, we can never have ∂µ∂µ acting on the same field, be-
cause the equations of motion imply ∂µ∂µϕ ∼ ϵϕ3 and the operator is not really
of the form �kϕ2. The only possibility is to have ∂µ1∂µ2 . . . ∂µk

ϕ∂µ1∂µ2 . . . ∂µk
ϕ,

but these operators are conformal descendants, and their contribution is al-
ready taken into account by the ϕ2 block. For the second family, the equations
of motion argument still holds, but not all operators are conformal descen-
dants. In fact, there is an infinite number of primaries of the schematic form
�kϕ4.5 Our original ansatz was thus incomplete, we should have added an
infinite number of blocks to the left-hand side of equation (5.31) with tree
level dimension ∆k = 2(d− 2) + 2k. As we obtained the correct answer, it is
clear that these operators do not appear at one loop. We believe that this is
due to the vanishing of the three-point functions ⟨ϕϕ�kϕ4⟩ for k > 0, a fact
which should follow from the higher-spin Ward identities of the free theory.

Starting at order ϵ2, crossing symmetry can no longer be solved with a finite

5This statement can be checked using conformal characters.
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number of blocks. It would be nice to find more powerful analytic techniques
to deal with the infinite-dimensional linear system, and develop a bootstrap
apprach to the all-order epsilon expansion. At each order a new infinite family
of bulk primary operators appears. Perhaps the constraints of sligthly bro-
ken higher-spin symmetry [65, 66] could help in organizing the information
contained in (5.21).

5.3 Boundary crossing symmetry for stress ten-

sors

In section 5.1 we derived the crossing symmetry equation (5.21) for the two-
point function of scalar operators using the bulk and boundary conformal
block decompositions. In this section we will derive a similar equation for the
two-point function of the stress tensor.

5.3.1 Summary of results

As we show in equation (5.55) below, the two-point function of a spin two op-
erator in the presence of a boundary features three independent tensor struc-
tures. Each tensor structure comes multiplied with its own scalar function of ξ
and we find it convenient to collect these three functions in a three-component
vector of the form (f(ξ), g(ξ), h(ξ)). Furthermore, for the stress tensor the
Ward identities relate the three components in the following way:

(d− 2)ξ2
d

dξ
g = (d2 + 3d− 2)h− 2(d− 1)ξ(1 + ξ)

d

dξ
h

4dξ3
d

dξ
f = −4(1 + ξ)h+

(
ξ(d2 + 2d− 4)− 2dξ2(1 + ξ)

d

dξ

)
g ,

(5.39)

so up to a few integration constants there is effectively only one independent
function of ξ.

In the following subsections we derive the conformal block decompositions
of the functions (f, g, h) in the bulk and the boundary channel. The main
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result of these subsections will be the following crossing symmetry equation:
1

0

0

+
∑
k

λkaOk


fbulk(∆k; ξ)

gbulk(∆k; ξ)

hbulk(∆k; ξ)



= µ2
(0)


f
(0)
bdy(d; ξ)

g
(0)
bdy(d; ξ)

h
(0)
bdy(d; ξ)

+ µ2
(1)


f
(1)
bdy(d; ξ)

g
(1)
bdy(d; ξ)

h
(1)
bdy(d; ξ)

+
∑
n

µ2
(2),n


f
(2)
bdy(∆n; ξ)

g
(2)
bdy(∆n; ξ)

h
(2)
bdy(∆n; ξ)

 ,

(5.40)

where all the functions (f, g, h) are explicitly known functions of ξ. Equation
(5.40) is the analogue of (5.21) for scalars and we will use it in section 6.4
to obtain bounds on operator dimensions and OPE coefficients. Let us now
discuss it in a bit more detail.

First of all, because of the three independent tensor structures we get a
three-dimensional vector of equations (and the conformal blocks themselves
also become three-dimensional vectors). It is then important to realize that
the Ward identities are operator equations and therefore they must be true for
the individual conformal blocks as well. Each vector appearing in (5.40) thus
individually satisfies the Ward identities (5.39).

The left-hand side of (5.39) is the bulk channel conformal block decompo-
sition. As in (5.21), we separated out the conformal block corresponding to
the identity operator. For the other operators we should recall that SO(d, 1)
conformal symmetry dictates that only scalars can get non-zero one-point func-
tions and therefore only scalar blocks can contribute to the bulk channel ex-
pansion.

The right-hand side of (5.39) represents the boundary channel conformal
block decomposition. A priori, a spin 2 operator has a boundary OPE decom-
position involving operators with spins ranging from 0 to 2 and indeed we find
all these possibilities in (5.39), where the spins of the exchanged operator is
written as the superscript in parentheses. However in this case the Ward iden-
tities turn out to further constrain the conformal block decomposition. More
specifically, the boundary scalar and vector appearing in the boundary OPE
decomposition of Tµν must have scaling dimensions equal to the spacetime
dimensions, so ∆(0) = ∆(1) = d. There is thus a unique block for the exchange
of a scalar of dimension d and also for a vector of dimension d. These two

80



blocks are the first two terms on the right-hand side of (5.40). On the other
hand, the dimensions of the spin 2 fields are not constrained in this way and
there can therefore in principle be infinitely many spin 2 blocks, represented
by the final sum in (5.40).

Let us offer a few more comments on the spin 0 and 1 boundary opera-
tors. As one may have anticipated, in physical theories they correspond to
the T̂d d and T̂i d (i being a tangential index) components of the bulk stress
tensor, restricted to the boundary. These operators are intimately related to
infinitesimal variations in the location of the boundary surface which explains
the “non-renormalization” of their scaling dimensions, see [59] for details. For
physical BCFTs the displacement operator T̂d d is generically present on the
boundary and we encountered it already in the discussion of the extraordinary
transition in section 5.2. On the other hand, the vector operator is only present
if there is a non-zero energy flow across the boundary. For BCFTs this is an
unphysical boundary condition and we can then set µ2

(1) = 0. (Notice that an

energy flow would be allowed if the surface xd = 0 was actually an SO(d, 1)
preserving interface between two different theories, one defined for xd > 0 and
the other for xd < 0, and in such cases the vector block will generically be
present.)

In appendix E we present a few explicit solutions to the crossing symmetry
equation (5.40). We discuss the universal solution in two dimensions (which is
fully determined by the Virasoro algebra), the free-field theory solutions in d
dimensions and the extraordinary transition to leading order for the Wilson-
Fisher fixed point.

5.3.2 Correlation functions of tensor operators

In this section we discuss correlation functions of operators with spin in con-
formal field theories. We will use the results of [67], see also [68], and adapt
them to conformal field theories with a boundary. Many of the results in this
and the next two subsections were also obtained in [59, 61] but we present
here an independent derivation which is straightforwardly implemented on a
computer.

The index structures appearing in correlation functions of tensor operators
are easily found in the null projective cone formalism discussed in section
5.1.1. According to [67], a generic tensor field fµ1...νn(x) lifts to a tensor field
FA1...An(P ) in the null projective cone with the following properties:

• equal symmetries in the indices of FA1...An(P ) and of fµ1...νn(x);

• transversality, so PAiFA1...Ai...An(P ) = 0 for 1 ≤ i ≤ n;
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• a gauge equivalence defined as FA1...An(P ) ∼ PAi
ΛA1...Âi...An

for any Λ
and 1 ≤ i ≤ n.

For symmetric traceless tensors it is convenient to contract the indices on
F with auxiliary variables ZA and write F (P,Z) ≡ FA1...An(P )Z

A1 . . . ZAn .
Tracelessness implies that we may restrict ourselves to the subspace defined
by Z2 = 0 and the gauge equivalence implies that we may take Z · P = 0 as
well. The transversality condition becomes:

P · ∂

∂Z
F (P,Z) = 0 . (5.41)

Correlation functions of n symmetric traceless tensor primary operators
can now be written as scalar functions G(Pi, Zi) with 1 ≤ i ≤ n with the
following properties:

• the dependence on Zi should be a homogeneous polynomial of degree li;

• the dependence on Pi should be homogeneous of degree −∆i;

• transversality dictates that Pi · ∂Zi
G = 0 for 1 ≤ i ≤ n;

• for any conserved tensor there is a Ward identity of the form [67]

(∂P ·D(d))G = 0 , (5.42)

with

D
(d)
A =

(d
2
− 1 + Z · ∂

∂Z

) ∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z
, (5.43)

where P and Z are the variables corresponding to the conserved tensor,
for example P1 and Z1 if the conserved tensor is the first operator.

As an example, let us review the well-known result for the three-point func-
tion of two stress tensors and one scalar operator GTTO(P1, P2, P3, Z1, Z2). The
first three constraints together dictate that there are three different invariant
tensor structures,

GTTO =
1

(−2P1 · P2)d−∆/2(−2P2 · P3)∆/2(−2P3 · P1)∆/2

(
a(W12)

2+bH2
12+cH12W12

)
,

(5.44)
with for now arbitrary constants a, b, c and with building blocks
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W12 =

(
(Z1 · P2)(P1 · P3)− (Z1 · P3)(P1 · P2)

)(
(Z2 · P1)(P2 · P3)− (Z2 · P3)(P1 · P2)

)
(P1 · P2)(P2 · P3)(P3 · P1)

,

H12 =
(Z1 · Z2)(P1 · P2)− (Z1 · P2)(Z2 · P1)

P1 · P2

.

(5.45)

The Ward identities for the stress tensor furthermore dictate that:

a =
∆(∆ + 2)

4d(d+ 1)
λTTO ,

b =
(∆− d)2(d− 1)− 2d

d(d+ 1)(d− 2)
λTTO ,

c =
∆((∆− d)(d− 1)− 2)

d(d+ 1)(d− 2)
λTTO ,

(5.46)

where λTTO is an undetermined overall coefficient. Upon sending ∆ → 0 we
find that a, c → 0 but b → λTT1 and we recover the unit normalized stress
tensor two-point function,

⟨T (P1, Z1)T (P2, Z2)⟩ =
H2

12

(−2P1 · P2)d
, (5.47)

provided we set λTT1 = 1. The normalization in (5.46) is therefore such that
λTTO is a natural three-point coupling coefficient.

Let us finally take the OPE limit by sending P1 → P2. In that case H12

remains finite whilst

W12 → WOPE
12 ≡ (Z1 · P2)(Z2 · P1)

(P1 · P2)
(5.48)

and therefore

GTTO → a(WOPE
12 )2 + bH2

12 + cH12W
OPE
12

(−2P1 · P2)d−∆/2(−2P1 · P3)∆
, (5.49)

and we infer that the T × T → O operator product expansion becomes to
leading order

T (P1, Z1)T (P2, Z2) ∼ . . .+
a(WOPE

12 )2 + bH2
12 + cH12W

OPE
12

(−2P1 · P2)d−∆/2
O(P1)+ . . . (5.50)
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where we assumed that O is normalized such that ⟨O(P1)O(P2)⟩ = (−2P1 ·
P2)

−∆.
As we mentioned in section 5.1.1, the breaking of SO(d+1, 1) to SO(d, 1)

due to the presence of a boundary is implemented by introducing an additional
fixed vector

V A = (0, 0, . . . , 0, 1) , (5.51)

representing the unit normal to the boundary. Correlation functions are still
required to be SO(d+1, 1) scalars with the same four properties as above but
they can now depend on V A as well. For example, we have already mentioned
that the one-point function of a scalar operator can take the form:

⟨O(P )⟩ = aO
(V · P )∆

, (5.52)

with arbitrary coefficient aO. For one-point functions of tensor operators one
directly sees that the numerator would have to involve a factor (V · Z)l but
this is not transverse and so higher-spin one-point functions must vanish.

With two points we can build the invariant object ξ of section 5.1.1,

ξ =
−P1 · P2

2(V · P1)(V · P2)
=

(x1 − x2)
2

4xd1x
d
2

, (5.53)

and conformal symmetry thus determines two-point functions only up to ar-
bitrary functions of ξ. For the scalar two-point function this leads to equation
(5.10),

⟨O1(P1)O2(P2)⟩ =
1

(2V · P1)∆1(2V · P2)∆2
fO1O2(ξ) , (5.54)

where fO1O2(ξ) is not fixed by conformal symmetry. Two-point functions in-
volving tensors are easily found, e.g.

ZA
2 ⟨O(P1)JA(P2)⟩ =

(Z2 · V )(P2 · P1)− (P2 · V )(Z2 · P1)

(V · P1)∆O+1(V · P2)∆J+1
fOJ (ξ) ,

ZA
2 Z

B
2 ⟨O(P1)TAB(P2)⟩ =

(
(Z2 · V )(P2 · P1)− (P2 · V )(Z2 · P1)

)2
(V · P1)∆O+2(V · P2)∆T +2

fOT (ξ) ,

ZA
1 Z

B
2 ⟨JA(P1)JB(P2)⟩ =

fJJ (ξ)H12 + gJJ (ξ)Q12

ξ∆1(V · P1)∆1(V · P2)∆2
,

ZA
1 Z

B
1 Z

C
2 Z

D
2 ⟨TAB(P1)TCD(P2)⟩ =

fT T (ξ)H
2
12 + gT T (ξ)H12Q12 + hT T (ξ)Q

2
12

(4ξ)∆1(V · P1)∆1(V · P2)∆2
,

(5.55)
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with H12 already defined above and with

Q12 =

(
(V · P1)(Z1 · P2)

(P1 · P2)
− (V · Z1)

)(
(V · P2)(Z2 · P1)

(P1 · P2)
− (V · Z2)

)
.

(5.56)

If the above tensors are conserved then we write J and T instead of J and
T . In that case ∆J = d− 1 and ∆T = d and from the Ward identities we also
find that:

fOJ(ξ) = cOJ(ξ(1 + ξ))−d/2 ,

fOT (ξ) = cOT (ξ(1 + ξ))−1−d/2 ,

0 =

(
(d+ 1)− 2ξ

d

dξ

)
gJJ − 2ξ2

d

dξ

(
fJJ + gJJ

)
,

(d− 2)ξ2g′TT = (d2 + 3d− 2)hTT − 2(d− 1)ξ(1 + ξ)h′TT ,

4dξ3f ′
TT = −4(1 + ξ)hTT +

(
ξ(d2 + 2d− 4)− 2dξ2(1 + ξ)

d

dξ

)
gTT ,

(5.57)

with c... denoting an integration constant. We see that the two-point function
of two stress tensors and the two-point function of two currents are both fixed
up to a single function of ξ. The last two equations in (5.57) were already
presented in equation (5.39). They agree with equation (2.27) and (2.31) of
[61] with the replacements f(ξ) = C(v), g(ξ) = 4v2B(v) and h(ξ) = v4A(v)
and with v2 = ξ/(ξ + 1).

We can also insert operators at boundary points labelled X satisfying X ·
V = 0. As before, we will denote such operators with a hat. We project the
indices of such operators to lie along the boundary, which in the null projective
cone is implemented by the constraint V · D(d) = 0 with the operator D

(d)
A

already given by (5.43). The correlation functions of interest are those with a
single stress tensor in the bulk. We find:

ZA
2 Z

B
2 ⟨Ô(X1)TAB(P2)⟩ = δd,∆Ô

cÔT

(
(Z2 · V )(P2 ·X1)− (P2 · V )(Z2 ·X1)

)2
(−2X1 · P2)d+2

,

ZA
1 Z

B
2 Z

C
2 ⟨ĴA(X1)TBC(P2)⟩ = δd,∆Ĵ

cĴ T

(
(Z2 · V )(P2 ·X1)− (P2 · V )(Z2 ·X1)

)
Ĥ12

(−2X1 · P2)d+1
,

ZA
1 Z

B
1 Z

C
2 Z

D
2 ⟨T̂AB(X1)TCD(P2)⟩ = cT̂ T

Ĥ2
12 − 1

d−1
Q2

12

(−2X1 · P2)
∆T̂ (V · P2)

d−∆T̂
,

(5.58)
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with

Ĥ12 =
(Ẑ1 · Z2)(P1 · P2)− (Ẑ1 · P2)(Z2 · P1)

P1 · P2

, ẐA
1 ≡ ZA

1 − (Z1 · V )V A .

(5.59)

Notice that for scalars and vectors the scaling dimension is required to be d
whereas the dimension of T̂ is unconstrained by the Ward identity.

Up to terms that ensure that V ·D(d) annihilates the correlator, two-point
functions of boundary operators are of the same form as two-point functions
of bulk operators in the absence of a boundary. In particular we find that:

⟨Ô(X1, Z1)Ô(X2, Z2)⟩ =
1

(−2X1 ·X2)∆
,

⟨Ĵ (X1, Z1)Ĵ (X2, Z2)⟩ =
H12 − (V · Z1)(V · Z2)

(−2X1 ·X2)∆
,

⟨T̂ (X1, Z1)T̂ (X2, Z2)⟩ =

(
H12 − (V · Z1)(V · Z2)

)2
− 1

d−1
(V · Z1)

2(V · Z2)
2

(−2X1 ·X2)∆
.

(5.60)

Equation (5.60) defines our normalization of the boundary operators. Notice
that H12 descends from the projective cone to zµ1 z

ν
2 (δµν − 2x12,µx12,ν/x

2
12) so it

is easily verified that our normalization is consistent with reflection positivity.
Using (5.58) and (5.60) we find the bulk-to-boundary OPE of the stress tensor,

T (P,Z) → cÔT (Z ·V )2Ô(X)−cĴ T (Z ·V )Ĵ (X,Z)+
cT̂ T

(V · P )d−∆T̂
T̂ (X,Z)+ . . .

(5.61)

5.3.3 Bulk channel blocks for the stress tensor

In this subsection we compute the conformal blocks for the two-point function
of the stress tensor using the conformal Casimir differential equation method
of [69]. These are the conformal blocks appearing on the left-hand side of
(5.40).

On a symmetric traceless tensor F (P,Z) the action of an element LAB of
SO(d+ 1, 1) takes the form:

LABF (P,Z) =
(
PA

∂

∂PB
−PB

∂

∂PA
+

1
d
2
+ l − 1

(ZAD
(d+2)
B −ZBD

(d+2)
A )

)
F (P,Z) ,

(5.62)
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with the operator D
(d+2)
A given by (5.43) but with d → d + 2 since we are

rotating in d+ 2 dimensions. The conformal Casimir equation is then:

1

2
LABL

ABF (P,Z) = −C∆,lF (P,Z) , (5.63)

with C∆,l = ∆(∆− d) + l(l + d− 2). We used this equation in appendix C to
find the result (C.6) for the conformal block in the bulk channel for a scalar
two-point function. For two stress tensors the conformal block can be written
as:

G∆
b (P1, P2, Z1, Z2) =

fb(ξ)H
2
12 + gb(ξ)H12Q12 + hb(ξ)Q

2
12

(4ξ)d(V · P1)d(V · P2)d
, (5.64)

and the constraint 1
2
(L

(1)
AB + L

(2)
AB)(L

(1)AB + L(2)AB)G∆ = −C∆,0G
∆ together

with the Ward identities leads to the unique solution for the coefficients:

hb =
∆(∆ + 2)

16d(d+ 1)
(4ξ)∆/2+2

2F1

(
2 +

∆

2
, 2 +

∆

2
; 1− d

2
+ ∆;−ξ

)
, (5.65)

with fb and gb determined by the Ward identities (5.57). Let us verify the
normalization by taking the OPE limit ξ → 0. We already mentioned that
H12 then remains finite and it is not hard to find that

Q12 → − 1

2ξ
WOPE

12 , (5.66)

with WOPE
12 defined in (5.48). From the expansion of (5.65) and the Ward

identities we find

hb = (4ξ)∆/2(4ξ2â+O(ξ)) , â =
∆(∆ + 2)

4d(d+ 1)
,

fb = (4ξ)∆/2
(
b̂+O(ξ)

)
, b̂ =

(∆− d)2(d− 1)− 2d

d(d+ 1)(d− 2)
, (5.67)

gb = (4ξ)∆/2
(
− 2ξĉ+O(ξ) ,

)
ĉ =

∆((∆− d)(d− 1)− 2)

d(d+ 1)(d− 2)
,

and the entire block behaves as:

G∆
b (P1, P2, Z1, Z2) =

â(WOPE
12 )2 + b̂H2

12 + ĉH12W
OPE
12

(−2P1 · P2)d−∆/2(V · P1)∆
, (5.68)

which is compatible with (5.46), (5.50) and (5.52).
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Explicit expressions for fb and gb are also available in terms of linear com-
binations of 2F1 hypergeometric functions.

The identity block can be found by sending ∆ → 0. We then find that
fb = 1 and gb = hb = 0.

5.3.4 Boundary channel blocks for the stress tensor

We label the boundary block associated to a primary operator of dimension ∆
and spin l as G

(∆,l)
s (with a subscript “s” for surface). Each block has again the

same form as the TT two-point function given in (5.55) with three associated

functions f
(∆,l)
s , g

(∆,l)
s and h

(∆,l)
s . In the two-point function of the stress tensor

there are three types of boundary blocks, G
(d,0)
s , G

(d,1)
s and G

(∆,2)
s . To find

these blocks we act with the SO(d, 1) Casimir operator on one of the two
points and solve the resulting differential equation. In the equations below we
use h ≡ d/2.

For a block corresponding to the exchange of a boundary scalar of dimen-
sion d we find:

h(d,0)s =
1

2h(2h+ 1)
ξh+1(1 + ξ)−h−3

(
2h(2h+ 1)ξ2 + 2(2h+ 1)(h− 1)ξ + h(h− 1)

)
,

g(d,0)s =
1

h(2h+ 1)
ξh(1 + ξ)−h−2(h+ ξ + 2hξ) ,

f (d,0)
s =

1

4h(2h+ 1)
ξh−1(1 + ξ)−h−1 ,

(5.69)

where we already fixed the normalization. In the limit where ξ → ∞ we find
that only the third tensor structure contributes and

G(d,0)
s (P1, P2, Z1, Z2) ∼

(V · Z1)
2(V · Z2)

2

(−2P1 · P2)2h
, (5.70)

which agrees with (5.61) and the first equation in (5.60).
For the block corresponding to the exchange of a boundary vector of di-

mension d we find:
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h(d,1)s =
1

2(2h+ 1)
ξh+1(1 + ξ)−h−3

(
− 2(2h+ 1)ξ2 + 2h(h− 1)ξ + h(h− 1)

)
,

g(d,1)s =
1

(2h+ 1)
ξh(1 + ξ)−h−2

(
ξ2 + h(1 + 2ξ + 2ξ2)

)
,

f (d,1)
s =

1

4(2h+ 1)
ξh−1(1 + ξ)−h−1(1 + 2ξ) ,

(5.71)

and the block behaves for ξ → ∞ as

G(d,1)
s (P1, P2, Z1, Z2) ∼

(V · Z1)(V · Z2)
(
H12 − (V · Z1)(V · Z2)

)
(−2P1 · P2)2h

, (5.72)

which is again consistent with the formulas given above.
Finally, for the spin two blocks:

h(∆,2)
s =

2(h− 1)

2h− 1
(4ξ)2h−∆

3F2

(
2 + ∆, 3− 2h+∆, 1− h+∆; 1− 2h+∆, 2− 2h+ 2∆;−1

ξ

)
,

g(∆,2)
s = −2(4ξ)2h−∆ +O(ξ−1) , (5.73)

f (∆,2)
s = (4ξ)2h−∆ +O(ξ−1) ,

where g
(∆,2)
s and f

(∆,2)
s can also be explicitly written as a sum over two hyper-

geometric functions. As we send ξ → ∞ we recover that

G(∆,2)
s (P1, P2, Z1, Z2) ∼

(
H12 − (V · Z1)(V · Z2)

)2
− 1

d−1
(V · Z1)

2(V · Z2)
2

(V · P1)2h−∆(V · P2)2h−∆(−2P1 · P2)∆
,

(5.74)
which is again consistent with the formulas given above.
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Chapter 6

Numerical Analysis and Results

Review of Statistical Mechanics

Before proceeding with the numerical analysis it will be useful to review some
statistical mechanics concepts. In the study of critical systems with a bound-
ary it is known that Neumann boundary conditions for the Landau-Ginzburg
field ϕ (which corresponds to the bulk spin operator σ) describe the so-called
special transition, while Dirichlet boundary conditions describe the ordinary
transition. The phase diagram of the Ising model in the presence of a boundary
is shown in figure 6.1.

extraordinary
transition

special
transition

ordinary
transition

surface
transition

surface
ordered

bulk
disordered

bulk
ordered

T

Js/Jb

Figure 6.1: Phase diagram for the surface critical behavior of the Ising model
in dimension 2 < d < 4. Temperature is plotted on the horizontal axis and the
(relative) surface interaction strength on the vertical axis. The extraordinary
transition disappears for d = 4, while the special transition is absent in d = 2.

In our investigations the bulk is always critical so we are always on the
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vertical line in figure 6.1. For weak boundary interactions one finds the or-
dinary transition where the boundary follows the bulk and also orders at the
bulk critical temperature. There is a critical boundary interaction strength
where the boundary and bulk critical temperature just coincide which is the
special transition. Finally, in the presence of strong boundary interactions the
boundary can order at a higher temperature than the bulk. The bulk tran-
sition where the boundary is already ordered is then called an extraordinary
transition. This transition breaks the Z2 symmetry of the Ising model, as ϕ
should acquires a one-point function of the form (5.12). The extraordinary
transition cannot be described in free-field theory (such a one-point function
does not satisfy the free equations of motion), but it appears at first order in
the Wilson-Fisher fixed point in 4− ϵ dimensions, see appendix D.4. We refer
the reader to [70, 71] for introductions to boundary critical phenomena.

The BCFT associated to the extraordinary transition is the most “stable”
as there are no relevant boundary scalar operators. In fact it is believed
that its lowest-dimensional boundary scalar is the “displacement operator”
T̂dd, which is the boundary limit of the bulk stress tensor with both indices
pointing in the direction normal to the boundary. The displacement operator
has protected conformal dimension exactly equal to d, and it is thus irrelevant
on the (d− 1)-dimensional boundary. The BCFTs associated to the ordinary
and special transitions preserve the Z2 symmetry, which thus remains a good
quantum number for boundary operators. The boundary spectrum of the
BCFT associated to the ordinary transition contains a single relevant scalar
operator which is Z2 odd, and corresponds to ∂dϕ̂ in the Landau-Ginzburg
description. Finally there are two relevant scalars in the BCFT for the special
transition, one Z2 odd and the other Z2 even, corresponding respectively to ϕ̂
and ϕ̂2.

In d = 2, the extraordinary transition is associated to the Cardy boundary
states |1⟩⟩ and |ε⟩⟩ labelled by the identity and the energy, respectively. We
have

|1⟩⟩ = 1√
2
|1⟩+ 1√

2
|ε⟩+ 1

4
√
2
|σ⟩ ,

|ε⟩⟩ = 1√
2
|1⟩+ 1√

2
|ε⟩ − 1

4
√
2
|σ⟩ ,

(6.1)

where the kets on the right-hand side denote Ishibashi states. We see that the
two states are physically equivalent since they are related by Z2 conjugation.
The ordinary transition is associated instead to the Cardy boundary state |σ⟩⟩
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labelled by the spin, which is given by

|σ⟩⟩ = |1⟩ − |ε⟩ . (6.2)

There is no 2d BCFT associated to the special transition, since the one-
dimensional boundary cannot order dynamically at non-zero temperature and
so the surface transition is absent.

6.1 Implementation for Scalars

In this section we adapt the numerical methods of [3] to the boundary boot-
strap equations and derive exclusion curves for operator dimensions and OPE
coefficients. The results we obtain below will depend sensitively on some as-
sumptions about the boundary operator spectrum and thereby fall naturally
into different categories related to the different possible boundary conditions.
Following [1] we will focus mainly on correlation functions of the σ operator in
the three-dimensional Ising model, whose possible boundary conditions were
presented in figure 6.1. For reasons to be discussed in section 6.1, our focus
will be on the special and extraordinary transitions, which will respectively
be discussed in sections 6.2 and 6.3 below. The relevant bulk and boundary
operator product expansions and scaling dimensions are summarized in table
6.1. For d = 4 there are several operators that do not appear in OPE and we
indicated this with a dash. The quoted values for the Ising model in d = 3
are of course approximate, but good enough for the numerical precision of this
paper. We were unable to find a reliable estimate of the dimension of the σ̂′

operator for the special transition.
Let us review how to implement the optimization problem numerically.

The following techniques were explained in great detail in [3, 44] so we shall
be brief. We start by isolating the contribution of the identity operator in
equation (5.21),

1 = −
∑
k

λkak fbulk(∆k; ξ) + ξ∆ext

(
a2O +

∑
l

µ2
l fbdy(∆l; ξ)

)
, (6.3)

and introduce the compact notation,

1 =
∑
∆

p∆F∆(ξ) , (6.4)
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bulk

σ × σ = 1 + ε+ ε′ + ε′′ + · · ·

d 2 3 4

∆σ
1
8

0.5182(3) 1

∆ϵ 1 1.413(1) 2

∆ϵ′ 4 3.84(4) -

∆ϵ′′ 8 4.67(11) -

special

σ = σ̂ + σ̂′ + · · ·

d 3 4

∆σ̂ 0.42 1

∆σ̂′ ? -

extraordinary

σ = 1 + T̂dd + · · ·

Table 6.1: Bulk and boundary operator product expansions and operator di-
mensions in the Ising model in various dimensions. There is no special tran-
sition in two dimensions. For the extraordinary transition the first boundary
operator is T̂dd whose dimension is always equal to the spacetime dimension d.
The results for d = 3 are approximate and were obtained from [1, 2] whereas
the results for d = 2 and d = 4 can be found in the appendices.

where

p∆ =
(
λkak , a

2
O , µ

2
l

)
, (6.5)

F∆(ξ) =
(
−fbulk(∆k; ξ) , ξ

∆ext , ξ∆extfbdy(∆l; ξ)
)
. (6.6)

With these definitions equation (6.4) is analogous to the sum rule of [3]. There
is however a crucial difference between the boundary problem that we are
studying compared to the four-point function crossing symmetry of [3]: even
assuming unitarity (as we shall always do) the coefficients p∆ are not all guar-
anteed to be positive. They are certainly positive in the boundary channel,
since they are squares of real numbers, but in the bulk channel the combi-
nation λkak is not manifestly positive. Indeed it is not difficult to find coun-
terexamples (such as a free scalar with Dirichlet boundary conditions). In the
following, we will assume positivity for the bulk expansion such that p∆ ≥ 0 as
in the four-point function case. The conjecture is that for a given bulk CFT,
there exists a choice of boundary conditions that exhibits positivity. In the
Ising model, the ordinary transition is excluded from our analysis, since both
signs occur in the bulk expansion (as can be demonstrated in d = 2 and in
d = 4− ϵ dimensions). We will however assume positivity for the special and
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the extraordinary transitions. This assumption is supported by the results in
the previous section as well as in appendix D. We have found positivity of the
bulk block coefficients around d = 4, both for the free field and the Wilson-
Fisher fixed point at order ϵ, as well as in d = 2 where it is a consequence of
the positivity of the first two coefficients in the first line of (6.1). In appendix
D.7 we also found that the coefficients for the special transition are positive
in the O(N) model at large N for any dimension.

We are now ready to start extracting information from the sum rule (6.4).
The simplest possible bound can be obtained as follows: We allow for the bulk
spectrum to span all possible values consistent with unitarity,

∆bulk ≥
d− 1

2
, (6.7)

while restricting the boundary spectrum to be greater than a given value,

∆bdy ≥ ∆min . (6.8)

Then, we consider a functional Λ with the following properties,

Λ(1) < 0 , (6.9)

Λ(F∆) ≥ 0 , (6.10)

where, according to our definitions, F∆ stands for any of the blocks appearing
in (6.6) with scaling dimensions obeying (6.7) and (6.8). If such a functional is
found, equation (6.4) becomes inconsistent and we can rule out that particular
CFT. The idea then is to see how high we can push ∆min.

Before implementing the machinery of linear functionals we need to choose
a set of “coordinates” in our function space. We will parametrize the blocks
by an infinite vector of derivatives {F k

∆} evaluated at ξ = 1,

F k
∆ =

∂kF∆(ξ)

∂ξk

∣∣∣∣
ξ=1

, (6.11)

and crossing symmetry becomes now an infinite set of algebraic equations.
In order to make the problem numerically tractable we will discretize the
spectrum of bulk and boundary dimensions and consider a maximum number
of derivatives. With this truncation we have an optimization problem with
a finite dimensional set of inequalities, this is an example of a linear pro-
gram. In order to solve the linear programs we used the Mathematica routine
LinearProgamming and the IBM ILOG CPLEX Optimizer. In all our plots
below we used a grid of 0.01 and a total of 15 derivatives.
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6.2 Special transition

In the following we present our numerical results for the special transition. The
one-point function of the bulk spin operator σ vanishes since the Z2 symmetry
is unbroken by the (Neumann) boundary conditions. As we have emphasized
in the previous section, positivity of the bulk channel coefficients will be a
working assumption.

6.2.1 Simplest bound for the boundary channel

Let us start by plotting the simplest possible bound of the form described
above. Our only assumption for the bulk spectrum will be the three-dimensional
unitarity bound, ∆bulk ≥ 0.5, but otherwise bulk operators of any dimension
are allowed to appear in the OPE. Crossing symmetry and positivity however
imply that the conformal dimension of the lowest dimension boundary oper-
ator cannot be arbitrary. Instead, we found that depending on the external
dimension the first boundary operator has to lie below the curve of figure 6.2.

0.52 0.54 0.56 0.58 0.60 0.62 0.64

0.9

1.0

1.1

1.2

1.3

∆ext

∆bdy

Figure 6.2: Upper bound for the first boundary operator in the special transi-
tion.

Although this is a correct bound, we should mention the following caveat:
The bulk block blows up at the unitarity bound and our more precise assump-
tion for the bulk spectrum was actually ∆bulk ≥ 0.5 + 10−6. Unfortunately, it
turns out that the numerics are quite sensitive around this point. For example,
the bound becomes much stronger if we change our assumptions on the bulk
spectrum to ∆bulk ≥ 0.51. Because of this, we do not consider this plot to be
particularly relevant but it serves as a good warm-up example before tackling
the most interesting cases below.
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6.2.2 Improved bound for the boundary channel

The boundary bound obtained above can be improved by making further as-
sumptions. In the bulk channel decomposition of a scalar two-point function
we expect, on physical grounds, a “gap” between the unitarity bound and the
conformal dimension of the first operator appearing in the bulk OPE. For ex-
ample, according to table 6.1, in the three-dimensional Ising model the first
bulk operator appearing in the OPE of the spin operator σ is the energy op-
erator ε with ∆ε = 1.41, far above the unitarity bound. Clearly, allowing
for the bulk spectrum to go all the way down to the unitarity bound is very
unphysical. In figure 6.3 we present an improved bound in which we assumed
that the bulk spectrum satisfies ∆bulk ≥ 2∆ext.

0.52 0.54 0.56 0.58 0.60 0.62 0.64

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

∆ext

∆bdy

Figure 6.3: Improved bound for the first boundary operator in the special
transition. The bulk spectrum is assumed to satisfy ∆bulk ≥ 2∆ext.

Our solution seems to indicate that the bound cannot go below the straight
line where ∆bdy = ∆ext. The reason for this is the trivial solution (x1−x2)−2∆ext

which we discuss in appendix D.5. This two-point function contains no non-
trivial bulk blocks and thus effectively has an infinite gap in the bulk spectrum.
On the other hand, it also has a boundary channel expansion which starts
with a block of dimension ∆ext and our bound of course cannot get past this
particular solution. In a sense, the bound is optimal in this case, going down
until it hits a known solution to crossing symmetry.

For the Ising model the dimension of the first boundary operator has a
value of ∼ 0.42 and is well inside the allowed region of figure 6.3. Ideally, we
would have found a plot with some striking feature around this value, like the
kink of [1]. However, in our case the trivial solution is standing in the way.
A qualitative explanation for this difference appears in the epsilon expansion
results. Namely, the anomalous dimension of the ε operator (which is ϕ2 in
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d = 4) is positive at one loop, so the Ising model lies above any trivial (mean
field-like) solutions for the bulk four-point function. On the other hand, the
one-loop anomalous dimension of the first boundary operator is negative, so we
end up below the trivial solution. This was of course largely a coincidence - we
are not aware of any fundamental reason requiring these anomalous dimensions
to have a definite sign. Some effort was made in order to circumvent the trivial
solution but we did not succeed in obtaining reliable “kinks” that highlight
the presence of the Ising model.

We would like to stress however that our plot is still teaching us something
very non-trivial: the lowest boundary dimension can never be greater than
the external dimension. Interestingly, this result precisely implies that the
bulk-to-boundary OPE is never regular, see equation (5.21). It would be very
interesting to find a more direct argument for this result —perhaps even one
that does not rely on our specific assumptions.

6.2.3 Bounding the second boundary operator in the
Ising model

Our assumptions in the previous section were almost minimal, and the result
is a general bound valid on the space of BCFTs. In this section we will
take a closer look at the three-dimensional Ising model and attempt to bound
the second boundary operator. We will do so for both the ⟨σσ⟩ and ⟨εε⟩
correlators. Using the results from table 6.1 we can assume that1

∆ext = 0.518 ,

∆bulk ≥ 1.41 ,

∆
(1)
bdy ∼ 0.42 ,

∆
(2)
bdy ≥ ∆

(2)
min .

(6.12)

In the boundary channel the first block corresponds to σ̂. We assume that it
sits isolated at ∆

(1)
bdy ∼ 0.42 and that all the subsequent blocks have a scaling

dimension greater than ∆
(2)
min. Proceeding as before we push ∆

(2)
min as high as

possible until the CFT becomes inconsistent. This will give us an upper bound
for the dimension of the second operator σ̂′, only valid for the ⟨σσ⟩ correlator
of the 3d Ising model. Because ∼ 0.42 is our less precise value we will explore
a range around this number. Our result is shown in figure 6.4.

The same can be done for the ⟨εε⟩ correlator. The statistical mechanics

1The number in parenthesis label the operators on the boundary channel,“(1)” being
the lowest.
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Figure 6.4: Upper bound for the dimension of the second boundary operator
in ⟨σσ⟩ as a function of the dimension of the first boundary operator.

data [2] in this case are

∆ext = 1.41 ,

∆bulk ≥ 3.80 ,

∆
(1)
bdy ∼ 0.75 ,

∆
(2)
bdy ≥ ∆

(2)
min .

(6.13)

and the resulting bound is shown in figure 6.5.
Unfortunately, we were unable to find reliable estimates of the scaling di-

mensions of the second boundary operators in the statistical mechanics liter-
ature. It would of course be interesting to compare our values with e.g. a
two-loop computation for the Wilson-Fisher fixed point.

6.3 Extraordinary transition

In the extraordinary transition the boundary identity operator is always present,
so bounding the lowest boundary dimension is not an interesting exercise in
this case. The second boundary scalar operator is expected to be T̂dd, the en-
ergy momentum tensor with indices in the normal direction, evaluated on the
boundary. This operator is always present in the boundary spectrum and has
conformal dimension exactly equal to d, see [59] for details. Having so much
information about the boundary channel we would like to address the follow-
ing question: can we bound the bulk spectrum using the boundary bootstrap?
We will show below that this is indeed possible, although our bound is weaker
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Figure 6.5: Upper bound for the second boundary operator in ⟨εε⟩ as a function
of the first boundary operator.

than the one obtained in [1] who used the crossing symmetry equations for the
bulk four-point function.

6.3.1 Bound for the bulk channel

The assumptions for the extraordinary transition are

∆bulk ≥ ∆min .

∆
(1)
bdy = 0 ,

∆
(2)
bdy ≥ d ,

(6.14)

where we used a notation familiar from the previous section. The fact that
∆

(1)
bdy = 0 corresponds to the boundary identity operator which sits isolated,

and we then allow for any operator with a dimension greater than (or equal to)
d to be present in the boundary channel. ∆min is the lowest bulk dimension and
the quantity we want to bound. In figure 6.6 we plot our bound as a function of
the external dimension. Because figure 6.6 can be directly compared with the
bound of [1] we have superimposed their result on our plot. We can see that
the bound obtained using the boundary bootstrap is qualitatively different,
it is weaker and has no kink at the Ising point. Since we successfully found
an “optimal” bound for the boundary spectrum in the previous section, it is
surprising that our bulk bound does not exhibit any of the expected features.

There are two possible explanations for the discrepancy seen in figure 6.6.
First, there may be a spurious solution to crossing symmetry that we have not
found yet and that prevents the bound from going lower. If such a solution
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Figure 6.6: Bulk bound for the extraordinary transition as a function of the
external dimension. The dashed line corresponds to the (stronger) bound
obtained in [1] using the bulk crossing symmetry equations.

exists then it would be interesting to understand whether it corresponds to a
full-fledged BCFT or not. Notice that this solution would appear to violate the
bound of [1] but this may be due to the fact that certain operators do not get
one-point functions and therefore do not appear in our bulk block expansion.
The second explanation is that our numerics are not precise enough and that
we would be able to lower the bound by increasing our numerical precision.
We offer some comments on this second possibility below.

Bulk bound for arbitrary d

One of the advantages of studying the boundary problem is that the blocks
are an analytic function of d. In figure 6.7 we plot the bulk bound obtained
above for different dimensions including non-integer values.

The bound we find is always significantly different from any known solu-
tions to crossing symmetry. In particular, in the figure we have shown the line
interpolating through the minimal models in d = 2 and the Ising model for the
integral dimensions. Again, it would be interesting to understand if this is due
to our finite numerical precision or whether there exist ‘spurious’ solutions to
the crossing symmetry equations at the current bounds.

6.3.2 Upper bound for T̂dd OPE coefficient

The method of linear functionals can also be used to bound OPE coefficients.
In [42] a universal upper bound for the OPE coefficient of three scalars was
found using the four-point function bootstrap. The same technique was used
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Figure 6.7: Bulk bound for different spacetime dimensions in the extraordinary
transition. We highlighted the Ising model in various dimensions with the
crosses. The dashed line is a specific solution for d = 2 which interpolates
through the minimal models, see appendix D.2.

in [43, 44] to obtain an upper bound for the OPE coefficient of the stress
tensor. This coefficient is inversely proportional to the central charge c of the
theory so the result translates into a lower bound for c.

In this section we will use the boundary bootstrap to bound the coefficient
µ2
d of the T̂dd boundary block fbdy(d, ξ). We recall that this block is always

present in the extraordinary transition, see the OPE in table 6.1. We start by
imposing,

Λ(ξ∆extfbdy(d, ξ)) = 1 , (6.15)

Λ(F∆) ≥ 0 . (6.16)

Applying this functional to the crossing symmetry relation (6.4) we obtain,

µ2
d ≤ Λ(1) , (6.17)

where µ2
d is the OPE coefficient of fbdy(d, ξ). The best bound is obtained by

minimizing the action of Λ on the identity. For the spectrum we require,

∆bulk ≥ 2∆ext ,

∆
(1)
bdy = 0 ,

∆
(2)
bdy ≥ d .

(6.18)

Notice that we have again assumed a gap of 2∆ext in the bulk. We plot our
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result as a function of the external dimension in figure 6.8. Let us try to justify
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Figure 6.8: Upper bound for the coefficient of the T̂dd block as a function of
the external dimension. The dashed line represents and improved bound with
a stronger assumption for the gap, following the dashed line of figure 6.6 (see
text).

our choice of ∆bulk ≥ 2∆ext. A way to make the bound stronger would be to
increase the bulk gap above this value, the maximum value we can assume
for the gap is dictated by the bulk bound of [1], obtained using the four-point
bootstrap equations. In figure 6.8 we have thus plotted an improved upper
bound (dashed line) assuming ∆bulk ≥ f(∆ext), where f(∆) is the function
represented by the dashed line of figure 6.6. It is clear that the upper bound
is not too sensitive to the assumed gap. For example, for the Ising model
∆ext = 0.518, and the upper bounds are µ2

d . 0.0734 and µ2
d . 0.0693 for

∆bulk ≥ 2(0.518) ∼ 1.04 and ∆bulk ≥ f(0.518) = 1.41 respectively. A change
of ∼ 0.37 in the bulk gap translates into a change of ∼ 0.0041 in the bound,
so at least for this example 2∆ext does a good job as a representative gap for
the space of CFTs.

The procedure used above generalizes with no major changes to arbitrary
dimensions, let us then make a quick comparison with some known values.
For the 2d Ising model the coefficient µ2

d can be read from the conformal
block expansion in (D.5), it has the value µ2

d = 1
32

√
2
∼ 0.0221 whereas the

Linear Programming methods result in an upper bound µ2
d . 0.0309. For the

extraordinary transition in the ϵ-expansion equation (D.29) tells us µ2
d =

1
10

=
0.10, whereas we obtained the upper bound µ2

d . 0.119 in four dimensions.
We see that the numbers agree reasonably well.
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6.3.3 Towards the Ising model

In analogy with [1] we may try to isolate the Ising model in various dimen-
sions. To this end we will improve the results of the previous section by using
as additional knowledge the dimension of the next scalar operator ε′ which
appears in the σ × σ OPE. According to table 6.1, in three dimensions this
operator has a scaling dimension ∆ϵ′ of approximately 3.84 whereas in two di-
mensions it has dimension 4 (it corresponds to L−2L̄−21). We again assumed a
boundary channel spectrum consistent with the extraordinary transition, i.e.
a possible one-point function and a gap equal to the spacetime dimensions d.
Summarizing,

∆
(2)
bulk ≥ ∆ϵ′ ,

∆
(1)
bdy = 0 ,

∆
(2)
bdy ≥ d .

(6.19)

with ∆ϵ′ fixed to the values of table 6.1. Our aim is now to find the possible
range of values that ∆

(1)
bulk can take. The resulting plots are shown in figure

6.9.
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Figure 6.9: Locating the Ising model in d = 2 (left) and d = 3 (right). The
plots show the dimension of a bulk operator versus the external dimension.
With the assumptions explained in the main text, we need at least one bulk
operator in the shaded regions. The Ising model is indicated with the cross in
both plots.

Notice that the plots give results that are qualitatively similar to those of
[1], in a considerably simpler setup. This is of course an encouraging result.
Furthermore, we also did not rule out the Ising model and this provides some
a posteriori justification for our assumption of positivity in three dimensions.
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It is however rather unfortunate that the bounds we obtain are relatively
weak. For this specific example we have tried different numerical implementa-
tions as well, for example we included more derivatives or evaluated the blocks
at different points like ξ = 1/2 or ξ = 2. In each case we were unable to sig-
nificantly lower the bounds. We have also attempted to improve the results
by imposing an additional gap between the second and the third operator in
the bulk channel. The third bulk operator has scaling dimensions 8 in d = 2
and approximately 4.6 in d = 3. Imposing this additional gap significantly
improved the bounds for d = 2 but unfortunately this was not the case for
d = 3.

6.4 Numerical results for stress tensors

The numerical analysis of equation (5.40) proceeds largely as for the scalar
two-point function. In particular, we again translate the constraints of cross-
ing symmetry to an infinite vector of derivatives at ξ = 1 and apply a linear
functional in order to exclude certain spectra, using the same numerical meth-
ods as described above. Notice that the Ward identities (5.39) can be used to
express derivatives of f and g in terms of derivatives of h. We therefore do not
need to include more than the zeroth derivative for the f and g components if
we include many derivatives of the h component. There is again no guarantee
that the coefficients of the conformal blocks are positive in the bulk channel.
Just as before we will therefore have to assume this condition of positivity in
order to obtain bounds.

6.4.1 Bound on the bulk gap

In order to turn equation (5.40) into a useful equation to constrain conformal
field theories we have to decide which parameters we are going to vary. In
previous computations of this sort the canonical parameter was always the
dimension of the external field but for the stress tensor this dimension is fixed
to be d. In our first analysis we instead chose to vary the dimension of the
lowest spin 2 boundary block which we denote as ∆(2). We then obtain an
upper bound for the lowest bulk operator dimension as a function of ∆(2)

which we plot as the upper curve in figure 6.10.
We may rephrase this result by saying that the upper curve in figure 6.10

informs us that the crossing symmetry equation (5.40) can only be satisfied if
there is at least one “critical” bulk operator with a scaling dimension some-
where below the curve. We can however subsequently ask whether this “criti-
cal” operator really could be sitting anywhere below the curve (and above the
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unitarity bound ∆bulk > 1/2). In fact it turns out that the region where such
an operator has to appear can be constrained even further: we can limit it to
the shaded region in figure 6.10. We conclude that for every ∆(2) there has to
be at least one bulk operator somewhere within this region. (There could in
addition be other operators, for example somewhere in the white “band” or
multiple operators in the shaded region, but none of this modifies the validity
of our claim.)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

2

4

6

8

∆(2)

∆bulk

Figure 6.10: Bounds for the energy momentum tensor two-point function
in three spacetime dimensions. The upper curve is the upper bound ∆bulk

for the first bulk operator as a function of the gap ∆(2) for the first spin 2
boundary operator. The other lines denote further constraints for such a bulk
operator, to the extent that for every ∆(2) there has to be at least one bulk
scalar somewhere in the shaded region.

In figure 6.10 we assumed that the vector block was not present in the
boundary OPE of Tµν . Upon repeating the analysis with a vector block we
obtained exactly the same curves for ∆(2) > 3 (up to small deviations due to
the finite numerical precision), whereas for ∆(2) ≤ 3 we would not be able to
bound the bulk gap at all. The latter phenomenon has an easy explanation:
the bulk identity operator can be decomposed in the boundary channel into
the scalar block, the vector block and an infinite series of spin 2 blocks starting
with ∆(2) = 3. For ∆(2) ≤ 3 and with the vector block present it is therefore
possible to have an infinite gap in the bulk (i.e. no bulk operators apart from
the identity) and so ∆bulk cannot be bounded. This is reminiscent of the
“trivial” solution for the scalar two-point function discussed in appendix D.5
which we found numerically in section 6.2.

The curves shown in figure 6.10 have several “bumps” and other features
whose origins are unfortunately unclear to us. For example, we were unable to
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find specific solutions of crossing symmetry that reflect the existence of these
bumps. It would be interesting to see if such solutions exist and whether a
conformal field theory is associated to them.

6.4.2 Bound on OPE coefficients in the three-dimensional
Ising model

In section 6.3.2 we discussed how to bound OPE coefficients in the conformal
block decomposition. Here we repeat the same procedure for the two-point
function of the stress tensor. We will again bound the coefficient of the bound-
ary operator T̂dd which in equation (5.40) corresponds to the coefficient µ2

(0)

of the scalar block in the boundary channel. In addition, we decided to focus
our attention on the three-dimensional Ising model. In particular, we have
assumed that the bulk spectrum consists of operators with dimensions equal
to 1.41, 3.84, and any operator with a scaling dimension greater than 4.6.
We then obtain an upper bound on µ2

(0) as a function of the unknown scaling
dimension ∆(2) of the lowest spin two operator in the boundary channel. We
assumed that no vector operator was present in the boundary channel. We
plot our results in figure 6.11.
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Figure 6.11: Bounds for the coefficient of the scalar boundary block in the
two-point function of the stress tensor as a function of the gap ∆(2) in the spin
2 boundary dimensions.

We find a plateau for ∆(2) between approximately 2.9 and 3.2 where µ2
(0) ∼

11.5. From the results in appendix E we find that µ2
(0) = 4 in two dimensions

and that µ2
(0) = 640/ϵ + O(ϵ0) in 4 − ϵ dimensions so at the very least our

estimate appears to have the right order of magnitude.
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Chapter 7

Discussion and Future Work

The work presented in this thesis is naturally divided into two parts. Let us
summarize our results for each of them.

In the first part consisting of chapters 2, 3, and 4 we found N = 2 super-
conformal symmetry is more constraining than naively expected: it fixes the
one-loop Hamiltonian of N = 2 SCQCD completely, and that of the interpo-
lating quiver theory up to a single parameter. The same is true for the N = 1
superconformal algebra. Using the same techniques as in the N = 2 theory,
we constrained the one-loop dilation operator of N = 1 SQCD. Both results
generalize the scalar sector calculations of [13] and [19]. For the N = 1 theory
we worked in the “electric” description of the theory, at the Banks-Zaks fixed
point near the upper edge of the conformal window. It would be interesting to
apply the same strategy to the dual magnetic theory, at the Banks-Zaks fixed
point in the lower edge of the conformal window.

One-loop integrable subsectors are easy to identify in both theories, but
they are trivially isomorphic to analogous sectors inN = 4 SYM. The question
we would like to answer is whether these theories are completely integrable.
Armed with the full Hamiltonian we performed a systematic search of parity
pairs, a hallmark of integrability, in chapter 4. Our analysis indicates that the
presence of degenerate pairs is not as systematic in in the N = 2 and N = 1
theories as it is in N = 4 SYM. These preliminary results are not particularly
encouraging, but also not conclusive.

In order to give a definite answer to the question of integrability, at least
for the N = 2 theory, in chapter 4 we studied the SU(2|1) sector spanned by,

{ϕ, λα,M} . (7.1)

We fixed the two-loop Hamiltonian using algebraic techniques up to two unde-
termined coefficients. It turned out that the Yang-Baxter equation for magnon
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scattering is not satisfied in this sector. This proves that N = 2 SCQCD can-
not be completely integrable. For N = 1 SQCD we don’t have a proof of
non-integrability, but the results for N = 2 together with the parity pairs
analysis seem to indicate that this theory is not fully integrable as well.

Even if the complete theories turn out to be non-integrable, we can still ask
whether there is scope for integrability in some closed subsectors. In chapter
4 we argued in favor of the the SU(2, 1|2) subsector spanned by

{Dk
+α̇ ϕ ,Dk

+α̇ λI+ , Dk
+α̇ F++} , (7.2)

and the SU(2, 1|1) subsector spanned by

{Dk
+α̇ λ+ , Dk

+α̇ F++} . (7.3)

In the N = 2 case, while at one loop its Hamiltonian coincides with that
of N = 4 SYM, it will start differing from it at sufficiently high order. It
will be very interesting to investigate whether integrability is preserved. The
two-body magnon S-matrix is completely fixed by symmetry (up to the over-
all dynamical phase) to be the SU(2|2) S-matrix of [7], which automatically
satisfies the Yang-Baxter equation. Still, integrability is by no means obvi-
ous, since factorization of the n-body S-matrix is a stronger condition than
Yang-Baxter. If this sector turns out to be integrable to all loops, its differ-
ence from the analogous sector of N = 4 SYM would be fully encoded in the
expression of the dynamical phase and of the magnon dispersion relation. The
difference with N = 4 SYM should start appearing at three loops [14]. For
N = 1 SQCD, the SU(2, 1|1) sector exists of course also in the dual magnetic
theory, so its integrability may allow to interpolate across the whole conformal
window. We look forward to future investigations of this scenario.

In the second part of this thesis, consisting of chapter 5 and 6, we explored
the constraining power of crossing symmetry for BCFTs in general spacetime
dimension. After discussing the basic setup in section 5.1, we illustrated the
relative simplicity of the “boundary bootstrap” in section 5.2 where we found
exact solutions with at most two blocks in each channel. We have then applied
the linear programming methods of [3] to the boundary crossing symmetry
equations for both scalar operators and stress tensors. With our assumption
of positivity for the bulk expansion coefficients, we have demonstrated that
these methods can be useful in the BCFT setup as well and that they lead
to interesting universal bounds on scaling dimensions and OPE coefficients.
Several of our results warrant a more detailed theoretical investigation. For
example, the bound on the second boundary operator in the special transition
and the Tdd OPE coefficient in the extraordinary transition should be compared
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with computations in the epsilon expansion. Similarly, our numerical results of
section 6.2 indicate that the bulk-to-boundary OPE always has to be singular,
a result that should be put on a more solid theoretical footing. Finally, our
results for the stress tensor are rather mysterious and certainly call for further
investigations, beginning with the one-loop anomalous dimension of the spin
two boundary operator in the extraordinary transition.

It is unfortunate that the distinct “kinks” of [1] appear not to be generically
present in the BCFT bounds. We emphasize that this (negative) result is
completely independent from our positivity assumption, indeed in d = 2 we
see no kink but we know that the exact result does exhibit positivity. It
would be interesting to see if there is another solution to crossing symmetry
“standing in the way” and thereby preventing us from obtaining such a kink.
More generally our results are a reflection of the fact that there is currently
no deep understanding of why and when such kinks will appear. It would of
course be very interesting to understand this phenomenon better. We hope
that our numerical results will be helpful in further investigations.

The weakest point of our analysis is admittedly the assumption of positivity
for the bulk expansion coefficients. While we have presented strong evidence
that it is satisfied for the special and extraordinary Ising BCFTs, it would
be desirable to find a proof. A possible approach would be to derive rigorous
inequalties for boundary correlators on the lattice.

It is clear that the possibilities for further numerical exploration are prac-
tically unlimited. This paper is a first attempt to investigate the boundary
bootstrap with a focus on the three-dimensional Ising model, but we feel we
have just scratched the surface and that there are many interesting open ques-
tions. To mention a few, there are many other operator dimensions and OPE
coefficients to be bounded, one may extend our results to supersymmetric
theories, and to spacetime dimensions greater than four. Furthermore, the
relatively simple form of the conformal blocks makes the boundary bootstrap
especially suitable for investigations involving tensor operators, a research di-
rection that is much more involved for the bulk four-point function in a theory
with no boundary. Finally there is the prospect to broaden the setup and
include conformal defects of all possible codimensions.

The Supersymmetric Bootstrap

The two lines of research presented in this thesis can be somehow combined
by adding supersymmetry to the bootstrap equations. In this last section we
will discuss its implementation and some preliminary results. Let us start by
considering the more familiar case of crossing symmetry for a scalar four-point
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function in a “bulk” CFT (i.e. without the presence of a boundary). This
correlator is fixed by conformal symmetry up to two conformal invariants u
and v:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
g(u, v)

x
2∆ϕ

12 x
2∆ϕ

24

, (7.4)

where ∆ϕ is the conformal dimension of ϕ. The function g(u, v) is arbitrary
and using the OPE decomposition

ϕ(x)ϕ(0) =
∑

O∈ϕ×ϕ

λOC[x, ∂]O(0) (7.5)

we can write it as a sum of conformal blocks,

g(u, v) =
∑

O∈ϕ×ϕ

λ2g∆,ℓ(u, v) . (7.6)

The sum goes over the conformal primaries O of dimension ∆ and spin ℓ and
the block g∆,ℓ(u, v) encodes the contribution of the whole conformal family
generated by O. For four dimensions, explicit expressions for these blocks
in terms of hypergeometric functions were found in [72]. Invariance under
x1 ↔ x2 and x1 ↔ x3 implies:∑

O∈ϕ×ϕ

λ2Og∆,ℓ(u, v) =
(u
v

)∆ϕ ∑
O∈ϕ×ϕ

λ2Og∆,ℓ(v, u) . (7.7)

Isolating the contribution of the identity operator we can write a “sum rule”
suitable for linear programming techniques [3]:

1 =
∑
O

λ2OF∆ ,ℓ(u, v) (7.8)

where

F∆ ,ℓ(u, v) =
v∆ϕg∆,ℓ(u, v)− u∆ϕg∆,ℓ(v, u)

u∆ϕ − v∆ϕ
. (7.9)

Now, the sum goes over all the primaries O appearing in the ϕ × ϕ OPE,
in supersymmetric theories, different conformal primaries can be related by
supersymmetry transformations. This usually implies that different three-
point couplings are related to each other and we can further constraint the
conformal block expansion.

110



7.1 An N = 2 superconformal fixed point with

E6 symmetry

Our discussion will be more transparent if we consider a particular example.
Let us study then how crossing symmetry works for the N = 2 theory of
Minahan and Nemeschansky found in [73].1 This is a strongly correlated theory
with no Lagrangian description and therefore hard to study. It has an E6 flavor
group with an associated current Jαα̇, this current sits in a superconformal
multiplet whose lowest weight state is a scalar. The structure of the multiplet
is shown in table 7.1.

ϕIJ

↙ ↘

ψI
α ψ̄I α̇

↙ ↘ ↙ ↘

ρ Jαα̇ ρ̄

Table 7.1: Field content of the B̂1 multiplet. The arrows↙ and↘ correspond
to the action of the Q I

α and Q̄α̇I supercharges respectively.

Being a scalar, the lowest weight state can be studied using the crossing
symmetry techniques described above. There is however a technicality that
we did not discuss in this work, the fact that the scalar ϕIJ is in the triplet of
SU(2)R and in the adjoint (78) of the flavor group (we are suppressing flavor
indices). This means that there are several channels in the OPE decomposition
of ϕ× ϕ. Apart from the SU(2)R channels

3× 3 = 1+ 3+ 5 , (7.10)

we also have the E6 Clebsch-Gordan decomposition,

78× 78 = 1+ 650+ 2430+ 78+ 2925 . (7.11)

In principle, we have 15 different channels all with their associated crossing
symmetry equation. It turns out that the three SU(2)R channels are related

1Bootstrap equations with N = 1 supersymmetry were studied in [44].
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to each other [74] and so we are left with five different crossing symmetry
equations. Crossing symmetry for scalars with flavor quantum numbers were
studied in [45–47].

Having understood the flavor structure what remains is to impose the con-
straints coming from N = 2 superconformal symmetry. This analysis was
done in [74] and we will quote their results here. As usual, we will follow the
conventions of [20] for superconformal multiplets. The flavor current multiplet
shown in figure 7.1, denoted by B̂1, has the following OPE decomposition,

B̂1 × B̂1 ∼ 1+ B̂1 + B̂2 + ĈR=0(j,j) + ĈR=1(j,j) +A∆
R=0,r=0,(j,j) . (7.12)

Here 1 correspond the identity operator, B̂2 is a short multiplet in the same
family as B̂1, ĈR=0(j,j) and ĈR=1(j,j) are semi-short multiplets and A∆

R=0,r=0,(j,j)

denotes the long-multiplets. The ĈR=0(0,0) and B̂1 multiplets contain the stress
tensor Tαα̇,ββ̇ and the flavor current Jαα̇ respectively. Its three-point couplings
are therefore proportional to the central charge c and the flavor central charge
κ. From the point of view of the bootstrap equations, these central charges
are arbitrary parameters. For the E6 theory we are studying we will fix them
to their known values: c = 13

6
and κ = 6.

Each of the superconformal multiplets appearing in the OPE (7.12) is com-
posed of a finite number of conformal multiplets. This means that we can
assemble different conformal blocks into one “superconformal block”. For ex-
ample, the superconformal block that encodes the contribution of the long
multiplet A∆

R=0,r=0,(j,j) is given by [74],

GN=2
∆,ℓ = g∆,ℓ − g∆+1,ℓ+1 −

1

4
g∆+1,ℓ−1 +

1

4
g∆+2,ℓ

+
(∆ + ℓ+ 2)2

4(∆ + ℓ+ 1)(∆ + ℓ+ 3)
g∆+2,ℓ+2 −

(∆ + ℓ+ 2)2

16(∆ + ℓ+ 1)(∆ + ℓ+ 3)
g∆+3,ℓ+1

+
(∆− ℓ)2

64(∆− ℓ− 1)(∆− ℓ+ 1)
g∆+2,ℓ−2 −

(∆− ℓ)2

64(∆− ℓ− 1)(∆− ℓ+ 1)
g∆+3,ℓ−1

+
(∆ + ℓ+ 2)2(∆− ℓ)2

256(∆ + ℓ+ 1)(∆ + ℓ+ 3)(∆− ℓ− 1)(∆− ℓ+ 1)
g∆+4,ℓ . (7.13)

As stated above, we have several conformal multiplets contributing with their
respective three-point couplings related by supersymmetry. The conformal
blocks for the short and semi-short multiplets in (7.12) were also calculated
in [74]. We can now set up the crossing symmetry equations with the extra
constraints coming from supersymmetry.

Let us skip the details and present some preliminary results. In table 7.2
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we show an upper bound for the first non-protected scalar in each of the E6

channels. The columns correspond to the number of derivatives considered
(12,18,22,26). As the derivatives increase, the bound becomes stronger.

12 18 22 26

1 6.55 5.10 4.80 4.72

650 3.54 3.42 3.40 3.36

2430 4.84 4.66 4.62 4.60

78 5.05 4.75 4.65 4.55

2925 5.30 5.20 5.15 5.15

Table 7.2: Upper bound for the first non-protected scalar in each of the E6

channels. The columns correspond to the number of derivatives considered in
the linear programming.

From the table is clear that the bound has not reached a stable value
and that we need to increase our vector space by adding more derivatives
and maybe using a finer grid. The hope is that once the bound reaches a
stopping point it would correspond to the actual value of the dimension of the
first operator in the OPE, a piece of information that is inaccessible by other
means.

The supersymmetric bootstrap also allows us to study the space of su-
perconformal theories. We could plot the bounds for the first non-protected
scalars as a function of c and κ (generalizing table 7.2) and look for kinks or
features (in the spirit of [1]), with the hope of discovering new superconformal
theories. We can also generalize our analysis to flavor groups other than E6.

Moreover, the B̂1 four-point function is not the only one that can be boot-
strapped. For example, the stress tensor multiplet CR=0(0,0) also has a scalar
as a lowest weight state and can be analysed using bootstrap techniques. The
superconformal blocks for this multiplet however, have not been calculated
yet, and that is a research project on its own.

As we can see, the supersymmetric bootstrap is a beautiful merging of
the two lines of research presented in this thesis. It is a promising research
direction with a lot of new results waiting to be uncovered and we hope to
come back to it elsewhere.
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Appendix A

N = 2 Superconformal Algebra

In this appendix we present a collection of results for the N = 2 superconfor-
mal algebra, necessary for the calculation of the complete one-loop Hamilto-
nian presented in the main text.

A.1 N = 2 Superconformal Multiplets

Detailed studies of the possible shortening conditions for the N = 2 supercon-
formal algebra were performed in [20, 75, 76]. In this appendix we summarize
their findings in table A.1, following the conventions of [20].

A generic long multiplet of the N = 2 superconformal algebra is denoted
by A∆

R,r(j,j̄). It is generated by the action of the 8 Poincaré supercharges Q
and Q̄ on a superconformal primary, which by definition is annihilated by
all the conformal supercharges S. When some combination of the Q’s also
annihilates the primary, the corresponding multiplet is shorter. |R, r⟩h.w.

(j,j̄) is the

highest weight state with eigenvalues (R, r, jj̄) under the Cartan generators
of the SU(2)R × U(1)r R-symmetry and of the Lorentz group. The multiplet
built on this state is denoted as XR,r(j,j̄), where the letter X characterizes the
shortening condition. The left column of table A.1 labels the condition. A
superscript on the label corresponds to the index I = 1, 2 of the supercharge
that kills the primary: for example B1 refers to Q 1

α . Similarly a “bar” on
the label refers to the conjugate condition: for example B̄2 corresponds to
Q̄2 α̇ annihilating the state; this would result in the short anti-chiral multiplet
B̄R,r(j,0), obeying ∆ = 2R − r. Note that conjugation reverses the sign of r
and exchanges j and j̄ in the expression of the conformal dimension.
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Shortening Conditions Multiplet

B1 Q1
α|R, r⟩h.w. = 0 j = 0 ∆ = 2R+ r BR,r(0,j̄)

B̄2 Q̄2α̇|R, r⟩h.w. = 0 j̄ = 0 ∆ = 2R− r B̄R,r(j,0)

E B1 ∩ B2 R = 0 ∆ = r Er(0,j̄)

Ē B̄1 ∩ B̄2 R = 0 ∆ = −r Ēr(j,0)

B̂ B1 ∩ B̄2 r = 0, j, j̄ = 0 ∆ = 2R B̂R

C1 ϵαβQ1
β|R, r⟩h.w.

α = 0 ∆ = 2 + 2j + 2R+ r CR,r(j,j̄)

(Q1)2|R, r⟩h.w. = 0 for j = 0 ∆ = 2 + 2R+ r CR,r(0,j̄)

C̄2 ϵα̇β̇Q̄2β̇|R, r⟩h.w.
α̇ = 0 ∆ = 2 + 2j̄ + 2R− r C̄R,r(j,j̄)

(Q̄2)
2|R, r⟩h.w. = 0 for j̄ = 0 ∆ = 2 + 2R− r C̄R,r(j,0)

F C1 ∩ C2 R = 0 ∆ = 2 + 2j + r C0,r(j,j̄)

F̄ C̄1 ∩ C̄2 R = 0 ∆ = 2 + 2j̄ − r C̄0,r(j,j̄)

Ĉ C1 ∩ C̄2 r = j̄ − j ∆ = 2 + 2R+ j + j̄ ĈR(j,j̄)

F̂ C1 ∩ C2 ∩ C̄1 ∩ C̄2 R = 0, r = j̄ − j ∆ = 2 + j + j̄ Ĉ0(j,j̄)

D B1 ∩ C̄2 r = j̄ + 1 ∆ = 1 + 2R+ j̄ DR(0,j̄)

D̄ B̄2 ∩ C1 −r = j + 1 ∆ = 1 + 2R+ j D̄R(j,0)

G E ∩ C̄2 r = j̄ + 1, R = 0 ∆ = r = 1 + j̄ D0(0,j̄)

Ḡ Ē ∩ C1 −r = j + 1, R = 0 ∆ = −r = 1 + j D̄0(j,0)

Table A.1: Shortening conditions and short multiplets for the N = 2 super-
conformal algebra.

A.2 Oscillator Representation

In this appendix we descibe the oscillator representation of the N = 2 su-
perconformal algebra SU(2, 2|2). We introduce two sets of bosonic oscillators
(aα, a†

α), (b
α̇,b†

α̇) and one set of fermionic oscillators (cI , c†I), where (α, α̇)
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are Lorentz indices and I is an SU(2)R index. In addition we will need

two more “auxiliary” fermionic operators (d,d†) and (d̃, d̃
†
). The non-zero

(anti)commutation relations are

[aα, a†
β] = δαβ , (A.1)

[bα̇,b†
β̇
] = δα̇

β̇
, (A.2)

{cI , c†J } = δIJ , (A.3)

{d,d†} = {d̃, d̃†} = 1 . (A.4)

In this oscillator representation the generators of SU(2, 2|2) read

Q I
α = a†

αc
I , Q̄α̇I = b†

α̇c
†
I , (A.5)

S α
I = c†Ia

α , S̄ α̇I = bα̇cI , (A.6)

Pαβ̇ = a†
αb

†
β̇
, Kαβ̇ = aαbβ̇ , (A.7)

L α
β = a†

βa
α − 1

2
δαβa

†
γa

γ , (A.8)

L̇ α̇

β̇
= b†

β̇
bα̇ − 1

2
δα̇
β̇
b†
γ̇b

γ̇ , (A.9)

R I
J = c†J c

I − 1

2
δIJ c

†
Kc

K , (A.10)

r = −1

2
c†Kc

K +
1

2
d†d+

1

2
d̃
†
d̃ , (A.11)

D = 1 +
1

2
a†
γa

γ +
1

2
b†
γ̇b

γ̇ , (A.12)

C = 1− 1

2
a†
γa

γ +
1

2
b†
γ̇b

γ̇ − 1

2
c†Kc

K − 1

2
d†d− 1

2
d̃
†
d̃ . (A.13)

Here C is a central charge that must kill any physical state. It could be
eliminated from the algebra by redefining r + C → r, but it is useful for
implementing the harmonic action so we will keep it. The quadratic Casimir
operator is

J2 =
1

2
D2 +

1

2
L β

α L α
β +

1

2
L̇ β̇

α̇ L̇ α̇

β̇
− 1

2
R J

I R I
J

−1

2
[Q I

α ,S α
I ]− 1

2
[Q̄α̇I , S̄ α̇I ]− 1

2
{Pαβ̇,K

αβ̇} (A.14)

−1

2
(r + C)(r + C) .
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A.2.1 Vector multiplets V and V̄
We define a vacuum state |0⟩ annihilated by all the lowering operators. Then
we identify

DkF = (a†)k+2(b†)k(c†)0|0⟩ , (A.15)

Dkλ = (a†)k+1(b†)k(c†)1|0⟩ , (A.16)

Dkϕ = (a†)k (b†)k(c†)2|0⟩ , (A.17)

and

DkF̄ = (a†)k(b†)k+2(c†)2d†d̃
†|0⟩ , (A.18)

Dkλ̄ = (a†)k(b†)k+1(c†)1d†d̃
†|0⟩ , (A.19)

Dkϕ̄ = (a†)k(b†)k (c†)0d†d̃
†|0⟩ . (A.20)

For example,

λIα = a†
αc

†
I |0⟩ , λ̄Iα̇ = b†

α̇c
†
Id

†d̃
†|0⟩ . (A.21)

It’s easy to see that all the quantum numbers match, including the zero central
charge constraint.

A.2.2 Hypermultiplet H
Similarly, for the hypermultiplet we identify

DkQ = (a†)k(b†)k(c†)1d†|0⟩ , (A.22)

DkQ̄ = (a†)k(b†)k(c†)1d̃
†|0⟩ , (A.23)

Dkψ = (a†)k+1(b†)kd†|0⟩ , (A.24)

Dkψ̃ = (a†)k+1(b†)kd̃
†|0⟩ , (A.25)

Dkψ̄ = (a†)k(b†)k+1(c†)2d̃
†|0⟩ , (A.26)

Dk ¯̃ψ = (a†)k(b†)k+1(c†)2d†|0⟩ . (A.27)

A.3 Two-letter Superconformal Primaries

By demanding that they are annihilated by all the conformal supercharges and
by the appropriate combinations of Poincaré supercharges, we have worked
out the expressions for the superconformal primaries of the irreducible mod-
ules that appear on the right hand side of the tensor products (2.9)–(2.14).
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The grassmannOps.m oscillator package by Jeremy Michelson and Matthew
Headrick was extremely useful for this task. We simply quote the results:

V × V:

Ē2(0,0) = ϕϕ , (A.28)

D̄ 1
2
( 1
2
,0) = λ1+ϕ− ϕλ1+ , (A.29)

Ĉ0( q+1
2

, q−1
2

) =

q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q

k

)(
Dq−k−1λ1+Dkλ2+ −Dq−k−1λ2+Dkλ1+

)
+

1

q + 1

( q−1∑
k=0

(−1)k
(
q − 1

k

)(
q + 1

k

)
Dq−k−1F+̇+̇Dkϕ

+

q−1∑
k=0

(−1)k
(
q − 1

k

)(
q + 1

k + 2

)
Dq−k−1ϕDkF+̇+̇

)
. (A.30)

For V̄ × V̄ the expressions are identical with (ϕ, λ,F) replaced by (ϕ̄, λ̄, F̄).
The Casimir operator acting on these modules gives

J2
12Ē2(0,0) = 0 , (A.31)

J2
12Ĉ0( q+1

2
, q−1

2
) = (q + 1)(q + 2)Ĉ0( q+1

2
, q−1

2
), q ≥ −1 . (A.32)

V ×H:

D̄ 1
2
(0,0) = ϕQ1 , (A.33)

Ĉ0( q+1
2

, q
2
) =

q∑
k=0

(−1)k
(
q

k

)(
q + 1

k

)(
Dq−kλ2+DkQ1 −Dq−kλ1+DkQ2

)
−

q∑
k=0

(−1)k
(
q

k

)(
q + 1

k + 1

)
Dq−kϕDkψ+

+q

q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q + 1

k

)
Dq−k−1F++Dk ¯̃ψ+̇ . (A.34)

As before, for V̄ × H we replace (ϕ, λ,F) and (ψ, ¯̃ψ) by its conjugates. The
action of the Casimir is

J2
12Ĉ0( q+1

2
, q
2
) = (q +

3

2
)(q +

5

2
)Ĉ0( q+1

2
, q
2
), q ≥ −1 . (A.35)
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H× V:

D̄ 1
2
(0,0) = Q1ϕ̌ , (A.36)

Ĉ0( q+1
2

, q
2
) =

q∑
k=0

(−1)k
(
q

k

)(
q + 1

k + 1

)(
Dq−kQ2Dkλ̌1+ −Dq−kQ1Dkλ̌2+

)
+

q∑
k=0

(−1)k
(
q

k

)(
q + 1

k

)
Dq−kψ+Dkϕ̌

+q

q−1∑
k=0

(−1)k

k + 2

(
q − 1

k

)(
q + 1

k + 1

)
Dq−k−1 ¯̃ψ+̇DkF̌++ . (A.37)

H×H:

B̂1 = Q1Q̄1 , (A.38)

Ĉ0( q
2
, q
2
) =

q∑
k=0

(−1)k
(
q

k

)(
q

k

)(
Dq−kQ1DkQ̄2 −Dq−kQ2DkQ̄1

)
+q

q−1∑
k=0

(−1)k

k + 1

(
q

k

)(
q + 1

k

)
Dq−kψ+Dkψ̄+̇

−q
q−1∑
k=0

(−1)k

k + 1

(
q

k

)(
q + 1

k

)
Dq−k ¯̃ψ+̇Dkψ̃+ , (A.39)

with
J2
12Ĉ0( q2 , q2 ) = (q + 1)(q + 2)Ĉ0( q

2
, q
2
), q ≥ −1 . (A.40)

V × V̄:

Ĉ0( q
2
, q
2
) =

√
2(q + 2)

q + 1

(
q∑

k=0

(−1)k
(
q

k

)(
q

k

)
Dq−kϕDkϕ̄

−q
q−1∑
k=0

(−1)k

k + 1

(
q

k

)(
q + 1

k

)(
Dq−kλ1+Dkλ̄2+̇ −Dq−kλ2+Dkλ̄1+̇

)
+q

q−2∑
k=0

(−1)k

k + 2

(
q + 1

k + 1

)(
q + 2

k

)
Dq−kF++DkF̄+̇+̇

)
. (A.41)

For V̄ × V we conjugate all fields.
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Appendix B

N = 1 Superconformal Algebra

In this appendix we present a collection of results for the N = 1 superconfor-
mal algebra, necessary for the calculation of the complete one-loop Hamilto-
nian presented in the main text.

B.1 N = 1 superconformal multiplets

In this appendix we summarize some basic facts about N = 1 superconformal
representation theory [22]. A generic long multipletA∆

r(j1,j2)
is generated by the

action of 4 Poincaré supercharges Qα and Q̄α̇ on a superconformal primary
which by definition is annihilated by all the conformal supercharges S. In
table B.1 we have summarized the possible shortening and semi-shortening
conditions.

B.2 Oscillator Representation

In this appendix we describe the oscillator representation of the N = 1 su-
perconformal algebra SU(2, 2|1). We introduce two sets of bosonic oscillators
(aα, a†

α), (b
α̇,b†

α̇) and one fermionic oscillator (c, c†), where (α, α̇) are Lorentz
indices. In addition we will need three more “auxiliary” fermionic operators
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Shortening Conditions Multiplet

B Qα|r⟩h.w. = 0 j1 = 0 ∆ = −3
2r Br(0,j2)

B̄ Q̄α̇|r⟩h.w. = 0 j2 = 0 ∆ = 3
2r B̄r(j1,0)

B̂ B ∩ B̄ j1, j2, r = 0 ∆ = 0 B̂

C ϵαβQβ|r⟩h.w.
α = 0 ∆ = 2 + 2j1 − 3

2r Cr(j1,j2)

(Q)2|r⟩h.w. = 0 for j1 = 0 ∆ = 2− 3
2r Cr(0,j2)

C̄ ϵα̇β̇Q̄β̇|r⟩
h.w.
α̇ = 0 ∆ = 2 + 2j2 +

3
2r C̄r(j1,j2)

(Q̄)2|r⟩h.w. = 0 for j2 = 0 ∆ = 2 + 3
2r C̄r(j1,0)

Ĉ C ∩ C̄ 3
2r = (j1 − j2) ∆ = 2 + j1 + j2 Ĉ(j1,j2)

D B ∩ C̄ j1 = 0,−3
2r = j2 + 1 ∆ = −3

2r = 1 + j2 D(0,j2)

D̄ B̄ ∩ C j2 = 0, 32r = j1 + 1 ∆ = 3
2r = 1 + j1 D̄(j1,0)

Table B.1: Possible shortening conditions for the N = 1 superconformal alge-
bra.

(di,d
†
i ), i = 1, 2, 3. The non-zero (anti)commutation relations are

[aα, a†
β] = δαβ , (B.1)

[bα̇,b†
β̇
] = δα̇

β̇
, (B.2)

{c, c†} = 1 , (B.3)

{di,d
†
j} = δij . (B.4)

In this oscillator representation the generators of SU(2, 2|1) are given by

Qα = a†
αc , Q̄α̇ = b†

α̇c
† , (B.5)

Sα = c†aα , S̄ α̇ = bα̇c , (B.6)

Pαβ̇ = a†
αb

†
β̇
, Kαβ̇ = aαbβ̇ , (B.7)
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L α
β = a†

βa
α − 1

2
δαβa

†
γa

γ , (B.8)

L̇ α̇

β̇
= b†

β̇
bα̇ − 1

2
δα̇
β̇
b†
γ̇b

γ̇ , (B.9)

r = c†c− 1

3
d†
1d1 −

1

3
d†
2d2 − d†

3d3 , (B.10)

D = 1 +
1

2
a†
γa

γ +
1

2
b†
γ̇b

γ̇ , (B.11)

C = 1− 1

2
a†
γa

γ +
1

2
b†
γ̇b

γ̇ − 1

2
c†c− 1

2
d†
1d1 −

1

2
d†
2d2 −

3

2
d†
3d3 , (B.12)

Here C is a central charge that must kill any physical state. It could be
eliminated from the algebra by redefining r + C → r, but it is useful for
implementing the harmonic action so we keep it.

B.2.1 Vector multiplets V and V̄
We define a vacuum state |0⟩ annihilated by all the lowering operators. Then
we identify

DkF = (a†)k+2(b†)k|0⟩ , (B.13)

Dkλ = (a†)k+1(b†)kc†|0⟩ , (B.14)

and

DkF̄ = (a†)k(b†)k+2c†d†
3|0⟩ , (B.15)

Dkλ̄ = (a†)k(b†)k+1d†
3|0⟩ . (B.16)

B.2.2 Chiral multiplets X and X̄
Similarly, for the chiral multiplets we identify

DkQ = (a†)k(b†)kc†d†
1|0⟩ , (B.17)

Dkψ = (a†)k+1(b†)kd†
1|0⟩ , (B.18)

and

DkQ̄ = (a†)k(b†)kd†
1d

†
2|0⟩ , (B.19)

Dkψ̄ = (a†)k(b†)k+1c†d†
1d

†
2|0⟩ . (B.20)
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B.3 Two-letter Superconformal Primaries

By demanding that they are annihilated by all the conformal supercharges and
by the appropriate combinations of Poincaré supercharges, we have worked
out the expressions for the superconformal primaries of the irreducible mod-
ules that appear on the right hand side of the tensor products (2.30–2.39).
The grassmannOps.m oscillator package by Jeremy Michelson and Matthew
Headrick was extremely useful for this task. We simply quote the results:

V × V:

B̄2(0,0) = λ+λ− − λ−λ+ , (B.21)

B̄2(1,0) = λ+λ+ , (B.22)

Ĉ( q+1
2

, q−2
2

) =

q−2∑
k=0

(−1)k

q(q + 1)

(
q + 1

k + 2

)(
q − 2

k

)
Dq−k−2λ+DkF++

+
1

q

q−2∑
k=0

(−1)q−k

k + 2

(
q − 2

k

)(
q

k + 1

)
DkF++Dq−k−2λ+ .(B.23)

For V̄ × V̄ the expressions are identical with (λ,F) replaced by (λ̄, F̄).
V × X :

B̄ 5
3
( 1
2
,0) = λ+Q , (B.24)

Ĉ( q+1
2

, q−1
2

) =

q−1∑
k=0

(−1)k
(
q − 1

k

)(
q + 1

k

)
Dq−k−1F++DkQ

+(q + 1)

q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q

k

)
Dq−k−1λ+Dkψ+ . (B.25)

For the X̃ × V primary we replace (Q,ψ) by (Q̃,ψ̃) and interchange the order
of the fields (taking into account fermionic minus signs).

V̄ × X :

Ĉ( q
2
, q+1

2
) =

q∑
k=0

(−1)k
(
q

k

)(
q + 1

k

)
Dq−kλ̄+̇DkQ (B.26)

−q
q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q + 1

k

)
Dq−k−1F̄+̇+̇Dkψ+ . (B.27)

For the X̃ × V̄ primary we replace (Q,ψ) by (Q̃,ψ̃) and interchange the order
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of the fields.
X̄ × V:

Ĉ( q+1
2

, q
2
) =

q∑
k=0

(−1)k
(
q

k

)(
q + 1

k + 1

)
Dq−kQ̄Dkλ+

+q

q−1∑
k=0

(−1)k

k + 2

(
q − 1

k

)(
q + 1

k + 1

)
Dq−k−1ψ̄+̇DkF++ . (B.28)

For the V × ¯̃X primary we replace (Q,ψ) by (Q̃,ψ̃) and interchange the order
of the fields.

X̄ × V̄:

B− 5
3
(0, 1

2
) = Q̄λ̄+ , (B.29)

Ĉ( q−1
2

, q+1
2

) =

q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q

k

)
Dkψ̄+̇Dq−k−1λ̄+̇

+

q−1∑
k=0

(−1)q−k

q + 1

(
q − 1

k

)(
q + 1

k + 2

)
Dq−k−1Q̄DkF̄+̇+̇ . (B.30)

For the V̄ × ¯̃X primary we replace (Q,ψ) by (Q̃,ψ̃) and interchange the order
of the fields.

X̄ × X :

Ĉ( q
2
, q
2
) =

q∑
k=0

(−1)k
(
q

k

)(
q

k

)
Dq−kQ̄DkQ

+q

q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q

k

)
Dq−k−1ψ̄+̇Dkψ+ . (B.31)

This primary is gauge contracted. For the flavor contracted ¯̃X × X̃ primary
we replace (Q,ψ) by (Q̃,ψ̃).

X̃ × ¯̃X :

Ĉ( q
2
, q
2
) =

q∑
k=0

(−1)k
(
q

k

)(
q

k

)
Dq−kQ̃Dk ¯̃Q

+q

q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q

k

)
Dq−k−1ψ̃+Dk ¯̃ψ+̇ . (B.32)
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This primary is gauge contracted. For the flavor contracted X × X̄ primary
we replace (Q̃,ψ̃) by (Q,ψ) .

X̃ × X :

B̄ 4
3
(0,0) = Q̃Q (B.33)

Ĉ( q+1
2

, q
2
) =

q∑
k=0

(−1)k
(
q

k

)(
q + 1

k + 1

)
Dq−kQ̃Dkψ+

−
q∑

k=0

(−1)q−k

(
q

k

)(
q + 1

k + 1

)
Dkψ̃+Dq−kQ . (B.34)

For the X̄× ¯̃X primary we interchange (Q̃,ψ) by (Q̄, ¯̃ψ) (also for the conjugates).
V × V̄:

Ĉ( q
2
, q
2
) =

q−1∑
k=0

(−1)k

k + 1

(
q − 1

k

)(
q

k

)
Dq−k−1λ+Dkλ̄+̇

−
q−2∑
k=0

(−1)q−k

q

(
q1

k

)(
q

k + 2

)
DkF++Dq−k−2F̄+̇+̇ . (B.35)

For the V̄ × V primary we replace (λ,F) by(λ̄,F̄) .
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Appendix C

Scalar conformal blocks

In this section we will use the method of [69] to obtain the scalar conformal
blocks as eigenfunctions of the conformal Casimir operator. This procedure
can be applied with no major changes to two-point functions involving tensor
operators, and it was used succesfully in section 5.3 to decompose the two-
point function of the stress tensor.

Bulk channel

The SO(d+ 1, 1) generators are,

LAB = PA
∂

∂PB
− PB

∂

∂PA
, (C.1)

where PA = (P+, P−, P 1, . . . P d). To obtain the conformal blocks we solve the
eigenvalue problem [69],

L2⟨O1(P1)O2(P2)⟩ = −C∆,0⟨O1(P1)O2(P2)⟩ , (C.2)

with L2 = 1
2
(L

(1)
AB + L

(2)
AB)(L

(1)AB + L(2)AB) and C∆,l = ∆(∆ − d) + l(l +
d − 2), where ∆ and l are the dimension and spin of the internal operator.
Because of Lorentz invariance no operators with spin can ever appear in the
bulk conformal block decomposition, hence we set l = 0 in equation (C.2).

Once the asymptotic behavior of f(ξ) is given, the conformal block is com-
pletely fixed. In the ξ → 0 limit the bulk OPE dictates [61],

f(ξ) ∼ ξ−
1
2
(∆1+∆2−∆) . (C.3)

where ∆1 and ∆2 are the dimensions of the external operators. Stripping
out this factor f(ξ) = ξ−

1
2
(∆1+∆2−∆)g(ξ) and plugging in (C.2) we obtain a
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standard hypergeometric equation,

ξ(1 + ξ)g′′(ξ) + (c+ (a+ b+ 1)ξ)g′(ξ) + abg(ξ) = 0 , (C.4)

with,

a =
1

2
(∆ +∆1 −∆2) , b =

1

2
(∆−∆1 +∆2) , c = ∆− d

2
+ 1 . (C.5)

The conformal block for the bulk channel is then,

f(ξ) = ξ−
1
2
(∆1+∆2−∆)

2F1

(1
2
(∆ +∆1 −∆2),

1

2
(∆−∆1 +∆2),∆− d

2
+ 1;−ξ

)
,

(C.6)
in perfect agreement with [61].

Boundary channel

In this channel we consider the restricted conformal group. The SO(d, 1)
generators are,

Lab = Pa
∂

∂P b
− Pb

∂

∂P a
. (C.7)

where P a = (P+, P−, P 1, . . . P d−1). To obtain the conformal blocks we act
with the Casimir operator on one of the fields and solve the eigenvalue problem,

L2⟨O1(P1)O2(P2)⟩ = −C∆,0⟨O1(P1)O2(P2)⟩ . (C.8)

where C∆,l = ∆(∆ − d + 1) + l(l + d − 3) in this case. For this particular
two point function only scalar blocks are present, so l = 0 again. However,
this is no longer true for operators with indices (see subsection 5.3.4). The
asymptotic behavior for ξ → ∞ can be obtained from the bulk-to-boundary
OPE [61],

f(ξ) ∼ ξ−∆ . (C.9)

Stripping out this factor and plugging in (C.8) we obtain another hypergeo-
metric equation. The boundary block is,

f(ξ) = ξ−∆
2F1

(
∆,∆− d

2
+ 1, 2∆ + 2− d;−1

ξ

)
, (C.10)

again in perfect agreement with [61].
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Appendix D

Solutions to crossing symmetry
for scalar operators

In this section we discuss a few solutions to the crossing symmetry equations
for scalar two-point functions. We have:

⟨O(x1)O(x2)⟩ =
1

(2xd1)
∆(2xd2)

∆
ξ−∆G(ξ) (D.1)

where ∆ is the conformal dimension of the operator O. The conformal block
decomposition is,

G(ξ) = 1 +
∑
k

λkakfbulk(∆k; ξ) = ξ∆
∑
l

µ2
l fbdy(∆l; ξ) (D.2)

with λk and µk three-point couplings and ak the coefficient of the one-point
function of the k’th operator.

D.1 Two-dimensional Ising model

In this section we will decompose several correlators for the two-dimensional
Ising model. The basic fields of the theory, corresponding to the energy and
spin operators, will be denoted by ε and σ respectively and have scaling di-
mensions ∆ε = 1 and ∆σ = 1

8
respectively. As we discussed in section 5.2,

there are three different conformally invariant boundary conditions (or bound-
ary states), given in equations (6.1) and (6.2). The first two are related by
the Z2 symmetry of the theory and result in the same two-point function of σ.

128



The two remaining possible two-point functions for the σ field are then [60],

G±
σσ = ξ1/8

√(1 + ξ

ξ

)1/4
±
( ξ

1 + ξ

)1/4
. (D.3)

As we shall see below, the + sign corresponds to the extraordinary transition,
i.e. the |1⟩⟩ and |ε⟩⟩ Cardy boundary states, whereas the − sign corresponds
to the ordinary transition which is the |σ⟩⟩ Cardy boundary state.

The full conformal block decomposition can in principle be obtained from
Virasoro representation theory. We content ourselves here with a simpler anal-
ysis where we expand the correlation function in the limits ξ → 0 and ξ → ∞
and match the coefficients of the expansion to conformal blocks. The bulk
block decomposition becomes

G±
σσ = 1± 1

2
fbulk(1; ξ)+

1

64
fbulk(4; ξ)+

9

40960
fbulk(8; ξ)±

1

32768
fbulk(9, ξ)+ . . .

(D.4)
The bulk spectrum corresponds to the identity 1 and the energy ε operators
plus scalar Virasoro descendants. For example, we may identify the operator
of dimension 4 with L−2L̄−21 and the operator of dimension 9 with a level four
descendant of ε. The absence of an operator of dimension 5 is in agreement
with the fact that ε has a null descendant at level two, so L−2L̄−2ε is actually
an SO(2, 2) descendant.

In the boundary channel we find that:

ξ−∆σG+
σσ =

√
2 +

1

32
√
2
fbdy(2; ξ) +

9

20480
√
2
fbdy(4; ξ) +

25

1835008
√
2
fbdy(6; ξ) + . . .

ξ−∆σG−
σσ =

1√
2
fbdy

(1
2
; ξ
)
+

1

16384
√
2
f
(9
2
; ξ
)
+

1

327680
√
2
fbdy

(13
2
; ξ
)
+ . . .

(D.5)

The constant term in the + case corresponds to a one-point function of σ and
therefore the Z2 symmetry is broken by the boundary conditions. We can thus
identify it with the extraordinary transition. As an additional check one may
verify that the bulk block decomposition agrees with the decompositions (6.2)
and (6.1).

For completeness, we present the conformal block decomposition for the
energy two-point function. We have [60],

G±
εε = ξ +

1

ξ + 1
, (D.6)
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so this expression is valid for both boundary conditions. The decomposition
in the bulk channel is,

G±
εε = 1 +

∞∑
n=1

(
2n− 3

n− 2

)−1

fbulk(2n; ξ) . (D.7)

For the boundary expansion we obtain,

ξ−∆εG±
εε = 1 +

∞∑
n=1

(
4n− 3

2n− 2

)−1

fbdy(2n; ξ). (D.8)

From the expressions above we learn that the coefficients of the conformal
blocks are positive both in the boundary and in the bulk channels.

D.2 The unitarity minimal models and their

analytic continuation

Let us now generalize the results of the previous subsection to the whole series
of the unitarity minimal models. Primary operators in the (m,m+ 1) model,
m ≥ 3, are labeled by integers (r, s), with 1 ≤ r ≤ m− 1, 1 ≤ s ≤ m and the
identification (r, s) ∼ (m − r,m + 1 − s). Denoting the (1, 2) operator by σ
and the (1, 3) operator by ε, the relevant OPE and scaling dimensions are

σ×σ = 1+ε , ∆σ =
1

2
− 3

2(m+ 1)
, ∆ε = 2− 4

m+ 1
. (D.9)

We can eliminate m to find

∆ε =
2

3
(4∆σ + 1) , (D.10)

and we will work with ∆σ rather than m as our independent variable from
now on.

We are after the ⟨σσ⟩ correlator with the Cardy boundary condition la-
belled by the identity. (Recall that in the Ising model this Cardy state is
associated to the extraordinary transition, see equation (6.1)). This correlator
can be obtained as a special case of a result obtained in the context of Liouville
theory with ZZ boundary conditions [77], where the two-point function

⟨V−b/2(x)Vα(y)⟩ (D.11)
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was evaluated. Here Vα(x) denotes the usual Liouville vertex operator with
scaling dimension ∆α = α(Q− α) with Q = b+ b−1. We will be interested in
the case α = −b/2 and b set to the minimal model values given by

c = 1 + 6Q2 = 1− 6

m(m+ 1)
. (D.12)

One may verify that solving this equation for b results in a scaling dimension
of V−b/2 which is precisely ∆σ given in (D.9).

The two-point function from [77] takes the form:

Gσσ(ξ) = 2 sin
(π
6
(1 + 4∆σ)

)
ξ(4∆σ+1)/3(1 + ξ)−(∆σ+1)/3

× 2F1

(
1− 2∆σ

3
,
2 + 2∆σ

3
;
2− 4∆σ

3
;

1

ξ + 1

)
.

(D.13)

The boundary conformal block decomposition of this correlation functions con-
tains operators with even dimensions,

ξ−∆σGσσ(ξ) = 2 sin
(π
6
(1 + 4∆σ)

)(
1 +

∆σ(1 + ∆σ)

2(5− 4∆σ)
fbdy(2, ξ)

+
∆σ(1 + ∆σ)

2(2 + 5∆σ)

40(11− 4∆σ)(5− 4∆σ)
fbdy(4, ξ)

+
∆σ(1 + ∆σ)

2 (20 + 106∆σ + 35∆2
σ + 21∆3

σ)

1008(17− 4∆σ)(11− 4∆σ)(5− 4∆σ)
fbdy(6, ξ) + . . .

)
, (D.14)

in agreement with the fact that the only boundary block is the identity Vira-
soro block. In the bulk channel we find the identity and the ε Virasoro blocks,
leading to a decomposition into SO(2, 1) blocks with operators of dimension of
1+4n and ∆ε+4n with n a non-negative integer. For the first few coefficients
we find

Gσσ(ξ) = 1 +
∆σ(1 + ∆σ)

2(5− 4∆σ)
fbulk(4, ξ) +

∆σ(1 + ∆σ)
2(2 + 5∆σ)

40(11− 4∆σ)(5− 4∆σ)
fbulk(8, ξ) + . . .

−
Γ
(
2−4∆σ

3

)
Γ
(
2+2∆σ

3

)
Γ(−2∆σ)Γ

(
4+4∆σ

3

) (fbulk(∆ε, ξ) +
(1 + ∆σ)(2 + 5∆σ)(−1 + 8∆σ)

6(7 + 4∆σ)(5 + 8∆σ)
fbulk(∆ε + 4, ξ) + . . .

)
.

(D.15)

Up to the normalization factor 2 sin(π
6
(1 + 4∆σ)), the coefficients of the first

series are the same as those of the boundary identity Virasoro block. Indeed, in
either channel these blocks correspond to Virasoro descendants of an identity
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operator. Notice also that the coefficient of the block with dimension ∆ε+4 has
a zero precisely when ∆σ = 1

8
, reflecting the aforementioned fact that L−2ε is

actually an SO(2, 2) descendant in the two-dimensional Ising model. (Indeed
in the Ising model the (1, 3) primary is identified with the (2, 1) primary which
has a level-two null descendant.)

Remarkably, the coefficients of the boundary conformal blocks turn out to
be positive for 0 < ∆σ <

5
4
.1 This implies that we have found a solution of the

crossing symmetry equation that is consistent with the unitarity requirements
for any value of ∆σ in this interval, given simply by the analytic continuation
of (D.13) away from the minimal model values for ∆σ. Of course this does not
imply that this correlator can always be embedded in a full-fledged unitary
CFT – in fact we already know that this is only possible if ∆σ has one of the
minimal model values.

As we pointed out repeatedly in this paper, unitarity does not require
the coefficients of the bulk channel conformal blocks to be positive. These
coefficients however do turn out to be positive for the smaller range 1

8
< ∆σ <

1. The lower and upper endpoint of this range are determined by the zeroes
of the blocks of dimension ∆ε + 4 and ∆ε, respectively.

In summary, for the range 0 < ∆σ <
5
4
we have found an exact solution to

the boundary crossing symmetry equation (5.21), with the dimension of the
first bulk scalar primary ϵ in the σσ OPE given by (D.10). In the smaller
range 1

8
< ∆σ < 1 the bulk expansion satisfies positivity.

D.3 ⟨ϕ2ϕ2⟩ correlator

In this section we will decompose ⟨ϕ2ϕ2⟩ in free field theory. This expansion
complements the order ϵ expression for the scalar two-point function of section
5.2. The ϕ2 two-point function is,

G±
ϕ2ϕ2 =

(
1±

(
ξ

ξ + 1

) 1
2
d−1
)2

+
N

2
ξd−2 , (D.16)

where the plus/minus sign corresponds to Neumann/Dirichlet boundary con-
ditions, and N is the number of scalars. The conformal block expansion in the
bulk channel is

G±
ϕ2ϕ2 = 1 + λaϕ2fbulk(d− 2; ξ) +

∞∑
n=0

λaϕ4,nfbulk(2d− 4 + 2n; ξ) , (D.17)

1We have verified this statement to high order and believe that it is generally true
although we currently cannot offer a rigorous proof.
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with

λaϕ2 = ±2 ,

λaϕ4,n =

(
(−1)n2dΓ(d−1

2
)Γ(1

2
d+ n− 1) + 4N

√
πΓ(d+ n− 2)

)
Γ(d+ n− 2)Γ(3

2
d+ n− 4)

8
√
πΓ(d− 2)2Γ(n+ 1)Γ(3

2
d+ 2n− 4)

.

(D.18)

The Neumann expansion exhibits positivity while the Dirichlet case has one
negative coefficient. In the boundary channel we have,

ξ−d+2G±
ϕ2ϕ2 =

N

2
+

∞∑
n=0

µ2
nfbdy(d− 2 + 2n; ξ) , (D.19)

with

µ2
n = (1± δn,0)

41−n

(2n)!

Γ(d−1
2

+ n)Γ(1
2
d+ n− 1)Γ(d+ 2n− 3)

Γ(1
2
d− 1)Γ(d− 2)Γ(d+4n−3

2
)

, (D.20)

with positivity in both cases.

D.4 The extraordinary transition

There is no extraordinary transition in 4 dimensions since the conformally
invariant one-point function of a free field is not compatible with its equation
of motion. In 4− ϵ dimensions the equation of motion is however modified to:

�ϕ =
λ∗
6
ϕ3 (D.21)

with λ∗ = 48π2ϵ/(N + 8) and N = 1 in our case. On the half-space this
equation admits the solution:

⟨ϕ(x)⟩ =
√

12

λ∗

1

xd
(D.22)

which to leading order is consistent with boundary conformal invariance. This
solution is our starting point for the analysis of the extraordinary transition
in the ϵ expansion.

Let us compute the two-point function of the scalar field ϕ. We may shift
the field ϕ by its classical one-point function,

ϕ(x) = ⟨ϕ(x)⟩+ χ(x) (D.23)
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and find the propagator G(x, y) = ⟨χ(x)χ(y)⟩ by solving the linearized equa-
tion of motion around this solution,(

�− 6

(xd)2

)
G(x, y) = δd(x− y) (D.24)

The solution compatible with the boundary conditions at xd = 0 takes the
form:

G(x, y) =
1

(2xd)(2yd)
ξ−1

(
1

4π2
G0(ξ)

)
G0(ξ) =

1

1 + ξ
+ 12ξ + 6ξ(1 + 2ξ) log

(
ξ

1 + ξ

) (D.25)

with ξ = (x−y)2/(4xdyd), as before. On the first line we recognize the familiar
form of a scalar two-point function for a CFT with a boundary. Taking the
limit ξ → 0 in (D.25) we see that the properly normalized operator is actually
2πχ rather than χ, and similarly 2πϕ rather than ϕ. We will henceforth
work with these rescaled operators. This implies that from now on ⟨ϕ(x)⟩ =
3/(

√
ϵ xd) and we can drop the 4π2 on the first line of (D.25).

We will now expand the two-point function of ϕ in conformal blocks. It is
important to note that OPE statements always refer to full correlation func-
tions, i.e. including any disconnected contributions. In our case the discon-
nected part ⟨ϕ(x)⟩⟨ϕ(y)⟩ is of order 1/ϵ which makes it the leading-order term.
Our first task is thus to decompose ⟨ϕ(x)⟩⟨ϕ(y)⟩ in conformal blocks. In the
boundary channel we of course find precisely the block corresponding to the
identity operator and nothing else. In the bulk channel we find:

⟨ϕ(x)⟩⟨ϕ(y)⟩ = 36/ϵ

(2xd)(2yd)
=

36/ϵ

(2xd)(2yd)
ξ−1

(
fbulk(2, ξ) +

∞∑
n=1

2(n!)2

(2n)!
fbulk(2 + 2n, ξ)

)
(D.26)

Interestingly, the product of two one-point functions decomposes into an in-
finite set of bulk blocks with dimensions given by the even integers and with
positive coefficients. However, as expected for a totally disconnected correla-
tor, the bulk identity operator is missing at this order.

At the next order we should take into account that the one-point function
of ϕ a priori has subleading corrections,

⟨ϕ(x)⟩ = 3√
ϵ xd

(
1 + ϵ a+

ϵ

2
log(2xd)

)
(D.27)
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with an unknown coefficient a and with the logarithm originating from the
correction to the scaling dimension of ϕ in 4 − ϵ dimensions. The full two-
point function to order ϵ0 becomes:

⟨ϕ(x)ϕ(y)⟩ = 1

(2xd)∆ϕ(2yd)∆ϕ
ξ−∆ϕGext(ξ)

Gext(ξ) =
36

ϵ
(1 + 2ϵ a)ξ − 18ξ log(ξ) +G0(ξ)

(D.28)

with ∆ϕ = 1− ϵ/2 the free-field dimension of ϕ in 4− ϵ dimensions.
In the boundary channel the conformal block decomposition of this cor-

rected correlator is again straightforward. The corrections to the disconnected
part of course simply become corrections to the boundary identity block, whilst
for the connected part we find that:

ξ−1G0(ξ) =
1

10
fbdy(4; ξ) (D.29)

so we find a single boundary block of dimension d = 4. This is completely
as expected. In particular, the existence of a gap of size d was an essential
assumption in the numerical bootstrap for the bulk bounds.

In the bulk channel we find subleading corrections to the infinite series of
blocks in (D.26) but no new blocks. The first few terms take the form:

Gext(ξ) = 1 +

(
36

ϵ
+ 11 + 72a

)
fbulk

(
2− 2

3
ϵ; ξ

)
+

(
36

ϵ
− 12 + 72a

)
fbulk (4, ξ) +

(
12

ϵ
− 18 + 24a

)
fbulk(6 + 2ϵ, ξ)

+

(
18

5ϵ
+

1

20
(−241 + 144a)

)
fbulk

(
8 +

16

3
ϵ, ξ

)
+ . . .

(D.30)

where it is understood that the blocks are evaluated in 4 − ϵ spacetime di-
mensions. The order 1/ϵ terms in (D.30) of course coincide with (D.26). The
identity operator is now present in the bulk channel, and the dimension of the
next operator (which is 2− 2

3
ϵ) is precisely the one-loop dimension of ϕ2 in the

epsilon expansion. It would be interesting to compute a so we can get an idea
of positivity of the coefficients for ϵ = 1.
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D.5 A trivial solution

A particularly simple solution of (5.21) is obtained by assuming that the bulk
channel only contains the identity operator, so all the non-trivial one-point
functions are set to zero. In that case there is effectively no boundary at all
and the two-point function is just (x1 − x2)

−2∆. This two-point function still
has a boundary conformal block decomposition of the form:

ξ−∆ =
∞∑

m=0

µ2
mfbdy(∆ +m; ξ) (D.31)

with

µ2
m =

{
1

2mm!
(∆)m(∆− d

2
+ 1)m/2(∆− d−1

2
+m)−m/2 m even

1
2mm!

(∆)m(∆− d
2
+ 1)(m−1)/2(∆− d−1

2
+m)(1−m)/2 m odd

(D.32)

All the coefficients are positive for ∆ greater than the unitarity bound and the
boundary spectrum begins with an operator of dimension ∆.

D.6 Generalized free field theory

As a simple generalization of the free field theory result we define generalized
free field (or gff) two-point functions in the presence of a boundary as:

⟨O(x1)O(x2)⟩ =
1

(x1 − x2)2∆
± 1(

(x1 − x2)2 + 4xd1x
d
2

)∆
=

1

(2xd1)
∆(2xd2)

∆
ξ−∆G±

gff(ξ) G±
gff(ξ) = 1±

(
ξ

ξ + 1

)∆

(D.33)

The conformal block decomposition in the bulk takes the form

G±
gff(ξ) = 1±

∞∑
n=0

(−1)n(∆)n
(
2∆− d

2
+ 2n

)
−n(

∆− d
2
+ n+ 1

)
−n
n!

fbulk(2∆ + 2n; ξ) (D.34)
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which has the expected ‘double trace’ infinite operator spectrum and coeffi-
cients with alternating signs. On the boundary we find that:

ξ−∆G+
gff(ξ) =

∞∑
n=0

(∆)2n
(
∆− d−1

2
+ 2n

)
−n

22n−1(2n)!
(
∆− d

2
+ n+ 1

)
−n

fbdy(∆ + 2n; ξ)

ξ−∆G−
gff(ξ) =

∞∑
n=0

(∆)2n+1

(
∆− d−3

2
+ 2n

)
−n

22n(2n+ 1)!
(
∆− d

2
+ n+ 1

)
−n

fbdy(∆ + 2n+ 1; ξ)

(D.35)

and we find two ‘single trace’ operator spectra on the boundary, both with
positive coefficients.

D.7 O(N) model at large N

For the the O(N) model with Neumann boundary conditions the scalar two-
point function is given by [61],

GO(N) =

(
1

1 + ξ

) 1
2
d−1

(1 + 2ξ) . (D.36)

The bulk channel expansion is,

GO(N) = 1 +
∞∑
n=0

λanfbulk(2n+ 2; ξ) , (D.37)

with

λan = (−1)2n
(d2 − 4d(n+ 2) + 8(1 + n)2 + 4)Γ(1− 1

2
d+ n)Γ(2− 1

2
d+ n)

2

4Γ(2− 1
2
d)

2
Γ(n+ 2)Γ(2− 1

2
d+ 2n)

.

(D.38)
As in all the expansions with Neumann boundary conditions studied in this
appendix, the bulk channel coefficients are positive. Finally, the boundary
channel expansion is,

ξ−
1
2
d+1GO(N) = 2fbdy(d− 3; ξ) . (D.39)

It is somewhat unexpected that in this channel we have a single block.
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Appendix E

Conformal block decompositions
for Tµν

In this appendix we present a few explicit examples of conformal block decom-
positions of the form (5.40) for the two-point function of the stress tensor.

E.1 Two bulk dimensions

The conformal block decomposition of the stress tensor two-point function
in two dimensions is a bit subtle, see [59] for details. First of all, the resid-
ual Virasoro symmetry plus the absence of energy flow across the boundary
completely determines the two-point function. Furthermore, the number of in-
dependent tensor structures decreases to two and the two functions f(ξ) and
g(ξ) have to be replaced with the single function 2ξf(ξ) + (1 + ξ)g(ξ). With
our unit normalization we find that the resulting two-point function is given
precisely by the boundary scalar block, with a coefficient that is equal to 4. In
the bulk channel we find the identity plus a single block of dimension 4 with
unit coefficient.

E.2 Free field theory for general d

The two-point function of the stress tensor in free field theory for d > 2
decomposes into infinitely many blocks in either channel. Without presenting
all the formulas, we have presented the first few operators and their associated
coefficients in both the bulk and the boundary channel in the tables. Notice
that the coefficients in the bulk channel are not positive for either boundary
condition.
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∆ λaO

0 1

d− 2 ±
(

(−2+d)d(1+d)
4(−1+d)

)
2d +1

2d+ 2 −
(

(−2+d)d
(2+3d)

)
2d+ 4 +

(
(−2+d)d2(1+d)
6(2+d)(4+3d)

)
2d+ 6 −

(
(−2+d)d2(1+d)(2+d)
18(8+3d)(10+3d)

)
2d+ 2m . . .

Table E.1: Bulk conformal block decomposition of the two-point function of
the stress tensor in free field theory. The first block corresponds to the identity
operator and its coefficient sets the overall normalization. The plus/minus
sign corresponds to the special/ordinary transition, i.e. Neumann/Dirichlet
boundary conditions.

∆ l µ2

d 0 2d
(−1+d)

d 2 21−2d(1± 1)

d+ 2 2 2−2−2dd(−1+d)(2+d)
(1+d)

d+ 4 2 2−6−2dd(−1+d)2+d)2(4+d)
3(7+d)

d+ 2m 2 . . .

Table E.2: Boundary conformal block decomposition of the two-point function
of the stress tensor in free field theory.

E.3 Extraordinary transition

In this subsection we compute the two-point function of the stress tensor in
the extraordinary transition.

The classical stress tensor for the λϕ4 theory with a curvature coupling z
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takes the form:

Tµν(x) =
2√
3

((
2z − 1

2

)
∂µϕ∂νϕ+ 2z ϕ∂µ∂νϕ+ gµν

(
λ

48
ϕ4 +

(
1

4
− 2z

)
∂ρϕ∂

ρϕ− 2zϕ�ϕ
))

(E.1)
One may easily verify that it is traceless in d = 4 for z = 1/12 which therefore
corresponds to the conformally coupled scalar. We will henceforth use z =
1/12. In that case Tµν is unit normalized in free field theory, more precisely

⟨Tµν(x)Tρσ(y)⟩ = H2
12

(4ξ)4(xd)4(yd)4
provided ⟨ϕ(x)ϕ(y)⟩ = 1

(x−y)2
.

The correlation functions of the scalar ϕ were computed to leading order
in subsection D.4. Upon substituting the solution ⟨ϕ(x)⟩ = 3/(

√
ϵ xd) in (E.1)

we find that the one-point function of Tµν vanishes, in agreement with the re-
quirements of boundary conformal invariance. At the next order we substitute
ϕ(x) = ⟨ϕ(x)⟩+ χ(x) and expand in ϵ to find an expression of the form:

Tµν(x) =
1√
ϵ
Tµν [x

d, ∂x]χ(x) + . . . (E.2)

where Tµν [x
d, ∂x] is a linear differential operator which explicitly depends on

xd. To leading order we therefore obtain that

⟨Tµν(x)Tρσ(y)⟩ =
1

ϵ
Tµν [x

d, ∂x]Tρσ[y
d, ∂y]⟨χ(x)χ(y)⟩ (E.3)

We can now substitute the solution G(x, y) = ⟨χ(x)χ(y)⟩, which is equation
(D.25) without the factor of 4π2, work out the action of the differential opera-
tors T and collect various terms to eventually find a two-point function of the
form:

⟨Tµν(x)Tρσ(y)⟩ =
f ext(ξ)H2

12 + gext(ξ)H12Q12 + hext(ξ)Q2
12

(4ξ)4(xd)4(yd)4
(E.4)

where the tensor structures H12 and Q12 are defined (in the projective cone
notation) in (5.45) and (5.56) and

f ext(ξ) =
16ξ

ϵ(1 + ξ)3
gext(ξ) =

64ξ2(2 + 5ξ)

ϵ(1 + ξ)4
hext(ξ) =

64ξ3 (1 + 5ξ + 10ξ2)

ϵ(1 + ξ)5

(E.5)
Upon comparing (E.4) with the last equation in (5.55) we see that this cor-
relation function has exactly the right tensor structure to be consistent with
boundary conformal invariance. Furthermore, the functions (f ext, gext, hext)
also satisfy the Ward identities (5.57). These are rather non-trivial checks of
our result.
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The conformal block decomposition of (E.4) turns out to be remarkably
simple. In the boundary we find only a scalar block (which must have dimen-
sion d by the Ward identities) with coefficient 640/ϵ. In the bulk we find three
blocks,

f ext(ξ)

gext(ξ)

hext(ξ)

 =
160

ϵ


fbulk(2; ξ)

gbulk(2; ξ)

hbulk(2; ξ)

+
480

ϵ


fbulk(4; ξ)

gbulk(4; ξ)

hbulk(4; ξ)

+
320

ϵ


fbulk(6; ξ)

gbulk(6; ξ)

hbulk(6; ξ)


(E.6)

all with positive coefficients. Notice that the identity operator is absent at
this order.

Closer inspection of (E.6) leads to a subtlety that we would like to clarify.
We easily identify the bulk block with dimension 2 as the operator ϕ2. It
appears in the TT OPE with an order one coefficient and its one-point function
is ⟨ϕ2⟩ = ⟨ϕ⟩2 ∼ ϵ−1 so altogether it appears at the right order in ϵ. The
counting for the operator of dimension 4 is however a bit different. The only
scalar primary of that dimension is ϕ4 but its one-point function is of order
ϵ−2. Our result can therefore only be consistent if ϕ4 appears in the stress
tensor OPE only at order ϵ. It is in fact easy to see that the leading-order
Feynman diagram for the ⟨TTϕ4⟩ tree-point function (which would be of order
ϵ0) has to vanish. This is because it factorizes into a product of two Feynman
diagrams that each correspond to the ⟨Tϕ2⟩ two-point function, which in turn
vanishes by conformal invariance. This is also consistent with the fact that
no dimension 4 block appears in the bulk conformal block decomposition of
the stress tensor two-point function in free-field theory, cf. table E.1. From
these tables we may also deduce that a similar cancellation should occur for
the dimension 6 operator.
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